xref: /sqlite-3.40.0/src/expr.c (revision 5c327dbb)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.269 2006/11/23 11:59:13 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <ctype.h>
19 
20 /*
21 ** Return the 'affinity' of the expression pExpr if any.
22 **
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
27 **
28 ** i.e. the WHERE clause expresssions in the following statements all
29 ** have an affinity:
30 **
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
35 */
36 char sqlite3ExprAffinity(Expr *pExpr){
37   int op = pExpr->op;
38   if( op==TK_AS ){
39     return sqlite3ExprAffinity(pExpr->pLeft);
40   }
41   if( op==TK_SELECT ){
42     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
43   }
44 #ifndef SQLITE_OMIT_CAST
45   if( op==TK_CAST ){
46     return sqlite3AffinityType(&pExpr->token);
47   }
48 #endif
49   return pExpr->affinity;
50 }
51 
52 /*
53 ** Return the default collation sequence for the expression pExpr. If
54 ** there is no default collation type, return 0.
55 */
56 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
57   CollSeq *pColl = 0;
58   if( pExpr ){
59     pColl = pExpr->pColl;
60     if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){
61       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
62     }
63   }
64   if( sqlite3CheckCollSeq(pParse, pColl) ){
65     pColl = 0;
66   }
67   return pColl;
68 }
69 
70 /*
71 ** pExpr is an operand of a comparison operator.  aff2 is the
72 ** type affinity of the other operand.  This routine returns the
73 ** type affinity that should be used for the comparison operator.
74 */
75 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
76   char aff1 = sqlite3ExprAffinity(pExpr);
77   if( aff1 && aff2 ){
78     /* Both sides of the comparison are columns. If one has numeric
79     ** affinity, use that. Otherwise use no affinity.
80     */
81     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
82       return SQLITE_AFF_NUMERIC;
83     }else{
84       return SQLITE_AFF_NONE;
85     }
86   }else if( !aff1 && !aff2 ){
87     /* Neither side of the comparison is a column.  Compare the
88     ** results directly.
89     */
90     return SQLITE_AFF_NONE;
91   }else{
92     /* One side is a column, the other is not. Use the columns affinity. */
93     assert( aff1==0 || aff2==0 );
94     return (aff1 + aff2);
95   }
96 }
97 
98 /*
99 ** pExpr is a comparison operator.  Return the type affinity that should
100 ** be applied to both operands prior to doing the comparison.
101 */
102 static char comparisonAffinity(Expr *pExpr){
103   char aff;
104   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
105           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
106           pExpr->op==TK_NE );
107   assert( pExpr->pLeft );
108   aff = sqlite3ExprAffinity(pExpr->pLeft);
109   if( pExpr->pRight ){
110     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
111   }
112   else if( pExpr->pSelect ){
113     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
114   }
115   else if( !aff ){
116     aff = SQLITE_AFF_NUMERIC;
117   }
118   return aff;
119 }
120 
121 /*
122 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
123 ** idx_affinity is the affinity of an indexed column. Return true
124 ** if the index with affinity idx_affinity may be used to implement
125 ** the comparison in pExpr.
126 */
127 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
128   char aff = comparisonAffinity(pExpr);
129   switch( aff ){
130     case SQLITE_AFF_NONE:
131       return 1;
132     case SQLITE_AFF_TEXT:
133       return idx_affinity==SQLITE_AFF_TEXT;
134     default:
135       return sqlite3IsNumericAffinity(idx_affinity);
136   }
137 }
138 
139 /*
140 ** Return the P1 value that should be used for a binary comparison
141 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
142 ** If jumpIfNull is true, then set the low byte of the returned
143 ** P1 value to tell the opcode to jump if either expression
144 ** evaluates to NULL.
145 */
146 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
147   char aff = sqlite3ExprAffinity(pExpr2);
148   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
149 }
150 
151 /*
152 ** Return a pointer to the collation sequence that should be used by
153 ** a binary comparison operator comparing pLeft and pRight.
154 **
155 ** If the left hand expression has a collating sequence type, then it is
156 ** used. Otherwise the collation sequence for the right hand expression
157 ** is used, or the default (BINARY) if neither expression has a collating
158 ** type.
159 */
160 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){
161   CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft);
162   if( !pColl ){
163     pColl = sqlite3ExprCollSeq(pParse, pRight);
164   }
165   return pColl;
166 }
167 
168 /*
169 ** Generate code for a comparison operator.
170 */
171 static int codeCompare(
172   Parse *pParse,    /* The parsing (and code generating) context */
173   Expr *pLeft,      /* The left operand */
174   Expr *pRight,     /* The right operand */
175   int opcode,       /* The comparison opcode */
176   int dest,         /* Jump here if true.  */
177   int jumpIfNull    /* If true, jump if either operand is NULL */
178 ){
179   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
180   CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight);
181   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
182 }
183 
184 /*
185 ** Construct a new expression node and return a pointer to it.  Memory
186 ** for this node is obtained from sqliteMalloc().  The calling function
187 ** is responsible for making sure the node eventually gets freed.
188 */
189 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
190   Expr *pNew;
191   pNew = sqliteMalloc( sizeof(Expr) );
192   if( pNew==0 ){
193     /* When malloc fails, delete pLeft and pRight. Expressions passed to
194     ** this function must always be allocated with sqlite3Expr() for this
195     ** reason.
196     */
197     sqlite3ExprDelete(pLeft);
198     sqlite3ExprDelete(pRight);
199     return 0;
200   }
201   pNew->op = op;
202   pNew->pLeft = pLeft;
203   pNew->pRight = pRight;
204   pNew->iAgg = -1;
205   if( pToken ){
206     assert( pToken->dyn==0 );
207     pNew->span = pNew->token = *pToken;
208   }else if( pLeft && pRight ){
209     sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
210   }
211   return pNew;
212 }
213 
214 /*
215 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments
216 ** if it fails due to a malloc problem.
217 */
218 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
219   Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
220   if( pNew==0 ){
221     sqlite3ExprDelete(pLeft);
222     sqlite3ExprDelete(pRight);
223   }
224   return pNew;
225 }
226 
227 /*
228 ** When doing a nested parse, you can include terms in an expression
229 ** that look like this:   #0 #1 #2 ...  These terms refer to elements
230 ** on the stack.  "#0" means the top of the stack.
231 ** "#1" means the next down on the stack.  And so forth.
232 **
233 ** This routine is called by the parser to deal with on of those terms.
234 ** It immediately generates code to store the value in a memory location.
235 ** The returns an expression that will code to extract the value from
236 ** that memory location as needed.
237 */
238 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
239   Vdbe *v = pParse->pVdbe;
240   Expr *p;
241   int depth;
242   if( pParse->nested==0 ){
243     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
244     return 0;
245   }
246   if( v==0 ) return 0;
247   p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
248   if( p==0 ){
249     return 0;  /* Malloc failed */
250   }
251   depth = atoi((char*)&pToken->z[1]);
252   p->iTable = pParse->nMem++;
253   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
254   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
255   return p;
256 }
257 
258 /*
259 ** Join two expressions using an AND operator.  If either expression is
260 ** NULL, then just return the other expression.
261 */
262 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){
263   if( pLeft==0 ){
264     return pRight;
265   }else if( pRight==0 ){
266     return pLeft;
267   }else{
268     return sqlite3Expr(TK_AND, pLeft, pRight, 0);
269   }
270 }
271 
272 /*
273 ** Set the Expr.span field of the given expression to span all
274 ** text between the two given tokens.
275 */
276 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
277   assert( pRight!=0 );
278   assert( pLeft!=0 );
279   if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){
280     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
281     if( pLeft->dyn==0 && pRight->dyn==0 ){
282       pExpr->span.z = pLeft->z;
283       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
284     }else{
285       pExpr->span.z = 0;
286     }
287   }
288 }
289 
290 /*
291 ** Construct a new expression node for a function with multiple
292 ** arguments.
293 */
294 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){
295   Expr *pNew;
296   assert( pToken );
297   pNew = sqliteMalloc( sizeof(Expr) );
298   if( pNew==0 ){
299     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
300     return 0;
301   }
302   pNew->op = TK_FUNCTION;
303   pNew->pList = pList;
304   assert( pToken->dyn==0 );
305   pNew->token = *pToken;
306   pNew->span = pNew->token;
307   return pNew;
308 }
309 
310 /*
311 ** Assign a variable number to an expression that encodes a wildcard
312 ** in the original SQL statement.
313 **
314 ** Wildcards consisting of a single "?" are assigned the next sequential
315 ** variable number.
316 **
317 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
318 ** sure "nnn" is not too be to avoid a denial of service attack when
319 ** the SQL statement comes from an external source.
320 **
321 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
322 ** as the previous instance of the same wildcard.  Or if this is the first
323 ** instance of the wildcard, the next sequenial variable number is
324 ** assigned.
