1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the collating sequence for expression pExpr to be the collating 60 ** sequence named by pToken. Return a pointer to the revised expression. 61 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 62 ** flag. An explicit collating sequence will override implicit 63 ** collating sequences. 64 */ 65 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){ 66 char *zColl = 0; /* Dequoted name of collation sequence */ 67 CollSeq *pColl; 68 sqlite3 *db = pParse->db; 69 zColl = sqlite3NameFromToken(db, pCollName); 70 if( pExpr && zColl ){ 71 pColl = sqlite3LocateCollSeq(pParse, zColl); 72 if( pColl ){ 73 pExpr->pColl = pColl; 74 pExpr->flags |= EP_ExpCollate; 75 } 76 } 77 sqlite3DbFree(db, zColl); 78 return pExpr; 79 } 80 81 /* 82 ** Return the default collation sequence for the expression pExpr. If 83 ** there is no default collation type, return 0. 84 */ 85 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 86 CollSeq *pColl = 0; 87 Expr *p = pExpr; 88 while( ALWAYS(p) ){ 89 int op; 90 pColl = p->pColl; 91 if( pColl ) break; 92 op = p->op; 93 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){ 94 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 95 ** a TK_COLUMN but was previously evaluated and cached in a register */ 96 const char *zColl; 97 int j = p->iColumn; 98 if( j>=0 ){ 99 sqlite3 *db = pParse->db; 100 zColl = p->pTab->aCol[j].zColl; 101 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 102 pExpr->pColl = pColl; 103 } 104 break; 105 } 106 if( op!=TK_CAST && op!=TK_UPLUS ){ 107 break; 108 } 109 p = p->pLeft; 110 } 111 if( sqlite3CheckCollSeq(pParse, pColl) ){ 112 pColl = 0; 113 } 114 return pColl; 115 } 116 117 /* 118 ** pExpr is an operand of a comparison operator. aff2 is the 119 ** type affinity of the other operand. This routine returns the 120 ** type affinity that should be used for the comparison operator. 121 */ 122 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 123 char aff1 = sqlite3ExprAffinity(pExpr); 124 if( aff1 && aff2 ){ 125 /* Both sides of the comparison are columns. If one has numeric 126 ** affinity, use that. Otherwise use no affinity. 127 */ 128 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 129 return SQLITE_AFF_NUMERIC; 130 }else{ 131 return SQLITE_AFF_NONE; 132 } 133 }else if( !aff1 && !aff2 ){ 134 /* Neither side of the comparison is a column. Compare the 135 ** results directly. 136 */ 137 return SQLITE_AFF_NONE; 138 }else{ 139 /* One side is a column, the other is not. Use the columns affinity. */ 140 assert( aff1==0 || aff2==0 ); 141 return (aff1 + aff2); 142 } 143 } 144 145 /* 146 ** pExpr is a comparison operator. Return the type affinity that should 147 ** be applied to both operands prior to doing the comparison. 148 */ 149 static char comparisonAffinity(Expr *pExpr){ 150 char aff; 151 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 152 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 153 pExpr->op==TK_NE ); 154 assert( pExpr->pLeft ); 155 aff = sqlite3ExprAffinity(pExpr->pLeft); 156 if( pExpr->pRight ){ 157 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 158 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 159 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 160 }else if( !aff ){ 161 aff = SQLITE_AFF_NONE; 162 } 163 return aff; 164 } 165 166 /* 167 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 168 ** idx_affinity is the affinity of an indexed column. Return true 169 ** if the index with affinity idx_affinity may be used to implement 170 ** the comparison in pExpr. 171 */ 172 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 173 char aff = comparisonAffinity(pExpr); 174 switch( aff ){ 175 case SQLITE_AFF_NONE: 176 return 1; 177 case SQLITE_AFF_TEXT: 178 return idx_affinity==SQLITE_AFF_TEXT; 179 default: 180 return sqlite3IsNumericAffinity(idx_affinity); 181 } 182 } 183 184 /* 185 ** Return the P5 value that should be used for a binary comparison 186 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 187 */ 188 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 189 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 190 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 191 return aff; 192 } 193 194 /* 195 ** Return a pointer to the collation sequence that should be used by 196 ** a binary comparison operator comparing pLeft and pRight. 197 ** 198 ** If the left hand expression has a collating sequence type, then it is 199 ** used. Otherwise the collation sequence for the right hand expression 200 ** is used, or the default (BINARY) if neither expression has a collating 201 ** type. 202 ** 203 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 204 ** it is not considered. 205 */ 206 CollSeq *sqlite3BinaryCompareCollSeq( 207 Parse *pParse, 208 Expr *pLeft, 209 Expr *pRight 210 ){ 211 CollSeq *pColl; 212 assert( pLeft ); 213 if( pLeft->flags & EP_ExpCollate ){ 214 assert( pLeft->pColl ); 215 pColl = pLeft->pColl; 216 }else if( pRight && pRight->flags & EP_ExpCollate ){ 217 assert( pRight->pColl ); 218 pColl = pRight->pColl; 219 }else{ 220 pColl = sqlite3ExprCollSeq(pParse, pLeft); 221 if( !pColl ){ 222 pColl = sqlite3ExprCollSeq(pParse, pRight); 223 } 224 } 225 return pColl; 226 } 227 228 /* 229 ** Generate the operands for a comparison operation. Before 230 ** generating the code for each operand, set the EP_AnyAff 231 ** flag on the expression so that it will be able to used a 232 ** cached column value that has previously undergone an 233 ** affinity change. 234 */ 235 static void codeCompareOperands( 236 Parse *pParse, /* Parsing and code generating context */ 237 Expr *pLeft, /* The left operand */ 238 int *pRegLeft, /* Register where left operand is stored */ 239 int *pFreeLeft, /* Free this register when done */ 240 Expr *pRight, /* The right operand */ 241 int *pRegRight, /* Register where right operand is stored */ 242 int *pFreeRight /* Write temp register for right operand there */ 243 ){ 244 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 245 pLeft->flags |= EP_AnyAff; 246 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 247 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 248 pRight->flags |= EP_AnyAff; 249 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 250 } 251 252 /* 253 ** Generate code for a comparison operator. 254 */ 255 static int codeCompare( 256 Parse *pParse, /* The parsing (and code generating) context */ 257 Expr *pLeft, /* The left operand */ 258 Expr *pRight, /* The right operand */ 259 int opcode, /* The comparison opcode */ 260 int in1, int in2, /* Register holding operands */ 261 int dest, /* Jump here if true. */ 262 int jumpIfNull /* If true, jump if either operand is NULL */ 263 ){ 264 int p5; 265 int addr; 266 CollSeq *p4; 267 268 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 269 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 270 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 271 (void*)p4, P4_COLLSEQ); 272 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 273 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ 274 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 275 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 276 } 277 return addr; 278 } 279 280 #if SQLITE_MAX_EXPR_DEPTH>0 281 /* 282 ** Check that argument nHeight is less than or equal to the maximum 283 ** expression depth allowed. If it is not, leave an error message in 284 ** pParse. 285 */ 286 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 287 int rc = SQLITE_OK; 288 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 289 if( nHeight>mxHeight ){ 290 sqlite3ErrorMsg(pParse, 291 "Expression tree is too large (maximum depth %d)", mxHeight 292 ); 293 rc = SQLITE_ERROR; 294 } 295 return rc; 296 } 297 298 /* The following three functions, heightOfExpr(), heightOfExprList() 299 ** and heightOfSelect(), are used to determine the maximum height 300 ** of any expression tree referenced by the structure passed as the 301 ** first argument. 302 ** 303 ** If this maximum height is greater than the current value pointed 304 ** to by pnHeight, the second parameter, then set *pnHeight to that 305 ** value. 306 */ 307 static void heightOfExpr(Expr *p, int *pnHeight){ 308 if( p ){ 309 if( p->nHeight>*pnHeight ){ 310 *pnHeight = p->nHeight; 311 } 312 } 313 } 314 static void heightOfExprList(ExprList *p, int *pnHeight){ 315 if( p ){ 316 int i; 317 for(i=0; i<p->nExpr; i++){ 318 heightOfExpr(p->a[i].pExpr, pnHeight); 319 } 320 } 321 } 322 static void heightOfSelect(Select *p, int *pnHeight){ 323 if( p ){ 324 heightOfExpr(p->pWhere, pnHeight); 325 heightOfExpr(p->pHaving, pnHeight); 326 heightOfExpr(p->pLimit, pnHeight); 327 heightOfExpr(p->pOffset, pnHeight); 328 heightOfExprList(p->pEList, pnHeight); 329 heightOfExprList(p->pGroupBy, pnHeight); 330 heightOfExprList(p->pOrderBy, pnHeight); 331 heightOfSelect(p->pPrior, pnHeight); 332 } 333 } 334 335 /* 336 ** Set the Expr.nHeight variable in the structure passed as an 337 ** argument. An expression with no children, Expr.pList or 338 ** Expr.pSelect member has a height of 1. Any other expression 339 ** has a height equal to the maximum height of any other 340 ** referenced Expr plus one. 341 */ 342 static void exprSetHeight(Expr *p){ 343 int nHeight = 0; 344 heightOfExpr(p->pLeft, &nHeight); 345 heightOfExpr(p->pRight, &nHeight); 346 if( ExprHasProperty(p, EP_xIsSelect) ){ 347 heightOfSelect(p->x.pSelect, &nHeight); 348 }else{ 349 heightOfExprList(p->x.pList, &nHeight); 350 } 351 p->nHeight = nHeight + 1; 352 } 353 354 /* 355 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 356 ** the height is greater than the maximum allowed expression depth, 357 ** leave an error in pParse. 358 */ 359 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 360 exprSetHeight(p); 361 sqlite3ExprCheckHeight(pParse, p->nHeight); 362 } 363 364 /* 365 ** Return the maximum height of any expression tree referenced 366 ** by the select statement passed as an argument. 367 */ 368 int sqlite3SelectExprHeight(Select *p){ 369 int nHeight = 0; 370 heightOfSelect(p, &nHeight); 371 return nHeight; 372 } 373 #else 374 #define exprSetHeight(y) 375 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 376 377 /* 378 ** This routine is the core allocator for Expr nodes. 379 ** 380 ** Construct a new expression node and return a pointer to it. Memory 381 ** for this node and for the pToken argument is a single allocation 382 ** obtained from sqlite3DbMalloc(). The calling function 383 ** is responsible for making sure the node eventually gets freed. 384 ** 385 ** If dequote is true, then the token (if it exists) is dequoted. 386 ** If dequote is false, no dequoting is performance. The deQuote 387 ** parameter is ignored if pToken is NULL or if the token does not 388 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 389 ** then the EP_DblQuoted flag is set on the expression node. 390 ** 391 ** Special case: If op==TK_INTEGER and pToken points to a string that 392 ** can be translated into a 32-bit integer, then the token is not 393 ** stored in u.zToken. Instead, the integer values is written 394 ** into u.iValue and the EP_IntValue flag is set. No extra storage 395 ** is allocated to hold the integer text and the dequote flag is ignored. 396 */ 397 Expr *sqlite3ExprAlloc( 398 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 399 int op, /* Expression opcode */ 400 const Token *pToken, /* Token argument. Might be NULL */ 401 int dequote /* True to dequote */ 402 ){ 403 Expr *pNew; 404 int nExtra = 0; 405 int iValue = 0; 406 407 if( pToken ){ 408 if( op!=TK_INTEGER || pToken->z==0 409 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 410 nExtra = pToken->n+1; 411 } 412 } 413 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 414 if( pNew ){ 415 pNew->op = (u8)op; 416 pNew->iAgg = -1; 417 if( pToken ){ 418 if( nExtra==0 ){ 419 pNew->flags |= EP_IntValue; 420 pNew->u.iValue = iValue; 421 }else{ 422 int c; 423 pNew->u.zToken = (char*)&pNew[1]; 424 memcpy(pNew->u.zToken, pToken->z, pToken->n); 425 pNew->u.zToken[pToken->n] = 0; 426 if( dequote && nExtra>=3 427 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 428 sqlite3Dequote(pNew->u.zToken); 429 if( c=='"' ) pNew->flags |= EP_DblQuoted; 430 } 431 } 432 } 433 #if SQLITE_MAX_EXPR_DEPTH>0 434 pNew->nHeight = 1; 435 #endif 436 } 437 return pNew; 438 } 439 440 /* 441 ** Allocate a new expression node from a zero-terminated token that has 442 ** already been dequoted. 443 */ 444 Expr *sqlite3Expr( 445 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 446 int op, /* Expression opcode */ 447 const char *zToken /* Token argument. Might be NULL */ 448 ){ 449 Token x; 450 x.z = zToken; 451 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 452 return sqlite3ExprAlloc(db, op, &x, 0); 453 } 454 455 /* 456 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 457 ** 458 ** If pRoot==NULL that means that a memory allocation error has occurred. 459 ** In that case, delete the subtrees pLeft and pRight. 460 */ 461 void sqlite3ExprAttachSubtrees( 462 sqlite3 *db, 463 Expr *pRoot, 464 Expr *pLeft, 465 Expr *pRight 466 ){ 467 if( pRoot==0 ){ 468 assert( db->mallocFailed ); 469 sqlite3ExprDelete(db, pLeft); 470 sqlite3ExprDelete(db, pRight); 471 }else{ 472 if( pRight ){ 473 pRoot->pRight = pRight; 474 if( pRight->flags & EP_ExpCollate ){ 475 pRoot->flags |= EP_ExpCollate; 476 pRoot->pColl = pRight->pColl; 477 } 478 } 479 if( pLeft ){ 480 pRoot->pLeft = pLeft; 481 if( pLeft->flags & EP_ExpCollate ){ 482 pRoot->flags |= EP_ExpCollate; 483 pRoot->pColl = pLeft->pColl; 484 } 485 } 486 exprSetHeight(pRoot); 487 } 488 } 489 490 /* 491 ** Allocate a Expr node which joins as many as two subtrees. 492 ** 493 ** One or both of the subtrees can be NULL. Return a pointer to the new 494 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 495 ** free the subtrees and return NULL. 496 */ 497 Expr *sqlite3PExpr( 498 Parse *pParse, /* Parsing context */ 499 int op, /* Expression opcode */ 500 Expr *pLeft, /* Left operand */ 501 Expr *pRight, /* Right operand */ 502 const Token *pToken /* Argument token */ 503 ){ 504 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 505 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 506 return p; 507 } 508 509 /* 510 ** Join two expressions using an AND operator. If either expression is 511 ** NULL, then just return the other expression. 