xref: /sqlite-3.40.0/src/expr.c (revision 5368f29a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.447 2009/07/16 12:41:06 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Return the 'affinity' of the expression pExpr if any.
21 **
22 ** If pExpr is a column, a reference to a column via an 'AS' alias,
23 ** or a sub-select with a column as the return value, then the
24 ** affinity of that column is returned. Otherwise, 0x00 is returned,
25 ** indicating no affinity for the expression.
26 **
27 ** i.e. the WHERE clause expresssions in the following statements all
28 ** have an affinity:
29 **
30 ** CREATE TABLE t1(a);
31 ** SELECT * FROM t1 WHERE a;
32 ** SELECT a AS b FROM t1 WHERE b;
33 ** SELECT * FROM t1 WHERE (select a from t1);
34 */
35 char sqlite3ExprAffinity(Expr *pExpr){
36   int op = pExpr->op;
37   if( op==TK_SELECT ){
38     assert( pExpr->flags&EP_xIsSelect );
39     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     assert( !ExprHasProperty(pExpr, EP_IntValue) );
44     return sqlite3AffinityType(pExpr->u.zToken);
45   }
46 #endif
47   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
48    && pExpr->pTab!=0
49   ){
50     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
51     ** a TK_COLUMN but was previously evaluated and cached in a register */
52     int j = pExpr->iColumn;
53     if( j<0 ) return SQLITE_AFF_INTEGER;
54     assert( pExpr->pTab && j<pExpr->pTab->nCol );
55     return pExpr->pTab->aCol[j].affinity;
56   }
57   return pExpr->affinity;
58 }
59 
60 /*
61 ** Set the collating sequence for expression pExpr to be the collating
62 ** sequence named by pToken.   Return a pointer to the revised expression.
63 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
64 ** flag.  An explicit collating sequence will override implicit
65 ** collating sequences.
66 */
67 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
68   char *zColl = 0;            /* Dequoted name of collation sequence */
69   CollSeq *pColl;
70   sqlite3 *db = pParse->db;
71   zColl = sqlite3NameFromToken(db, pCollName);
72   if( pExpr && zColl ){
73     pColl = sqlite3LocateCollSeq(pParse, zColl);
74     if( pColl ){
75       pExpr->pColl = pColl;
76       pExpr->flags |= EP_ExpCollate;
77     }
78   }
79   sqlite3DbFree(db, zColl);
80   return pExpr;
81 }
82 
83 /*
84 ** Return the default collation sequence for the expression pExpr. If
85 ** there is no default collation type, return 0.
86 */
87 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
88   CollSeq *pColl = 0;
89   Expr *p = pExpr;
90   while( ALWAYS(p) ){
91     int op;
92     pColl = p->pColl;
93     if( pColl ) break;
94     op = p->op;
95     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
96       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
97       ** a TK_COLUMN but was previously evaluated and cached in a register */
98       const char *zColl;
99       int j = p->iColumn;
100       if( j>=0 ){
101         sqlite3 *db = pParse->db;
102         zColl = p->pTab->aCol[j].zColl;
103         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
104         pExpr->pColl = pColl;
105       }
106       break;
107     }
108     if( op!=TK_CAST && op!=TK_UPLUS ){
109       break;
110     }
111     p = p->pLeft;
112   }
113   if( sqlite3CheckCollSeq(pParse, pColl) ){
114     pColl = 0;
115   }
116   return pColl;
117 }
118 
119 /*
120 ** pExpr is an operand of a comparison operator.  aff2 is the
121 ** type affinity of the other operand.  This routine returns the
122 ** type affinity that should be used for the comparison operator.
123 */
124 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
125   char aff1 = sqlite3ExprAffinity(pExpr);
126   if( aff1 && aff2 ){
127     /* Both sides of the comparison are columns. If one has numeric
128     ** affinity, use that. Otherwise use no affinity.
129     */
130     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
131       return SQLITE_AFF_NUMERIC;
132     }else{
133       return SQLITE_AFF_NONE;
134     }
135   }else if( !aff1 && !aff2 ){
136     /* Neither side of the comparison is a column.  Compare the
137     ** results directly.
138     */
139     return SQLITE_AFF_NONE;
140   }else{
141     /* One side is a column, the other is not. Use the columns affinity. */
142     assert( aff1==0 || aff2==0 );
143     return (aff1 + aff2);
144   }
145 }
146 
147 /*
148 ** pExpr is a comparison operator.  Return the type affinity that should
149 ** be applied to both operands prior to doing the comparison.
150 */
151 static char comparisonAffinity(Expr *pExpr){
152   char aff;
153   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
154           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
155           pExpr->op==TK_NE );
156   assert( pExpr->pLeft );
157   aff = sqlite3ExprAffinity(pExpr->pLeft);
158   if( pExpr->pRight ){
159     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
160   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
161     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
162   }else if( !aff ){
163     aff = SQLITE_AFF_NONE;
164   }
165   return aff;
166 }
167 
168 /*
169 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
170 ** idx_affinity is the affinity of an indexed column. Return true
171 ** if the index with affinity idx_affinity may be used to implement
172 ** the comparison in pExpr.
173 */
174 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
175   char aff = comparisonAffinity(pExpr);
176   switch( aff ){
177     case SQLITE_AFF_NONE:
178       return 1;
179     case SQLITE_AFF_TEXT:
180       return idx_affinity==SQLITE_AFF_TEXT;
181     default:
182       return sqlite3IsNumericAffinity(idx_affinity);
183   }
184 }
185 
186 /*
187 ** Return the P5 value that should be used for a binary comparison
188 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
189 */
190 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
191   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
192   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
193   return aff;
194 }
195 
196 /*
197 ** Return a pointer to the collation sequence that should be used by
198 ** a binary comparison operator comparing pLeft and pRight.
199 **
200 ** If the left hand expression has a collating sequence type, then it is
201 ** used. Otherwise the collation sequence for the right hand expression
202 ** is used, or the default (BINARY) if neither expression has a collating
203 ** type.
204 **
205 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
206 ** it is not considered.
207 */
208 CollSeq *sqlite3BinaryCompareCollSeq(
209   Parse *pParse,
210   Expr *pLeft,
211   Expr *pRight
212 ){
213   CollSeq *pColl;
214   assert( pLeft );
215   if( pLeft->flags & EP_ExpCollate ){
216     assert( pLeft->pColl );
217     pColl = pLeft->pColl;
218   }else if( pRight && pRight->flags & EP_ExpCollate ){
219     assert( pRight->pColl );
220     pColl = pRight->pColl;
221   }else{
222     pColl = sqlite3ExprCollSeq(pParse, pLeft);
223     if( !pColl ){
224       pColl = sqlite3ExprCollSeq(pParse, pRight);
225     }
226   }
227   return pColl;
228 }
229 
230 /*
231 ** Generate the operands for a comparison operation.  Before
232 ** generating the code for each operand, set the EP_AnyAff
233 ** flag on the expression so that it will be able to used a
234 ** cached column value that has previously undergone an
235 ** affinity change.
236 */
237 static void codeCompareOperands(
238   Parse *pParse,    /* Parsing and code generating context */
239   Expr *pLeft,      /* The left operand */
240   int *pRegLeft,    /* Register where left operand is stored */
241   int *pFreeLeft,   /* Free this register when done */
242   Expr *pRight,     /* The right operand */
243   int *pRegRight,   /* Register where right operand is stored */
244   int *pFreeRight   /* Write temp register for right operand there */
245 ){
246   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
247   pLeft->flags |= EP_AnyAff;
248   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
249   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
250   pRight->flags |= EP_AnyAff;
251   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
252 }
253 
254 /*
255 ** Generate code for a comparison operator.
256 */
257 static int codeCompare(
258   Parse *pParse,    /* The parsing (and code generating) context */
259   Expr *pLeft,      /* The left operand */
260   Expr *pRight,     /* The right operand */
261   int opcode,       /* The comparison opcode */
262   int in1, int in2, /* Register holding operands */
263   int dest,         /* Jump here if true.  */
264   int jumpIfNull    /* If true, jump if either operand is NULL */
265 ){
266   int p5;
267   int addr;
268   CollSeq *p4;
269 
270   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
271   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
272   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
273                            (void*)p4, P4_COLLSEQ);
274   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
275   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
276     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
277     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
278   }
279   return addr;
280 }
281 
282 #if SQLITE_MAX_EXPR_DEPTH>0
283 /*
284 ** Check that argument nHeight is less than or equal to the maximum
285 ** expression depth allowed. If it is not, leave an error message in
286 ** pParse.
287 */
288 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
289   int rc = SQLITE_OK;
290   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
291   if( nHeight>mxHeight ){
292     sqlite3ErrorMsg(pParse,
293        "Expression tree is too large (maximum depth %d)", mxHeight
294     );
295     rc = SQLITE_ERROR;
296   }
297   return rc;
298 }
299 
300 /* The following three functions, heightOfExpr(), heightOfExprList()
301 ** and heightOfSelect(), are used to determine the maximum height
302 ** of any expression tree referenced by the structure passed as the
303 ** first argument.
304 **
305 ** If this maximum height is greater than the current value pointed
306 ** to by pnHeight, the second parameter, then set *pnHeight to that
307 ** value.
308 */
309 static void heightOfExpr(Expr *p, int *pnHeight){
310   if( p ){
311     if( p->nHeight>*pnHeight ){
312       *pnHeight = p->nHeight;
313     }
314   }
315 }
316 static void heightOfExprList(ExprList *p, int *pnHeight){
317   if( p ){
318     int i;
319     for(i=0; i<p->nExpr; i++){
320       heightOfExpr(p->a[i].pExpr, pnHeight);
321     }
322   }
323 }
324 static void heightOfSelect(Select *p, int *pnHeight){
325   if( p ){
326     heightOfExpr(p->pWhere, pnHeight);
327     heightOfExpr(p->pHaving, pnHeight);
328     heightOfExpr(p->pLimit, pnHeight);
329     heightOfExpr(p->pOffset, pnHeight);
330     heightOfExprList(p->pEList, pnHeight);
331     heightOfExprList(p->pGroupBy, pnHeight);
332     heightOfExprList(p->pOrderBy, pnHeight);
333     heightOfSelect(p->pPrior, pnHeight);
334   }
335 }
336 
337 /*
338 ** Set the Expr.nHeight variable in the structure passed as an
339 ** argument. An expression with no children, Expr.pList or
340 ** Expr.pSelect member has a height of 1. Any other expression
341 ** has a height equal to the maximum height of any other
342 ** referenced Expr plus one.
343 */
344 static void exprSetHeight(Expr *p){
345   int nHeight = 0;
346   heightOfExpr(p->pLeft, &nHeight);
347   heightOfExpr(p->pRight, &nHeight);
348   if( ExprHasProperty(p, EP_xIsSelect) ){
349     heightOfSelect(p->x.pSelect, &nHeight);
350   }else{
351     heightOfExprList(p->x.pList, &nHeight);
352   }
353   p->nHeight = nHeight + 1;
354 }
355 
356 /*
357 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
358 ** the height is greater than the maximum allowed expression depth,
359 ** leave an error in pParse.
360 */
361 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
362   exprSetHeight(p);
363   sqlite3ExprCheckHeight(pParse, p->nHeight);
364 }
365 
366 /*
367 ** Return the maximum height of any expression tree referenced
368 ** by the select statement passed as an argument.
369 */
370 int sqlite3SelectExprHeight(Select *p){
371   int nHeight = 0;
372   heightOfSelect(p, &nHeight);
373   return nHeight;
374 }
375 #else
376   #define exprSetHeight(y)
377 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
378 
379 /*
380 ** This routine is the core allocator for Expr nodes.
381 **
382 ** Construct a new expression node and return a pointer to it.  Memory
383 ** for this node and for the pToken argument is a single allocation
384 ** obtained from sqlite3DbMalloc().  The calling function
385 ** is responsible for making sure the node eventually gets freed.
386 **
387 ** If dequote is true, then the token (if it exists) is dequoted.
388 ** If dequote is false, no dequoting is performance.  The deQuote
389 ** parameter is ignored if pToken is NULL or if the token does not
390 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
391 ** then the EP_DblQuoted flag is set on the expression node.
392 **
393 ** Special case:  If op==TK_INTEGER and pToken points to a string that
394 ** can be translated into a 32-bit integer, then the token is not
395 ** stored in u.zToken.  Instead, the integer values is written
396 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
397 ** is allocated to hold the integer text and the dequote flag is ignored.
398 */
399 Expr *sqlite3ExprAlloc(
400   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
401   int op,                 /* Expression opcode */
402   const Token *pToken,    /* Token argument.  Might be NULL */
403   int dequote             /* True to dequote */
404 ){
405   Expr *pNew;
406   int nExtra = 0;
407   int iValue = 0;
408 
409   if( pToken ){
410     if( op!=TK_INTEGER || pToken->z==0
411           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
412       nExtra = pToken->n+1;
413     }
414   }
415   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
416   if( pNew ){
417     pNew->op = (u8)op;
418     pNew->iAgg = -1;
419     if( pToken ){
420       if( nExtra==0 ){
421         pNew->flags |= EP_IntValue;
422         pNew->u.iValue = iValue;
423       }else{
424         int c;
425         pNew->u.zToken = (char*)&pNew[1];
426         memcpy(pNew->u.zToken, pToken->z, pToken->n);
427         pNew->u.zToken[pToken->n] = 0;
428         if( dequote && nExtra>=3
429              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
430           sqlite3Dequote(pNew->u.zToken);
431           if( c=='"' ) pNew->flags |= EP_DblQuoted;
432         }
433       }
434     }
435 #if SQLITE_MAX_EXPR_DEPTH>0
436     pNew->nHeight = 1;
437 #endif
438   }
439   return pNew;
440 }
441 
442 /*
443 ** Allocate a new expression node from a zero-terminated token that has
444 ** already been dequoted.
