xref: /sqlite-3.40.0/src/expr.c (revision 5313f2e1)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   sqlite3TokenInit(&s, (char*)zC);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
136           || op==TK_REGISTER || op==TK_TRIGGER)
137      && p->pTab!=0
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         Expr *pNext  = p->pRight;
153         /* The Expr.x union is never used at the same time as Expr.pRight */
154         assert( p->x.pList==0 || p->pRight==0 );
155         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
156         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
157         ** least one EP_Collate. Thus the following two ALWAYS. */
158         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
159           int i;
160           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
161             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
162               pNext = p->x.pList->a[i].pExpr;
163               break;
164             }
165           }
166         }
167         p = pNext;
168       }
169     }else{
170       break;
171     }
172   }
173   if( sqlite3CheckCollSeq(pParse, pColl) ){
174     pColl = 0;
175   }
176   return pColl;
177 }
178 
179 /*
180 ** pExpr is an operand of a comparison operator.  aff2 is the
181 ** type affinity of the other operand.  This routine returns the
182 ** type affinity that should be used for the comparison operator.
183 */
184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
185   char aff1 = sqlite3ExprAffinity(pExpr);
186   if( aff1 && aff2 ){
187     /* Both sides of the comparison are columns. If one has numeric
188     ** affinity, use that. Otherwise use no affinity.
189     */
190     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
191       return SQLITE_AFF_NUMERIC;
192     }else{
193       return SQLITE_AFF_BLOB;
194     }
195   }else if( !aff1 && !aff2 ){
196     /* Neither side of the comparison is a column.  Compare the
197     ** results directly.
198     */
199     return SQLITE_AFF_BLOB;
200   }else{
201     /* One side is a column, the other is not. Use the columns affinity. */
202     assert( aff1==0 || aff2==0 );
203     return (aff1 + aff2);
204   }
205 }
206 
207 /*
208 ** pExpr is a comparison operator.  Return the type affinity that should
209 ** be applied to both operands prior to doing the comparison.
210 */
211 static char comparisonAffinity(Expr *pExpr){
212   char aff;
213   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
214           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
215           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
216   assert( pExpr->pLeft );
217   aff = sqlite3ExprAffinity(pExpr->pLeft);
218   if( pExpr->pRight ){
219     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
220   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
221     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
222   }else if( !aff ){
223     aff = SQLITE_AFF_BLOB;
224   }
225   return aff;
226 }
227 
228 /*
229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
230 ** idx_affinity is the affinity of an indexed column. Return true
231 ** if the index with affinity idx_affinity may be used to implement
232 ** the comparison in pExpr.
233 */
234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
235   char aff = comparisonAffinity(pExpr);
236   switch( aff ){
237     case SQLITE_AFF_BLOB:
238       return 1;
239     case SQLITE_AFF_TEXT:
240       return idx_affinity==SQLITE_AFF_TEXT;
241     default:
242       return sqlite3IsNumericAffinity(idx_affinity);
243   }
244 }
245 
246 /*
247 ** Return the P5 value that should be used for a binary comparison
248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
249 */
250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
251   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
252   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
253   return aff;
254 }
255 
256 /*
257 ** Return a pointer to the collation sequence that should be used by
258 ** a binary comparison operator comparing pLeft and pRight.
259 **
260 ** If the left hand expression has a collating sequence type, then it is
261 ** used. Otherwise the collation sequence for the right hand expression
262 ** is used, or the default (BINARY) if neither expression has a collating
263 ** type.
264 **
265 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
266 ** it is not considered.
267 */
268 CollSeq *sqlite3BinaryCompareCollSeq(
269   Parse *pParse,
270   Expr *pLeft,
271   Expr *pRight
272 ){
273   CollSeq *pColl;
274   assert( pLeft );
275   if( pLeft->flags & EP_Collate ){
276     pColl = sqlite3ExprCollSeq(pParse, pLeft);
277   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
278     pColl = sqlite3ExprCollSeq(pParse, pRight);
279   }else{
280     pColl = sqlite3ExprCollSeq(pParse, pLeft);
281     if( !pColl ){
282       pColl = sqlite3ExprCollSeq(pParse, pRight);
283     }
284   }
285   return pColl;
286 }
287 
288 /*
289 ** Generate code for a comparison operator.
290 */
291 static int codeCompare(
292   Parse *pParse,    /* The parsing (and code generating) context */
293   Expr *pLeft,      /* The left operand */
294   Expr *pRight,     /* The right operand */
295   int opcode,       /* The comparison opcode */
296   int in1, int in2, /* Register holding operands */
297   int dest,         /* Jump here if true.  */
298   int jumpIfNull    /* If true, jump if either operand is NULL */
299 ){
300   int p5;
301   int addr;
302   CollSeq *p4;
303 
304   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
305   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
306   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
307                            (void*)p4, P4_COLLSEQ);
308   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
309   return addr;
310 }
311 
312 #if SQLITE_MAX_EXPR_DEPTH>0
313 /*
314 ** Check that argument nHeight is less than or equal to the maximum
315 ** expression depth allowed. If it is not, leave an error message in
316 ** pParse.
317 */
318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
319   int rc = SQLITE_OK;
320   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
321   if( nHeight>mxHeight ){
322     sqlite3ErrorMsg(pParse,
323        "Expression tree is too large (maximum depth %d)", mxHeight
324     );
325     rc = SQLITE_ERROR;
326   }
327   return rc;
328 }
329 
330 /* The following three functions, heightOfExpr(), heightOfExprList()
331 ** and heightOfSelect(), are used to determine the maximum height
332 ** of any expression tree referenced by the structure passed as the
333 ** first argument.
334 **
335 ** If this maximum height is greater than the current value pointed
336 ** to by pnHeight, the second parameter, then set *pnHeight to that
337 ** value.
338 */
339 static void heightOfExpr(Expr *p, int *pnHeight){
340   if( p ){
341     if( p->nHeight>*pnHeight ){
342       *pnHeight = p->nHeight;
343     }
344   }
345 }
346 static void heightOfExprList(ExprList *p, int *pnHeight){
347   if( p ){
348     int i;
349     for(i=0; i<p->nExpr; i++){
350       heightOfExpr(p->a[i].pExpr, pnHeight);
351     }
352   }
353 }
354 static void heightOfSelect(Select *p, int *pnHeight){
355   if( p ){
356     heightOfExpr(p->pWhere, pnHeight);
357     heightOfExpr(p->pHaving, pnHeight);
358     heightOfExpr(p->pLimit, pnHeight);
359     heightOfExpr(p->pOffset, pnHeight);
360     heightOfExprList(p->pEList, pnHeight);
361     heightOfExprList(p->pGroupBy, pnHeight);
362     heightOfExprList(p->pOrderBy, pnHeight);
363     heightOfSelect(p->pPrior, pnHeight);
364   }
365 }
366 
367 /*
368 ** Set the Expr.nHeight variable in the structure passed as an
369 ** argument. An expression with no children, Expr.pList or
370 ** Expr.pSelect member has a height of 1. Any other expression
371 ** has a height equal to the maximum height of any other
372 ** referenced Expr plus one.
373 **
374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
375 ** if appropriate.
376 */
377 static void exprSetHeight(Expr *p){
378   int nHeight = 0;
379   heightOfExpr(p->pLeft, &nHeight);
380   heightOfExpr(p->pRight, &nHeight);
381   if( ExprHasProperty(p, EP_xIsSelect) ){
382     heightOfSelect(p->x.pSelect, &nHeight);
383   }else if( p->x.pList ){
384     heightOfExprList(p->x.pList, &nHeight);
385     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
386   }
387   p->nHeight = nHeight + 1;
388 }
389 
390 /*
391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
392 ** the height is greater than the maximum allowed expression depth,
393 ** leave an error in pParse.
394 **
395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
396 ** Expr.flags.
397 */
398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
399   if( pParse->nErr ) return;
400   exprSetHeight(p);
401   sqlite3ExprCheckHeight(pParse, p->nHeight);
402 }
403 
404 /*
405 ** Return the maximum height of any expression tree referenced
406 ** by the select statement passed as an argument.
407 */
408 int sqlite3SelectExprHeight(Select *p){
409   int nHeight = 0;
410   heightOfSelect(p, &nHeight);
411   return nHeight;
412 }
413 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
414 /*
415 ** Propagate all EP_Propagate flags from the Expr.x.pList into
416 ** Expr.flags.
417 */
418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
419   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
420     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
421   }
422 }
423 #define exprSetHeight(y)
424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
425 
426 /*
427 ** This routine is the core allocator for Expr nodes.
428 **
429 ** Construct a new expression node and return a pointer to it.  Memory
430 ** for this node and for the pToken argument is a single allocation
431 ** obtained from sqlite3DbMalloc().  The calling function
432 ** is responsible for making sure the node eventually gets freed.
433 **
434 ** If dequote is true, then the token (if it exists) is dequoted.
435 ** If dequote is false, no dequoting is performed.  The deQuote
436 ** parameter is ignored if pToken is NULL or if the token does not
437 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
438 ** then the EP_DblQuoted flag is set on the expression node.
439 **
440 ** Special case:  If op==TK_INTEGER and pToken points to a string that
441 ** can be translated into a 32-bit integer, then the token is not
442 ** stored in u.zToken.  Instead, the integer values is written
443 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
444 ** is allocated to hold the integer text and the dequote flag is ignored.
445 */
446 Expr *sqlite3ExprAlloc(
447   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
448   int op,                 /* Expression opcode */
449   const Token *pToken,    /* Token argument.  Might be NULL */
450   int dequote             /* True to dequote */
451 ){
452   Expr *pNew;
453   int nExtra = 0;
454   int iValue = 0;
455 
456   assert( db!=0 );
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     memset(pNew, 0, sizeof(Expr));
467     pNew->op = (u8)op;
468     pNew->iAgg = -1;
469     if( pToken ){
470       if( nExtra==0 ){
471         pNew->flags |= EP_IntValue;
472         pNew->u.iValue = iValue;
473       }else{
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
479           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
480           sqlite3Dequote(pNew->u.zToken);
481         }
482       }
483     }
484 #if SQLITE_MAX_EXPR_DEPTH>0
485     pNew->nHeight = 1;
486 #endif
487   }
488   return pNew;
489 }
490 
491 /*
492 ** Allocate a new expression node from a zero-terminated token that has
493 ** already been dequoted.
494 */
495 Expr *sqlite3Expr(
496   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
497   int op,                 /* Expression opcode */
498   const char *zToken      /* Token argument.  Might be NULL */
499 ){
500   Token x;
501   x.z = zToken;
502   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
503   return sqlite3ExprAlloc(db, op, &x, 0);
504 }
505 
506 /*
507 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
508 **
509 ** If pRoot==NULL that means that a memory allocation error has occurred.
510 ** In that case, delete the subtrees pLeft and pRight.
511 */
512 void sqlite3ExprAttachSubtrees(
513   sqlite3 *db,
514   Expr *pRoot,
515   Expr *pLeft,
516   Expr *pRight
517 ){
518   if( pRoot==0 ){
519     assert( db->mallocFailed );
520     sqlite3ExprDelete(db, pLeft);
521     sqlite3ExprDelete(db, pRight);
522   }else{
523     if( pRight ){
524       pRoot->pRight = pRight;
525       pRoot->flags |= EP_Propagate & pRight->flags;
526     }
527     if( pLeft ){
528       pRoot->pLeft = pLeft;
529       pRoot->flags |= EP_Propagate & pLeft->flags;
530     }
531     exprSetHeight(pRoot);
532   }
533 }
534 
535 /*
536 ** Allocate an Expr node which joins as many as two subtrees.
537 **
538 ** One or both of the subtrees can be NULL.  Return a pointer to the new
539 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
540 ** free the subtrees and return NULL.
541 */
542 Expr *sqlite3PExpr(
543   Parse *pParse,          /* Parsing context */
544   int op,                 /* Expression opcode */
545   Expr *pLeft,            /* Left operand */
546   Expr *pRight,           /* Right operand */
547   const Token *pToken     /* Argument token */
548 ){
549   Expr *p;
550   if( op==TK_AND && pParse->nErr==0 ){
551     /* Take advantage of short-circuit false optimization for AND */
552     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
553   }else{
554     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
555     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
556   }
557   if( p ) {
558     sqlite3ExprCheckHeight(pParse, p->nHeight);
559   }
560   return p;
561 }
562 
563 /*
564 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
565 ** do a memory allocation failure) then delete the pSelect object.
566 */
567 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
568   if( pExpr ){
569     pExpr->x.pSelect = pSelect;
570     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
571     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
572   }else{
573     assert( pParse->db->mallocFailed );
574     sqlite3SelectDelete(pParse->db, pSelect);
575   }
576 }
577 
578 
579 /*
580 ** If the expression is always either TRUE or FALSE (respectively),
581 ** then return 1.  If one cannot determine the truth value of the
582 ** expression at compile-time return 0.
583 **
584 ** This is an optimization.  If is OK to return 0 here even if
585 ** the expression really is always false or false (a false negative).
586 ** But it is a bug to return 1 if the expression might have different
587 ** boolean values in different circumstances (a false positive.)
588 **
589 ** Note that if the expression is part of conditional for a
590 ** LEFT JOIN, then we cannot determine at compile-time whether or not
591 ** is it true or false, so always return 0.
592 */
593 static int exprAlwaysTrue(Expr *p){
594   int v = 0;
595   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
596   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
597   return v!=0;
598 }
599 static int exprAlwaysFalse(Expr *p){
600   int v = 0;
601   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
602   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
603   return v==0;
604 }
605 
606 /*
607 ** Join two expressions using an AND operator.  If either expression is
608 ** NULL, then just return the other expression.
609 **
610 ** If one side or the other of the AND is known to be false, then instead
611 ** of returning an AND expression, just return a constant expression with
612 ** a value of false.
613 */
614 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
615   if( pLeft==0 ){
616     return pRight;
617   }else if( pRight==0 ){
618     return pLeft;
619   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
620     sqlite3ExprDelete(db, pLeft);
621     sqlite3ExprDelete(db, pRight);
622     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
623   }else{
624     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
625     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
626     return pNew;
627   }
628 }
629 
630 /*
631 ** Construct a new expression node for a function with multiple
632 ** arguments.
633 */
634 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
635   Expr *pNew;
636   sqlite3 *db = pParse->db;
637   assert( pToken );
638   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
639   if( pNew==0 ){
640     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
641     return 0;
642   }
643   pNew->x.pList = pList;
644   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
645   sqlite3ExprSetHeightAndFlags(pParse, pNew);
646   return pNew;
647 }
648 
649 /*
650 ** Assign a variable number to an expression that encodes a wildcard
651 ** in the original SQL statement.
652 **
653 ** Wildcards consisting of a single "?" are assigned the next sequential
654 ** variable number.
655 **
656 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
657 ** sure "nnn" is not too be to avoid a denial of service attack when
658 ** the SQL statement comes from an external source.
659 **
660 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
661 ** as the previous instance of the same wildcard.  Or if this is the first
662 ** instance of the wildcard, the next sequential variable number is
663 ** assigned.
