1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.269 2006/11/23 11:59:13 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_AS ){ 39 return sqlite3ExprAffinity(pExpr->pLeft); 40 } 41 if( op==TK_SELECT ){ 42 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 43 } 44 #ifndef SQLITE_OMIT_CAST 45 if( op==TK_CAST ){ 46 return sqlite3AffinityType(&pExpr->token); 47 } 48 #endif 49 return pExpr->affinity; 50 } 51 52 /* 53 ** Return the default collation sequence for the expression pExpr. If 54 ** there is no default collation type, return 0. 55 */ 56 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 57 CollSeq *pColl = 0; 58 if( pExpr ){ 59 pColl = pExpr->pColl; 60 if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){ 61 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 62 } 63 } 64 if( sqlite3CheckCollSeq(pParse, pColl) ){ 65 pColl = 0; 66 } 67 return pColl; 68 } 69 70 /* 71 ** pExpr is an operand of a comparison operator. aff2 is the 72 ** type affinity of the other operand. This routine returns the 73 ** type affinity that should be used for the comparison operator. 74 */ 75 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 76 char aff1 = sqlite3ExprAffinity(pExpr); 77 if( aff1 && aff2 ){ 78 /* Both sides of the comparison are columns. If one has numeric 79 ** affinity, use that. Otherwise use no affinity. 80 */ 81 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 82 return SQLITE_AFF_NUMERIC; 83 }else{ 84 return SQLITE_AFF_NONE; 85 } 86 }else if( !aff1 && !aff2 ){ 87 /* Neither side of the comparison is a column. Compare the 88 ** results directly. 89 */ 90 return SQLITE_AFF_NONE; 91 }else{ 92 /* One side is a column, the other is not. Use the columns affinity. */ 93 assert( aff1==0 || aff2==0 ); 94 return (aff1 + aff2); 95 } 96 } 97 98 /* 99 ** pExpr is a comparison operator. Return the type affinity that should 100 ** be applied to both operands prior to doing the comparison. 101 */ 102 static char comparisonAffinity(Expr *pExpr){ 103 char aff; 104 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 105 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 106 pExpr->op==TK_NE ); 107 assert( pExpr->pLeft ); 108 aff = sqlite3ExprAffinity(pExpr->pLeft); 109 if( pExpr->pRight ){ 110 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 111 } 112 else if( pExpr->pSelect ){ 113 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 114 } 115 else if( !aff ){ 116 aff = SQLITE_AFF_NUMERIC; 117 } 118 return aff; 119 } 120 121 /* 122 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 123 ** idx_affinity is the affinity of an indexed column. Return true 124 ** if the index with affinity idx_affinity may be used to implement 125 ** the comparison in pExpr. 126 */ 127 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 128 char aff = comparisonAffinity(pExpr); 129 switch( aff ){ 130 case SQLITE_AFF_NONE: 131 return 1; 132 case SQLITE_AFF_TEXT: 133 return idx_affinity==SQLITE_AFF_TEXT; 134 default: 135 return sqlite3IsNumericAffinity(idx_affinity); 136 } 137 } 138 139 /* 140 ** Return the P1 value that should be used for a binary comparison 141 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 142 ** If jumpIfNull is true, then set the low byte of the returned 143 ** P1 value to tell the opcode to jump if either expression 144 ** evaluates to NULL. 145 */ 146 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 147 char aff = sqlite3ExprAffinity(pExpr2); 148 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 149 } 150 151 /* 152 ** Return a pointer to the collation sequence that should be used by 153 ** a binary comparison operator comparing pLeft and pRight. 154 ** 155 ** If the left hand expression has a collating sequence type, then it is 156 ** used. Otherwise the collation sequence for the right hand expression 157 ** is used, or the default (BINARY) if neither expression has a collating 158 ** type. 159 */ 160 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ 161 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); 162 if( !pColl ){ 163 pColl = sqlite3ExprCollSeq(pParse, pRight); 164 } 165 return pColl; 166 } 167 168 /* 169 ** Generate code for a comparison operator. 170 */ 171 static int codeCompare( 172 Parse *pParse, /* The parsing (and code generating) context */ 173 Expr *pLeft, /* The left operand */ 174 Expr *pRight, /* The right operand */ 175 int opcode, /* The comparison opcode */ 176 int dest, /* Jump here if true. */ 177 int jumpIfNull /* If true, jump if either operand is NULL */ 178 ){ 179 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 180 CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight); 181 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 182 } 183 184 /* 185 ** Construct a new expression node and return a pointer to it. Memory 186 ** for this node is obtained from sqliteMalloc(). The calling function 187 ** is responsible for making sure the node eventually gets freed. 188 */ 189 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 190 Expr *pNew; 191 pNew = sqliteMalloc( sizeof(Expr) ); 192 if( pNew==0 ){ 193 /* When malloc fails, delete pLeft and pRight. Expressions passed to 194 ** this function must always be allocated with sqlite3Expr() for this 195 ** reason. 196 */ 197 sqlite3ExprDelete(pLeft); 198 sqlite3ExprDelete(pRight); 199 return 0; 200 } 201 pNew->op = op; 202 pNew->pLeft = pLeft; 203 pNew->pRight = pRight; 204 pNew->iAgg = -1; 205 if( pToken ){ 206 assert( pToken->dyn==0 ); 207 pNew->span = pNew->token = *pToken; 208 }else if( pLeft && pRight ){ 209 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 210 } 211 return pNew; 212 } 213 214 /* 215 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments 216 ** if it fails due to a malloc problem. 217 */ 218 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 219 Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken); 220 if( pNew==0 ){ 221 sqlite3ExprDelete(pLeft); 222 sqlite3ExprDelete(pRight); 223 } 224 return pNew; 225 } 226 227 /* 228 ** When doing a nested parse, you can include terms in an expression 229 ** that look like this: #0 #1 #2 ... These terms refer to elements 230 ** on the stack. "#0" means the top of the stack. 231 ** "#1" means the next down on the stack. And so forth. 232 ** 233 ** This routine is called by the parser to deal with on of those terms. 234 ** It immediately generates code to store the value in a memory location. 235 ** The returns an expression that will code to extract the value from 236 ** that memory location as needed. 237 */ 238 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 239 Vdbe *v = pParse->pVdbe; 240 Expr *p; 241 int depth; 242 if( pParse->nested==0 ){ 243 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 244 return 0; 245 } 246 if( v==0 ) return 0; 247 p = sqlite3Expr(TK_REGISTER, 0, 0, pToken); 248 if( p==0 ){ 249 return 0; /* Malloc failed */ 250 } 251 depth = atoi((char*)&pToken->z[1]); 252 p->iTable = pParse->nMem++; 253 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 254 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 255 return p; 256 } 257 258 /* 259 ** Join two expressions using an AND operator. If either expression is 260 ** NULL, then just return the other expression. 261 */ 262 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ 263 if( pLeft==0 ){ 264 return pRight; 265 }else if( pRight==0 ){ 266 return pLeft; 267 }else{ 268 return sqlite3Expr(TK_AND, pLeft, pRight, 0); 269 } 270 } 271 272 /* 273 ** Set the Expr.span field of the given expression to span all 274 ** text between the two given tokens. 275 */ 276 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 277 assert( pRight!=0 ); 278 assert( pLeft!=0 ); 279 if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){ 280 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 281 if( pLeft->dyn==0 && pRight->dyn==0 ){ 282 pExpr->span.z = pLeft->z; 283 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 284 }else{ 285 pExpr->span.z = 0; 286 } 287 } 288 } 289 290 /* 291 ** Construct a new expression node for a function with multiple 292 ** arguments. 293 */ 294 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ 295 Expr *pNew; 296 assert( pToken ); 297 pNew = sqliteMalloc( sizeof(Expr) ); 298 if( pNew==0 ){ 299 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 300 return 0; 301 } 302 pNew->op = TK_FUNCTION; 303 pNew->pList = pList; 304 assert( pToken->dyn==0 ); 305 pNew->token = *pToken; 306 pNew->span = pNew->token; 307 return pNew; 308 } 309 310 /* 311 ** Assign a variable number to an expression that encodes a wildcard 312 ** in the original SQL statement. 313 ** 314 ** Wildcards consisting of a single "?" are assigned the next sequential 315 ** variable number. 316 ** 317 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 318 ** sure "nnn" is not too be to avoid a denial of service attack when 319 ** the SQL statement comes from an external source. 320 ** 321 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 322 ** as the previous instance of the same wildcard. Or if this is the first 323 ** instance of the wildcard, the next sequenial variable number is 324 ** assigned. 325 */ 326 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 327 Token *pToken; 328 if( pExpr==0 ) return; 329 pToken = &pExpr->token; 330 assert( pToken->n>=1 ); 331 assert( pToken->z!