1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 sqlite3TokenInit(&s, (char*)zC); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 136 || op==TK_REGISTER || op==TK_TRIGGER) 137 && p->pTab!=0 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 Expr *pNext = p->pRight; 153 /* The Expr.x union is never used at the same time as Expr.pRight */ 154 assert( p->x.pList==0 || p->pRight==0 ); 155 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 156 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 157 ** least one EP_Collate. Thus the following two ALWAYS. */ 158 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 159 int i; 160 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 161 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 162 pNext = p->x.pList->a[i].pExpr; 163 break; 164 } 165 } 166 } 167 p = pNext; 168 } 169 }else{ 170 break; 171 } 172 } 173 if( sqlite3CheckCollSeq(pParse, pColl) ){ 174 pColl = 0; 175 } 176 return pColl; 177 } 178 179 /* 180 ** pExpr is an operand of a comparison operator. aff2 is the 181 ** type affinity of the other operand. This routine returns the 182 ** type affinity that should be used for the comparison operator. 183 */ 184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 185 char aff1 = sqlite3ExprAffinity(pExpr); 186 if( aff1 && aff2 ){ 187 /* Both sides of the comparison are columns. If one has numeric 188 ** affinity, use that. Otherwise use no affinity. 189 */ 190 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 191 return SQLITE_AFF_NUMERIC; 192 }else{ 193 return SQLITE_AFF_BLOB; 194 } 195 }else if( !aff1 && !aff2 ){ 196 /* Neither side of the comparison is a column. Compare the 197 ** results directly. 198 */ 199 return SQLITE_AFF_BLOB; 200 }else{ 201 /* One side is a column, the other is not. Use the columns affinity. */ 202 assert( aff1==0 || aff2==0 ); 203 return (aff1 + aff2); 204 } 205 } 206 207 /* 208 ** pExpr is a comparison operator. Return the type affinity that should 209 ** be applied to both operands prior to doing the comparison. 210 */ 211 static char comparisonAffinity(Expr *pExpr){ 212 char aff; 213 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 214 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 215 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 216 assert( pExpr->pLeft ); 217 aff = sqlite3ExprAffinity(pExpr->pLeft); 218 if( pExpr->pRight ){ 219 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 220 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 221 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 222 }else if( !aff ){ 223 aff = SQLITE_AFF_BLOB; 224 } 225 return aff; 226 } 227 228 /* 229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 230 ** idx_affinity is the affinity of an indexed column. Return true 231 ** if the index with affinity idx_affinity may be used to implement 232 ** the comparison in pExpr. 233 */ 234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 235 char aff = comparisonAffinity(pExpr); 236 switch( aff ){ 237 case SQLITE_AFF_BLOB: 238 return 1; 239 case SQLITE_AFF_TEXT: 240 return idx_affinity==SQLITE_AFF_TEXT; 241 default: 242 return sqlite3IsNumericAffinity(idx_affinity); 243 } 244 } 245 246 /* 247 ** Return the P5 value that should be used for a binary comparison 248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 249 */ 250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 251 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 252 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 253 return aff; 254 } 255 256 /* 257 ** Return a pointer to the collation sequence that should be used by 258 ** a binary comparison operator comparing pLeft and pRight. 259 ** 260 ** If the left hand expression has a collating sequence type, then it is 261 ** used. Otherwise the collation sequence for the right hand expression 262 ** is used, or the default (BINARY) if neither expression has a collating 263 ** type. 264 ** 265 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 266 ** it is not considered. 267 */ 268 CollSeq *sqlite3BinaryCompareCollSeq( 269 Parse *pParse, 270 Expr *pLeft, 271 Expr *pRight 272 ){ 273 CollSeq *pColl; 274 assert( pLeft ); 275 if( pLeft->flags & EP_Collate ){ 276 pColl = sqlite3ExprCollSeq(pParse, pLeft); 277 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 278 pColl = sqlite3ExprCollSeq(pParse, pRight); 279 }else{ 280 pColl = sqlite3ExprCollSeq(pParse, pLeft); 281 if( !pColl ){ 282 pColl = sqlite3ExprCollSeq(pParse, pRight); 283 } 284 } 285 return pColl; 286 } 287 288 /* 289 ** Generate code for a comparison operator. 290 */ 291 static int codeCompare( 292 Parse *pParse, /* The parsing (and code generating) context */ 293 Expr *pLeft, /* The left operand */ 294 Expr *pRight, /* The right operand */ 295 int opcode, /* The comparison opcode */ 296 int in1, int in2, /* Register holding operands */ 297 int dest, /* Jump here if true. */ 298 int jumpIfNull /* If true, jump if either operand is NULL */ 299 ){ 300 int p5; 301 int addr; 302 CollSeq *p4; 303 304 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 305 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 306 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 307 (void*)p4, P4_COLLSEQ); 308 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 309 return addr; 310 } 311 312 #if SQLITE_MAX_EXPR_DEPTH>0 313 /* 314 ** Check that argument nHeight is less than or equal to the maximum 315 ** expression depth allowed. If it is not, leave an error message in 316 ** pParse. 317 */ 318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 319 int rc = SQLITE_OK; 320 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 321 if( nHeight>mxHeight ){ 322 sqlite3ErrorMsg(pParse, 323 "Expression tree is too large (maximum depth %d)", mxHeight 324 ); 325 rc = SQLITE_ERROR; 326 } 327 return rc; 328 } 329 330 /* The following three functions, heightOfExpr(), heightOfExprList() 331 ** and heightOfSelect(), are used to determine the maximum height 332 ** of any expression tree referenced by the structure passed as the 333 ** first argument. 334 ** 335 ** If this maximum height is greater than the current value pointed 336 ** to by pnHeight, the second parameter, then set *pnHeight to that 337 ** value. 338 */ 339 static void heightOfExpr(Expr *p, int *pnHeight){ 340 if( p ){ 341 if( p->nHeight>*pnHeight ){ 342 *pnHeight = p->nHeight; 343 } 344 } 345 } 346 static void heightOfExprList(ExprList *p, int *pnHeight){ 347 if( p ){ 348 int i; 349 for(i=0; i<p->nExpr; i++){ 350 heightOfExpr(p->a[i].pExpr, pnHeight); 351 } 352 } 353 } 354 static void heightOfSelect(Select *p, int *pnHeight){ 355 if( p ){ 356 heightOfExpr(p->pWhere, pnHeight); 357 heightOfExpr(p->pHaving, pnHeight); 358 heightOfExpr(p->pLimit, pnHeight); 359 heightOfExpr(p->pOffset, pnHeight); 360 heightOfExprList(p->pEList, pnHeight); 361 heightOfExprList(p->pGroupBy, pnHeight); 362 heightOfExprList(p->pOrderBy, pnHeight); 363 heightOfSelect(p->pPrior, pnHeight); 364 } 365 } 366 367 /* 368 ** Set the Expr.nHeight variable in the structure passed as an 369 ** argument. An expression with no children, Expr.pList or 370 ** Expr.pSelect member has a height of 1. Any other expression 371 ** has a height equal to the maximum height of any other 372 ** referenced Expr plus one. 373 ** 374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 375 ** if appropriate. 376 */ 377 static void exprSetHeight(Expr *p){ 378 int nHeight = 0; 379 heightOfExpr(p->pLeft, &nHeight); 380 heightOfExpr(p->pRight, &nHeight); 381 if( ExprHasProperty(p, EP_xIsSelect) ){ 382 heightOfSelect(p->x.pSelect, &nHeight); 383 }else if( p->x.pList ){ 384 heightOfExprList(p->x.pList, &nHeight); 385 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 386 } 387 p->nHeight = nHeight + 1; 388 } 389 390 /* 391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 392 ** the height is greater than the maximum allowed expression depth, 393 ** leave an error in pParse. 394 ** 395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 396 ** Expr.flags. 397 */ 398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 399 if( pParse->nErr ) return; 400 exprSetHeight(p); 401 sqlite3ExprCheckHeight(pParse, p->nHeight); 402 } 403 404 /* 405 ** Return the maximum height of any expression tree referenced 406 ** by the select statement passed as an argument. 407 */ 408 int sqlite3SelectExprHeight(Select *p){ 409 int nHeight = 0; 410 heightOfSelect(p, &nHeight); 411 return nHeight; 412 } 413 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 414 /* 415 ** Propagate all EP_Propagate flags from the Expr.x.pList into 416 ** Expr.flags. 417 */ 418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 419 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 420 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 421 } 422 } 423 #define exprSetHeight(y) 424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 425 426 /* 427 ** This routine is the core allocator for Expr nodes. 428 ** 429 ** Construct a new expression node and return a pointer to it. Memory 430 ** for this node and for the pToken argument is a single allocation 431 ** obtained from sqlite3DbMalloc(). The calling function 432 ** is responsible for making sure the node eventually gets freed. 433 ** 434 ** If dequote is true, then the token (if it exists) is dequoted. 435 ** If dequote is false, no dequoting is performed. The deQuote 436 ** parameter is ignored if pToken is NULL or if the token does not 437 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 438 ** then the EP_DblQuoted flag is set on the expression node. 439 ** 440 ** Special case: If op==TK_INTEGER and pToken points to a string that 441 ** can be translated into a 32-bit integer, then the token is not 442 ** stored in u.zToken. Instead, the integer values is written 443 ** into u.iValue and the EP_IntValue flag is set. No extra storage 444 ** is allocated to hold the integer text and the dequote flag is ignored. 445 */ 446 Expr *sqlite3ExprAlloc( 447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 448 int op, /* Expression opcode */ 449 const Token *pToken, /* Token argument. Might be NULL */ 450 int dequote /* True to dequote */ 451 ){ 452 Expr *pNew; 453 int nExtra = 0; 454 int iValue = 0; 455 456 assert( db!=0 ); 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 memset(pNew, 0, sizeof(Expr)); 467 pNew->op = (u8)op; 468 pNew->iAgg = -1; 469 if( pToken ){ 470 if( nExtra==0 ){ 471 pNew->flags |= EP_IntValue; 472 pNew->u.iValue = iValue; 473 }else{ 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 479 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 480 sqlite3Dequote(pNew->u.zToken); 481 } 482 } 483 } 484 #if SQLITE_MAX_EXPR_DEPTH>0 485 pNew->nHeight = 1; 486 #endif 487 } 488 return pNew; 489 } 490 491 /* 492 ** Allocate a new expression node from a zero-terminated token that has 493 ** already been dequoted. 494 */ 495 Expr *sqlite3Expr( 496 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 497 int op, /* Expression opcode */ 498 const char *zToken /* Token argument. Might be NULL */ 499 ){ 500 Token x; 501 x.z = zToken; 502 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 503 return sqlite3ExprAlloc(db, op, &x, 0); 504 } 505 506 /* 507 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 508 ** 509 ** If pRoot==NULL that means that a memory allocation error has occurred. 510 ** In that case, delete the subtrees pLeft and pRight. 511 */ 512 void sqlite3ExprAttachSubtrees( 513 sqlite3 *db, 514 Expr *pRoot, 515 Expr *pLeft, 516 Expr *pRight 517 ){ 518 if( pRoot==0 ){ 519 assert( db->mallocFailed ); 520 sqlite3ExprDelete(db, pLeft); 521 sqlite3ExprDelete(db, pRight); 522 }else{ 523 if( pRight ){ 524 pRoot->pRight = pRight; 525 pRoot->flags |= EP_Propagate & pRight->flags; 526 } 527 if( pLeft ){ 528 pRoot->pLeft = pLeft; 529 pRoot->flags |= EP_Propagate & pLeft->flags; 530 } 531 exprSetHeight(pRoot); 532 } 533 } 534 535 /* 536 ** Allocate an Expr node which joins as many as two subtrees. 537 ** 538 ** One or both of the subtrees can be NULL. Return a pointer to the new 539 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 540 ** free the subtrees and return NULL. 541 */ 542 Expr *sqlite3PExpr( 543 Parse *pParse, /* Parsing context */ 544 int op, /* Expression opcode */ 545 Expr *pLeft, /* Left operand */ 546 Expr *pRight, /* Right operand */ 547 const Token *pToken /* Argument token */ 548 ){ 549 Expr *p; 550 if( op==TK_AND && pParse->nErr==0 ){ 551 /* Take advantage of short-circuit false optimization for AND */ 552 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 553 }else{ 554 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 555 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 556 } 557 if( p ) { 558 sqlite3ExprCheckHeight(pParse, p->nHeight); 559 } 560 return p; 561 } 562 563 /* 564 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 565 ** do a memory allocation failure) then delete the pSelect object. 566 */ 567 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 568 if( pExpr ){ 569 pExpr->x.pSelect = pSelect; 570 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 571 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 572 }else{ 573 assert( pParse->db->mallocFailed ); 574 sqlite3SelectDelete(pParse->db, pSelect); 575 } 576 } 577 578 579 /* 580 ** If the expression is always either TRUE or FALSE (respectively), 581 ** then return 1. If one cannot determine the truth value of the 582 ** expression at compile-time return 0. 583 ** 584 ** This is an optimization. If is OK to return 0 here even if 585 ** the expression really is always false or false (a false negative). 586 ** But it is a bug to return 1 if the expression might have different 587 ** boolean values in different circumstances (a false positive.) 588 ** 589 ** Note that if the expression is part of conditional for a 590 ** LEFT JOIN, then we cannot determine at compile-time whether or not 591 ** is it true or false, so always return 0. 592 */ 593 static int exprAlwaysTrue(Expr *p){ 594 int v = 0; 595 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 596 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 597 return v!=0; 598 } 599 static int exprAlwaysFalse(Expr *p){ 600 int v = 0; 601 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 602 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 603 return v==0; 604 } 605 606 /* 607 ** Join two expressions using an AND operator. If either expression is 608 ** NULL, then just return the other expression. 609 ** 610 ** If one side or the other of the AND is known to be false, then instead 611 ** of returning an AND expression, just return a constant expression with 612 ** a value of false. 613 */ 614 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 615 if( pLeft==0 ){ 616 return pRight; 617 }else if( pRight==0 ){ 618 return pLeft; 619 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 620 sqlite3ExprDelete(db, pLeft); 621 sqlite3ExprDelete(db, pRight); 622 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 623 }else{ 624 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 625 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 626 return pNew; 627 } 628 } 629 630 /* 631 ** Construct a new expression node for a function with multiple 632 ** arguments. 633 */ 634 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 635 Expr *pNew; 636 sqlite3 *db = pParse->db; 637 assert( pToken ); 638 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 639 if( pNew==0 ){ 640 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 641 return 0; 642 } 643 pNew->x.pList = pList; 644 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 645 sqlite3ExprSetHeightAndFlags(pParse, pNew); 646 return pNew; 647 } 648 649 /* 650 ** Assign a variable number to an expression that encodes a wildcard 651 ** in the original SQL statement. 652 ** 653 ** Wildcards consisting of a single "?" are assigned the next sequential 654 ** variable number. 655 ** 656 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 657 ** sure "nnn" is not too be to avoid a denial of service attack when 658 ** the SQL statement comes from an external source. 659 ** 660 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 661 ** as the previous instance of the same wildcard. Or if this is the first 662 ** instance of the wildcard, the next sequential variable number is 663 ** assigned. 664 */ 665 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 666 sqlite3 *db = pParse->db; 667 const char *z; 668 669 if( pExpr==0 ) return; 670 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 671 z = pExpr->u.zToken; 672 assert( z!=0 ); 673 assert( z[0]!=0 ); 674 if( z[1]==0 ){ 675 /* Wildcard of the form "?". Assign the next variable number */ 676 assert( z[0]=='?' ); 677 pExpr->iColumn = (ynVar)(++pParse->nVar); 678 }else{ 679 ynVar x = 0; 680 u32 n = sqlite3Strlen30(z); 681 if( z[0]=='?' ){ 682 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 683 ** use it as the variable number */ 684 i64 i; 685 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 686 pExpr->iColumn = x = (ynVar)i; 687 testcase( i==0 ); 688 testcase( i==1 ); 689 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 690 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 691 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 692 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 693 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 694 x = 0; 695 } 696 if( i>pParse->nVar ){ 697 pParse->nVar = (int)i; 698 } 699 }else{ 700 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 701 ** number as the prior appearance of the same name, or if the name 702 ** has never appeared before, reuse the same variable number 703 */ 704 ynVar i; 705 for(i=0; i<pParse->nzVar; i++){ 706 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 707 pExpr->iColumn = x = (ynVar)i+1; 708 break; 709 } 710 } 711 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 712 } 713 if( x>0 ){ 714 if( x>pParse->nzVar ){ 715 char **a; 716 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 717 if( a==0 ){ 718 assert( db->mallocFailed ); /* Error reported through mallocFailed */ 719 return; 720 } 721 pParse->azVar = a; 722 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 723 pParse->nzVar = x; 724 } 725 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 726 sqlite3DbFree(db, pParse->azVar[x-1]); 727 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 728 } 729 } 730 } 731 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 732 sqlite3ErrorMsg(pParse, "too many SQL variables"); 733 } 734 } 735 736 /* 737 ** Recursively delete an expression tree. 738 */ 739 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 740 assert( p!