xref: /sqlite-3.40.0/src/expr.c (revision 5130c31b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op = pExpr->op;
35   if( op==TK_SELECT ){
36     assert( pExpr->flags&EP_xIsSelect );
37     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38   }
39 #ifndef SQLITE_OMIT_CAST
40   if( op==TK_CAST ){
41     assert( !ExprHasProperty(pExpr, EP_IntValue) );
42     return sqlite3AffinityType(pExpr->u.zToken);
43   }
44 #endif
45   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46    && pExpr->pTab!=0
47   ){
48     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49     ** a TK_COLUMN but was previously evaluated and cached in a register */
50     int j = pExpr->iColumn;
51     if( j<0 ) return SQLITE_AFF_INTEGER;
52     assert( pExpr->pTab && j<pExpr->pTab->nCol );
53     return pExpr->pTab->aCol[j].affinity;
54   }
55   return pExpr->affinity;
56 }
57 
58 /*
59 ** Set the collating sequence for expression pExpr to be the collating
60 ** sequence named by pToken.   Return a pointer to the revised expression.
61 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
62 ** flag.  An explicit collating sequence will override implicit
63 ** collating sequences.
64 */
65 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
66   char *zColl = 0;            /* Dequoted name of collation sequence */
67   CollSeq *pColl;
68   sqlite3 *db = pParse->db;
69   zColl = sqlite3NameFromToken(db, pCollName);
70   if( pExpr && zColl ){
71     pColl = sqlite3LocateCollSeq(pParse, zColl);
72     if( pColl ){
73       pExpr->pColl = pColl;
74       pExpr->flags |= EP_ExpCollate;
75     }
76   }
77   sqlite3DbFree(db, zColl);
78   return pExpr;
79 }
80 
81 /*
82 ** Return the default collation sequence for the expression pExpr. If
83 ** there is no default collation type, return 0.
84 */
85 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
86   CollSeq *pColl = 0;
87   Expr *p = pExpr;
88   while( ALWAYS(p) ){
89     int op;
90     pColl = p->pColl;
91     if( pColl ) break;
92     op = p->op;
93     if( p->pTab!=0 && (
94         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
95     )){
96       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
97       ** a TK_COLUMN but was previously evaluated and cached in a register */
98       const char *zColl;
99       int j = p->iColumn;
100       if( j>=0 ){
101         sqlite3 *db = pParse->db;
102         zColl = p->pTab->aCol[j].zColl;
103         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
104         pExpr->pColl = pColl;
105       }
106       break;
107     }
108     if( op!=TK_CAST && op!=TK_UPLUS ){
109       break;
110     }
111     p = p->pLeft;
112   }
113   if( sqlite3CheckCollSeq(pParse, pColl) ){
114     pColl = 0;
115   }
116   return pColl;
117 }
118 
119 /*
120 ** pExpr is an operand of a comparison operator.  aff2 is the
121 ** type affinity of the other operand.  This routine returns the
122 ** type affinity that should be used for the comparison operator.
123 */
124 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
125   char aff1 = sqlite3ExprAffinity(pExpr);
126   if( aff1 && aff2 ){
127     /* Both sides of the comparison are columns. If one has numeric
128     ** affinity, use that. Otherwise use no affinity.
129     */
130     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
131       return SQLITE_AFF_NUMERIC;
132     }else{
133       return SQLITE_AFF_NONE;
134     }
135   }else if( !aff1 && !aff2 ){
136     /* Neither side of the comparison is a column.  Compare the
137     ** results directly.
138     */
139     return SQLITE_AFF_NONE;
140   }else{
141     /* One side is a column, the other is not. Use the columns affinity. */
142     assert( aff1==0 || aff2==0 );
143     return (aff1 + aff2);
144   }
145 }
146 
147 /*
148 ** pExpr is a comparison operator.  Return the type affinity that should
149 ** be applied to both operands prior to doing the comparison.
150 */
151 static char comparisonAffinity(Expr *pExpr){
152   char aff;
153   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
154           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
155           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
156   assert( pExpr->pLeft );
157   aff = sqlite3ExprAffinity(pExpr->pLeft);
158   if( pExpr->pRight ){
159     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
160   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
161     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
162   }else if( !aff ){
163     aff = SQLITE_AFF_NONE;
164   }
165   return aff;
166 }
167 
168 /*
169 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
170 ** idx_affinity is the affinity of an indexed column. Return true
171 ** if the index with affinity idx_affinity may be used to implement
172 ** the comparison in pExpr.
173 */
174 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
175   char aff = comparisonAffinity(pExpr);
176   switch( aff ){
177     case SQLITE_AFF_NONE:
178       return 1;
179     case SQLITE_AFF_TEXT:
180       return idx_affinity==SQLITE_AFF_TEXT;
181     default:
182       return sqlite3IsNumericAffinity(idx_affinity);
183   }
184 }
185 
186 /*
187 ** Return the P5 value that should be used for a binary comparison
188 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
189 */
190 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
191   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
192   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
193   return aff;
194 }
195 
196 /*
197 ** Return a pointer to the collation sequence that should be used by
198 ** a binary comparison operator comparing pLeft and pRight.
199 **
200 ** If the left hand expression has a collating sequence type, then it is
201 ** used. Otherwise the collation sequence for the right hand expression
202 ** is used, or the default (BINARY) if neither expression has a collating
203 ** type.
204 **
205 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
206 ** it is not considered.
207 */
208 CollSeq *sqlite3BinaryCompareCollSeq(
209   Parse *pParse,
210   Expr *pLeft,
211   Expr *pRight
212 ){
213   CollSeq *pColl;
214   assert( pLeft );
215   if( pLeft->flags & EP_ExpCollate ){
216     assert( pLeft->pColl );
217     pColl = pLeft->pColl;
218   }else if( pRight && pRight->flags & EP_ExpCollate ){
219     assert( pRight->pColl );
220     pColl = pRight->pColl;
221   }else{
222     pColl = sqlite3ExprCollSeq(pParse, pLeft);
223     if( !pColl ){
224       pColl = sqlite3ExprCollSeq(pParse, pRight);
225     }
226   }
227   return pColl;
228 }
229 
230 /*
231 ** Generate code for a comparison operator.
232 */
233 static int codeCompare(
234   Parse *pParse,    /* The parsing (and code generating) context */
235   Expr *pLeft,      /* The left operand */
236   Expr *pRight,     /* The right operand */
237   int opcode,       /* The comparison opcode */
238   int in1, int in2, /* Register holding operands */
239   int dest,         /* Jump here if true.  */
240   int jumpIfNull    /* If true, jump if either operand is NULL */
241 ){
242   int p5;
243   int addr;
244   CollSeq *p4;
245 
246   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
247   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
248   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
249                            (void*)p4, P4_COLLSEQ);
250   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
251   return addr;
252 }
253 
254 #if SQLITE_MAX_EXPR_DEPTH>0
255 /*
256 ** Check that argument nHeight is less than or equal to the maximum
257 ** expression depth allowed. If it is not, leave an error message in
258 ** pParse.
259 */
260 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
261   int rc = SQLITE_OK;
262   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
263   if( nHeight>mxHeight ){
264     sqlite3ErrorMsg(pParse,
265        "Expression tree is too large (maximum depth %d)", mxHeight
266     );
267     rc = SQLITE_ERROR;
268   }
269   return rc;
270 }
271 
272 /* The following three functions, heightOfExpr(), heightOfExprList()
273 ** and heightOfSelect(), are used to determine the maximum height
274 ** of any expression tree referenced by the structure passed as the
275 ** first argument.
276 **
277 ** If this maximum height is greater than the current value pointed
278 ** to by pnHeight, the second parameter, then set *pnHeight to that
279 ** value.
