xref: /sqlite-3.40.0/src/expr.c (revision 57fec54b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName   /* Name of collating sequence */
73 ){
74   if( pCollName->n>0 ){
75     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
76     if( pNew ){
77       pNew->pLeft = pExpr;
78       pNew->flags |= EP_Collate|EP_Skip;
79       pExpr = pNew;
80     }
81   }
82   return pExpr;
83 }
84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
85   Token s;
86   assert( zC!=0 );
87   s.z = zC;
88   s.n = sqlite3Strlen30(s.z);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
136           || op==TK_REGISTER || op==TK_TRIGGER)
137      && p->pTab!=0
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         p = p->pRight;
153       }
154     }else{
155       break;
156     }
157   }
158   if( sqlite3CheckCollSeq(pParse, pColl) ){
159     pColl = 0;
160   }
161   return pColl;
162 }
163 
164 /*
165 ** pExpr is an operand of a comparison operator.  aff2 is the
166 ** type affinity of the other operand.  This routine returns the
167 ** type affinity that should be used for the comparison operator.
168 */
169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
170   char aff1 = sqlite3ExprAffinity(pExpr);
171   if( aff1 && aff2 ){
172     /* Both sides of the comparison are columns. If one has numeric
173     ** affinity, use that. Otherwise use no affinity.
174     */
175     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
176       return SQLITE_AFF_NUMERIC;
177     }else{
178       return SQLITE_AFF_NONE;
179     }
180   }else if( !aff1 && !aff2 ){
181     /* Neither side of the comparison is a column.  Compare the
182     ** results directly.
183     */
184     return SQLITE_AFF_NONE;
185   }else{
186     /* One side is a column, the other is not. Use the columns affinity. */
187     assert( aff1==0 || aff2==0 );
188     return (aff1 + aff2);
189   }
190 }
191 
192 /*
193 ** pExpr is a comparison operator.  Return the type affinity that should
194 ** be applied to both operands prior to doing the comparison.
195 */
196 static char comparisonAffinity(Expr *pExpr){
197   char aff;
198   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
199           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
200           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
201   assert( pExpr->pLeft );
202   aff = sqlite3ExprAffinity(pExpr->pLeft);
203   if( pExpr->pRight ){
204     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
205   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
206     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
207   }else if( !aff ){
208     aff = SQLITE_AFF_NONE;
209   }
210   return aff;
211 }
212 
213 /*
214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
215 ** idx_affinity is the affinity of an indexed column. Return true
216 ** if the index with affinity idx_affinity may be used to implement
217 ** the comparison in pExpr.
218 */
219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
220   char aff = comparisonAffinity(pExpr);
221   switch( aff ){
222     case SQLITE_AFF_NONE:
223       return 1;
224     case SQLITE_AFF_TEXT:
225       return idx_affinity==SQLITE_AFF_TEXT;
226     default:
227       return sqlite3IsNumericAffinity(idx_affinity);
228   }
229 }
230 
231 /*
232 ** Return the P5 value that should be used for a binary comparison
233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
234 */
235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
236   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
237   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
238   return aff;
239 }
240 
241 /*
242 ** Return a pointer to the collation sequence that should be used by
243 ** a binary comparison operator comparing pLeft and pRight.
244 **
245 ** If the left hand expression has a collating sequence type, then it is
246 ** used. Otherwise the collation sequence for the right hand expression
247 ** is used, or the default (BINARY) if neither expression has a collating
248 ** type.
249 **
250 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
251 ** it is not considered.
252 */
253 CollSeq *sqlite3BinaryCompareCollSeq(
254   Parse *pParse,
255   Expr *pLeft,
256   Expr *pRight
257 ){
258   CollSeq *pColl;
259   assert( pLeft );
260   if( pLeft->flags & EP_Collate ){
261     pColl = sqlite3ExprCollSeq(pParse, pLeft);
262   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
263     pColl = sqlite3ExprCollSeq(pParse, pRight);
264   }else{
265     pColl = sqlite3ExprCollSeq(pParse, pLeft);
266     if( !pColl ){
267       pColl = sqlite3ExprCollSeq(pParse, pRight);
268     }
269   }
270   return pColl;
271 }
272 
273 /*
274 ** Generate code for a comparison operator.
275 */
276 static int codeCompare(
277   Parse *pParse,    /* The parsing (and code generating) context */
278   Expr *pLeft,      /* The left operand */
279   Expr *pRight,     /* The right operand */
280   int opcode,       /* The comparison opcode */
281   int in1, int in2, /* Register holding operands */
282   int dest,         /* Jump here if true.  */
283   int jumpIfNull    /* If true, jump if either operand is NULL */
284 ){
285   int p5;
286   int addr;
287   CollSeq *p4;
288 
289   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
290   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
291   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
292                            (void*)p4, P4_COLLSEQ);
293   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
294   return addr;
295 }
296 
297 #if SQLITE_MAX_EXPR_DEPTH>0
298 /*
299 ** Check that argument nHeight is less than or equal to the maximum
300 ** expression depth allowed. If it is not, leave an error message in
301 ** pParse.
302 */
303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
304   int rc = SQLITE_OK;
305   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
306   if( nHeight>mxHeight ){
307     sqlite3ErrorMsg(pParse,
308        "Expression tree is too large (maximum depth %d)", mxHeight
309     );
310     rc = SQLITE_ERROR;
311   }
312   return rc;
313 }
314 
315 /* The following three functions, heightOfExpr(), heightOfExprList()
316 ** and heightOfSelect(), are used to determine the maximum height
317 ** of any expression tree referenced by the structure passed as the
318 ** first argument.
319 **
320 ** If this maximum height is greater than the current value pointed
321 ** to by pnHeight, the second parameter, then set *pnHeight to that
322 ** value.
323 */
324 static void heightOfExpr(Expr *p, int *pnHeight){
325   if( p ){
326     if( p->nHeight>*pnHeight ){
327       *pnHeight = p->nHeight;
328     }
329   }
330 }
331 static void heightOfExprList(ExprList *p, int *pnHeight){
332   if( p ){
333     int i;
334     for(i=0; i<p->nExpr; i++){
335       heightOfExpr(p->a[i].pExpr, pnHeight);
336     }
337   }
338 }
339 static void heightOfSelect(Select *p, int *pnHeight){
340   if( p ){
341     heightOfExpr(p->pWhere, pnHeight);
342     heightOfExpr(p->pHaving, pnHeight);
343     heightOfExpr(p->pLimit, pnHeight);
344     heightOfExpr(p->pOffset, pnHeight);
345     heightOfExprList(p->pEList, pnHeight);
346     heightOfExprList(p->pGroupBy, pnHeight);
347     heightOfExprList(p->pOrderBy, pnHeight);
348     heightOfSelect(p->pPrior, pnHeight);
349   }
350 }
351 
352 /*
353 ** Set the Expr.nHeight variable in the structure passed as an
354 ** argument. An expression with no children, Expr.pList or
355 ** Expr.pSelect member has a height of 1. Any other expression
356 ** has a height equal to the maximum height of any other
357 ** referenced Expr plus one.
358 */
359 static void exprSetHeight(Expr *p){
360   int nHeight = 0;
361   heightOfExpr(p->pLeft, &nHeight);
362   heightOfExpr(p->pRight, &nHeight);
363   if( ExprHasProperty(p, EP_xIsSelect) ){
364     heightOfSelect(p->x.pSelect, &nHeight);
365   }else{
366     heightOfExprList(p->x.pList, &nHeight);
367   }
368   p->nHeight = nHeight + 1;
369 }
370 
371 /*
372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
373 ** the height is greater than the maximum allowed expression depth,
374 ** leave an error in pParse.
375 */
376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
377   exprSetHeight(p);
378   sqlite3ExprCheckHeight(pParse, p->nHeight);
379 }
380 
381 /*
382 ** Return the maximum height of any expression tree referenced
383 ** by the select statement passed as an argument.
384 */
385 int sqlite3SelectExprHeight(Select *p){
386   int nHeight = 0;
387   heightOfSelect(p, &nHeight);
388   return nHeight;
389 }
390 #else
391   #define exprSetHeight(y)
392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
393 
394 /*
395 ** This routine is the core allocator for Expr nodes.
396 **
397 ** Construct a new expression node and return a pointer to it.  Memory
398 ** for this node and for the pToken argument is a single allocation
399 ** obtained from sqlite3DbMalloc().  The calling function
400 ** is responsible for making sure the node eventually gets freed.
401 **
402 ** If dequote is true, then the token (if it exists) is dequoted.
403 ** If dequote is false, no dequoting is performance.  The deQuote
404 ** parameter is ignored if pToken is NULL or if the token does not
405 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
406 ** then the EP_DblQuoted flag is set on the expression node.
407 **
408 ** Special case:  If op==TK_INTEGER and pToken points to a string that
409 ** can be translated into a 32-bit integer, then the token is not
410 ** stored in u.zToken.  Instead, the integer values is written
411 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
412 ** is allocated to hold the integer text and the dequote flag is ignored.
413 */
414 Expr *sqlite3ExprAlloc(
415   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
416   int op,                 /* Expression opcode */
417   const Token *pToken,    /* Token argument.  Might be NULL */
418   int dequote             /* True to dequote */
419 ){
420   Expr *pNew;
421   int nExtra = 0;
422   int iValue = 0;
423 
424   if( pToken ){
425     if( op!=TK_INTEGER || pToken->z==0
426           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
427       nExtra = pToken->n+1;
428       assert( iValue>=0 );
429     }
430   }
431   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
432   if( pNew ){
433     pNew->op = (u8)op;
434     pNew->iAgg = -1;
435     if( pToken ){
436       if( nExtra==0 ){
437         pNew->flags |= EP_IntValue;
438         pNew->u.iValue = iValue;
439       }else{
440         int c;
441         pNew->u.zToken = (char*)&pNew[1];
442         assert( pToken->z!=0 || pToken->n==0 );
443         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
444         pNew->u.zToken[pToken->n] = 0;
445         if( dequote && nExtra>=3
446              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
447           sqlite3Dequote(pNew->u.zToken);
448           if( c=='"' ) pNew->flags |= EP_DblQuoted;
449         }
450       }
451     }
452 #if SQLITE_MAX_EXPR_DEPTH>0
453     pNew->nHeight = 1;
454 #endif
455   }
456   return pNew;
457 }
458 
459 /*
460 ** Allocate a new expression node from a zero-terminated token that has
461 ** already been dequoted.
462 */
463 Expr *sqlite3Expr(
464   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
465   int op,                 /* Expression opcode */
466   const char *zToken      /* Token argument.  Might be NULL */
467 ){
468   Token x;
469   x.z = zToken;
470   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
471   return sqlite3ExprAlloc(db, op, &x, 0);
472 }
473 
474 /*
475 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
476 **
477 ** If pRoot==NULL that means that a memory allocation error has occurred.
478 ** In that case, delete the subtrees pLeft and pRight.
479 */
480 void sqlite3ExprAttachSubtrees(
481   sqlite3 *db,
482   Expr *pRoot,
483   Expr *pLeft,
484   Expr *pRight
485 ){
486   if( pRoot==0 ){
487     assert( db->mallocFailed );
488     sqlite3ExprDelete(db, pLeft);
489     sqlite3ExprDelete(db, pRight);
490   }else{
491     if( pRight ){
492       pRoot->pRight = pRight;
493       pRoot->flags |= EP_Collate & pRight->flags;
494     }
495     if( pLeft ){
496       pRoot->pLeft = pLeft;
497       pRoot->flags |= EP_Collate & pLeft->flags;
498     }
499     exprSetHeight(pRoot);
500   }
501 }
502 
503 /*
504 ** Allocate an Expr node which joins as many as two subtrees.
505 **
506 ** One or both of the subtrees can be NULL.  Return a pointer to the new
507 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
508 ** free the subtrees and return NULL.
509 */
510 Expr *sqlite3PExpr(
511   Parse *pParse,          /* Parsing context */
512   int op,                 /* Expression opcode */
513   Expr *pLeft,            /* Left operand */
514   Expr *pRight,           /* Right operand */
515   const Token *pToken     /* Argument token */
516 ){
517   Expr *p;
518   if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){
519     /* Take advantage of short-circuit false optimization for AND */
520     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
521   }else{
522     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
523     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
524   }
525   if( p ) {
526     sqlite3ExprCheckHeight(pParse, p->nHeight);
527   }
528   return p;
529 }
530 
531 /*
532 ** If the expression is always either TRUE or FALSE (respectively),
533 ** then return 1.  If one cannot determine the truth value of the
534 ** expression at compile-time return 0.
535 **
536 ** This is an optimization.  If is OK to return 0 here even if
537 ** the expression really is always false or false (a false negative).
538 ** But it is a bug to return 1 if the expression might have different
539 ** boolean values in different circumstances (a false positive.)
540 **
541 ** Note that if the expression is part of conditional for a
542 ** LEFT JOIN, then we cannot determine at compile-time whether or not
543 ** is it true or false, so always return 0.
544 */
545 static int exprAlwaysTrue(Expr *p){
546   int v = 0;
547   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549   return v!=0;
550 }
551 static int exprAlwaysFalse(Expr *p){
552   int v = 0;
553   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
554   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
555   return v==0;
556 }
557 
558 /*
559 ** Join two expressions using an AND operator.  If either expression is
560 ** NULL, then just return the other expression.
561 **
562 ** If one side or the other of the AND is known to be false, then instead
563 ** of returning an AND expression, just return a constant expression with
564 ** a value of false.
565 */
566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
567   if( pLeft==0 ){
568     return pRight;
569   }else if( pRight==0 ){
570     return pLeft;
571   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
572     sqlite3ExprDelete(db, pLeft);
573     sqlite3ExprDelete(db, pRight);
574     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
575   }else{
576     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
577     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
578     return pNew;
579   }
580 }
581 
582 /*
583 ** Construct a new expression node for a function with multiple
584 ** arguments.
585 */
586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
587   Expr *pNew;
588   sqlite3 *db = pParse->db;
589   assert( pToken );
590   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
591   if( pNew==0 ){
592     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
593     return 0;
594   }
595   pNew->x.pList = pList;
596   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
597   sqlite3ExprSetHeight(pParse, pNew);
598   return pNew;
599 }
600 
601 /*
602 ** Assign a variable number to an expression that encodes a wildcard
603 ** in the original SQL statement.
604 **
605 ** Wildcards consisting of a single "?" are assigned the next sequential
606 ** variable number.
607 **
608 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
609 ** sure "nnn" is not too be to avoid a denial of service attack when
610 ** the SQL statement comes from an external source.
611 **
612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
613 ** as the previous instance of the same wildcard.  Or if this is the first
614 ** instance of the wildcard, the next sequential variable number is
615 ** assigned.
616 */
617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
618   sqlite3 *db = pParse->db;
619   const char *z;
620 
621   if( pExpr==0 ) return;
622   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
623   z = pExpr->u.zToken;
624   assert( z!=0 );
625   assert( z[0]!=0 );
626   if( z[1]==0 ){
627     /* Wildcard of the form "?".  Assign the next variable number */
628     assert( z[0]=='?' );
629     pExpr->iColumn = (ynVar)(++pParse->nVar);
630   }else{
631     ynVar x = 0;
632     u32 n = sqlite3Strlen30(z);
633     if( z[0]=='?' ){
634       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
635       ** use it as the variable number */
636       i64 i;
637       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
638       pExpr->iColumn = x = (ynVar)i;
639       testcase( i==0 );
640       testcase( i==1 );
641       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
642       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
643       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
644         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
645             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
646         x = 0;
647       }
648       if( i>pParse->nVar ){
649         pParse->nVar = (int)i;
650       }
651     }else{
652       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
653       ** number as the prior appearance of the same name, or if the name
654       ** has never appeared before, reuse the same variable number
655       */
656       ynVar i;
657       for(i=0; i<pParse->nzVar; i++){
658         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
659           pExpr->iColumn = x = (ynVar)i+1;
660           break;
661         }
662       }
663       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
664     }
665     if( x>0 ){
666       if( x>pParse->nzVar ){
667         char **a;
668         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
669         if( a==0 ) return;  /* Error reported through db->mallocFailed */
670         pParse->azVar = a;
671         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
672         pParse->nzVar = x;
673       }
674       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
675         sqlite3DbFree(db, pParse->azVar[x-1]);
676         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
677       }
678     }
679   }
680   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
681     sqlite3ErrorMsg(pParse, "too many SQL variables");
682   }
683 }
684 
685 /*
686 ** Recursively delete an expression tree.
