xref: /sqlite-3.40.0/src/expr.c (revision 52b1dbb5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   sqlite3TokenInit(&s, (char*)zC);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
136           || op==TK_REGISTER || op==TK_TRIGGER)
137      && p->pTab!=0
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         Expr *pNext  = p->pRight;
153         /* The Expr.x union is never used at the same time as Expr.pRight */
154         assert( p->x.pList==0 || p->pRight==0 );
155         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
156         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
157         ** least one EP_Collate. Thus the following two ALWAYS. */
158         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
159           int i;
160           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
161             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
162               pNext = p->x.pList->a[i].pExpr;
163               break;
164             }
165           }
166         }
167         p = pNext;
168       }
169     }else{
170       break;
171     }
172   }
173   if( sqlite3CheckCollSeq(pParse, pColl) ){
174     pColl = 0;
175   }
176   return pColl;
177 }
178 
179 /*
180 ** pExpr is an operand of a comparison operator.  aff2 is the
181 ** type affinity of the other operand.  This routine returns the
182 ** type affinity that should be used for the comparison operator.
183 */
184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
185   char aff1 = sqlite3ExprAffinity(pExpr);
186   if( aff1 && aff2 ){
187     /* Both sides of the comparison are columns. If one has numeric
188     ** affinity, use that. Otherwise use no affinity.
189     */
190     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
191       return SQLITE_AFF_NUMERIC;
192     }else{
193       return SQLITE_AFF_BLOB;
194     }
195   }else if( !aff1 && !aff2 ){
196     /* Neither side of the comparison is a column.  Compare the
197     ** results directly.
198     */
199     return SQLITE_AFF_BLOB;
200   }else{
201     /* One side is a column, the other is not. Use the columns affinity. */
202     assert( aff1==0 || aff2==0 );
203     return (aff1 + aff2);
204   }
205 }
206 
207 /*
208 ** pExpr is a comparison operator.  Return the type affinity that should
209 ** be applied to both operands prior to doing the comparison.
210 */
211 static char comparisonAffinity(Expr *pExpr){
212   char aff;
213   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
214           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
215           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
216   assert( pExpr->pLeft );
217   aff = sqlite3ExprAffinity(pExpr->pLeft);
218   if( pExpr->pRight ){
219     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
220   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
221     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
222   }else if( !aff ){
223     aff = SQLITE_AFF_BLOB;
224   }
225   return aff;
226 }
227 
228 /*
229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
230 ** idx_affinity is the affinity of an indexed column. Return true
231 ** if the index with affinity idx_affinity may be used to implement
232 ** the comparison in pExpr.
233 */
234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
235   char aff = comparisonAffinity(pExpr);
236   switch( aff ){
237     case SQLITE_AFF_BLOB:
238       return 1;
239     case SQLITE_AFF_TEXT:
240       return idx_affinity==SQLITE_AFF_TEXT;
241     default:
242       return sqlite3IsNumericAffinity(idx_affinity);
243   }
244 }
245 
246 /*
247 ** Return the P5 value that should be used for a binary comparison
248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
249 */
250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
251   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
252   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
253   return aff;
254 }
255 
256 /*
257 ** Return a pointer to the collation sequence that should be used by
258 ** a binary comparison operator comparing pLeft and pRight.
259 **
260 ** If the left hand expression has a collating sequence type, then it is
261 ** used. Otherwise the collation sequence for the right hand expression
262 ** is used, or the default (BINARY) if neither expression has a collating
263 ** type.
264 **
265 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
266 ** it is not considered.
267 */
268 CollSeq *sqlite3BinaryCompareCollSeq(
269   Parse *pParse,
270   Expr *pLeft,
271   Expr *pRight
272 ){
273   CollSeq *pColl;
274   assert( pLeft );
275   if( pLeft->flags & EP_Collate ){
276     pColl = sqlite3ExprCollSeq(pParse, pLeft);
277   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
278     pColl = sqlite3ExprCollSeq(pParse, pRight);
279   }else{
280     pColl = sqlite3ExprCollSeq(pParse, pLeft);
281     if( !pColl ){
282       pColl = sqlite3ExprCollSeq(pParse, pRight);
283     }
284   }
285   return pColl;
286 }
287 
288 /*
289 ** Generate code for a comparison operator.
290 */
291 static int codeCompare(
292   Parse *pParse,    /* The parsing (and code generating) context */
293   Expr *pLeft,      /* The left operand */
294   Expr *pRight,     /* The right operand */
295   int opcode,       /* The comparison opcode */
296   int in1, int in2, /* Register holding operands */
297   int dest,         /* Jump here if true.  */
298   int jumpIfNull    /* If true, jump if either operand is NULL */
299 ){
300   int p5;
301   int addr;
302   CollSeq *p4;
303 
304   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
305   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
306   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
307                            (void*)p4, P4_COLLSEQ);
308   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
309   return addr;
310 }
311 
312 #if SQLITE_MAX_EXPR_DEPTH>0
313 /*
314 ** Check that argument nHeight is less than or equal to the maximum
315 ** expression depth allowed. If it is not, leave an error message in
316 ** pParse.
317 */
318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
319   int rc = SQLITE_OK;
320   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
321   if( nHeight>mxHeight ){
322     sqlite3ErrorMsg(pParse,
323        "Expression tree is too large (maximum depth %d)", mxHeight
324     );
325     rc = SQLITE_ERROR;
326   }
327   return rc;
328 }
329 
330 /* The following three functions, heightOfExpr(), heightOfExprList()
331 ** and heightOfSelect(), are used to determine the maximum height
332 ** of any expression tree referenced by the structure passed as the
333 ** first argument.
334 **
335 ** If this maximum height is greater than the current value pointed
336 ** to by pnHeight, the second parameter, then set *pnHeight to that
337 ** value.
338 */
339 static void heightOfExpr(Expr *p, int *pnHeight){
340   if( p ){
341     if( p->nHeight>*pnHeight ){
342       *pnHeight = p->nHeight;
343     }
344   }
345 }
346 static void heightOfExprList(ExprList *p, int *pnHeight){
347   if( p ){
348     int i;
349     for(i=0; i<p->nExpr; i++){
350       heightOfExpr(p->a[i].pExpr, pnHeight);
351     }
352   }
353 }
354 static void heightOfSelect(Select *p, int *pnHeight){
355   if( p ){
356     heightOfExpr(p->pWhere, pnHeight);
357     heightOfExpr(p->pHaving, pnHeight);
358     heightOfExpr(p->pLimit, pnHeight);
359     heightOfExpr(p->pOffset, pnHeight);
360     heightOfExprList(p->pEList, pnHeight);
361     heightOfExprList(p->pGroupBy, pnHeight);
362     heightOfExprList(p->pOrderBy, pnHeight);
363     heightOfSelect(p->pPrior, pnHeight);
364   }
365 }
366 
367 /*
368 ** Set the Expr.nHeight variable in the structure passed as an
369 ** argument. An expression with no children, Expr.pList or
370 ** Expr.pSelect member has a height of 1. Any other expression
371 ** has a height equal to the maximum height of any other
372 ** referenced Expr plus one.
373 **
374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
375 ** if appropriate.
376 */
377 static void exprSetHeight(Expr *p){
378   int nHeight = 0;
379   heightOfExpr(p->pLeft, &nHeight);
380   heightOfExpr(p->pRight, &nHeight);
381   if( ExprHasProperty(p, EP_xIsSelect) ){
382     heightOfSelect(p->x.pSelect, &nHeight);
383   }else if( p->x.pList ){
384     heightOfExprList(p->x.pList, &nHeight);
385     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
386   }
387   p->nHeight = nHeight + 1;
388 }
389 
390 /*
391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
392 ** the height is greater than the maximum allowed expression depth,
393 ** leave an error in pParse.
394 **
395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
396 ** Expr.flags.
397 */
398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
399   if( pParse->nErr ) return;
400   exprSetHeight(p);
401   sqlite3ExprCheckHeight(pParse, p->nHeight);
402 }
403 
404 /*
405 ** Return the maximum height of any expression tree referenced
406 ** by the select statement passed as an argument.
407 */
408 int sqlite3SelectExprHeight(Select *p){
409   int nHeight = 0;
410   heightOfSelect(p, &nHeight);
411   return nHeight;
412 }
413 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
414 /*
415 ** Propagate all EP_Propagate flags from the Expr.x.pList into
416 ** Expr.flags.
417 */
418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
419   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
420     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
421   }
422 }
423 #define exprSetHeight(y)
424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
425 
426 /*
427 ** This routine is the core allocator for Expr nodes.
428 **
429 ** Construct a new expression node and return a pointer to it.  Memory
430 ** for this node and for the pToken argument is a single allocation
431 ** obtained from sqlite3DbMalloc().  The calling function
432 ** is responsible for making sure the node eventually gets freed.
433 **
434 ** If dequote is true, then the token (if it exists) is dequoted.
435 ** If dequote is false, no dequoting is performed.  The deQuote
436 ** parameter is ignored if pToken is NULL or if the token does not
437 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
438 ** then the EP_DblQuoted flag is set on the expression node.
439 **
440 ** Special case:  If op==TK_INTEGER and pToken points to a string that
441 ** can be translated into a 32-bit integer, then the token is not
442 ** stored in u.zToken.  Instead, the integer values is written
443 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
444 ** is allocated to hold the integer text and the dequote flag is ignored.
445 */
446 Expr *sqlite3ExprAlloc(
447   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
448   int op,                 /* Expression opcode */
449   const Token *pToken,    /* Token argument.  Might be NULL */
450   int dequote             /* True to dequote */
451 ){
452   Expr *pNew;
453   int nExtra = 0;
454   int iValue = 0;
455 
456   assert( db!=0 );
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     memset(pNew, 0, sizeof(Expr));
467     pNew->op = (u8)op;
468     pNew->iAgg = -1;
469     if( pToken ){
470       if( nExtra==0 ){
471         pNew->flags |= EP_IntValue;
472         pNew->u.iValue = iValue;
473       }else{
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
479           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
480           sqlite3Dequote(pNew->u.zToken);
481         }
482       }
483     }
484 #if SQLITE_MAX_EXPR_DEPTH>0
485     pNew->nHeight = 1;
486 #endif
487   }
488   return pNew;
489 }
490 
491 /*
492 ** Allocate a new expression node from a zero-terminated token that has
493 ** already been dequoted.
494 */
495 Expr *sqlite3Expr(
496   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
497   int op,                 /* Expression opcode */
498   const char *zToken      /* Token argument.  Might be NULL */
499 ){
500   Token x;
501   x.z = zToken;
502   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
503   return sqlite3ExprAlloc(db, op, &x, 0);
504 }
505 
506 /*
507 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
508 **
509 ** If pRoot==NULL that means that a memory allocation error has occurred.
510 ** In that case, delete the subtrees pLeft and pRight.
511 */
512 void sqlite3ExprAttachSubtrees(
513   sqlite3 *db,
514   Expr *pRoot,
515   Expr *pLeft,
516   Expr *pRight
517 ){
518   if( pRoot==0 ){
519     assert( db->mallocFailed );
520     sqlite3ExprDelete(db, pLeft);
521     sqlite3ExprDelete(db, pRight);
522   }else{
523     if( pRight ){
524       pRoot->pRight = pRight;
525       pRoot->flags |= EP_Propagate & pRight->flags;
526     }
527     if( pLeft ){
528       pRoot->pLeft = pLeft;
529       pRoot->flags |= EP_Propagate & pLeft->flags;
530     }
531     exprSetHeight(pRoot);
532   }
533 }
534 
535 /*
536 ** Allocate an Expr node which joins as many as two subtrees.
537 **
538 ** One or both of the subtrees can be NULL.  Return a pointer to the new
539 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
540 ** free the subtrees and return NULL.
541 */
542 Expr *sqlite3PExpr(
543   Parse *pParse,          /* Parsing context */
544   int op,                 /* Expression opcode */
545   Expr *pLeft,            /* Left operand */
546   Expr *pRight,           /* Right operand */
547   const Token *pToken     /* Argument token */
548 ){
549   Expr *p;
550   if( op==TK_AND && pParse->nErr==0 ){
551     /* Take advantage of short-circuit false optimization for AND */
552     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
553   }else{
554     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
555     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
556   }
557   if( p ) {
558     sqlite3ExprCheckHeight(pParse, p->nHeight);
559   }
560   return p;
561 }
562 
563 /*
564 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
565 ** do a memory allocation failure) then delete the pSelect object.
566 */
567 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
568   if( pExpr ){
569     pExpr->x.pSelect = pSelect;
570     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
571     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
572   }else{
573     assert( pParse->db->mallocFailed );
574     sqlite3SelectDelete(pParse->db, pSelect);
575   }
576 }
577 
578 
579 /*
580 ** If the expression is always either TRUE or FALSE (respectively),
581 ** then return 1.  If one cannot determine the truth value of the
582 ** expression at compile-time return 0.
583 **
584 ** This is an optimization.  If is OK to return 0 here even if
585 ** the expression really is always false or false (a false negative).
586 ** But it is a bug to return 1 if the expression might have different
587 ** boolean values in different circumstances (a false positive.)
588 **
589 ** Note that if the expression is part of conditional for a
590 ** LEFT JOIN, then we cannot determine at compile-time whether or not
591 ** is it true or false, so always return 0.
592 */
593 static int exprAlwaysTrue(Expr *p){
594   int v = 0;
595   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
596   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
597   return v!=0;
598 }
599 static int exprAlwaysFalse(Expr *p){
600   int v = 0;
601   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
602   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
603   return v==0;
604 }
605 
606 /*
607 ** Join two expressions using an AND operator.  If either expression is
608 ** NULL, then just return the other expression.
609 **
610 ** If one side or the other of the AND is known to be false, then instead
611 ** of returning an AND expression, just return a constant expression with
612 ** a value of false.
613 */
614 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
615   if( pLeft==0 ){
616     return pRight;
617   }else if( pRight==0 ){
618     return pLeft;
619   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
620     sqlite3ExprDelete(db, pLeft);
621     sqlite3ExprDelete(db, pRight);
622     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
623   }else{
624     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
625     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
626     return pNew;
627   }
628 }
629 
630 /*
631 ** Construct a new expression node for a function with multiple
632 ** arguments.
633 */
634 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
635   Expr *pNew;
636   sqlite3 *db = pParse->db;
637   assert( pToken );
638   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
639   if( pNew==0 ){
640     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
641     return 0;
642   }
643   pNew->x.pList = pList;
644   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
645   sqlite3ExprSetHeightAndFlags(pParse, pNew);
646   return pNew;
647 }
648 
649 /*
650 ** Assign a variable number to an expression that encodes a wildcard
651 ** in the original SQL statement.
652 **
653 ** Wildcards consisting of a single "?" are assigned the next sequential
654 ** variable number.
655 **
656 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
657 ** sure "nnn" is not too be to avoid a denial of service attack when
658 ** the SQL statement comes from an external source.
659 **
660 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
661 ** as the previous instance of the same wildcard.  Or if this is the first
662 ** instance of the wildcard, the next sequential variable number is
663 ** assigned.
664 */
665 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
666   sqlite3 *db = pParse->db;
667   const char *z;
668 
669   if( pExpr==0 ) return;
670   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
671   z = pExpr->u.zToken;
672   assert( z!=0 );
673   assert( z[0]!=0 );
674   if( z[1]==0 ){
675     /* Wildcard of the form "?".  Assign the next variable number */
676     assert( z[0]=='?' );
677     pExpr->iColumn = (ynVar)(++pParse->nVar);
678   }else{
679     ynVar x = 0;
680     u32 n = sqlite3Strlen30(z);
681     if( z[0]=='?' ){
682       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
683       ** use it as the variable number */
684       i64 i;
685       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
686       pExpr->iColumn = x = (ynVar)i;
687       testcase( i==0 );
688       testcase( i==1 );
689       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
690       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
691       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
692         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
693             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
694         x = 0;
695       }
696       if( i>pParse->nVar ){
697         pParse->nVar = (int)i;
698       }
699     }else{
700       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
701       ** number as the prior appearance of the same name, or if the name
702       ** has never appeared before, reuse the same variable number
703       */
704       ynVar i;
705       for(i=0; i<pParse->nzVar; i++){
706         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
707           pExpr->iColumn = x = (ynVar)i+1;
708           break;
709         }
710       }
711       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
712     }
713     if( x>0 ){
714       if( x>pParse->nzVar ){
715         char **a;
716         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
717         if( a==0 ){
718           assert( db->mallocFailed ); /* Error reported through mallocFailed */
719           return;
720         }
721         pParse->azVar = a;
722         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
723         pParse->nzVar = x;
724       }
725       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
726         sqlite3DbFree(db, pParse->azVar[x-1]);
727         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
728       }
729     }
730   }
731   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
732     sqlite3ErrorMsg(pParse, "too many SQL variables");
733   }
734 }
735 
736 /*
737 ** Recursively delete an expression tree.