280 */
281 static void heightOfExpr(Expr *p, int *pnHeight){
282   if( p ){
283     if( p->nHeight>*pnHeight ){
284       *pnHeight = p->nHeight;
285     }
286   }
287 }
288 static void heightOfExprList(ExprList *p, int *pnHeight){
289   if( p ){
290     int i;
291     for(i=0; i<p->nExpr; i++){
292       heightOfExpr(p->a[i].pExpr, pnHeight);
293     }
294   }
295 }
296 static void heightOfSelect(Select *p, int *pnHeight){
297   if( p ){
298     heightOfExpr(p->pWhere, pnHeight);
299     heightOfExpr(p->pHaving, pnHeight);
300     heightOfExpr(p->pLimit, pnHeight);
301     heightOfExpr(p->pOffset, pnHeight);
302     heightOfExprList(p->pEList, pnHeight);
303     heightOfExprList(p->pGroupBy, pnHeight);
304     heightOfExprList(p->pOrderBy, pnHeight);
305     heightOfSelect(p->pPrior, pnHeight);
306   }
307 }
308 
309 /*
310 ** Set the Expr.nHeight variable in the structure passed as an
311 ** argument. An expression with no children, Expr.pList or
312 ** Expr.pSelect member has a height of 1. Any other expression
313 ** has a height equal to the maximum height of any other
314 ** referenced Expr plus one.
315 */
316 static void exprSetHeight(Expr *p){
317   int nHeight = 0;
318   heightOfExpr(p->pLeft, &nHeight);
319   heightOfExpr(p->pRight, &nHeight);
320   if( ExprHasProperty(p, EP_xIsSelect) ){
321     heightOfSelect(p->x.pSelect, &nHeight);
322   }else{
323     heightOfExprList(p->x.pList, &nHeight);
324   }
325   p->nHeight = nHeight + 1;
326 }
327 
328 /*
329 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
330 ** the height is greater than the maximum allowed expression depth,
331 ** leave an error in pParse.
332 */
333 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
334   exprSetHeight(p);
335   sqlite3ExprCheckHeight(pParse, p->nHeight);
336 }
337 
338 /*
339 ** Return the maximum height of any expression tree referenced
340 ** by the select statement passed as an argument.
341 */
342 int sqlite3SelectExprHeight(Select *p){
343   int nHeight = 0;
344   heightOfSelect(p, &nHeight);
345   return nHeight;
346 }
347 #else
348   #define exprSetHeight(y)
349 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
350 
351 /*
352 ** This routine is the core allocator for Expr nodes.
353 **
354 ** Construct a new expression node and return a pointer to it.  Memory
355 ** for this node and for the pToken argument is a single allocation
356 ** obtained from sqlite3DbMalloc().  The calling function
357 ** is responsible for making sure the node eventually gets freed.
358 **
359 ** If dequote is true, then the token (if it exists) is dequoted.
360 ** If dequote is false, no dequoting is performance.  The deQuote
361 ** parameter is ignored if pToken is NULL or if the token does not
362 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
363 ** then the EP_DblQuoted flag is set on the expression node.
364 **
365 ** Special case:  If op==TK_INTEGER and pToken points to a string that
366 ** can be translated into a 32-bit integer, then the token is not
367 ** stored in u.zToken.  Instead, the integer values is written
368 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
369 ** is allocated to hold the integer text and the dequote flag is ignored.
370 */
371 Expr *sqlite3ExprAlloc(
372   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
373   int op,                 /* Expression opcode */
374   const Token *pToken,    /* Token argument.  Might be NULL */
375   int dequote             /* True to dequote */
376 ){
377   Expr *pNew;
378   int nExtra = 0;
379   int iValue = 0;
380 
381   if( pToken ){
382     if( op!=TK_INTEGER || pToken->z==0
383           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
384       nExtra = pToken->n+1;
385     }
386   }
387   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
388   if( pNew ){
389     pNew->op = (u8)op;
390     pNew->iAgg = -1;
391     if( pToken ){
392       if( nExtra==0 ){
393         pNew->flags |= EP_IntValue;
394         pNew->u.iValue = iValue;
395       }else{
396         int c;
397         pNew->u.zToken = (char*)&pNew[1];
398         memcpy(pNew->u.zToken, pToken->z, pToken->n);
399         pNew->u.zToken[pToken->n] = 0;
400         if( dequote && nExtra>=3
401              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
402           sqlite3Dequote(pNew->u.zToken);
403           if( c=='"' ) pNew->flags |= EP_DblQuoted;
404         }
405       }
406     }
407 #if SQLITE_MAX_EXPR_DEPTH>0
408     pNew->nHeight = 1;
409 #endif
410   }
411   return pNew;
412 }
413 
414 /*
415 ** Allocate a new expression node from a zero-terminated token that has
416 ** already been dequoted.
417 */
418 Expr *sqlite3Expr(
419   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
420   int op,                 /* Expression opcode */
421   const char *zToken      /* Token argument.  Might be NULL */
422 ){
423   Token x;
424   x.z = zToken;
425   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
426   return sqlite3ExprAlloc(db, op, &x, 0);
427 }
428 
429 /*
430 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
431 **
432 ** If pRoot==NULL that means that a memory allocation error has occurred.
433 ** In that case, delete the subtrees pLeft and pRight.
434 */
435 void sqlite3ExprAttachSubtrees(
436   sqlite3 *db,
437   Expr *pRoot,
438   Expr *pLeft,
439   Expr *pRight
440 ){
441   if( pRoot==0 ){
442     assert( db->mallocFailed );
443     sqlite3ExprDelete(db, pLeft);
444     sqlite3ExprDelete(db, pRight);
445   }else{
446     if( pRight ){
447       pRoot->pRight = pRight;
448       if( pRight->flags & EP_ExpCollate ){
449         pRoot->flags |= EP_ExpCollate;
450         pRoot->pColl = pRight->pColl;
451       }
452     }
453     if( pLeft ){
454       pRoot->pLeft = pLeft;
455       if( pLeft->flags & EP_ExpCollate ){
456         pRoot->flags |= EP_ExpCollate;
457         pRoot->pColl = pLeft->pColl;
458       }
459     }
460     exprSetHeight(pRoot);
461   }
462 }
463 
464 /*
465 ** Allocate a Expr node which joins as many as two subtrees.
466 **
467 ** One or both of the subtrees can be NULL.  Return a pointer to the new
468 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
469 ** free the subtrees and return NULL.
470 */
471 Expr *sqlite3PExpr(
472   Parse *pParse,          /* Parsing context */
473   int op,                 /* Expression opcode */
474   Expr *pLeft,            /* Left operand */
475   Expr *pRight,           /* Right operand */
476   const Token *pToken     /* Argument token */
477 ){
478   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
479   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
480   return p;
481 }
482 
483 /*
484 ** Join two expressions using an AND operator.  If either expression is
485 ** NULL, then just return the other expression.
486 */
487 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
488   if( pLeft==0 ){
489     return pRight;
490   }else if( pRight==0 ){
491     return pLeft;
492   }else{
493     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
494     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
495     return pNew;
496   }
497 }
498 
499 /*
500 ** Construct a new expression node for a function with multiple
501 ** arguments.
502 */
503 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
504   Expr *pNew;
505   sqlite3 *db = pParse->db;
506   assert( pToken );
507   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
508   if( pNew==0 ){
509     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
510     return 0;
511   }
512   pNew->x.pList = pList;
513   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
514   sqlite3ExprSetHeight(pParse, pNew);
515   return pNew;
516 }
517 
518 /*
519 ** Assign a variable number to an expression that encodes a wildcard
520 ** in the original SQL statement.
521 **
522 ** Wildcards consisting of a single "?" are assigned the next sequential
523 ** variable number.
524 **
525 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
526 ** sure "nnn" is not too be to avoid a denial of service attack when
527 ** the SQL statement comes from an external source.
528 **
529 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
530 ** as the previous instance of the same wildcard.  Or if this is the first
531 ** instance of the wildcard, the next sequenial variable number is
532 ** assigned.
533 */
534 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
535   sqlite3 *db = pParse->db;
536   const char *z;
537 
538   if( pExpr==0 ) return;
539   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
540   z = pExpr->u.zToken;
541   assert( z!=0 );
542   assert( z[0]!=0 );
543   if( z[1]==0 ){
544     /* Wildcard of the form "?".  Assign the next variable number */
545     assert( z[0]=='?' );
546     pExpr->iColumn = (ynVar)(++pParse->nVar);
547   }else if( z[0]=='?' ){
548     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
549     ** use it as the variable number */
550     int i = atoi((char*)&z[1]);
551     pExpr->iColumn = (ynVar)i;
552     testcase( i==0 );
553     testcase( i==1 );
554     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
555     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
556     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
557       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
558           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
559     }
560     if( i>pParse->nVar ){
561       pParse->nVar = i;
562     }
563   }else{
564     /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
565     ** number as the prior appearance of the same name, or if the name
566     ** has never appeared before, reuse the same variable number
567     */
568     int i;
569     u32 n;
570     n = sqlite3Strlen30(z);
571     for(i=0; i<pParse->nVarExpr; i++){
572       Expr *pE = pParse->apVarExpr[i];
573       assert( pE!=0 );
574       if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
575         pExpr->iColumn = pE->iColumn;
576         break;
577       }
578     }
579     if( i>=pParse->nVarExpr ){
580       pExpr->iColumn = (ynVar)(++pParse->nVar);
581       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
582         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
583         pParse->apVarExpr =
584             sqlite3DbReallocOrFree(
585               db,
586               pParse->apVarExpr,
587               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
588             );
589       }
590       if( !db->mallocFailed ){
591         assert( pParse->apVarExpr!=0 );
592         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
593       }
594     }
595   }
596   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
597     sqlite3ErrorMsg(pParse, "too many SQL variables");
598   }
599 }
600 
601 /*
602 ** Recursively delete an expression tree.
