1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 if( pExpr->flags & EP_Generic ) return 0; 48 while( ExprHasProperty(pExpr, EP_Skip) ){ 49 assert( pExpr->op==TK_COLLATE ); 50 pExpr = pExpr->pLeft; 51 assert( pExpr!=0 ); 52 } 53 op = pExpr->op; 54 if( op==TK_SELECT ){ 55 assert( pExpr->flags&EP_xIsSelect ); 56 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 57 } 58 if( op==TK_REGISTER ) op = pExpr->op2; 59 #ifndef SQLITE_OMIT_CAST 60 if( op==TK_CAST ){ 61 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 62 return sqlite3AffinityType(pExpr->u.zToken, 0); 63 } 64 #endif 65 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 66 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 67 } 68 if( op==TK_SELECT_COLUMN ){ 69 assert( pExpr->pLeft->flags&EP_xIsSelect ); 70 return sqlite3ExprAffinity( 71 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 72 ); 73 } 74 return pExpr->affExpr; 75 } 76 77 /* 78 ** Set the collating sequence for expression pExpr to be the collating 79 ** sequence named by pToken. Return a pointer to a new Expr node that 80 ** implements the COLLATE operator. 81 ** 82 ** If a memory allocation error occurs, that fact is recorded in pParse->db 83 ** and the pExpr parameter is returned unchanged. 84 */ 85 Expr *sqlite3ExprAddCollateToken( 86 Parse *pParse, /* Parsing context */ 87 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 88 const Token *pCollName, /* Name of collating sequence */ 89 int dequote /* True to dequote pCollName */ 90 ){ 91 if( pCollName->n>0 ){ 92 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 93 if( pNew ){ 94 pNew->pLeft = pExpr; 95 pNew->flags |= EP_Collate|EP_Skip; 96 pExpr = pNew; 97 } 98 } 99 return pExpr; 100 } 101 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 102 Token s; 103 assert( zC!=0 ); 104 sqlite3TokenInit(&s, (char*)zC); 105 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 106 } 107 108 /* 109 ** Skip over any TK_COLLATE operators and any unlikely() 110 ** or likelihood() function at the root of an expression. 111 */ 112 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 113 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 114 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 115 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 116 assert( pExpr->x.pList->nExpr>0 ); 117 assert( pExpr->op==TK_FUNCTION ); 118 pExpr = pExpr->x.pList->a[0].pExpr; 119 }else{ 120 assert( pExpr->op==TK_COLLATE ); 121 pExpr = pExpr->pLeft; 122 } 123 } 124 return pExpr; 125 } 126 127 /* 128 ** Return the collation sequence for the expression pExpr. If 129 ** there is no defined collating sequence, return NULL. 130 ** 131 ** See also: sqlite3ExprNNCollSeq() 132 ** 133 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 134 ** default collation if pExpr has no defined collation. 135 ** 136 ** The collating sequence might be determined by a COLLATE operator 137 ** or by the presence of a column with a defined collating sequence. 138 ** COLLATE operators take first precedence. Left operands take 139 ** precedence over right operands. 140 */ 141 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 142 sqlite3 *db = pParse->db; 143 CollSeq *pColl = 0; 144 Expr *p = pExpr; 145 while( p ){ 146 int op = p->op; 147 if( p->flags & EP_Generic ) break; 148 if( op==TK_REGISTER ) op = p->op2; 149 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 150 && p->y.pTab!=0 151 ){ 152 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 153 ** a TK_COLUMN but was previously evaluated and cached in a register */ 154 int j = p->iColumn; 155 if( j>=0 ){ 156 const char *zColl = p->y.pTab->aCol[j].zColl; 157 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 158 } 159 break; 160 } 161 if( op==TK_CAST || op==TK_UPLUS ){ 162 p = p->pLeft; 163 continue; 164 } 165 if( op==TK_COLLATE ){ 166 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 167 break; 168 } 169 if( p->flags & EP_Collate ){ 170 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 171 p = p->pLeft; 172 }else{ 173 Expr *pNext = p->pRight; 174 /* The Expr.x union is never used at the same time as Expr.pRight */ 175 assert( p->x.pList==0 || p->pRight==0 ); 176 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 177 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 178 ** least one EP_Collate. Thus the following two ALWAYS. */ 179 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 180 int i; 181 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 182 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 183 pNext = p->x.pList->a[i].pExpr; 184 break; 185 } 186 } 187 } 188 p = pNext; 189 } 190 }else{ 191 break; 192 } 193 } 194 if( sqlite3CheckCollSeq(pParse, pColl) ){ 195 pColl = 0; 196 } 197 return pColl; 198 } 199 200 /* 201 ** Return the collation sequence for the expression pExpr. If 202 ** there is no defined collating sequence, return a pointer to the 203 ** defautl collation sequence. 204 ** 205 ** See also: sqlite3ExprCollSeq() 206 ** 207 ** The sqlite3ExprCollSeq() routine works the same except that it 208 ** returns NULL if there is no defined collation. 209 */ 210 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 211 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 212 if( p==0 ) p = pParse->db->pDfltColl; 213 assert( p!=0 ); 214 return p; 215 } 216 217 /* 218 ** Return TRUE if the two expressions have equivalent collating sequences. 219 */ 220 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 221 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 222 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 223 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 224 } 225 226 /* 227 ** pExpr is an operand of a comparison operator. aff2 is the 228 ** type affinity of the other operand. This routine returns the 229 ** type affinity that should be used for the comparison operator. 230 */ 231 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 232 char aff1 = sqlite3ExprAffinity(pExpr); 233 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 234 /* Both sides of the comparison are columns. If one has numeric 235 ** affinity, use that. Otherwise use no affinity. 236 */ 237 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 238 return SQLITE_AFF_NUMERIC; 239 }else{ 240 return SQLITE_AFF_BLOB; 241 } 242 }else{ 243 /* One side is a column, the other is not. Use the columns affinity. */ 244 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 245 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 246 } 247 } 248 249 /* 250 ** pExpr is a comparison operator. Return the type affinity that should 251 ** be applied to both operands prior to doing the comparison. 252 */ 253 static char comparisonAffinity(Expr *pExpr){ 254 char aff; 255 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 256 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 257 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 258 assert( pExpr->pLeft ); 259 aff = sqlite3ExprAffinity(pExpr->pLeft); 260 if( pExpr->pRight ){ 261 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 262 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 263 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 264 }else if( aff==0 ){ 265 aff = SQLITE_AFF_BLOB; 266 } 267 return aff; 268 } 269 270 /* 271 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 272 ** idx_affinity is the affinity of an indexed column. Return true 273 ** if the index with affinity idx_affinity may be used to implement 274 ** the comparison in pExpr. 275 */ 276 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 277 char aff = comparisonAffinity(pExpr); 278 if( aff<SQLITE_AFF_TEXT ){ 279 return 1; 280 } 281 if( aff==SQLITE_AFF_TEXT ){ 282 return idx_affinity==SQLITE_AFF_TEXT; 283 } 284 return sqlite3IsNumericAffinity(idx_affinity); 285 } 286 287 /* 288 ** Return the P5 value that should be used for a binary comparison 289 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 290 */ 291 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 292 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 293 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 294 return aff; 295 } 296 297 /* 298 ** Return a pointer to the collation sequence that should be used by 299 ** a binary comparison operator comparing pLeft and pRight. 300 ** 301 ** If the left hand expression has a collating sequence type, then it is 302 ** used. Otherwise the collation sequence for the right hand expression 303 ** is used, or the default (BINARY) if neither expression has a collating 304 ** type. 305 ** 306 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 307 ** it is not considered. 308 */ 309 CollSeq *sqlite3BinaryCompareCollSeq( 310 Parse *pParse, 311 Expr *pLeft, 312 Expr *pRight 313 ){ 314 CollSeq *pColl; 315 assert( pLeft ); 316 if( pLeft->flags & EP_Collate ){ 317 pColl = sqlite3ExprCollSeq(pParse, pLeft); 318 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 319 pColl = sqlite3ExprCollSeq(pParse, pRight); 320 }else{ 321 pColl = sqlite3ExprCollSeq(pParse, pLeft); 322 if( !pColl ){ 323 pColl = sqlite3ExprCollSeq(pParse, pRight); 324 } 325 } 326 return pColl; 327 } 328 329 /* 330 ** Generate code for a comparison operator. 331 */ 332 static int codeCompare( 333 Parse *pParse, /* The parsing (and code generating) context */ 334 Expr *pLeft, /* The left operand */ 335 Expr *pRight, /* The right operand */ 336 int opcode, /* The comparison opcode */ 337 int in1, int in2, /* Register holding operands */ 338 int dest, /* Jump here if true. */ 339 int jumpIfNull /* If true, jump if either operand is NULL */ 340 ){ 341 int p5; 342 int addr; 343 CollSeq *p4; 344 345 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 346 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 347 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 348 (void*)p4, P4_COLLSEQ); 349 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 350 return addr; 351 } 352 353 /* 354 ** Return true if expression pExpr is a vector, or false otherwise. 355 ** 356 ** A vector is defined as any expression that results in two or more 357 ** columns of result. Every TK_VECTOR node is an vector because the 358 ** parser will not generate a TK_VECTOR with fewer than two entries. 359 ** But a TK_SELECT might be either a vector or a scalar. It is only 360 ** considered a vector if it has two or more result columns. 361 */ 362 int sqlite3ExprIsVector(Expr *pExpr){ 363 return sqlite3ExprVectorSize(pExpr)>1; 364 } 365 366 /* 367 ** If the expression passed as the only argument is of type TK_VECTOR 368 ** return the number of expressions in the vector. Or, if the expression 369 ** is a sub-select, return the number of columns in the sub-select. For 370 ** any other type of expression, return 1. 371 */ 372 int sqlite3ExprVectorSize(Expr *pExpr){ 373 u8 op = pExpr->op; 374 if( op==TK_REGISTER ) op = pExpr->op2; 375 if( op==TK_VECTOR ){ 376 return pExpr->x.pList->nExpr; 377 }else if( op==TK_SELECT ){ 378 return pExpr->x.pSelect->pEList->nExpr; 379 }else{ 380 return 1; 381 } 382 } 383 384 /* 385 ** Return a pointer to a subexpression of pVector that is the i-th 386 ** column of the vector (numbered starting with 0). The caller must 387 ** ensure that i is within range. 388 ** 389 ** If pVector is really a scalar (and "scalar" here includes subqueries 390 ** that return a single column!) then return pVector unmodified. 391 ** 392 ** pVector retains ownership of the returned subexpression. 393 ** 394 ** If the vector is a (SELECT ...) then the expression returned is 395 ** just the expression for the i-th term of the result set, and may 396 ** not be ready for evaluation because the table cursor has not yet 397 ** been positioned. 398 */ 399 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 400 assert( i<sqlite3ExprVectorSize(pVector) ); 401 if( sqlite3ExprIsVector(pVector) ){ 402 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 403 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 404 return pVector->x.pSelect->pEList->a[i].pExpr; 405 }else{ 406 return pVector->x.pList->a[i].pExpr; 407 } 408 } 409 return pVector; 410 } 411 412 /* 413 ** Compute and return a new Expr object which when passed to 414 ** sqlite3ExprCode() will generate all necessary code to compute 415 ** the iField-th column of the vector expression pVector. 416 ** 417 ** It is ok for pVector to be a scalar (as long as iField==0). 418 ** In that case, this routine works like sqlite3ExprDup(). 419 ** 420 ** The caller owns the returned Expr object and is responsible for 421 ** ensuring that the returned value eventually gets freed. 422 ** 423 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 424 ** then the returned object will reference pVector and so pVector must remain 425 ** valid for the life of the returned object. If pVector is a TK_VECTOR 426 ** or a scalar expression, then it can be deleted as soon as this routine 427 ** returns. 428 ** 429 ** A trick to cause a TK_SELECT pVector to be deleted together with 430 ** the returned Expr object is to attach the pVector to the pRight field 431 ** of the returned TK_SELECT_COLUMN Expr object. 432 */ 433 Expr *sqlite3ExprForVectorField( 434 Parse *pParse, /* Parsing context */ 435 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 436 int iField /* Which column of the vector to return */ 437 ){ 438 Expr *pRet; 439 if( pVector->op==TK_SELECT ){ 440 assert( pVector->flags & EP_xIsSelect ); 441 /* The TK_SELECT_COLUMN Expr node: 442 ** 443 ** pLeft: pVector containing TK_SELECT. Not deleted. 444 ** pRight: not used. But recursively deleted. 445 ** iColumn: Index of a column in pVector 446 ** iTable: 0 or the number of columns on the LHS of an assignment 447 ** pLeft->iTable: First in an array of register holding result, or 0 448 ** if the result is not yet computed. 449 ** 450 ** sqlite3ExprDelete() specifically skips the recursive delete of 451 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 452 ** can be attached to pRight to cause this node to take ownership of 453 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 454 ** with the same pLeft pointer to the pVector, but only one of them 455 ** will own the pVector. 456 */ 457 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 458 if( pRet ){ 459 pRet->iColumn = iField; 460 pRet->pLeft = pVector; 461 } 462 assert( pRet==0 || pRet->iTable==0 ); 463 }else{ 464 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 465 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 466 sqlite3RenameTokenRemap(pParse, pRet, pVector); 467 } 468 return pRet; 469 } 470 471 /* 472 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 473 ** it. Return the register in which the result is stored (or, if the 474 ** sub-select returns more than one column, the first in an array 475 ** of registers in which the result is stored). 476 ** 477 ** If pExpr is not a TK_SELECT expression, return 0. 478 */ 479 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 480 int reg = 0; 481 #ifndef SQLITE_OMIT_SUBQUERY 482 if( pExpr->op==TK_SELECT ){ 483 reg = sqlite3CodeSubselect(pParse, pExpr); 484 } 485 #endif 486 return reg; 487 } 488 489 /* 490 ** Argument pVector points to a vector expression - either a TK_VECTOR 491 ** or TK_SELECT that returns more than one column. This function returns 492 ** the register number of a register that contains the value of 493 ** element iField of the vector. 494 ** 495 ** If pVector is a TK_SELECT expression, then code for it must have 496 ** already been generated using the exprCodeSubselect() routine. In this 497 ** case parameter regSelect should be the first in an array of registers 498 ** containing the results of the sub-select. 499 ** 500 ** If pVector is of type TK_VECTOR, then code for the requested field 501 ** is generated. In this case (*pRegFree) may be set to the number of 502 ** a temporary register to be freed by the caller before returning. 503 ** 504 ** Before returning, output parameter (*ppExpr) is set to point to the 505 ** Expr object corresponding to element iElem of the vector. 506 */ 507 static int exprVectorRegister( 508 Parse *pParse, /* Parse context */ 509 Expr *pVector, /* Vector to extract element from */ 510 int iField, /* Field to extract from pVector */ 511 int regSelect, /* First in array of registers */ 512 Expr **ppExpr, /* OUT: Expression element */ 513 int *pRegFree /* OUT: Temp register to free */ 514 ){ 515 u8 op = pVector->op; 516 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 517 if( op==TK_REGISTER ){ 518 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 519 return pVector->iTable+iField; 520 } 521 if( op==TK_SELECT ){ 522 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 523 return regSelect+iField; 524 } 525 *ppExpr = pVector->x.pList->a[iField].pExpr; 526 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 527 } 528 529 /* 530 ** Expression pExpr is a comparison between two vector values. Compute 531 ** the result of the comparison (1, 0, or NULL) and write that 532 ** result into register dest. 533 ** 534 ** The caller must satisfy the following preconditions: 535 ** 536 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 537 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 538 ** otherwise: op==pExpr->op and p5==0 539 */ 540 static void codeVectorCompare( 541 Parse *pParse, /* Code generator context */ 542 Expr *pExpr, /* The comparison operation */ 543 int dest, /* Write results into this register */ 544 u8 op, /* Comparison operator */ 545 u8 p5 /* SQLITE_NULLEQ or zero */ 546 ){ 547 Vdbe *v = pParse->pVdbe; 548 Expr *pLeft = pExpr->pLeft; 549 Expr *pRight = pExpr->pRight; 550 int nLeft = sqlite3ExprVectorSize(pLeft); 551 int i; 552 int regLeft = 0; 553 int regRight = 0; 554 u8 opx = op; 555 int addrDone = sqlite3VdbeMakeLabel(pParse); 556 557 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 558 sqlite3ErrorMsg(pParse, "row value misused"); 559 return; 560 } 561 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 562 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 563 || pExpr->op==TK_LT || pExpr->op==TK_GT 564 || pExpr->op==TK_LE || pExpr->op==TK_GE 565 ); 566 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 567 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 568 assert( p5==0 || pExpr->op!=op ); 569 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 570 571 p5 |= SQLITE_STOREP2; 572 if( opx==TK_LE ) opx = TK_LT; 573 if( opx==TK_GE ) opx = TK_GT; 574 575 regLeft = exprCodeSubselect(pParse, pLeft); 576 regRight = exprCodeSubselect(pParse, pRight); 577 578 for(i=0; 1 /*Loop exits by "break"*/; i++){ 579 int regFree1 = 0, regFree2 = 0; 580 Expr *pL, *pR; 581 int r1, r2; 582 assert( i>=0 && i<nLeft ); 583 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 584 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 585 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 586 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 587 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 588 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 589 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 590 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 591 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 592 sqlite3ReleaseTempReg(pParse, regFree1); 593 sqlite3ReleaseTempReg(pParse, regFree2); 594 if( i==nLeft-1 ){ 595 break; 596 } 597 if( opx==TK_EQ ){ 598 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 599 p5 |= SQLITE_KEEPNULL; 600 }else if( opx==TK_NE ){ 601 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else{ 604 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 605 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 606 VdbeCoverageIf(v, op==TK_LT); 607 VdbeCoverageIf(v, op==TK_GT); 608 VdbeCoverageIf(v, op==TK_LE); 609 VdbeCoverageIf(v, op==TK_GE); 610 if( i==nLeft-2 ) opx = op; 611 } 612 } 613 sqlite3VdbeResolveLabel(v, addrDone); 614 } 615 616 #if SQLITE_MAX_EXPR_DEPTH>0 617 /* 618 ** Check that argument nHeight is less than or equal to the maximum 619 ** expression depth allowed. If it is not, leave an error message in 620 ** pParse. 621 */ 622 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 623 int rc = SQLITE_OK; 624 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 625 if( nHeight>mxHeight ){ 626 sqlite3ErrorMsg(pParse, 627 "Expression tree is too large (maximum depth %d)", mxHeight 628 ); 629 rc = SQLITE_ERROR; 630 } 631 return rc; 632 } 633 634 /* The following three functions, heightOfExpr(), heightOfExprList() 635 ** and heightOfSelect(), are used to determine the maximum height 636 ** of any expression tree referenced by the structure passed as the 637 ** first argument. 638 ** 639 ** If this maximum height is greater than the current value pointed 640 ** to by pnHeight, the second parameter, then set *pnHeight to that 641 ** value. 642 */ 643 static void heightOfExpr(Expr *p, int *pnHeight){ 644 if( p ){ 645 if( p->nHeight>*pnHeight ){ 646 *pnHeight = p->nHeight; 647 } 648 } 649 } 650 static void heightOfExprList(ExprList *p, int *pnHeight){ 651 if( p ){ 652 int i; 653 for(i=0; i<p->nExpr; i++){ 654 heightOfExpr(p->a[i].pExpr, pnHeight); 655 } 656 } 657 } 658 static void heightOfSelect(Select *pSelect, int *pnHeight){ 659 Select *p; 660 for(p=pSelect; p; p=p->pPrior){ 661 heightOfExpr(p->pWhere, pnHeight); 662 heightOfExpr(p->pHaving, pnHeight); 663 heightOfExpr(p->pLimit, pnHeight); 664 heightOfExprList(p->pEList, pnHeight); 665 heightOfExprList(p->pGroupBy, pnHeight); 666 heightOfExprList(p->pOrderBy, pnHeight); 667 } 668 } 669 670 /* 671 ** Set the Expr.nHeight variable in the structure passed as an 672 ** argument. An expression with no children, Expr.pList or 673 ** Expr.pSelect member has a height of 1. Any other expression 674 ** has a height equal to the maximum height of any other 675 ** referenced Expr plus one. 676 ** 677 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 678 ** if appropriate. 679 */ 680 static void exprSetHeight(Expr *p){ 681 int nHeight = 0; 682 heightOfExpr(p->pLeft, &nHeight); 683 heightOfExpr(p->pRight, &nHeight); 684 if( ExprHasProperty(p, EP_xIsSelect) ){ 685 heightOfSelect(p->x.pSelect, &nHeight); 686 }else if( p->x.pList ){ 687 heightOfExprList(p->x.pList, &nHeight); 688 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 689 } 690 p->nHeight = nHeight + 1; 691 } 692 693 /* 694 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 695 ** the height is greater than the maximum allowed expression depth, 696 ** leave an error in pParse. 697 ** 698 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 699 ** Expr.flags. 700 */ 701 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 702 if( pParse->nErr ) return; 703 exprSetHeight(p); 704 sqlite3ExprCheckHeight(pParse, p->nHeight); 705 } 706 707 /* 708 ** Return the maximum height of any expression tree referenced 709 ** by the select statement passed as an argument. 710 */ 711 int sqlite3SelectExprHeight(Select *p){ 712 int nHeight = 0; 713 heightOfSelect(p, &nHeight); 714 return nHeight; 715 } 716 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 717 /* 718 ** Propagate all EP_Propagate flags from the Expr.x.pList into 719 ** Expr.flags. 720 */ 721 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 722 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 723 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 724 } 725 } 726 #define exprSetHeight(y) 727 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 728 729 /* 730 ** This routine is the core allocator for Expr nodes. 731 ** 732 ** Construct a new expression node and return a pointer to it. Memory 733 ** for this node and for the pToken argument is a single allocation 734 ** obtained from sqlite3DbMalloc(). The calling function 735 ** is responsible for making sure the node eventually gets freed. 736 ** 737 ** If dequote is true, then the token (if it exists) is dequoted. 