=0 ); 332 assert( pToken->z[0]!=0 ); 333 if( pToken->n==1 ){ 334 /* Wildcard of the form "?". Assign the next variable number */ 335 pExpr->iTable = ++pParse->nVar; 336 }else if( pToken->z[0]=='?' ){ 337 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 338 ** use it as the variable number */ 339 int i; 340 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 341 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 342 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 343 SQLITE_MAX_VARIABLE_NUMBER); 344 } 345 if( i>pParse->nVar ){ 346 pParse->nVar = i; 347 } 348 }else{ 349 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 350 ** number as the prior appearance of the same name, or if the name 351 ** has never appeared before, reuse the same variable number 352 */ 353 int i, n; 354 n = pToken->n; 355 for(i=0; i<pParse->nVarExpr; i++){ 356 Expr *pE; 357 if( (pE = pParse->apVarExpr[i])!=0 358 && pE->token.n==n 359 && memcmp(pE->token.z, pToken->z, n)==0 ){ 360 pExpr->iTable = pE->iTable; 361 break; 362 } 363 } 364 if( i>=pParse->nVarExpr ){ 365 pExpr->iTable = ++pParse->nVar; 366 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 367 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 368 sqliteReallocOrFree((void**)&pParse->apVarExpr, 369 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); 370 } 371 if( !sqlite3MallocFailed() ){ 372 assert( pParse->apVarExpr!=0 ); 373 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 374 } 375 } 376 } 377 } 378 379 /* 380 ** Recursively delete an expression tree. 381 */ 382 void sqlite3ExprDelete(Expr *p){ 383 if( p==0 ) return; 384 if( p->span.dyn ) sqliteFree((char*)p->span.z); 385 if( p->token.dyn ) sqliteFree((char*)p->token.z); 386 sqlite3ExprDelete(p->pLeft); 387 sqlite3ExprDelete(p->pRight); 388 sqlite3ExprListDelete(p->pList); 389 sqlite3SelectDelete(p->pSelect); 390 sqliteFree(p); 391 } 392 393 /* 394 ** The Expr.token field might be a string literal that is quoted. 395 ** If so, remove the quotation marks. 396 */ 397 void sqlite3DequoteExpr(Expr *p){ 398 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 399 return; 400 } 401 ExprSetProperty(p, EP_Dequoted); 402 if( p->token.dyn==0 ){ 403 sqlite3TokenCopy(&p->token, &p->token); 404 } 405 sqlite3Dequote((char*)p->token.z); 406 } 407 408 409 /* 410 ** The following group of routines make deep copies of expressions, 411 ** expression lists, ID lists, and select statements. The copies can 412 ** be deleted (by being passed to their respective ...Delete() routines) 413 ** without effecting the originals. 414 ** 415 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 416 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 417 ** by subsequent calls to sqlite*ListAppend() routines. 418 ** 419 ** Any tables that the SrcList might point to are not duplicated. 420 */ 421 Expr *sqlite3ExprDup(Expr *p){ 422 Expr *pNew; 423 if( p==0 ) return 0; 424 pNew = sqliteMallocRaw( sizeof(*p) ); 425 if( pNew==0 ) return 0; 426 memcpy(pNew, p, sizeof(*pNew)); 427 if( p->token.z!=0 ){ 428 pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n); 429 pNew->token.dyn = 1; 430 }else{ 431 assert( pNew->token.z==0 ); 432 } 433 pNew->span.z = 0; 434 pNew->pLeft = sqlite3ExprDup(p->pLeft); 435 pNew->pRight = sqlite3ExprDup(p->pRight); 436 pNew->pList = sqlite3ExprListDup(p->pList); 437 pNew->pSelect = sqlite3SelectDup(p->pSelect); 438 pNew->pTab = p->pTab; 439 return pNew; 440 } 441 void sqlite3TokenCopy(Token *pTo, Token *pFrom){ 442 if( pTo->dyn ) sqliteFree((char*)pTo->z); 443 if( pFrom->z ){ 444 pTo->n = pFrom->n; 445 pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n); 446 pTo->dyn = 1; 447 }else{ 448 pTo->z = 0; 449 } 450 } 451 ExprList *sqlite3ExprListDup(ExprList *p){ 452 ExprList *pNew; 453 struct ExprList_item *pItem, *pOldItem; 454 int i; 455 if( p==0 ) return 0; 456 pNew = sqliteMalloc( sizeof(*pNew) ); 457 if( pNew==0 ) return 0; 458 pNew->nExpr = pNew->nAlloc = p->nExpr; 459 pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); 460 if( pItem==0 ){ 461 sqliteFree(pNew); 462 return 0; 463 } 464 pOldItem = p->a; 465 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 466 Expr *pNewExpr, *pOldExpr; 467 pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); 468 if( pOldExpr->span.z!=0 && pNewExpr ){ 469 /* Always make a copy of the span for top-level expressions in the 470 ** expression list. The logic in SELECT processing that determines 471 ** the names of columns in the result set needs this information */ 472 sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); 473 } 474 assert( pNewExpr==0 || pNewExpr->span.z!=0 475 || pOldExpr->span.z==0 476 || sqlite3MallocFailed() ); 477 pItem->zName = sqliteStrDup(pOldItem->zName); 478 pItem->sortOrder = pOldItem->sortOrder; 479 pItem->isAgg = pOldItem->isAgg; 480 pItem->done = 0; 481 } 482 return pNew; 483 } 484 485 /* 486 ** If cursors, triggers, views and subqueries are all omitted from 487 ** the build, then none of the following routines, except for 488 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 489 ** called with a NULL argument. 490 */ 491 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 492 || !defined(SQLITE_OMIT_SUBQUERY) 493 SrcList *sqlite3SrcListDup(SrcList *p){ 494 SrcList *pNew; 495 int i; 496 int nByte; 497 if( p==0 ) return 0; 498 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 499 pNew = sqliteMallocRaw( nByte ); 500 if( pNew==0 ) return 0; 501 pNew->nSrc = pNew->nAlloc = p->nSrc; 502 for(i=0; i<p->nSrc; i++){ 503 struct SrcList_item *pNewItem = &pNew->a[i]; 504 struct SrcList_item *pOldItem = &p->a[i]; 505 Table *pTab; 506 pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); 507 pNewItem->zName = sqliteStrDup(pOldItem->zName); 508 pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); 509 pNewItem->jointype = pOldItem->jointype; 510 pNewItem->iCursor = pOldItem->iCursor; 511 pNewItem->isPopulated = pOldItem->isPopulated; 512 pTab = pNewItem->pTab = pOldItem->pTab; 513 if( pTab ){ 514 pTab->nRef++; 515 } 516 pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); 517 pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); 518 pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); 519 pNewItem->colUsed = pOldItem->colUsed; 520 } 521 return pNew; 522 } 523 IdList *sqlite3IdListDup(IdList *p){ 524 IdList *pNew; 525 int i; 526 if( p==0 ) return 0; 527 pNew = sqliteMallocRaw( sizeof(*pNew) ); 528 if( pNew==0 ) return 0; 529 pNew->nId = pNew->nAlloc = p->nId; 530 pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); 531 if( pNew->a==0 ){ 532 sqliteFree(pNew); 533 return 0; 534 } 535 for(i=0; i<p->nId; i++){ 536 struct IdList_item *pNewItem = &pNew->a[i]; 537 struct IdList_item *pOldItem = &p->a[i]; 538 pNewItem->zName = sqliteStrDup(pOldItem->zName); 539 pNewItem->idx = pOldItem->idx; 540 } 541 return pNew; 542 } 543 Select *sqlite3SelectDup(Select *p){ 544 Select *pNew; 545 if( p==0 ) return 0; 546 pNew = sqliteMallocRaw( sizeof(*p) ); 547 if( pNew==0 ) return 0; 548 pNew->isDistinct = p->isDistinct; 549 pNew->pEList = sqlite3ExprListDup(p->pEList); 550 pNew->pSrc = sqlite3SrcListDup(p->pSrc); 551 pNew->pWhere = sqlite3ExprDup(p->pWhere); 552 pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); 553 pNew->pHaving = sqlite3ExprDup(p->pHaving); 554 pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); 555 pNew->op = p->op; 556 pNew->pPrior = sqlite3SelectDup(p->pPrior); 557 pNew->pLimit = sqlite3ExprDup(p->pLimit); 558 pNew->pOffset = sqlite3ExprDup(p->pOffset); 559 pNew->iLimit = -1; 560 pNew->iOffset = -1; 561 pNew->isResolved = p->isResolved; 562 pNew->isAgg = p->isAgg; 563 pNew->usesEphm = 0; 564 pNew->disallowOrderBy = 0; 565 pNew->pRightmost = 0; 566 pNew->addrOpenEphm[0] = -1; 567 pNew->addrOpenEphm[1] = -1; 568 pNew->addrOpenEphm[2] = -1; 569 return pNew; 570 } 571 #else 572 Select *sqlite3SelectDup(Select *p){ 573 assert( p==0 ); 574 return 0; 575 } 576 #endif 577 578 579 /* 580 ** Add a new element to the end of an expression list. If pList is 581 ** initially NULL, then create a new expression list. 582 */ 583 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ 584 if( pList==0 ){ 585 pList = sqliteMalloc( sizeof(ExprList) ); 586 if( pList==0 ){ 587 goto no_mem; 588 } 589 assert( pList->nAlloc==0 ); 590 } 591 if( pList->nAlloc<=pList->nExpr ){ 592 struct ExprList_item *a; 593 int n = pList->nAlloc*2 + 4; 594 a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); 595 if( a==0 ){ 596 goto no_mem; 597 } 598 pList->a = a; 599 pList->nAlloc = n; 600 } 601 assert( pList->a!=0 ); 602 if( pExpr || pName ){ 603 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 604 memset(pItem, 0, sizeof(*pItem)); 605 pItem->zName = sqlite3NameFromToken(pName); 606 pItem->pExpr = pExpr; 607 } 608 return pList; 609 610 no_mem: 611 /* Avoid leaking memory if malloc has failed. */ 612 sqlite3ExprDelete(pExpr); 613 sqlite3ExprListDelete(pList); 614 return 0; 615 } 616 617 /* 618 ** Delete an entire expression list. 619 */ 620 void sqlite3ExprListDelete(ExprList *pList){ 621 int i; 622 struct ExprList_item *pItem; 623 if( pList==0 ) return; 624 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 625 assert( pList->nExpr<=pList->nAlloc ); 626 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 627 sqlite3ExprDelete(pItem->pExpr); 628 sqliteFree(pItem->zName); 629 } 630 sqliteFree(pList->a); 631 sqliteFree(pList); 632 } 633 634 /* 635 ** Walk an expression tree. Call xFunc for each node visited. 