1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.447 2009/07/16 12:41:06 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Return the 'affinity' of the expression pExpr if any. 21 ** 22 ** If pExpr is a column, a reference to a column via an 'AS' alias, 23 ** or a sub-select with a column as the return value, then the 24 ** affinity of that column is returned. Otherwise, 0x00 is returned, 25 ** indicating no affinity for the expression. 26 ** 27 ** i.e. the WHERE clause expresssions in the following statements all 28 ** have an affinity: 29 ** 30 ** CREATE TABLE t1(a); 31 ** SELECT * FROM t1 WHERE a; 32 ** SELECT a AS b FROM t1 WHERE b; 33 ** SELECT * FROM t1 WHERE (select a from t1); 34 */ 35 char sqlite3ExprAffinity(Expr *pExpr){ 36 int op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 44 return sqlite3AffinityType(pExpr->u.zToken); 45 } 46 #endif 47 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 48 && pExpr->pTab!=0 49 ){ 50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 51 ** a TK_COLUMN but was previously evaluated and cached in a register */ 52 int j = pExpr->iColumn; 53 if( j<0 ) return SQLITE_AFF_INTEGER; 54 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 55 return pExpr->pTab->aCol[j].affinity; 56 } 57 return pExpr->affinity; 58 } 59 60 /* 61 ** Set the collating sequence for expression pExpr to be the collating 62 ** sequence named by pToken. Return a pointer to the revised expression. 63 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 64 ** flag. An explicit collating sequence will override implicit 65 ** collating sequences. 66 */ 67 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){ 68 char *zColl = 0; /* Dequoted name of collation sequence */ 69 CollSeq *pColl; 70 sqlite3 *db = pParse->db; 71 zColl = sqlite3NameFromToken(db, pCollName); 72 if( pExpr && zColl ){ 73 pColl = sqlite3LocateCollSeq(pParse, zColl); 74 if( pColl ){ 75 pExpr->pColl = pColl; 76 pExpr->flags |= EP_ExpCollate; 77 } 78 } 79 sqlite3DbFree(db, zColl); 80 return pExpr; 81 } 82 83 /* 84 ** Return the default collation sequence for the expression pExpr. If 85 ** there is no default collation type, return 0. 86 */ 87 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 88 CollSeq *pColl = 0; 89 Expr *p = pExpr; 90 while( ALWAYS(p) ){ 91 int op; 92 pColl = p->pColl; 93 if( pColl ) break; 94 op = p->op; 95 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){ 96 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 97 ** a TK_COLUMN but was previously evaluated and cached in a register */ 98 const char *zColl; 99 int j = p->iColumn; 100 if( j>=0 ){ 101 sqlite3 *db = pParse->db; 102 zColl = p->pTab->aCol[j].zColl; 103 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 104 pExpr->pColl = pColl; 105 } 106 break; 107 } 108 if( op!=TK_CAST && op!=TK_UPLUS ){ 109 break; 110 } 111 p = p->pLeft; 112 } 113 if( sqlite3CheckCollSeq(pParse, pColl) ){ 114 pColl = 0; 115 } 116 return pColl; 117 } 118 119 /* 120 ** pExpr is an operand of a comparison operator. aff2 is the 121 ** type affinity of the other operand. This routine returns the 122 ** type affinity that should be used for the comparison operator. 123 */ 124 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 125 char aff1 = sqlite3ExprAffinity(pExpr); 126 if( aff1 && aff2 ){ 127 /* Both sides of the comparison are columns. If one has numeric 128 ** affinity, use that. Otherwise use no affinity. 129 */ 130 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 131 return SQLITE_AFF_NUMERIC; 132 }else{ 133 return SQLITE_AFF_NONE; 134 } 135 }else if( !aff1 && !aff2 ){ 136 /* Neither side of the comparison is a column. Compare the 137 ** results directly. 138 */ 139 return SQLITE_AFF_NONE; 140 }else{ 141 /* One side is a column, the other is not. Use the columns affinity. */ 142 assert( aff1==0 || aff2==0 ); 143 return (aff1 + aff2); 144 } 145 } 146 147 /* 148 ** pExpr is a comparison operator. Return the type affinity that should 149 ** be applied to both operands prior to doing the comparison. 150 */ 151 static char comparisonAffinity(Expr *pExpr){ 152 char aff; 153 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 154 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 155 pExpr->op==TK_NE ); 156 assert( pExpr->pLeft ); 157 aff = sqlite3ExprAffinity(pExpr->pLeft); 158 if( pExpr->pRight ){ 159 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 160 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 161 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 162 }else if( !aff ){ 163 aff = SQLITE_AFF_NONE; 164 } 165 return aff; 166 } 167 168 /* 169 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 170 ** idx_affinity is the affinity of an indexed column. Return true 171 ** if the index with affinity idx_affinity may be used to implement 172 ** the comparison in pExpr. 173 */ 174 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 175 char aff = comparisonAffinity(pExpr); 176 switch( aff ){ 177 case SQLITE_AFF_NONE: 178 return 1; 179 case SQLITE_AFF_TEXT: 180 return idx_affinity==SQLITE_AFF_TEXT; 181 default: 182 return sqlite3IsNumericAffinity(idx_affinity); 183 } 184 } 185 186 /* 187 ** Return the P5 value that should be used for a binary comparison 188 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 189 */ 190 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 191 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 192 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 193 return aff; 194 } 195 196 /* 197 ** Return a pointer to the collation sequence that should be used by 198 ** a binary comparison operator comparing pLeft and pRight. 199 ** 200 ** If the left hand expression has a collating sequence type, then it is 201 ** used. Otherwise the collation sequence for the right hand expression 202 ** is used, or the default (BINARY) if neither expression has a collating 203 ** type. 204 ** 205 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 206 ** it is not considered. 207 */ 208 CollSeq *sqlite3BinaryCompareCollSeq( 209 Parse *pParse, 210 Expr *pLeft, 211 Expr *pRight 212 ){ 213 CollSeq *pColl; 214 assert( pLeft ); 215 if( pLeft->flags & EP_ExpCollate ){ 216 assert( pLeft->pColl ); 217 pColl = pLeft->pColl; 218 }else if( pRight && pRight->flags & EP_ExpCollate ){ 219 assert( pRight->pColl ); 220 pColl = pRight->pColl; 221 }else{ 222 pColl = sqlite3ExprCollSeq(pParse, pLeft); 223 if( !pColl ){ 224 pColl = sqlite3ExprCollSeq(pParse, pRight); 225 } 226 } 227 return pColl; 228 } 229 230 /* 231 ** Generate the operands for a comparison operation. Before 232 ** generating the code for each operand, set the EP_AnyAff 233 ** flag on the expression so that it will be able to used a 234 ** cached column value that has previously undergone an 235 ** affinity change. 236 */ 237 static void codeCompareOperands( 238 Parse *pParse, /* Parsing and code generating context */ 239 Expr *pLeft, /* The left operand */ 240 int *pRegLeft, /* Register where left operand is stored */ 241 int *pFreeLeft, /* Free this register when done */ 242 Expr *pRight, /* The right operand */ 243 int *pRegRight, /* Register where right operand is stored */ 244 int *pFreeRight /* Write temp register for right operand there */ 245 ){ 246 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 247 pLeft->flags |= EP_AnyAff; 248 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 249 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 250 pRight->flags |= EP_AnyAff; 251 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 252 } 253 254 /* 255 ** Generate code for a comparison operator. 256 */ 257 static int codeCompare( 258 Parse *pParse, /* The parsing (and code generating) context */ 259 Expr *pLeft, /* The left operand */ 260 Expr *pRight, /* The right operand */ 261 int opcode, /* The comparison opcode */ 262 int in1, int in2, /* Register holding operands */ 263 int dest, /* Jump here if true. */ 264 int jumpIfNull /* If true, jump if either operand is NULL */ 265 ){ 266 int p5; 267 int addr; 268 CollSeq *p4; 269 270 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 271 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 272 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 273 (void*)p4, P4_COLLSEQ); 274 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 275 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ 276 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 277 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 278 } 279 return addr; 280 } 281 282 #if SQLITE_MAX_EXPR_DEPTH>0 283 /* 284 ** Check that argument nHeight is less than or equal to the maximum 285 ** expression depth allowed. If it is not, leave an error message in 286 ** pParse. 287 */ 288 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 289 int rc = SQLITE_OK; 290 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 291 if( nHeight>mxHeight ){ 292 sqlite3ErrorMsg(pParse, 293 "Expression tree is too large (maximum depth %d)", mxHeight 294 ); 295 rc = SQLITE_ERROR; 296 } 297 return rc; 298 } 299 300 /* The following three functions, heightOfExpr(), heightOfExprList() 301 ** and heightOfSelect(), are used to determine the maximum height 302 ** of any expression tree referenced by the structure passed as the 303 ** first argument. 304 ** 305 ** If this maximum height is greater than the current value pointed 306 ** to by pnHeight, the second parameter, then set *pnHeight to that 307 ** value. 308 */ 309 static void heightOfExpr(Expr *p, int *pnHeight){ 310 if( p ){ 311 if( p->nHeight>*pnHeight ){ 312 *pnHeight = p->nHeight; 313 } 314 } 315 } 316 static void heightOfExprList(ExprList *p, int *pnHeight){ 317 if( p ){ 318 int i; 319 for(i=0; i<p->nExpr; i++){ 320 heightOfExpr(p->a[i].pExpr, pnHeight); 321 } 322 } 323 } 324 static void heightOfSelect(Select *p, int *pnHeight){ 325 if( p ){ 326 heightOfExpr(p->pWhere, pnHeight); 327 heightOfExpr(p->pHaving, pnHeight); 328 heightOfExpr(p->pLimit, pnHeight); 329 heightOfExpr(p->pOffset, pnHeight); 330 heightOfExprList(p->pEList, pnHeight); 331 heightOfExprList(p->pGroupBy, pnHeight); 332 heightOfExprList(p->pOrderBy, pnHeight); 333 heightOfSelect(p->pPrior, pnHeight); 334 } 335 } 336 337 /* 338 ** Set the Expr.nHeight variable in the structure passed as an 339 ** argument. An expression with no children, Expr.pList or 340 ** Expr.pSelect member has a height of 1. Any other expression 341 ** has a height equal to the maximum height of any other 342 ** referenced Expr plus one. 343 */ 344 static void exprSetHeight(Expr *p){ 345 int nHeight = 0; 346 heightOfExpr(p->pLeft, &nHeight); 347 heightOfExpr(p->pRight, &nHeight); 348 if( ExprHasProperty(p, EP_xIsSelect) ){ 349 heightOfSelect(p->x.pSelect, &nHeight); 350 }else{ 351 heightOfExprList(p->x.pList, &nHeight); 352 } 353 p->nHeight = nHeight + 1; 354 } 355 356 /* 357 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 358 ** the height is greater than the maximum allowed expression depth, 359 ** leave an error in pParse. 360 */ 361 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 362 exprSetHeight(p); 363 sqlite3ExprCheckHeight(pParse, p->nHeight); 364 } 365 366 /* 367 ** Return the maximum height of any expression tree referenced 368 ** by the select statement passed as an argument. 369 */ 370 int sqlite3SelectExprHeight(Select *p){ 371 int nHeight = 0; 372 heightOfSelect(p, &nHeight); 373 return nHeight; 374 } 375 #else 376 #define exprSetHeight(y) 377 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 378 379 /* 380 ** This routine is the core allocator for Expr nodes. 381 ** 382 ** Construct a new expression node and return a pointer to it. Memory 383 ** for this node and for the pToken argument is a single allocation 384 ** obtained from sqlite3DbMalloc(). The calling function 385 ** is responsible for making sure the node eventually gets freed. 386 ** 387 ** If dequote is true, then the token (if it exists) is dequoted. 388 ** If dequote is false, no dequoting is performance. The deQuote 389 ** parameter is ignored if pToken is NULL or if the token does not 390 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 391 ** then the EP_DblQuoted flag is set on the expression node. 392 ** 393 ** Special case: If op==TK_INTEGER and pToken points to a string that 394 ** can be translated into a 32-bit integer, then the token is not 395 ** stored in u.zToken. Instead, the integer values is written 396 ** into u.iValue and the EP_IntValue flag is set. No extra storage 397 ** is allocated to hold the integer text and the dequote flag is ignored. 398 */ 399 Expr *sqlite3ExprAlloc( 400 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 401 int op, /* Expression opcode */ 402 const Token *pToken, /* Token argument. Might be NULL */ 403 int dequote /* True to dequote */ 404 ){ 405 Expr *pNew; 406 int nExtra = 0; 407 int iValue = 0; 408 409 if( pToken ){ 410 if( op!=TK_INTEGER || pToken->z==0 411 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 412 nExtra = pToken->n+1; 413 } 414 } 415 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 416 if( pNew ){ 417 pNew->op = (u8)op; 418 pNew->iAgg = -1; 419 if( pToken ){ 420 if( nExtra==0 ){ 421 pNew->flags |= EP_IntValue; 422 pNew->u.iValue = iValue; 423 }else{ 424 int c; 425 pNew->u.zToken = (char*)&pNew[1]; 426 memcpy(pNew->u.zToken, pToken->z, pToken->n); 427 pNew->u.zToken[pToken->n] = 0; 428 if( dequote && nExtra>=3 429 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 430 sqlite3Dequote(pNew->u.zToken); 431 if( c=='"' ) pNew->flags |= EP_DblQuoted; 432 } 433 } 434 } 435 #if SQLITE_MAX_EXPR_DEPTH>0 436 pNew->nHeight = 1; 437 #endif 438 } 439 return pNew; 440 } 441 442 /* 443 ** Allocate a new expression node from a zero-terminated token that has 444 ** already been dequoted. 445 */ 446 Expr *sqlite3Expr( 447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 448 int op, /* Expression opcode */ 449 const char *zToken /* Token argument. Might be NULL */ 450 ){ 451 Token x; 452 x.z = zToken; 453 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 454 return sqlite3ExprAlloc(db, op, &x, 0); 455 } 456 457 /* 458 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 459 ** 460 ** If pRoot==NULL that means that a memory allocation error has occurred. 461 ** In that case, delete the subtrees pLeft and pRight. 