738 ** If dequote is false, no dequoting is performed. The deQuote 739 ** parameter is ignored if pToken is NULL or if the token does not 740 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 741 ** then the EP_DblQuoted flag is set on the expression node. 742 ** 743 ** Special case: If op==TK_INTEGER and pToken points to a string that 744 ** can be translated into a 32-bit integer, then the token is not 745 ** stored in u.zToken. Instead, the integer values is written 746 ** into u.iValue and the EP_IntValue flag is set. No extra storage 747 ** is allocated to hold the integer text and the dequote flag is ignored. 748 */ 749 Expr *sqlite3ExprAlloc( 750 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 751 int op, /* Expression opcode */ 752 const Token *pToken, /* Token argument. Might be NULL */ 753 int dequote /* True to dequote */ 754 ){ 755 Expr *pNew; 756 int nExtra = 0; 757 int iValue = 0; 758 759 assert( db!=0 ); 760 if( pToken ){ 761 if( op!=TK_INTEGER || pToken->z==0 762 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 763 nExtra = pToken->n+1; 764 assert( iValue>=0 ); 765 } 766 } 767 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 768 if( pNew ){ 769 memset(pNew, 0, sizeof(Expr)); 770 pNew->op = (u8)op; 771 pNew->iAgg = -1; 772 if( pToken ){ 773 if( nExtra==0 ){ 774 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 775 pNew->u.iValue = iValue; 776 }else{ 777 pNew->u.zToken = (char*)&pNew[1]; 778 assert( pToken->z!=0 || pToken->n==0 ); 779 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 780 pNew->u.zToken[pToken->n] = 0; 781 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 782 sqlite3DequoteExpr(pNew); 783 } 784 } 785 } 786 #if SQLITE_MAX_EXPR_DEPTH>0 787 pNew->nHeight = 1; 788 #endif 789 } 790 return pNew; 791 } 792 793 /* 794 ** Allocate a new expression node from a zero-terminated token that has 795 ** already been dequoted. 796 */ 797 Expr *sqlite3Expr( 798 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 799 int op, /* Expression opcode */ 800 const char *zToken /* Token argument. Might be NULL */ 801 ){ 802 Token x; 803 x.z = zToken; 804 x.n = sqlite3Strlen30(zToken); 805 return sqlite3ExprAlloc(db, op, &x, 0); 806 } 807 808 /* 809 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 810 ** 811 ** If pRoot==NULL that means that a memory allocation error has occurred. 812 ** In that case, delete the subtrees pLeft and pRight. 813 */ 814 void sqlite3ExprAttachSubtrees( 815 sqlite3 *db, 816 Expr *pRoot, 817 Expr *pLeft, 818 Expr *pRight 819 ){ 820 if( pRoot==0 ){ 821 assert( db->mallocFailed ); 822 sqlite3ExprDelete(db, pLeft); 823 sqlite3ExprDelete(db, pRight); 824 }else{ 825 if( pRight ){ 826 pRoot->pRight = pRight; 827 pRoot->flags |= EP_Propagate & pRight->flags; 828 } 829 if( pLeft ){ 830 pRoot->pLeft = pLeft; 831 pRoot->flags |= EP_Propagate & pLeft->flags; 832 } 833 exprSetHeight(pRoot); 834 } 835 } 836 837 /* 838 ** Allocate an Expr node which joins as many as two subtrees. 839 ** 840 ** One or both of the subtrees can be NULL. Return a pointer to the new 841 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 842 ** free the subtrees and return NULL. 843 */ 844 Expr *sqlite3PExpr( 845 Parse *pParse, /* Parsing context */ 846 int op, /* Expression opcode */ 847 Expr *pLeft, /* Left operand */ 848 Expr *pRight /* Right operand */ 849 ){ 850 Expr *p; 851 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 852 if( p ){ 853 memset(p, 0, sizeof(Expr)); 854 p->op = op & 0xff; 855 p->iAgg = -1; 856 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 857 sqlite3ExprCheckHeight(pParse, p->nHeight); 858 }else{ 859 sqlite3ExprDelete(pParse->db, pLeft); 860 sqlite3ExprDelete(pParse->db, pRight); 861 } 862 return p; 863 } 864 865 /* 866 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 867 ** do a memory allocation failure) then delete the pSelect object. 868 */ 869 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 870 if( pExpr ){ 871 pExpr->x.pSelect = pSelect; 872 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 873 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 874 }else{ 875 assert( pParse->db->mallocFailed ); 876 sqlite3SelectDelete(pParse->db, pSelect); 877 } 878 } 879 880 881 /* 882 ** Join two expressions using an AND operator. If either expression is 883 ** NULL, then just return the other expression. 884 ** 885 ** If one side or the other of the AND is known to be false, then instead 886 ** of returning an AND expression, just return a constant expression with 887 ** a value of false. 888 */ 889 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 890 sqlite3 *db = pParse->db; 891 if( pLeft==0 ){ 892 return pRight; 893 }else if( pRight==0 ){ 894 return pLeft; 895 }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){ 896 sqlite3ExprUnmapAndDelete(pParse, pLeft); 897 sqlite3ExprUnmapAndDelete(pParse, pRight); 898 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 899 }else{ 900 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 901 } 902 } 903 904 /* 905 ** Construct a new expression node for a function with multiple 906 ** arguments. 907 */ 908 Expr *sqlite3ExprFunction( 909 Parse *pParse, /* Parsing context */ 910 ExprList *pList, /* Argument list */ 911 Token *pToken, /* Name of the function */ 912 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 913 ){ 914 Expr *pNew; 915 sqlite3 *db = pParse->db; 916 assert( pToken ); 917 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 918 if( pNew==0 ){ 919 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 920 return 0; 921 } 922 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 923 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 924 } 925 pNew->x.pList = pList; 926 ExprSetProperty(pNew, EP_HasFunc); 927 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 928 sqlite3ExprSetHeightAndFlags(pParse, pNew); 929 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 930 return pNew; 931 } 932 933 /* 934 ** Assign a variable number to an expression that encodes a wildcard 935 ** in the original SQL statement. 936 ** 937 ** Wildcards consisting of a single "?" are assigned the next sequential 938 ** variable number. 939 ** 940 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 941 ** sure "nnn" is not too big to avoid a denial of service attack when 942 ** the SQL statement comes from an external source. 943 ** 944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 945 ** as the previous instance of the same wildcard. Or if this is the first 946 ** instance of the wildcard, the next sequential variable number is 947 ** assigned. 948 */ 949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 950 sqlite3 *db = pParse->db; 951 const char *z; 952 ynVar x; 953 954 if( pExpr==0 ) return; 955 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 956 z = pExpr->u.zToken; 957 assert( z!=0 ); 958 assert( z[0]!=0 ); 959 assert( n==(u32)sqlite3Strlen30(z) ); 960 if( z[1]==0 ){ 961 /* Wildcard of the form "?". Assign the next variable number */ 962 assert( z[0]=='?' ); 963 x = (ynVar)(++pParse->nVar); 964 }else{ 965 int doAdd = 0; 966 if( z[0]=='?' ){ 967 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 968 ** use it as the variable number */ 969 i64 i; 970 int bOk; 971 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 972 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 973 bOk = 1; 974 }else{ 975 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 976 } 977 testcase( i==0 ); 978 testcase( i==1 ); 979 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 980 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 981 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 982 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 983 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 984 return; 985 } 986 x = (ynVar)i; 987 if( x>pParse->nVar ){ 988 pParse->nVar = (int)x; 989 doAdd = 1; 990 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 991 doAdd = 1; 992 } 993 }else{ 994 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 995 ** number as the prior appearance of the same name, or if the name 996 ** has never appeared before, reuse the same variable number 997 */ 998 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 999 if( x==0 ){ 1000 x = (ynVar)(++pParse->nVar); 1001 doAdd = 1; 1002 } 1003 } 1004 if( doAdd ){ 1005 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1006 } 1007 } 1008 pExpr->iColumn = x; 1009 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1010 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1011 } 1012 } 1013 1014 /* 1015 ** Recursively delete an expression tree. 1016 */ 1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1018 assert( p!=0 ); 1019 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1020 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1021 1022 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1023 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1024 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1025 #ifdef SQLITE_DEBUG 1026 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1027 assert( p->pLeft==0 ); 1028 assert( p->pRight==0 ); 1029 assert( p->x.pSelect==0 ); 1030 } 1031 #endif 1032 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1033 /* The Expr.x union is never used at the same time as Expr.pRight */ 1034 assert( p->x.pList==0 || p->pRight==0 ); 1035 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1036 if( p->pRight ){ 1037 assert( !ExprHasProperty(p, EP_WinFunc) ); 1038 sqlite3ExprDeleteNN(db, p->pRight); 1039 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1040 assert( !ExprHasProperty(p, EP_WinFunc) ); 1041 sqlite3SelectDelete(db, p->x.pSelect); 1042 }else{ 1043 sqlite3ExprListDelete(db, p->x.pList); 1044 #ifndef SQLITE_OMIT_WINDOWFUNC 1045 if( ExprHasProperty(p, EP_WinFunc) ){ 1046 sqlite3WindowDelete(db, p->y.pWin); 1047 } 1048 #endif 1049 } 1050 } 1051 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1052 if( !ExprHasProperty(p, EP_Static) ){ 1053 sqlite3DbFreeNN(db, p); 1054 } 1055 } 1056 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1057 if( p ) sqlite3ExprDeleteNN(db, p); 1058 } 1059 1060 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1061 ** expression. 1062 */ 1063 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1064 if( p ){ 1065 if( IN_RENAME_OBJECT ){ 1066 sqlite3RenameExprUnmap(pParse, p); 1067 } 1068 sqlite3ExprDeleteNN(pParse->db, p); 1069 } 1070 } 1071 1072 /* 1073 ** Return the number of bytes allocated for the expression structure 1074 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1075 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1076 */ 1077 static int exprStructSize(Expr *p){ 1078 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1079 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1080 return EXPR_FULLSIZE; 1081 } 1082 1083 /* 1084 ** The dupedExpr*Size() routines each return the number of bytes required 1085 ** to store a copy of an expression or expression tree. They differ in 1086 ** how much of the tree is measured. 1087 ** 1088 ** dupedExprStructSize() Size of only the Expr structure 1089 ** dupedExprNodeSize() Size of Expr + space for token 1090 ** dupedExprSize() Expr + token + subtree components 1091 ** 1092 *************************************************************************** 1093 ** 1094 ** The dupedExprStructSize() function returns two values OR-ed together: 1095 ** (1) the space required for a copy of the Expr structure only and 1096 ** (2) the EP_xxx flags that indicate what the structure size should be. 1097 ** The return values is always one of: 1098 ** 1099 ** EXPR_FULLSIZE 1100 ** EXPR_REDUCEDSIZE | EP_Reduced 1101 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1102 ** 1103 ** The size of the structure can be found by masking the return value 1104 ** of this routine with 0xfff. The flags can be found by masking the 1105 ** return value with EP_Reduced|EP_TokenOnly. 1106 ** 1107 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1108 ** (unreduced) Expr objects as they or originally constructed by the parser. 1109 ** During expression analysis, extra information is computed and moved into 1110 ** later parts of the Expr object and that extra information might get chopped 1111 ** off if the expression is reduced. Note also that it does not work to 1112 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1113 ** to reduce a pristine expression tree from the parser. The implementation 1114 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1115 ** to enforce this constraint. 1116 */ 1117 static int dupedExprStructSize(Expr *p, int flags){ 1118 int nSize; 1119 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1120 assert( EXPR_FULLSIZE<=0xfff ); 1121 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1122 if( 0==flags || p->op==TK_SELECT_COLUMN 1123 #ifndef SQLITE_OMIT_WINDOWFUNC 1124 || ExprHasProperty(p, EP_WinFunc) 1125 #endif 1126 ){ 1127 nSize = EXPR_FULLSIZE; 1128 }else{ 1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1130 assert( !ExprHasProperty(p, EP_FromJoin) ); 1131 assert( !ExprHasProperty(p, EP_MemToken) ); 1132 assert( !ExprHasProperty(p, EP_NoReduce) ); 1133 if( p->pLeft || p->x.pList ){ 1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1135 }else{ 1136 assert( p->pRight==0 ); 1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1138 } 1139 } 1140 return nSize; 1141 } 1142 1143 /* 1144 ** This function returns the space in bytes required to store the copy 1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1146 ** string is defined.) 1147 */ 1148 static int dupedExprNodeSize(Expr *p, int flags){ 1149 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1151 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1152 } 1153 return ROUND8(nByte); 1154 } 1155 1156 /* 1157 ** Return the number of bytes required to create a duplicate of the 1158 ** expression passed as the first argument. The second argument is a 1159 ** mask containing EXPRDUP_XXX flags. 1160 ** 1161 ** The value returned includes space to create a copy of the Expr struct 1162 ** itself and the buffer referred to by Expr.u.zToken, if any. 1163 ** 1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1166 ** and Expr.pRight variables (but not for any structures pointed to or 1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1168 */ 1169 static int dupedExprSize(Expr *p, int flags){ 1170 int nByte = 0; 1171 if( p ){ 1172 nByte = dupedExprNodeSize(p, flags); 1173 if( flags&EXPRDUP_REDUCE ){ 1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1175 } 1176 } 1177 return nByte; 1178 } 1179 1180 /* 1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1183 ** to store the copy of expression p, the copies of p->u.zToken 1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1185 ** if any. Before returning, *pzBuffer is set to the first byte past the 1186 ** portion of the buffer copied into by this function. 1187 */ 1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1189 Expr *pNew; /* Value to return */ 1190 u8 *zAlloc; /* Memory space from which to build Expr object */ 1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1192 1193 assert( db!=0 ); 1194 assert( p ); 1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1197 1198 /* Figure out where to write the new Expr structure. */ 1199 if( pzBuffer ){ 1200 zAlloc = *pzBuffer; 1201 staticFlag = EP_Static; 1202 }else{ 1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1204 staticFlag = 0; 1205 } 1206 pNew = (Expr *)zAlloc; 1207 1208 if( pNew ){ 1209 /* Set nNewSize to the size allocated for the structure pointed to 1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1212 ** by the copy of the p->u.zToken string (if any). 1213 */ 1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1215 const int nNewSize = nStructSize & 0xfff; 1216 int nToken; 1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1218 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1219 }else{ 1220 nToken = 0; 1221 } 1222 if( dupFlags ){ 1223 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1224 memcpy(zAlloc, p, nNewSize); 1225 }else{ 1226 u32 nSize = (u32)exprStructSize(p); 1227 memcpy(zAlloc, p, nSize); 1228 if( nSize<EXPR_FULLSIZE ){ 1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1230 } 1231 } 1232 1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1236 pNew->flags |= staticFlag; 1237 1238 /* Copy the p->u.zToken string, if any. */ 1239 if( nToken ){ 1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1241 memcpy(zToken, p->u.zToken, nToken); 1242 } 1243 1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1246 if( ExprHasProperty(p, EP_xIsSelect) ){ 1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1248 }else{ 1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1250 } 1251 } 1252 1253 /* Fill in pNew->pLeft and pNew->pRight. */ 1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1255 zAlloc += dupedExprNodeSize(p, dupFlags); 1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1257 pNew->pLeft = p->pLeft ? 1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1259 pNew->pRight = p->pRight ? 1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1261 } 1262 #ifndef SQLITE_OMIT_WINDOWFUNC 1263 if( ExprHasProperty(p, EP_WinFunc) ){ 1264 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1265 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1266 } 1267 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1268 if( pzBuffer ){ 1269 *pzBuffer = zAlloc; 1270 } 1271 }else{ 1272 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1273 if( pNew->op==TK_SELECT_COLUMN ){ 1274 pNew->pLeft = p->pLeft; 1275 assert( p->iColumn==0 || p->pRight==0 ); 1276 assert( p->pRight==0 || p->pRight==p->pLeft ); 1277 }else{ 1278 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1279 } 1280 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1281 } 1282 } 1283 } 1284 return pNew; 1285 } 1286 1287 /* 1288 ** Create and return a deep copy of the object passed as the second 1289 ** argument. If an OOM condition is encountered, NULL is returned 1290 ** and the db->mallocFailed flag set. 1291 */ 1292 #ifndef SQLITE_OMIT_CTE 1293 static With *withDup(sqlite3 *db, With *p){ 1294 With *pRet = 0; 1295 if( p ){ 1296 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1297 pRet = sqlite3DbMallocZero(db, nByte); 1298 if( pRet ){ 1299 int i; 1300 pRet->nCte = p->nCte; 1301 for(i=0; i<p->nCte; i++){ 1302 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1303 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1304 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1305 } 1306 } 1307 } 1308 return pRet; 1309 } 1310 #else 1311 # define withDup(x,y) 0 1312 #endif 1313 1314 #ifndef SQLITE_OMIT_WINDOWFUNC 1315 /* 1316 ** The gatherSelectWindows() procedure and its helper routine 1317 ** gatherSelectWindowsCallback() are used to scan all the expressions 1318 ** an a newly duplicated SELECT statement and gather all of the Window 1319 ** objects found there, assembling them onto the linked list at Select->pWin. 1320 */ 1321 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1322 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1323 Select *pSelect = pWalker->u.pSelect; 1324 Window *pWin = pExpr->y.pWin; 1325 assert( pWin ); 1326 assert( IsWindowFunc(pExpr) ); 1327 assert( pWin->ppThis==0 ); 1328 sqlite3WindowLink(pSelect, pWin); 1329 } 1330 return WRC_Continue; 1331 } 1332 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1333 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1334 } 1335 static void gatherSelectWindows(Select *p){ 1336 Walker w; 1337 w.xExprCallback = gatherSelectWindowsCallback; 1338 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1339 w.xSelectCallback2 = 0; 1340 w.pParse = 0; 1341 w.u.pSelect = p; 1342 sqlite3WalkSelect(&w, p); 1343 } 1344 #endif 1345 1346 1347 /* 1348 ** The following group of routines make deep copies of expressions, 1349 ** expression lists, ID lists, and select statements. The copies can 1350 ** be deleted (by being passed to their respective ...Delete() routines) 1351 ** without effecting the originals. 1352 ** 1353 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1354 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1355 ** by subsequent calls to sqlite*ListAppend() routines. 1356 ** 1357 ** Any tables that the SrcList might point to are not duplicated. 1358 ** 1359 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1360 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1361 ** truncated version of the usual Expr structure that will be stored as 1362 ** part of the in-memory representation of the database schema. 1363 */ 1364 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1365 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1366 return p ? exprDup(db, p, flags, 0) : 0; 1367 } 1368 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1369 ExprList *pNew; 1370 struct ExprList_item *pItem, *pOldItem; 1371 int i; 1372 Expr *pPriorSelectCol = 0; 1373 assert( db!=0 ); 1374 if( p==0 ) return 0; 1375 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1376 if( pNew==0 ) return 0; 1377 pNew->nExpr = p->nExpr; 1378 pItem = pNew->a; 1379 pOldItem = p->a; 1380 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1381 Expr *pOldExpr = pOldItem->pExpr; 1382 Expr *pNewExpr; 1383 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1384 if( pOldExpr 1385 && pOldExpr->op==TK_SELECT_COLUMN 1386 && (pNewExpr = pItem->pExpr)!=0 1387 ){ 1388 assert( pNewExpr->iColumn==0 || i>0 ); 1389 if( pNewExpr->iColumn==0 ){ 1390 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1391 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1392 }else{ 1393 assert( i>0 ); 1394 assert( pItem[-1].pExpr!=0 ); 1395 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1396 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1397 pNewExpr->pLeft = pPriorSelectCol; 1398 } 1399 } 1400 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1401 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1402 pItem->sortOrder = pOldItem->sortOrder; 1403 pItem->done = 0; 1404 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1405 pItem->bSorterRef = pOldItem->bSorterRef; 1406 pItem->u = pOldItem->u; 1407 } 1408 return pNew; 1409 } 1410 1411 /* 1412 ** If cursors, triggers, views and subqueries are all omitted from 1413 ** the build, then none of the following routines, except for 1414 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1415 ** called with a NULL argument. 1416 */ 1417 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1418 || !defined(SQLITE_OMIT_SUBQUERY) 1419 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1420 SrcList *pNew; 1421 int i; 1422 int nByte; 1423 assert( db!=0 ); 1424 if( p==0 ) return 0; 1425 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1426 pNew = sqlite3DbMallocRawNN(db, nByte ); 1427 if( pNew==0 ) return 0; 1428 pNew->nSrc = pNew->nAlloc = p->nSrc; 1429 for(i=0; i<p->nSrc; i++){ 1430 struct SrcList_item *pNewItem = &pNew->a[i]; 1431 struct SrcList_item *pOldItem = &p->a[i]; 1432 Table *pTab; 1433 pNewItem->pSchema = pOldItem->pSchema; 1434 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1435 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1436 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1437 pNewItem->fg = pOldItem->fg; 1438 pNewItem->iCursor = pOldItem->iCursor; 1439 pNewItem->addrFillSub = pOldItem->addrFillSub; 1440 pNewItem->regReturn = pOldItem->regReturn; 1441 if( pNewItem->fg.isIndexedBy ){ 1442 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1443 } 1444 pNewItem->pIBIndex = pOldItem->pIBIndex; 1445 if( pNewItem->fg.isTabFunc ){ 1446 pNewItem->u1.pFuncArg = 1447 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1448 } 1449 pTab = pNewItem->pTab = pOldItem->pTab; 1450 if( pTab ){ 1451 pTab->nTabRef++; 1452 } 1453 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1454 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1455 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1456 pNewItem->colUsed = pOldItem->colUsed; 1457 } 1458 return pNew; 1459 } 1460 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1461 IdList *pNew; 1462 int i; 1463 assert( db!