687 */
688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
689   if( p==0 ) return;
690   /* Sanity check: Assert that the IntValue is non-negative if it exists */
691   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
692   if( !ExprHasProperty(p, EP_TokenOnly) ){
693     /* The Expr.x union is never used at the same time as Expr.pRight */
694     assert( p->x.pList==0 || p->pRight==0 );
695     sqlite3ExprDelete(db, p->pLeft);
696     sqlite3ExprDelete(db, p->pRight);
697     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
698     if( ExprHasProperty(p, EP_xIsSelect) ){
699       sqlite3SelectDelete(db, p->x.pSelect);
700     }else{
701       sqlite3ExprListDelete(db, p->x.pList);
702     }
703   }
704   if( !ExprHasProperty(p, EP_Static) ){
705     sqlite3DbFree(db, p);
706   }
707 }
708 
709 /*
710 ** Return the number of bytes allocated for the expression structure
711 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
713 */
714 static int exprStructSize(Expr *p){
715   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
716   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
717   return EXPR_FULLSIZE;
718 }
719 
720 /*
721 ** The dupedExpr*Size() routines each return the number of bytes required
722 ** to store a copy of an expression or expression tree.  They differ in
723 ** how much of the tree is measured.
724 **
725 **     dupedExprStructSize()     Size of only the Expr structure
726 **     dupedExprNodeSize()       Size of Expr + space for token
727 **     dupedExprSize()           Expr + token + subtree components
728 **
729 ***************************************************************************
730 **
731 ** The dupedExprStructSize() function returns two values OR-ed together:
732 ** (1) the space required for a copy of the Expr structure only and
733 ** (2) the EP_xxx flags that indicate what the structure size should be.
734 ** The return values is always one of:
735 **
736 **      EXPR_FULLSIZE
737 **      EXPR_REDUCEDSIZE   | EP_Reduced
738 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
739 **
740 ** The size of the structure can be found by masking the return value
741 ** of this routine with 0xfff.  The flags can be found by masking the
742 ** return value with EP_Reduced|EP_TokenOnly.
743 **
744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
745 ** (unreduced) Expr objects as they or originally constructed by the parser.
746 ** During expression analysis, extra information is computed and moved into
747 ** later parts of teh Expr object and that extra information might get chopped
748 ** off if the expression is reduced.  Note also that it does not work to
749 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
750 ** to reduce a pristine expression tree from the parser.  The implementation
751 ** of dupedExprStructSize() contain multiple assert() statements that attempt
752 ** to enforce this constraint.
753 */
754 static int dupedExprStructSize(Expr *p, int flags){
755   int nSize;
756   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
757   assert( EXPR_FULLSIZE<=0xfff );
758   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
759   if( 0==(flags&EXPRDUP_REDUCE) ){
760     nSize = EXPR_FULLSIZE;
761   }else{
762     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
763     assert( !ExprHasProperty(p, EP_FromJoin) );
764     assert( !ExprHasProperty(p, EP_MemToken) );
765     assert( !ExprHasProperty(p, EP_NoReduce) );
766     if( p->pLeft || p->x.pList ){
767       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
768     }else{
769       assert( p->pRight==0 );
770       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
771     }
772   }
773   return nSize;
774 }
775 
776 /*
777 ** This function returns the space in bytes required to store the copy
778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
779 ** string is defined.)
780 */
781 static int dupedExprNodeSize(Expr *p, int flags){
782   int nByte = dupedExprStructSize(p, flags) & 0xfff;
783   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
784     nByte += sqlite3Strlen30(p->u.zToken)+1;
785   }
786   return ROUND8(nByte);
787 }
788 
789 /*
790 ** Return the number of bytes required to create a duplicate of the
791 ** expression passed as the first argument. The second argument is a
792 ** mask containing EXPRDUP_XXX flags.
793 **
794 ** The value returned includes space to create a copy of the Expr struct
795 ** itself and the buffer referred to by Expr.u.zToken, if any.
796 **
797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
799 ** and Expr.pRight variables (but not for any structures pointed to or
800 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
801 */
802 static int dupedExprSize(Expr *p, int flags){
803   int nByte = 0;
804   if( p ){
805     nByte = dupedExprNodeSize(p, flags);
806     if( flags&EXPRDUP_REDUCE ){
807       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
808     }
809   }
810   return nByte;
811 }
812 
813 /*
814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
816 ** to store the copy of expression p, the copies of p->u.zToken
817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
818 ** if any. Before returning, *pzBuffer is set to the first byte past the
819 ** portion of the buffer copied into by this function.
820 */
821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
822   Expr *pNew = 0;                      /* Value to return */
823   if( p ){
824     const int isReduced = (flags&EXPRDUP_REDUCE);
825     u8 *zAlloc;
826     u32 staticFlag = 0;
827 
828     assert( pzBuffer==0 || isReduced );
829 
830     /* Figure out where to write the new Expr structure. */
831     if( pzBuffer ){
832       zAlloc = *pzBuffer;
833       staticFlag = EP_Static;
834     }else{
835       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
836     }
837     pNew = (Expr *)zAlloc;
838 
839     if( pNew ){
840       /* Set nNewSize to the size allocated for the structure pointed to
841       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
842       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
843       ** by the copy of the p->u.zToken string (if any).
844       */
845       const unsigned nStructSize = dupedExprStructSize(p, flags);
846       const int nNewSize = nStructSize & 0xfff;
847       int nToken;
848       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
849         nToken = sqlite3Strlen30(p->u.zToken) + 1;
850       }else{
851         nToken = 0;
852       }
853       if( isReduced ){
854         assert( ExprHasProperty(p, EP_Reduced)==0 );
855         memcpy(zAlloc, p, nNewSize);
856       }else{
857         int nSize = exprStructSize(p);
858         memcpy(zAlloc, p, nSize);
859         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
860       }
861 
862       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
863       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
864       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
865       pNew->flags |= staticFlag;
866 
867       /* Copy the p->u.zToken string, if any. */
868       if( nToken ){
869         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
870         memcpy(zToken, p->u.zToken, nToken);
871       }
872 
873       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
874         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
875         if( ExprHasProperty(p, EP_xIsSelect) ){
876           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
877         }else{
878           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
879         }
880       }
881 
882       /* Fill in pNew->pLeft and pNew->pRight. */
883       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
884         zAlloc += dupedExprNodeSize(p, flags);
885         if( ExprHasProperty(pNew, EP_Reduced) ){
886           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
887           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
888         }
889         if( pzBuffer ){
890           *pzBuffer = zAlloc;
891         }
892       }else{
893         if( !ExprHasProperty(p, EP_TokenOnly) ){
894           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
895           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
896         }
897       }
898 
899     }
900   }
901   return pNew;
902 }
903 
904 /*
905 ** Create and return a deep copy of the object passed as the second
906 ** argument. If an OOM condition is encountered, NULL is returned
907 ** and the db->mallocFailed flag set.
908 */
909 #ifndef SQLITE_OMIT_CTE
910 static With *withDup(sqlite3 *db, With *p){
911   With *pRet = 0;
912   if( p ){
913     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
914     pRet = sqlite3DbMallocZero(db, nByte);
915     if( pRet ){
916       int i;
917       pRet->nCte = p->nCte;
918       for(i=0; i<p->nCte; i++){
919         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
920         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
921         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
922       }
923     }
924   }
925   return pRet;
926 }
927 #else
928 # define withDup(x,y) 0
929 #endif
930 
931 /*
932 ** The following group of routines make deep copies of expressions,
933 ** expression lists, ID lists, and select statements.  The copies can
934 ** be deleted (by being passed to their respective ...Delete() routines)
935 ** without effecting the originals.
936 **
937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
939 ** by subsequent calls to sqlite*ListAppend() routines.
940 **
941 ** Any tables that the SrcList might point to are not duplicated.
942 **
943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
945 ** truncated version of the usual Expr structure that will be stored as
946 ** part of the in-memory representation of the database schema.
947 */
948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
949   return exprDup(db, p, flags, 0);
950 }
951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
952   ExprList *pNew;
953   struct ExprList_item *pItem, *pOldItem;
954   int i;
955   if( p==0 ) return 0;
956   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
957   if( pNew==0 ) return 0;
958   pNew->nExpr = i = p->nExpr;
959   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
960   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
961   if( pItem==0 ){
962     sqlite3DbFree(db, pNew);
963     return 0;
964   }
965   pOldItem = p->a;
966   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
967     Expr *pOldExpr = pOldItem->pExpr;
968     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
969     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
970     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
971     pItem->sortOrder = pOldItem->sortOrder;
972     pItem->done = 0;
973     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
974     pItem->u = pOldItem->u;
975   }
976   return pNew;
977 }
978 
979 /*
980 ** If cursors, triggers, views and subqueries are all omitted from
981 ** the build, then none of the following routines, except for
982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
983 ** called with a NULL argument.
984 */
985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
986  || !defined(SQLITE_OMIT_SUBQUERY)
987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
988   SrcList *pNew;
989   int i;
990   int nByte;
991   if( p==0 ) return 0;
992   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
993   pNew = sqlite3DbMallocRaw(db, nByte );
994   if( pNew==0 ) return 0;
995   pNew->nSrc = pNew->nAlloc = p->nSrc;
996   for(i=0; i<p->nSrc; i++){
997     struct SrcList_item *pNewItem = &pNew->a[i];
998     struct SrcList_item *pOldItem = &p->a[i];
999     Table *pTab;
1000     pNewItem->pSchema = pOldItem->pSchema;
1001     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1002     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1004     pNewItem->jointype = pOldItem->jointype;
1005     pNewItem->iCursor = pOldItem->iCursor;
1006     pNewItem->addrFillSub = pOldItem->addrFillSub;
1007     pNewItem->regReturn = pOldItem->regReturn;
1008     pNewItem->isCorrelated = pOldItem->isCorrelated;
1009     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1010     pNewItem->isRecursive = pOldItem->isRecursive;
1011     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1012     pNewItem->notIndexed = pOldItem->notIndexed;
1013     pNewItem->pIndex = pOldItem->pIndex;
1014     pTab = pNewItem->pTab = pOldItem->pTab;
1015     if( pTab ){
1016       pTab->nRef++;
1017     }
1018     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1019     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1020     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1021     pNewItem->colUsed = pOldItem->colUsed;
1022   }
1023   return pNew;
1024 }
1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1026   IdList *pNew;
1027   int i;
1028   if( p==0 ) return 0;
1029   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1030   if( pNew==0 ) return 0;
1031   pNew->nId = p->nId;
1032   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1033   if( pNew->a==0 ){
1034     sqlite3DbFree(db, pNew);
1035     return 0;
1036   }
1037   /* Note that because the size of the allocation for p->a[] is not
1038   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1039   ** on the duplicate created by this function. */
1040   for(i=0; i<p->nId; i++){
1041     struct IdList_item *pNewItem = &pNew->a[i];
1042     struct IdList_item *pOldItem = &p->a[i];
1043     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1044     pNewItem->idx = pOldItem->idx;
1045   }
1046   return pNew;
1047 }
1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1049   Select *pNew, *pPrior;
1050   if( p==0 ) return 0;
1051   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1052   if( pNew==0 ) return 0;
1053   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1054   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1055   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1056   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1057   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1058   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1059   pNew->op = p->op;
1060   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1061   if( pPrior ) pPrior->pNext = pNew;
1062   pNew->pNext = 0;
1063   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1064   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1065   pNew->iLimit = 0;
1066   pNew->iOffset = 0;
1067   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1068   pNew->addrOpenEphm[0] = -1;
1069   pNew->addrOpenEphm[1] = -1;
1070   pNew->nSelectRow = p->nSelectRow;
1071   pNew->pWith = withDup(db, p->pWith);
1072   sqlite3SelectSetName(pNew, p->zSelName);
1073   return pNew;
1074 }
1075 #else
1076 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1077   assert( p==0 );
1078   return 0;
1079 }
1080 #endif
1081 
1082 
1083 /*
1084 ** Add a new element to the end of an expression list.  If pList is
1085 ** initially NULL, then create a new expression list.
1086 **
1087 ** If a memory allocation error occurs, the entire list is freed and
1088 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1089 ** that the new entry was successfully appended.
1090 */
1091 ExprList *sqlite3ExprListAppend(
1092   Parse *pParse,          /* Parsing context */
1093   ExprList *pList,        /* List to which to append. Might be NULL */
1094   Expr *pExpr             /* Expression to be appended. Might be NULL */
1095 ){
1096   sqlite3 *db = pParse->db;
1097   if( pList==0 ){
1098     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1099     if( pList==0 ){
1100       goto no_mem;
1101     }
1102     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1103     if( pList->a==0 ) goto no_mem;
1104   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1105     struct ExprList_item *a;
1106     assert( pList->nExpr>0 );
1107     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1108     if( a==0 ){
1109       goto no_mem;
1110     }
1111     pList->a = a;
1112   }
1113   assert( pList->a!=0 );
1114   if( 1 ){
1115     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1116     memset(pItem, 0, sizeof(*pItem));
1117     pItem->pExpr = pExpr;
1118   }
1119   return pList;
1120 
1121 no_mem:
1122   /* Avoid leaking memory if malloc has failed. */
1123   sqlite3ExprDelete(db, pExpr);
1124   sqlite3ExprListDelete(db, pList);
1125   return 0;
1126 }
1127 
1128 /*
1129 ** Set the ExprList.a[].zName element of the most recently added item
1130 ** on the expression list.
1131 **
1132 ** pList might be NULL following an OOM error.  But pName should never be
1133 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1134 ** is set.
1135 */
1136 void sqlite3ExprListSetName(
1137   Parse *pParse,          /* Parsing context */
1138   ExprList *pList,        /* List to which to add the span. */
1139   Token *pName,           /* Name to be added */
1140   int dequote             /* True to cause the name to be dequoted */
1141 ){
1142   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1143   if( pList ){
1144     struct ExprList_item *pItem;
1145     assert( pList->nExpr>0 );
1146     pItem = &pList->a[pList->nExpr-1];
1147     assert( pItem->zName==0 );
1148     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1149     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1150   }
1151 }
1152 
1153 /*
1154 ** Set the ExprList.a[].zSpan element of the most recently added item
1155 ** on the expression list.
1156 **
1157 ** pList might be NULL following an OOM error.  But pSpan should never be
1158 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1159 ** is set.
1160 */
1161 void sqlite3ExprListSetSpan(
1162   Parse *pParse,          /* Parsing context */
1163   ExprList *pList,        /* List to which to add the span. */
1164   ExprSpan *pSpan         /* The span to be added */
1165 ){
1166   sqlite3 *db = pParse->db;
1167   assert( pList!=0 || db->mallocFailed!=0 );
1168   if( pList ){
1169     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1170     assert( pList->nExpr>0 );
1171     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1172     sqlite3DbFree(db, pItem->zSpan);
1173     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1174                                     (int)(pSpan->zEnd - pSpan->zStart));
1175   }
1176 }
1177 
1178 /*
1179 ** If the expression list pEList contains more than iLimit elements,
1180 ** leave an error message in pParse.
1181 */
1182 void sqlite3ExprListCheckLength(
1183   Parse *pParse,
1184   ExprList *pEList,
1185   const char *zObject
1186 ){
1187   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1188   testcase( pEList && pEList->nExpr==mx );
1189   testcase( pEList && pEList->nExpr==mx+1 );
1190   if( pEList && pEList->nExpr>mx ){
1191     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1192   }
1193 }
1194 
1195 /*
1196 ** Delete an entire expression list.
1197 */
1198 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1199   int i;
1200   struct ExprList_item *pItem;
1201   if( pList==0 ) return;
1202   assert( pList->a!=0 || pList->nExpr==0 );
1203   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1204     sqlite3ExprDelete(db, pItem->pExpr);
1205     sqlite3DbFree(db, pItem->zName);
1206     sqlite3DbFree(db, pItem->zSpan);
1207   }
1208   sqlite3DbFree(db, pList->a);
1209   sqlite3DbFree(db, pList);
1210 }
1211 
1212 /*
1213 ** These routines are Walker callbacks used to check expressions to
1214 ** see if they are "constant" for some definition of constant.  The
1215 ** Walker.eCode value determines the type of "constant" we are looking
1216 ** for.