636 ** 637 ** The return value from xFunc determines whether the tree walk continues. 638 ** 0 means continue walking the tree. 1 means do not walk children 639 ** of the current node but continue with siblings. 2 means abandon 640 ** the tree walk completely. 641 ** 642 ** The return value from this routine is 1 to abandon the tree walk 643 ** and 0 to continue. 644 ** 645 ** NOTICE: This routine does *not* descend into subqueries. 646 */ 647 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 648 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 649 int rc; 650 if( pExpr==0 ) return 0; 651 rc = (*xFunc)(pArg, pExpr); 652 if( rc==0 ){ 653 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 654 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 655 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 656 } 657 return rc>1; 658 } 659 660 /* 661 ** Call walkExprTree() for every expression in list p. 662 */ 663 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 664 int i; 665 struct ExprList_item *pItem; 666 if( !p ) return 0; 667 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 668 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 669 } 670 return 0; 671 } 672 673 /* 674 ** Call walkExprTree() for every expression in Select p, not including 675 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 676 ** or OFFSET expressions.. 677 */ 678 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 679 walkExprList(p->pEList, xFunc, pArg); 680 walkExprTree(p->pWhere, xFunc, pArg); 681 walkExprList(p->pGroupBy, xFunc, pArg); 682 walkExprTree(p->pHaving, xFunc, pArg); 683 walkExprList(p->pOrderBy, xFunc, pArg); 684 return 0; 685 } 686 687 688 /* 689 ** This routine is designed as an xFunc for walkExprTree(). 690 ** 691 ** pArg is really a pointer to an integer. If we can tell by looking 692 ** at pExpr that the expression that contains pExpr is not a constant 693 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 694 ** If pExpr does does not disqualify the expression from being a constant 695 ** then do nothing. 696 ** 697 ** After walking the whole tree, if no nodes are found that disqualify 698 ** the expression as constant, then we assume the whole expression 699 ** is constant. See sqlite3ExprIsConstant() for additional information. 700 */ 701 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 702 switch( pExpr->op ){ 703 /* Consider functions to be constant if all their arguments are constant 704 ** and *pArg==2 */ 705 case TK_FUNCTION: 706 if( *((int*)pArg)==2 ) return 0; 707 /* Fall through */ 708 case TK_ID: 709 case TK_COLUMN: 710 case TK_DOT: 711 case TK_AGG_FUNCTION: 712 case TK_AGG_COLUMN: 713 #ifndef SQLITE_OMIT_SUBQUERY 714 case TK_SELECT: 715 case TK_EXISTS: 716 #endif 717 *((int*)pArg) = 0; 718 return 2; 719 case TK_IN: 720 if( pExpr->pSelect ){ 721 *((int*)pArg) = 0; 722 return 2; 723 } 724 default: 725 return 0; 726 } 727 } 728 729 /* 730 ** Walk an expression tree. Return 1 if the expression is constant 731 ** and 0 if it involves variables or function calls. 732 ** 733 ** For the purposes of this function, a double-quoted string (ex: "abc") 734 ** is considered a variable but a single-quoted string (ex: 'abc') is 735 ** a constant. 736 */ 737 int sqlite3ExprIsConstant(Expr *p){ 738 int isConst = 1; 739 walkExprTree(p, exprNodeIsConstant, &isConst); 740 return isConst; 741 } 742 743 /* 744 ** Walk an expression tree. Return 1 if the expression is constant 745 ** or a function call with constant arguments. Return and 0 if there 746 ** are any variables. 747 ** 748 ** For the purposes of this function, a double-quoted string (ex: "abc") 749 ** is considered a variable but a single-quoted string (ex: 'abc') is 750 ** a constant. 751 */ 752 int sqlite3ExprIsConstantOrFunction(Expr *p){ 753 int isConst = 2; 754 walkExprTree(p, exprNodeIsConstant, &isConst); 755 return isConst!=0; 756 } 757 758 /* 759 ** If the expression p codes a constant integer that is small enough 760 ** to fit in a 32-bit integer, return 1 and put the value of the integer 761 ** in *pValue. If the expression is not an integer or if it is too big 762 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 763 */ 764 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 765 switch( p->op ){ 766 case TK_INTEGER: { 767 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 768 return 1; 769 } 770 break; 771 } 772 case TK_UPLUS: { 773 return sqlite3ExprIsInteger(p->pLeft, pValue); 774 } 775 case TK_UMINUS: { 776 int v; 777 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 778 *pValue = -v; 779 return 1; 780 } 781 break; 782 } 783 default: break; 784 } 785 return 0; 786 } 787 788 /* 789 ** Return TRUE if the given string is a row-id column name. 790 */ 791 int sqlite3IsRowid(const char *z){ 792 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 793 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 794 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 795 return 0; 796 } 797 798 /* 799 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 800 ** that name in the set of source tables in pSrcList and make the pExpr 801 ** expression node refer back to that source column. The following changes 802 ** are made to pExpr: 803 ** 804 ** pExpr->iDb Set the index in db->aDb[] of the database holding 805 ** the table. 806 ** pExpr->iTable Set to the cursor number for the table obtained 807 ** from pSrcList. 808 ** pExpr->iColumn Set to the column number within the table. 809 ** pExpr->op Set to TK_COLUMN. 810 ** pExpr->pLeft Any expression this points to is deleted 811 ** pExpr->pRight Any expression this points to is deleted. 812 ** 813 ** The pDbToken is the name of the database (the "X"). This value may be 814 ** NULL meaning that name is of the form Y.Z or Z. Any available database 815 ** can be used. The pTableToken is the name of the table (the "Y"). This 816 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 817 ** means that the form of the name is Z and that columns from any table 818 ** can be used. 819 ** 820 ** If the name cannot be resolved unambiguously, leave an error message 821 ** in pParse and return non-zero. Return zero on success. 822 */ 823 static int lookupName( 824 Parse *pParse, /* The parsing context */ 825 Token *pDbToken, /* Name of the database containing table, or NULL */ 826 Token *pTableToken, /* Name of table containing column, or NULL */ 827 Token *pColumnToken, /* Name of the column. */ 828 NameContext *pNC, /* The name context used to resolve the name */ 829 Expr *pExpr /* Make this EXPR node point to the selected column */ 830 ){ 831 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 832 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 833 char *zCol = 0; /* Name of the column. The "Z" */ 834 int i, j; /* Loop counters */ 835 int cnt = 0; /* Number of matching column names */ 836 int cntTab = 0; /* Number of matching table names */ 837 sqlite3 *db = pParse->db; /* The database */ 838 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 839 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 840 NameContext *pTopNC = pNC; /* First namecontext in the list */ 841 842 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 843 zDb = sqlite3NameFromToken(pDbToken); 844 zTab = sqlite3NameFromToken(pTableToken); 845 zCol = sqlite3NameFromToken(pColumnToken); 846 if( sqlite3MallocFailed() ){ 847 goto lookupname_end; 848 } 849 850 pExpr->iTable = -1; 851 while( pNC && cnt==0 ){ 852 ExprList *pEList; 853 SrcList *pSrcList = pNC->pSrcList; 854 855 if( pSrcList ){ 856 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 857 Table *pTab; 858 int iDb; 859 Column *pCol; 860 861 pTab = pItem->pTab; 862 assert( pTab!=0 ); 863 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 864 assert( pTab->nCol>0 ); 865 if( zTab ){ 866 if( pItem->zAlias ){ 867 char *zTabName = pItem->zAlias; 868 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 869 }else{ 870 char *zTabName = pTab->zName; 871 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 872 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 873 continue; 874 } 875 } 876 } 877 if( 0==(cntTab++) ){ 878 pExpr->iTable = pItem->iCursor; 879 pExpr->pSchema = pTab->pSchema; 880 pMatch = pItem; 881 } 882 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 883 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 884 const char *zColl = pTab->aCol[j].zColl; 885 IdList *pUsing; 886 cnt++; 887 pExpr->iTable = pItem->iCursor; 888 pMatch = pItem; 889 pExpr->pSchema = pTab->pSchema; 890 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 891 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 892 pExpr->affinity = pTab->aCol[j].affinity; 893 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 894 if( pItem->jointype & JT_NATURAL ){ 895 /* If this match occurred in the left table of a natural join, 896 ** then skip the right table to avoid a duplicate match */ 897 pItem++; 898 i++; 899 } 900 if( (pUsing = pItem->pUsing)!