=0 ); 1464 if( p==0 ) return 0; 1465 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1466 if( pNew==0 ) return 0; 1467 pNew->nId = p->nId; 1468 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1469 if( pNew->a==0 ){ 1470 sqlite3DbFreeNN(db, pNew); 1471 return 0; 1472 } 1473 /* Note that because the size of the allocation for p->a[] is not 1474 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1475 ** on the duplicate created by this function. */ 1476 for(i=0; i<p->nId; i++){ 1477 struct IdList_item *pNewItem = &pNew->a[i]; 1478 struct IdList_item *pOldItem = &p->a[i]; 1479 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1480 pNewItem->idx = pOldItem->idx; 1481 } 1482 return pNew; 1483 } 1484 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1485 Select *pRet = 0; 1486 Select *pNext = 0; 1487 Select **pp = &pRet; 1488 Select *p; 1489 1490 assert( db!=0 ); 1491 for(p=pDup; p; p=p->pPrior){ 1492 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1493 if( pNew==0 ) break; 1494 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1495 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1496 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1497 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1498 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1499 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1500 pNew->op = p->op; 1501 pNew->pNext = pNext; 1502 pNew->pPrior = 0; 1503 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1504 pNew->iLimit = 0; 1505 pNew->iOffset = 0; 1506 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1507 pNew->addrOpenEphm[0] = -1; 1508 pNew->addrOpenEphm[1] = -1; 1509 pNew->nSelectRow = p->nSelectRow; 1510 pNew->pWith = withDup(db, p->pWith); 1511 #ifndef SQLITE_OMIT_WINDOWFUNC 1512 pNew->pWin = 0; 1513 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1514 if( p->pWin ) gatherSelectWindows(pNew); 1515 #endif 1516 pNew->selId = p->selId; 1517 *pp = pNew; 1518 pp = &pNew->pPrior; 1519 pNext = pNew; 1520 } 1521 1522 return pRet; 1523 } 1524 #else 1525 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1526 assert( p==0 ); 1527 return 0; 1528 } 1529 #endif 1530 1531 1532 /* 1533 ** Add a new element to the end of an expression list. If pList is 1534 ** initially NULL, then create a new expression list. 1535 ** 1536 ** The pList argument must be either NULL or a pointer to an ExprList 1537 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1538 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1539 ** Reason: This routine assumes that the number of slots in pList->a[] 1540 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1541 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1542 ** 1543 ** If a memory allocation error occurs, the entire list is freed and 1544 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1545 ** that the new entry was successfully appended. 1546 */ 1547 ExprList *sqlite3ExprListAppend( 1548 Parse *pParse, /* Parsing context */ 1549 ExprList *pList, /* List to which to append. Might be NULL */ 1550 Expr *pExpr /* Expression to be appended. Might be NULL */ 1551 ){ 1552 struct ExprList_item *pItem; 1553 sqlite3 *db = pParse->db; 1554 assert( db!=0 ); 1555 if( pList==0 ){ 1556 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1557 if( pList==0 ){ 1558 goto no_mem; 1559 } 1560 pList->nExpr = 0; 1561 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1562 ExprList *pNew; 1563 pNew = sqlite3DbRealloc(db, pList, 1564 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1565 if( pNew==0 ){ 1566 goto no_mem; 1567 } 1568 pList = pNew; 1569 } 1570 pItem = &pList->a[pList->nExpr++]; 1571 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1572 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1573 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1574 pItem->pExpr = pExpr; 1575 return pList; 1576 1577 no_mem: 1578 /* Avoid leaking memory if malloc has failed. */ 1579 sqlite3ExprDelete(db, pExpr); 1580 sqlite3ExprListDelete(db, pList); 1581 return 0; 1582 } 1583 1584 /* 1585 ** pColumns and pExpr form a vector assignment which is part of the SET 1586 ** clause of an UPDATE statement. Like this: 1587 ** 1588 ** (a,b,c) = (expr1,expr2,expr3) 1589 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1590 ** 1591 ** For each term of the vector assignment, append new entries to the 1592 ** expression list pList. In the case of a subquery on the RHS, append 1593 ** TK_SELECT_COLUMN expressions. 1594 */ 1595 ExprList *sqlite3ExprListAppendVector( 1596 Parse *pParse, /* Parsing context */ 1597 ExprList *pList, /* List to which to append. Might be NULL */ 1598 IdList *pColumns, /* List of names of LHS of the assignment */ 1599 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1600 ){ 1601 sqlite3 *db = pParse->db; 1602 int n; 1603 int i; 1604 int iFirst = pList ? pList->nExpr : 0; 1605 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1606 ** exit prior to this routine being invoked */ 1607 if( NEVER(pColumns==0) ) goto vector_append_error; 1608 if( pExpr==0 ) goto vector_append_error; 1609 1610 /* If the RHS is a vector, then we can immediately check to see that 1611 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1612 ** wildcards ("*") in the result set of the SELECT must be expanded before 1613 ** we can do the size check, so defer the size check until code generation. 1614 */ 1615 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1616 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1617 pColumns->nId, n); 1618 goto vector_append_error; 1619 } 1620 1621 for(i=0; i<pColumns->nId; i++){ 1622 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1623 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1624 if( pList ){ 1625 assert( pList->nExpr==iFirst+i+1 ); 1626 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1627 pColumns->a[i].zName = 0; 1628 } 1629 } 1630 1631 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1632 Expr *pFirst = pList->a[iFirst].pExpr; 1633 assert( pFirst!=0 ); 1634 assert( pFirst->op==TK_SELECT_COLUMN ); 1635 1636 /* Store the SELECT statement in pRight so it will be deleted when 1637 ** sqlite3ExprListDelete() is called */ 1638 pFirst->pRight = pExpr; 1639 pExpr = 0; 1640 1641 /* Remember the size of the LHS in iTable so that we can check that 1642 ** the RHS and LHS sizes match during code generation. */ 1643 pFirst->iTable = pColumns->nId; 1644 } 1645 1646 vector_append_error: 1647 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1648 sqlite3IdListDelete(db, pColumns); 1649 return pList; 1650 } 1651 1652 /* 1653 ** Set the sort order for the last element on the given ExprList. 1654 */ 1655 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1656 if( p==0 ) return; 1657 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1658 assert( p->nExpr>0 ); 1659 if( iSortOrder<0 ){ 1660 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1661 return; 1662 } 1663 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1664 } 1665 1666 /* 1667 ** Set the ExprList.a[].zName element of the most recently added item 1668 ** on the expression list. 1669 ** 1670 ** pList might be NULL following an OOM error. But pName should never be 1671 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1672 ** is set. 1673 */ 1674 void sqlite3ExprListSetName( 1675 Parse *pParse, /* Parsing context */ 1676 ExprList *pList, /* List to which to add the span. */ 1677 Token *pName, /* Name to be added */ 1678 int dequote /* True to cause the name to be dequoted */ 1679 ){ 1680 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1681 if( pList ){ 1682 struct ExprList_item *pItem; 1683 assert( pList->nExpr>0 ); 1684 pItem = &pList->a[pList->nExpr-1]; 1685 assert( pItem->zName==0 ); 1686 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1687 if( dequote ) sqlite3Dequote(pItem->zName); 1688 if( IN_RENAME_OBJECT ){ 1689 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1690 } 1691 } 1692 } 1693 1694 /* 1695 ** Set the ExprList.a[].zSpan element of the most recently added item 1696 ** on the expression list. 1697 ** 1698 ** pList might be NULL following an OOM error. But pSpan should never be 1699 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1700 ** is set. 1701 */ 1702 void sqlite3ExprListSetSpan( 1703 Parse *pParse, /* Parsing context */ 1704 ExprList *pList, /* List to which to add the span. */ 1705 const char *zStart, /* Start of the span */ 1706 const char *zEnd /* End of the span */ 1707 ){ 1708 sqlite3 *db = pParse->db; 1709 assert( pList!=0 || db->mallocFailed!=0 ); 1710 if( pList ){ 1711 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1712 assert( pList->nExpr>0 ); 1713 sqlite3DbFree(db, pItem->zSpan); 1714 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1715 } 1716 } 1717 1718 /* 1719 ** If the expression list pEList contains more than iLimit elements, 1720 ** leave an error message in pParse. 1721 */ 1722 void sqlite3ExprListCheckLength( 1723 Parse *pParse, 1724 ExprList *pEList, 1725 const char *zObject 1726 ){ 1727 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1728 testcase( pEList && pEList->nExpr==mx ); 1729 testcase( pEList && pEList->nExpr==mx+1 ); 1730 if( pEList && pEList->nExpr>mx ){ 1731 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1732 } 1733 } 1734 1735 /* 1736 ** Delete an entire expression list. 1737 */ 1738 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1739 int i = pList->nExpr; 1740 struct ExprList_item *pItem = pList->a; 1741 assert( pList->nExpr>0 ); 1742 do{ 1743 sqlite3ExprDelete(db, pItem->pExpr); 1744 sqlite3DbFree(db, pItem->zName); 1745 sqlite3DbFree(db, pItem->zSpan); 1746 pItem++; 1747 }while( --i>0 ); 1748 sqlite3DbFreeNN(db, pList); 1749 } 1750 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1751 if( pList ) exprListDeleteNN(db, pList); 1752 } 1753 1754 /* 1755 ** Return the bitwise-OR of all Expr.flags fields in the given 1756 ** ExprList. 1757 */ 1758 u32 sqlite3ExprListFlags(const ExprList *pList){ 1759 int i; 1760 u32 m = 0; 1761 assert( pList!=0 ); 1762 for(i=0; i<pList->nExpr; i++){ 1763 Expr *pExpr = pList->a[i].pExpr; 1764 assert( pExpr!=0 ); 1765 m |= pExpr->flags; 1766 } 1767 return m; 1768 } 1769 1770 /* 1771 ** This is a SELECT-node callback for the expression walker that 1772 ** always "fails". By "fail" in this case, we mean set 1773 ** pWalker->eCode to zero and abort. 1774 ** 1775 ** This callback is used by multiple expression walkers. 1776 */ 1777 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1778 UNUSED_PARAMETER(NotUsed); 1779 pWalker->eCode = 0; 1780 return WRC_Abort; 1781 } 1782 1783 /* 1784 ** If the input expression is an ID with the name "true" or "false" 1785 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1786 ** the conversion happened, and zero if the expression is unaltered. 1787 */ 1788 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1789 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1790 if( !ExprHasProperty(pExpr, EP_Quoted) 1791 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1792 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1793 ){ 1794 pExpr->op = TK_TRUEFALSE; 1795 ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse); 1796 return 1; 1797 } 1798 return 0; 1799 } 1800 1801 /* 1802 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1803 ** and 0 if it is FALSE. 1804 */ 1805 int sqlite3ExprTruthValue(const Expr *pExpr){ 1806 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1807 assert( pExpr->op==TK_TRUEFALSE ); 1808 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1809 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1810 return pExpr->u.zToken[4]==0; 1811 } 1812 1813 /* 1814 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1815 ** terms that are always true or false. Return the simplified expression. 1816 ** Or return the original expression if no simplification is possible. 1817 ** 1818 ** Examples: 1819 ** 1820 ** (x<10) AND true => (x<10) 1821 ** (x<10) AND false => false 1822 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1823 ** (x<10) AND (y=22 OR true) => (x<10) 1824 ** (y=22) OR true => true 1825 */ 1826 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1827 assert( pExpr!=0 ); 1828 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1829 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1830 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1831 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1832 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1833 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1834 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1835 } 1836 } 1837 return pExpr; 1838 } 1839 1840 1841 /* 1842 ** These routines are Walker callbacks used to check expressions to 1843 ** see if they are "constant" for some definition of constant. The 1844 ** Walker.eCode value determines the type of "constant" we are looking 1845 ** for. 1846 ** 1847 ** These callback routines are used to implement the following: 1848 ** 1849 ** sqlite3ExprIsConstant() pWalker->eCode==1 1850 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1851 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1852 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1853 ** 1854 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1855 ** is found to not be a constant. 1856 ** 1857 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1858 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1859 ** an existing schema and 4 when processing a new statement. A bound 1860 ** parameter raises an error for new statements, but is silently converted 1861 ** to NULL for existing schemas. This allows sqlite_master tables that 1862 ** contain a bound parameter because they were generated by older versions 1863 ** of SQLite to be parsed by newer versions of SQLite without raising a 1864 ** malformed schema error. 1865 */ 1866 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1867 1868 /* If pWalker->eCode is 2 then any term of the expression that comes from 1869 ** the ON or USING clauses of a left join disqualifies the expression 1870 ** from being considered constant. */ 1871 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1872 pWalker->eCode = 0; 1873 return WRC_Abort; 1874 } 1875 1876 switch( pExpr->op ){ 1877 /* Consider functions to be constant if all their arguments are constant 1878 ** and either pWalker->eCode==4 or 5 or the function has the 1879 ** SQLITE_FUNC_CONST flag. */ 1880 case TK_FUNCTION: 1881 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1882 return WRC_Continue; 1883 }else{ 1884 pWalker->eCode = 0; 1885 return WRC_Abort; 1886 } 1887 case TK_ID: 1888 /* Convert "true" or "false" in a DEFAULT clause into the 1889 ** appropriate TK_TRUEFALSE operator */ 1890 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1891 return WRC_Prune; 1892 } 1893 /* Fall thru */ 1894 case TK_COLUMN: 1895 case TK_AGG_FUNCTION: 1896 case TK_AGG_COLUMN: 1897 testcase( pExpr->op==TK_ID ); 1898 testcase( pExpr->op==TK_COLUMN ); 1899 testcase( pExpr->op==TK_AGG_FUNCTION ); 1900 testcase( pExpr->op==TK_AGG_COLUMN ); 1901 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1902 return WRC_Continue; 1903 } 1904 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1905 return WRC_Continue; 1906 } 1907 /* Fall through */ 1908 case TK_IF_NULL_ROW: 1909 case TK_REGISTER: 1910 testcase( pExpr->op==TK_REGISTER ); 1911 testcase( pExpr->op==TK_IF_NULL_ROW ); 1912 pWalker->eCode = 0; 1913 return WRC_Abort; 1914 case TK_VARIABLE: 1915 if( pWalker->eCode==5 ){ 1916 /* Silently convert bound parameters that appear inside of CREATE 1917 ** statements into a NULL when parsing the CREATE statement text out 1918 ** of the sqlite_master table */ 1919 pExpr->op = TK_NULL; 1920 }else if( pWalker->eCode==4 ){ 1921 /* A bound parameter in a CREATE statement that originates from 1922 ** sqlite3_prepare() causes an error */ 1923 pWalker->eCode = 0; 1924 return WRC_Abort; 1925 } 1926 /* Fall through */ 1927 default: 1928 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1929 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1930 return WRC_Continue; 1931 } 1932 } 1933 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1934 Walker w; 1935 w.eCode = initFlag; 1936 w.xExprCallback = exprNodeIsConstant; 1937 w.xSelectCallback = sqlite3SelectWalkFail; 1938 #ifdef SQLITE_DEBUG 1939 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1940 #endif 1941 w.u.iCur = iCur; 1942 sqlite3WalkExpr(&w, p); 1943 return w.eCode; 1944 } 1945 1946 /* 1947 ** Walk an expression tree. Return non-zero if the expression is constant 1948 ** and 0 if it involves variables or function calls. 1949 ** 1950 ** For the purposes of this function, a double-quoted string (ex: "abc") 1951 ** is considered a variable but a single-quoted string (ex: 'abc') is 1952 ** a constant. 1953 */ 1954 int sqlite3ExprIsConstant(Expr *p){ 1955 return exprIsConst(p, 1, 0); 1956 } 1957 1958 /* 1959 ** Walk an expression tree. Return non-zero if 1960 ** 1961 ** (1) the expression is constant, and 1962 ** (2) the expression does originate in the ON or USING clause 1963 ** of a LEFT JOIN, and 1964 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 1965 ** operands created by the constant propagation optimization. 1966 ** 1967 ** When this routine returns true, it indicates that the expression 1968 ** can be added to the pParse->pConstExpr list and evaluated once when 1969 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 1970 */ 1971 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1972 return exprIsConst(p, 2, 0); 1973 } 1974 1975 /* 1976 ** Walk an expression tree. Return non-zero if the expression is constant 1977 ** for any single row of the table with cursor iCur. In other words, the 1978 ** expression must not refer to any non-deterministic function nor any 1979 ** table other than iCur. 1980 */ 1981 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1982 return exprIsConst(p, 3, iCur); 1983 } 1984 1985 1986 /* 1987 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1988 */ 1989 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1990 ExprList *pGroupBy = pWalker->u.pGroupBy; 1991 int i; 1992 1993 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1994 ** it constant. */ 1995 for(i=0; i<pGroupBy->nExpr; i++){ 1996 Expr *p = pGroupBy->a[i].pExpr; 1997 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1998 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1999 if( sqlite3IsBinary(pColl) ){ 2000 return WRC_Prune; 2001 } 2002 } 2003 } 2004 2005 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2006 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2007 pWalker->eCode = 0; 2008 return WRC_Abort; 2009 } 2010 2011 return exprNodeIsConstant(pWalker, pExpr); 2012 } 2013 2014 /* 2015 ** Walk the expression tree passed as the first argument. Return non-zero 2016 ** if the expression consists entirely of constants or copies of terms 2017 ** in pGroupBy that sort with the BINARY collation sequence. 2018 ** 2019 ** This routine is used to determine if a term of the HAVING clause can 2020 ** be promoted into the WHERE clause. In order for such a promotion to work, 2021 ** the value of the HAVING clause term must be the same for all members of 2022 ** a "group". The requirement that the GROUP BY term must be BINARY 2023 ** assumes that no other collating sequence will have a finer-grained 2024 ** grouping than binary. In other words (A=B COLLATE binary) implies 2025 ** A=B in every other collating sequence. The requirement that the 2026 ** GROUP BY be BINARY is stricter than necessary. It would also work 2027 ** to promote HAVING clauses that use the same alternative collating 2028 ** sequence as the GROUP BY term, but that is much harder to check, 2029 ** alternative collating sequences are uncommon, and this is only an 2030 ** optimization, so we take the easy way out and simply require the 2031 ** GROUP BY to use the BINARY collating sequence. 2032 */ 2033 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2034 Walker w; 2035 w.eCode = 1; 2036 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2037 w.xSelectCallback = 0; 2038 w.u.pGroupBy = pGroupBy; 2039 w.pParse = pParse; 2040 sqlite3WalkExpr(&w, p); 2041 return w.eCode; 2042 } 2043 2044 /* 2045 ** Walk an expression tree. Return non-zero if the expression is constant 2046 ** or a function call with constant arguments. Return and 0 if there 2047 ** are any variables. 2048 ** 2049 ** For the purposes of this function, a double-quoted string (ex: "abc") 2050 ** is considered a variable but a single-quoted string (ex: 'abc') is 2051 ** a constant. 2052 */ 2053 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2054 assert( isInit==0 || isInit==1 ); 2055 return exprIsConst(p, 4+isInit, 0); 2056 } 2057 2058 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2059 /* 2060 ** Walk an expression tree. Return 1 if the expression contains a 2061 ** subquery of some kind. Return 0 if there are no subqueries. 2062 */ 2063 int sqlite3ExprContainsSubquery(Expr *p){ 2064 Walker w; 2065 w.eCode = 1; 2066 w.xExprCallback = sqlite3ExprWalkNoop; 2067 w.xSelectCallback = sqlite3SelectWalkFail; 2068 #ifdef SQLITE_DEBUG 2069 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2070 #endif 2071 sqlite3WalkExpr(&w, p); 2072 return w.eCode==0; 2073 } 2074 #endif 2075 2076 /* 2077 ** If the expression p codes a constant integer that is small enough 2078 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2079 ** in *pValue. If the expression is not an integer or if it is too big 2080 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2081 */ 2082 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2083 int rc = 0; 2084 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2085 2086 /* If an expression is an integer literal that fits in a signed 32-bit 2087 ** integer, then the EP_IntValue flag will have already been set */ 2088 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2089 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2090 2091 if( p->flags & EP_IntValue ){ 2092 *pValue = p->u.iValue; 2093 return 1; 2094 } 2095 switch( p->op ){ 2096 case TK_UPLUS: { 2097 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2098 break; 2099 } 2100 case TK_UMINUS: { 2101 int v; 2102 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2103 assert( v!=(-2147483647-1) ); 2104 *pValue = -v; 2105 rc = 1; 2106 } 2107 break; 2108 } 2109 default: break; 2110 } 2111 return rc; 2112 } 2113 2114 /* 2115 ** Return FALSE if there is no chance that the expression can be NULL. 2116 ** 2117 ** If the expression might be NULL or if the expression is too complex 2118 ** to tell return TRUE. 2119 ** 2120 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2121 ** when we know that a value cannot be NULL. Hence, a false positive 2122 ** (returning TRUE when in fact the expression can never be NULL) might 2123 ** be a small performance hit but is otherwise harmless. On the other 2124 ** hand, a false negative (returning FALSE when the result could be NULL) 2125 ** will likely result in an incorrect answer. So when in doubt, return 2126 ** TRUE. 2127 */ 2128 int sqlite3ExprCanBeNull(const Expr *p){ 2129 u8 op; 2130 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2131 p = p->pLeft; 2132 } 2133 op = p->op; 2134 if( op==TK_REGISTER ) op = p->op2; 2135 switch( op ){ 2136 case TK_INTEGER: 2137 case TK_STRING: 2138 case TK_FLOAT: 2139 case TK_BLOB: 2140 return 0; 2141 case TK_COLUMN: 2142 return ExprHasProperty(p, EP_CanBeNull) || 2143 p->y.pTab==0 || /* Reference to column of index on expression */ 2144 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2145 default: 2146 return 1; 2147 } 2148 } 2149 2150 /* 2151 ** Return TRUE if the given expression is a constant which would be 2152 ** unchanged by OP_Affinity with the affinity given in the second 2153 ** argument. 