1217 **
1218 ** These callback routines are used to implement the following:
1219 **
1220 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1221 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1222 **     sqlite3ExprRefOneTableOnly()             pWalker->eCode==3
1223 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1224 **
1225 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1226 ** is found to not be a constant.
1227 **
1228 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1229 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1230 ** an existing schema and 4 when processing a new statement.  A bound
1231 ** parameter raises an error for new statements, but is silently converted
1232 ** to NULL for existing schemas.  This allows sqlite_master tables that
1233 ** contain a bound parameter because they were generated by older versions
1234 ** of SQLite to be parsed by newer versions of SQLite without raising a
1235 ** malformed schema error.
1236 */
1237 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1238 
1239   /* If pWalker->eCode is 2 then any term of the expression that comes from
1240   ** the ON or USING clauses of a left join disqualifies the expression
1241   ** from being considered constant. */
1242   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1243     pWalker->eCode = 0;
1244     return WRC_Abort;
1245   }
1246 
1247   switch( pExpr->op ){
1248     /* Consider functions to be constant if all their arguments are constant
1249     ** and either pWalker->eCode==4 or 5 or the function has the
1250     ** SQLITE_FUNC_CONST flag. */
1251     case TK_FUNCTION:
1252       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_Constant) ){
1253         return WRC_Continue;
1254       }else{
1255         pWalker->eCode = 0;
1256         return WRC_Abort;
1257       }
1258     case TK_ID:
1259     case TK_COLUMN:
1260     case TK_AGG_FUNCTION:
1261     case TK_AGG_COLUMN:
1262       testcase( pExpr->op==TK_ID );
1263       testcase( pExpr->op==TK_COLUMN );
1264       testcase( pExpr->op==TK_AGG_FUNCTION );
1265       testcase( pExpr->op==TK_AGG_COLUMN );
1266       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1267         return WRC_Continue;
1268       }else{
1269         pWalker->eCode = 0;
1270         return WRC_Abort;
1271       }
1272     case TK_VARIABLE:
1273       if( pWalker->eCode==5 ){
1274         /* Silently convert bound parameters that appear inside of CREATE
1275         ** statements into a NULL when parsing the CREATE statement text out
1276         ** of the sqlite_master table */
1277         pExpr->op = TK_NULL;
1278       }else if( pWalker->eCode==4 ){
1279         /* A bound parameter in a CREATE statement that originates from
1280         ** sqlite3_prepare() causes an error */
1281         pWalker->eCode = 0;
1282         return WRC_Abort;
1283       }
1284       /* Fall through */
1285     default:
1286       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1287       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1288       return WRC_Continue;
1289   }
1290 }
1291 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1292   UNUSED_PARAMETER(NotUsed);
1293   pWalker->eCode = 0;
1294   return WRC_Abort;
1295 }
1296 static int exprIsConst(Expr *p, int initFlag, int iCur){
1297   Walker w;
1298   memset(&w, 0, sizeof(w));
1299   w.eCode = initFlag;
1300   w.xExprCallback = exprNodeIsConstant;
1301   w.xSelectCallback = selectNodeIsConstant;
1302   w.u.iCur = iCur;
1303   sqlite3WalkExpr(&w, p);
1304   return w.eCode;
1305 }
1306 
1307 /*
1308 ** Walk an expression tree.  Return non-zero if the expression is constant
1309 ** and 0 if it involves variables or function calls.
1310 **
1311 ** For the purposes of this function, a double-quoted string (ex: "abc")
1312 ** is considered a variable but a single-quoted string (ex: 'abc') is
1313 ** a constant.
1314 */
1315 int sqlite3ExprIsConstant(Expr *p){
1316   return exprIsConst(p, 1, 0);
1317 }
1318 
1319 /*
1320 ** Walk an expression tree.  Return non-zero if the expression is constant
1321 ** that does no originate from the ON or USING clauses of a join.
1322 ** Return 0 if it involves variables or function calls or terms from
1323 ** an ON or USING clause.
1324 */
1325 int sqlite3ExprIsConstantNotJoin(Expr *p){
1326   return exprIsConst(p, 2, 0);
1327 }
1328 
1329 /*
1330 ** Walk an expression tree.  Return non-zero if the expression constant
1331 ** for any single row of the table with cursor iCur.  In other words, the
1332 ** expression must not refer to any non-deterministic function nor any
1333 ** table other than iCur.
1334 */
1335 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1336   return exprIsConst(p, 3, iCur);
1337 }
1338 
1339 /*
1340 ** Walk an expression tree.  Return non-zero if the expression is constant
1341 ** or a function call with constant arguments.  Return and 0 if there
1342 ** are any variables.
1343 **
1344 ** For the purposes of this function, a double-quoted string (ex: "abc")
1345 ** is considered a variable but a single-quoted string (ex: 'abc') is
1346 ** a constant.
1347 */
1348 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1349   assert( isInit==0 || isInit==1 );
1350   return exprIsConst(p, 4+isInit, 0);
1351 }
1352 
1353 /*
1354 ** If the expression p codes a constant integer that is small enough
1355 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1356 ** in *pValue.  If the expression is not an integer or if it is too big
1357 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1358 */
1359 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1360   int rc = 0;
1361 
1362   /* If an expression is an integer literal that fits in a signed 32-bit
1363   ** integer, then the EP_IntValue flag will have already been set */
1364   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1365            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1366 
1367   if( p->flags & EP_IntValue ){
1368     *pValue = p->u.iValue;
1369     return 1;
1370   }
1371   switch( p->op ){
1372     case TK_UPLUS: {
1373       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1374       break;
1375     }
1376     case TK_UMINUS: {
1377       int v;
1378       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1379         assert( v!=(-2147483647-1) );
1380         *pValue = -v;
1381         rc = 1;
1382       }
1383       break;
1384     }
1385     default: break;
1386   }
1387   return rc;
1388 }
1389 
1390 /*
1391 ** Return FALSE if there is no chance that the expression can be NULL.
1392 **
1393 ** If the expression might be NULL or if the expression is too complex
1394 ** to tell return TRUE.
1395 **
1396 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1397 ** when we know that a value cannot be NULL.  Hence, a false positive
1398 ** (returning TRUE when in fact the expression can never be NULL) might
1399 ** be a small performance hit but is otherwise harmless.  On the other
1400 ** hand, a false negative (returning FALSE when the result could be NULL)
1401 ** will likely result in an incorrect answer.  So when in doubt, return
1402 ** TRUE.
1403 */
1404 int sqlite3ExprCanBeNull(const Expr *p){
1405   u8 op;
1406   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1407   op = p->op;
1408   if( op==TK_REGISTER ) op = p->op2;
1409   switch( op ){
1410     case TK_INTEGER:
1411     case TK_STRING:
1412     case TK_FLOAT:
1413     case TK_BLOB:
1414       return 0;
1415     case TK_COLUMN:
1416       assert( p->pTab!=0 );
1417       return ExprHasProperty(p, EP_CanBeNull) ||
1418              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1419     default:
1420       return 1;
1421   }
1422 }
1423 
1424 /*
1425 ** Return TRUE if the given expression is a constant which would be
1426 ** unchanged by OP_Affinity with the affinity given in the second
1427 ** argument.
1428 **
1429 ** This routine is used to determine if the OP_Affinity operation
1430 ** can be omitted.  When in doubt return FALSE.  A false negative
1431 ** is harmless.  A false positive, however, can result in the wrong
1432 ** answer.
1433 */
1434 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1435   u8 op;
1436   if( aff==SQLITE_AFF_NONE ) return 1;
1437   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1438   op = p->op;
1439   if( op==TK_REGISTER ) op = p->op2;
1440   switch( op ){
1441     case TK_INTEGER: {
1442       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1443     }
1444     case TK_FLOAT: {
1445       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1446     }
1447     case TK_STRING: {
1448       return aff==SQLITE_AFF_TEXT;
1449     }
1450     case TK_BLOB: {
1451       return 1;
1452     }
1453     case TK_COLUMN: {
1454       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1455       return p->iColumn<0
1456           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1457     }
1458     default: {
1459       return 0;
1460     }
1461   }
1462 }
1463 
1464 /*
1465 ** Return TRUE if the given string is a row-id column name.
1466 */
1467 int sqlite3IsRowid(const char *z){
1468   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1469   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1470   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1471   return 0;
1472 }
1473 
1474 /*
1475 ** Return true if we are able to the IN operator optimization on a
1476 ** query of the form
1477 **
1478 **       x IN (SELECT ...)
1479 **
1480 ** Where the SELECT... clause is as specified by the parameter to this
1481 ** routine.
1482 **
1483 ** The Select object passed in has already been preprocessed and no
1484 ** errors have been found.
1485 */
1486 #ifndef SQLITE_OMIT_SUBQUERY
1487 static int isCandidateForInOpt(Select *p){
1488   SrcList *pSrc;
1489   ExprList *pEList;
1490   Table *pTab;
1491   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1492   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1493   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1494     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1495     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1496     return 0; /* No DISTINCT keyword and no aggregate functions */
1497   }
1498   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1499   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1500   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1501   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1502   pSrc = p->pSrc;
1503   assert( pSrc!=0 );
1504   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1505   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1506   pTab = pSrc->a[0].pTab;
1507   if( NEVER(pTab==0) ) return 0;
1508   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1509   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1510   pEList = p->pEList;
1511   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1512   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1513   return 1;
1514 }
1515 #endif /* SQLITE_OMIT_SUBQUERY */
1516 
1517 /*
1518 ** Code an OP_Once instruction and allocate space for its flag. Return the
1519 ** address of the new instruction.
1520 */
1521 int sqlite3CodeOnce(Parse *pParse){
1522   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1523   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1524 }
1525 
1526 /*
1527 ** Generate code that checks the left-most column of index table iCur to see if
1528 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1529 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1530 ** to be set to NULL if iCur contains one or more NULL values.
1531 */
1532 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1533   int j1;
1534   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1535   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1536   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1537   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1538   VdbeComment((v, "first_entry_in(%d)", iCur));
1539   sqlite3VdbeJumpHere(v, j1);
1540 }
1541 
1542 
1543 #ifndef SQLITE_OMIT_SUBQUERY
1544 /*
1545 ** The argument is an IN operator with a list (not a subquery) on the
1546 ** right-hand side.  Return TRUE if that list is constant.
1547 */
1548 static int sqlite3InRhsIsConstant(Expr *pIn){
1549   Expr *pLHS;
1550   int res;
1551   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1552   pLHS = pIn->pLeft;
1553   pIn->pLeft = 0;
1554   res = sqlite3ExprIsConstant(pIn);
1555   pIn->pLeft = pLHS;
1556   return res;
1557 }
1558 #endif
1559 
1560 /*
1561 ** This function is used by the implementation of the IN (...) operator.
1562 ** The pX parameter is the expression on the RHS of the IN operator, which
1563 ** might be either a list of expressions or a subquery.
1564 **
1565 ** The job of this routine is to find or create a b-tree object that can
1566 ** be used either to test for membership in the RHS set or to iterate through
1567 ** all members of the RHS set, skipping duplicates.
1568 **
1569 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1570 ** and pX->iTable is set to the index of that cursor.
1571 **
1572 ** The returned value of this function indicates the b-tree type, as follows:
1573 **
1574 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1575 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1576 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1577 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1578 **                         populated epheremal table.
1579 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1580 **                         implemented as a sequence of comparisons.
1581 **
1582 ** An existing b-tree might be used if the RHS expression pX is a simple
1583 ** subquery such as:
1584 **
1585 **     SELECT <column> FROM <table>
1586 **
1587 ** If the RHS of the IN operator is a list or a more complex subquery, then
1588 ** an ephemeral table might need to be generated from the RHS and then
1589 ** pX->iTable made to point to the ephemeral table instead of an
1590 ** existing table.
1591 **
1592 ** The inFlags parameter must contain exactly one of the bits
1593 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1594 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1595 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1596 ** IN index will be used to loop over all values of the RHS of the
1597 ** IN operator.
1598 **
1599 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1600 ** through the set members) then the b-tree must not contain duplicates.
1601 ** An epheremal table must be used unless the selected <column> is guaranteed
1602 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1603 ** has a UNIQUE constraint or UNIQUE index.
1604 **
1605 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1606 ** for fast set membership tests) then an epheremal table must
1607 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1608 ** be found with <column> as its left-most column.
1609 **
1610 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1611 ** if the RHS of the IN operator is a list (not a subquery) then this
1612 ** routine might decide that creating an ephemeral b-tree for membership
1613 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1614 ** calling routine should implement the IN operator using a sequence
1615 ** of Eq or Ne comparison operations.
1616 **
1617 ** When the b-tree is being used for membership tests, the calling function
1618 ** might need to know whether or not the RHS side of the IN operator
1619 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1620 ** if there is any chance that the (...) might contain a NULL value at
1621 ** runtime, then a register is allocated and the register number written
1622 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1623 ** NULL value, then *prRhsHasNull is left unchanged.
1624 **
1625 ** If a register is allocated and its location stored in *prRhsHasNull, then
1626 ** the value in that register will be NULL if the b-tree contains one or more
1627 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1628 ** NULL values.
1629 */
1630 #ifndef SQLITE_OMIT_SUBQUERY
1631 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1632   Select *p;                            /* SELECT to the right of IN operator */
1633   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1634   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1635   int mustBeUnique;                     /* True if RHS must be unique */
1636   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1637 
1638   assert( pX->op==TK_IN );
1639   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1640 
1641   /* Check to see if an existing table or index can be used to
1642   ** satisfy the query.  This is preferable to generating a new
1643   ** ephemeral table.
1644   */
1645   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1646   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1647     sqlite3 *db = pParse->db;              /* Database connection */
1648     Table *pTab;                           /* Table <table>. */
1649     Expr *pExpr;                           /* Expression <column> */
1650     i16 iCol;                              /* Index of column <column> */
1651     i16 iDb;                               /* Database idx for pTab */
1652 
1653     assert( p );                        /* Because of isCandidateForInOpt(p) */
1654     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1655     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1656     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1657     pTab = p->pSrc->a[0].pTab;
1658     pExpr = p->pEList->a[0].pExpr;
1659     iCol = (i16)pExpr->iColumn;
1660 
1661     /* Code an OP_Transaction and OP_TableLock for <table>. */
1662     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1663     sqlite3CodeVerifySchema(pParse, iDb);
1664     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1665 
1666     /* This function is only called from two places. In both cases the vdbe
1667     ** has already been allocated. So assume sqlite3GetVdbe() is always
1668     ** successful here.
1669     */
1670     assert(v);
1671     if( iCol<0 ){
1672       int iAddr = sqlite3CodeOnce(pParse);
1673       VdbeCoverage(v);
1674 
1675       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1676       eType = IN_INDEX_ROWID;
1677 
1678       sqlite3VdbeJumpHere(v, iAddr);
1679     }else{
1680       Index *pIdx;                         /* Iterator variable */
1681 
1682       /* The collation sequence used by the comparison. If an index is to
1683       ** be used in place of a temp-table, it must be ordered according
1684       ** to this collation sequence.  */
1685       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1686 
1687       /* Check that the affinity that will be used to perform the
1688       ** comparison is the same as the affinity of the column. If
1689       ** it is not, it is not possible to use any index.
1690       */
1691       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1692 
1693       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1694         if( (pIdx->aiColumn[0]==iCol)
1695          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1696          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1697         ){
1698           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1699           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1700           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1701           VdbeComment((v, "%s", pIdx->zName));
1702           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1703           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1704 
1705           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1706             *prRhsHasNull = ++pParse->nMem;
1707             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1708           }
1709           sqlite3VdbeJumpHere(v, iAddr);
1710         }
1711       }
1712     }
1713   }
1714 
1715   /* If no preexisting index is available for the IN clause
1716   ** and IN_INDEX_NOOP is an allowed reply
1717   ** and the RHS of the IN operator is a list, not a subquery
1718   ** and the RHS is not contant or has two or fewer terms,
1719   ** then it is not worth creating an ephemeral table to evaluate
1720   ** the IN operator so return IN_INDEX_NOOP.