512 */ 513 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 514 if( pLeft==0 ){ 515 return pRight; 516 }else if( pRight==0 ){ 517 return pLeft; 518 }else{ 519 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 520 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 521 return pNew; 522 } 523 } 524 525 /* 526 ** Construct a new expression node for a function with multiple 527 ** arguments. 528 */ 529 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 530 Expr *pNew; 531 sqlite3 *db = pParse->db; 532 assert( pToken ); 533 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 534 if( pNew==0 ){ 535 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 536 return 0; 537 } 538 pNew->x.pList = pList; 539 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 540 sqlite3ExprSetHeight(pParse, pNew); 541 return pNew; 542 } 543 544 /* 545 ** Assign a variable number to an expression that encodes a wildcard 546 ** in the original SQL statement. 547 ** 548 ** Wildcards consisting of a single "?" are assigned the next sequential 549 ** variable number. 550 ** 551 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 552 ** sure "nnn" is not too be to avoid a denial of service attack when 553 ** the SQL statement comes from an external source. 554 ** 555 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 556 ** as the previous instance of the same wildcard. Or if this is the first 557 ** instance of the wildcard, the next sequenial variable number is 558 ** assigned. 559 */ 560 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 561 sqlite3 *db = pParse->db; 562 const char *z; 563 564 if( pExpr==0 ) return; 565 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 566 z = pExpr->u.zToken; 567 assert( z!=0 ); 568 assert( z[0]!=0 ); 569 if( z[1]==0 ){ 570 /* Wildcard of the form "?". Assign the next variable number */ 571 assert( z[0]=='?' ); 572 pExpr->iTable = ++pParse->nVar; 573 }else if( z[0]=='?' ){ 574 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 575 ** use it as the variable number */ 576 int i; 577 pExpr->iTable = i = atoi((char*)&z[1]); 578 testcase( i==0 ); 579 testcase( i==1 ); 580 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 581 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 582 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 583 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 584 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 585 } 586 if( i>pParse->nVar ){ 587 pParse->nVar = i; 588 } 589 }else{ 590 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 591 ** number as the prior appearance of the same name, or if the name 592 ** has never appeared before, reuse the same variable number 593 */ 594 int i; 595 u32 n; 596 n = sqlite3Strlen30(z); 597 for(i=0; i<pParse->nVarExpr; i++){ 598 Expr *pE = pParse->apVarExpr[i]; 599 assert( pE!=0 ); 600 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ 601 pExpr->iTable = pE->iTable; 602 break; 603 } 604 } 605 if( i>=pParse->nVarExpr ){ 606 pExpr->iTable = ++pParse->nVar; 607 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 608 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 609 pParse->apVarExpr = 610 sqlite3DbReallocOrFree( 611 db, 612 pParse->apVarExpr, 613 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 614 ); 615 } 616 if( !db->mallocFailed ){ 617 assert( pParse->apVarExpr!=0 ); 618 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 619 } 620 } 621 } 622 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 623 sqlite3ErrorMsg(pParse, "too many SQL variables"); 624 } 625 } 626 627 /* 628 ** Clear an expression structure without deleting the structure itself. 629 ** Substructure is deleted. 630 */ 631 void sqlite3ExprClear(sqlite3 *db, Expr *p){ 632 assert( p!=0 ); 633 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 634 sqlite3ExprDelete(db, p->pLeft); 635 sqlite3ExprDelete(db, p->pRight); 636 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 637 sqlite3DbFree(db, p->u.zToken); 638 } 639 if( ExprHasProperty(p, EP_xIsSelect) ){ 640 sqlite3SelectDelete(db, p->x.pSelect); 641 }else{ 642 sqlite3ExprListDelete(db, p->x.pList); 643 } 644 } 645 } 646 647 /* 648 ** Recursively delete an expression tree. 649 */ 650 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 651 if( p==0 ) return; 652 sqlite3ExprClear(db, p); 653 if( !ExprHasProperty(p, EP_Static) ){ 654 sqlite3DbFree(db, p); 655 } 656 } 657 658 /* 659 ** Return the number of bytes allocated for the expression structure 660 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 661 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 662 */ 663 static int exprStructSize(Expr *p){ 664 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 665 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 666 return EXPR_FULLSIZE; 667 } 668 669 /* 670 ** The dupedExpr*Size() routines each return the number of bytes required 671 ** to store a copy of an expression or expression tree. They differ in 672 ** how much of the tree is measured. 673 ** 674 ** dupedExprStructSize() Size of only the Expr structure 675 ** dupedExprNodeSize() Size of Expr + space for token 676 ** dupedExprSize() Expr + token + subtree components 677 ** 678 *************************************************************************** 679 ** 680 ** The dupedExprStructSize() function returns two values OR-ed together: 681 ** (1) the space required for a copy of the Expr structure only and 682 ** (2) the EP_xxx flags that indicate what the structure size should be. 683 ** The return values is always one of: 684 ** 685 ** EXPR_FULLSIZE 686 ** EXPR_REDUCEDSIZE | EP_Reduced 687 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 688 ** 689 ** The size of the structure can be found by masking the return value 690 ** of this routine with 0xfff. The flags can be found by masking the 691 ** return value with EP_Reduced|EP_TokenOnly. 692 ** 693 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 694 ** (unreduced) Expr objects as they or originally constructed by the parser. 695 ** During expression analysis, extra information is computed and moved into 696 ** later parts of teh Expr object and that extra information might get chopped 697 ** off if the expression is reduced. Note also that it does not work to 698 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 699 ** to reduce a pristine expression tree from the parser. The implementation 700 ** of dupedExprStructSize() contain multiple assert() statements that attempt 701 ** to enforce this constraint. 702 */ 703 static int dupedExprStructSize(Expr *p, int flags){ 704 int nSize; 705 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 706 if( 0==(flags&EXPRDUP_REDUCE) ){ 707 nSize = EXPR_FULLSIZE; 708 }else{ 709 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 710 assert( !ExprHasProperty(p, EP_FromJoin) ); 711 assert( (p->flags2 & EP2_MallocedToken)==0 ); 712 assert( (p->flags2 & EP2_Irreducible)==0 ); 713 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 714 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 715 }else{ 716 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 717 } 718 } 719 return nSize; 720 } 721 722 /* 723 ** This function returns the space in bytes required to store the copy 724 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 725 ** string is defined.) 726 */ 727 static int dupedExprNodeSize(Expr *p, int flags){ 728 int nByte = dupedExprStructSize(p, flags) & 0xfff; 729 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 730 nByte += sqlite3Strlen30(p->u.zToken)+1; 731 } 732 return ROUND8(nByte); 733 } 734 735 /* 736 ** Return the number of bytes required to create a duplicate of the 737 ** expression passed as the first argument. The second argument is a 738 ** mask containing EXPRDUP_XXX flags. 739 ** 740 ** The value returned includes space to create a copy of the Expr struct 741 ** itself and the buffer referred to by Expr.u.zToken, if any. 742 ** 743 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 744 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 745 ** and Expr.pRight variables (but not for any structures pointed to or 746 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 747 */ 748 static int dupedExprSize(Expr *p, int flags){ 749 int nByte = 0; 750 if( p ){ 751 nByte = dupedExprNodeSize(p, flags); 752 if( flags&EXPRDUP_REDUCE ){ 753 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 754 } 755 } 756 return nByte; 757 } 758 759 /* 760 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 761 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 762 ** to store the copy of expression p, the copies of p->u.zToken 763 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 764 ** if any. Before returning, *pzBuffer is set to the first byte passed the 765 ** portion of the buffer copied into by this function. 766 */ 767 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 768 Expr *pNew = 0; /* Value to return */ 769 if( p ){ 770 const int isReduced = (flags&EXPRDUP_REDUCE); 771 u8 *zAlloc; 772 u32 staticFlag = 0; 773 774 assert( pzBuffer==0 || isReduced ); 775 776 /* Figure out where to write the new Expr structure. */ 777 if( pzBuffer ){ 778 zAlloc = *pzBuffer; 779 staticFlag = EP_Static; 780 }else{ 781 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 782 } 783 pNew = (Expr *)zAlloc; 784 785 if( pNew ){ 786 /* Set nNewSize to the size allocated for the structure pointed to 787 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 788 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 789 ** by the copy of the p->u.zToken string (if any). 790 */ 791 const unsigned nStructSize = dupedExprStructSize(p, flags); 792 const int nNewSize = nStructSize & 0xfff; 793 int nToken; 794 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 795 nToken = sqlite3Strlen30(p->u.zToken) + 1; 796 }else{ 797 nToken = 0; 798 } 799 if( isReduced ){ 800 assert( ExprHasProperty(p, EP_Reduced)==0 ); 801 memcpy(zAlloc, p, nNewSize); 802 }else{ 803 int nSize = exprStructSize(p); 804 memcpy(zAlloc, p, nSize); 805 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 806 } 807 808 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 809 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 810 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 811 pNew->flags |= staticFlag; 812 813 /* Copy the p->u.zToken string, if any. */ 814 if( nToken ){ 815 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 816 memcpy(zToken, p->u.zToken, nToken); 817 } 818 819 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 820 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 821 if( ExprHasProperty(p, EP_xIsSelect) ){ 822 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 823 }else{ 824 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 825 } 826 } 827 828 /* Fill in pNew->pLeft and pNew->pRight. */ 829 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 830 zAlloc += dupedExprNodeSize(p, flags); 831 if( ExprHasProperty(pNew, EP_Reduced) ){ 832 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 833 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 834 } 835 if( pzBuffer ){ 836 *pzBuffer = zAlloc; 837 } 838 }else{ 839 pNew->flags2 = 0; 840 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 841 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 842 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 843 } 844 } 845 846 } 847 } 848 return pNew; 849 } 850 851 /* 852 ** The following group of routines make deep copies of expressions, 853 ** expression lists, ID lists, and select statements. The copies can 854 ** be deleted (by being passed to their respective ...Delete() routines) 855 ** without effecting the originals. 856 ** 857 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 858 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 859 ** by subsequent calls to sqlite*ListAppend() routines. 860 ** 861 ** Any tables that the SrcList might point to are not duplicated. 862 ** 863 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 864 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 865 ** truncated version of the usual Expr structure that will be stored as 866 ** part of the in-memory representation of the database schema. 867 */ 868 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 869 return exprDup(db, p, flags, 0); 870 } 871 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 872 ExprList *pNew; 873 struct ExprList_item *pItem, *pOldItem; 874 int i; 875 if( p==0 ) return 0; 876 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 877 if( pNew==0 ) return 0; 878 pNew->iECursor = 0; 879 pNew->nExpr = pNew->nAlloc = p->nExpr; 880 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 881 if( pItem==0 ){ 882 sqlite3DbFree(db, pNew); 883 return 0; 884 } 885 pOldItem = p->a; 886 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 887 Expr *pOldExpr = pOldItem->pExpr; 888 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 889 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 890 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 891 pItem->sortOrder = pOldItem->sortOrder; 892 pItem->done = 0; 893 pItem->iCol = pOldItem->iCol; 894 pItem->iAlias = pOldItem->iAlias; 895 } 896 return pNew; 897 } 898 899 /* 900 ** If cursors, triggers, views and subqueries are all omitted from 901 ** the build, then none of the following routines, except for 902 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 903 ** called with a NULL argument. 