2154 ** 2155 ** This routine is used to determine if the OP_Affinity operation 2156 ** can be omitted. When in doubt return FALSE. A false negative 2157 ** is harmless. A false positive, however, can result in the wrong 2158 ** answer. 2159 */ 2160 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2161 u8 op; 2162 if( aff==SQLITE_AFF_BLOB ) return 1; 2163 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2164 op = p->op; 2165 if( op==TK_REGISTER ) op = p->op2; 2166 switch( op ){ 2167 case TK_INTEGER: { 2168 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2169 } 2170 case TK_FLOAT: { 2171 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2172 } 2173 case TK_STRING: { 2174 return aff==SQLITE_AFF_TEXT; 2175 } 2176 case TK_BLOB: { 2177 return 1; 2178 } 2179 case TK_COLUMN: { 2180 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2181 return p->iColumn<0 2182 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2183 } 2184 default: { 2185 return 0; 2186 } 2187 } 2188 } 2189 2190 /* 2191 ** Return TRUE if the given string is a row-id column name. 2192 */ 2193 int sqlite3IsRowid(const char *z){ 2194 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2195 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2196 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2197 return 0; 2198 } 2199 2200 /* 2201 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2202 ** that can be simplified to a direct table access, then return 2203 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2204 ** or if the SELECT statement needs to be manifested into a transient 2205 ** table, then return NULL. 2206 */ 2207 #ifndef SQLITE_OMIT_SUBQUERY 2208 static Select *isCandidateForInOpt(Expr *pX){ 2209 Select *p; 2210 SrcList *pSrc; 2211 ExprList *pEList; 2212 Table *pTab; 2213 int i; 2214 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2215 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2216 p = pX->x.pSelect; 2217 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2218 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2219 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2220 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2221 return 0; /* No DISTINCT keyword and no aggregate functions */ 2222 } 2223 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2224 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2225 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2226 pSrc = p->pSrc; 2227 assert( pSrc!=0 ); 2228 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2229 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2230 pTab = pSrc->a[0].pTab; 2231 assert( pTab!=0 ); 2232 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2233 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2234 pEList = p->pEList; 2235 assert( pEList!=0 ); 2236 /* All SELECT results must be columns. */ 2237 for(i=0; i<pEList->nExpr; i++){ 2238 Expr *pRes = pEList->a[i].pExpr; 2239 if( pRes->op!=TK_COLUMN ) return 0; 2240 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2241 } 2242 return p; 2243 } 2244 #endif /* SQLITE_OMIT_SUBQUERY */ 2245 2246 #ifndef SQLITE_OMIT_SUBQUERY 2247 /* 2248 ** Generate code that checks the left-most column of index table iCur to see if 2249 ** it contains any NULL entries. Cause the register at regHasNull to be set 2250 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2251 ** to be set to NULL if iCur contains one or more NULL values. 2252 */ 2253 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2254 int addr1; 2255 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2256 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2257 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2258 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2259 VdbeComment((v, "first_entry_in(%d)", iCur)); 2260 sqlite3VdbeJumpHere(v, addr1); 2261 } 2262 #endif 2263 2264 2265 #ifndef SQLITE_OMIT_SUBQUERY 2266 /* 2267 ** The argument is an IN operator with a list (not a subquery) on the 2268 ** right-hand side. Return TRUE if that list is constant. 2269 */ 2270 static int sqlite3InRhsIsConstant(Expr *pIn){ 2271 Expr *pLHS; 2272 int res; 2273 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2274 pLHS = pIn->pLeft; 2275 pIn->pLeft = 0; 2276 res = sqlite3ExprIsConstant(pIn); 2277 pIn->pLeft = pLHS; 2278 return res; 2279 } 2280 #endif 2281 2282 /* 2283 ** This function is used by the implementation of the IN (...) operator. 2284 ** The pX parameter is the expression on the RHS of the IN operator, which 2285 ** might be either a list of expressions or a subquery. 2286 ** 2287 ** The job of this routine is to find or create a b-tree object that can 2288 ** be used either to test for membership in the RHS set or to iterate through 2289 ** all members of the RHS set, skipping duplicates. 2290 ** 2291 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2292 ** and pX->iTable is set to the index of that cursor. 2293 ** 2294 ** The returned value of this function indicates the b-tree type, as follows: 2295 ** 2296 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2297 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2298 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2299 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2300 ** populated epheremal table. 2301 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2302 ** implemented as a sequence of comparisons. 2303 ** 2304 ** An existing b-tree might be used if the RHS expression pX is a simple 2305 ** subquery such as: 2306 ** 2307 ** SELECT <column1>, <column2>... FROM <table> 2308 ** 2309 ** If the RHS of the IN operator is a list or a more complex subquery, then 2310 ** an ephemeral table might need to be generated from the RHS and then 2311 ** pX->iTable made to point to the ephemeral table instead of an 2312 ** existing table. 2313 ** 2314 ** The inFlags parameter must contain, at a minimum, one of the bits 2315 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2316 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2317 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2318 ** be used to loop over all values of the RHS of the IN operator. 2319 ** 2320 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2321 ** through the set members) then the b-tree must not contain duplicates. 2322 ** An epheremal table will be created unless the selected columns are guaranteed 2323 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2324 ** a UNIQUE constraint or index. 2325 ** 2326 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2327 ** for fast set membership tests) then an epheremal table must 2328 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2329 ** index can be found with the specified <columns> as its left-most. 2330 ** 2331 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2332 ** if the RHS of the IN operator is a list (not a subquery) then this 2333 ** routine might decide that creating an ephemeral b-tree for membership 2334 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2335 ** calling routine should implement the IN operator using a sequence 2336 ** of Eq or Ne comparison operations. 2337 ** 2338 ** When the b-tree is being used for membership tests, the calling function 2339 ** might need to know whether or not the RHS side of the IN operator 2340 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2341 ** if there is any chance that the (...) might contain a NULL value at 2342 ** runtime, then a register is allocated and the register number written 2343 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2344 ** NULL value, then *prRhsHasNull is left unchanged. 2345 ** 2346 ** If a register is allocated and its location stored in *prRhsHasNull, then 2347 ** the value in that register will be NULL if the b-tree contains one or more 2348 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2349 ** NULL values. 2350 ** 2351 ** If the aiMap parameter is not NULL, it must point to an array containing 2352 ** one element for each column returned by the SELECT statement on the RHS 2353 ** of the IN(...) operator. The i'th entry of the array is populated with the 2354 ** offset of the index column that matches the i'th column returned by the 2355 ** SELECT. For example, if the expression and selected index are: 2356 ** 2357 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2358 ** CREATE INDEX i1 ON t1(b, c, a); 2359 ** 2360 ** then aiMap[] is populated with {2, 0, 1}. 2361 */ 2362 #ifndef SQLITE_OMIT_SUBQUERY 2363 int sqlite3FindInIndex( 2364 Parse *pParse, /* Parsing context */ 2365 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2366 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2367 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2368 int *aiMap, /* Mapping from Index fields to RHS fields */ 2369 int *piTab /* OUT: index to use */ 2370 ){ 2371 Select *p; /* SELECT to the right of IN operator */ 2372 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2373 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2374 int mustBeUnique; /* True if RHS must be unique */ 2375 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2376 2377 assert( pX->op==TK_IN ); 2378 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2379 2380 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2381 ** whether or not the SELECT result contains NULL values, check whether 2382 ** or not NULL is actually possible (it may not be, for example, due 2383 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2384 ** set prRhsHasNull to 0 before continuing. */ 2385 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2386 int i; 2387 ExprList *pEList = pX->x.pSelect->pEList; 2388 for(i=0; i<pEList->nExpr; i++){ 2389 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2390 } 2391 if( i==pEList->nExpr ){ 2392 prRhsHasNull = 0; 2393 } 2394 } 2395 2396 /* Check to see if an existing table or index can be used to 2397 ** satisfy the query. This is preferable to generating a new 2398 ** ephemeral table. */ 2399 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2400 sqlite3 *db = pParse->db; /* Database connection */ 2401 Table *pTab; /* Table <table>. */ 2402 i16 iDb; /* Database idx for pTab */ 2403 ExprList *pEList = p->pEList; 2404 int nExpr = pEList->nExpr; 2405 2406 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2407 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2408 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2409 pTab = p->pSrc->a[0].pTab; 2410 2411 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2412 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2413 sqlite3CodeVerifySchema(pParse, iDb); 2414 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2415 2416 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2417 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2418 /* The "x IN (SELECT rowid FROM table)" case */ 2419 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2420 VdbeCoverage(v); 2421 2422 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2423 eType = IN_INDEX_ROWID; 2424 ExplainQueryPlan((pParse, 0, 2425 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2426 sqlite3VdbeJumpHere(v, iAddr); 2427 }else{ 2428 Index *pIdx; /* Iterator variable */ 2429 int affinity_ok = 1; 2430 int i; 2431 2432 /* Check that the affinity that will be used to perform each 2433 ** comparison is the same as the affinity of each column in table 2434 ** on the RHS of the IN operator. If it not, it is not possible to 2435 ** use any index of the RHS table. */ 2436 for(i=0; i<nExpr && affinity_ok; i++){ 2437 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2438 int iCol = pEList->a[i].pExpr->iColumn; 2439 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2440 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2441 testcase( cmpaff==SQLITE_AFF_BLOB ); 2442 testcase( cmpaff==SQLITE_AFF_TEXT ); 2443 switch( cmpaff ){ 2444 case SQLITE_AFF_BLOB: 2445 break; 2446 case SQLITE_AFF_TEXT: 2447 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2448 ** other has no affinity and the other side is TEXT. Hence, 2449 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2450 ** and for the term on the LHS of the IN to have no affinity. */ 2451 assert( idxaff==SQLITE_AFF_TEXT ); 2452 break; 2453 default: 2454 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2455 } 2456 } 2457 2458 if( affinity_ok ){ 2459 /* Search for an existing index that will work for this IN operator */ 2460 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2461 Bitmask colUsed; /* Columns of the index used */ 2462 Bitmask mCol; /* Mask for the current column */ 2463 if( pIdx->nColumn<nExpr ) continue; 2464 if( pIdx->pPartIdxWhere!=0 ) continue; 2465 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2466 ** BITMASK(nExpr) without overflowing */ 2467 testcase( pIdx->nColumn==BMS-2 ); 2468 testcase( pIdx->nColumn==BMS-1 ); 2469 if( pIdx->nColumn>=BMS-1 ) continue; 2470 if( mustBeUnique ){ 2471 if( pIdx->nKeyCol>nExpr 2472 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2473 ){ 2474 continue; /* This index is not unique over the IN RHS columns */ 2475 } 2476 } 2477 2478 colUsed = 0; /* Columns of index used so far */ 2479 for(i=0; i<nExpr; i++){ 2480 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2481 Expr *pRhs = pEList->a[i].pExpr; 2482 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2483 int j; 2484 2485 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2486 for(j=0; j<nExpr; j++){ 2487 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2488 assert( pIdx->azColl[j] ); 2489 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2490 continue; 2491 } 2492 break; 2493 } 2494 if( j==nExpr ) break; 2495 mCol = MASKBIT(j); 2496 if( mCol & colUsed ) break; /* Each column used only once */ 2497 colUsed |= mCol; 2498 if( aiMap ) aiMap[i] = j; 2499 } 2500 2501 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2502 if( colUsed==(MASKBIT(nExpr)-1) ){ 2503 /* If we reach this point, that means the index pIdx is usable */ 2504 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2505 ExplainQueryPlan((pParse, 0, 2506 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2507 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2508 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2509 VdbeComment((v, "%s", pIdx->zName)); 2510 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2511 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2512 2513 if( prRhsHasNull ){ 2514 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2515 i64 mask = (1<<nExpr)-1; 2516 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2517 iTab, 0, 0, (u8*)&mask, P4_INT64); 2518 #endif 2519 *prRhsHasNull = ++pParse->nMem; 2520 if( nExpr==1 ){ 2521 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2522 } 2523 } 2524 sqlite3VdbeJumpHere(v, iAddr); 2525 } 2526 } /* End loop over indexes */ 2527 } /* End if( affinity_ok ) */ 2528 } /* End if not an rowid index */ 2529 } /* End attempt to optimize using an index */ 2530 2531 /* If no preexisting index is available for the IN clause 2532 ** and IN_INDEX_NOOP is an allowed reply 2533 ** and the RHS of the IN operator is a list, not a subquery 2534 ** and the RHS is not constant or has two or fewer terms, 2535 ** then it is not worth creating an ephemeral table to evaluate 2536 ** the IN operator so return IN_INDEX_NOOP. 2537 */ 2538 if( eType==0 2539 && (inFlags & IN_INDEX_NOOP_OK) 2540 && !ExprHasProperty(pX, EP_xIsSelect) 2541 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2542 ){ 2543 eType = IN_INDEX_NOOP; 2544 } 2545 2546 if( eType==0 ){ 2547 /* Could not find an existing table or index to use as the RHS b-tree. 2548 ** We will have to generate an ephemeral table to do the job. 2549 */ 2550 u32 savedNQueryLoop = pParse->nQueryLoop; 2551 int rMayHaveNull = 0; 2552 eType = IN_INDEX_EPH; 2553 if( inFlags & IN_INDEX_LOOP ){ 2554 pParse->nQueryLoop = 0; 2555 }else if( prRhsHasNull ){ 2556 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2557 } 2558 assert( pX->op==TK_IN ); 2559 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2560 if( rMayHaveNull ){ 2561 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2562 } 2563 pParse->nQueryLoop = savedNQueryLoop; 2564 } 2565 2566 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2567 int i, n; 2568 n = sqlite3ExprVectorSize(pX->pLeft); 2569 for(i=0; i<n; i++) aiMap[i] = i; 2570 } 2571 *piTab = iTab; 2572 return eType; 2573 } 2574 #endif 2575 2576 #ifndef SQLITE_OMIT_SUBQUERY 2577 /* 2578 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2579 ** function allocates and returns a nul-terminated string containing 2580 ** the affinities to be used for each column of the comparison. 2581 ** 2582 ** It is the responsibility of the caller to ensure that the returned 2583 ** string is eventually freed using sqlite3DbFree(). 2584 */ 2585 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2586 Expr *pLeft = pExpr->pLeft; 2587 int nVal = sqlite3ExprVectorSize(pLeft); 2588 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2589 char *zRet; 2590 2591 assert( pExpr->op==TK_IN ); 2592 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2593 if( zRet ){ 2594 int i; 2595 for(i=0; i<nVal; i++){ 2596 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2597 char a = sqlite3ExprAffinity(pA); 2598 if( pSelect ){ 2599 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2600 }else{ 2601 zRet[i] = a; 2602 } 2603 } 2604 zRet[nVal] = '\0'; 2605 } 2606 return zRet; 2607 } 2608 #endif 2609 2610 #ifndef SQLITE_OMIT_SUBQUERY 2611 /* 2612 ** Load the Parse object passed as the first argument with an error 2613 ** message of the form: 2614 ** 2615 ** "sub-select returns N columns - expected M" 2616 */ 2617 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2618 const char *zFmt = "sub-select returns %d columns - expected %d"; 2619 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2620 } 2621 #endif 2622 2623 /* 2624 ** Expression pExpr is a vector that has been used in a context where 2625 ** it is not permitted. If pExpr is a sub-select vector, this routine 2626 ** loads the Parse object with a message of the form: 2627 ** 2628 ** "sub-select returns N columns - expected 1" 2629 ** 2630 ** Or, if it is a regular scalar vector: 2631 ** 2632 ** "row value misused" 2633 */ 2634 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2635 #ifndef SQLITE_OMIT_SUBQUERY 2636 if( pExpr->flags & EP_xIsSelect ){ 2637 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2638 }else 2639 #endif 2640 { 2641 sqlite3ErrorMsg(pParse, "row value misused"); 2642 } 2643 } 2644 2645 #ifndef SQLITE_OMIT_SUBQUERY 2646 /* 2647 ** Generate code that will construct an ephemeral table containing all terms 2648 ** in the RHS of an IN operator. The IN operator can be in either of two 2649 ** forms: 2650 ** 2651 ** x IN (4,5,11) -- IN operator with list on right-hand side 2652 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2653 ** 2654 ** The pExpr parameter is the IN operator. The cursor number for the 2655 ** constructed ephermeral table is returned. The first time the ephemeral 2656 ** table is computed, the cursor number is also stored in pExpr->iTable, 2657 ** however the cursor number returned might not be the same, as it might 2658 ** have been duplicated using OP_OpenDup. 2659 ** 2660 ** If the LHS expression ("x" in the examples) is a column value, or 2661 ** the SELECT statement returns a column value, then the affinity of that 2662 ** column is used to build the index keys. If both 'x' and the 2663 ** SELECT... statement are columns, then numeric affinity is used 2664 ** if either column has NUMERIC or INTEGER affinity. If neither 2665 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2666 ** is used. 2667 */ 2668 void sqlite3CodeRhsOfIN( 2669 Parse *pParse, /* Parsing context */ 2670 Expr *pExpr, /* The IN operator */ 2671 int iTab /* Use this cursor number */ 2672 ){ 2673 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2674 int addr; /* Address of OP_OpenEphemeral instruction */ 2675 Expr *pLeft; /* the LHS of the IN operator */ 2676 KeyInfo *pKeyInfo = 0; /* Key information */ 2677 int nVal; /* Size of vector pLeft */ 2678 Vdbe *v; /* The prepared statement under construction */ 2679 2680 v = pParse->pVdbe; 2681 assert( v!=0 ); 2682 2683 /* The evaluation of the IN must be repeated every time it 2684 ** is encountered if any of the following is true: 2685 ** 2686 ** * The right-hand side is a correlated subquery 2687 ** * The right-hand side is an expression list containing variables 2688 ** * We are inside a trigger 2689 ** 2690 ** If all of the above are false, then we can compute the RHS just once 2691 ** and reuse it many names. 2692 */ 2693 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2694 /* Reuse of the RHS is allowed */ 2695 /* If this routine has already been coded, but the previous code 2696 ** might not have been invoked yet, so invoke it now as a subroutine. 2697 */ 2698 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2699 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2700 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2701 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2702 pExpr->x.pSelect->selId)); 2703 } 2704 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2705 pExpr->y.sub.iAddr); 2706 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2707 sqlite3VdbeJumpHere(v, addrOnce); 2708 return; 2709 } 2710 2711 /* Begin coding the subroutine */ 2712 ExprSetProperty(pExpr, EP_Subrtn); 2713 pExpr->y.sub.regReturn = ++pParse->nMem; 2714 pExpr->y.sub.iAddr = 2715 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2716 VdbeComment((v, "return address")); 2717 2718 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2719 } 2720 2721 /* Check to see if this is a vector IN operator */ 2722 pLeft = pExpr->pLeft; 2723 nVal = sqlite3ExprVectorSize(pLeft); 2724 2725 /* Construct the ephemeral table that will contain the content of 2726 ** RHS of the IN operator. 2727 */ 2728 pExpr->iTable = iTab; 2729 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2730 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2731 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2732 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2733 }else{ 2734 VdbeComment((v, "RHS of IN operator")); 2735 } 2736 #endif 2737 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2738 2739 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2740 /* Case 1: expr IN (SELECT ...) 2741 ** 2742 ** Generate code to write the results of the select into the temporary 2743 ** table allocated and opened above. 2744 */ 2745 Select *pSelect = pExpr->x.pSelect; 2746 ExprList *pEList = pSelect->pEList; 2747 2748 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2749 addrOnce?"":"CORRELATED ", pSelect->selId 2750 )); 2751 /* If the LHS and RHS of the IN operator do not match, that 2752 ** error will have been caught long before we reach this point. */ 2753 if( ALWAYS(pEList->nExpr==nVal) ){ 2754 SelectDest dest; 2755 int i; 2756 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2757 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2758 pSelect->iLimit = 0; 2759 testcase( pSelect->selFlags & SF_Distinct ); 2760 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2761 if( sqlite3Select(pParse, pSelect, &dest) ){ 2762 sqlite3DbFree(pParse->db, dest.zAffSdst); 2763 sqlite3KeyInfoUnref(pKeyInfo); 2764 return; 2765 } 2766 sqlite3DbFree(pParse->db, dest.zAffSdst); 2767 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2768 assert( pEList!=0 ); 2769 assert( pEList->nExpr>0 ); 2770 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2771 for(i=0; i<nVal; i++){ 2772 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2773 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2774 pParse, p, pEList->a[i].pExpr 2775 ); 2776 } 2777 } 2778 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2779 /* Case 2: expr IN (exprlist) 2780 ** 2781 ** For each expression, build an index key from the evaluation and 2782 ** store it in the temporary table. If <expr> is a column, then use 2783 ** that columns affinity when building index keys. If <expr> is not 2784 ** a column, use numeric affinity. 