462 */ 463 void sqlite3ExprAttachSubtrees( 464 sqlite3 *db, 465 Expr *pRoot, 466 Expr *pLeft, 467 Expr *pRight 468 ){ 469 if( pRoot==0 ){ 470 assert( db->mallocFailed ); 471 sqlite3ExprDelete(db, pLeft); 472 sqlite3ExprDelete(db, pRight); 473 }else{ 474 if( pRight ){ 475 pRoot->pRight = pRight; 476 if( pRight->flags & EP_ExpCollate ){ 477 pRoot->flags |= EP_ExpCollate; 478 pRoot->pColl = pRight->pColl; 479 } 480 } 481 if( pLeft ){ 482 pRoot->pLeft = pLeft; 483 if( pLeft->flags & EP_ExpCollate ){ 484 pRoot->flags |= EP_ExpCollate; 485 pRoot->pColl = pLeft->pColl; 486 } 487 } 488 exprSetHeight(pRoot); 489 } 490 } 491 492 /* 493 ** Allocate a Expr node which joins as many as two subtrees. 494 ** 495 ** One or both of the subtrees can be NULL. Return a pointer to the new 496 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 497 ** free the subtrees and return NULL. 498 */ 499 Expr *sqlite3PExpr( 500 Parse *pParse, /* Parsing context */ 501 int op, /* Expression opcode */ 502 Expr *pLeft, /* Left operand */ 503 Expr *pRight, /* Right operand */ 504 const Token *pToken /* Argument token */ 505 ){ 506 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 507 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 508 return p; 509 } 510 511 /* 512 ** Join two expressions using an AND operator. If either expression is 513 ** NULL, then just return the other expression. 514 */ 515 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 516 if( pLeft==0 ){ 517 return pRight; 518 }else if( pRight==0 ){ 519 return pLeft; 520 }else{ 521 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 522 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 523 return pNew; 524 } 525 } 526 527 /* 528 ** Construct a new expression node for a function with multiple 529 ** arguments. 530 */ 531 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 532 Expr *pNew; 533 sqlite3 *db = pParse->db; 534 assert( pToken ); 535 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 536 if( pNew==0 ){ 537 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 538 return 0; 539 } 540 pNew->x.pList = pList; 541 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 542 sqlite3ExprSetHeight(pParse, pNew); 543 return pNew; 544 } 545 546 /* 547 ** Assign a variable number to an expression that encodes a wildcard 548 ** in the original SQL statement. 549 ** 550 ** Wildcards consisting of a single "?" are assigned the next sequential 551 ** variable number. 552 ** 553 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 554 ** sure "nnn" is not too be to avoid a denial of service attack when 555 ** the SQL statement comes from an external source. 556 ** 557 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 558 ** as the previous instance of the same wildcard. Or if this is the first 559 ** instance of the wildcard, the next sequenial variable number is 560 ** assigned. 561 */ 562 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 563 sqlite3 *db = pParse->db; 564 const char *z; 565 566 if( pExpr==0 ) return; 567 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 568 z = pExpr->u.zToken; 569 assert( z!=0 ); 570 assert( z[0]!=0 ); 571 if( z[1]==0 ){ 572 /* Wildcard of the form "?". Assign the next variable number */ 573 assert( z[0]=='?' ); 574 pExpr->iTable = ++pParse->nVar; 575 }else if( z[0]=='?' ){ 576 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 577 ** use it as the variable number */ 578 int i; 579 pExpr->iTable = i = atoi((char*)&z[1]); 580 testcase( i==0 ); 581 testcase( i==1 ); 582 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 583 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 584 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 585 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 586 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 587 } 588 if( i>pParse->nVar ){ 589 pParse->nVar = i; 590 } 591 }else{ 592 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 593 ** number as the prior appearance of the same name, or if the name 594 ** has never appeared before, reuse the same variable number 595 */ 596 int i; 597 u32 n; 598 n = sqlite3Strlen30(z); 599 for(i=0; i<pParse->nVarExpr; i++){ 600 Expr *pE = pParse->apVarExpr[i]; 601 assert( pE!=0 ); 602 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ 603 pExpr->iTable = pE->iTable; 604 break; 605 } 606 } 607 if( i>=pParse->nVarExpr ){ 608 pExpr->iTable = ++pParse->nVar; 609 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 610 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 611 pParse->apVarExpr = 612 sqlite3DbReallocOrFree( 613 db, 614 pParse->apVarExpr, 615 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 616 ); 617 } 618 if( !db->mallocFailed ){ 619 assert( pParse->apVarExpr!=0 ); 620 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 621 } 622 } 623 } 624 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 625 sqlite3ErrorMsg(pParse, "too many SQL variables"); 626 } 627 } 628 629 /* 630 ** Clear an expression structure without deleting the structure itself. 631 ** Substructure is deleted. 632 */ 633 void sqlite3ExprClear(sqlite3 *db, Expr *p){ 634 assert( p!=0 ); 635 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 636 sqlite3ExprDelete(db, p->pLeft); 637 sqlite3ExprDelete(db, p->pRight); 638 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 639 sqlite3DbFree(db, p->u.zToken); 640 } 641 if( ExprHasProperty(p, EP_xIsSelect) ){ 642 sqlite3SelectDelete(db, p->x.pSelect); 643 }else{ 644 sqlite3ExprListDelete(db, p->x.pList); 645 } 646 } 647 } 648 649 /* 650 ** Recursively delete an expression tree. 651 */ 652 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 653 if( p==0 ) return; 654 sqlite3ExprClear(db, p); 655 if( !ExprHasProperty(p, EP_Static) ){ 656 sqlite3DbFree(db, p); 657 } 658 } 659 660 /* 661 ** Return the number of bytes allocated for the expression structure 662 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 663 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 664 */ 665 static int exprStructSize(Expr *p){ 666 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 667 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 668 return EXPR_FULLSIZE; 669 } 670 671 /* 672 ** The dupedExpr*Size() routines each return the number of bytes required 673 ** to store a copy of an expression or expression tree. They differ in 674 ** how much of the tree is measured. 675 ** 676 ** dupedExprStructSize() Size of only the Expr structure 677 ** dupedExprNodeSize() Size of Expr + space for token 678 ** dupedExprSize() Expr + token + subtree components 679 ** 680 *************************************************************************** 681 ** 682 ** The dupedExprStructSize() function returns two values OR-ed together: 683 ** (1) the space required for a copy of the Expr structure only and 684 ** (2) the EP_xxx flags that indicate what the structure size should be. 685 ** The return values is always one of: 686 ** 687 ** EXPR_FULLSIZE 688 ** EXPR_REDUCEDSIZE | EP_Reduced 689 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 690 ** 691 ** The size of the structure can be found by masking the return value 692 ** of this routine with 0xfff. The flags can be found by masking the 693 ** return value with EP_Reduced|EP_TokenOnly. 694 ** 695 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 696 ** (unreduced) Expr objects as they or originally constructed by the parser. 697 ** During expression analysis, extra information is computed and moved into 698 ** later parts of teh Expr object and that extra information might get chopped 699 ** off if the expression is reduced. Note also that it does not work to 700 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 701 ** to reduce a pristine expression tree from the parser. The implementation 702 ** of dupedExprStructSize() contain multiple assert() statements that attempt 703 ** to enforce this constraint. 704 */ 705 static int dupedExprStructSize(Expr *p, int flags){ 706 int nSize; 707 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 708 if( 0==(flags&EXPRDUP_REDUCE) ){ 709 nSize = EXPR_FULLSIZE; 710 }else{ 711 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 712 assert( !ExprHasProperty(p, EP_FromJoin) ); 713 assert( (p->flags2 & EP2_MallocedToken)==0 ); 714 assert( (p->flags2 & EP2_Irreducible)==0 ); 715 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 716 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 717 }else{ 718 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 719 } 720 } 721 return nSize; 722 } 723 724 /* 725 ** This function returns the space in bytes required to store the copy 726 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 727 ** string is defined.) 728 */ 729 static int dupedExprNodeSize(Expr *p, int flags){ 730 int nByte = dupedExprStructSize(p, flags) & 0xfff; 731 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 732 nByte += sqlite3Strlen30(p->u.zToken)+1; 733 } 734 return ROUND8(nByte); 735 } 736 737 /* 738 ** Return the number of bytes required to create a duplicate of the 739 ** expression passed as the first argument. The second argument is a 740 ** mask containing EXPRDUP_XXX flags. 741 ** 742 ** The value returned includes space to create a copy of the Expr struct 743 ** itself and the buffer referred to by Expr.u.zToken, if any. 744 ** 745 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 746 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 747 ** and Expr.pRight variables (but not for any structures pointed to or 748 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 749 */ 750 static int dupedExprSize(Expr *p, int flags){ 751 int nByte = 0; 752 if( p ){ 753 nByte = dupedExprNodeSize(p, flags); 754 if( flags&EXPRDUP_REDUCE ){ 755 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 756 } 757 } 758 return nByte; 759 } 760 761 /* 762 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 763 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 764 ** to store the copy of expression p, the copies of p->u.zToken 765 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 766 ** if any. Before returning, *pzBuffer is set to the first byte passed the 767 ** portion of the buffer copied into by this function. 768 */ 769 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 770 Expr *pNew = 0; /* Value to return */ 771 if( p ){ 772 const int isReduced = (flags&EXPRDUP_REDUCE); 773 u8 *zAlloc; 774 u32 staticFlag = 0; 775 776 assert( pzBuffer==0 || isReduced ); 777 778 /* Figure out where to write the new Expr structure. */ 779 if( pzBuffer ){ 780 zAlloc = *pzBuffer; 781 staticFlag = EP_Static; 782 }else{ 783 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 784 } 785 pNew = (Expr *)zAlloc; 786 787 if( pNew ){ 788 /* Set nNewSize to the size allocated for the structure pointed to 789 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 790 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 791 ** by the copy of the p->u.zToken string (if any). 792 */ 793 const unsigned nStructSize = dupedExprStructSize(p, flags); 794 const int nNewSize = nStructSize & 0xfff; 795 int nToken; 796 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 797 nToken = sqlite3Strlen30(p->u.zToken) + 1; 798 }else{ 799 nToken = 0; 800 } 801 if( isReduced ){ 802 assert( ExprHasProperty(p, EP_Reduced)==0 ); 803 memcpy(zAlloc, p, nNewSize); 804 }else{ 805 int nSize = exprStructSize(p); 806 memcpy(zAlloc, p, nSize); 807 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 808 } 809 810 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 811 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 812 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 813 pNew->flags |= staticFlag; 814 815 /* Copy the p->u.zToken string, if any. */ 816 if( nToken ){ 817 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 818 memcpy(zToken, p->u.zToken, nToken); 819 } 820 821 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 822 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 823 if( ExprHasProperty(p, EP_xIsSelect) ){ 824 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 825 }else{ 826 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 827 } 828 } 829 830 /* Fill in pNew->pLeft and pNew->pRight. */ 831 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 832 zAlloc += dupedExprNodeSize(p, flags); 833 if( ExprHasProperty(pNew, EP_Reduced) ){ 834 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 835 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 836 } 837 if( pzBuffer ){ 838 *pzBuffer = zAlloc; 839 } 840 }else{ 841 pNew->flags2 = 0; 842 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 843 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 844 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 845 } 846 } 847 848 } 849 } 850 return pNew; 851 } 852 853 /* 854 ** The following group of routines make deep copies of expressions, 855 ** expression lists, ID lists, and select statements. The copies can 856 ** be deleted (by being passed to their respective ...Delete() routines) 857 ** without effecting the originals. 858 ** 859 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 860 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 861 ** by subsequent calls to sqlite*ListAppend() routines. 862 ** 863 ** Any tables that the SrcList might point to are not duplicated. 864 ** 865 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 866 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 867 ** truncated version of the usual Expr structure that will be stored as 868 ** part of the in-memory representation of the database schema. 869 */ 870 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 871 return exprDup(db, p, flags, 0); 872 } 873 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 874 ExprList *pNew; 875 struct ExprList_item *pItem, *pOldItem; 876 int i; 877 if( p==0 ) return 0; 878 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 879 if( pNew==0 ) return 0; 880 pNew->iECursor = 0; 881 pNew->nExpr = pNew->nAlloc = p->nExpr; 882 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 883 if( pItem==0 ){ 884 sqlite3DbFree(db, pNew); 885 return 0; 886 } 887 pOldItem = p->a; 888 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 889 Expr *pOldExpr = pOldItem->pExpr; 890 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 891 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 892 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 893 pItem->sortOrder = pOldItem->sortOrder; 894 pItem->done = 0; 895 pItem->iCol = pOldItem->iCol; 896 pItem->iAlias = pOldItem->iAlias; 897 } 898 return pNew; 899 } 900 901 /* 902 ** If cursors, triggers, views and subqueries are all omitted from 903 ** the build, then none of the following routines, except for 904 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 905 ** called with a NULL argument. 