603 */
604 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
605   if( p==0 ) return;
606   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
607     sqlite3ExprDelete(db, p->pLeft);
608     sqlite3ExprDelete(db, p->pRight);
609     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
610       sqlite3DbFree(db, p->u.zToken);
611     }
612     if( ExprHasProperty(p, EP_xIsSelect) ){
613       sqlite3SelectDelete(db, p->x.pSelect);
614     }else{
615       sqlite3ExprListDelete(db, p->x.pList);
616     }
617   }
618   if( !ExprHasProperty(p, EP_Static) ){
619     sqlite3DbFree(db, p);
620   }
621 }
622 
623 /*
624 ** Return the number of bytes allocated for the expression structure
625 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
626 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
627 */
628 static int exprStructSize(Expr *p){
629   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
630   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
631   return EXPR_FULLSIZE;
632 }
633 
634 /*
635 ** The dupedExpr*Size() routines each return the number of bytes required
636 ** to store a copy of an expression or expression tree.  They differ in
637 ** how much of the tree is measured.
638 **
639 **     dupedExprStructSize()     Size of only the Expr structure
640 **     dupedExprNodeSize()       Size of Expr + space for token
641 **     dupedExprSize()           Expr + token + subtree components
642 **
643 ***************************************************************************
644 **
645 ** The dupedExprStructSize() function returns two values OR-ed together:
646 ** (1) the space required for a copy of the Expr structure only and
647 ** (2) the EP_xxx flags that indicate what the structure size should be.
648 ** The return values is always one of:
649 **
650 **      EXPR_FULLSIZE
651 **      EXPR_REDUCEDSIZE   | EP_Reduced
652 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
653 **
654 ** The size of the structure can be found by masking the return value
655 ** of this routine with 0xfff.  The flags can be found by masking the
656 ** return value with EP_Reduced|EP_TokenOnly.
657 **
658 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
659 ** (unreduced) Expr objects as they or originally constructed by the parser.
660 ** During expression analysis, extra information is computed and moved into
661 ** later parts of teh Expr object and that extra information might get chopped
662 ** off if the expression is reduced.  Note also that it does not work to
663 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
664 ** to reduce a pristine expression tree from the parser.  The implementation
665 ** of dupedExprStructSize() contain multiple assert() statements that attempt
666 ** to enforce this constraint.
667 */
668 static int dupedExprStructSize(Expr *p, int flags){
669   int nSize;
670   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
671   if( 0==(flags&EXPRDUP_REDUCE) ){
672     nSize = EXPR_FULLSIZE;
673   }else{
674     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
675     assert( !ExprHasProperty(p, EP_FromJoin) );
676     assert( (p->flags2 & EP2_MallocedToken)==0 );
677     assert( (p->flags2 & EP2_Irreducible)==0 );
678     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
679       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
680     }else{
681       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
682     }
683   }
684   return nSize;
685 }
686 
687 /*
688 ** This function returns the space in bytes required to store the copy
689 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
690 ** string is defined.)
691 */
692 static int dupedExprNodeSize(Expr *p, int flags){
693   int nByte = dupedExprStructSize(p, flags) & 0xfff;
694   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
695     nByte += sqlite3Strlen30(p->u.zToken)+1;
696   }
697   return ROUND8(nByte);
698 }
699 
700 /*
701 ** Return the number of bytes required to create a duplicate of the
702 ** expression passed as the first argument. The second argument is a
703 ** mask containing EXPRDUP_XXX flags.
704 **
705 ** The value returned includes space to create a copy of the Expr struct
706 ** itself and the buffer referred to by Expr.u.zToken, if any.
707 **
708 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
709 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
710 ** and Expr.pRight variables (but not for any structures pointed to or
711 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
712 */
713 static int dupedExprSize(Expr *p, int flags){
714   int nByte = 0;
715   if( p ){
716     nByte = dupedExprNodeSize(p, flags);
717     if( flags&EXPRDUP_REDUCE ){
718       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
719     }
720   }
721   return nByte;
722 }
723 
724 /*
725 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
726 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
727 ** to store the copy of expression p, the copies of p->u.zToken
728 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
729 ** if any. Before returning, *pzBuffer is set to the first byte passed the
730 ** portion of the buffer copied into by this function.
731 */
732 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
733   Expr *pNew = 0;                      /* Value to return */
734   if( p ){
735     const int isReduced = (flags&EXPRDUP_REDUCE);
736     u8 *zAlloc;
737     u32 staticFlag = 0;
738 
739     assert( pzBuffer==0 || isReduced );
740 
741     /* Figure out where to write the new Expr structure. */
742     if( pzBuffer ){
743       zAlloc = *pzBuffer;
744       staticFlag = EP_Static;
745     }else{
746       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
747     }
748     pNew = (Expr *)zAlloc;
749 
750     if( pNew ){
751       /* Set nNewSize to the size allocated for the structure pointed to
752       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
753       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
754       ** by the copy of the p->u.zToken string (if any).
755       */
756       const unsigned nStructSize = dupedExprStructSize(p, flags);
757       const int nNewSize = nStructSize & 0xfff;
758       int nToken;
759       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
760         nToken = sqlite3Strlen30(p->u.zToken) + 1;
761       }else{
762         nToken = 0;
763       }
764       if( isReduced ){
765         assert( ExprHasProperty(p, EP_Reduced)==0 );
766         memcpy(zAlloc, p, nNewSize);
767       }else{
768         int nSize = exprStructSize(p);
769         memcpy(zAlloc, p, nSize);
770         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
771       }
772 
773       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
774       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
775       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
776       pNew->flags |= staticFlag;
777 
778       /* Copy the p->u.zToken string, if any. */
779       if( nToken ){
780         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
781         memcpy(zToken, p->u.zToken, nToken);
782       }
783 
784       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
785         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
786         if( ExprHasProperty(p, EP_xIsSelect) ){
787           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
788         }else{
789           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
790         }
791       }
792 
793       /* Fill in pNew->pLeft and pNew->pRight. */
794       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
795         zAlloc += dupedExprNodeSize(p, flags);
796         if( ExprHasProperty(pNew, EP_Reduced) ){
797           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
798           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
799         }
800         if( pzBuffer ){
801           *pzBuffer = zAlloc;
802         }
803       }else{
804         pNew->flags2 = 0;
805         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
806           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
807           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
808         }
809       }
810 
811     }
812   }
813   return pNew;
814 }
815 
816 /*
817 ** The following group of routines make deep copies of expressions,
818 ** expression lists, ID lists, and select statements.  The copies can
819 ** be deleted (by being passed to their respective ...Delete() routines)
820 ** without effecting the originals.
821 **
822 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
823 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
824 ** by subsequent calls to sqlite*ListAppend() routines.
825 **
826 ** Any tables that the SrcList might point to are not duplicated.
827 **
828 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
829 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
830 ** truncated version of the usual Expr structure that will be stored as
831 ** part of the in-memory representation of the database schema.
832 */
833 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
834   return exprDup(db, p, flags, 0);
835 }
836 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
837   ExprList *pNew;
838   struct ExprList_item *pItem, *pOldItem;
839   int i;
840   if( p==0 ) return 0;
841   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
842   if( pNew==0 ) return 0;
843   pNew->iECursor = 0;
844   pNew->nExpr = pNew->nAlloc = p->nExpr;
845   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
846   if( pItem==0 ){
847     sqlite3DbFree(db, pNew);
848     return 0;
849   }
850   pOldItem = p->a;
851   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
852     Expr *pOldExpr = pOldItem->pExpr;
853     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
854     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
855     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
856     pItem->sortOrder = pOldItem->sortOrder;
857     pItem->done = 0;
858     pItem->iCol = pOldItem->iCol;
859     pItem->iAlias = pOldItem->iAlias;
860   }
861   return pNew;
862 }
863 
864 /*
865 ** If cursors, triggers, views and subqueries are all omitted from
866 ** the build, then none of the following routines, except for
867 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
868 ** called with a NULL argument.