2785 */ 2786 char affinity; /* Affinity of the LHS of the IN */ 2787 int i; 2788 ExprList *pList = pExpr->x.pList; 2789 struct ExprList_item *pItem; 2790 int r1, r2; 2791 affinity = sqlite3ExprAffinity(pLeft); 2792 if( affinity<=SQLITE_AFF_NONE ){ 2793 affinity = SQLITE_AFF_BLOB; 2794 } 2795 if( pKeyInfo ){ 2796 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2797 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2798 } 2799 2800 /* Loop through each expression in <exprlist>. */ 2801 r1 = sqlite3GetTempReg(pParse); 2802 r2 = sqlite3GetTempReg(pParse); 2803 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2804 Expr *pE2 = pItem->pExpr; 2805 2806 /* If the expression is not constant then we will need to 2807 ** disable the test that was generated above that makes sure 2808 ** this code only executes once. Because for a non-constant 2809 ** expression we need to rerun this code each time. 2810 */ 2811 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2812 sqlite3VdbeChangeToNoop(v, addrOnce); 2813 ExprClearProperty(pExpr, EP_Subrtn); 2814 addrOnce = 0; 2815 } 2816 2817 /* Evaluate the expression and insert it into the temp table */ 2818 sqlite3ExprCode(pParse, pE2, r1); 2819 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2820 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2821 } 2822 sqlite3ReleaseTempReg(pParse, r1); 2823 sqlite3ReleaseTempReg(pParse, r2); 2824 } 2825 if( pKeyInfo ){ 2826 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2827 } 2828 if( addrOnce ){ 2829 sqlite3VdbeJumpHere(v, addrOnce); 2830 /* Subroutine return */ 2831 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2832 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2833 } 2834 } 2835 #endif /* SQLITE_OMIT_SUBQUERY */ 2836 2837 /* 2838 ** Generate code for scalar subqueries used as a subquery expression 2839 ** or EXISTS operator: 2840 ** 2841 ** (SELECT a FROM b) -- subquery 2842 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2843 ** 2844 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2845 ** 2846 ** The register that holds the result. For a multi-column SELECT, 2847 ** the result is stored in a contiguous array of registers and the 2848 ** return value is the register of the left-most result column. 2849 ** Return 0 if an error occurs. 2850 */ 2851 #ifndef SQLITE_OMIT_SUBQUERY 2852 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2853 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2854 int rReg = 0; /* Register storing resulting */ 2855 Select *pSel; /* SELECT statement to encode */ 2856 SelectDest dest; /* How to deal with SELECT result */ 2857 int nReg; /* Registers to allocate */ 2858 Expr *pLimit; /* New limit expression */ 2859 2860 Vdbe *v = pParse->pVdbe; 2861 assert( v!=0 ); 2862 testcase( pExpr->op==TK_EXISTS ); 2863 testcase( pExpr->op==TK_SELECT ); 2864 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2865 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2866 pSel = pExpr->x.pSelect; 2867 2868 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2869 ** is encountered if any of the following is true: 2870 ** 2871 ** * The right-hand side is a correlated subquery 2872 ** * The right-hand side is an expression list containing variables 2873 ** * We are inside a trigger 2874 ** 2875 ** If all of the above are false, then we can run this code just once 2876 ** save the results, and reuse the same result on subsequent invocations. 2877 */ 2878 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2879 /* If this routine has already been coded, then invoke it as a 2880 ** subroutine. */ 2881 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2882 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2883 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2884 pExpr->y.sub.iAddr); 2885 return pExpr->iTable; 2886 } 2887 2888 /* Begin coding the subroutine */ 2889 ExprSetProperty(pExpr, EP_Subrtn); 2890 pExpr->y.sub.regReturn = ++pParse->nMem; 2891 pExpr->y.sub.iAddr = 2892 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2893 VdbeComment((v, "return address")); 2894 2895 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2896 } 2897 2898 /* For a SELECT, generate code to put the values for all columns of 2899 ** the first row into an array of registers and return the index of 2900 ** the first register. 2901 ** 2902 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2903 ** into a register and return that register number. 2904 ** 2905 ** In both cases, the query is augmented with "LIMIT 1". Any 2906 ** preexisting limit is discarded in place of the new LIMIT 1. 2907 */ 2908 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2909 addrOnce?"":"CORRELATED ", pSel->selId)); 2910 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2911 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2912 pParse->nMem += nReg; 2913 if( pExpr->op==TK_SELECT ){ 2914 dest.eDest = SRT_Mem; 2915 dest.iSdst = dest.iSDParm; 2916 dest.nSdst = nReg; 2917 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2918 VdbeComment((v, "Init subquery result")); 2919 }else{ 2920 dest.eDest = SRT_Exists; 2921 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2922 VdbeComment((v, "Init EXISTS result")); 2923 } 2924 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2925 if( pSel->pLimit ){ 2926 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2927 pSel->pLimit->pLeft = pLimit; 2928 }else{ 2929 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2930 } 2931 pSel->iLimit = 0; 2932 if( sqlite3Select(pParse, pSel, &dest) ){ 2933 return 0; 2934 } 2935 pExpr->iTable = rReg = dest.iSDParm; 2936 ExprSetVVAProperty(pExpr, EP_NoReduce); 2937 if( addrOnce ){ 2938 sqlite3VdbeJumpHere(v, addrOnce); 2939 2940 /* Subroutine return */ 2941 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2942 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2943 } 2944 2945 return rReg; 2946 } 2947 #endif /* SQLITE_OMIT_SUBQUERY */ 2948 2949 #ifndef SQLITE_OMIT_SUBQUERY 2950 /* 2951 ** Expr pIn is an IN(...) expression. This function checks that the 2952 ** sub-select on the RHS of the IN() operator has the same number of 2953 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2954 ** a sub-query, that the LHS is a vector of size 1. 2955 */ 2956 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2957 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2958 if( (pIn->flags & EP_xIsSelect) ){ 2959 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2960 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2961 return 1; 2962 } 2963 }else if( nVector!=1 ){ 2964 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2965 return 1; 2966 } 2967 return 0; 2968 } 2969 #endif 2970 2971 #ifndef SQLITE_OMIT_SUBQUERY 2972 /* 2973 ** Generate code for an IN expression. 2974 ** 2975 ** x IN (SELECT ...) 2976 ** x IN (value, value, ...) 2977 ** 2978 ** The left-hand side (LHS) is a scalar or vector expression. The 2979 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2980 ** subquery. If the RHS is a subquery, the number of result columns must 2981 ** match the number of columns in the vector on the LHS. If the RHS is 2982 ** a list of values, the LHS must be a scalar. 2983 ** 2984 ** The IN operator is true if the LHS value is contained within the RHS. 2985 ** The result is false if the LHS is definitely not in the RHS. The 2986 ** result is NULL if the presence of the LHS in the RHS cannot be 2987 ** determined due to NULLs. 2988 ** 2989 ** This routine generates code that jumps to destIfFalse if the LHS is not 2990 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2991 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2992 ** within the RHS then fall through. 2993 ** 2994 ** See the separate in-operator.md documentation file in the canonical 2995 ** SQLite source tree for additional information. 2996 */ 2997 static void sqlite3ExprCodeIN( 2998 Parse *pParse, /* Parsing and code generating context */ 2999 Expr *pExpr, /* The IN expression */ 3000 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3001 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3002 ){ 3003 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3004 int eType; /* Type of the RHS */ 3005 int rLhs; /* Register(s) holding the LHS values */ 3006 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3007 Vdbe *v; /* Statement under construction */ 3008 int *aiMap = 0; /* Map from vector field to index column */ 3009 char *zAff = 0; /* Affinity string for comparisons */ 3010 int nVector; /* Size of vectors for this IN operator */ 3011 int iDummy; /* Dummy parameter to exprCodeVector() */ 3012 Expr *pLeft; /* The LHS of the IN operator */ 3013 int i; /* loop counter */ 3014 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3015 int destStep6 = 0; /* Start of code for Step 6 */ 3016 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3017 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3018 int addrTop; /* Top of the step-6 loop */ 3019 int iTab = 0; /* Index to use */ 3020 3021 pLeft = pExpr->pLeft; 3022 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3023 zAff = exprINAffinity(pParse, pExpr); 3024 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3025 aiMap = (int*)sqlite3DbMallocZero( 3026 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3027 ); 3028 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3029 3030 /* Attempt to compute the RHS. After this step, if anything other than 3031 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3032 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3033 ** the RHS has not yet been coded. */ 3034 v = pParse->pVdbe; 3035 assert( v!=0 ); /* OOM detected prior to this routine */ 3036 VdbeNoopComment((v, "begin IN expr")); 3037 eType = sqlite3FindInIndex(pParse, pExpr, 3038 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3039 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3040 aiMap, &iTab); 3041 3042 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3043 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3044 ); 3045 #ifdef SQLITE_DEBUG 3046 /* Confirm that aiMap[] contains nVector integer values between 0 and 3047 ** nVector-1. */ 3048 for(i=0; i<nVector; i++){ 3049 int j, cnt; 3050 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3051 assert( cnt==1 ); 3052 } 3053 #endif 3054 3055 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3056 ** vector, then it is stored in an array of nVector registers starting 3057 ** at r1. 3058 ** 3059 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3060 ** so that the fields are in the same order as an existing index. The 3061 ** aiMap[] array contains a mapping from the original LHS field order to 3062 ** the field order that matches the RHS index. 3063 */ 3064 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3065 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3066 if( i==nVector ){ 3067 /* LHS fields are not reordered */ 3068 rLhs = rLhsOrig; 3069 }else{ 3070 /* Need to reorder the LHS fields according to aiMap */ 3071 rLhs = sqlite3GetTempRange(pParse, nVector); 3072 for(i=0; i<nVector; i++){ 3073 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3074 } 3075 } 3076 3077 /* If sqlite3FindInIndex() did not find or create an index that is 3078 ** suitable for evaluating the IN operator, then evaluate using a 3079 ** sequence of comparisons. 3080 ** 3081 ** This is step (1) in the in-operator.md optimized algorithm. 3082 */ 3083 if( eType==IN_INDEX_NOOP ){ 3084 ExprList *pList = pExpr->x.pList; 3085 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3086 int labelOk = sqlite3VdbeMakeLabel(pParse); 3087 int r2, regToFree; 3088 int regCkNull = 0; 3089 int ii; 3090 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3091 if( destIfNull!=destIfFalse ){ 3092 regCkNull = sqlite3GetTempReg(pParse); 3093 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3094 } 3095 for(ii=0; ii<pList->nExpr; ii++){ 3096 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3097 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3098 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3099 } 3100 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3101 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3102 (void*)pColl, P4_COLLSEQ); 3103 VdbeCoverageIf(v, ii<pList->nExpr-1); 3104 VdbeCoverageIf(v, ii==pList->nExpr-1); 3105 sqlite3VdbeChangeP5(v, zAff[0]); 3106 }else{ 3107 assert( destIfNull==destIfFalse ); 3108 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3109 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3110 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3111 } 3112 sqlite3ReleaseTempReg(pParse, regToFree); 3113 } 3114 if( regCkNull ){ 3115 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3116 sqlite3VdbeGoto(v, destIfFalse); 3117 } 3118 sqlite3VdbeResolveLabel(v, labelOk); 3119 sqlite3ReleaseTempReg(pParse, regCkNull); 3120 goto sqlite3ExprCodeIN_finished; 3121 } 3122 3123 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3124 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3125 ** We will then skip the binary search of the RHS. 3126 */ 3127 if( destIfNull==destIfFalse ){ 3128 destStep2 = destIfFalse; 3129 }else{ 3130 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3131 } 3132 for(i=0; i<nVector; i++){ 3133 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3134 if( sqlite3ExprCanBeNull(p) ){ 3135 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3136 VdbeCoverage(v); 3137 } 3138 } 3139 3140 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3141 ** of the RHS using the LHS as a probe. If found, the result is 3142 ** true. 3143 */ 3144 if( eType==IN_INDEX_ROWID ){ 3145 /* In this case, the RHS is the ROWID of table b-tree and so we also 3146 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3147 ** into a single opcode. */ 3148 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3149 VdbeCoverage(v); 3150 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3151 }else{ 3152 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3153 if( destIfFalse==destIfNull ){ 3154 /* Combine Step 3 and Step 5 into a single opcode */ 3155 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3156 rLhs, nVector); VdbeCoverage(v); 3157 goto sqlite3ExprCodeIN_finished; 3158 } 3159 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3160 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3161 rLhs, nVector); VdbeCoverage(v); 3162 } 3163 3164 /* Step 4. If the RHS is known to be non-NULL and we did not find 3165 ** an match on the search above, then the result must be FALSE. 3166 */ 3167 if( rRhsHasNull && nVector==1 ){ 3168 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3169 VdbeCoverage(v); 3170 } 3171 3172 /* Step 5. If we do not care about the difference between NULL and 3173 ** FALSE, then just return false. 3174 */ 3175 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3176 3177 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3178 ** If any comparison is NULL, then the result is NULL. If all 3179 ** comparisons are FALSE then the final result is FALSE. 3180 ** 3181 ** For a scalar LHS, it is sufficient to check just the first row 3182 ** of the RHS. 3183 */ 3184 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3185 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3186 VdbeCoverage(v); 3187 if( nVector>1 ){ 3188 destNotNull = sqlite3VdbeMakeLabel(pParse); 3189 }else{ 3190 /* For nVector==1, combine steps 6 and 7 by immediately returning 3191 ** FALSE if the first comparison is not NULL */ 3192 destNotNull = destIfFalse; 3193 } 3194 for(i=0; i<nVector; i++){ 3195 Expr *p; 3196 CollSeq *pColl; 3197 int r3 = sqlite3GetTempReg(pParse); 3198 p = sqlite3VectorFieldSubexpr(pLeft, i); 3199 pColl = sqlite3ExprCollSeq(pParse, p); 3200 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3201 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3202 (void*)pColl, P4_COLLSEQ); 3203 VdbeCoverage(v); 3204 sqlite3ReleaseTempReg(pParse, r3); 3205 } 3206 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3207 if( nVector>1 ){ 3208 sqlite3VdbeResolveLabel(v, destNotNull); 3209 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3210 VdbeCoverage(v); 3211 3212 /* Step 7: If we reach this point, we know that the result must 3213 ** be false. */ 3214 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3215 } 3216 3217 /* Jumps here in order to return true. */ 3218 sqlite3VdbeJumpHere(v, addrTruthOp); 3219 3220 sqlite3ExprCodeIN_finished: 3221 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3222 VdbeComment((v, "end IN expr")); 3223 sqlite3ExprCodeIN_oom_error: 3224 sqlite3DbFree(pParse->db, aiMap); 3225 sqlite3DbFree(pParse->db, zAff); 3226 } 3227 #endif /* SQLITE_OMIT_SUBQUERY */ 3228 3229 #ifndef SQLITE_OMIT_FLOATING_POINT 3230 /* 3231 ** Generate an instruction that will put the floating point 3232 ** value described by z[0..n-1] into register iMem. 3233 ** 3234 ** The z[] string will probably not be zero-terminated. But the 3235 ** z[n] character is guaranteed to be something that does not look 3236 ** like the continuation of the number. 3237 */ 3238 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3239 if( ALWAYS(z!=0) ){ 3240 double value; 3241 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3242 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3243 if( negateFlag ) value = -value; 3244 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3245 } 3246 } 3247 #endif 3248 3249 3250 /* 3251 ** Generate an instruction that will put the integer describe by 3252 ** text z[0..n-1] into register iMem. 3253 ** 3254 ** Expr.u.zToken is always UTF8 and zero-terminated. 3255 */ 3256 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3257 Vdbe *v = pParse->pVdbe; 3258 if( pExpr->flags & EP_IntValue ){ 3259 int i = pExpr->u.iValue; 3260 assert( i>=0 ); 3261 if( negFlag ) i = -i; 3262 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3263 }else{ 3264 int c; 3265 i64 value; 3266 const char *z = pExpr->u.zToken; 3267 assert( z!=0 ); 3268 c = sqlite3DecOrHexToI64(z, &value); 3269 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3270 #ifdef SQLITE_OMIT_FLOATING_POINT 3271 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3272 #else 3273 #ifndef SQLITE_OMIT_HEX_INTEGER 3274 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3275 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3276 }else 3277 #endif 3278 { 3279 codeReal(v, z, negFlag, iMem); 3280 } 3281 #endif 3282 }else{ 3283 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3284 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3285 } 3286 } 3287 } 3288 3289 3290 /* Generate code that will load into register regOut a value that is 3291 ** appropriate for the iIdxCol-th column of index pIdx. 3292 */ 3293 void sqlite3ExprCodeLoadIndexColumn( 3294 Parse *pParse, /* The parsing context */ 3295 Index *pIdx, /* The index whose column is to be loaded */ 3296 int iTabCur, /* Cursor pointing to a table row */ 3297 int iIdxCol, /* The column of the index to be loaded */ 3298 int regOut /* Store the index column value in this register */ 3299 ){ 3300 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3301 if( iTabCol==XN_EXPR ){ 3302 assert( pIdx->aColExpr ); 3303 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3304 pParse->iSelfTab = iTabCur + 1; 3305 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3306 pParse->iSelfTab = 0; 3307 }else{ 3308 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3309 iTabCol, regOut); 3310 } 3311 } 3312 3313 /* 3314 ** Generate code to extract the value of the iCol-th column of a table. 3315 */ 3316 void sqlite3ExprCodeGetColumnOfTable( 3317 Vdbe *v, /* The VDBE under construction */ 3318 Table *pTab, /* The table containing the value */ 3319 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3320 int iCol, /* Index of the column to extract */ 3321 int regOut /* Extract the value into this register */ 3322 ){ 3323 if( pTab==0 ){ 3324 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3325 return; 3326 } 3327 if( iCol<0 || iCol==pTab->iPKey ){ 3328 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3329 }else{ 3330 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3331 int x = iCol; 3332 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3333 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3334 } 3335 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3336 } 3337 if( iCol>=0 ){ 3338 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3339 } 3340 } 3341 3342 /* 3343 ** Generate code that will extract the iColumn-th column from 3344 ** table pTab and store the column value in register iReg. 3345 ** 3346 ** There must be an open cursor to pTab in iTable when this routine 3347 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3348 */ 3349 int sqlite3ExprCodeGetColumn( 3350 Parse *pParse, /* Parsing and code generating context */ 3351 Table *pTab, /* Description of the table we are reading from */ 3352 int iColumn, /* Index of the table column */ 3353 int iTable, /* The cursor pointing to the table */ 3354 int iReg, /* Store results here */ 3355 u8 p5 /* P5 value for OP_Column + FLAGS */ 3356 ){ 3357 Vdbe *v = pParse->pVdbe; 3358 assert( v!=0 ); 3359 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3360 if( p5 ){ 3361 sqlite3VdbeChangeP5(v, p5); 3362 } 3363 return iReg; 3364 } 3365 3366 /* 3367 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3368 ** over to iTo..iTo+nReg-1. 3369 */ 3370 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3371 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3372 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3373 } 3374 3375 /* 3376 ** Convert a scalar expression node to a TK_REGISTER referencing 3377 ** register iReg. The caller must ensure that iReg already contains 3378 ** the correct value for the expression. 3379 */ 3380 static void exprToRegister(Expr *pExpr, int iReg){ 3381 Expr *p = sqlite3ExprSkipCollate(pExpr); 3382 p->op2 = p->op; 3383 p->op = TK_REGISTER; 3384 p->iTable = iReg; 3385 ExprClearProperty(p, EP_Skip); 3386 } 3387 3388 /* 3389 ** Evaluate an expression (either a vector or a scalar expression) and store 3390 ** the result in continguous temporary registers. Return the index of 3391 ** the first register used to store the result. 3392 ** 3393 ** If the returned result register is a temporary scalar, then also write 3394 ** that register number into *piFreeable. If the returned result register 3395 ** is not a temporary or if the expression is a vector set *piFreeable 3396 ** to 0. 3397 */ 3398 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3399 int iResult; 3400 int nResult = sqlite3ExprVectorSize(p); 3401 if( nResult==1 ){ 3402 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3403 }else{ 3404 *piFreeable = 0; 3405 if( p->op==TK_SELECT ){ 3406 #if SQLITE_OMIT_SUBQUERY 3407 iResult = 0; 3408 #else 3409 iResult = sqlite3CodeSubselect(pParse, p); 3410 #endif 3411 }else{ 3412 int i; 3413 iResult = pParse->nMem+1; 3414 pParse->nMem += nResult; 3415 for(i=0; i<nResult; i++){ 3416 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3417 } 3418 } 3419 } 3420 return iResult; 3421 } 3422 3423 3424 /* 3425 ** Generate code into the current Vdbe to evaluate the given 3426 ** expression. Attempt to store the results in register "target". 3427 ** Return the register where results are stored. 3428 ** 3429 ** With this routine, there is no guarantee that results will 3430 ** be stored in target. The result might be stored in some other 3431 ** register if it is convenient to do so. The calling function 3432 ** must check the return code and move the results to the desired 3433 ** register. 