906 */ 907 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 908 || !defined(SQLITE_OMIT_SUBQUERY) 909 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 910 SrcList *pNew; 911 int i; 912 int nByte; 913 if( p==0 ) return 0; 914 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 915 pNew = sqlite3DbMallocRaw(db, nByte ); 916 if( pNew==0 ) return 0; 917 pNew->nSrc = pNew->nAlloc = p->nSrc; 918 for(i=0; i<p->nSrc; i++){ 919 struct SrcList_item *pNewItem = &pNew->a[i]; 920 struct SrcList_item *pOldItem = &p->a[i]; 921 Table *pTab; 922 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 923 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 924 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 925 pNewItem->jointype = pOldItem->jointype; 926 pNewItem->iCursor = pOldItem->iCursor; 927 pNewItem->isPopulated = pOldItem->isPopulated; 928 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 929 pNewItem->notIndexed = pOldItem->notIndexed; 930 pNewItem->pIndex = pOldItem->pIndex; 931 pTab = pNewItem->pTab = pOldItem->pTab; 932 if( pTab ){ 933 pTab->nRef++; 934 } 935 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 936 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 937 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 938 pNewItem->colUsed = pOldItem->colUsed; 939 } 940 return pNew; 941 } 942 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 943 IdList *pNew; 944 int i; 945 if( p==0 ) return 0; 946 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 947 if( pNew==0 ) return 0; 948 pNew->nId = pNew->nAlloc = p->nId; 949 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 950 if( pNew->a==0 ){ 951 sqlite3DbFree(db, pNew); 952 return 0; 953 } 954 for(i=0; i<p->nId; i++){ 955 struct IdList_item *pNewItem = &pNew->a[i]; 956 struct IdList_item *pOldItem = &p->a[i]; 957 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 958 pNewItem->idx = pOldItem->idx; 959 } 960 return pNew; 961 } 962 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 963 Select *pNew; 964 if( p==0 ) return 0; 965 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 966 if( pNew==0 ) return 0; 967 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 968 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 969 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 970 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 971 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 972 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 973 pNew->op = p->op; 974 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 975 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 976 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 977 pNew->iLimit = 0; 978 pNew->iOffset = 0; 979 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 980 pNew->pRightmost = 0; 981 pNew->addrOpenEphm[0] = -1; 982 pNew->addrOpenEphm[1] = -1; 983 pNew->addrOpenEphm[2] = -1; 984 return pNew; 985 } 986 #else 987 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 988 assert( p==0 ); 989 return 0; 990 } 991 #endif 992 993 994 /* 995 ** Add a new element to the end of an expression list. If pList is 996 ** initially NULL, then create a new expression list. 997 ** 998 ** If a memory allocation error occurs, the entire list is freed and 999 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1000 ** that the new entry was successfully appended. 1001 */ 1002 ExprList *sqlite3ExprListAppend( 1003 Parse *pParse, /* Parsing context */ 1004 ExprList *pList, /* List to which to append. Might be NULL */ 1005 Expr *pExpr /* Expression to be appended. Might be NULL */ 1006 ){ 1007 sqlite3 *db = pParse->db; 1008 if( pList==0 ){ 1009 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1010 if( pList==0 ){ 1011 goto no_mem; 1012 } 1013 assert( pList->nAlloc==0 ); 1014 } 1015 if( pList->nAlloc<=pList->nExpr ){ 1016 struct ExprList_item *a; 1017 int n = pList->nAlloc*2 + 4; 1018 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1019 if( a==0 ){ 1020 goto no_mem; 1021 } 1022 pList->a = a; 1023 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 1024 } 1025 assert( pList->a!=0 ); 1026 if( 1 ){ 1027 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1028 memset(pItem, 0, sizeof(*pItem)); 1029 pItem->pExpr = pExpr; 1030 } 1031 return pList; 1032 1033 no_mem: 1034 /* Avoid leaking memory if malloc has failed. */ 1035 sqlite3ExprDelete(db, pExpr); 1036 sqlite3ExprListDelete(db, pList); 1037 return 0; 1038 } 1039 1040 /* 1041 ** Set the ExprList.a[].zName element of the most recently added item 1042 ** on the expression list. 1043 ** 1044 ** pList might be NULL following an OOM error. But pName should never be 1045 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1046 ** is set. 1047 */ 1048 void sqlite3ExprListSetName( 1049 Parse *pParse, /* Parsing context */ 1050 ExprList *pList, /* List to which to add the span. */ 1051 Token *pName, /* Name to be added */ 1052 int dequote /* True to cause the name to be dequoted */ 1053 ){ 1054 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1055 if( pList ){ 1056 struct ExprList_item *pItem; 1057 assert( pList->nExpr>0 ); 1058 pItem = &pList->a[pList->nExpr-1]; 1059 assert( pItem->zName==0 ); 1060 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1061 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1062 } 1063 } 1064 1065 /* 1066 ** Set the ExprList.a[].zSpan element of the most recently added item 1067 ** on the expression list. 1068 ** 1069 ** pList might be NULL following an OOM error. But pSpan should never be 1070 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1071 ** is set. 1072 */ 1073 void sqlite3ExprListSetSpan( 1074 Parse *pParse, /* Parsing context */ 1075 ExprList *pList, /* List to which to add the span. */ 1076 ExprSpan *pSpan /* The span to be added */ 1077 ){ 1078 sqlite3 *db = pParse->db; 1079 assert( pList!=0 || db->mallocFailed!=0 ); 1080 if( pList ){ 1081 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1082 assert( pList->nExpr>0 ); 1083 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1084 sqlite3DbFree(db, pItem->zSpan); 1085 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1086 (int)(pSpan->zEnd - pSpan->zStart)); 1087 } 1088 } 1089 1090 /* 1091 ** If the expression list pEList contains more than iLimit elements, 1092 ** leave an error message in pParse. 1093 */ 1094 void sqlite3ExprListCheckLength( 1095 Parse *pParse, 1096 ExprList *pEList, 1097 const char *zObject 1098 ){ 1099 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1100 testcase( pEList && pEList->nExpr==mx ); 1101 testcase( pEList && pEList->nExpr==mx+1 ); 1102 if( pEList && pEList->nExpr>mx ){ 1103 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1104 } 1105 } 1106 1107 /* 1108 ** Delete an entire expression list. 1109 */ 1110 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1111 int i; 1112 struct ExprList_item *pItem; 1113 if( pList==0 ) return; 1114 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1115 assert( pList->nExpr<=pList->nAlloc ); 1116 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1117 sqlite3ExprDelete(db, pItem->pExpr); 1118 sqlite3DbFree(db, pItem->zName); 1119 sqlite3DbFree(db, pItem->zSpan); 1120 } 1121 sqlite3DbFree(db, pList->a); 1122 sqlite3DbFree(db, pList); 1123 } 1124 1125 /* 1126 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1127 ** to an integer. These routines are checking an expression to see 1128 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1129 ** not constant. 1130 ** 1131 ** These callback routines are used to implement the following: 1132 ** 1133 ** sqlite3ExprIsConstant() 1134 ** sqlite3ExprIsConstantNotJoin() 1135 ** sqlite3ExprIsConstantOrFunction() 1136 ** 1137 */ 1138 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1139 1140 /* If pWalker->u.i is 3 then any term of the expression that comes from 1141 ** the ON or USING clauses of a join disqualifies the expression 1142 ** from being considered constant. */ 1143 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1144 pWalker->u.i = 0; 1145 return WRC_Abort; 1146 } 1147 1148 switch( pExpr->op ){ 1149 /* Consider functions to be constant if all their arguments are constant 1150 ** and pWalker->u.i==2 */ 1151 case TK_FUNCTION: 1152 if( pWalker->u.i==2 ) return 0; 1153 /* Fall through */ 1154 case TK_ID: 1155 case TK_COLUMN: 1156 case TK_AGG_FUNCTION: 1157 case TK_AGG_COLUMN: 1158 testcase( pExpr->op==TK_ID ); 1159 testcase( pExpr->op==TK_COLUMN ); 1160 testcase( pExpr->op==TK_AGG_FUNCTION ); 1161 testcase( pExpr->op==TK_AGG_COLUMN ); 1162 pWalker->u.i = 0; 1163 return WRC_Abort; 1164 default: 1165 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1166 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1167 return WRC_Continue; 1168 } 1169 } 1170 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1171 UNUSED_PARAMETER(NotUsed); 1172 pWalker->u.i = 0; 1173 return WRC_Abort; 1174 } 1175 static int exprIsConst(Expr *p, int initFlag){ 1176 Walker w; 1177 w.u.i = initFlag; 1178 w.xExprCallback = exprNodeIsConstant; 1179 w.xSelectCallback = selectNodeIsConstant; 1180 sqlite3WalkExpr(&w, p); 1181 return w.u.i; 1182 } 1183 1184 /* 1185 ** Walk an expression tree. Return 1 if the expression is constant 1186 ** and 0 if it involves variables or function calls. 1187 ** 1188 ** For the purposes of this function, a double-quoted string (ex: "abc") 1189 ** is considered a variable but a single-quoted string (ex: 'abc') is 1190 ** a constant. 1191 */ 1192 int sqlite3ExprIsConstant(Expr *p){ 1193 return exprIsConst(p, 1); 1194 } 1195 1196 /* 1197 ** Walk an expression tree. Return 1 if the expression is constant 1198 ** that does no originate from the ON or USING clauses of a join. 1199 ** Return 0 if it involves variables or function calls or terms from 1200 ** an ON or USING clause. 1201 */ 1202 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1203 return exprIsConst(p, 3); 1204 } 1205 1206 /* 1207 ** Walk an expression tree. Return 1 if the expression is constant 1208 ** or a function call with constant arguments. Return and 0 if there 1209 ** are any variables. 1210 ** 1211 ** For the purposes of this function, a double-quoted string (ex: "abc") 1212 ** is considered a variable but a single-quoted string (ex: 'abc') is 1213 ** a constant. 1214 */ 1215 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1216 return exprIsConst(p, 2); 1217 } 1218 1219 /* 1220 ** If the expression p codes a constant integer that is small enough 1221 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1222 ** in *pValue. If the expression is not an integer or if it is too big 1223 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1224 */ 1225 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1226 int rc = 0; 1227 if( p->flags & EP_IntValue ){ 1228 *pValue = p->u.iValue; 1229 return 1; 1230 } 1231 switch( p->op ){ 1232 case TK_INTEGER: { 1233 rc = sqlite3GetInt32(p->u.zToken, pValue); 1234 assert( rc==0 ); 1235 break; 1236 } 1237 case TK_UPLUS: { 1238 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1239 break; 1240 } 1241 case TK_UMINUS: { 1242 int v; 1243 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1244 *pValue = -v; 1245 rc = 1; 1246 } 1247 break; 1248 } 1249 default: break; 1250 } 1251 if( rc ){ 1252 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly) 1253 || (p->flags2 & EP2_MallocedToken)==0 ); 1254 p->op = TK_INTEGER; 1255 p->flags |= EP_IntValue; 1256 p->u.iValue = *pValue; 1257 } 1258 return rc; 1259 } 1260 1261 /* 1262 ** Return TRUE if the given string is a row-id column name. 1263 */ 1264 int sqlite3IsRowid(const char *z){ 1265 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1266 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1267 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1268 return 0; 1269 } 1270 1271 /* 1272 ** Return true if we are able to the IN operator optimization on a 1273 ** query of the form 1274 ** 1275 ** x IN (SELECT ...) 1276 ** 1277 ** Where the SELECT... clause is as specified by the parameter to this 1278 ** routine. 1279 ** 1280 ** The Select object passed in has already been preprocessed and no 1281 ** errors have been found. 1282 */ 1283 #ifndef SQLITE_OMIT_SUBQUERY 1284 static int isCandidateForInOpt(Select *p){ 1285 SrcList *pSrc; 1286 ExprList *pEList; 1287 Table *pTab; 1288 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1289 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1290 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1291 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1292 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1293 return 0; /* No DISTINCT keyword and no aggregate functions */ 1294 } 1295 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1296 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1297 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1298 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1299 pSrc = p->pSrc; 1300 assert( pSrc!=0 ); 1301 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1302 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1303 pTab = pSrc->a[0].pTab; 1304 if( NEVER(pTab==0) ) return 0; 1305 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1306 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1307 pEList = p->pEList; 1308 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1309 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1310 return 1; 1311 } 1312 #endif /* SQLITE_OMIT_SUBQUERY */ 1313 1314 /* 1315 ** This function is used by the implementation of the IN (...) operator. 1316 ** It's job is to find or create a b-tree structure that may be used 1317 ** either to test for membership of the (...) set or to iterate through 1318 ** its members, skipping duplicates. 1319 ** 1320 ** The index of the cursor opened on the b-tree (database table, database index 1321 ** or ephermal table) is stored in pX->iTable before this function returns. 1322 ** The returned value of this function indicates the b-tree type, as follows: 1323 ** 1324 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1325 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1326 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1327 ** populated epheremal table. 