325 */
326 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
327   Token *pToken;
328   if( pExpr==0 ) return;
329   pToken = &pExpr->token;
330   assert( pToken->n>=1 );
331   assert( pToken->z!=0 );
332   assert( pToken->z[0]!=0 );
333   if( pToken->n==1 ){
334     /* Wildcard of the form "?".  Assign the next variable number */
335     pExpr->iTable = ++pParse->nVar;
336   }else if( pToken->z[0]=='?' ){
337     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
338     ** use it as the variable number */
339     int i;
340     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
341     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
342       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
343           SQLITE_MAX_VARIABLE_NUMBER);
344     }
345     if( i>pParse->nVar ){
346       pParse->nVar = i;
347     }
348   }else{
349     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
350     ** number as the prior appearance of the same name, or if the name
351     ** has never appeared before, reuse the same variable number
352     */
353     int i, n;
354     n = pToken->n;
355     for(i=0; i<pParse->nVarExpr; i++){
356       Expr *pE;
357       if( (pE = pParse->apVarExpr[i])!=0
358           && pE->token.n==n
359           && memcmp(pE->token.z, pToken->z, n)==0 ){
360         pExpr->iTable = pE->iTable;
361         break;
362       }
363     }
364     if( i>=pParse->nVarExpr ){
365       pExpr->iTable = ++pParse->nVar;
366       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
367         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
368         sqliteReallocOrFree((void**)&pParse->apVarExpr,
369                        pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) );
370       }
371       if( !sqlite3MallocFailed() ){
372         assert( pParse->apVarExpr!=0 );
373         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
374       }
375     }
376   }
377 }
378 
379 /*
380 ** Recursively delete an expression tree.
381 */
382 void sqlite3ExprDelete(Expr *p){
383   if( p==0 ) return;
384   if( p->span.dyn ) sqliteFree((char*)p->span.z);
385   if( p->token.dyn ) sqliteFree((char*)p->token.z);
386   sqlite3ExprDelete(p->pLeft);
387   sqlite3ExprDelete(p->pRight);
388   sqlite3ExprListDelete(p->pList);
389   sqlite3SelectDelete(p->pSelect);
390   sqliteFree(p);
391 }
392 
393 /*
394 ** The Expr.token field might be a string literal that is quoted.
395 ** If so, remove the quotation marks.
396 */
397 void sqlite3DequoteExpr(Expr *p){
398   if( ExprHasAnyProperty(p, EP_Dequoted) ){
399     return;
400   }
401   ExprSetProperty(p, EP_Dequoted);
402   if( p->token.dyn==0 ){
403     sqlite3TokenCopy(&p->token, &p->token);
404   }
405   sqlite3Dequote((char*)p->token.z);
406 }
407 
408 
409 /*
410 ** The following group of routines make deep copies of expressions,
411 ** expression lists, ID lists, and select statements.  The copies can
412 ** be deleted (by being passed to their respective ...Delete() routines)
413 ** without effecting the originals.
414 **
415 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
416 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
417 ** by subsequent calls to sqlite*ListAppend() routines.
418 **
419 ** Any tables that the SrcList might point to are not duplicated.
420 */
421 Expr *sqlite3ExprDup(Expr *p){
422   Expr *pNew;
423   if( p==0 ) return 0;
424   pNew = sqliteMallocRaw( sizeof(*p) );
425   if( pNew==0 ) return 0;
426   memcpy(pNew, p, sizeof(*pNew));
427   if( p->token.z!=0 ){
428     pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n);
429     pNew->token.dyn = 1;
430   }else{
431     assert( pNew->token.z==0 );
432   }
433   pNew->span.z = 0;
434   pNew->pLeft = sqlite3ExprDup(p->pLeft);
435   pNew->pRight = sqlite3ExprDup(p->pRight);
436   pNew->pList = sqlite3ExprListDup(p->pList);
437   pNew->pSelect = sqlite3SelectDup(p->pSelect);
438   pNew->pTab = p->pTab;
439   return pNew;
440 }
441 void sqlite3TokenCopy(Token *pTo, Token *pFrom){
442   if( pTo->dyn ) sqliteFree((char*)pTo->z);
443   if( pFrom->z ){
444     pTo->n = pFrom->n;
445     pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n);
446     pTo->dyn = 1;
447   }else{
448     pTo->z = 0;
449   }
450 }
451 ExprList *sqlite3ExprListDup(ExprList *p){
452   ExprList *pNew;
453   struct ExprList_item *pItem, *pOldItem;
454   int i;
455   if( p==0 ) return 0;
456   pNew = sqliteMalloc( sizeof(*pNew) );
457   if( pNew==0 ) return 0;
458   pNew->nExpr = pNew->nAlloc = p->nExpr;
459   pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
460   if( pItem==0 ){
461     sqliteFree(pNew);
462     return 0;
463   }
464   pOldItem = p->a;
465   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
466     Expr *pNewExpr, *pOldExpr;
467     pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr);
468     if( pOldExpr->span.z!=0 && pNewExpr ){
469       /* Always make a copy of the span for top-level expressions in the
470       ** expression list.  The logic in SELECT processing that determines
471       ** the names of columns in the result set needs this information */
472       sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span);
473     }
474     assert( pNewExpr==0 || pNewExpr->span.z!=0
475             || pOldExpr->span.z==0
476             || sqlite3MallocFailed() );
477     pItem->zName = sqliteStrDup(pOldItem->zName);
478     pItem->sortOrder = pOldItem->sortOrder;
479     pItem->isAgg = pOldItem->isAgg;
480     pItem->done = 0;
481   }
482   return pNew;
483 }
484 
485 /*
486 ** If cursors, triggers, views and subqueries are all omitted from
487 ** the build, then none of the following routines, except for
488 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
489 ** called with a NULL argument.
490 */
491 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
492  || !defined(SQLITE_OMIT_SUBQUERY)
493 SrcList *sqlite3SrcListDup(SrcList *p){
494   SrcList *pNew;
495   int i;
496   int nByte;
497   if( p==0 ) return 0;
498   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
499   pNew = sqliteMallocRaw( nByte );
500   if( pNew==0 ) return 0;
501   pNew->nSrc = pNew->nAlloc = p->nSrc;
502   for(i=0; i<p->nSrc; i++){
503     struct SrcList_item *pNewItem = &pNew->a[i];
504     struct SrcList_item *pOldItem = &p->a[i];
505     Table *pTab;
506     pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
507     pNewItem->zName = sqliteStrDup(pOldItem->zName);
508     pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
509     pNewItem->jointype = pOldItem->jointype;
510     pNewItem->iCursor = pOldItem->iCursor;
511     pNewItem->isPopulated = pOldItem->isPopulated;
512     pTab = pNewItem->pTab = pOldItem->pTab;
513     if( pTab ){
514       pTab->nRef++;
515     }
516     pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect);
517     pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn);
518     pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing);
519     pNewItem->colUsed = pOldItem->colUsed;
520   }
521   return pNew;
522 }
523 IdList *sqlite3IdListDup(IdList *p){
524   IdList *pNew;
525   int i;
526   if( p==0 ) return 0;
527   pNew = sqliteMallocRaw( sizeof(*pNew) );
528   if( pNew==0 ) return 0;
529   pNew->nId = pNew->nAlloc = p->nId;
530   pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
531   if( pNew->a==0 ){
532     sqliteFree(pNew);
533     return 0;
534   }
535   for(i=0; i<p->nId; i++){
536     struct IdList_item *pNewItem = &pNew->a[i];
537     struct IdList_item *pOldItem = &p->a[i];
538     pNewItem->zName = sqliteStrDup(pOldItem->zName);
539     pNewItem->idx = pOldItem->idx;
540   }
541   return pNew;
542 }
543 Select *sqlite3SelectDup(Select *p){
544   Select *pNew;
545   if( p==0 ) return 0;
546   pNew = sqliteMallocRaw( sizeof(*p) );
547   if( pNew==0 ) return 0;
548   pNew->isDistinct = p->isDistinct;
549   pNew->pEList = sqlite3ExprListDup(p->pEList);
550   pNew->pSrc = sqlite3SrcListDup(p->pSrc);
551   pNew->pWhere = sqlite3ExprDup(p->pWhere);
552   pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy);
553   pNew->pHaving = sqlite3ExprDup(p->pHaving);
554   pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy);
555   pNew->op = p->op;
556   pNew->pPrior = sqlite3SelectDup(p->pPrior);
557   pNew->pLimit = sqlite3ExprDup(p->pLimit);
558   pNew->pOffset = sqlite3ExprDup(p->pOffset);
559   pNew->iLimit = -1;
560   pNew->iOffset = -1;
561   pNew->isResolved = p->isResolved;
562   pNew->isAgg = p->isAgg;
563   pNew->usesEphm = 0;
564   pNew->disallowOrderBy = 0;
565   pNew->pRightmost = 0;
566   pNew->addrOpenEphm[0] = -1;
567   pNew->addrOpenEphm[1] = -1;
568   pNew->addrOpenEphm[2] = -1;
569   return pNew;
570 }
571 #else
572 Select *sqlite3SelectDup(Select *p){
573   assert( p==0 );
574   return 0;
575 }
576 #endif
577 
578 
579 /*
580 ** Add a new element to the end of an expression list.  If pList is
581 ** initially NULL, then create a new expression list.
582 */
583 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
584   if( pList==0 ){
585     pList = sqliteMalloc( sizeof(ExprList) );
586     if( pList==0 ){
587       goto no_mem;
588     }
589     assert( pList->nAlloc==0 );
590   }
591   if( pList->nAlloc<=pList->nExpr ){
592     struct ExprList_item *a;
593     int n = pList->nAlloc*2 + 4;
594     a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
595     if( a==0 ){
596       goto no_mem;
597     }
598     pList->a = a;
599     pList->nAlloc = n;
600   }
601   assert( pList->a!=0 );
602   if( pExpr || pName ){
603     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
604     memset(pItem, 0, sizeof(*pItem));
605     pItem->zName = sqlite3NameFromToken(pName);
606     pItem->pExpr = pExpr;
607   }
608   return pList;
609 
610 no_mem:
611   /* Avoid leaking memory if malloc has failed. */
612   sqlite3ExprDelete(pExpr);
613   sqlite3ExprListDelete(pList);
614   return 0;
615 }
616 
617 /*
618 ** Delete an entire expression list.