1721   */
1722   if( eType==0
1723    && (inFlags & IN_INDEX_NOOP_OK)
1724    && !ExprHasProperty(pX, EP_xIsSelect)
1725    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1726   ){
1727     eType = IN_INDEX_NOOP;
1728   }
1729 
1730 
1731   if( eType==0 ){
1732     /* Could not find an existing table or index to use as the RHS b-tree.
1733     ** We will have to generate an ephemeral table to do the job.
1734     */
1735     u32 savedNQueryLoop = pParse->nQueryLoop;
1736     int rMayHaveNull = 0;
1737     eType = IN_INDEX_EPH;
1738     if( inFlags & IN_INDEX_LOOP ){
1739       pParse->nQueryLoop = 0;
1740       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1741         eType = IN_INDEX_ROWID;
1742       }
1743     }else if( prRhsHasNull ){
1744       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1745     }
1746     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1747     pParse->nQueryLoop = savedNQueryLoop;
1748   }else{
1749     pX->iTable = iTab;
1750   }
1751   return eType;
1752 }
1753 #endif
1754 
1755 /*
1756 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1757 ** or IN operators.  Examples:
1758 **
1759 **     (SELECT a FROM b)          -- subquery
1760 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1761 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1762 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1763 **
1764 ** The pExpr parameter describes the expression that contains the IN
1765 ** operator or subquery.
1766 **
1767 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1768 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1769 ** to some integer key column of a table B-Tree. In this case, use an
1770 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1771 ** (slower) variable length keys B-Tree.
1772 **
1773 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1774 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1775 ** All this routine does is initialize the register given by rMayHaveNull
1776 ** to NULL.  Calling routines will take care of changing this register
1777 ** value to non-NULL if the RHS is NULL-free.
1778 **
1779 ** For a SELECT or EXISTS operator, return the register that holds the
1780 ** result.  For IN operators or if an error occurs, the return value is 0.
1781 */
1782 #ifndef SQLITE_OMIT_SUBQUERY
1783 int sqlite3CodeSubselect(
1784   Parse *pParse,          /* Parsing context */
1785   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1786   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1787   int isRowid             /* If true, LHS of IN operator is a rowid */
1788 ){
1789   int jmpIfDynamic = -1;                      /* One-time test address */
1790   int rReg = 0;                           /* Register storing resulting */
1791   Vdbe *v = sqlite3GetVdbe(pParse);
1792   if( NEVER(v==0) ) return 0;
1793   sqlite3ExprCachePush(pParse);
1794 
1795   /* This code must be run in its entirety every time it is encountered
1796   ** if any of the following is true:
1797   **
1798   **    *  The right-hand side is a correlated subquery
1799   **    *  The right-hand side is an expression list containing variables
1800   **    *  We are inside a trigger
1801   **
1802   ** If all of the above are false, then we can run this code just once
1803   ** save the results, and reuse the same result on subsequent invocations.
1804   */
1805   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1806     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1807   }
1808 
1809 #ifndef SQLITE_OMIT_EXPLAIN
1810   if( pParse->explain==2 ){
1811     char *zMsg = sqlite3MPrintf(
1812         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1813         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1814     );
1815     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1816   }
1817 #endif
1818 
1819   switch( pExpr->op ){
1820     case TK_IN: {
1821       char affinity;              /* Affinity of the LHS of the IN */
1822       int addr;                   /* Address of OP_OpenEphemeral instruction */
1823       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1824       KeyInfo *pKeyInfo = 0;      /* Key information */
1825 
1826       affinity = sqlite3ExprAffinity(pLeft);
1827 
1828       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1829       ** expression it is handled the same way.  An ephemeral table is
1830       ** filled with single-field index keys representing the results
1831       ** from the SELECT or the <exprlist>.
1832       **
1833       ** If the 'x' expression is a column value, or the SELECT...
1834       ** statement returns a column value, then the affinity of that
1835       ** column is used to build the index keys. If both 'x' and the
1836       ** SELECT... statement are columns, then numeric affinity is used
1837       ** if either column has NUMERIC or INTEGER affinity. If neither
1838       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1839       ** is used.
1840       */
1841       pExpr->iTable = pParse->nTab++;
1842       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1843       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1844 
1845       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1846         /* Case 1:     expr IN (SELECT ...)
1847         **
1848         ** Generate code to write the results of the select into the temporary
1849         ** table allocated and opened above.
1850         */
1851         Select *pSelect = pExpr->x.pSelect;
1852         SelectDest dest;
1853         ExprList *pEList;
1854 
1855         assert( !isRowid );
1856         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1857         dest.affSdst = (u8)affinity;
1858         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1859         pSelect->iLimit = 0;
1860         testcase( pSelect->selFlags & SF_Distinct );
1861         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1862         if( sqlite3Select(pParse, pSelect, &dest) ){
1863           sqlite3KeyInfoUnref(pKeyInfo);
1864           return 0;
1865         }
1866         pEList = pSelect->pEList;
1867         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1868         assert( pEList!=0 );
1869         assert( pEList->nExpr>0 );
1870         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1871         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1872                                                          pEList->a[0].pExpr);
1873       }else if( ALWAYS(pExpr->x.pList!=0) ){
1874         /* Case 2:     expr IN (exprlist)
1875         **
1876         ** For each expression, build an index key from the evaluation and
1877         ** store it in the temporary table. If <expr> is a column, then use
1878         ** that columns affinity when building index keys. If <expr> is not
1879         ** a column, use numeric affinity.
1880         */
1881         int i;
1882         ExprList *pList = pExpr->x.pList;
1883         struct ExprList_item *pItem;
1884         int r1, r2, r3;
1885 
1886         if( !affinity ){
1887           affinity = SQLITE_AFF_NONE;
1888         }
1889         if( pKeyInfo ){
1890           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1891           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1892         }
1893 
1894         /* Loop through each expression in <exprlist>. */
1895         r1 = sqlite3GetTempReg(pParse);
1896         r2 = sqlite3GetTempReg(pParse);
1897         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1898         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1899           Expr *pE2 = pItem->pExpr;
1900           int iValToIns;
1901 
1902           /* If the expression is not constant then we will need to
1903           ** disable the test that was generated above that makes sure
1904           ** this code only executes once.  Because for a non-constant
1905           ** expression we need to rerun this code each time.
1906           */
1907           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1908             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1909             jmpIfDynamic = -1;
1910           }
1911 
1912           /* Evaluate the expression and insert it into the temp table */
1913           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1914             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1915           }else{
1916             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1917             if( isRowid ){
1918               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1919                                 sqlite3VdbeCurrentAddr(v)+2);
1920               VdbeCoverage(v);
1921               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1922             }else{
1923               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1924               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1925               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1926             }
1927           }
1928         }
1929         sqlite3ReleaseTempReg(pParse, r1);
1930         sqlite3ReleaseTempReg(pParse, r2);
1931       }
1932       if( pKeyInfo ){
1933         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1934       }
1935       break;
1936     }
1937 
1938     case TK_EXISTS:
1939     case TK_SELECT:
1940     default: {
1941       /* If this has to be a scalar SELECT.  Generate code to put the
1942       ** value of this select in a memory cell and record the number
1943       ** of the memory cell in iColumn.  If this is an EXISTS, write
1944       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1945       ** and record that memory cell in iColumn.
1946       */
1947       Select *pSel;                         /* SELECT statement to encode */
1948       SelectDest dest;                      /* How to deal with SELECt result */
1949 
1950       testcase( pExpr->op==TK_EXISTS );
1951       testcase( pExpr->op==TK_SELECT );
1952       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1953 
1954       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1955       pSel = pExpr->x.pSelect;
1956       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1957       if( pExpr->op==TK_SELECT ){
1958         dest.eDest = SRT_Mem;
1959         dest.iSdst = dest.iSDParm;
1960         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1961         VdbeComment((v, "Init subquery result"));
1962       }else{
1963         dest.eDest = SRT_Exists;
1964         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1965         VdbeComment((v, "Init EXISTS result"));
1966       }
1967       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1968       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1969                                   &sqlite3IntTokens[1]);
1970       pSel->iLimit = 0;
1971       if( sqlite3Select(pParse, pSel, &dest) ){
1972         return 0;
1973       }
1974       rReg = dest.iSDParm;
1975       ExprSetVVAProperty(pExpr, EP_NoReduce);
1976       break;
1977     }
1978   }
1979 
1980   if( rHasNullFlag ){
1981     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
1982   }
1983 
1984   if( jmpIfDynamic>=0 ){
1985     sqlite3VdbeJumpHere(v, jmpIfDynamic);
1986   }
1987   sqlite3ExprCachePop(pParse);
1988 
1989   return rReg;
1990 }
1991 #endif /* SQLITE_OMIT_SUBQUERY */
1992 
1993 #ifndef SQLITE_OMIT_SUBQUERY
1994 /*
1995 ** Generate code for an IN expression.
1996 **
1997 **      x IN (SELECT ...)
1998 **      x IN (value, value, ...)
1999 **
2000 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2001 ** is an array of zero or more values.  The expression is true if the LHS is
2002 ** contained within the RHS.  The value of the expression is unknown (NULL)
2003 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2004 ** RHS contains one or more NULL values.
2005 **
2006 ** This routine generates code that jumps to destIfFalse if the LHS is not
2007 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2008 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2009 ** within the RHS then fall through.
2010 */
2011 static void sqlite3ExprCodeIN(
2012   Parse *pParse,        /* Parsing and code generating context */
2013   Expr *pExpr,          /* The IN expression */
2014   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2015   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2016 ){
2017   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2018   char affinity;        /* Comparison affinity to use */
2019   int eType;            /* Type of the RHS */
2020   int r1;               /* Temporary use register */
2021   Vdbe *v;              /* Statement under construction */
2022 
2023   /* Compute the RHS.   After this step, the table with cursor
2024   ** pExpr->iTable will contains the values that make up the RHS.
2025   */
2026   v = pParse->pVdbe;
2027   assert( v!=0 );       /* OOM detected prior to this routine */
2028   VdbeNoopComment((v, "begin IN expr"));
2029   eType = sqlite3FindInIndex(pParse, pExpr,
2030                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2031                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2032 
2033   /* Figure out the affinity to use to create a key from the results
2034   ** of the expression. affinityStr stores a static string suitable for
2035   ** P4 of OP_MakeRecord.
2036   */
2037   affinity = comparisonAffinity(pExpr);
2038 
2039   /* Code the LHS, the <expr> from "<expr> IN (...)".
2040   */
2041   sqlite3ExprCachePush(pParse);
2042   r1 = sqlite3GetTempReg(pParse);
2043   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2044 
2045   /* If sqlite3FindInIndex() did not find or create an index that is
2046   ** suitable for evaluating the IN operator, then evaluate using a
2047   ** sequence of comparisons.
2048   */
2049   if( eType==IN_INDEX_NOOP ){
2050     ExprList *pList = pExpr->x.pList;
2051     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2052     int labelOk = sqlite3VdbeMakeLabel(v);
2053     int r2, regToFree;
2054     int regCkNull = 0;
2055     int ii;
2056     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2057     if( destIfNull!=destIfFalse ){
2058       regCkNull = sqlite3GetTempReg(pParse);
2059       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2060     }
2061     for(ii=0; ii<pList->nExpr; ii++){
2062       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2063       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2064         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2065       }
2066       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2067         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2068                           (void*)pColl, P4_COLLSEQ);
2069         VdbeCoverageIf(v, ii<pList->nExpr-1);
2070         VdbeCoverageIf(v, ii==pList->nExpr-1);
2071         sqlite3VdbeChangeP5(v, affinity);
2072       }else{
2073         assert( destIfNull==destIfFalse );
2074         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2075                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2076         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2077       }
2078       sqlite3ReleaseTempReg(pParse, regToFree);
2079     }
2080     if( regCkNull ){
2081       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2082       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2083     }
2084     sqlite3VdbeResolveLabel(v, labelOk);
2085     sqlite3ReleaseTempReg(pParse, regCkNull);
2086   }else{
2087 
2088     /* If the LHS is NULL, then the result is either false or NULL depending
2089     ** on whether the RHS is empty or not, respectively.
2090     */
2091     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2092       if( destIfNull==destIfFalse ){
2093         /* Shortcut for the common case where the false and NULL outcomes are
2094         ** the same. */
2095         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2096       }else{
2097         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2098         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2099         VdbeCoverage(v);
2100         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2101         sqlite3VdbeJumpHere(v, addr1);
2102       }
2103     }
2104 
2105     if( eType==IN_INDEX_ROWID ){
2106       /* In this case, the RHS is the ROWID of table b-tree
2107       */
2108       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2109       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2110       VdbeCoverage(v);
2111     }else{
2112       /* In this case, the RHS is an index b-tree.
2113       */
2114       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2115 
2116       /* If the set membership test fails, then the result of the
2117       ** "x IN (...)" expression must be either 0 or NULL. If the set
2118       ** contains no NULL values, then the result is 0. If the set
2119       ** contains one or more NULL values, then the result of the
2120       ** expression is also NULL.
2121       */
2122       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2123       if( rRhsHasNull==0 ){
2124         /* This branch runs if it is known at compile time that the RHS
2125         ** cannot contain NULL values. This happens as the result
2126         ** of a "NOT NULL" constraint in the database schema.
2127         **
2128         ** Also run this branch if NULL is equivalent to FALSE
2129         ** for this particular IN operator.
2130         */
2131         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2132         VdbeCoverage(v);
2133       }else{
2134         /* In this branch, the RHS of the IN might contain a NULL and
2135         ** the presence of a NULL on the RHS makes a difference in the
2136         ** outcome.
2137         */
2138         int j1;
2139 
2140         /* First check to see if the LHS is contained in the RHS.  If so,
2141         ** then the answer is TRUE the presence of NULLs in the RHS does
2142         ** not matter.  If the LHS is not contained in the RHS, then the
2143         ** answer is NULL if the RHS contains NULLs and the answer is
2144         ** FALSE if the RHS is NULL-free.
2145         */
2146         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2147         VdbeCoverage(v);
2148         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2149         VdbeCoverage(v);
2150         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2151         sqlite3VdbeJumpHere(v, j1);
2152       }
2153     }
2154   }
2155   sqlite3ReleaseTempReg(pParse, r1);
2156   sqlite3ExprCachePop(pParse);
2157   VdbeComment((v, "end IN expr"));
2158 }
2159 #endif /* SQLITE_OMIT_SUBQUERY */
2160 
2161 /*
2162 ** Duplicate an 8-byte value
2163 */
2164 static char *dup8bytes(Vdbe *v, const char *in){
2165   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2166   if( out ){
2167     memcpy(out, in, 8);
2168   }
2169   return out;
2170 }
2171 
2172 #ifndef SQLITE_OMIT_FLOATING_POINT
2173 /*
2174 ** Generate an instruction that will put the floating point
2175 ** value described by z[0..n-1] into register iMem.
2176 **
2177 ** The z[] string will probably not be zero-terminated.  But the
2178 ** z[n] character is guaranteed to be something that does not look
2179 ** like the continuation of the number.
2180 */
2181 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2182   if( ALWAYS(z!=0) ){
2183     double value;
2184     char *zV;
2185     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2186     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2187     if( negateFlag ) value = -value;
2188     zV = dup8bytes(v, (char*)&value);
2189     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2190   }
2191 }
2192 #endif
2193 
2194 
2195 /*
2196 ** Generate an instruction that will put the integer describe by
2197 ** text z[0..n-1] into register iMem.
2198 **
2199 ** Expr.u.zToken is always UTF8 and zero-terminated.
2200 */
2201 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2202   Vdbe *v = pParse->pVdbe;
2203   if( pExpr->flags & EP_IntValue ){
2204     int i = pExpr->u.iValue;
2205     assert( i>=0 );
2206     if( negFlag ) i = -i;
2207     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2208   }else{
2209     int c;
2210     i64 value;
2211     const char *z = pExpr->u.zToken;
2212     assert( z!=0 );
2213     c = sqlite3DecOrHexToI64(z, &value);
2214     if( c==0 || (c==2 && negFlag) ){
2215       char *zV;
2216       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2217       zV = dup8bytes(v, (char*)&value);
2218       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2219     }else{
2220 #ifdef SQLITE_OMIT_FLOATING_POINT
2221       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2222 #else
2223 #ifndef SQLITE_OMIT_HEX_INTEGER
2224       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2225         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2226       }else
2227 #endif
2228       {
2229         codeReal(v, z, negFlag, iMem);
2230       }
2231 #endif
2232     }
2233   }
2234 }
2235 
2236 /*
2237 ** Clear a cache entry.