904 */ 905 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 906 || !defined(SQLITE_OMIT_SUBQUERY) 907 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 908 SrcList *pNew; 909 int i; 910 int nByte; 911 if( p==0 ) return 0; 912 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 913 pNew = sqlite3DbMallocRaw(db, nByte ); 914 if( pNew==0 ) return 0; 915 pNew->nSrc = pNew->nAlloc = p->nSrc; 916 for(i=0; i<p->nSrc; i++){ 917 struct SrcList_item *pNewItem = &pNew->a[i]; 918 struct SrcList_item *pOldItem = &p->a[i]; 919 Table *pTab; 920 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 921 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 922 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 923 pNewItem->jointype = pOldItem->jointype; 924 pNewItem->iCursor = pOldItem->iCursor; 925 pNewItem->isPopulated = pOldItem->isPopulated; 926 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 927 pNewItem->notIndexed = pOldItem->notIndexed; 928 pNewItem->pIndex = pOldItem->pIndex; 929 pTab = pNewItem->pTab = pOldItem->pTab; 930 if( pTab ){ 931 pTab->nRef++; 932 } 933 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 934 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 935 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 936 pNewItem->colUsed = pOldItem->colUsed; 937 } 938 return pNew; 939 } 940 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 941 IdList *pNew; 942 int i; 943 if( p==0 ) return 0; 944 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 945 if( pNew==0 ) return 0; 946 pNew->nId = pNew->nAlloc = p->nId; 947 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 948 if( pNew->a==0 ){ 949 sqlite3DbFree(db, pNew); 950 return 0; 951 } 952 for(i=0; i<p->nId; i++){ 953 struct IdList_item *pNewItem = &pNew->a[i]; 954 struct IdList_item *pOldItem = &p->a[i]; 955 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 956 pNewItem->idx = pOldItem->idx; 957 } 958 return pNew; 959 } 960 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 961 Select *pNew; 962 if( p==0 ) return 0; 963 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 964 if( pNew==0 ) return 0; 965 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 966 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 967 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 968 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 969 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 970 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 971 pNew->op = p->op; 972 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 973 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 974 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 975 pNew->iLimit = 0; 976 pNew->iOffset = 0; 977 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 978 pNew->pRightmost = 0; 979 pNew->addrOpenEphm[0] = -1; 980 pNew->addrOpenEphm[1] = -1; 981 pNew->addrOpenEphm[2] = -1; 982 return pNew; 983 } 984 #else 985 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 986 assert( p==0 ); 987 return 0; 988 } 989 #endif 990 991 992 /* 993 ** Add a new element to the end of an expression list. If pList is 994 ** initially NULL, then create a new expression list. 995 ** 996 ** If a memory allocation error occurs, the entire list is freed and 997 ** NULL is returned. If non-NULL is returned, then it is guaranteed 998 ** that the new entry was successfully appended. 999 */ 1000 ExprList *sqlite3ExprListAppend( 1001 Parse *pParse, /* Parsing context */ 1002 ExprList *pList, /* List to which to append. Might be NULL */ 1003 Expr *pExpr /* Expression to be appended. Might be NULL */ 1004 ){ 1005 sqlite3 *db = pParse->db; 1006 if( pList==0 ){ 1007 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1008 if( pList==0 ){ 1009 goto no_mem; 1010 } 1011 assert( pList->nAlloc==0 ); 1012 } 1013 if( pList->nAlloc<=pList->nExpr ){ 1014 struct ExprList_item *a; 1015 int n = pList->nAlloc*2 + 4; 1016 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1017 if( a==0 ){ 1018 goto no_mem; 1019 } 1020 pList->a = a; 1021 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 1022 } 1023 assert( pList->a!=0 ); 1024 if( 1 ){ 1025 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1026 memset(pItem, 0, sizeof(*pItem)); 1027 pItem->pExpr = pExpr; 1028 } 1029 return pList; 1030 1031 no_mem: 1032 /* Avoid leaking memory if malloc has failed. */ 1033 sqlite3ExprDelete(db, pExpr); 1034 sqlite3ExprListDelete(db, pList); 1035 return 0; 1036 } 1037 1038 /* 1039 ** Set the ExprList.a[].zName element of the most recently added item 1040 ** on the expression list. 1041 ** 1042 ** pList might be NULL following an OOM error. But pName should never be 1043 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1044 ** is set. 1045 */ 1046 void sqlite3ExprListSetName( 1047 Parse *pParse, /* Parsing context */ 1048 ExprList *pList, /* List to which to add the span. */ 1049 Token *pName, /* Name to be added */ 1050 int dequote /* True to cause the name to be dequoted */ 1051 ){ 1052 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1053 if( pList ){ 1054 struct ExprList_item *pItem; 1055 assert( pList->nExpr>0 ); 1056 pItem = &pList->a[pList->nExpr-1]; 1057 assert( pItem->zName==0 ); 1058 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1059 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1060 } 1061 } 1062 1063 /* 1064 ** Set the ExprList.a[].zSpan element of the most recently added item 1065 ** on the expression list. 1066 ** 1067 ** pList might be NULL following an OOM error. But pSpan should never be 1068 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1069 ** is set. 1070 */ 1071 void sqlite3ExprListSetSpan( 1072 Parse *pParse, /* Parsing context */ 1073 ExprList *pList, /* List to which to add the span. */ 1074 ExprSpan *pSpan /* The span to be added */ 1075 ){ 1076 sqlite3 *db = pParse->db; 1077 assert( pList!=0 || db->mallocFailed!=0 ); 1078 if( pList ){ 1079 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1080 assert( pList->nExpr>0 ); 1081 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1082 sqlite3DbFree(db, pItem->zSpan); 1083 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1084 (int)(pSpan->zEnd - pSpan->zStart)); 1085 } 1086 } 1087 1088 /* 1089 ** If the expression list pEList contains more than iLimit elements, 1090 ** leave an error message in pParse. 1091 */ 1092 void sqlite3ExprListCheckLength( 1093 Parse *pParse, 1094 ExprList *pEList, 1095 const char *zObject 1096 ){ 1097 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1098 testcase( pEList && pEList->nExpr==mx ); 1099 testcase( pEList && pEList->nExpr==mx+1 ); 1100 if( pEList && pEList->nExpr>mx ){ 1101 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1102 } 1103 } 1104 1105 /* 1106 ** Delete an entire expression list. 1107 */ 1108 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1109 int i; 1110 struct ExprList_item *pItem; 1111 if( pList==0 ) return; 1112 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1113 assert( pList->nExpr<=pList->nAlloc ); 1114 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1115 sqlite3ExprDelete(db, pItem->pExpr); 1116 sqlite3DbFree(db, pItem->zName); 1117 sqlite3DbFree(db, pItem->zSpan); 1118 } 1119 sqlite3DbFree(db, pList->a); 1120 sqlite3DbFree(db, pList); 1121 } 1122 1123 /* 1124 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1125 ** to an integer. These routines are checking an expression to see 1126 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1127 ** not constant. 1128 ** 1129 ** These callback routines are used to implement the following: 1130 ** 1131 ** sqlite3ExprIsConstant() 1132 ** sqlite3ExprIsConstantNotJoin() 1133 ** sqlite3ExprIsConstantOrFunction() 1134 ** 1135 */ 1136 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1137 1138 /* If pWalker->u.i is 3 then any term of the expression that comes from 1139 ** the ON or USING clauses of a join disqualifies the expression 1140 ** from being considered constant. */ 1141 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1142 pWalker->u.i = 0; 1143 return WRC_Abort; 1144 } 1145 1146 switch( pExpr->op ){ 1147 /* Consider functions to be constant if all their arguments are constant 1148 ** and pWalker->u.i==2 */ 1149 case TK_FUNCTION: 1150 if( pWalker->u.i==2 ) return 0; 1151 /* Fall through */ 1152 case TK_ID: 1153 case TK_COLUMN: 1154 case TK_AGG_FUNCTION: 1155 case TK_AGG_COLUMN: 1156 testcase( pExpr->op==TK_ID ); 1157 testcase( pExpr->op==TK_COLUMN ); 1158 testcase( pExpr->op==TK_AGG_FUNCTION ); 1159 testcase( pExpr->op==TK_AGG_COLUMN ); 1160 pWalker->u.i = 0; 1161 return WRC_Abort; 1162 default: 1163 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1164 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1165 return WRC_Continue; 1166 } 1167 } 1168 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1169 UNUSED_PARAMETER(NotUsed); 1170 pWalker->u.i = 0; 1171 return WRC_Abort; 1172 } 1173 static int exprIsConst(Expr *p, int initFlag){ 1174 Walker w; 1175 w.u.i = initFlag; 1176 w.xExprCallback = exprNodeIsConstant; 1177 w.xSelectCallback = selectNodeIsConstant; 1178 sqlite3WalkExpr(&w, p); 1179 return w.u.i; 1180 } 1181 1182 /* 1183 ** Walk an expression tree. Return 1 if the expression is constant 1184 ** and 0 if it involves variables or function calls. 1185 ** 1186 ** For the purposes of this function, a double-quoted string (ex: "abc") 1187 ** is considered a variable but a single-quoted string (ex: 'abc') is 1188 ** a constant. 1189 */ 1190 int sqlite3ExprIsConstant(Expr *p){ 1191 return exprIsConst(p, 1); 1192 } 1193 1194 /* 1195 ** Walk an expression tree. Return 1 if the expression is constant 1196 ** that does no originate from the ON or USING clauses of a join. 1197 ** Return 0 if it involves variables or function calls or terms from 1198 ** an ON or USING clause. 1199 */ 1200 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1201 return exprIsConst(p, 3); 1202 } 1203 1204 /* 1205 ** Walk an expression tree. Return 1 if the expression is constant 1206 ** or a function call with constant arguments. Return and 0 if there 1207 ** are any variables. 1208 ** 1209 ** For the purposes of this function, a double-quoted string (ex: "abc") 1210 ** is considered a variable but a single-quoted string (ex: 'abc') is 1211 ** a constant. 1212 */ 1213 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1214 return exprIsConst(p, 2); 1215 } 1216 1217 /* 1218 ** If the expression p codes a constant integer that is small enough 1219 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1220 ** in *pValue. If the expression is not an integer or if it is too big 1221 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1222 */ 1223 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1224 int rc = 0; 1225 if( p->flags & EP_IntValue ){ 1226 *pValue = p->u.iValue; 1227 return 1; 1228 } 1229 switch( p->op ){ 1230 case TK_INTEGER: { 1231 rc = sqlite3GetInt32(p->u.zToken, pValue); 1232 assert( rc==0 ); 1233 break; 1234 } 1235 case TK_UPLUS: { 1236 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1237 break; 1238 } 1239 case TK_UMINUS: { 1240 int v; 1241 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1242 *pValue = -v; 1243 rc = 1; 1244 } 1245 break; 1246 } 1247 default: break; 1248 } 1249 if( rc ){ 1250 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly) 1251 || (p->flags2 & EP2_MallocedToken)==0 ); 1252 p->op = TK_INTEGER; 1253 p->flags |= EP_IntValue; 1254 p->u.iValue = *pValue; 1255 } 1256 return rc; 1257 } 1258 1259 /* 1260 ** Return TRUE if the given string is a row-id column name. 1261 */ 1262 int sqlite3IsRowid(const char *z){ 1263 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1264 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1265 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1266 return 0; 1267 } 1268 1269 /* 1270 ** Return true if we are able to the IN operator optimization on a 1271 ** query of the form 1272 ** 1273 ** x IN (SELECT ...) 1274 ** 1275 ** Where the SELECT... clause is as specified by the parameter to this 1276 ** routine. 1277 ** 1278 ** The Select object passed in has already been preprocessed and no 1279 ** errors have been found. 1280 */ 1281 #ifndef SQLITE_OMIT_SUBQUERY 1282 static int isCandidateForInOpt(Select *p){ 1283 SrcList *pSrc; 1284 ExprList *pEList; 1285 Table *pTab; 1286 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1287 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1288 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1289 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1290 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1291 return 0; /* No DISTINCT keyword and no aggregate functions */ 1292 } 1293 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1294 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1295 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1296 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1297 pSrc = p->pSrc; 1298 assert( pSrc!=0 ); 1299 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1300 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1301 pTab = pSrc->a[0].pTab; 1302 if( NEVER(pTab==0) ) return 0; 1303 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1304 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1305 pEList = p->pEList; 1306 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1307 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1308 return 1; 1309 } 1310 #endif /* SQLITE_OMIT_SUBQUERY */ 1311 1312 /* 1313 ** This function is used by the implementation of the IN (...) operator. 1314 ** It's job is to find or create a b-tree structure that may be used 1315 ** either to test for membership of the (...) set or to iterate through 1316 ** its members, skipping duplicates. 1317 ** 1318 ** The index of the cursor opened on the b-tree (database table, database index 1319 ** or ephermal table) is stored in pX->iTable before this function returns. 1320 ** The returned value of this function indicates the b-tree type, as follows: 1321 ** 1322 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1323 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1324 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1325 ** populated epheremal table. 1326 ** 1327 ** An existing b-tree may only be used if the SELECT is of the simple 1328 ** form: 1329 ** 1330 ** SELECT <column> FROM <table> 1331 ** 1332 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1333 ** through the set members, skipping any duplicates. In this case an 1334 ** epheremal table must be used unless the selected <column> is guaranteed 1335 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1336 ** has a UNIQUE constraint or UNIQUE index. 1337 ** 1338 ** If the prNotFound parameter is not 0, then the b-tree will be used 1339 ** for fast set membership tests. In this case an epheremal table must 1340 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1341 ** be found with <column> as its left-most column. 