1328 ** 1329 ** An existing b-tree may only be used if the SELECT is of the simple 1330 ** form: 1331 ** 1332 ** SELECT <column> FROM <table> 1333 ** 1334 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1335 ** through the set members, skipping any duplicates. In this case an 1336 ** epheremal table must be used unless the selected <column> is guaranteed 1337 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1338 ** has a UNIQUE constraint or UNIQUE index. 1339 ** 1340 ** If the prNotFound parameter is not 0, then the b-tree will be used 1341 ** for fast set membership tests. In this case an epheremal table must 1342 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1343 ** be found with <column> as its left-most column. 1344 ** 1345 ** When the b-tree is being used for membership tests, the calling function 1346 ** needs to know whether or not the structure contains an SQL NULL 1347 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1348 ** If there is a chance that the b-tree might contain a NULL value at 1349 ** runtime, then a register is allocated and the register number written 1350 ** to *prNotFound. If there is no chance that the b-tree contains a 1351 ** NULL value, then *prNotFound is left unchanged. 1352 ** 1353 ** If a register is allocated and its location stored in *prNotFound, then 1354 ** its initial value is NULL. If the b-tree does not remain constant 1355 ** for the duration of the query (i.e. the SELECT that generates the b-tree 1356 ** is a correlated subquery) then the value of the allocated register is 1357 ** reset to NULL each time the b-tree is repopulated. This allows the 1358 ** caller to use vdbe code equivalent to the following: 1359 ** 1360 ** if( register==NULL ){ 1361 ** has_null = <test if data structure contains null> 1362 ** register = 1 1363 ** } 1364 ** 1365 ** in order to avoid running the <test if data structure contains null> 1366 ** test more often than is necessary. 1367 */ 1368 #ifndef SQLITE_OMIT_SUBQUERY 1369 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1370 Select *p; /* SELECT to the right of IN operator */ 1371 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1372 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1373 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1374 1375 /* Check to see if an existing table or index can be used to 1376 ** satisfy the query. This is preferable to generating a new 1377 ** ephemeral table. 1378 */ 1379 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1380 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1381 sqlite3 *db = pParse->db; /* Database connection */ 1382 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1383 int iCol = pExpr->iColumn; /* Index of column <column> */ 1384 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1385 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1386 int iDb; /* Database idx for pTab */ 1387 1388 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1389 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1390 sqlite3CodeVerifySchema(pParse, iDb); 1391 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1392 1393 /* This function is only called from two places. In both cases the vdbe 1394 ** has already been allocated. So assume sqlite3GetVdbe() is always 1395 ** successful here. 1396 */ 1397 assert(v); 1398 if( iCol<0 ){ 1399 int iMem = ++pParse->nMem; 1400 int iAddr; 1401 sqlite3VdbeUsesBtree(v, iDb); 1402 1403 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1404 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1405 1406 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1407 eType = IN_INDEX_ROWID; 1408 1409 sqlite3VdbeJumpHere(v, iAddr); 1410 }else{ 1411 Index *pIdx; /* Iterator variable */ 1412 1413 /* The collation sequence used by the comparison. If an index is to 1414 ** be used in place of a temp-table, it must be ordered according 1415 ** to this collation sequence. */ 1416 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1417 1418 /* Check that the affinity that will be used to perform the 1419 ** comparison is the same as the affinity of the column. If 1420 ** it is not, it is not possible to use any index. 1421 */ 1422 char aff = comparisonAffinity(pX); 1423 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1424 1425 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1426 if( (pIdx->aiColumn[0]==iCol) 1427 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1428 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1429 ){ 1430 int iMem = ++pParse->nMem; 1431 int iAddr; 1432 char *pKey; 1433 1434 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1435 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1436 sqlite3VdbeUsesBtree(v, iDb); 1437 1438 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1439 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1440 1441 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1442 pKey,P4_KEYINFO_HANDOFF); 1443 VdbeComment((v, "%s", pIdx->zName)); 1444 eType = IN_INDEX_INDEX; 1445 1446 sqlite3VdbeJumpHere(v, iAddr); 1447 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1448 *prNotFound = ++pParse->nMem; 1449 } 1450 } 1451 } 1452 } 1453 } 1454 1455 if( eType==0 ){ 1456 /* Could not found an existing able or index to use as the RHS b-tree. 1457 ** We will have to generate an ephemeral table to do the job. 1458 */ 1459 int rMayHaveNull = 0; 1460 eType = IN_INDEX_EPH; 1461 if( prNotFound ){ 1462 *prNotFound = rMayHaveNull = ++pParse->nMem; 1463 }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1464 eType = IN_INDEX_ROWID; 1465 } 1466 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1467 }else{ 1468 pX->iTable = iTab; 1469 } 1470 return eType; 1471 } 1472 #endif 1473 1474 /* 1475 ** Generate code for scalar subqueries used as an expression 1476 ** and IN operators. Examples: 1477 ** 1478 ** (SELECT a FROM b) -- subquery 1479 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1480 ** x IN (4,5,11) -- IN operator with list on right-hand side 1481 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1482 ** 1483 ** The pExpr parameter describes the expression that contains the IN 1484 ** operator or subquery. 1485 ** 1486 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1487 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1488 ** to some integer key column of a table B-Tree. In this case, use an 1489 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1490 ** (slower) variable length keys B-Tree. 1491 ** 1492 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1493 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1494 ** Furthermore, the IN is in a WHERE clause and that we really want 1495 ** to iterate over the RHS of the IN operator in order to quickly locate 1496 ** all corresponding LHS elements. All this routine does is initialize 1497 ** the register given by rMayHaveNull to NULL. Calling routines will take 1498 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1499 ** 1500 ** If rMayHaveNull is zero, that means that the subquery is being used 1501 ** for membership testing only. There is no need to initialize any 1502 ** registers to indicate the presense or absence of NULLs on the RHS. 1503 */ 1504 #ifndef SQLITE_OMIT_SUBQUERY 1505 void sqlite3CodeSubselect( 1506 Parse *pParse, /* Parsing context */ 1507 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1508 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1509 int isRowid /* If true, LHS of IN operator is a rowid */ 1510 ){ 1511 int testAddr = 0; /* One-time test address */ 1512 Vdbe *v = sqlite3GetVdbe(pParse); 1513 if( NEVER(v==0) ) return; 1514 sqlite3ExprCachePush(pParse); 1515 1516 /* This code must be run in its entirety every time it is encountered 1517 ** if any of the following is true: 1518 ** 1519 ** * The right-hand side is a correlated subquery 1520 ** * The right-hand side is an expression list containing variables 1521 ** * We are inside a trigger 1522 ** 1523 ** If all of the above are false, then we can run this code just once 1524 ** save the results, and reuse the same result on subsequent invocations. 1525 */ 1526 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1527 int mem = ++pParse->nMem; 1528 sqlite3VdbeAddOp1(v, OP_If, mem); 1529 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1530 assert( testAddr>0 || pParse->db->mallocFailed ); 1531 } 1532 1533 switch( pExpr->op ){ 1534 case TK_IN: { 1535 char affinity; 1536 KeyInfo keyInfo; 1537 int addr; /* Address of OP_OpenEphemeral instruction */ 1538 Expr *pLeft = pExpr->pLeft; 1539 1540 if( rMayHaveNull ){ 1541 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1542 } 1543 1544 affinity = sqlite3ExprAffinity(pLeft); 1545 1546 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1547 ** expression it is handled the same way. A virtual table is 1548 ** filled with single-field index keys representing the results 1549 ** from the SELECT or the <exprlist>. 1550 ** 1551 ** If the 'x' expression is a column value, or the SELECT... 1552 ** statement returns a column value, then the affinity of that 1553 ** column is used to build the index keys. If both 'x' and the 1554 ** SELECT... statement are columns, then numeric affinity is used 1555 ** if either column has NUMERIC or INTEGER affinity. If neither 1556 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1557 ** is used. 1558 */ 1559 pExpr->iTable = pParse->nTab++; 1560 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1561 memset(&keyInfo, 0, sizeof(keyInfo)); 1562 keyInfo.nField = 1; 1563 1564 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1565 /* Case 1: expr IN (SELECT ...) 1566 ** 1567 ** Generate code to write the results of the select into the temporary 1568 ** table allocated and opened above. 1569 */ 1570 SelectDest dest; 1571 ExprList *pEList; 1572 1573 assert( !isRowid ); 1574 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1575 dest.affinity = (u8)affinity; 1576 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1577 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1578 return; 1579 } 1580 pEList = pExpr->x.pSelect->pEList; 1581 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1582 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1583 pEList->a[0].pExpr); 1584 } 1585 }else if( pExpr->x.pList!=0 ){ 1586 /* Case 2: expr IN (exprlist) 1587 ** 1588 ** For each expression, build an index key from the evaluation and 1589 ** store it in the temporary table. If <expr> is a column, then use 1590 ** that columns affinity when building index keys. If <expr> is not 1591 ** a column, use numeric affinity. 1592 */ 1593 int i; 1594 ExprList *pList = pExpr->x.pList; 1595 struct ExprList_item *pItem; 1596 int r1, r2, r3; 1597 1598 if( !affinity ){ 1599 affinity = SQLITE_AFF_NONE; 1600 } 1601 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1602 1603 /* Loop through each expression in <exprlist>. */ 1604 r1 = sqlite3GetTempReg(pParse); 1605 r2 = sqlite3GetTempReg(pParse); 1606 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1607 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1608 Expr *pE2 = pItem->pExpr; 1609 1610 /* If the expression is not constant then we will need to 1611 ** disable the test that was generated above that makes sure 1612 ** this code only executes once. Because for a non-constant 1613 ** expression we need to rerun this code each time. 1614 */ 1615 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1616 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1617 testAddr = 0; 1618 } 1619 1620 /* Evaluate the expression and insert it into the temp table */ 1621 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1622 if( isRowid ){ 1623 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); 1624 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1625 }else{ 1626 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1627 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1628 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1629 } 1630 } 1631 sqlite3ReleaseTempReg(pParse, r1); 1632 sqlite3ReleaseTempReg(pParse, r2); 1633 } 1634 if( !isRowid ){ 1635 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1636 } 1637 break; 1638 } 1639 1640 case TK_EXISTS: 1641 case TK_SELECT: 1642 default: { 1643 /* If this has to be a scalar SELECT. Generate code to put the 1644 ** value of this select in a memory cell and record the number 1645 ** of the memory cell in iColumn. If this is an EXISTS, write 1646 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1647 ** and record that memory cell in iColumn. 1648 */ 1649 static const Token one = { "1", 1 }; /* Token for literal value 1 */ 1650 Select *pSel; /* SELECT statement to encode */ 1651 SelectDest dest; /* How to deal with SELECt result */ 1652 1653 testcase( pExpr->op==TK_EXISTS ); 1654 testcase( pExpr->op==TK_SELECT ); 1655 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1656 1657 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1658 pSel = pExpr->x.pSelect; 1659 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1660 if( pExpr->op==TK_SELECT ){ 1661 dest.eDest = SRT_Mem; 1662 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1663 VdbeComment((v, "Init subquery result")); 1664 }else{ 1665 dest.eDest = SRT_Exists; 1666 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1667 VdbeComment((v, "Init EXISTS result")); 1668 } 1669 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1670 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1671 if( sqlite3Select(pParse, pSel, &dest) ){ 1672 return; 1673 } 1674 pExpr->iColumn = (i16)dest.iParm; 1675 ExprSetIrreducible(pExpr); 1676 break; 1677 } 1678 } 1679 1680 if( testAddr ){ 1681 sqlite3VdbeJumpHere(v, testAddr-1); 1682 } 1683 sqlite3ExprCachePop(pParse, 1); 1684 1685 return; 1686 } 1687 #endif /* SQLITE_OMIT_SUBQUERY */ 1688 1689 /* 1690 ** Duplicate an 8-byte value 1691 */ 1692 static char *dup8bytes(Vdbe *v, const char *in){ 1693 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1694 if( out ){ 1695 memcpy(out, in, 8); 1696 } 1697 return out; 1698 } 1699 1700 /* 1701 ** Generate an instruction that will put the floating point 1702 ** value described by z[0..n-1] into register iMem. 1703 ** 1704 ** The z[] string will probably not be zero-terminated. But the 1705 ** z[n] character is guaranteed to be something that does not look 1706 ** like the continuation of the number. 1707 */ 1708 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1709 if( ALWAYS(z!