619 */
620 void sqlite3ExprListDelete(ExprList *pList){
621   int i;
622   struct ExprList_item *pItem;
623   if( pList==0 ) return;
624   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
625   assert( pList->nExpr<=pList->nAlloc );
626   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
627     sqlite3ExprDelete(pItem->pExpr);
628     sqliteFree(pItem->zName);
629   }
630   sqliteFree(pList->a);
631   sqliteFree(pList);
632 }
633 
634 /*
635 ** Walk an expression tree.  Call xFunc for each node visited.
636 **
637 ** The return value from xFunc determines whether the tree walk continues.
638 ** 0 means continue walking the tree.  1 means do not walk children
639 ** of the current node but continue with siblings.  2 means abandon
640 ** the tree walk completely.
641 **
642 ** The return value from this routine is 1 to abandon the tree walk
643 ** and 0 to continue.
644 **
645 ** NOTICE:  This routine does *not* descend into subqueries.
646 */
647 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
648 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
649   int rc;
650   if( pExpr==0 ) return 0;
651   rc = (*xFunc)(pArg, pExpr);
652   if( rc==0 ){
653     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
654     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
655     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
656   }
657   return rc>1;
658 }
659 
660 /*
661 ** Call walkExprTree() for every expression in list p.
662 */
663 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
664   int i;
665   struct ExprList_item *pItem;
666   if( !p ) return 0;
667   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
668     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
669   }
670   return 0;
671 }
672 
673 /*
674 ** Call walkExprTree() for every expression in Select p, not including
675 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
676 ** or OFFSET expressions..
677 */
678 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
679   walkExprList(p->pEList, xFunc, pArg);
680   walkExprTree(p->pWhere, xFunc, pArg);
681   walkExprList(p->pGroupBy, xFunc, pArg);
682   walkExprTree(p->pHaving, xFunc, pArg);
683   walkExprList(p->pOrderBy, xFunc, pArg);
684   return 0;
685 }
686 
687 
688 /*
689 ** This routine is designed as an xFunc for walkExprTree().
690 **
691 ** pArg is really a pointer to an integer.  If we can tell by looking
692 ** at pExpr that the expression that contains pExpr is not a constant
693 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
694 ** If pExpr does does not disqualify the expression from being a constant
695 ** then do nothing.
696 **
697 ** After walking the whole tree, if no nodes are found that disqualify
698 ** the expression as constant, then we assume the whole expression
699 ** is constant.  See sqlite3ExprIsConstant() for additional information.
700 */
701 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
702   switch( pExpr->op ){
703     /* Consider functions to be constant if all their arguments are constant
704     ** and *pArg==2 */
705     case TK_FUNCTION:
706       if( *((int*)pArg)==2 ) return 0;
707       /* Fall through */
708     case TK_ID:
709     case TK_COLUMN:
710     case TK_DOT:
711     case TK_AGG_FUNCTION:
712     case TK_AGG_COLUMN:
713 #ifndef SQLITE_OMIT_SUBQUERY
714     case TK_SELECT:
715     case TK_EXISTS:
716 #endif
717       *((int*)pArg) = 0;
718       return 2;
719     case TK_IN:
720       if( pExpr->pSelect ){
721         *((int*)pArg) = 0;
722         return 2;
723       }
724     default:
725       return 0;
726   }
727 }
728 
729 /*
730 ** Walk an expression tree.  Return 1 if the expression is constant
731 ** and 0 if it involves variables or function calls.
732 **
733 ** For the purposes of this function, a double-quoted string (ex: "abc")
734 ** is considered a variable but a single-quoted string (ex: 'abc') is
735 ** a constant.
736 */
737 int sqlite3ExprIsConstant(Expr *p){
738   int isConst = 1;
739   walkExprTree(p, exprNodeIsConstant, &isConst);
740   return isConst;
741 }
742 
743 /*
744 ** Walk an expression tree.  Return 1 if the expression is constant
745 ** or a function call with constant arguments.  Return and 0 if there
746 ** are any variables.
747 **
748 ** For the purposes of this function, a double-quoted string (ex: "abc")
749 ** is considered a variable but a single-quoted string (ex: 'abc') is
750 ** a constant.
751 */
752 int sqlite3ExprIsConstantOrFunction(Expr *p){
753   int isConst = 2;
754   walkExprTree(p, exprNodeIsConstant, &isConst);
755   return isConst!=0;
756 }
757 
758 /*
759 ** If the expression p codes a constant integer that is small enough
760 ** to fit in a 32-bit integer, return 1 and put the value of the integer
761 ** in *pValue.  If the expression is not an integer or if it is too big
762 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
763 */
764 int sqlite3ExprIsInteger(Expr *p, int *pValue){
765   switch( p->op ){
766     case TK_INTEGER: {
767       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
768         return 1;
769       }
770       break;
771     }
772     case TK_UPLUS: {
773       return sqlite3ExprIsInteger(p->pLeft, pValue);
774     }
775     case TK_UMINUS: {
776       int v;
777       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
778         *pValue = -v;
779         return 1;
780       }
781       break;
782     }
783     default: break;
784   }
785   return 0;
786 }
787 
788 /*
789 ** Return TRUE if the given string is a row-id column name.
790 */
791 int sqlite3IsRowid(const char *z){
792   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
793   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
794   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
795   return 0;
796 }
797 
798 /*
799 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
800 ** that name in the set of source tables in pSrcList and make the pExpr
801 ** expression node refer back to that source column.  The following changes
802 ** are made to pExpr:
803 **
804 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
805 **                         the table.
806 **    pExpr->iTable        Set to the cursor number for the table obtained
807 **                         from pSrcList.
808 **    pExpr->iColumn       Set to the column number within the table.
809 **    pExpr->op            Set to TK_COLUMN.
810 **    pExpr->pLeft         Any expression this points to is deleted
811 **    pExpr->pRight        Any expression this points to is deleted.
812 **
813 ** The pDbToken is the name of the database (the "X").  This value may be
814 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
815 ** can be used.  The pTableToken is the name of the table (the "Y").  This
816 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
817 ** means that the form of the name is Z and that columns from any table
818 ** can be used.
819 **
820 ** If the name cannot be resolved unambiguously, leave an error message
821 ** in pParse and return non-zero.  Return zero on success.
822 */
823 static int lookupName(
824   Parse *pParse,       /* The parsing context */
825   Token *pDbToken,     /* Name of the database containing table, or NULL */
826   Token *pTableToken,  /* Name of table containing column, or NULL */
827   Token *pColumnToken, /* Name of the column. */
828   NameContext *pNC,    /* The name context used to resolve the name */
829   Expr *pExpr          /* Make this EXPR node point to the selected column */
830 ){
831   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
832   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
833   char *zCol = 0;      /* Name of the column.  The "Z" */
834   int i, j;            /* Loop counters */
835   int cnt = 0;         /* Number of matching column names */
836   int cntTab = 0;      /* Number of matching table names */
837   sqlite3 *db = pParse->db;  /* The database */
838   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
839   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
840   NameContext *pTopNC = pNC;        /* First namecontext in the list */
841 
842   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
843   zDb = sqlite3NameFromToken(pDbToken);
844   zTab = sqlite3NameFromToken(pTableToken);
845   zCol = sqlite3NameFromToken(pColumnToken);
846   if( sqlite3MallocFailed() ){
847     goto lookupname_end;
848   }
849 
850   pExpr->iTable = -1;
851   while( pNC && cnt==0 ){
852     ExprList *pEList;
853     SrcList *pSrcList = pNC->pSrcList;
854 
855     if( pSrcList ){
856       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
857         Table *pTab;
858         int iDb;
859         Column *pCol;
860 
861         pTab = pItem->pTab;
862         assert( pTab!=0 );
863         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
864         assert( pTab->nCol>0 );
865         if( zTab ){
866           if( pItem->zAlias ){
867             char *zTabName = pItem->zAlias;
868             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
869           }else{
870             char *zTabName = pTab->zName;
871             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
872             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
873               continue;
874             }
875           }
876         }
877         if( 0==(cntTab++) ){
878           pExpr->iTable = pItem->iCursor;
879           pExpr->pSchema = pTab->pSchema;
880           pMatch = pItem;
881         }
882         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
883           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
884             const char *zColl = pTab->aCol[j].zColl;
885             IdList *pUsing;
886             cnt++;
887             pExpr->iTable = pItem->iCursor;
888             pMatch = pItem;
889             pExpr->pSchema = pTab->pSchema;
890             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
891             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
892             pExpr->affinity = pTab->aCol[j].affinity;
893             pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
894             if( pItem->jointype & JT_NATURAL ){
895               /* If this match occurred in the left table of a natural join,
896               ** then skip the right table to avoid a duplicate match */
897               pItem++;
898               i++;
899             }
900             if( (pUsing = pItem->pUsing)!=0 ){
901               /* If this match occurs on a column that is in the USING clause
902               ** of a join, skip the search of the right table of the join
903               ** to avoid a duplicate match there. */
904               int k;
905               for(k=0; k<pUsing->nId; k++){
906                 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
907                   pItem++;
908                   i++;
909                   break;
910                 }
911               }
912             }
913             break;
914           }
915         }
916       }
917     }
918 
919 #ifndef SQLITE_OMIT_TRIGGER
920     /* If we have not already resolved the name, then maybe
921     ** it is a new.* or old.* trigger argument reference
922     */
923     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
924       TriggerStack *pTriggerStack = pParse->trigStack;
925       Table *pTab = 0;
926       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
927         pExpr->iTable = pTriggerStack->newIdx;
928         assert( pTriggerStack->pTab );
929         pTab = pTriggerStack->pTab;
930       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
931         pExpr->iTable = pTriggerStack->oldIdx;
932         assert( pTriggerStack->pTab );
933         pTab = pTriggerStack->pTab;
934       }
935 
936       if( pTab ){
937         int iCol;
938         Column *pCol = pTab->aCol;
939 
940         pExpr->pSchema = pTab->pSchema;
941         cntTab++;
942         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
943           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
944             const char *zColl = pTab->aCol[iCol].zColl;
945             cnt++;
946             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
947             pExpr->affinity = pTab->aCol[iCol].affinity;
948             pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
949             pExpr->pTab = pTab;
950             break;
951           }
952         }
953       }
954     }
955 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
956 
957     /*
958     ** Perhaps the name is a reference to the ROWID
959     */
960     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
961       cnt = 1;
962       pExpr->iColumn = -1;
963       pExpr->affinity = SQLITE_AFF_INTEGER;
964     }
965 
966     /*
967     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
968     ** might refer to an result-set alias.  This happens, for example, when
969     ** we are resolving names in the WHERE clause of the following command:
970     **
971     **     SELECT a+b AS x FROM table WHERE x<10;
972     **
973     ** In cases like this, replace pExpr with a copy of the expression that
974     ** forms the result set entry ("a+b" in the example) and return immediately.