=0 ); 741 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 742 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 743 if( !ExprHasProperty(p, EP_TokenOnly) ){ 744 /* The Expr.x union is never used at the same time as Expr.pRight */ 745 assert( p->x.pList==0 || p->pRight==0 ); 746 sqlite3ExprDelete(db, p->pLeft); 747 sqlite3ExprDelete(db, p->pRight); 748 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 749 if( ExprHasProperty(p, EP_xIsSelect) ){ 750 sqlite3SelectDelete(db, p->x.pSelect); 751 }else{ 752 sqlite3ExprListDelete(db, p->x.pList); 753 } 754 } 755 if( !ExprHasProperty(p, EP_Static) ){ 756 sqlite3DbFree(db, p); 757 } 758 } 759 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 760 if( p ) sqlite3ExprDeleteNN(db, p); 761 } 762 763 /* 764 ** Return the number of bytes allocated for the expression structure 765 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 766 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 767 */ 768 static int exprStructSize(Expr *p){ 769 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 770 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 771 return EXPR_FULLSIZE; 772 } 773 774 /* 775 ** The dupedExpr*Size() routines each return the number of bytes required 776 ** to store a copy of an expression or expression tree. They differ in 777 ** how much of the tree is measured. 778 ** 779 ** dupedExprStructSize() Size of only the Expr structure 780 ** dupedExprNodeSize() Size of Expr + space for token 781 ** dupedExprSize() Expr + token + subtree components 782 ** 783 *************************************************************************** 784 ** 785 ** The dupedExprStructSize() function returns two values OR-ed together: 786 ** (1) the space required for a copy of the Expr structure only and 787 ** (2) the EP_xxx flags that indicate what the structure size should be. 788 ** The return values is always one of: 789 ** 790 ** EXPR_FULLSIZE 791 ** EXPR_REDUCEDSIZE | EP_Reduced 792 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 793 ** 794 ** The size of the structure can be found by masking the return value 795 ** of this routine with 0xfff. The flags can be found by masking the 796 ** return value with EP_Reduced|EP_TokenOnly. 797 ** 798 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 799 ** (unreduced) Expr objects as they or originally constructed by the parser. 800 ** During expression analysis, extra information is computed and moved into 801 ** later parts of teh Expr object and that extra information might get chopped 802 ** off if the expression is reduced. Note also that it does not work to 803 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 804 ** to reduce a pristine expression tree from the parser. The implementation 805 ** of dupedExprStructSize() contain multiple assert() statements that attempt 806 ** to enforce this constraint. 807 */ 808 static int dupedExprStructSize(Expr *p, int flags){ 809 int nSize; 810 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 811 assert( EXPR_FULLSIZE<=0xfff ); 812 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 813 if( 0==flags ){ 814 nSize = EXPR_FULLSIZE; 815 }else{ 816 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 817 assert( !ExprHasProperty(p, EP_FromJoin) ); 818 assert( !ExprHasProperty(p, EP_MemToken) ); 819 assert( !ExprHasProperty(p, EP_NoReduce) ); 820 if( p->pLeft || p->x.pList ){ 821 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 822 }else{ 823 assert( p->pRight==0 ); 824 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 825 } 826 } 827 return nSize; 828 } 829 830 /* 831 ** This function returns the space in bytes required to store the copy 832 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 833 ** string is defined.) 834 */ 835 static int dupedExprNodeSize(Expr *p, int flags){ 836 int nByte = dupedExprStructSize(p, flags) & 0xfff; 837 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 838 nByte += sqlite3Strlen30(p->u.zToken)+1; 839 } 840 return ROUND8(nByte); 841 } 842 843 /* 844 ** Return the number of bytes required to create a duplicate of the 845 ** expression passed as the first argument. The second argument is a 846 ** mask containing EXPRDUP_XXX flags. 847 ** 848 ** The value returned includes space to create a copy of the Expr struct 849 ** itself and the buffer referred to by Expr.u.zToken, if any. 850 ** 851 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 852 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 853 ** and Expr.pRight variables (but not for any structures pointed to or 854 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 855 */ 856 static int dupedExprSize(Expr *p, int flags){ 857 int nByte = 0; 858 if( p ){ 859 nByte = dupedExprNodeSize(p, flags); 860 if( flags&EXPRDUP_REDUCE ){ 861 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 862 } 863 } 864 return nByte; 865 } 866 867 /* 868 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 869 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 870 ** to store the copy of expression p, the copies of p->u.zToken 871 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 872 ** if any. Before returning, *pzBuffer is set to the first byte past the 873 ** portion of the buffer copied into by this function. 874 */ 875 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 876 Expr *pNew; /* Value to return */ 877 u8 *zAlloc; /* Memory space from which to build Expr object */ 878 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 879 880 assert( db!=0 ); 881 assert( p ); 882 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 883 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 884 885 /* Figure out where to write the new Expr structure. */ 886 if( pzBuffer ){ 887 zAlloc = *pzBuffer; 888 staticFlag = EP_Static; 889 }else{ 890 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 891 staticFlag = 0; 892 } 893 pNew = (Expr *)zAlloc; 894 895 if( pNew ){ 896 /* Set nNewSize to the size allocated for the structure pointed to 897 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 898 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 899 ** by the copy of the p->u.zToken string (if any). 900 */ 901 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 902 const int nNewSize = nStructSize & 0xfff; 903 int nToken; 904 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 905 nToken = sqlite3Strlen30(p->u.zToken) + 1; 906 }else{ 907 nToken = 0; 908 } 909 if( dupFlags ){ 910 assert( ExprHasProperty(p, EP_Reduced)==0 ); 911 memcpy(zAlloc, p, nNewSize); 912 }else{ 913 u32 nSize = (u32)exprStructSize(p); 914 memcpy(zAlloc, p, nSize); 915 if( nSize<EXPR_FULLSIZE ){ 916 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 917 } 918 } 919 920 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 921 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 922 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 923 pNew->flags |= staticFlag; 924 925 /* Copy the p->u.zToken string, if any. */ 926 if( nToken ){ 927 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 928 memcpy(zToken, p->u.zToken, nToken); 929 } 930 931 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 932 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 933 if( ExprHasProperty(p, EP_xIsSelect) ){ 934 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 935 }else{ 936 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 937 } 938 } 939 940 /* Fill in pNew->pLeft and pNew->pRight. */ 941 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 942 zAlloc += dupedExprNodeSize(p, dupFlags); 943 if( ExprHasProperty(pNew, EP_Reduced) ){ 944 pNew->pLeft = p->pLeft ? 945 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 946 pNew->pRight = p->pRight ? 947 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 948 } 949 if( pzBuffer ){ 950 *pzBuffer = zAlloc; 951 } 952 }else{ 953 if( !ExprHasProperty(p, EP_TokenOnly) ){ 954 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 955 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 956 } 957 } 958 } 959 return pNew; 960 } 961 962 /* 963 ** Create and return a deep copy of the object passed as the second 964 ** argument. If an OOM condition is encountered, NULL is returned 965 ** and the db->mallocFailed flag set. 966 */ 967 #ifndef SQLITE_OMIT_CTE 968 static With *withDup(sqlite3 *db, With *p){ 969 With *pRet = 0; 970 if( p ){ 971 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 972 pRet = sqlite3DbMallocZero(db, nByte); 973 if( pRet ){ 974 int i; 975 pRet->nCte = p->nCte; 976 for(i=0; i<p->nCte; i++){ 977 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 978 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 979 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 980 } 981 } 982 } 983 return pRet; 984 } 985 #else 986 # define withDup(x,y) 0 987 #endif 988 989 /* 990 ** The following group of routines make deep copies of expressions, 991 ** expression lists, ID lists, and select statements. The copies can 992 ** be deleted (by being passed to their respective ...Delete() routines) 993 ** without effecting the originals. 994 ** 995 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 996 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 997 ** by subsequent calls to sqlite*ListAppend() routines. 998 ** 999 ** Any tables that the SrcList might point to are not duplicated. 1000 ** 1001 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1002 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1003 ** truncated version of the usual Expr structure that will be stored as 1004 ** part of the in-memory representation of the database schema. 1005 */ 1006 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1007 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1008 return p ? exprDup(db, p, flags, 0) : 0; 1009 } 1010 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1011 ExprList *pNew; 1012 struct ExprList_item *pItem, *pOldItem; 1013 int i; 1014 assert( db!=0 ); 1015 if( p==0 ) return 0; 1016 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1017 if( pNew==0 ) return 0; 1018 pNew->nExpr = i = p->nExpr; 1019 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 1020 pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); 1021 if( pItem==0 ){ 1022 sqlite3DbFree(db, pNew); 1023 return 0; 1024 } 1025 pOldItem = p->a; 1026 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1027 Expr *pOldExpr = pOldItem->pExpr; 1028 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1029 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1030 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1031 pItem->sortOrder = pOldItem->sortOrder; 1032 pItem->done = 0; 1033 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1034 pItem->u = pOldItem->u; 1035 } 1036 return pNew; 1037 } 1038 1039 /* 1040 ** If cursors, triggers, views and subqueries are all omitted from 1041 ** the build, then none of the following routines, except for 1042 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1043 ** called with a NULL argument. 1044 */ 1045 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1046 || !defined(SQLITE_OMIT_SUBQUERY) 1047 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1048 SrcList *pNew; 1049 int i; 1050 int nByte; 1051 assert( db!=0 ); 1052 if( p==0 ) return 0; 1053 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1054 pNew = sqlite3DbMallocRawNN(db, nByte ); 1055 if( pNew==0 ) return 0; 1056 pNew->nSrc = pNew->nAlloc = p->nSrc; 1057 for(i=0; i<p->nSrc; i++){ 1058 struct SrcList_item *pNewItem = &pNew->a[i]; 1059 struct SrcList_item *pOldItem = &p->a[i]; 1060 Table *pTab; 1061 pNewItem->pSchema = pOldItem->pSchema; 1062 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1063 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1064 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1065 pNewItem->fg = pOldItem->fg; 1066 pNewItem->iCursor = pOldItem->iCursor; 1067 pNewItem->addrFillSub = pOldItem->addrFillSub; 1068 pNewItem->regReturn = pOldItem->regReturn; 1069 if( pNewItem->fg.isIndexedBy ){ 1070 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1071 } 1072 pNewItem->pIBIndex = pOldItem->pIBIndex; 1073 if( pNewItem->fg.isTabFunc ){ 1074 pNewItem->u1.pFuncArg = 1075 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1076 } 1077 pTab = pNewItem->pTab = pOldItem->pTab; 1078 if( pTab ){ 1079 pTab->nRef++; 1080 } 1081 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1082 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1083 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1084 pNewItem->colUsed = pOldItem->colUsed; 1085 } 1086 return pNew; 1087 } 1088 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1089 IdList *pNew; 1090 int i; 1091 assert( db!=0 ); 1092 if( p==0 ) return 0; 1093 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1094 if( pNew==0 ) return 0; 1095 pNew->nId = p->nId; 1096 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1097 if( pNew->a==0 ){ 1098 sqlite3DbFree(db, pNew); 1099 return 0; 1100 } 1101 /* Note that because the size of the allocation for p->a[] is not 1102 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1103 ** on the duplicate created by this function. */ 1104 for(i=0; i<p->nId; i++){ 1105 struct IdList_item *pNewItem = &pNew->a[i]; 1106 struct IdList_item *pOldItem = &p->a[i]; 1107 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1108 pNewItem->idx = pOldItem->idx; 1109 } 1110 return pNew; 1111 } 1112 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1113 Select *pNew, *pPrior; 1114 assert( db!=0 ); 1115 if( p==0 ) return 0; 1116 pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1117 if( pNew==0 ) return 0; 1118 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1119 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1120 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1121 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1122 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1123 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1124 pNew->op = p->op; 1125 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1126 if( pPrior ) pPrior->pNext = pNew; 1127 pNew->pNext = 0; 1128 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1129 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1130 pNew->iLimit = 0; 1131 pNew->iOffset = 0; 1132 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1133 pNew->addrOpenEphm[0] = -1; 1134 pNew->addrOpenEphm[1] = -1; 1135 pNew->nSelectRow = p->nSelectRow; 1136 pNew->pWith = withDup(db, p->pWith); 1137 sqlite3SelectSetName(pNew, p->zSelName); 1138 return pNew; 1139 } 1140 #else 1141 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1142 assert( p==0 ); 1143 return 0; 1144 } 1145 #endif 1146 1147 1148 /* 1149 ** Add a new element to the end of an expression list. If pList is 1150 ** initially NULL, then create a new expression list. 1151 ** 1152 ** If a memory allocation error occurs, the entire list is freed and 1153 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1154 ** that the new entry was successfully appended. 1155 */ 1156 ExprList *sqlite3ExprListAppend( 1157 Parse *pParse, /* Parsing context */ 1158 ExprList *pList, /* List to which to append. Might be NULL */ 1159 Expr *pExpr /* Expression to be appended. Might be NULL */ 1160 ){ 1161 sqlite3 *db = pParse->db; 1162 assert( db!=0 ); 1163 if( pList==0 ){ 1164 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1165 if( pList==0 ){ 1166 goto no_mem; 1167 } 1168 pList->nExpr = 0; 1169 pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); 1170 if( pList->a==0 ) goto no_mem; 1171 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1172 struct ExprList_item *a; 1173 assert( pList->nExpr>0 ); 1174 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1175 if( a==0 ){ 1176 goto no_mem; 1177 } 1178 pList->a = a; 1179 } 1180 assert( pList->a!=0 ); 1181 if( 1 ){ 1182 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1183 memset(pItem, 0, sizeof(*pItem)); 1184 pItem->pExpr = pExpr; 1185 } 1186 return pList; 1187 1188 no_mem: 1189 /* Avoid leaking memory if malloc has failed. */ 1190 sqlite3ExprDelete(db, pExpr); 1191 sqlite3ExprListDelete(db, pList); 1192 return 0; 1193 } 1194 1195 /* 1196 ** Set the sort order for the last element on the given ExprList. 