3434 */ 3435 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3436 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3437 int op; /* The opcode being coded */ 3438 int inReg = target; /* Results stored in register inReg */ 3439 int regFree1 = 0; /* If non-zero free this temporary register */ 3440 int regFree2 = 0; /* If non-zero free this temporary register */ 3441 int r1, r2; /* Various register numbers */ 3442 Expr tempX; /* Temporary expression node */ 3443 int p5 = 0; 3444 3445 assert( target>0 && target<=pParse->nMem ); 3446 if( v==0 ){ 3447 assert( pParse->db->mallocFailed ); 3448 return 0; 3449 } 3450 3451 expr_code_doover: 3452 if( pExpr==0 ){ 3453 op = TK_NULL; 3454 }else{ 3455 op = pExpr->op; 3456 } 3457 switch( op ){ 3458 case TK_AGG_COLUMN: { 3459 AggInfo *pAggInfo = pExpr->pAggInfo; 3460 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3461 if( !pAggInfo->directMode ){ 3462 assert( pCol->iMem>0 ); 3463 return pCol->iMem; 3464 }else if( pAggInfo->useSortingIdx ){ 3465 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3466 pCol->iSorterColumn, target); 3467 return target; 3468 } 3469 /* Otherwise, fall thru into the TK_COLUMN case */ 3470 } 3471 case TK_COLUMN: { 3472 int iTab = pExpr->iTable; 3473 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3474 /* This COLUMN expression is really a constant due to WHERE clause 3475 ** constraints, and that constant is coded by the pExpr->pLeft 3476 ** expresssion. However, make sure the constant has the correct 3477 ** datatype by applying the Affinity of the table column to the 3478 ** constant. 3479 */ 3480 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3481 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3482 if( aff>SQLITE_AFF_BLOB ){ 3483 static const char zAff[] = "B\000C\000D\000E"; 3484 assert( SQLITE_AFF_BLOB=='A' ); 3485 assert( SQLITE_AFF_TEXT=='B' ); 3486 if( iReg!=target ){ 3487 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3488 iReg = target; 3489 } 3490 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3491 &zAff[(aff-'B')*2], P4_STATIC); 3492 } 3493 return iReg; 3494 } 3495 if( iTab<0 ){ 3496 if( pParse->iSelfTab<0 ){ 3497 /* Generating CHECK constraints or inserting into partial index */ 3498 return pExpr->iColumn - pParse->iSelfTab; 3499 }else{ 3500 /* Coding an expression that is part of an index where column names 3501 ** in the index refer to the table to which the index belongs */ 3502 iTab = pParse->iSelfTab - 1; 3503 } 3504 } 3505 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3506 pExpr->iColumn, iTab, target, 3507 pExpr->op2); 3508 } 3509 case TK_INTEGER: { 3510 codeInteger(pParse, pExpr, 0, target); 3511 return target; 3512 } 3513 case TK_TRUEFALSE: { 3514 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3515 return target; 3516 } 3517 #ifndef SQLITE_OMIT_FLOATING_POINT 3518 case TK_FLOAT: { 3519 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3520 codeReal(v, pExpr->u.zToken, 0, target); 3521 return target; 3522 } 3523 #endif 3524 case TK_STRING: { 3525 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3526 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3527 return target; 3528 } 3529 case TK_NULL: { 3530 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3531 return target; 3532 } 3533 #ifndef SQLITE_OMIT_BLOB_LITERAL 3534 case TK_BLOB: { 3535 int n; 3536 const char *z; 3537 char *zBlob; 3538 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3539 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3540 assert( pExpr->u.zToken[1]=='\'' ); 3541 z = &pExpr->u.zToken[2]; 3542 n = sqlite3Strlen30(z) - 1; 3543 assert( z[n]=='\'' ); 3544 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3545 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3546 return target; 3547 } 3548 #endif 3549 case TK_VARIABLE: { 3550 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3551 assert( pExpr->u.zToken!=0 ); 3552 assert( pExpr->u.zToken[0]!=0 ); 3553 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3554 if( pExpr->u.zToken[1]!=0 ){ 3555 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3556 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3557 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3558 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3559 } 3560 return target; 3561 } 3562 case TK_REGISTER: { 3563 return pExpr->iTable; 3564 } 3565 #ifndef SQLITE_OMIT_CAST 3566 case TK_CAST: { 3567 /* Expressions of the form: CAST(pLeft AS token) */ 3568 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3569 if( inReg!=target ){ 3570 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3571 inReg = target; 3572 } 3573 sqlite3VdbeAddOp2(v, OP_Cast, target, 3574 sqlite3AffinityType(pExpr->u.zToken, 0)); 3575 return inReg; 3576 } 3577 #endif /* SQLITE_OMIT_CAST */ 3578 case TK_IS: 3579 case TK_ISNOT: 3580 op = (op==TK_IS) ? TK_EQ : TK_NE; 3581 p5 = SQLITE_NULLEQ; 3582 /* fall-through */ 3583 case TK_LT: 3584 case TK_LE: 3585 case TK_GT: 3586 case TK_GE: 3587 case TK_NE: 3588 case TK_EQ: { 3589 Expr *pLeft = pExpr->pLeft; 3590 if( sqlite3ExprIsVector(pLeft) ){ 3591 codeVectorCompare(pParse, pExpr, target, op, p5); 3592 }else{ 3593 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3594 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3595 codeCompare(pParse, pLeft, pExpr->pRight, op, 3596 r1, r2, inReg, SQLITE_STOREP2 | p5); 3597 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3598 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3599 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3600 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3601 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3602 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3603 testcase( regFree1==0 ); 3604 testcase( regFree2==0 ); 3605 } 3606 break; 3607 } 3608 case TK_AND: 3609 case TK_OR: 3610 case TK_PLUS: 3611 case TK_STAR: 3612 case TK_MINUS: 3613 case TK_REM: 3614 case TK_BITAND: 3615 case TK_BITOR: 3616 case TK_SLASH: 3617 case TK_LSHIFT: 3618 case TK_RSHIFT: 3619 case TK_CONCAT: { 3620 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3621 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3622 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3623 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3624 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3625 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3626 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3627 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3628 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3629 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3630 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3631 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3632 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3633 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3634 testcase( regFree1==0 ); 3635 testcase( regFree2==0 ); 3636 break; 3637 } 3638 case TK_UMINUS: { 3639 Expr *pLeft = pExpr->pLeft; 3640 assert( pLeft ); 3641 if( pLeft->op==TK_INTEGER ){ 3642 codeInteger(pParse, pLeft, 1, target); 3643 return target; 3644 #ifndef SQLITE_OMIT_FLOATING_POINT 3645 }else if( pLeft->op==TK_FLOAT ){ 3646 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3647 codeReal(v, pLeft->u.zToken, 1, target); 3648 return target; 3649 #endif 3650 }else{ 3651 tempX.op = TK_INTEGER; 3652 tempX.flags = EP_IntValue|EP_TokenOnly; 3653 tempX.u.iValue = 0; 3654 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3655 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3656 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3657 testcase( regFree2==0 ); 3658 } 3659 break; 3660 } 3661 case TK_BITNOT: 3662 case TK_NOT: { 3663 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3664 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3665 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3666 testcase( regFree1==0 ); 3667 sqlite3VdbeAddOp2(v, op, r1, inReg); 3668 break; 3669 } 3670 case TK_TRUTH: { 3671 int isTrue; /* IS TRUE or IS NOT TRUE */ 3672 int bNormal; /* IS TRUE or IS FALSE */ 3673 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3674 testcase( regFree1==0 ); 3675 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3676 bNormal = pExpr->op2==TK_IS; 3677 testcase( isTrue && bNormal); 3678 testcase( !isTrue && bNormal); 3679 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3680 break; 3681 } 3682 case TK_ISNULL: 3683 case TK_NOTNULL: { 3684 int addr; 3685 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3686 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3687 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3688 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3689 testcase( regFree1==0 ); 3690 addr = sqlite3VdbeAddOp1(v, op, r1); 3691 VdbeCoverageIf(v, op==TK_ISNULL); 3692 VdbeCoverageIf(v, op==TK_NOTNULL); 3693 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3694 sqlite3VdbeJumpHere(v, addr); 3695 break; 3696 } 3697 case TK_AGG_FUNCTION: { 3698 AggInfo *pInfo = pExpr->pAggInfo; 3699 if( pInfo==0 ){ 3700 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3701 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3702 }else{ 3703 return pInfo->aFunc[pExpr->iAgg].iMem; 3704 } 3705 break; 3706 } 3707 case TK_FUNCTION: { 3708 ExprList *pFarg; /* List of function arguments */ 3709 int nFarg; /* Number of function arguments */ 3710 FuncDef *pDef; /* The function definition object */ 3711 const char *zId; /* The function name */ 3712 u32 constMask = 0; /* Mask of function arguments that are constant */ 3713 int i; /* Loop counter */ 3714 sqlite3 *db = pParse->db; /* The database connection */ 3715 u8 enc = ENC(db); /* The text encoding used by this database */ 3716 CollSeq *pColl = 0; /* A collating sequence */ 3717 3718 #ifndef SQLITE_OMIT_WINDOWFUNC 3719 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3720 return pExpr->y.pWin->regResult; 3721 } 3722 #endif 3723 3724 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3725 /* SQL functions can be expensive. So try to move constant functions 3726 ** out of the inner loop, even if that means an extra OP_Copy. */ 3727 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3728 } 3729 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3730 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3731 pFarg = 0; 3732 }else{ 3733 pFarg = pExpr->x.pList; 3734 } 3735 nFarg = pFarg ? pFarg->nExpr : 0; 3736 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3737 zId = pExpr->u.zToken; 3738 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3739 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3740 if( pDef==0 && pParse->explain ){ 3741 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3742 } 3743 #endif 3744 if( pDef==0 || pDef->xFinalize!=0 ){ 3745 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3746 break; 3747 } 3748 3749 /* Attempt a direct implementation of the built-in COALESCE() and 3750 ** IFNULL() functions. This avoids unnecessary evaluation of 3751 ** arguments past the first non-NULL argument. 3752 */ 3753 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3754 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3755 assert( nFarg>=2 ); 3756 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3757 for(i=1; i<nFarg; i++){ 3758 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3759 VdbeCoverage(v); 3760 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3761 } 3762 sqlite3VdbeResolveLabel(v, endCoalesce); 3763 break; 3764 } 3765 3766 /* The UNLIKELY() function is a no-op. The result is the value 3767 ** of the first argument. 3768 */ 3769 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3770 assert( nFarg>=1 ); 3771 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3772 } 3773 3774 #ifdef SQLITE_DEBUG 3775 /* The AFFINITY() function evaluates to a string that describes 3776 ** the type affinity of the argument. This is used for testing of 3777 ** the SQLite type logic. 3778 */ 3779 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3780 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3781 char aff; 3782 assert( nFarg==1 ); 3783 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3784 sqlite3VdbeLoadString(v, target, 3785 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3786 return target; 3787 } 3788 #endif 3789 3790 for(i=0; i<nFarg; i++){ 3791 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3792 testcase( i==31 ); 3793 constMask |= MASKBIT32(i); 3794 } 3795 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3796 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3797 } 3798 } 3799 if( pFarg ){ 3800 if( constMask ){ 3801 r1 = pParse->nMem+1; 3802 pParse->nMem += nFarg; 3803 }else{ 3804 r1 = sqlite3GetTempRange(pParse, nFarg); 3805 } 3806 3807 /* For length() and typeof() functions with a column argument, 3808 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3809 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3810 ** loading. 3811 */ 3812 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3813 u8 exprOp; 3814 assert( nFarg==1 ); 3815 assert( pFarg->a[0].pExpr!=0 ); 3816 exprOp = pFarg->a[0].pExpr->op; 3817 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3818 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3819 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3820 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3821 pFarg->a[0].pExpr->op2 = 3822 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3823 } 3824 } 3825 3826 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3827 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3828 }else{ 3829 r1 = 0; 3830 } 3831 #ifndef SQLITE_OMIT_VIRTUALTABLE 3832 /* Possibly overload the function if the first argument is 3833 ** a virtual table column. 3834 ** 3835 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3836 ** second argument, not the first, as the argument to test to 3837 ** see if it is a column in a virtual table. This is done because 3838 ** the left operand of infix functions (the operand we want to 3839 ** control overloading) ends up as the second argument to the 3840 ** function. The expression "A glob B" is equivalent to 3841 ** "glob(B,A). We want to use the A in "A glob B" to test 3842 ** for function overloading. But we use the B term in "glob(B,A)". 3843 */ 3844 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3845 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3846 }else if( nFarg>0 ){ 3847 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3848 } 3849 #endif 3850 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3851 if( !pColl ) pColl = db->pDfltColl; 3852 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3853 } 3854 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3855 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3856 Expr *pArg = pFarg->a[0].pExpr; 3857 if( pArg->op==TK_COLUMN ){ 3858 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3859 }else{ 3860 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3861 } 3862 }else 3863 #endif 3864 { 3865 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3866 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3867 sqlite3VdbeChangeP5(v, (u8)nFarg); 3868 } 3869 if( nFarg && constMask==0 ){ 3870 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3871 } 3872 return target; 3873 } 3874 #ifndef SQLITE_OMIT_SUBQUERY 3875 case TK_EXISTS: 3876 case TK_SELECT: { 3877 int nCol; 3878 testcase( op==TK_EXISTS ); 3879 testcase( op==TK_SELECT ); 3880 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3881 sqlite3SubselectError(pParse, nCol, 1); 3882 }else{ 3883 return sqlite3CodeSubselect(pParse, pExpr); 3884 } 3885 break; 3886 } 3887 case TK_SELECT_COLUMN: { 3888 int n; 3889 if( pExpr->pLeft->iTable==0 ){ 3890 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 3891 } 3892 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3893 if( pExpr->iTable 3894 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3895 ){ 3896 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3897 pExpr->iTable, n); 3898 } 3899 return pExpr->pLeft->iTable + pExpr->iColumn; 3900 } 3901 case TK_IN: { 3902 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 3903 int destIfNull = sqlite3VdbeMakeLabel(pParse); 3904 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3905 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3906 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3907 sqlite3VdbeResolveLabel(v, destIfFalse); 3908 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3909 sqlite3VdbeResolveLabel(v, destIfNull); 3910 return target; 3911 } 3912 #endif /* SQLITE_OMIT_SUBQUERY */ 3913 3914 3915 /* 3916 ** x BETWEEN y AND z 3917 ** 3918 ** This is equivalent to 3919 ** 3920 ** x>=y AND x<=z 3921 ** 3922 ** X is stored in pExpr->pLeft. 3923 ** Y is stored in pExpr->pList->a[0].pExpr. 3924 ** Z is stored in pExpr->pList->a[1].pExpr. 3925 */ 3926 case TK_BETWEEN: { 3927 exprCodeBetween(pParse, pExpr, target, 0, 0); 3928 return target; 3929 } 3930 case TK_SPAN: 3931 case TK_COLLATE: 3932 case TK_UPLUS: { 3933 pExpr = pExpr->pLeft; 3934 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 3935 } 3936 3937 case TK_TRIGGER: { 3938 /* If the opcode is TK_TRIGGER, then the expression is a reference 3939 ** to a column in the new.* or old.* pseudo-tables available to 3940 ** trigger programs. In this case Expr.iTable is set to 1 for the 3941 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3942 ** is set to the column of the pseudo-table to read, or to -1 to 3943 ** read the rowid field. 3944 ** 3945 ** The expression is implemented using an OP_Param opcode. The p1 3946 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3947 ** to reference another column of the old.* pseudo-table, where 3948 ** i is the index of the column. For a new.rowid reference, p1 is 3949 ** set to (n+1), where n is the number of columns in each pseudo-table. 3950 ** For a reference to any other column in the new.* pseudo-table, p1 3951 ** is set to (n+2+i), where n and i are as defined previously. For 3952 ** example, if the table on which triggers are being fired is 3953 ** declared as: 3954 ** 3955 ** CREATE TABLE t1(a, b); 3956 ** 3957 ** Then p1 is interpreted as follows: 3958 ** 3959 ** p1==0 -> old.rowid p1==3 -> new.rowid 3960 ** p1==1 -> old.a p1==4 -> new.a 3961 ** p1==2 -> old.b p1==5 -> new.b 3962 */ 3963 Table *pTab = pExpr->y.pTab; 3964 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3965 3966 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3967 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3968 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3969 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3970 3971 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3972 VdbeComment((v, "r[%d]=%s.%s", target, 3973 (pExpr->iTable ? "new" : "old"), 3974 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) 3975 )); 3976 3977 #ifndef SQLITE_OMIT_FLOATING_POINT 3978 /* If the column has REAL affinity, it may currently be stored as an 3979 ** integer. Use OP_RealAffinity to make sure it is really real. 3980 ** 3981 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3982 ** floating point when extracting it from the record. */ 3983 if( pExpr->iColumn>=0 3984 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3985 ){ 3986 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3987 } 3988 #endif 3989 break; 3990 } 3991 3992 case TK_VECTOR: { 3993 sqlite3ErrorMsg(pParse, "row value misused"); 3994 break; 3995 } 3996 3997 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 3998 ** that derive from the right-hand table of a LEFT JOIN. The 3999 ** Expr.iTable value is the table number for the right-hand table. 4000 ** The expression is only evaluated if that table is not currently 4001 ** on a LEFT JOIN NULL row. 4002 */ 4003 case TK_IF_NULL_ROW: { 4004 int addrINR; 4005 u8 okConstFactor = pParse->okConstFactor; 4006 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4007 /* Temporarily disable factoring of constant expressions, since 4008 ** even though expressions may appear to be constant, they are not 4009 ** really constant because they originate from the right-hand side 4010 ** of a LEFT JOIN. */ 4011 pParse->okConstFactor = 0; 4012 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4013 pParse->okConstFactor = okConstFactor; 4014 sqlite3VdbeJumpHere(v, addrINR); 4015 sqlite3VdbeChangeP3(v, addrINR, inReg); 4016 break; 4017 } 4018 4019 /* 4020 ** Form A: 4021 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4022 ** 4023 ** Form B: 4024 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4025 ** 4026 ** Form A is can be transformed into the equivalent form B as follows: 4027 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4028 ** WHEN x=eN THEN rN ELSE y END 4029 ** 4030 ** X (if it exists) is in pExpr->pLeft. 4031 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4032 ** odd. The Y is also optional. If the number of elements in x.pList 4033 ** is even, then Y is omitted and the "otherwise" result is NULL. 4034 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4035 ** 4036 ** The result of the expression is the Ri for the first matching Ei, 4037 ** or if there is no matching Ei, the ELSE term Y, or if there is 4038 ** no ELSE term, NULL. 4039 */ 4040 default: assert( op==TK_CASE ); { 4041 int endLabel; /* GOTO label for end of CASE stmt */ 4042 int nextCase; /* GOTO label for next WHEN clause */ 4043 int nExpr; /* 2x number of WHEN terms */ 4044 int i; /* Loop counter */ 4045 ExprList *pEList; /* List of WHEN terms */ 4046 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4047 Expr opCompare; /* The X==Ei expression */ 4048 Expr *pX; /* The X expression */ 4049 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4050 Expr *pDel = 0; 4051 sqlite3 *db = pParse->db; 4052 4053 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4054 assert(pExpr->x.pList->nExpr > 0); 4055 pEList = pExpr->x.pList; 4056 aListelem = pEList->a; 4057 nExpr = pEList->nExpr; 4058 endLabel = sqlite3VdbeMakeLabel(pParse); 4059 if( (pX = pExpr->pLeft)!=0 ){ 4060 pDel = sqlite3ExprDup(db, pX, 0); 4061 if( db->mallocFailed ){ 4062 sqlite3ExprDelete(db, pDel); 4063 break; 4064 } 4065 testcase( pX->op==TK_COLUMN ); 4066 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4067 testcase( regFree1==0 ); 4068 memset(&opCompare, 0, sizeof(opCompare)); 4069 opCompare.op = TK_EQ; 4070 opCompare.pLeft = pDel; 4071 pTest = &opCompare; 4072 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4073 ** The value in regFree1 might get SCopy-ed into the file result. 4074 ** So make sure that the regFree1 register is not reused for other 4075 ** purposes and possibly overwritten. */ 4076 regFree1 = 0; 4077 } 4078 for(i=0; i<nExpr-1; i=i+2){ 4079 if( pX ){ 4080 assert( pTest!=0 ); 4081 opCompare.pRight = aListelem[i].pExpr; 4082 }else{ 4083 pTest = aListelem[i].pExpr; 4084 } 4085 nextCase = sqlite3VdbeMakeLabel(pParse); 4086 testcase( pTest->op==TK_COLUMN ); 4087 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4088 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4089 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4090 sqlite3VdbeGoto(v, endLabel); 4091 sqlite3VdbeResolveLabel(v, nextCase); 4092 } 4093 if( (nExpr&1)!=0 ){ 4094 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4095 }else{ 4096 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4097 } 4098 sqlite3ExprDelete(db, pDel); 4099 sqlite3VdbeResolveLabel(v, endLabel); 4100 break; 4101 } 4102 #ifndef SQLITE_OMIT_TRIGGER 4103 case TK_RAISE: { 4104 assert( pExpr->affExpr==OE_Rollback 4105 || pExpr->affExpr==OE_Abort 4106 || pExpr->affExpr==OE_Fail 4107 || pExpr->affExpr==OE_Ignore 4108 ); 4109 if( !pParse->pTriggerTab ){ 4110 sqlite3ErrorMsg(pParse, 4111 "RAISE() may only be used within a trigger-program"); 4112 return 0; 4113 } 4114 if( pExpr->affExpr==OE_Abort ){ 4115 sqlite3MayAbort(pParse); 4116 } 4117 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4118 if( pExpr->affExpr==OE_Ignore ){ 4119 sqlite3VdbeAddOp4( 4120 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4121 VdbeCoverage(v); 4122 }else{ 4123 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4124 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4125 } 4126 4127 break; 4128 } 4129 #endif 4130 } 4131 sqlite3ReleaseTempReg(pParse, regFree1); 4132 sqlite3ReleaseTempReg(pParse, regFree2); 4133 return inReg; 4134 } 4135 4136 /* 4137 ** Factor out the code of the given expression to initialization time. 4138 ** 4139 ** If regDest>=0 then the result is always stored in that register and the 4140 ** result is not reusable. If regDest<0 then this routine is free to 4141 ** store the value whereever it wants. The register where the expression 4142 ** is stored is returned. When regDest<0, two identical expressions will 4143 ** code to the same register. 