975     ** Note that the expression in the result set should have already been
976     ** resolved by the time the WHERE clause is resolved.
977     */
978     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
979       for(j=0; j<pEList->nExpr; j++){
980         char *zAs = pEList->a[j].zName;
981         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
982           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
983           pExpr->op = TK_AS;
984           pExpr->iColumn = j;
985           pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr);
986           cnt = 1;
987           assert( zTab==0 && zDb==0 );
988           goto lookupname_end_2;
989         }
990       }
991     }
992 
993     /* Advance to the next name context.  The loop will exit when either
994     ** we have a match (cnt>0) or when we run out of name contexts.
995     */
996     if( cnt==0 ){
997       pNC = pNC->pNext;
998     }
999   }
1000 
1001   /*
1002   ** If X and Y are NULL (in other words if only the column name Z is
1003   ** supplied) and the value of Z is enclosed in double-quotes, then
1004   ** Z is a string literal if it doesn't match any column names.  In that
1005   ** case, we need to return right away and not make any changes to
1006   ** pExpr.
1007   **
1008   ** Because no reference was made to outer contexts, the pNC->nRef
1009   ** fields are not changed in any context.
1010   */
1011   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1012     sqliteFree(zCol);
1013     return 0;
1014   }
1015 
1016   /*
1017   ** cnt==0 means there was not match.  cnt>1 means there were two or
1018   ** more matches.  Either way, we have an error.
1019   */
1020   if( cnt!=1 ){
1021     char *z = 0;
1022     char *zErr;
1023     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
1024     if( zDb ){
1025       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
1026     }else if( zTab ){
1027       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
1028     }else{
1029       z = sqliteStrDup(zCol);
1030     }
1031     sqlite3ErrorMsg(pParse, zErr, z);
1032     sqliteFree(z);
1033     pTopNC->nErr++;
1034   }
1035 
1036   /* If a column from a table in pSrcList is referenced, then record
1037   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
1038   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
1039   ** column number is greater than the number of bits in the bitmask
1040   ** then set the high-order bit of the bitmask.
1041   */
1042   if( pExpr->iColumn>=0 && pMatch!=0 ){
1043     int n = pExpr->iColumn;
1044     if( n>=sizeof(Bitmask)*8 ){
1045       n = sizeof(Bitmask)*8-1;
1046     }
1047     assert( pMatch->iCursor==pExpr->iTable );
1048     pMatch->colUsed |= 1<<n;
1049   }
1050 
1051 lookupname_end:
1052   /* Clean up and return
1053   */
1054   sqliteFree(zDb);
1055   sqliteFree(zTab);
1056   sqlite3ExprDelete(pExpr->pLeft);
1057   pExpr->pLeft = 0;
1058   sqlite3ExprDelete(pExpr->pRight);
1059   pExpr->pRight = 0;
1060   pExpr->op = TK_COLUMN;
1061 lookupname_end_2:
1062   sqliteFree(zCol);
1063   if( cnt==1 ){
1064     assert( pNC!=0 );
1065     sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
1066     if( pMatch && !pMatch->pSelect ){
1067       pExpr->pTab = pMatch->pTab;
1068     }
1069     /* Increment the nRef value on all name contexts from TopNC up to
1070     ** the point where the name matched. */
1071     for(;;){
1072       assert( pTopNC!=0 );
1073       pTopNC->nRef++;
1074       if( pTopNC==pNC ) break;
1075       pTopNC = pTopNC->pNext;
1076     }
1077     return 0;
1078   } else {
1079     return 1;
1080   }
1081 }
1082 
1083 /*
1084 ** This routine is designed as an xFunc for walkExprTree().
1085 **
1086 ** Resolve symbolic names into TK_COLUMN operators for the current
1087 ** node in the expression tree.  Return 0 to continue the search down
1088 ** the tree or 2 to abort the tree walk.
1089 **
1090 ** This routine also does error checking and name resolution for
1091 ** function names.  The operator for aggregate functions is changed
1092 ** to TK_AGG_FUNCTION.
1093 */
1094 static int nameResolverStep(void *pArg, Expr *pExpr){
1095   NameContext *pNC = (NameContext*)pArg;
1096   Parse *pParse;
1097 
1098   if( pExpr==0 ) return 1;
1099   assert( pNC!=0 );
1100   pParse = pNC->pParse;
1101 
1102   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1103   ExprSetProperty(pExpr, EP_Resolved);
1104 #ifndef NDEBUG
1105   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1106     SrcList *pSrcList = pNC->pSrcList;
1107     int i;
1108     for(i=0; i<pNC->pSrcList->nSrc; i++){
1109       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1110     }
1111   }
1112 #endif
1113   switch( pExpr->op ){
1114     /* Double-quoted strings (ex: "abc") are used as identifiers if
1115     ** possible.  Otherwise they remain as strings.  Single-quoted
1116     ** strings (ex: 'abc') are always string literals.
1117     */
1118     case TK_STRING: {
1119       if( pExpr->token.z[0]=='\'' ) break;
1120       /* Fall thru into the TK_ID case if this is a double-quoted string */
1121     }
1122     /* A lone identifier is the name of a column.
1123     */
1124     case TK_ID: {
1125       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1126       return 1;
1127     }
1128 
1129     /* A table name and column name:     ID.ID
1130     ** Or a database, table and column:  ID.ID.ID
1131     */
1132     case TK_DOT: {
1133       Token *pColumn;
1134       Token *pTable;
1135       Token *pDb;
1136       Expr *pRight;
1137 
1138       /* if( pSrcList==0 ) break; */
1139       pRight = pExpr->pRight;
1140       if( pRight->op==TK_ID ){
1141         pDb = 0;
1142         pTable = &pExpr->pLeft->token;
1143         pColumn = &pRight->token;
1144       }else{
1145         assert( pRight->op==TK_DOT );
1146         pDb = &pExpr->pLeft->token;
1147         pTable = &pRight->pLeft->token;
1148         pColumn = &pRight->pRight->token;
1149       }
1150       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1151       return 1;
1152     }
1153 
1154     /* Resolve function names
1155     */
1156     case TK_CONST_FUNC:
1157     case TK_FUNCTION: {
1158       ExprList *pList = pExpr->pList;    /* The argument list */
1159       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
1160       int no_such_func = 0;       /* True if no such function exists */
1161       int wrong_num_args = 0;     /* True if wrong number of arguments */
1162       int is_agg = 0;             /* True if is an aggregate function */
1163       int i;
1164       int auth;                   /* Authorization to use the function */
1165       int nId;                    /* Number of characters in function name */
1166       const char *zId;            /* The function name. */
1167       FuncDef *pDef;              /* Information about the function */
1168       int enc = ENC(pParse->db);  /* The database encoding */
1169 
1170       zId = (char*)pExpr->token.z;
1171       nId = pExpr->token.n;
1172       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1173       if( pDef==0 ){
1174         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1175         if( pDef==0 ){
1176           no_such_func = 1;
1177         }else{
1178           wrong_num_args = 1;
1179         }
1180       }else{
1181         is_agg = pDef->xFunc==0;
1182       }
1183 #ifndef SQLITE_OMIT_AUTHORIZATION
1184       if( pDef ){
1185         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1186         if( auth!=SQLITE_OK ){
1187           if( auth==SQLITE_DENY ){
1188             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1189                                     pDef->zName);
1190             pNC->nErr++;
1191           }
1192           pExpr->op = TK_NULL;
1193           return 1;
1194         }
1195       }
1196 #endif
1197       if( is_agg && !pNC->allowAgg ){
1198         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1199         pNC->nErr++;
1200         is_agg = 0;
1201       }else if( no_such_func ){
1202         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1203         pNC->nErr++;
1204       }else if( wrong_num_args ){
1205         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1206              nId, zId);
1207         pNC->nErr++;
1208       }
1209       if( is_agg ){
1210         pExpr->op = TK_AGG_FUNCTION;
1211         pNC->hasAgg = 1;
1212       }
1213       if( is_agg ) pNC->allowAgg = 0;
1214       for(i=0; pNC->nErr==0 && i<n; i++){
1215         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1216       }
1217       if( is_agg ) pNC->allowAgg = 1;
1218       /* FIX ME:  Compute pExpr->affinity based on the expected return
1219       ** type of the function
1220       */
1221       return is_agg;
1222     }
1223 #ifndef SQLITE_OMIT_SUBQUERY
1224     case TK_SELECT:
1225     case TK_EXISTS:
1226 #endif
1227     case TK_IN: {
1228       if( pExpr->pSelect ){
1229         int nRef = pNC->nRef;
1230 #ifndef SQLITE_OMIT_CHECK
1231         if( pNC->isCheck ){
1232           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1233         }
1234 #endif
1235         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1236         assert( pNC->nRef>=nRef );
1237         if( nRef!=pNC->nRef ){
1238           ExprSetProperty(pExpr, EP_VarSelect);
1239         }
1240       }
1241       break;
1242     }
1243 #ifndef SQLITE_OMIT_CHECK
1244     case TK_VARIABLE: {
1245       if( pNC->isCheck ){
1246         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1247       }
1248       break;
1249     }
1250 #endif
1251   }
1252   return 0;
1253 }
1254 
1255 /*
1256 ** This routine walks an expression tree and resolves references to
1257 ** table columns.  Nodes of the form ID.ID or ID resolve into an
1258 ** index to the table in the table list and a column offset.  The
1259 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
1260 ** value is changed to the index of the referenced table in pTabList
1261 ** plus the "base" value.  The base value will ultimately become the
1262 ** VDBE cursor number for a cursor that is pointing into the referenced
1263 ** table.  The Expr.iColumn value is changed to the index of the column
1264 ** of the referenced table.  The Expr.iColumn value for the special
1265 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
1266 ** alias for ROWID.