869 */
870 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
871  || !defined(SQLITE_OMIT_SUBQUERY)
872 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
873   SrcList *pNew;
874   int i;
875   int nByte;
876   if( p==0 ) return 0;
877   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
878   pNew = sqlite3DbMallocRaw(db, nByte );
879   if( pNew==0 ) return 0;
880   pNew->nSrc = pNew->nAlloc = p->nSrc;
881   for(i=0; i<p->nSrc; i++){
882     struct SrcList_item *pNewItem = &pNew->a[i];
883     struct SrcList_item *pOldItem = &p->a[i];
884     Table *pTab;
885     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
886     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
887     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
888     pNewItem->jointype = pOldItem->jointype;
889     pNewItem->iCursor = pOldItem->iCursor;
890     pNewItem->isPopulated = pOldItem->isPopulated;
891     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
892     pNewItem->notIndexed = pOldItem->notIndexed;
893     pNewItem->pIndex = pOldItem->pIndex;
894     pTab = pNewItem->pTab = pOldItem->pTab;
895     if( pTab ){
896       pTab->nRef++;
897     }
898     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
899     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
900     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
901     pNewItem->colUsed = pOldItem->colUsed;
902   }
903   return pNew;
904 }
905 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
906   IdList *pNew;
907   int i;
908   if( p==0 ) return 0;
909   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
910   if( pNew==0 ) return 0;
911   pNew->nId = pNew->nAlloc = p->nId;
912   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
913   if( pNew->a==0 ){
914     sqlite3DbFree(db, pNew);
915     return 0;
916   }
917   for(i=0; i<p->nId; i++){
918     struct IdList_item *pNewItem = &pNew->a[i];
919     struct IdList_item *pOldItem = &p->a[i];
920     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
921     pNewItem->idx = pOldItem->idx;
922   }
923   return pNew;
924 }
925 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
926   Select *pNew;
927   if( p==0 ) return 0;
928   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
929   if( pNew==0 ) return 0;
930   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
931   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
932   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
933   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
934   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
935   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
936   pNew->op = p->op;
937   pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
938   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
939   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
940   pNew->iLimit = 0;
941   pNew->iOffset = 0;
942   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
943   pNew->pRightmost = 0;
944   pNew->addrOpenEphm[0] = -1;
945   pNew->addrOpenEphm[1] = -1;
946   pNew->addrOpenEphm[2] = -1;
947   return pNew;
948 }
949 #else
950 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
951   assert( p==0 );
952   return 0;
953 }
954 #endif
955 
956 
957 /*
958 ** Add a new element to the end of an expression list.  If pList is
959 ** initially NULL, then create a new expression list.
960 **
961 ** If a memory allocation error occurs, the entire list is freed and
962 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
963 ** that the new entry was successfully appended.
964 */
965 ExprList *sqlite3ExprListAppend(
966   Parse *pParse,          /* Parsing context */
967   ExprList *pList,        /* List to which to append. Might be NULL */
968   Expr *pExpr             /* Expression to be appended. Might be NULL */
969 ){
970   sqlite3 *db = pParse->db;
971   if( pList==0 ){
972     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
973     if( pList==0 ){
974       goto no_mem;
975     }
976     assert( pList->nAlloc==0 );
977   }
978   if( pList->nAlloc<=pList->nExpr ){
979     struct ExprList_item *a;
980     int n = pList->nAlloc*2 + 4;
981     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
982     if( a==0 ){
983       goto no_mem;
984     }
985     pList->a = a;
986     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
987   }
988   assert( pList->a!=0 );
989   if( 1 ){
990     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
991     memset(pItem, 0, sizeof(*pItem));
992     pItem->pExpr = pExpr;
993   }
994   return pList;
995 
996 no_mem:
997   /* Avoid leaking memory if malloc has failed. */
998   sqlite3ExprDelete(db, pExpr);
999   sqlite3ExprListDelete(db, pList);
1000   return 0;
1001 }
1002 
1003 /*
1004 ** Set the ExprList.a[].zName element of the most recently added item
1005 ** on the expression list.
1006 **
1007 ** pList might be NULL following an OOM error.  But pName should never be
1008 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1009 ** is set.
1010 */
1011 void sqlite3ExprListSetName(
1012   Parse *pParse,          /* Parsing context */
1013   ExprList *pList,        /* List to which to add the span. */
1014   Token *pName,           /* Name to be added */
1015   int dequote             /* True to cause the name to be dequoted */
1016 ){
1017   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1018   if( pList ){
1019     struct ExprList_item *pItem;
1020     assert( pList->nExpr>0 );
1021     pItem = &pList->a[pList->nExpr-1];
1022     assert( pItem->zName==0 );
1023     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1024     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1025   }
1026 }
1027 
1028 /*
1029 ** Set the ExprList.a[].zSpan element of the most recently added item
1030 ** on the expression list.
1031 **
1032 ** pList might be NULL following an OOM error.  But pSpan should never be
1033 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1034 ** is set.
1035 */
1036 void sqlite3ExprListSetSpan(
1037   Parse *pParse,          /* Parsing context */
1038   ExprList *pList,        /* List to which to add the span. */
1039   ExprSpan *pSpan         /* The span to be added */
1040 ){
1041   sqlite3 *db = pParse->db;
1042   assert( pList!=0 || db->mallocFailed!=0 );
1043   if( pList ){
1044     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1045     assert( pList->nExpr>0 );
1046     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1047     sqlite3DbFree(db, pItem->zSpan);
1048     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1049                                     (int)(pSpan->zEnd - pSpan->zStart));
1050   }
1051 }
1052 
1053 /*
1054 ** If the expression list pEList contains more than iLimit elements,
1055 ** leave an error message in pParse.
1056 */
1057 void sqlite3ExprListCheckLength(
1058   Parse *pParse,
1059   ExprList *pEList,
1060   const char *zObject
1061 ){
1062   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1063   testcase( pEList && pEList->nExpr==mx );
1064   testcase( pEList && pEList->nExpr==mx+1 );
1065   if( pEList && pEList->nExpr>mx ){
1066     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1067   }
1068 }
1069 
1070 /*
1071 ** Delete an entire expression list.
1072 */
1073 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1074   int i;
1075   struct ExprList_item *pItem;
1076   if( pList==0 ) return;
1077   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1078   assert( pList->nExpr<=pList->nAlloc );
1079   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1080     sqlite3ExprDelete(db, pItem->pExpr);
1081     sqlite3DbFree(db, pItem->zName);
1082     sqlite3DbFree(db, pItem->zSpan);
1083   }
1084   sqlite3DbFree(db, pList->a);
1085   sqlite3DbFree(db, pList);
1086 }
1087 
1088 /*
1089 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1090 ** to an integer.  These routines are checking an expression to see
1091 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1092 ** not constant.
1093 **
1094 ** These callback routines are used to implement the following:
1095 **
1096 **     sqlite3ExprIsConstant()
1097 **     sqlite3ExprIsConstantNotJoin()
1098 **     sqlite3ExprIsConstantOrFunction()
1099 **
1100 */
1101 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1102 
1103   /* If pWalker->u.i is 3 then any term of the expression that comes from
1104   ** the ON or USING clauses of a join disqualifies the expression
1105   ** from being considered constant. */
1106   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1107     pWalker->u.i = 0;
1108     return WRC_Abort;
1109   }
1110 
1111   switch( pExpr->op ){
1112     /* Consider functions to be constant if all their arguments are constant
1113     ** and pWalker->u.i==2 */
1114     case TK_FUNCTION:
1115       if( pWalker->u.i==2 ) return 0;
1116       /* Fall through */
1117     case TK_ID:
1118     case TK_COLUMN:
1119     case TK_AGG_FUNCTION:
1120     case TK_AGG_COLUMN:
1121       testcase( pExpr->op==TK_ID );
1122       testcase( pExpr->op==TK_COLUMN );
1123       testcase( pExpr->op==TK_AGG_FUNCTION );
1124       testcase( pExpr->op==TK_AGG_COLUMN );
1125       pWalker->u.i = 0;
1126       return WRC_Abort;
1127     default:
1128       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1129       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1130       return WRC_Continue;
1131   }
1132 }
1133 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1134   UNUSED_PARAMETER(NotUsed);
1135   pWalker->u.i = 0;
1136   return WRC_Abort;
1137 }
1138 static int exprIsConst(Expr *p, int initFlag){
1139   Walker w;
1140   w.u.i = initFlag;
1141   w.xExprCallback = exprNodeIsConstant;
1142   w.xSelectCallback = selectNodeIsConstant;
1143   sqlite3WalkExpr(&w, p);
1144   return w.u.i;
1145 }
1146 
1147 /*
1148 ** Walk an expression tree.  Return 1 if the expression is constant
1149 ** and 0 if it involves variables or function calls.