4144 */ 4145 int sqlite3ExprCodeAtInit( 4146 Parse *pParse, /* Parsing context */ 4147 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4148 int regDest /* Store the value in this register */ 4149 ){ 4150 ExprList *p; 4151 assert( ConstFactorOk(pParse) ); 4152 p = pParse->pConstExpr; 4153 if( regDest<0 && p ){ 4154 struct ExprList_item *pItem; 4155 int i; 4156 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4157 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4158 return pItem->u.iConstExprReg; 4159 } 4160 } 4161 } 4162 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4163 p = sqlite3ExprListAppend(pParse, p, pExpr); 4164 if( p ){ 4165 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4166 pItem->reusable = regDest<0; 4167 if( regDest<0 ) regDest = ++pParse->nMem; 4168 pItem->u.iConstExprReg = regDest; 4169 } 4170 pParse->pConstExpr = p; 4171 return regDest; 4172 } 4173 4174 /* 4175 ** Generate code to evaluate an expression and store the results 4176 ** into a register. Return the register number where the results 4177 ** are stored. 4178 ** 4179 ** If the register is a temporary register that can be deallocated, 4180 ** then write its number into *pReg. If the result register is not 4181 ** a temporary, then set *pReg to zero. 4182 ** 4183 ** If pExpr is a constant, then this routine might generate this 4184 ** code to fill the register in the initialization section of the 4185 ** VDBE program, in order to factor it out of the evaluation loop. 4186 */ 4187 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4188 int r2; 4189 pExpr = sqlite3ExprSkipCollate(pExpr); 4190 if( ConstFactorOk(pParse) 4191 && pExpr->op!=TK_REGISTER 4192 && sqlite3ExprIsConstantNotJoin(pExpr) 4193 ){ 4194 *pReg = 0; 4195 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4196 }else{ 4197 int r1 = sqlite3GetTempReg(pParse); 4198 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4199 if( r2==r1 ){ 4200 *pReg = r1; 4201 }else{ 4202 sqlite3ReleaseTempReg(pParse, r1); 4203 *pReg = 0; 4204 } 4205 } 4206 return r2; 4207 } 4208 4209 /* 4210 ** Generate code that will evaluate expression pExpr and store the 4211 ** results in register target. The results are guaranteed to appear 4212 ** in register target. 4213 */ 4214 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4215 int inReg; 4216 4217 assert( target>0 && target<=pParse->nMem ); 4218 if( pExpr && pExpr->op==TK_REGISTER ){ 4219 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4220 }else{ 4221 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4222 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4223 if( inReg!=target && pParse->pVdbe ){ 4224 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4225 } 4226 } 4227 } 4228 4229 /* 4230 ** Make a transient copy of expression pExpr and then code it using 4231 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4232 ** except that the input expression is guaranteed to be unchanged. 4233 */ 4234 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4235 sqlite3 *db = pParse->db; 4236 pExpr = sqlite3ExprDup(db, pExpr, 0); 4237 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4238 sqlite3ExprDelete(db, pExpr); 4239 } 4240 4241 /* 4242 ** Generate code that will evaluate expression pExpr and store the 4243 ** results in register target. The results are guaranteed to appear 4244 ** in register target. If the expression is constant, then this routine 4245 ** might choose to code the expression at initialization time. 4246 */ 4247 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4248 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4249 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4250 }else{ 4251 sqlite3ExprCode(pParse, pExpr, target); 4252 } 4253 } 4254 4255 /* 4256 ** Generate code that evaluates the given expression and puts the result 4257 ** in register target. 4258 ** 4259 ** Also make a copy of the expression results into another "cache" register 4260 ** and modify the expression so that the next time it is evaluated, 4261 ** the result is a copy of the cache register. 4262 ** 4263 ** This routine is used for expressions that are used multiple 4264 ** times. They are evaluated once and the results of the expression 4265 ** are reused. 4266 */ 4267 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4268 Vdbe *v = pParse->pVdbe; 4269 int iMem; 4270 4271 assert( target>0 ); 4272 assert( pExpr->op!=TK_REGISTER ); 4273 sqlite3ExprCode(pParse, pExpr, target); 4274 iMem = ++pParse->nMem; 4275 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4276 exprToRegister(pExpr, iMem); 4277 } 4278 4279 /* 4280 ** Generate code that pushes the value of every element of the given 4281 ** expression list into a sequence of registers beginning at target. 4282 ** 4283 ** Return the number of elements evaluated. The number returned will 4284 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4285 ** is defined. 4286 ** 4287 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4288 ** filled using OP_SCopy. OP_Copy must be used instead. 4289 ** 4290 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4291 ** factored out into initialization code. 4292 ** 4293 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4294 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4295 ** in registers at srcReg, and so the value can be copied from there. 4296 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4297 ** are simply omitted rather than being copied from srcReg. 4298 */ 4299 int sqlite3ExprCodeExprList( 4300 Parse *pParse, /* Parsing context */ 4301 ExprList *pList, /* The expression list to be coded */ 4302 int target, /* Where to write results */ 4303 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4304 u8 flags /* SQLITE_ECEL_* flags */ 4305 ){ 4306 struct ExprList_item *pItem; 4307 int i, j, n; 4308 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4309 Vdbe *v = pParse->pVdbe; 4310 assert( pList!=0 ); 4311 assert( target>0 ); 4312 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4313 n = pList->nExpr; 4314 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4315 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4316 Expr *pExpr = pItem->pExpr; 4317 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4318 if( pItem->bSorterRef ){ 4319 i--; 4320 n--; 4321 }else 4322 #endif 4323 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4324 if( flags & SQLITE_ECEL_OMITREF ){ 4325 i--; 4326 n--; 4327 }else{ 4328 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4329 } 4330 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4331 && sqlite3ExprIsConstantNotJoin(pExpr) 4332 ){ 4333 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4334 }else{ 4335 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4336 if( inReg!=target+i ){ 4337 VdbeOp *pOp; 4338 if( copyOp==OP_Copy 4339 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4340 && pOp->p1+pOp->p3+1==inReg 4341 && pOp->p2+pOp->p3+1==target+i 4342 ){ 4343 pOp->p3++; 4344 }else{ 4345 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4346 } 4347 } 4348 } 4349 } 4350 return n; 4351 } 4352 4353 /* 4354 ** Generate code for a BETWEEN operator. 4355 ** 4356 ** x BETWEEN y AND z 4357 ** 4358 ** The above is equivalent to 4359 ** 4360 ** x>=y AND x<=z 4361 ** 4362 ** Code it as such, taking care to do the common subexpression 4363 ** elimination of x. 4364 ** 4365 ** The xJumpIf parameter determines details: 4366 ** 4367 ** NULL: Store the boolean result in reg[dest] 4368 ** sqlite3ExprIfTrue: Jump to dest if true 4369 ** sqlite3ExprIfFalse: Jump to dest if false 4370 ** 4371 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4372 */ 4373 static void exprCodeBetween( 4374 Parse *pParse, /* Parsing and code generating context */ 4375 Expr *pExpr, /* The BETWEEN expression */ 4376 int dest, /* Jump destination or storage location */ 4377 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4378 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4379 ){ 4380 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4381 Expr compLeft; /* The x>=y term */ 4382 Expr compRight; /* The x<=z term */ 4383 int regFree1 = 0; /* Temporary use register */ 4384 Expr *pDel = 0; 4385 sqlite3 *db = pParse->db; 4386 4387 memset(&compLeft, 0, sizeof(Expr)); 4388 memset(&compRight, 0, sizeof(Expr)); 4389 memset(&exprAnd, 0, sizeof(Expr)); 4390 4391 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4392 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4393 if( db->mallocFailed==0 ){ 4394 exprAnd.op = TK_AND; 4395 exprAnd.pLeft = &compLeft; 4396 exprAnd.pRight = &compRight; 4397 compLeft.op = TK_GE; 4398 compLeft.pLeft = pDel; 4399 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4400 compRight.op = TK_LE; 4401 compRight.pLeft = pDel; 4402 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4403 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4404 if( xJump ){ 4405 xJump(pParse, &exprAnd, dest, jumpIfNull); 4406 }else{ 4407 /* Mark the expression is being from the ON or USING clause of a join 4408 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4409 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4410 ** for clarity, but we are out of bits in the Expr.flags field so we 4411 ** have to reuse the EP_FromJoin bit. Bummer. */ 4412 pDel->flags |= EP_FromJoin; 4413 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4414 } 4415 sqlite3ReleaseTempReg(pParse, regFree1); 4416 } 4417 sqlite3ExprDelete(db, pDel); 4418 4419 /* Ensure adequate test coverage */ 4420 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4421 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4422 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4423 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4424 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4425 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4426 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4427 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4428 testcase( xJump==0 ); 4429 } 4430 4431 /* 4432 ** Generate code for a boolean expression such that a jump is made 4433 ** to the label "dest" if the expression is true but execution 4434 ** continues straight thru if the expression is false. 4435 ** 4436 ** If the expression evaluates to NULL (neither true nor false), then 4437 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4438 ** 4439 ** This code depends on the fact that certain token values (ex: TK_EQ) 4440 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4441 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4442 ** the make process cause these values to align. Assert()s in the code 4443 ** below verify that the numbers are aligned correctly. 4444 */ 4445 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4446 Vdbe *v = pParse->pVdbe; 4447 int op = 0; 4448 int regFree1 = 0; 4449 int regFree2 = 0; 4450 int r1, r2; 4451 4452 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4453 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4454 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4455 op = pExpr->op; 4456 switch( op ){ 4457 case TK_AND: 4458 case TK_OR: { 4459 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4460 if( pAlt!=pExpr ){ 4461 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4462 }else if( op==TK_AND ){ 4463 int d2 = sqlite3VdbeMakeLabel(pParse); 4464 testcase( jumpIfNull==0 ); 4465 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4466 jumpIfNull^SQLITE_JUMPIFNULL); 4467 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4468 sqlite3VdbeResolveLabel(v, d2); 4469 }else{ 4470 testcase( jumpIfNull==0 ); 4471 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4472 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4473 } 4474 break; 4475 } 4476 case TK_NOT: { 4477 testcase( jumpIfNull==0 ); 4478 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4479 break; 4480 } 4481 case TK_TRUTH: { 4482 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4483 int isTrue; /* IS TRUE or IS NOT TRUE */ 4484 testcase( jumpIfNull==0 ); 4485 isNot = pExpr->op2==TK_ISNOT; 4486 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4487 testcase( isTrue && isNot ); 4488 testcase( !isTrue && isNot ); 4489 if( isTrue ^ isNot ){ 4490 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4491 isNot ? SQLITE_JUMPIFNULL : 0); 4492 }else{ 4493 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4494 isNot ? SQLITE_JUMPIFNULL : 0); 4495 } 4496 break; 4497 } 4498 case TK_IS: 4499 case TK_ISNOT: 4500 testcase( op==TK_IS ); 4501 testcase( op==TK_ISNOT ); 4502 op = (op==TK_IS) ? TK_EQ : TK_NE; 4503 jumpIfNull = SQLITE_NULLEQ; 4504 /* Fall thru */ 4505 case TK_LT: 4506 case TK_LE: 4507 case TK_GT: 4508 case TK_GE: 4509 case TK_NE: 4510 case TK_EQ: { 4511 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4512 testcase( jumpIfNull==0 ); 4513 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4514 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4515 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4516 r1, r2, dest, jumpIfNull); 4517 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4518 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4519 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4520 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4521 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4522 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4523 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4524 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4525 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4526 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4527 testcase( regFree1==0 ); 4528 testcase( regFree2==0 ); 4529 break; 4530 } 4531 case TK_ISNULL: 4532 case TK_NOTNULL: { 4533 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4534 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4535 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4536 sqlite3VdbeAddOp2(v, op, r1, dest); 4537 VdbeCoverageIf(v, op==TK_ISNULL); 4538 VdbeCoverageIf(v, op==TK_NOTNULL); 4539 testcase( regFree1==0 ); 4540 break; 4541 } 4542 case TK_BETWEEN: { 4543 testcase( jumpIfNull==0 ); 4544 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4545 break; 4546 } 4547 #ifndef SQLITE_OMIT_SUBQUERY 4548 case TK_IN: { 4549 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4550 int destIfNull = jumpIfNull ? dest : destIfFalse; 4551 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4552 sqlite3VdbeGoto(v, dest); 4553 sqlite3VdbeResolveLabel(v, destIfFalse); 4554 break; 4555 } 4556 #endif 4557 default: { 4558 default_expr: 4559 if( ExprAlwaysTrue(pExpr) ){ 4560 sqlite3VdbeGoto(v, dest); 4561 }else if( ExprAlwaysFalse(pExpr) ){ 4562 /* No-op */ 4563 }else{ 4564 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4565 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4566 VdbeCoverage(v); 4567 testcase( regFree1==0 ); 4568 testcase( jumpIfNull==0 ); 4569 } 4570 break; 4571 } 4572 } 4573 sqlite3ReleaseTempReg(pParse, regFree1); 4574 sqlite3ReleaseTempReg(pParse, regFree2); 4575 } 4576 4577 /* 4578 ** Generate code for a boolean expression such that a jump is made 4579 ** to the label "dest" if the expression is false but execution 4580 ** continues straight thru if the expression is true. 4581 ** 4582 ** If the expression evaluates to NULL (neither true nor false) then 4583 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4584 ** is 0. 4585 */ 4586 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4587 Vdbe *v = pParse->pVdbe; 4588 int op = 0; 4589 int regFree1 = 0; 4590 int regFree2 = 0; 4591 int r1, r2; 4592 4593 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4594 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4595 if( pExpr==0 ) return; 4596 4597 /* The value of pExpr->op and op are related as follows: 4598 ** 4599 ** pExpr->op op 4600 ** --------- ---------- 4601 ** TK_ISNULL OP_NotNull 4602 ** TK_NOTNULL OP_IsNull 4603 ** TK_NE OP_Eq 4604 ** TK_EQ OP_Ne 4605 ** TK_GT OP_Le 4606 ** TK_LE OP_Gt 4607 ** TK_GE OP_Lt 4608 ** TK_LT OP_Ge 4609 ** 4610 ** For other values of pExpr->op, op is undefined and unused. 4611 ** The value of TK_ and OP_ constants are arranged such that we 4612 ** can compute the mapping above using the following expression. 4613 ** Assert()s verify that the computation is correct. 4614 */ 4615 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4616 4617 /* Verify correct alignment of TK_ and OP_ constants 4618 */ 4619 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4620 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4621 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4622 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4623 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4624 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4625 assert( pExpr->op!=TK_GT || op==OP_Le ); 4626 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4627 4628 switch( pExpr->op ){ 4629 case TK_AND: 4630 case TK_OR: { 4631 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4632 if( pAlt!=pExpr ){ 4633 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4634 }else if( pExpr->op==TK_AND ){ 4635 testcase( jumpIfNull==0 ); 4636 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4637 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4638 }else{ 4639 int d2 = sqlite3VdbeMakeLabel(pParse); 4640 testcase( jumpIfNull==0 ); 4641 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4642 jumpIfNull^SQLITE_JUMPIFNULL); 4643 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4644 sqlite3VdbeResolveLabel(v, d2); 4645 } 4646 break; 4647 } 4648 case TK_NOT: { 4649 testcase( jumpIfNull==0 ); 4650 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4651 break; 4652 } 4653 case TK_TRUTH: { 4654 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4655 int isTrue; /* IS TRUE or IS NOT TRUE */ 4656 testcase( jumpIfNull==0 ); 4657 isNot = pExpr->op2==TK_ISNOT; 4658 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4659 testcase( isTrue && isNot ); 4660 testcase( !isTrue && isNot ); 4661 if( isTrue ^ isNot ){ 4662 /* IS TRUE and IS NOT FALSE */ 4663 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4664 isNot ? 0 : SQLITE_JUMPIFNULL); 4665 4666 }else{ 4667 /* IS FALSE and IS NOT TRUE */ 4668 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4669 isNot ? 0 : SQLITE_JUMPIFNULL); 4670 } 4671 break; 4672 } 4673 case TK_IS: 4674 case TK_ISNOT: 4675 testcase( pExpr->op==TK_IS ); 4676 testcase( pExpr->op==TK_ISNOT ); 4677 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4678 jumpIfNull = SQLITE_NULLEQ; 4679 /* Fall thru */ 4680 case TK_LT: 4681 case TK_LE: 4682 case TK_GT: 4683 case TK_GE: 4684 case TK_NE: 4685 case TK_EQ: { 4686 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4687 testcase( jumpIfNull==0 ); 4688 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4689 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4690 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4691 r1, r2, dest, jumpIfNull); 4692 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4693 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4694 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4695 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4696 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4697 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4698 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4699 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4700 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4701 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4702 testcase( regFree1==0 ); 4703 testcase( regFree2==0 ); 4704 break; 4705 } 4706 case TK_ISNULL: 4707 case TK_NOTNULL: { 4708 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4709 sqlite3VdbeAddOp2(v, op, r1, dest); 4710 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4711 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4712 testcase( regFree1==0 ); 4713 break; 4714 } 4715 case TK_BETWEEN: { 4716 testcase( jumpIfNull==0 ); 4717 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4718 break; 4719 } 4720 #ifndef SQLITE_OMIT_SUBQUERY 4721 case TK_IN: { 4722 if( jumpIfNull ){ 4723 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4724 }else{ 4725 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4726 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4727 sqlite3VdbeResolveLabel(v, destIfNull); 4728 } 4729 break; 4730 } 4731 #endif 4732 default: { 4733 default_expr: 4734 if( ExprAlwaysFalse(pExpr) ){ 4735 sqlite3VdbeGoto(v, dest); 4736 }else if( ExprAlwaysTrue(pExpr) ){ 4737 /* no-op */ 4738 }else{ 4739 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4740 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4741 VdbeCoverage(v); 4742 testcase( regFree1==0 ); 4743 testcase( jumpIfNull==0 ); 4744 } 4745 break; 4746 } 4747 } 4748 sqlite3ReleaseTempReg(pParse, regFree1); 4749 sqlite3ReleaseTempReg(pParse, regFree2); 4750 } 4751 4752 /* 4753 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4754 ** code generation, and that copy is deleted after code generation. This 4755 ** ensures that the original pExpr is unchanged. 4756 */ 4757 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4758 sqlite3 *db = pParse->db; 4759 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4760 if( db->mallocFailed==0 ){ 4761 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4762 } 4763 sqlite3ExprDelete(db, pCopy); 4764 } 4765 4766 /* 4767 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4768 ** type of expression. 4769 ** 4770 ** If pExpr is a simple SQL value - an integer, real, string, blob 4771 ** or NULL value - then the VDBE currently being prepared is configured 4772 ** to re-prepare each time a new value is bound to variable pVar. 4773 ** 4774 ** Additionally, if pExpr is a simple SQL value and the value is the 4775 ** same as that currently bound to variable pVar, non-zero is returned. 4776 ** Otherwise, if the values are not the same or if pExpr is not a simple 4777 ** SQL value, zero is returned. 4778 */ 4779 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4780 int res = 0; 4781 int iVar; 4782 sqlite3_value *pL, *pR = 0; 4783 4784 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4785 if( pR ){ 4786 iVar = pVar->iColumn; 4787 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4788 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4789 if( pL ){ 4790 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4791 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4792 } 4793 res = 0==sqlite3MemCompare(pL, pR, 0); 4794 } 4795 sqlite3ValueFree(pR); 4796 sqlite3ValueFree(pL); 4797 } 4798 4799 return res; 4800 } 4801 4802 /* 4803 ** Do a deep comparison of two expression trees. Return 0 if the two 4804 ** expressions are completely identical. Return 1 if they differ only 4805 ** by a COLLATE operator at the top level. Return 2 if there are differences 4806 ** other than the top-level COLLATE operator. 