664 */
665 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
666   sqlite3 *db = pParse->db;
667   const char *z;
668 
669   if( pExpr==0 ) return;
670   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
671   z = pExpr->u.zToken;
672   assert( z!=0 );
673   assert( z[0]!=0 );
674   if( z[1]==0 ){
675     /* Wildcard of the form "?".  Assign the next variable number */
676     assert( z[0]=='?' );
677     pExpr->iColumn = (ynVar)(++pParse->nVar);
678   }else{
679     ynVar x = 0;
680     u32 n = sqlite3Strlen30(z);
681     if( z[0]=='?' ){
682       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
683       ** use it as the variable number */
684       i64 i;
685       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
686       pExpr->iColumn = x = (ynVar)i;
687       testcase( i==0 );
688       testcase( i==1 );
689       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
690       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
691       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
692         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
693             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
694         x = 0;
695       }
696       if( i>pParse->nVar ){
697         pParse->nVar = (int)i;
698       }
699     }else{
700       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
701       ** number as the prior appearance of the same name, or if the name
702       ** has never appeared before, reuse the same variable number
703       */
704       ynVar i;
705       for(i=0; i<pParse->nzVar; i++){
706         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
707           pExpr->iColumn = x = (ynVar)i+1;
708           break;
709         }
710       }
711       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
712     }
713     if( x>0 ){
714       if( x>pParse->nzVar ){
715         char **a;
716         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
717         if( a==0 ){
718           assert( db->mallocFailed ); /* Error reported through mallocFailed */
719           return;
720         }
721         pParse->azVar = a;
722         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
723         pParse->nzVar = x;
724       }
725       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
726         sqlite3DbFree(db, pParse->azVar[x-1]);
727         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
728       }
729     }
730   }
731   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
732     sqlite3ErrorMsg(pParse, "too many SQL variables");
733   }
734 }
735 
736 /*
737 ** Recursively delete an expression tree.
738 */
739 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
740   assert( p!=0 );
741   /* Sanity check: Assert that the IntValue is non-negative if it exists */
742   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
743   if( !ExprHasProperty(p, EP_TokenOnly) ){
744     /* The Expr.x union is never used at the same time as Expr.pRight */
745     assert( p->x.pList==0 || p->pRight==0 );
746     sqlite3ExprDelete(db, p->pLeft);
747     sqlite3ExprDelete(db, p->pRight);
748     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
749     if( ExprHasProperty(p, EP_xIsSelect) ){
750       sqlite3SelectDelete(db, p->x.pSelect);
751     }else{
752       sqlite3ExprListDelete(db, p->x.pList);
753     }
754   }
755   if( !ExprHasProperty(p, EP_Static) ){
756     sqlite3DbFree(db, p);
757   }
758 }
759 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
760   if( p ) sqlite3ExprDeleteNN(db, p);
761 }
762 
763 /*
764 ** Return the number of bytes allocated for the expression structure
765 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
766 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
767 */
768 static int exprStructSize(Expr *p){
769   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
770   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
771   return EXPR_FULLSIZE;
772 }
773 
774 /*
775 ** The dupedExpr*Size() routines each return the number of bytes required
776 ** to store a copy of an expression or expression tree.  They differ in
777 ** how much of the tree is measured.
778 **
779 **     dupedExprStructSize()     Size of only the Expr structure
780 **     dupedExprNodeSize()       Size of Expr + space for token
781 **     dupedExprSize()           Expr + token + subtree components
782 **
783 ***************************************************************************
784 **
785 ** The dupedExprStructSize() function returns two values OR-ed together:
786 ** (1) the space required for a copy of the Expr structure only and
787 ** (2) the EP_xxx flags that indicate what the structure size should be.
788 ** The return values is always one of:
789 **
790 **      EXPR_FULLSIZE
791 **      EXPR_REDUCEDSIZE   | EP_Reduced
792 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
793 **
794 ** The size of the structure can be found by masking the return value
795 ** of this routine with 0xfff.  The flags can be found by masking the
796 ** return value with EP_Reduced|EP_TokenOnly.
797 **
798 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
799 ** (unreduced) Expr objects as they or originally constructed by the parser.
800 ** During expression analysis, extra information is computed and moved into
801 ** later parts of teh Expr object and that extra information might get chopped
802 ** off if the expression is reduced.  Note also that it does not work to
803 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
804 ** to reduce a pristine expression tree from the parser.  The implementation
805 ** of dupedExprStructSize() contain multiple assert() statements that attempt
806 ** to enforce this constraint.
807 */
808 static int dupedExprStructSize(Expr *p, int flags){
809   int nSize;
810   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
811   assert( EXPR_FULLSIZE<=0xfff );
812   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
813   if( 0==flags ){
814     nSize = EXPR_FULLSIZE;
815   }else{
816     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
817     assert( !ExprHasProperty(p, EP_FromJoin) );
818     assert( !ExprHasProperty(p, EP_MemToken) );
819     assert( !ExprHasProperty(p, EP_NoReduce) );
820     if( p->pLeft || p->x.pList ){
821       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
822     }else{
823       assert( p->pRight==0 );
824       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
825     }
826   }
827   return nSize;
828 }
829 
830 /*
831 ** This function returns the space in bytes required to store the copy
832 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
833 ** string is defined.)
834 */
835 static int dupedExprNodeSize(Expr *p, int flags){
836   int nByte = dupedExprStructSize(p, flags) & 0xfff;
837   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
838     nByte += sqlite3Strlen30(p->u.zToken)+1;
839   }
840   return ROUND8(nByte);
841 }
842 
843 /*
844 ** Return the number of bytes required to create a duplicate of the
845 ** expression passed as the first argument. The second argument is a
846 ** mask containing EXPRDUP_XXX flags.
847 **
848 ** The value returned includes space to create a copy of the Expr struct
849 ** itself and the buffer referred to by Expr.u.zToken, if any.
850 **
851 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
852 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
853 ** and Expr.pRight variables (but not for any structures pointed to or
854 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
855 */
856 static int dupedExprSize(Expr *p, int flags){
857   int nByte = 0;
858   if( p ){
859     nByte = dupedExprNodeSize(p, flags);
860     if( flags&EXPRDUP_REDUCE ){
861       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
862     }
863   }
864   return nByte;
865 }
866 
867 /*
868 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
869 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
870 ** to store the copy of expression p, the copies of p->u.zToken
871 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
872 ** if any. Before returning, *pzBuffer is set to the first byte past the
873 ** portion of the buffer copied into by this function.
874 */
875 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
876   Expr *pNew;           /* Value to return */
877   u8 *zAlloc;           /* Memory space from which to build Expr object */
878   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
879 
880   assert( db!=0 );
881   assert( p );
882   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
883   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
884 
885   /* Figure out where to write the new Expr structure. */
886   if( pzBuffer ){
887     zAlloc = *pzBuffer;
888     staticFlag = EP_Static;
889   }else{
890     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
891     staticFlag = 0;
892   }
893   pNew = (Expr *)zAlloc;
894 
895   if( pNew ){
896     /* Set nNewSize to the size allocated for the structure pointed to
897     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
898     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
899     ** by the copy of the p->u.zToken string (if any).
900     */
901     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
902     const int nNewSize = nStructSize & 0xfff;
903     int nToken;
904     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
905       nToken = sqlite3Strlen30(p->u.zToken) + 1;
906     }else{
907       nToken = 0;
908     }
909     if( dupFlags ){
910       assert( ExprHasProperty(p, EP_Reduced)==0 );
911       memcpy(zAlloc, p, nNewSize);
912     }else{
913       u32 nSize = (u32)exprStructSize(p);
914       memcpy(zAlloc, p, nSize);
915       if( nSize<EXPR_FULLSIZE ){
916         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
917       }
918     }
919 
920     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
921     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
922     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
923     pNew->flags |= staticFlag;
924 
925     /* Copy the p->u.zToken string, if any. */
926     if( nToken ){
927       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
928       memcpy(zToken, p->u.zToken, nToken);
929     }
930 
931     if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
932       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
933       if( ExprHasProperty(p, EP_xIsSelect) ){
934         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
935       }else{
936         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
937       }
938     }
939 
940     /* Fill in pNew->pLeft and pNew->pRight. */
941     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
942       zAlloc += dupedExprNodeSize(p, dupFlags);
943       if( ExprHasProperty(pNew, EP_Reduced) ){
944         pNew->pLeft = p->pLeft ?
945                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
946         pNew->pRight = p->pRight ?
947                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
948       }
949       if( pzBuffer ){
950         *pzBuffer = zAlloc;
951       }
952     }else{
953       if( !ExprHasProperty(p, EP_TokenOnly) ){
954         pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
955         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
956       }
957     }
958   }
959   return pNew;
960 }
961 
962 /*
963 ** Create and return a deep copy of the object passed as the second
964 ** argument. If an OOM condition is encountered, NULL is returned
965 ** and the db->mallocFailed flag set.
966 */
967 #ifndef SQLITE_OMIT_CTE
968 static With *withDup(sqlite3 *db, With *p){
969   With *pRet = 0;
970   if( p ){
971     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
972     pRet = sqlite3DbMallocZero(db, nByte);
973     if( pRet ){
974       int i;
975       pRet->nCte = p->nCte;
976       for(i=0; i<p->nCte; i++){
977         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
978         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
979         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
980       }
981     }
982   }
983   return pRet;
984 }
985 #else
986 # define withDup(x,y) 0
987 #endif
988 
989 /*
990 ** The following group of routines make deep copies of expressions,
991 ** expression lists, ID lists, and select statements.  The copies can
992 ** be deleted (by being passed to their respective ...Delete() routines)
993 ** without effecting the originals.
994 **
995 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
996 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
997 ** by subsequent calls to sqlite*ListAppend() routines.
998 **
999 ** Any tables that the SrcList might point to are not duplicated.
1000 **
1001 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1002 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1003 ** truncated version of the usual Expr structure that will be stored as
1004 ** part of the in-memory representation of the database schema.
1005 */
1006 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1007   assert( flags==0 || flags==EXPRDUP_REDUCE );
1008   return p ? exprDup(db, p, flags, 0) : 0;
1009 }
1010 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1011   ExprList *pNew;
1012   struct ExprList_item *pItem, *pOldItem;
1013   int i;
1014   assert( db!=0 );
1015   if( p==0 ) return 0;
1016   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1017   if( pNew==0 ) return 0;
1018   pNew->nExpr = i = p->nExpr;
1019   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
1020   pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
1021   if( pItem==0 ){
1022     sqlite3DbFree(db, pNew);
1023     return 0;
1024   }
1025   pOldItem = p->a;
1026   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1027     Expr *pOldExpr = pOldItem->pExpr;
1028     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1029     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1030     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1031     pItem->sortOrder = pOldItem->sortOrder;
1032     pItem->done = 0;
1033     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1034     pItem->u = pOldItem->u;
1035   }
1036   return pNew;
1037 }
1038 
1039 /*
1040 ** If cursors, triggers, views and subqueries are all omitted from
1041 ** the build, then none of the following routines, except for
1042 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1043 ** called with a NULL argument.
1044 */
1045 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1046  || !defined(SQLITE_OMIT_SUBQUERY)
1047 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1048   SrcList *pNew;
1049   int i;
1050   int nByte;
1051   assert( db!=0 );
1052   if( p==0 ) return 0;
1053   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1054   pNew = sqlite3DbMallocRawNN(db, nByte );
1055   if( pNew==0 ) return 0;
1056   pNew->nSrc = pNew->nAlloc = p->nSrc;
1057   for(i=0; i<p->nSrc; i++){
1058     struct SrcList_item *pNewItem = &pNew->a[i];
1059     struct SrcList_item *pOldItem = &p->a[i];
1060     Table *pTab;
1061     pNewItem->pSchema = pOldItem->pSchema;
1062     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1063     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1064     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1065     pNewItem->fg = pOldItem->fg;
1066     pNewItem->iCursor = pOldItem->iCursor;
1067     pNewItem->addrFillSub = pOldItem->addrFillSub;
1068     pNewItem->regReturn = pOldItem->regReturn;
1069     if( pNewItem->fg.isIndexedBy ){
1070       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1071     }
1072     pNewItem->pIBIndex = pOldItem->pIBIndex;
1073     if( pNewItem->fg.isTabFunc ){
1074       pNewItem->u1.pFuncArg =
1075           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1076     }
1077     pTab = pNewItem->pTab = pOldItem->pTab;
1078     if( pTab ){
1079       pTab->nRef++;
1080     }
1081     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1082     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1083     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1084     pNewItem->colUsed = pOldItem->colUsed;
1085   }
1086   return pNew;
1087 }
1088 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1089   IdList *pNew;
1090   int i;
1091   assert( db!=0 );
1092   if( p==0 ) return 0;
1093   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1094   if( pNew==0 ) return 0;
1095   pNew->nId = p->nId;
1096   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1097   if( pNew->a==0 ){
1098     sqlite3DbFree(db, pNew);
1099     return 0;
1100   }
1101   /* Note that because the size of the allocation for p->a[] is not
1102   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1103   ** on the duplicate created by this function. */
1104   for(i=0; i<p->nId; i++){
1105     struct IdList_item *pNewItem = &pNew->a[i];
1106     struct IdList_item *pOldItem = &p->a[i];
1107     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1108     pNewItem->idx = pOldItem->idx;
1109   }
1110   return pNew;
1111 }
1112 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1113   Select *pNew, *pPrior;
1114   assert( db!=0 );
1115   if( p==0 ) return 0;
1116   pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1117   if( pNew==0 ) return 0;
1118   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1119   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1120   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1121   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1122   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1123   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1124   pNew->op = p->op;
1125   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1126   if( pPrior ) pPrior->pNext = pNew;
1127   pNew->pNext = 0;
1128   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1129   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1130   pNew->iLimit = 0;
1131   pNew->iOffset = 0;
1132   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1133   pNew->addrOpenEphm[0] = -1;
1134   pNew->addrOpenEphm[1] = -1;
1135   pNew->nSelectRow = p->nSelectRow;
1136   pNew->pWith = withDup(db, p->pWith);
1137   sqlite3SelectSetName(pNew, p->zSelName);
1138   return pNew;
1139 }
1140 #else
1141 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1142   assert( p==0 );
1143   return 0;
1144 }
1145 #endif
1146 
1147 
1148 /*
1149 ** Add a new element to the end of an expression list.  If pList is
1150 ** initially NULL, then create a new expression list.
1151 **
1152 ** If a memory allocation error occurs, the entire list is freed and
1153 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1154 ** that the new entry was successfully appended.
1155 */
1156 ExprList *sqlite3ExprListAppend(
1157   Parse *pParse,          /* Parsing context */
1158   ExprList *pList,        /* List to which to append. Might be NULL */
1159   Expr *pExpr             /* Expression to be appended. Might be NULL */
1160 ){
1161   sqlite3 *db = pParse->db;
1162   assert( db!=0 );
1163   if( pList==0 ){
1164     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1165     if( pList==0 ){
1166       goto no_mem;
1167     }
1168     pList->nExpr = 0;
1169     pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
1170     if( pList->a==0 ) goto no_mem;
1171   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1172     struct ExprList_item *a;
1173     assert( pList->nExpr>0 );
1174     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1175     if( a==0 ){
1176       goto no_mem;
1177     }
1178     pList->a = a;
1179   }
1180   assert( pList->a!=0 );
1181   if( 1 ){
1182     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1183     memset(pItem, 0, sizeof(*pItem));
1184     pItem->pExpr = pExpr;
1185   }
1186   return pList;
1187 
1188 no_mem:
1189   /* Avoid leaking memory if malloc has failed. */
1190   sqlite3ExprDelete(db, pExpr);
1191   sqlite3ExprListDelete(db, pList);
1192   return 0;
1193 }
1194 
1195 /*
1196 ** Set the sort order for the last element on the given ExprList.
1197 */
1198 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1199   if( p==0 ) return;
1200   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1201   assert( p->nExpr>0 );
1202   if( iSortOrder<0 ){
1203     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1204     return;
1205   }
1206   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1207 }
1208 
1209 /*
1210 ** Set the ExprList.a[].zName element of the most recently added item
1211 ** on the expression list.
1212 **
1213 ** pList might be NULL following an OOM error.  But pName should never be
1214 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1215 ** is set.
1216 */
1217 void sqlite3ExprListSetName(
1218   Parse *pParse,          /* Parsing context */
1219   ExprList *pList,        /* List to which to add the span. */
1220   Token *pName,           /* Name to be added */
1221   int dequote             /* True to cause the name to be dequoted */
1222 ){
1223   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1224   if( pList ){
1225     struct ExprList_item *pItem;
1226     assert( pList->nExpr>0 );
1227     pItem = &pList->a[pList->nExpr-1];
1228     assert( pItem->zName==0 );
1229     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1230     if( dequote ) sqlite3Dequote(pItem->zName);
1231   }
1232 }
1233 
1234 /*
1235 ** Set the ExprList.a[].zSpan element of the most recently added item
1236 ** on the expression list.