445 */
446 Expr *sqlite3Expr(
447   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
448   int op,                 /* Expression opcode */
449   const char *zToken      /* Token argument.  Might be NULL */
450 ){
451   Token x;
452   x.z = zToken;
453   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
454   return sqlite3ExprAlloc(db, op, &x, 0);
455 }
456 
457 /*
458 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
459 **
460 ** If pRoot==NULL that means that a memory allocation error has occurred.
461 ** In that case, delete the subtrees pLeft and pRight.
462 */
463 void sqlite3ExprAttachSubtrees(
464   sqlite3 *db,
465   Expr *pRoot,
466   Expr *pLeft,
467   Expr *pRight
468 ){
469   if( pRoot==0 ){
470     assert( db->mallocFailed );
471     sqlite3ExprDelete(db, pLeft);
472     sqlite3ExprDelete(db, pRight);
473   }else{
474     if( pRight ){
475       pRoot->pRight = pRight;
476       if( pRight->flags & EP_ExpCollate ){
477         pRoot->flags |= EP_ExpCollate;
478         pRoot->pColl = pRight->pColl;
479       }
480     }
481     if( pLeft ){
482       pRoot->pLeft = pLeft;
483       if( pLeft->flags & EP_ExpCollate ){
484         pRoot->flags |= EP_ExpCollate;
485         pRoot->pColl = pLeft->pColl;
486       }
487     }
488     exprSetHeight(pRoot);
489   }
490 }
491 
492 /*
493 ** Allocate a Expr node which joins as many as two subtrees.
494 **
495 ** One or both of the subtrees can be NULL.  Return a pointer to the new
496 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
497 ** free the subtrees and return NULL.
498 */
499 Expr *sqlite3PExpr(
500   Parse *pParse,          /* Parsing context */
501   int op,                 /* Expression opcode */
502   Expr *pLeft,            /* Left operand */
503   Expr *pRight,           /* Right operand */
504   const Token *pToken     /* Argument token */
505 ){
506   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
507   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
508   return p;
509 }
510 
511 /*
512 ** Join two expressions using an AND operator.  If either expression is
513 ** NULL, then just return the other expression.
514 */
515 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
516   if( pLeft==0 ){
517     return pRight;
518   }else if( pRight==0 ){
519     return pLeft;
520   }else{
521     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
522     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
523     return pNew;
524   }
525 }
526 
527 /*
528 ** Construct a new expression node for a function with multiple
529 ** arguments.
530 */
531 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
532   Expr *pNew;
533   sqlite3 *db = pParse->db;
534   assert( pToken );
535   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
536   if( pNew==0 ){
537     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
538     return 0;
539   }
540   pNew->x.pList = pList;
541   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
542   sqlite3ExprSetHeight(pParse, pNew);
543   return pNew;
544 }
545 
546 /*
547 ** Assign a variable number to an expression that encodes a wildcard
548 ** in the original SQL statement.
549 **
550 ** Wildcards consisting of a single "?" are assigned the next sequential
551 ** variable number.
552 **
553 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
554 ** sure "nnn" is not too be to avoid a denial of service attack when
555 ** the SQL statement comes from an external source.
556 **
557 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
558 ** as the previous instance of the same wildcard.  Or if this is the first
559 ** instance of the wildcard, the next sequenial variable number is
560 ** assigned.
561 */
562 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
563   sqlite3 *db = pParse->db;
564   const char *z;
565 
566   if( pExpr==0 ) return;
567   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
568   z = pExpr->u.zToken;
569   assert( z!=0 );
570   assert( z[0]!=0 );
571   if( z[1]==0 ){
572     /* Wildcard of the form "?".  Assign the next variable number */
573     assert( z[0]=='?' );
574     pExpr->iTable = ++pParse->nVar;
575   }else if( z[0]=='?' ){
576     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
577     ** use it as the variable number */
578     int i;
579     pExpr->iTable = i = atoi((char*)&z[1]);
580     testcase( i==0 );
581     testcase( i==1 );
582     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
583     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
584     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
585       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
586           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
587     }
588     if( i>pParse->nVar ){
589       pParse->nVar = i;
590     }
591   }else{
592     /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
593     ** number as the prior appearance of the same name, or if the name
594     ** has never appeared before, reuse the same variable number
595     */
596     int i;
597     u32 n;
598     n = sqlite3Strlen30(z);
599     for(i=0; i<pParse->nVarExpr; i++){
600       Expr *pE = pParse->apVarExpr[i];
601       assert( pE!=0 );
602       if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
603         pExpr->iTable = pE->iTable;
604         break;
605       }
606     }
607     if( i>=pParse->nVarExpr ){
608       pExpr->iTable = ++pParse->nVar;
609       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
610         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
611         pParse->apVarExpr =
612             sqlite3DbReallocOrFree(
613               db,
614               pParse->apVarExpr,
615               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
616             );
617       }
618       if( !db->mallocFailed ){
619         assert( pParse->apVarExpr!=0 );
620         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
621       }
622     }
623   }
624   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
625     sqlite3ErrorMsg(pParse, "too many SQL variables");
626   }
627 }
628 
629 /*
630 ** Clear an expression structure without deleting the structure itself.
631 ** Substructure is deleted.
632 */
633 void sqlite3ExprClear(sqlite3 *db, Expr *p){
634   assert( p!=0 );
635   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
636     sqlite3ExprDelete(db, p->pLeft);
637     sqlite3ExprDelete(db, p->pRight);
638     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
639       sqlite3DbFree(db, p->u.zToken);
640     }
641     if( ExprHasProperty(p, EP_xIsSelect) ){
642       sqlite3SelectDelete(db, p->x.pSelect);
643     }else{
644       sqlite3ExprListDelete(db, p->x.pList);
645     }
646   }
647 }
648 
649 /*
650 ** Recursively delete an expression tree.
651 */
652 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
653   if( p==0 ) return;
654   sqlite3ExprClear(db, p);
655   if( !ExprHasProperty(p, EP_Static) ){
656     sqlite3DbFree(db, p);
657   }
658 }
659 
660 /*
661 ** Return the number of bytes allocated for the expression structure
662 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
663 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
664 */
665 static int exprStructSize(Expr *p){
666   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
667   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
668   return EXPR_FULLSIZE;
669 }
670 
671 /*
672 ** The dupedExpr*Size() routines each return the number of bytes required
673 ** to store a copy of an expression or expression tree.  They differ in
674 ** how much of the tree is measured.
675 **
676 **     dupedExprStructSize()     Size of only the Expr structure
677 **     dupedExprNodeSize()       Size of Expr + space for token
678 **     dupedExprSize()           Expr + token + subtree components
679 **
680 ***************************************************************************
681 **
682 ** The dupedExprStructSize() function returns two values OR-ed together:
683 ** (1) the space required for a copy of the Expr structure only and
684 ** (2) the EP_xxx flags that indicate what the structure size should be.
685 ** The return values is always one of:
686 **
687 **      EXPR_FULLSIZE
688 **      EXPR_REDUCEDSIZE   | EP_Reduced
689 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
690 **
691 ** The size of the structure can be found by masking the return value
692 ** of this routine with 0xfff.  The flags can be found by masking the
693 ** return value with EP_Reduced|EP_TokenOnly.
694 **
695 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
696 ** (unreduced) Expr objects as they or originally constructed by the parser.
697 ** During expression analysis, extra information is computed and moved into
698 ** later parts of teh Expr object and that extra information might get chopped
699 ** off if the expression is reduced.  Note also that it does not work to
700 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
701 ** to reduce a pristine expression tree from the parser.  The implementation
702 ** of dupedExprStructSize() contain multiple assert() statements that attempt
703 ** to enforce this constraint.
704 */
705 static int dupedExprStructSize(Expr *p, int flags){
706   int nSize;
707   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
708   if( 0==(flags&EXPRDUP_REDUCE) ){
709     nSize = EXPR_FULLSIZE;
710   }else{
711     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
712     assert( !ExprHasProperty(p, EP_FromJoin) );
713     assert( (p->flags2 & EP2_MallocedToken)==0 );
714     assert( (p->flags2 & EP2_Irreducible)==0 );
715     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
716       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
717     }else{
718       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
719     }
720   }
721   return nSize;
722 }
723 
724 /*
725 ** This function returns the space in bytes required to store the copy
726 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
727 ** string is defined.)
728 */
729 static int dupedExprNodeSize(Expr *p, int flags){
730   int nByte = dupedExprStructSize(p, flags) & 0xfff;
731   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
732     nByte += sqlite3Strlen30(p->u.zToken)+1;
733   }
734   return ROUND8(nByte);
735 }
736 
737 /*
738 ** Return the number of bytes required to create a duplicate of the
739 ** expression passed as the first argument. The second argument is a
740 ** mask containing EXPRDUP_XXX flags.
741 **
742 ** The value returned includes space to create a copy of the Expr struct
743 ** itself and the buffer referred to by Expr.u.zToken, if any.
744 **
745 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
746 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
747 ** and Expr.pRight variables (but not for any structures pointed to or
748 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
749 */
750 static int dupedExprSize(Expr *p, int flags){
751   int nByte = 0;
752   if( p ){
753     nByte = dupedExprNodeSize(p, flags);
754     if( flags&EXPRDUP_REDUCE ){
755       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
756     }
757   }
758   return nByte;
759 }
760 
761 /*
762 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
763 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
764 ** to store the copy of expression p, the copies of p->u.zToken
765 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
766 ** if any. Before returning, *pzBuffer is set to the first byte passed the
767 ** portion of the buffer copied into by this function.
768 */
769 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
770   Expr *pNew = 0;                      /* Value to return */
771   if( p ){
772     const int isReduced = (flags&EXPRDUP_REDUCE);
773     u8 *zAlloc;
774     u32 staticFlag = 0;
775 
776     assert( pzBuffer==0 || isReduced );
777 
778     /* Figure out where to write the new Expr structure. */
779     if( pzBuffer ){
780       zAlloc = *pzBuffer;
781       staticFlag = EP_Static;
782     }else{
783       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
784     }
785     pNew = (Expr *)zAlloc;
786 
787     if( pNew ){
788       /* Set nNewSize to the size allocated for the structure pointed to
789       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
790       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
791       ** by the copy of the p->u.zToken string (if any).
792       */
793       const unsigned nStructSize = dupedExprStructSize(p, flags);
794       const int nNewSize = nStructSize & 0xfff;
795       int nToken;
796       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
797         nToken = sqlite3Strlen30(p->u.zToken) + 1;
798       }else{
799         nToken = 0;
800       }
801       if( isReduced ){
802         assert( ExprHasProperty(p, EP_Reduced)==0 );
803         memcpy(zAlloc, p, nNewSize);
804       }else{
805         int nSize = exprStructSize(p);
806         memcpy(zAlloc, p, nSize);
807         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
808       }
809 
810       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
811       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
812       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
813       pNew->flags |= staticFlag;
814 
815       /* Copy the p->u.zToken string, if any. */
816       if( nToken ){
817         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
818         memcpy(zToken, p->u.zToken, nToken);
819       }
820 
821       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
822         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
823         if( ExprHasProperty(p, EP_xIsSelect) ){
824           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
825         }else{
826           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
827         }
828       }
829 
830       /* Fill in pNew->pLeft and pNew->pRight. */
831       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
832         zAlloc += dupedExprNodeSize(p, flags);
833         if( ExprHasProperty(pNew, EP_Reduced) ){
834           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
835           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
836         }
837         if( pzBuffer ){
838           *pzBuffer = zAlloc;
839         }
840       }else{
841         pNew->flags2 = 0;
842         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
843           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
844           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
845         }
846       }
847 
848     }
849   }
850   return pNew;
851 }
852 
853 /*
854 ** The following group of routines make deep copies of expressions,
855 ** expression lists, ID lists, and select statements.  The copies can
856 ** be deleted (by being passed to their respective ...Delete() routines)
857 ** without effecting the originals.
858 **
859 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
860 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
861 ** by subsequent calls to sqlite*ListAppend() routines.
862 **
863 ** Any tables that the SrcList might point to are not duplicated.
864 **
865 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
866 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
867 ** truncated version of the usual Expr structure that will be stored as
868 ** part of the in-memory representation of the database schema.
869 */
870 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
871   return exprDup(db, p, flags, 0);
872 }
873 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
874   ExprList *pNew;
875   struct ExprList_item *pItem, *pOldItem;
876   int i;
877   if( p==0 ) return 0;
878   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
879   if( pNew==0 ) return 0;
880   pNew->iECursor = 0;
881   pNew->nExpr = pNew->nAlloc = p->nExpr;
882   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
883   if( pItem==0 ){
884     sqlite3DbFree(db, pNew);
885     return 0;
886   }
887   pOldItem = p->a;
888   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
889     Expr *pOldExpr = pOldItem->pExpr;
890     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
891     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
892     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
893     pItem->sortOrder = pOldItem->sortOrder;
894     pItem->done = 0;
895     pItem->iCol = pOldItem->iCol;
896     pItem->iAlias = pOldItem->iAlias;
897   }
898   return pNew;
899 }
900 
901 /*
902 ** If cursors, triggers, views and subqueries are all omitted from
903 ** the build, then none of the following routines, except for
904 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
905 ** called with a NULL argument.