1342 ** 1343 ** When the b-tree is being used for membership tests, the calling function 1344 ** needs to know whether or not the structure contains an SQL NULL 1345 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1346 ** If there is a chance that the b-tree might contain a NULL value at 1347 ** runtime, then a register is allocated and the register number written 1348 ** to *prNotFound. If there is no chance that the b-tree contains a 1349 ** NULL value, then *prNotFound is left unchanged. 1350 ** 1351 ** If a register is allocated and its location stored in *prNotFound, then 1352 ** its initial value is NULL. If the b-tree does not remain constant 1353 ** for the duration of the query (i.e. the SELECT that generates the b-tree 1354 ** is a correlated subquery) then the value of the allocated register is 1355 ** reset to NULL each time the b-tree is repopulated. This allows the 1356 ** caller to use vdbe code equivalent to the following: 1357 ** 1358 ** if( register==NULL ){ 1359 ** has_null = <test if data structure contains null> 1360 ** register = 1 1361 ** } 1362 ** 1363 ** in order to avoid running the <test if data structure contains null> 1364 ** test more often than is necessary. 1365 */ 1366 #ifndef SQLITE_OMIT_SUBQUERY 1367 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1368 Select *p; /* SELECT to the right of IN operator */ 1369 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1370 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1371 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1372 1373 /* Check to see if an existing table or index can be used to 1374 ** satisfy the query. This is preferable to generating a new 1375 ** ephemeral table. 1376 */ 1377 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1378 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1379 sqlite3 *db = pParse->db; /* Database connection */ 1380 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1381 int iCol = pExpr->iColumn; /* Index of column <column> */ 1382 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1383 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1384 int iDb; /* Database idx for pTab */ 1385 1386 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1387 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1388 sqlite3CodeVerifySchema(pParse, iDb); 1389 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1390 1391 /* This function is only called from two places. In both cases the vdbe 1392 ** has already been allocated. So assume sqlite3GetVdbe() is always 1393 ** successful here. 1394 */ 1395 assert(v); 1396 if( iCol<0 ){ 1397 int iMem = ++pParse->nMem; 1398 int iAddr; 1399 sqlite3VdbeUsesBtree(v, iDb); 1400 1401 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1402 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1403 1404 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1405 eType = IN_INDEX_ROWID; 1406 1407 sqlite3VdbeJumpHere(v, iAddr); 1408 }else{ 1409 Index *pIdx; /* Iterator variable */ 1410 1411 /* The collation sequence used by the comparison. If an index is to 1412 ** be used in place of a temp-table, it must be ordered according 1413 ** to this collation sequence. */ 1414 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1415 1416 /* Check that the affinity that will be used to perform the 1417 ** comparison is the same as the affinity of the column. If 1418 ** it is not, it is not possible to use any index. 1419 */ 1420 char aff = comparisonAffinity(pX); 1421 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1422 1423 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1424 if( (pIdx->aiColumn[0]==iCol) 1425 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1426 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1427 ){ 1428 int iMem = ++pParse->nMem; 1429 int iAddr; 1430 char *pKey; 1431 1432 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1433 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1434 sqlite3VdbeUsesBtree(v, iDb); 1435 1436 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1437 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1438 1439 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1440 pKey,P4_KEYINFO_HANDOFF); 1441 VdbeComment((v, "%s", pIdx->zName)); 1442 eType = IN_INDEX_INDEX; 1443 1444 sqlite3VdbeJumpHere(v, iAddr); 1445 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1446 *prNotFound = ++pParse->nMem; 1447 } 1448 } 1449 } 1450 } 1451 } 1452 1453 if( eType==0 ){ 1454 /* Could not found an existing able or index to use as the RHS b-tree. 1455 ** We will have to generate an ephemeral table to do the job. 1456 */ 1457 int rMayHaveNull = 0; 1458 eType = IN_INDEX_EPH; 1459 if( prNotFound ){ 1460 *prNotFound = rMayHaveNull = ++pParse->nMem; 1461 }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1462 eType = IN_INDEX_ROWID; 1463 } 1464 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1465 }else{ 1466 pX->iTable = iTab; 1467 } 1468 return eType; 1469 } 1470 #endif 1471 1472 /* 1473 ** Generate code for scalar subqueries used as an expression 1474 ** and IN operators. Examples: 1475 ** 1476 ** (SELECT a FROM b) -- subquery 1477 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1478 ** x IN (4,5,11) -- IN operator with list on right-hand side 1479 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1480 ** 1481 ** The pExpr parameter describes the expression that contains the IN 1482 ** operator or subquery. 1483 ** 1484 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1485 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1486 ** to some integer key column of a table B-Tree. In this case, use an 1487 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1488 ** (slower) variable length keys B-Tree. 1489 ** 1490 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1491 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1492 ** Furthermore, the IN is in a WHERE clause and that we really want 1493 ** to iterate over the RHS of the IN operator in order to quickly locate 1494 ** all corresponding LHS elements. All this routine does is initialize 1495 ** the register given by rMayHaveNull to NULL. Calling routines will take 1496 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1497 ** 1498 ** If rMayHaveNull is zero, that means that the subquery is being used 1499 ** for membership testing only. There is no need to initialize any 1500 ** registers to indicate the presense or absence of NULLs on the RHS. 1501 */ 1502 #ifndef SQLITE_OMIT_SUBQUERY 1503 void sqlite3CodeSubselect( 1504 Parse *pParse, /* Parsing context */ 1505 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1506 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1507 int isRowid /* If true, LHS of IN operator is a rowid */ 1508 ){ 1509 int testAddr = 0; /* One-time test address */ 1510 Vdbe *v = sqlite3GetVdbe(pParse); 1511 if( NEVER(v==0) ) return; 1512 sqlite3ExprCachePush(pParse); 1513 1514 /* This code must be run in its entirety every time it is encountered 1515 ** if any of the following is true: 1516 ** 1517 ** * The right-hand side is a correlated subquery 1518 ** * The right-hand side is an expression list containing variables 1519 ** * We are inside a trigger 1520 ** 1521 ** If all of the above are false, then we can run this code just once 1522 ** save the results, and reuse the same result on subsequent invocations. 1523 */ 1524 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1525 int mem = ++pParse->nMem; 1526 sqlite3VdbeAddOp1(v, OP_If, mem); 1527 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1528 assert( testAddr>0 || pParse->db->mallocFailed ); 1529 } 1530 1531 switch( pExpr->op ){ 1532 case TK_IN: { 1533 char affinity; 1534 KeyInfo keyInfo; 1535 int addr; /* Address of OP_OpenEphemeral instruction */ 1536 Expr *pLeft = pExpr->pLeft; 1537 1538 if( rMayHaveNull ){ 1539 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1540 } 1541 1542 affinity = sqlite3ExprAffinity(pLeft); 1543 1544 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1545 ** expression it is handled the same way. A virtual table is 1546 ** filled with single-field index keys representing the results 1547 ** from the SELECT or the <exprlist>. 1548 ** 1549 ** If the 'x' expression is a column value, or the SELECT... 1550 ** statement returns a column value, then the affinity of that 1551 ** column is used to build the index keys. If both 'x' and the 1552 ** SELECT... statement are columns, then numeric affinity is used 1553 ** if either column has NUMERIC or INTEGER affinity. If neither 1554 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1555 ** is used. 1556 */ 1557 pExpr->iTable = pParse->nTab++; 1558 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1559 memset(&keyInfo, 0, sizeof(keyInfo)); 1560 keyInfo.nField = 1; 1561 1562 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1563 /* Case 1: expr IN (SELECT ...) 1564 ** 1565 ** Generate code to write the results of the select into the temporary 1566 ** table allocated and opened above. 1567 */ 1568 SelectDest dest; 1569 ExprList *pEList; 1570 1571 assert( !isRowid ); 1572 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1573 dest.affinity = (u8)affinity; 1574 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1575 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1576 return; 1577 } 1578 pEList = pExpr->x.pSelect->pEList; 1579 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1580 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1581 pEList->a[0].pExpr); 1582 } 1583 }else if( pExpr->x.pList!=0 ){ 1584 /* Case 2: expr IN (exprlist) 1585 ** 1586 ** For each expression, build an index key from the evaluation and 1587 ** store it in the temporary table. If <expr> is a column, then use 1588 ** that columns affinity when building index keys. If <expr> is not 1589 ** a column, use numeric affinity. 1590 */ 1591 int i; 1592 ExprList *pList = pExpr->x.pList; 1593 struct ExprList_item *pItem; 1594 int r1, r2, r3; 1595 1596 if( !affinity ){ 1597 affinity = SQLITE_AFF_NONE; 1598 } 1599 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1600 1601 /* Loop through each expression in <exprlist>. */ 1602 r1 = sqlite3GetTempReg(pParse); 1603 r2 = sqlite3GetTempReg(pParse); 1604 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1605 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1606 Expr *pE2 = pItem->pExpr; 1607 1608 /* If the expression is not constant then we will need to 1609 ** disable the test that was generated above that makes sure 1610 ** this code only executes once. Because for a non-constant 1611 ** expression we need to rerun this code each time. 1612 */ 1613 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1614 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1615 testAddr = 0; 1616 } 1617 1618 /* Evaluate the expression and insert it into the temp table */ 1619 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1620 if( isRowid ){ 1621 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); 1622 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1623 }else{ 1624 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1625 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1626 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1627 } 1628 } 1629 sqlite3ReleaseTempReg(pParse, r1); 1630 sqlite3ReleaseTempReg(pParse, r2); 1631 } 1632 if( !isRowid ){ 1633 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1634 } 1635 break; 1636 } 1637 1638 case TK_EXISTS: 1639 case TK_SELECT: 1640 default: { 1641 /* If this has to be a scalar SELECT. Generate code to put the 1642 ** value of this select in a memory cell and record the number 1643 ** of the memory cell in iColumn. If this is an EXISTS, write 1644 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1645 ** and record that memory cell in iColumn. 1646 */ 1647 static const Token one = { "1", 1 }; /* Token for literal value 1 */ 1648 Select *pSel; /* SELECT statement to encode */ 1649 SelectDest dest; /* How to deal with SELECt result */ 1650 1651 testcase( pExpr->op==TK_EXISTS ); 1652 testcase( pExpr->op==TK_SELECT ); 1653 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1654 1655 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1656 pSel = pExpr->x.pSelect; 1657 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1658 if( pExpr->op==TK_SELECT ){ 1659 dest.eDest = SRT_Mem; 1660 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1661 VdbeComment((v, "Init subquery result")); 1662 }else{ 1663 dest.eDest = SRT_Exists; 1664 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1665 VdbeComment((v, "Init EXISTS result")); 1666 } 1667 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1668 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1669 if( sqlite3Select(pParse, pSel, &dest) ){ 1670 return; 1671 } 1672 pExpr->iColumn = (i16)dest.iParm; 1673 ExprSetIrreducible(pExpr); 1674 break; 1675 } 1676 } 1677 1678 if( testAddr ){ 1679 sqlite3VdbeJumpHere(v, testAddr-1); 1680 } 1681 sqlite3ExprCachePop(pParse, 1); 1682 1683 return; 1684 } 1685 #endif /* SQLITE_OMIT_SUBQUERY */ 1686 1687 /* 1688 ** Duplicate an 8-byte value 1689 */ 1690 static char *dup8bytes(Vdbe *v, const char *in){ 1691 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1692 if( out ){ 1693 memcpy(out, in, 8); 1694 } 1695 return out; 1696 } 1697 1698 /* 1699 ** Generate an instruction that will put the floating point 1700 ** value described by z[0..n-1] into register iMem. 1701 ** 1702 ** The z[] string will probably not be zero-terminated. But the 1703 ** z[n] character is guaranteed to be something that does not look 1704 ** like the continuation of the number. 1705 */ 1706 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1707 if( ALWAYS(z!=0) ){ 1708 double value; 1709 char *zV; 1710 sqlite3AtoF(z, &value); 1711 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1712 if( negateFlag ) value = -value; 1713 zV = dup8bytes(v, (char*)&value); 1714 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1715 } 1716 } 1717 1718 1719 /* 1720 ** Generate an instruction that will put the integer describe by 1721 ** text z[0..n-1] into register iMem. 1722 ** 1723 ** The z[] string will probably not be zero-terminated. But the 1724 ** z[n] character is guaranteed to be something that does not look 1725 ** like the continuation of the number. 