738 */
739 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
740   assert( p!=0 );
741   /* Sanity check: Assert that the IntValue is non-negative if it exists */
742   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
743   if( !ExprHasProperty(p, EP_TokenOnly) ){
744     /* The Expr.x union is never used at the same time as Expr.pRight */
745     assert( p->x.pList==0 || p->pRight==0 );
746     sqlite3ExprDelete(db, p->pLeft);
747     sqlite3ExprDelete(db, p->pRight);
748     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
749     if( ExprHasProperty(p, EP_xIsSelect) ){
750       sqlite3SelectDelete(db, p->x.pSelect);
751     }else{
752       sqlite3ExprListDelete(db, p->x.pList);
753     }
754   }
755   if( !ExprHasProperty(p, EP_Static) ){
756     sqlite3DbFree(db, p);
757   }
758 }
759 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
760   if( p ) sqlite3ExprDeleteNN(db, p);
761 }
762 
763 /*
764 ** Return the number of bytes allocated for the expression structure
765 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
766 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
767 */
768 static int exprStructSize(Expr *p){
769   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
770   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
771   return EXPR_FULLSIZE;
772 }
773 
774 /*
775 ** The dupedExpr*Size() routines each return the number of bytes required
776 ** to store a copy of an expression or expression tree.  They differ in
777 ** how much of the tree is measured.
778 **
779 **     dupedExprStructSize()     Size of only the Expr structure
780 **     dupedExprNodeSize()       Size of Expr + space for token
781 **     dupedExprSize()           Expr + token + subtree components
782 **
783 ***************************************************************************
784 **
785 ** The dupedExprStructSize() function returns two values OR-ed together:
786 ** (1) the space required for a copy of the Expr structure only and
787 ** (2) the EP_xxx flags that indicate what the structure size should be.
788 ** The return values is always one of:
789 **
790 **      EXPR_FULLSIZE
791 **      EXPR_REDUCEDSIZE   | EP_Reduced
792 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
793 **
794 ** The size of the structure can be found by masking the return value
795 ** of this routine with 0xfff.  The flags can be found by masking the
796 ** return value with EP_Reduced|EP_TokenOnly.
797 **
798 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
799 ** (unreduced) Expr objects as they or originally constructed by the parser.
800 ** During expression analysis, extra information is computed and moved into
801 ** later parts of teh Expr object and that extra information might get chopped
802 ** off if the expression is reduced.  Note also that it does not work to
803 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
804 ** to reduce a pristine expression tree from the parser.  The implementation
805 ** of dupedExprStructSize() contain multiple assert() statements that attempt
806 ** to enforce this constraint.
807 */
808 static int dupedExprStructSize(Expr *p, int flags){
809   int nSize;
810   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
811   assert( EXPR_FULLSIZE<=0xfff );
812   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
813   if( 0==flags ){
814     nSize = EXPR_FULLSIZE;
815   }else{
816     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
817     assert( !ExprHasProperty(p, EP_FromJoin) );
818     assert( !ExprHasProperty(p, EP_MemToken) );
819     assert( !ExprHasProperty(p, EP_NoReduce) );
820     if( p->pLeft || p->x.pList ){
821       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
822     }else{
823       assert( p->pRight==0 );
824       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
825     }
826   }
827   return nSize;
828 }
829 
830 /*
831 ** This function returns the space in bytes required to store the copy
832 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
833 ** string is defined.)
834 */
835 static int dupedExprNodeSize(Expr *p, int flags){
836   int nByte = dupedExprStructSize(p, flags) & 0xfff;
837   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
838     nByte += sqlite3Strlen30(p->u.zToken)+1;
839   }
840   return ROUND8(nByte);
841 }
842 
843 /*
844 ** Return the number of bytes required to create a duplicate of the
845 ** expression passed as the first argument. The second argument is a
846 ** mask containing EXPRDUP_XXX flags.
847 **
848 ** The value returned includes space to create a copy of the Expr struct
849 ** itself and the buffer referred to by Expr.u.zToken, if any.
850 **
851 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
852 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
853 ** and Expr.pRight variables (but not for any structures pointed to or
854 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
855 */
856 static int dupedExprSize(Expr *p, int flags){
857   int nByte = 0;
858   if( p ){
859     nByte = dupedExprNodeSize(p, flags);
860     if( flags&EXPRDUP_REDUCE ){
861       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
862     }
863   }
864   return nByte;
865 }
866 
867 /*
868 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
869 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
870 ** to store the copy of expression p, the copies of p->u.zToken
871 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
872 ** if any. Before returning, *pzBuffer is set to the first byte past the
873 ** portion of the buffer copied into by this function.
874 */
875 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
876   Expr *pNew;           /* Value to return */
877   u8 *zAlloc;           /* Memory space from which to build Expr object */
878   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
879 
880   assert( db!=0 );
881   assert( p );
882   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
883   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
884 
885   /* Figure out where to write the new Expr structure. */
886   if( pzBuffer ){
887     zAlloc = *pzBuffer;
888     staticFlag = EP_Static;
889   }else{
890     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
891     staticFlag = 0;
892   }
893   pNew = (Expr *)zAlloc;
894 
895   if( pNew ){
896     /* Set nNewSize to the size allocated for the structure pointed to
897     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
898     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
899     ** by the copy of the p->u.zToken string (if any).
900     */
901     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
902     const int nNewSize = nStructSize & 0xfff;
903     int nToken;
904     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
905       nToken = sqlite3Strlen30(p->u.zToken) + 1;
906     }else{
907       nToken = 0;
908     }
909     if( dupFlags ){
910       assert( ExprHasProperty(p, EP_Reduced)==0 );
911       memcpy(zAlloc, p, nNewSize);
912     }else{
913       u32 nSize = (u32)exprStructSize(p);
914       memcpy(zAlloc, p, nSize);
915       if( nSize<EXPR_FULLSIZE ){
916         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
917       }
918     }
919 
920     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
921     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
922     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
923     pNew->flags |= staticFlag;
924 
925     /* Copy the p->u.zToken string, if any. */
926     if( nToken ){
927       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
928       memcpy(zToken, p->u.zToken, nToken);
929     }
930 
931     if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
932       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
933       if( ExprHasProperty(p, EP_xIsSelect) ){
934         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
935       }else{
936         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
937       }
938     }
939 
940     /* Fill in pNew->pLeft and pNew->pRight. */
941     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
942       zAlloc += dupedExprNodeSize(p, dupFlags);
943       if( ExprHasProperty(pNew, EP_Reduced) ){
944         pNew->pLeft = p->pLeft ?
945                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
946         pNew->pRight = p->pRight ?
947                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
948       }
949       if( pzBuffer ){
950         *pzBuffer = zAlloc;
951       }
952     }else{
953       if( !ExprHasProperty(p, EP_TokenOnly) ){
954         pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
955         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
956       }
957     }
958   }
959   return pNew;
960 }
961 
962 /*
963 ** Create and return a deep copy of the object passed as the second
964 ** argument. If an OOM condition is encountered, NULL is returned
965 ** and the db->mallocFailed flag set.
966 */
967 #ifndef SQLITE_OMIT_CTE
968 static With *withDup(sqlite3 *db, With *p){
969   With *pRet = 0;
970   if( p ){
971     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
972     pRet = sqlite3DbMallocZero(db, nByte);
973     if( pRet ){
974       int i;
975       pRet->nCte = p->nCte;
976       for(i=0; i<p->nCte; i++){
977         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
978         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
979         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
980       }
981     }
982   }
983   return pRet;
984 }
985 #else
986 # define withDup(x,y) 0
987 #endif
988 
989 /*
990 ** The following group of routines make deep copies of expressions,
991 ** expression lists, ID lists, and select statements.  The copies can
992 ** be deleted (by being passed to their respective ...Delete() routines)
993 ** without effecting the originals.
994 **
995 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
996 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
997 ** by subsequent calls to sqlite*ListAppend() routines.
998 **
999 ** Any tables that the SrcList might point to are not duplicated.
1000 **
1001 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1002 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1003 ** truncated version of the usual Expr structure that will be stored as
1004 ** part of the in-memory representation of the database schema.
1005 */
1006 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1007   assert( flags==0 || flags==EXPRDUP_REDUCE );
1008   return p ? exprDup(db, p, flags, 0) : 0;
1009 }
1010 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1011   ExprList *pNew;
1012   struct ExprList_item *pItem, *pOldItem;
1013   int i;
1014   assert( db!=0 );
1015   if( p==0 ) return 0;
1016   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1017   if( pNew==0 ) return 0;
1018   pNew->nExpr = i = p->nExpr;
1019   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
1020   pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
1021   if( pItem==0 ){
1022     sqlite3DbFree(db, pNew);
1023     return 0;
1024   }
1025   pOldItem = p->a;
1026   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1027     Expr *pOldExpr = pOldItem->pExpr;
1028     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1029     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1030     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1031     pItem->sortOrder = pOldItem->sortOrder;
1032     pItem->done = 0;
1033     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1034     pItem->u = pOldItem->u;
1035   }
1036   return pNew;
1037 }
1038 
1039 /*
1040 ** If cursors, triggers, views and subqueries are all omitted from
1041 ** the build, then none of the following routines, except for
1042 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1043 ** called with a NULL argument.
1044 */
1045 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1046  || !defined(SQLITE_OMIT_SUBQUERY)
1047 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1048   SrcList *pNew;
1049   int i;
1050   int nByte;
1051   assert( db!=0 );
1052   if( p==0 ) return 0;
1053   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1054   pNew = sqlite3DbMallocRawNN(db, nByte );
1055   if( pNew==0 ) return 0;
1056   pNew->nSrc = pNew->nAlloc = p->nSrc;
1057   for(i=0; i<p->nSrc; i++){
1058     struct SrcList_item *pNewItem = &pNew->a[i];
1059     struct SrcList_item *pOldItem = &p->a[i];
1060     Table *pTab;
1061     pNewItem->pSchema = pOldItem->pSchema;
1062     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1063     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1064     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1065     pNewItem->fg = pOldItem->fg;
1066     pNewItem->iCursor = pOldItem->iCursor;
1067     pNewItem->addrFillSub = pOldItem->addrFillSub;
1068     pNewItem->regReturn = pOldItem->regReturn;
1069     if( pNewItem->fg.isIndexedBy ){
1070       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1071     }
1072     pNewItem->pIBIndex = pOldItem->pIBIndex;
1073     if( pNewItem->fg.isTabFunc ){
1074       pNewItem->u1.pFuncArg =
1075           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1076     }
1077     pTab = pNewItem->pTab = pOldItem->pTab;
1078     if( pTab ){
1079       pTab->nRef++;
1080     }
1081     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1082     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1083     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1084     pNewItem->colUsed = pOldItem->colUsed;
1085   }
1086   return pNew;
1087 }
1088 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1089   IdList *pNew;
1090   int i;
1091   assert( db!=0 );
1092   if( p==0 ) return 0;
1093   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1094   if( pNew==0 ) return 0;
1095   pNew->nId = p->nId;
1096   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1097   if( pNew->a==0 ){
1098     sqlite3DbFree(db, pNew);
1099     return 0;
1100   }
1101   /* Note that because the size of the allocation for p->a[] is not
1102   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1103   ** on the duplicate created by this function. */
1104   for(i=0; i<p->nId; i++){
1105     struct IdList_item *pNewItem = &pNew->a[i];
1106     struct IdList_item *pOldItem = &p->a[i];
1107     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1108     pNewItem->idx = pOldItem->idx;
1109   }
1110   return pNew;
1111 }
1112 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1113   Select *pNew, *pPrior;
1114   assert( db!=0 );
1115   if( p==0 ) return 0;
1116   pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1117   if( pNew==0 ) return 0;
1118   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1119   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1120   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1121   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1122   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1123   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1124   pNew->op = p->op;
1125   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1126   if( pPrior ) pPrior->pNext = pNew;
1127   pNew->pNext = 0;
1128   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1129   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1130   pNew->iLimit = 0;
1131   pNew->iOffset = 0;
1132   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1133   pNew->addrOpenEphm[0] = -1;
1134   pNew->addrOpenEphm[1] = -1;
1135   pNew->nSelectRow = p->nSelectRow;
1136   pNew->pWith = withDup(db, p->pWith);
1137   sqlite3SelectSetName(pNew, p->zSelName);
1138   return pNew;
1139 }
1140 #else
1141 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1142   assert( p==0 );
1143   return 0;
1144 }
1145 #endif
1146 
1147 
1148 /*
1149 ** Add a new element to the end of an expression list.  If pList is
1150 ** initially NULL, then create a new expression list.
1151 **
1152 ** If a memory allocation error occurs, the entire list is freed and
1153 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1154 ** that the new entry was successfully appended.
1155 */
1156 ExprList *sqlite3ExprListAppend(
1157   Parse *pParse,          /* Parsing context */
1158   ExprList *pList,        /* List to which to append. Might be NULL */
1159   Expr *pExpr             /* Expression to be appended. Might be NULL */
1160 ){
1161   sqlite3 *db = pParse->db;
1162   assert( db!=0 );
1163   if( pList==0 ){
1164     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1165     if( pList==0 ){
1166       goto no_mem;
1167     }
1168     pList->nExpr = 0;
1169     pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
1170     if( pList->a==0 ) goto no_mem;
1171   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1172     struct ExprList_item *a;
1173     assert( pList->nExpr>0 );
1174     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1175     if( a==0 ){
1176       goto no_mem;
1177     }
1178     pList->a = a;
1179   }
1180   assert( pList->a!=0 );
1181   if( 1 ){
1182     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1183     memset(pItem, 0, sizeof(*pItem));
1184     pItem->pExpr = pExpr;
1185   }
1186   return pList;
1187 
1188 no_mem:
1189   /* Avoid leaking memory if malloc has failed. */
1190   sqlite3ExprDelete(db, pExpr);
1191   sqlite3ExprListDelete(db, pList);
1192   return 0;
1193 }
1194 
1195 /*
1196 ** Set the sort order for the last element on the given ExprList.
1197 */
1198 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1199   if( p==0 ) return;
1200   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1201   assert( p->nExpr>0 );
1202   if( iSortOrder<0 ){
1203     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1204     return;
1205   }
1206   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1207 }
1208 
1209 /*
1210 ** Set the ExprList.a[].zName element of the most recently added item
1211 ** on the expression list.
1212 **
1213 ** pList might be NULL following an OOM error.  But pName should never be
1214 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1215 ** is set.
1216 */
1217 void sqlite3ExprListSetName(
1218   Parse *pParse,          /* Parsing context */
1219   ExprList *pList,        /* List to which to add the span. */
1220   Token *pName,           /* Name to be added */
1221   int dequote             /* True to cause the name to be dequoted */
1222 ){
1223   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1224   if( pList ){
1225     struct ExprList_item *pItem;
1226     assert( pList->nExpr>0 );
1227     pItem = &pList->a[pList->nExpr-1];
1228     assert( pItem->zName==0 );
1229     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1230     if( dequote ) sqlite3Dequote(pItem->zName);
1231   }
1232 }
1233 
1234 /*
1235 ** Set the ExprList.a[].zSpan element of the most recently added item
1236 ** on the expression list.
1237 **
1238 ** pList might be NULL following an OOM error.  But pSpan should never be
1239 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1240 ** is set.