1267 **
1268 ** Also resolve function names and check the functions for proper
1269 ** usage.  Make sure all function names are recognized and all functions
1270 ** have the correct number of arguments.  Leave an error message
1271 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
1272 **
1273 ** If the expression contains aggregate functions then set the EP_Agg
1274 ** property on the expression.
1275 */
1276 int sqlite3ExprResolveNames(
1277   NameContext *pNC,       /* Namespace to resolve expressions in. */
1278   Expr *pExpr             /* The expression to be analyzed. */
1279 ){
1280   int savedHasAgg;
1281   if( pExpr==0 ) return 0;
1282   savedHasAgg = pNC->hasAgg;
1283   pNC->hasAgg = 0;
1284   walkExprTree(pExpr, nameResolverStep, pNC);
1285   if( pNC->nErr>0 ){
1286     ExprSetProperty(pExpr, EP_Error);
1287   }
1288   if( pNC->hasAgg ){
1289     ExprSetProperty(pExpr, EP_Agg);
1290   }else if( savedHasAgg ){
1291     pNC->hasAgg = 1;
1292   }
1293   return ExprHasProperty(pExpr, EP_Error);
1294 }
1295 
1296 /*
1297 ** A pointer instance of this structure is used to pass information
1298 ** through walkExprTree into codeSubqueryStep().
1299 */
1300 typedef struct QueryCoder QueryCoder;
1301 struct QueryCoder {
1302   Parse *pParse;       /* The parsing context */
1303   NameContext *pNC;    /* Namespace of first enclosing query */
1304 };
1305 
1306 
1307 /*
1308 ** Generate code for scalar subqueries used as an expression
1309 ** and IN operators.  Examples:
1310 **
1311 **     (SELECT a FROM b)          -- subquery
1312 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1313 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1314 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1315 **
1316 ** The pExpr parameter describes the expression that contains the IN
1317 ** operator or subquery.
1318 */
1319 #ifndef SQLITE_OMIT_SUBQUERY
1320 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
1321   int testAddr = 0;                       /* One-time test address */
1322   Vdbe *v = sqlite3GetVdbe(pParse);
1323   if( v==0 ) return;
1324 
1325   /* This code must be run in its entirety every time it is encountered
1326   ** if any of the following is true:
1327   **
1328   **    *  The right-hand side is a correlated subquery
1329   **    *  The right-hand side is an expression list containing variables
1330   **    *  We are inside a trigger
1331   **
1332   ** If all of the above are false, then we can run this code just once
1333   ** save the results, and reuse the same result on subsequent invocations.
1334   */
1335   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1336     int mem = pParse->nMem++;
1337     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
1338     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
1339     assert( testAddr>0 || sqlite3MallocFailed() );
1340     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
1341   }
1342 
1343   switch( pExpr->op ){
1344     case TK_IN: {
1345       char affinity;
1346       KeyInfo keyInfo;
1347       int addr;        /* Address of OP_OpenEphemeral instruction */
1348 
1349       affinity = sqlite3ExprAffinity(pExpr->pLeft);
1350 
1351       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1352       ** expression it is handled the same way. A virtual table is
1353       ** filled with single-field index keys representing the results
1354       ** from the SELECT or the <exprlist>.
1355       **
1356       ** If the 'x' expression is a column value, or the SELECT...
1357       ** statement returns a column value, then the affinity of that
1358       ** column is used to build the index keys. If both 'x' and the
1359       ** SELECT... statement are columns, then numeric affinity is used
1360       ** if either column has NUMERIC or INTEGER affinity. If neither
1361       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1362       ** is used.
1363       */
1364       pExpr->iTable = pParse->nTab++;
1365       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
1366       memset(&keyInfo, 0, sizeof(keyInfo));
1367       keyInfo.nField = 1;
1368       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
1369 
1370       if( pExpr->pSelect ){
1371         /* Case 1:     expr IN (SELECT ...)
1372         **
1373         ** Generate code to write the results of the select into the temporary
1374         ** table allocated and opened above.
1375         */
1376         int iParm = pExpr->iTable +  (((int)affinity)<<16);
1377         ExprList *pEList;
1378         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1379         sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0);
1380         pEList = pExpr->pSelect->pEList;
1381         if( pEList && pEList->nExpr>0 ){
1382           keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft,
1383               pEList->a[0].pExpr);
1384         }
1385       }else if( pExpr->pList ){
1386         /* Case 2:     expr IN (exprlist)
1387         **
1388 	** For each expression, build an index key from the evaluation and
1389         ** store it in the temporary table. If <expr> is a column, then use
1390         ** that columns affinity when building index keys. If <expr> is not
1391         ** a column, use numeric affinity.
1392         */
1393         int i;
1394         ExprList *pList = pExpr->pList;
1395         struct ExprList_item *pItem;
1396 
1397         if( !affinity ){
1398           affinity = SQLITE_AFF_NONE;
1399         }
1400         keyInfo.aColl[0] = pExpr->pLeft->pColl;
1401 
1402         /* Loop through each expression in <exprlist>. */
1403         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1404           Expr *pE2 = pItem->pExpr;
1405 
1406           /* If the expression is not constant then we will need to
1407           ** disable the test that was generated above that makes sure
1408           ** this code only executes once.  Because for a non-constant
1409           ** expression we need to rerun this code each time.
1410           */
1411           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
1412             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
1413             testAddr = 0;
1414           }
1415 
1416           /* Evaluate the expression and insert it into the temp table */
1417           sqlite3ExprCode(pParse, pE2);
1418           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
1419           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
1420         }
1421       }
1422       sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
1423       break;
1424     }
1425 
1426     case TK_EXISTS:
1427     case TK_SELECT: {
1428       /* This has to be a scalar SELECT.  Generate code to put the
1429       ** value of this select in a memory cell and record the number
1430       ** of the memory cell in iColumn.
1431       */
1432       static const Token one = { (u8*)"1", 0, 1 };
1433       Select *pSel;
1434       int iMem;
1435       int sop;
1436 
1437       pExpr->iColumn = iMem = pParse->nMem++;
1438       pSel = pExpr->pSelect;
1439       if( pExpr->op==TK_SELECT ){
1440         sop = SRT_Mem;
1441         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
1442         VdbeComment((v, "# Init subquery result"));
1443       }else{
1444         sop = SRT_Exists;
1445         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
1446         VdbeComment((v, "# Init EXISTS result"));
1447       }
1448       sqlite3ExprDelete(pSel->pLimit);
1449       pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one);
1450       sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0);
1451       break;
1452     }
1453   }
1454 
1455   if( testAddr ){
1456     sqlite3VdbeJumpHere(v, testAddr);
1457   }
1458   return;
1459 }
1460 #endif /* SQLITE_OMIT_SUBQUERY */
1461 
1462 /*
1463 ** Generate an instruction that will put the integer describe by
1464 ** text z[0..n-1] on the stack.
1465 */
1466 static void codeInteger(Vdbe *v, const char *z, int n){
1467   int i;
1468   if( sqlite3GetInt32(z, &i) ){
1469     sqlite3VdbeAddOp(v, OP_Integer, i, 0);
1470   }else if( sqlite3FitsIn64Bits(z) ){
1471     sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
1472   }else{
1473     sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
1474   }
1475 }
1476 
1477 /*
1478 ** Generate code into the current Vdbe to evaluate the given
1479 ** expression and leave the result on the top of stack.
1480 **
1481 ** This code depends on the fact that certain token values (ex: TK_EQ)
1482 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
1483 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
1484 ** the make process cause these values to align.  Assert()s in the code
1485 ** below verify that the numbers are aligned correctly.