1237 **
1238 ** pList might be NULL following an OOM error.  But pSpan should never be
1239 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1240 ** is set.
1241 */
1242 void sqlite3ExprListSetSpan(
1243   Parse *pParse,          /* Parsing context */
1244   ExprList *pList,        /* List to which to add the span. */
1245   ExprSpan *pSpan         /* The span to be added */
1246 ){
1247   sqlite3 *db = pParse->db;
1248   assert( pList!=0 || db->mallocFailed!=0 );
1249   if( pList ){
1250     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1251     assert( pList->nExpr>0 );
1252     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1253     sqlite3DbFree(db, pItem->zSpan);
1254     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1255                                     (int)(pSpan->zEnd - pSpan->zStart));
1256   }
1257 }
1258 
1259 /*
1260 ** If the expression list pEList contains more than iLimit elements,
1261 ** leave an error message in pParse.
1262 */
1263 void sqlite3ExprListCheckLength(
1264   Parse *pParse,
1265   ExprList *pEList,
1266   const char *zObject
1267 ){
1268   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1269   testcase( pEList && pEList->nExpr==mx );
1270   testcase( pEList && pEList->nExpr==mx+1 );
1271   if( pEList && pEList->nExpr>mx ){
1272     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1273   }
1274 }
1275 
1276 /*
1277 ** Delete an entire expression list.
1278 */
1279 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1280   int i;
1281   struct ExprList_item *pItem;
1282   assert( pList->a!=0 || pList->nExpr==0 );
1283   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1284     sqlite3ExprDelete(db, pItem->pExpr);
1285     sqlite3DbFree(db, pItem->zName);
1286     sqlite3DbFree(db, pItem->zSpan);
1287   }
1288   sqlite3DbFree(db, pList->a);
1289   sqlite3DbFree(db, pList);
1290 }
1291 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1292   if( pList ) exprListDeleteNN(db, pList);
1293 }
1294 
1295 /*
1296 ** Return the bitwise-OR of all Expr.flags fields in the given
1297 ** ExprList.
1298 */
1299 u32 sqlite3ExprListFlags(const ExprList *pList){
1300   int i;
1301   u32 m = 0;
1302   if( pList ){
1303     for(i=0; i<pList->nExpr; i++){
1304        Expr *pExpr = pList->a[i].pExpr;
1305        assert( pExpr!=0 );
1306        m |= pExpr->flags;
1307     }
1308   }
1309   return m;
1310 }
1311 
1312 /*
1313 ** These routines are Walker callbacks used to check expressions to
1314 ** see if they are "constant" for some definition of constant.  The
1315 ** Walker.eCode value determines the type of "constant" we are looking
1316 ** for.
1317 **
1318 ** These callback routines are used to implement the following:
1319 **
1320 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1321 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1322 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1323 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1324 **
1325 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1326 ** is found to not be a constant.
1327 **
1328 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1329 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1330 ** an existing schema and 4 when processing a new statement.  A bound
1331 ** parameter raises an error for new statements, but is silently converted
1332 ** to NULL for existing schemas.  This allows sqlite_master tables that
1333 ** contain a bound parameter because they were generated by older versions
1334 ** of SQLite to be parsed by newer versions of SQLite without raising a
1335 ** malformed schema error.
1336 */
1337 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1338 
1339   /* If pWalker->eCode is 2 then any term of the expression that comes from
1340   ** the ON or USING clauses of a left join disqualifies the expression
1341   ** from being considered constant. */
1342   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1343     pWalker->eCode = 0;
1344     return WRC_Abort;
1345   }
1346 
1347   switch( pExpr->op ){
1348     /* Consider functions to be constant if all their arguments are constant
1349     ** and either pWalker->eCode==4 or 5 or the function has the
1350     ** SQLITE_FUNC_CONST flag. */
1351     case TK_FUNCTION:
1352       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1353         return WRC_Continue;
1354       }else{
1355         pWalker->eCode = 0;
1356         return WRC_Abort;
1357       }
1358     case TK_ID:
1359     case TK_COLUMN:
1360     case TK_AGG_FUNCTION:
1361     case TK_AGG_COLUMN:
1362       testcase( pExpr->op==TK_ID );
1363       testcase( pExpr->op==TK_COLUMN );
1364       testcase( pExpr->op==TK_AGG_FUNCTION );
1365       testcase( pExpr->op==TK_AGG_COLUMN );
1366       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1367         return WRC_Continue;
1368       }else{
1369         pWalker->eCode = 0;
1370         return WRC_Abort;
1371       }
1372     case TK_VARIABLE:
1373       if( pWalker->eCode==5 ){
1374         /* Silently convert bound parameters that appear inside of CREATE
1375         ** statements into a NULL when parsing the CREATE statement text out
1376         ** of the sqlite_master table */
1377         pExpr->op = TK_NULL;
1378       }else if( pWalker->eCode==4 ){
1379         /* A bound parameter in a CREATE statement that originates from
1380         ** sqlite3_prepare() causes an error */
1381         pWalker->eCode = 0;
1382         return WRC_Abort;
1383       }
1384       /* Fall through */
1385     default:
1386       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1387       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1388       return WRC_Continue;
1389   }
1390 }
1391 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1392   UNUSED_PARAMETER(NotUsed);
1393   pWalker->eCode = 0;
1394   return WRC_Abort;
1395 }
1396 static int exprIsConst(Expr *p, int initFlag, int iCur){
1397   Walker w;
1398   memset(&w, 0, sizeof(w));
1399   w.eCode = initFlag;
1400   w.xExprCallback = exprNodeIsConstant;
1401   w.xSelectCallback = selectNodeIsConstant;
1402   w.u.iCur = iCur;
1403   sqlite3WalkExpr(&w, p);
1404   return w.eCode;
1405 }
1406 
1407 /*
1408 ** Walk an expression tree.  Return non-zero if the expression is constant
1409 ** and 0 if it involves variables or function calls.
1410 **
1411 ** For the purposes of this function, a double-quoted string (ex: "abc")
1412 ** is considered a variable but a single-quoted string (ex: 'abc') is
1413 ** a constant.
1414 */
1415 int sqlite3ExprIsConstant(Expr *p){
1416   return exprIsConst(p, 1, 0);
1417 }
1418 
1419 /*
1420 ** Walk an expression tree.  Return non-zero if the expression is constant
1421 ** that does no originate from the ON or USING clauses of a join.
1422 ** Return 0 if it involves variables or function calls or terms from
1423 ** an ON or USING clause.
1424 */
1425 int sqlite3ExprIsConstantNotJoin(Expr *p){
1426   return exprIsConst(p, 2, 0);
1427 }
1428 
1429 /*
1430 ** Walk an expression tree.  Return non-zero if the expression is constant
1431 ** for any single row of the table with cursor iCur.  In other words, the
1432 ** expression must not refer to any non-deterministic function nor any
1433 ** table other than iCur.
1434 */
1435 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1436   return exprIsConst(p, 3, iCur);
1437 }
1438 
1439 /*
1440 ** Walk an expression tree.  Return non-zero if the expression is constant
1441 ** or a function call with constant arguments.  Return and 0 if there
1442 ** are any variables.
1443 **
1444 ** For the purposes of this function, a double-quoted string (ex: "abc")
1445 ** is considered a variable but a single-quoted string (ex: 'abc') is
1446 ** a constant.
1447 */
1448 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1449   assert( isInit==0 || isInit==1 );
1450   return exprIsConst(p, 4+isInit, 0);
1451 }
1452 
1453 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1454 /*
1455 ** Walk an expression tree.  Return 1 if the expression contains a
1456 ** subquery of some kind.  Return 0 if there are no subqueries.
1457 */
1458 int sqlite3ExprContainsSubquery(Expr *p){
1459   Walker w;
1460   memset(&w, 0, sizeof(w));
1461   w.eCode = 1;
1462   w.xExprCallback = sqlite3ExprWalkNoop;
1463   w.xSelectCallback = selectNodeIsConstant;
1464   sqlite3WalkExpr(&w, p);
1465   return w.eCode==0;
1466 }
1467 #endif
1468 
1469 /*
1470 ** If the expression p codes a constant integer that is small enough
1471 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1472 ** in *pValue.  If the expression is not an integer or if it is too big
1473 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1474 */
1475 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1476   int rc = 0;
1477 
1478   /* If an expression is an integer literal that fits in a signed 32-bit
1479   ** integer, then the EP_IntValue flag will have already been set */
1480   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1481            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1482 
1483   if( p->flags & EP_IntValue ){
1484     *pValue = p->u.iValue;
1485     return 1;
1486   }
1487   switch( p->op ){
1488     case TK_UPLUS: {
1489       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1490       break;
1491     }
1492     case TK_UMINUS: {
1493       int v;
1494       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1495         assert( v!=(-2147483647-1) );
1496         *pValue = -v;
1497         rc = 1;
1498       }
1499       break;
1500     }
1501     default: break;
1502   }
1503   return rc;
1504 }
1505 
1506 /*
1507 ** Return FALSE if there is no chance that the expression can be NULL.
1508 **
1509 ** If the expression might be NULL or if the expression is too complex
1510 ** to tell return TRUE.
1511 **
1512 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1513 ** when we know that a value cannot be NULL.  Hence, a false positive
1514 ** (returning TRUE when in fact the expression can never be NULL) might
1515 ** be a small performance hit but is otherwise harmless.  On the other
1516 ** hand, a false negative (returning FALSE when the result could be NULL)
1517 ** will likely result in an incorrect answer.  So when in doubt, return
1518 ** TRUE.
1519 */
1520 int sqlite3ExprCanBeNull(const Expr *p){
1521   u8 op;
1522   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1523   op = p->op;
1524   if( op==TK_REGISTER ) op = p->op2;
1525   switch( op ){
1526     case TK_INTEGER:
1527     case TK_STRING:
1528     case TK_FLOAT:
1529     case TK_BLOB:
1530       return 0;
1531     case TK_COLUMN:
1532       assert( p->pTab!=0 );
1533       return ExprHasProperty(p, EP_CanBeNull) ||
1534              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1535     default:
1536       return 1;
1537   }
1538 }
1539 
1540 /*
1541 ** Return TRUE if the given expression is a constant which would be
1542 ** unchanged by OP_Affinity with the affinity given in the second
1543 ** argument.
1544 **
1545 ** This routine is used to determine if the OP_Affinity operation
1546 ** can be omitted.  When in doubt return FALSE.  A false negative
1547 ** is harmless.  A false positive, however, can result in the wrong
1548 ** answer.
1549 */
1550 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1551   u8 op;
1552   if( aff==SQLITE_AFF_BLOB ) return 1;
1553   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1554   op = p->op;
1555   if( op==TK_REGISTER ) op = p->op2;
1556   switch( op ){
1557     case TK_INTEGER: {
1558       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1559     }
1560     case TK_FLOAT: {
1561       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1562     }
1563     case TK_STRING: {
1564       return aff==SQLITE_AFF_TEXT;
1565     }
1566     case TK_BLOB: {
1567       return 1;
1568     }
1569     case TK_COLUMN: {
1570       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1571       return p->iColumn<0
1572           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1573     }
1574     default: {
1575       return 0;
1576     }
1577   }
1578 }
1579 
1580 /*
1581 ** Return TRUE if the given string is a row-id column name.
1582 */
1583 int sqlite3IsRowid(const char *z){
1584   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1585   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1586   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1587   return 0;
1588 }
1589 
1590 /*
1591 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
1592 ** that can be simplified to a direct table access, then return
1593 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
1594 ** or if the SELECT statement needs to be manifested into a transient
1595 ** table, then return NULL.
1596 */
1597 #ifndef SQLITE_OMIT_SUBQUERY
1598 static Select *isCandidateForInOpt(Expr *pX){
1599   Select *p;
1600   SrcList *pSrc;
1601   ExprList *pEList;
1602   Expr *pRes;
1603   Table *pTab;
1604   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
1605   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
1606   p = pX->x.pSelect;
1607   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1608   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1609     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1610     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1611     return 0; /* No DISTINCT keyword and no aggregate functions */
1612   }
1613   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1614   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1615   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1616   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1617   pSrc = p->pSrc;
1618   assert( pSrc!=0 );
1619   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1620   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1621   pTab = pSrc->a[0].pTab;
1622   assert( pTab!=0 );
1623   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1624   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1625   pEList = p->pEList;
1626   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1627   pRes = pEList->a[0].pExpr;
1628   if( pRes->op!=TK_COLUMN ) return 0;    /* Result is a column */
1629   assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
1630   return p;
1631 }
1632 #endif /* SQLITE_OMIT_SUBQUERY */
1633 
1634 /*
1635 ** Code an OP_Once instruction and allocate space for its flag. Return the
1636 ** address of the new instruction.
1637 */
1638 int sqlite3CodeOnce(Parse *pParse){
1639   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1640   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1641 }
1642 
1643 /*
1644 ** Generate code that checks the left-most column of index table iCur to see if
1645 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1646 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1647 ** to be set to NULL if iCur contains one or more NULL values.
1648 */
1649 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1650   int addr1;
1651   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1652   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1653   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1654   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1655   VdbeComment((v, "first_entry_in(%d)", iCur));
1656   sqlite3VdbeJumpHere(v, addr1);
1657 }
1658 
1659 
1660 #ifndef SQLITE_OMIT_SUBQUERY
1661 /*
1662 ** The argument is an IN operator with a list (not a subquery) on the
1663 ** right-hand side.  Return TRUE if that list is constant.
1664 */
1665 static int sqlite3InRhsIsConstant(Expr *pIn){
1666   Expr *pLHS;
1667   int res;
1668   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1669   pLHS = pIn->pLeft;
1670   pIn->pLeft = 0;
1671   res = sqlite3ExprIsConstant(pIn);
1672   pIn->pLeft = pLHS;
1673   return res;
1674 }
1675 #endif
1676 
1677 /*
1678 ** This function is used by the implementation of the IN (...) operator.
1679 ** The pX parameter is the expression on the RHS of the IN operator, which
1680 ** might be either a list of expressions or a subquery.
1681 **
1682 ** The job of this routine is to find or create a b-tree object that can
1683 ** be used either to test for membership in the RHS set or to iterate through
1684 ** all members of the RHS set, skipping duplicates.
1685 **
1686 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1687 ** and pX->iTable is set to the index of that cursor.
1688 **
1689 ** The returned value of this function indicates the b-tree type, as follows:
1690 **
1691 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1692 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1693 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1694 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1695 **                         populated epheremal table.
1696 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1697 **                         implemented as a sequence of comparisons.
1698 **
1699 ** An existing b-tree might be used if the RHS expression pX is a simple
1700 ** subquery such as:
1701 **
1702 **     SELECT <column> FROM <table>
1703 **
1704 ** If the RHS of the IN operator is a list or a more complex subquery, then
1705 ** an ephemeral table might need to be generated from the RHS and then
1706 ** pX->iTable made to point to the ephemeral table instead of an
1707 ** existing table.
1708 **
1709 ** The inFlags parameter must contain exactly one of the bits
1710 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1711 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1712 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1713 ** IN index will be used to loop over all values of the RHS of the
1714 ** IN operator.
1715 **
1716 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1717 ** through the set members) then the b-tree must not contain duplicates.
1718 ** An epheremal table must be used unless the selected <column> is guaranteed
1719 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1720 ** has a UNIQUE constraint or UNIQUE index.
1721 **
1722 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1723 ** for fast set membership tests) then an epheremal table must
1724 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1725 ** be found with <column> as its left-most column.
1726 **
1727 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1728 ** if the RHS of the IN operator is a list (not a subquery) then this
1729 ** routine might decide that creating an ephemeral b-tree for membership
1730 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1731 ** calling routine should implement the IN operator using a sequence
1732 ** of Eq or Ne comparison operations.