=0) ){ 1710 double value; 1711 char *zV; 1712 sqlite3AtoF(z, &value); 1713 if( sqlite3IsNaN(value) ){ 1714 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem); 1715 }else{ 1716 if( negateFlag ) value = -value; 1717 zV = dup8bytes(v, (char*)&value); 1718 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1719 } 1720 } 1721 } 1722 1723 1724 /* 1725 ** Generate an instruction that will put the integer describe by 1726 ** text z[0..n-1] into register iMem. 1727 ** 1728 ** The z[] string will probably not be zero-terminated. But the 1729 ** z[n] character is guaranteed to be something that does not look 1730 ** like the continuation of the number. 1731 */ 1732 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ 1733 if( pExpr->flags & EP_IntValue ){ 1734 int i = pExpr->u.iValue; 1735 if( negFlag ) i = -i; 1736 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1737 }else{ 1738 const char *z = pExpr->u.zToken; 1739 assert( z!=0 ); 1740 if( sqlite3FitsIn64Bits(z, negFlag) ){ 1741 i64 value; 1742 char *zV; 1743 sqlite3Atoi64(z, &value); 1744 if( negFlag ) value = -value; 1745 zV = dup8bytes(v, (char*)&value); 1746 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1747 }else{ 1748 codeReal(v, z, negFlag, iMem); 1749 } 1750 } 1751 } 1752 1753 /* 1754 ** Clear a cache entry. 1755 */ 1756 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1757 if( p->tempReg ){ 1758 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1759 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1760 } 1761 p->tempReg = 0; 1762 } 1763 } 1764 1765 1766 /* 1767 ** Record in the column cache that a particular column from a 1768 ** particular table is stored in a particular register. 1769 */ 1770 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1771 int i; 1772 int minLru; 1773 int idxLru; 1774 struct yColCache *p; 1775 1776 assert( iReg>0 ); /* Register numbers are always positive */ 1777 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 1778 1779 /* First replace any existing entry */ 1780 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1781 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 1782 cacheEntryClear(pParse, p); 1783 p->iLevel = pParse->iCacheLevel; 1784 p->iReg = iReg; 1785 p->affChange = 0; 1786 p->lru = pParse->iCacheCnt++; 1787 return; 1788 } 1789 } 1790 1791 /* Find an empty slot and replace it */ 1792 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1793 if( p->iReg==0 ){ 1794 p->iLevel = pParse->iCacheLevel; 1795 p->iTable = iTab; 1796 p->iColumn = iCol; 1797 p->iReg = iReg; 1798 p->affChange = 0; 1799 p->tempReg = 0; 1800 p->lru = pParse->iCacheCnt++; 1801 return; 1802 } 1803 } 1804 1805 /* Replace the last recently used */ 1806 minLru = 0x7fffffff; 1807 idxLru = -1; 1808 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1809 if( p->lru<minLru ){ 1810 idxLru = i; 1811 minLru = p->lru; 1812 } 1813 } 1814 if( ALWAYS(idxLru>=0) ){ 1815 p = &pParse->aColCache[idxLru]; 1816 p->iLevel = pParse->iCacheLevel; 1817 p->iTable = iTab; 1818 p->iColumn = iCol; 1819 p->iReg = iReg; 1820 p->affChange = 0; 1821 p->tempReg = 0; 1822 p->lru = pParse->iCacheCnt++; 1823 return; 1824 } 1825 } 1826 1827 /* 1828 ** Indicate that a register is being overwritten. Purge the register 1829 ** from the column cache. 1830 */ 1831 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){ 1832 int i; 1833 struct yColCache *p; 1834 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1835 if( p->iReg==iReg ){ 1836 cacheEntryClear(pParse, p); 1837 p->iReg = 0; 1838 } 1839 } 1840 } 1841 1842 /* 1843 ** Remember the current column cache context. Any new entries added 1844 ** added to the column cache after this call are removed when the 1845 ** corresponding pop occurs. 1846 */ 1847 void sqlite3ExprCachePush(Parse *pParse){ 1848 pParse->iCacheLevel++; 1849 } 1850 1851 /* 1852 ** Remove from the column cache any entries that were added since the 1853 ** the previous N Push operations. In other words, restore the cache 1854 ** to the state it was in N Pushes ago. 1855 */ 1856 void sqlite3ExprCachePop(Parse *pParse, int N){ 1857 int i; 1858 struct yColCache *p; 1859 assert( N>0 ); 1860 assert( pParse->iCacheLevel>=N ); 1861 pParse->iCacheLevel -= N; 1862 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1863 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 1864 cacheEntryClear(pParse, p); 1865 p->iReg = 0; 1866 } 1867 } 1868 } 1869 1870 /* 1871 ** When a cached column is reused, make sure that its register is 1872 ** no longer available as a temp register. ticket #3879: that same 1873 ** register might be in the cache in multiple places, so be sure to 1874 ** get them all. 1875 */ 1876 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 1877 int i; 1878 struct yColCache *p; 1879 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1880 if( p->iReg==iReg ){ 1881 p->tempReg = 0; 1882 } 1883 } 1884 } 1885 1886 /* 1887 ** Generate code that will extract the iColumn-th column from 1888 ** table pTab and store the column value in a register. An effort 1889 ** is made to store the column value in register iReg, but this is 1890 ** not guaranteed. The location of the column value is returned. 1891 ** 1892 ** There must be an open cursor to pTab in iTable when this routine 1893 ** is called. If iColumn<0 then code is generated that extracts the rowid. 1894 ** 1895 ** This routine might attempt to reuse the value of the column that 1896 ** has already been loaded into a register. The value will always 1897 ** be used if it has not undergone any affinity changes. But if 1898 ** an affinity change has occurred, then the cached value will only be 1899 ** used if allowAffChng is true. 1900 */ 1901 int sqlite3ExprCodeGetColumn( 1902 Parse *pParse, /* Parsing and code generating context */ 1903 Table *pTab, /* Description of the table we are reading from */ 1904 int iColumn, /* Index of the table column */ 1905 int iTable, /* The cursor pointing to the table */ 1906 int iReg, /* Store results here */ 1907 int allowAffChng /* True if prior affinity changes are OK */ 1908 ){ 1909 Vdbe *v = pParse->pVdbe; 1910 int i; 1911 struct yColCache *p; 1912 1913 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1914 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn 1915 && (!p->affChange || allowAffChng) ){ 1916 p->lru = pParse->iCacheCnt++; 1917 sqlite3ExprCachePinRegister(pParse, p->iReg); 1918 return p->iReg; 1919 } 1920 } 1921 assert( v!=0 ); 1922 if( iColumn<0 ){ 1923 sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg); 1924 }else if( ALWAYS(pTab!=0) ){ 1925 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1926 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 1927 sqlite3ColumnDefault(v, pTab, iColumn); 1928 #ifndef SQLITE_OMIT_FLOATING_POINT 1929 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1930 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 1931 } 1932 #endif 1933 } 1934 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 1935 return iReg; 1936 } 1937 1938 /* 1939 ** Clear all column cache entries. 1940 */ 1941 void sqlite3ExprCacheClear(Parse *pParse){ 1942 int i; 1943 struct yColCache *p; 1944 1945 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1946 if( p->iReg ){ 1947 cacheEntryClear(pParse, p); 1948 p->iReg = 0; 1949 } 1950 } 1951 } 1952 1953 /* 1954 ** Record the fact that an affinity change has occurred on iCount 1955 ** registers starting with iStart. 1956 */ 1957 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 1958 int iEnd = iStart + iCount - 1; 1959 int i; 1960 struct yColCache *p; 1961 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1962 int r = p->iReg; 1963 if( r>=iStart && r<=iEnd ){ 1964 p->affChange = 1; 1965 } 1966 } 1967 } 1968 1969 /* 1970 ** Generate code to move content from registers iFrom...iFrom+nReg-1 1971 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 1972 */ 1973 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 1974 int i; 1975 struct yColCache *p; 1976 if( NEVER(iFrom==iTo) ) return; 1977 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 1978 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1979 int x = p->iReg; 1980 if( x>=iFrom && x<iFrom+nReg ){ 1981 p->iReg += iTo-iFrom; 1982 } 1983 } 1984 } 1985 1986 /* 1987 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 1988 ** over to iTo..iTo+nReg-1. 1989 */ 1990 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 1991 int i; 1992 if( NEVER(iFrom==iTo) ) return; 1993 for(i=0; i<nReg; i++){ 1994 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 1995 } 1996 } 1997 1998 /* 1999 ** Return true if any register in the range iFrom..iTo (inclusive) 2000 ** is used as part of the column cache. 2001 */ 2002 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2003 int i; 2004 struct yColCache *p; 2005 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2006 int r = p->iReg; 2007 if( r>=iFrom && r<=iTo ) return 1; 2008 } 2009 return 0; 2010 } 2011 2012 /* 2013 ** If the last instruction coded is an ephemeral copy of any of 2014 ** the registers in the nReg registers beginning with iReg, then 2015 ** convert the last instruction from OP_SCopy to OP_Copy. 2016 */ 2017 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 2018 VdbeOp *pOp; 2019 Vdbe *v; 2020 2021 assert( pParse->db->mallocFailed==0 ); 2022 v = pParse->pVdbe; 2023 assert( v!=0 ); 2024 pOp = sqlite3VdbeGetOp(v, -1); 2025 assert( pOp!=0 ); 2026 if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 2027 pOp->opcode = OP_Copy; 2028 } 2029 } 2030 2031 /* 2032 ** Generate code to store the value of the iAlias-th alias in register 2033 ** target. The first time this is called, pExpr is evaluated to compute 2034 ** the value of the alias. The value is stored in an auxiliary register 2035 ** and the number of that register is returned. On subsequent calls, 2036 ** the register number is returned without generating any code. 2037 ** 2038 ** Note that in order for this to work, code must be generated in the 2039 ** same order that it is executed. 2040 ** 2041 ** Aliases are numbered starting with 1. So iAlias is in the range 2042 ** of 1 to pParse->nAlias inclusive. 2043 ** 2044 ** pParse->aAlias[iAlias-1] records the register number where the value 2045 ** of the iAlias-th alias is stored. If zero, that means that the 2046 ** alias has not yet been computed. 2047 */ 2048 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 2049 #if 0 2050 sqlite3 *db = pParse->db; 2051 int iReg; 2052 if( pParse->nAliasAlloc<pParse->nAlias ){ 2053 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 2054 sizeof(pParse->aAlias[0])*pParse->nAlias ); 2055 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 2056 if( db->mallocFailed ) return 0; 2057 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 2058 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 2059 pParse->nAliasAlloc = pParse->nAlias; 2060 } 2061 assert( iAlias>0 && iAlias<=pParse->nAlias ); 2062 iReg = pParse->aAlias[iAlias-1]; 2063 if( iReg==0 ){ 2064 if( pParse->iCacheLevel>0 ){ 2065 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2066 }else{ 2067 iReg = ++pParse->nMem; 2068 sqlite3ExprCode(pParse, pExpr, iReg); 2069 pParse->aAlias[iAlias-1] = iReg; 2070 } 2071 } 2072 return iReg; 2073 #else 2074 UNUSED_PARAMETER(iAlias); 2075 return sqlite3ExprCodeTarget(pParse, pExpr, target); 2076 #endif 2077 } 2078 2079 /* 2080 ** Generate code into the current Vdbe to evaluate the given 2081 ** expression. Attempt to store the results in register "target". 2082 ** Return the register where results are stored. 2083 ** 2084 ** With this routine, there is no guarantee that results will 2085 ** be stored in target. The result might be stored in some other 2086 ** register if it is convenient to do so. The calling function 2087 ** must check the return code and move the results to the desired 2088 ** register. 2089 */ 2090 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2091 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2092 int op; /* The opcode being coded */ 2093 int inReg = target; /* Results stored in register inReg */ 2094 int regFree1 = 0; /* If non-zero free this temporary register */ 2095 int regFree2 = 0; /* If non-zero free this temporary register */ 2096 int r1, r2, r3, r4; /* Various register numbers */ 2097 sqlite3 *db = pParse->db; /* The database connection */ 2098 2099 assert( target>0 && target<=pParse->nMem ); 2100 if( v==0 ){ 2101 assert( pParse->db->mallocFailed ); 2102 return 0; 2103 } 2104 2105 if( pExpr==0 ){ 2106 op = TK_NULL; 2107 }else{ 2108 op = pExpr->op; 2109 } 2110 switch( op ){ 2111 case TK_AGG_COLUMN: { 2112 AggInfo *pAggInfo = pExpr->pAggInfo; 2113 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2114 if( !pAggInfo->directMode ){ 2115 assert( pCol->iMem>0 ); 2116 inReg = pCol->iMem; 2117 break; 2118 }else if( pAggInfo->useSortingIdx ){ 2119 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2120 pCol->iSorterColumn, target); 2121 break; 2122 } 2123 /* Otherwise, fall thru into the TK_COLUMN case */ 2124 } 2125 case TK_COLUMN: { 2126 if( pExpr->iTable<0 ){ 2127 /* This only happens when coding check constraints */ 2128 assert( pParse->ckBase>0 ); 2129 inReg = pExpr->iColumn + pParse->ckBase; 2130 }else{ 2131 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 2132 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2133 pExpr->iColumn, pExpr->iTable, target, 2134 pExpr->flags & EP_AnyAff); 2135 } 2136 break; 2137 } 2138 case TK_INTEGER: { 2139 codeInteger(v, pExpr, 0, target); 2140 break; 2141 } 2142 case TK_FLOAT: { 2143 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2144 codeReal(v, pExpr->u.zToken, 0, target); 2145 break; 2146 } 2147 case TK_STRING: { 2148 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2149 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2150 break; 2151 } 2152 case TK_NULL: { 2153 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2154 break; 2155 } 2156 #ifndef SQLITE_OMIT_BLOB_LITERAL 2157 case TK_BLOB: { 2158 int n; 2159 const char *z; 2160 char *zBlob; 2161 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2162 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2163 assert( pExpr->u.zToken[1]=='\'' ); 2164 z = &pExpr->u.zToken[2]; 2165 n = sqlite3Strlen30(z) - 1; 2166 assert( z[n]=='\'' ); 2167 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2168 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2169 break; 2170 } 2171 #endif 2172 case TK_VARIABLE: { 2173 VdbeOp *pOp; 2174 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2175 assert( pExpr->u.zToken!=0 ); 2176 assert( pExpr->u.zToken[0]!