906 */
907 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
908  || !defined(SQLITE_OMIT_SUBQUERY)
909 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
910   SrcList *pNew;
911   int i;
912   int nByte;
913   if( p==0 ) return 0;
914   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
915   pNew = sqlite3DbMallocRaw(db, nByte );
916   if( pNew==0 ) return 0;
917   pNew->nSrc = pNew->nAlloc = p->nSrc;
918   for(i=0; i<p->nSrc; i++){
919     struct SrcList_item *pNewItem = &pNew->a[i];
920     struct SrcList_item *pOldItem = &p->a[i];
921     Table *pTab;
922     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
923     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
924     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
925     pNewItem->jointype = pOldItem->jointype;
926     pNewItem->iCursor = pOldItem->iCursor;
927     pNewItem->isPopulated = pOldItem->isPopulated;
928     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
929     pNewItem->notIndexed = pOldItem->notIndexed;
930     pNewItem->pIndex = pOldItem->pIndex;
931     pTab = pNewItem->pTab = pOldItem->pTab;
932     if( pTab ){
933       pTab->nRef++;
934     }
935     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
936     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
937     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
938     pNewItem->colUsed = pOldItem->colUsed;
939   }
940   return pNew;
941 }
942 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
943   IdList *pNew;
944   int i;
945   if( p==0 ) return 0;
946   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
947   if( pNew==0 ) return 0;
948   pNew->nId = pNew->nAlloc = p->nId;
949   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
950   if( pNew->a==0 ){
951     sqlite3DbFree(db, pNew);
952     return 0;
953   }
954   for(i=0; i<p->nId; i++){
955     struct IdList_item *pNewItem = &pNew->a[i];
956     struct IdList_item *pOldItem = &p->a[i];
957     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
958     pNewItem->idx = pOldItem->idx;
959   }
960   return pNew;
961 }
962 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
963   Select *pNew;
964   if( p==0 ) return 0;
965   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
966   if( pNew==0 ) return 0;
967   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
968   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
969   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
970   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
971   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
972   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
973   pNew->op = p->op;
974   pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
975   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
976   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
977   pNew->iLimit = 0;
978   pNew->iOffset = 0;
979   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
980   pNew->pRightmost = 0;
981   pNew->addrOpenEphm[0] = -1;
982   pNew->addrOpenEphm[1] = -1;
983   pNew->addrOpenEphm[2] = -1;
984   return pNew;
985 }
986 #else
987 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
988   assert( p==0 );
989   return 0;
990 }
991 #endif
992 
993 
994 /*
995 ** Add a new element to the end of an expression list.  If pList is
996 ** initially NULL, then create a new expression list.
997 **
998 ** If a memory allocation error occurs, the entire list is freed and
999 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1000 ** that the new entry was successfully appended.
1001 */
1002 ExprList *sqlite3ExprListAppend(
1003   Parse *pParse,          /* Parsing context */
1004   ExprList *pList,        /* List to which to append. Might be NULL */
1005   Expr *pExpr             /* Expression to be appended. Might be NULL */
1006 ){
1007   sqlite3 *db = pParse->db;
1008   if( pList==0 ){
1009     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1010     if( pList==0 ){
1011       goto no_mem;
1012     }
1013     assert( pList->nAlloc==0 );
1014   }
1015   if( pList->nAlloc<=pList->nExpr ){
1016     struct ExprList_item *a;
1017     int n = pList->nAlloc*2 + 4;
1018     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
1019     if( a==0 ){
1020       goto no_mem;
1021     }
1022     pList->a = a;
1023     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1024   }
1025   assert( pList->a!=0 );
1026   if( 1 ){
1027     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1028     memset(pItem, 0, sizeof(*pItem));
1029     pItem->pExpr = pExpr;
1030   }
1031   return pList;
1032 
1033 no_mem:
1034   /* Avoid leaking memory if malloc has failed. */
1035   sqlite3ExprDelete(db, pExpr);
1036   sqlite3ExprListDelete(db, pList);
1037   return 0;
1038 }
1039 
1040 /*
1041 ** Set the ExprList.a[].zName element of the most recently added item
1042 ** on the expression list.
1043 **
1044 ** pList might be NULL following an OOM error.  But pName should never be
1045 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1046 ** is set.
1047 */
1048 void sqlite3ExprListSetName(
1049   Parse *pParse,          /* Parsing context */
1050   ExprList *pList,        /* List to which to add the span. */
1051   Token *pName,           /* Name to be added */
1052   int dequote             /* True to cause the name to be dequoted */
1053 ){
1054   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1055   if( pList ){
1056     struct ExprList_item *pItem;
1057     assert( pList->nExpr>0 );
1058     pItem = &pList->a[pList->nExpr-1];
1059     assert( pItem->zName==0 );
1060     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1061     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1062   }
1063 }
1064 
1065 /*
1066 ** Set the ExprList.a[].zSpan element of the most recently added item
1067 ** on the expression list.
1068 **
1069 ** pList might be NULL following an OOM error.  But pSpan should never be
1070 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1071 ** is set.
1072 */
1073 void sqlite3ExprListSetSpan(
1074   Parse *pParse,          /* Parsing context */
1075   ExprList *pList,        /* List to which to add the span. */
1076   ExprSpan *pSpan         /* The span to be added */
1077 ){
1078   sqlite3 *db = pParse->db;
1079   assert( pList!=0 || db->mallocFailed!=0 );
1080   if( pList ){
1081     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1082     assert( pList->nExpr>0 );
1083     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1084     sqlite3DbFree(db, pItem->zSpan);
1085     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1086                                     (int)(pSpan->zEnd - pSpan->zStart));
1087   }
1088 }
1089 
1090 /*
1091 ** If the expression list pEList contains more than iLimit elements,
1092 ** leave an error message in pParse.
1093 */
1094 void sqlite3ExprListCheckLength(
1095   Parse *pParse,
1096   ExprList *pEList,
1097   const char *zObject
1098 ){
1099   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1100   testcase( pEList && pEList->nExpr==mx );
1101   testcase( pEList && pEList->nExpr==mx+1 );
1102   if( pEList && pEList->nExpr>mx ){
1103     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1104   }
1105 }
1106 
1107 /*
1108 ** Delete an entire expression list.
1109 */
1110 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1111   int i;
1112   struct ExprList_item *pItem;
1113   if( pList==0 ) return;
1114   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1115   assert( pList->nExpr<=pList->nAlloc );
1116   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1117     sqlite3ExprDelete(db, pItem->pExpr);
1118     sqlite3DbFree(db, pItem->zName);
1119     sqlite3DbFree(db, pItem->zSpan);
1120   }
1121   sqlite3DbFree(db, pList->a);
1122   sqlite3DbFree(db, pList);
1123 }
1124 
1125 /*
1126 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1127 ** to an integer.  These routines are checking an expression to see
1128 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1129 ** not constant.
1130 **
1131 ** These callback routines are used to implement the following:
1132 **
1133 **     sqlite3ExprIsConstant()
1134 **     sqlite3ExprIsConstantNotJoin()
1135 **     sqlite3ExprIsConstantOrFunction()
1136 **
1137 */
1138 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1139 
1140   /* If pWalker->u.i is 3 then any term of the expression that comes from
1141   ** the ON or USING clauses of a join disqualifies the expression
1142   ** from being considered constant. */
1143   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1144     pWalker->u.i = 0;
1145     return WRC_Abort;
1146   }
1147 
1148   switch( pExpr->op ){
1149     /* Consider functions to be constant if all their arguments are constant
1150     ** and pWalker->u.i==2 */
1151     case TK_FUNCTION:
1152       if( pWalker->u.i==2 ) return 0;
1153       /* Fall through */
1154     case TK_ID:
1155     case TK_COLUMN:
1156     case TK_AGG_FUNCTION:
1157     case TK_AGG_COLUMN:
1158       testcase( pExpr->op==TK_ID );
1159       testcase( pExpr->op==TK_COLUMN );
1160       testcase( pExpr->op==TK_AGG_FUNCTION );
1161       testcase( pExpr->op==TK_AGG_COLUMN );
1162       pWalker->u.i = 0;
1163       return WRC_Abort;
1164     default:
1165       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1166       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1167       return WRC_Continue;
1168   }
1169 }
1170 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1171   UNUSED_PARAMETER(NotUsed);
1172   pWalker->u.i = 0;
1173   return WRC_Abort;
1174 }
1175 static int exprIsConst(Expr *p, int initFlag){
1176   Walker w;
1177   w.u.i = initFlag;
1178   w.xExprCallback = exprNodeIsConstant;
1179   w.xSelectCallback = selectNodeIsConstant;
1180   sqlite3WalkExpr(&w, p);
1181   return w.u.i;
1182 }
1183 
1184 /*
1185 ** Walk an expression tree.  Return 1 if the expression is constant
1186 ** and 0 if it involves variables or function calls.
1187 **
1188 ** For the purposes of this function, a double-quoted string (ex: "abc")
1189 ** is considered a variable but a single-quoted string (ex: 'abc') is
1190 ** a constant.
1191 */
1192 int sqlite3ExprIsConstant(Expr *p){
1193   return exprIsConst(p, 1);
1194 }
1195 
1196 /*
1197 ** Walk an expression tree.  Return 1 if the expression is constant
1198 ** that does no originate from the ON or USING clauses of a join.
1199 ** Return 0 if it involves variables or function calls or terms from
1200 ** an ON or USING clause.
1201 */
1202 int sqlite3ExprIsConstantNotJoin(Expr *p){
1203   return exprIsConst(p, 3);
1204 }
1205 
1206 /*
1207 ** Walk an expression tree.  Return 1 if the expression is constant
1208 ** or a function call with constant arguments.  Return and 0 if there
1209 ** are any variables.
1210 **
1211 ** For the purposes of this function, a double-quoted string (ex: "abc")
1212 ** is considered a variable but a single-quoted string (ex: 'abc') is
1213 ** a constant.
1214 */
1215 int sqlite3ExprIsConstantOrFunction(Expr *p){
1216   return exprIsConst(p, 2);
1217 }
1218 
1219 /*
1220 ** If the expression p codes a constant integer that is small enough
1221 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1222 ** in *pValue.  If the expression is not an integer or if it is too big
1223 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1224 */
1225 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1226   int rc = 0;
1227   if( p->flags & EP_IntValue ){
1228     *pValue = p->u.iValue;
1229     return 1;
1230   }
1231   switch( p->op ){
1232     case TK_INTEGER: {
1233       rc = sqlite3GetInt32(p->u.zToken, pValue);
1234       assert( rc==0 );
1235       break;
1236     }
1237     case TK_UPLUS: {
1238       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1239       break;
1240     }
1241     case TK_UMINUS: {
1242       int v;
1243       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1244         *pValue = -v;
1245         rc = 1;
1246       }
1247       break;
1248     }
1249     default: break;
1250   }
1251   if( rc ){
1252     assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
1253                || (p->flags2 & EP2_MallocedToken)==0 );
1254     p->op = TK_INTEGER;
1255     p->flags |= EP_IntValue;
1256     p->u.iValue = *pValue;
1257   }
1258   return rc;
1259 }
1260 
1261 /*
1262 ** Return TRUE if the given string is a row-id column name.
1263 */
1264 int sqlite3IsRowid(const char *z){
1265   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1266   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1267   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1268   return 0;
1269 }
1270 
1271 /*
1272 ** Return true if we are able to the IN operator optimization on a
1273 ** query of the form
1274 **
1275 **       x IN (SELECT ...)
1276 **
1277 ** Where the SELECT... clause is as specified by the parameter to this
1278 ** routine.
1279 **
1280 ** The Select object passed in has already been preprocessed and no
1281 ** errors have been found.
1282 */
1283 #ifndef SQLITE_OMIT_SUBQUERY
1284 static int isCandidateForInOpt(Select *p){
1285   SrcList *pSrc;
1286   ExprList *pEList;
1287   Table *pTab;
1288   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1289   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1290   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1291     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1292     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1293     return 0; /* No DISTINCT keyword and no aggregate functions */
1294   }
1295   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1296   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1297   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1298   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1299   pSrc = p->pSrc;
1300   assert( pSrc!=0 );
1301   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1302   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1303   pTab = pSrc->a[0].pTab;
1304   if( NEVER(pTab==0) ) return 0;
1305   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1306   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1307   pEList = p->pEList;
1308   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1309   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1310   return 1;
1311 }
1312 #endif /* SQLITE_OMIT_SUBQUERY */
1313 
1314 /*
1315 ** This function is used by the implementation of the IN (...) operator.
1316 ** It's job is to find or create a b-tree structure that may be used
1317 ** either to test for membership of the (...) set or to iterate through
1318 ** its members, skipping duplicates.
1319 **
1320 ** The index of the cursor opened on the b-tree (database table, database index
1321 ** or ephermal table) is stored in pX->iTable before this function returns.
1322 ** The returned value of this function indicates the b-tree type, as follows:
1323 **
1324 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1325 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1326 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1327 **                    populated epheremal table.
1328 **
1329 ** An existing b-tree may only be used if the SELECT is of the simple
1330 ** form:
1331 **
1332 **     SELECT <column> FROM <table>
1333 **
1334 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1335 ** through the set members, skipping any duplicates. In this case an
1336 ** epheremal table must be used unless the selected <column> is guaranteed
1337 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1338 ** has a UNIQUE constraint or UNIQUE index.
1339 **
1340 ** If the prNotFound parameter is not 0, then the b-tree will be used
1341 ** for fast set membership tests. In this case an epheremal table must
1342 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1343 ** be found with <column> as its left-most column.
1344 **
1345 ** When the b-tree is being used for membership tests, the calling function
1346 ** needs to know whether or not the structure contains an SQL NULL
1347 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1348 ** If there is a chance that the b-tree might contain a NULL value at
1349 ** runtime, then a register is allocated and the register number written
1350 ** to *prNotFound. If there is no chance that the b-tree contains a
1351 ** NULL value, then *prNotFound is left unchanged.
1352 **
1353 ** If a register is allocated and its location stored in *prNotFound, then
1354 ** its initial value is NULL. If the b-tree does not remain constant
1355 ** for the duration of the query (i.e. the SELECT that generates the b-tree
1356 ** is a correlated subquery) then the value of the allocated register is
1357 ** reset to NULL each time the b-tree is repopulated. This allows the
1358 ** caller to use vdbe code equivalent to the following:
1359 **
1360 **   if( register==NULL ){
1361 **     has_null = <test if data structure contains null>
1362 **     register = 1
1363 **   }
1364 **
1365 ** in order to avoid running the <test if data structure contains null>
1366 ** test more often than is necessary.