1733 **
1734 ** When the b-tree is being used for membership tests, the calling function
1735 ** might need to know whether or not the RHS side of the IN operator
1736 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1737 ** if there is any chance that the (...) might contain a NULL value at
1738 ** runtime, then a register is allocated and the register number written
1739 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1740 ** NULL value, then *prRhsHasNull is left unchanged.
1741 **
1742 ** If a register is allocated and its location stored in *prRhsHasNull, then
1743 ** the value in that register will be NULL if the b-tree contains one or more
1744 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1745 ** NULL values.
1746 */
1747 #ifndef SQLITE_OMIT_SUBQUERY
1748 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1749   Select *p;                            /* SELECT to the right of IN operator */
1750   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1751   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1752   int mustBeUnique;                     /* True if RHS must be unique */
1753   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1754 
1755   assert( pX->op==TK_IN );
1756   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1757 
1758   /* Check to see if an existing table or index can be used to
1759   ** satisfy the query.  This is preferable to generating a new
1760   ** ephemeral table.
1761   */
1762   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
1763     sqlite3 *db = pParse->db;              /* Database connection */
1764     Table *pTab;                           /* Table <table>. */
1765     Expr *pExpr;                           /* Expression <column> */
1766     i16 iCol;                              /* Index of column <column> */
1767     i16 iDb;                               /* Database idx for pTab */
1768 
1769     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1770     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1771     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1772     pTab = p->pSrc->a[0].pTab;
1773     pExpr = p->pEList->a[0].pExpr;
1774     iCol = (i16)pExpr->iColumn;
1775 
1776     /* Code an OP_Transaction and OP_TableLock for <table>. */
1777     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1778     sqlite3CodeVerifySchema(pParse, iDb);
1779     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1780 
1781     /* This function is only called from two places. In both cases the vdbe
1782     ** has already been allocated. So assume sqlite3GetVdbe() is always
1783     ** successful here.
1784     */
1785     assert(v);
1786     if( iCol<0 ){
1787       int iAddr = sqlite3CodeOnce(pParse);
1788       VdbeCoverage(v);
1789 
1790       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1791       eType = IN_INDEX_ROWID;
1792 
1793       sqlite3VdbeJumpHere(v, iAddr);
1794     }else{
1795       Index *pIdx;                         /* Iterator variable */
1796 
1797       /* The collation sequence used by the comparison. If an index is to
1798       ** be used in place of a temp-table, it must be ordered according
1799       ** to this collation sequence.  */
1800       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1801 
1802       /* Check that the affinity that will be used to perform the
1803       ** comparison is the same as the affinity of the column. If
1804       ** it is not, it is not possible to use any index.
1805       */
1806       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1807 
1808       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1809         if( (pIdx->aiColumn[0]==iCol)
1810          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1811          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1812         ){
1813           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1814           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1815           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1816           VdbeComment((v, "%s", pIdx->zName));
1817           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1818           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1819 
1820           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1821             *prRhsHasNull = ++pParse->nMem;
1822             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1823           }
1824           sqlite3VdbeJumpHere(v, iAddr);
1825         }
1826       }
1827     }
1828   }
1829 
1830   /* If no preexisting index is available for the IN clause
1831   ** and IN_INDEX_NOOP is an allowed reply
1832   ** and the RHS of the IN operator is a list, not a subquery
1833   ** and the RHS is not contant or has two or fewer terms,
1834   ** then it is not worth creating an ephemeral table to evaluate
1835   ** the IN operator so return IN_INDEX_NOOP.
1836   */
1837   if( eType==0
1838    && (inFlags & IN_INDEX_NOOP_OK)
1839    && !ExprHasProperty(pX, EP_xIsSelect)
1840    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1841   ){
1842     eType = IN_INDEX_NOOP;
1843   }
1844 
1845 
1846   if( eType==0 ){
1847     /* Could not find an existing table or index to use as the RHS b-tree.
1848     ** We will have to generate an ephemeral table to do the job.
1849     */
1850     u32 savedNQueryLoop = pParse->nQueryLoop;
1851     int rMayHaveNull = 0;
1852     eType = IN_INDEX_EPH;
1853     if( inFlags & IN_INDEX_LOOP ){
1854       pParse->nQueryLoop = 0;
1855       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1856         eType = IN_INDEX_ROWID;
1857       }
1858     }else if( prRhsHasNull ){
1859       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1860     }
1861     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1862     pParse->nQueryLoop = savedNQueryLoop;
1863   }else{
1864     pX->iTable = iTab;
1865   }
1866   return eType;
1867 }
1868 #endif
1869 
1870 /*
1871 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1872 ** or IN operators.  Examples:
1873 **
1874 **     (SELECT a FROM b)          -- subquery
1875 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1876 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1877 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1878 **
1879 ** The pExpr parameter describes the expression that contains the IN
1880 ** operator or subquery.
1881 **
1882 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1883 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1884 ** to some integer key column of a table B-Tree. In this case, use an
1885 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1886 ** (slower) variable length keys B-Tree.
1887 **
1888 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1889 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1890 ** All this routine does is initialize the register given by rMayHaveNull
1891 ** to NULL.  Calling routines will take care of changing this register
1892 ** value to non-NULL if the RHS is NULL-free.
1893 **
1894 ** For a SELECT or EXISTS operator, return the register that holds the
1895 ** result.  For IN operators or if an error occurs, the return value is 0.
1896 */
1897 #ifndef SQLITE_OMIT_SUBQUERY
1898 int sqlite3CodeSubselect(
1899   Parse *pParse,          /* Parsing context */
1900   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1901   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1902   int isRowid             /* If true, LHS of IN operator is a rowid */
1903 ){
1904   int jmpIfDynamic = -1;                      /* One-time test address */
1905   int rReg = 0;                           /* Register storing resulting */
1906   Vdbe *v = sqlite3GetVdbe(pParse);
1907   if( NEVER(v==0) ) return 0;
1908   sqlite3ExprCachePush(pParse);
1909 
1910   /* This code must be run in its entirety every time it is encountered
1911   ** if any of the following is true:
1912   **
1913   **    *  The right-hand side is a correlated subquery
1914   **    *  The right-hand side is an expression list containing variables
1915   **    *  We are inside a trigger
1916   **
1917   ** If all of the above are false, then we can run this code just once
1918   ** save the results, and reuse the same result on subsequent invocations.
1919   */
1920   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1921     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1922   }
1923 
1924 #ifndef SQLITE_OMIT_EXPLAIN
1925   if( pParse->explain==2 ){
1926     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
1927         jmpIfDynamic>=0?"":"CORRELATED ",
1928         pExpr->op==TK_IN?"LIST":"SCALAR",
1929         pParse->iNextSelectId
1930     );
1931     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1932   }
1933 #endif
1934 
1935   switch( pExpr->op ){
1936     case TK_IN: {
1937       char affinity;              /* Affinity of the LHS of the IN */
1938       int addr;                   /* Address of OP_OpenEphemeral instruction */
1939       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1940       KeyInfo *pKeyInfo = 0;      /* Key information */
1941 
1942       affinity = sqlite3ExprAffinity(pLeft);
1943 
1944       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1945       ** expression it is handled the same way.  An ephemeral table is
1946       ** filled with single-field index keys representing the results
1947       ** from the SELECT or the <exprlist>.
1948       **
1949       ** If the 'x' expression is a column value, or the SELECT...
1950       ** statement returns a column value, then the affinity of that
1951       ** column is used to build the index keys. If both 'x' and the
1952       ** SELECT... statement are columns, then numeric affinity is used
1953       ** if either column has NUMERIC or INTEGER affinity. If neither
1954       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1955       ** is used.
1956       */
1957       pExpr->iTable = pParse->nTab++;
1958       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1959       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1960 
1961       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1962         /* Case 1:     expr IN (SELECT ...)
1963         **
1964         ** Generate code to write the results of the select into the temporary
1965         ** table allocated and opened above.
1966         */
1967         Select *pSelect = pExpr->x.pSelect;
1968         SelectDest dest;
1969         ExprList *pEList;
1970 
1971         assert( !isRowid );
1972         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1973         dest.affSdst = (u8)affinity;
1974         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1975         pSelect->iLimit = 0;
1976         testcase( pSelect->selFlags & SF_Distinct );
1977         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1978         if( sqlite3Select(pParse, pSelect, &dest) ){
1979           sqlite3KeyInfoUnref(pKeyInfo);
1980           return 0;
1981         }
1982         pEList = pSelect->pEList;
1983         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1984         assert( pEList!=0 );
1985         assert( pEList->nExpr>0 );
1986         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1987         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1988                                                          pEList->a[0].pExpr);
1989       }else if( ALWAYS(pExpr->x.pList!=0) ){
1990         /* Case 2:     expr IN (exprlist)
1991         **
1992         ** For each expression, build an index key from the evaluation and
1993         ** store it in the temporary table. If <expr> is a column, then use
1994         ** that columns affinity when building index keys. If <expr> is not
1995         ** a column, use numeric affinity.
1996         */
1997         int i;
1998         ExprList *pList = pExpr->x.pList;
1999         struct ExprList_item *pItem;
2000         int r1, r2, r3;
2001 
2002         if( !affinity ){
2003           affinity = SQLITE_AFF_BLOB;
2004         }
2005         if( pKeyInfo ){
2006           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2007           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2008         }
2009 
2010         /* Loop through each expression in <exprlist>. */
2011         r1 = sqlite3GetTempReg(pParse);
2012         r2 = sqlite3GetTempReg(pParse);
2013         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
2014         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2015           Expr *pE2 = pItem->pExpr;
2016           int iValToIns;
2017 
2018           /* If the expression is not constant then we will need to
2019           ** disable the test that was generated above that makes sure
2020           ** this code only executes once.  Because for a non-constant
2021           ** expression we need to rerun this code each time.
2022           */
2023           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2024             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2025             jmpIfDynamic = -1;
2026           }
2027 
2028           /* Evaluate the expression and insert it into the temp table */
2029           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2030             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2031           }else{
2032             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2033             if( isRowid ){
2034               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2035                                 sqlite3VdbeCurrentAddr(v)+2);
2036               VdbeCoverage(v);
2037               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2038             }else{
2039               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2040               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2041               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2042             }
2043           }
2044         }
2045         sqlite3ReleaseTempReg(pParse, r1);
2046         sqlite3ReleaseTempReg(pParse, r2);
2047       }
2048       if( pKeyInfo ){
2049         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2050       }
2051       break;
2052     }
2053 
2054     case TK_EXISTS:
2055     case TK_SELECT:
2056     default: {
2057       /* If this has to be a scalar SELECT.  Generate code to put the
2058       ** value of this select in a memory cell and record the number
2059       ** of the memory cell in iColumn.  If this is an EXISTS, write
2060       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2061       ** and record that memory cell in iColumn.
2062       */
2063       Select *pSel;                         /* SELECT statement to encode */
2064       SelectDest dest;                      /* How to deal with SELECt result */
2065 
2066       testcase( pExpr->op==TK_EXISTS );
2067       testcase( pExpr->op==TK_SELECT );
2068       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2069 
2070       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2071       pSel = pExpr->x.pSelect;
2072       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2073       if( pExpr->op==TK_SELECT ){
2074         dest.eDest = SRT_Mem;
2075         dest.iSdst = dest.iSDParm;
2076         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2077         VdbeComment((v, "Init subquery result"));
2078       }else{
2079         dest.eDest = SRT_Exists;
2080         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2081         VdbeComment((v, "Init EXISTS result"));
2082       }
2083       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2084       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2085                                   &sqlite3IntTokens[1]);
2086       pSel->iLimit = 0;
2087       pSel->selFlags &= ~SF_MultiValue;
2088       if( sqlite3Select(pParse, pSel, &dest) ){
2089         return 0;
2090       }
2091       rReg = dest.iSDParm;
2092       ExprSetVVAProperty(pExpr, EP_NoReduce);
2093       break;
2094     }
2095   }
2096 
2097   if( rHasNullFlag ){
2098     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2099   }
2100 
2101   if( jmpIfDynamic>=0 ){
2102     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2103   }
2104   sqlite3ExprCachePop(pParse);
2105 
2106   return rReg;
2107 }
2108 #endif /* SQLITE_OMIT_SUBQUERY */
2109 
2110 #ifndef SQLITE_OMIT_SUBQUERY
2111 /*
2112 ** Generate code for an IN expression.
2113 **
2114 **      x IN (SELECT ...)
2115 **      x IN (value, value, ...)
2116 **
2117 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2118 ** is an array of zero or more values.  The expression is true if the LHS is
2119 ** contained within the RHS.  The value of the expression is unknown (NULL)
2120 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2121 ** RHS contains one or more NULL values.
2122 **
2123 ** This routine generates code that jumps to destIfFalse if the LHS is not
2124 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2125 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2126 ** within the RHS then fall through.
2127 */
2128 static void sqlite3ExprCodeIN(
2129   Parse *pParse,        /* Parsing and code generating context */
2130   Expr *pExpr,          /* The IN expression */
2131   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2132   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2133 ){
2134   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2135   char affinity;        /* Comparison affinity to use */
2136   int eType;            /* Type of the RHS */
2137   int r1;               /* Temporary use register */
2138   Vdbe *v;              /* Statement under construction */
2139 
2140   /* Compute the RHS.   After this step, the table with cursor
2141   ** pExpr->iTable will contains the values that make up the RHS.
2142   */
2143   v = pParse->pVdbe;
2144   assert( v!=0 );       /* OOM detected prior to this routine */
2145   VdbeNoopComment((v, "begin IN expr"));
2146   eType = sqlite3FindInIndex(pParse, pExpr,
2147                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2148                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2149 
2150   /* Figure out the affinity to use to create a key from the results
2151   ** of the expression. affinityStr stores a static string suitable for
2152   ** P4 of OP_MakeRecord.
2153   */
2154   affinity = comparisonAffinity(pExpr);
2155 
2156   /* Code the LHS, the <expr> from "<expr> IN (...)".
2157   */
2158   sqlite3ExprCachePush(pParse);
2159   r1 = sqlite3GetTempReg(pParse);
2160   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2161 
2162   /* If sqlite3FindInIndex() did not find or create an index that is
2163   ** suitable for evaluating the IN operator, then evaluate using a
2164   ** sequence of comparisons.
2165   */
2166   if( eType==IN_INDEX_NOOP ){
2167     ExprList *pList = pExpr->x.pList;
2168     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2169     int labelOk = sqlite3VdbeMakeLabel(v);
2170     int r2, regToFree;
2171     int regCkNull = 0;
2172     int ii;
2173     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2174     if( destIfNull!=destIfFalse ){
2175       regCkNull = sqlite3GetTempReg(pParse);
2176       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2177     }
2178     for(ii=0; ii<pList->nExpr; ii++){
2179       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2180       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2181         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2182       }
2183       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2184         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2185                           (void*)pColl, P4_COLLSEQ);
2186         VdbeCoverageIf(v, ii<pList->nExpr-1);
2187         VdbeCoverageIf(v, ii==pList->nExpr-1);
2188         sqlite3VdbeChangeP5(v, affinity);
2189       }else{
2190         assert( destIfNull==destIfFalse );
2191         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2192                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2193         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2194       }
2195       sqlite3ReleaseTempReg(pParse, regToFree);
2196     }
2197     if( regCkNull ){
2198       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2199       sqlite3VdbeGoto(v, destIfFalse);
2200     }
2201     sqlite3VdbeResolveLabel(v, labelOk);
2202     sqlite3ReleaseTempReg(pParse, regCkNull);
2203   }else{
2204 
2205     /* If the LHS is NULL, then the result is either false or NULL depending
2206     ** on whether the RHS is empty or not, respectively.
2207     */
2208     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2209       if( destIfNull==destIfFalse ){
2210         /* Shortcut for the common case where the false and NULL outcomes are
2211         ** the same. */
2212         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2213       }else{
2214         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2215         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2216         VdbeCoverage(v);
2217         sqlite3VdbeGoto(v, destIfNull);
2218         sqlite3VdbeJumpHere(v, addr1);
2219       }
2220     }
2221 
2222     if( eType==IN_INDEX_ROWID ){
2223       /* In this case, the RHS is the ROWID of table b-tree
2224       */
2225       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2226       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2227       VdbeCoverage(v);
2228     }else{
2229       /* In this case, the RHS is an index b-tree.