1726 */ 1727 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ 1728 if( pExpr->flags & EP_IntValue ){ 1729 int i = pExpr->u.iValue; 1730 if( negFlag ) i = -i; 1731 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1732 }else{ 1733 const char *z = pExpr->u.zToken; 1734 assert( z!=0 ); 1735 if( sqlite3FitsIn64Bits(z, negFlag) ){ 1736 i64 value; 1737 char *zV; 1738 sqlite3Atoi64(z, &value); 1739 if( negFlag ) value = -value; 1740 zV = dup8bytes(v, (char*)&value); 1741 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1742 }else{ 1743 codeReal(v, z, negFlag, iMem); 1744 } 1745 } 1746 } 1747 1748 /* 1749 ** Clear a cache entry. 1750 */ 1751 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1752 if( p->tempReg ){ 1753 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1754 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1755 } 1756 p->tempReg = 0; 1757 } 1758 } 1759 1760 1761 /* 1762 ** Record in the column cache that a particular column from a 1763 ** particular table is stored in a particular register. 1764 */ 1765 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1766 int i; 1767 int minLru; 1768 int idxLru; 1769 struct yColCache *p; 1770 1771 assert( iReg>0 ); /* Register numbers are always positive */ 1772 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 1773 1774 /* First replace any existing entry */ 1775 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1776 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 1777 cacheEntryClear(pParse, p); 1778 p->iLevel = pParse->iCacheLevel; 1779 p->iReg = iReg; 1780 p->affChange = 0; 1781 p->lru = pParse->iCacheCnt++; 1782 return; 1783 } 1784 } 1785 1786 /* Find an empty slot and replace it */ 1787 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1788 if( p->iReg==0 ){ 1789 p->iLevel = pParse->iCacheLevel; 1790 p->iTable = iTab; 1791 p->iColumn = iCol; 1792 p->iReg = iReg; 1793 p->affChange = 0; 1794 p->tempReg = 0; 1795 p->lru = pParse->iCacheCnt++; 1796 return; 1797 } 1798 } 1799 1800 /* Replace the last recently used */ 1801 minLru = 0x7fffffff; 1802 idxLru = -1; 1803 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1804 if( p->lru<minLru ){ 1805 idxLru = i; 1806 minLru = p->lru; 1807 } 1808 } 1809 if( ALWAYS(idxLru>=0) ){ 1810 p = &pParse->aColCache[idxLru]; 1811 p->iLevel = pParse->iCacheLevel; 1812 p->iTable = iTab; 1813 p->iColumn = iCol; 1814 p->iReg = iReg; 1815 p->affChange = 0; 1816 p->tempReg = 0; 1817 p->lru = pParse->iCacheCnt++; 1818 return; 1819 } 1820 } 1821 1822 /* 1823 ** Indicate that a register is being overwritten. Purge the register 1824 ** from the column cache. 1825 */ 1826 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){ 1827 int i; 1828 struct yColCache *p; 1829 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1830 if( p->iReg==iReg ){ 1831 cacheEntryClear(pParse, p); 1832 p->iReg = 0; 1833 } 1834 } 1835 } 1836 1837 /* 1838 ** Remember the current column cache context. Any new entries added 1839 ** added to the column cache after this call are removed when the 1840 ** corresponding pop occurs. 1841 */ 1842 void sqlite3ExprCachePush(Parse *pParse){ 1843 pParse->iCacheLevel++; 1844 } 1845 1846 /* 1847 ** Remove from the column cache any entries that were added since the 1848 ** the previous N Push operations. In other words, restore the cache 1849 ** to the state it was in N Pushes ago. 1850 */ 1851 void sqlite3ExprCachePop(Parse *pParse, int N){ 1852 int i; 1853 struct yColCache *p; 1854 assert( N>0 ); 1855 assert( pParse->iCacheLevel>=N ); 1856 pParse->iCacheLevel -= N; 1857 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1858 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 1859 cacheEntryClear(pParse, p); 1860 p->iReg = 0; 1861 } 1862 } 1863 } 1864 1865 /* 1866 ** When a cached column is reused, make sure that its register is 1867 ** no longer available as a temp register. ticket #3879: that same 1868 ** register might be in the cache in multiple places, so be sure to 1869 ** get them all. 1870 */ 1871 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 1872 int i; 1873 struct yColCache *p; 1874 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1875 if( p->iReg==iReg ){ 1876 p->tempReg = 0; 1877 } 1878 } 1879 } 1880 1881 /* 1882 ** Generate code that will extract the iColumn-th column from 1883 ** table pTab and store the column value in a register. An effort 1884 ** is made to store the column value in register iReg, but this is 1885 ** not guaranteed. The location of the column value is returned. 1886 ** 1887 ** There must be an open cursor to pTab in iTable when this routine 1888 ** is called. If iColumn<0 then code is generated that extracts the rowid. 1889 ** 1890 ** This routine might attempt to reuse the value of the column that 1891 ** has already been loaded into a register. The value will always 1892 ** be used if it has not undergone any affinity changes. But if 1893 ** an affinity change has occurred, then the cached value will only be 1894 ** used if allowAffChng is true. 1895 */ 1896 int sqlite3ExprCodeGetColumn( 1897 Parse *pParse, /* Parsing and code generating context */ 1898 Table *pTab, /* Description of the table we are reading from */ 1899 int iColumn, /* Index of the table column */ 1900 int iTable, /* The cursor pointing to the table */ 1901 int iReg, /* Store results here */ 1902 int allowAffChng /* True if prior affinity changes are OK */ 1903 ){ 1904 Vdbe *v = pParse->pVdbe; 1905 int i; 1906 struct yColCache *p; 1907 1908 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1909 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn 1910 && (!p->affChange || allowAffChng) ){ 1911 p->lru = pParse->iCacheCnt++; 1912 sqlite3ExprCachePinRegister(pParse, p->iReg); 1913 return p->iReg; 1914 } 1915 } 1916 assert( v!=0 ); 1917 if( iColumn<0 ){ 1918 sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg); 1919 }else if( ALWAYS(pTab!=0) ){ 1920 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1921 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 1922 sqlite3ColumnDefault(v, pTab, iColumn, iReg); 1923 } 1924 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 1925 return iReg; 1926 } 1927 1928 /* 1929 ** Clear all column cache entries. 1930 */ 1931 void sqlite3ExprCacheClear(Parse *pParse){ 1932 int i; 1933 struct yColCache *p; 1934 1935 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1936 if( p->iReg ){ 1937 cacheEntryClear(pParse, p); 1938 p->iReg = 0; 1939 } 1940 } 1941 } 1942 1943 /* 1944 ** Record the fact that an affinity change has occurred on iCount 1945 ** registers starting with iStart. 1946 */ 1947 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 1948 int iEnd = iStart + iCount - 1; 1949 int i; 1950 struct yColCache *p; 1951 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1952 int r = p->iReg; 1953 if( r>=iStart && r<=iEnd ){ 1954 p->affChange = 1; 1955 } 1956 } 1957 } 1958 1959 /* 1960 ** Generate code to move content from registers iFrom...iFrom+nReg-1 1961 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 1962 */ 1963 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 1964 int i; 1965 struct yColCache *p; 1966 if( NEVER(iFrom==iTo) ) return; 1967 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 1968 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1969 int x = p->iReg; 1970 if( x>=iFrom && x<iFrom+nReg ){ 1971 p->iReg += iTo-iFrom; 1972 } 1973 } 1974 } 1975 1976 /* 1977 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 1978 ** over to iTo..iTo+nReg-1. 1979 */ 1980 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 1981 int i; 1982 if( NEVER(iFrom==iTo) ) return; 1983 for(i=0; i<nReg; i++){ 1984 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 1985 } 1986 } 1987 1988 /* 1989 ** Return true if any register in the range iFrom..iTo (inclusive) 1990 ** is used as part of the column cache. 1991 */ 1992 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 1993 int i; 1994 struct yColCache *p; 1995 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1996 int r = p->iReg; 1997 if( r>=iFrom && r<=iTo ) return 1; 1998 } 1999 return 0; 2000 } 2001 2002 /* 2003 ** If the last instruction coded is an ephemeral copy of any of 2004 ** the registers in the nReg registers beginning with iReg, then 2005 ** convert the last instruction from OP_SCopy to OP_Copy. 2006 */ 2007 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 2008 VdbeOp *pOp; 2009 Vdbe *v; 2010 2011 assert( pParse->db->mallocFailed==0 ); 2012 v = pParse->pVdbe; 2013 assert( v!=0 ); 2014 pOp = sqlite3VdbeGetOp(v, -1); 2015 assert( pOp!=0 ); 2016 if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 2017 pOp->opcode = OP_Copy; 2018 } 2019 } 2020 2021 /* 2022 ** Generate code to store the value of the iAlias-th alias in register 2023 ** target. The first time this is called, pExpr is evaluated to compute 2024 ** the value of the alias. The value is stored in an auxiliary register 2025 ** and the number of that register is returned. On subsequent calls, 2026 ** the register number is returned without generating any code. 2027 ** 2028 ** Note that in order for this to work, code must be generated in the 2029 ** same order that it is executed. 2030 ** 2031 ** Aliases are numbered starting with 1. So iAlias is in the range 2032 ** of 1 to pParse->nAlias inclusive. 2033 ** 2034 ** pParse->aAlias[iAlias-1] records the register number where the value 2035 ** of the iAlias-th alias is stored. If zero, that means that the 2036 ** alias has not yet been computed. 2037 */ 2038 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 2039 #if 0 2040 sqlite3 *db = pParse->db; 2041 int iReg; 2042 if( pParse->nAliasAlloc<pParse->nAlias ){ 2043 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 2044 sizeof(pParse->aAlias[0])*pParse->nAlias ); 2045 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 2046 if( db->mallocFailed ) return 0; 2047 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 2048 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 2049 pParse->nAliasAlloc = pParse->nAlias; 2050 } 2051 assert( iAlias>0 && iAlias<=pParse->nAlias ); 2052 iReg = pParse->aAlias[iAlias-1]; 2053 if( iReg==0 ){ 2054 if( pParse->iCacheLevel>0 ){ 2055 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2056 }else{ 2057 iReg = ++pParse->nMem; 2058 sqlite3ExprCode(pParse, pExpr, iReg); 2059 pParse->aAlias[iAlias-1] = iReg; 2060 } 2061 } 2062 return iReg; 2063 #else 2064 UNUSED_PARAMETER(iAlias); 2065 return sqlite3ExprCodeTarget(pParse, pExpr, target); 2066 #endif 2067 } 2068 2069 /* 2070 ** Generate code into the current Vdbe to evaluate the given 2071 ** expression. Attempt to store the results in register "target". 2072 ** Return the register where results are stored. 2073 ** 2074 ** With this routine, there is no guarantee that results will 2075 ** be stored in target. The result might be stored in some other 2076 ** register if it is convenient to do so. The calling function 2077 ** must check the return code and move the results to the desired 2078 ** register. 2079 */ 2080 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2081 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2082 int op; /* The opcode being coded */ 2083 int inReg = target; /* Results stored in register inReg */ 2084 int regFree1 = 0; /* If non-zero free this temporary register */ 2085 int regFree2 = 0; /* If non-zero free this temporary register */ 2086 int r1, r2, r3, r4; /* Various register numbers */ 2087 sqlite3 *db = pParse->db; /* The database connection */ 2088 2089 assert( target>0 && target<=pParse->nMem ); 2090 if( v==0 ){ 2091 assert( pParse->db->mallocFailed ); 2092 return 0; 2093 } 2094 2095 if( pExpr==0 ){ 2096 op = TK_NULL; 2097 }else{ 2098 op = pExpr->op; 2099 } 2100 switch( op ){ 2101 case TK_AGG_COLUMN: { 2102 AggInfo *pAggInfo = pExpr->pAggInfo; 2103 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2104 if( !pAggInfo->directMode ){ 2105 assert( pCol->iMem>0 ); 2106 inReg = pCol->iMem; 2107 break; 2108 }else if( pAggInfo->useSortingIdx ){ 2109 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2110 pCol->iSorterColumn, target); 2111 break; 2112 } 2113 /* Otherwise, fall thru into the TK_COLUMN case */ 2114 } 2115 case TK_COLUMN: { 2116 if( pExpr->iTable<0 ){ 2117 /* This only happens when coding check constraints */ 2118 assert( pParse->ckBase>0 ); 2119 inReg = pExpr->iColumn + pParse->ckBase; 2120 }else{ 2121 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 2122 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2123 pExpr->iColumn, pExpr->iTable, target, 2124 pExpr->flags & EP_AnyAff); 2125 } 2126 break; 2127 } 2128 case TK_INTEGER: { 2129 codeInteger(v, pExpr, 0, target); 2130 break; 2131 } 2132 case TK_FLOAT: { 2133 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2134 codeReal(v, pExpr->u.zToken, 0, target); 2135 break; 2136 } 2137 case TK_STRING: { 2138 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2139 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2140 break; 2141 } 2142 case TK_NULL: { 2143 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2144 break; 2145 } 2146 #ifndef SQLITE_OMIT_BLOB_LITERAL 2147 case TK_BLOB: { 2148 int n; 2149 const char *z; 2150 char *zBlob; 2151 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2152 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2153 assert( pExpr->u.zToken[1]=='\'' ); 2154 z = &pExpr->u.zToken[2]; 2155 n = sqlite3Strlen30(z) - 1; 2156 assert( z[n]=='\'' ); 2157 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2158 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2159 break; 2160 } 2161 #endif 2162 case TK_VARIABLE: { 2163 VdbeOp *pOp; 2164 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2165 assert( pExpr->u.zToken!=0 ); 2166 assert( pExpr->u.zToken[0]!=0 ); 2167 if( pExpr->u.zToken[1]==0 2168 && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable 2169 && pOp->p1+pOp->p3==pExpr->iTable 2170 && pOp->p2+pOp->p3==target 2171 && pOp->p4.z==0 2172 ){ 2173 /* If the previous instruction was a copy of the previous unnamed 2174 ** parameter into the previous register, then simply increment the 2175 ** repeat count on the prior instruction rather than making a new 2176 ** instruction. 2177 */ 2178 pOp->p3++; 2179 }else{ 2180 sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1); 2181 if( pExpr->u.zToken[1]!