1150 **
1151 ** For the purposes of this function, a double-quoted string (ex: "abc")
1152 ** is considered a variable but a single-quoted string (ex: 'abc') is
1153 ** a constant.
1154 */
1155 int sqlite3ExprIsConstant(Expr *p){
1156   return exprIsConst(p, 1);
1157 }
1158 
1159 /*
1160 ** Walk an expression tree.  Return 1 if the expression is constant
1161 ** that does no originate from the ON or USING clauses of a join.
1162 ** Return 0 if it involves variables or function calls or terms from
1163 ** an ON or USING clause.
1164 */
1165 int sqlite3ExprIsConstantNotJoin(Expr *p){
1166   return exprIsConst(p, 3);
1167 }
1168 
1169 /*
1170 ** Walk an expression tree.  Return 1 if the expression is constant
1171 ** or a function call with constant arguments.  Return and 0 if there
1172 ** are any variables.
1173 **
1174 ** For the purposes of this function, a double-quoted string (ex: "abc")
1175 ** is considered a variable but a single-quoted string (ex: 'abc') is
1176 ** a constant.
1177 */
1178 int sqlite3ExprIsConstantOrFunction(Expr *p){
1179   return exprIsConst(p, 2);
1180 }
1181 
1182 /*
1183 ** If the expression p codes a constant integer that is small enough
1184 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1185 ** in *pValue.  If the expression is not an integer or if it is too big
1186 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1187 */
1188 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1189   int rc = 0;
1190   if( p->flags & EP_IntValue ){
1191     *pValue = p->u.iValue;
1192     return 1;
1193   }
1194   switch( p->op ){
1195     case TK_INTEGER: {
1196       rc = sqlite3GetInt32(p->u.zToken, pValue);
1197       assert( rc==0 );
1198       break;
1199     }
1200     case TK_UPLUS: {
1201       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1202       break;
1203     }
1204     case TK_UMINUS: {
1205       int v;
1206       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1207         *pValue = -v;
1208         rc = 1;
1209       }
1210       break;
1211     }
1212     default: break;
1213   }
1214   if( rc ){
1215     assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
1216                || (p->flags2 & EP2_MallocedToken)==0 );
1217     p->op = TK_INTEGER;
1218     p->flags |= EP_IntValue;
1219     p->u.iValue = *pValue;
1220   }
1221   return rc;
1222 }
1223 
1224 /*
1225 ** Return FALSE if there is no chance that the expression can be NULL.
1226 **
1227 ** If the expression might be NULL or if the expression is too complex
1228 ** to tell return TRUE.
1229 **
1230 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1231 ** when we know that a value cannot be NULL.  Hence, a false positive
1232 ** (returning TRUE when in fact the expression can never be NULL) might
1233 ** be a small performance hit but is otherwise harmless.  On the other
1234 ** hand, a false negative (returning FALSE when the result could be NULL)
1235 ** will likely result in an incorrect answer.  So when in doubt, return
1236 ** TRUE.
1237 */
1238 int sqlite3ExprCanBeNull(const Expr *p){
1239   u8 op;
1240   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1241   op = p->op;
1242   if( op==TK_REGISTER ) op = p->op2;
1243   switch( op ){
1244     case TK_INTEGER:
1245     case TK_STRING:
1246     case TK_FLOAT:
1247     case TK_BLOB:
1248       return 0;
1249     default:
1250       return 1;
1251   }
1252 }
1253 
1254 /*
1255 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1256 ** to location iDest if the value in iReg is NULL.  The value in iReg
1257 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1258 ** determine that it can never generate a NULL, then the OP_IsNull operation
1259 ** can be omitted.
1260 */
1261 void sqlite3ExprCodeIsNullJump(
1262   Vdbe *v,            /* The VDBE under construction */
1263   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1264   int iReg,           /* Test the value in this register for NULL */
1265   int iDest           /* Jump here if the value is null */
1266 ){
1267   if( sqlite3ExprCanBeNull(pExpr) ){
1268     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1269   }
1270 }
1271 
1272 /*
1273 ** Return TRUE if the given expression is a constant which would be
1274 ** unchanged by OP_Affinity with the affinity given in the second
1275 ** argument.
1276 **
1277 ** This routine is used to determine if the OP_Affinity operation
1278 ** can be omitted.  When in doubt return FALSE.  A false negative
1279 ** is harmless.  A false positive, however, can result in the wrong
1280 ** answer.
1281 */
1282 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1283   u8 op;
1284   if( aff==SQLITE_AFF_NONE ) return 1;
1285   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1286   op = p->op;
1287   if( op==TK_REGISTER ) op = p->op2;
1288   switch( op ){
1289     case TK_INTEGER: {
1290       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1291     }
1292     case TK_FLOAT: {
1293       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1294     }
1295     case TK_STRING: {
1296       return aff==SQLITE_AFF_TEXT;
1297     }
1298     case TK_BLOB: {
1299       return 1;
1300     }
1301     case TK_COLUMN: {
1302       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1303       return p->iColumn<0
1304           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1305     }
1306     default: {
1307       return 0;
1308     }
1309   }
1310 }
1311 
1312 /*
1313 ** Return TRUE if the given string is a row-id column name.
1314 */
1315 int sqlite3IsRowid(const char *z){
1316   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1317   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1318   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1319   return 0;
1320 }
1321 
1322 /*
1323 ** Return true if we are able to the IN operator optimization on a
1324 ** query of the form
1325 **
1326 **       x IN (SELECT ...)
1327 **
1328 ** Where the SELECT... clause is as specified by the parameter to this
1329 ** routine.
1330 **
1331 ** The Select object passed in has already been preprocessed and no
1332 ** errors have been found.
1333 */
1334 #ifndef SQLITE_OMIT_SUBQUERY
1335 static int isCandidateForInOpt(Select *p){
1336   SrcList *pSrc;
1337   ExprList *pEList;
1338   Table *pTab;
1339   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1340   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1341   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1342     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1343     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1344     return 0; /* No DISTINCT keyword and no aggregate functions */
1345   }
1346   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1347   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1348   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1349   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1350   pSrc = p->pSrc;
1351   assert( pSrc!=0 );
1352   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1353   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1354   pTab = pSrc->a[0].pTab;
1355   if( NEVER(pTab==0) ) return 0;
1356   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1357   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1358   pEList = p->pEList;
1359   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1360   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1361   return 1;
1362 }
1363 #endif /* SQLITE_OMIT_SUBQUERY */
1364 
1365 /*
1366 ** This function is used by the implementation of the IN (...) operator.
1367 ** It's job is to find or create a b-tree structure that may be used
1368 ** either to test for membership of the (...) set or to iterate through
1369 ** its members, skipping duplicates.
1370 **
1371 ** The index of the cursor opened on the b-tree (database table, database index
1372 ** or ephermal table) is stored in pX->iTable before this function returns.
1373 ** The returned value of this function indicates the b-tree type, as follows:
1374 **
1375 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1376 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1377 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1378 **                    populated epheremal table.
1379 **
1380 ** An existing b-tree may only be used if the SELECT is of the simple
1381 ** form:
1382 **
1383 **     SELECT <column> FROM <table>
1384 **
1385 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1386 ** through the set members, skipping any duplicates. In this case an
1387 ** epheremal table must be used unless the selected <column> is guaranteed
1388 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1389 ** has a UNIQUE constraint or UNIQUE index.
1390 **
1391 ** If the prNotFound parameter is not 0, then the b-tree will be used
1392 ** for fast set membership tests. In this case an epheremal table must
1393 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1394 ** be found with <column> as its left-most column.