=0 ); 2177 if( pExpr->u.zToken[1]==0 2178 && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable 2179 && pOp->p1+pOp->p3==pExpr->iTable 2180 && pOp->p2+pOp->p3==target 2181 && pOp->p4.z==0 2182 ){ 2183 /* If the previous instruction was a copy of the previous unnamed 2184 ** parameter into the previous register, then simply increment the 2185 ** repeat count on the prior instruction rather than making a new 2186 ** instruction. 2187 */ 2188 pOp->p3++; 2189 }else{ 2190 sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1); 2191 if( pExpr->u.zToken[1]!=0 ){ 2192 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); 2193 } 2194 } 2195 break; 2196 } 2197 case TK_REGISTER: { 2198 inReg = pExpr->iTable; 2199 break; 2200 } 2201 case TK_AS: { 2202 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2203 break; 2204 } 2205 #ifndef SQLITE_OMIT_CAST 2206 case TK_CAST: { 2207 /* Expressions of the form: CAST(pLeft AS token) */ 2208 int aff, to_op; 2209 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2210 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2211 aff = sqlite3AffinityType(pExpr->u.zToken); 2212 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2213 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2214 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2215 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2216 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2217 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2218 testcase( to_op==OP_ToText ); 2219 testcase( to_op==OP_ToBlob ); 2220 testcase( to_op==OP_ToNumeric ); 2221 testcase( to_op==OP_ToInt ); 2222 testcase( to_op==OP_ToReal ); 2223 if( inReg!=target ){ 2224 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2225 inReg = target; 2226 } 2227 sqlite3VdbeAddOp1(v, to_op, inReg); 2228 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2229 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2230 break; 2231 } 2232 #endif /* SQLITE_OMIT_CAST */ 2233 case TK_LT: 2234 case TK_LE: 2235 case TK_GT: 2236 case TK_GE: 2237 case TK_NE: 2238 case TK_EQ: { 2239 assert( TK_LT==OP_Lt ); 2240 assert( TK_LE==OP_Le ); 2241 assert( TK_GT==OP_Gt ); 2242 assert( TK_GE==OP_Ge ); 2243 assert( TK_EQ==OP_Eq ); 2244 assert( TK_NE==OP_Ne ); 2245 testcase( op==TK_LT ); 2246 testcase( op==TK_LE ); 2247 testcase( op==TK_GT ); 2248 testcase( op==TK_GE ); 2249 testcase( op==TK_EQ ); 2250 testcase( op==TK_NE ); 2251 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2252 pExpr->pRight, &r2, ®Free2); 2253 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2254 r1, r2, inReg, SQLITE_STOREP2); 2255 testcase( regFree1==0 ); 2256 testcase( regFree2==0 ); 2257 break; 2258 } 2259 case TK_AND: 2260 case TK_OR: 2261 case TK_PLUS: 2262 case TK_STAR: 2263 case TK_MINUS: 2264 case TK_REM: 2265 case TK_BITAND: 2266 case TK_BITOR: 2267 case TK_SLASH: 2268 case TK_LSHIFT: 2269 case TK_RSHIFT: 2270 case TK_CONCAT: { 2271 assert( TK_AND==OP_And ); 2272 assert( TK_OR==OP_Or ); 2273 assert( TK_PLUS==OP_Add ); 2274 assert( TK_MINUS==OP_Subtract ); 2275 assert( TK_REM==OP_Remainder ); 2276 assert( TK_BITAND==OP_BitAnd ); 2277 assert( TK_BITOR==OP_BitOr ); 2278 assert( TK_SLASH==OP_Divide ); 2279 assert( TK_LSHIFT==OP_ShiftLeft ); 2280 assert( TK_RSHIFT==OP_ShiftRight ); 2281 assert( TK_CONCAT==OP_Concat ); 2282 testcase( op==TK_AND ); 2283 testcase( op==TK_OR ); 2284 testcase( op==TK_PLUS ); 2285 testcase( op==TK_MINUS ); 2286 testcase( op==TK_REM ); 2287 testcase( op==TK_BITAND ); 2288 testcase( op==TK_BITOR ); 2289 testcase( op==TK_SLASH ); 2290 testcase( op==TK_LSHIFT ); 2291 testcase( op==TK_RSHIFT ); 2292 testcase( op==TK_CONCAT ); 2293 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2294 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2295 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2296 testcase( regFree1==0 ); 2297 testcase( regFree2==0 ); 2298 break; 2299 } 2300 case TK_UMINUS: { 2301 Expr *pLeft = pExpr->pLeft; 2302 assert( pLeft ); 2303 if( pLeft->op==TK_FLOAT ){ 2304 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2305 codeReal(v, pLeft->u.zToken, 1, target); 2306 }else if( pLeft->op==TK_INTEGER ){ 2307 codeInteger(v, pLeft, 1, target); 2308 }else{ 2309 regFree1 = r1 = sqlite3GetTempReg(pParse); 2310 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2311 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2312 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2313 testcase( regFree2==0 ); 2314 } 2315 inReg = target; 2316 break; 2317 } 2318 case TK_BITNOT: 2319 case TK_NOT: { 2320 assert( TK_BITNOT==OP_BitNot ); 2321 assert( TK_NOT==OP_Not ); 2322 testcase( op==TK_BITNOT ); 2323 testcase( op==TK_NOT ); 2324 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2325 testcase( regFree1==0 ); 2326 inReg = target; 2327 sqlite3VdbeAddOp2(v, op, r1, inReg); 2328 break; 2329 } 2330 case TK_ISNULL: 2331 case TK_NOTNULL: { 2332 int addr; 2333 assert( TK_ISNULL==OP_IsNull ); 2334 assert( TK_NOTNULL==OP_NotNull ); 2335 testcase( op==TK_ISNULL ); 2336 testcase( op==TK_NOTNULL ); 2337 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2338 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2339 testcase( regFree1==0 ); 2340 addr = sqlite3VdbeAddOp1(v, op, r1); 2341 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2342 sqlite3VdbeJumpHere(v, addr); 2343 break; 2344 } 2345 case TK_AGG_FUNCTION: { 2346 AggInfo *pInfo = pExpr->pAggInfo; 2347 if( pInfo==0 ){ 2348 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2349 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2350 }else{ 2351 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2352 } 2353 break; 2354 } 2355 case TK_CONST_FUNC: 2356 case TK_FUNCTION: { 2357 ExprList *pFarg; /* List of function arguments */ 2358 int nFarg; /* Number of function arguments */ 2359 FuncDef *pDef; /* The function definition object */ 2360 int nId; /* Length of the function name in bytes */ 2361 const char *zId; /* The function name */ 2362 int constMask = 0; /* Mask of function arguments that are constant */ 2363 int i; /* Loop counter */ 2364 u8 enc = ENC(db); /* The text encoding used by this database */ 2365 CollSeq *pColl = 0; /* A collating sequence */ 2366 2367 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2368 testcase( op==TK_CONST_FUNC ); 2369 testcase( op==TK_FUNCTION ); 2370 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2371 pFarg = 0; 2372 }else{ 2373 pFarg = pExpr->x.pList; 2374 } 2375 nFarg = pFarg ? pFarg->nExpr : 0; 2376 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2377 zId = pExpr->u.zToken; 2378 nId = sqlite3Strlen30(zId); 2379 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2380 assert( pDef!=0 ); 2381 if( pFarg ){ 2382 r1 = sqlite3GetTempRange(pParse, nFarg); 2383 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2384 }else{ 2385 r1 = 0; 2386 } 2387 #ifndef SQLITE_OMIT_VIRTUALTABLE 2388 /* Possibly overload the function if the first argument is 2389 ** a virtual table column. 2390 ** 2391 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2392 ** second argument, not the first, as the argument to test to 2393 ** see if it is a column in a virtual table. This is done because 2394 ** the left operand of infix functions (the operand we want to 2395 ** control overloading) ends up as the second argument to the 2396 ** function. The expression "A glob B" is equivalent to 2397 ** "glob(B,A). We want to use the A in "A glob B" to test 2398 ** for function overloading. But we use the B term in "glob(B,A)". 2399 */ 2400 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2401 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2402 }else if( nFarg>0 ){ 2403 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2404 } 2405 #endif 2406 for(i=0; i<nFarg; i++){ 2407 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2408 constMask |= (1<<i); 2409 } 2410 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2411 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2412 } 2413 } 2414 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2415 if( !pColl ) pColl = db->pDfltColl; 2416 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2417 } 2418 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2419 (char*)pDef, P4_FUNCDEF); 2420 sqlite3VdbeChangeP5(v, (u8)nFarg); 2421 if( nFarg ){ 2422 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2423 } 2424 sqlite3ExprCacheAffinityChange(pParse, r1, nFarg); 2425 break; 2426 } 2427 #ifndef SQLITE_OMIT_SUBQUERY 2428 case TK_EXISTS: 2429 case TK_SELECT: { 2430 testcase( op==TK_EXISTS ); 2431 testcase( op==TK_SELECT ); 2432 sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2433 inReg = pExpr->iColumn; 2434 break; 2435 } 2436 case TK_IN: { 2437 int rNotFound = 0; 2438 int rMayHaveNull = 0; 2439 int j2, j3, j4, j5; 2440 char affinity; 2441 int eType; 2442 2443 VdbeNoopComment((v, "begin IN expr r%d", target)); 2444 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); 2445 if( rMayHaveNull ){ 2446 rNotFound = ++pParse->nMem; 2447 } 2448 2449 /* Figure out the affinity to use to create a key from the results 2450 ** of the expression. affinityStr stores a static string suitable for 2451 ** P4 of OP_MakeRecord. 2452 */ 2453 affinity = comparisonAffinity(pExpr); 2454 2455 2456 /* Code the <expr> from "<expr> IN (...)". The temporary table 2457 ** pExpr->iTable contains the values that make up the (...) set. 2458 */ 2459 sqlite3ExprCachePush(pParse); 2460 sqlite3ExprCode(pParse, pExpr->pLeft, target); 2461 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); 2462 if( eType==IN_INDEX_ROWID ){ 2463 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); 2464 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); 2465 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2466 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 2467 sqlite3VdbeJumpHere(v, j3); 2468 sqlite3VdbeJumpHere(v, j4); 2469 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2470 }else{ 2471 r2 = regFree2 = sqlite3GetTempReg(pParse); 2472 2473 /* Create a record and test for set membership. If the set contains 2474 ** the value, then jump to the end of the test code. The target 2475 ** register still contains the true (1) value written to it earlier. 2476 */ 2477 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); 2478 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2479 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); 2480 2481 /* If the set membership test fails, then the result of the 2482 ** "x IN (...)" expression must be either 0 or NULL. If the set 2483 ** contains no NULL values, then the result is 0. If the set 2484 ** contains one or more NULL values, then the result of the 2485 ** expression is also NULL. 2486 */ 2487 if( rNotFound==0 ){ 2488 /* This branch runs if it is known at compile time (now) that 2489 ** the set contains no NULL values. This happens as the result 2490 ** of a "NOT NULL" constraint in the database schema. No need 2491 ** to test the data structure at runtime in this case. 2492 */ 2493 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2494 }else{ 2495 /* This block populates the rNotFound register with either NULL 2496 ** or 0 (an integer value). If the data structure contains one 2497 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it 2498 ** to 0. If register rMayHaveNull is already set to some value 2499 ** other than NULL, then the test has already been run and 2500 ** rNotFound is already populated. 2501 */ 2502 static const char nullRecord[] = { 0x02, 0x00 }; 2503 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); 2504 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); 2505 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 2506 nullRecord, P4_STATIC); 2507 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); 2508 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); 2509 sqlite3VdbeJumpHere(v, j4); 2510 sqlite3VdbeJumpHere(v, j3); 2511 2512 /* Copy the value of register rNotFound (which is either NULL or 0) 2513 ** into the target register. This will be the result of the 2514 ** expression. 2515 */ 2516 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); 2517 } 2518 } 2519 sqlite3VdbeJumpHere(v, j2); 2520 sqlite3VdbeJumpHere(v, j5); 2521 sqlite3ExprCachePop(pParse, 1); 2522 VdbeComment((v, "end IN expr r%d", target)); 2523 break; 2524 } 2525 #endif 2526 /* 2527 ** x BETWEEN y AND z 2528 ** 2529 ** This is equivalent to 2530 ** 2531 ** x>=y AND x<=z 2532 ** 2533 ** X is stored in pExpr->pLeft. 2534 ** Y is stored in pExpr->pList->a[0].pExpr. 2535 ** Z is stored in pExpr->pList->a[1].pExpr. 2536 */ 2537 case TK_BETWEEN: { 2538 Expr *pLeft = pExpr->pLeft; 2539 struct ExprList_item *pLItem = pExpr->x.pList->a; 2540 Expr *pRight = pLItem->pExpr; 2541 2542 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2543 pRight, &r2, ®Free2); 2544 testcase( regFree1==0 ); 2545 testcase( regFree2==0 ); 2546 r3 = sqlite3GetTempReg(pParse); 2547 r4 = sqlite3GetTempReg(pParse); 2548 codeCompare(pParse, pLeft, pRight, OP_Ge, 2549 r1, r2, r3, SQLITE_STOREP2); 2550 pLItem++; 2551 pRight = pLItem->pExpr; 2552 sqlite3ReleaseTempReg(pParse, regFree2); 2553 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2554 testcase( regFree2==0 ); 2555 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2556 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2557 sqlite3ReleaseTempReg(pParse, r3); 2558 sqlite3ReleaseTempReg(pParse, r4); 2559 break; 2560 } 2561 case TK_UPLUS: { 2562 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2563 break; 2564 } 2565 2566 /* 2567 ** Form A: 2568 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2569 ** 2570 ** Form B: 2571 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2572 ** 2573 ** Form A is can be transformed into the equivalent form B as follows: 2574 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2575 ** WHEN x=eN THEN rN ELSE y END 2576 ** 2577 ** X (if it exists) is in pExpr->pLeft. 