=0 ){ 901 /* If this match occurs on a column that is in the USING clause 902 ** of a join, skip the search of the right table of the join 903 ** to avoid a duplicate match there. */ 904 int k; 905 for(k=0; k<pUsing->nId; k++){ 906 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 907 pItem++; 908 i++; 909 break; 910 } 911 } 912 } 913 break; 914 } 915 } 916 } 917 } 918 919 #ifndef SQLITE_OMIT_TRIGGER 920 /* If we have not already resolved the name, then maybe 921 ** it is a new.* or old.* trigger argument reference 922 */ 923 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 924 TriggerStack *pTriggerStack = pParse->trigStack; 925 Table *pTab = 0; 926 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 927 pExpr->iTable = pTriggerStack->newIdx; 928 assert( pTriggerStack->pTab ); 929 pTab = pTriggerStack->pTab; 930 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 931 pExpr->iTable = pTriggerStack->oldIdx; 932 assert( pTriggerStack->pTab ); 933 pTab = pTriggerStack->pTab; 934 } 935 936 if( pTab ){ 937 int iCol; 938 Column *pCol = pTab->aCol; 939 940 pExpr->pSchema = pTab->pSchema; 941 cntTab++; 942 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 943 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 944 const char *zColl = pTab->aCol[iCol].zColl; 945 cnt++; 946 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 947 pExpr->affinity = pTab->aCol[iCol].affinity; 948 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 949 pExpr->pTab = pTab; 950 break; 951 } 952 } 953 } 954 } 955 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 956 957 /* 958 ** Perhaps the name is a reference to the ROWID 959 */ 960 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 961 cnt = 1; 962 pExpr->iColumn = -1; 963 pExpr->affinity = SQLITE_AFF_INTEGER; 964 } 965 966 /* 967 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 968 ** might refer to an result-set alias. This happens, for example, when 969 ** we are resolving names in the WHERE clause of the following command: 970 ** 971 ** SELECT a+b AS x FROM table WHERE x<10; 972 ** 973 ** In cases like this, replace pExpr with a copy of the expression that 974 ** forms the result set entry ("a+b" in the example) and return immediately. 975 ** Note that the expression in the result set should have already been 976 ** resolved by the time the WHERE clause is resolved. 977 */ 978 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 979 for(j=0; j<pEList->nExpr; j++){ 980 char *zAs = pEList->a[j].zName; 981 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 982 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 983 pExpr->op = TK_AS; 984 pExpr->iColumn = j; 985 pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); 986 cnt = 1; 987 assert( zTab==0 && zDb==0 ); 988 goto lookupname_end_2; 989 } 990 } 991 } 992 993 /* Advance to the next name context. The loop will exit when either 994 ** we have a match (cnt>0) or when we run out of name contexts. 995 */ 996 if( cnt==0 ){ 997 pNC = pNC->pNext; 998 } 999 } 1000 1001 /* 1002 ** If X and Y are NULL (in other words if only the column name Z is 1003 ** supplied) and the value of Z is enclosed in double-quotes, then 1004 ** Z is a string literal if it doesn't match any column names. In that 1005 ** case, we need to return right away and not make any changes to 1006 ** pExpr. 1007 ** 1008 ** Because no reference was made to outer contexts, the pNC->nRef 1009 ** fields are not changed in any context. 1010 */ 1011 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1012 sqliteFree(zCol); 1013 return 0; 1014 } 1015 1016 /* 1017 ** cnt==0 means there was not match. cnt>1 means there were two or 1018 ** more matches. Either way, we have an error. 1019 */ 1020 if( cnt!=1 ){ 1021 char *z = 0; 1022 char *zErr; 1023 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1024 if( zDb ){ 1025 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); 1026 }else if( zTab ){ 1027 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); 1028 }else{ 1029 z = sqliteStrDup(zCol); 1030 } 1031 sqlite3ErrorMsg(pParse, zErr, z); 1032 sqliteFree(z); 1033 pTopNC->nErr++; 1034 } 1035 1036 /* If a column from a table in pSrcList is referenced, then record 1037 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1038 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1039 ** column number is greater than the number of bits in the bitmask 1040 ** then set the high-order bit of the bitmask. 1041 */ 1042 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1043 int n = pExpr->iColumn; 1044 if( n>=sizeof(Bitmask)*8 ){ 1045 n = sizeof(Bitmask)*8-1; 1046 } 1047 assert( pMatch->iCursor==pExpr->iTable ); 1048 pMatch->colUsed |= 1<<n; 1049 } 1050 1051 lookupname_end: 1052 /* Clean up and return 1053 */ 1054 sqliteFree(zDb); 1055 sqliteFree(zTab); 1056 sqlite3ExprDelete(pExpr->pLeft); 1057 pExpr->pLeft = 0; 1058 sqlite3ExprDelete(pExpr->pRight); 1059 pExpr->pRight = 0; 1060 pExpr->op = TK_COLUMN; 1061 lookupname_end_2: 1062 sqliteFree(zCol); 1063 if( cnt==1 ){ 1064 assert( pNC!=0 ); 1065 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); 1066 if( pMatch && !pMatch->pSelect ){ 1067 pExpr->pTab = pMatch->pTab; 1068 } 1069 /* Increment the nRef value on all name contexts from TopNC up to 1070 ** the point where the name matched. */ 1071 for(;;){ 1072 assert( pTopNC!=0 ); 1073 pTopNC->nRef++; 1074 if( pTopNC==pNC ) break; 1075 pTopNC = pTopNC->pNext; 1076 } 1077 return 0; 1078 } else { 1079 return 1; 1080 } 1081 } 1082 1083 /* 1084 ** This routine is designed as an xFunc for walkExprTree(). 1085 ** 1086 ** Resolve symbolic names into TK_COLUMN operators for the current 1087 ** node in the expression tree. Return 0 to continue the search down 1088 ** the tree or 2 to abort the tree walk. 1089 ** 1090 ** This routine also does error checking and name resolution for 1091 ** function names. The operator for aggregate functions is changed 1092 ** to TK_AGG_FUNCTION. 1093 */ 1094 static int nameResolverStep(void *pArg, Expr *pExpr){ 1095 NameContext *pNC = (NameContext*)pArg; 1096 Parse *pParse; 1097 1098 if( pExpr==0 ) return 1; 1099 assert( pNC!=0 ); 1100 pParse = pNC->pParse; 1101 1102 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1103 ExprSetProperty(pExpr, EP_Resolved); 1104 #ifndef NDEBUG 1105 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1106 SrcList *pSrcList = pNC->pSrcList; 1107 int i; 1108 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1109 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1110 } 1111 } 1112 #endif 1113 switch( pExpr->op ){ 1114 /* Double-quoted strings (ex: "abc") are used as identifiers if 1115 ** possible. Otherwise they remain as strings. Single-quoted 1116 ** strings (ex: 'abc') are always string literals. 1117 */ 1118 case TK_STRING: { 1119 if( pExpr->token.z[0]=='\'' ) break; 1120 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1121 } 1122 /* A lone identifier is the name of a column. 1123 */ 1124 case TK_ID: { 1125 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1126 return 1; 1127 } 1128 1129 /* A table name and column name: ID.ID 1130 ** Or a database, table and column: ID.ID.ID 1131 */ 1132 case TK_DOT: { 1133 Token *pColumn; 1134 Token *pTable; 1135 Token *pDb; 1136 Expr *pRight; 1137 1138 /* if( pSrcList==0 ) break; */ 1139 pRight = pExpr->pRight; 1140 if( pRight->op==TK_ID ){ 1141 pDb = 0; 1142 pTable = &pExpr->pLeft->token; 1143 pColumn = &pRight->token; 1144 }else{ 1145 assert( pRight->op==TK_DOT ); 1146 pDb = &pExpr->pLeft->token; 1147 pTable = &pRight->pLeft->token; 1148 pColumn = &pRight->pRight->token; 1149 } 1150 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1151 return 1; 1152 } 1153 1154 /* Resolve function names 1155 */ 1156 case TK_CONST_FUNC: 1157 case TK_FUNCTION: { 1158 ExprList *pList = pExpr->pList; /* The argument list */ 1159 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1160 int no_such_func = 0; /* True if no such function exists */ 1161 int wrong_num_args = 0; /* True if wrong number of arguments */ 1162 int is_agg = 0; /* True if is an aggregate function */ 1163 int i; 1164 int auth; /* Authorization to use the function */ 1165 int nId; /* Number of characters in function name */ 1166 const char *zId; /* The function name. */ 1167 FuncDef *pDef; /* Information about the function */ 1168 int enc = ENC(pParse->db); /* The database encoding */ 1169 1170 zId = (char*)pExpr->token.z; 1171 nId = pExpr->token.n; 1172 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1173 if( pDef==0 ){ 1174 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1175 if( pDef==0 ){ 1176 no_such_func = 1; 1177 }else{ 1178 wrong_num_args = 1; 1179 } 1180 }else{ 1181 is_agg = pDef->xFunc==0; 1182 } 1183 #ifndef SQLITE_OMIT_AUTHORIZATION 1184 if( pDef ){ 1185 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1186 if( auth!