2230       */
2231       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2232 
2233       /* If the set membership test fails, then the result of the
2234       ** "x IN (...)" expression must be either 0 or NULL. If the set
2235       ** contains no NULL values, then the result is 0. If the set
2236       ** contains one or more NULL values, then the result of the
2237       ** expression is also NULL.
2238       */
2239       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2240       if( rRhsHasNull==0 ){
2241         /* This branch runs if it is known at compile time that the RHS
2242         ** cannot contain NULL values. This happens as the result
2243         ** of a "NOT NULL" constraint in the database schema.
2244         **
2245         ** Also run this branch if NULL is equivalent to FALSE
2246         ** for this particular IN operator.
2247         */
2248         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2249         VdbeCoverage(v);
2250       }else{
2251         /* In this branch, the RHS of the IN might contain a NULL and
2252         ** the presence of a NULL on the RHS makes a difference in the
2253         ** outcome.
2254         */
2255         int addr1;
2256 
2257         /* First check to see if the LHS is contained in the RHS.  If so,
2258         ** then the answer is TRUE the presence of NULLs in the RHS does
2259         ** not matter.  If the LHS is not contained in the RHS, then the
2260         ** answer is NULL if the RHS contains NULLs and the answer is
2261         ** FALSE if the RHS is NULL-free.
2262         */
2263         addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2264         VdbeCoverage(v);
2265         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2266         VdbeCoverage(v);
2267         sqlite3VdbeGoto(v, destIfFalse);
2268         sqlite3VdbeJumpHere(v, addr1);
2269       }
2270     }
2271   }
2272   sqlite3ReleaseTempReg(pParse, r1);
2273   sqlite3ExprCachePop(pParse);
2274   VdbeComment((v, "end IN expr"));
2275 }
2276 #endif /* SQLITE_OMIT_SUBQUERY */
2277 
2278 #ifndef SQLITE_OMIT_FLOATING_POINT
2279 /*
2280 ** Generate an instruction that will put the floating point
2281 ** value described by z[0..n-1] into register iMem.
2282 **
2283 ** The z[] string will probably not be zero-terminated.  But the
2284 ** z[n] character is guaranteed to be something that does not look
2285 ** like the continuation of the number.
2286 */
2287 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2288   if( ALWAYS(z!=0) ){
2289     double value;
2290     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2291     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2292     if( negateFlag ) value = -value;
2293     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2294   }
2295 }
2296 #endif
2297 
2298 
2299 /*
2300 ** Generate an instruction that will put the integer describe by
2301 ** text z[0..n-1] into register iMem.
2302 **
2303 ** Expr.u.zToken is always UTF8 and zero-terminated.
2304 */
2305 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2306   Vdbe *v = pParse->pVdbe;
2307   if( pExpr->flags & EP_IntValue ){
2308     int i = pExpr->u.iValue;
2309     assert( i>=0 );
2310     if( negFlag ) i = -i;
2311     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2312   }else{
2313     int c;
2314     i64 value;
2315     const char *z = pExpr->u.zToken;
2316     assert( z!=0 );
2317     c = sqlite3DecOrHexToI64(z, &value);
2318     if( c==0 || (c==2 && negFlag) ){
2319       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2320       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2321     }else{
2322 #ifdef SQLITE_OMIT_FLOATING_POINT
2323       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2324 #else
2325 #ifndef SQLITE_OMIT_HEX_INTEGER
2326       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2327         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2328       }else
2329 #endif
2330       {
2331         codeReal(v, z, negFlag, iMem);
2332       }
2333 #endif
2334     }
2335   }
2336 }
2337 
2338 #if defined(SQLITE_DEBUG)
2339 /*
2340 ** Verify the consistency of the column cache
2341 */
2342 static int cacheIsValid(Parse *pParse){
2343   int i, n;
2344   for(i=n=0; i<SQLITE_N_COLCACHE; i++){
2345     if( pParse->aColCache[i].iReg>0 ) n++;
2346   }
2347   return n==pParse->nColCache;
2348 }
2349 #endif
2350 
2351 /*
2352 ** Clear a cache entry.
2353 */
2354 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2355   if( p->tempReg ){
2356     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2357       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2358     }
2359     p->tempReg = 0;
2360   }
2361   p->iReg = 0;
2362   pParse->nColCache--;
2363   assert( cacheIsValid(pParse) );
2364 }
2365 
2366 
2367 /*
2368 ** Record in the column cache that a particular column from a
2369 ** particular table is stored in a particular register.
2370 */
2371 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2372   int i;
2373   int minLru;
2374   int idxLru;
2375   struct yColCache *p;
2376 
2377   /* Unless an error has occurred, register numbers are always positive. */
2378   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2379   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2380 
2381   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2382   ** for testing only - to verify that SQLite always gets the same answer
2383   ** with and without the column cache.
2384   */
2385   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2386 
2387   /* First replace any existing entry.
2388   **
2389   ** Actually, the way the column cache is currently used, we are guaranteed
2390   ** that the object will never already be in cache.  Verify this guarantee.
2391   */
2392 #ifndef NDEBUG
2393   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2394     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2395   }
2396 #endif
2397 
2398   /* Find an empty slot and replace it */
2399   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2400     if( p->iReg==0 ){
2401       p->iLevel = pParse->iCacheLevel;
2402       p->iTable = iTab;
2403       p->iColumn = iCol;
2404       p->iReg = iReg;
2405       p->tempReg = 0;
2406       p->lru = pParse->iCacheCnt++;
2407       pParse->nColCache++;
2408       assert( cacheIsValid(pParse) );
2409       return;
2410     }
2411   }
2412 
2413   /* Replace the last recently used */
2414   minLru = 0x7fffffff;
2415   idxLru = -1;
2416   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2417     if( p->lru<minLru ){
2418       idxLru = i;
2419       minLru = p->lru;
2420     }
2421   }
2422   if( ALWAYS(idxLru>=0) ){
2423     p = &pParse->aColCache[idxLru];
2424     p->iLevel = pParse->iCacheLevel;
2425     p->iTable = iTab;
2426     p->iColumn = iCol;
2427     p->iReg = iReg;
2428     p->tempReg = 0;
2429     p->lru = pParse->iCacheCnt++;
2430     assert( cacheIsValid(pParse) );
2431     return;
2432   }
2433 }
2434 
2435 /*
2436 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2437 ** Purge the range of registers from the column cache.
2438 */
2439 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2440   struct yColCache *p;
2441   if( iReg<=0 || pParse->nColCache==0 ) return;
2442   p = &pParse->aColCache[SQLITE_N_COLCACHE-1];
2443   while(1){
2444     if( p->iReg >= iReg && p->iReg < iReg+nReg ) cacheEntryClear(pParse, p);
2445     if( p==pParse->aColCache ) break;
2446     p--;
2447   }
2448 }
2449 
2450 /*
2451 ** Remember the current column cache context.  Any new entries added
2452 ** added to the column cache after this call are removed when the
2453 ** corresponding pop occurs.
2454 */
2455 void sqlite3ExprCachePush(Parse *pParse){
2456   pParse->iCacheLevel++;
2457 #ifdef SQLITE_DEBUG
2458   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2459     printf("PUSH to %d\n", pParse->iCacheLevel);
2460   }
2461 #endif
2462 }
2463 
2464 /*
2465 ** Remove from the column cache any entries that were added since the
2466 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2467 ** the cache to the state it was in prior the most recent Push.
2468 */
2469 void sqlite3ExprCachePop(Parse *pParse){
2470   int i;
2471   struct yColCache *p;
2472   assert( pParse->iCacheLevel>=1 );
2473   pParse->iCacheLevel--;
2474 #ifdef SQLITE_DEBUG
2475   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2476     printf("POP  to %d\n", pParse->iCacheLevel);
2477   }
2478 #endif
2479   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2480     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2481       cacheEntryClear(pParse, p);
2482     }
2483   }
2484 }
2485 
2486 /*
2487 ** When a cached column is reused, make sure that its register is
2488 ** no longer available as a temp register.  ticket #3879:  that same
2489 ** register might be in the cache in multiple places, so be sure to
2490 ** get them all.
2491 */
2492 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2493   int i;
2494   struct yColCache *p;
2495   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2496     if( p->iReg==iReg ){
2497       p->tempReg = 0;
2498     }
2499   }
2500 }
2501 
2502 /* Generate code that will load into register regOut a value that is
2503 ** appropriate for the iIdxCol-th column of index pIdx.
2504 */
2505 void sqlite3ExprCodeLoadIndexColumn(
2506   Parse *pParse,  /* The parsing context */
2507   Index *pIdx,    /* The index whose column is to be loaded */
2508   int iTabCur,    /* Cursor pointing to a table row */
2509   int iIdxCol,    /* The column of the index to be loaded */
2510   int regOut      /* Store the index column value in this register */
2511 ){
2512   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2513   if( iTabCol==XN_EXPR ){
2514     assert( pIdx->aColExpr );
2515     assert( pIdx->aColExpr->nExpr>iIdxCol );
2516     pParse->iSelfTab = iTabCur;
2517     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2518   }else{
2519     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2520                                     iTabCol, regOut);
2521   }
2522 }
2523 
2524 /*
2525 ** Generate code to extract the value of the iCol-th column of a table.
2526 */
2527 void sqlite3ExprCodeGetColumnOfTable(
2528   Vdbe *v,        /* The VDBE under construction */
2529   Table *pTab,    /* The table containing the value */
2530   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2531   int iCol,       /* Index of the column to extract */
2532   int regOut      /* Extract the value into this register */
2533 ){
2534   if( iCol<0 || iCol==pTab->iPKey ){
2535     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2536   }else{
2537     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2538     int x = iCol;
2539     if( !HasRowid(pTab) ){
2540       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2541     }
2542     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2543   }
2544   if( iCol>=0 ){
2545     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2546   }
2547 }
2548 
2549 /*
2550 ** Generate code that will extract the iColumn-th column from
2551 ** table pTab and store the column value in a register.
2552 **
2553 ** An effort is made to store the column value in register iReg.  This
2554 ** is not garanteeed for GetColumn() - the result can be stored in
2555 ** any register.  But the result is guaranteed to land in register iReg
2556 ** for GetColumnToReg().
2557 **
2558 ** There must be an open cursor to pTab in iTable when this routine
2559 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2560 */
2561 int sqlite3ExprCodeGetColumn(
2562   Parse *pParse,   /* Parsing and code generating context */
2563   Table *pTab,     /* Description of the table we are reading from */
2564   int iColumn,     /* Index of the table column */
2565   int iTable,      /* The cursor pointing to the table */
2566   int iReg,        /* Store results here */
2567   u8 p5            /* P5 value for OP_Column + FLAGS */
2568 ){
2569   Vdbe *v = pParse->pVdbe;
2570   int i;
2571   struct yColCache *p;
2572 
2573   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2574     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2575       p->lru = pParse->iCacheCnt++;
2576       sqlite3ExprCachePinRegister(pParse, p->iReg);
2577       return p->iReg;
2578     }
2579   }
2580   assert( v!=0 );
2581   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2582   if( p5 ){
2583     sqlite3VdbeChangeP5(v, p5);
2584   }else{
2585     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2586   }
2587   return iReg;
2588 }
2589 void sqlite3ExprCodeGetColumnToReg(
2590   Parse *pParse,   /* Parsing and code generating context */
2591   Table *pTab,     /* Description of the table we are reading from */
2592   int iColumn,     /* Index of the table column */
2593   int iTable,      /* The cursor pointing to the table */
2594   int iReg         /* Store results here */
2595 ){
2596   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2597   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2598 }
2599 
2600 
2601 /*
2602 ** Clear all column cache entries.
2603 */
2604 void sqlite3ExprCacheClear(Parse *pParse){
2605   int i;
2606   struct yColCache *p;
2607 
2608 #if SQLITE_DEBUG
2609   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2610     printf("CLEAR\n");
2611   }
2612 #endif
2613   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2614     if( p->iReg ){
2615       cacheEntryClear(pParse, p);
2616     }
2617   }
2618 }
2619 
2620 /*
2621 ** Record the fact that an affinity change has occurred on iCount
2622 ** registers starting with iStart.
2623 */
2624 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2625   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2626 }
2627 
2628 /*
2629 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2630 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2631 */
2632 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2633   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2634   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2635   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2636 }
2637 
2638 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2639 /*
2640 ** Return true if any register in the range iFrom..iTo (inclusive)
2641 ** is used as part of the column cache.
2642 **
2643 ** This routine is used within assert() and testcase() macros only
2644 ** and does not appear in a normal build.
2645 */
2646 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2647   int i;
2648   struct yColCache *p;
2649   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2650     int r = p->iReg;
2651     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2652   }
2653   return 0;
2654 }
2655 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2656 
2657 
2658 /*
2659 ** Convert an expression node to a TK_REGISTER
2660 */
2661 static void exprToRegister(Expr *p, int iReg){
2662   p->op2 = p->op;
2663   p->op = TK_REGISTER;
2664   p->iTable = iReg;
2665   ExprClearProperty(p, EP_Skip);
2666 }
2667 
2668 /*
2669 ** Generate code into the current Vdbe to evaluate the given
2670 ** expression.  Attempt to store the results in register "target".
2671 ** Return the register where results are stored.
2672 **
2673 ** With this routine, there is no guarantee that results will
2674 ** be stored in target.  The result might be stored in some other
2675 ** register if it is convenient to do so.  The calling function
2676 ** must check the return code and move the results to the desired
2677 ** register.
2678 */
2679 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2680   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2681   int op;                   /* The opcode being coded */
2682   int inReg = target;       /* Results stored in register inReg */
2683   int regFree1 = 0;         /* If non-zero free this temporary register */
2684   int regFree2 = 0;         /* If non-zero free this temporary register */
2685   int r1, r2, r3, r4;       /* Various register numbers */
2686   sqlite3 *db = pParse->db; /* The database connection */
2687   Expr tempX;               /* Temporary expression node */
2688 
2689   assert( target>0 && target<=pParse->nMem );
2690   if( v==0 ){
2691     assert( pParse->db->mallocFailed );
2692     return 0;
2693   }
2694 
2695   if( pExpr==0 ){
2696     op = TK_NULL;
2697   }else{
2698     op = pExpr->op;
2699   }
2700   switch( op ){
2701     case TK_AGG_COLUMN: {
2702       AggInfo *pAggInfo = pExpr->pAggInfo;
2703       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2704       if( !pAggInfo->directMode ){
2705         assert( pCol->iMem>0 );
2706         inReg = pCol->iMem;
2707         break;
2708       }else if( pAggInfo->useSortingIdx ){
2709         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2710                               pCol->iSorterColumn, target);
2711         break;
2712       }
2713       /* Otherwise, fall thru into the TK_COLUMN case */
2714     }
2715     case TK_COLUMN: {
2716       int iTab = pExpr->iTable;
2717       if( iTab<0 ){
2718         if( pParse->ckBase>0 ){
2719           /* Generating CHECK constraints or inserting into partial index */
2720           inReg = pExpr->iColumn + pParse->ckBase;
2721           break;
2722         }else{
2723           /* Coding an expression that is part of an index where column names
2724           ** in the index refer to the table to which the index belongs */
2725           iTab = pParse->iSelfTab;
2726         }
2727       }
2728       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2729                                pExpr->iColumn, iTab, target,
2730                                pExpr->op2);
2731       break;
2732     }
2733     case TK_INTEGER: {
2734       codeInteger(pParse, pExpr, 0, target);
2735       break;
2736     }
2737 #ifndef SQLITE_OMIT_FLOATING_POINT
2738     case TK_FLOAT: {
2739       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2740       codeReal(v, pExpr->u.zToken, 0, target);
2741       break;
2742     }
2743 #endif
2744     case TK_STRING: {
2745       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2746       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2747       break;
2748     }
2749     case TK_NULL: {
2750       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2751       break;
2752     }
2753 #ifndef SQLITE_OMIT_BLOB_LITERAL
2754     case TK_BLOB: {
2755       int n;
2756       const char *z;
2757       char *zBlob;
2758       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2759       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2760       assert( pExpr->u.zToken[1]=='\'' );
2761       z = &pExpr->u.zToken[2];
2762       n = sqlite3Strlen30(z) - 1;
2763       assert( z[n]=='\'' );
2764       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2765       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2766       break;
2767     }
2768 #endif
2769     case TK_VARIABLE: {
2770       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2771       assert( pExpr->u.zToken!=0 );
2772       assert( pExpr->u.zToken[0]!=0 );
2773       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2774       if( pExpr->u.zToken[1]!=0 ){
2775         assert( pExpr->u.zToken[0]=='?'