1197 */ 1198 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1199 if( p==0 ) return; 1200 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1201 assert( p->nExpr>0 ); 1202 if( iSortOrder<0 ){ 1203 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1204 return; 1205 } 1206 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1207 } 1208 1209 /* 1210 ** Set the ExprList.a[].zName element of the most recently added item 1211 ** on the expression list. 1212 ** 1213 ** pList might be NULL following an OOM error. But pName should never be 1214 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1215 ** is set. 1216 */ 1217 void sqlite3ExprListSetName( 1218 Parse *pParse, /* Parsing context */ 1219 ExprList *pList, /* List to which to add the span. */ 1220 Token *pName, /* Name to be added */ 1221 int dequote /* True to cause the name to be dequoted */ 1222 ){ 1223 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1224 if( pList ){ 1225 struct ExprList_item *pItem; 1226 assert( pList->nExpr>0 ); 1227 pItem = &pList->a[pList->nExpr-1]; 1228 assert( pItem->zName==0 ); 1229 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1230 if( dequote ) sqlite3Dequote(pItem->zName); 1231 } 1232 } 1233 1234 /* 1235 ** Set the ExprList.a[].zSpan element of the most recently added item 1236 ** on the expression list. 1237 ** 1238 ** pList might be NULL following an OOM error. But pSpan should never be 1239 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1240 ** is set. 1241 */ 1242 void sqlite3ExprListSetSpan( 1243 Parse *pParse, /* Parsing context */ 1244 ExprList *pList, /* List to which to add the span. */ 1245 ExprSpan *pSpan /* The span to be added */ 1246 ){ 1247 sqlite3 *db = pParse->db; 1248 assert( pList!=0 || db->mallocFailed!=0 ); 1249 if( pList ){ 1250 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1251 assert( pList->nExpr>0 ); 1252 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1253 sqlite3DbFree(db, pItem->zSpan); 1254 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1255 (int)(pSpan->zEnd - pSpan->zStart)); 1256 } 1257 } 1258 1259 /* 1260 ** If the expression list pEList contains more than iLimit elements, 1261 ** leave an error message in pParse. 1262 */ 1263 void sqlite3ExprListCheckLength( 1264 Parse *pParse, 1265 ExprList *pEList, 1266 const char *zObject 1267 ){ 1268 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1269 testcase( pEList && pEList->nExpr==mx ); 1270 testcase( pEList && pEList->nExpr==mx+1 ); 1271 if( pEList && pEList->nExpr>mx ){ 1272 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1273 } 1274 } 1275 1276 /* 1277 ** Delete an entire expression list. 1278 */ 1279 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1280 int i; 1281 struct ExprList_item *pItem; 1282 assert( pList->a!=0 || pList->nExpr==0 ); 1283 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1284 sqlite3ExprDelete(db, pItem->pExpr); 1285 sqlite3DbFree(db, pItem->zName); 1286 sqlite3DbFree(db, pItem->zSpan); 1287 } 1288 sqlite3DbFree(db, pList->a); 1289 sqlite3DbFree(db, pList); 1290 } 1291 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1292 if( pList ) exprListDeleteNN(db, pList); 1293 } 1294 1295 /* 1296 ** Return the bitwise-OR of all Expr.flags fields in the given 1297 ** ExprList. 1298 */ 1299 u32 sqlite3ExprListFlags(const ExprList *pList){ 1300 int i; 1301 u32 m = 0; 1302 if( pList ){ 1303 for(i=0; i<pList->nExpr; i++){ 1304 Expr *pExpr = pList->a[i].pExpr; 1305 assert( pExpr!=0 ); 1306 m |= pExpr->flags; 1307 } 1308 } 1309 return m; 1310 } 1311 1312 /* 1313 ** These routines are Walker callbacks used to check expressions to 1314 ** see if they are "constant" for some definition of constant. The 1315 ** Walker.eCode value determines the type of "constant" we are looking 1316 ** for. 1317 ** 1318 ** These callback routines are used to implement the following: 1319 ** 1320 ** sqlite3ExprIsConstant() pWalker->eCode==1 1321 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1322 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1323 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1324 ** 1325 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1326 ** is found to not be a constant. 1327 ** 1328 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1329 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1330 ** an existing schema and 4 when processing a new statement. A bound 1331 ** parameter raises an error for new statements, but is silently converted 1332 ** to NULL for existing schemas. This allows sqlite_master tables that 1333 ** contain a bound parameter because they were generated by older versions 1334 ** of SQLite to be parsed by newer versions of SQLite without raising a 1335 ** malformed schema error. 1336 */ 1337 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1338 1339 /* If pWalker->eCode is 2 then any term of the expression that comes from 1340 ** the ON or USING clauses of a left join disqualifies the expression 1341 ** from being considered constant. */ 1342 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1343 pWalker->eCode = 0; 1344 return WRC_Abort; 1345 } 1346 1347 switch( pExpr->op ){ 1348 /* Consider functions to be constant if all their arguments are constant 1349 ** and either pWalker->eCode==4 or 5 or the function has the 1350 ** SQLITE_FUNC_CONST flag. */ 1351 case TK_FUNCTION: 1352 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1353 return WRC_Continue; 1354 }else{ 1355 pWalker->eCode = 0; 1356 return WRC_Abort; 1357 } 1358 case TK_ID: 1359 case TK_COLUMN: 1360 case TK_AGG_FUNCTION: 1361 case TK_AGG_COLUMN: 1362 testcase( pExpr->op==TK_ID ); 1363 testcase( pExpr->op==TK_COLUMN ); 1364 testcase( pExpr->op==TK_AGG_FUNCTION ); 1365 testcase( pExpr->op==TK_AGG_COLUMN ); 1366 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1367 return WRC_Continue; 1368 }else{ 1369 pWalker->eCode = 0; 1370 return WRC_Abort; 1371 } 1372 case TK_VARIABLE: 1373 if( pWalker->eCode==5 ){ 1374 /* Silently convert bound parameters that appear inside of CREATE 1375 ** statements into a NULL when parsing the CREATE statement text out 1376 ** of the sqlite_master table */ 1377 pExpr->op = TK_NULL; 1378 }else if( pWalker->eCode==4 ){ 1379 /* A bound parameter in a CREATE statement that originates from 1380 ** sqlite3_prepare() causes an error */ 1381 pWalker->eCode = 0; 1382 return WRC_Abort; 1383 } 1384 /* Fall through */ 1385 default: 1386 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1387 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1388 return WRC_Continue; 1389 } 1390 } 1391 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1392 UNUSED_PARAMETER(NotUsed); 1393 pWalker->eCode = 0; 1394 return WRC_Abort; 1395 } 1396 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1397 Walker w; 1398 memset(&w, 0, sizeof(w)); 1399 w.eCode = initFlag; 1400 w.xExprCallback = exprNodeIsConstant; 1401 w.xSelectCallback = selectNodeIsConstant; 1402 w.u.iCur = iCur; 1403 sqlite3WalkExpr(&w, p); 1404 return w.eCode; 1405 } 1406 1407 /* 1408 ** Walk an expression tree. Return non-zero if the expression is constant 1409 ** and 0 if it involves variables or function calls. 1410 ** 1411 ** For the purposes of this function, a double-quoted string (ex: "abc") 1412 ** is considered a variable but a single-quoted string (ex: 'abc') is 1413 ** a constant. 1414 */ 1415 int sqlite3ExprIsConstant(Expr *p){ 1416 return exprIsConst(p, 1, 0); 1417 } 1418 1419 /* 1420 ** Walk an expression tree. Return non-zero if the expression is constant 1421 ** that does no originate from the ON or USING clauses of a join. 1422 ** Return 0 if it involves variables or function calls or terms from 1423 ** an ON or USING clause. 1424 */ 1425 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1426 return exprIsConst(p, 2, 0); 1427 } 1428 1429 /* 1430 ** Walk an expression tree. Return non-zero if the expression is constant 1431 ** for any single row of the table with cursor iCur. In other words, the 1432 ** expression must not refer to any non-deterministic function nor any 1433 ** table other than iCur. 1434 */ 1435 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1436 return exprIsConst(p, 3, iCur); 1437 } 1438 1439 /* 1440 ** Walk an expression tree. Return non-zero if the expression is constant 1441 ** or a function call with constant arguments. Return and 0 if there 1442 ** are any variables. 1443 ** 1444 ** For the purposes of this function, a double-quoted string (ex: "abc") 1445 ** is considered a variable but a single-quoted string (ex: 'abc') is 1446 ** a constant. 1447 */ 1448 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1449 assert( isInit==0 || isInit==1 ); 1450 return exprIsConst(p, 4+isInit, 0); 1451 } 1452 1453 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1454 /* 1455 ** Walk an expression tree. Return 1 if the expression contains a 1456 ** subquery of some kind. Return 0 if there are no subqueries. 1457 */ 1458 int sqlite3ExprContainsSubquery(Expr *p){ 1459 Walker w; 1460 memset(&w, 0, sizeof(w)); 1461 w.eCode = 1; 1462 w.xExprCallback = sqlite3ExprWalkNoop; 1463 w.xSelectCallback = selectNodeIsConstant; 1464 sqlite3WalkExpr(&w, p); 1465 return w.eCode==0; 1466 } 1467 #endif 1468 1469 /* 1470 ** If the expression p codes a constant integer that is small enough 1471 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1472 ** in *pValue. If the expression is not an integer or if it is too big 1473 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1474 */ 1475 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1476 int rc = 0; 1477 1478 /* If an expression is an integer literal that fits in a signed 32-bit 1479 ** integer, then the EP_IntValue flag will have already been set */ 1480 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1481 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1482 1483 if( p->flags & EP_IntValue ){ 1484 *pValue = p->u.iValue; 1485 return 1; 1486 } 1487 switch( p->op ){ 1488 case TK_UPLUS: { 1489 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1490 break; 1491 } 1492 case TK_UMINUS: { 1493 int v; 1494 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1495 assert( v!=(-2147483647-1) ); 1496 *pValue = -v; 1497 rc = 1; 1498 } 1499 break; 1500 } 1501 default: break; 1502 } 1503 return rc; 1504 } 1505 1506 /* 1507 ** Return FALSE if there is no chance that the expression can be NULL. 1508 ** 1509 ** If the expression might be NULL or if the expression is too complex 1510 ** to tell return TRUE. 1511 ** 1512 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1513 ** when we know that a value cannot be NULL. Hence, a false positive 1514 ** (returning TRUE when in fact the expression can never be NULL) might 1515 ** be a small performance hit but is otherwise harmless. On the other 1516 ** hand, a false negative (returning FALSE when the result could be NULL) 1517 ** will likely result in an incorrect answer. So when in doubt, return 1518 ** TRUE. 1519 */ 1520 int sqlite3ExprCanBeNull(const Expr *p){ 1521 u8 op; 1522 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1523 op = p->op; 1524 if( op==TK_REGISTER ) op = p->op2; 1525 switch( op ){ 1526 case TK_INTEGER: 1527 case TK_STRING: 1528 case TK_FLOAT: 1529 case TK_BLOB: 1530 return 0; 1531 case TK_COLUMN: 1532 assert( p->pTab!=0 ); 1533 return ExprHasProperty(p, EP_CanBeNull) || 1534 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1535 default: 1536 return 1; 1537 } 1538 } 1539 1540 /* 1541 ** Return TRUE if the given expression is a constant which would be 1542 ** unchanged by OP_Affinity with the affinity given in the second 1543 ** argument. 1544 ** 1545 ** This routine is used to determine if the OP_Affinity operation 1546 ** can be omitted. When in doubt return FALSE. A false negative 1547 ** is harmless. A false positive, however, can result in the wrong 1548 ** answer. 1549 */ 1550 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1551 u8 op; 1552 if( aff==SQLITE_AFF_BLOB ) return 1; 1553 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1554 op = p->op; 1555 if( op==TK_REGISTER ) op = p->op2; 1556 switch( op ){ 1557 case TK_INTEGER: { 1558 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1559 } 1560 case TK_FLOAT: { 1561 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1562 } 1563 case TK_STRING: { 1564 return aff==SQLITE_AFF_TEXT; 1565 } 1566 case TK_BLOB: { 1567 return 1; 1568 } 1569 case TK_COLUMN: { 1570 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1571 return p->iColumn<0 1572 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1573 } 1574 default: { 1575 return 0; 1576 } 1577 } 1578 } 1579 1580 /* 1581 ** Return TRUE if the given string is a row-id column name. 1582 */ 1583 int sqlite3IsRowid(const char *z){ 1584 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1585 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1586 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1587 return 0; 1588 } 1589 1590 /* 1591 ** pX is the RHS of an IN operator. If pX is a SELECT statement 1592 ** that can be simplified to a direct table access, then return 1593 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 1594 ** or if the SELECT statement needs to be manifested into a transient 1595 ** table, then return NULL. 1596 */ 1597 #ifndef SQLITE_OMIT_SUBQUERY 1598 static Select *isCandidateForInOpt(Expr *pX){ 1599 Select *p; 1600 SrcList *pSrc; 1601 ExprList *pEList; 1602 Expr *pRes; 1603 Table *pTab; 1604 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 1605 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 1606 p = pX->x.pSelect; 1607 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1608 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1609 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1610 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1611 return 0; /* No DISTINCT keyword and no aggregate functions */ 1612 } 1613 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1614 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1615 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1616 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1617 pSrc = p->pSrc; 1618 assert( pSrc!=0 ); 1619 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1620 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1621 pTab = pSrc->a[0].pTab; 1622 assert( pTab!=0 ); 1623 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1624 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1625 pEList = p->pEList; 1626 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1627 pRes = pEList->a[0].pExpr; 1628 if( pRes->op!=TK_COLUMN ) return 0; /* Result is a column */ 1629 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 1630 return p; 1631 } 1632 #endif /* SQLITE_OMIT_SUBQUERY */ 1633 1634 /* 1635 ** Code an OP_Once instruction and allocate space for its flag. Return the 1636 ** address of the new instruction. 1637 */ 1638 int sqlite3CodeOnce(Parse *pParse){ 1639 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1640 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1641 } 1642 1643 /* 1644 ** Generate code that checks the left-most column of index table iCur to see if 1645 ** it contains any NULL entries. Cause the register at regHasNull to be set 1646 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1647 ** to be set to NULL if iCur contains one or more NULL values. 1648 */ 1649 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1650 int addr1; 1651 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1652 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1653 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1654 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1655 VdbeComment((v, "first_entry_in(%d)", iCur)); 1656 sqlite3VdbeJumpHere(v, addr1); 1657 } 1658 1659 1660 #ifndef SQLITE_OMIT_SUBQUERY 1661 /* 1662 ** The argument is an IN operator with a list (not a subquery) on the 1663 ** right-hand side. Return TRUE if that list is constant. 1664 */ 1665 static int sqlite3InRhsIsConstant(Expr *pIn){ 1666 Expr *pLHS; 1667 int res; 1668 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1669 pLHS = pIn->pLeft; 1670 pIn->pLeft = 0; 1671 res = sqlite3ExprIsConstant(pIn); 1672 pIn->pLeft = pLHS; 1673 return res; 1674 } 1675 #endif 1676 1677 /* 1678 ** This function is used by the implementation of the IN (...) operator. 1679 ** The pX parameter is the expression on the RHS of the IN operator, which 1680 ** might be either a list of expressions or a subquery. 1681 ** 1682 ** The job of this routine is to find or create a b-tree object that can 1683 ** be used either to test for membership in the RHS set or to iterate through 1684 ** all members of the RHS set, skipping duplicates. 1685 ** 1686 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1687 ** and pX->iTable is set to the index of that cursor. 1688 ** 1689 ** The returned value of this function indicates the b-tree type, as follows: 1690 ** 1691 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1692 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1693 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1694 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1695 ** populated epheremal table. 1696 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1697 ** implemented as a sequence of comparisons. 1698 ** 1699 ** An existing b-tree might be used if the RHS expression pX is a simple 1700 ** subquery such as: 1701 ** 1702 ** SELECT <column> FROM <table> 1703 ** 1704 ** If the RHS of the IN operator is a list or a more complex subquery, then 1705 ** an ephemeral table might need to be generated from the RHS and then 1706 ** pX->iTable made to point to the ephemeral table instead of an 1707 ** existing table. 1708 ** 1709 ** The inFlags parameter must contain exactly one of the bits 1710 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1711 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1712 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1713 ** IN index will be used to loop over all values of the RHS of the 1714 ** IN operator. 1715 ** 1716 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1717 ** through the set members) then the b-tree must not contain duplicates. 1718 ** An epheremal table must be used unless the selected <column> is guaranteed 1719 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1720 ** has a UNIQUE constraint or UNIQUE index. 1721 ** 1722 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1723 ** for fast set membership tests) then an epheremal table must 1724 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1725 ** be found with <column> as its left-most column. 