1486 */
1487 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
1488   Vdbe *v = pParse->pVdbe;
1489   int op;
1490   int stackChng = 1;    /* Amount of change to stack depth */
1491 
1492   if( v==0 ) return;
1493   if( pExpr==0 ){
1494     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1495     return;
1496   }
1497   op = pExpr->op;
1498   switch( op ){
1499     case TK_AGG_COLUMN: {
1500       AggInfo *pAggInfo = pExpr->pAggInfo;
1501       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1502       if( !pAggInfo->directMode ){
1503         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
1504         break;
1505       }else if( pAggInfo->useSortingIdx ){
1506         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
1507                               pCol->iSorterColumn);
1508         break;
1509       }
1510       /* Otherwise, fall thru into the TK_COLUMN case */
1511     }
1512     case TK_COLUMN: {
1513       if( pExpr->iTable<0 ){
1514         /* This only happens when coding check constraints */
1515         assert( pParse->ckOffset>0 );
1516         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
1517       }else if( pExpr->iColumn>=0 ){
1518         Table *pTab = pExpr->pTab;
1519         int iCol = pExpr->iColumn;
1520         int op = (pTab && IsVirtual(pTab)) ? OP_VColumn : OP_Column;
1521         sqlite3VdbeAddOp(v, op, pExpr->iTable, iCol);
1522         sqlite3ColumnDefault(v, pTab, iCol);
1523 #ifndef SQLITE_OMIT_FLOATING_POINT
1524         if( pTab && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
1525           sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
1526         }
1527 #endif
1528       }else{
1529         Table *pTab = pExpr->pTab;
1530         int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1531         sqlite3VdbeAddOp(v, op, pExpr->iTable, 0);
1532       }
1533       break;
1534     }
1535     case TK_INTEGER: {
1536       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
1537       break;
1538     }
1539     case TK_FLOAT:
1540     case TK_STRING: {
1541       assert( TK_FLOAT==OP_Real );
1542       assert( TK_STRING==OP_String8 );
1543       sqlite3DequoteExpr(pExpr);
1544       sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
1545       break;
1546     }
1547     case TK_NULL: {
1548       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1549       break;
1550     }
1551 #ifndef SQLITE_OMIT_BLOB_LITERAL
1552     case TK_BLOB: {
1553       int n;
1554       const char *z;
1555       assert( TK_BLOB==OP_HexBlob );
1556       n = pExpr->token.n - 3;
1557       z = (char*)pExpr->token.z + 2;
1558       assert( n>=0 );
1559       if( n==0 ){
1560         z = "";
1561       }
1562       sqlite3VdbeOp3(v, op, 0, 0, z, n);
1563       break;
1564     }
1565 #endif
1566     case TK_VARIABLE: {
1567       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
1568       if( pExpr->token.n>1 ){
1569         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
1570       }
1571       break;
1572     }
1573     case TK_REGISTER: {
1574       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
1575       break;
1576     }
1577 #ifndef SQLITE_OMIT_CAST
1578     case TK_CAST: {
1579       /* Expressions of the form:   CAST(pLeft AS token) */
1580       int aff, to_op;
1581       sqlite3ExprCode(pParse, pExpr->pLeft);
1582       aff = sqlite3AffinityType(&pExpr->token);
1583       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
1584       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
1585       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
1586       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
1587       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
1588       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
1589       sqlite3VdbeAddOp(v, to_op, 0, 0);
1590       stackChng = 0;
1591       break;
1592     }
1593 #endif /* SQLITE_OMIT_CAST */
1594     case TK_LT:
1595     case TK_LE:
1596     case TK_GT:
1597     case TK_GE:
1598     case TK_NE:
1599     case TK_EQ: {
1600       assert( TK_LT==OP_Lt );
1601       assert( TK_LE==OP_Le );
1602       assert( TK_GT==OP_Gt );
1603       assert( TK_GE==OP_Ge );
1604       assert( TK_EQ==OP_Eq );
1605       assert( TK_NE==OP_Ne );
1606       sqlite3ExprCode(pParse, pExpr->pLeft);
1607       sqlite3ExprCode(pParse, pExpr->pRight);
1608       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
1609       stackChng = -1;
1610       break;
1611     }
1612     case TK_AND:
1613     case TK_OR:
1614     case TK_PLUS:
1615     case TK_STAR:
1616     case TK_MINUS:
1617     case TK_REM:
1618     case TK_BITAND:
1619     case TK_BITOR:
1620     case TK_SLASH:
1621     case TK_LSHIFT:
1622     case TK_RSHIFT:
1623     case TK_CONCAT: {
1624       assert( TK_AND==OP_And );
1625       assert( TK_OR==OP_Or );
1626       assert( TK_PLUS==OP_Add );
1627       assert( TK_MINUS==OP_Subtract );
1628       assert( TK_REM==OP_Remainder );
1629       assert( TK_BITAND==OP_BitAnd );
1630       assert( TK_BITOR==OP_BitOr );
1631       assert( TK_SLASH==OP_Divide );
1632       assert( TK_LSHIFT==OP_ShiftLeft );
1633       assert( TK_RSHIFT==OP_ShiftRight );
1634       assert( TK_CONCAT==OP_Concat );
1635       sqlite3ExprCode(pParse, pExpr->pLeft);
1636       sqlite3ExprCode(pParse, pExpr->pRight);
1637       sqlite3VdbeAddOp(v, op, 0, 0);
1638       stackChng = -1;
1639       break;
1640     }
1641     case TK_UMINUS: {
1642       Expr *pLeft = pExpr->pLeft;
1643       assert( pLeft );
1644       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
1645         Token *p = &pLeft->token;
1646         char *z = sqlite3MPrintf("-%.*s", p->n, p->z);
1647         if( pLeft->op==TK_FLOAT ){
1648           sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
1649         }else{
1650           codeInteger(v, z, p->n+1);
1651         }
1652         sqliteFree(z);
1653         break;
1654       }
1655       /* Fall through into TK_NOT */
1656     }
1657     case TK_BITNOT:
1658     case TK_NOT: {
1659       assert( TK_BITNOT==OP_BitNot );
1660       assert( TK_NOT==OP_Not );
1661       sqlite3ExprCode(pParse, pExpr->pLeft);
1662       sqlite3VdbeAddOp(v, op, 0, 0);
1663       stackChng = 0;
1664       break;
1665     }
1666     case TK_ISNULL:
1667     case TK_NOTNULL: {
1668       int dest;
1669       assert( TK_ISNULL==OP_IsNull );
1670       assert( TK_NOTNULL==OP_NotNull );
1671       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1672       sqlite3ExprCode(pParse, pExpr->pLeft);
1673       dest = sqlite3VdbeCurrentAddr(v) + 2;
1674       sqlite3VdbeAddOp(v, op, 1, dest);
1675       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
1676       stackChng = 0;
1677       break;
1678     }
1679     case TK_AGG_FUNCTION: {
1680       AggInfo *pInfo = pExpr->pAggInfo;
1681       if( pInfo==0 ){
1682         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
1683             &pExpr->span);
1684       }else{
1685         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
1686       }
1687       break;
1688     }
1689     case TK_CONST_FUNC:
1690     case TK_FUNCTION: {
1691       ExprList *pList = pExpr->pList;
1692       int nExpr = pList ? pList->nExpr : 0;
1693       FuncDef *pDef;
1694       int nId;
1695       const char *zId;
1696       int constMask = 0;
1697       int i;
1698       u8 enc = ENC(pParse->db);
1699       CollSeq *pColl = 0;
1700       zId = (char*)pExpr->token.z;
1701       nId = pExpr->token.n;
1702       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
1703       assert( pDef!=0 );
1704       nExpr = sqlite3ExprCodeExprList(pParse, pList);
1705 #ifndef SQLITE_OMIT_VIRTUALTABLE
1706       /* Possibly overload the function if the first argument is
1707       ** a virtual table column.
1708       **
1709       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
1710       ** second argument, not the first, as the argument to test to
1711       ** see if it is a column in a virtual table.  This is done because
1712       ** the left operand of infix functions (the operand we want to
1713       ** control overloading) ends up as the second argument to the
1714       ** function.  The expression "A glob B" is equivalent to
1715       ** "glob(B,A).  We want to use the A in "A glob B" to test
1716       ** for function overloading.  But we use the B term in "glob(B,A)".
1717       */
1718       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
1719         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr);
1720       }else if( nExpr>0 ){
1721         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr);
1722       }
1723 #endif
1724       for(i=0; i<nExpr && i<32; i++){
1725         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
1726           constMask |= (1<<i);
1727         }
1728         if( pDef->needCollSeq && !pColl ){
1729           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
1730         }
1731       }
1732       if( pDef->needCollSeq ){
1733         if( !pColl ) pColl = pParse->db->pDfltColl;
1734         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
1735       }
1736       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
1737       stackChng = 1-nExpr;
1738       break;
1739     }
1740 #ifndef SQLITE_OMIT_SUBQUERY
1741     case TK_EXISTS:
1742     case TK_SELECT: {
1743       if( pExpr->iColumn==0 ){
1744         sqlite3CodeSubselect(pParse, pExpr);
1745       }
1746       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
1747       VdbeComment((v, "# load subquery result"));
1748       break;
1749     }
1750     case TK_IN: {
1751       int addr;
1752       char affinity;
1753       int ckOffset = pParse->ckOffset;
1754       sqlite3CodeSubselect(pParse, pExpr);
1755 
1756       /* Figure out the affinity to use to create a key from the results
1757       ** of the expression. affinityStr stores a static string suitable for
1758       ** P3 of OP_MakeRecord.
1759       */
1760       affinity = comparisonAffinity(pExpr);
1761 
1762       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1763       pParse->ckOffset = ckOffset+1;
1764 
1765       /* Code the <expr> from "<expr> IN (...)". The temporary table
1766       ** pExpr->iTable contains the values that make up the (...) set.