=SQLITE_OK ){ 1187 if( auth==SQLITE_DENY ){ 1188 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1189 pDef->zName); 1190 pNC->nErr++; 1191 } 1192 pExpr->op = TK_NULL; 1193 return 1; 1194 } 1195 } 1196 #endif 1197 if( is_agg && !pNC->allowAgg ){ 1198 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1199 pNC->nErr++; 1200 is_agg = 0; 1201 }else if( no_such_func ){ 1202 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1203 pNC->nErr++; 1204 }else if( wrong_num_args ){ 1205 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1206 nId, zId); 1207 pNC->nErr++; 1208 } 1209 if( is_agg ){ 1210 pExpr->op = TK_AGG_FUNCTION; 1211 pNC->hasAgg = 1; 1212 } 1213 if( is_agg ) pNC->allowAgg = 0; 1214 for(i=0; pNC->nErr==0 && i<n; i++){ 1215 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1216 } 1217 if( is_agg ) pNC->allowAgg = 1; 1218 /* FIX ME: Compute pExpr->affinity based on the expected return 1219 ** type of the function 1220 */ 1221 return is_agg; 1222 } 1223 #ifndef SQLITE_OMIT_SUBQUERY 1224 case TK_SELECT: 1225 case TK_EXISTS: 1226 #endif 1227 case TK_IN: { 1228 if( pExpr->pSelect ){ 1229 int nRef = pNC->nRef; 1230 #ifndef SQLITE_OMIT_CHECK 1231 if( pNC->isCheck ){ 1232 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1233 } 1234 #endif 1235 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1236 assert( pNC->nRef>=nRef ); 1237 if( nRef!=pNC->nRef ){ 1238 ExprSetProperty(pExpr, EP_VarSelect); 1239 } 1240 } 1241 break; 1242 } 1243 #ifndef SQLITE_OMIT_CHECK 1244 case TK_VARIABLE: { 1245 if( pNC->isCheck ){ 1246 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1247 } 1248 break; 1249 } 1250 #endif 1251 } 1252 return 0; 1253 } 1254 1255 /* 1256 ** This routine walks an expression tree and resolves references to 1257 ** table columns. Nodes of the form ID.ID or ID resolve into an 1258 ** index to the table in the table list and a column offset. The 1259 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1260 ** value is changed to the index of the referenced table in pTabList 1261 ** plus the "base" value. The base value will ultimately become the 1262 ** VDBE cursor number for a cursor that is pointing into the referenced 1263 ** table. The Expr.iColumn value is changed to the index of the column 1264 ** of the referenced table. The Expr.iColumn value for the special 1265 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1266 ** alias for ROWID. 1267 ** 1268 ** Also resolve function names and check the functions for proper 1269 ** usage. Make sure all function names are recognized and all functions 1270 ** have the correct number of arguments. Leave an error message 1271 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1272 ** 1273 ** If the expression contains aggregate functions then set the EP_Agg 1274 ** property on the expression. 1275 */ 1276 int sqlite3ExprResolveNames( 1277 NameContext *pNC, /* Namespace to resolve expressions in. */ 1278 Expr *pExpr /* The expression to be analyzed. */ 1279 ){ 1280 int savedHasAgg; 1281 if( pExpr==0 ) return 0; 1282 savedHasAgg = pNC->hasAgg; 1283 pNC->hasAgg = 0; 1284 walkExprTree(pExpr, nameResolverStep, pNC); 1285 if( pNC->nErr>0 ){ 1286 ExprSetProperty(pExpr, EP_Error); 1287 } 1288 if( pNC->hasAgg ){ 1289 ExprSetProperty(pExpr, EP_Agg); 1290 }else if( savedHasAgg ){ 1291 pNC->hasAgg = 1; 1292 } 1293 return ExprHasProperty(pExpr, EP_Error); 1294 } 1295 1296 /* 1297 ** A pointer instance of this structure is used to pass information 1298 ** through walkExprTree into codeSubqueryStep(). 1299 */ 1300 typedef struct QueryCoder QueryCoder; 1301 struct QueryCoder { 1302 Parse *pParse; /* The parsing context */ 1303 NameContext *pNC; /* Namespace of first enclosing query */ 1304 }; 1305 1306 1307 /* 1308 ** Generate code for scalar subqueries used as an expression 1309 ** and IN operators. Examples: 1310 ** 1311 ** (SELECT a FROM b) -- subquery 1312 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1313 ** x IN (4,5,11) -- IN operator with list on right-hand side 1314 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1315 ** 1316 ** The pExpr parameter describes the expression that contains the IN 1317 ** operator or subquery. 1318 */ 1319 #ifndef SQLITE_OMIT_SUBQUERY 1320 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1321 int testAddr = 0; /* One-time test address */ 1322 Vdbe *v = sqlite3GetVdbe(pParse); 1323 if( v==0 ) return; 1324 1325 /* This code must be run in its entirety every time it is encountered 1326 ** if any of the following is true: 1327 ** 1328 ** * The right-hand side is a correlated subquery 1329 ** * The right-hand side is an expression list containing variables 1330 ** * We are inside a trigger 1331 ** 1332 ** If all of the above are false, then we can run this code just once 1333 ** save the results, and reuse the same result on subsequent invocations. 1334 */ 1335 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1336 int mem = pParse->nMem++; 1337 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1338 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1339 assert( testAddr>0 || sqlite3MallocFailed() ); 1340 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1341 } 1342 1343 switch( pExpr->op ){ 1344 case TK_IN: { 1345 char affinity; 1346 KeyInfo keyInfo; 1347 int addr; /* Address of OP_OpenEphemeral instruction */ 1348 1349 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1350 1351 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1352 ** expression it is handled the same way. A virtual table is 1353 ** filled with single-field index keys representing the results 1354 ** from the SELECT or the <exprlist>. 1355 ** 1356 ** If the 'x' expression is a column value, or the SELECT... 1357 ** statement returns a column value, then the affinity of that 1358 ** column is used to build the index keys. If both 'x' and the 1359 ** SELECT... statement are columns, then numeric affinity is used 1360 ** if either column has NUMERIC or INTEGER affinity. If neither 1361 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1362 ** is used. 1363 */ 1364 pExpr->iTable = pParse->nTab++; 1365 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); 1366 memset(&keyInfo, 0, sizeof(keyInfo)); 1367 keyInfo.nField = 1; 1368 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1369 1370 if( pExpr->pSelect ){ 1371 /* Case 1: expr IN (SELECT ...) 1372 ** 1373 ** Generate code to write the results of the select into the temporary 1374 ** table allocated and opened above. 1375 */ 1376 int iParm = pExpr->iTable + (((int)affinity)<<16); 1377 ExprList *pEList; 1378 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1379 sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); 1380 pEList = pExpr->pSelect->pEList; 1381 if( pEList && pEList->nExpr>0 ){ 1382 keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, 1383 pEList->a[0].pExpr); 1384 } 1385 }else if( pExpr->pList ){ 1386 /* Case 2: expr IN (exprlist) 1387 ** 1388 ** For each expression, build an index key from the evaluation and 1389 ** store it in the temporary table. If <expr> is a column, then use 1390 ** that columns affinity when building index keys. If <expr> is not 1391 ** a column, use numeric affinity. 1392 */ 1393 int i; 1394 ExprList *pList = pExpr->pList; 1395 struct ExprList_item *pItem; 1396 1397 if( !affinity ){ 1398 affinity = SQLITE_AFF_NONE; 1399 } 1400 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1401 1402 /* Loop through each expression in <exprlist>. */ 1403 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1404 Expr *pE2 = pItem->pExpr; 1405 1406 /* If the expression is not constant then we will need to 1407 ** disable the test that was generated above that makes sure 1408 ** this code only executes once. Because for a non-constant 1409 ** expression we need to rerun this code each time. 1410 */ 1411 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1412 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); 1413 testAddr = 0; 1414 } 1415 1416 /* Evaluate the expression and insert it into the temp table */ 1417 sqlite3ExprCode(pParse, pE2); 1418 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1419 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1420 } 1421 } 1422 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1423 break; 1424 } 1425 1426 case TK_EXISTS: 1427 case TK_SELECT: { 1428 /* This has to be a scalar SELECT. Generate code to put the 1429 ** value of this select in a memory cell and record the number 1430 ** of the memory cell in iColumn. 1431 */ 1432 static const Token one = { (u8*)"1", 0, 1 }; 1433 Select *pSel; 1434 int iMem; 1435 int sop; 1436 1437 pExpr->iColumn = iMem = pParse->nMem++; 1438 pSel = pExpr->pSelect; 1439 if( pExpr->op==TK_SELECT ){ 1440 sop = SRT_Mem; 1441 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); 1442 VdbeComment((v, "# Init subquery result")); 1443 }else{ 1444 sop = SRT_Exists; 1445 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); 1446 VdbeComment((v, "# Init EXISTS result")); 1447 } 1448 sqlite3ExprDelete(pSel->pLimit); 1449 pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one); 1450 sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0); 1451 break; 1452 } 1453 } 1454 1455 if( testAddr ){ 1456 sqlite3VdbeJumpHere(v, testAddr); 1457 } 1458 return; 1459 } 1460 #endif /* SQLITE_OMIT_SUBQUERY */ 1461 1462 /* 1463 ** Generate an instruction that will put the integer describe by 1464 ** text z[0..n-1] on the stack. 1465 */ 1466 static void codeInteger(Vdbe *v, const char *z, int n){ 1467 int i; 1468 if( sqlite3GetInt32(z, &i) ){ 1469 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1470 }else if( sqlite3FitsIn64Bits(z) ){ 1471 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); 1472 }else{ 1473 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); 1474 } 1475 } 1476 1477 /* 1478 ** Generate code into the current Vdbe to evaluate the given 1479 ** expression and leave the result on the top of stack. 