1241 */
1242 void sqlite3ExprListSetSpan(
1243   Parse *pParse,          /* Parsing context */
1244   ExprList *pList,        /* List to which to add the span. */
1245   ExprSpan *pSpan         /* The span to be added */
1246 ){
1247   sqlite3 *db = pParse->db;
1248   assert( pList!=0 || db->mallocFailed!=0 );
1249   if( pList ){
1250     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1251     assert( pList->nExpr>0 );
1252     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1253     sqlite3DbFree(db, pItem->zSpan);
1254     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1255                                     (int)(pSpan->zEnd - pSpan->zStart));
1256   }
1257 }
1258 
1259 /*
1260 ** If the expression list pEList contains more than iLimit elements,
1261 ** leave an error message in pParse.
1262 */
1263 void sqlite3ExprListCheckLength(
1264   Parse *pParse,
1265   ExprList *pEList,
1266   const char *zObject
1267 ){
1268   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1269   testcase( pEList && pEList->nExpr==mx );
1270   testcase( pEList && pEList->nExpr==mx+1 );
1271   if( pEList && pEList->nExpr>mx ){
1272     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1273   }
1274 }
1275 
1276 /*
1277 ** Delete an entire expression list.
1278 */
1279 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1280   int i;
1281   struct ExprList_item *pItem;
1282   assert( pList->a!=0 || pList->nExpr==0 );
1283   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1284     sqlite3ExprDelete(db, pItem->pExpr);
1285     sqlite3DbFree(db, pItem->zName);
1286     sqlite3DbFree(db, pItem->zSpan);
1287   }
1288   sqlite3DbFree(db, pList->a);
1289   sqlite3DbFree(db, pList);
1290 }
1291 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1292   if( pList ) exprListDeleteNN(db, pList);
1293 }
1294 
1295 /*
1296 ** Return the bitwise-OR of all Expr.flags fields in the given
1297 ** ExprList.
1298 */
1299 u32 sqlite3ExprListFlags(const ExprList *pList){
1300   int i;
1301   u32 m = 0;
1302   if( pList ){
1303     for(i=0; i<pList->nExpr; i++){
1304        Expr *pExpr = pList->a[i].pExpr;
1305        assert( pExpr!=0 );
1306        m |= pExpr->flags;
1307     }
1308   }
1309   return m;
1310 }
1311 
1312 /*
1313 ** These routines are Walker callbacks used to check expressions to
1314 ** see if they are "constant" for some definition of constant.  The
1315 ** Walker.eCode value determines the type of "constant" we are looking
1316 ** for.
1317 **
1318 ** These callback routines are used to implement the following:
1319 **
1320 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1321 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1322 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1323 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1324 **
1325 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1326 ** is found to not be a constant.
1327 **
1328 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1329 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1330 ** an existing schema and 4 when processing a new statement.  A bound
1331 ** parameter raises an error for new statements, but is silently converted
1332 ** to NULL for existing schemas.  This allows sqlite_master tables that
1333 ** contain a bound parameter because they were generated by older versions
1334 ** of SQLite to be parsed by newer versions of SQLite without raising a
1335 ** malformed schema error.
1336 */
1337 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1338 
1339   /* If pWalker->eCode is 2 then any term of the expression that comes from
1340   ** the ON or USING clauses of a left join disqualifies the expression
1341   ** from being considered constant. */
1342   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1343     pWalker->eCode = 0;
1344     return WRC_Abort;
1345   }
1346 
1347   switch( pExpr->op ){
1348     /* Consider functions to be constant if all their arguments are constant
1349     ** and either pWalker->eCode==4 or 5 or the function has the
1350     ** SQLITE_FUNC_CONST flag. */
1351     case TK_FUNCTION:
1352       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1353         return WRC_Continue;
1354       }else{
1355         pWalker->eCode = 0;
1356         return WRC_Abort;
1357       }
1358     case TK_ID:
1359     case TK_COLUMN:
1360     case TK_AGG_FUNCTION:
1361     case TK_AGG_COLUMN:
1362       testcase( pExpr->op==TK_ID );
1363       testcase( pExpr->op==TK_COLUMN );
1364       testcase( pExpr->op==TK_AGG_FUNCTION );
1365       testcase( pExpr->op==TK_AGG_COLUMN );
1366       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1367         return WRC_Continue;
1368       }else{
1369         pWalker->eCode = 0;
1370         return WRC_Abort;
1371       }
1372     case TK_VARIABLE:
1373       if( pWalker->eCode==5 ){
1374         /* Silently convert bound parameters that appear inside of CREATE
1375         ** statements into a NULL when parsing the CREATE statement text out
1376         ** of the sqlite_master table */
1377         pExpr->op = TK_NULL;
1378       }else if( pWalker->eCode==4 ){
1379         /* A bound parameter in a CREATE statement that originates from
1380         ** sqlite3_prepare() causes an error */
1381         pWalker->eCode = 0;
1382         return WRC_Abort;
1383       }
1384       /* Fall through */
1385     default:
1386       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1387       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1388       return WRC_Continue;
1389   }
1390 }
1391 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1392   UNUSED_PARAMETER(NotUsed);
1393   pWalker->eCode = 0;
1394   return WRC_Abort;
1395 }
1396 static int exprIsConst(Expr *p, int initFlag, int iCur){
1397   Walker w;
1398   memset(&w, 0, sizeof(w));
1399   w.eCode = initFlag;
1400   w.xExprCallback = exprNodeIsConstant;
1401   w.xSelectCallback = selectNodeIsConstant;
1402   w.u.iCur = iCur;
1403   sqlite3WalkExpr(&w, p);
1404   return w.eCode;
1405 }
1406 
1407 /*
1408 ** Walk an expression tree.  Return non-zero if the expression is constant
1409 ** and 0 if it involves variables or function calls.
1410 **
1411 ** For the purposes of this function, a double-quoted string (ex: "abc")
1412 ** is considered a variable but a single-quoted string (ex: 'abc') is
1413 ** a constant.
1414 */
1415 int sqlite3ExprIsConstant(Expr *p){
1416   return exprIsConst(p, 1, 0);
1417 }
1418 
1419 /*
1420 ** Walk an expression tree.  Return non-zero if the expression is constant
1421 ** that does no originate from the ON or USING clauses of a join.
1422 ** Return 0 if it involves variables or function calls or terms from
1423 ** an ON or USING clause.
1424 */
1425 int sqlite3ExprIsConstantNotJoin(Expr *p){
1426   return exprIsConst(p, 2, 0);
1427 }
1428 
1429 /*
1430 ** Walk an expression tree.  Return non-zero if the expression is constant
1431 ** for any single row of the table with cursor iCur.  In other words, the
1432 ** expression must not refer to any non-deterministic function nor any
1433 ** table other than iCur.
1434 */
1435 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1436   return exprIsConst(p, 3, iCur);
1437 }
1438 
1439 /*
1440 ** Walk an expression tree.  Return non-zero if the expression is constant
1441 ** or a function call with constant arguments.  Return and 0 if there
1442 ** are any variables.
1443 **
1444 ** For the purposes of this function, a double-quoted string (ex: "abc")
1445 ** is considered a variable but a single-quoted string (ex: 'abc') is
1446 ** a constant.
1447 */
1448 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1449   assert( isInit==0 || isInit==1 );
1450   return exprIsConst(p, 4+isInit, 0);
1451 }
1452 
1453 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1454 /*
1455 ** Walk an expression tree.  Return 1 if the expression contains a
1456 ** subquery of some kind.  Return 0 if there are no subqueries.
1457 */
1458 int sqlite3ExprContainsSubquery(Expr *p){
1459   Walker w;
1460   memset(&w, 0, sizeof(w));
1461   w.eCode = 1;
1462   w.xExprCallback = sqlite3ExprWalkNoop;
1463   w.xSelectCallback = selectNodeIsConstant;
1464   sqlite3WalkExpr(&w, p);
1465   return w.eCode==0;
1466 }
1467 #endif
1468 
1469 /*
1470 ** If the expression p codes a constant integer that is small enough
1471 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1472 ** in *pValue.  If the expression is not an integer or if it is too big
1473 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1474 */
1475 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1476   int rc = 0;
1477 
1478   /* If an expression is an integer literal that fits in a signed 32-bit
1479   ** integer, then the EP_IntValue flag will have already been set */
1480   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1481            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1482 
1483   if( p->flags & EP_IntValue ){
1484     *pValue = p->u.iValue;
1485     return 1;
1486   }
1487   switch( p->op ){
1488     case TK_UPLUS: {
1489       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1490       break;
1491     }
1492     case TK_UMINUS: {
1493       int v;
1494       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1495         assert( v!=(-2147483647-1) );
1496         *pValue = -v;
1497         rc = 1;
1498       }
1499       break;
1500     }
1501     default: break;
1502   }
1503   return rc;
1504 }
1505 
1506 /*
1507 ** Return FALSE if there is no chance that the expression can be NULL.
1508 **
1509 ** If the expression might be NULL or if the expression is too complex
1510 ** to tell return TRUE.
1511 **
1512 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1513 ** when we know that a value cannot be NULL.  Hence, a false positive
1514 ** (returning TRUE when in fact the expression can never be NULL) might
1515 ** be a small performance hit but is otherwise harmless.  On the other
1516 ** hand, a false negative (returning FALSE when the result could be NULL)
1517 ** will likely result in an incorrect answer.  So when in doubt, return
1518 ** TRUE.
1519 */
1520 int sqlite3ExprCanBeNull(const Expr *p){
1521   u8 op;
1522   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1523   op = p->op;
1524   if( op==TK_REGISTER ) op = p->op2;
1525   switch( op ){
1526     case TK_INTEGER:
1527     case TK_STRING:
1528     case TK_FLOAT:
1529     case TK_BLOB:
1530       return 0;
1531     case TK_COLUMN:
1532       assert( p->pTab!=0 );
1533       return ExprHasProperty(p, EP_CanBeNull) ||
1534              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1535     default:
1536       return 1;
1537   }
1538 }
1539 
1540 /*
1541 ** Return TRUE if the given expression is a constant which would be
1542 ** unchanged by OP_Affinity with the affinity given in the second
1543 ** argument.
1544 **
1545 ** This routine is used to determine if the OP_Affinity operation
1546 ** can be omitted.  When in doubt return FALSE.  A false negative
1547 ** is harmless.  A false positive, however, can result in the wrong
1548 ** answer.
1549 */
1550 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1551   u8 op;
1552   if( aff==SQLITE_AFF_BLOB ) return 1;
1553   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1554   op = p->op;
1555   if( op==TK_REGISTER ) op = p->op2;
1556   switch( op ){
1557     case TK_INTEGER: {
1558       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1559     }
1560     case TK_FLOAT: {
1561       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1562     }
1563     case TK_STRING: {
1564       return aff==SQLITE_AFF_TEXT;
1565     }
1566     case TK_BLOB: {
1567       return 1;
1568     }
1569     case TK_COLUMN: {
1570       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1571       return p->iColumn<0
1572           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1573     }
1574     default: {
1575       return 0;
1576     }
1577   }
1578 }
1579 
1580 /*
1581 ** Return TRUE if the given string is a row-id column name.
1582 */
1583 int sqlite3IsRowid(const char *z){
1584   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1585   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1586   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1587   return 0;
1588 }
1589 
1590 /*
1591 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
1592 ** that can be simplified to a direct table access, then return
1593 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
1594 ** or if the SELECT statement needs to be manifested into a transient
1595 ** table, then return NULL.
1596 */
1597 #ifndef SQLITE_OMIT_SUBQUERY
1598 static Select *isCandidateForInOpt(Expr *pX){
1599   Select *p;
1600   SrcList *pSrc;
1601   ExprList *pEList;
1602   Expr *pRes;
1603   Table *pTab;
1604   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
1605   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
1606   p = pX->x.pSelect;
1607   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1608   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1609     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1610     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1611     return 0; /* No DISTINCT keyword and no aggregate functions */
1612   }
1613   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1614   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1615   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1616   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1617   pSrc = p->pSrc;
1618   assert( pSrc!=0 );
1619   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1620   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1621   pTab = pSrc->a[0].pTab;
1622   assert( pTab!=0 );
1623   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1624   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1625   pEList = p->pEList;
1626   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1627   pRes = pEList->a[0].pExpr;
1628   if( pRes->op!=TK_COLUMN ) return 0;    /* Result is a column */
1629   assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
1630   return p;
1631 }
1632 #endif /* SQLITE_OMIT_SUBQUERY */
1633 
1634 /*
1635 ** Code an OP_Once instruction and allocate space for its flag. Return the
1636 ** address of the new instruction.
1637 */
1638 int sqlite3CodeOnce(Parse *pParse){
1639   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1640   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1641 }
1642 
1643 /*
1644 ** Generate code that checks the left-most column of index table iCur to see if
1645 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1646 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1647 ** to be set to NULL if iCur contains one or more NULL values.
1648 */
1649 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1650   int addr1;
1651   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1652   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1653   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1654   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1655   VdbeComment((v, "first_entry_in(%d)", iCur));
1656   sqlite3VdbeJumpHere(v, addr1);
1657 }
1658 
1659 
1660 #ifndef SQLITE_OMIT_SUBQUERY
1661 /*
1662 ** The argument is an IN operator with a list (not a subquery) on the
1663 ** right-hand side.  Return TRUE if that list is constant.
1664 */
1665 static int sqlite3InRhsIsConstant(Expr *pIn){
1666   Expr *pLHS;
1667   int res;
1668   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1669   pLHS = pIn->pLeft;
1670   pIn->pLeft = 0;
1671   res = sqlite3ExprIsConstant(pIn);
1672   pIn->pLeft = pLHS;
1673   return res;
1674 }
1675 #endif
1676 
1677 /*
1678 ** This function is used by the implementation of the IN (...) operator.
1679 ** The pX parameter is the expression on the RHS of the IN operator, which
1680 ** might be either a list of expressions or a subquery.
1681 **
1682 ** The job of this routine is to find or create a b-tree object that can
1683 ** be used either to test for membership in the RHS set or to iterate through
1684 ** all members of the RHS set, skipping duplicates.
1685 **
1686 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1687 ** and pX->iTable is set to the index of that cursor.
1688 **
1689 ** The returned value of this function indicates the b-tree type, as follows:
1690 **
1691 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1692 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1693 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1694 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1695 **                         populated epheremal table.
1696 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1697 **                         implemented as a sequence of comparisons.
1698 **
1699 ** An existing b-tree might be used if the RHS expression pX is a simple
1700 ** subquery such as:
1701 **
1702 **     SELECT <column> FROM <table>
1703 **
1704 ** If the RHS of the IN operator is a list or a more complex subquery, then
1705 ** an ephemeral table might need to be generated from the RHS and then
1706 ** pX->iTable made to point to the ephemeral table instead of an
1707 ** existing table.
1708 **
1709 ** The inFlags parameter must contain exactly one of the bits
1710 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1711 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1712 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1713 ** IN index will be used to loop over all values of the RHS of the
1714 ** IN operator.
1715 **
1716 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1717 ** through the set members) then the b-tree must not contain duplicates.
1718 ** An epheremal table must be used unless the selected <column> is guaranteed
1719 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1720 ** has a UNIQUE constraint or UNIQUE index.
1721 **
1722 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1723 ** for fast set membership tests) then an epheremal table must
1724 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1725 ** be found with <column> as its left-most column.
1726 **
1727 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1728 ** if the RHS of the IN operator is a list (not a subquery) then this
1729 ** routine might decide that creating an ephemeral b-tree for membership
1730 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1731 ** calling routine should implement the IN operator using a sequence
1732 ** of Eq or Ne comparison operations.
1733 **
1734 ** When the b-tree is being used for membership tests, the calling function
1735 ** might need to know whether or not the RHS side of the IN operator
1736 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1737 ** if there is any chance that the (...) might contain a NULL value at
1738 ** runtime, then a register is allocated and the register number written
1739 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1740 ** NULL value, then *prRhsHasNull is left unchanged.
1741 **
1742 ** If a register is allocated and its location stored in *prRhsHasNull, then
1743 ** the value in that register will be NULL if the b-tree contains one or more
1744 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1745 ** NULL values.
1746 */
1747 #ifndef SQLITE_OMIT_SUBQUERY
1748 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1749   Select *p;                            /* SELECT to the right of IN operator */
1750   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1751   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1752   int mustBeUnique;                     /* True if RHS must be unique */
1753   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1754 
1755   assert( pX->op==TK_IN );
1756   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1757 
1758   /* Check to see if an existing table or index can be used to
1759   ** satisfy the query.  This is preferable to generating a new
1760   ** ephemeral table.