1395 **
1396 ** When the b-tree is being used for membership tests, the calling function
1397 ** needs to know whether or not the structure contains an SQL NULL
1398 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1399 ** If there is any chance that the (...) might contain a NULL value at
1400 ** runtime, then a register is allocated and the register number written
1401 ** to *prNotFound. If there is no chance that the (...) contains a
1402 ** NULL value, then *prNotFound is left unchanged.
1403 **
1404 ** If a register is allocated and its location stored in *prNotFound, then
1405 ** its initial value is NULL.  If the (...) does not remain constant
1406 ** for the duration of the query (i.e. the SELECT within the (...)
1407 ** is a correlated subquery) then the value of the allocated register is
1408 ** reset to NULL each time the subquery is rerun. This allows the
1409 ** caller to use vdbe code equivalent to the following:
1410 **
1411 **   if( register==NULL ){
1412 **     has_null = <test if data structure contains null>
1413 **     register = 1
1414 **   }
1415 **
1416 ** in order to avoid running the <test if data structure contains null>
1417 ** test more often than is necessary.
1418 */
1419 #ifndef SQLITE_OMIT_SUBQUERY
1420 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1421   Select *p;                            /* SELECT to the right of IN operator */
1422   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1423   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1424   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1425 
1426   assert( pX->op==TK_IN );
1427 
1428   /* Check to see if an existing table or index can be used to
1429   ** satisfy the query.  This is preferable to generating a new
1430   ** ephemeral table.
1431   */
1432   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1433   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1434     sqlite3 *db = pParse->db;              /* Database connection */
1435     Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
1436     int iCol = pExpr->iColumn;             /* Index of column <column> */
1437     Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1438     Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
1439     int iDb;                               /* Database idx for pTab */
1440 
1441     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1442     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1443     sqlite3CodeVerifySchema(pParse, iDb);
1444     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1445 
1446     /* This function is only called from two places. In both cases the vdbe
1447     ** has already been allocated. So assume sqlite3GetVdbe() is always
1448     ** successful here.
1449     */
1450     assert(v);
1451     if( iCol<0 ){
1452       int iMem = ++pParse->nMem;
1453       int iAddr;
1454 
1455       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1456       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1457 
1458       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1459       eType = IN_INDEX_ROWID;
1460 
1461       sqlite3VdbeJumpHere(v, iAddr);
1462     }else{
1463       Index *pIdx;                         /* Iterator variable */
1464 
1465       /* The collation sequence used by the comparison. If an index is to
1466       ** be used in place of a temp-table, it must be ordered according
1467       ** to this collation sequence.  */
1468       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1469 
1470       /* Check that the affinity that will be used to perform the
1471       ** comparison is the same as the affinity of the column. If
1472       ** it is not, it is not possible to use any index.
1473       */
1474       char aff = comparisonAffinity(pX);
1475       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1476 
1477       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1478         if( (pIdx->aiColumn[0]==iCol)
1479          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1480          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1481         ){
1482           int iMem = ++pParse->nMem;
1483           int iAddr;
1484           char *pKey;
1485 
1486           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1487           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1488           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1489 
1490           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1491                                pKey,P4_KEYINFO_HANDOFF);
1492           VdbeComment((v, "%s", pIdx->zName));
1493           eType = IN_INDEX_INDEX;
1494 
1495           sqlite3VdbeJumpHere(v, iAddr);
1496           if( prNotFound && !pTab->aCol[iCol].notNull ){
1497             *prNotFound = ++pParse->nMem;
1498           }
1499         }
1500       }
1501     }
1502   }
1503 
1504   if( eType==0 ){
1505     /* Could not found an existing table or index to use as the RHS b-tree.
1506     ** We will have to generate an ephemeral table to do the job.
1507     */
1508     int rMayHaveNull = 0;
1509     eType = IN_INDEX_EPH;
1510     if( prNotFound ){
1511       *prNotFound = rMayHaveNull = ++pParse->nMem;
1512     }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1513       eType = IN_INDEX_ROWID;
1514     }
1515     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1516   }else{
1517     pX->iTable = iTab;
1518   }
1519   return eType;
1520 }
1521 #endif
1522 
1523 /*
1524 ** Generate code for scalar subqueries used as an expression
1525 ** and IN operators.  Examples:
1526 **
1527 **     (SELECT a FROM b)          -- subquery
1528 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1529 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1530 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1531 **
1532 ** The pExpr parameter describes the expression that contains the IN
1533 ** operator or subquery.
1534 **
1535 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1536 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1537 ** to some integer key column of a table B-Tree. In this case, use an
1538 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1539 ** (slower) variable length keys B-Tree.
1540 **
1541 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1542 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1543 ** Furthermore, the IN is in a WHERE clause and that we really want
1544 ** to iterate over the RHS of the IN operator in order to quickly locate
1545 ** all corresponding LHS elements.  All this routine does is initialize
1546 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1547 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1548 **
1549 ** If rMayHaveNull is zero, that means that the subquery is being used
1550 ** for membership testing only.  There is no need to initialize any
1551 ** registers to indicate the presense or absence of NULLs on the RHS.
1552 **
1553 ** For a SELECT or EXISTS operator, return the register that holds the
1554 ** result.  For IN operators or if an error occurs, the return value is 0.
1555 */
1556 #ifndef SQLITE_OMIT_SUBQUERY
1557 int sqlite3CodeSubselect(
1558   Parse *pParse,          /* Parsing context */
1559   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1560   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1561   int isRowid             /* If true, LHS of IN operator is a rowid */
1562 ){
1563   int testAddr = 0;                       /* One-time test address */
1564   int rReg = 0;                           /* Register storing resulting */
1565   Vdbe *v = sqlite3GetVdbe(pParse);
1566   if( NEVER(v==0) ) return 0;
1567   sqlite3ExprCachePush(pParse);
1568 
1569   /* This code must be run in its entirety every time it is encountered
1570   ** if any of the following is true:
1571   **
1572   **    *  The right-hand side is a correlated subquery
1573   **    *  The right-hand side is an expression list containing variables
1574   **    *  We are inside a trigger
1575   **
1576   ** If all of the above are false, then we can run this code just once
1577   ** save the results, and reuse the same result on subsequent invocations.
1578   */
1579   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1580     int mem = ++pParse->nMem;
1581     sqlite3VdbeAddOp1(v, OP_If, mem);
1582     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1583     assert( testAddr>0 || pParse->db->mallocFailed );
1584   }
1585 
1586   switch( pExpr->op ){
1587     case TK_IN: {
1588       char affinity;
1589       KeyInfo keyInfo;
1590       int addr;        /* Address of OP_OpenEphemeral instruction */
1591       Expr *pLeft = pExpr->pLeft;
1592 
1593       if( rMayHaveNull ){
1594         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1595       }
1596 
1597       affinity = sqlite3ExprAffinity(pLeft);
1598 
1599       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1600       ** expression it is handled the same way.  An ephemeral table is
1601       ** filled with single-field index keys representing the results
1602       ** from the SELECT or the <exprlist>.
1603       **
1604       ** If the 'x' expression is a column value, or the SELECT...
1605       ** statement returns a column value, then the affinity of that
1606       ** column is used to build the index keys. If both 'x' and the
1607       ** SELECT... statement are columns, then numeric affinity is used
1608       ** if either column has NUMERIC or INTEGER affinity. If neither
1609       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1610       ** is used.
1611       */
1612       pExpr->iTable = pParse->nTab++;
1613       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1614       memset(&keyInfo, 0, sizeof(keyInfo));
1615       keyInfo.nField = 1;
1616 
1617       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1618         /* Case 1:     expr IN (SELECT ...)
1619         **
1620         ** Generate code to write the results of the select into the temporary
1621         ** table allocated and opened above.
1622         */
1623         SelectDest dest;
1624         ExprList *pEList;
1625 
1626         assert( !isRowid );
1627         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1628         dest.affinity = (u8)affinity;
1629         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1630         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1631           return 0;
1632         }
1633         pEList = pExpr->x.pSelect->pEList;
1634         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1635           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1636               pEList->a[0].pExpr);
1637         }
1638       }else if( pExpr->x.pList!=0 ){
1639         /* Case 2:     expr IN (exprlist)
1640         **
1641         ** For each expression, build an index key from the evaluation and
1642         ** store it in the temporary table. If <expr> is a column, then use
1643         ** that columns affinity when building index keys. If <expr> is not
1644         ** a column, use numeric affinity.