1480 ** 1481 ** This code depends on the fact that certain token values (ex: TK_EQ) 1482 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1483 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1484 ** the make process cause these values to align. Assert()s in the code 1485 ** below verify that the numbers are aligned correctly. 1486 */ 1487 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1488 Vdbe *v = pParse->pVdbe; 1489 int op; 1490 int stackChng = 1; /* Amount of change to stack depth */ 1491 1492 if( v==0 ) return; 1493 if( pExpr==0 ){ 1494 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1495 return; 1496 } 1497 op = pExpr->op; 1498 switch( op ){ 1499 case TK_AGG_COLUMN: { 1500 AggInfo *pAggInfo = pExpr->pAggInfo; 1501 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1502 if( !pAggInfo->directMode ){ 1503 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1504 break; 1505 }else if( pAggInfo->useSortingIdx ){ 1506 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1507 pCol->iSorterColumn); 1508 break; 1509 } 1510 /* Otherwise, fall thru into the TK_COLUMN case */ 1511 } 1512 case TK_COLUMN: { 1513 if( pExpr->iTable<0 ){ 1514 /* This only happens when coding check constraints */ 1515 assert( pParse->ckOffset>0 ); 1516 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); 1517 }else if( pExpr->iColumn>=0 ){ 1518 Table *pTab = pExpr->pTab; 1519 int iCol = pExpr->iColumn; 1520 int op = (pTab && IsVirtual(pTab)) ? OP_VColumn : OP_Column; 1521 sqlite3VdbeAddOp(v, op, pExpr->iTable, iCol); 1522 sqlite3ColumnDefault(v, pTab, iCol); 1523 #ifndef SQLITE_OMIT_FLOATING_POINT 1524 if( pTab && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 1525 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); 1526 } 1527 #endif 1528 }else{ 1529 Table *pTab = pExpr->pTab; 1530 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1531 sqlite3VdbeAddOp(v, op, pExpr->iTable, 0); 1532 } 1533 break; 1534 } 1535 case TK_INTEGER: { 1536 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); 1537 break; 1538 } 1539 case TK_FLOAT: 1540 case TK_STRING: { 1541 assert( TK_FLOAT==OP_Real ); 1542 assert( TK_STRING==OP_String8 ); 1543 sqlite3DequoteExpr(pExpr); 1544 sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); 1545 break; 1546 } 1547 case TK_NULL: { 1548 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1549 break; 1550 } 1551 #ifndef SQLITE_OMIT_BLOB_LITERAL 1552 case TK_BLOB: { 1553 int n; 1554 const char *z; 1555 assert( TK_BLOB==OP_HexBlob ); 1556 n = pExpr->token.n - 3; 1557 z = (char*)pExpr->token.z + 2; 1558 assert( n>=0 ); 1559 if( n==0 ){ 1560 z = ""; 1561 } 1562 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1563 break; 1564 } 1565 #endif 1566 case TK_VARIABLE: { 1567 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1568 if( pExpr->token.n>1 ){ 1569 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); 1570 } 1571 break; 1572 } 1573 case TK_REGISTER: { 1574 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1575 break; 1576 } 1577 #ifndef SQLITE_OMIT_CAST 1578 case TK_CAST: { 1579 /* Expressions of the form: CAST(pLeft AS token) */ 1580 int aff, to_op; 1581 sqlite3ExprCode(pParse, pExpr->pLeft); 1582 aff = sqlite3AffinityType(&pExpr->token); 1583 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 1584 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 1585 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 1586 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 1587 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 1588 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 1589 sqlite3VdbeAddOp(v, to_op, 0, 0); 1590 stackChng = 0; 1591 break; 1592 } 1593 #endif /* SQLITE_OMIT_CAST */ 1594 case TK_LT: 1595 case TK_LE: 1596 case TK_GT: 1597 case TK_GE: 1598 case TK_NE: 1599 case TK_EQ: { 1600 assert( TK_LT==OP_Lt ); 1601 assert( TK_LE==OP_Le ); 1602 assert( TK_GT==OP_Gt ); 1603 assert( TK_GE==OP_Ge ); 1604 assert( TK_EQ==OP_Eq ); 1605 assert( TK_NE==OP_Ne ); 1606 sqlite3ExprCode(pParse, pExpr->pLeft); 1607 sqlite3ExprCode(pParse, pExpr->pRight); 1608 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1609 stackChng = -1; 1610 break; 1611 } 1612 case TK_AND: 1613 case TK_OR: 1614 case TK_PLUS: 1615 case TK_STAR: 1616 case TK_MINUS: 1617 case TK_REM: 1618 case TK_BITAND: 1619 case TK_BITOR: 1620 case TK_SLASH: 1621 case TK_LSHIFT: 1622 case TK_RSHIFT: 1623 case TK_CONCAT: { 1624 assert( TK_AND==OP_And ); 1625 assert( TK_OR==OP_Or ); 1626 assert( TK_PLUS==OP_Add ); 1627 assert( TK_MINUS==OP_Subtract ); 1628 assert( TK_REM==OP_Remainder ); 1629 assert( TK_BITAND==OP_BitAnd ); 1630 assert( TK_BITOR==OP_BitOr ); 1631 assert( TK_SLASH==OP_Divide ); 1632 assert( TK_LSHIFT==OP_ShiftLeft ); 1633 assert( TK_RSHIFT==OP_ShiftRight ); 1634 assert( TK_CONCAT==OP_Concat ); 1635 sqlite3ExprCode(pParse, pExpr->pLeft); 1636 sqlite3ExprCode(pParse, pExpr->pRight); 1637 sqlite3VdbeAddOp(v, op, 0, 0); 1638 stackChng = -1; 1639 break; 1640 } 1641 case TK_UMINUS: { 1642 Expr *pLeft = pExpr->pLeft; 1643 assert( pLeft ); 1644 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1645 Token *p = &pLeft->token; 1646 char *z = sqlite3MPrintf("-%.*s", p->n, p->z); 1647 if( pLeft->op==TK_FLOAT ){ 1648 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); 1649 }else{ 1650 codeInteger(v, z, p->n+1); 1651 } 1652 sqliteFree(z); 1653 break; 1654 } 1655 /* Fall through into TK_NOT */ 1656 } 1657 case TK_BITNOT: 1658 case TK_NOT: { 1659 assert( TK_BITNOT==OP_BitNot ); 1660 assert( TK_NOT==OP_Not ); 1661 sqlite3ExprCode(pParse, pExpr->pLeft); 1662 sqlite3VdbeAddOp(v, op, 0, 0); 1663 stackChng = 0; 1664 break; 1665 } 1666 case TK_ISNULL: 1667 case TK_NOTNULL: { 1668 int dest; 1669 assert( TK_ISNULL==OP_IsNull ); 1670 assert( TK_NOTNULL==OP_NotNull ); 1671 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1672 sqlite3ExprCode(pParse, pExpr->pLeft); 1673 dest = sqlite3VdbeCurrentAddr(v) + 2; 1674 sqlite3VdbeAddOp(v, op, 1, dest); 1675 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1676 stackChng = 0; 1677 break; 1678 } 1679 case TK_AGG_FUNCTION: { 1680 AggInfo *pInfo = pExpr->pAggInfo; 1681 if( pInfo==0 ){ 1682 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 1683 &pExpr->span); 1684 }else{ 1685 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 1686 } 1687 break; 1688 } 1689 case TK_CONST_FUNC: 1690 case TK_FUNCTION: { 1691 ExprList *pList = pExpr->pList; 1692 int nExpr = pList ? pList->nExpr : 0; 1693 FuncDef *pDef; 1694 int nId; 1695 const char *zId; 1696 int constMask = 0; 1697 int i; 1698 u8 enc = ENC(pParse->db); 1699 CollSeq *pColl = 0; 1700 zId = (char*)pExpr->token.z; 1701 nId = pExpr->token.n; 1702 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1703 assert( pDef!=0 ); 1704 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1705 #ifndef SQLITE_OMIT_VIRTUALTABLE 1706 /* Possibly overload the function if the first argument is 1707 ** a virtual table column. 1708 ** 1709 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 1710 ** second argument, not the first, as the argument to test to 1711 ** see if it is a column in a virtual table. This is done because 1712 ** the left operand of infix functions (the operand we want to 1713 ** control overloading) ends up as the second argument to the 1714 ** function. The expression "A glob B" is equivalent to 1715 ** "glob(B,A). We want to use the A in "A glob B" to test 1716 ** for function overloading. But we use the B term in "glob(B,A)". 1717 */ 1718 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 1719 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr); 1720 }else if( nExpr>0 ){ 1721 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr); 1722 } 1723 #endif 1724 for(i=0; i<nExpr && i<32; i++){ 1725 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 1726 constMask |= (1<<i); 1727 } 1728 if( pDef->needCollSeq && !pColl ){ 1729 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1730 } 1731 } 1732 if( pDef->needCollSeq ){ 1733 if( !pColl ) pColl = pParse->db->pDfltColl; 1734 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 1735 } 1736 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 1737 stackChng = 1-nExpr; 1738 break; 1739 } 1740 #ifndef SQLITE_OMIT_SUBQUERY 1741 case TK_EXISTS: 1742 case TK_SELECT: { 1743 if( pExpr->iColumn==0 ){ 1744 sqlite3CodeSubselect(pParse, pExpr); 1745 } 1746 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 1747 VdbeComment((v, "# load subquery result")); 1748 break; 1749 } 1750 case TK_IN: { 1751 int addr; 1752 char affinity; 1753 int ckOffset = pParse->ckOffset; 1754 sqlite3CodeSubselect(pParse, pExpr); 1755 1756 /* Figure out the affinity to use to create a key from the results 1757 ** of the expression. affinityStr stores a static string suitable for 1758 ** P3 of OP_MakeRecord. 