2776              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2777         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2778       }
2779       break;
2780     }
2781     case TK_REGISTER: {
2782       inReg = pExpr->iTable;
2783       break;
2784     }
2785 #ifndef SQLITE_OMIT_CAST
2786     case TK_CAST: {
2787       /* Expressions of the form:   CAST(pLeft AS token) */
2788       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2789       if( inReg!=target ){
2790         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2791         inReg = target;
2792       }
2793       sqlite3VdbeAddOp2(v, OP_Cast, target,
2794                         sqlite3AffinityType(pExpr->u.zToken, 0));
2795       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2796       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2797       break;
2798     }
2799 #endif /* SQLITE_OMIT_CAST */
2800     case TK_LT:
2801     case TK_LE:
2802     case TK_GT:
2803     case TK_GE:
2804     case TK_NE:
2805     case TK_EQ: {
2806       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2807       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2808       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2809                   r1, r2, inReg, SQLITE_STOREP2);
2810       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2811       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2812       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2813       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2814       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2815       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2816       testcase( regFree1==0 );
2817       testcase( regFree2==0 );
2818       break;
2819     }
2820     case TK_IS:
2821     case TK_ISNOT: {
2822       testcase( op==TK_IS );
2823       testcase( op==TK_ISNOT );
2824       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2825       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2826       op = (op==TK_IS) ? TK_EQ : TK_NE;
2827       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2828                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2829       VdbeCoverageIf(v, op==TK_EQ);
2830       VdbeCoverageIf(v, op==TK_NE);
2831       testcase( regFree1==0 );
2832       testcase( regFree2==0 );
2833       break;
2834     }
2835     case TK_AND:
2836     case TK_OR:
2837     case TK_PLUS:
2838     case TK_STAR:
2839     case TK_MINUS:
2840     case TK_REM:
2841     case TK_BITAND:
2842     case TK_BITOR:
2843     case TK_SLASH:
2844     case TK_LSHIFT:
2845     case TK_RSHIFT:
2846     case TK_CONCAT: {
2847       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2848       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2849       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2850       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2851       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2852       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2853       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2854       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2855       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2856       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2857       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2858       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2859       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2860       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2861       testcase( regFree1==0 );
2862       testcase( regFree2==0 );
2863       break;
2864     }
2865     case TK_UMINUS: {
2866       Expr *pLeft = pExpr->pLeft;
2867       assert( pLeft );
2868       if( pLeft->op==TK_INTEGER ){
2869         codeInteger(pParse, pLeft, 1, target);
2870 #ifndef SQLITE_OMIT_FLOATING_POINT
2871       }else if( pLeft->op==TK_FLOAT ){
2872         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2873         codeReal(v, pLeft->u.zToken, 1, target);
2874 #endif
2875       }else{
2876         tempX.op = TK_INTEGER;
2877         tempX.flags = EP_IntValue|EP_TokenOnly;
2878         tempX.u.iValue = 0;
2879         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2880         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2881         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2882         testcase( regFree2==0 );
2883       }
2884       inReg = target;
2885       break;
2886     }
2887     case TK_BITNOT:
2888     case TK_NOT: {
2889       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2890       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2891       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2892       testcase( regFree1==0 );
2893       inReg = target;
2894       sqlite3VdbeAddOp2(v, op, r1, inReg);
2895       break;
2896     }
2897     case TK_ISNULL:
2898     case TK_NOTNULL: {
2899       int addr;
2900       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2901       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2902       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2903       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2904       testcase( regFree1==0 );
2905       addr = sqlite3VdbeAddOp1(v, op, r1);
2906       VdbeCoverageIf(v, op==TK_ISNULL);
2907       VdbeCoverageIf(v, op==TK_NOTNULL);
2908       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2909       sqlite3VdbeJumpHere(v, addr);
2910       break;
2911     }
2912     case TK_AGG_FUNCTION: {
2913       AggInfo *pInfo = pExpr->pAggInfo;
2914       if( pInfo==0 ){
2915         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2916         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2917       }else{
2918         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2919       }
2920       break;
2921     }
2922     case TK_FUNCTION: {
2923       ExprList *pFarg;       /* List of function arguments */
2924       int nFarg;             /* Number of function arguments */
2925       FuncDef *pDef;         /* The function definition object */
2926       const char *zId;       /* The function name */
2927       u32 constMask = 0;     /* Mask of function arguments that are constant */
2928       int i;                 /* Loop counter */
2929       u8 enc = ENC(db);      /* The text encoding used by this database */
2930       CollSeq *pColl = 0;    /* A collating sequence */
2931 
2932       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2933       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2934         pFarg = 0;
2935       }else{
2936         pFarg = pExpr->x.pList;
2937       }
2938       nFarg = pFarg ? pFarg->nExpr : 0;
2939       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2940       zId = pExpr->u.zToken;
2941       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
2942       if( pDef==0 || pDef->xFinalize!=0 ){
2943         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
2944         break;
2945       }
2946 
2947       /* Attempt a direct implementation of the built-in COALESCE() and
2948       ** IFNULL() functions.  This avoids unnecessary evaluation of
2949       ** arguments past the first non-NULL argument.
2950       */
2951       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2952         int endCoalesce = sqlite3VdbeMakeLabel(v);
2953         assert( nFarg>=2 );
2954         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2955         for(i=1; i<nFarg; i++){
2956           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2957           VdbeCoverage(v);
2958           sqlite3ExprCacheRemove(pParse, target, 1);
2959           sqlite3ExprCachePush(pParse);
2960           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2961           sqlite3ExprCachePop(pParse);
2962         }
2963         sqlite3VdbeResolveLabel(v, endCoalesce);
2964         break;
2965       }
2966 
2967       /* The UNLIKELY() function is a no-op.  The result is the value
2968       ** of the first argument.
2969       */
2970       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2971         assert( nFarg>=1 );
2972         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2973         break;
2974       }
2975 
2976       for(i=0; i<nFarg; i++){
2977         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2978           testcase( i==31 );
2979           constMask |= MASKBIT32(i);
2980         }
2981         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2982           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2983         }
2984       }
2985       if( pFarg ){
2986         if( constMask ){
2987           r1 = pParse->nMem+1;
2988           pParse->nMem += nFarg;
2989         }else{
2990           r1 = sqlite3GetTempRange(pParse, nFarg);
2991         }
2992 
2993         /* For length() and typeof() functions with a column argument,
2994         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2995         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2996         ** loading.
2997         */
2998         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2999           u8 exprOp;
3000           assert( nFarg==1 );
3001           assert( pFarg->a[0].pExpr!=0 );
3002           exprOp = pFarg->a[0].pExpr->op;
3003           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3004             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3005             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3006             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3007             pFarg->a[0].pExpr->op2 =
3008                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3009           }
3010         }
3011 
3012         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3013         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3014                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3015         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3016       }else{
3017         r1 = 0;
3018       }
3019 #ifndef SQLITE_OMIT_VIRTUALTABLE
3020       /* Possibly overload the function if the first argument is
3021       ** a virtual table column.
3022       **
3023       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3024       ** second argument, not the first, as the argument to test to
3025       ** see if it is a column in a virtual table.  This is done because
3026       ** the left operand of infix functions (the operand we want to
3027       ** control overloading) ends up as the second argument to the
3028       ** function.  The expression "A glob B" is equivalent to
3029       ** "glob(B,A).  We want to use the A in "A glob B" to test
3030       ** for function overloading.  But we use the B term in "glob(B,A)".
3031       */
3032       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3033         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3034       }else if( nFarg>0 ){
3035         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3036       }
3037 #endif
3038       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3039         if( !pColl ) pColl = db->pDfltColl;
3040         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3041       }
3042       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3043                         (char*)pDef, P4_FUNCDEF);
3044       sqlite3VdbeChangeP5(v, (u8)nFarg);
3045       if( nFarg && constMask==0 ){
3046         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3047       }
3048       break;
3049     }
3050 #ifndef SQLITE_OMIT_SUBQUERY
3051     case TK_EXISTS:
3052     case TK_SELECT: {
3053       testcase( op==TK_EXISTS );
3054       testcase( op==TK_SELECT );
3055       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3056       break;
3057     }
3058     case TK_IN: {
3059       int destIfFalse = sqlite3VdbeMakeLabel(v);
3060       int destIfNull = sqlite3VdbeMakeLabel(v);
3061       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3062       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3063       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3064       sqlite3VdbeResolveLabel(v, destIfFalse);
3065       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3066       sqlite3VdbeResolveLabel(v, destIfNull);
3067       break;
3068     }
3069 #endif /* SQLITE_OMIT_SUBQUERY */
3070 
3071 
3072     /*
3073     **    x BETWEEN y AND z
3074     **
3075     ** This is equivalent to
3076     **
3077     **    x>=y AND x<=z
3078     **
3079     ** X is stored in pExpr->pLeft.
3080     ** Y is stored in pExpr->pList->a[0].pExpr.
3081     ** Z is stored in pExpr->pList->a[1].pExpr.
3082     */
3083     case TK_BETWEEN: {
3084       Expr *pLeft = pExpr->pLeft;
3085       struct ExprList_item *pLItem = pExpr->x.pList->a;
3086       Expr *pRight = pLItem->pExpr;
3087 
3088       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3089       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3090       testcase( regFree1==0 );
3091       testcase( regFree2==0 );
3092       r3 = sqlite3GetTempReg(pParse);
3093       r4 = sqlite3GetTempReg(pParse);
3094       codeCompare(pParse, pLeft, pRight, OP_Ge,
3095                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3096       pLItem++;
3097       pRight = pLItem->pExpr;
3098       sqlite3ReleaseTempReg(pParse, regFree2);
3099       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3100       testcase( regFree2==0 );
3101       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3102       VdbeCoverage(v);
3103       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3104       sqlite3ReleaseTempReg(pParse, r3);
3105       sqlite3ReleaseTempReg(pParse, r4);
3106       break;
3107     }
3108     case TK_SPAN:
3109     case TK_COLLATE:
3110     case TK_UPLUS: {
3111       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3112       break;
3113     }
3114 
3115     case TK_TRIGGER: {
3116       /* If the opcode is TK_TRIGGER, then the expression is a reference
3117       ** to a column in the new.* or old.* pseudo-tables available to
3118       ** trigger programs. In this case Expr.iTable is set to 1 for the
3119       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3120       ** is set to the column of the pseudo-table to read, or to -1 to
3121       ** read the rowid field.
3122       **
3123       ** The expression is implemented using an OP_Param opcode. The p1
3124       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3125       ** to reference another column of the old.* pseudo-table, where
3126       ** i is the index of the column. For a new.rowid reference, p1 is
3127       ** set to (n+1), where n is the number of columns in each pseudo-table.
3128       ** For a reference to any other column in the new.* pseudo-table, p1
3129       ** is set to (n+2+i), where n and i are as defined previously. For
3130       ** example, if the table on which triggers are being fired is
3131       ** declared as:
3132       **
3133       **   CREATE TABLE t1(a, b);
3134       **
3135       ** Then p1 is interpreted as follows:
3136       **
3137       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3138       **   p1==1   ->    old.a         p1==4   ->    new.a
3139       **   p1==2   ->    old.b         p1==5   ->    new.b
3140       */
3141       Table *pTab = pExpr->pTab;
3142       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3143 
3144       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3145       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3146       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3147       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3148 
3149       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3150       VdbeComment((v, "%s.%s -> $%d",
3151         (pExpr->iTable ? "new" : "old"),
3152         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3153         target
3154       ));
3155 
3156 #ifndef SQLITE_OMIT_FLOATING_POINT
3157       /* If the column has REAL affinity, it may currently be stored as an
3158       ** integer. Use OP_RealAffinity to make sure it is really real.
3159       **
3160       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3161       ** floating point when extracting it from the record.  */
3162       if( pExpr->iColumn>=0
3163        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3164       ){
3165         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3166       }
3167 #endif
3168       break;
3169     }
3170 
3171 
3172     /*
3173     ** Form A:
3174     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3175     **
3176     ** Form B:
3177     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3178     **
3179     ** Form A is can be transformed into the equivalent form B as follows:
3180     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3181     **        WHEN x=eN THEN rN ELSE y END
3182     **
3183     ** X (if it exists) is in pExpr->pLeft.
3184     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3185     ** odd.  The Y is also optional.  If the number of elements in x.pList
3186     ** is even, then Y is omitted and the "otherwise" result is NULL.
3187     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3188     **
3189     ** The result of the expression is the Ri for the first matching Ei,
3190     ** or if there is no matching Ei, the ELSE term Y, or if there is
3191     ** no ELSE term, NULL.
3192     */
3193     default: assert( op==TK_CASE ); {
3194       int endLabel;                     /* GOTO label for end of CASE stmt */
3195       int nextCase;                     /* GOTO label for next WHEN clause */
3196       int nExpr;                        /* 2x number of WHEN terms */
3197       int i;                            /* Loop counter */
3198       ExprList *pEList;                 /* List of WHEN terms */
3199       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3200       Expr opCompare;                   /* The X==Ei expression */
3201       Expr *pX;                         /* The X expression */
3202       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3203       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3204 
3205       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3206       assert(pExpr->x.pList->nExpr > 0);
3207       pEList = pExpr->x.pList;
3208       aListelem = pEList->a;
3209       nExpr = pEList->nExpr;
3210       endLabel = sqlite3VdbeMakeLabel(v);
3211       if( (pX = pExpr->pLeft)!=0 ){
3212         tempX = *pX;
3213         testcase( pX->op==TK_COLUMN );
3214         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3215         testcase( regFree1==0 );
3216         opCompare.op = TK_EQ;
3217         opCompare.pLeft = &tempX;
3218         pTest = &opCompare;
3219         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3220         ** The value in regFree1 might get SCopy-ed into the file result.
3221         ** So make sure that the regFree1 register is not reused for other
3222         ** purposes and possibly overwritten.  */
3223         regFree1 = 0;
3224       }
3225       for(i=0; i<nExpr-1; i=i+2){
3226         sqlite3ExprCachePush(pParse);
3227         if( pX ){
3228           assert( pTest!=0 );
3229           opCompare.pRight = aListelem[i].pExpr;
3230         }else{
3231           pTest = aListelem[i].pExpr;
3232         }
3233         nextCase = sqlite3VdbeMakeLabel(v);
3234         testcase( pTest->op==TK_COLUMN );
3235         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3236         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3237         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3238         sqlite3VdbeGoto(v, endLabel);
3239         sqlite3ExprCachePop(pParse);
3240         sqlite3VdbeResolveLabel(v, nextCase);
3241       }
3242       if( (nExpr&1)!=0 ){
3243         sqlite3ExprCachePush(pParse);
3244         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3245         sqlite3ExprCachePop(pParse);
3246       }else{
3247         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3248       }
3249       assert( db->mallocFailed || pParse->nErr>0
3250            || pParse->iCacheLevel==iCacheLevel );
3251       sqlite3VdbeResolveLabel(v, endLabel);
3252       break;
3253     }
3254 #ifndef SQLITE_OMIT_TRIGGER
3255     case TK_RAISE: {
3256       assert( pExpr->affinity==OE_Rollback
3257            || pExpr->affinity==OE_Abort
3258            || pExpr->affinity==OE_Fail
3259            || pExpr->affinity==OE_Ignore
3260       );
3261       if( !pParse->pTriggerTab ){
3262         sqlite3ErrorMsg(pParse,
3263                        "RAISE() may only be used within a trigger-program");
3264         return 0;
3265       }
3266       if( pExpr->affinity==OE_Abort ){
3267         sqlite3MayAbort(pParse);
3268       }
3269       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3270       if( pExpr->affinity==OE_Ignore ){
3271         sqlite3VdbeAddOp4(
3272             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3273         VdbeCoverage(v);
3274       }else{
3275         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3276                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3277       }
3278 
3279       break;
3280     }
3281 #endif
3282   }
3283   sqlite3ReleaseTempReg(pParse, regFree1);
3284   sqlite3ReleaseTempReg(pParse, regFree2);
3285   return inReg;
3286 }
3287 
3288 /*
3289 ** Factor out the code of the given expression to initialization time.