1761   */
1762   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
1763     sqlite3 *db = pParse->db;              /* Database connection */
1764     Table *pTab;                           /* Table <table>. */
1765     Expr *pExpr;                           /* Expression <column> */
1766     i16 iCol;                              /* Index of column <column> */
1767     i16 iDb;                               /* Database idx for pTab */
1768 
1769     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1770     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1771     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1772     pTab = p->pSrc->a[0].pTab;
1773     pExpr = p->pEList->a[0].pExpr;
1774     iCol = (i16)pExpr->iColumn;
1775 
1776     /* Code an OP_Transaction and OP_TableLock for <table>. */
1777     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1778     sqlite3CodeVerifySchema(pParse, iDb);
1779     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1780 
1781     /* This function is only called from two places. In both cases the vdbe
1782     ** has already been allocated. So assume sqlite3GetVdbe() is always
1783     ** successful here.
1784     */
1785     assert(v);
1786     if( iCol<0 ){
1787       int iAddr = sqlite3CodeOnce(pParse);
1788       VdbeCoverage(v);
1789 
1790       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1791       eType = IN_INDEX_ROWID;
1792 
1793       sqlite3VdbeJumpHere(v, iAddr);
1794     }else{
1795       Index *pIdx;                         /* Iterator variable */
1796 
1797       /* The collation sequence used by the comparison. If an index is to
1798       ** be used in place of a temp-table, it must be ordered according
1799       ** to this collation sequence.  */
1800       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1801 
1802       /* Check that the affinity that will be used to perform the
1803       ** comparison is the same as the affinity of the column. If
1804       ** it is not, it is not possible to use any index.
1805       */
1806       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1807 
1808       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1809         if( (pIdx->aiColumn[0]==iCol)
1810          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1811          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1812         ){
1813           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1814           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1815           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1816           VdbeComment((v, "%s", pIdx->zName));
1817           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1818           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1819 
1820           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1821 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
1822             const i64 sOne = 1;
1823             sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
1824                 iTab, 0, 0, (u8*)&sOne, P4_INT64);
1825 #endif
1826             *prRhsHasNull = ++pParse->nMem;
1827             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1828           }
1829           sqlite3VdbeJumpHere(v, iAddr);
1830         }
1831       }
1832     }
1833   }
1834 
1835   /* If no preexisting index is available for the IN clause
1836   ** and IN_INDEX_NOOP is an allowed reply
1837   ** and the RHS of the IN operator is a list, not a subquery
1838   ** and the RHS is not constant or has two or fewer terms,
1839   ** then it is not worth creating an ephemeral table to evaluate
1840   ** the IN operator so return IN_INDEX_NOOP.
1841   */
1842   if( eType==0
1843    && (inFlags & IN_INDEX_NOOP_OK)
1844    && !ExprHasProperty(pX, EP_xIsSelect)
1845    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1846   ){
1847     eType = IN_INDEX_NOOP;
1848   }
1849 
1850 
1851   if( eType==0 ){
1852     /* Could not find an existing table or index to use as the RHS b-tree.
1853     ** We will have to generate an ephemeral table to do the job.
1854     */
1855     u32 savedNQueryLoop = pParse->nQueryLoop;
1856     int rMayHaveNull = 0;
1857     eType = IN_INDEX_EPH;
1858     if( inFlags & IN_INDEX_LOOP ){
1859       pParse->nQueryLoop = 0;
1860       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1861         eType = IN_INDEX_ROWID;
1862       }
1863     }else if( prRhsHasNull ){
1864       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1865     }
1866     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1867     pParse->nQueryLoop = savedNQueryLoop;
1868   }else{
1869     pX->iTable = iTab;
1870   }
1871   return eType;
1872 }
1873 #endif
1874 
1875 /*
1876 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1877 ** or IN operators.  Examples:
1878 **
1879 **     (SELECT a FROM b)          -- subquery
1880 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1881 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1882 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1883 **
1884 ** The pExpr parameter describes the expression that contains the IN
1885 ** operator or subquery.
1886 **
1887 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1888 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1889 ** to some integer key column of a table B-Tree. In this case, use an
1890 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1891 ** (slower) variable length keys B-Tree.
1892 **
1893 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1894 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1895 ** All this routine does is initialize the register given by rMayHaveNull
1896 ** to NULL.  Calling routines will take care of changing this register
1897 ** value to non-NULL if the RHS is NULL-free.
1898 **
1899 ** For a SELECT or EXISTS operator, return the register that holds the
1900 ** result.  For IN operators or if an error occurs, the return value is 0.
1901 */
1902 #ifndef SQLITE_OMIT_SUBQUERY
1903 int sqlite3CodeSubselect(
1904   Parse *pParse,          /* Parsing context */
1905   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1906   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1907   int isRowid             /* If true, LHS of IN operator is a rowid */
1908 ){
1909   int jmpIfDynamic = -1;                      /* One-time test address */
1910   int rReg = 0;                           /* Register storing resulting */
1911   Vdbe *v = sqlite3GetVdbe(pParse);
1912   if( NEVER(v==0) ) return 0;
1913   sqlite3ExprCachePush(pParse);
1914 
1915   /* This code must be run in its entirety every time it is encountered
1916   ** if any of the following is true:
1917   **
1918   **    *  The right-hand side is a correlated subquery
1919   **    *  The right-hand side is an expression list containing variables
1920   **    *  We are inside a trigger
1921   **
1922   ** If all of the above are false, then we can run this code just once
1923   ** save the results, and reuse the same result on subsequent invocations.
1924   */
1925   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1926     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1927   }
1928 
1929 #ifndef SQLITE_OMIT_EXPLAIN
1930   if( pParse->explain==2 ){
1931     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
1932         jmpIfDynamic>=0?"":"CORRELATED ",
1933         pExpr->op==TK_IN?"LIST":"SCALAR",
1934         pParse->iNextSelectId
1935     );
1936     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1937   }
1938 #endif
1939 
1940   switch( pExpr->op ){
1941     case TK_IN: {
1942       char affinity;              /* Affinity of the LHS of the IN */
1943       int addr;                   /* Address of OP_OpenEphemeral instruction */
1944       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1945       KeyInfo *pKeyInfo = 0;      /* Key information */
1946 
1947       affinity = sqlite3ExprAffinity(pLeft);
1948 
1949       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1950       ** expression it is handled the same way.  An ephemeral table is
1951       ** filled with single-field index keys representing the results
1952       ** from the SELECT or the <exprlist>.
1953       **
1954       ** If the 'x' expression is a column value, or the SELECT...
1955       ** statement returns a column value, then the affinity of that
1956       ** column is used to build the index keys. If both 'x' and the
1957       ** SELECT... statement are columns, then numeric affinity is used
1958       ** if either column has NUMERIC or INTEGER affinity. If neither
1959       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1960       ** is used.
1961       */
1962       pExpr->iTable = pParse->nTab++;
1963       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1964       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1965 
1966       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1967         /* Case 1:     expr IN (SELECT ...)
1968         **
1969         ** Generate code to write the results of the select into the temporary
1970         ** table allocated and opened above.
1971         */
1972         Select *pSelect = pExpr->x.pSelect;
1973         SelectDest dest;
1974         ExprList *pEList;
1975 
1976         assert( !isRowid );
1977         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1978         dest.affSdst = (u8)affinity;
1979         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1980         pSelect->iLimit = 0;
1981         testcase( pSelect->selFlags & SF_Distinct );
1982         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1983         if( sqlite3Select(pParse, pSelect, &dest) ){
1984           sqlite3KeyInfoUnref(pKeyInfo);
1985           return 0;
1986         }
1987         pEList = pSelect->pEList;
1988         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1989         assert( pEList!=0 );
1990         assert( pEList->nExpr>0 );
1991         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1992         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1993                                                          pEList->a[0].pExpr);
1994       }else if( ALWAYS(pExpr->x.pList!=0) ){
1995         /* Case 2:     expr IN (exprlist)
1996         **
1997         ** For each expression, build an index key from the evaluation and
1998         ** store it in the temporary table. If <expr> is a column, then use
1999         ** that columns affinity when building index keys. If <expr> is not
2000         ** a column, use numeric affinity.
2001         */
2002         int i;
2003         ExprList *pList = pExpr->x.pList;
2004         struct ExprList_item *pItem;
2005         int r1, r2, r3;
2006 
2007         if( !affinity ){
2008           affinity = SQLITE_AFF_BLOB;
2009         }
2010         if( pKeyInfo ){
2011           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2012           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2013         }
2014 
2015         /* Loop through each expression in <exprlist>. */
2016         r1 = sqlite3GetTempReg(pParse);
2017         r2 = sqlite3GetTempReg(pParse);
2018         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
2019         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2020           Expr *pE2 = pItem->pExpr;
2021           int iValToIns;
2022 
2023           /* If the expression is not constant then we will need to
2024           ** disable the test that was generated above that makes sure
2025           ** this code only executes once.  Because for a non-constant
2026           ** expression we need to rerun this code each time.
2027           */
2028           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2029             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2030             jmpIfDynamic = -1;
2031           }
2032 
2033           /* Evaluate the expression and insert it into the temp table */
2034           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2035             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2036           }else{
2037             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2038             if( isRowid ){
2039               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2040                                 sqlite3VdbeCurrentAddr(v)+2);
2041               VdbeCoverage(v);
2042               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2043             }else{
2044               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2045               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2046               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2047             }
2048           }
2049         }
2050         sqlite3ReleaseTempReg(pParse, r1);
2051         sqlite3ReleaseTempReg(pParse, r2);
2052       }
2053       if( pKeyInfo ){
2054         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2055       }
2056       break;
2057     }
2058 
2059     case TK_EXISTS:
2060     case TK_SELECT:
2061     default: {
2062       /* If this has to be a scalar SELECT.  Generate code to put the
2063       ** value of this select in a memory cell and record the number
2064       ** of the memory cell in iColumn.  If this is an EXISTS, write
2065       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2066       ** and record that memory cell in iColumn.
2067       */
2068       Select *pSel;                         /* SELECT statement to encode */
2069       SelectDest dest;                      /* How to deal with SELECt result */
2070 
2071       testcase( pExpr->op==TK_EXISTS );
2072       testcase( pExpr->op==TK_SELECT );
2073       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2074 
2075       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2076       pSel = pExpr->x.pSelect;
2077       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2078       if( pExpr->op==TK_SELECT ){
2079         dest.eDest = SRT_Mem;
2080         dest.iSdst = dest.iSDParm;
2081         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2082         VdbeComment((v, "Init subquery result"));
2083       }else{
2084         dest.eDest = SRT_Exists;
2085         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2086         VdbeComment((v, "Init EXISTS result"));
2087       }
2088       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2089       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2090                                   &sqlite3IntTokens[1]);
2091       pSel->iLimit = 0;
2092       pSel->selFlags &= ~SF_MultiValue;
2093       if( sqlite3Select(pParse, pSel, &dest) ){
2094         return 0;
2095       }
2096       rReg = dest.iSDParm;
2097       ExprSetVVAProperty(pExpr, EP_NoReduce);
2098       break;
2099     }
2100   }
2101 
2102   if( rHasNullFlag ){
2103     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2104   }
2105 
2106   if( jmpIfDynamic>=0 ){
2107     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2108   }
2109   sqlite3ExprCachePop(pParse);
2110 
2111   return rReg;
2112 }
2113 #endif /* SQLITE_OMIT_SUBQUERY */
2114 
2115 #ifndef SQLITE_OMIT_SUBQUERY
2116 /*
2117 ** Generate code for an IN expression.
2118 **
2119 **      x IN (SELECT ...)
2120 **      x IN (value, value, ...)
2121 **
2122 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2123 ** is an array of zero or more values.  The expression is true if the LHS is
2124 ** contained within the RHS.  The value of the expression is unknown (NULL)
2125 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2126 ** RHS contains one or more NULL values.
2127 **
2128 ** This routine generates code that jumps to destIfFalse if the LHS is not
2129 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2130 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2131 ** within the RHS then fall through.
2132 */
2133 static void sqlite3ExprCodeIN(
2134   Parse *pParse,        /* Parsing and code generating context */
2135   Expr *pExpr,          /* The IN expression */
2136   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2137   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2138 ){
2139   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2140   char affinity;        /* Comparison affinity to use */
2141   int eType;            /* Type of the RHS */
2142   int r1;               /* Temporary use register */
2143   Vdbe *v;              /* Statement under construction */
2144 
2145   /* Compute the RHS.   After this step, the table with cursor
2146   ** pExpr->iTable will contains the values that make up the RHS.
2147   */
2148   v = pParse->pVdbe;
2149   assert( v!=0 );       /* OOM detected prior to this routine */
2150   VdbeNoopComment((v, "begin IN expr"));
2151   eType = sqlite3FindInIndex(pParse, pExpr,
2152                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2153                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2154 
2155   /* Figure out the affinity to use to create a key from the results
2156   ** of the expression. affinityStr stores a static string suitable for
2157   ** P4 of OP_MakeRecord.
2158   */
2159   affinity = comparisonAffinity(pExpr);
2160 
2161   /* Code the LHS, the <expr> from "<expr> IN (...)".
2162   */
2163   sqlite3ExprCachePush(pParse);
2164   r1 = sqlite3GetTempReg(pParse);
2165   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2166 
2167   /* If sqlite3FindInIndex() did not find or create an index that is
2168   ** suitable for evaluating the IN operator, then evaluate using a
2169   ** sequence of comparisons.
2170   */
2171   if( eType==IN_INDEX_NOOP ){
2172     ExprList *pList = pExpr->x.pList;
2173     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2174     int labelOk = sqlite3VdbeMakeLabel(v);
2175     int r2, regToFree;
2176     int regCkNull = 0;
2177     int ii;
2178     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2179     if( destIfNull!=destIfFalse ){
2180       regCkNull = sqlite3GetTempReg(pParse);
2181       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2182     }
2183     for(ii=0; ii<pList->nExpr; ii++){
2184       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2185       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2186         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2187       }
2188       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2189         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2190                           (void*)pColl, P4_COLLSEQ);
2191         VdbeCoverageIf(v, ii<pList->nExpr-1);
2192         VdbeCoverageIf(v, ii==pList->nExpr-1);
2193         sqlite3VdbeChangeP5(v, affinity);
2194       }else{
2195         assert( destIfNull==destIfFalse );
2196         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2197                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2198         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2199       }
2200       sqlite3ReleaseTempReg(pParse, regToFree);
2201     }
2202     if( regCkNull ){
2203       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2204       sqlite3VdbeGoto(v, destIfFalse);
2205     }
2206     sqlite3VdbeResolveLabel(v, labelOk);
2207     sqlite3ReleaseTempReg(pParse, regCkNull);
2208   }else{
2209 
2210     /* If the LHS is NULL, then the result is either false or NULL depending
2211     ** on whether the RHS is empty or not, respectively.
2212     */
2213     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2214       if( destIfNull==destIfFalse ){
2215         /* Shortcut for the common case where the false and NULL outcomes are
2216         ** the same. */
2217         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2218       }else{
2219         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2220         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2221         VdbeCoverage(v);
2222         sqlite3VdbeGoto(v, destIfNull);
2223         sqlite3VdbeJumpHere(v, addr1);
2224       }
2225     }
2226 
2227     if( eType==IN_INDEX_ROWID ){
2228       /* In this case, the RHS is the ROWID of table b-tree
2229       */
2230       sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, r1);
2231       VdbeCoverage(v);
2232     }else{
2233       /* In this case, the RHS is an index b-tree.
2234       */
2235       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2236 
2237       /* If the set membership test fails, then the result of the
2238       ** "x IN (...)" expression must be either 0 or NULL. If the set
2239       ** contains no NULL values, then the result is 0. If the set
2240       ** contains one or more NULL values, then the result of the
2241       ** expression is also NULL.
2242       */
2243       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2244       if( rRhsHasNull==0 ){
2245         /* This branch runs if it is known at compile time that the RHS
2246         ** cannot contain NULL values. This happens as the result
2247         ** of a "NOT NULL" constraint in the database schema.
2248         **
2249         ** Also run this branch if NULL is equivalent to FALSE
2250         ** for this particular IN operator.