1759 */ 1760 affinity = comparisonAffinity(pExpr); 1761 1762 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1763 pParse->ckOffset = ckOffset+1; 1764 1765 /* Code the <expr> from "<expr> IN (...)". The temporary table 1766 ** pExpr->iTable contains the values that make up the (...) set. 1767 */ 1768 sqlite3ExprCode(pParse, pExpr->pLeft); 1769 addr = sqlite3VdbeCurrentAddr(v); 1770 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 1771 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 1772 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1773 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 1774 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 1775 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 1776 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 1777 1778 break; 1779 } 1780 #endif 1781 case TK_BETWEEN: { 1782 Expr *pLeft = pExpr->pLeft; 1783 struct ExprList_item *pLItem = pExpr->pList->a; 1784 Expr *pRight = pLItem->pExpr; 1785 sqlite3ExprCode(pParse, pLeft); 1786 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1787 sqlite3ExprCode(pParse, pRight); 1788 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 1789 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 1790 pLItem++; 1791 pRight = pLItem->pExpr; 1792 sqlite3ExprCode(pParse, pRight); 1793 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 1794 sqlite3VdbeAddOp(v, OP_And, 0, 0); 1795 break; 1796 } 1797 case TK_UPLUS: 1798 case TK_AS: { 1799 sqlite3ExprCode(pParse, pExpr->pLeft); 1800 stackChng = 0; 1801 break; 1802 } 1803 case TK_CASE: { 1804 int expr_end_label; 1805 int jumpInst; 1806 int nExpr; 1807 int i; 1808 ExprList *pEList; 1809 struct ExprList_item *aListelem; 1810 1811 assert(pExpr->pList); 1812 assert((pExpr->pList->nExpr % 2) == 0); 1813 assert(pExpr->pList->nExpr > 0); 1814 pEList = pExpr->pList; 1815 aListelem = pEList->a; 1816 nExpr = pEList->nExpr; 1817 expr_end_label = sqlite3VdbeMakeLabel(v); 1818 if( pExpr->pLeft ){ 1819 sqlite3ExprCode(pParse, pExpr->pLeft); 1820 } 1821 for(i=0; i<nExpr; i=i+2){ 1822 sqlite3ExprCode(pParse, aListelem[i].pExpr); 1823 if( pExpr->pLeft ){ 1824 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 1825 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 1826 OP_Ne, 0, 1); 1827 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1828 }else{ 1829 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 1830 } 1831 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 1832 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 1833 sqlite3VdbeJumpHere(v, jumpInst); 1834 } 1835 if( pExpr->pLeft ){ 1836 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1837 } 1838 if( pExpr->pRight ){ 1839 sqlite3ExprCode(pParse, pExpr->pRight); 1840 }else{ 1841 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1842 } 1843 sqlite3VdbeResolveLabel(v, expr_end_label); 1844 break; 1845 } 1846 #ifndef SQLITE_OMIT_TRIGGER 1847 case TK_RAISE: { 1848 if( !pParse->trigStack ){ 1849 sqlite3ErrorMsg(pParse, 1850 "RAISE() may only be used within a trigger-program"); 1851 return; 1852 } 1853 if( pExpr->iColumn!=OE_Ignore ){ 1854 assert( pExpr->iColumn==OE_Rollback || 1855 pExpr->iColumn == OE_Abort || 1856 pExpr->iColumn == OE_Fail ); 1857 sqlite3DequoteExpr(pExpr); 1858 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 1859 (char*)pExpr->token.z, pExpr->token.n); 1860 } else { 1861 assert( pExpr->iColumn == OE_Ignore ); 1862 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 1863 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 1864 VdbeComment((v, "# raise(IGNORE)")); 1865 } 1866 stackChng = 0; 1867 break; 1868 } 1869 #endif 1870 } 1871 1872 if( pParse->ckOffset ){ 1873 pParse->ckOffset += stackChng; 1874 assert( pParse->ckOffset ); 1875 } 1876 } 1877 1878 #ifndef SQLITE_OMIT_TRIGGER 1879 /* 1880 ** Generate code that evalutes the given expression and leaves the result 1881 ** on the stack. See also sqlite3ExprCode(). 1882 ** 1883 ** This routine might also cache the result and modify the pExpr tree 1884 ** so that it will make use of the cached result on subsequent evaluations 1885 ** rather than evaluate the whole expression again. Trivial expressions are 1886 ** not cached. If the expression is cached, its result is stored in a 1887 ** memory location. 1888 */ 1889 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 1890 Vdbe *v = pParse->pVdbe; 1891 int iMem; 1892 int addr1, addr2; 1893 if( v==0 ) return; 1894 addr1 = sqlite3VdbeCurrentAddr(v); 1895 sqlite3ExprCode(pParse, pExpr); 1896 addr2 = sqlite3VdbeCurrentAddr(v); 1897 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 1898 iMem = pExpr->iTable = pParse->nMem++; 1899 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 1900 pExpr->op = TK_REGISTER; 1901 } 1902 } 1903 #endif 1904 1905 /* 1906 ** Generate code that pushes the value of every element of the given 1907 ** expression list onto the stack. 1908 ** 1909 ** Return the number of elements pushed onto the stack. 1910 */ 1911 int sqlite3ExprCodeExprList( 1912 Parse *pParse, /* Parsing context */ 1913 ExprList *pList /* The expression list to be coded */ 1914 ){ 1915 struct ExprList_item *pItem; 1916 int i, n; 1917 if( pList==0 ) return 0; 1918 n = pList->nExpr; 1919 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 1920 sqlite3ExprCode(pParse, pItem->pExpr); 1921 } 1922 return n; 1923 } 1924 1925 /* 1926 ** Generate code for a boolean expression such that a jump is made 1927 ** to the label "dest" if the expression is true but execution 1928 ** continues straight thru if the expression is false. 1929 ** 1930 ** If the expression evaluates to NULL (neither true nor false), then 1931 ** take the jump if the jumpIfNull flag is true. 1932 ** 1933 ** This code depends on the fact that certain token values (ex: TK_EQ) 1934 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1935 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1936 ** the make process cause these values to align. Assert()s in the code 1937 ** below verify that the numbers are aligned correctly. 1938 */ 1939 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 1940 Vdbe *v = pParse->pVdbe; 1941 int op = 0; 1942 int ckOffset = pParse->ckOffset; 1943 if( v==0 || pExpr==0 ) return; 1944 op = pExpr->op; 1945 switch( op ){ 1946 case TK_AND: { 1947 int d2 = sqlite3VdbeMakeLabel(v); 1948 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 1949 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1950 sqlite3VdbeResolveLabel(v, d2); 1951 break; 1952 } 1953 case TK_OR: { 1954 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 1955 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1956 break; 1957 } 1958 case TK_NOT: { 1959 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 1960 break; 1961 } 1962 case TK_LT: 1963 case TK_LE: 1964 case TK_GT: 1965 case TK_GE: 1966 case TK_NE: 1967 case TK_EQ: { 1968 assert( TK_LT==OP_Lt ); 1969 assert( TK_LE==OP_Le ); 1970 assert( TK_GT==OP_Gt ); 1971 assert( TK_GE==OP_Ge ); 1972 assert( TK_EQ==OP_Eq ); 1973 assert( TK_NE==OP_Ne ); 1974 sqlite3ExprCode(pParse, pExpr->pLeft); 1975 sqlite3ExprCode(pParse, pExpr->pRight); 1976 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 1977 break; 1978 } 1979 case TK_ISNULL: 1980 case TK_NOTNULL: { 1981 assert( TK_ISNULL==OP_IsNull ); 1982 assert( TK_NOTNULL==OP_NotNull ); 1983 sqlite3ExprCode(pParse, pExpr->pLeft); 1984 sqlite3VdbeAddOp(v, op, 1, dest); 1985 break; 1986 } 1987 case TK_BETWEEN: { 1988 /* The expression "x BETWEEN y AND z" is implemented as: 1989 ** 1990 ** 1 IF (x < y) GOTO 3 1991 ** 2 IF (x <= z) GOTO <dest> 1992 ** 3 ... 1993 */ 1994 int addr; 1995 Expr *pLeft = pExpr->pLeft; 1996 Expr *pRight = pExpr->pList->a[0].pExpr; 1997 sqlite3ExprCode(pParse, pLeft); 1998 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1999 sqlite3ExprCode(pParse, pRight); 2000 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 2001 2002 pRight = pExpr->pList->a[1].pExpr; 2003 sqlite3ExprCode(pParse, pRight); 2004 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 2005 2006 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 2007 sqlite3VdbeJumpHere(v, addr); 2008 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2009 break; 2010 } 2011 default: { 2012 sqlite3ExprCode(pParse, pExpr); 2013 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 2014 break; 2015 } 2016 } 2017 pParse->ckOffset = ckOffset; 2018 } 2019 2020 /* 2021 ** Generate code for a boolean expression such that a jump is made 2022 ** to the label "dest" if the expression is false but execution 2023 ** continues straight thru if the expression is true. 2024 ** 2025 ** If the expression evaluates to NULL (neither true nor false) then 2026 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 2027 */ 2028 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2029 Vdbe *v = pParse->pVdbe; 2030 int op = 0; 2031 int ckOffset = pParse->ckOffset; 2032 if( v==0 || pExpr==0 ) return; 2033 2034 /* The value of pExpr->op and op are related as follows: 2035 ** 2036 ** pExpr->op op 2037 ** --------- ---------- 2038 ** TK_ISNULL OP_NotNull 2039 ** TK_NOTNULL OP_IsNull 2040 ** TK_NE OP_Eq 2041 ** TK_EQ OP_Ne 2042 ** TK_GT OP_Le 2043 ** TK_LE OP_Gt 2044 ** TK_GE OP_Lt 2045 ** TK_LT OP_Ge 2046 ** 2047 ** For other values of pExpr->op, op is undefined and unused. 2048 ** The value of TK_ and OP_ constants are arranged such that we 2049 ** can compute the mapping above using the following expression. 2050 ** Assert()s verify that the computation is correct. 