=0 ){ 2182 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); 2183 } 2184 } 2185 break; 2186 } 2187 case TK_REGISTER: { 2188 inReg = pExpr->iTable; 2189 break; 2190 } 2191 case TK_AS: { 2192 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2193 break; 2194 } 2195 #ifndef SQLITE_OMIT_CAST 2196 case TK_CAST: { 2197 /* Expressions of the form: CAST(pLeft AS token) */ 2198 int aff, to_op; 2199 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2200 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2201 aff = sqlite3AffinityType(pExpr->u.zToken); 2202 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2203 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2204 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2205 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2206 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2207 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2208 testcase( to_op==OP_ToText ); 2209 testcase( to_op==OP_ToBlob ); 2210 testcase( to_op==OP_ToNumeric ); 2211 testcase( to_op==OP_ToInt ); 2212 testcase( to_op==OP_ToReal ); 2213 if( inReg!=target ){ 2214 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2215 inReg = target; 2216 } 2217 sqlite3VdbeAddOp1(v, to_op, inReg); 2218 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2219 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2220 break; 2221 } 2222 #endif /* SQLITE_OMIT_CAST */ 2223 case TK_LT: 2224 case TK_LE: 2225 case TK_GT: 2226 case TK_GE: 2227 case TK_NE: 2228 case TK_EQ: { 2229 assert( TK_LT==OP_Lt ); 2230 assert( TK_LE==OP_Le ); 2231 assert( TK_GT==OP_Gt ); 2232 assert( TK_GE==OP_Ge ); 2233 assert( TK_EQ==OP_Eq ); 2234 assert( TK_NE==OP_Ne ); 2235 testcase( op==TK_LT ); 2236 testcase( op==TK_LE ); 2237 testcase( op==TK_GT ); 2238 testcase( op==TK_GE ); 2239 testcase( op==TK_EQ ); 2240 testcase( op==TK_NE ); 2241 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2242 pExpr->pRight, &r2, ®Free2); 2243 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2244 r1, r2, inReg, SQLITE_STOREP2); 2245 testcase( regFree1==0 ); 2246 testcase( regFree2==0 ); 2247 break; 2248 } 2249 case TK_AND: 2250 case TK_OR: 2251 case TK_PLUS: 2252 case TK_STAR: 2253 case TK_MINUS: 2254 case TK_REM: 2255 case TK_BITAND: 2256 case TK_BITOR: 2257 case TK_SLASH: 2258 case TK_LSHIFT: 2259 case TK_RSHIFT: 2260 case TK_CONCAT: { 2261 assert( TK_AND==OP_And ); 2262 assert( TK_OR==OP_Or ); 2263 assert( TK_PLUS==OP_Add ); 2264 assert( TK_MINUS==OP_Subtract ); 2265 assert( TK_REM==OP_Remainder ); 2266 assert( TK_BITAND==OP_BitAnd ); 2267 assert( TK_BITOR==OP_BitOr ); 2268 assert( TK_SLASH==OP_Divide ); 2269 assert( TK_LSHIFT==OP_ShiftLeft ); 2270 assert( TK_RSHIFT==OP_ShiftRight ); 2271 assert( TK_CONCAT==OP_Concat ); 2272 testcase( op==TK_AND ); 2273 testcase( op==TK_OR ); 2274 testcase( op==TK_PLUS ); 2275 testcase( op==TK_MINUS ); 2276 testcase( op==TK_REM ); 2277 testcase( op==TK_BITAND ); 2278 testcase( op==TK_BITOR ); 2279 testcase( op==TK_SLASH ); 2280 testcase( op==TK_LSHIFT ); 2281 testcase( op==TK_RSHIFT ); 2282 testcase( op==TK_CONCAT ); 2283 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2284 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2285 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2286 testcase( regFree1==0 ); 2287 testcase( regFree2==0 ); 2288 break; 2289 } 2290 case TK_UMINUS: { 2291 Expr *pLeft = pExpr->pLeft; 2292 assert( pLeft ); 2293 if( pLeft->op==TK_FLOAT ){ 2294 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2295 codeReal(v, pLeft->u.zToken, 1, target); 2296 }else if( pLeft->op==TK_INTEGER ){ 2297 codeInteger(v, pLeft, 1, target); 2298 }else{ 2299 regFree1 = r1 = sqlite3GetTempReg(pParse); 2300 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2301 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2302 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2303 testcase( regFree2==0 ); 2304 } 2305 inReg = target; 2306 break; 2307 } 2308 case TK_BITNOT: 2309 case TK_NOT: { 2310 assert( TK_BITNOT==OP_BitNot ); 2311 assert( TK_NOT==OP_Not ); 2312 testcase( op==TK_BITNOT ); 2313 testcase( op==TK_NOT ); 2314 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2315 testcase( regFree1==0 ); 2316 inReg = target; 2317 sqlite3VdbeAddOp2(v, op, r1, inReg); 2318 break; 2319 } 2320 case TK_ISNULL: 2321 case TK_NOTNULL: { 2322 int addr; 2323 assert( TK_ISNULL==OP_IsNull ); 2324 assert( TK_NOTNULL==OP_NotNull ); 2325 testcase( op==TK_ISNULL ); 2326 testcase( op==TK_NOTNULL ); 2327 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2328 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2329 testcase( regFree1==0 ); 2330 addr = sqlite3VdbeAddOp1(v, op, r1); 2331 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2332 sqlite3VdbeJumpHere(v, addr); 2333 break; 2334 } 2335 case TK_AGG_FUNCTION: { 2336 AggInfo *pInfo = pExpr->pAggInfo; 2337 if( pInfo==0 ){ 2338 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2339 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2340 }else{ 2341 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2342 } 2343 break; 2344 } 2345 case TK_CONST_FUNC: 2346 case TK_FUNCTION: { 2347 ExprList *pFarg; /* List of function arguments */ 2348 int nFarg; /* Number of function arguments */ 2349 FuncDef *pDef; /* The function definition object */ 2350 int nId; /* Length of the function name in bytes */ 2351 const char *zId; /* The function name */ 2352 int constMask = 0; /* Mask of function arguments that are constant */ 2353 int i; /* Loop counter */ 2354 u8 enc = ENC(db); /* The text encoding used by this database */ 2355 CollSeq *pColl = 0; /* A collating sequence */ 2356 2357 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2358 testcase( op==TK_CONST_FUNC ); 2359 testcase( op==TK_FUNCTION ); 2360 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2361 pFarg = 0; 2362 }else{ 2363 pFarg = pExpr->x.pList; 2364 } 2365 nFarg = pFarg ? pFarg->nExpr : 0; 2366 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2367 zId = pExpr->u.zToken; 2368 nId = sqlite3Strlen30(zId); 2369 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2370 if( pDef==0 ){ 2371 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2372 break; 2373 } 2374 if( pFarg ){ 2375 r1 = sqlite3GetTempRange(pParse, nFarg); 2376 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2377 }else{ 2378 r1 = 0; 2379 } 2380 #ifndef SQLITE_OMIT_VIRTUALTABLE 2381 /* Possibly overload the function if the first argument is 2382 ** a virtual table column. 2383 ** 2384 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2385 ** second argument, not the first, as the argument to test to 2386 ** see if it is a column in a virtual table. This is done because 2387 ** the left operand of infix functions (the operand we want to 2388 ** control overloading) ends up as the second argument to the 2389 ** function. The expression "A glob B" is equivalent to 2390 ** "glob(B,A). We want to use the A in "A glob B" to test 2391 ** for function overloading. But we use the B term in "glob(B,A)". 2392 */ 2393 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2394 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2395 }else if( nFarg>0 ){ 2396 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2397 } 2398 #endif 2399 for(i=0; i<nFarg; i++){ 2400 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2401 constMask |= (1<<i); 2402 } 2403 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2404 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2405 } 2406 } 2407 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2408 if( !pColl ) pColl = db->pDfltColl; 2409 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2410 } 2411 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2412 (char*)pDef, P4_FUNCDEF); 2413 sqlite3VdbeChangeP5(v, (u8)nFarg); 2414 if( nFarg ){ 2415 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2416 } 2417 sqlite3ExprCacheAffinityChange(pParse, r1, nFarg); 2418 break; 2419 } 2420 #ifndef SQLITE_OMIT_SUBQUERY 2421 case TK_EXISTS: 2422 case TK_SELECT: { 2423 testcase( op==TK_EXISTS ); 2424 testcase( op==TK_SELECT ); 2425 sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2426 inReg = pExpr->iColumn; 2427 break; 2428 } 2429 case TK_IN: { 2430 int rNotFound = 0; 2431 int rMayHaveNull = 0; 2432 int j2, j3, j4, j5; 2433 char affinity; 2434 int eType; 2435 2436 VdbeNoopComment((v, "begin IN expr r%d", target)); 2437 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); 2438 if( rMayHaveNull ){ 2439 rNotFound = ++pParse->nMem; 2440 } 2441 2442 /* Figure out the affinity to use to create a key from the results 2443 ** of the expression. affinityStr stores a static string suitable for 2444 ** P4 of OP_MakeRecord. 2445 */ 2446 affinity = comparisonAffinity(pExpr); 2447 2448 2449 /* Code the <expr> from "<expr> IN (...)". The temporary table 2450 ** pExpr->iTable contains the values that make up the (...) set. 2451 */ 2452 sqlite3ExprCachePush(pParse); 2453 sqlite3ExprCode(pParse, pExpr->pLeft, target); 2454 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); 2455 if( eType==IN_INDEX_ROWID ){ 2456 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); 2457 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); 2458 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2459 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 2460 sqlite3VdbeJumpHere(v, j3); 2461 sqlite3VdbeJumpHere(v, j4); 2462 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2463 }else{ 2464 r2 = regFree2 = sqlite3GetTempReg(pParse); 2465 2466 /* Create a record and test for set membership. If the set contains 2467 ** the value, then jump to the end of the test code. The target 2468 ** register still contains the true (1) value written to it earlier. 2469 */ 2470 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); 2471 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2472 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); 2473 2474 /* If the set membership test fails, then the result of the 2475 ** "x IN (...)" expression must be either 0 or NULL. If the set 2476 ** contains no NULL values, then the result is 0. If the set 2477 ** contains one or more NULL values, then the result of the 2478 ** expression is also NULL. 2479 */ 2480 if( rNotFound==0 ){ 2481 /* This branch runs if it is known at compile time (now) that 2482 ** the set contains no NULL values. This happens as the result 2483 ** of a "NOT NULL" constraint in the database schema. No need 2484 ** to test the data structure at runtime in this case. 2485 */ 2486 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2487 }else{ 2488 /* This block populates the rNotFound register with either NULL 2489 ** or 0 (an integer value). If the data structure contains one 2490 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it 2491 ** to 0. If register rMayHaveNull is already set to some value 2492 ** other than NULL, then the test has already been run and 2493 ** rNotFound is already populated. 2494 */ 2495 static const char nullRecord[] = { 0x02, 0x00 }; 2496 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); 2497 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); 2498 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 2499 nullRecord, P4_STATIC); 2500 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); 2501 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); 2502 sqlite3VdbeJumpHere(v, j4); 2503 sqlite3VdbeJumpHere(v, j3); 2504 2505 /* Copy the value of register rNotFound (which is either NULL or 0) 2506 ** into the target register. This will be the result of the 2507 ** expression. 2508 */ 2509 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); 2510 } 2511 } 2512 sqlite3VdbeJumpHere(v, j2); 2513 sqlite3VdbeJumpHere(v, j5); 2514 sqlite3ExprCachePop(pParse, 1); 2515 VdbeComment((v, "end IN expr r%d", target)); 2516 break; 2517 } 2518 #endif 2519 /* 2520 ** x BETWEEN y AND z 2521 ** 2522 ** This is equivalent to 2523 ** 2524 ** x>=y AND x<=z 2525 ** 2526 ** X is stored in pExpr->pLeft. 2527 ** Y is stored in pExpr->pList->a[0].pExpr. 2528 ** Z is stored in pExpr->pList->a[1].pExpr. 2529 */ 2530 case TK_BETWEEN: { 2531 Expr *pLeft = pExpr->pLeft; 2532 struct ExprList_item *pLItem = pExpr->x.pList->a; 2533 Expr *pRight = pLItem->pExpr; 2534 2535 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2536 pRight, &r2, ®Free2); 2537 testcase( regFree1==0 ); 2538 testcase( regFree2==0 ); 2539 r3 = sqlite3GetTempReg(pParse); 2540 r4 = sqlite3GetTempReg(pParse); 2541 codeCompare(pParse, pLeft, pRight, OP_Ge, 2542 r1, r2, r3, SQLITE_STOREP2); 2543 pLItem++; 2544 pRight = pLItem->pExpr; 2545 sqlite3ReleaseTempReg(pParse, regFree2); 2546 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2547 testcase( regFree2==0 ); 2548 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2549 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2550 sqlite3ReleaseTempReg(pParse, r3); 2551 sqlite3ReleaseTempReg(pParse, r4); 2552 break; 2553 } 2554 case TK_UPLUS: { 2555 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2556 break; 2557 } 2558 2559 /* 2560 ** Form A: 2561 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2562 ** 2563 ** Form B: 2564 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2565 ** 2566 ** Form A is can be transformed into the equivalent form B as follows: 2567 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2568 ** WHEN x=eN THEN rN ELSE y END 2569 ** 2570 ** X (if it exists) is in pExpr->pLeft. 2571 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2572 ** ELSE clause and no other term matches, then the result of the 2573 ** exprssion is NULL. 2574 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2575 ** 2576 ** The result of the expression is the Ri for the first matching Ei, 2577 ** or if there is no matching Ei, the ELSE term Y, or if there is 2578 ** no ELSE term, NULL. 2579 */ 2580 default: assert( op==TK_CASE ); { 2581 int endLabel; /* GOTO label for end of CASE stmt */ 2582 int nextCase; /* GOTO label for next WHEN clause */ 2583 int nExpr; /* 2x number of WHEN terms */ 2584 int i; /* Loop counter */ 2585 ExprList *pEList; /* List of WHEN terms */ 2586 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2587 Expr opCompare; /* The X==Ei expression */ 2588 Expr cacheX; /* Cached expression X */ 2589 Expr *pX; /* The X expression */ 2590 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2591 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2592 2593 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2594 assert((pExpr->x.pList->nExpr % 2) == 0); 2595 assert(pExpr->x.pList->nExpr > 0); 2596 pEList = pExpr->x.pList; 2597 aListelem = pEList->a; 2598 nExpr = pEList->nExpr; 2599 endLabel = sqlite3VdbeMakeLabel(v); 2600 if( (pX = pExpr->pLeft)!