4807 ** 4808 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4809 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4810 ** 4811 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4812 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4813 ** 4814 ** Sometimes this routine will return 2 even if the two expressions 4815 ** really are equivalent. If we cannot prove that the expressions are 4816 ** identical, we return 2 just to be safe. So if this routine 4817 ** returns 2, then you do not really know for certain if the two 4818 ** expressions are the same. But if you get a 0 or 1 return, then you 4819 ** can be sure the expressions are the same. In the places where 4820 ** this routine is used, it does not hurt to get an extra 2 - that 4821 ** just might result in some slightly slower code. But returning 4822 ** an incorrect 0 or 1 could lead to a malfunction. 4823 ** 4824 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4825 ** pParse->pReprepare can be matched against literals in pB. The 4826 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4827 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4828 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4829 ** pB causes a return value of 2. 4830 */ 4831 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4832 u32 combinedFlags; 4833 if( pA==0 || pB==0 ){ 4834 return pB==pA ? 0 : 2; 4835 } 4836 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4837 return 0; 4838 } 4839 combinedFlags = pA->flags | pB->flags; 4840 if( combinedFlags & EP_IntValue ){ 4841 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4842 return 0; 4843 } 4844 return 2; 4845 } 4846 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 4847 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4848 return 1; 4849 } 4850 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4851 return 1; 4852 } 4853 return 2; 4854 } 4855 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4856 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 4857 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4858 #ifndef SQLITE_OMIT_WINDOWFUNC 4859 assert( pA->op==pB->op ); 4860 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 4861 return 2; 4862 } 4863 if( ExprHasProperty(pA,EP_WinFunc) ){ 4864 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 4865 return 2; 4866 } 4867 } 4868 #endif 4869 }else if( pA->op==TK_NULL ){ 4870 return 0; 4871 }else if( pA->op==TK_COLLATE ){ 4872 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4873 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4874 return 2; 4875 } 4876 } 4877 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4878 if( (combinedFlags & EP_TokenOnly)==0 ){ 4879 if( combinedFlags & EP_xIsSelect ) return 2; 4880 if( (combinedFlags & EP_FixedCol)==0 4881 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4882 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4883 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4884 if( pA->op!=TK_STRING 4885 && pA->op!=TK_TRUEFALSE 4886 && (combinedFlags & EP_Reduced)==0 4887 ){ 4888 if( pA->iColumn!=pB->iColumn ) return 2; 4889 if( pA->op2!=pB->op2 ) return 2; 4890 if( pA->iTable!=pB->iTable 4891 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4892 } 4893 } 4894 return 0; 4895 } 4896 4897 /* 4898 ** Compare two ExprList objects. Return 0 if they are identical and 4899 ** non-zero if they differ in any way. 4900 ** 4901 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4902 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4903 ** 4904 ** This routine might return non-zero for equivalent ExprLists. The 4905 ** only consequence will be disabled optimizations. But this routine 4906 ** must never return 0 if the two ExprList objects are different, or 4907 ** a malfunction will result. 4908 ** 4909 ** Two NULL pointers are considered to be the same. But a NULL pointer 4910 ** always differs from a non-NULL pointer. 4911 */ 4912 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4913 int i; 4914 if( pA==0 && pB==0 ) return 0; 4915 if( pA==0 || pB==0 ) return 1; 4916 if( pA->nExpr!=pB->nExpr ) return 1; 4917 for(i=0; i<pA->nExpr; i++){ 4918 Expr *pExprA = pA->a[i].pExpr; 4919 Expr *pExprB = pB->a[i].pExpr; 4920 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4921 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4922 } 4923 return 0; 4924 } 4925 4926 /* 4927 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4928 ** are ignored. 4929 */ 4930 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4931 return sqlite3ExprCompare(0, 4932 sqlite3ExprSkipCollate(pA), 4933 sqlite3ExprSkipCollate(pB), 4934 iTab); 4935 } 4936 4937 /* 4938 ** Return non-zero if Expr p can only be true if pNN is not NULL. 4939 */ 4940 static int exprImpliesNotNull( 4941 Parse *pParse, /* Parsing context */ 4942 Expr *p, /* The expression to be checked */ 4943 Expr *pNN, /* The expression that is NOT NULL */ 4944 int iTab, /* Table being evaluated */ 4945 int seenNot /* True if p is an operand of NOT */ 4946 ){ 4947 assert( p ); 4948 assert( pNN ); 4949 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 4950 return pNN->op!=TK_NULL; 4951 } 4952 switch( p->op ){ 4953 case TK_IN: { 4954 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 4955 assert( ExprHasProperty(p,EP_xIsSelect) 4956 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 4957 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4958 } 4959 case TK_BETWEEN: { 4960 ExprList *pList = p->x.pList; 4961 assert( pList!=0 ); 4962 assert( pList->nExpr==2 ); 4963 if( seenNot ) return 0; 4964 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, seenNot) 4965 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, seenNot) 4966 ){ 4967 return 1; 4968 } 4969 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4970 } 4971 case TK_EQ: 4972 case TK_NE: 4973 case TK_LT: 4974 case TK_LE: 4975 case TK_GT: 4976 case TK_GE: 4977 case TK_PLUS: 4978 case TK_MINUS: 4979 case TK_STAR: 4980 case TK_REM: 4981 case TK_BITAND: 4982 case TK_BITOR: 4983 case TK_SLASH: 4984 case TK_LSHIFT: 4985 case TK_RSHIFT: 4986 case TK_CONCAT: { 4987 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 4988 /* Fall thru into the next case */ 4989 } 4990 case TK_SPAN: 4991 case TK_COLLATE: 4992 case TK_BITNOT: 4993 case TK_UPLUS: 4994 case TK_UMINUS: { 4995 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4996 } 4997 case TK_TRUTH: { 4998 if( seenNot ) return 0; 4999 if( p->op2!=TK_IS ) return 0; 5000 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5001 } 5002 case TK_NOT: { 5003 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5004 } 5005 } 5006 return 0; 5007 } 5008 5009 /* 5010 ** Return true if we can prove the pE2 will always be true if pE1 is 5011 ** true. Return false if we cannot complete the proof or if pE2 might 5012 ** be false. Examples: 5013 ** 5014 ** pE1: x==5 pE2: x==5 Result: true 5015 ** pE1: x>0 pE2: x==5 Result: false 5016 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5017 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5018 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5019 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5020 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5021 ** 5022 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5023 ** Expr.iTable<0 then assume a table number given by iTab. 5024 ** 5025 ** If pParse is not NULL, then the values of bound variables in pE1 are 5026 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5027 ** modified to record which bound variables are referenced. If pParse 5028 ** is NULL, then false will be returned if pE1 contains any bound variables. 5029 ** 5030 ** When in doubt, return false. Returning true might give a performance 5031 ** improvement. Returning false might cause a performance reduction, but 5032 ** it will always give the correct answer and is hence always safe. 5033 */ 5034 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5035 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5036 return 1; 5037 } 5038 if( pE2->op==TK_OR 5039 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5040 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5041 ){ 5042 return 1; 5043 } 5044 if( pE2->op==TK_NOTNULL 5045 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5046 ){ 5047 return 1; 5048 } 5049 return 0; 5050 } 5051 5052 /* 5053 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 5054 ** If the expression node requires that the table at pWalker->iCur 5055 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5056 ** 5057 ** This routine controls an optimization. False positives (setting 5058 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5059 ** (never setting pWalker->eCode) is a harmless missed optimization. 5060 */ 5061 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5062 testcase( pExpr->op==TK_AGG_COLUMN ); 5063 testcase( pExpr->op==TK_AGG_FUNCTION ); 5064 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5065 switch( pExpr->op ){ 5066 case TK_ISNOT: 5067 case TK_NOT: 5068 case TK_ISNULL: 5069 case TK_NOTNULL: 5070 case TK_IS: 5071 case TK_OR: 5072 case TK_CASE: 5073 case TK_IN: 5074 case TK_FUNCTION: 5075 testcase( pExpr->op==TK_ISNOT ); 5076 testcase( pExpr->op==TK_NOT ); 5077 testcase( pExpr->op==TK_ISNULL ); 5078 testcase( pExpr->op==TK_NOTNULL ); 5079 testcase( pExpr->op==TK_IS ); 5080 testcase( pExpr->op==TK_OR ); 5081 testcase( pExpr->op==TK_CASE ); 5082 testcase( pExpr->op==TK_IN ); 5083 testcase( pExpr->op==TK_FUNCTION ); 5084 return WRC_Prune; 5085 case TK_COLUMN: 5086 if( pWalker->u.iCur==pExpr->iTable ){ 5087 pWalker->eCode = 1; 5088 return WRC_Abort; 5089 } 5090 return WRC_Prune; 5091 5092 /* Virtual tables are allowed to use constraints like x=NULL. So 5093 ** a term of the form x=y does not prove that y is not null if x 5094 ** is the column of a virtual table */ 5095 case TK_EQ: 5096 case TK_NE: 5097 case TK_LT: 5098 case TK_LE: 5099 case TK_GT: 5100 case TK_GE: 5101 testcase( pExpr->op==TK_EQ ); 5102 testcase( pExpr->op==TK_NE ); 5103 testcase( pExpr->op==TK_LT ); 5104 testcase( pExpr->op==TK_LE ); 5105 testcase( pExpr->op==TK_GT ); 5106 testcase( pExpr->op==TK_GE ); 5107 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5108 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5109 ){ 5110 return WRC_Prune; 5111 } 5112 default: 5113 return WRC_Continue; 5114 } 5115 } 5116 5117 /* 5118 ** Return true (non-zero) if expression p can only be true if at least 5119 ** one column of table iTab is non-null. In other words, return true 5120 ** if expression p will always be NULL or false if every column of iTab 5121 ** is NULL. 5122 ** 5123 ** False negatives are acceptable. In other words, it is ok to return 5124 ** zero even if expression p will never be true of every column of iTab 5125 ** is NULL. A false negative is merely a missed optimization opportunity. 5126 ** 5127 ** False positives are not allowed, however. A false positive may result 5128 ** in an incorrect answer. 5129 ** 5130 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5131 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5132 ** 5133 ** This routine is used to check if a LEFT JOIN can be converted into 5134 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5135 ** clause requires that some column of the right table of the LEFT JOIN 5136 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5137 ** ordinary join. 5138 */ 5139 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5140 Walker w; 5141 p = sqlite3ExprSkipCollate(p); 5142 while( p ){ 5143 if( p->op==TK_NOTNULL ){ 5144 p = p->pLeft; 5145 }else if( p->op==TK_AND ){ 5146 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5147 p = p->pRight; 5148 }else{ 5149 break; 5150 } 5151 } 5152 w.xExprCallback = impliesNotNullRow; 5153 w.xSelectCallback = 0; 5154 w.xSelectCallback2 = 0; 5155 w.eCode = 0; 5156 w.u.iCur = iTab; 5157 sqlite3WalkExpr(&w, p); 5158 return w.eCode; 5159 } 5160 5161 /* 5162 ** An instance of the following structure is used by the tree walker 5163 ** to determine if an expression can be evaluated by reference to the 5164 ** index only, without having to do a search for the corresponding 5165 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5166 ** is the cursor for the table. 5167 */ 5168 struct IdxCover { 5169 Index *pIdx; /* The index to be tested for coverage */ 5170 int iCur; /* Cursor number for the table corresponding to the index */ 5171 }; 5172 5173 /* 5174 ** Check to see if there are references to columns in table 5175 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5176 ** pWalker->u.pIdxCover->pIdx. 5177 */ 5178 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5179 if( pExpr->op==TK_COLUMN 5180 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5181 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5182 ){ 5183 pWalker->eCode = 1; 5184 return WRC_Abort; 5185 } 5186 return WRC_Continue; 5187 } 5188 5189 /* 5190 ** Determine if an index pIdx on table with cursor iCur contains will 5191 ** the expression pExpr. Return true if the index does cover the 5192 ** expression and false if the pExpr expression references table columns 5193 ** that are not found in the index pIdx. 5194 ** 5195 ** An index covering an expression means that the expression can be 5196 ** evaluated using only the index and without having to lookup the 5197 ** corresponding table entry. 5198 */ 5199 int sqlite3ExprCoveredByIndex( 5200 Expr *pExpr, /* The index to be tested */ 5201 int iCur, /* The cursor number for the corresponding table */ 5202 Index *pIdx /* The index that might be used for coverage */ 5203 ){ 5204 Walker w; 5205 struct IdxCover xcov; 5206 memset(&w, 0, sizeof(w)); 5207 xcov.iCur = iCur; 5208 xcov.pIdx = pIdx; 5209 w.xExprCallback = exprIdxCover; 5210 w.u.pIdxCover = &xcov; 5211 sqlite3WalkExpr(&w, pExpr); 5212 return !w.eCode; 5213 } 5214 5215 5216 /* 5217 ** An instance of the following structure is used by the tree walker 5218 ** to count references to table columns in the arguments of an 5219 ** aggregate function, in order to implement the 5220 ** sqlite3FunctionThisSrc() routine. 5221 */ 5222 struct SrcCount { 5223 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5224 int nThis; /* Number of references to columns in pSrcList */ 5225 int nOther; /* Number of references to columns in other FROM clauses */ 5226 }; 5227 5228 /* 5229 ** Count the number of references to columns. 5230 */ 5231 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5232 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5233 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5234 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5235 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5236 ** NEVER() will need to be removed. */ 5237 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5238 int i; 5239 struct SrcCount *p = pWalker->u.pSrcCount; 5240 SrcList *pSrc = p->pSrc; 5241 int nSrc = pSrc ? pSrc->nSrc : 0; 5242 for(i=0; i<nSrc; i++){ 5243 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5244 } 5245 if( i<nSrc ){ 5246 p->nThis++; 5247 }else{ 5248 p->nOther++; 5249 } 5250 } 5251 return WRC_Continue; 5252 } 5253 5254 /* 5255 ** Determine if any of the arguments to the pExpr Function reference 5256 ** pSrcList. Return true if they do. Also return true if the function 5257 ** has no arguments or has only constant arguments. Return false if pExpr 5258 ** references columns but not columns of tables found in pSrcList. 5259 */ 5260 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5261 Walker w; 5262 struct SrcCount cnt; 5263 assert( pExpr->op==TK_AGG_FUNCTION ); 5264 w.xExprCallback = exprSrcCount; 5265 w.xSelectCallback = 0; 5266 w.u.pSrcCount = &cnt; 5267 cnt.pSrc = pSrcList; 5268 cnt.nThis = 0; 5269 cnt.nOther = 0; 5270 sqlite3WalkExprList(&w, pExpr->x.pList); 5271 return cnt.nThis>0 || cnt.nOther==0; 5272 } 5273 5274 /* 5275 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5276 ** the new element. Return a negative number if malloc fails. 5277 */ 5278 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5279 int i; 5280 pInfo->aCol = sqlite3ArrayAllocate( 5281 db, 5282 pInfo->aCol, 5283 sizeof(pInfo->aCol[0]), 5284 &pInfo->nColumn, 5285 &i 5286 ); 5287 return i; 5288 } 5289 5290 /* 5291 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5292 ** the new element. Return a negative number if malloc fails. 5293 */ 5294 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5295 int i; 5296 pInfo->aFunc = sqlite3ArrayAllocate( 5297 db, 5298 pInfo->aFunc, 5299 sizeof(pInfo->aFunc[0]), 5300 &pInfo->nFunc, 5301 &i 5302 ); 5303 return i; 5304 } 5305 5306 /* 5307 ** This is the xExprCallback for a tree walker. It is used to 5308 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5309 ** for additional information. 5310 */ 5311 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5312 int i; 5313 NameContext *pNC = pWalker->u.pNC; 5314 Parse *pParse = pNC->pParse; 5315 SrcList *pSrcList = pNC->pSrcList; 5316 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5317 5318 assert( pNC->ncFlags & NC_UAggInfo ); 5319 switch( pExpr->op ){ 5320 case TK_AGG_COLUMN: 5321 case TK_COLUMN: { 5322 testcase( pExpr->op==TK_AGG_COLUMN ); 5323 testcase( pExpr->op==TK_COLUMN ); 5324 /* Check to see if the column is in one of the tables in the FROM 5325 ** clause of the aggregate query */ 5326 if( ALWAYS(pSrcList!=0) ){ 5327 struct SrcList_item *pItem = pSrcList->a; 5328 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5329 struct AggInfo_col *pCol; 5330 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5331 if( pExpr->iTable==pItem->iCursor ){ 5332 /* If we reach this point, it means that pExpr refers to a table 5333 ** that is in the FROM clause of the aggregate query. 5334 ** 5335 ** Make an entry for the column in pAggInfo->aCol[] if there 5336 ** is not an entry there already. 5337 */ 5338 int k; 5339 pCol = pAggInfo->aCol; 5340 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5341 if( pCol->iTable==pExpr->iTable && 5342 pCol->iColumn==pExpr->iColumn ){ 5343 break; 5344 } 5345 } 5346 if( (k>=pAggInfo->nColumn) 5347 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5348 ){ 5349 pCol = &pAggInfo->aCol[k]; 5350 pCol->pTab = pExpr->y.pTab; 5351 pCol->iTable = pExpr->iTable; 5352 pCol->iColumn = pExpr->iColumn; 5353 pCol->iMem = ++pParse->nMem; 5354 pCol->iSorterColumn = -1; 5355 pCol->pExpr = pExpr; 5356 if( pAggInfo->pGroupBy ){ 5357 int j, n; 5358 ExprList *pGB = pAggInfo->pGroupBy; 5359 struct ExprList_item *pTerm = pGB->a; 5360 n = pGB->nExpr; 5361 for(j=0; j<n; j++, pTerm++){ 5362 Expr *pE = pTerm->pExpr; 5363 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5364 pE->iColumn==pExpr->iColumn ){ 5365 pCol->iSorterColumn = j; 5366 break; 5367 } 5368 } 5369 } 5370 if( pCol->iSorterColumn<0 ){ 5371 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5372 } 5373 } 5374 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5375 ** because it was there before or because we just created it). 5376 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5377 ** pAggInfo->aCol[] entry. 5378 */ 5379 ExprSetVVAProperty(pExpr, EP_NoReduce); 5380 pExpr->pAggInfo = pAggInfo; 5381 pExpr->op = TK_AGG_COLUMN; 5382 pExpr->iAgg = (i16)k; 5383 break; 5384 } /* endif pExpr->iTable==pItem->iCursor */ 5385 } /* end loop over pSrcList */ 5386 } 5387 return WRC_Prune; 5388 } 5389 case TK_AGG_FUNCTION: { 5390 if( (pNC->ncFlags & NC_InAggFunc)==0 5391 && pWalker->walkerDepth==pExpr->op2 5392 ){ 5393 /* Check to see if pExpr is a duplicate of another aggregate 5394 ** function that is already in the pAggInfo structure 5395 */ 5396 struct AggInfo_func *pItem = pAggInfo->aFunc; 5397 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5398 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5399 break; 5400 } 5401 } 5402 if( i>=pAggInfo->nFunc ){ 5403 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5404 */ 5405 u8 enc = ENC(pParse->db); 5406 i = addAggInfoFunc(pParse->db, pAggInfo); 5407 if( i>=0 ){ 5408 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5409 pItem = &pAggInfo->aFunc[i]; 5410 pItem->pExpr = pExpr; 5411 pItem->iMem = ++pParse->nMem; 5412 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5413 pItem->pFunc = sqlite3FindFunction(pParse->db, 5414 pExpr->u.zToken, 5415 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5416 if( pExpr->flags & EP_Distinct ){ 5417 pItem->iDistinct = pParse->nTab++; 5418 }else{ 5419 pItem->iDistinct = -1; 5420 } 5421 } 5422 } 5423 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5424 */ 5425 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5426 ExprSetVVAProperty(pExpr, EP_NoReduce); 5427 pExpr->iAgg = (i16)i; 5428 pExpr->pAggInfo = pAggInfo; 5429 return WRC_Prune; 5430 }else{ 5431 return WRC_Continue; 5432 } 5433 } 5434 } 5435 return WRC_Continue; 5436 } 5437 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5438 UNUSED_PARAMETER(pSelect); 5439 pWalker->walkerDepth++; 5440 return WRC_Continue; 5441 } 5442 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5443 UNUSED_PARAMETER(pSelect); 5444 pWalker->walkerDepth--; 5445 } 5446 5447 /* 5448 ** Analyze the pExpr expression looking for aggregate functions and 5449 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5450 ** points to. Additional entries are made on the AggInfo object as 5451 ** necessary. 5452 ** 5453 ** This routine should only be called after the expression has been 5454 ** analyzed by sqlite3ResolveExprNames(). 5455 */ 5456 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5457 Walker w; 5458 w.xExprCallback = analyzeAggregate; 5459 w.xSelectCallback = analyzeAggregatesInSelect; 5460 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5461 w.walkerDepth = 0; 5462 w.u.pNC = pNC; 5463 w.pParse = 0; 5464 assert( pNC->pSrcList!=0 ); 5465 sqlite3WalkExpr(&w, pExpr); 5466 } 5467 5468 /* 5469 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5470 ** expression list. Return the number of errors. 5471 ** 5472 ** If an error is found, the analysis is cut short. 5473 */ 5474 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5475 struct ExprList_item *pItem; 5476 int i; 5477 if( pList ){ 5478 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5479 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5480 } 5481 } 5482 } 5483 5484 /* 5485 ** Allocate a single new register for use to hold some intermediate result. 5486 */ 5487 int sqlite3GetTempReg(Parse *pParse){ 5488 if( pParse->nTempReg==0 ){ 5489 return ++pParse->nMem; 5490 } 5491 return pParse->aTempReg[--pParse->nTempReg]; 5492 } 5493 5494 /* 5495 ** Deallocate a register, making available for reuse for some other 5496 ** purpose. 5497 */ 5498 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5499 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5500 pParse->aTempReg[pParse->nTempReg++] = iReg; 5501 } 5502 } 5503 5504 /* 5505 ** Allocate or deallocate a block of nReg consecutive registers. 5506 */ 5507 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5508 int i, n; 5509 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5510 i = pParse->iRangeReg; 5511 n = pParse->nRangeReg; 5512 if( nReg<=n ){ 5513 pParse->iRangeReg += nReg; 5514 pParse->nRangeReg -= nReg; 5515 }else{ 5516 i = pParse->nMem+1; 5517 pParse->nMem += nReg; 5518 } 5519 return i; 5520 } 5521 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5522 if( nReg==1 ){ 5523 sqlite3ReleaseTempReg(pParse, iReg); 5524 return; 5525 } 5526 if( nReg>pParse->nRangeReg ){ 5527 pParse->nRangeReg = nReg; 5528 pParse->iRangeReg = iReg; 5529 } 5530 } 5531 5532 /* 5533 ** Mark all temporary registers as being unavailable for reuse. 5534 */ 5535 void sqlite3ClearTempRegCache(Parse *pParse){ 5536 pParse->nTempReg = 0; 5537 pParse->nRangeReg = 0; 5538 } 5539 5540 /* 5541 ** Validate that no temporary register falls within the range of 5542 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5543 ** statements. 5544 */ 5545 #ifdef SQLITE_DEBUG 5546 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5547 int i; 5548 if( pParse->nRangeReg>0 5549 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5550 && pParse->iRangeReg <= iLast 5551 ){ 5552 return 0; 5553 } 5554 for(i=0; i<pParse->nTempReg; i++){ 5555 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5556 return 0; 5557 } 5558 } 5559 return 1; 5560 } 5561 #endif /* SQLITE_DEBUG */ 5562