1367 */
1368 #ifndef SQLITE_OMIT_SUBQUERY
1369 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1370   Select *p;                            /* SELECT to the right of IN operator */
1371   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1372   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1373   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1374 
1375   /* Check to see if an existing table or index can be used to
1376   ** satisfy the query.  This is preferable to generating a new
1377   ** ephemeral table.
1378   */
1379   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1380   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1381     sqlite3 *db = pParse->db;              /* Database connection */
1382     Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
1383     int iCol = pExpr->iColumn;             /* Index of column <column> */
1384     Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1385     Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
1386     int iDb;                               /* Database idx for pTab */
1387 
1388     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1389     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1390     sqlite3CodeVerifySchema(pParse, iDb);
1391     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1392 
1393     /* This function is only called from two places. In both cases the vdbe
1394     ** has already been allocated. So assume sqlite3GetVdbe() is always
1395     ** successful here.
1396     */
1397     assert(v);
1398     if( iCol<0 ){
1399       int iMem = ++pParse->nMem;
1400       int iAddr;
1401       sqlite3VdbeUsesBtree(v, iDb);
1402 
1403       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1404       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1405 
1406       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1407       eType = IN_INDEX_ROWID;
1408 
1409       sqlite3VdbeJumpHere(v, iAddr);
1410     }else{
1411       Index *pIdx;                         /* Iterator variable */
1412 
1413       /* The collation sequence used by the comparison. If an index is to
1414       ** be used in place of a temp-table, it must be ordered according
1415       ** to this collation sequence.  */
1416       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1417 
1418       /* Check that the affinity that will be used to perform the
1419       ** comparison is the same as the affinity of the column. If
1420       ** it is not, it is not possible to use any index.
1421       */
1422       char aff = comparisonAffinity(pX);
1423       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1424 
1425       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1426         if( (pIdx->aiColumn[0]==iCol)
1427          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1428          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1429         ){
1430           int iMem = ++pParse->nMem;
1431           int iAddr;
1432           char *pKey;
1433 
1434           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1435           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1436           sqlite3VdbeUsesBtree(v, iDb);
1437 
1438           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1439           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1440 
1441           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1442                                pKey,P4_KEYINFO_HANDOFF);
1443           VdbeComment((v, "%s", pIdx->zName));
1444           eType = IN_INDEX_INDEX;
1445 
1446           sqlite3VdbeJumpHere(v, iAddr);
1447           if( prNotFound && !pTab->aCol[iCol].notNull ){
1448             *prNotFound = ++pParse->nMem;
1449           }
1450         }
1451       }
1452     }
1453   }
1454 
1455   if( eType==0 ){
1456     /* Could not found an existing able or index to use as the RHS b-tree.
1457     ** We will have to generate an ephemeral table to do the job.
1458     */
1459     int rMayHaveNull = 0;
1460     eType = IN_INDEX_EPH;
1461     if( prNotFound ){
1462       *prNotFound = rMayHaveNull = ++pParse->nMem;
1463     }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1464       eType = IN_INDEX_ROWID;
1465     }
1466     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1467   }else{
1468     pX->iTable = iTab;
1469   }
1470   return eType;
1471 }
1472 #endif
1473 
1474 /*
1475 ** Generate code for scalar subqueries used as an expression
1476 ** and IN operators.  Examples:
1477 **
1478 **     (SELECT a FROM b)          -- subquery
1479 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1480 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1481 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1482 **
1483 ** The pExpr parameter describes the expression that contains the IN
1484 ** operator or subquery.
1485 **
1486 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1487 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1488 ** to some integer key column of a table B-Tree. In this case, use an
1489 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1490 ** (slower) variable length keys B-Tree.
1491 **
1492 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1493 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1494 ** Furthermore, the IN is in a WHERE clause and that we really want
1495 ** to iterate over the RHS of the IN operator in order to quickly locate
1496 ** all corresponding LHS elements.  All this routine does is initialize
1497 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1498 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1499 **
1500 ** If rMayHaveNull is zero, that means that the subquery is being used
1501 ** for membership testing only.  There is no need to initialize any
1502 ** registers to indicate the presense or absence of NULLs on the RHS.
1503 */
1504 #ifndef SQLITE_OMIT_SUBQUERY
1505 void sqlite3CodeSubselect(
1506   Parse *pParse,          /* Parsing context */
1507   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1508   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1509   int isRowid             /* If true, LHS of IN operator is a rowid */
1510 ){
1511   int testAddr = 0;                       /* One-time test address */
1512   Vdbe *v = sqlite3GetVdbe(pParse);
1513   if( NEVER(v==0) ) return;
1514   sqlite3ExprCachePush(pParse);
1515 
1516   /* This code must be run in its entirety every time it is encountered
1517   ** if any of the following is true:
1518   **
1519   **    *  The right-hand side is a correlated subquery
1520   **    *  The right-hand side is an expression list containing variables
1521   **    *  We are inside a trigger
1522   **
1523   ** If all of the above are false, then we can run this code just once
1524   ** save the results, and reuse the same result on subsequent invocations.
1525   */
1526   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1527     int mem = ++pParse->nMem;
1528     sqlite3VdbeAddOp1(v, OP_If, mem);
1529     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1530     assert( testAddr>0 || pParse->db->mallocFailed );
1531   }
1532 
1533   switch( pExpr->op ){
1534     case TK_IN: {
1535       char affinity;
1536       KeyInfo keyInfo;
1537       int addr;        /* Address of OP_OpenEphemeral instruction */
1538       Expr *pLeft = pExpr->pLeft;
1539 
1540       if( rMayHaveNull ){
1541         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1542       }
1543 
1544       affinity = sqlite3ExprAffinity(pLeft);
1545 
1546       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1547       ** expression it is handled the same way. A virtual table is
1548       ** filled with single-field index keys representing the results
1549       ** from the SELECT or the <exprlist>.
1550       **
1551       ** If the 'x' expression is a column value, or the SELECT...
1552       ** statement returns a column value, then the affinity of that
1553       ** column is used to build the index keys. If both 'x' and the
1554       ** SELECT... statement are columns, then numeric affinity is used
1555       ** if either column has NUMERIC or INTEGER affinity. If neither
1556       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1557       ** is used.
1558       */
1559       pExpr->iTable = pParse->nTab++;
1560       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1561       memset(&keyInfo, 0, sizeof(keyInfo));
1562       keyInfo.nField = 1;
1563 
1564       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1565         /* Case 1:     expr IN (SELECT ...)
1566         **
1567         ** Generate code to write the results of the select into the temporary
1568         ** table allocated and opened above.
1569         */
1570         SelectDest dest;
1571         ExprList *pEList;
1572 
1573         assert( !isRowid );
1574         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1575         dest.affinity = (u8)affinity;
1576         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1577         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1578           return;
1579         }
1580         pEList = pExpr->x.pSelect->pEList;
1581         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1582           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1583               pEList->a[0].pExpr);
1584         }
1585       }else if( pExpr->x.pList!=0 ){
1586         /* Case 2:     expr IN (exprlist)
1587         **
1588         ** For each expression, build an index key from the evaluation and
1589         ** store it in the temporary table. If <expr> is a column, then use
1590         ** that columns affinity when building index keys. If <expr> is not
1591         ** a column, use numeric affinity.
1592         */
1593         int i;
1594         ExprList *pList = pExpr->x.pList;
1595         struct ExprList_item *pItem;
1596         int r1, r2, r3;
1597 
1598         if( !affinity ){
1599           affinity = SQLITE_AFF_NONE;
1600         }
1601         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1602 
1603         /* Loop through each expression in <exprlist>. */
1604         r1 = sqlite3GetTempReg(pParse);
1605         r2 = sqlite3GetTempReg(pParse);
1606         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1607         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1608           Expr *pE2 = pItem->pExpr;
1609 
1610           /* If the expression is not constant then we will need to
1611           ** disable the test that was generated above that makes sure
1612           ** this code only executes once.  Because for a non-constant
1613           ** expression we need to rerun this code each time.
1614           */
1615           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1616             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1617             testAddr = 0;
1618           }
1619 
1620           /* Evaluate the expression and insert it into the temp table */
1621           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1622           if( isRowid ){
1623             sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
1624             sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1625           }else{
1626             sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1627             sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1628             sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1629           }
1630         }
1631         sqlite3ReleaseTempReg(pParse, r1);
1632         sqlite3ReleaseTempReg(pParse, r2);
1633       }
1634       if( !isRowid ){
1635         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1636       }
1637       break;
1638     }
1639 
1640     case TK_EXISTS:
1641     case TK_SELECT:
1642     default: {
1643       /* If this has to be a scalar SELECT.  Generate code to put the
1644       ** value of this select in a memory cell and record the number
1645       ** of the memory cell in iColumn.  If this is an EXISTS, write
1646       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1647       ** and record that memory cell in iColumn.
1648       */
1649       static const Token one = { "1", 1 };  /* Token for literal value 1 */
1650       Select *pSel;                         /* SELECT statement to encode */
1651       SelectDest dest;                      /* How to deal with SELECt result */
1652 
1653       testcase( pExpr->op==TK_EXISTS );
1654       testcase( pExpr->op==TK_SELECT );
1655       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1656 
1657       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1658       pSel = pExpr->x.pSelect;
1659       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1660       if( pExpr->op==TK_SELECT ){
1661         dest.eDest = SRT_Mem;
1662         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1663         VdbeComment((v, "Init subquery result"));
1664       }else{
1665         dest.eDest = SRT_Exists;
1666         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1667         VdbeComment((v, "Init EXISTS result"));
1668       }
1669       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1670       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1671       if( sqlite3Select(pParse, pSel, &dest) ){
1672         return;
1673       }
1674       pExpr->iColumn = (i16)dest.iParm;
1675       ExprSetIrreducible(pExpr);
1676       break;
1677     }
1678   }
1679 
1680   if( testAddr ){
1681     sqlite3VdbeJumpHere(v, testAddr-1);
1682   }
1683   sqlite3ExprCachePop(pParse, 1);
1684 
1685   return;
1686 }
1687 #endif /* SQLITE_OMIT_SUBQUERY */
1688 
1689 /*
1690 ** Duplicate an 8-byte value
1691 */
1692 static char *dup8bytes(Vdbe *v, const char *in){
1693   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1694   if( out ){
1695     memcpy(out, in, 8);
1696   }
1697   return out;
1698 }
1699 
1700 /*
1701 ** Generate an instruction that will put the floating point
1702 ** value described by z[0..n-1] into register iMem.
1703 **
1704 ** The z[] string will probably not be zero-terminated.  But the
1705 ** z[n] character is guaranteed to be something that does not look
1706 ** like the continuation of the number.
1707 */
1708 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1709   if( ALWAYS(z!=0) ){
1710     double value;
1711     char *zV;
1712     sqlite3AtoF(z, &value);
1713     if( sqlite3IsNaN(value) ){
1714       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
1715     }else{
1716       if( negateFlag ) value = -value;
1717       zV = dup8bytes(v, (char*)&value);
1718       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1719     }
1720   }
1721 }
1722 
1723 
1724 /*
1725 ** Generate an instruction that will put the integer describe by
1726 ** text z[0..n-1] into register iMem.
1727 **
1728 ** The z[] string will probably not be zero-terminated.  But the
1729 ** z[n] character is guaranteed to be something that does not look
1730 ** like the continuation of the number.
1731 */
1732 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
1733   if( pExpr->flags & EP_IntValue ){
1734     int i = pExpr->u.iValue;
1735     if( negFlag ) i = -i;
1736     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1737   }else{
1738     const char *z = pExpr->u.zToken;
1739     assert( z!=0 );
1740     if( sqlite3FitsIn64Bits(z, negFlag) ){
1741       i64 value;
1742       char *zV;
1743       sqlite3Atoi64(z, &value);
1744       if( negFlag ) value = -value;
1745       zV = dup8bytes(v, (char*)&value);
1746       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1747     }else{
1748       codeReal(v, z, negFlag, iMem);
1749     }
1750   }
1751 }
1752 
1753 /*
1754 ** Clear a cache entry.
1755 */
1756 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1757   if( p->tempReg ){
1758     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1759       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1760     }
1761     p->tempReg = 0;
1762   }
1763 }
1764 
1765 
1766 /*
1767 ** Record in the column cache that a particular column from a
1768 ** particular table is stored in a particular register.
1769 */
1770 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1771   int i;
1772   int minLru;
1773   int idxLru;
1774   struct yColCache *p;
1775 
1776   assert( iReg>0 );  /* Register numbers are always positive */
1777   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
1778 
1779   /* First replace any existing entry */
1780   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1781     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
1782       cacheEntryClear(pParse, p);
1783       p->iLevel = pParse->iCacheLevel;
1784       p->iReg = iReg;
1785       p->affChange = 0;
1786       p->lru = pParse->iCacheCnt++;
1787       return;
1788     }
1789   }
1790 
1791   /* Find an empty slot and replace it */
1792   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1793     if( p->iReg==0 ){
1794       p->iLevel = pParse->iCacheLevel;
1795       p->iTable = iTab;
1796       p->iColumn = iCol;
1797       p->iReg = iReg;
1798       p->affChange = 0;
1799       p->tempReg = 0;
1800       p->lru = pParse->iCacheCnt++;
1801       return;
1802     }
1803   }
1804 
1805   /* Replace the last recently used */
1806   minLru = 0x7fffffff;
1807   idxLru = -1;
1808   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1809     if( p->lru<minLru ){
1810       idxLru = i;
1811       minLru = p->lru;
1812     }
1813   }
1814   if( ALWAYS(idxLru>=0) ){
1815     p = &pParse->aColCache[idxLru];
1816     p->iLevel = pParse->iCacheLevel;
1817     p->iTable = iTab;
1818     p->iColumn = iCol;
1819     p->iReg = iReg;
1820     p->affChange = 0;
1821     p->tempReg = 0;
1822     p->lru = pParse->iCacheCnt++;
1823     return;
1824   }
1825 }
1826 
1827 /*
1828 ** Indicate that a register is being overwritten.  Purge the register
1829 ** from the column cache.