1645         */
1646         int i;
1647         ExprList *pList = pExpr->x.pList;
1648         struct ExprList_item *pItem;
1649         int r1, r2, r3;
1650 
1651         if( !affinity ){
1652           affinity = SQLITE_AFF_NONE;
1653         }
1654         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1655 
1656         /* Loop through each expression in <exprlist>. */
1657         r1 = sqlite3GetTempReg(pParse);
1658         r2 = sqlite3GetTempReg(pParse);
1659         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1660         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1661           Expr *pE2 = pItem->pExpr;
1662           int iValToIns;
1663 
1664           /* If the expression is not constant then we will need to
1665           ** disable the test that was generated above that makes sure
1666           ** this code only executes once.  Because for a non-constant
1667           ** expression we need to rerun this code each time.
1668           */
1669           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1670             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1671             testAddr = 0;
1672           }
1673 
1674           /* Evaluate the expression and insert it into the temp table */
1675           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1676             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1677           }else{
1678             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1679             if( isRowid ){
1680               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1681                                 sqlite3VdbeCurrentAddr(v)+2);
1682               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1683             }else{
1684               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1685               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1686               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1687             }
1688           }
1689         }
1690         sqlite3ReleaseTempReg(pParse, r1);
1691         sqlite3ReleaseTempReg(pParse, r2);
1692       }
1693       if( !isRowid ){
1694         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1695       }
1696       break;
1697     }
1698 
1699     case TK_EXISTS:
1700     case TK_SELECT:
1701     default: {
1702       /* If this has to be a scalar SELECT.  Generate code to put the
1703       ** value of this select in a memory cell and record the number
1704       ** of the memory cell in iColumn.  If this is an EXISTS, write
1705       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1706       ** and record that memory cell in iColumn.
1707       */
1708       static const Token one = { "1", 1 };  /* Token for literal value 1 */
1709       Select *pSel;                         /* SELECT statement to encode */
1710       SelectDest dest;                      /* How to deal with SELECt result */
1711 
1712       testcase( pExpr->op==TK_EXISTS );
1713       testcase( pExpr->op==TK_SELECT );
1714       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1715 
1716       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1717       pSel = pExpr->x.pSelect;
1718       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1719       if( pExpr->op==TK_SELECT ){
1720         dest.eDest = SRT_Mem;
1721         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1722         VdbeComment((v, "Init subquery result"));
1723       }else{
1724         dest.eDest = SRT_Exists;
1725         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1726         VdbeComment((v, "Init EXISTS result"));
1727       }
1728       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1729       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1730       if( sqlite3Select(pParse, pSel, &dest) ){
1731         return 0;
1732       }
1733       rReg = dest.iParm;
1734       ExprSetIrreducible(pExpr);
1735       break;
1736     }
1737   }
1738 
1739   if( testAddr ){
1740     sqlite3VdbeJumpHere(v, testAddr-1);
1741   }
1742   sqlite3ExprCachePop(pParse, 1);
1743 
1744   return rReg;
1745 }
1746 #endif /* SQLITE_OMIT_SUBQUERY */
1747 
1748 #ifndef SQLITE_OMIT_SUBQUERY
1749 /*
1750 ** Generate code for an IN expression.
1751 **
1752 **      x IN (SELECT ...)
1753 **      x IN (value, value, ...)
1754 **
1755 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1756 ** is an array of zero or more values.  The expression is true if the LHS is
1757 ** contained within the RHS.  The value of the expression is unknown (NULL)
1758 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1759 ** RHS contains one or more NULL values.
1760 **
1761 ** This routine generates code will jump to destIfFalse if the LHS is not
1762 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1763 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1764 ** within the RHS then fall through.
1765 */
1766 static void sqlite3ExprCodeIN(
1767   Parse *pParse,        /* Parsing and code generating context */
1768   Expr *pExpr,          /* The IN expression */
1769   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1770   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1771 ){
1772   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1773   char affinity;        /* Comparison affinity to use */
1774   int eType;            /* Type of the RHS */
1775   int r1;               /* Temporary use register */
1776   Vdbe *v;              /* Statement under construction */
1777 
1778   /* Compute the RHS.   After this step, the table with cursor
1779   ** pExpr->iTable will contains the values that make up the RHS.
1780   */
1781   v = pParse->pVdbe;
1782   assert( v!=0 );       /* OOM detected prior to this routine */
1783   VdbeNoopComment((v, "begin IN expr"));
1784   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1785 
1786   /* Figure out the affinity to use to create a key from the results
1787   ** of the expression. affinityStr stores a static string suitable for
1788   ** P4 of OP_MakeRecord.
1789   */
1790   affinity = comparisonAffinity(pExpr);
1791 
1792   /* Code the LHS, the <expr> from "<expr> IN (...)".
1793   */
1794   sqlite3ExprCachePush(pParse);
1795   r1 = sqlite3GetTempReg(pParse);
1796   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1797   sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1798 
1799 
1800   if( eType==IN_INDEX_ROWID ){
1801     /* In this case, the RHS is the ROWID of table b-tree
1802     */
1803     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1804     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1805   }else{
1806     /* In this case, the RHS is an index b-tree.
1807     */
1808     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1809 
1810     /* If the set membership test fails, then the result of the
1811     ** "x IN (...)" expression must be either 0 or NULL. If the set
1812     ** contains no NULL values, then the result is 0. If the set
1813     ** contains one or more NULL values, then the result of the
1814     ** expression is also NULL.
1815     */
1816     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1817       /* This branch runs if it is known at compile time that the RHS
1818       ** cannot contain NULL values. This happens as the result
1819       ** of a "NOT NULL" constraint in the database schema.
1820       **
1821       ** Also run this branch if NULL is equivalent to FALSE
1822       ** for this particular IN operator.
1823       */
1824       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1825 
1826     }else{
1827       /* In this branch, the RHS of the IN might contain a NULL and
1828       ** the presence of a NULL on the RHS makes a difference in the
1829       ** outcome.
1830       */
1831       int j1, j2, j3;
1832 
1833       /* First check to see if the LHS is contained in the RHS.  If so,
1834       ** then the presence of NULLs in the RHS does not matter, so jump
1835       ** over all of the code that follows.
1836       */
1837       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1838 
1839       /* Here we begin generating code that runs if the LHS is not
1840       ** contained within the RHS.  Generate additional code that
1841       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1842       ** jump to destIfNull.  If there are no NULLs in the RHS then
1843       ** jump to destIfFalse.
1844       */
1845       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1846       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1847       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1848       sqlite3VdbeJumpHere(v, j3);
1849       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1850       sqlite3VdbeJumpHere(v, j2);
1851 
1852       /* Jump to the appropriate target depending on whether or not
1853       ** the RHS contains a NULL
1854       */
1855       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1856       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1857 
1858       /* The OP_Found at the top of this branch jumps here when true,
1859       ** causing the overall IN expression evaluation to fall through.
1860       */
1861       sqlite3VdbeJumpHere(v, j1);
1862     }
1863   }
1864   sqlite3ReleaseTempReg(pParse, r1);
1865   sqlite3ExprCachePop(pParse, 1);
1866   VdbeComment((v, "end IN expr"));
1867 }
1868 #endif /* SQLITE_OMIT_SUBQUERY */
1869 
1870 /*
1871 ** Duplicate an 8-byte value
1872 */
1873 static char *dup8bytes(Vdbe *v, const char *in){
1874   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1875   if( out ){
1876     memcpy(out, in, 8);
1877   }
1878   return out;
1879 }
1880 
1881 #ifndef SQLITE_OMIT_FLOATING_POINT
1882 /*
1883 ** Generate an instruction that will put the floating point
1884 ** value described by z[0..n-1] into register iMem.
1885 **
1886 ** The z[] string will probably not be zero-terminated.  But the
1887 ** z[n] character is guaranteed to be something that does not look
1888 ** like the continuation of the number.
1889 */
1890 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1891   if( ALWAYS(z!=0) ){
1892     double value;
1893     char *zV;
1894     sqlite3AtoF(z, &value);
1895     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1896     if( negateFlag ) value = -value;
1897     zV = dup8bytes(v, (char*)&value);
1898     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1899   }
1900 }
1901 #endif
1902 
1903 
1904 /*
1905 ** Generate an instruction that will put the integer describe by
1906 ** text z[0..n-1] into register iMem.