2251         */
2252         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2253         VdbeCoverage(v);
2254       }else{
2255         /* In this branch, the RHS of the IN might contain a NULL and
2256         ** the presence of a NULL on the RHS makes a difference in the
2257         ** outcome.
2258         */
2259         int addr1;
2260 
2261         /* First check to see if the LHS is contained in the RHS.  If so,
2262         ** then the answer is TRUE the presence of NULLs in the RHS does
2263         ** not matter.  If the LHS is not contained in the RHS, then the
2264         ** answer is NULL if the RHS contains NULLs and the answer is
2265         ** FALSE if the RHS is NULL-free.
2266         */
2267         addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2268         VdbeCoverage(v);
2269         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2270         VdbeCoverage(v);
2271         sqlite3VdbeGoto(v, destIfFalse);
2272         sqlite3VdbeJumpHere(v, addr1);
2273       }
2274     }
2275   }
2276   sqlite3ReleaseTempReg(pParse, r1);
2277   sqlite3ExprCachePop(pParse);
2278   VdbeComment((v, "end IN expr"));
2279 }
2280 #endif /* SQLITE_OMIT_SUBQUERY */
2281 
2282 #ifndef SQLITE_OMIT_FLOATING_POINT
2283 /*
2284 ** Generate an instruction that will put the floating point
2285 ** value described by z[0..n-1] into register iMem.
2286 **
2287 ** The z[] string will probably not be zero-terminated.  But the
2288 ** z[n] character is guaranteed to be something that does not look
2289 ** like the continuation of the number.
2290 */
2291 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2292   if( ALWAYS(z!=0) ){
2293     double value;
2294     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2295     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2296     if( negateFlag ) value = -value;
2297     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2298   }
2299 }
2300 #endif
2301 
2302 
2303 /*
2304 ** Generate an instruction that will put the integer describe by
2305 ** text z[0..n-1] into register iMem.
2306 **
2307 ** Expr.u.zToken is always UTF8 and zero-terminated.
2308 */
2309 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2310   Vdbe *v = pParse->pVdbe;
2311   if( pExpr->flags & EP_IntValue ){
2312     int i = pExpr->u.iValue;
2313     assert( i>=0 );
2314     if( negFlag ) i = -i;
2315     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2316   }else{
2317     int c;
2318     i64 value;
2319     const char *z = pExpr->u.zToken;
2320     assert( z!=0 );
2321     c = sqlite3DecOrHexToI64(z, &value);
2322     if( c==0 || (c==2 && negFlag) ){
2323       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2324       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2325     }else{
2326 #ifdef SQLITE_OMIT_FLOATING_POINT
2327       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2328 #else
2329 #ifndef SQLITE_OMIT_HEX_INTEGER
2330       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2331         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2332       }else
2333 #endif
2334       {
2335         codeReal(v, z, negFlag, iMem);
2336       }
2337 #endif
2338     }
2339   }
2340 }
2341 
2342 #if defined(SQLITE_DEBUG)
2343 /*
2344 ** Verify the consistency of the column cache
2345 */
2346 static int cacheIsValid(Parse *pParse){
2347   int i, n;
2348   for(i=n=0; i<SQLITE_N_COLCACHE; i++){
2349     if( pParse->aColCache[i].iReg>0 ) n++;
2350   }
2351   return n==pParse->nColCache;
2352 }
2353 #endif
2354 
2355 /*
2356 ** Clear a cache entry.
2357 */
2358 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2359   if( p->tempReg ){
2360     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2361       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2362     }
2363     p->tempReg = 0;
2364   }
2365   p->iReg = 0;
2366   pParse->nColCache--;
2367   assert( pParse->db->mallocFailed || cacheIsValid(pParse) );
2368 }
2369 
2370 
2371 /*
2372 ** Record in the column cache that a particular column from a
2373 ** particular table is stored in a particular register.
2374 */
2375 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2376   int i;
2377   int minLru;
2378   int idxLru;
2379   struct yColCache *p;
2380 
2381   /* Unless an error has occurred, register numbers are always positive. */
2382   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2383   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2384 
2385   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2386   ** for testing only - to verify that SQLite always gets the same answer
2387   ** with and without the column cache.
2388   */
2389   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2390 
2391   /* First replace any existing entry.
2392   **
2393   ** Actually, the way the column cache is currently used, we are guaranteed
2394   ** that the object will never already be in cache.  Verify this guarantee.
2395   */
2396 #ifndef NDEBUG
2397   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2398     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2399   }
2400 #endif
2401 
2402   /* Find an empty slot and replace it */
2403   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2404     if( p->iReg==0 ){
2405       p->iLevel = pParse->iCacheLevel;
2406       p->iTable = iTab;
2407       p->iColumn = iCol;
2408       p->iReg = iReg;
2409       p->tempReg = 0;
2410       p->lru = pParse->iCacheCnt++;
2411       pParse->nColCache++;
2412       assert( pParse->db->mallocFailed || cacheIsValid(pParse) );
2413       return;
2414     }
2415   }
2416 
2417   /* Replace the last recently used */
2418   minLru = 0x7fffffff;
2419   idxLru = -1;
2420   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2421     if( p->lru<minLru ){
2422       idxLru = i;
2423       minLru = p->lru;
2424     }
2425   }
2426   if( ALWAYS(idxLru>=0) ){
2427     p = &pParse->aColCache[idxLru];
2428     p->iLevel = pParse->iCacheLevel;
2429     p->iTable = iTab;
2430     p->iColumn = iCol;
2431     p->iReg = iReg;
2432     p->tempReg = 0;
2433     p->lru = pParse->iCacheCnt++;
2434     assert( cacheIsValid(pParse) );
2435     return;
2436   }
2437 }
2438 
2439 /*
2440 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2441 ** Purge the range of registers from the column cache.
2442 */
2443 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2444   struct yColCache *p;
2445   if( iReg<=0 || pParse->nColCache==0 ) return;
2446   p = &pParse->aColCache[SQLITE_N_COLCACHE-1];
2447   while(1){
2448     if( p->iReg >= iReg && p->iReg < iReg+nReg ) cacheEntryClear(pParse, p);
2449     if( p==pParse->aColCache ) break;
2450     p--;
2451   }
2452 }
2453 
2454 /*
2455 ** Remember the current column cache context.  Any new entries added
2456 ** added to the column cache after this call are removed when the
2457 ** corresponding pop occurs.
2458 */
2459 void sqlite3ExprCachePush(Parse *pParse){
2460   pParse->iCacheLevel++;
2461 #ifdef SQLITE_DEBUG
2462   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2463     printf("PUSH to %d\n", pParse->iCacheLevel);
2464   }
2465 #endif
2466 }
2467 
2468 /*
2469 ** Remove from the column cache any entries that were added since the
2470 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2471 ** the cache to the state it was in prior the most recent Push.
2472 */
2473 void sqlite3ExprCachePop(Parse *pParse){
2474   int i;
2475   struct yColCache *p;
2476   assert( pParse->iCacheLevel>=1 );
2477   pParse->iCacheLevel--;
2478 #ifdef SQLITE_DEBUG
2479   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2480     printf("POP  to %d\n", pParse->iCacheLevel);
2481   }
2482 #endif
2483   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2484     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2485       cacheEntryClear(pParse, p);
2486     }
2487   }
2488 }
2489 
2490 /*
2491 ** When a cached column is reused, make sure that its register is
2492 ** no longer available as a temp register.  ticket #3879:  that same
2493 ** register might be in the cache in multiple places, so be sure to
2494 ** get them all.
2495 */
2496 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2497   int i;
2498   struct yColCache *p;
2499   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2500     if( p->iReg==iReg ){
2501       p->tempReg = 0;
2502     }
2503   }
2504 }
2505 
2506 /* Generate code that will load into register regOut a value that is
2507 ** appropriate for the iIdxCol-th column of index pIdx.
2508 */
2509 void sqlite3ExprCodeLoadIndexColumn(
2510   Parse *pParse,  /* The parsing context */
2511   Index *pIdx,    /* The index whose column is to be loaded */
2512   int iTabCur,    /* Cursor pointing to a table row */
2513   int iIdxCol,    /* The column of the index to be loaded */
2514   int regOut      /* Store the index column value in this register */
2515 ){
2516   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2517   if( iTabCol==XN_EXPR ){
2518     assert( pIdx->aColExpr );
2519     assert( pIdx->aColExpr->nExpr>iIdxCol );
2520     pParse->iSelfTab = iTabCur;
2521     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2522   }else{
2523     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2524                                     iTabCol, regOut);
2525   }
2526 }
2527 
2528 /*
2529 ** Generate code to extract the value of the iCol-th column of a table.
2530 */
2531 void sqlite3ExprCodeGetColumnOfTable(
2532   Vdbe *v,        /* The VDBE under construction */
2533   Table *pTab,    /* The table containing the value */
2534   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2535   int iCol,       /* Index of the column to extract */
2536   int regOut      /* Extract the value into this register */
2537 ){
2538   if( iCol<0 || iCol==pTab->iPKey ){
2539     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2540   }else{
2541     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2542     int x = iCol;
2543     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
2544       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2545     }
2546     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2547   }
2548   if( iCol>=0 ){
2549     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2550   }
2551 }
2552 
2553 /*
2554 ** Generate code that will extract the iColumn-th column from
2555 ** table pTab and store the column value in a register.
2556 **
2557 ** An effort is made to store the column value in register iReg.  This
2558 ** is not garanteeed for GetColumn() - the result can be stored in
2559 ** any register.  But the result is guaranteed to land in register iReg
2560 ** for GetColumnToReg().
2561 **
2562 ** There must be an open cursor to pTab in iTable when this routine
2563 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2564 */
2565 int sqlite3ExprCodeGetColumn(
2566   Parse *pParse,   /* Parsing and code generating context */
2567   Table *pTab,     /* Description of the table we are reading from */
2568   int iColumn,     /* Index of the table column */
2569   int iTable,      /* The cursor pointing to the table */
2570   int iReg,        /* Store results here */
2571   u8 p5            /* P5 value for OP_Column + FLAGS */
2572 ){
2573   Vdbe *v = pParse->pVdbe;
2574   int i;
2575   struct yColCache *p;
2576 
2577   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2578     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2579       p->lru = pParse->iCacheCnt++;
2580       sqlite3ExprCachePinRegister(pParse, p->iReg);
2581       return p->iReg;
2582     }
2583   }
2584   assert( v!=0 );
2585   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2586   if( p5 ){
2587     sqlite3VdbeChangeP5(v, p5);
2588   }else{
2589     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2590   }
2591   return iReg;
2592 }
2593 void sqlite3ExprCodeGetColumnToReg(
2594   Parse *pParse,   /* Parsing and code generating context */
2595   Table *pTab,     /* Description of the table we are reading from */
2596   int iColumn,     /* Index of the table column */
2597   int iTable,      /* The cursor pointing to the table */
2598   int iReg         /* Store results here */
2599 ){
2600   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2601   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2602 }
2603 
2604 
2605 /*
2606 ** Clear all column cache entries.
2607 */
2608 void sqlite3ExprCacheClear(Parse *pParse){
2609   int i;
2610   struct yColCache *p;
2611 
2612 #if SQLITE_DEBUG
2613   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2614     printf("CLEAR\n");
2615   }
2616 #endif
2617   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2618     if( p->iReg ){
2619       cacheEntryClear(pParse, p);
2620     }
2621   }
2622 }
2623 
2624 /*
2625 ** Record the fact that an affinity change has occurred on iCount
2626 ** registers starting with iStart.
2627 */
2628 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2629   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2630 }
2631 
2632 /*
2633 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2634 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2635 */
2636 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2637   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2638   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2639   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2640 }
2641 
2642 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2643 /*
2644 ** Return true if any register in the range iFrom..iTo (inclusive)
2645 ** is used as part of the column cache.
2646 **
2647 ** This routine is used within assert() and testcase() macros only
2648 ** and does not appear in a normal build.
2649 */
2650 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2651   int i;
2652   struct yColCache *p;
2653   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2654     int r = p->iReg;
2655     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2656   }
2657   return 0;
2658 }
2659 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2660 
2661 
2662 /*
2663 ** Convert an expression node to a TK_REGISTER
2664 */
2665 static void exprToRegister(Expr *p, int iReg){
2666   p->op2 = p->op;
2667   p->op = TK_REGISTER;
2668   p->iTable = iReg;
2669   ExprClearProperty(p, EP_Skip);
2670 }
2671 
2672 /*
2673 ** Generate code into the current Vdbe to evaluate the given
2674 ** expression.  Attempt to store the results in register "target".
2675 ** Return the register where results are stored.
2676 **
2677 ** With this routine, there is no guarantee that results will
2678 ** be stored in target.  The result might be stored in some other
2679 ** register if it is convenient to do so.  The calling function
2680 ** must check the return code and move the results to the desired
2681 ** register.
2682 */
2683 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2684   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2685   int op;                   /* The opcode being coded */
2686   int inReg = target;       /* Results stored in register inReg */
2687   int regFree1 = 0;         /* If non-zero free this temporary register */
2688   int regFree2 = 0;         /* If non-zero free this temporary register */
2689   int r1, r2, r3, r4;       /* Various register numbers */
2690   sqlite3 *db = pParse->db; /* The database connection */
2691   Expr tempX;               /* Temporary expression node */
2692 
2693   assert( target>0 && target<=pParse->nMem );
2694   if( v==0 ){
2695     assert( pParse->db->mallocFailed );
2696     return 0;
2697   }
2698 
2699   if( pExpr==0 ){
2700     op = TK_NULL;
2701   }else{
2702     op = pExpr->op;
2703   }
2704   switch( op ){
2705     case TK_AGG_COLUMN: {
2706       AggInfo *pAggInfo = pExpr->pAggInfo;
2707       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2708       if( !pAggInfo->directMode ){
2709         assert( pCol->iMem>0 );
2710         inReg = pCol->iMem;
2711         break;
2712       }else if( pAggInfo->useSortingIdx ){
2713         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2714                               pCol->iSorterColumn, target);
2715         break;
2716       }
2717       /* Otherwise, fall thru into the TK_COLUMN case */
2718     }
2719     case TK_COLUMN: {
2720       int iTab = pExpr->iTable;
2721       if( iTab<0 ){
2722         if( pParse->ckBase>0 ){
2723           /* Generating CHECK constraints or inserting into partial index */
2724           inReg = pExpr->iColumn + pParse->ckBase;
2725           break;
2726         }else{
2727           /* Coding an expression that is part of an index where column names
2728           ** in the index refer to the table to which the index belongs */
2729           iTab = pParse->iSelfTab;
2730         }
2731       }
2732       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2733                                pExpr->iColumn, iTab, target,
2734                                pExpr->op2);
2735       break;
2736     }
2737     case TK_INTEGER: {
2738       codeInteger(pParse, pExpr, 0, target);
2739       break;
2740     }
2741 #ifndef SQLITE_OMIT_FLOATING_POINT
2742     case TK_FLOAT: {
2743       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2744       codeReal(v, pExpr->u.zToken, 0, target);
2745       break;
2746     }
2747 #endif
2748     case TK_STRING: {
2749       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2750       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2751       break;
2752     }
2753     case TK_NULL: {
2754       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2755       break;
2756     }
2757 #ifndef SQLITE_OMIT_BLOB_LITERAL
2758     case TK_BLOB: {
2759       int n;
2760       const char *z;
2761       char *zBlob;
2762       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2763       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2764       assert( pExpr->u.zToken[1]=='\'' );
2765       z = &pExpr->u.zToken[2];
2766       n = sqlite3Strlen30(z) - 1;
2767       assert( z[n]=='\'' );
2768       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2769       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2770       break;
2771     }
2772 #endif
2773     case TK_VARIABLE: {
2774       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2775       assert( pExpr->u.zToken!=0 );
2776       assert( pExpr->u.zToken[0]!=0 );
2777       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2778       if( pExpr->u.zToken[1]!=0 ){
2779         assert( pExpr->u.zToken[0]=='?'