3290 */
3291 void sqlite3ExprCodeAtInit(
3292   Parse *pParse,    /* Parsing context */
3293   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3294   int regDest,      /* Store the value in this register */
3295   u8 reusable       /* True if this expression is reusable */
3296 ){
3297   ExprList *p;
3298   assert( ConstFactorOk(pParse) );
3299   p = pParse->pConstExpr;
3300   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3301   p = sqlite3ExprListAppend(pParse, p, pExpr);
3302   if( p ){
3303      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3304      pItem->u.iConstExprReg = regDest;
3305      pItem->reusable = reusable;
3306   }
3307   pParse->pConstExpr = p;
3308 }
3309 
3310 /*
3311 ** Generate code to evaluate an expression and store the results
3312 ** into a register.  Return the register number where the results
3313 ** are stored.
3314 **
3315 ** If the register is a temporary register that can be deallocated,
3316 ** then write its number into *pReg.  If the result register is not
3317 ** a temporary, then set *pReg to zero.
3318 **
3319 ** If pExpr is a constant, then this routine might generate this
3320 ** code to fill the register in the initialization section of the
3321 ** VDBE program, in order to factor it out of the evaluation loop.
3322 */
3323 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3324   int r2;
3325   pExpr = sqlite3ExprSkipCollate(pExpr);
3326   if( ConstFactorOk(pParse)
3327    && pExpr->op!=TK_REGISTER
3328    && sqlite3ExprIsConstantNotJoin(pExpr)
3329   ){
3330     ExprList *p = pParse->pConstExpr;
3331     int i;
3332     *pReg  = 0;
3333     if( p ){
3334       struct ExprList_item *pItem;
3335       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3336         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3337           return pItem->u.iConstExprReg;
3338         }
3339       }
3340     }
3341     r2 = ++pParse->nMem;
3342     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3343   }else{
3344     int r1 = sqlite3GetTempReg(pParse);
3345     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3346     if( r2==r1 ){
3347       *pReg = r1;
3348     }else{
3349       sqlite3ReleaseTempReg(pParse, r1);
3350       *pReg = 0;
3351     }
3352   }
3353   return r2;
3354 }
3355 
3356 /*
3357 ** Generate code that will evaluate expression pExpr and store the
3358 ** results in register target.  The results are guaranteed to appear
3359 ** in register target.
3360 */
3361 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3362   int inReg;
3363 
3364   assert( target>0 && target<=pParse->nMem );
3365   if( pExpr && pExpr->op==TK_REGISTER ){
3366     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3367   }else{
3368     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3369     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
3370     if( inReg!=target && pParse->pVdbe ){
3371       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3372     }
3373   }
3374 }
3375 
3376 /*
3377 ** Make a transient copy of expression pExpr and then code it using
3378 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
3379 ** except that the input expression is guaranteed to be unchanged.
3380 */
3381 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
3382   sqlite3 *db = pParse->db;
3383   pExpr = sqlite3ExprDup(db, pExpr, 0);
3384   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
3385   sqlite3ExprDelete(db, pExpr);
3386 }
3387 
3388 /*
3389 ** Generate code that will evaluate expression pExpr and store the
3390 ** results in register target.  The results are guaranteed to appear
3391 ** in register target.  If the expression is constant, then this routine
3392 ** might choose to code the expression at initialization time.
3393 */
3394 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3395   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3396     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3397   }else{
3398     sqlite3ExprCode(pParse, pExpr, target);
3399   }
3400 }
3401 
3402 /*
3403 ** Generate code that evaluates the given expression and puts the result
3404 ** in register target.
3405 **
3406 ** Also make a copy of the expression results into another "cache" register
3407 ** and modify the expression so that the next time it is evaluated,
3408 ** the result is a copy of the cache register.
3409 **
3410 ** This routine is used for expressions that are used multiple
3411 ** times.  They are evaluated once and the results of the expression
3412 ** are reused.
3413 */
3414 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3415   Vdbe *v = pParse->pVdbe;
3416   int iMem;
3417 
3418   assert( target>0 );
3419   assert( pExpr->op!=TK_REGISTER );
3420   sqlite3ExprCode(pParse, pExpr, target);
3421   iMem = ++pParse->nMem;
3422   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3423   exprToRegister(pExpr, iMem);
3424 }
3425 
3426 /*
3427 ** Generate code that pushes the value of every element of the given
3428 ** expression list into a sequence of registers beginning at target.
3429 **
3430 ** Return the number of elements evaluated.
3431 **
3432 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3433 ** filled using OP_SCopy.  OP_Copy must be used instead.
3434 **
3435 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3436 ** factored out into initialization code.
3437 **
3438 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3439 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3440 ** in registers at srcReg, and so the value can be copied from there.
3441 */
3442 int sqlite3ExprCodeExprList(
3443   Parse *pParse,     /* Parsing context */
3444   ExprList *pList,   /* The expression list to be coded */
3445   int target,        /* Where to write results */
3446   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3447   u8 flags           /* SQLITE_ECEL_* flags */
3448 ){
3449   struct ExprList_item *pItem;
3450   int i, j, n;
3451   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3452   Vdbe *v = pParse->pVdbe;
3453   assert( pList!=0 );
3454   assert( target>0 );
3455   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3456   n = pList->nExpr;
3457   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3458   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3459     Expr *pExpr = pItem->pExpr;
3460     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3461       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3462     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3463       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3464     }else{
3465       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3466       if( inReg!=target+i ){
3467         VdbeOp *pOp;
3468         if( copyOp==OP_Copy
3469          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3470          && pOp->p1+pOp->p3+1==inReg
3471          && pOp->p2+pOp->p3+1==target+i
3472         ){
3473           pOp->p3++;
3474         }else{
3475           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3476         }
3477       }
3478     }
3479   }
3480   return n;
3481 }
3482 
3483 /*
3484 ** Generate code for a BETWEEN operator.
3485 **
3486 **    x BETWEEN y AND z
3487 **
3488 ** The above is equivalent to
3489 **
3490 **    x>=y AND x<=z
3491 **
3492 ** Code it as such, taking care to do the common subexpression
3493 ** elimination of x.
3494 */
3495 static void exprCodeBetween(
3496   Parse *pParse,    /* Parsing and code generating context */
3497   Expr *pExpr,      /* The BETWEEN expression */
3498   int dest,         /* Jump here if the jump is taken */
3499   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3500   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3501 ){
3502   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3503   Expr compLeft;    /* The  x>=y  term */
3504   Expr compRight;   /* The  x<=z  term */
3505   Expr exprX;       /* The  x  subexpression */
3506   int regFree1 = 0; /* Temporary use register */
3507 
3508   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3509   exprX = *pExpr->pLeft;
3510   exprAnd.op = TK_AND;
3511   exprAnd.pLeft = &compLeft;
3512   exprAnd.pRight = &compRight;
3513   compLeft.op = TK_GE;
3514   compLeft.pLeft = &exprX;
3515   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3516   compRight.op = TK_LE;
3517   compRight.pLeft = &exprX;
3518   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3519   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3520   if( jumpIfTrue ){
3521     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3522   }else{
3523     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3524   }
3525   sqlite3ReleaseTempReg(pParse, regFree1);
3526 
3527   /* Ensure adequate test coverage */
3528   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3529   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3530   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3531   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3532   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3533   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3534   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3535   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3536 }
3537 
3538 /*
3539 ** Generate code for a boolean expression such that a jump is made
3540 ** to the label "dest" if the expression is true but execution
3541 ** continues straight thru if the expression is false.
3542 **
3543 ** If the expression evaluates to NULL (neither true nor false), then
3544 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3545 **
3546 ** This code depends on the fact that certain token values (ex: TK_EQ)
3547 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3548 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3549 ** the make process cause these values to align.  Assert()s in the code
3550 ** below verify that the numbers are aligned correctly.
3551 */
3552 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3553   Vdbe *v = pParse->pVdbe;
3554   int op = 0;
3555   int regFree1 = 0;
3556   int regFree2 = 0;
3557   int r1, r2;
3558 
3559   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3560   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3561   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3562   op = pExpr->op;
3563   switch( op ){
3564     case TK_AND: {
3565       int d2 = sqlite3VdbeMakeLabel(v);
3566       testcase( jumpIfNull==0 );
3567       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3568       sqlite3ExprCachePush(pParse);
3569       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3570       sqlite3VdbeResolveLabel(v, d2);
3571       sqlite3ExprCachePop(pParse);
3572       break;
3573     }
3574     case TK_OR: {
3575       testcase( jumpIfNull==0 );
3576       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3577       sqlite3ExprCachePush(pParse);
3578       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3579       sqlite3ExprCachePop(pParse);
3580       break;
3581     }
3582     case TK_NOT: {
3583       testcase( jumpIfNull==0 );
3584       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3585       break;
3586     }
3587     case TK_IS:
3588     case TK_ISNOT:
3589       testcase( op==TK_IS );
3590       testcase( op==TK_ISNOT );
3591       op = (op==TK_IS) ? TK_EQ : TK_NE;
3592       jumpIfNull = SQLITE_NULLEQ;
3593       /* Fall thru */
3594     case TK_LT:
3595     case TK_LE:
3596     case TK_GT:
3597     case TK_GE:
3598     case TK_NE:
3599     case TK_EQ: {
3600       testcase( jumpIfNull==0 );
3601       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3602       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3603       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3604                   r1, r2, dest, jumpIfNull);
3605       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3606       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3607       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3608       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3609       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
3610       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
3611       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
3612       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
3613       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
3614       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
3615       testcase( regFree1==0 );
3616       testcase( regFree2==0 );
3617       break;
3618     }
3619     case TK_ISNULL:
3620     case TK_NOTNULL: {
3621       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3622       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3623       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3624       sqlite3VdbeAddOp2(v, op, r1, dest);
3625       VdbeCoverageIf(v, op==TK_ISNULL);
3626       VdbeCoverageIf(v, op==TK_NOTNULL);
3627       testcase( regFree1==0 );
3628       break;
3629     }
3630     case TK_BETWEEN: {
3631       testcase( jumpIfNull==0 );
3632       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3633       break;
3634     }
3635 #ifndef SQLITE_OMIT_SUBQUERY
3636     case TK_IN: {
3637       int destIfFalse = sqlite3VdbeMakeLabel(v);
3638       int destIfNull = jumpIfNull ? dest : destIfFalse;
3639       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3640       sqlite3VdbeGoto(v, dest);
3641       sqlite3VdbeResolveLabel(v, destIfFalse);
3642       break;
3643     }
3644 #endif
3645     default: {
3646       if( exprAlwaysTrue(pExpr) ){
3647         sqlite3VdbeGoto(v, dest);
3648       }else if( exprAlwaysFalse(pExpr) ){
3649         /* No-op */
3650       }else{
3651         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3652         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3653         VdbeCoverage(v);
3654         testcase( regFree1==0 );
3655         testcase( jumpIfNull==0 );
3656       }
3657       break;
3658     }
3659   }
3660   sqlite3ReleaseTempReg(pParse, regFree1);
3661   sqlite3ReleaseTempReg(pParse, regFree2);
3662 }
3663 
3664 /*
3665 ** Generate code for a boolean expression such that a jump is made
3666 ** to the label "dest" if the expression is false but execution
3667 ** continues straight thru if the expression is true.
3668 **
3669 ** If the expression evaluates to NULL (neither true nor false) then
3670 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3671 ** is 0.
3672 */
3673 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3674   Vdbe *v = pParse->pVdbe;
3675   int op = 0;
3676   int regFree1 = 0;
3677   int regFree2 = 0;
3678   int r1, r2;
3679 
3680   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3681   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3682   if( pExpr==0 )    return;
3683 
3684   /* The value of pExpr->op and op are related as follows:
3685   **
3686   **       pExpr->op            op
3687   **       ---------          ----------
3688   **       TK_ISNULL          OP_NotNull
3689   **       TK_NOTNULL         OP_IsNull
3690   **       TK_NE              OP_Eq
3691   **       TK_EQ              OP_Ne
3692   **       TK_GT              OP_Le
3693   **       TK_LE              OP_Gt
3694   **       TK_GE              OP_Lt
3695   **       TK_LT              OP_Ge
3696   **
3697   ** For other values of pExpr->op, op is undefined and unused.
3698   ** The value of TK_ and OP_ constants are arranged such that we
3699   ** can compute the mapping above using the following expression.
3700   ** Assert()s verify that the computation is correct.
3701   */
3702   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3703 
3704   /* Verify correct alignment of TK_ and OP_ constants
3705   */
3706   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3707   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3708   assert( pExpr->op!=TK_NE || op==OP_Eq );
3709   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3710   assert( pExpr->op!=TK_LT || op==OP_Ge );
3711   assert( pExpr->op!=TK_LE || op==OP_Gt );
3712   assert( pExpr->op!=TK_GT || op==OP_Le );
3713   assert( pExpr->op!=TK_GE || op==OP_Lt );
3714 
3715   switch( pExpr->op ){
3716     case TK_AND: {
3717       testcase( jumpIfNull==0 );
3718       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3719       sqlite3ExprCachePush(pParse);
3720       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3721       sqlite3ExprCachePop(pParse);
3722       break;
3723     }
3724     case TK_OR: {
3725       int d2 = sqlite3VdbeMakeLabel(v);
3726       testcase( jumpIfNull==0 );
3727       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3728       sqlite3ExprCachePush(pParse);
3729       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3730       sqlite3VdbeResolveLabel(v, d2);
3731       sqlite3ExprCachePop(pParse);
3732       break;
3733     }
3734     case TK_NOT: {
3735       testcase( jumpIfNull==0 );
3736       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3737       break;
3738     }
3739     case TK_IS:
3740     case TK_ISNOT:
3741       testcase( pExpr->op==TK_IS );
3742       testcase( pExpr->op==TK_ISNOT );
3743       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3744       jumpIfNull = SQLITE_NULLEQ;
3745       /* Fall thru */
3746     case TK_LT:
3747     case TK_LE:
3748     case TK_GT:
3749     case TK_GE:
3750     case TK_NE:
3751     case TK_EQ: {
3752       testcase( jumpIfNull==0 );
3753       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3754       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3755       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3756                   r1, r2, dest, jumpIfNull);
3757       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3758       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3759       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3760       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3761       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
3762       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
3763       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
3764       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
3765       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
3766       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
3767       testcase( regFree1==0 );
3768       testcase( regFree2==0 );
3769       break;
3770     }
3771     case TK_ISNULL:
3772     case TK_NOTNULL: {
3773       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3774       sqlite3VdbeAddOp2(v, op, r1, dest);
3775       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3776       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3777       testcase( regFree1==0 );
3778       break;
3779     }
3780     case TK_BETWEEN: {
3781       testcase( jumpIfNull==0 );
3782       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3783       break;
3784     }
3785 #ifndef SQLITE_OMIT_SUBQUERY
3786     case TK_IN: {
3787       if( jumpIfNull ){
3788         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3789       }else{
3790         int destIfNull = sqlite3VdbeMakeLabel(v);
3791         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3792         sqlite3VdbeResolveLabel(v, destIfNull);
3793       }
3794       break;
3795     }
3796 #endif
3797     default: {
3798       if( exprAlwaysFalse(pExpr) ){
3799         sqlite3VdbeGoto(v, dest);
3800       }else if( exprAlwaysTrue(pExpr) ){
3801         /* no-op */
3802       }else{
3803         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3804         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3805         VdbeCoverage(v);
3806         testcase( regFree1==0 );
3807         testcase( jumpIfNull==0 );
3808       }
3809       break;
3810     }
3811   }
3812   sqlite3ReleaseTempReg(pParse, regFree1);
3813   sqlite3ReleaseTempReg(pParse, regFree2);
3814 }
3815 
3816 /*
3817 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3818 ** code generation, and that copy is deleted after code generation. This
3819 ** ensures that the original pExpr is unchanged.