2578 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2579 ** ELSE clause and no other term matches, then the result of the 2580 ** exprssion is NULL. 2581 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2582 ** 2583 ** The result of the expression is the Ri for the first matching Ei, 2584 ** or if there is no matching Ei, the ELSE term Y, or if there is 2585 ** no ELSE term, NULL. 2586 */ 2587 default: assert( op==TK_CASE ); { 2588 int endLabel; /* GOTO label for end of CASE stmt */ 2589 int nextCase; /* GOTO label for next WHEN clause */ 2590 int nExpr; /* 2x number of WHEN terms */ 2591 int i; /* Loop counter */ 2592 ExprList *pEList; /* List of WHEN terms */ 2593 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2594 Expr opCompare; /* The X==Ei expression */ 2595 Expr cacheX; /* Cached expression X */ 2596 Expr *pX; /* The X expression */ 2597 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2598 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2599 2600 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2601 assert((pExpr->x.pList->nExpr % 2) == 0); 2602 assert(pExpr->x.pList->nExpr > 0); 2603 pEList = pExpr->x.pList; 2604 aListelem = pEList->a; 2605 nExpr = pEList->nExpr; 2606 endLabel = sqlite3VdbeMakeLabel(v); 2607 if( (pX = pExpr->pLeft)!=0 ){ 2608 cacheX = *pX; 2609 testcase( pX->op==TK_COLUMN ); 2610 testcase( pX->op==TK_REGISTER ); 2611 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2612 testcase( regFree1==0 ); 2613 cacheX.op = TK_REGISTER; 2614 opCompare.op = TK_EQ; 2615 opCompare.pLeft = &cacheX; 2616 pTest = &opCompare; 2617 } 2618 for(i=0; i<nExpr; i=i+2){ 2619 sqlite3ExprCachePush(pParse); 2620 if( pX ){ 2621 assert( pTest!=0 ); 2622 opCompare.pRight = aListelem[i].pExpr; 2623 }else{ 2624 pTest = aListelem[i].pExpr; 2625 } 2626 nextCase = sqlite3VdbeMakeLabel(v); 2627 testcase( pTest->op==TK_COLUMN ); 2628 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2629 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2630 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2631 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2632 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2633 sqlite3ExprCachePop(pParse, 1); 2634 sqlite3VdbeResolveLabel(v, nextCase); 2635 } 2636 if( pExpr->pRight ){ 2637 sqlite3ExprCachePush(pParse); 2638 sqlite3ExprCode(pParse, pExpr->pRight, target); 2639 sqlite3ExprCachePop(pParse, 1); 2640 }else{ 2641 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2642 } 2643 assert( db->mallocFailed || pParse->nErr>0 2644 || pParse->iCacheLevel==iCacheLevel ); 2645 sqlite3VdbeResolveLabel(v, endLabel); 2646 break; 2647 } 2648 #ifndef SQLITE_OMIT_TRIGGER 2649 case TK_RAISE: { 2650 if( !pParse->trigStack ){ 2651 sqlite3ErrorMsg(pParse, 2652 "RAISE() may only be used within a trigger-program"); 2653 return 0; 2654 } 2655 if( pExpr->affinity!=OE_Ignore ){ 2656 assert( pExpr->affinity==OE_Rollback || 2657 pExpr->affinity == OE_Abort || 2658 pExpr->affinity == OE_Fail ); 2659 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2660 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->affinity, 0, 2661 pExpr->u.zToken, 0); 2662 } else { 2663 assert( pExpr->affinity == OE_Ignore ); 2664 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); 2665 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2666 VdbeComment((v, "raise(IGNORE)")); 2667 } 2668 break; 2669 } 2670 #endif 2671 } 2672 sqlite3ReleaseTempReg(pParse, regFree1); 2673 sqlite3ReleaseTempReg(pParse, regFree2); 2674 return inReg; 2675 } 2676 2677 /* 2678 ** Generate code to evaluate an expression and store the results 2679 ** into a register. Return the register number where the results 2680 ** are stored. 2681 ** 2682 ** If the register is a temporary register that can be deallocated, 2683 ** then write its number into *pReg. If the result register is not 2684 ** a temporary, then set *pReg to zero. 2685 */ 2686 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2687 int r1 = sqlite3GetTempReg(pParse); 2688 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2689 if( r2==r1 ){ 2690 *pReg = r1; 2691 }else{ 2692 sqlite3ReleaseTempReg(pParse, r1); 2693 *pReg = 0; 2694 } 2695 return r2; 2696 } 2697 2698 /* 2699 ** Generate code that will evaluate expression pExpr and store the 2700 ** results in register target. The results are guaranteed to appear 2701 ** in register target. 2702 */ 2703 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2704 int inReg; 2705 2706 assert( target>0 && target<=pParse->nMem ); 2707 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2708 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2709 if( inReg!=target && pParse->pVdbe ){ 2710 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2711 } 2712 return target; 2713 } 2714 2715 /* 2716 ** Generate code that evalutes the given expression and puts the result 2717 ** in register target. 2718 ** 2719 ** Also make a copy of the expression results into another "cache" register 2720 ** and modify the expression so that the next time it is evaluated, 2721 ** the result is a copy of the cache register. 2722 ** 2723 ** This routine is used for expressions that are used multiple 2724 ** times. They are evaluated once and the results of the expression 2725 ** are reused. 2726 */ 2727 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2728 Vdbe *v = pParse->pVdbe; 2729 int inReg; 2730 inReg = sqlite3ExprCode(pParse, pExpr, target); 2731 assert( target>0 ); 2732 /* This routine is called for terms to INSERT or UPDATE. And the only 2733 ** other place where expressions can be converted into TK_REGISTER is 2734 ** in WHERE clause processing. So as currently implemented, there is 2735 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2736 ** keep the ALWAYS() in case the conditions above change with future 2737 ** modifications or enhancements. */ 2738 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2739 int iMem; 2740 iMem = ++pParse->nMem; 2741 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2742 pExpr->iTable = iMem; 2743 pExpr->op = TK_REGISTER; 2744 } 2745 return inReg; 2746 } 2747 2748 /* 2749 ** Return TRUE if pExpr is an constant expression that is appropriate 2750 ** for factoring out of a loop. Appropriate expressions are: 2751 ** 2752 ** * Any expression that evaluates to two or more opcodes. 2753 ** 2754 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2755 ** or OP_Variable that does not need to be placed in a 2756 ** specific register. 2757 ** 2758 ** There is no point in factoring out single-instruction constant 2759 ** expressions that need to be placed in a particular register. 2760 ** We could factor them out, but then we would end up adding an 2761 ** OP_SCopy instruction to move the value into the correct register 2762 ** later. We might as well just use the original instruction and 2763 ** avoid the OP_SCopy. 2764 */ 2765 static int isAppropriateForFactoring(Expr *p){ 2766 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2767 return 0; /* Only constant expressions are appropriate for factoring */ 2768 } 2769 if( (p->flags & EP_FixedDest)==0 ){ 2770 return 1; /* Any constant without a fixed destination is appropriate */ 2771 } 2772 while( p->op==TK_UPLUS ) p = p->pLeft; 2773 switch( p->op ){ 2774 #ifndef SQLITE_OMIT_BLOB_LITERAL 2775 case TK_BLOB: 2776 #endif 2777 case TK_VARIABLE: 2778 case TK_INTEGER: 2779 case TK_FLOAT: 2780 case TK_NULL: 2781 case TK_STRING: { 2782 testcase( p->op==TK_BLOB ); 2783 testcase( p->op==TK_VARIABLE ); 2784 testcase( p->op==TK_INTEGER ); 2785 testcase( p->op==TK_FLOAT ); 2786 testcase( p->op==TK_NULL ); 2787 testcase( p->op==TK_STRING ); 2788 /* Single-instruction constants with a fixed destination are 2789 ** better done in-line. If we factor them, they will just end 2790 ** up generating an OP_SCopy to move the value to the destination 2791 ** register. */ 2792 return 0; 2793 } 2794 case TK_UMINUS: { 2795 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2796 return 0; 2797 } 2798 break; 2799 } 2800 default: { 2801 break; 2802 } 2803 } 2804 return 1; 2805 } 2806 2807 /* 2808 ** If pExpr is a constant expression that is appropriate for 2809 ** factoring out of a loop, then evaluate the expression 2810 ** into a register and convert the expression into a TK_REGISTER 2811 ** expression. 2812 */ 2813 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 2814 Parse *pParse = pWalker->pParse; 2815 switch( pExpr->op ){ 2816 case TK_REGISTER: { 2817 return WRC_Prune; 2818 } 2819 case TK_FUNCTION: 2820 case TK_AGG_FUNCTION: 2821 case TK_CONST_FUNC: { 2822 /* The arguments to a function have a fixed destination. 2823 ** Mark them this way to avoid generated unneeded OP_SCopy 2824 ** instructions. 2825 */ 2826 ExprList *pList = pExpr->x.pList; 2827 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2828 if( pList ){ 2829 int i = pList->nExpr; 2830 struct ExprList_item *pItem = pList->a; 2831 for(; i>0; i--, pItem++){ 2832 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 2833 } 2834 } 2835 break; 2836 } 2837 } 2838 if( isAppropriateForFactoring(pExpr) ){ 2839 int r1 = ++pParse->nMem; 2840 int r2; 2841 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2842 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 2843 pExpr->op = TK_REGISTER; 2844 pExpr->iTable = r2; 2845 return WRC_Prune; 2846 } 2847 return WRC_Continue; 2848 } 2849 2850 /* 2851 ** Preevaluate constant subexpressions within pExpr and store the 2852 ** results in registers. Modify pExpr so that the constant subexpresions 2853 ** are TK_REGISTER opcodes that refer to the precomputed values. 2854 */ 2855 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 2856 Walker w; 2857 w.xExprCallback = evalConstExpr; 2858 w.xSelectCallback = 0; 2859 w.pParse = pParse; 2860 sqlite3WalkExpr(&w, pExpr); 2861 } 2862 2863 2864 /* 2865 ** Generate code that pushes the value of every element of the given 2866 ** expression list into a sequence of registers beginning at target. 2867 ** 2868 ** Return the number of elements evaluated. 2869 */ 2870 int sqlite3ExprCodeExprList( 2871 Parse *pParse, /* Parsing context */ 2872 ExprList *pList, /* The expression list to be coded */ 2873 int target, /* Where to write results */ 2874 int doHardCopy /* Make a hard copy of every element */ 2875 ){ 2876 struct ExprList_item *pItem; 2877 int i, n; 2878 assert( pList!=0 ); 2879 assert( target>0 ); 2880 n = pList->nExpr; 2881 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 2882 if( pItem->iAlias ){ 2883 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 2884 Vdbe *v = sqlite3GetVdbe(pParse); 2885 if( iReg!=target+i ){ 2886 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 2887 } 2888 }else{ 2889 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 2890 } 2891 if( doHardCopy && !pParse->db->mallocFailed ){ 2892 sqlite3ExprHardCopy(pParse, target, n); 2893 } 2894 } 2895 return n; 2896 } 2897 2898 /* 2899 ** Generate code for a boolean expression such that a jump is made 2900 ** to the label "dest" if the expression is true but execution 2901 ** continues straight thru if the expression is false. 2902 ** 2903 ** If the expression evaluates to NULL (neither true nor false), then 2904 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 2905 ** 2906 ** This code depends on the fact that certain token values (ex: TK_EQ) 2907 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2908 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2909 ** the make process cause these values to align. Assert()s in the code 2910 ** below verify that the numbers are aligned correctly. 2911 */ 2912 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2913 Vdbe *v = pParse->pVdbe; 2914 int op = 0; 2915 int regFree1 = 0; 2916 int regFree2 = 0; 2917 int r1, r2; 2918 2919 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2920 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 2921 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 2922 op = pExpr->op; 2923 switch( op ){ 2924 case TK_AND: { 2925 int d2 = sqlite3VdbeMakeLabel(v); 2926 testcase( jumpIfNull==0 ); 2927 sqlite3ExprCachePush(pParse); 2928 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 2929 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2930 sqlite3VdbeResolveLabel(v, d2); 2931 sqlite3ExprCachePop(pParse, 1); 2932 break; 2933 } 2934 case TK_OR: { 2935 testcase( jumpIfNull==0 ); 2936 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2937 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2938 break; 2939 } 2940 case TK_NOT: { 2941 testcase( jumpIfNull==0 ); 2942 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2943 break; 2944 } 2945 case TK_LT: 2946 case TK_LE: 2947 case TK_GT: 2948 case TK_GE: 2949 case TK_NE: 2950 case TK_EQ: { 2951 assert( TK_LT==OP_Lt ); 2952 assert( TK_LE==OP_Le ); 2953 assert( TK_GT==OP_Gt ); 2954 assert( TK_GE==OP_Ge ); 2955 assert( TK_EQ==OP_Eq ); 2956 assert( TK_NE==OP_Ne ); 2957 testcase( op==TK_LT ); 2958 testcase( op==TK_LE ); 2959 testcase( op==TK_GT ); 2960 testcase( op==TK_GE ); 2961 testcase( op==TK_EQ ); 2962 testcase( op==TK_NE ); 2963 testcase( jumpIfNull==0 ); 2964 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2965 pExpr->pRight, &r2, ®Free2); 2966 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2967 r1, r2, dest, jumpIfNull); 2968 testcase( regFree1==0 ); 2969 testcase( regFree2==0 ); 2970 break; 2971 } 2972 case TK_ISNULL: 2973 case TK_NOTNULL: { 2974 assert( TK_ISNULL==OP_IsNull ); 2975 assert( TK_NOTNULL==OP_NotNull ); 2976 testcase( op==TK_ISNULL ); 2977 testcase( op==TK_NOTNULL ); 2978 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2979 sqlite3VdbeAddOp2(v, op, r1, dest); 2980 testcase( regFree1==0 ); 2981 break; 2982 } 2983 case TK_BETWEEN: { 2984 /* x BETWEEN y AND z 2985 ** 2986 ** Is equivalent to 2987 ** 2988 ** x>=y AND x<=z 2989 ** 2990 ** Code it as such, taking care to do the common subexpression 2991 ** elementation of x. 2992 */ 2993 Expr exprAnd; 2994 Expr compLeft; 2995 Expr compRight; 2996 Expr exprX; 2997 2998 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2999 exprX = *pExpr->pLeft; 3000 exprAnd.op = TK_AND; 3001 exprAnd.pLeft = &compLeft; 3002 exprAnd.pRight = &compRight; 3003 compLeft.op = TK_GE; 3004 compLeft.pLeft = &exprX; 3005 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3006 compRight.op = TK_LE; 3007 compRight.pLeft = &exprX; 3008 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3009 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3010 testcase( regFree1==0 ); 3011 exprX.op = TK_REGISTER; 3012 testcase( jumpIfNull==0 ); 3013 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3014 break; 3015 } 3016 default: { 3017 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3018 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3019 testcase( regFree1==0 ); 3020 testcase( jumpIfNull==0 ); 3021 break; 3022 } 3023 } 3024 sqlite3ReleaseTempReg(pParse, regFree1); 3025 sqlite3ReleaseTempReg(pParse, regFree2); 3026 } 3027 3028 /* 3029 ** Generate code for a boolean expression such that a jump is made 3030 ** to the label "dest" if the expression is false but execution 3031 ** continues straight thru if the expression is true. 3032 ** 3033 ** If the expression evaluates to NULL (neither true nor false) then 3034 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3035 ** is 0. 