2780              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2781         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2782       }
2783       break;
2784     }
2785     case TK_REGISTER: {
2786       inReg = pExpr->iTable;
2787       break;
2788     }
2789 #ifndef SQLITE_OMIT_CAST
2790     case TK_CAST: {
2791       /* Expressions of the form:   CAST(pLeft AS token) */
2792       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2793       if( inReg!=target ){
2794         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2795         inReg = target;
2796       }
2797       sqlite3VdbeAddOp2(v, OP_Cast, target,
2798                         sqlite3AffinityType(pExpr->u.zToken, 0));
2799       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2800       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2801       break;
2802     }
2803 #endif /* SQLITE_OMIT_CAST */
2804     case TK_LT:
2805     case TK_LE:
2806     case TK_GT:
2807     case TK_GE:
2808     case TK_NE:
2809     case TK_EQ: {
2810       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2811       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2812       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2813                   r1, r2, inReg, SQLITE_STOREP2);
2814       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2815       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2816       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2817       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2818       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2819       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2820       testcase( regFree1==0 );
2821       testcase( regFree2==0 );
2822       break;
2823     }
2824     case TK_IS:
2825     case TK_ISNOT: {
2826       testcase( op==TK_IS );
2827       testcase( op==TK_ISNOT );
2828       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2829       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2830       op = (op==TK_IS) ? TK_EQ : TK_NE;
2831       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2832                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2833       VdbeCoverageIf(v, op==TK_EQ);
2834       VdbeCoverageIf(v, op==TK_NE);
2835       testcase( regFree1==0 );
2836       testcase( regFree2==0 );
2837       break;
2838     }
2839     case TK_AND:
2840     case TK_OR:
2841     case TK_PLUS:
2842     case TK_STAR:
2843     case TK_MINUS:
2844     case TK_REM:
2845     case TK_BITAND:
2846     case TK_BITOR:
2847     case TK_SLASH:
2848     case TK_LSHIFT:
2849     case TK_RSHIFT:
2850     case TK_CONCAT: {
2851       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2852       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2853       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2854       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2855       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2856       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2857       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2858       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2859       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2860       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2861       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2862       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2863       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2864       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2865       testcase( regFree1==0 );
2866       testcase( regFree2==0 );
2867       break;
2868     }
2869     case TK_UMINUS: {
2870       Expr *pLeft = pExpr->pLeft;
2871       assert( pLeft );
2872       if( pLeft->op==TK_INTEGER ){
2873         codeInteger(pParse, pLeft, 1, target);
2874 #ifndef SQLITE_OMIT_FLOATING_POINT
2875       }else if( pLeft->op==TK_FLOAT ){
2876         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2877         codeReal(v, pLeft->u.zToken, 1, target);
2878 #endif
2879       }else{
2880         tempX.op = TK_INTEGER;
2881         tempX.flags = EP_IntValue|EP_TokenOnly;
2882         tempX.u.iValue = 0;
2883         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2884         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2885         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2886         testcase( regFree2==0 );
2887       }
2888       inReg = target;
2889       break;
2890     }
2891     case TK_BITNOT:
2892     case TK_NOT: {
2893       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2894       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2895       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2896       testcase( regFree1==0 );
2897       inReg = target;
2898       sqlite3VdbeAddOp2(v, op, r1, inReg);
2899       break;
2900     }
2901     case TK_ISNULL:
2902     case TK_NOTNULL: {
2903       int addr;
2904       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2905       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2906       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2907       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2908       testcase( regFree1==0 );
2909       addr = sqlite3VdbeAddOp1(v, op, r1);
2910       VdbeCoverageIf(v, op==TK_ISNULL);
2911       VdbeCoverageIf(v, op==TK_NOTNULL);
2912       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2913       sqlite3VdbeJumpHere(v, addr);
2914       break;
2915     }
2916     case TK_AGG_FUNCTION: {
2917       AggInfo *pInfo = pExpr->pAggInfo;
2918       if( pInfo==0 ){
2919         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2920         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2921       }else{
2922         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2923       }
2924       break;
2925     }
2926     case TK_FUNCTION: {
2927       ExprList *pFarg;       /* List of function arguments */
2928       int nFarg;             /* Number of function arguments */
2929       FuncDef *pDef;         /* The function definition object */
2930       const char *zId;       /* The function name */
2931       u32 constMask = 0;     /* Mask of function arguments that are constant */
2932       int i;                 /* Loop counter */
2933       u8 enc = ENC(db);      /* The text encoding used by this database */
2934       CollSeq *pColl = 0;    /* A collating sequence */
2935 
2936       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2937       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2938         pFarg = 0;
2939       }else{
2940         pFarg = pExpr->x.pList;
2941       }
2942       nFarg = pFarg ? pFarg->nExpr : 0;
2943       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2944       zId = pExpr->u.zToken;
2945       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
2946       if( pDef==0 || pDef->xFinalize!=0 ){
2947         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
2948         break;
2949       }
2950 
2951       /* Attempt a direct implementation of the built-in COALESCE() and
2952       ** IFNULL() functions.  This avoids unnecessary evaluation of
2953       ** arguments past the first non-NULL argument.
2954       */
2955       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2956         int endCoalesce = sqlite3VdbeMakeLabel(v);
2957         assert( nFarg>=2 );
2958         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2959         for(i=1; i<nFarg; i++){
2960           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2961           VdbeCoverage(v);
2962           sqlite3ExprCacheRemove(pParse, target, 1);
2963           sqlite3ExprCachePush(pParse);
2964           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2965           sqlite3ExprCachePop(pParse);
2966         }
2967         sqlite3VdbeResolveLabel(v, endCoalesce);
2968         break;
2969       }
2970 
2971       /* The UNLIKELY() function is a no-op.  The result is the value
2972       ** of the first argument.
2973       */
2974       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2975         assert( nFarg>=1 );
2976         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2977         break;
2978       }
2979 
2980       for(i=0; i<nFarg; i++){
2981         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2982           testcase( i==31 );
2983           constMask |= MASKBIT32(i);
2984         }
2985         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2986           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2987         }
2988       }
2989       if( pFarg ){
2990         if( constMask ){
2991           r1 = pParse->nMem+1;
2992           pParse->nMem += nFarg;
2993         }else{
2994           r1 = sqlite3GetTempRange(pParse, nFarg);
2995         }
2996 
2997         /* For length() and typeof() functions with a column argument,
2998         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2999         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3000         ** loading.
3001         */
3002         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3003           u8 exprOp;
3004           assert( nFarg==1 );
3005           assert( pFarg->a[0].pExpr!=0 );
3006           exprOp = pFarg->a[0].pExpr->op;
3007           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3008             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3009             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3010             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3011             pFarg->a[0].pExpr->op2 =
3012                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3013           }
3014         }
3015 
3016         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3017         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3018                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3019         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3020       }else{
3021         r1 = 0;
3022       }
3023 #ifndef SQLITE_OMIT_VIRTUALTABLE
3024       /* Possibly overload the function if the first argument is
3025       ** a virtual table column.
3026       **
3027       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3028       ** second argument, not the first, as the argument to test to
3029       ** see if it is a column in a virtual table.  This is done because
3030       ** the left operand of infix functions (the operand we want to
3031       ** control overloading) ends up as the second argument to the
3032       ** function.  The expression "A glob B" is equivalent to
3033       ** "glob(B,A).  We want to use the A in "A glob B" to test
3034       ** for function overloading.  But we use the B term in "glob(B,A)".
3035       */
3036       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3037         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3038       }else if( nFarg>0 ){
3039         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3040       }
3041 #endif
3042       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3043         if( !pColl ) pColl = db->pDfltColl;
3044         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3045       }
3046       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3047                         (char*)pDef, P4_FUNCDEF);
3048       sqlite3VdbeChangeP5(v, (u8)nFarg);
3049       if( nFarg && constMask==0 ){
3050         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3051       }
3052       break;
3053     }
3054 #ifndef SQLITE_OMIT_SUBQUERY
3055     case TK_EXISTS:
3056     case TK_SELECT: {
3057       testcase( op==TK_EXISTS );
3058       testcase( op==TK_SELECT );
3059       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3060       break;
3061     }
3062     case TK_IN: {
3063       int destIfFalse = sqlite3VdbeMakeLabel(v);
3064       int destIfNull = sqlite3VdbeMakeLabel(v);
3065       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3066       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3067       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3068       sqlite3VdbeResolveLabel(v, destIfFalse);
3069       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3070       sqlite3VdbeResolveLabel(v, destIfNull);
3071       break;
3072     }
3073 #endif /* SQLITE_OMIT_SUBQUERY */
3074 
3075 
3076     /*
3077     **    x BETWEEN y AND z
3078     **
3079     ** This is equivalent to
3080     **
3081     **    x>=y AND x<=z
3082     **
3083     ** X is stored in pExpr->pLeft.
3084     ** Y is stored in pExpr->pList->a[0].pExpr.
3085     ** Z is stored in pExpr->pList->a[1].pExpr.
3086     */
3087     case TK_BETWEEN: {
3088       Expr *pLeft = pExpr->pLeft;
3089       struct ExprList_item *pLItem = pExpr->x.pList->a;
3090       Expr *pRight = pLItem->pExpr;
3091 
3092       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3093       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3094       testcase( regFree1==0 );
3095       testcase( regFree2==0 );
3096       r3 = sqlite3GetTempReg(pParse);
3097       r4 = sqlite3GetTempReg(pParse);
3098       codeCompare(pParse, pLeft, pRight, OP_Ge,
3099                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3100       pLItem++;
3101       pRight = pLItem->pExpr;
3102       sqlite3ReleaseTempReg(pParse, regFree2);
3103       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3104       testcase( regFree2==0 );
3105       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3106       VdbeCoverage(v);
3107       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3108       sqlite3ReleaseTempReg(pParse, r3);
3109       sqlite3ReleaseTempReg(pParse, r4);
3110       break;
3111     }
3112     case TK_SPAN:
3113     case TK_COLLATE:
3114     case TK_UPLUS: {
3115       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3116       break;
3117     }
3118 
3119     case TK_TRIGGER: {
3120       /* If the opcode is TK_TRIGGER, then the expression is a reference
3121       ** to a column in the new.* or old.* pseudo-tables available to
3122       ** trigger programs. In this case Expr.iTable is set to 1 for the
3123       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3124       ** is set to the column of the pseudo-table to read, or to -1 to
3125       ** read the rowid field.
3126       **
3127       ** The expression is implemented using an OP_Param opcode. The p1
3128       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3129       ** to reference another column of the old.* pseudo-table, where
3130       ** i is the index of the column. For a new.rowid reference, p1 is
3131       ** set to (n+1), where n is the number of columns in each pseudo-table.
3132       ** For a reference to any other column in the new.* pseudo-table, p1
3133       ** is set to (n+2+i), where n and i are as defined previously. For
3134       ** example, if the table on which triggers are being fired is
3135       ** declared as:
3136       **
3137       **   CREATE TABLE t1(a, b);
3138       **
3139       ** Then p1 is interpreted as follows:
3140       **
3141       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3142       **   p1==1   ->    old.a         p1==4   ->    new.a
3143       **   p1==2   ->    old.b         p1==5   ->    new.b
3144       */
3145       Table *pTab = pExpr->pTab;
3146       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3147 
3148       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3149       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3150       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3151       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3152 
3153       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3154       VdbeComment((v, "%s.%s -> $%d",
3155         (pExpr->iTable ? "new" : "old"),
3156         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3157         target
3158       ));
3159 
3160 #ifndef SQLITE_OMIT_FLOATING_POINT
3161       /* If the column has REAL affinity, it may currently be stored as an
3162       ** integer. Use OP_RealAffinity to make sure it is really real.
3163       **
3164       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3165       ** floating point when extracting it from the record.  */
3166       if( pExpr->iColumn>=0
3167        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3168       ){
3169         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3170       }
3171 #endif
3172       break;
3173     }
3174 
3175 
3176     /*
3177     ** Form A:
3178     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3179     **
3180     ** Form B:
3181     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3182     **
3183     ** Form A is can be transformed into the equivalent form B as follows:
3184     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3185     **        WHEN x=eN THEN rN ELSE y END
3186     **
3187     ** X (if it exists) is in pExpr->pLeft.
3188     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3189     ** odd.  The Y is also optional.  If the number of elements in x.pList
3190     ** is even, then Y is omitted and the "otherwise" result is NULL.
3191     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3192     **
3193     ** The result of the expression is the Ri for the first matching Ei,
3194     ** or if there is no matching Ei, the ELSE term Y, or if there is
3195     ** no ELSE term, NULL.
3196     */
3197     default: assert( op==TK_CASE ); {
3198       int endLabel;                     /* GOTO label for end of CASE stmt */
3199       int nextCase;                     /* GOTO label for next WHEN clause */
3200       int nExpr;                        /* 2x number of WHEN terms */
3201       int i;                            /* Loop counter */
3202       ExprList *pEList;                 /* List of WHEN terms */
3203       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3204       Expr opCompare;                   /* The X==Ei expression */
3205       Expr *pX;                         /* The X expression */
3206       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3207       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3208 
3209       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3210       assert(pExpr->x.pList->nExpr > 0);
3211       pEList = pExpr->x.pList;
3212       aListelem = pEList->a;
3213       nExpr = pEList->nExpr;
3214       endLabel = sqlite3VdbeMakeLabel(v);
3215       if( (pX = pExpr->pLeft)!=0 ){
3216         tempX = *pX;
3217         testcase( pX->op==TK_COLUMN );
3218         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3219         testcase( regFree1==0 );
3220         opCompare.op = TK_EQ;
3221         opCompare.pLeft = &tempX;
3222         pTest = &opCompare;
3223         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3224         ** The value in regFree1 might get SCopy-ed into the file result.
3225         ** So make sure that the regFree1 register is not reused for other
3226         ** purposes and possibly overwritten.  */
3227         regFree1 = 0;
3228       }
3229       for(i=0; i<nExpr-1; i=i+2){
3230         sqlite3ExprCachePush(pParse);
3231         if( pX ){
3232           assert( pTest!=0 );
3233           opCompare.pRight = aListelem[i].pExpr;
3234         }else{
3235           pTest = aListelem[i].pExpr;
3236         }
3237         nextCase = sqlite3VdbeMakeLabel(v);
3238         testcase( pTest->op==TK_COLUMN );
3239         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3240         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3241         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3242         sqlite3VdbeGoto(v, endLabel);
3243         sqlite3ExprCachePop(pParse);
3244         sqlite3VdbeResolveLabel(v, nextCase);
3245       }
3246       if( (nExpr&1)!=0 ){
3247         sqlite3ExprCachePush(pParse);
3248         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3249         sqlite3ExprCachePop(pParse);
3250       }else{
3251         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3252       }
3253       assert( db->mallocFailed || pParse->nErr>0
3254            || pParse->iCacheLevel==iCacheLevel );
3255       sqlite3VdbeResolveLabel(v, endLabel);
3256       break;
3257     }
3258 #ifndef SQLITE_OMIT_TRIGGER
3259     case TK_RAISE: {
3260       assert( pExpr->affinity==OE_Rollback
3261            || pExpr->affinity==OE_Abort
3262            || pExpr->affinity==OE_Fail
3263            || pExpr->affinity==OE_Ignore
3264       );
3265       if( !pParse->pTriggerTab ){
3266         sqlite3ErrorMsg(pParse,
3267                        "RAISE() may only be used within a trigger-program");
3268         return 0;
3269       }
3270       if( pExpr->affinity==OE_Abort ){
3271         sqlite3MayAbort(pParse);
3272       }
3273       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3274       if( pExpr->affinity==OE_Ignore ){
3275         sqlite3VdbeAddOp4(
3276             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3277         VdbeCoverage(v);
3278       }else{
3279         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3280                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3281       }
3282 
3283       break;
3284     }
3285 #endif
3286   }
3287   sqlite3ReleaseTempReg(pParse, regFree1);
3288   sqlite3ReleaseTempReg(pParse, regFree2);
3289   return inReg;
3290 }
3291 
3292 /*
3293 ** Factor out the code of the given expression to initialization time.