1830 */
1831 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){
1832   int i;
1833   struct yColCache *p;
1834   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1835     if( p->iReg==iReg ){
1836       cacheEntryClear(pParse, p);
1837       p->iReg = 0;
1838     }
1839   }
1840 }
1841 
1842 /*
1843 ** Remember the current column cache context.  Any new entries added
1844 ** added to the column cache after this call are removed when the
1845 ** corresponding pop occurs.
1846 */
1847 void sqlite3ExprCachePush(Parse *pParse){
1848   pParse->iCacheLevel++;
1849 }
1850 
1851 /*
1852 ** Remove from the column cache any entries that were added since the
1853 ** the previous N Push operations.  In other words, restore the cache
1854 ** to the state it was in N Pushes ago.
1855 */
1856 void sqlite3ExprCachePop(Parse *pParse, int N){
1857   int i;
1858   struct yColCache *p;
1859   assert( N>0 );
1860   assert( pParse->iCacheLevel>=N );
1861   pParse->iCacheLevel -= N;
1862   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1863     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
1864       cacheEntryClear(pParse, p);
1865       p->iReg = 0;
1866     }
1867   }
1868 }
1869 
1870 /*
1871 ** When a cached column is reused, make sure that its register is
1872 ** no longer available as a temp register.  ticket #3879:  that same
1873 ** register might be in the cache in multiple places, so be sure to
1874 ** get them all.
1875 */
1876 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
1877   int i;
1878   struct yColCache *p;
1879   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1880     if( p->iReg==iReg ){
1881       p->tempReg = 0;
1882     }
1883   }
1884 }
1885 
1886 /*
1887 ** Generate code that will extract the iColumn-th column from
1888 ** table pTab and store the column value in a register.  An effort
1889 ** is made to store the column value in register iReg, but this is
1890 ** not guaranteed.  The location of the column value is returned.
1891 **
1892 ** There must be an open cursor to pTab in iTable when this routine
1893 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
1894 **
1895 ** This routine might attempt to reuse the value of the column that
1896 ** has already been loaded into a register.  The value will always
1897 ** be used if it has not undergone any affinity changes.  But if
1898 ** an affinity change has occurred, then the cached value will only be
1899 ** used if allowAffChng is true.
1900 */
1901 int sqlite3ExprCodeGetColumn(
1902   Parse *pParse,   /* Parsing and code generating context */
1903   Table *pTab,     /* Description of the table we are reading from */
1904   int iColumn,     /* Index of the table column */
1905   int iTable,      /* The cursor pointing to the table */
1906   int iReg,        /* Store results here */
1907   int allowAffChng /* True if prior affinity changes are OK */
1908 ){
1909   Vdbe *v = pParse->pVdbe;
1910   int i;
1911   struct yColCache *p;
1912 
1913   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1914     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn
1915            && (!p->affChange || allowAffChng) ){
1916       p->lru = pParse->iCacheCnt++;
1917       sqlite3ExprCachePinRegister(pParse, p->iReg);
1918       return p->iReg;
1919     }
1920   }
1921   assert( v!=0 );
1922   if( iColumn<0 ){
1923     sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg);
1924   }else if( ALWAYS(pTab!=0) ){
1925     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1926     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
1927     sqlite3ColumnDefault(v, pTab, iColumn);
1928 #ifndef SQLITE_OMIT_FLOATING_POINT
1929     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1930       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
1931     }
1932 #endif
1933   }
1934   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
1935   return iReg;
1936 }
1937 
1938 /*
1939 ** Clear all column cache entries.
1940 */
1941 void sqlite3ExprCacheClear(Parse *pParse){
1942   int i;
1943   struct yColCache *p;
1944 
1945   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1946     if( p->iReg ){
1947       cacheEntryClear(pParse, p);
1948       p->iReg = 0;
1949     }
1950   }
1951 }
1952 
1953 /*
1954 ** Record the fact that an affinity change has occurred on iCount
1955 ** registers starting with iStart.
1956 */
1957 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
1958   int iEnd = iStart + iCount - 1;
1959   int i;
1960   struct yColCache *p;
1961   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1962     int r = p->iReg;
1963     if( r>=iStart && r<=iEnd ){
1964       p->affChange = 1;
1965     }
1966   }
1967 }
1968 
1969 /*
1970 ** Generate code to move content from registers iFrom...iFrom+nReg-1
1971 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
1972 */
1973 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
1974   int i;
1975   struct yColCache *p;
1976   if( NEVER(iFrom==iTo) ) return;
1977   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
1978   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1979     int x = p->iReg;
1980     if( x>=iFrom && x<iFrom+nReg ){
1981       p->iReg += iTo-iFrom;
1982     }
1983   }
1984 }
1985 
1986 /*
1987 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
1988 ** over to iTo..iTo+nReg-1.
1989 */
1990 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
1991   int i;
1992   if( NEVER(iFrom==iTo) ) return;
1993   for(i=0; i<nReg; i++){
1994     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
1995   }
1996 }
1997 
1998 /*
1999 ** Return true if any register in the range iFrom..iTo (inclusive)
2000 ** is used as part of the column cache.
2001 */
2002 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2003   int i;
2004   struct yColCache *p;
2005   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2006     int r = p->iReg;
2007     if( r>=iFrom && r<=iTo ) return 1;
2008   }
2009   return 0;
2010 }
2011 
2012 /*
2013 ** If the last instruction coded is an ephemeral copy of any of
2014 ** the registers in the nReg registers beginning with iReg, then
2015 ** convert the last instruction from OP_SCopy to OP_Copy.
2016 */
2017 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2018   VdbeOp *pOp;
2019   Vdbe *v;
2020 
2021   assert( pParse->db->mallocFailed==0 );
2022   v = pParse->pVdbe;
2023   assert( v!=0 );
2024   pOp = sqlite3VdbeGetOp(v, -1);
2025   assert( pOp!=0 );
2026   if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2027     pOp->opcode = OP_Copy;
2028   }
2029 }
2030 
2031 /*
2032 ** Generate code to store the value of the iAlias-th alias in register
2033 ** target.  The first time this is called, pExpr is evaluated to compute
2034 ** the value of the alias.  The value is stored in an auxiliary register
2035 ** and the number of that register is returned.  On subsequent calls,
2036 ** the register number is returned without generating any code.
2037 **
2038 ** Note that in order for this to work, code must be generated in the
2039 ** same order that it is executed.
2040 **
2041 ** Aliases are numbered starting with 1.  So iAlias is in the range
2042 ** of 1 to pParse->nAlias inclusive.
2043 **
2044 ** pParse->aAlias[iAlias-1] records the register number where the value
2045 ** of the iAlias-th alias is stored.  If zero, that means that the
2046 ** alias has not yet been computed.
2047 */
2048 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
2049 #if 0
2050   sqlite3 *db = pParse->db;
2051   int iReg;
2052   if( pParse->nAliasAlloc<pParse->nAlias ){
2053     pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
2054                                  sizeof(pParse->aAlias[0])*pParse->nAlias );
2055     testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
2056     if( db->mallocFailed ) return 0;
2057     memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
2058            (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
2059     pParse->nAliasAlloc = pParse->nAlias;
2060   }
2061   assert( iAlias>0 && iAlias<=pParse->nAlias );
2062   iReg = pParse->aAlias[iAlias-1];
2063   if( iReg==0 ){
2064     if( pParse->iCacheLevel>0 ){
2065       iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2066     }else{
2067       iReg = ++pParse->nMem;
2068       sqlite3ExprCode(pParse, pExpr, iReg);
2069       pParse->aAlias[iAlias-1] = iReg;
2070     }
2071   }
2072   return iReg;
2073 #else
2074   UNUSED_PARAMETER(iAlias);
2075   return sqlite3ExprCodeTarget(pParse, pExpr, target);
2076 #endif
2077 }
2078 
2079 /*
2080 ** Generate code into the current Vdbe to evaluate the given
2081 ** expression.  Attempt to store the results in register "target".
2082 ** Return the register where results are stored.
2083 **
2084 ** With this routine, there is no guarantee that results will
2085 ** be stored in target.  The result might be stored in some other
2086 ** register if it is convenient to do so.  The calling function
2087 ** must check the return code and move the results to the desired
2088 ** register.
2089 */
2090 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2091   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2092   int op;                   /* The opcode being coded */
2093   int inReg = target;       /* Results stored in register inReg */
2094   int regFree1 = 0;         /* If non-zero free this temporary register */
2095   int regFree2 = 0;         /* If non-zero free this temporary register */
2096   int r1, r2, r3, r4;       /* Various register numbers */
2097   sqlite3 *db = pParse->db; /* The database connection */
2098 
2099   assert( target>0 && target<=pParse->nMem );
2100   if( v==0 ){
2101     assert( pParse->db->mallocFailed );
2102     return 0;
2103   }
2104 
2105   if( pExpr==0 ){
2106     op = TK_NULL;
2107   }else{
2108     op = pExpr->op;
2109   }
2110   switch( op ){
2111     case TK_AGG_COLUMN: {
2112       AggInfo *pAggInfo = pExpr->pAggInfo;
2113       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2114       if( !pAggInfo->directMode ){
2115         assert( pCol->iMem>0 );
2116         inReg = pCol->iMem;
2117         break;
2118       }else if( pAggInfo->useSortingIdx ){
2119         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2120                               pCol->iSorterColumn, target);
2121         break;
2122       }
2123       /* Otherwise, fall thru into the TK_COLUMN case */
2124     }
2125     case TK_COLUMN: {
2126       if( pExpr->iTable<0 ){
2127         /* This only happens when coding check constraints */
2128         assert( pParse->ckBase>0 );
2129         inReg = pExpr->iColumn + pParse->ckBase;
2130       }else{
2131         testcase( (pExpr->flags & EP_AnyAff)!=0 );
2132         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2133                                  pExpr->iColumn, pExpr->iTable, target,
2134                                  pExpr->flags & EP_AnyAff);
2135       }
2136       break;
2137     }
2138     case TK_INTEGER: {
2139       codeInteger(v, pExpr, 0, target);
2140       break;
2141     }
2142     case TK_FLOAT: {
2143       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2144       codeReal(v, pExpr->u.zToken, 0, target);
2145       break;
2146     }
2147     case TK_STRING: {
2148       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2149       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2150       break;
2151     }
2152     case TK_NULL: {
2153       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2154       break;
2155     }
2156 #ifndef SQLITE_OMIT_BLOB_LITERAL
2157     case TK_BLOB: {
2158       int n;
2159       const char *z;
2160       char *zBlob;
2161       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2162       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2163       assert( pExpr->u.zToken[1]=='\'' );
2164       z = &pExpr->u.zToken[2];
2165       n = sqlite3Strlen30(z) - 1;
2166       assert( z[n]=='\'' );
2167       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2168       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2169       break;
2170     }
2171 #endif
2172     case TK_VARIABLE: {
2173       VdbeOp *pOp;
2174       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2175       assert( pExpr->u.zToken!=0 );
2176       assert( pExpr->u.zToken[0]!=0 );
2177       if( pExpr->u.zToken[1]==0
2178          && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable
2179          && pOp->p1+pOp->p3==pExpr->iTable
2180          && pOp->p2+pOp->p3==target
2181          && pOp->p4.z==0
2182       ){
2183         /* If the previous instruction was a copy of the previous unnamed
2184         ** parameter into the previous register, then simply increment the
2185         ** repeat count on the prior instruction rather than making a new
2186         ** instruction.