2051 */ 2052 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2053 2054 /* Verify correct alignment of TK_ and OP_ constants 2055 */ 2056 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2057 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2058 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2059 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2060 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2061 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2062 assert( pExpr->op!=TK_GT || op==OP_Le ); 2063 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2064 2065 switch( pExpr->op ){ 2066 case TK_AND: { 2067 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2068 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2069 break; 2070 } 2071 case TK_OR: { 2072 int d2 = sqlite3VdbeMakeLabel(v); 2073 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 2074 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2075 sqlite3VdbeResolveLabel(v, d2); 2076 break; 2077 } 2078 case TK_NOT: { 2079 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2080 break; 2081 } 2082 case TK_LT: 2083 case TK_LE: 2084 case TK_GT: 2085 case TK_GE: 2086 case TK_NE: 2087 case TK_EQ: { 2088 sqlite3ExprCode(pParse, pExpr->pLeft); 2089 sqlite3ExprCode(pParse, pExpr->pRight); 2090 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2091 break; 2092 } 2093 case TK_ISNULL: 2094 case TK_NOTNULL: { 2095 sqlite3ExprCode(pParse, pExpr->pLeft); 2096 sqlite3VdbeAddOp(v, op, 1, dest); 2097 break; 2098 } 2099 case TK_BETWEEN: { 2100 /* The expression is "x BETWEEN y AND z". It is implemented as: 2101 ** 2102 ** 1 IF (x >= y) GOTO 3 2103 ** 2 GOTO <dest> 2104 ** 3 IF (x > z) GOTO <dest> 2105 */ 2106 int addr; 2107 Expr *pLeft = pExpr->pLeft; 2108 Expr *pRight = pExpr->pList->a[0].pExpr; 2109 sqlite3ExprCode(pParse, pLeft); 2110 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2111 sqlite3ExprCode(pParse, pRight); 2112 addr = sqlite3VdbeCurrentAddr(v); 2113 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2114 2115 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2116 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2117 pRight = pExpr->pList->a[1].pExpr; 2118 sqlite3ExprCode(pParse, pRight); 2119 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2120 break; 2121 } 2122 default: { 2123 sqlite3ExprCode(pParse, pExpr); 2124 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2125 break; 2126 } 2127 } 2128 pParse->ckOffset = ckOffset; 2129 } 2130 2131 /* 2132 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2133 ** if they are identical and return FALSE if they differ in any way. 2134 */ 2135 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2136 int i; 2137 if( pA==0||pB==0 ){ 2138 return pB==pA; 2139 } 2140 if( pA->op!=pB->op ) return 0; 2141 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2142 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2143 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2144 if( pA->pList ){ 2145 if( pB->pList==0 ) return 0; 2146 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2147 for(i=0; i<pA->pList->nExpr; i++){ 2148 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2149 return 0; 2150 } 2151 } 2152 }else if( pB->pList ){ 2153 return 0; 2154 } 2155 if( pA->pSelect || pB->pSelect ) return 0; 2156 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2157 if( pA->token.z ){ 2158 if( pB->token.z==0 ) return 0; 2159 if( pB->token.n!=pA->token.n ) return 0; 2160 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 2161 return 0; 2162 } 2163 } 2164 return 1; 2165 } 2166 2167 2168 /* 2169 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2170 ** the new element. Return a negative number if malloc fails. 2171 */ 2172 static int addAggInfoColumn(AggInfo *pInfo){ 2173 int i; 2174 i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3); 2175 if( i<0 ){ 2176 return -1; 2177 } 2178 return i; 2179 } 2180 2181 /* 2182 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2183 ** the new element. Return a negative number if malloc fails. 2184 */ 2185 static int addAggInfoFunc(AggInfo *pInfo){ 2186 int i; 2187 i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2); 2188 if( i<0 ){ 2189 return -1; 2190 } 2191 return i; 2192 } 2193 2194 /* 2195 ** This is an xFunc for walkExprTree() used to implement 2196 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2197 ** for additional information. 2198 ** 2199 ** This routine analyzes the aggregate function at pExpr. 2200 */ 2201 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2202 int i; 2203 NameContext *pNC = (NameContext *)pArg; 2204 Parse *pParse = pNC->pParse; 2205 SrcList *pSrcList = pNC->pSrcList; 2206 AggInfo *pAggInfo = pNC->pAggInfo; 2207 2208 2209 switch( pExpr->op ){ 2210 case TK_COLUMN: { 2211 /* Check to see if the column is in one of the tables in the FROM 2212 ** clause of the aggregate query */ 2213 if( pSrcList ){ 2214 struct SrcList_item *pItem = pSrcList->a; 2215 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2216 struct AggInfo_col *pCol; 2217 if( pExpr->iTable==pItem->iCursor ){ 2218 /* If we reach this point, it means that pExpr refers to a table 2219 ** that is in the FROM clause of the aggregate query. 2220 ** 2221 ** Make an entry for the column in pAggInfo->aCol[] if there 2222 ** is not an entry there already. 2223 */ 2224 pCol = pAggInfo->aCol; 2225 for(i=0; i<pAggInfo->nColumn; i++, pCol++){ 2226 if( pCol->iTable==pExpr->iTable && 2227 pCol->iColumn==pExpr->iColumn ){ 2228 break; 2229 } 2230 } 2231 if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){ 2232 pCol = &pAggInfo->aCol[i]; 2233 pCol->iTable = pExpr->iTable; 2234 pCol->iColumn = pExpr->iColumn; 2235 pCol->iMem = pParse->nMem++; 2236 pCol->iSorterColumn = -1; 2237 pCol->pExpr = pExpr; 2238 if( pAggInfo->pGroupBy ){ 2239 int j, n; 2240 ExprList *pGB = pAggInfo->pGroupBy; 2241 struct ExprList_item *pTerm = pGB->a; 2242 n = pGB->nExpr; 2243 for(j=0; j<n; j++, pTerm++){ 2244 Expr *pE = pTerm->pExpr; 2245 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2246 pE->iColumn==pExpr->iColumn ){ 2247 pCol->iSorterColumn = j; 2248 break; 2249 } 2250 } 2251 } 2252 if( pCol->iSorterColumn<0 ){ 2253 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2254 } 2255 } 2256 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2257 ** because it was there before or because we just created it). 2258 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2259 ** pAggInfo->aCol[] entry. 2260 */ 2261 pExpr->pAggInfo = pAggInfo; 2262 pExpr->op = TK_AGG_COLUMN; 2263 pExpr->iAgg = i; 2264 break; 2265 } /* endif pExpr->iTable==pItem->iCursor */ 2266 } /* end loop over pSrcList */ 2267 } 2268 return 1; 2269 } 2270 case TK_AGG_FUNCTION: { 2271 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2272 ** to be ignored */ 2273 if( pNC->nDepth==0 ){ 2274 /* Check to see if pExpr is a duplicate of another aggregate 2275 ** function that is already in the pAggInfo structure 2276 */ 2277 struct AggInfo_func *pItem = pAggInfo->aFunc; 2278 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2279 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2280 break; 2281 } 2282 } 2283 if( i>=pAggInfo->nFunc ){ 2284 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2285 */ 2286 u8 enc = ENC(pParse->db); 2287 i = addAggInfoFunc(pAggInfo); 2288 if( i>=0 ){ 2289 pItem = &pAggInfo->aFunc[i]; 2290 pItem->pExpr = pExpr; 2291 pItem->iMem = pParse->nMem++; 2292 pItem->pFunc = sqlite3FindFunction(pParse->db, 2293 (char*)pExpr->token.z, pExpr->token.n, 2294 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2295 if( pExpr->flags & EP_Distinct ){ 2296 pItem->iDistinct = pParse->nTab++; 2297 }else{ 2298 pItem->iDistinct = -1; 2299 } 2300 } 2301 } 2302 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2303 */ 2304 pExpr->iAgg = i; 2305 pExpr->pAggInfo = pAggInfo; 2306 return 1; 2307 } 2308 } 2309 } 2310 2311 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2312 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2313 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2314 */ 2315 if( pExpr->pSelect ){ 2316 pNC->nDepth++; 2317 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2318 pNC->nDepth--; 2319 } 2320 return 0; 2321 } 2322 2323 /* 2324 ** Analyze the given expression looking for aggregate functions and 2325 ** for variables that need to be added to the pParse->aAgg[] array. 2326 ** Make additional entries to the pParse->aAgg[] array as necessary. 2327 ** 2328 ** This routine should only be called after the expression has been 2329 ** analyzed by sqlite3ExprResolveNames(). 2330 ** 2331 ** If errors are seen, leave an error message in zErrMsg and return 2332 ** the number of errors. 2333 */ 2334 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2335 int nErr = pNC->pParse->nErr; 2336 walkExprTree(pExpr, analyzeAggregate, pNC); 2337 return pNC->pParse->nErr - nErr; 2338 } 2339 2340 /* 2341 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2342 ** expression list. Return the number of errors. 2343 ** 2344 ** If an error is found, the analysis is cut short. 2345 */ 2346 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2347 struct ExprList_item *pItem; 2348 int i; 2349 int nErr = 0; 2350 if( pList ){ 2351 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2352 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2353 } 2354 } 2355 return nErr; 2356 } 2357