3820 */
3821 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3822   sqlite3 *db = pParse->db;
3823   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3824   if( db->mallocFailed==0 ){
3825     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3826   }
3827   sqlite3ExprDelete(db, pCopy);
3828 }
3829 
3830 
3831 /*
3832 ** Do a deep comparison of two expression trees.  Return 0 if the two
3833 ** expressions are completely identical.  Return 1 if they differ only
3834 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3835 ** other than the top-level COLLATE operator.
3836 **
3837 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3838 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3839 **
3840 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3841 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3842 **
3843 ** Sometimes this routine will return 2 even if the two expressions
3844 ** really are equivalent.  If we cannot prove that the expressions are
3845 ** identical, we return 2 just to be safe.  So if this routine
3846 ** returns 2, then you do not really know for certain if the two
3847 ** expressions are the same.  But if you get a 0 or 1 return, then you
3848 ** can be sure the expressions are the same.  In the places where
3849 ** this routine is used, it does not hurt to get an extra 2 - that
3850 ** just might result in some slightly slower code.  But returning
3851 ** an incorrect 0 or 1 could lead to a malfunction.
3852 */
3853 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3854   u32 combinedFlags;
3855   if( pA==0 || pB==0 ){
3856     return pB==pA ? 0 : 2;
3857   }
3858   combinedFlags = pA->flags | pB->flags;
3859   if( combinedFlags & EP_IntValue ){
3860     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3861       return 0;
3862     }
3863     return 2;
3864   }
3865   if( pA->op!=pB->op ){
3866     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3867       return 1;
3868     }
3869     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3870       return 1;
3871     }
3872     return 2;
3873   }
3874   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
3875     if( pA->op==TK_FUNCTION ){
3876       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3877     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3878       return pA->op==TK_COLLATE ? 1 : 2;
3879     }
3880   }
3881   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3882   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3883     if( combinedFlags & EP_xIsSelect ) return 2;
3884     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3885     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3886     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3887     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3888       if( pA->iColumn!=pB->iColumn ) return 2;
3889       if( pA->iTable!=pB->iTable
3890        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3891     }
3892   }
3893   return 0;
3894 }
3895 
3896 /*
3897 ** Compare two ExprList objects.  Return 0 if they are identical and
3898 ** non-zero if they differ in any way.
3899 **
3900 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3901 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3902 **
3903 ** This routine might return non-zero for equivalent ExprLists.  The
3904 ** only consequence will be disabled optimizations.  But this routine
3905 ** must never return 0 if the two ExprList objects are different, or
3906 ** a malfunction will result.
3907 **
3908 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3909 ** always differs from a non-NULL pointer.
3910 */
3911 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3912   int i;
3913   if( pA==0 && pB==0 ) return 0;
3914   if( pA==0 || pB==0 ) return 1;
3915   if( pA->nExpr!=pB->nExpr ) return 1;
3916   for(i=0; i<pA->nExpr; i++){
3917     Expr *pExprA = pA->a[i].pExpr;
3918     Expr *pExprB = pB->a[i].pExpr;
3919     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3920     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3921   }
3922   return 0;
3923 }
3924 
3925 /*
3926 ** Return true if we can prove the pE2 will always be true if pE1 is
3927 ** true.  Return false if we cannot complete the proof or if pE2 might
3928 ** be false.  Examples:
3929 **
3930 **     pE1: x==5       pE2: x==5             Result: true
3931 **     pE1: x>0        pE2: x==5             Result: false
3932 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3933 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3934 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3935 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3936 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3937 **
3938 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3939 ** Expr.iTable<0 then assume a table number given by iTab.
3940 **
3941 ** When in doubt, return false.  Returning true might give a performance
3942 ** improvement.  Returning false might cause a performance reduction, but
3943 ** it will always give the correct answer and is hence always safe.
3944 */
3945 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3946   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3947     return 1;
3948   }
3949   if( pE2->op==TK_OR
3950    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3951              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3952   ){
3953     return 1;
3954   }
3955   if( pE2->op==TK_NOTNULL
3956    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3957    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3958   ){
3959     return 1;
3960   }
3961   return 0;
3962 }
3963 
3964 /*
3965 ** An instance of the following structure is used by the tree walker
3966 ** to count references to table columns in the arguments of an
3967 ** aggregate function, in order to implement the
3968 ** sqlite3FunctionThisSrc() routine.
3969 */
3970 struct SrcCount {
3971   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3972   int nThis;       /* Number of references to columns in pSrcList */
3973   int nOther;      /* Number of references to columns in other FROM clauses */
3974 };
3975 
3976 /*
3977 ** Count the number of references to columns.
3978 */
3979 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3980   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3981   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3982   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3983   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3984   ** NEVER() will need to be removed. */
3985   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3986     int i;
3987     struct SrcCount *p = pWalker->u.pSrcCount;
3988     SrcList *pSrc = p->pSrc;
3989     int nSrc = pSrc ? pSrc->nSrc : 0;
3990     for(i=0; i<nSrc; i++){
3991       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3992     }
3993     if( i<nSrc ){
3994       p->nThis++;
3995     }else{
3996       p->nOther++;
3997     }
3998   }
3999   return WRC_Continue;
4000 }
4001 
4002 /*
4003 ** Determine if any of the arguments to the pExpr Function reference
4004 ** pSrcList.  Return true if they do.  Also return true if the function
4005 ** has no arguments or has only constant arguments.  Return false if pExpr
4006 ** references columns but not columns of tables found in pSrcList.
4007 */
4008 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4009   Walker w;
4010   struct SrcCount cnt;
4011   assert( pExpr->op==TK_AGG_FUNCTION );
4012   memset(&w, 0, sizeof(w));
4013   w.xExprCallback = exprSrcCount;
4014   w.u.pSrcCount = &cnt;
4015   cnt.pSrc = pSrcList;
4016   cnt.nThis = 0;
4017   cnt.nOther = 0;
4018   sqlite3WalkExprList(&w, pExpr->x.pList);
4019   return cnt.nThis>0 || cnt.nOther==0;
4020 }
4021 
4022 /*
4023 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4024 ** the new element.  Return a negative number if malloc fails.
4025 */
4026 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4027   int i;
4028   pInfo->aCol = sqlite3ArrayAllocate(
4029        db,
4030        pInfo->aCol,
4031        sizeof(pInfo->aCol[0]),
4032        &pInfo->nColumn,
4033        &i
4034   );
4035   return i;
4036 }
4037 
4038 /*
4039 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4040 ** the new element.  Return a negative number if malloc fails.
4041 */
4042 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4043   int i;
4044   pInfo->aFunc = sqlite3ArrayAllocate(
4045        db,
4046        pInfo->aFunc,
4047        sizeof(pInfo->aFunc[0]),
4048        &pInfo->nFunc,
4049        &i
4050   );
4051   return i;
4052 }
4053 
4054 /*
4055 ** This is the xExprCallback for a tree walker.  It is used to
4056 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4057 ** for additional information.
4058 */
4059 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4060   int i;
4061   NameContext *pNC = pWalker->u.pNC;
4062   Parse *pParse = pNC->pParse;
4063   SrcList *pSrcList = pNC->pSrcList;
4064   AggInfo *pAggInfo = pNC->pAggInfo;
4065 
4066   switch( pExpr->op ){
4067     case TK_AGG_COLUMN:
4068     case TK_COLUMN: {
4069       testcase( pExpr->op==TK_AGG_COLUMN );
4070       testcase( pExpr->op==TK_COLUMN );
4071       /* Check to see if the column is in one of the tables in the FROM
4072       ** clause of the aggregate query */
4073       if( ALWAYS(pSrcList!=0) ){
4074         struct SrcList_item *pItem = pSrcList->a;
4075         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4076           struct AggInfo_col *pCol;
4077           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4078           if( pExpr->iTable==pItem->iCursor ){
4079             /* If we reach this point, it means that pExpr refers to a table
4080             ** that is in the FROM clause of the aggregate query.
4081             **
4082             ** Make an entry for the column in pAggInfo->aCol[] if there
4083             ** is not an entry there already.
4084             */
4085             int k;
4086             pCol = pAggInfo->aCol;
4087             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4088               if( pCol->iTable==pExpr->iTable &&
4089                   pCol->iColumn==pExpr->iColumn ){
4090                 break;
4091               }
4092             }
4093             if( (k>=pAggInfo->nColumn)
4094              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4095             ){
4096               pCol = &pAggInfo->aCol[k];
4097               pCol->pTab = pExpr->pTab;
4098               pCol->iTable = pExpr->iTable;
4099               pCol->iColumn = pExpr->iColumn;
4100               pCol->iMem = ++pParse->nMem;
4101               pCol->iSorterColumn = -1;
4102               pCol->pExpr = pExpr;
4103               if( pAggInfo->pGroupBy ){
4104                 int j, n;
4105                 ExprList *pGB = pAggInfo->pGroupBy;
4106                 struct ExprList_item *pTerm = pGB->a;
4107                 n = pGB->nExpr;
4108                 for(j=0; j<n; j++, pTerm++){
4109                   Expr *pE = pTerm->pExpr;
4110                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4111                       pE->iColumn==pExpr->iColumn ){
4112                     pCol->iSorterColumn = j;
4113                     break;
4114                   }
4115                 }
4116               }
4117               if( pCol->iSorterColumn<0 ){
4118                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4119               }
4120             }
4121             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4122             ** because it was there before or because we just created it).
4123             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4124             ** pAggInfo->aCol[] entry.
4125             */
4126             ExprSetVVAProperty(pExpr, EP_NoReduce);
4127             pExpr->pAggInfo = pAggInfo;
4128             pExpr->op = TK_AGG_COLUMN;
4129             pExpr->iAgg = (i16)k;
4130             break;
4131           } /* endif pExpr->iTable==pItem->iCursor */
4132         } /* end loop over pSrcList */
4133       }
4134       return WRC_Prune;
4135     }
4136     case TK_AGG_FUNCTION: {
4137       if( (pNC->ncFlags & NC_InAggFunc)==0
4138        && pWalker->walkerDepth==pExpr->op2
4139       ){
4140         /* Check to see if pExpr is a duplicate of another aggregate
4141         ** function that is already in the pAggInfo structure
4142         */
4143         struct AggInfo_func *pItem = pAggInfo->aFunc;
4144         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4145           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4146             break;
4147           }
4148         }
4149         if( i>=pAggInfo->nFunc ){
4150           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4151           */
4152           u8 enc = ENC(pParse->db);
4153           i = addAggInfoFunc(pParse->db, pAggInfo);
4154           if( i>=0 ){
4155             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4156             pItem = &pAggInfo->aFunc[i];
4157             pItem->pExpr = pExpr;
4158             pItem->iMem = ++pParse->nMem;
4159             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4160             pItem->pFunc = sqlite3FindFunction(pParse->db,
4161                    pExpr->u.zToken,
4162                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4163             if( pExpr->flags & EP_Distinct ){
4164               pItem->iDistinct = pParse->nTab++;
4165             }else{
4166               pItem->iDistinct = -1;
4167             }
4168           }
4169         }
4170         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4171         */
4172         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4173         ExprSetVVAProperty(pExpr, EP_NoReduce);
4174         pExpr->iAgg = (i16)i;
4175         pExpr->pAggInfo = pAggInfo;
4176         return WRC_Prune;
4177       }else{
4178         return WRC_Continue;
4179       }
4180     }
4181   }
4182   return WRC_Continue;
4183 }
4184 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4185   UNUSED_PARAMETER(pWalker);
4186   UNUSED_PARAMETER(pSelect);
4187   return WRC_Continue;
4188 }
4189 
4190 /*
4191 ** Analyze the pExpr expression looking for aggregate functions and
4192 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4193 ** points to.  Additional entries are made on the AggInfo object as
4194 ** necessary.
4195 **
4196 ** This routine should only be called after the expression has been
4197 ** analyzed by sqlite3ResolveExprNames().
4198 */
4199 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4200   Walker w;
4201   memset(&w, 0, sizeof(w));
4202   w.xExprCallback = analyzeAggregate;
4203   w.xSelectCallback = analyzeAggregatesInSelect;
4204   w.u.pNC = pNC;
4205   assert( pNC->pSrcList!=0 );
4206   sqlite3WalkExpr(&w, pExpr);
4207 }
4208 
4209 /*
4210 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4211 ** expression list.  Return the number of errors.
4212 **
4213 ** If an error is found, the analysis is cut short.
4214 */
4215 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4216   struct ExprList_item *pItem;
4217   int i;
4218   if( pList ){
4219     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4220       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4221     }
4222   }
4223 }
4224 
4225 /*
4226 ** Allocate a single new register for use to hold some intermediate result.
4227 */
4228 int sqlite3GetTempReg(Parse *pParse){
4229   if( pParse->nTempReg==0 ){
4230     return ++pParse->nMem;
4231   }
4232   return pParse->aTempReg[--pParse->nTempReg];
4233 }
4234 
4235 /*
4236 ** Deallocate a register, making available for reuse for some other
4237 ** purpose.
4238 **
4239 ** If a register is currently being used by the column cache, then
4240 ** the deallocation is deferred until the column cache line that uses
4241 ** the register becomes stale.
4242 */
4243 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4244   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4245     int i;
4246     struct yColCache *p;
4247     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4248       if( p->iReg==iReg ){
4249         p->tempReg = 1;
4250         return;
4251       }
4252     }
4253     pParse->aTempReg[pParse->nTempReg++] = iReg;
4254   }
4255 }
4256 
4257 /*
4258 ** Allocate or deallocate a block of nReg consecutive registers
4259 */
4260 int sqlite3GetTempRange(Parse *pParse, int nReg){
4261   int i, n;
4262   i = pParse->iRangeReg;
4263   n = pParse->nRangeReg;
4264   if( nReg<=n ){
4265     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4266     pParse->iRangeReg += nReg;
4267     pParse->nRangeReg -= nReg;
4268   }else{
4269     i = pParse->nMem+1;
4270     pParse->nMem += nReg;
4271   }
4272   return i;
4273 }
4274 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4275   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4276   if( nReg>pParse->nRangeReg ){
4277     pParse->nRangeReg = nReg;
4278     pParse->iRangeReg = iReg;
4279   }
4280 }
4281 
4282 /*
4283 ** Mark all temporary registers as being unavailable for reuse.
4284 */
4285 void sqlite3ClearTempRegCache(Parse *pParse){
4286   pParse->nTempReg = 0;
4287   pParse->nRangeReg = 0;
4288 }
4289 
4290 /*
4291 ** Validate that no temporary register falls within the range of
4292 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
4293 ** statements.
4294 */
4295 #ifdef SQLITE_DEBUG
4296 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
4297   int i;
4298   if( pParse->nRangeReg>0
4299    && pParse->iRangeReg+pParse->nRangeReg<iLast
4300    && pParse->iRangeReg>=iFirst
4301   ){
4302      return 0;
4303   }
4304   for(i=0; i<pParse->nTempReg; i++){
4305     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
4306       return 0;
4307     }
4308   }
4309   return 1;
4310 }
4311 #endif /* SQLITE_DEBUG */
4312