1726 ** 1727 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1728 ** if the RHS of the IN operator is a list (not a subquery) then this 1729 ** routine might decide that creating an ephemeral b-tree for membership 1730 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1731 ** calling routine should implement the IN operator using a sequence 1732 ** of Eq or Ne comparison operations. 1733 ** 1734 ** When the b-tree is being used for membership tests, the calling function 1735 ** might need to know whether or not the RHS side of the IN operator 1736 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1737 ** if there is any chance that the (...) might contain a NULL value at 1738 ** runtime, then a register is allocated and the register number written 1739 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1740 ** NULL value, then *prRhsHasNull is left unchanged. 1741 ** 1742 ** If a register is allocated and its location stored in *prRhsHasNull, then 1743 ** the value in that register will be NULL if the b-tree contains one or more 1744 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1745 ** NULL values. 1746 */ 1747 #ifndef SQLITE_OMIT_SUBQUERY 1748 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1749 Select *p; /* SELECT to the right of IN operator */ 1750 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1751 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1752 int mustBeUnique; /* True if RHS must be unique */ 1753 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1754 1755 assert( pX->op==TK_IN ); 1756 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1757 1758 /* Check to see if an existing table or index can be used to 1759 ** satisfy the query. This is preferable to generating a new 1760 ** ephemeral table. 1761 */ 1762 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 1763 sqlite3 *db = pParse->db; /* Database connection */ 1764 Table *pTab; /* Table <table>. */ 1765 Expr *pExpr; /* Expression <column> */ 1766 i16 iCol; /* Index of column <column> */ 1767 i16 iDb; /* Database idx for pTab */ 1768 1769 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1770 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1771 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1772 pTab = p->pSrc->a[0].pTab; 1773 pExpr = p->pEList->a[0].pExpr; 1774 iCol = (i16)pExpr->iColumn; 1775 1776 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1777 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1778 sqlite3CodeVerifySchema(pParse, iDb); 1779 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1780 1781 /* This function is only called from two places. In both cases the vdbe 1782 ** has already been allocated. So assume sqlite3GetVdbe() is always 1783 ** successful here. 1784 */ 1785 assert(v); 1786 if( iCol<0 ){ 1787 int iAddr = sqlite3CodeOnce(pParse); 1788 VdbeCoverage(v); 1789 1790 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1791 eType = IN_INDEX_ROWID; 1792 1793 sqlite3VdbeJumpHere(v, iAddr); 1794 }else{ 1795 Index *pIdx; /* Iterator variable */ 1796 1797 /* The collation sequence used by the comparison. If an index is to 1798 ** be used in place of a temp-table, it must be ordered according 1799 ** to this collation sequence. */ 1800 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1801 1802 /* Check that the affinity that will be used to perform the 1803 ** comparison is the same as the affinity of the column. If 1804 ** it is not, it is not possible to use any index. 1805 */ 1806 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1807 1808 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1809 if( (pIdx->aiColumn[0]==iCol) 1810 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1811 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1812 ){ 1813 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1814 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1815 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1816 VdbeComment((v, "%s", pIdx->zName)); 1817 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1818 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1819 1820 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1821 *prRhsHasNull = ++pParse->nMem; 1822 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1823 } 1824 sqlite3VdbeJumpHere(v, iAddr); 1825 } 1826 } 1827 } 1828 } 1829 1830 /* If no preexisting index is available for the IN clause 1831 ** and IN_INDEX_NOOP is an allowed reply 1832 ** and the RHS of the IN operator is a list, not a subquery 1833 ** and the RHS is not contant or has two or fewer terms, 1834 ** then it is not worth creating an ephemeral table to evaluate 1835 ** the IN operator so return IN_INDEX_NOOP. 1836 */ 1837 if( eType==0 1838 && (inFlags & IN_INDEX_NOOP_OK) 1839 && !ExprHasProperty(pX, EP_xIsSelect) 1840 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1841 ){ 1842 eType = IN_INDEX_NOOP; 1843 } 1844 1845 1846 if( eType==0 ){ 1847 /* Could not find an existing table or index to use as the RHS b-tree. 1848 ** We will have to generate an ephemeral table to do the job. 1849 */ 1850 u32 savedNQueryLoop = pParse->nQueryLoop; 1851 int rMayHaveNull = 0; 1852 eType = IN_INDEX_EPH; 1853 if( inFlags & IN_INDEX_LOOP ){ 1854 pParse->nQueryLoop = 0; 1855 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1856 eType = IN_INDEX_ROWID; 1857 } 1858 }else if( prRhsHasNull ){ 1859 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1860 } 1861 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1862 pParse->nQueryLoop = savedNQueryLoop; 1863 }else{ 1864 pX->iTable = iTab; 1865 } 1866 return eType; 1867 } 1868 #endif 1869 1870 /* 1871 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1872 ** or IN operators. Examples: 1873 ** 1874 ** (SELECT a FROM b) -- subquery 1875 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1876 ** x IN (4,5,11) -- IN operator with list on right-hand side 1877 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1878 ** 1879 ** The pExpr parameter describes the expression that contains the IN 1880 ** operator or subquery. 1881 ** 1882 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1883 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1884 ** to some integer key column of a table B-Tree. In this case, use an 1885 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1886 ** (slower) variable length keys B-Tree. 1887 ** 1888 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1889 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1890 ** All this routine does is initialize the register given by rMayHaveNull 1891 ** to NULL. Calling routines will take care of changing this register 1892 ** value to non-NULL if the RHS is NULL-free. 1893 ** 1894 ** For a SELECT or EXISTS operator, return the register that holds the 1895 ** result. For IN operators or if an error occurs, the return value is 0. 1896 */ 1897 #ifndef SQLITE_OMIT_SUBQUERY 1898 int sqlite3CodeSubselect( 1899 Parse *pParse, /* Parsing context */ 1900 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1901 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1902 int isRowid /* If true, LHS of IN operator is a rowid */ 1903 ){ 1904 int jmpIfDynamic = -1; /* One-time test address */ 1905 int rReg = 0; /* Register storing resulting */ 1906 Vdbe *v = sqlite3GetVdbe(pParse); 1907 if( NEVER(v==0) ) return 0; 1908 sqlite3ExprCachePush(pParse); 1909 1910 /* This code must be run in its entirety every time it is encountered 1911 ** if any of the following is true: 1912 ** 1913 ** * The right-hand side is a correlated subquery 1914 ** * The right-hand side is an expression list containing variables 1915 ** * We are inside a trigger 1916 ** 1917 ** If all of the above are false, then we can run this code just once 1918 ** save the results, and reuse the same result on subsequent invocations. 1919 */ 1920 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1921 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1922 } 1923 1924 #ifndef SQLITE_OMIT_EXPLAIN 1925 if( pParse->explain==2 ){ 1926 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 1927 jmpIfDynamic>=0?"":"CORRELATED ", 1928 pExpr->op==TK_IN?"LIST":"SCALAR", 1929 pParse->iNextSelectId 1930 ); 1931 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1932 } 1933 #endif 1934 1935 switch( pExpr->op ){ 1936 case TK_IN: { 1937 char affinity; /* Affinity of the LHS of the IN */ 1938 int addr; /* Address of OP_OpenEphemeral instruction */ 1939 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1940 KeyInfo *pKeyInfo = 0; /* Key information */ 1941 1942 affinity = sqlite3ExprAffinity(pLeft); 1943 1944 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1945 ** expression it is handled the same way. An ephemeral table is 1946 ** filled with single-field index keys representing the results 1947 ** from the SELECT or the <exprlist>. 1948 ** 1949 ** If the 'x' expression is a column value, or the SELECT... 1950 ** statement returns a column value, then the affinity of that 1951 ** column is used to build the index keys. If both 'x' and the 1952 ** SELECT... statement are columns, then numeric affinity is used 1953 ** if either column has NUMERIC or INTEGER affinity. If neither 1954 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1955 ** is used. 1956 */ 1957 pExpr->iTable = pParse->nTab++; 1958 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1959 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1960 1961 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1962 /* Case 1: expr IN (SELECT ...) 1963 ** 1964 ** Generate code to write the results of the select into the temporary 1965 ** table allocated and opened above. 1966 */ 1967 Select *pSelect = pExpr->x.pSelect; 1968 SelectDest dest; 1969 ExprList *pEList; 1970 1971 assert( !isRowid ); 1972 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1973 dest.affSdst = (u8)affinity; 1974 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1975 pSelect->iLimit = 0; 1976 testcase( pSelect->selFlags & SF_Distinct ); 1977 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1978 if( sqlite3Select(pParse, pSelect, &dest) ){ 1979 sqlite3KeyInfoUnref(pKeyInfo); 1980 return 0; 1981 } 1982 pEList = pSelect->pEList; 1983 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1984 assert( pEList!=0 ); 1985 assert( pEList->nExpr>0 ); 1986 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1987 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1988 pEList->a[0].pExpr); 1989 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1990 /* Case 2: expr IN (exprlist) 1991 ** 1992 ** For each expression, build an index key from the evaluation and 1993 ** store it in the temporary table. If <expr> is a column, then use 1994 ** that columns affinity when building index keys. If <expr> is not 1995 ** a column, use numeric affinity. 1996 */ 1997 int i; 1998 ExprList *pList = pExpr->x.pList; 1999 struct ExprList_item *pItem; 2000 int r1, r2, r3; 2001 2002 if( !affinity ){ 2003 affinity = SQLITE_AFF_BLOB; 2004 } 2005 if( pKeyInfo ){ 2006 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2007 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2008 } 2009 2010 /* Loop through each expression in <exprlist>. */ 2011 r1 = sqlite3GetTempReg(pParse); 2012 r2 = sqlite3GetTempReg(pParse); 2013 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2014 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2015 Expr *pE2 = pItem->pExpr; 2016 int iValToIns; 2017 2018 /* If the expression is not constant then we will need to 2019 ** disable the test that was generated above that makes sure 2020 ** this code only executes once. Because for a non-constant 2021 ** expression we need to rerun this code each time. 2022 */ 2023 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2024 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2025 jmpIfDynamic = -1; 2026 } 2027 2028 /* Evaluate the expression and insert it into the temp table */ 2029 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2030 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2031 }else{ 2032 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2033 if( isRowid ){ 2034 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2035 sqlite3VdbeCurrentAddr(v)+2); 2036 VdbeCoverage(v); 2037 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2038 }else{ 2039 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2040 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2041 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2042 } 2043 } 2044 } 2045 sqlite3ReleaseTempReg(pParse, r1); 2046 sqlite3ReleaseTempReg(pParse, r2); 2047 } 2048 if( pKeyInfo ){ 2049 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2050 } 2051 break; 2052 } 2053 2054 case TK_EXISTS: 2055 case TK_SELECT: 2056 default: { 2057 /* If this has to be a scalar SELECT. Generate code to put the 2058 ** value of this select in a memory cell and record the number 2059 ** of the memory cell in iColumn. If this is an EXISTS, write 2060 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2061 ** and record that memory cell in iColumn. 2062 */ 2063 Select *pSel; /* SELECT statement to encode */ 2064 SelectDest dest; /* How to deal with SELECt result */ 2065 2066 testcase( pExpr->op==TK_EXISTS ); 2067 testcase( pExpr->op==TK_SELECT ); 2068 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2069 2070 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2071 pSel = pExpr->x.pSelect; 2072 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2073 if( pExpr->op==TK_SELECT ){ 2074 dest.eDest = SRT_Mem; 2075 dest.iSdst = dest.iSDParm; 2076 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2077 VdbeComment((v, "Init subquery result")); 2078 }else{ 2079 dest.eDest = SRT_Exists; 2080 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2081 VdbeComment((v, "Init EXISTS result")); 2082 } 2083 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2084 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2085 &sqlite3IntTokens[1]); 2086 pSel->iLimit = 0; 2087 pSel->selFlags &= ~SF_MultiValue; 2088 if( sqlite3Select(pParse, pSel, &dest) ){ 2089 return 0; 2090 } 2091 rReg = dest.iSDParm; 2092 ExprSetVVAProperty(pExpr, EP_NoReduce); 2093 break; 2094 } 2095 } 2096 2097 if( rHasNullFlag ){ 2098 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2099 } 2100 2101 if( jmpIfDynamic>=0 ){ 2102 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2103 } 2104 sqlite3ExprCachePop(pParse); 2105 2106 return rReg; 2107 } 2108 #endif /* SQLITE_OMIT_SUBQUERY */ 2109 2110 #ifndef SQLITE_OMIT_SUBQUERY 2111 /* 2112 ** Generate code for an IN expression. 2113 ** 2114 ** x IN (SELECT ...) 2115 ** x IN (value, value, ...) 2116 ** 2117 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2118 ** is an array of zero or more values. The expression is true if the LHS is 2119 ** contained within the RHS. The value of the expression is unknown (NULL) 2120 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2121 ** RHS contains one or more NULL values. 2122 ** 2123 ** This routine generates code that jumps to destIfFalse if the LHS is not 2124 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2125 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2126 ** within the RHS then fall through. 2127 */ 2128 static void sqlite3ExprCodeIN( 2129 Parse *pParse, /* Parsing and code generating context */ 2130 Expr *pExpr, /* The IN expression */ 2131 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2132 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2133 ){ 2134 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2135 char affinity; /* Comparison affinity to use */ 2136 int eType; /* Type of the RHS */ 2137 int r1; /* Temporary use register */ 2138 Vdbe *v; /* Statement under construction */ 2139 2140 /* Compute the RHS. After this step, the table with cursor 2141 ** pExpr->iTable will contains the values that make up the RHS. 2142 */ 2143 v = pParse->pVdbe; 2144 assert( v!=0 ); /* OOM detected prior to this routine */ 2145 VdbeNoopComment((v, "begin IN expr")); 2146 eType = sqlite3FindInIndex(pParse, pExpr, 2147 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2148 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2149 2150 /* Figure out the affinity to use to create a key from the results 2151 ** of the expression. affinityStr stores a static string suitable for 2152 ** P4 of OP_MakeRecord. 2153 */ 2154 affinity = comparisonAffinity(pExpr); 2155 2156 /* Code the LHS, the <expr> from "<expr> IN (...)". 2157 */ 2158 sqlite3ExprCachePush(pParse); 2159 r1 = sqlite3GetTempReg(pParse); 2160 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2161 2162 /* If sqlite3FindInIndex() did not find or create an index that is 2163 ** suitable for evaluating the IN operator, then evaluate using a 2164 ** sequence of comparisons. 2165 */ 2166 if( eType==IN_INDEX_NOOP ){ 2167 ExprList *pList = pExpr->x.pList; 2168 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2169 int labelOk = sqlite3VdbeMakeLabel(v); 2170 int r2, regToFree; 2171 int regCkNull = 0; 2172 int ii; 2173 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2174 if( destIfNull!=destIfFalse ){ 2175 regCkNull = sqlite3GetTempReg(pParse); 2176 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2177 } 2178 for(ii=0; ii<pList->nExpr; ii++){ 2179 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2180 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2181 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2182 } 2183 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2184 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2185 (void*)pColl, P4_COLLSEQ); 2186 VdbeCoverageIf(v, ii<pList->nExpr-1); 2187 VdbeCoverageIf(v, ii==pList->nExpr-1); 2188 sqlite3VdbeChangeP5(v, affinity); 2189 }else{ 2190 assert( destIfNull==destIfFalse ); 2191 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2192 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2193 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2194 } 2195 sqlite3ReleaseTempReg(pParse, regToFree); 2196 } 2197 if( regCkNull ){ 2198 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2199 sqlite3VdbeGoto(v, destIfFalse); 2200 } 2201 sqlite3VdbeResolveLabel(v, labelOk); 2202 sqlite3ReleaseTempReg(pParse, regCkNull); 2203 }else{ 2204 2205 /* If the LHS is NULL, then the result is either false or NULL depending 2206 ** on whether the RHS is empty or not, respectively. 