1767       */
1768       sqlite3ExprCode(pParse, pExpr->pLeft);
1769       addr = sqlite3VdbeCurrentAddr(v);
1770       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
1771       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
1772       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1773       sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
1774       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
1775       sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
1776       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
1777 
1778       break;
1779     }
1780 #endif
1781     case TK_BETWEEN: {
1782       Expr *pLeft = pExpr->pLeft;
1783       struct ExprList_item *pLItem = pExpr->pList->a;
1784       Expr *pRight = pLItem->pExpr;
1785       sqlite3ExprCode(pParse, pLeft);
1786       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1787       sqlite3ExprCode(pParse, pRight);
1788       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
1789       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
1790       pLItem++;
1791       pRight = pLItem->pExpr;
1792       sqlite3ExprCode(pParse, pRight);
1793       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
1794       sqlite3VdbeAddOp(v, OP_And, 0, 0);
1795       break;
1796     }
1797     case TK_UPLUS:
1798     case TK_AS: {
1799       sqlite3ExprCode(pParse, pExpr->pLeft);
1800       stackChng = 0;
1801       break;
1802     }
1803     case TK_CASE: {
1804       int expr_end_label;
1805       int jumpInst;
1806       int nExpr;
1807       int i;
1808       ExprList *pEList;
1809       struct ExprList_item *aListelem;
1810 
1811       assert(pExpr->pList);
1812       assert((pExpr->pList->nExpr % 2) == 0);
1813       assert(pExpr->pList->nExpr > 0);
1814       pEList = pExpr->pList;
1815       aListelem = pEList->a;
1816       nExpr = pEList->nExpr;
1817       expr_end_label = sqlite3VdbeMakeLabel(v);
1818       if( pExpr->pLeft ){
1819         sqlite3ExprCode(pParse, pExpr->pLeft);
1820       }
1821       for(i=0; i<nExpr; i=i+2){
1822         sqlite3ExprCode(pParse, aListelem[i].pExpr);
1823         if( pExpr->pLeft ){
1824           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
1825           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
1826                                  OP_Ne, 0, 1);
1827           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1828         }else{
1829           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
1830         }
1831         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
1832         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
1833         sqlite3VdbeJumpHere(v, jumpInst);
1834       }
1835       if( pExpr->pLeft ){
1836         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1837       }
1838       if( pExpr->pRight ){
1839         sqlite3ExprCode(pParse, pExpr->pRight);
1840       }else{
1841         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1842       }
1843       sqlite3VdbeResolveLabel(v, expr_end_label);
1844       break;
1845     }
1846 #ifndef SQLITE_OMIT_TRIGGER
1847     case TK_RAISE: {
1848       if( !pParse->trigStack ){
1849         sqlite3ErrorMsg(pParse,
1850                        "RAISE() may only be used within a trigger-program");
1851 	return;
1852       }
1853       if( pExpr->iColumn!=OE_Ignore ){
1854          assert( pExpr->iColumn==OE_Rollback ||
1855                  pExpr->iColumn == OE_Abort ||
1856                  pExpr->iColumn == OE_Fail );
1857          sqlite3DequoteExpr(pExpr);
1858          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
1859                         (char*)pExpr->token.z, pExpr->token.n);
1860       } else {
1861          assert( pExpr->iColumn == OE_Ignore );
1862          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
1863          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
1864          VdbeComment((v, "# raise(IGNORE)"));
1865       }
1866       stackChng = 0;
1867       break;
1868     }
1869 #endif
1870   }
1871 
1872   if( pParse->ckOffset ){
1873     pParse->ckOffset += stackChng;
1874     assert( pParse->ckOffset );
1875   }
1876 }
1877 
1878 #ifndef SQLITE_OMIT_TRIGGER
1879 /*
1880 ** Generate code that evalutes the given expression and leaves the result
1881 ** on the stack.  See also sqlite3ExprCode().
1882 **
1883 ** This routine might also cache the result and modify the pExpr tree
1884 ** so that it will make use of the cached result on subsequent evaluations
1885 ** rather than evaluate the whole expression again.  Trivial expressions are
1886 ** not cached.  If the expression is cached, its result is stored in a
1887 ** memory location.
1888 */
1889 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
1890   Vdbe *v = pParse->pVdbe;
1891   int iMem;
1892   int addr1, addr2;
1893   if( v==0 ) return;
1894   addr1 = sqlite3VdbeCurrentAddr(v);
1895   sqlite3ExprCode(pParse, pExpr);
1896   addr2 = sqlite3VdbeCurrentAddr(v);
1897   if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
1898     iMem = pExpr->iTable = pParse->nMem++;
1899     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
1900     pExpr->op = TK_REGISTER;
1901   }
1902 }
1903 #endif
1904 
1905 /*
1906 ** Generate code that pushes the value of every element of the given
1907 ** expression list onto the stack.
1908 **
1909 ** Return the number of elements pushed onto the stack.
1910 */
1911 int sqlite3ExprCodeExprList(
1912   Parse *pParse,     /* Parsing context */
1913   ExprList *pList    /* The expression list to be coded */
1914 ){
1915   struct ExprList_item *pItem;
1916   int i, n;
1917   if( pList==0 ) return 0;
1918   n = pList->nExpr;
1919   for(pItem=pList->a, i=n; i>0; i--, pItem++){
1920     sqlite3ExprCode(pParse, pItem->pExpr);
1921   }
1922   return n;
1923 }
1924 
1925 /*
1926 ** Generate code for a boolean expression such that a jump is made
1927 ** to the label "dest" if the expression is true but execution
1928 ** continues straight thru if the expression is false.
1929 **
1930 ** If the expression evaluates to NULL (neither true nor false), then
1931 ** take the jump if the jumpIfNull flag is true.
1932 **
1933 ** This code depends on the fact that certain token values (ex: TK_EQ)
1934 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
1935 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
1936 ** the make process cause these values to align.  Assert()s in the code
1937 ** below verify that the numbers are aligned correctly.
1938 */
1939 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
1940   Vdbe *v = pParse->pVdbe;
1941   int op = 0;
1942   int ckOffset = pParse->ckOffset;
1943   if( v==0 || pExpr==0 ) return;
1944   op = pExpr->op;
1945   switch( op ){
1946     case TK_AND: {
1947       int d2 = sqlite3VdbeMakeLabel(v);
1948       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
1949       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
1950       sqlite3VdbeResolveLabel(v, d2);
1951       break;
1952     }
1953     case TK_OR: {
1954       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
1955       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
1956       break;
1957     }
1958     case TK_NOT: {
1959       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
1960       break;
1961     }
1962     case TK_LT:
1963     case TK_LE:
1964     case TK_GT:
1965     case TK_GE:
1966     case TK_NE:
1967     case TK_EQ: {
1968       assert( TK_LT==OP_Lt );
1969       assert( TK_LE==OP_Le );
1970       assert( TK_GT==OP_Gt );
1971       assert( TK_GE==OP_Ge );
1972       assert( TK_EQ==OP_Eq );
1973       assert( TK_NE==OP_Ne );
1974       sqlite3ExprCode(pParse, pExpr->pLeft);
1975       sqlite3ExprCode(pParse, pExpr->pRight);
1976       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
1977       break;
1978     }
1979     case TK_ISNULL:
1980     case TK_NOTNULL: {
1981       assert( TK_ISNULL==OP_IsNull );
1982       assert( TK_NOTNULL==OP_NotNull );
1983       sqlite3ExprCode(pParse, pExpr->pLeft);
1984       sqlite3VdbeAddOp(v, op, 1, dest);
1985       break;
1986     }
1987     case TK_BETWEEN: {
1988       /* The expression "x BETWEEN y AND z" is implemented as:
1989       **
1990       ** 1 IF (x < y) GOTO 3
1991       ** 2 IF (x <= z) GOTO <dest>
1992       ** 3 ...
1993       */
1994       int addr;
1995       Expr *pLeft = pExpr->pLeft;
1996       Expr *pRight = pExpr->pList->a[0].pExpr;
1997       sqlite3ExprCode(pParse, pLeft);
1998       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1999       sqlite3ExprCode(pParse, pRight);
2000       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
2001 
2002       pRight = pExpr->pList->a[1].pExpr;
2003       sqlite3ExprCode(pParse, pRight);
2004       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
2005 
2006       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
2007       sqlite3VdbeJumpHere(v, addr);
2008       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2009       break;
2010     }
2011     default: {
2012       sqlite3ExprCode(pParse, pExpr);
2013       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
2014       break;
2015     }
2016   }
2017   pParse->ckOffset = ckOffset;
2018 }
2019 
2020 /*
2021 ** Generate code for a boolean expression such that a jump is made
2022 ** to the label "dest" if the expression is false but execution
2023 ** continues straight thru if the expression is true.
2024 **
2025 ** If the expression evaluates to NULL (neither true nor false) then
2026 ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
2027 */
2028 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2029   Vdbe *v = pParse->pVdbe;
2030   int op = 0;
2031   int ckOffset = pParse->ckOffset;
2032   if( v==0 || pExpr==0 ) return;
2033 
2034   /* The value of pExpr->op and op are related as follows:
2035   **
2036   **       pExpr->op            op
2037   **       ---------          ----------
2038   **       TK_ISNULL          OP_NotNull
2039   **       TK_NOTNULL         OP_IsNull
2040   **       TK_NE              OP_Eq
2041   **       TK_EQ              OP_Ne
2042   **       TK_GT              OP_Le
2043   **       TK_LE              OP_Gt
2044   **       TK_GE              OP_Lt
2045   **       TK_LT              OP_Ge
2046   **
2047   ** For other values of pExpr->op, op is undefined and unused.
2048   ** The value of TK_ and OP_ constants are arranged such that we
2049   ** can compute the mapping above using the following expression.
2050   ** Assert()s verify that the computation is correct.