2187         */
2188         pOp->p3++;
2189       }else{
2190         sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1);
2191         if( pExpr->u.zToken[1]!=0 ){
2192           sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
2193         }
2194       }
2195       break;
2196     }
2197     case TK_REGISTER: {
2198       inReg = pExpr->iTable;
2199       break;
2200     }
2201     case TK_AS: {
2202       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
2203       break;
2204     }
2205 #ifndef SQLITE_OMIT_CAST
2206     case TK_CAST: {
2207       /* Expressions of the form:   CAST(pLeft AS token) */
2208       int aff, to_op;
2209       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2210       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2211       aff = sqlite3AffinityType(pExpr->u.zToken);
2212       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2213       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2214       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2215       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2216       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2217       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2218       testcase( to_op==OP_ToText );
2219       testcase( to_op==OP_ToBlob );
2220       testcase( to_op==OP_ToNumeric );
2221       testcase( to_op==OP_ToInt );
2222       testcase( to_op==OP_ToReal );
2223       if( inReg!=target ){
2224         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2225         inReg = target;
2226       }
2227       sqlite3VdbeAddOp1(v, to_op, inReg);
2228       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2229       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2230       break;
2231     }
2232 #endif /* SQLITE_OMIT_CAST */
2233     case TK_LT:
2234     case TK_LE:
2235     case TK_GT:
2236     case TK_GE:
2237     case TK_NE:
2238     case TK_EQ: {
2239       assert( TK_LT==OP_Lt );
2240       assert( TK_LE==OP_Le );
2241       assert( TK_GT==OP_Gt );
2242       assert( TK_GE==OP_Ge );
2243       assert( TK_EQ==OP_Eq );
2244       assert( TK_NE==OP_Ne );
2245       testcase( op==TK_LT );
2246       testcase( op==TK_LE );
2247       testcase( op==TK_GT );
2248       testcase( op==TK_GE );
2249       testcase( op==TK_EQ );
2250       testcase( op==TK_NE );
2251       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2252                                   pExpr->pRight, &r2, &regFree2);
2253       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2254                   r1, r2, inReg, SQLITE_STOREP2);
2255       testcase( regFree1==0 );
2256       testcase( regFree2==0 );
2257       break;
2258     }
2259     case TK_AND:
2260     case TK_OR:
2261     case TK_PLUS:
2262     case TK_STAR:
2263     case TK_MINUS:
2264     case TK_REM:
2265     case TK_BITAND:
2266     case TK_BITOR:
2267     case TK_SLASH:
2268     case TK_LSHIFT:
2269     case TK_RSHIFT:
2270     case TK_CONCAT: {
2271       assert( TK_AND==OP_And );
2272       assert( TK_OR==OP_Or );
2273       assert( TK_PLUS==OP_Add );
2274       assert( TK_MINUS==OP_Subtract );
2275       assert( TK_REM==OP_Remainder );
2276       assert( TK_BITAND==OP_BitAnd );
2277       assert( TK_BITOR==OP_BitOr );
2278       assert( TK_SLASH==OP_Divide );
2279       assert( TK_LSHIFT==OP_ShiftLeft );
2280       assert( TK_RSHIFT==OP_ShiftRight );
2281       assert( TK_CONCAT==OP_Concat );
2282       testcase( op==TK_AND );
2283       testcase( op==TK_OR );
2284       testcase( op==TK_PLUS );
2285       testcase( op==TK_MINUS );
2286       testcase( op==TK_REM );
2287       testcase( op==TK_BITAND );
2288       testcase( op==TK_BITOR );
2289       testcase( op==TK_SLASH );
2290       testcase( op==TK_LSHIFT );
2291       testcase( op==TK_RSHIFT );
2292       testcase( op==TK_CONCAT );
2293       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2294       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2295       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2296       testcase( regFree1==0 );
2297       testcase( regFree2==0 );
2298       break;
2299     }
2300     case TK_UMINUS: {
2301       Expr *pLeft = pExpr->pLeft;
2302       assert( pLeft );
2303       if( pLeft->op==TK_FLOAT ){
2304         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2305         codeReal(v, pLeft->u.zToken, 1, target);
2306       }else if( pLeft->op==TK_INTEGER ){
2307         codeInteger(v, pLeft, 1, target);
2308       }else{
2309         regFree1 = r1 = sqlite3GetTempReg(pParse);
2310         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2311         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2312         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2313         testcase( regFree2==0 );
2314       }
2315       inReg = target;
2316       break;
2317     }
2318     case TK_BITNOT:
2319     case TK_NOT: {
2320       assert( TK_BITNOT==OP_BitNot );
2321       assert( TK_NOT==OP_Not );
2322       testcase( op==TK_BITNOT );
2323       testcase( op==TK_NOT );
2324       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2325       testcase( regFree1==0 );
2326       inReg = target;
2327       sqlite3VdbeAddOp2(v, op, r1, inReg);
2328       break;
2329     }
2330     case TK_ISNULL:
2331     case TK_NOTNULL: {
2332       int addr;
2333       assert( TK_ISNULL==OP_IsNull );
2334       assert( TK_NOTNULL==OP_NotNull );
2335       testcase( op==TK_ISNULL );
2336       testcase( op==TK_NOTNULL );
2337       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2338       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2339       testcase( regFree1==0 );
2340       addr = sqlite3VdbeAddOp1(v, op, r1);
2341       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2342       sqlite3VdbeJumpHere(v, addr);
2343       break;
2344     }
2345     case TK_AGG_FUNCTION: {
2346       AggInfo *pInfo = pExpr->pAggInfo;
2347       if( pInfo==0 ){
2348         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2349         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2350       }else{
2351         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2352       }
2353       break;
2354     }
2355     case TK_CONST_FUNC:
2356     case TK_FUNCTION: {
2357       ExprList *pFarg;       /* List of function arguments */
2358       int nFarg;             /* Number of function arguments */
2359       FuncDef *pDef;         /* The function definition object */
2360       int nId;               /* Length of the function name in bytes */
2361       const char *zId;       /* The function name */
2362       int constMask = 0;     /* Mask of function arguments that are constant */
2363       int i;                 /* Loop counter */
2364       u8 enc = ENC(db);      /* The text encoding used by this database */
2365       CollSeq *pColl = 0;    /* A collating sequence */
2366 
2367       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2368       testcase( op==TK_CONST_FUNC );
2369       testcase( op==TK_FUNCTION );
2370       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2371         pFarg = 0;
2372       }else{
2373         pFarg = pExpr->x.pList;
2374       }
2375       nFarg = pFarg ? pFarg->nExpr : 0;
2376       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2377       zId = pExpr->u.zToken;
2378       nId = sqlite3Strlen30(zId);
2379       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2380       assert( pDef!=0 );
2381       if( pFarg ){
2382         r1 = sqlite3GetTempRange(pParse, nFarg);
2383         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2384       }else{
2385         r1 = 0;
2386       }
2387 #ifndef SQLITE_OMIT_VIRTUALTABLE
2388       /* Possibly overload the function if the first argument is
2389       ** a virtual table column.
2390       **
2391       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2392       ** second argument, not the first, as the argument to test to
2393       ** see if it is a column in a virtual table.  This is done because
2394       ** the left operand of infix functions (the operand we want to
2395       ** control overloading) ends up as the second argument to the
2396       ** function.  The expression "A glob B" is equivalent to
2397       ** "glob(B,A).  We want to use the A in "A glob B" to test
2398       ** for function overloading.  But we use the B term in "glob(B,A)".
2399       */
2400       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2401         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2402       }else if( nFarg>0 ){
2403         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2404       }
2405 #endif
2406       for(i=0; i<nFarg; i++){
2407         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2408           constMask |= (1<<i);
2409         }
2410         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2411           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2412         }
2413       }
2414       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2415         if( !pColl ) pColl = db->pDfltColl;
2416         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2417       }
2418       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2419                         (char*)pDef, P4_FUNCDEF);
2420       sqlite3VdbeChangeP5(v, (u8)nFarg);
2421       if( nFarg ){
2422         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2423       }
2424       sqlite3ExprCacheAffinityChange(pParse, r1, nFarg);
2425       break;
2426     }
2427 #ifndef SQLITE_OMIT_SUBQUERY
2428     case TK_EXISTS:
2429     case TK_SELECT: {
2430       testcase( op==TK_EXISTS );
2431       testcase( op==TK_SELECT );
2432       sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2433       inReg = pExpr->iColumn;
2434       break;
2435     }
2436     case TK_IN: {
2437       int rNotFound = 0;
2438       int rMayHaveNull = 0;
2439       int j2, j3, j4, j5;
2440       char affinity;
2441       int eType;
2442 
2443       VdbeNoopComment((v, "begin IN expr r%d", target));
2444       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2445       if( rMayHaveNull ){
2446         rNotFound = ++pParse->nMem;
2447       }
2448 
2449       /* Figure out the affinity to use to create a key from the results
2450       ** of the expression. affinityStr stores a static string suitable for
2451       ** P4 of OP_MakeRecord.
2452       */
2453       affinity = comparisonAffinity(pExpr);
2454 
2455 
2456       /* Code the <expr> from "<expr> IN (...)". The temporary table
2457       ** pExpr->iTable contains the values that make up the (...) set.
2458       */
2459       sqlite3ExprCachePush(pParse);
2460       sqlite3ExprCode(pParse, pExpr->pLeft, target);
2461       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2462       if( eType==IN_INDEX_ROWID ){
2463         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2464         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2465         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2466         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2467         sqlite3VdbeJumpHere(v, j3);
2468         sqlite3VdbeJumpHere(v, j4);
2469         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2470       }else{
2471         r2 = regFree2 = sqlite3GetTempReg(pParse);
2472 
2473         /* Create a record and test for set membership. If the set contains
2474         ** the value, then jump to the end of the test code. The target
2475         ** register still contains the true (1) value written to it earlier.
2476         */
2477         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2478         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2479         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2480 
2481         /* If the set membership test fails, then the result of the
2482         ** "x IN (...)" expression must be either 0 or NULL. If the set
2483         ** contains no NULL values, then the result is 0. If the set
2484         ** contains one or more NULL values, then the result of the
2485         ** expression is also NULL.
2486         */
2487         if( rNotFound==0 ){
2488           /* This branch runs if it is known at compile time (now) that
2489           ** the set contains no NULL values. This happens as the result
2490           ** of a "NOT NULL" constraint in the database schema. No need
2491           ** to test the data structure at runtime in this case.
2492           */
2493           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2494         }else{
2495           /* This block populates the rNotFound register with either NULL
2496           ** or 0 (an integer value). If the data structure contains one
2497           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2498           ** to 0. If register rMayHaveNull is already set to some value
2499           ** other than NULL, then the test has already been run and
2500           ** rNotFound is already populated.
2501           */
2502           static const char nullRecord[] = { 0x02, 0x00 };
2503           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2504           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2505           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2506                              nullRecord, P4_STATIC);
2507           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2508           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2509           sqlite3VdbeJumpHere(v, j4);
2510           sqlite3VdbeJumpHere(v, j3);
2511 
2512           /* Copy the value of register rNotFound (which is either NULL or 0)
2513           ** into the target register. This will be the result of the
2514           ** expression.
2515           */
2516           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2517         }
2518       }
2519       sqlite3VdbeJumpHere(v, j2);
2520       sqlite3VdbeJumpHere(v, j5);
2521       sqlite3ExprCachePop(pParse, 1);
2522       VdbeComment((v, "end IN expr r%d", target));
2523       break;
2524     }
2525 #endif
2526     /*
2527     **    x BETWEEN y AND z
2528     **
2529     ** This is equivalent to
2530     **
2531     **    x>=y AND x<=z
2532     **
2533     ** X is stored in pExpr->pLeft.
2534     ** Y is stored in pExpr->pList->a[0].pExpr.
2535     ** Z is stored in pExpr->pList->a[1].pExpr.
2536     */
2537     case TK_BETWEEN: {
2538       Expr *pLeft = pExpr->pLeft;
2539       struct ExprList_item *pLItem = pExpr->x.pList->a;
2540       Expr *pRight = pLItem->pExpr;
2541 
2542       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
2543                                   pRight, &r2, &regFree2);
2544       testcase( regFree1==0 );
2545       testcase( regFree2==0 );
2546       r3 = sqlite3GetTempReg(pParse);
2547       r4 = sqlite3GetTempReg(pParse);
2548       codeCompare(pParse, pLeft, pRight, OP_Ge,
2549                   r1, r2, r3, SQLITE_STOREP2);
2550       pLItem++;
2551       pRight = pLItem->pExpr;
2552       sqlite3ReleaseTempReg(pParse, regFree2);
2553       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2554       testcase( regFree2==0 );
2555       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2556       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2557       sqlite3ReleaseTempReg(pParse, r3);
2558       sqlite3ReleaseTempReg(pParse, r4);
2559       break;
2560     }
2561     case TK_UPLUS: {
2562       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2563       break;
2564     }
2565 
2566     /*
2567     ** Form A:
2568     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2569     **
2570     ** Form B:
2571     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2572     **
2573     ** Form A is can be transformed into the equivalent form B as follows:
2574     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2575     **        WHEN x=eN THEN rN ELSE y END
2576     **
2577     ** X (if it exists) is in pExpr->pLeft.
2578     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2579     ** ELSE clause and no other term matches, then the result of the
2580     ** exprssion is NULL.
2581     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2582     **
2583     ** The result of the expression is the Ri for the first matching Ei,
2584     ** or if there is no matching Ei, the ELSE term Y, or if there is
2585     ** no ELSE term, NULL.
2586     */
2587     default: assert( op==TK_CASE ); {
2588       int endLabel;                     /* GOTO label for end of CASE stmt */
2589       int nextCase;                     /* GOTO label for next WHEN clause */
2590       int nExpr;                        /* 2x number of WHEN terms */
2591       int i;                            /* Loop counter */
2592       ExprList *pEList;                 /* List of WHEN terms */
2593       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2594       Expr opCompare;                   /* The X==Ei expression */
2595       Expr cacheX;                      /* Cached expression X */
2596       Expr *pX;                         /* The X expression */
2597       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2598       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2599 
2600       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2601       assert((pExpr->x.pList->nExpr % 2) == 0);
2602       assert(pExpr->x.pList->nExpr > 0);
2603       pEList = pExpr->x.pList;
2604       aListelem = pEList->a;
2605       nExpr = pEList->nExpr;
2606       endLabel = sqlite3VdbeMakeLabel(v);
2607       if( (pX = pExpr->pLeft)!=0 ){
2608         cacheX = *pX;
2609         testcase( pX->op==TK_COLUMN );
2610         testcase( pX->op==TK_REGISTER );
2611         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2612         testcase( regFree1==0 );
2613         cacheX.op = TK_REGISTER;
2614         opCompare.op = TK_EQ;
2615         opCompare.pLeft = &cacheX;
2616         pTest = &opCompare;
2617       }
2618       for(i=0; i<nExpr; i=i+2){
2619         sqlite3ExprCachePush(pParse);
2620         if( pX ){
2621           assert( pTest!=0 );
2622           opCompare.pRight = aListelem[i].pExpr;
2623         }else{
2624           pTest = aListelem[i].pExpr;
2625         }
2626         nextCase = sqlite3VdbeMakeLabel(v);
2627         testcase( pTest->op==TK_COLUMN );
2628         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2629         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2630         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2631         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2632         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2633         sqlite3ExprCachePop(pParse, 1);
2634         sqlite3VdbeResolveLabel(v, nextCase);
2635       }
2636       if( pExpr->pRight ){
2637         sqlite3ExprCachePush(pParse);
2638         sqlite3ExprCode(pParse, pExpr->pRight, target);
2639         sqlite3ExprCachePop(pParse, 1);
2640       }else{
2641         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2642       }
2643       assert( db->mallocFailed || pParse->nErr>0
2644            || pParse->iCacheLevel==iCacheLevel );
2645       sqlite3VdbeResolveLabel(v, endLabel);
2646       break;
2647     }
2648 #ifndef SQLITE_OMIT_TRIGGER
2649     case TK_RAISE: {
2650       if( !pParse->trigStack ){
2651         sqlite3ErrorMsg(pParse,
2652                        "RAISE() may only be used within a trigger-program");
2653         return 0;
2654       }
2655       if( pExpr->affinity!=OE_Ignore ){
2656          assert( pExpr->affinity==OE_Rollback ||
2657                  pExpr->affinity == OE_Abort ||
2658                  pExpr->affinity == OE_Fail );
2659          assert( !ExprHasProperty(pExpr, EP_IntValue) );
2660          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->affinity, 0,
2661                            pExpr->u.zToken, 0);
2662       } else {
2663          assert( pExpr->affinity == OE_Ignore );
2664          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
2665          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2666          VdbeComment((v, "raise(IGNORE)"));
2667       }
2668       break;
2669     }
2670 #endif
2671   }
2672   sqlite3ReleaseTempReg(pParse, regFree1);
2673   sqlite3ReleaseTempReg(pParse, regFree2);
2674   return inReg;
2675 }
2676 
2677 /*
2678 ** Generate code to evaluate an expression and store the results
2679 ** into a register.  Return the register number where the results
2680 ** are stored.