2238 */
2239 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2240   if( p->tempReg ){
2241     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2242       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2243     }
2244     p->tempReg = 0;
2245   }
2246 }
2247 
2248 
2249 /*
2250 ** Record in the column cache that a particular column from a
2251 ** particular table is stored in a particular register.
2252 */
2253 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2254   int i;
2255   int minLru;
2256   int idxLru;
2257   struct yColCache *p;
2258 
2259   /* Unless an error has occurred, register numbers are always positive. */
2260   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2261   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2262 
2263   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2264   ** for testing only - to verify that SQLite always gets the same answer
2265   ** with and without the column cache.
2266   */
2267   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2268 
2269   /* First replace any existing entry.
2270   **
2271   ** Actually, the way the column cache is currently used, we are guaranteed
2272   ** that the object will never already be in cache.  Verify this guarantee.
2273   */
2274 #ifndef NDEBUG
2275   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2276     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2277   }
2278 #endif
2279 
2280   /* Find an empty slot and replace it */
2281   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2282     if( p->iReg==0 ){
2283       p->iLevel = pParse->iCacheLevel;
2284       p->iTable = iTab;
2285       p->iColumn = iCol;
2286       p->iReg = iReg;
2287       p->tempReg = 0;
2288       p->lru = pParse->iCacheCnt++;
2289       return;
2290     }
2291   }
2292 
2293   /* Replace the last recently used */
2294   minLru = 0x7fffffff;
2295   idxLru = -1;
2296   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2297     if( p->lru<minLru ){
2298       idxLru = i;
2299       minLru = p->lru;
2300     }
2301   }
2302   if( ALWAYS(idxLru>=0) ){
2303     p = &pParse->aColCache[idxLru];
2304     p->iLevel = pParse->iCacheLevel;
2305     p->iTable = iTab;
2306     p->iColumn = iCol;
2307     p->iReg = iReg;
2308     p->tempReg = 0;
2309     p->lru = pParse->iCacheCnt++;
2310     return;
2311   }
2312 }
2313 
2314 /*
2315 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2316 ** Purge the range of registers from the column cache.
2317 */
2318 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2319   int i;
2320   int iLast = iReg + nReg - 1;
2321   struct yColCache *p;
2322   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2323     int r = p->iReg;
2324     if( r>=iReg && r<=iLast ){
2325       cacheEntryClear(pParse, p);
2326       p->iReg = 0;
2327     }
2328   }
2329 }
2330 
2331 /*
2332 ** Remember the current column cache context.  Any new entries added
2333 ** added to the column cache after this call are removed when the
2334 ** corresponding pop occurs.
2335 */
2336 void sqlite3ExprCachePush(Parse *pParse){
2337   pParse->iCacheLevel++;
2338 #ifdef SQLITE_DEBUG
2339   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2340     printf("PUSH to %d\n", pParse->iCacheLevel);
2341   }
2342 #endif
2343 }
2344 
2345 /*
2346 ** Remove from the column cache any entries that were added since the
2347 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2348 ** the cache to the state it was in prior the most recent Push.
2349 */
2350 void sqlite3ExprCachePop(Parse *pParse){
2351   int i;
2352   struct yColCache *p;
2353   assert( pParse->iCacheLevel>=1 );
2354   pParse->iCacheLevel--;
2355 #ifdef SQLITE_DEBUG
2356   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2357     printf("POP  to %d\n", pParse->iCacheLevel);
2358   }
2359 #endif
2360   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2361     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2362       cacheEntryClear(pParse, p);
2363       p->iReg = 0;
2364     }
2365   }
2366 }
2367 
2368 /*
2369 ** When a cached column is reused, make sure that its register is
2370 ** no longer available as a temp register.  ticket #3879:  that same
2371 ** register might be in the cache in multiple places, so be sure to
2372 ** get them all.
2373 */
2374 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2375   int i;
2376   struct yColCache *p;
2377   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2378     if( p->iReg==iReg ){
2379       p->tempReg = 0;
2380     }
2381   }
2382 }
2383 
2384 /*
2385 ** Generate code to extract the value of the iCol-th column of a table.
2386 */
2387 void sqlite3ExprCodeGetColumnOfTable(
2388   Vdbe *v,        /* The VDBE under construction */
2389   Table *pTab,    /* The table containing the value */
2390   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2391   int iCol,       /* Index of the column to extract */
2392   int regOut      /* Extract the value into this register */
2393 ){
2394   if( iCol<0 || iCol==pTab->iPKey ){
2395     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2396   }else{
2397     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2398     int x = iCol;
2399     if( !HasRowid(pTab) ){
2400       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2401     }
2402     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2403   }
2404   if( iCol>=0 ){
2405     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2406   }
2407 }
2408 
2409 /*
2410 ** Generate code that will extract the iColumn-th column from
2411 ** table pTab and store the column value in a register.  An effort
2412 ** is made to store the column value in register iReg, but this is
2413 ** not guaranteed.  The location of the column value is returned.
2414 **
2415 ** There must be an open cursor to pTab in iTable when this routine
2416 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2417 */
2418 int sqlite3ExprCodeGetColumn(
2419   Parse *pParse,   /* Parsing and code generating context */
2420   Table *pTab,     /* Description of the table we are reading from */
2421   int iColumn,     /* Index of the table column */
2422   int iTable,      /* The cursor pointing to the table */
2423   int iReg,        /* Store results here */
2424   u8 p5            /* P5 value for OP_Column */
2425 ){
2426   Vdbe *v = pParse->pVdbe;
2427   int i;
2428   struct yColCache *p;
2429 
2430   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2431     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2432       p->lru = pParse->iCacheCnt++;
2433       sqlite3ExprCachePinRegister(pParse, p->iReg);
2434       return p->iReg;
2435     }
2436   }
2437   assert( v!=0 );
2438   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2439   if( p5 ){
2440     sqlite3VdbeChangeP5(v, p5);
2441   }else{
2442     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2443   }
2444   return iReg;
2445 }
2446 
2447 /*
2448 ** Clear all column cache entries.
2449 */
2450 void sqlite3ExprCacheClear(Parse *pParse){
2451   int i;
2452   struct yColCache *p;
2453 
2454 #if SQLITE_DEBUG
2455   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2456     printf("CLEAR\n");
2457   }
2458 #endif
2459   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2460     if( p->iReg ){
2461       cacheEntryClear(pParse, p);
2462       p->iReg = 0;
2463     }
2464   }
2465 }
2466 
2467 /*
2468 ** Record the fact that an affinity change has occurred on iCount
2469 ** registers starting with iStart.
2470 */
2471 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2472   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2473 }
2474 
2475 /*
2476 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2477 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2478 */
2479 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2480   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2481   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2482   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2483 }
2484 
2485 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2486 /*
2487 ** Return true if any register in the range iFrom..iTo (inclusive)
2488 ** is used as part of the column cache.
2489 **
2490 ** This routine is used within assert() and testcase() macros only
2491 ** and does not appear in a normal build.
2492 */
2493 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2494   int i;
2495   struct yColCache *p;
2496   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2497     int r = p->iReg;
2498     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2499   }
2500   return 0;
2501 }
2502 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2503 
2504 /*
2505 ** Convert an expression node to a TK_REGISTER
2506 */
2507 static void exprToRegister(Expr *p, int iReg){
2508   p->op2 = p->op;
2509   p->op = TK_REGISTER;
2510   p->iTable = iReg;
2511   ExprClearProperty(p, EP_Skip);
2512 }
2513 
2514 /*
2515 ** Generate code into the current Vdbe to evaluate the given
2516 ** expression.  Attempt to store the results in register "target".
2517 ** Return the register where results are stored.
2518 **
2519 ** With this routine, there is no guarantee that results will
2520 ** be stored in target.  The result might be stored in some other
2521 ** register if it is convenient to do so.  The calling function
2522 ** must check the return code and move the results to the desired
2523 ** register.
2524 */
2525 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2526   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2527   int op;                   /* The opcode being coded */
2528   int inReg = target;       /* Results stored in register inReg */
2529   int regFree1 = 0;         /* If non-zero free this temporary register */
2530   int regFree2 = 0;         /* If non-zero free this temporary register */
2531   int r1, r2, r3, r4;       /* Various register numbers */
2532   sqlite3 *db = pParse->db; /* The database connection */
2533   Expr tempX;               /* Temporary expression node */
2534 
2535   assert( target>0 && target<=pParse->nMem );
2536   if( v==0 ){
2537     assert( pParse->db->mallocFailed );
2538     return 0;
2539   }
2540 
2541   if( pExpr==0 ){
2542     op = TK_NULL;
2543   }else{
2544     op = pExpr->op;
2545   }
2546   switch( op ){
2547     case TK_AGG_COLUMN: {
2548       AggInfo *pAggInfo = pExpr->pAggInfo;
2549       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2550       if( !pAggInfo->directMode ){
2551         assert( pCol->iMem>0 );
2552         inReg = pCol->iMem;
2553         break;
2554       }else if( pAggInfo->useSortingIdx ){
2555         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2556                               pCol->iSorterColumn, target);
2557         break;
2558       }
2559       /* Otherwise, fall thru into the TK_COLUMN case */
2560     }
2561     case TK_COLUMN: {
2562       int iTab = pExpr->iTable;
2563       if( iTab<0 ){
2564         if( pParse->ckBase>0 ){
2565           /* Generating CHECK constraints or inserting into partial index */
2566           inReg = pExpr->iColumn + pParse->ckBase;
2567           break;
2568         }else{
2569           /* Deleting from a partial index */
2570           iTab = pParse->iPartIdxTab;
2571         }
2572       }
2573       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2574                                pExpr->iColumn, iTab, target,
2575                                pExpr->op2);
2576       break;
2577     }
2578     case TK_INTEGER: {
2579       codeInteger(pParse, pExpr, 0, target);
2580       break;
2581     }
2582 #ifndef SQLITE_OMIT_FLOATING_POINT
2583     case TK_FLOAT: {
2584       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2585       codeReal(v, pExpr->u.zToken, 0, target);
2586       break;
2587     }
2588 #endif
2589     case TK_STRING: {
2590       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2591       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2592       break;
2593     }
2594     case TK_NULL: {
2595       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2596       break;
2597     }
2598 #ifndef SQLITE_OMIT_BLOB_LITERAL
2599     case TK_BLOB: {
2600       int n;
2601       const char *z;
2602       char *zBlob;
2603       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2604       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2605       assert( pExpr->u.zToken[1]=='\'' );
2606       z = &pExpr->u.zToken[2];
2607       n = sqlite3Strlen30(z) - 1;
2608       assert( z[n]=='\'' );
2609       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2610       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2611       break;
2612     }
2613 #endif
2614     case TK_VARIABLE: {
2615       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2616       assert( pExpr->u.zToken!=0 );
2617       assert( pExpr->u.zToken[0]!=0 );
2618       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2619       if( pExpr->u.zToken[1]!=0 ){
2620         assert( pExpr->u.zToken[0]=='?'
2621              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2622         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2623       }
2624       break;
2625     }
2626     case TK_REGISTER: {
2627       inReg = pExpr->iTable;
2628       break;
2629     }
2630     case TK_AS: {
2631       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2632       break;
2633     }
2634 #ifndef SQLITE_OMIT_CAST
2635     case TK_CAST: {
2636       /* Expressions of the form:   CAST(pLeft AS token) */
2637       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2638       if( inReg!=target ){
2639         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2640         inReg = target;
2641       }
2642       sqlite3VdbeAddOp2(v, OP_Cast, target,
2643                         sqlite3AffinityType(pExpr->u.zToken, 0));
2644       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2645       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2646       break;
2647     }
2648 #endif /* SQLITE_OMIT_CAST */
2649     case TK_LT:
2650     case TK_LE:
2651     case TK_GT:
2652     case TK_GE:
2653     case TK_NE:
2654     case TK_EQ: {
2655       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2656       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2657       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2658                   r1, r2, inReg, SQLITE_STOREP2);
2659       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2660       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2661       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2662       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2663       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2664       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2665       testcase( regFree1==0 );
2666       testcase( regFree2==0 );
2667       break;
2668     }
2669     case TK_IS:
2670     case TK_ISNOT: {
2671       testcase( op==TK_IS );
2672       testcase( op==TK_ISNOT );
2673       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2674       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2675       op = (op==TK_IS) ? TK_EQ : TK_NE;
2676       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2677                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2678       VdbeCoverageIf(v, op==TK_EQ);
2679       VdbeCoverageIf(v, op==TK_NE);
2680       testcase( regFree1==0 );
2681       testcase( regFree2==0 );
2682       break;
2683     }
2684     case TK_AND:
2685     case TK_OR:
2686     case TK_PLUS:
2687     case TK_STAR:
2688     case TK_MINUS:
2689     case TK_REM:
2690     case TK_BITAND:
2691     case TK_BITOR:
2692     case TK_SLASH:
2693     case TK_LSHIFT:
2694     case TK_RSHIFT:
2695     case TK_CONCAT: {
2696       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2697       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2698       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2699       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2700       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2701       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2702       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2703       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2704       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2705       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2706       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2707       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2708       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2709       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2710       testcase( regFree1==0 );
2711       testcase( regFree2==0 );
2712       break;
2713     }
2714     case TK_UMINUS: {
2715       Expr *pLeft = pExpr->pLeft;
2716       assert( pLeft );
2717       if( pLeft->op==TK_INTEGER ){
2718         codeInteger(pParse, pLeft, 1, target);
2719 #ifndef SQLITE_OMIT_FLOATING_POINT
2720       }else if( pLeft->op==TK_FLOAT ){
2721         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2722         codeReal(v, pLeft->u.zToken, 1, target);
2723 #endif
2724       }else{
2725         tempX.op = TK_INTEGER;
2726         tempX.flags = EP_IntValue|EP_TokenOnly;
2727         tempX.u.iValue = 0;
2728         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2729         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2730         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2731         testcase( regFree2==0 );
2732       }
2733       inReg = target;
2734       break;
2735     }
2736     case TK_BITNOT:
2737     case TK_NOT: {
2738       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2739       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2740       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2741       testcase( regFree1==0 );
2742       inReg = target;
2743       sqlite3VdbeAddOp2(v, op, r1, inReg);
2744       break;
2745     }
2746     case TK_ISNULL:
2747     case TK_NOTNULL: {
2748       int addr;
2749       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2750       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2751       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2752       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2753       testcase( regFree1==0 );
2754       addr = sqlite3VdbeAddOp1(v, op, r1);
2755       VdbeCoverageIf(v, op==TK_ISNULL);
2756       VdbeCoverageIf(v, op==TK_NOTNULL);
2757       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2758       sqlite3VdbeJumpHere(v, addr);
2759       break;
2760     }
2761     case TK_AGG_FUNCTION: {
2762       AggInfo *pInfo = pExpr->pAggInfo;
2763       if( pInfo==0 ){
2764         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2765         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2766       }else{
2767         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2768       }
2769       break;
2770     }
2771     case TK_FUNCTION: {
2772       ExprList *pFarg;       /* List of function arguments */
2773       int nFarg;             /* Number of function arguments */
2774       FuncDef *pDef;         /* The function definition object */
2775       int nId;               /* Length of the function name in bytes */
2776       const char *zId;       /* The function name */
2777       u32 constMask = 0;     /* Mask of function arguments that are constant */
2778       int i;                 /* Loop counter */
2779       u8 enc = ENC(db);      /* The text encoding used by this database */
2780       CollSeq *pColl = 0;    /* A collating sequence */
2781 
2782       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2783       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2784         pFarg = 0;
2785       }else{
2786         pFarg = pExpr->x.pList;
2787       }
2788       nFarg = pFarg ? pFarg->nExpr : 0;
2789       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2790       zId = pExpr->u.zToken;
2791       nId = sqlite3Strlen30(zId);
2792       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2793       if( pDef==0 || pDef->xFunc==0 ){
2794         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2795         break;
2796       }
2797 
2798       /* Attempt a direct implementation of the built-in COALESCE() and
2799       ** IFNULL() functions.  This avoids unnecessary evaluation of
2800       ** arguments past the first non-NULL argument.