3294 */
3295 void sqlite3ExprCodeAtInit(
3296   Parse *pParse,    /* Parsing context */
3297   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3298   int regDest,      /* Store the value in this register */
3299   u8 reusable       /* True if this expression is reusable */
3300 ){
3301   ExprList *p;
3302   assert( ConstFactorOk(pParse) );
3303   p = pParse->pConstExpr;
3304   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3305   p = sqlite3ExprListAppend(pParse, p, pExpr);
3306   if( p ){
3307      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3308      pItem->u.iConstExprReg = regDest;
3309      pItem->reusable = reusable;
3310   }
3311   pParse->pConstExpr = p;
3312 }
3313 
3314 /*
3315 ** Generate code to evaluate an expression and store the results
3316 ** into a register.  Return the register number where the results
3317 ** are stored.
3318 **
3319 ** If the register is a temporary register that can be deallocated,
3320 ** then write its number into *pReg.  If the result register is not
3321 ** a temporary, then set *pReg to zero.
3322 **
3323 ** If pExpr is a constant, then this routine might generate this
3324 ** code to fill the register in the initialization section of the
3325 ** VDBE program, in order to factor it out of the evaluation loop.
3326 */
3327 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3328   int r2;
3329   pExpr = sqlite3ExprSkipCollate(pExpr);
3330   if( ConstFactorOk(pParse)
3331    && pExpr->op!=TK_REGISTER
3332    && sqlite3ExprIsConstantNotJoin(pExpr)
3333   ){
3334     ExprList *p = pParse->pConstExpr;
3335     int i;
3336     *pReg  = 0;
3337     if( p ){
3338       struct ExprList_item *pItem;
3339       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3340         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3341           return pItem->u.iConstExprReg;
3342         }
3343       }
3344     }
3345     r2 = ++pParse->nMem;
3346     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3347   }else{
3348     int r1 = sqlite3GetTempReg(pParse);
3349     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3350     if( r2==r1 ){
3351       *pReg = r1;
3352     }else{
3353       sqlite3ReleaseTempReg(pParse, r1);
3354       *pReg = 0;
3355     }
3356   }
3357   return r2;
3358 }
3359 
3360 /*
3361 ** Generate code that will evaluate expression pExpr and store the
3362 ** results in register target.  The results are guaranteed to appear
3363 ** in register target.
3364 */
3365 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3366   int inReg;
3367 
3368   assert( target>0 && target<=pParse->nMem );
3369   if( pExpr && pExpr->op==TK_REGISTER ){
3370     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3371   }else{
3372     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3373     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
3374     if( inReg!=target && pParse->pVdbe ){
3375       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3376     }
3377   }
3378 }
3379 
3380 /*
3381 ** Make a transient copy of expression pExpr and then code it using
3382 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
3383 ** except that the input expression is guaranteed to be unchanged.
3384 */
3385 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
3386   sqlite3 *db = pParse->db;
3387   pExpr = sqlite3ExprDup(db, pExpr, 0);
3388   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
3389   sqlite3ExprDelete(db, pExpr);
3390 }
3391 
3392 /*
3393 ** Generate code that will evaluate expression pExpr and store the
3394 ** results in register target.  The results are guaranteed to appear
3395 ** in register target.  If the expression is constant, then this routine
3396 ** might choose to code the expression at initialization time.
3397 */
3398 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3399   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3400     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3401   }else{
3402     sqlite3ExprCode(pParse, pExpr, target);
3403   }
3404 }
3405 
3406 /*
3407 ** Generate code that evaluates the given expression and puts the result
3408 ** in register target.
3409 **
3410 ** Also make a copy of the expression results into another "cache" register
3411 ** and modify the expression so that the next time it is evaluated,
3412 ** the result is a copy of the cache register.
3413 **
3414 ** This routine is used for expressions that are used multiple
3415 ** times.  They are evaluated once and the results of the expression
3416 ** are reused.
3417 */
3418 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3419   Vdbe *v = pParse->pVdbe;
3420   int iMem;
3421 
3422   assert( target>0 );
3423   assert( pExpr->op!=TK_REGISTER );
3424   sqlite3ExprCode(pParse, pExpr, target);
3425   iMem = ++pParse->nMem;
3426   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3427   exprToRegister(pExpr, iMem);
3428 }
3429 
3430 /*
3431 ** Generate code that pushes the value of every element of the given
3432 ** expression list into a sequence of registers beginning at target.
3433 **
3434 ** Return the number of elements evaluated.
3435 **
3436 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3437 ** filled using OP_SCopy.  OP_Copy must be used instead.
3438 **
3439 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3440 ** factored out into initialization code.
3441 **
3442 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3443 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3444 ** in registers at srcReg, and so the value can be copied from there.
3445 */
3446 int sqlite3ExprCodeExprList(
3447   Parse *pParse,     /* Parsing context */
3448   ExprList *pList,   /* The expression list to be coded */
3449   int target,        /* Where to write results */
3450   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3451   u8 flags           /* SQLITE_ECEL_* flags */
3452 ){
3453   struct ExprList_item *pItem;
3454   int i, j, n;
3455   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3456   Vdbe *v = pParse->pVdbe;
3457   assert( pList!=0 );
3458   assert( target>0 );
3459   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3460   n = pList->nExpr;
3461   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3462   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3463     Expr *pExpr = pItem->pExpr;
3464     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3465       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3466     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3467       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3468     }else{
3469       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3470       if( inReg!=target+i ){
3471         VdbeOp *pOp;
3472         if( copyOp==OP_Copy
3473          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3474          && pOp->p1+pOp->p3+1==inReg
3475          && pOp->p2+pOp->p3+1==target+i
3476         ){
3477           pOp->p3++;
3478         }else{
3479           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3480         }
3481       }
3482     }
3483   }
3484   return n;
3485 }
3486 
3487 /*
3488 ** Generate code for a BETWEEN operator.
3489 **
3490 **    x BETWEEN y AND z
3491 **
3492 ** The above is equivalent to
3493 **
3494 **    x>=y AND x<=z
3495 **
3496 ** Code it as such, taking care to do the common subexpression
3497 ** elimination of x.
3498 */
3499 static void exprCodeBetween(
3500   Parse *pParse,    /* Parsing and code generating context */
3501   Expr *pExpr,      /* The BETWEEN expression */
3502   int dest,         /* Jump here if the jump is taken */
3503   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3504   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3505 ){
3506   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3507   Expr compLeft;    /* The  x>=y  term */
3508   Expr compRight;   /* The  x<=z  term */
3509   Expr exprX;       /* The  x  subexpression */
3510   int regFree1 = 0; /* Temporary use register */
3511 
3512   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3513   exprX = *pExpr->pLeft;
3514   exprAnd.op = TK_AND;
3515   exprAnd.pLeft = &compLeft;
3516   exprAnd.pRight = &compRight;
3517   compLeft.op = TK_GE;
3518   compLeft.pLeft = &exprX;
3519   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3520   compRight.op = TK_LE;
3521   compRight.pLeft = &exprX;
3522   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3523   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3524   if( jumpIfTrue ){
3525     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3526   }else{
3527     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3528   }
3529   sqlite3ReleaseTempReg(pParse, regFree1);
3530 
3531   /* Ensure adequate test coverage */
3532   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3533   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3534   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3535   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3536   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3537   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3538   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3539   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3540 }
3541 
3542 /*
3543 ** Generate code for a boolean expression such that a jump is made
3544 ** to the label "dest" if the expression is true but execution
3545 ** continues straight thru if the expression is false.
3546 **
3547 ** If the expression evaluates to NULL (neither true nor false), then
3548 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3549 **
3550 ** This code depends on the fact that certain token values (ex: TK_EQ)
3551 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3552 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3553 ** the make process cause these values to align.  Assert()s in the code
3554 ** below verify that the numbers are aligned correctly.
3555 */
3556 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3557   Vdbe *v = pParse->pVdbe;
3558   int op = 0;
3559   int regFree1 = 0;
3560   int regFree2 = 0;
3561   int r1, r2;
3562 
3563   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3564   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3565   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3566   op = pExpr->op;
3567   switch( op ){
3568     case TK_AND: {
3569       int d2 = sqlite3VdbeMakeLabel(v);
3570       testcase( jumpIfNull==0 );
3571       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3572       sqlite3ExprCachePush(pParse);
3573       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3574       sqlite3VdbeResolveLabel(v, d2);
3575       sqlite3ExprCachePop(pParse);
3576       break;
3577     }
3578     case TK_OR: {
3579       testcase( jumpIfNull==0 );
3580       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3581       sqlite3ExprCachePush(pParse);
3582       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3583       sqlite3ExprCachePop(pParse);
3584       break;
3585     }
3586     case TK_NOT: {
3587       testcase( jumpIfNull==0 );
3588       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3589       break;
3590     }
3591     case TK_IS:
3592     case TK_ISNOT:
3593       testcase( op==TK_IS );
3594       testcase( op==TK_ISNOT );
3595       op = (op==TK_IS) ? TK_EQ : TK_NE;
3596       jumpIfNull = SQLITE_NULLEQ;
3597       /* Fall thru */
3598     case TK_LT:
3599     case TK_LE:
3600     case TK_GT:
3601     case TK_GE:
3602     case TK_NE:
3603     case TK_EQ: {
3604       testcase( jumpIfNull==0 );
3605       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3606       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3607       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3608                   r1, r2, dest, jumpIfNull);
3609       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3610       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3611       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3612       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3613       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
3614       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
3615       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
3616       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
3617       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
3618       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
3619       testcase( regFree1==0 );
3620       testcase( regFree2==0 );
3621       break;
3622     }
3623     case TK_ISNULL:
3624     case TK_NOTNULL: {
3625       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3626       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3627       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3628       sqlite3VdbeAddOp2(v, op, r1, dest);
3629       VdbeCoverageIf(v, op==TK_ISNULL);
3630       VdbeCoverageIf(v, op==TK_NOTNULL);
3631       testcase( regFree1==0 );
3632       break;
3633     }
3634     case TK_BETWEEN: {
3635       testcase( jumpIfNull==0 );
3636       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3637       break;
3638     }
3639 #ifndef SQLITE_OMIT_SUBQUERY
3640     case TK_IN: {
3641       int destIfFalse = sqlite3VdbeMakeLabel(v);
3642       int destIfNull = jumpIfNull ? dest : destIfFalse;
3643       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3644       sqlite3VdbeGoto(v, dest);
3645       sqlite3VdbeResolveLabel(v, destIfFalse);
3646       break;
3647     }
3648 #endif
3649     default: {
3650       if( exprAlwaysTrue(pExpr) ){
3651         sqlite3VdbeGoto(v, dest);
3652       }else if( exprAlwaysFalse(pExpr) ){
3653         /* No-op */
3654       }else{
3655         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3656         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3657         VdbeCoverage(v);
3658         testcase( regFree1==0 );
3659         testcase( jumpIfNull==0 );
3660       }
3661       break;
3662     }
3663   }
3664   sqlite3ReleaseTempReg(pParse, regFree1);
3665   sqlite3ReleaseTempReg(pParse, regFree2);
3666 }
3667 
3668 /*
3669 ** Generate code for a boolean expression such that a jump is made
3670 ** to the label "dest" if the expression is false but execution
3671 ** continues straight thru if the expression is true.
3672 **
3673 ** If the expression evaluates to NULL (neither true nor false) then
3674 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3675 ** is 0.
3676 */
3677 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3678   Vdbe *v = pParse->pVdbe;
3679   int op = 0;
3680   int regFree1 = 0;
3681   int regFree2 = 0;
3682   int r1, r2;
3683 
3684   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3685   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3686   if( pExpr==0 )    return;
3687 
3688   /* The value of pExpr->op and op are related as follows:
3689   **
3690   **       pExpr->op            op
3691   **       ---------          ----------
3692   **       TK_ISNULL          OP_NotNull
3693   **       TK_NOTNULL         OP_IsNull
3694   **       TK_NE              OP_Eq
3695   **       TK_EQ              OP_Ne
3696   **       TK_GT              OP_Le
3697   **       TK_LE              OP_Gt
3698   **       TK_GE              OP_Lt
3699   **       TK_LT              OP_Ge
3700   **
3701   ** For other values of pExpr->op, op is undefined and unused.
3702   ** The value of TK_ and OP_ constants are arranged such that we
3703   ** can compute the mapping above using the following expression.
3704   ** Assert()s verify that the computation is correct.
3705   */
3706   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3707 
3708   /* Verify correct alignment of TK_ and OP_ constants
3709   */
3710   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3711   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3712   assert( pExpr->op!=TK_NE || op==OP_Eq );
3713   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3714   assert( pExpr->op!=TK_LT || op==OP_Ge );
3715   assert( pExpr->op!=TK_LE || op==OP_Gt );
3716   assert( pExpr->op!=TK_GT || op==OP_Le );
3717   assert( pExpr->op!=TK_GE || op==OP_Lt );
3718 
3719   switch( pExpr->op ){
3720     case TK_AND: {
3721       testcase( jumpIfNull==0 );
3722       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3723       sqlite3ExprCachePush(pParse);
3724       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3725       sqlite3ExprCachePop(pParse);
3726       break;
3727     }
3728     case TK_OR: {
3729       int d2 = sqlite3VdbeMakeLabel(v);
3730       testcase( jumpIfNull==0 );
3731       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3732       sqlite3ExprCachePush(pParse);
3733       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3734       sqlite3VdbeResolveLabel(v, d2);
3735       sqlite3ExprCachePop(pParse);
3736       break;
3737     }
3738     case TK_NOT: {
3739       testcase( jumpIfNull==0 );
3740       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3741       break;
3742     }
3743     case TK_IS:
3744     case TK_ISNOT:
3745       testcase( pExpr->op==TK_IS );
3746       testcase( pExpr->op==TK_ISNOT );
3747       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3748       jumpIfNull = SQLITE_NULLEQ;
3749       /* Fall thru */
3750     case TK_LT:
3751     case TK_LE:
3752     case TK_GT:
3753     case TK_GE:
3754     case TK_NE:
3755     case TK_EQ: {
3756       testcase( jumpIfNull==0 );
3757       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3758       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3759       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3760                   r1, r2, dest, jumpIfNull);
3761       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3762       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3763       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3764       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3765       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
3766       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
3767       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
3768       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
3769       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
3770       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
3771       testcase( regFree1==0 );
3772       testcase( regFree2==0 );
3773       break;
3774     }
3775     case TK_ISNULL:
3776     case TK_NOTNULL: {
3777       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3778       sqlite3VdbeAddOp2(v, op, r1, dest);
3779       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3780       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3781       testcase( regFree1==0 );
3782       break;
3783     }
3784     case TK_BETWEEN: {
3785       testcase( jumpIfNull==0 );
3786       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3787       break;
3788     }
3789 #ifndef SQLITE_OMIT_SUBQUERY
3790     case TK_IN: {
3791       if( jumpIfNull ){
3792         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3793       }else{
3794         int destIfNull = sqlite3VdbeMakeLabel(v);
3795         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3796         sqlite3VdbeResolveLabel(v, destIfNull);
3797       }
3798       break;
3799     }
3800 #endif
3801     default: {
3802       if( exprAlwaysFalse(pExpr) ){
3803         sqlite3VdbeGoto(v, dest);
3804       }else if( exprAlwaysTrue(pExpr) ){
3805         /* no-op */
3806       }else{
3807         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3808         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3809         VdbeCoverage(v);
3810         testcase( regFree1==0 );
3811         testcase( jumpIfNull==0 );
3812       }
3813       break;
3814     }
3815   }
3816   sqlite3ReleaseTempReg(pParse, regFree1);
3817   sqlite3ReleaseTempReg(pParse, regFree2);
3818 }
3819 
3820 /*
3821 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3822 ** code generation, and that copy is deleted after code generation. This
3823 ** ensures that the original pExpr is unchanged.
3824 */
3825 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3826   sqlite3 *db = pParse->db;
3827   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3828   if( db->mallocFailed==0 ){
3829     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3830   }
3831   sqlite3ExprDelete(db, pCopy);
3832 }
3833 
3834 
3835 /*
3836 ** Do a deep comparison of two expression trees.  Return 0 if the two
3837 ** expressions are completely identical.  Return 1 if they differ only
3838 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3839 ** other than the top-level COLLATE operator.