2681 **
2682 ** If the register is a temporary register that can be deallocated,
2683 ** then write its number into *pReg.  If the result register is not
2684 ** a temporary, then set *pReg to zero.
2685 */
2686 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2687   int r1 = sqlite3GetTempReg(pParse);
2688   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2689   if( r2==r1 ){
2690     *pReg = r1;
2691   }else{
2692     sqlite3ReleaseTempReg(pParse, r1);
2693     *pReg = 0;
2694   }
2695   return r2;
2696 }
2697 
2698 /*
2699 ** Generate code that will evaluate expression pExpr and store the
2700 ** results in register target.  The results are guaranteed to appear
2701 ** in register target.
2702 */
2703 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2704   int inReg;
2705 
2706   assert( target>0 && target<=pParse->nMem );
2707   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2708   assert( pParse->pVdbe || pParse->db->mallocFailed );
2709   if( inReg!=target && pParse->pVdbe ){
2710     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2711   }
2712   return target;
2713 }
2714 
2715 /*
2716 ** Generate code that evalutes the given expression and puts the result
2717 ** in register target.
2718 **
2719 ** Also make a copy of the expression results into another "cache" register
2720 ** and modify the expression so that the next time it is evaluated,
2721 ** the result is a copy of the cache register.
2722 **
2723 ** This routine is used for expressions that are used multiple
2724 ** times.  They are evaluated once and the results of the expression
2725 ** are reused.
2726 */
2727 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2728   Vdbe *v = pParse->pVdbe;
2729   int inReg;
2730   inReg = sqlite3ExprCode(pParse, pExpr, target);
2731   assert( target>0 );
2732   /* This routine is called for terms to INSERT or UPDATE.  And the only
2733   ** other place where expressions can be converted into TK_REGISTER is
2734   ** in WHERE clause processing.  So as currently implemented, there is
2735   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2736   ** keep the ALWAYS() in case the conditions above change with future
2737   ** modifications or enhancements. */
2738   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2739     int iMem;
2740     iMem = ++pParse->nMem;
2741     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2742     pExpr->iTable = iMem;
2743     pExpr->op = TK_REGISTER;
2744   }
2745   return inReg;
2746 }
2747 
2748 /*
2749 ** Return TRUE if pExpr is an constant expression that is appropriate
2750 ** for factoring out of a loop.  Appropriate expressions are:
2751 **
2752 **    *  Any expression that evaluates to two or more opcodes.
2753 **
2754 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2755 **       or OP_Variable that does not need to be placed in a
2756 **       specific register.
2757 **
2758 ** There is no point in factoring out single-instruction constant
2759 ** expressions that need to be placed in a particular register.
2760 ** We could factor them out, but then we would end up adding an
2761 ** OP_SCopy instruction to move the value into the correct register
2762 ** later.  We might as well just use the original instruction and
2763 ** avoid the OP_SCopy.
2764 */
2765 static int isAppropriateForFactoring(Expr *p){
2766   if( !sqlite3ExprIsConstantNotJoin(p) ){
2767     return 0;  /* Only constant expressions are appropriate for factoring */
2768   }
2769   if( (p->flags & EP_FixedDest)==0 ){
2770     return 1;  /* Any constant without a fixed destination is appropriate */
2771   }
2772   while( p->op==TK_UPLUS ) p = p->pLeft;
2773   switch( p->op ){
2774 #ifndef SQLITE_OMIT_BLOB_LITERAL
2775     case TK_BLOB:
2776 #endif
2777     case TK_VARIABLE:
2778     case TK_INTEGER:
2779     case TK_FLOAT:
2780     case TK_NULL:
2781     case TK_STRING: {
2782       testcase( p->op==TK_BLOB );
2783       testcase( p->op==TK_VARIABLE );
2784       testcase( p->op==TK_INTEGER );
2785       testcase( p->op==TK_FLOAT );
2786       testcase( p->op==TK_NULL );
2787       testcase( p->op==TK_STRING );
2788       /* Single-instruction constants with a fixed destination are
2789       ** better done in-line.  If we factor them, they will just end
2790       ** up generating an OP_SCopy to move the value to the destination
2791       ** register. */
2792       return 0;
2793     }
2794     case TK_UMINUS: {
2795       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2796         return 0;
2797       }
2798       break;
2799     }
2800     default: {
2801       break;
2802     }
2803   }
2804   return 1;
2805 }
2806 
2807 /*
2808 ** If pExpr is a constant expression that is appropriate for
2809 ** factoring out of a loop, then evaluate the expression
2810 ** into a register and convert the expression into a TK_REGISTER
2811 ** expression.
2812 */
2813 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2814   Parse *pParse = pWalker->pParse;
2815   switch( pExpr->op ){
2816     case TK_REGISTER: {
2817       return WRC_Prune;
2818     }
2819     case TK_FUNCTION:
2820     case TK_AGG_FUNCTION:
2821     case TK_CONST_FUNC: {
2822       /* The arguments to a function have a fixed destination.
2823       ** Mark them this way to avoid generated unneeded OP_SCopy
2824       ** instructions.
2825       */
2826       ExprList *pList = pExpr->x.pList;
2827       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2828       if( pList ){
2829         int i = pList->nExpr;
2830         struct ExprList_item *pItem = pList->a;
2831         for(; i>0; i--, pItem++){
2832           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
2833         }
2834       }
2835       break;
2836     }
2837   }
2838   if( isAppropriateForFactoring(pExpr) ){
2839     int r1 = ++pParse->nMem;
2840     int r2;
2841     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2842     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
2843     pExpr->op = TK_REGISTER;
2844     pExpr->iTable = r2;
2845     return WRC_Prune;
2846   }
2847   return WRC_Continue;
2848 }
2849 
2850 /*
2851 ** Preevaluate constant subexpressions within pExpr and store the
2852 ** results in registers.  Modify pExpr so that the constant subexpresions
2853 ** are TK_REGISTER opcodes that refer to the precomputed values.
2854 */
2855 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2856   Walker w;
2857   w.xExprCallback = evalConstExpr;
2858   w.xSelectCallback = 0;
2859   w.pParse = pParse;
2860   sqlite3WalkExpr(&w, pExpr);
2861 }
2862 
2863 
2864 /*
2865 ** Generate code that pushes the value of every element of the given
2866 ** expression list into a sequence of registers beginning at target.
2867 **
2868 ** Return the number of elements evaluated.
2869 */
2870 int sqlite3ExprCodeExprList(
2871   Parse *pParse,     /* Parsing context */
2872   ExprList *pList,   /* The expression list to be coded */
2873   int target,        /* Where to write results */
2874   int doHardCopy     /* Make a hard copy of every element */
2875 ){
2876   struct ExprList_item *pItem;
2877   int i, n;
2878   assert( pList!=0 );
2879   assert( target>0 );
2880   n = pList->nExpr;
2881   for(pItem=pList->a, i=0; i<n; i++, pItem++){
2882     if( pItem->iAlias ){
2883       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
2884       Vdbe *v = sqlite3GetVdbe(pParse);
2885       if( iReg!=target+i ){
2886         sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
2887       }
2888     }else{
2889       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
2890     }
2891     if( doHardCopy && !pParse->db->mallocFailed ){
2892       sqlite3ExprHardCopy(pParse, target, n);
2893     }
2894   }
2895   return n;
2896 }
2897 
2898 /*
2899 ** Generate code for a boolean expression such that a jump is made
2900 ** to the label "dest" if the expression is true but execution
2901 ** continues straight thru if the expression is false.
2902 **
2903 ** If the expression evaluates to NULL (neither true nor false), then
2904 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
2905 **
2906 ** This code depends on the fact that certain token values (ex: TK_EQ)
2907 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2908 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
2909 ** the make process cause these values to align.  Assert()s in the code
2910 ** below verify that the numbers are aligned correctly.
2911 */
2912 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2913   Vdbe *v = pParse->pVdbe;
2914   int op = 0;
2915   int regFree1 = 0;
2916   int regFree2 = 0;
2917   int r1, r2;
2918 
2919   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2920   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
2921   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
2922   op = pExpr->op;
2923   switch( op ){
2924     case TK_AND: {
2925       int d2 = sqlite3VdbeMakeLabel(v);
2926       testcase( jumpIfNull==0 );
2927       sqlite3ExprCachePush(pParse);
2928       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
2929       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2930       sqlite3VdbeResolveLabel(v, d2);
2931       sqlite3ExprCachePop(pParse, 1);
2932       break;
2933     }
2934     case TK_OR: {
2935       testcase( jumpIfNull==0 );
2936       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2937       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2938       break;
2939     }
2940     case TK_NOT: {
2941       testcase( jumpIfNull==0 );
2942       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2943       break;
2944     }
2945     case TK_LT:
2946     case TK_LE:
2947     case TK_GT:
2948     case TK_GE:
2949     case TK_NE:
2950     case TK_EQ: {
2951       assert( TK_LT==OP_Lt );
2952       assert( TK_LE==OP_Le );
2953       assert( TK_GT==OP_Gt );
2954       assert( TK_GE==OP_Ge );
2955       assert( TK_EQ==OP_Eq );
2956       assert( TK_NE==OP_Ne );
2957       testcase( op==TK_LT );
2958       testcase( op==TK_LE );
2959       testcase( op==TK_GT );
2960       testcase( op==TK_GE );
2961       testcase( op==TK_EQ );
2962       testcase( op==TK_NE );
2963       testcase( jumpIfNull==0 );
2964       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2965                                   pExpr->pRight, &r2, &regFree2);
2966       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2967                   r1, r2, dest, jumpIfNull);
2968       testcase( regFree1==0 );
2969       testcase( regFree2==0 );
2970       break;
2971     }
2972     case TK_ISNULL:
2973     case TK_NOTNULL: {
2974       assert( TK_ISNULL==OP_IsNull );
2975       assert( TK_NOTNULL==OP_NotNull );
2976       testcase( op==TK_ISNULL );
2977       testcase( op==TK_NOTNULL );
2978       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2979       sqlite3VdbeAddOp2(v, op, r1, dest);
2980       testcase( regFree1==0 );
2981       break;
2982     }
2983     case TK_BETWEEN: {
2984       /*    x BETWEEN y AND z
2985       **
2986       ** Is equivalent to
2987       **
2988       **    x>=y AND x<=z
2989       **
2990       ** Code it as such, taking care to do the common subexpression
2991       ** elementation of x.
2992       */
2993       Expr exprAnd;
2994       Expr compLeft;
2995       Expr compRight;
2996       Expr exprX;
2997 
2998       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2999       exprX = *pExpr->pLeft;
3000       exprAnd.op = TK_AND;
3001       exprAnd.pLeft = &compLeft;
3002       exprAnd.pRight = &compRight;
3003       compLeft.op = TK_GE;
3004       compLeft.pLeft = &exprX;
3005       compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3006       compRight.op = TK_LE;
3007       compRight.pLeft = &exprX;
3008       compRight.pRight = pExpr->x.pList->a[1].pExpr;
3009       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3010       testcase( regFree1==0 );
3011       exprX.op = TK_REGISTER;
3012       testcase( jumpIfNull==0 );
3013       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3014       break;
3015     }
3016     default: {
3017       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3018       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3019       testcase( regFree1==0 );
3020       testcase( jumpIfNull==0 );
3021       break;
3022     }
3023   }
3024   sqlite3ReleaseTempReg(pParse, regFree1);
3025   sqlite3ReleaseTempReg(pParse, regFree2);
3026 }
3027 
3028 /*
3029 ** Generate code for a boolean expression such that a jump is made
3030 ** to the label "dest" if the expression is false but execution
3031 ** continues straight thru if the expression is true.
3032 **
3033 ** If the expression evaluates to NULL (neither true nor false) then
3034 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3035 ** is 0.
3036 */
3037 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3038   Vdbe *v = pParse->pVdbe;
3039   int op = 0;
3040   int regFree1 = 0;
3041   int regFree2 = 0;
3042   int r1, r2;
3043 
3044   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3045   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3046   if( pExpr==0 )    return;
3047 
3048   /* The value of pExpr->op and op are related as follows:
3049   **
3050   **       pExpr->op            op
3051   **       ---------          ----------
3052   **       TK_ISNULL          OP_NotNull
3053   **       TK_NOTNULL         OP_IsNull
3054   **       TK_NE              OP_Eq
3055   **       TK_EQ              OP_Ne
3056   **       TK_GT              OP_Le
3057   **       TK_LE              OP_Gt
3058   **       TK_GE              OP_Lt
3059   **       TK_LT              OP_Ge
3060   **
3061   ** For other values of pExpr->op, op is undefined and unused.