2801       */
2802       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2803         int endCoalesce = sqlite3VdbeMakeLabel(v);
2804         assert( nFarg>=2 );
2805         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2806         for(i=1; i<nFarg; i++){
2807           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2808           VdbeCoverage(v);
2809           sqlite3ExprCacheRemove(pParse, target, 1);
2810           sqlite3ExprCachePush(pParse);
2811           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2812           sqlite3ExprCachePop(pParse);
2813         }
2814         sqlite3VdbeResolveLabel(v, endCoalesce);
2815         break;
2816       }
2817 
2818       /* The UNLIKELY() function is a no-op.  The result is the value
2819       ** of the first argument.
2820       */
2821       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2822         assert( nFarg>=1 );
2823         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2824         break;
2825       }
2826 
2827       for(i=0; i<nFarg; i++){
2828         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2829           testcase( i==31 );
2830           constMask |= MASKBIT32(i);
2831         }
2832         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2833           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2834         }
2835       }
2836       if( pFarg ){
2837         if( constMask ){
2838           r1 = pParse->nMem+1;
2839           pParse->nMem += nFarg;
2840         }else{
2841           r1 = sqlite3GetTempRange(pParse, nFarg);
2842         }
2843 
2844         /* For length() and typeof() functions with a column argument,
2845         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2846         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2847         ** loading.
2848         */
2849         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2850           u8 exprOp;
2851           assert( nFarg==1 );
2852           assert( pFarg->a[0].pExpr!=0 );
2853           exprOp = pFarg->a[0].pExpr->op;
2854           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2855             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2856             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2857             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2858             pFarg->a[0].pExpr->op2 =
2859                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2860           }
2861         }
2862 
2863         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2864         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2865                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2866         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2867       }else{
2868         r1 = 0;
2869       }
2870 #ifndef SQLITE_OMIT_VIRTUALTABLE
2871       /* Possibly overload the function if the first argument is
2872       ** a virtual table column.
2873       **
2874       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2875       ** second argument, not the first, as the argument to test to
2876       ** see if it is a column in a virtual table.  This is done because
2877       ** the left operand of infix functions (the operand we want to
2878       ** control overloading) ends up as the second argument to the
2879       ** function.  The expression "A glob B" is equivalent to
2880       ** "glob(B,A).  We want to use the A in "A glob B" to test
2881       ** for function overloading.  But we use the B term in "glob(B,A)".
2882       */
2883       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2884         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2885       }else if( nFarg>0 ){
2886         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2887       }
2888 #endif
2889       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2890         if( !pColl ) pColl = db->pDfltColl;
2891         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2892       }
2893       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2894                         (char*)pDef, P4_FUNCDEF);
2895       sqlite3VdbeChangeP5(v, (u8)nFarg);
2896       if( nFarg && constMask==0 ){
2897         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2898       }
2899       break;
2900     }
2901 #ifndef SQLITE_OMIT_SUBQUERY
2902     case TK_EXISTS:
2903     case TK_SELECT: {
2904       testcase( op==TK_EXISTS );
2905       testcase( op==TK_SELECT );
2906       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2907       break;
2908     }
2909     case TK_IN: {
2910       int destIfFalse = sqlite3VdbeMakeLabel(v);
2911       int destIfNull = sqlite3VdbeMakeLabel(v);
2912       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2913       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2914       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2915       sqlite3VdbeResolveLabel(v, destIfFalse);
2916       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2917       sqlite3VdbeResolveLabel(v, destIfNull);
2918       break;
2919     }
2920 #endif /* SQLITE_OMIT_SUBQUERY */
2921 
2922 
2923     /*
2924     **    x BETWEEN y AND z
2925     **
2926     ** This is equivalent to
2927     **
2928     **    x>=y AND x<=z
2929     **
2930     ** X is stored in pExpr->pLeft.
2931     ** Y is stored in pExpr->pList->a[0].pExpr.
2932     ** Z is stored in pExpr->pList->a[1].pExpr.
2933     */
2934     case TK_BETWEEN: {
2935       Expr *pLeft = pExpr->pLeft;
2936       struct ExprList_item *pLItem = pExpr->x.pList->a;
2937       Expr *pRight = pLItem->pExpr;
2938 
2939       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2940       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2941       testcase( regFree1==0 );
2942       testcase( regFree2==0 );
2943       r3 = sqlite3GetTempReg(pParse);
2944       r4 = sqlite3GetTempReg(pParse);
2945       codeCompare(pParse, pLeft, pRight, OP_Ge,
2946                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2947       pLItem++;
2948       pRight = pLItem->pExpr;
2949       sqlite3ReleaseTempReg(pParse, regFree2);
2950       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2951       testcase( regFree2==0 );
2952       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2953       VdbeCoverage(v);
2954       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2955       sqlite3ReleaseTempReg(pParse, r3);
2956       sqlite3ReleaseTempReg(pParse, r4);
2957       break;
2958     }
2959     case TK_COLLATE:
2960     case TK_UPLUS: {
2961       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2962       break;
2963     }
2964 
2965     case TK_TRIGGER: {
2966       /* If the opcode is TK_TRIGGER, then the expression is a reference
2967       ** to a column in the new.* or old.* pseudo-tables available to
2968       ** trigger programs. In this case Expr.iTable is set to 1 for the
2969       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2970       ** is set to the column of the pseudo-table to read, or to -1 to
2971       ** read the rowid field.
2972       **
2973       ** The expression is implemented using an OP_Param opcode. The p1
2974       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2975       ** to reference another column of the old.* pseudo-table, where
2976       ** i is the index of the column. For a new.rowid reference, p1 is
2977       ** set to (n+1), where n is the number of columns in each pseudo-table.
2978       ** For a reference to any other column in the new.* pseudo-table, p1
2979       ** is set to (n+2+i), where n and i are as defined previously. For
2980       ** example, if the table on which triggers are being fired is
2981       ** declared as:
2982       **
2983       **   CREATE TABLE t1(a, b);
2984       **
2985       ** Then p1 is interpreted as follows:
2986       **
2987       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2988       **   p1==1   ->    old.a         p1==4   ->    new.a
2989       **   p1==2   ->    old.b         p1==5   ->    new.b
2990       */
2991       Table *pTab = pExpr->pTab;
2992       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2993 
2994       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2995       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2996       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2997       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2998 
2999       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3000       VdbeComment((v, "%s.%s -> $%d",
3001         (pExpr->iTable ? "new" : "old"),
3002         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3003         target
3004       ));
3005 
3006 #ifndef SQLITE_OMIT_FLOATING_POINT
3007       /* If the column has REAL affinity, it may currently be stored as an
3008       ** integer. Use OP_RealAffinity to make sure it is really real.
3009       **
3010       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3011       ** floating point when extracting it from the record.  */
3012       if( pExpr->iColumn>=0
3013        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3014       ){
3015         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3016       }
3017 #endif
3018       break;
3019     }
3020 
3021 
3022     /*
3023     ** Form A:
3024     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3025     **
3026     ** Form B:
3027     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3028     **
3029     ** Form A is can be transformed into the equivalent form B as follows:
3030     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3031     **        WHEN x=eN THEN rN ELSE y END
3032     **
3033     ** X (if it exists) is in pExpr->pLeft.
3034     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3035     ** odd.  The Y is also optional.  If the number of elements in x.pList
3036     ** is even, then Y is omitted and the "otherwise" result is NULL.
3037     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3038     **
3039     ** The result of the expression is the Ri for the first matching Ei,
3040     ** or if there is no matching Ei, the ELSE term Y, or if there is
3041     ** no ELSE term, NULL.
3042     */
3043     default: assert( op==TK_CASE ); {
3044       int endLabel;                     /* GOTO label for end of CASE stmt */
3045       int nextCase;                     /* GOTO label for next WHEN clause */
3046       int nExpr;                        /* 2x number of WHEN terms */
3047       int i;                            /* Loop counter */
3048       ExprList *pEList;                 /* List of WHEN terms */
3049       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3050       Expr opCompare;                   /* The X==Ei expression */
3051       Expr *pX;                         /* The X expression */
3052       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3053       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3054 
3055       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3056       assert(pExpr->x.pList->nExpr > 0);
3057       pEList = pExpr->x.pList;
3058       aListelem = pEList->a;
3059       nExpr = pEList->nExpr;
3060       endLabel = sqlite3VdbeMakeLabel(v);
3061       if( (pX = pExpr->pLeft)!=0 ){
3062         tempX = *pX;
3063         testcase( pX->op==TK_COLUMN );
3064         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3065         testcase( regFree1==0 );
3066         opCompare.op = TK_EQ;
3067         opCompare.pLeft = &tempX;
3068         pTest = &opCompare;
3069         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3070         ** The value in regFree1 might get SCopy-ed into the file result.
3071         ** So make sure that the regFree1 register is not reused for other
3072         ** purposes and possibly overwritten.  */
3073         regFree1 = 0;
3074       }
3075       for(i=0; i<nExpr-1; i=i+2){
3076         sqlite3ExprCachePush(pParse);
3077         if( pX ){
3078           assert( pTest!=0 );
3079           opCompare.pRight = aListelem[i].pExpr;
3080         }else{
3081           pTest = aListelem[i].pExpr;
3082         }
3083         nextCase = sqlite3VdbeMakeLabel(v);
3084         testcase( pTest->op==TK_COLUMN );
3085         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3086         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3087         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3088         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3089         sqlite3ExprCachePop(pParse);
3090         sqlite3VdbeResolveLabel(v, nextCase);
3091       }
3092       if( (nExpr&1)!=0 ){
3093         sqlite3ExprCachePush(pParse);
3094         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3095         sqlite3ExprCachePop(pParse);
3096       }else{
3097         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3098       }
3099       assert( db->mallocFailed || pParse->nErr>0
3100            || pParse->iCacheLevel==iCacheLevel );
3101       sqlite3VdbeResolveLabel(v, endLabel);
3102       break;
3103     }
3104 #ifndef SQLITE_OMIT_TRIGGER
3105     case TK_RAISE: {
3106       assert( pExpr->affinity==OE_Rollback
3107            || pExpr->affinity==OE_Abort
3108            || pExpr->affinity==OE_Fail
3109            || pExpr->affinity==OE_Ignore
3110       );
3111       if( !pParse->pTriggerTab ){
3112         sqlite3ErrorMsg(pParse,
3113                        "RAISE() may only be used within a trigger-program");
3114         return 0;
3115       }
3116       if( pExpr->affinity==OE_Abort ){
3117         sqlite3MayAbort(pParse);
3118       }
3119       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3120       if( pExpr->affinity==OE_Ignore ){
3121         sqlite3VdbeAddOp4(
3122             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3123         VdbeCoverage(v);
3124       }else{
3125         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3126                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3127       }
3128 
3129       break;
3130     }
3131 #endif
3132   }
3133   sqlite3ReleaseTempReg(pParse, regFree1);
3134   sqlite3ReleaseTempReg(pParse, regFree2);
3135   return inReg;
3136 }
3137 
3138 /*
3139 ** Factor out the code of the given expression to initialization time.
3140 */
3141 void sqlite3ExprCodeAtInit(
3142   Parse *pParse,    /* Parsing context */
3143   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3144   int regDest,      /* Store the value in this register */
3145   u8 reusable       /* True if this expression is reusable */
3146 ){
3147   ExprList *p;
3148   assert( ConstFactorOk(pParse) );
3149   p = pParse->pConstExpr;
3150   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3151   p = sqlite3ExprListAppend(pParse, p, pExpr);
3152   if( p ){
3153      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3154      pItem->u.iConstExprReg = regDest;
3155      pItem->reusable = reusable;
3156   }
3157   pParse->pConstExpr = p;
3158 }
3159 
3160 /*
3161 ** Generate code to evaluate an expression and store the results
3162 ** into a register.  Return the register number where the results
3163 ** are stored.
3164 **
3165 ** If the register is a temporary register that can be deallocated,
3166 ** then write its number into *pReg.  If the result register is not
3167 ** a temporary, then set *pReg to zero.
3168 **
3169 ** If pExpr is a constant, then this routine might generate this
3170 ** code to fill the register in the initialization section of the
3171 ** VDBE program, in order to factor it out of the evaluation loop.
3172 */
3173 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3174   int r2;
3175   pExpr = sqlite3ExprSkipCollate(pExpr);
3176   if( ConstFactorOk(pParse)
3177    && pExpr->op!=TK_REGISTER
3178    && sqlite3ExprIsConstantNotJoin(pExpr)
3179   ){
3180     ExprList *p = pParse->pConstExpr;
3181     int i;
3182     *pReg  = 0;
3183     if( p ){
3184       struct ExprList_item *pItem;
3185       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3186         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3187           return pItem->u.iConstExprReg;
3188         }
3189       }
3190     }
3191     r2 = ++pParse->nMem;
3192     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3193   }else{
3194     int r1 = sqlite3GetTempReg(pParse);
3195     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3196     if( r2==r1 ){
3197       *pReg = r1;
3198     }else{
3199       sqlite3ReleaseTempReg(pParse, r1);
3200       *pReg = 0;
3201     }
3202   }
3203   return r2;
3204 }
3205 
3206 /*
3207 ** Generate code that will evaluate expression pExpr and store the
3208 ** results in register target.  The results are guaranteed to appear
3209 ** in register target.
3210 */
3211 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3212   int inReg;
3213 
3214   assert( target>0 && target<=pParse->nMem );
3215   if( pExpr && pExpr->op==TK_REGISTER ){
3216     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3217   }else{
3218     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3219     assert( pParse->pVdbe || pParse->db->mallocFailed );
3220     if( inReg!=target && pParse->pVdbe ){
3221       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3222     }
3223   }
3224 }
3225 
3226 /*
3227 ** Generate code that will evaluate expression pExpr and store the
3228 ** results in register target.  The results are guaranteed to appear
3229 ** in register target.  If the expression is constant, then this routine
3230 ** might choose to code the expression at initialization time.
3231 */
3232 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3233   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3234     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3235   }else{
3236     sqlite3ExprCode(pParse, pExpr, target);
3237   }
3238 }
3239 
3240 /*
3241 ** Generate code that evaluates the given expression and puts the result
3242 ** in register target.
3243 **
3244 ** Also make a copy of the expression results into another "cache" register
3245 ** and modify the expression so that the next time it is evaluated,
3246 ** the result is a copy of the cache register.
3247 **
3248 ** This routine is used for expressions that are used multiple
3249 ** times.  They are evaluated once and the results of the expression
3250 ** are reused.
3251 */
3252 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3253   Vdbe *v = pParse->pVdbe;
3254   int iMem;
3255 
3256   assert( target>0 );
3257   assert( pExpr->op!=TK_REGISTER );
3258   sqlite3ExprCode(pParse, pExpr, target);
3259   iMem = ++pParse->nMem;
3260   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3261   exprToRegister(pExpr, iMem);
3262 }
3263 
3264 #ifdef SQLITE_DEBUG
3265 /*
3266 ** Generate a human-readable explanation of an expression tree.