2051   */
2052   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2053 
2054   /* Verify correct alignment of TK_ and OP_ constants
2055   */
2056   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2057   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2058   assert( pExpr->op!=TK_NE || op==OP_Eq );
2059   assert( pExpr->op!=TK_EQ || op==OP_Ne );
2060   assert( pExpr->op!=TK_LT || op==OP_Ge );
2061   assert( pExpr->op!=TK_LE || op==OP_Gt );
2062   assert( pExpr->op!=TK_GT || op==OP_Le );
2063   assert( pExpr->op!=TK_GE || op==OP_Lt );
2064 
2065   switch( pExpr->op ){
2066     case TK_AND: {
2067       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2068       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2069       break;
2070     }
2071     case TK_OR: {
2072       int d2 = sqlite3VdbeMakeLabel(v);
2073       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
2074       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2075       sqlite3VdbeResolveLabel(v, d2);
2076       break;
2077     }
2078     case TK_NOT: {
2079       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2080       break;
2081     }
2082     case TK_LT:
2083     case TK_LE:
2084     case TK_GT:
2085     case TK_GE:
2086     case TK_NE:
2087     case TK_EQ: {
2088       sqlite3ExprCode(pParse, pExpr->pLeft);
2089       sqlite3ExprCode(pParse, pExpr->pRight);
2090       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2091       break;
2092     }
2093     case TK_ISNULL:
2094     case TK_NOTNULL: {
2095       sqlite3ExprCode(pParse, pExpr->pLeft);
2096       sqlite3VdbeAddOp(v, op, 1, dest);
2097       break;
2098     }
2099     case TK_BETWEEN: {
2100       /* The expression is "x BETWEEN y AND z". It is implemented as:
2101       **
2102       ** 1 IF (x >= y) GOTO 3
2103       ** 2 GOTO <dest>
2104       ** 3 IF (x > z) GOTO <dest>
2105       */
2106       int addr;
2107       Expr *pLeft = pExpr->pLeft;
2108       Expr *pRight = pExpr->pList->a[0].pExpr;
2109       sqlite3ExprCode(pParse, pLeft);
2110       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2111       sqlite3ExprCode(pParse, pRight);
2112       addr = sqlite3VdbeCurrentAddr(v);
2113       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
2114 
2115       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2116       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
2117       pRight = pExpr->pList->a[1].pExpr;
2118       sqlite3ExprCode(pParse, pRight);
2119       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
2120       break;
2121     }
2122     default: {
2123       sqlite3ExprCode(pParse, pExpr);
2124       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
2125       break;
2126     }
2127   }
2128   pParse->ckOffset = ckOffset;
2129 }
2130 
2131 /*
2132 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
2133 ** if they are identical and return FALSE if they differ in any way.
2134 */
2135 int sqlite3ExprCompare(Expr *pA, Expr *pB){
2136   int i;
2137   if( pA==0||pB==0 ){
2138     return pB==pA;
2139   }
2140   if( pA->op!=pB->op ) return 0;
2141   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
2142   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
2143   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
2144   if( pA->pList ){
2145     if( pB->pList==0 ) return 0;
2146     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
2147     for(i=0; i<pA->pList->nExpr; i++){
2148       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
2149         return 0;
2150       }
2151     }
2152   }else if( pB->pList ){
2153     return 0;
2154   }
2155   if( pA->pSelect || pB->pSelect ) return 0;
2156   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
2157   if( pA->token.z ){
2158     if( pB->token.z==0 ) return 0;
2159     if( pB->token.n!=pA->token.n ) return 0;
2160     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
2161       return 0;
2162     }
2163   }
2164   return 1;
2165 }
2166 
2167 
2168 /*
2169 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
2170 ** the new element.  Return a negative number if malloc fails.
2171 */
2172 static int addAggInfoColumn(AggInfo *pInfo){
2173   int i;
2174   i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3);
2175   if( i<0 ){
2176     return -1;
2177   }
2178   return i;
2179 }
2180 
2181 /*
2182 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
2183 ** the new element.  Return a negative number if malloc fails.
2184 */
2185 static int addAggInfoFunc(AggInfo *pInfo){
2186   int i;
2187   i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2);
2188   if( i<0 ){
2189     return -1;
2190   }
2191   return i;
2192 }
2193 
2194 /*
2195 ** This is an xFunc for walkExprTree() used to implement
2196 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
2197 ** for additional information.
2198 **
2199 ** This routine analyzes the aggregate function at pExpr.
2200 */
2201 static int analyzeAggregate(void *pArg, Expr *pExpr){
2202   int i;
2203   NameContext *pNC = (NameContext *)pArg;
2204   Parse *pParse = pNC->pParse;
2205   SrcList *pSrcList = pNC->pSrcList;
2206   AggInfo *pAggInfo = pNC->pAggInfo;
2207 
2208 
2209   switch( pExpr->op ){
2210     case TK_COLUMN: {
2211       /* Check to see if the column is in one of the tables in the FROM
2212       ** clause of the aggregate query */
2213       if( pSrcList ){
2214         struct SrcList_item *pItem = pSrcList->a;
2215         for(i=0; i<pSrcList->nSrc; i++, pItem++){
2216           struct AggInfo_col *pCol;
2217           if( pExpr->iTable==pItem->iCursor ){
2218             /* If we reach this point, it means that pExpr refers to a table
2219             ** that is in the FROM clause of the aggregate query.
2220             **
2221             ** Make an entry for the column in pAggInfo->aCol[] if there
2222             ** is not an entry there already.
2223             */
2224             pCol = pAggInfo->aCol;
2225             for(i=0; i<pAggInfo->nColumn; i++, pCol++){
2226               if( pCol->iTable==pExpr->iTable &&
2227                   pCol->iColumn==pExpr->iColumn ){
2228                 break;
2229               }
2230             }
2231             if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){
2232               pCol = &pAggInfo->aCol[i];
2233               pCol->iTable = pExpr->iTable;
2234               pCol->iColumn = pExpr->iColumn;
2235               pCol->iMem = pParse->nMem++;
2236               pCol->iSorterColumn = -1;
2237               pCol->pExpr = pExpr;
2238               if( pAggInfo->pGroupBy ){
2239                 int j, n;
2240                 ExprList *pGB = pAggInfo->pGroupBy;
2241                 struct ExprList_item *pTerm = pGB->a;
2242                 n = pGB->nExpr;
2243                 for(j=0; j<n; j++, pTerm++){
2244                   Expr *pE = pTerm->pExpr;
2245                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
2246                       pE->iColumn==pExpr->iColumn ){
2247                     pCol->iSorterColumn = j;
2248                     break;
2249                   }
2250                 }
2251               }
2252               if( pCol->iSorterColumn<0 ){
2253                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
2254               }
2255             }
2256             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
2257             ** because it was there before or because we just created it).
2258             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
2259             ** pAggInfo->aCol[] entry.
2260             */
2261             pExpr->pAggInfo = pAggInfo;
2262             pExpr->op = TK_AGG_COLUMN;
2263             pExpr->iAgg = i;
2264             break;
2265           } /* endif pExpr->iTable==pItem->iCursor */
2266         } /* end loop over pSrcList */
2267       }
2268       return 1;
2269     }
2270     case TK_AGG_FUNCTION: {
2271       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
2272       ** to be ignored */
2273       if( pNC->nDepth==0 ){
2274         /* Check to see if pExpr is a duplicate of another aggregate
2275         ** function that is already in the pAggInfo structure
2276         */
2277         struct AggInfo_func *pItem = pAggInfo->aFunc;
2278         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
2279           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
2280             break;
2281           }
2282         }
2283         if( i>=pAggInfo->nFunc ){
2284           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
2285           */
2286           u8 enc = ENC(pParse->db);
2287           i = addAggInfoFunc(pAggInfo);
2288           if( i>=0 ){
2289             pItem = &pAggInfo->aFunc[i];
2290             pItem->pExpr = pExpr;
2291             pItem->iMem = pParse->nMem++;
2292             pItem->pFunc = sqlite3FindFunction(pParse->db,
2293                    (char*)pExpr->token.z, pExpr->token.n,
2294                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
2295             if( pExpr->flags & EP_Distinct ){
2296               pItem->iDistinct = pParse->nTab++;
2297             }else{
2298               pItem->iDistinct = -1;
2299             }
2300           }
2301         }
2302         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
2303         */
2304         pExpr->iAgg = i;
2305         pExpr->pAggInfo = pAggInfo;
2306         return 1;
2307       }
2308     }
2309   }
2310 
2311   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
2312   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
2313   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
2314   */
2315   if( pExpr->pSelect ){
2316     pNC->nDepth++;
2317     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
2318     pNC->nDepth--;
2319   }
2320   return 0;
2321 }
2322 
2323 /*
2324 ** Analyze the given expression looking for aggregate functions and
2325 ** for variables that need to be added to the pParse->aAgg[] array.
2326 ** Make additional entries to the pParse->aAgg[] array as necessary.
2327 **
2328 ** This routine should only be called after the expression has been
2329 ** analyzed by sqlite3ExprResolveNames().
2330 **
2331 ** If errors are seen, leave an error message in zErrMsg and return
2332 ** the number of errors.
2333 */
2334 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
2335   int nErr = pNC->pParse->nErr;
2336   walkExprTree(pExpr, analyzeAggregate, pNC);
2337   return pNC->pParse->nErr - nErr;
2338 }
2339 
2340 /*
2341 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
2342 ** expression list.  Return the number of errors.
2343 **
2344 ** If an error is found, the analysis is cut short.
2345 */
2346 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
2347   struct ExprList_item *pItem;
2348   int i;
2349   int nErr = 0;
2350   if( pList ){
2351     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
2352       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
2353     }
2354   }
2355   return nErr;
2356 }
2357