2207 */ 2208 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2209 if( destIfNull==destIfFalse ){ 2210 /* Shortcut for the common case where the false and NULL outcomes are 2211 ** the same. */ 2212 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2213 }else{ 2214 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2215 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2216 VdbeCoverage(v); 2217 sqlite3VdbeGoto(v, destIfNull); 2218 sqlite3VdbeJumpHere(v, addr1); 2219 } 2220 } 2221 2222 if( eType==IN_INDEX_ROWID ){ 2223 /* In this case, the RHS is the ROWID of table b-tree 2224 */ 2225 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2226 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2227 VdbeCoverage(v); 2228 }else{ 2229 /* In this case, the RHS is an index b-tree. 2230 */ 2231 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2232 2233 /* If the set membership test fails, then the result of the 2234 ** "x IN (...)" expression must be either 0 or NULL. If the set 2235 ** contains no NULL values, then the result is 0. If the set 2236 ** contains one or more NULL values, then the result of the 2237 ** expression is also NULL. 2238 */ 2239 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2240 if( rRhsHasNull==0 ){ 2241 /* This branch runs if it is known at compile time that the RHS 2242 ** cannot contain NULL values. This happens as the result 2243 ** of a "NOT NULL" constraint in the database schema. 2244 ** 2245 ** Also run this branch if NULL is equivalent to FALSE 2246 ** for this particular IN operator. 2247 */ 2248 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2249 VdbeCoverage(v); 2250 }else{ 2251 /* In this branch, the RHS of the IN might contain a NULL and 2252 ** the presence of a NULL on the RHS makes a difference in the 2253 ** outcome. 2254 */ 2255 int addr1; 2256 2257 /* First check to see if the LHS is contained in the RHS. If so, 2258 ** then the answer is TRUE the presence of NULLs in the RHS does 2259 ** not matter. If the LHS is not contained in the RHS, then the 2260 ** answer is NULL if the RHS contains NULLs and the answer is 2261 ** FALSE if the RHS is NULL-free. 2262 */ 2263 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2264 VdbeCoverage(v); 2265 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2266 VdbeCoverage(v); 2267 sqlite3VdbeGoto(v, destIfFalse); 2268 sqlite3VdbeJumpHere(v, addr1); 2269 } 2270 } 2271 } 2272 sqlite3ReleaseTempReg(pParse, r1); 2273 sqlite3ExprCachePop(pParse); 2274 VdbeComment((v, "end IN expr")); 2275 } 2276 #endif /* SQLITE_OMIT_SUBQUERY */ 2277 2278 #ifndef SQLITE_OMIT_FLOATING_POINT 2279 /* 2280 ** Generate an instruction that will put the floating point 2281 ** value described by z[0..n-1] into register iMem. 2282 ** 2283 ** The z[] string will probably not be zero-terminated. But the 2284 ** z[n] character is guaranteed to be something that does not look 2285 ** like the continuation of the number. 2286 */ 2287 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2288 if( ALWAYS(z!=0) ){ 2289 double value; 2290 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2291 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2292 if( negateFlag ) value = -value; 2293 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2294 } 2295 } 2296 #endif 2297 2298 2299 /* 2300 ** Generate an instruction that will put the integer describe by 2301 ** text z[0..n-1] into register iMem. 2302 ** 2303 ** Expr.u.zToken is always UTF8 and zero-terminated. 2304 */ 2305 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2306 Vdbe *v = pParse->pVdbe; 2307 if( pExpr->flags & EP_IntValue ){ 2308 int i = pExpr->u.iValue; 2309 assert( i>=0 ); 2310 if( negFlag ) i = -i; 2311 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2312 }else{ 2313 int c; 2314 i64 value; 2315 const char *z = pExpr->u.zToken; 2316 assert( z!=0 ); 2317 c = sqlite3DecOrHexToI64(z, &value); 2318 if( c==0 || (c==2 && negFlag) ){ 2319 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2320 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2321 }else{ 2322 #ifdef SQLITE_OMIT_FLOATING_POINT 2323 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2324 #else 2325 #ifndef SQLITE_OMIT_HEX_INTEGER 2326 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2327 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2328 }else 2329 #endif 2330 { 2331 codeReal(v, z, negFlag, iMem); 2332 } 2333 #endif 2334 } 2335 } 2336 } 2337 2338 #if defined(SQLITE_DEBUG) 2339 /* 2340 ** Verify the consistency of the column cache 2341 */ 2342 static int cacheIsValid(Parse *pParse){ 2343 int i, n; 2344 for(i=n=0; i<SQLITE_N_COLCACHE; i++){ 2345 if( pParse->aColCache[i].iReg>0 ) n++; 2346 } 2347 return n==pParse->nColCache; 2348 } 2349 #endif 2350 2351 /* 2352 ** Clear a cache entry. 2353 */ 2354 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2355 if( p->tempReg ){ 2356 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2357 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2358 } 2359 p->tempReg = 0; 2360 } 2361 p->iReg = 0; 2362 pParse->nColCache--; 2363 assert( cacheIsValid(pParse) ); 2364 } 2365 2366 2367 /* 2368 ** Record in the column cache that a particular column from a 2369 ** particular table is stored in a particular register. 2370 */ 2371 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2372 int i; 2373 int minLru; 2374 int idxLru; 2375 struct yColCache *p; 2376 2377 /* Unless an error has occurred, register numbers are always positive. */ 2378 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2379 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2380 2381 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2382 ** for testing only - to verify that SQLite always gets the same answer 2383 ** with and without the column cache. 2384 */ 2385 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2386 2387 /* First replace any existing entry. 2388 ** 2389 ** Actually, the way the column cache is currently used, we are guaranteed 2390 ** that the object will never already be in cache. Verify this guarantee. 2391 */ 2392 #ifndef NDEBUG 2393 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2394 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2395 } 2396 #endif 2397 2398 /* Find an empty slot and replace it */ 2399 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2400 if( p->iReg==0 ){ 2401 p->iLevel = pParse->iCacheLevel; 2402 p->iTable = iTab; 2403 p->iColumn = iCol; 2404 p->iReg = iReg; 2405 p->tempReg = 0; 2406 p->lru = pParse->iCacheCnt++; 2407 pParse->nColCache++; 2408 assert( cacheIsValid(pParse) ); 2409 return; 2410 } 2411 } 2412 2413 /* Replace the last recently used */ 2414 minLru = 0x7fffffff; 2415 idxLru = -1; 2416 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2417 if( p->lru<minLru ){ 2418 idxLru = i; 2419 minLru = p->lru; 2420 } 2421 } 2422 if( ALWAYS(idxLru>=0) ){ 2423 p = &pParse->aColCache[idxLru]; 2424 p->iLevel = pParse->iCacheLevel; 2425 p->iTable = iTab; 2426 p->iColumn = iCol; 2427 p->iReg = iReg; 2428 p->tempReg = 0; 2429 p->lru = pParse->iCacheCnt++; 2430 assert( cacheIsValid(pParse) ); 2431 return; 2432 } 2433 } 2434 2435 /* 2436 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2437 ** Purge the range of registers from the column cache. 2438 */ 2439 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2440 struct yColCache *p; 2441 if( iReg<=0 || pParse->nColCache==0 ) return; 2442 p = &pParse->aColCache[SQLITE_N_COLCACHE-1]; 2443 while(1){ 2444 if( p->iReg >= iReg && p->iReg < iReg+nReg ) cacheEntryClear(pParse, p); 2445 if( p==pParse->aColCache ) break; 2446 p--; 2447 } 2448 } 2449 2450 /* 2451 ** Remember the current column cache context. Any new entries added 2452 ** added to the column cache after this call are removed when the 2453 ** corresponding pop occurs. 2454 */ 2455 void sqlite3ExprCachePush(Parse *pParse){ 2456 pParse->iCacheLevel++; 2457 #ifdef SQLITE_DEBUG 2458 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2459 printf("PUSH to %d\n", pParse->iCacheLevel); 2460 } 2461 #endif 2462 } 2463 2464 /* 2465 ** Remove from the column cache any entries that were added since the 2466 ** the previous sqlite3ExprCachePush operation. In other words, restore 2467 ** the cache to the state it was in prior the most recent Push. 2468 */ 2469 void sqlite3ExprCachePop(Parse *pParse){ 2470 int i; 2471 struct yColCache *p; 2472 assert( pParse->iCacheLevel>=1 ); 2473 pParse->iCacheLevel--; 2474 #ifdef SQLITE_DEBUG 2475 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2476 printf("POP to %d\n", pParse->iCacheLevel); 2477 } 2478 #endif 2479 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2480 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2481 cacheEntryClear(pParse, p); 2482 } 2483 } 2484 } 2485 2486 /* 2487 ** When a cached column is reused, make sure that its register is 2488 ** no longer available as a temp register. ticket #3879: that same 2489 ** register might be in the cache in multiple places, so be sure to 2490 ** get them all. 2491 */ 2492 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2493 int i; 2494 struct yColCache *p; 2495 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2496 if( p->iReg==iReg ){ 2497 p->tempReg = 0; 2498 } 2499 } 2500 } 2501 2502 /* Generate code that will load into register regOut a value that is 2503 ** appropriate for the iIdxCol-th column of index pIdx. 2504 */ 2505 void sqlite3ExprCodeLoadIndexColumn( 2506 Parse *pParse, /* The parsing context */ 2507 Index *pIdx, /* The index whose column is to be loaded */ 2508 int iTabCur, /* Cursor pointing to a table row */ 2509 int iIdxCol, /* The column of the index to be loaded */ 2510 int regOut /* Store the index column value in this register */ 2511 ){ 2512 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2513 if( iTabCol==XN_EXPR ){ 2514 assert( pIdx->aColExpr ); 2515 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2516 pParse->iSelfTab = iTabCur; 2517 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2518 }else{ 2519 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2520 iTabCol, regOut); 2521 } 2522 } 2523 2524 /* 2525 ** Generate code to extract the value of the iCol-th column of a table. 2526 */ 2527 void sqlite3ExprCodeGetColumnOfTable( 2528 Vdbe *v, /* The VDBE under construction */ 2529 Table *pTab, /* The table containing the value */ 2530 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2531 int iCol, /* Index of the column to extract */ 2532 int regOut /* Extract the value into this register */ 2533 ){ 2534 if( iCol<0 || iCol==pTab->iPKey ){ 2535 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2536 }else{ 2537 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2538 int x = iCol; 2539 if( !HasRowid(pTab) ){ 2540 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2541 } 2542 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2543 } 2544 if( iCol>=0 ){ 2545 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2546 } 2547 } 2548 2549 /* 2550 ** Generate code that will extract the iColumn-th column from 2551 ** table pTab and store the column value in a register. 2552 ** 2553 ** An effort is made to store the column value in register iReg. This 2554 ** is not garanteeed for GetColumn() - the result can be stored in 2555 ** any register. But the result is guaranteed to land in register iReg 2556 ** for GetColumnToReg(). 2557 ** 2558 ** There must be an open cursor to pTab in iTable when this routine 2559 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2560 */ 2561 int sqlite3ExprCodeGetColumn( 2562 Parse *pParse, /* Parsing and code generating context */ 2563 Table *pTab, /* Description of the table we are reading from */ 2564 int iColumn, /* Index of the table column */ 2565 int iTable, /* The cursor pointing to the table */ 2566 int iReg, /* Store results here */ 2567 u8 p5 /* P5 value for OP_Column + FLAGS */ 2568 ){ 2569 Vdbe *v = pParse->pVdbe; 2570 int i; 2571 struct yColCache *p; 2572 2573 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2574 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2575 p->lru = pParse->iCacheCnt++; 2576 sqlite3ExprCachePinRegister(pParse, p->iReg); 2577 return p->iReg; 2578 } 2579 } 2580 assert( v!=0 ); 2581 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2582 if( p5 ){ 2583 sqlite3VdbeChangeP5(v, p5); 2584 }else{ 2585 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2586 } 2587 return iReg; 2588 } 2589 void sqlite3ExprCodeGetColumnToReg( 2590 Parse *pParse, /* Parsing and code generating context */ 2591 Table *pTab, /* Description of the table we are reading from */ 2592 int iColumn, /* Index of the table column */ 2593 int iTable, /* The cursor pointing to the table */ 2594 int iReg /* Store results here */ 2595 ){ 2596 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 2597 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 2598 } 2599 2600 2601 /* 2602 ** Clear all column cache entries. 2603 */ 2604 void sqlite3ExprCacheClear(Parse *pParse){ 2605 int i; 2606 struct yColCache *p; 2607 2608 #if SQLITE_DEBUG 2609 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2610 printf("CLEAR\n"); 2611 } 2612 #endif 2613 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2614 if( p->iReg ){ 2615 cacheEntryClear(pParse, p); 2616 } 2617 } 2618 } 2619 2620 /* 2621 ** Record the fact that an affinity change has occurred on iCount 2622 ** registers starting with iStart. 2623 */ 2624 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2625 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2626 } 2627 2628 /* 2629 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2630 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2631 */ 2632 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2633 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2634 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2635 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2636 } 2637 2638 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2639 /* 2640 ** Return true if any register in the range iFrom..iTo (inclusive) 2641 ** is used as part of the column cache. 2642 ** 2643 ** This routine is used within assert() and testcase() macros only 2644 ** and does not appear in a normal build. 2645 */ 2646 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2647 int i; 2648 struct yColCache *p; 2649 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2650 int r = p->iReg; 2651 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2652 } 2653 return 0; 2654 } 2655 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2656 2657 2658 /* 2659 ** Convert an expression node to a TK_REGISTER 2660 */ 2661 static void exprToRegister(Expr *p, int iReg){ 2662 p->op2 = p->op; 2663 p->op = TK_REGISTER; 2664 p->iTable = iReg; 2665 ExprClearProperty(p, EP_Skip); 2666 } 2667 2668 /* 2669 ** Generate code into the current Vdbe to evaluate the given 2670 ** expression. Attempt to store the results in register "target". 2671 ** Return the register where results are stored. 2672 ** 2673 ** With this routine, there is no guarantee that results will 2674 ** be stored in target. The result might be stored in some other 2675 ** register if it is convenient to do so. The calling function 2676 ** must check the return code and move the results to the desired 2677 ** register. 2678 */ 2679 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2680 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2681 int op; /* The opcode being coded */ 2682 int inReg = target; /* Results stored in register inReg */ 2683 int regFree1 = 0; /* If non-zero free this temporary register */ 2684 int regFree2 = 0; /* If non-zero free this temporary register */ 2685 int r1, r2, r3, r4; /* Various register numbers */ 2686 sqlite3 *db = pParse->db; /* The database connection */ 2687 Expr tempX; /* Temporary expression node */ 2688 2689 assert( target>0 && target<=pParse->nMem ); 2690 if( v==0 ){ 2691 assert( pParse->db->mallocFailed ); 2692 return 0; 2693 } 2694 2695 if( pExpr==0 ){ 2696 op = TK_NULL; 2697 }else{ 2698 op = pExpr->op; 2699 } 2700 switch( op ){ 2701 case TK_AGG_COLUMN: { 2702 AggInfo *pAggInfo = pExpr->pAggInfo; 2703 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2704 if( !pAggInfo->directMode ){ 2705 assert( pCol->iMem>0 ); 2706 inReg = pCol->iMem; 2707 break; 2708 }else if( pAggInfo->useSortingIdx ){ 2709 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2710 pCol->iSorterColumn, target); 2711 break; 2712 } 2713 /* Otherwise, fall thru into the TK_COLUMN case */ 2714 } 2715 case TK_COLUMN: { 2716 int iTab = pExpr->iTable; 2717 if( iTab<0 ){ 2718 if( pParse->ckBase>0 ){ 2719 /* Generating CHECK constraints or inserting into partial index */ 2720 inReg = pExpr->iColumn + pParse->ckBase; 2721 break; 2722 }else{ 2723 /* Coding an expression that is part of an index where column names 2724 ** in the index refer to the table to which the index belongs */ 2725 iTab = pParse->iSelfTab; 2726 } 2727 } 2728 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2729 pExpr->iColumn, iTab, target, 2730 pExpr->op2); 2731 break; 2732 } 2733 case TK_INTEGER: { 2734 codeInteger(pParse, pExpr, 0, target); 2735 break; 2736 } 2737 #ifndef SQLITE_OMIT_FLOATING_POINT 2738 case TK_FLOAT: { 2739 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2740 codeReal(v, pExpr->u.zToken, 0, target); 2741 break; 2742 } 2743 #endif 2744 case TK_STRING: { 2745 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2746 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2747 break; 2748 } 2749 case TK_NULL: { 2750 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2751 break; 2752 } 2753 #ifndef SQLITE_OMIT_BLOB_LITERAL 2754 case TK_BLOB: { 2755 int n; 2756 const char *z; 2757 char *zBlob; 2758 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2759 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2760 assert( pExpr->u.zToken[1]=='\'' ); 2761 z = &pExpr->u.zToken[2]; 2762 n = sqlite3Strlen30(z) - 1; 2763 assert( z[n]=='\'' ); 2764 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2765 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2766 break; 2767 } 2768 #endif 2769 case TK_VARIABLE: { 2770 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2771 assert( pExpr->u.zToken!