=0 ){ 2601 cacheX = *pX; 2602 testcase( pX->op==TK_COLUMN ); 2603 testcase( pX->op==TK_REGISTER ); 2604 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2605 testcase( regFree1==0 ); 2606 cacheX.op = TK_REGISTER; 2607 opCompare.op = TK_EQ; 2608 opCompare.pLeft = &cacheX; 2609 pTest = &opCompare; 2610 } 2611 for(i=0; i<nExpr; i=i+2){ 2612 sqlite3ExprCachePush(pParse); 2613 if( pX ){ 2614 assert( pTest!=0 ); 2615 opCompare.pRight = aListelem[i].pExpr; 2616 }else{ 2617 pTest = aListelem[i].pExpr; 2618 } 2619 nextCase = sqlite3VdbeMakeLabel(v); 2620 testcase( pTest->op==TK_COLUMN ); 2621 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2622 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2623 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2624 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2625 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2626 sqlite3ExprCachePop(pParse, 1); 2627 sqlite3VdbeResolveLabel(v, nextCase); 2628 } 2629 if( pExpr->pRight ){ 2630 sqlite3ExprCachePush(pParse); 2631 sqlite3ExprCode(pParse, pExpr->pRight, target); 2632 sqlite3ExprCachePop(pParse, 1); 2633 }else{ 2634 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2635 } 2636 assert( db->mallocFailed || pParse->nErr>0 2637 || pParse->iCacheLevel==iCacheLevel ); 2638 sqlite3VdbeResolveLabel(v, endLabel); 2639 break; 2640 } 2641 #ifndef SQLITE_OMIT_TRIGGER 2642 case TK_RAISE: { 2643 if( !pParse->trigStack ){ 2644 sqlite3ErrorMsg(pParse, 2645 "RAISE() may only be used within a trigger-program"); 2646 return 0; 2647 } 2648 if( pExpr->affinity!=OE_Ignore ){ 2649 assert( pExpr->affinity==OE_Rollback || 2650 pExpr->affinity == OE_Abort || 2651 pExpr->affinity == OE_Fail ); 2652 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2653 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->affinity, 0, 2654 pExpr->u.zToken, 0); 2655 } else { 2656 assert( pExpr->affinity == OE_Ignore ); 2657 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); 2658 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2659 VdbeComment((v, "raise(IGNORE)")); 2660 } 2661 break; 2662 } 2663 #endif 2664 } 2665 sqlite3ReleaseTempReg(pParse, regFree1); 2666 sqlite3ReleaseTempReg(pParse, regFree2); 2667 return inReg; 2668 } 2669 2670 /* 2671 ** Generate code to evaluate an expression and store the results 2672 ** into a register. Return the register number where the results 2673 ** are stored. 2674 ** 2675 ** If the register is a temporary register that can be deallocated, 2676 ** then write its number into *pReg. If the result register is not 2677 ** a temporary, then set *pReg to zero. 2678 */ 2679 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2680 int r1 = sqlite3GetTempReg(pParse); 2681 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2682 if( r2==r1 ){ 2683 *pReg = r1; 2684 }else{ 2685 sqlite3ReleaseTempReg(pParse, r1); 2686 *pReg = 0; 2687 } 2688 return r2; 2689 } 2690 2691 /* 2692 ** Generate code that will evaluate expression pExpr and store the 2693 ** results in register target. The results are guaranteed to appear 2694 ** in register target. 2695 */ 2696 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2697 int inReg; 2698 2699 assert( target>0 && target<=pParse->nMem ); 2700 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2701 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2702 if( inReg!=target && pParse->pVdbe ){ 2703 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2704 } 2705 return target; 2706 } 2707 2708 /* 2709 ** Generate code that evalutes the given expression and puts the result 2710 ** in register target. 2711 ** 2712 ** Also make a copy of the expression results into another "cache" register 2713 ** and modify the expression so that the next time it is evaluated, 2714 ** the result is a copy of the cache register. 2715 ** 2716 ** This routine is used for expressions that are used multiple 2717 ** times. They are evaluated once and the results of the expression 2718 ** are reused. 2719 */ 2720 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2721 Vdbe *v = pParse->pVdbe; 2722 int inReg; 2723 inReg = sqlite3ExprCode(pParse, pExpr, target); 2724 assert( target>0 ); 2725 /* This routine is called for terms to INSERT or UPDATE. And the only 2726 ** other place where expressions can be converted into TK_REGISTER is 2727 ** in WHERE clause processing. So as currently implemented, there is 2728 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2729 ** keep the ALWAYS() in case the conditions above change with future 2730 ** modifications or enhancements. */ 2731 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2732 int iMem; 2733 iMem = ++pParse->nMem; 2734 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2735 pExpr->iTable = iMem; 2736 pExpr->op = TK_REGISTER; 2737 } 2738 return inReg; 2739 } 2740 2741 /* 2742 ** Return TRUE if pExpr is an constant expression that is appropriate 2743 ** for factoring out of a loop. Appropriate expressions are: 2744 ** 2745 ** * Any expression that evaluates to two or more opcodes. 2746 ** 2747 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2748 ** or OP_Variable that does not need to be placed in a 2749 ** specific register. 2750 ** 2751 ** There is no point in factoring out single-instruction constant 2752 ** expressions that need to be placed in a particular register. 2753 ** We could factor them out, but then we would end up adding an 2754 ** OP_SCopy instruction to move the value into the correct register 2755 ** later. We might as well just use the original instruction and 2756 ** avoid the OP_SCopy. 2757 */ 2758 static int isAppropriateForFactoring(Expr *p){ 2759 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2760 return 0; /* Only constant expressions are appropriate for factoring */ 2761 } 2762 if( (p->flags & EP_FixedDest)==0 ){ 2763 return 1; /* Any constant without a fixed destination is appropriate */ 2764 } 2765 while( p->op==TK_UPLUS ) p = p->pLeft; 2766 switch( p->op ){ 2767 #ifndef SQLITE_OMIT_BLOB_LITERAL 2768 case TK_BLOB: 2769 #endif 2770 case TK_VARIABLE: 2771 case TK_INTEGER: 2772 case TK_FLOAT: 2773 case TK_NULL: 2774 case TK_STRING: { 2775 testcase( p->op==TK_BLOB ); 2776 testcase( p->op==TK_VARIABLE ); 2777 testcase( p->op==TK_INTEGER ); 2778 testcase( p->op==TK_FLOAT ); 2779 testcase( p->op==TK_NULL ); 2780 testcase( p->op==TK_STRING ); 2781 /* Single-instruction constants with a fixed destination are 2782 ** better done in-line. If we factor them, they will just end 2783 ** up generating an OP_SCopy to move the value to the destination 2784 ** register. */ 2785 return 0; 2786 } 2787 case TK_UMINUS: { 2788 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2789 return 0; 2790 } 2791 break; 2792 } 2793 default: { 2794 break; 2795 } 2796 } 2797 return 1; 2798 } 2799 2800 /* 2801 ** If pExpr is a constant expression that is appropriate for 2802 ** factoring out of a loop, then evaluate the expression 2803 ** into a register and convert the expression into a TK_REGISTER 2804 ** expression. 2805 */ 2806 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 2807 Parse *pParse = pWalker->pParse; 2808 switch( pExpr->op ){ 2809 case TK_REGISTER: { 2810 return WRC_Prune; 2811 } 2812 case TK_FUNCTION: 2813 case TK_AGG_FUNCTION: 2814 case TK_CONST_FUNC: { 2815 /* The arguments to a function have a fixed destination. 2816 ** Mark them this way to avoid generated unneeded OP_SCopy 2817 ** instructions. 2818 */ 2819 ExprList *pList = pExpr->x.pList; 2820 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2821 if( pList ){ 2822 int i = pList->nExpr; 2823 struct ExprList_item *pItem = pList->a; 2824 for(; i>0; i--, pItem++){ 2825 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 2826 } 2827 } 2828 break; 2829 } 2830 } 2831 if( isAppropriateForFactoring(pExpr) ){ 2832 int r1 = ++pParse->nMem; 2833 int r2; 2834 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2835 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 2836 pExpr->op2 = pExpr->op; 2837 pExpr->op = TK_REGISTER; 2838 pExpr->iTable = r2; 2839 return WRC_Prune; 2840 } 2841 return WRC_Continue; 2842 } 2843 2844 /* 2845 ** Preevaluate constant subexpressions within pExpr and store the 2846 ** results in registers. Modify pExpr so that the constant subexpresions 2847 ** are TK_REGISTER opcodes that refer to the precomputed values. 2848 */ 2849 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 2850 Walker w; 2851 w.xExprCallback = evalConstExpr; 2852 w.xSelectCallback = 0; 2853 w.pParse = pParse; 2854 sqlite3WalkExpr(&w, pExpr); 2855 } 2856 2857 2858 /* 2859 ** Generate code that pushes the value of every element of the given 2860 ** expression list into a sequence of registers beginning at target. 2861 ** 2862 ** Return the number of elements evaluated. 2863 */ 2864 int sqlite3ExprCodeExprList( 2865 Parse *pParse, /* Parsing context */ 2866 ExprList *pList, /* The expression list to be coded */ 2867 int target, /* Where to write results */ 2868 int doHardCopy /* Make a hard copy of every element */ 2869 ){ 2870 struct ExprList_item *pItem; 2871 int i, n; 2872 assert( pList!=0 ); 2873 assert( target>0 ); 2874 n = pList->nExpr; 2875 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 2876 if( pItem->iAlias ){ 2877 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 2878 Vdbe *v = sqlite3GetVdbe(pParse); 2879 if( iReg!=target+i ){ 2880 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 2881 } 2882 }else{ 2883 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 2884 } 2885 if( doHardCopy && !pParse->db->mallocFailed ){ 2886 sqlite3ExprHardCopy(pParse, target, n); 2887 } 2888 } 2889 return n; 2890 } 2891 2892 /* 2893 ** Generate code for a boolean expression such that a jump is made 2894 ** to the label "dest" if the expression is true but execution 2895 ** continues straight thru if the expression is false. 2896 ** 2897 ** If the expression evaluates to NULL (neither true nor false), then 2898 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 2899 ** 2900 ** This code depends on the fact that certain token values (ex: TK_EQ) 2901 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2902 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2903 ** the make process cause these values to align. Assert()s in the code 2904 ** below verify that the numbers are aligned correctly. 2905 */ 2906 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2907 Vdbe *v = pParse->pVdbe; 2908 int op = 0; 2909 int regFree1 = 0; 2910 int regFree2 = 0; 2911 int r1, r2; 2912 2913 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2914 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 2915 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 2916 op = pExpr->op; 2917 switch( op ){ 2918 case TK_AND: { 2919 int d2 = sqlite3VdbeMakeLabel(v); 2920 testcase( jumpIfNull==0 ); 2921 sqlite3ExprCachePush(pParse); 2922 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 2923 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2924 sqlite3VdbeResolveLabel(v, d2); 2925 sqlite3ExprCachePop(pParse, 1); 2926 break; 2927 } 2928 case TK_OR: { 2929 testcase( jumpIfNull==0 ); 2930 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2931 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2932 break; 2933 } 2934 case TK_NOT: { 2935 testcase( jumpIfNull==0 ); 2936 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2937 break; 2938 } 2939 case TK_LT: 2940 case TK_LE: 2941 case TK_GT: 2942 case TK_GE: 2943 case TK_NE: 2944 case TK_EQ: { 2945 assert( TK_LT==OP_Lt ); 2946 assert( TK_LE==OP_Le ); 2947 assert( TK_GT==OP_Gt ); 2948 assert( TK_GE==OP_Ge ); 2949 assert( TK_EQ==OP_Eq ); 2950 assert( TK_NE==OP_Ne ); 2951 testcase( op==TK_LT ); 2952 testcase( op==TK_LE ); 2953 testcase( op==TK_GT ); 2954 testcase( op==TK_GE ); 2955 testcase( op==TK_EQ ); 2956 testcase( op==TK_NE ); 2957 testcase( jumpIfNull==0 ); 2958 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2959 pExpr->pRight, &r2, ®Free2); 2960 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2961 r1, r2, dest, jumpIfNull); 2962 testcase( regFree1==0 ); 2963 testcase( regFree2==0 ); 2964 break; 2965 } 2966 case TK_ISNULL: 2967 case TK_NOTNULL: { 2968 assert( TK_ISNULL==OP_IsNull ); 2969 assert( TK_NOTNULL==OP_NotNull ); 2970 testcase( op==TK_ISNULL ); 2971 testcase( op==TK_NOTNULL ); 2972 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2973 sqlite3VdbeAddOp2(v, op, r1, dest); 2974 testcase( regFree1==0 ); 2975 break; 2976 } 2977 case TK_BETWEEN: { 2978 /* x BETWEEN y AND z 2979 ** 2980 ** Is equivalent to 2981 ** 2982 ** x>=y AND x<=z 2983 ** 2984 ** Code it as such, taking care to do the common subexpression 2985 ** elementation of x. 2986 */ 2987 Expr exprAnd; 2988 Expr compLeft; 2989 Expr compRight; 2990 Expr exprX; 2991 2992 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2993 exprX = *pExpr->pLeft; 2994 exprAnd.op = TK_AND; 2995 exprAnd.pLeft = &compLeft; 2996 exprAnd.pRight = &compRight; 2997 compLeft.op = TK_GE; 2998 compLeft.pLeft = &exprX; 2999 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3000 compRight.op = TK_LE; 3001 compRight.pLeft = &exprX; 3002 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3003 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3004 testcase( regFree1==0 ); 3005 exprX.op = TK_REGISTER; 3006 testcase( jumpIfNull==0 ); 3007 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3008 break; 3009 } 3010 default: { 3011 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3012 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3013 testcase( regFree1==0 ); 3014 testcase( jumpIfNull==0 ); 3015 break; 3016 } 3017 } 3018 sqlite3ReleaseTempReg(pParse, regFree1); 3019 sqlite3ReleaseTempReg(pParse, regFree2); 3020 } 3021 3022 /* 3023 ** Generate code for a boolean expression such that a jump is made 3024 ** to the label "dest" if the expression is false but execution 3025 ** continues straight thru if the expression is true. 3026 ** 3027 ** If the expression evaluates to NULL (neither true nor false) then 3028 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3029 ** is 0. 