3062   ** The value of TK_ and OP_ constants are arranged such that we
3063   ** can compute the mapping above using the following expression.
3064   ** Assert()s verify that the computation is correct.
3065   */
3066   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3067 
3068   /* Verify correct alignment of TK_ and OP_ constants
3069   */
3070   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3071   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3072   assert( pExpr->op!=TK_NE || op==OP_Eq );
3073   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3074   assert( pExpr->op!=TK_LT || op==OP_Ge );
3075   assert( pExpr->op!=TK_LE || op==OP_Gt );
3076   assert( pExpr->op!=TK_GT || op==OP_Le );
3077   assert( pExpr->op!=TK_GE || op==OP_Lt );
3078 
3079   switch( pExpr->op ){
3080     case TK_AND: {
3081       testcase( jumpIfNull==0 );
3082       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3083       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3084       break;
3085     }
3086     case TK_OR: {
3087       int d2 = sqlite3VdbeMakeLabel(v);
3088       testcase( jumpIfNull==0 );
3089       sqlite3ExprCachePush(pParse);
3090       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3091       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3092       sqlite3VdbeResolveLabel(v, d2);
3093       sqlite3ExprCachePop(pParse, 1);
3094       break;
3095     }
3096     case TK_NOT: {
3097       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3098       break;
3099     }
3100     case TK_LT:
3101     case TK_LE:
3102     case TK_GT:
3103     case TK_GE:
3104     case TK_NE:
3105     case TK_EQ: {
3106       testcase( op==TK_LT );
3107       testcase( op==TK_LE );
3108       testcase( op==TK_GT );
3109       testcase( op==TK_GE );
3110       testcase( op==TK_EQ );
3111       testcase( op==TK_NE );
3112       testcase( jumpIfNull==0 );
3113       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3114                                   pExpr->pRight, &r2, &regFree2);
3115       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3116                   r1, r2, dest, jumpIfNull);
3117       testcase( regFree1==0 );
3118       testcase( regFree2==0 );
3119       break;
3120     }
3121     case TK_ISNULL:
3122     case TK_NOTNULL: {
3123       testcase( op==TK_ISNULL );
3124       testcase( op==TK_NOTNULL );
3125       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3126       sqlite3VdbeAddOp2(v, op, r1, dest);
3127       testcase( regFree1==0 );
3128       break;
3129     }
3130     case TK_BETWEEN: {
3131       /*    x BETWEEN y AND z
3132       **
3133       ** Is equivalent to
3134       **
3135       **    x>=y AND x<=z
3136       **
3137       ** Code it as such, taking care to do the common subexpression
3138       ** elementation of x.
3139       */
3140       Expr exprAnd;
3141       Expr compLeft;
3142       Expr compRight;
3143       Expr exprX;
3144 
3145       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3146       exprX = *pExpr->pLeft;
3147       exprAnd.op = TK_AND;
3148       exprAnd.pLeft = &compLeft;
3149       exprAnd.pRight = &compRight;
3150       compLeft.op = TK_GE;
3151       compLeft.pLeft = &exprX;
3152       compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3153       compRight.op = TK_LE;
3154       compRight.pLeft = &exprX;
3155       compRight.pRight = pExpr->x.pList->a[1].pExpr;
3156       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3157       testcase( regFree1==0 );
3158       exprX.op = TK_REGISTER;
3159       testcase( jumpIfNull==0 );
3160       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3161       break;
3162     }
3163     default: {
3164       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3165       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3166       testcase( regFree1==0 );
3167       testcase( jumpIfNull==0 );
3168       break;
3169     }
3170   }
3171   sqlite3ReleaseTempReg(pParse, regFree1);
3172   sqlite3ReleaseTempReg(pParse, regFree2);
3173 }
3174 
3175 /*
3176 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
3177 ** if they are identical and return FALSE if they differ in any way.
3178 **
3179 ** Sometimes this routine will return FALSE even if the two expressions
3180 ** really are equivalent.  If we cannot prove that the expressions are
3181 ** identical, we return FALSE just to be safe.  So if this routine
3182 ** returns false, then you do not really know for certain if the two
3183 ** expressions are the same.  But if you get a TRUE return, then you
3184 ** can be sure the expressions are the same.  In the places where
3185 ** this routine is used, it does not hurt to get an extra FALSE - that
3186 ** just might result in some slightly slower code.  But returning
3187 ** an incorrect TRUE could lead to a malfunction.
3188 */
3189 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3190   int i;
3191   if( pA==0||pB==0 ){
3192     return pB==pA;
3193   }
3194   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3195   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3196   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3197     return 0;
3198   }
3199   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
3200   if( pA->op!=pB->op ) return 0;
3201   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
3202   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
3203 
3204   if( pA->x.pList && pB->x.pList ){
3205     if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0;
3206     for(i=0; i<pA->x.pList->nExpr; i++){
3207       Expr *pExprA = pA->x.pList->a[i].pExpr;
3208       Expr *pExprB = pB->x.pList->a[i].pExpr;
3209       if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0;
3210     }
3211   }else if( pA->x.pList || pB->x.pList ){
3212     return 0;
3213   }
3214 
3215   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
3216   if( ExprHasProperty(pA, EP_IntValue) ){
3217     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3218       return 0;
3219     }
3220   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3221     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0;
3222     if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3223       return 0;
3224     }
3225   }
3226   return 1;
3227 }
3228 
3229 
3230 /*
3231 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3232 ** the new element.  Return a negative number if malloc fails.
3233 */
3234 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3235   int i;
3236   pInfo->aCol = sqlite3ArrayAllocate(
3237        db,
3238        pInfo->aCol,
3239        sizeof(pInfo->aCol[0]),
3240        3,
3241        &pInfo->nColumn,
3242        &pInfo->nColumnAlloc,
3243        &i
3244   );
3245   return i;
3246 }
3247 
3248 /*
3249 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3250 ** the new element.  Return a negative number if malloc fails.
3251 */
3252 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3253   int i;
3254   pInfo->aFunc = sqlite3ArrayAllocate(
3255        db,
3256        pInfo->aFunc,
3257        sizeof(pInfo->aFunc[0]),
3258        3,
3259        &pInfo->nFunc,
3260        &pInfo->nFuncAlloc,
3261        &i
3262   );
3263   return i;
3264 }
3265 
3266 /*
3267 ** This is the xExprCallback for a tree walker.  It is used to
3268 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3269 ** for additional information.
3270 */
3271 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3272   int i;
3273   NameContext *pNC = pWalker->u.pNC;
3274   Parse *pParse = pNC->pParse;
3275   SrcList *pSrcList = pNC->pSrcList;
3276   AggInfo *pAggInfo = pNC->pAggInfo;
3277 
3278   switch( pExpr->op ){
3279     case TK_AGG_COLUMN:
3280     case TK_COLUMN: {
3281       testcase( pExpr->op==TK_AGG_COLUMN );
3282       testcase( pExpr->op==TK_COLUMN );
3283       /* Check to see if the column is in one of the tables in the FROM
3284       ** clause of the aggregate query */
3285       if( ALWAYS(pSrcList!=0) ){
3286         struct SrcList_item *pItem = pSrcList->a;
3287         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3288           struct AggInfo_col *pCol;
3289           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3290           if( pExpr->iTable==pItem->iCursor ){
3291             /* If we reach this point, it means that pExpr refers to a table
3292             ** that is in the FROM clause of the aggregate query.
3293             **
3294             ** Make an entry for the column in pAggInfo->aCol[] if there
3295             ** is not an entry there already.
3296             */
3297             int k;
3298             pCol = pAggInfo->aCol;
3299             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3300               if( pCol->iTable==pExpr->iTable &&
3301                   pCol->iColumn==pExpr->iColumn ){
3302                 break;
3303               }
3304             }
3305             if( (k>=pAggInfo->nColumn)
3306              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3307             ){
3308               pCol = &pAggInfo->aCol[k];
3309               pCol->pTab = pExpr->pTab;
3310               pCol->iTable = pExpr->iTable;
3311               pCol->iColumn = pExpr->iColumn;
3312               pCol->iMem = ++pParse->nMem;
3313               pCol->iSorterColumn = -1;
3314               pCol->pExpr = pExpr;
3315               if( pAggInfo->pGroupBy ){
3316                 int j, n;
3317                 ExprList *pGB = pAggInfo->pGroupBy;
3318                 struct ExprList_item *pTerm = pGB->a;
3319                 n = pGB->nExpr;
3320                 for(j=0; j<n; j++, pTerm++){
3321                   Expr *pE = pTerm->pExpr;
3322                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3323                       pE->iColumn==pExpr->iColumn ){
3324                     pCol->iSorterColumn = j;
3325                     break;
3326                   }
3327                 }
3328               }
3329               if( pCol->iSorterColumn<0 ){
3330                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3331               }
3332             }
3333             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3334             ** because it was there before or because we just created it).
3335             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3336             ** pAggInfo->aCol[] entry.
3337             */
3338             ExprSetIrreducible(pExpr);
3339             pExpr->pAggInfo = pAggInfo;
3340             pExpr->op = TK_AGG_COLUMN;
3341             pExpr->iAgg = (i16)k;
3342             break;
3343           } /* endif pExpr->iTable==pItem->iCursor */
3344         } /* end loop over pSrcList */
3345       }
3346       return WRC_Prune;
3347     }
3348     case TK_AGG_FUNCTION: {
3349       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3350       ** to be ignored */
3351       if( pNC->nDepth==0 ){
3352         /* Check to see if pExpr is a duplicate of another aggregate
3353         ** function that is already in the pAggInfo structure
3354         */
3355         struct AggInfo_func *pItem = pAggInfo->aFunc;
3356         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3357           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
3358             break;
3359           }
3360         }
3361         if( i>=pAggInfo->nFunc ){
3362           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3363           */
3364           u8 enc = ENC(pParse->db);
3365           i = addAggInfoFunc(pParse->db, pAggInfo);
3366           if( i>=0 ){
3367             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3368             pItem = &pAggInfo->aFunc[i];
3369             pItem->pExpr = pExpr;
3370             pItem->iMem = ++pParse->nMem;
3371             assert( !ExprHasProperty(pExpr, EP_IntValue) );
3372             pItem->pFunc = sqlite3FindFunction(pParse->db,
3373                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3374                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3375             if( pExpr->flags & EP_Distinct ){
3376               pItem->iDistinct = pParse->nTab++;
3377             }else{
3378               pItem->iDistinct = -1;
3379             }
3380           }
3381         }
3382         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3383         */
3384         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3385         ExprSetIrreducible(pExpr);
3386         pExpr->iAgg = (i16)i;
3387         pExpr->pAggInfo = pAggInfo;
3388         return WRC_Prune;
3389       }
3390     }
3391   }
3392   return WRC_Continue;
3393 }
3394 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3395   NameContext *pNC = pWalker->u.pNC;
3396   if( pNC->nDepth==0 ){
3397     pNC->nDepth++;
3398     sqlite3WalkSelect(pWalker, pSelect);
3399     pNC->nDepth--;
3400     return WRC_Prune;
3401   }else{
3402     return WRC_Continue;
3403   }
3404 }
3405 
3406 /*
3407 ** Analyze the given expression looking for aggregate functions and
3408 ** for variables that need to be added to the pParse->aAgg[] array.
3409 ** Make additional entries to the pParse->aAgg[] array as necessary.
3410 **
3411 ** This routine should only be called after the expression has been
3412 ** analyzed by sqlite3ResolveExprNames().
3413 */
3414 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3415   Walker w;
3416   w.xExprCallback = analyzeAggregate;
3417   w.xSelectCallback = analyzeAggregatesInSelect;
3418   w.u.pNC = pNC;
3419   assert( pNC->pSrcList!=0 );
3420   sqlite3WalkExpr(&w, pExpr);
3421 }
3422 
3423 /*
3424 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3425 ** expression list.  Return the number of errors.
3426 **
3427 ** If an error is found, the analysis is cut short.
3428 */
3429 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3430   struct ExprList_item *pItem;
3431   int i;
3432   if( pList ){
3433     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3434       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3435     }
3436   }
3437 }
3438 
3439 /*
3440 ** Allocate a single new register for use to hold some intermediate result.
3441 */
3442 int sqlite3GetTempReg(Parse *pParse){
3443   if( pParse->nTempReg==0 ){
3444     return ++pParse->nMem;
3445   }
3446   return pParse->aTempReg[--pParse->nTempReg];
3447 }
3448 
3449 /*
3450 ** Deallocate a register, making available for reuse for some other
3451 ** purpose.
3452 **
3453 ** If a register is currently being used by the column cache, then
3454 ** the dallocation is deferred until the column cache line that uses
3455 ** the register becomes stale.
3456 */
3457 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3458   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3459     int i;
3460     struct yColCache *p;
3461     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3462       if( p->iReg==iReg ){
3463         p->tempReg = 1;
3464         return;
3465       }
3466     }
3467     pParse->aTempReg[pParse->nTempReg++] = iReg;
3468   }
3469 }
3470 
3471 /*
3472 ** Allocate or deallocate a block of nReg consecutive registers
3473 */
3474 int sqlite3GetTempRange(Parse *pParse, int nReg){
3475   int i, n;
3476   i = pParse->iRangeReg;
3477   n = pParse->nRangeReg;
3478   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3479     pParse->iRangeReg += nReg;
3480     pParse->nRangeReg -= nReg;
3481   }else{
3482     i = pParse->nMem+1;
3483     pParse->nMem += nReg;
3484   }
3485   return i;
3486 }
3487 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3488   if( nReg>pParse->nRangeReg ){
3489     pParse->nRangeReg = nReg;
3490     pParse->iRangeReg = iReg;
3491   }
3492 }
3493