=0 ); 2772 assert( pExpr->u.zToken[0]!=0 ); 2773 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2774 if( pExpr->u.zToken[1]!=0 ){ 2775 assert( pExpr->u.zToken[0]=='?' 2776 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2777 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2778 } 2779 break; 2780 } 2781 case TK_REGISTER: { 2782 inReg = pExpr->iTable; 2783 break; 2784 } 2785 #ifndef SQLITE_OMIT_CAST 2786 case TK_CAST: { 2787 /* Expressions of the form: CAST(pLeft AS token) */ 2788 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2789 if( inReg!=target ){ 2790 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2791 inReg = target; 2792 } 2793 sqlite3VdbeAddOp2(v, OP_Cast, target, 2794 sqlite3AffinityType(pExpr->u.zToken, 0)); 2795 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2796 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2797 break; 2798 } 2799 #endif /* SQLITE_OMIT_CAST */ 2800 case TK_LT: 2801 case TK_LE: 2802 case TK_GT: 2803 case TK_GE: 2804 case TK_NE: 2805 case TK_EQ: { 2806 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2807 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2808 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2809 r1, r2, inReg, SQLITE_STOREP2); 2810 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2811 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2812 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2813 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2814 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2815 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2816 testcase( regFree1==0 ); 2817 testcase( regFree2==0 ); 2818 break; 2819 } 2820 case TK_IS: 2821 case TK_ISNOT: { 2822 testcase( op==TK_IS ); 2823 testcase( op==TK_ISNOT ); 2824 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2825 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2826 op = (op==TK_IS) ? TK_EQ : TK_NE; 2827 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2828 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2829 VdbeCoverageIf(v, op==TK_EQ); 2830 VdbeCoverageIf(v, op==TK_NE); 2831 testcase( regFree1==0 ); 2832 testcase( regFree2==0 ); 2833 break; 2834 } 2835 case TK_AND: 2836 case TK_OR: 2837 case TK_PLUS: 2838 case TK_STAR: 2839 case TK_MINUS: 2840 case TK_REM: 2841 case TK_BITAND: 2842 case TK_BITOR: 2843 case TK_SLASH: 2844 case TK_LSHIFT: 2845 case TK_RSHIFT: 2846 case TK_CONCAT: { 2847 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2848 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2849 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2850 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2851 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2852 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2853 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2854 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2855 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2856 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2857 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2858 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2859 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2860 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2861 testcase( regFree1==0 ); 2862 testcase( regFree2==0 ); 2863 break; 2864 } 2865 case TK_UMINUS: { 2866 Expr *pLeft = pExpr->pLeft; 2867 assert( pLeft ); 2868 if( pLeft->op==TK_INTEGER ){ 2869 codeInteger(pParse, pLeft, 1, target); 2870 #ifndef SQLITE_OMIT_FLOATING_POINT 2871 }else if( pLeft->op==TK_FLOAT ){ 2872 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2873 codeReal(v, pLeft->u.zToken, 1, target); 2874 #endif 2875 }else{ 2876 tempX.op = TK_INTEGER; 2877 tempX.flags = EP_IntValue|EP_TokenOnly; 2878 tempX.u.iValue = 0; 2879 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2880 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2881 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2882 testcase( regFree2==0 ); 2883 } 2884 inReg = target; 2885 break; 2886 } 2887 case TK_BITNOT: 2888 case TK_NOT: { 2889 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2890 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2891 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2892 testcase( regFree1==0 ); 2893 inReg = target; 2894 sqlite3VdbeAddOp2(v, op, r1, inReg); 2895 break; 2896 } 2897 case TK_ISNULL: 2898 case TK_NOTNULL: { 2899 int addr; 2900 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2901 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2902 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2903 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2904 testcase( regFree1==0 ); 2905 addr = sqlite3VdbeAddOp1(v, op, r1); 2906 VdbeCoverageIf(v, op==TK_ISNULL); 2907 VdbeCoverageIf(v, op==TK_NOTNULL); 2908 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2909 sqlite3VdbeJumpHere(v, addr); 2910 break; 2911 } 2912 case TK_AGG_FUNCTION: { 2913 AggInfo *pInfo = pExpr->pAggInfo; 2914 if( pInfo==0 ){ 2915 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2916 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2917 }else{ 2918 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2919 } 2920 break; 2921 } 2922 case TK_FUNCTION: { 2923 ExprList *pFarg; /* List of function arguments */ 2924 int nFarg; /* Number of function arguments */ 2925 FuncDef *pDef; /* The function definition object */ 2926 const char *zId; /* The function name */ 2927 u32 constMask = 0; /* Mask of function arguments that are constant */ 2928 int i; /* Loop counter */ 2929 u8 enc = ENC(db); /* The text encoding used by this database */ 2930 CollSeq *pColl = 0; /* A collating sequence */ 2931 2932 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2933 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2934 pFarg = 0; 2935 }else{ 2936 pFarg = pExpr->x.pList; 2937 } 2938 nFarg = pFarg ? pFarg->nExpr : 0; 2939 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2940 zId = pExpr->u.zToken; 2941 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 2942 if( pDef==0 || pDef->xFinalize!=0 ){ 2943 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 2944 break; 2945 } 2946 2947 /* Attempt a direct implementation of the built-in COALESCE() and 2948 ** IFNULL() functions. This avoids unnecessary evaluation of 2949 ** arguments past the first non-NULL argument. 2950 */ 2951 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2952 int endCoalesce = sqlite3VdbeMakeLabel(v); 2953 assert( nFarg>=2 ); 2954 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2955 for(i=1; i<nFarg; i++){ 2956 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2957 VdbeCoverage(v); 2958 sqlite3ExprCacheRemove(pParse, target, 1); 2959 sqlite3ExprCachePush(pParse); 2960 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2961 sqlite3ExprCachePop(pParse); 2962 } 2963 sqlite3VdbeResolveLabel(v, endCoalesce); 2964 break; 2965 } 2966 2967 /* The UNLIKELY() function is a no-op. The result is the value 2968 ** of the first argument. 2969 */ 2970 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2971 assert( nFarg>=1 ); 2972 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2973 break; 2974 } 2975 2976 for(i=0; i<nFarg; i++){ 2977 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2978 testcase( i==31 ); 2979 constMask |= MASKBIT32(i); 2980 } 2981 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2982 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2983 } 2984 } 2985 if( pFarg ){ 2986 if( constMask ){ 2987 r1 = pParse->nMem+1; 2988 pParse->nMem += nFarg; 2989 }else{ 2990 r1 = sqlite3GetTempRange(pParse, nFarg); 2991 } 2992 2993 /* For length() and typeof() functions with a column argument, 2994 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2995 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2996 ** loading. 2997 */ 2998 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2999 u8 exprOp; 3000 assert( nFarg==1 ); 3001 assert( pFarg->a[0].pExpr!=0 ); 3002 exprOp = pFarg->a[0].pExpr->op; 3003 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3004 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3005 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3006 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3007 pFarg->a[0].pExpr->op2 = 3008 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3009 } 3010 } 3011 3012 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3013 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3014 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3015 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3016 }else{ 3017 r1 = 0; 3018 } 3019 #ifndef SQLITE_OMIT_VIRTUALTABLE 3020 /* Possibly overload the function if the first argument is 3021 ** a virtual table column. 3022 ** 3023 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3024 ** second argument, not the first, as the argument to test to 3025 ** see if it is a column in a virtual table. This is done because 3026 ** the left operand of infix functions (the operand we want to 3027 ** control overloading) ends up as the second argument to the 3028 ** function. The expression "A glob B" is equivalent to 3029 ** "glob(B,A). We want to use the A in "A glob B" to test 3030 ** for function overloading. But we use the B term in "glob(B,A)". 3031 */ 3032 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3033 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3034 }else if( nFarg>0 ){ 3035 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3036 } 3037 #endif 3038 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3039 if( !pColl ) pColl = db->pDfltColl; 3040 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3041 } 3042 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3043 (char*)pDef, P4_FUNCDEF); 3044 sqlite3VdbeChangeP5(v, (u8)nFarg); 3045 if( nFarg && constMask==0 ){ 3046 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3047 } 3048 break; 3049 } 3050 #ifndef SQLITE_OMIT_SUBQUERY 3051 case TK_EXISTS: 3052 case TK_SELECT: { 3053 testcase( op==TK_EXISTS ); 3054 testcase( op==TK_SELECT ); 3055 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3056 break; 3057 } 3058 case TK_IN: { 3059 int destIfFalse = sqlite3VdbeMakeLabel(v); 3060 int destIfNull = sqlite3VdbeMakeLabel(v); 3061 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3062 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3063 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3064 sqlite3VdbeResolveLabel(v, destIfFalse); 3065 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3066 sqlite3VdbeResolveLabel(v, destIfNull); 3067 break; 3068 } 3069 #endif /* SQLITE_OMIT_SUBQUERY */ 3070 3071 3072 /* 3073 ** x BETWEEN y AND z 3074 ** 3075 ** This is equivalent to 3076 ** 3077 ** x>=y AND x<=z 3078 ** 3079 ** X is stored in pExpr->pLeft. 3080 ** Y is stored in pExpr->pList->a[0].pExpr. 3081 ** Z is stored in pExpr->pList->a[1].pExpr. 3082 */ 3083 case TK_BETWEEN: { 3084 Expr *pLeft = pExpr->pLeft; 3085 struct ExprList_item *pLItem = pExpr->x.pList->a; 3086 Expr *pRight = pLItem->pExpr; 3087 3088 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3089 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3090 testcase( regFree1==0 ); 3091 testcase( regFree2==0 ); 3092 r3 = sqlite3GetTempReg(pParse); 3093 r4 = sqlite3GetTempReg(pParse); 3094 codeCompare(pParse, pLeft, pRight, OP_Ge, 3095 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3096 pLItem++; 3097 pRight = pLItem->pExpr; 3098 sqlite3ReleaseTempReg(pParse, regFree2); 3099 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3100 testcase( regFree2==0 ); 3101 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3102 VdbeCoverage(v); 3103 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3104 sqlite3ReleaseTempReg(pParse, r3); 3105 sqlite3ReleaseTempReg(pParse, r4); 3106 break; 3107 } 3108 case TK_SPAN: 3109 case TK_COLLATE: 3110 case TK_UPLUS: { 3111 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3112 break; 3113 } 3114 3115 case TK_TRIGGER: { 3116 /* If the opcode is TK_TRIGGER, then the expression is a reference 3117 ** to a column in the new.* or old.* pseudo-tables available to 3118 ** trigger programs. In this case Expr.iTable is set to 1 for the 3119 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3120 ** is set to the column of the pseudo-table to read, or to -1 to 3121 ** read the rowid field. 3122 ** 3123 ** The expression is implemented using an OP_Param opcode. The p1 3124 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3125 ** to reference another column of the old.* pseudo-table, where 3126 ** i is the index of the column. For a new.rowid reference, p1 is 3127 ** set to (n+1), where n is the number of columns in each pseudo-table. 3128 ** For a reference to any other column in the new.* pseudo-table, p1 3129 ** is set to (n+2+i), where n and i are as defined previously. For 3130 ** example, if the table on which triggers are being fired is 3131 ** declared as: 3132 ** 3133 ** CREATE TABLE t1(a, b); 3134 ** 3135 ** Then p1 is interpreted as follows: 3136 ** 3137 ** p1==0 -> old.rowid p1==3 -> new.rowid 3138 ** p1==1 -> old.a p1==4 -> new.a 3139 ** p1==2 -> old.b p1==5 -> new.b 3140 */ 3141 Table *pTab = pExpr->pTab; 3142 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3143 3144 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3145 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3146 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3147 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3148 3149 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3150 VdbeComment((v, "%s.%s -> $%d", 3151 (pExpr->iTable ? "new" : "old"), 3152 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3153 target 3154 )); 3155 3156 #ifndef SQLITE_OMIT_FLOATING_POINT 3157 /* If the column has REAL affinity, it may currently be stored as an 3158 ** integer. Use OP_RealAffinity to make sure it is really real. 3159 ** 3160 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3161 ** floating point when extracting it from the record. */ 3162 if( pExpr->iColumn>=0 3163 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3164 ){ 3165 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3166 } 3167 #endif 3168 break; 3169 } 3170 3171 3172 /* 3173 ** Form A: 3174 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3175 ** 3176 ** Form B: 3177 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3178 ** 3179 ** Form A is can be transformed into the equivalent form B as follows: 3180 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3181 ** WHEN x=eN THEN rN ELSE y END 3182 ** 3183 ** X (if it exists) is in pExpr->pLeft. 3184 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3185 ** odd. The Y is also optional. If the number of elements in x.pList 3186 ** is even, then Y is omitted and the "otherwise" result is NULL. 3187 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3188 ** 3189 ** The result of the expression is the Ri for the first matching Ei, 3190 ** or if there is no matching Ei, the ELSE term Y, or if there is 3191 ** no ELSE term, NULL. 3192 */ 3193 default: assert( op==TK_CASE ); { 3194 int endLabel; /* GOTO label for end of CASE stmt */ 3195 int nextCase; /* GOTO label for next WHEN clause */ 3196 int nExpr; /* 2x number of WHEN terms */ 3197 int i; /* Loop counter */ 3198 ExprList *pEList; /* List of WHEN terms */ 3199 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3200 Expr opCompare; /* The X==Ei expression */ 3201 Expr *pX; /* The X expression */ 3202 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3203 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3204 3205 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3206 assert(pExpr->x.pList->nExpr > 0); 3207 pEList = pExpr->x.pList; 3208 aListelem = pEList->a; 3209 nExpr = pEList->nExpr; 3210 endLabel = sqlite3VdbeMakeLabel(v); 3211 if( (pX = pExpr->pLeft)!=0 ){ 3212 tempX = *pX; 3213 testcase( pX->op==TK_COLUMN ); 3214 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3215 testcase( regFree1==0 ); 3216 opCompare.op = TK_EQ; 3217 opCompare.pLeft = &tempX; 3218 pTest = &opCompare; 3219 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3220 ** The value in regFree1 might get SCopy-ed into the file result. 3221 ** So make sure that the regFree1 register is not reused for other 3222 ** purposes and possibly overwritten. */ 3223 regFree1 = 0; 3224 } 3225 for(i=0; i<nExpr-1; i=i+2){ 3226 sqlite3ExprCachePush(pParse); 3227 if( pX ){ 3228 assert( pTest!=0 ); 3229 opCompare.pRight = aListelem[i].pExpr; 3230 }else{ 3231 pTest = aListelem[i].pExpr; 3232 } 3233 nextCase = sqlite3VdbeMakeLabel(v); 3234 testcase( pTest->op==TK_COLUMN ); 3235 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3236 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3237 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3238 sqlite3VdbeGoto(v, endLabel); 3239 sqlite3ExprCachePop(pParse); 3240 sqlite3VdbeResolveLabel(v, nextCase); 3241 } 3242 if( (nExpr&1)!