3030 */ 3031 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3032 Vdbe *v = pParse->pVdbe; 3033 int op = 0; 3034 int regFree1 = 0; 3035 int regFree2 = 0; 3036 int r1, r2; 3037 3038 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3039 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3040 if( pExpr==0 ) return; 3041 3042 /* The value of pExpr->op and op are related as follows: 3043 ** 3044 ** pExpr->op op 3045 ** --------- ---------- 3046 ** TK_ISNULL OP_NotNull 3047 ** TK_NOTNULL OP_IsNull 3048 ** TK_NE OP_Eq 3049 ** TK_EQ OP_Ne 3050 ** TK_GT OP_Le 3051 ** TK_LE OP_Gt 3052 ** TK_GE OP_Lt 3053 ** TK_LT OP_Ge 3054 ** 3055 ** For other values of pExpr->op, op is undefined and unused. 3056 ** The value of TK_ and OP_ constants are arranged such that we 3057 ** can compute the mapping above using the following expression. 3058 ** Assert()s verify that the computation is correct. 3059 */ 3060 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3061 3062 /* Verify correct alignment of TK_ and OP_ constants 3063 */ 3064 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3065 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3066 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3067 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3068 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3069 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3070 assert( pExpr->op!=TK_GT || op==OP_Le ); 3071 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3072 3073 switch( pExpr->op ){ 3074 case TK_AND: { 3075 testcase( jumpIfNull==0 ); 3076 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3077 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3078 break; 3079 } 3080 case TK_OR: { 3081 int d2 = sqlite3VdbeMakeLabel(v); 3082 testcase( jumpIfNull==0 ); 3083 sqlite3ExprCachePush(pParse); 3084 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3085 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3086 sqlite3VdbeResolveLabel(v, d2); 3087 sqlite3ExprCachePop(pParse, 1); 3088 break; 3089 } 3090 case TK_NOT: { 3091 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3092 break; 3093 } 3094 case TK_LT: 3095 case TK_LE: 3096 case TK_GT: 3097 case TK_GE: 3098 case TK_NE: 3099 case TK_EQ: { 3100 testcase( op==TK_LT ); 3101 testcase( op==TK_LE ); 3102 testcase( op==TK_GT ); 3103 testcase( op==TK_GE ); 3104 testcase( op==TK_EQ ); 3105 testcase( op==TK_NE ); 3106 testcase( jumpIfNull==0 ); 3107 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3108 pExpr->pRight, &r2, ®Free2); 3109 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3110 r1, r2, dest, jumpIfNull); 3111 testcase( regFree1==0 ); 3112 testcase( regFree2==0 ); 3113 break; 3114 } 3115 case TK_ISNULL: 3116 case TK_NOTNULL: { 3117 testcase( op==TK_ISNULL ); 3118 testcase( op==TK_NOTNULL ); 3119 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3120 sqlite3VdbeAddOp2(v, op, r1, dest); 3121 testcase( regFree1==0 ); 3122 break; 3123 } 3124 case TK_BETWEEN: { 3125 /* x BETWEEN y AND z 3126 ** 3127 ** Is equivalent to 3128 ** 3129 ** x>=y AND x<=z 3130 ** 3131 ** Code it as such, taking care to do the common subexpression 3132 ** elementation of x. 3133 */ 3134 Expr exprAnd; 3135 Expr compLeft; 3136 Expr compRight; 3137 Expr exprX; 3138 3139 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3140 exprX = *pExpr->pLeft; 3141 exprAnd.op = TK_AND; 3142 exprAnd.pLeft = &compLeft; 3143 exprAnd.pRight = &compRight; 3144 compLeft.op = TK_GE; 3145 compLeft.pLeft = &exprX; 3146 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3147 compRight.op = TK_LE; 3148 compRight.pLeft = &exprX; 3149 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3150 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3151 testcase( regFree1==0 ); 3152 exprX.op = TK_REGISTER; 3153 testcase( jumpIfNull==0 ); 3154 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3155 break; 3156 } 3157 default: { 3158 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3159 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3160 testcase( regFree1==0 ); 3161 testcase( jumpIfNull==0 ); 3162 break; 3163 } 3164 } 3165 sqlite3ReleaseTempReg(pParse, regFree1); 3166 sqlite3ReleaseTempReg(pParse, regFree2); 3167 } 3168 3169 /* 3170 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3171 ** if they are identical and return FALSE if they differ in any way. 3172 ** 3173 ** Sometimes this routine will return FALSE even if the two expressions 3174 ** really are equivalent. If we cannot prove that the expressions are 3175 ** identical, we return FALSE just to be safe. So if this routine 3176 ** returns false, then you do not really know for certain if the two 3177 ** expressions are the same. But if you get a TRUE return, then you 3178 ** can be sure the expressions are the same. In the places where 3179 ** this routine is used, it does not hurt to get an extra FALSE - that 3180 ** just might result in some slightly slower code. But returning 3181 ** an incorrect TRUE could lead to a malfunction. 3182 */ 3183 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3184 int i; 3185 if( pA==0||pB==0 ){ 3186 return pB==pA; 3187 } 3188 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3189 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3190 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3191 return 0; 3192 } 3193 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3194 if( pA->op!=pB->op ) return 0; 3195 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3196 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3197 3198 if( pA->x.pList && pB->x.pList ){ 3199 if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0; 3200 for(i=0; i<pA->x.pList->nExpr; i++){ 3201 Expr *pExprA = pA->x.pList->a[i].pExpr; 3202 Expr *pExprB = pB->x.pList->a[i].pExpr; 3203 if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0; 3204 } 3205 }else if( pA->x.pList || pB->x.pList ){ 3206 return 0; 3207 } 3208 3209 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3210 if( ExprHasProperty(pA, EP_IntValue) ){ 3211 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3212 return 0; 3213 } 3214 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3215 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0; 3216 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3217 return 0; 3218 } 3219 } 3220 return 1; 3221 } 3222 3223 3224 /* 3225 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3226 ** the new element. Return a negative number if malloc fails. 3227 */ 3228 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3229 int i; 3230 pInfo->aCol = sqlite3ArrayAllocate( 3231 db, 3232 pInfo->aCol, 3233 sizeof(pInfo->aCol[0]), 3234 3, 3235 &pInfo->nColumn, 3236 &pInfo->nColumnAlloc, 3237 &i 3238 ); 3239 return i; 3240 } 3241 3242 /* 3243 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3244 ** the new element. Return a negative number if malloc fails. 3245 */ 3246 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3247 int i; 3248 pInfo->aFunc = sqlite3ArrayAllocate( 3249 db, 3250 pInfo->aFunc, 3251 sizeof(pInfo->aFunc[0]), 3252 3, 3253 &pInfo->nFunc, 3254 &pInfo->nFuncAlloc, 3255 &i 3256 ); 3257 return i; 3258 } 3259 3260 /* 3261 ** This is the xExprCallback for a tree walker. It is used to 3262 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3263 ** for additional information. 3264 */ 3265 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3266 int i; 3267 NameContext *pNC = pWalker->u.pNC; 3268 Parse *pParse = pNC->pParse; 3269 SrcList *pSrcList = pNC->pSrcList; 3270 AggInfo *pAggInfo = pNC->pAggInfo; 3271 3272 switch( pExpr->op ){ 3273 case TK_AGG_COLUMN: 3274 case TK_COLUMN: { 3275 testcase( pExpr->op==TK_AGG_COLUMN ); 3276 testcase( pExpr->op==TK_COLUMN ); 3277 /* Check to see if the column is in one of the tables in the FROM 3278 ** clause of the aggregate query */ 3279 if( ALWAYS(pSrcList!=0) ){ 3280 struct SrcList_item *pItem = pSrcList->a; 3281 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3282 struct AggInfo_col *pCol; 3283 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3284 if( pExpr->iTable==pItem->iCursor ){ 3285 /* If we reach this point, it means that pExpr refers to a table 3286 ** that is in the FROM clause of the aggregate query. 3287 ** 3288 ** Make an entry for the column in pAggInfo->aCol[] if there 3289 ** is not an entry there already. 3290 */ 3291 int k; 3292 pCol = pAggInfo->aCol; 3293 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3294 if( pCol->iTable==pExpr->iTable && 3295 pCol->iColumn==pExpr->iColumn ){ 3296 break; 3297 } 3298 } 3299 if( (k>=pAggInfo->nColumn) 3300 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3301 ){ 3302 pCol = &pAggInfo->aCol[k]; 3303 pCol->pTab = pExpr->pTab; 3304 pCol->iTable = pExpr->iTable; 3305 pCol->iColumn = pExpr->iColumn; 3306 pCol->iMem = ++pParse->nMem; 3307 pCol->iSorterColumn = -1; 3308 pCol->pExpr = pExpr; 3309 if( pAggInfo->pGroupBy ){ 3310 int j, n; 3311 ExprList *pGB = pAggInfo->pGroupBy; 3312 struct ExprList_item *pTerm = pGB->a; 3313 n = pGB->nExpr; 3314 for(j=0; j<n; j++, pTerm++){ 3315 Expr *pE = pTerm->pExpr; 3316 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3317 pE->iColumn==pExpr->iColumn ){ 3318 pCol->iSorterColumn = j; 3319 break; 3320 } 3321 } 3322 } 3323 if( pCol->iSorterColumn<0 ){ 3324 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3325 } 3326 } 3327 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3328 ** because it was there before or because we just created it). 3329 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3330 ** pAggInfo->aCol[] entry. 3331 */ 3332 ExprSetIrreducible(pExpr); 3333 pExpr->pAggInfo = pAggInfo; 3334 pExpr->op = TK_AGG_COLUMN; 3335 pExpr->iAgg = (i16)k; 3336 break; 3337 } /* endif pExpr->iTable==pItem->iCursor */ 3338 } /* end loop over pSrcList */ 3339 } 3340 return WRC_Prune; 3341 } 3342 case TK_AGG_FUNCTION: { 3343 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3344 ** to be ignored */ 3345 if( pNC->nDepth==0 ){ 3346 /* Check to see if pExpr is a duplicate of another aggregate 3347 ** function that is already in the pAggInfo structure 3348 */ 3349 struct AggInfo_func *pItem = pAggInfo->aFunc; 3350 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3351 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3352 break; 3353 } 3354 } 3355 if( i>=pAggInfo->nFunc ){ 3356 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3357 */ 3358 u8 enc = ENC(pParse->db); 3359 i = addAggInfoFunc(pParse->db, pAggInfo); 3360 if( i>=0 ){ 3361 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3362 pItem = &pAggInfo->aFunc[i]; 3363 pItem->pExpr = pExpr; 3364 pItem->iMem = ++pParse->nMem; 3365 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3366 pItem->pFunc = sqlite3FindFunction(pParse->db, 3367 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3368 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3369 if( pExpr->flags & EP_Distinct ){ 3370 pItem->iDistinct = pParse->nTab++; 3371 }else{ 3372 pItem->iDistinct = -1; 3373 } 3374 } 3375 } 3376 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3377 */ 3378 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3379 ExprSetIrreducible(pExpr); 3380 pExpr->iAgg = (i16)i; 3381 pExpr->pAggInfo = pAggInfo; 3382 return WRC_Prune; 3383 } 3384 } 3385 } 3386 return WRC_Continue; 3387 } 3388 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3389 NameContext *pNC = pWalker->u.pNC; 3390 if( pNC->nDepth==0 ){ 3391 pNC->nDepth++; 3392 sqlite3WalkSelect(pWalker, pSelect); 3393 pNC->nDepth--; 3394 return WRC_Prune; 3395 }else{ 3396 return WRC_Continue; 3397 } 3398 } 3399 3400 /* 3401 ** Analyze the given expression looking for aggregate functions and 3402 ** for variables that need to be added to the pParse->aAgg[] array. 3403 ** Make additional entries to the pParse->aAgg[] array as necessary. 3404 ** 3405 ** This routine should only be called after the expression has been 3406 ** analyzed by sqlite3ResolveExprNames(). 3407 */ 3408 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3409 Walker w; 3410 w.xExprCallback = analyzeAggregate; 3411 w.xSelectCallback = analyzeAggregatesInSelect; 3412 w.u.pNC = pNC; 3413 assert( pNC->pSrcList!=0 ); 3414 sqlite3WalkExpr(&w, pExpr); 3415 } 3416 3417 /* 3418 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3419 ** expression list. Return the number of errors. 3420 ** 3421 ** If an error is found, the analysis is cut short. 3422 */ 3423 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3424 struct ExprList_item *pItem; 3425 int i; 3426 if( pList ){ 3427 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3428 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3429 } 3430 } 3431 } 3432 3433 /* 3434 ** Allocate a single new register for use to hold some intermediate result. 3435 */ 3436 int sqlite3GetTempReg(Parse *pParse){ 3437 if( pParse->nTempReg==0 ){ 3438 return ++pParse->nMem; 3439 } 3440 return pParse->aTempReg[--pParse->nTempReg]; 3441 } 3442 3443 /* 3444 ** Deallocate a register, making available for reuse for some other 3445 ** purpose. 3446 ** 3447 ** If a register is currently being used by the column cache, then 3448 ** the dallocation is deferred until the column cache line that uses 3449 ** the register becomes stale. 3450 */ 3451 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3452 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3453 int i; 3454 struct yColCache *p; 3455 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3456 if( p->iReg==iReg ){ 3457 p->tempReg = 1; 3458 return; 3459 } 3460 } 3461 pParse->aTempReg[pParse->nTempReg++] = iReg; 3462 } 3463 } 3464 3465 /* 3466 ** Allocate or deallocate a block of nReg consecutive registers 3467 */ 3468 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3469 int i, n; 3470 i = pParse->iRangeReg; 3471 n = pParse->nRangeReg; 3472 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3473 pParse->iRangeReg += nReg; 3474 pParse->nRangeReg -= nReg; 3475 }else{ 3476 i = pParse->nMem+1; 3477 pParse->nMem += nReg; 3478 } 3479 return i; 3480 } 3481 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3482 if( nReg>pParse->nRangeReg ){ 3483 pParse->nRangeReg = nReg; 3484 pParse->iRangeReg = iReg; 3485 } 3486 } 3487