3840 **
3841 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3842 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3843 **
3844 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3845 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3846 **
3847 ** Sometimes this routine will return 2 even if the two expressions
3848 ** really are equivalent.  If we cannot prove that the expressions are
3849 ** identical, we return 2 just to be safe.  So if this routine
3850 ** returns 2, then you do not really know for certain if the two
3851 ** expressions are the same.  But if you get a 0 or 1 return, then you
3852 ** can be sure the expressions are the same.  In the places where
3853 ** this routine is used, it does not hurt to get an extra 2 - that
3854 ** just might result in some slightly slower code.  But returning
3855 ** an incorrect 0 or 1 could lead to a malfunction.
3856 */
3857 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3858   u32 combinedFlags;
3859   if( pA==0 || pB==0 ){
3860     return pB==pA ? 0 : 2;
3861   }
3862   combinedFlags = pA->flags | pB->flags;
3863   if( combinedFlags & EP_IntValue ){
3864     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3865       return 0;
3866     }
3867     return 2;
3868   }
3869   if( pA->op!=pB->op ){
3870     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3871       return 1;
3872     }
3873     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3874       return 1;
3875     }
3876     return 2;
3877   }
3878   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
3879     if( pA->op==TK_FUNCTION ){
3880       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3881     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3882       return pA->op==TK_COLLATE ? 1 : 2;
3883     }
3884   }
3885   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3886   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3887     if( combinedFlags & EP_xIsSelect ) return 2;
3888     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3889     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3890     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3891     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3892       if( pA->iColumn!=pB->iColumn ) return 2;
3893       if( pA->iTable!=pB->iTable
3894        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3895     }
3896   }
3897   return 0;
3898 }
3899 
3900 /*
3901 ** Compare two ExprList objects.  Return 0 if they are identical and
3902 ** non-zero if they differ in any way.
3903 **
3904 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3905 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3906 **
3907 ** This routine might return non-zero for equivalent ExprLists.  The
3908 ** only consequence will be disabled optimizations.  But this routine
3909 ** must never return 0 if the two ExprList objects are different, or
3910 ** a malfunction will result.
3911 **
3912 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3913 ** always differs from a non-NULL pointer.
3914 */
3915 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3916   int i;
3917   if( pA==0 && pB==0 ) return 0;
3918   if( pA==0 || pB==0 ) return 1;
3919   if( pA->nExpr!=pB->nExpr ) return 1;
3920   for(i=0; i<pA->nExpr; i++){
3921     Expr *pExprA = pA->a[i].pExpr;
3922     Expr *pExprB = pB->a[i].pExpr;
3923     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3924     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3925   }
3926   return 0;
3927 }
3928 
3929 /*
3930 ** Return true if we can prove the pE2 will always be true if pE1 is
3931 ** true.  Return false if we cannot complete the proof or if pE2 might
3932 ** be false.  Examples:
3933 **
3934 **     pE1: x==5       pE2: x==5             Result: true
3935 **     pE1: x>0        pE2: x==5             Result: false
3936 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3937 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3938 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3939 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3940 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3941 **
3942 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3943 ** Expr.iTable<0 then assume a table number given by iTab.
3944 **
3945 ** When in doubt, return false.  Returning true might give a performance
3946 ** improvement.  Returning false might cause a performance reduction, but
3947 ** it will always give the correct answer and is hence always safe.
3948 */
3949 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3950   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3951     return 1;
3952   }
3953   if( pE2->op==TK_OR
3954    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3955              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3956   ){
3957     return 1;
3958   }
3959   if( pE2->op==TK_NOTNULL
3960    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3961    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3962   ){
3963     return 1;
3964   }
3965   return 0;
3966 }
3967 
3968 /*
3969 ** An instance of the following structure is used by the tree walker
3970 ** to determine if an expression can be evaluated by reference to the
3971 ** index only, without having to do a search for the corresponding
3972 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
3973 ** is the cursor for the table.
3974 */
3975 struct IdxCover {
3976   Index *pIdx;     /* The index to be tested for coverage */
3977   int iCur;        /* Cursor number for the table corresponding to the index */
3978 };
3979 
3980 /*
3981 ** Check to see if there are references to columns in table
3982 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
3983 ** pWalker->u.pIdxCover->pIdx.
3984 */
3985 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
3986   if( pExpr->op==TK_COLUMN
3987    && pExpr->iTable==pWalker->u.pIdxCover->iCur
3988    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
3989   ){
3990     pWalker->eCode = 1;
3991     return WRC_Abort;
3992   }
3993   return WRC_Continue;
3994 }
3995 
3996 /*
3997 ** Determine if an index pIdx on table with cursor iCur contains will
3998 ** the expression pExpr.  Return true if the index does cover the
3999 ** expression and false if the pExpr expression references table columns
4000 ** that are not found in the index pIdx.
4001 **
4002 ** An index covering an expression means that the expression can be
4003 ** evaluated using only the index and without having to lookup the
4004 ** corresponding table entry.
4005 */
4006 int sqlite3ExprCoveredByIndex(
4007   Expr *pExpr,        /* The index to be tested */
4008   int iCur,           /* The cursor number for the corresponding table */
4009   Index *pIdx         /* The index that might be used for coverage */
4010 ){
4011   Walker w;
4012   struct IdxCover xcov;
4013   memset(&w, 0, sizeof(w));
4014   xcov.iCur = iCur;
4015   xcov.pIdx = pIdx;
4016   w.xExprCallback = exprIdxCover;
4017   w.u.pIdxCover = &xcov;
4018   sqlite3WalkExpr(&w, pExpr);
4019   return !w.eCode;
4020 }
4021 
4022 
4023 /*
4024 ** An instance of the following structure is used by the tree walker
4025 ** to count references to table columns in the arguments of an
4026 ** aggregate function, in order to implement the
4027 ** sqlite3FunctionThisSrc() routine.
4028 */
4029 struct SrcCount {
4030   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4031   int nThis;       /* Number of references to columns in pSrcList */
4032   int nOther;      /* Number of references to columns in other FROM clauses */
4033 };
4034 
4035 /*
4036 ** Count the number of references to columns.
4037 */
4038 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4039   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4040   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4041   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4042   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4043   ** NEVER() will need to be removed. */
4044   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4045     int i;
4046     struct SrcCount *p = pWalker->u.pSrcCount;
4047     SrcList *pSrc = p->pSrc;
4048     int nSrc = pSrc ? pSrc->nSrc : 0;
4049     for(i=0; i<nSrc; i++){
4050       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4051     }
4052     if( i<nSrc ){
4053       p->nThis++;
4054     }else{
4055       p->nOther++;
4056     }
4057   }
4058   return WRC_Continue;
4059 }
4060 
4061 /*
4062 ** Determine if any of the arguments to the pExpr Function reference
4063 ** pSrcList.  Return true if they do.  Also return true if the function
4064 ** has no arguments or has only constant arguments.  Return false if pExpr
4065 ** references columns but not columns of tables found in pSrcList.
4066 */
4067 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4068   Walker w;
4069   struct SrcCount cnt;
4070   assert( pExpr->op==TK_AGG_FUNCTION );
4071   memset(&w, 0, sizeof(w));
4072   w.xExprCallback = exprSrcCount;
4073   w.u.pSrcCount = &cnt;
4074   cnt.pSrc = pSrcList;
4075   cnt.nThis = 0;
4076   cnt.nOther = 0;
4077   sqlite3WalkExprList(&w, pExpr->x.pList);
4078   return cnt.nThis>0 || cnt.nOther==0;
4079 }
4080 
4081 /*
4082 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4083 ** the new element.  Return a negative number if malloc fails.
4084 */
4085 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4086   int i;
4087   pInfo->aCol = sqlite3ArrayAllocate(
4088        db,
4089        pInfo->aCol,
4090        sizeof(pInfo->aCol[0]),
4091        &pInfo->nColumn,
4092        &i
4093   );
4094   return i;
4095 }
4096 
4097 /*
4098 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4099 ** the new element.  Return a negative number if malloc fails.
4100 */
4101 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4102   int i;
4103   pInfo->aFunc = sqlite3ArrayAllocate(
4104        db,
4105        pInfo->aFunc,
4106        sizeof(pInfo->aFunc[0]),
4107        &pInfo->nFunc,
4108        &i
4109   );
4110   return i;
4111 }
4112 
4113 /*
4114 ** This is the xExprCallback for a tree walker.  It is used to
4115 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4116 ** for additional information.
4117 */
4118 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4119   int i;
4120   NameContext *pNC = pWalker->u.pNC;
4121   Parse *pParse = pNC->pParse;
4122   SrcList *pSrcList = pNC->pSrcList;
4123   AggInfo *pAggInfo = pNC->pAggInfo;
4124 
4125   switch( pExpr->op ){
4126     case TK_AGG_COLUMN:
4127     case TK_COLUMN: {
4128       testcase( pExpr->op==TK_AGG_COLUMN );
4129       testcase( pExpr->op==TK_COLUMN );
4130       /* Check to see if the column is in one of the tables in the FROM
4131       ** clause of the aggregate query */
4132       if( ALWAYS(pSrcList!=0) ){
4133         struct SrcList_item *pItem = pSrcList->a;
4134         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4135           struct AggInfo_col *pCol;
4136           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4137           if( pExpr->iTable==pItem->iCursor ){
4138             /* If we reach this point, it means that pExpr refers to a table
4139             ** that is in the FROM clause of the aggregate query.
4140             **
4141             ** Make an entry for the column in pAggInfo->aCol[] if there
4142             ** is not an entry there already.
4143             */
4144             int k;
4145             pCol = pAggInfo->aCol;
4146             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4147               if( pCol->iTable==pExpr->iTable &&
4148                   pCol->iColumn==pExpr->iColumn ){
4149                 break;
4150               }
4151             }
4152             if( (k>=pAggInfo->nColumn)
4153              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4154             ){
4155               pCol = &pAggInfo->aCol[k];
4156               pCol->pTab = pExpr->pTab;
4157               pCol->iTable = pExpr->iTable;
4158               pCol->iColumn = pExpr->iColumn;
4159               pCol->iMem = ++pParse->nMem;
4160               pCol->iSorterColumn = -1;
4161               pCol->pExpr = pExpr;
4162               if( pAggInfo->pGroupBy ){
4163                 int j, n;
4164                 ExprList *pGB = pAggInfo->pGroupBy;
4165                 struct ExprList_item *pTerm = pGB->a;
4166                 n = pGB->nExpr;
4167                 for(j=0; j<n; j++, pTerm++){
4168                   Expr *pE = pTerm->pExpr;
4169                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4170                       pE->iColumn==pExpr->iColumn ){
4171                     pCol->iSorterColumn = j;
4172                     break;
4173                   }
4174                 }
4175               }
4176               if( pCol->iSorterColumn<0 ){
4177                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4178               }
4179             }
4180             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4181             ** because it was there before or because we just created it).
4182             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4183             ** pAggInfo->aCol[] entry.
4184             */
4185             ExprSetVVAProperty(pExpr, EP_NoReduce);
4186             pExpr->pAggInfo = pAggInfo;
4187             pExpr->op = TK_AGG_COLUMN;
4188             pExpr->iAgg = (i16)k;
4189             break;
4190           } /* endif pExpr->iTable==pItem->iCursor */
4191         } /* end loop over pSrcList */
4192       }
4193       return WRC_Prune;
4194     }
4195     case TK_AGG_FUNCTION: {
4196       if( (pNC->ncFlags & NC_InAggFunc)==0
4197        && pWalker->walkerDepth==pExpr->op2
4198       ){
4199         /* Check to see if pExpr is a duplicate of another aggregate
4200         ** function that is already in the pAggInfo structure
4201         */
4202         struct AggInfo_func *pItem = pAggInfo->aFunc;
4203         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4204           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4205             break;
4206           }
4207         }
4208         if( i>=pAggInfo->nFunc ){
4209           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4210           */
4211           u8 enc = ENC(pParse->db);
4212           i = addAggInfoFunc(pParse->db, pAggInfo);
4213           if( i>=0 ){
4214             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4215             pItem = &pAggInfo->aFunc[i];
4216             pItem->pExpr = pExpr;
4217             pItem->iMem = ++pParse->nMem;
4218             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4219             pItem->pFunc = sqlite3FindFunction(pParse->db,
4220                    pExpr->u.zToken,
4221                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4222             if( pExpr->flags & EP_Distinct ){
4223               pItem->iDistinct = pParse->nTab++;
4224             }else{
4225               pItem->iDistinct = -1;
4226             }
4227           }
4228         }
4229         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4230         */
4231         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4232         ExprSetVVAProperty(pExpr, EP_NoReduce);
4233         pExpr->iAgg = (i16)i;
4234         pExpr->pAggInfo = pAggInfo;
4235         return WRC_Prune;
4236       }else{
4237         return WRC_Continue;
4238       }
4239     }
4240   }
4241   return WRC_Continue;
4242 }
4243 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4244   UNUSED_PARAMETER(pWalker);
4245   UNUSED_PARAMETER(pSelect);
4246   return WRC_Continue;
4247 }
4248 
4249 /*
4250 ** Analyze the pExpr expression looking for aggregate functions and
4251 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4252 ** points to.  Additional entries are made on the AggInfo object as
4253 ** necessary.
4254 **
4255 ** This routine should only be called after the expression has been
4256 ** analyzed by sqlite3ResolveExprNames().
4257 */
4258 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4259   Walker w;
4260   memset(&w, 0, sizeof(w));
4261   w.xExprCallback = analyzeAggregate;
4262   w.xSelectCallback = analyzeAggregatesInSelect;
4263   w.u.pNC = pNC;
4264   assert( pNC->pSrcList!=0 );
4265   sqlite3WalkExpr(&w, pExpr);
4266 }
4267 
4268 /*
4269 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4270 ** expression list.  Return the number of errors.
4271 **
4272 ** If an error is found, the analysis is cut short.
4273 */
4274 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4275   struct ExprList_item *pItem;
4276   int i;
4277   if( pList ){
4278     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4279       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4280     }
4281   }
4282 }
4283 
4284 /*
4285 ** Allocate a single new register for use to hold some intermediate result.
4286 */
4287 int sqlite3GetTempReg(Parse *pParse){
4288   if( pParse->nTempReg==0 ){
4289     return ++pParse->nMem;
4290   }
4291   return pParse->aTempReg[--pParse->nTempReg];
4292 }
4293 
4294 /*
4295 ** Deallocate a register, making available for reuse for some other
4296 ** purpose.
4297 **
4298 ** If a register is currently being used by the column cache, then
4299 ** the deallocation is deferred until the column cache line that uses
4300 ** the register becomes stale.
4301 */
4302 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4303   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4304     int i;
4305     struct yColCache *p;
4306     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4307       if( p->iReg==iReg ){
4308         p->tempReg = 1;
4309         return;
4310       }
4311     }
4312     pParse->aTempReg[pParse->nTempReg++] = iReg;
4313   }
4314 }
4315 
4316 /*
4317 ** Allocate or deallocate a block of nReg consecutive registers
4318 */
4319 int sqlite3GetTempRange(Parse *pParse, int nReg){
4320   int i, n;
4321   i = pParse->iRangeReg;
4322   n = pParse->nRangeReg;
4323   if( nReg<=n ){
4324     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4325     pParse->iRangeReg += nReg;
4326     pParse->nRangeReg -= nReg;
4327   }else{
4328     i = pParse->nMem+1;
4329     pParse->nMem += nReg;
4330   }
4331   return i;
4332 }
4333 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4334   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4335   if( nReg>pParse->nRangeReg ){
4336     pParse->nRangeReg = nReg;
4337     pParse->iRangeReg = iReg;
4338   }
4339 }
4340 
4341 /*
4342 ** Mark all temporary registers as being unavailable for reuse.
4343 */
4344 void sqlite3ClearTempRegCache(Parse *pParse){
4345   pParse->nTempReg = 0;
4346   pParse->nRangeReg = 0;
4347 }
4348 
4349 /*
4350 ** Validate that no temporary register falls within the range of
4351 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
4352 ** statements.
4353 */
4354 #ifdef SQLITE_DEBUG
4355 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
4356   int i;
4357   if( pParse->nRangeReg>0
4358    && pParse->iRangeReg+pParse->nRangeReg<iLast
4359    && pParse->iRangeReg>=iFirst
4360   ){
4361      return 0;
4362   }
4363   for(i=0; i<pParse->nTempReg; i++){
4364     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
4365       return 0;
4366     }
4367   }
4368   return 1;
4369 }
4370 #endif /* SQLITE_DEBUG */
4371