=0 ){ 3243 sqlite3ExprCachePush(pParse); 3244 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3245 sqlite3ExprCachePop(pParse); 3246 }else{ 3247 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3248 } 3249 assert( db->mallocFailed || pParse->nErr>0 3250 || pParse->iCacheLevel==iCacheLevel ); 3251 sqlite3VdbeResolveLabel(v, endLabel); 3252 break; 3253 } 3254 #ifndef SQLITE_OMIT_TRIGGER 3255 case TK_RAISE: { 3256 assert( pExpr->affinity==OE_Rollback 3257 || pExpr->affinity==OE_Abort 3258 || pExpr->affinity==OE_Fail 3259 || pExpr->affinity==OE_Ignore 3260 ); 3261 if( !pParse->pTriggerTab ){ 3262 sqlite3ErrorMsg(pParse, 3263 "RAISE() may only be used within a trigger-program"); 3264 return 0; 3265 } 3266 if( pExpr->affinity==OE_Abort ){ 3267 sqlite3MayAbort(pParse); 3268 } 3269 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3270 if( pExpr->affinity==OE_Ignore ){ 3271 sqlite3VdbeAddOp4( 3272 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3273 VdbeCoverage(v); 3274 }else{ 3275 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3276 pExpr->affinity, pExpr->u.zToken, 0, 0); 3277 } 3278 3279 break; 3280 } 3281 #endif 3282 } 3283 sqlite3ReleaseTempReg(pParse, regFree1); 3284 sqlite3ReleaseTempReg(pParse, regFree2); 3285 return inReg; 3286 } 3287 3288 /* 3289 ** Factor out the code of the given expression to initialization time. 3290 */ 3291 void sqlite3ExprCodeAtInit( 3292 Parse *pParse, /* Parsing context */ 3293 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3294 int regDest, /* Store the value in this register */ 3295 u8 reusable /* True if this expression is reusable */ 3296 ){ 3297 ExprList *p; 3298 assert( ConstFactorOk(pParse) ); 3299 p = pParse->pConstExpr; 3300 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3301 p = sqlite3ExprListAppend(pParse, p, pExpr); 3302 if( p ){ 3303 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3304 pItem->u.iConstExprReg = regDest; 3305 pItem->reusable = reusable; 3306 } 3307 pParse->pConstExpr = p; 3308 } 3309 3310 /* 3311 ** Generate code to evaluate an expression and store the results 3312 ** into a register. Return the register number where the results 3313 ** are stored. 3314 ** 3315 ** If the register is a temporary register that can be deallocated, 3316 ** then write its number into *pReg. If the result register is not 3317 ** a temporary, then set *pReg to zero. 3318 ** 3319 ** If pExpr is a constant, then this routine might generate this 3320 ** code to fill the register in the initialization section of the 3321 ** VDBE program, in order to factor it out of the evaluation loop. 3322 */ 3323 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3324 int r2; 3325 pExpr = sqlite3ExprSkipCollate(pExpr); 3326 if( ConstFactorOk(pParse) 3327 && pExpr->op!=TK_REGISTER 3328 && sqlite3ExprIsConstantNotJoin(pExpr) 3329 ){ 3330 ExprList *p = pParse->pConstExpr; 3331 int i; 3332 *pReg = 0; 3333 if( p ){ 3334 struct ExprList_item *pItem; 3335 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3336 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3337 return pItem->u.iConstExprReg; 3338 } 3339 } 3340 } 3341 r2 = ++pParse->nMem; 3342 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3343 }else{ 3344 int r1 = sqlite3GetTempReg(pParse); 3345 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3346 if( r2==r1 ){ 3347 *pReg = r1; 3348 }else{ 3349 sqlite3ReleaseTempReg(pParse, r1); 3350 *pReg = 0; 3351 } 3352 } 3353 return r2; 3354 } 3355 3356 /* 3357 ** Generate code that will evaluate expression pExpr and store the 3358 ** results in register target. The results are guaranteed to appear 3359 ** in register target. 3360 */ 3361 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3362 int inReg; 3363 3364 assert( target>0 && target<=pParse->nMem ); 3365 if( pExpr && pExpr->op==TK_REGISTER ){ 3366 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3367 }else{ 3368 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3369 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 3370 if( inReg!=target && pParse->pVdbe ){ 3371 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3372 } 3373 } 3374 } 3375 3376 /* 3377 ** Make a transient copy of expression pExpr and then code it using 3378 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 3379 ** except that the input expression is guaranteed to be unchanged. 3380 */ 3381 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 3382 sqlite3 *db = pParse->db; 3383 pExpr = sqlite3ExprDup(db, pExpr, 0); 3384 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 3385 sqlite3ExprDelete(db, pExpr); 3386 } 3387 3388 /* 3389 ** Generate code that will evaluate expression pExpr and store the 3390 ** results in register target. The results are guaranteed to appear 3391 ** in register target. If the expression is constant, then this routine 3392 ** might choose to code the expression at initialization time. 3393 */ 3394 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3395 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3396 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3397 }else{ 3398 sqlite3ExprCode(pParse, pExpr, target); 3399 } 3400 } 3401 3402 /* 3403 ** Generate code that evaluates the given expression and puts the result 3404 ** in register target. 3405 ** 3406 ** Also make a copy of the expression results into another "cache" register 3407 ** and modify the expression so that the next time it is evaluated, 3408 ** the result is a copy of the cache register. 3409 ** 3410 ** This routine is used for expressions that are used multiple 3411 ** times. They are evaluated once and the results of the expression 3412 ** are reused. 3413 */ 3414 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3415 Vdbe *v = pParse->pVdbe; 3416 int iMem; 3417 3418 assert( target>0 ); 3419 assert( pExpr->op!=TK_REGISTER ); 3420 sqlite3ExprCode(pParse, pExpr, target); 3421 iMem = ++pParse->nMem; 3422 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3423 exprToRegister(pExpr, iMem); 3424 } 3425 3426 /* 3427 ** Generate code that pushes the value of every element of the given 3428 ** expression list into a sequence of registers beginning at target. 3429 ** 3430 ** Return the number of elements evaluated. 3431 ** 3432 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3433 ** filled using OP_SCopy. OP_Copy must be used instead. 3434 ** 3435 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3436 ** factored out into initialization code. 3437 ** 3438 ** The SQLITE_ECEL_REF flag means that expressions in the list with 3439 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 3440 ** in registers at srcReg, and so the value can be copied from there. 3441 */ 3442 int sqlite3ExprCodeExprList( 3443 Parse *pParse, /* Parsing context */ 3444 ExprList *pList, /* The expression list to be coded */ 3445 int target, /* Where to write results */ 3446 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3447 u8 flags /* SQLITE_ECEL_* flags */ 3448 ){ 3449 struct ExprList_item *pItem; 3450 int i, j, n; 3451 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3452 Vdbe *v = pParse->pVdbe; 3453 assert( pList!=0 ); 3454 assert( target>0 ); 3455 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3456 n = pList->nExpr; 3457 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3458 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3459 Expr *pExpr = pItem->pExpr; 3460 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3461 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3462 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3463 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3464 }else{ 3465 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3466 if( inReg!=target+i ){ 3467 VdbeOp *pOp; 3468 if( copyOp==OP_Copy 3469 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3470 && pOp->p1+pOp->p3+1==inReg 3471 && pOp->p2+pOp->p3+1==target+i 3472 ){ 3473 pOp->p3++; 3474 }else{ 3475 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3476 } 3477 } 3478 } 3479 } 3480 return n; 3481 } 3482 3483 /* 3484 ** Generate code for a BETWEEN operator. 3485 ** 3486 ** x BETWEEN y AND z 3487 ** 3488 ** The above is equivalent to 3489 ** 3490 ** x>=y AND x<=z 3491 ** 3492 ** Code it as such, taking care to do the common subexpression 3493 ** elimination of x. 3494 */ 3495 static void exprCodeBetween( 3496 Parse *pParse, /* Parsing and code generating context */ 3497 Expr *pExpr, /* The BETWEEN expression */ 3498 int dest, /* Jump here if the jump is taken */ 3499 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3500 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3501 ){ 3502 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3503 Expr compLeft; /* The x>=y term */ 3504 Expr compRight; /* The x<=z term */ 3505 Expr exprX; /* The x subexpression */ 3506 int regFree1 = 0; /* Temporary use register */ 3507 3508 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3509 exprX = *pExpr->pLeft; 3510 exprAnd.op = TK_AND; 3511 exprAnd.pLeft = &compLeft; 3512 exprAnd.pRight = &compRight; 3513 compLeft.op = TK_GE; 3514 compLeft.pLeft = &exprX; 3515 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3516 compRight.op = TK_LE; 3517 compRight.pLeft = &exprX; 3518 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3519 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3520 if( jumpIfTrue ){ 3521 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3522 }else{ 3523 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3524 } 3525 sqlite3ReleaseTempReg(pParse, regFree1); 3526 3527 /* Ensure adequate test coverage */ 3528 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3529 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3530 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3531 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3532 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3533 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3534 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3535 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3536 } 3537 3538 /* 3539 ** Generate code for a boolean expression such that a jump is made 3540 ** to the label "dest" if the expression is true but execution 3541 ** continues straight thru if the expression is false. 3542 ** 3543 ** If the expression evaluates to NULL (neither true nor false), then 3544 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3545 ** 3546 ** This code depends on the fact that certain token values (ex: TK_EQ) 3547 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3548 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3549 ** the make process cause these values to align. Assert()s in the code 3550 ** below verify that the numbers are aligned correctly. 3551 */ 3552 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3553 Vdbe *v = pParse->pVdbe; 3554 int op = 0; 3555 int regFree1 = 0; 3556 int regFree2 = 0; 3557 int r1, r2; 3558 3559 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3560 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3561 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3562 op = pExpr->op; 3563 switch( op ){ 3564 case TK_AND: { 3565 int d2 = sqlite3VdbeMakeLabel(v); 3566 testcase( jumpIfNull==0 ); 3567 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3568 sqlite3ExprCachePush(pParse); 3569 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3570 sqlite3VdbeResolveLabel(v, d2); 3571 sqlite3ExprCachePop(pParse); 3572 break; 3573 } 3574 case TK_OR: { 3575 testcase( jumpIfNull==0 ); 3576 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3577 sqlite3ExprCachePush(pParse); 3578 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3579 sqlite3ExprCachePop(pParse); 3580 break; 3581 } 3582 case TK_NOT: { 3583 testcase( jumpIfNull==0 ); 3584 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3585 break; 3586 } 3587 case TK_IS: 3588 case TK_ISNOT: 3589 testcase( op==TK_IS ); 3590 testcase( op==TK_ISNOT ); 3591 op = (op==TK_IS) ? TK_EQ : TK_NE; 3592 jumpIfNull = SQLITE_NULLEQ; 3593 /* Fall thru */ 3594 case TK_LT: 3595 case TK_LE: 3596 case TK_GT: 3597 case TK_GE: 3598 case TK_NE: 3599 case TK_EQ: { 3600 testcase( jumpIfNull==0 ); 3601 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3602 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3603 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3604 r1, r2, dest, jumpIfNull); 3605 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3606 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3607 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3608 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3609 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 3610 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 3611 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 3612 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 3613 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 3614 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 3615 testcase( regFree1==0 ); 3616 testcase( regFree2==0 ); 3617 break; 3618 } 3619 case TK_ISNULL: 3620 case TK_NOTNULL: { 3621 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3622 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3623 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3624 sqlite3VdbeAddOp2(v, op, r1, dest); 3625 VdbeCoverageIf(v, op==TK_ISNULL); 3626 VdbeCoverageIf(v, op==TK_NOTNULL); 3627 testcase( regFree1==0 ); 3628 break; 3629 } 3630 case TK_BETWEEN: { 3631 testcase( jumpIfNull==0 ); 3632 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3633 break; 3634 } 3635 #ifndef SQLITE_OMIT_SUBQUERY 3636 case TK_IN: { 3637 int destIfFalse = sqlite3VdbeMakeLabel(v); 3638 int destIfNull = jumpIfNull ? dest : destIfFalse; 3639 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3640 sqlite3VdbeGoto(v, dest); 3641 sqlite3VdbeResolveLabel(v, destIfFalse); 3642 break; 3643 } 3644 #endif 3645 default: { 3646 if( exprAlwaysTrue(pExpr) ){ 3647 sqlite3VdbeGoto(v, dest); 3648 }else if( exprAlwaysFalse(pExpr) ){ 3649 /* No-op */ 3650 }else{ 3651 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3652 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3653 VdbeCoverage(v); 3654 testcase( regFree1==0 ); 3655 testcase( jumpIfNull==0 ); 3656 } 3657 break; 3658 } 3659 } 3660 sqlite3ReleaseTempReg(pParse, regFree1); 3661 sqlite3ReleaseTempReg(pParse, regFree2); 3662 } 3663 3664 /* 3665 ** Generate code for a boolean expression such that a jump is made 3666 ** to the label "dest" if the expression is false but execution 3667 ** continues straight thru if the expression is true. 3668 ** 3669 ** If the expression evaluates to NULL (neither true nor false) then 3670 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3671 ** is 0. 3672 */ 3673 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3674 Vdbe *v = pParse->pVdbe; 3675 int op = 0; 3676 int regFree1 = 0; 3677 int regFree2 = 0; 3678 int r1, r2; 3679 3680 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3681 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3682 if( pExpr==0 ) return; 3683 3684 /* The value of pExpr->op and op are related as follows: 3685 ** 3686 ** pExpr->op op 3687 ** --------- ---------- 3688 ** TK_ISNULL OP_NotNull 3689 ** TK_NOTNULL OP_IsNull 3690 ** TK_NE OP_Eq 3691 ** TK_EQ OP_Ne 3692 ** TK_GT OP_Le 3693 ** TK_LE OP_Gt 3694 ** TK_GE OP_Lt 3695 ** TK_LT OP_Ge 3696 ** 3697 ** For other values of pExpr->op, op is undefined and unused. 3698 ** The value of TK_ and OP_ constants are arranged such that we 3699 ** can compute the mapping above using the following expression. 3700 ** Assert()s verify that the computation is correct. 3701 */ 3702 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3703 3704 /* Verify correct alignment of TK_ and OP_ constants 3705 */ 3706 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3707 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3708 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3709 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3710 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3711 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3712 assert( pExpr->op!