3267 */
3268 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
3269   const char *zBinOp = 0;   /* Binary operator */
3270   const char *zUniOp = 0;   /* Unary operator */
3271   pView = sqlite3TreeViewPush(pView, moreToFollow);
3272   if( pExpr==0 ){
3273     sqlite3TreeViewLine(pView, "nil");
3274     sqlite3TreeViewPop(pView);
3275     return;
3276   }
3277   switch( pExpr->op ){
3278     case TK_AGG_COLUMN: {
3279       sqlite3TreeViewLine(pView, "AGG{%d:%d}",
3280             pExpr->iTable, pExpr->iColumn);
3281       break;
3282     }
3283     case TK_COLUMN: {
3284       if( pExpr->iTable<0 ){
3285         /* This only happens when coding check constraints */
3286         sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
3287       }else{
3288         sqlite3TreeViewLine(pView, "{%d:%d}",
3289                              pExpr->iTable, pExpr->iColumn);
3290       }
3291       break;
3292     }
3293     case TK_INTEGER: {
3294       if( pExpr->flags & EP_IntValue ){
3295         sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
3296       }else{
3297         sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
3298       }
3299       break;
3300     }
3301 #ifndef SQLITE_OMIT_FLOATING_POINT
3302     case TK_FLOAT: {
3303       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3304       break;
3305     }
3306 #endif
3307     case TK_STRING: {
3308       sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
3309       break;
3310     }
3311     case TK_NULL: {
3312       sqlite3TreeViewLine(pView,"NULL");
3313       break;
3314     }
3315 #ifndef SQLITE_OMIT_BLOB_LITERAL
3316     case TK_BLOB: {
3317       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3318       break;
3319     }
3320 #endif
3321     case TK_VARIABLE: {
3322       sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
3323                           pExpr->u.zToken, pExpr->iColumn);
3324       break;
3325     }
3326     case TK_REGISTER: {
3327       sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
3328       break;
3329     }
3330     case TK_AS: {
3331       sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
3332       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3333       break;
3334     }
3335     case TK_ID: {
3336       sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
3337       break;
3338     }
3339 #ifndef SQLITE_OMIT_CAST
3340     case TK_CAST: {
3341       /* Expressions of the form:   CAST(pLeft AS token) */
3342       sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
3343       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3344       break;
3345     }
3346 #endif /* SQLITE_OMIT_CAST */
3347     case TK_LT:      zBinOp = "LT";     break;
3348     case TK_LE:      zBinOp = "LE";     break;
3349     case TK_GT:      zBinOp = "GT";     break;
3350     case TK_GE:      zBinOp = "GE";     break;
3351     case TK_NE:      zBinOp = "NE";     break;
3352     case TK_EQ:      zBinOp = "EQ";     break;
3353     case TK_IS:      zBinOp = "IS";     break;
3354     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3355     case TK_AND:     zBinOp = "AND";    break;
3356     case TK_OR:      zBinOp = "OR";     break;
3357     case TK_PLUS:    zBinOp = "ADD";    break;
3358     case TK_STAR:    zBinOp = "MUL";    break;
3359     case TK_MINUS:   zBinOp = "SUB";    break;
3360     case TK_REM:     zBinOp = "REM";    break;
3361     case TK_BITAND:  zBinOp = "BITAND"; break;
3362     case TK_BITOR:   zBinOp = "BITOR";  break;
3363     case TK_SLASH:   zBinOp = "DIV";    break;
3364     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3365     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3366     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3367     case TK_DOT:     zBinOp = "DOT";    break;
3368 
3369     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3370     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3371     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3372     case TK_NOT:     zUniOp = "NOT";    break;
3373     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3374     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3375 
3376     case TK_COLLATE: {
3377       sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
3378       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3379       break;
3380     }
3381 
3382     case TK_AGG_FUNCTION:
3383     case TK_FUNCTION: {
3384       ExprList *pFarg;       /* List of function arguments */
3385       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3386         pFarg = 0;
3387       }else{
3388         pFarg = pExpr->x.pList;
3389       }
3390       if( pExpr->op==TK_AGG_FUNCTION ){
3391         sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
3392                              pExpr->op2, pExpr->u.zToken);
3393       }else{
3394         sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
3395       }
3396       if( pFarg ){
3397         sqlite3TreeViewExprList(pView, pFarg, 0, 0);
3398       }
3399       break;
3400     }
3401 #ifndef SQLITE_OMIT_SUBQUERY
3402     case TK_EXISTS: {
3403       sqlite3TreeViewLine(pView, "EXISTS-expr");
3404       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3405       break;
3406     }
3407     case TK_SELECT: {
3408       sqlite3TreeViewLine(pView, "SELECT-expr");
3409       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3410       break;
3411     }
3412     case TK_IN: {
3413       sqlite3TreeViewLine(pView, "IN");
3414       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3415       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3416         sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3417       }else{
3418         sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3419       }
3420       break;
3421     }
3422 #endif /* SQLITE_OMIT_SUBQUERY */
3423 
3424     /*
3425     **    x BETWEEN y AND z
3426     **
3427     ** This is equivalent to
3428     **
3429     **    x>=y AND x<=z
3430     **
3431     ** X is stored in pExpr->pLeft.
3432     ** Y is stored in pExpr->pList->a[0].pExpr.
3433     ** Z is stored in pExpr->pList->a[1].pExpr.
3434     */
3435     case TK_BETWEEN: {
3436       Expr *pX = pExpr->pLeft;
3437       Expr *pY = pExpr->x.pList->a[0].pExpr;
3438       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3439       sqlite3TreeViewLine(pView, "BETWEEN");
3440       sqlite3TreeViewExpr(pView, pX, 1);
3441       sqlite3TreeViewExpr(pView, pY, 1);
3442       sqlite3TreeViewExpr(pView, pZ, 0);
3443       break;
3444     }
3445     case TK_TRIGGER: {
3446       /* If the opcode is TK_TRIGGER, then the expression is a reference
3447       ** to a column in the new.* or old.* pseudo-tables available to
3448       ** trigger programs. In this case Expr.iTable is set to 1 for the
3449       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3450       ** is set to the column of the pseudo-table to read, or to -1 to
3451       ** read the rowid field.
3452       */
3453       sqlite3TreeViewLine(pView, "%s(%d)",
3454           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3455       break;
3456     }
3457     case TK_CASE: {
3458       sqlite3TreeViewLine(pView, "CASE");
3459       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3460       sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3461       break;
3462     }
3463 #ifndef SQLITE_OMIT_TRIGGER
3464     case TK_RAISE: {
3465       const char *zType = "unk";
3466       switch( pExpr->affinity ){
3467         case OE_Rollback:   zType = "rollback";  break;
3468         case OE_Abort:      zType = "abort";     break;
3469         case OE_Fail:       zType = "fail";      break;
3470         case OE_Ignore:     zType = "ignore";    break;
3471       }
3472       sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
3473       break;
3474     }
3475 #endif
3476     default: {
3477       sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
3478       break;
3479     }
3480   }
3481   if( zBinOp ){
3482     sqlite3TreeViewLine(pView, "%s", zBinOp);
3483     sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3484     sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
3485   }else if( zUniOp ){
3486     sqlite3TreeViewLine(pView, "%s", zUniOp);
3487     sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3488   }
3489   sqlite3TreeViewPop(pView);
3490 }
3491 #endif /* SQLITE_DEBUG */
3492 
3493 #ifdef SQLITE_DEBUG
3494 /*
3495 ** Generate a human-readable explanation of an expression list.
3496 */
3497 void sqlite3TreeViewExprList(
3498   TreeView *pView,
3499   const ExprList *pList,
3500   u8 moreToFollow,
3501   const char *zLabel
3502 ){
3503   int i;
3504   pView = sqlite3TreeViewPush(pView, moreToFollow);
3505   if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
3506   if( pList==0 ){
3507     sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
3508   }else{
3509     sqlite3TreeViewLine(pView, "%s", zLabel);
3510     for(i=0; i<pList->nExpr; i++){
3511       sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
3512 #if 0
3513      if( pList->a[i].zName ){
3514         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3515       }
3516       if( pList->a[i].bSpanIsTab ){
3517         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3518       }
3519 #endif
3520     }
3521   }
3522   sqlite3TreeViewPop(pView);
3523 }
3524 #endif /* SQLITE_DEBUG */
3525 
3526 /*
3527 ** Generate code that pushes the value of every element of the given
3528 ** expression list into a sequence of registers beginning at target.
3529 **
3530 ** Return the number of elements evaluated.
3531 **
3532 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3533 ** filled using OP_SCopy.  OP_Copy must be used instead.
3534 **
3535 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3536 ** factored out into initialization code.
3537 */
3538 int sqlite3ExprCodeExprList(
3539   Parse *pParse,     /* Parsing context */
3540   ExprList *pList,   /* The expression list to be coded */
3541   int target,        /* Where to write results */
3542   u8 flags           /* SQLITE_ECEL_* flags */
3543 ){
3544   struct ExprList_item *pItem;
3545   int i, n;
3546   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3547   assert( pList!=0 );
3548   assert( target>0 );
3549   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3550   n = pList->nExpr;
3551   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3552   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3553     Expr *pExpr = pItem->pExpr;
3554     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3555       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3556     }else{
3557       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3558       if( inReg!=target+i ){
3559         VdbeOp *pOp;
3560         Vdbe *v = pParse->pVdbe;
3561         if( copyOp==OP_Copy
3562          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3563          && pOp->p1+pOp->p3+1==inReg
3564          && pOp->p2+pOp->p3+1==target+i
3565         ){
3566           pOp->p3++;
3567         }else{
3568           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3569         }
3570       }
3571     }
3572   }
3573   return n;
3574 }
3575 
3576 /*
3577 ** Generate code for a BETWEEN operator.
3578 **
3579 **    x BETWEEN y AND z
3580 **
3581 ** The above is equivalent to
3582 **
3583 **    x>=y AND x<=z
3584 **
3585 ** Code it as such, taking care to do the common subexpression
3586 ** elimination of x.
3587 */
3588 static void exprCodeBetween(
3589   Parse *pParse,    /* Parsing and code generating context */
3590   Expr *pExpr,      /* The BETWEEN expression */
3591   int dest,         /* Jump here if the jump is taken */
3592   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3593   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3594 ){
3595   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3596   Expr compLeft;    /* The  x>=y  term */
3597   Expr compRight;   /* The  x<=z  term */
3598   Expr exprX;       /* The  x  subexpression */
3599   int regFree1 = 0; /* Temporary use register */
3600 
3601   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3602   exprX = *pExpr->pLeft;
3603   exprAnd.op = TK_AND;
3604   exprAnd.pLeft = &compLeft;
3605   exprAnd.pRight = &compRight;
3606   compLeft.op = TK_GE;
3607   compLeft.pLeft = &exprX;
3608   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3609   compRight.op = TK_LE;
3610   compRight.pLeft = &exprX;
3611   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3612   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3613   if( jumpIfTrue ){
3614     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3615   }else{
3616     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3617   }
3618   sqlite3ReleaseTempReg(pParse, regFree1);
3619 
3620   /* Ensure adequate test coverage */
3621   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3622   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3623   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3624   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3625   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3626   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3627   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3628   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3629 }
3630 
3631 /*
3632 ** Generate code for a boolean expression such that a jump is made
3633 ** to the label "dest" if the expression is true but execution
3634 ** continues straight thru if the expression is false.
3635 **
3636 ** If the expression evaluates to NULL (neither true nor false), then
3637 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3638 **
3639 ** This code depends on the fact that certain token values (ex: TK_EQ)
3640 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3641 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3642 ** the make process cause these values to align.  Assert()s in the code
3643 ** below verify that the numbers are aligned correctly.
3644 */
3645 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3646   Vdbe *v = pParse->pVdbe;
3647   int op = 0;
3648   int regFree1 = 0;
3649   int regFree2 = 0;
3650   int r1, r2;
3651 
3652   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3653   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3654   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3655   op = pExpr->op;
3656   switch( op ){
3657     case TK_AND: {
3658       int d2 = sqlite3VdbeMakeLabel(v);
3659       testcase( jumpIfNull==0 );
3660       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3661       sqlite3ExprCachePush(pParse);
3662       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3663       sqlite3VdbeResolveLabel(v, d2);
3664       sqlite3ExprCachePop(pParse);
3665       break;
3666     }
3667     case TK_OR: {
3668       testcase( jumpIfNull==0 );
3669       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3670       sqlite3ExprCachePush(pParse);
3671       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3672       sqlite3ExprCachePop(pParse);
3673       break;
3674     }
3675     case TK_NOT: {
3676       testcase( jumpIfNull==0 );
3677       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3678       break;
3679     }
3680     case TK_LT:
3681     case TK_LE:
3682     case TK_GT:
3683     case TK_GE:
3684     case TK_NE:
3685     case TK_EQ: {
3686       testcase( jumpIfNull==0 );
3687       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3688       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3689       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3690                   r1, r2, dest, jumpIfNull);
3691       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3692       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3693       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3694       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3695       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3696       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3697       testcase( regFree1==0 );
3698       testcase( regFree2==0 );
3699       break;
3700     }
3701     case TK_IS:
3702     case TK_ISNOT: {
3703       testcase( op==TK_IS );
3704       testcase( op==TK_ISNOT );
3705       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3706       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3707       op = (op==TK_IS) ? TK_EQ : TK_NE;
3708       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3709                   r1, r2, dest, SQLITE_NULLEQ);
3710       VdbeCoverageIf(v, op==TK_EQ);
3711       VdbeCoverageIf(v, op==TK_NE);
3712       testcase( regFree1==0 );
3713       testcase( regFree2==0 );
3714       break;
3715     }
3716     case TK_ISNULL:
3717     case TK_NOTNULL: {
3718       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3719       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3720       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3721       sqlite3VdbeAddOp2(v, op, r1, dest);
3722       VdbeCoverageIf(v, op==TK_ISNULL);
3723       VdbeCoverageIf(v, op==TK_NOTNULL);
3724       testcase( regFree1==0 );
3725       break;
3726     }
3727     case TK_BETWEEN: {
3728       testcase( jumpIfNull==0 );
3729       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3730       break;
3731     }
3732 #ifndef SQLITE_OMIT_SUBQUERY
3733     case TK_IN: {
3734       int destIfFalse = sqlite3VdbeMakeLabel(v);
3735       int destIfNull = jumpIfNull ? dest : destIfFalse;
3736       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3737       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3738       sqlite3VdbeResolveLabel(v, destIfFalse);
3739       break;
3740     }
3741 #endif
3742     default: {
3743       if( exprAlwaysTrue(pExpr) ){
3744         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3745       }else if( exprAlwaysFalse(pExpr) ){
3746         /* No-op */
3747       }else{
3748         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3749         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3750         VdbeCoverage(v);
3751         testcase( regFree1==0 );
3752         testcase( jumpIfNull==0 );
3753       }
3754       break;
3755     }
3756   }
3757   sqlite3ReleaseTempReg(pParse, regFree1);
3758   sqlite3ReleaseTempReg(pParse, regFree2);
3759 }
3760 
3761 /*
3762 ** Generate code for a boolean expression such that a jump is made
3763 ** to the label "dest" if the expression is false but execution
3764 ** continues straight thru if the expression is true.
3765 **
3766 ** If the expression evaluates to NULL (neither true nor false) then
3767 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3768 ** is 0.
3769 */
3770 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3771   Vdbe *v = pParse->pVdbe;
3772   int op = 0;
3773   int regFree1 = 0;
3774   int regFree2 = 0;
3775   int r1, r2;
3776 
3777   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3778   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3779   if( pExpr==0 )    return;
3780 
3781   /* The value of pExpr->op and op are related as follows:
3782   **
3783   **       pExpr->op            op
3784   **       ---------          ----------
3785   **       TK_ISNULL          OP_NotNull
3786   **       TK_NOTNULL         OP_IsNull
3787   **       TK_NE              OP_Eq
3788   **       TK_EQ              OP_Ne
3789   **       TK_GT              OP_Le
3790   **       TK_LE              OP_Gt
3791   **       TK_GE              OP_Lt
3792   **       TK_LT              OP_Ge
3793   **
3794   ** For other values of pExpr->op, op is undefined and unused.
3795   ** The value of TK_ and OP_ constants are arranged such that we
3796   ** can compute the mapping above using the following expression.
3797   ** Assert()s verify that the computation is correct.