3036 */ 3037 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3038 Vdbe *v = pParse->pVdbe; 3039 int op = 0; 3040 int regFree1 = 0; 3041 int regFree2 = 0; 3042 int r1, r2; 3043 3044 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3045 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3046 if( pExpr==0 ) return; 3047 3048 /* The value of pExpr->op and op are related as follows: 3049 ** 3050 ** pExpr->op op 3051 ** --------- ---------- 3052 ** TK_ISNULL OP_NotNull 3053 ** TK_NOTNULL OP_IsNull 3054 ** TK_NE OP_Eq 3055 ** TK_EQ OP_Ne 3056 ** TK_GT OP_Le 3057 ** TK_LE OP_Gt 3058 ** TK_GE OP_Lt 3059 ** TK_LT OP_Ge 3060 ** 3061 ** For other values of pExpr->op, op is undefined and unused. 3062 ** The value of TK_ and OP_ constants are arranged such that we 3063 ** can compute the mapping above using the following expression. 3064 ** Assert()s verify that the computation is correct. 3065 */ 3066 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3067 3068 /* Verify correct alignment of TK_ and OP_ constants 3069 */ 3070 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3071 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3072 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3073 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3074 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3075 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3076 assert( pExpr->op!=TK_GT || op==OP_Le ); 3077 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3078 3079 switch( pExpr->op ){ 3080 case TK_AND: { 3081 testcase( jumpIfNull==0 ); 3082 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3083 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3084 break; 3085 } 3086 case TK_OR: { 3087 int d2 = sqlite3VdbeMakeLabel(v); 3088 testcase( jumpIfNull==0 ); 3089 sqlite3ExprCachePush(pParse); 3090 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3091 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3092 sqlite3VdbeResolveLabel(v, d2); 3093 sqlite3ExprCachePop(pParse, 1); 3094 break; 3095 } 3096 case TK_NOT: { 3097 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3098 break; 3099 } 3100 case TK_LT: 3101 case TK_LE: 3102 case TK_GT: 3103 case TK_GE: 3104 case TK_NE: 3105 case TK_EQ: { 3106 testcase( op==TK_LT ); 3107 testcase( op==TK_LE ); 3108 testcase( op==TK_GT ); 3109 testcase( op==TK_GE ); 3110 testcase( op==TK_EQ ); 3111 testcase( op==TK_NE ); 3112 testcase( jumpIfNull==0 ); 3113 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3114 pExpr->pRight, &r2, ®Free2); 3115 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3116 r1, r2, dest, jumpIfNull); 3117 testcase( regFree1==0 ); 3118 testcase( regFree2==0 ); 3119 break; 3120 } 3121 case TK_ISNULL: 3122 case TK_NOTNULL: { 3123 testcase( op==TK_ISNULL ); 3124 testcase( op==TK_NOTNULL ); 3125 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3126 sqlite3VdbeAddOp2(v, op, r1, dest); 3127 testcase( regFree1==0 ); 3128 break; 3129 } 3130 case TK_BETWEEN: { 3131 /* x BETWEEN y AND z 3132 ** 3133 ** Is equivalent to 3134 ** 3135 ** x>=y AND x<=z 3136 ** 3137 ** Code it as such, taking care to do the common subexpression 3138 ** elementation of x. 3139 */ 3140 Expr exprAnd; 3141 Expr compLeft; 3142 Expr compRight; 3143 Expr exprX; 3144 3145 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3146 exprX = *pExpr->pLeft; 3147 exprAnd.op = TK_AND; 3148 exprAnd.pLeft = &compLeft; 3149 exprAnd.pRight = &compRight; 3150 compLeft.op = TK_GE; 3151 compLeft.pLeft = &exprX; 3152 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3153 compRight.op = TK_LE; 3154 compRight.pLeft = &exprX; 3155 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3156 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3157 testcase( regFree1==0 ); 3158 exprX.op = TK_REGISTER; 3159 testcase( jumpIfNull==0 ); 3160 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3161 break; 3162 } 3163 default: { 3164 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3165 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3166 testcase( regFree1==0 ); 3167 testcase( jumpIfNull==0 ); 3168 break; 3169 } 3170 } 3171 sqlite3ReleaseTempReg(pParse, regFree1); 3172 sqlite3ReleaseTempReg(pParse, regFree2); 3173 } 3174 3175 /* 3176 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3177 ** if they are identical and return FALSE if they differ in any way. 3178 ** 3179 ** Sometimes this routine will return FALSE even if the two expressions 3180 ** really are equivalent. If we cannot prove that the expressions are 3181 ** identical, we return FALSE just to be safe. So if this routine 3182 ** returns false, then you do not really know for certain if the two 3183 ** expressions are the same. But if you get a TRUE return, then you 3184 ** can be sure the expressions are the same. In the places where 3185 ** this routine is used, it does not hurt to get an extra FALSE - that 3186 ** just might result in some slightly slower code. But returning 3187 ** an incorrect TRUE could lead to a malfunction. 3188 */ 3189 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3190 int i; 3191 if( pA==0||pB==0 ){ 3192 return pB==pA; 3193 } 3194 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3195 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3196 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3197 return 0; 3198 } 3199 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3200 if( pA->op!=pB->op ) return 0; 3201 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3202 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3203 3204 if( pA->x.pList && pB->x.pList ){ 3205 if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0; 3206 for(i=0; i<pA->x.pList->nExpr; i++){ 3207 Expr *pExprA = pA->x.pList->a[i].pExpr; 3208 Expr *pExprB = pB->x.pList->a[i].pExpr; 3209 if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0; 3210 } 3211 }else if( pA->x.pList || pB->x.pList ){ 3212 return 0; 3213 } 3214 3215 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3216 if( ExprHasProperty(pA, EP_IntValue) ){ 3217 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3218 return 0; 3219 } 3220 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3221 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0; 3222 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3223 return 0; 3224 } 3225 } 3226 return 1; 3227 } 3228 3229 3230 /* 3231 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3232 ** the new element. Return a negative number if malloc fails. 3233 */ 3234 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3235 int i; 3236 pInfo->aCol = sqlite3ArrayAllocate( 3237 db, 3238 pInfo->aCol, 3239 sizeof(pInfo->aCol[0]), 3240 3, 3241 &pInfo->nColumn, 3242 &pInfo->nColumnAlloc, 3243 &i 3244 ); 3245 return i; 3246 } 3247 3248 /* 3249 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3250 ** the new element. Return a negative number if malloc fails. 3251 */ 3252 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3253 int i; 3254 pInfo->aFunc = sqlite3ArrayAllocate( 3255 db, 3256 pInfo->aFunc, 3257 sizeof(pInfo->aFunc[0]), 3258 3, 3259 &pInfo->nFunc, 3260 &pInfo->nFuncAlloc, 3261 &i 3262 ); 3263 return i; 3264 } 3265 3266 /* 3267 ** This is the xExprCallback for a tree walker. It is used to 3268 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3269 ** for additional information. 3270 */ 3271 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3272 int i; 3273 NameContext *pNC = pWalker->u.pNC; 3274 Parse *pParse = pNC->pParse; 3275 SrcList *pSrcList = pNC->pSrcList; 3276 AggInfo *pAggInfo = pNC->pAggInfo; 3277 3278 switch( pExpr->op ){ 3279 case TK_AGG_COLUMN: 3280 case TK_COLUMN: { 3281 testcase( pExpr->op==TK_AGG_COLUMN ); 3282 testcase( pExpr->op==TK_COLUMN ); 3283 /* Check to see if the column is in one of the tables in the FROM 3284 ** clause of the aggregate query */ 3285 if( ALWAYS(pSrcList!=0) ){ 3286 struct SrcList_item *pItem = pSrcList->a; 3287 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3288 struct AggInfo_col *pCol; 3289 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3290 if( pExpr->iTable==pItem->iCursor ){ 3291 /* If we reach this point, it means that pExpr refers to a table 3292 ** that is in the FROM clause of the aggregate query. 3293 ** 3294 ** Make an entry for the column in pAggInfo->aCol[] if there 3295 ** is not an entry there already. 3296 */ 3297 int k; 3298 pCol = pAggInfo->aCol; 3299 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3300 if( pCol->iTable==pExpr->iTable && 3301 pCol->iColumn==pExpr->iColumn ){ 3302 break; 3303 } 3304 } 3305 if( (k>=pAggInfo->nColumn) 3306 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3307 ){ 3308 pCol = &pAggInfo->aCol[k]; 3309 pCol->pTab = pExpr->pTab; 3310 pCol->iTable = pExpr->iTable; 3311 pCol->iColumn = pExpr->iColumn; 3312 pCol->iMem = ++pParse->nMem; 3313 pCol->iSorterColumn = -1; 3314 pCol->pExpr = pExpr; 3315 if( pAggInfo->pGroupBy ){ 3316 int j, n; 3317 ExprList *pGB = pAggInfo->pGroupBy; 3318 struct ExprList_item *pTerm = pGB->a; 3319 n = pGB->nExpr; 3320 for(j=0; j<n; j++, pTerm++){ 3321 Expr *pE = pTerm->pExpr; 3322 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3323 pE->iColumn==pExpr->iColumn ){ 3324 pCol->iSorterColumn = j; 3325 break; 3326 } 3327 } 3328 } 3329 if( pCol->iSorterColumn<0 ){ 3330 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3331 } 3332 } 3333 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3334 ** because it was there before or because we just created it). 3335 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3336 ** pAggInfo->aCol[] entry. 3337 */ 3338 ExprSetIrreducible(pExpr); 3339 pExpr->pAggInfo = pAggInfo; 3340 pExpr->op = TK_AGG_COLUMN; 3341 pExpr->iAgg = (i16)k; 3342 break; 3343 } /* endif pExpr->iTable==pItem->iCursor */ 3344 } /* end loop over pSrcList */ 3345 } 3346 return WRC_Prune; 3347 } 3348 case TK_AGG_FUNCTION: { 3349 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3350 ** to be ignored */ 3351 if( pNC->nDepth==0 ){ 3352 /* Check to see if pExpr is a duplicate of another aggregate 3353 ** function that is already in the pAggInfo structure 3354 */ 3355 struct AggInfo_func *pItem = pAggInfo->aFunc; 3356 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3357 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3358 break; 3359 } 3360 } 3361 if( i>=pAggInfo->nFunc ){ 3362 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3363 */ 3364 u8 enc = ENC(pParse->db); 3365 i = addAggInfoFunc(pParse->db, pAggInfo); 3366 if( i>=0 ){ 3367 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3368 pItem = &pAggInfo->aFunc[i]; 3369 pItem->pExpr = pExpr; 3370 pItem->iMem = ++pParse->nMem; 3371 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3372 pItem->pFunc = sqlite3FindFunction(pParse->db, 3373 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3374 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3375 if( pExpr->flags & EP_Distinct ){ 3376 pItem->iDistinct = pParse->nTab++; 3377 }else{ 3378 pItem->iDistinct = -1; 3379 } 3380 } 3381 } 3382 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3383 */ 3384 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3385 ExprSetIrreducible(pExpr); 3386 pExpr->iAgg = (i16)i; 3387 pExpr->pAggInfo = pAggInfo; 3388 return WRC_Prune; 3389 } 3390 } 3391 } 3392 return WRC_Continue; 3393 } 3394 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3395 NameContext *pNC = pWalker->u.pNC; 3396 if( pNC->nDepth==0 ){ 3397 pNC->nDepth++; 3398 sqlite3WalkSelect(pWalker, pSelect); 3399 pNC->nDepth--; 3400 return WRC_Prune; 3401 }else{ 3402 return WRC_Continue; 3403 } 3404 } 3405 3406 /* 3407 ** Analyze the given expression looking for aggregate functions and 3408 ** for variables that need to be added to the pParse->aAgg[] array. 3409 ** Make additional entries to the pParse->aAgg[] array as necessary. 3410 ** 3411 ** This routine should only be called after the expression has been 3412 ** analyzed by sqlite3ResolveExprNames(). 3413 */ 3414 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3415 Walker w; 3416 w.xExprCallback = analyzeAggregate; 3417 w.xSelectCallback = analyzeAggregatesInSelect; 3418 w.u.pNC = pNC; 3419 assert( pNC->pSrcList!=0 ); 3420 sqlite3WalkExpr(&w, pExpr); 3421 } 3422 3423 /* 3424 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3425 ** expression list. Return the number of errors. 3426 ** 3427 ** If an error is found, the analysis is cut short. 3428 */ 3429 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3430 struct ExprList_item *pItem; 3431 int i; 3432 if( pList ){ 3433 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3434 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3435 } 3436 } 3437 } 3438 3439 /* 3440 ** Allocate a single new register for use to hold some intermediate result. 3441 */ 3442 int sqlite3GetTempReg(Parse *pParse){ 3443 if( pParse->nTempReg==0 ){ 3444 return ++pParse->nMem; 3445 } 3446 return pParse->aTempReg[--pParse->nTempReg]; 3447 } 3448 3449 /* 3450 ** Deallocate a register, making available for reuse for some other 3451 ** purpose. 3452 ** 3453 ** If a register is currently being used by the column cache, then 3454 ** the dallocation is deferred until the column cache line that uses 3455 ** the register becomes stale. 3456 */ 3457 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3458 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3459 int i; 3460 struct yColCache *p; 3461 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3462 if( p->iReg==iReg ){ 3463 p->tempReg = 1; 3464 return; 3465 } 3466 } 3467 pParse->aTempReg[pParse->nTempReg++] = iReg; 3468 } 3469 } 3470 3471 /* 3472 ** Allocate or deallocate a block of nReg consecutive registers 3473 */ 3474 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3475 int i, n; 3476 i = pParse->iRangeReg; 3477 n = pParse->nRangeReg; 3478 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3479 pParse->iRangeReg += nReg; 3480 pParse->nRangeReg -= nReg; 3481 }else{ 3482 i = pParse->nMem+1; 3483 pParse->nMem += nReg; 3484 } 3485 return i; 3486 } 3487 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3488 if( nReg>pParse->nRangeReg ){ 3489 pParse->nRangeReg = nReg; 3490 pParse->iRangeReg = iReg; 3491 } 3492 } 3493