=TK_GT || op==OP_Le ); 3713 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3714 3715 switch( pExpr->op ){ 3716 case TK_AND: { 3717 testcase( jumpIfNull==0 ); 3718 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3719 sqlite3ExprCachePush(pParse); 3720 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3721 sqlite3ExprCachePop(pParse); 3722 break; 3723 } 3724 case TK_OR: { 3725 int d2 = sqlite3VdbeMakeLabel(v); 3726 testcase( jumpIfNull==0 ); 3727 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3728 sqlite3ExprCachePush(pParse); 3729 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3730 sqlite3VdbeResolveLabel(v, d2); 3731 sqlite3ExprCachePop(pParse); 3732 break; 3733 } 3734 case TK_NOT: { 3735 testcase( jumpIfNull==0 ); 3736 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3737 break; 3738 } 3739 case TK_IS: 3740 case TK_ISNOT: 3741 testcase( pExpr->op==TK_IS ); 3742 testcase( pExpr->op==TK_ISNOT ); 3743 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3744 jumpIfNull = SQLITE_NULLEQ; 3745 /* Fall thru */ 3746 case TK_LT: 3747 case TK_LE: 3748 case TK_GT: 3749 case TK_GE: 3750 case TK_NE: 3751 case TK_EQ: { 3752 testcase( jumpIfNull==0 ); 3753 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3754 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3755 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3756 r1, r2, dest, jumpIfNull); 3757 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3758 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3759 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3760 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3761 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 3762 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 3763 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 3764 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 3765 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 3766 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 3767 testcase( regFree1==0 ); 3768 testcase( regFree2==0 ); 3769 break; 3770 } 3771 case TK_ISNULL: 3772 case TK_NOTNULL: { 3773 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3774 sqlite3VdbeAddOp2(v, op, r1, dest); 3775 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3776 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3777 testcase( regFree1==0 ); 3778 break; 3779 } 3780 case TK_BETWEEN: { 3781 testcase( jumpIfNull==0 ); 3782 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3783 break; 3784 } 3785 #ifndef SQLITE_OMIT_SUBQUERY 3786 case TK_IN: { 3787 if( jumpIfNull ){ 3788 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3789 }else{ 3790 int destIfNull = sqlite3VdbeMakeLabel(v); 3791 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3792 sqlite3VdbeResolveLabel(v, destIfNull); 3793 } 3794 break; 3795 } 3796 #endif 3797 default: { 3798 if( exprAlwaysFalse(pExpr) ){ 3799 sqlite3VdbeGoto(v, dest); 3800 }else if( exprAlwaysTrue(pExpr) ){ 3801 /* no-op */ 3802 }else{ 3803 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3804 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3805 VdbeCoverage(v); 3806 testcase( regFree1==0 ); 3807 testcase( jumpIfNull==0 ); 3808 } 3809 break; 3810 } 3811 } 3812 sqlite3ReleaseTempReg(pParse, regFree1); 3813 sqlite3ReleaseTempReg(pParse, regFree2); 3814 } 3815 3816 /* 3817 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3818 ** code generation, and that copy is deleted after code generation. This 3819 ** ensures that the original pExpr is unchanged. 3820 */ 3821 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3822 sqlite3 *db = pParse->db; 3823 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3824 if( db->mallocFailed==0 ){ 3825 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3826 } 3827 sqlite3ExprDelete(db, pCopy); 3828 } 3829 3830 3831 /* 3832 ** Do a deep comparison of two expression trees. Return 0 if the two 3833 ** expressions are completely identical. Return 1 if they differ only 3834 ** by a COLLATE operator at the top level. Return 2 if there are differences 3835 ** other than the top-level COLLATE operator. 3836 ** 3837 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3838 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3839 ** 3840 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3841 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3842 ** 3843 ** Sometimes this routine will return 2 even if the two expressions 3844 ** really are equivalent. If we cannot prove that the expressions are 3845 ** identical, we return 2 just to be safe. So if this routine 3846 ** returns 2, then you do not really know for certain if the two 3847 ** expressions are the same. But if you get a 0 or 1 return, then you 3848 ** can be sure the expressions are the same. In the places where 3849 ** this routine is used, it does not hurt to get an extra 2 - that 3850 ** just might result in some slightly slower code. But returning 3851 ** an incorrect 0 or 1 could lead to a malfunction. 3852 */ 3853 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3854 u32 combinedFlags; 3855 if( pA==0 || pB==0 ){ 3856 return pB==pA ? 0 : 2; 3857 } 3858 combinedFlags = pA->flags | pB->flags; 3859 if( combinedFlags & EP_IntValue ){ 3860 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3861 return 0; 3862 } 3863 return 2; 3864 } 3865 if( pA->op!=pB->op ){ 3866 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3867 return 1; 3868 } 3869 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3870 return 1; 3871 } 3872 return 2; 3873 } 3874 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 3875 if( pA->op==TK_FUNCTION ){ 3876 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3877 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3878 return pA->op==TK_COLLATE ? 1 : 2; 3879 } 3880 } 3881 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3882 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3883 if( combinedFlags & EP_xIsSelect ) return 2; 3884 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3885 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3886 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3887 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3888 if( pA->iColumn!=pB->iColumn ) return 2; 3889 if( pA->iTable!=pB->iTable 3890 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3891 } 3892 } 3893 return 0; 3894 } 3895 3896 /* 3897 ** Compare two ExprList objects. Return 0 if they are identical and 3898 ** non-zero if they differ in any way. 3899 ** 3900 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3901 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3902 ** 3903 ** This routine might return non-zero for equivalent ExprLists. The 3904 ** only consequence will be disabled optimizations. But this routine 3905 ** must never return 0 if the two ExprList objects are different, or 3906 ** a malfunction will result. 3907 ** 3908 ** Two NULL pointers are considered to be the same. But a NULL pointer 3909 ** always differs from a non-NULL pointer. 3910 */ 3911 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3912 int i; 3913 if( pA==0 && pB==0 ) return 0; 3914 if( pA==0 || pB==0 ) return 1; 3915 if( pA->nExpr!=pB->nExpr ) return 1; 3916 for(i=0; i<pA->nExpr; i++){ 3917 Expr *pExprA = pA->a[i].pExpr; 3918 Expr *pExprB = pB->a[i].pExpr; 3919 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3920 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3921 } 3922 return 0; 3923 } 3924 3925 /* 3926 ** Return true if we can prove the pE2 will always be true if pE1 is 3927 ** true. Return false if we cannot complete the proof or if pE2 might 3928 ** be false. Examples: 3929 ** 3930 ** pE1: x==5 pE2: x==5 Result: true 3931 ** pE1: x>0 pE2: x==5 Result: false 3932 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3933 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3934 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3935 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3936 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3937 ** 3938 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3939 ** Expr.iTable<0 then assume a table number given by iTab. 3940 ** 3941 ** When in doubt, return false. Returning true might give a performance 3942 ** improvement. Returning false might cause a performance reduction, but 3943 ** it will always give the correct answer and is hence always safe. 3944 */ 3945 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3946 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3947 return 1; 3948 } 3949 if( pE2->op==TK_OR 3950 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3951 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3952 ){ 3953 return 1; 3954 } 3955 if( pE2->op==TK_NOTNULL 3956 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3957 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3958 ){ 3959 return 1; 3960 } 3961 return 0; 3962 } 3963 3964 /* 3965 ** An instance of the following structure is used by the tree walker 3966 ** to count references to table columns in the arguments of an 3967 ** aggregate function, in order to implement the 3968 ** sqlite3FunctionThisSrc() routine. 3969 */ 3970 struct SrcCount { 3971 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3972 int nThis; /* Number of references to columns in pSrcList */ 3973 int nOther; /* Number of references to columns in other FROM clauses */ 3974 }; 3975 3976 /* 3977 ** Count the number of references to columns. 3978 */ 3979 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3980 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3981 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3982 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3983 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3984 ** NEVER() will need to be removed. */ 3985 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3986 int i; 3987 struct SrcCount *p = pWalker->u.pSrcCount; 3988 SrcList *pSrc = p->pSrc; 3989 int nSrc = pSrc ? pSrc->nSrc : 0; 3990 for(i=0; i<nSrc; i++){ 3991 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3992 } 3993 if( i<nSrc ){ 3994 p->nThis++; 3995 }else{ 3996 p->nOther++; 3997 } 3998 } 3999 return WRC_Continue; 4000 } 4001 4002 /* 4003 ** Determine if any of the arguments to the pExpr Function reference 4004 ** pSrcList. Return true if they do. Also return true if the function 4005 ** has no arguments or has only constant arguments. Return false if pExpr 4006 ** references columns but not columns of tables found in pSrcList. 4007 */ 4008 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4009 Walker w; 4010 struct SrcCount cnt; 4011 assert( pExpr->op==TK_AGG_FUNCTION ); 4012 memset(&w, 0, sizeof(w)); 4013 w.xExprCallback = exprSrcCount; 4014 w.u.pSrcCount = &cnt; 4015 cnt.pSrc = pSrcList; 4016 cnt.nThis = 0; 4017 cnt.nOther = 0; 4018 sqlite3WalkExprList(&w, pExpr->x.pList); 4019 return cnt.nThis>0 || cnt.nOther==0; 4020 } 4021 4022 /* 4023 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4024 ** the new element. Return a negative number if malloc fails. 4025 */ 4026 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4027 int i; 4028 pInfo->aCol = sqlite3ArrayAllocate( 4029 db, 4030 pInfo->aCol, 4031 sizeof(pInfo->aCol[0]), 4032 &pInfo->nColumn, 4033 &i 4034 ); 4035 return i; 4036 } 4037 4038 /* 4039 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4040 ** the new element. Return a negative number if malloc fails. 4041 */ 4042 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4043 int i; 4044 pInfo->aFunc = sqlite3ArrayAllocate( 4045 db, 4046 pInfo->aFunc, 4047 sizeof(pInfo->aFunc[0]), 4048 &pInfo->nFunc, 4049 &i 4050 ); 4051 return i; 4052 } 4053 4054 /* 4055 ** This is the xExprCallback for a tree walker. It is used to 4056 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4057 ** for additional information. 4058 */ 4059 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4060 int i; 4061 NameContext *pNC = pWalker->u.pNC; 4062 Parse *pParse = pNC->pParse; 4063 SrcList *pSrcList = pNC->pSrcList; 4064 AggInfo *pAggInfo = pNC->pAggInfo; 4065 4066 switch( pExpr->op ){ 4067 case TK_AGG_COLUMN: 4068 case TK_COLUMN: { 4069 testcase( pExpr->op==TK_AGG_COLUMN ); 4070 testcase( pExpr->op==TK_COLUMN ); 4071 /* Check to see if the column is in one of the tables in the FROM 4072 ** clause of the aggregate query */ 4073 if( ALWAYS(pSrcList!=0) ){ 4074 struct SrcList_item *pItem = pSrcList->a; 4075 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4076 struct AggInfo_col *pCol; 4077 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4078 if( pExpr->iTable==pItem->iCursor ){ 4079 /* If we reach this point, it means that pExpr refers to a table 4080 ** that is in the FROM clause of the aggregate query. 4081 ** 4082 ** Make an entry for the column in pAggInfo->aCol[] if there 4083 ** is not an entry there already. 4084 */ 4085 int k; 4086 pCol = pAggInfo->aCol; 4087 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4088 if( pCol->iTable==pExpr->iTable && 4089 pCol->iColumn==pExpr->iColumn ){ 4090 break; 4091 } 4092 } 4093 if( (k>=pAggInfo->nColumn) 4094 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4095 ){ 4096 pCol = &pAggInfo->aCol[k]; 4097 pCol->pTab = pExpr->pTab; 4098 pCol->iTable = pExpr->iTable; 4099 pCol->iColumn = pExpr->iColumn; 4100 pCol->iMem = ++pParse->nMem; 4101 pCol->iSorterColumn = -1; 4102 pCol->pExpr = pExpr; 4103 if( pAggInfo->pGroupBy ){ 4104 int j, n; 4105 ExprList *pGB = pAggInfo->pGroupBy; 4106 struct ExprList_item *pTerm = pGB->a; 4107 n = pGB->nExpr; 4108 for(j=0; j<n; j++, pTerm++){ 4109 Expr *pE = pTerm->pExpr; 4110 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4111 pE->iColumn==pExpr->iColumn ){ 4112 pCol->iSorterColumn = j; 4113 break; 4114 } 4115 } 4116 } 4117 if( pCol->iSorterColumn<0 ){ 4118 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4119 } 4120 } 4121 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4122 ** because it was there before or because we just created it). 4123 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4124 ** pAggInfo->aCol[] entry. 4125 */ 4126 ExprSetVVAProperty(pExpr, EP_NoReduce); 4127 pExpr->pAggInfo = pAggInfo; 4128 pExpr->op = TK_AGG_COLUMN; 4129 pExpr->iAgg = (i16)k; 4130 break; 4131 } /* endif pExpr->iTable==pItem->iCursor */ 4132 } /* end loop over pSrcList */ 4133 } 4134 return WRC_Prune; 4135 } 4136 case TK_AGG_FUNCTION: { 4137 if( (pNC->ncFlags & NC_InAggFunc)==0 4138 && pWalker->walkerDepth==pExpr->op2 4139 ){ 4140 /* Check to see if pExpr is a duplicate of another aggregate 4141 ** function that is already in the pAggInfo structure 4142 */ 4143 struct AggInfo_func *pItem = pAggInfo->aFunc; 4144 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4145 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4146 break; 4147 } 4148 } 4149 if( i>=pAggInfo->nFunc ){ 4150 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4151 */ 4152 u8 enc = ENC(pParse->db); 4153 i = addAggInfoFunc(pParse->db, pAggInfo); 4154 if( i>=0 ){ 4155 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4156 pItem = &pAggInfo->aFunc[i]; 4157 pItem->pExpr = pExpr; 4158 pItem->iMem = ++pParse->nMem; 4159 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4160 pItem->pFunc = sqlite3FindFunction(pParse->db, 4161 pExpr->u.zToken, 4162 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4163 if( pExpr->flags & EP_Distinct ){ 4164 pItem->iDistinct = pParse->nTab++; 4165 }else{ 4166 pItem->iDistinct = -1; 4167 } 4168 } 4169 } 4170 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4171 */ 4172 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4173 ExprSetVVAProperty(pExpr, EP_NoReduce); 4174 pExpr->iAgg = (i16)i; 4175 pExpr->pAggInfo = pAggInfo; 4176 return WRC_Prune; 4177 }else{ 4178 return WRC_Continue; 4179 } 4180 } 4181 } 4182 return WRC_Continue; 4183 } 4184 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4185 UNUSED_PARAMETER(pWalker); 4186 UNUSED_PARAMETER(pSelect); 4187 return WRC_Continue; 4188 } 4189 4190 /* 4191 ** Analyze the pExpr expression looking for aggregate functions and 4192 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4193 ** points to. Additional entries are made on the AggInfo object as 4194 ** necessary. 4195 ** 4196 ** This routine should only be called after the expression has been 4197 ** analyzed by sqlite3ResolveExprNames(). 4198 */ 4199 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4200 Walker w; 4201 memset(&w, 0, sizeof(w)); 4202 w.xExprCallback = analyzeAggregate; 4203 w.xSelectCallback = analyzeAggregatesInSelect; 4204 w.u.pNC = pNC; 4205 assert( pNC->pSrcList!=0 ); 4206 sqlite3WalkExpr(&w, pExpr); 4207 } 4208 4209 /* 4210 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4211 ** expression list. Return the number of errors. 4212 ** 4213 ** If an error is found, the analysis is cut short. 4214 */ 4215 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4216 struct ExprList_item *pItem; 4217 int i; 4218 if( pList ){ 4219 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4220 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4221 } 4222 } 4223 } 4224 4225 /* 4226 ** Allocate a single new register for use to hold some intermediate result. 4227 */ 4228 int sqlite3GetTempReg(Parse *pParse){ 4229 if( pParse->nTempReg==0 ){ 4230 return ++pParse->nMem; 4231 } 4232 return pParse->aTempReg[--pParse->nTempReg]; 4233 } 4234 4235 /* 4236 ** Deallocate a register, making available for reuse for some other 4237 ** purpose. 4238 ** 4239 ** If a register is currently being used by the column cache, then 4240 ** the deallocation is deferred until the column cache line that uses 4241 ** the register becomes stale. 4242 */ 4243 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4244 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4245 int i; 4246 struct yColCache *p; 4247 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4248 if( p->iReg==iReg ){ 4249 p->tempReg = 1; 4250 return; 4251 } 4252 } 4253 pParse->aTempReg[pParse->nTempReg++] = iReg; 4254 } 4255 } 4256 4257 /* 4258 ** Allocate or deallocate a block of nReg consecutive registers 4259 */ 4260 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4261 int i, n; 4262 i = pParse->iRangeReg; 4263 n = pParse->nRangeReg; 4264 if( nReg<=n ){ 4265 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4266 pParse->iRangeReg += nReg; 4267 pParse->nRangeReg -= nReg; 4268 }else{ 4269 i = pParse->nMem+1; 4270 pParse->nMem += nReg; 4271 } 4272 return i; 4273 } 4274 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4275 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4276 if( nReg>pParse->nRangeReg ){ 4277 pParse->nRangeReg = nReg; 4278 pParse->iRangeReg = iReg; 4279 } 4280 } 4281 4282 /* 4283 ** Mark all temporary registers as being unavailable for reuse. 4284 */ 4285 void sqlite3ClearTempRegCache(Parse *pParse){ 4286 pParse->nTempReg = 0; 4287 pParse->nRangeReg = 0; 4288 } 4289 4290 /* 4291 ** Validate that no temporary register falls within the range of 4292 ** iFirst..iLast, inclusive. This routine is only call from within assert() 4293 ** statements. 4294 */ 4295 #ifdef SQLITE_DEBUG 4296 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 4297 int i; 4298 if( pParse->nRangeReg>0 4299 && pParse->iRangeReg+pParse->nRangeReg<iLast 4300 && pParse->iRangeReg>=iFirst 4301 ){ 4302 return 0; 4303 } 4304 for(i=0; i<pParse->nTempReg; i++){ 4305 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 4306 return 0; 4307 } 4308 } 4309 return 1; 4310 } 4311 #endif /* SQLITE_DEBUG */ 4312