3798   */
3799   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3800 
3801   /* Verify correct alignment of TK_ and OP_ constants
3802   */
3803   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3804   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3805   assert( pExpr->op!=TK_NE || op==OP_Eq );
3806   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3807   assert( pExpr->op!=TK_LT || op==OP_Ge );
3808   assert( pExpr->op!=TK_LE || op==OP_Gt );
3809   assert( pExpr->op!=TK_GT || op==OP_Le );
3810   assert( pExpr->op!=TK_GE || op==OP_Lt );
3811 
3812   switch( pExpr->op ){
3813     case TK_AND: {
3814       testcase( jumpIfNull==0 );
3815       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3816       sqlite3ExprCachePush(pParse);
3817       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3818       sqlite3ExprCachePop(pParse);
3819       break;
3820     }
3821     case TK_OR: {
3822       int d2 = sqlite3VdbeMakeLabel(v);
3823       testcase( jumpIfNull==0 );
3824       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3825       sqlite3ExprCachePush(pParse);
3826       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3827       sqlite3VdbeResolveLabel(v, d2);
3828       sqlite3ExprCachePop(pParse);
3829       break;
3830     }
3831     case TK_NOT: {
3832       testcase( jumpIfNull==0 );
3833       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3834       break;
3835     }
3836     case TK_LT:
3837     case TK_LE:
3838     case TK_GT:
3839     case TK_GE:
3840     case TK_NE:
3841     case TK_EQ: {
3842       testcase( jumpIfNull==0 );
3843       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3844       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3845       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3846                   r1, r2, dest, jumpIfNull);
3847       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3848       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3849       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3850       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3851       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3852       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3853       testcase( regFree1==0 );
3854       testcase( regFree2==0 );
3855       break;
3856     }
3857     case TK_IS:
3858     case TK_ISNOT: {
3859       testcase( pExpr->op==TK_IS );
3860       testcase( pExpr->op==TK_ISNOT );
3861       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3862       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3863       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3864       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3865                   r1, r2, dest, SQLITE_NULLEQ);
3866       VdbeCoverageIf(v, op==TK_EQ);
3867       VdbeCoverageIf(v, op==TK_NE);
3868       testcase( regFree1==0 );
3869       testcase( regFree2==0 );
3870       break;
3871     }
3872     case TK_ISNULL:
3873     case TK_NOTNULL: {
3874       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3875       sqlite3VdbeAddOp2(v, op, r1, dest);
3876       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3877       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3878       testcase( regFree1==0 );
3879       break;
3880     }
3881     case TK_BETWEEN: {
3882       testcase( jumpIfNull==0 );
3883       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3884       break;
3885     }
3886 #ifndef SQLITE_OMIT_SUBQUERY
3887     case TK_IN: {
3888       if( jumpIfNull ){
3889         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3890       }else{
3891         int destIfNull = sqlite3VdbeMakeLabel(v);
3892         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3893         sqlite3VdbeResolveLabel(v, destIfNull);
3894       }
3895       break;
3896     }
3897 #endif
3898     default: {
3899       if( exprAlwaysFalse(pExpr) ){
3900         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3901       }else if( exprAlwaysTrue(pExpr) ){
3902         /* no-op */
3903       }else{
3904         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3905         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3906         VdbeCoverage(v);
3907         testcase( regFree1==0 );
3908         testcase( jumpIfNull==0 );
3909       }
3910       break;
3911     }
3912   }
3913   sqlite3ReleaseTempReg(pParse, regFree1);
3914   sqlite3ReleaseTempReg(pParse, regFree2);
3915 }
3916 
3917 /*
3918 ** Do a deep comparison of two expression trees.  Return 0 if the two
3919 ** expressions are completely identical.  Return 1 if they differ only
3920 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3921 ** other than the top-level COLLATE operator.
3922 **
3923 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3924 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3925 **
3926 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3927 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3928 **
3929 ** Sometimes this routine will return 2 even if the two expressions
3930 ** really are equivalent.  If we cannot prove that the expressions are
3931 ** identical, we return 2 just to be safe.  So if this routine
3932 ** returns 2, then you do not really know for certain if the two
3933 ** expressions are the same.  But if you get a 0 or 1 return, then you
3934 ** can be sure the expressions are the same.  In the places where
3935 ** this routine is used, it does not hurt to get an extra 2 - that
3936 ** just might result in some slightly slower code.  But returning
3937 ** an incorrect 0 or 1 could lead to a malfunction.
3938 */
3939 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3940   u32 combinedFlags;
3941   if( pA==0 || pB==0 ){
3942     return pB==pA ? 0 : 2;
3943   }
3944   combinedFlags = pA->flags | pB->flags;
3945   if( combinedFlags & EP_IntValue ){
3946     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3947       return 0;
3948     }
3949     return 2;
3950   }
3951   if( pA->op!=pB->op ){
3952     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3953       return 1;
3954     }
3955     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3956       return 1;
3957     }
3958     return 2;
3959   }
3960   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3961     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3962       return pA->op==TK_COLLATE ? 1 : 2;
3963     }
3964   }
3965   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3966   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3967     if( combinedFlags & EP_xIsSelect ) return 2;
3968     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3969     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3970     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3971     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3972       if( pA->iColumn!=pB->iColumn ) return 2;
3973       if( pA->iTable!=pB->iTable
3974        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3975     }
3976   }
3977   return 0;
3978 }
3979 
3980 /*
3981 ** Compare two ExprList objects.  Return 0 if they are identical and
3982 ** non-zero if they differ in any way.
3983 **
3984 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3985 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3986 **
3987 ** This routine might return non-zero for equivalent ExprLists.  The
3988 ** only consequence will be disabled optimizations.  But this routine
3989 ** must never return 0 if the two ExprList objects are different, or
3990 ** a malfunction will result.
3991 **
3992 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3993 ** always differs from a non-NULL pointer.
3994 */
3995 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3996   int i;
3997   if( pA==0 && pB==0 ) return 0;
3998   if( pA==0 || pB==0 ) return 1;
3999   if( pA->nExpr!=pB->nExpr ) return 1;
4000   for(i=0; i<pA->nExpr; i++){
4001     Expr *pExprA = pA->a[i].pExpr;
4002     Expr *pExprB = pB->a[i].pExpr;
4003     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4004     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4005   }
4006   return 0;
4007 }
4008 
4009 /*
4010 ** Return true if we can prove the pE2 will always be true if pE1 is
4011 ** true.  Return false if we cannot complete the proof or if pE2 might
4012 ** be false.  Examples:
4013 **
4014 **     pE1: x==5       pE2: x==5             Result: true
4015 **     pE1: x>0        pE2: x==5             Result: false
4016 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4017 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4018 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4019 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4020 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4021 **
4022 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4023 ** Expr.iTable<0 then assume a table number given by iTab.
4024 **
4025 ** When in doubt, return false.  Returning true might give a performance
4026 ** improvement.  Returning false might cause a performance reduction, but
4027 ** it will always give the correct answer and is hence always safe.
4028 */
4029 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4030   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4031     return 1;
4032   }
4033   if( pE2->op==TK_OR
4034    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4035              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4036   ){
4037     return 1;
4038   }
4039   if( pE2->op==TK_NOTNULL
4040    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4041    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4042   ){
4043     return 1;
4044   }
4045   return 0;
4046 }
4047 
4048 /*
4049 ** An instance of the following structure is used by the tree walker
4050 ** to count references to table columns in the arguments of an
4051 ** aggregate function, in order to implement the
4052 ** sqlite3FunctionThisSrc() routine.
4053 */
4054 struct SrcCount {
4055   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4056   int nThis;       /* Number of references to columns in pSrcList */
4057   int nOther;      /* Number of references to columns in other FROM clauses */
4058 };
4059 
4060 /*
4061 ** Count the number of references to columns.
4062 */
4063 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4064   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4065   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4066   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4067   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4068   ** NEVER() will need to be removed. */
4069   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4070     int i;
4071     struct SrcCount *p = pWalker->u.pSrcCount;
4072     SrcList *pSrc = p->pSrc;
4073     int nSrc = pSrc ? pSrc->nSrc : 0;
4074     for(i=0; i<nSrc; i++){
4075       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4076     }
4077     if( i<nSrc ){
4078       p->nThis++;
4079     }else{
4080       p->nOther++;
4081     }
4082   }
4083   return WRC_Continue;
4084 }
4085 
4086 /*
4087 ** Determine if any of the arguments to the pExpr Function reference
4088 ** pSrcList.  Return true if they do.  Also return true if the function
4089 ** has no arguments or has only constant arguments.  Return false if pExpr
4090 ** references columns but not columns of tables found in pSrcList.
4091 */
4092 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4093   Walker w;
4094   struct SrcCount cnt;
4095   assert( pExpr->op==TK_AGG_FUNCTION );
4096   memset(&w, 0, sizeof(w));
4097   w.xExprCallback = exprSrcCount;
4098   w.u.pSrcCount = &cnt;
4099   cnt.pSrc = pSrcList;
4100   cnt.nThis = 0;
4101   cnt.nOther = 0;
4102   sqlite3WalkExprList(&w, pExpr->x.pList);
4103   return cnt.nThis>0 || cnt.nOther==0;
4104 }
4105 
4106 /*
4107 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4108 ** the new element.  Return a negative number if malloc fails.
4109 */
4110 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4111   int i;
4112   pInfo->aCol = sqlite3ArrayAllocate(
4113        db,
4114        pInfo->aCol,
4115        sizeof(pInfo->aCol[0]),
4116        &pInfo->nColumn,
4117        &i
4118   );
4119   return i;
4120 }
4121 
4122 /*
4123 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4124 ** the new element.  Return a negative number if malloc fails.
4125 */
4126 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4127   int i;
4128   pInfo->aFunc = sqlite3ArrayAllocate(
4129        db,
4130        pInfo->aFunc,
4131        sizeof(pInfo->aFunc[0]),
4132        &pInfo->nFunc,
4133        &i
4134   );
4135   return i;
4136 }
4137 
4138 /*
4139 ** This is the xExprCallback for a tree walker.  It is used to
4140 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4141 ** for additional information.
4142 */
4143 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4144   int i;
4145   NameContext *pNC = pWalker->u.pNC;
4146   Parse *pParse = pNC->pParse;
4147   SrcList *pSrcList = pNC->pSrcList;
4148   AggInfo *pAggInfo = pNC->pAggInfo;
4149 
4150   switch( pExpr->op ){
4151     case TK_AGG_COLUMN:
4152     case TK_COLUMN: {
4153       testcase( pExpr->op==TK_AGG_COLUMN );
4154       testcase( pExpr->op==TK_COLUMN );
4155       /* Check to see if the column is in one of the tables in the FROM
4156       ** clause of the aggregate query */
4157       if( ALWAYS(pSrcList!=0) ){
4158         struct SrcList_item *pItem = pSrcList->a;
4159         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4160           struct AggInfo_col *pCol;
4161           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4162           if( pExpr->iTable==pItem->iCursor ){
4163             /* If we reach this point, it means that pExpr refers to a table
4164             ** that is in the FROM clause of the aggregate query.
4165             **
4166             ** Make an entry for the column in pAggInfo->aCol[] if there
4167             ** is not an entry there already.
4168             */
4169             int k;
4170             pCol = pAggInfo->aCol;
4171             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4172               if( pCol->iTable==pExpr->iTable &&
4173                   pCol->iColumn==pExpr->iColumn ){
4174                 break;
4175               }
4176             }
4177             if( (k>=pAggInfo->nColumn)
4178              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4179             ){
4180               pCol = &pAggInfo->aCol[k];
4181               pCol->pTab = pExpr->pTab;
4182               pCol->iTable = pExpr->iTable;
4183               pCol->iColumn = pExpr->iColumn;
4184               pCol->iMem = ++pParse->nMem;
4185               pCol->iSorterColumn = -1;
4186               pCol->pExpr = pExpr;
4187               if( pAggInfo->pGroupBy ){
4188                 int j, n;
4189                 ExprList *pGB = pAggInfo->pGroupBy;
4190                 struct ExprList_item *pTerm = pGB->a;
4191                 n = pGB->nExpr;
4192                 for(j=0; j<n; j++, pTerm++){
4193                   Expr *pE = pTerm->pExpr;
4194                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4195                       pE->iColumn==pExpr->iColumn ){
4196                     pCol->iSorterColumn = j;
4197                     break;
4198                   }
4199                 }
4200               }
4201               if( pCol->iSorterColumn<0 ){
4202                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4203               }
4204             }
4205             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4206             ** because it was there before or because we just created it).
4207             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4208             ** pAggInfo->aCol[] entry.
4209             */
4210             ExprSetVVAProperty(pExpr, EP_NoReduce);
4211             pExpr->pAggInfo = pAggInfo;
4212             pExpr->op = TK_AGG_COLUMN;
4213             pExpr->iAgg = (i16)k;
4214             break;
4215           } /* endif pExpr->iTable==pItem->iCursor */
4216         } /* end loop over pSrcList */
4217       }
4218       return WRC_Prune;
4219     }
4220     case TK_AGG_FUNCTION: {
4221       if( (pNC->ncFlags & NC_InAggFunc)==0
4222        && pWalker->walkerDepth==pExpr->op2
4223       ){
4224         /* Check to see if pExpr is a duplicate of another aggregate
4225         ** function that is already in the pAggInfo structure
4226         */
4227         struct AggInfo_func *pItem = pAggInfo->aFunc;
4228         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4229           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4230             break;
4231           }
4232         }
4233         if( i>=pAggInfo->nFunc ){
4234           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4235           */
4236           u8 enc = ENC(pParse->db);
4237           i = addAggInfoFunc(pParse->db, pAggInfo);
4238           if( i>=0 ){
4239             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4240             pItem = &pAggInfo->aFunc[i];
4241             pItem->pExpr = pExpr;
4242             pItem->iMem = ++pParse->nMem;
4243             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4244             pItem->pFunc = sqlite3FindFunction(pParse->db,
4245                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4246                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4247             if( pExpr->flags & EP_Distinct ){
4248               pItem->iDistinct = pParse->nTab++;
4249             }else{
4250               pItem->iDistinct = -1;
4251             }
4252           }
4253         }
4254         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4255         */
4256         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4257         ExprSetVVAProperty(pExpr, EP_NoReduce);
4258         pExpr->iAgg = (i16)i;
4259         pExpr->pAggInfo = pAggInfo;
4260         return WRC_Prune;
4261       }else{
4262         return WRC_Continue;
4263       }
4264     }
4265   }
4266   return WRC_Continue;
4267 }
4268 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4269   UNUSED_PARAMETER(pWalker);
4270   UNUSED_PARAMETER(pSelect);
4271   return WRC_Continue;
4272 }
4273 
4274 /*
4275 ** Analyze the pExpr expression looking for aggregate functions and
4276 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4277 ** points to.  Additional entries are made on the AggInfo object as
4278 ** necessary.
4279 **
4280 ** This routine should only be called after the expression has been
4281 ** analyzed by sqlite3ResolveExprNames().
4282 */
4283 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4284   Walker w;
4285   memset(&w, 0, sizeof(w));
4286   w.xExprCallback = analyzeAggregate;
4287   w.xSelectCallback = analyzeAggregatesInSelect;
4288   w.u.pNC = pNC;
4289   assert( pNC->pSrcList!=0 );
4290   sqlite3WalkExpr(&w, pExpr);
4291 }
4292 
4293 /*
4294 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4295 ** expression list.  Return the number of errors.
4296 **
4297 ** If an error is found, the analysis is cut short.
4298 */
4299 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4300   struct ExprList_item *pItem;
4301   int i;
4302   if( pList ){
4303     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4304       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4305     }
4306   }
4307 }
4308 
4309 /*
4310 ** Allocate a single new register for use to hold some intermediate result.
4311 */
4312 int sqlite3GetTempReg(Parse *pParse){
4313   if( pParse->nTempReg==0 ){
4314     return ++pParse->nMem;
4315   }
4316   return pParse->aTempReg[--pParse->nTempReg];
4317 }
4318 
4319 /*
4320 ** Deallocate a register, making available for reuse for some other
4321 ** purpose.
4322 **
4323 ** If a register is currently being used by the column cache, then
4324 ** the deallocation is deferred until the column cache line that uses
4325 ** the register becomes stale.
4326 */
4327 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4328   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4329     int i;
4330     struct yColCache *p;
4331     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4332       if( p->iReg==iReg ){
4333         p->tempReg = 1;
4334         return;
4335       }
4336     }
4337     pParse->aTempReg[pParse->nTempReg++] = iReg;
4338   }
4339 }
4340 
4341 /*
4342 ** Allocate or deallocate a block of nReg consecutive registers
4343 */
4344 int sqlite3GetTempRange(Parse *pParse, int nReg){
4345   int i, n;
4346   i = pParse->iRangeReg;
4347   n = pParse->nRangeReg;
4348   if( nReg<=n ){
4349     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4350     pParse->iRangeReg += nReg;
4351     pParse->nRangeReg -= nReg;
4352   }else{
4353     i = pParse->nMem+1;
4354     pParse->nMem += nReg;
4355   }
4356   return i;
4357 }
4358 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4359   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4360   if( nReg>pParse->nRangeReg ){
4361     pParse->nRangeReg = nReg;
4362     pParse->iRangeReg = iReg;
4363   }
4364 }
4365 
4366 /*
4367 ** Mark all temporary registers as being unavailable for reuse.
4368 */
4369 void sqlite3ClearTempRegCache(Parse *pParse){
4370   pParse->nTempReg = 0;
4371   pParse->nRangeReg = 0;
4372 }
4373