1907 **
1908 ** The z[] string will probably not be zero-terminated.  But the
1909 ** z[n] character is guaranteed to be something that does not look
1910 ** like the continuation of the number.
1911 */
1912 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1913   Vdbe *v = pParse->pVdbe;
1914   if( pExpr->flags & EP_IntValue ){
1915     int i = pExpr->u.iValue;
1916     if( negFlag ) i = -i;
1917     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1918   }else{
1919     const char *z = pExpr->u.zToken;
1920     assert( z!=0 );
1921     if( sqlite3FitsIn64Bits(z, negFlag) ){
1922       i64 value;
1923       char *zV;
1924       sqlite3Atoi64(z, &value);
1925       if( negFlag ) value = -value;
1926       zV = dup8bytes(v, (char*)&value);
1927       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1928     }else{
1929 #ifdef SQLITE_OMIT_FLOATING_POINT
1930       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1931 #else
1932       codeReal(v, z, negFlag, iMem);
1933 #endif
1934     }
1935   }
1936 }
1937 
1938 /*
1939 ** Clear a cache entry.
1940 */
1941 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1942   if( p->tempReg ){
1943     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1944       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1945     }
1946     p->tempReg = 0;
1947   }
1948 }
1949 
1950 
1951 /*
1952 ** Record in the column cache that a particular column from a
1953 ** particular table is stored in a particular register.
1954 */
1955 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1956   int i;
1957   int minLru;
1958   int idxLru;
1959   struct yColCache *p;
1960 
1961   assert( iReg>0 );  /* Register numbers are always positive */
1962   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
1963 
1964   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
1965   ** for testing only - to verify that SQLite always gets the same answer
1966   ** with and without the column cache.
1967   */
1968   if( pParse->db->flags & SQLITE_ColumnCache ) return;
1969 
1970   /* First replace any existing entry.
1971   **
1972   ** Actually, the way the column cache is currently used, we are guaranteed
1973   ** that the object will never already be in cache.  Verify this guarantee.
1974   */
1975 #ifndef NDEBUG
1976   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1977 #if 0 /* This code wold remove the entry from the cache if it existed */
1978     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
1979       cacheEntryClear(pParse, p);
1980       p->iLevel = pParse->iCacheLevel;
1981       p->iReg = iReg;
1982       p->lru = pParse->iCacheCnt++;
1983       return;
1984     }
1985 #endif
1986     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
1987   }
1988 #endif
1989 
1990   /* Find an empty slot and replace it */
1991   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1992     if( p->iReg==0 ){
1993       p->iLevel = pParse->iCacheLevel;
1994       p->iTable = iTab;
1995       p->iColumn = iCol;
1996       p->iReg = iReg;
1997       p->tempReg = 0;
1998       p->lru = pParse->iCacheCnt++;
1999       return;
2000     }
2001   }
2002 
2003   /* Replace the last recently used */
2004   minLru = 0x7fffffff;
2005   idxLru = -1;
2006   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2007     if( p->lru<minLru ){
2008       idxLru = i;
2009       minLru = p->lru;
2010     }
2011   }
2012   if( ALWAYS(idxLru>=0) ){
2013     p = &pParse->aColCache[idxLru];
2014     p->iLevel = pParse->iCacheLevel;
2015     p->iTable = iTab;
2016     p->iColumn = iCol;
2017     p->iReg = iReg;
2018     p->tempReg = 0;
2019     p->lru = pParse->iCacheCnt++;
2020     return;
2021   }
2022 }
2023 
2024 /*
2025 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2026 ** Purge the range of registers from the column cache.
2027 */
2028 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2029   int i;
2030   int iLast = iReg + nReg - 1;
2031   struct yColCache *p;
2032   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2033     int r = p->iReg;
2034     if( r>=iReg && r<=iLast ){
2035       cacheEntryClear(pParse, p);
2036       p->iReg = 0;
2037     }
2038   }
2039 }
2040 
2041 /*
2042 ** Remember the current column cache context.  Any new entries added
2043 ** added to the column cache after this call are removed when the
2044 ** corresponding pop occurs.
2045 */
2046 void sqlite3ExprCachePush(Parse *pParse){
2047   pParse->iCacheLevel++;
2048 }
2049 
2050 /*
2051 ** Remove from the column cache any entries that were added since the
2052 ** the previous N Push operations.  In other words, restore the cache
2053 ** to the state it was in N Pushes ago.
2054 */
2055 void sqlite3ExprCachePop(Parse *pParse, int N){
2056   int i;
2057   struct yColCache *p;
2058   assert( N>0 );
2059   assert( pParse->iCacheLevel>=N );
2060   pParse->iCacheLevel -= N;
2061   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2062     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2063       cacheEntryClear(pParse, p);
2064       p->iReg = 0;
2065     }
2066   }
2067 }
2068 
2069 /*
2070 ** When a cached column is reused, make sure that its register is
2071 ** no longer available as a temp register.  ticket #3879:  that same
2072 ** register might be in the cache in multiple places, so be sure to
2073 ** get them all.
2074 */
2075 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2076   int i;
2077   struct yColCache *p;
2078   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2079     if( p->iReg==iReg ){
2080       p->tempReg = 0;
2081     }
2082   }
2083 }
2084 
2085 /*
2086 ** Generate code to extract the value of the iCol-th column of a table.
2087 */
2088 void sqlite3ExprCodeGetColumnOfTable(
2089   Vdbe *v,        /* The VDBE under construction */
2090   Table *pTab,    /* The table containing the value */
2091   int iTabCur,    /* The cursor for this table */
2092   int iCol,       /* Index of the column to extract */
2093   int regOut      /* Extract the valud into this register */
2094 ){
2095   if( iCol<0 || iCol==pTab->iPKey ){
2096     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2097   }else{
2098     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2099     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2100   }
2101   if( iCol>=0 ){
2102     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2103   }
2104 }
2105 
2106 /*
2107 ** Generate code that will extract the iColumn-th column from
2108 ** table pTab and store the column value in a register.  An effort
2109 ** is made to store the column value in register iReg, but this is
2110 ** not guaranteed.  The location of the column value is returned.
2111 **
2112 ** There must be an open cursor to pTab in iTable when this routine
2113 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2114 */
2115 int sqlite3ExprCodeGetColumn(
2116   Parse *pParse,   /* Parsing and code generating context */
2117   Table *pTab,     /* Description of the table we are reading from */
2118   int iColumn,     /* Index of the table column */
2119   int iTable,      /* The cursor pointing to the table */
2120   int iReg         /* Store results here */
2121 ){
2122   Vdbe *v = pParse->pVdbe;
2123   int i;
2124   struct yColCache *p;
2125 
2126   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2127     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2128       p->lru = pParse->iCacheCnt++;
2129       sqlite3ExprCachePinRegister(pParse, p->iReg);
2130       return p->iReg;
2131     }
2132   }
2133   assert( v!=0 );
2134   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2135   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2136   return iReg;
2137 }
2138 
2139 /*
2140 ** Clear all column cache entries.
2141 */
2142 void sqlite3ExprCacheClear(Parse *pParse){
2143   int i;
2144   struct yColCache *p;
2145 
2146   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2147     if( p->iReg ){
2148       cacheEntryClear(pParse, p);
2149       p->iReg = 0;
2150     }
2151   }
2152 }
2153 
2154 /*
2155 ** Record the fact that an affinity change has occurred on iCount
2156 ** registers starting with iStart.
2157 */
2158 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2159   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2160 }
2161 
2162 /*
2163 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2164 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2165 */
2166 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2167   int i;
2168   struct yColCache *p;
2169   if( NEVER(iFrom==iTo) ) return;
2170   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2171   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2172     int x = p->iReg;
2173     if( x>=iFrom && x<iFrom+nReg ){
2174       p->iReg += iTo-iFrom;
2175     }
2176   }
2177 }
2178 
2179 /*
2180 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2181 ** over to iTo..iTo+nReg-1.
2182 */
2183 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2184   int i;
2185   if( NEVER(iFrom==iTo) ) return;
2186   for(i=0; i<nReg; i++){
2187     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2188   }
2189 }
2190 
2191 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2192 /*
2193 ** Return true if any register in the range iFrom..iTo (inclusive)
2194 ** is used as part of the column cache.
2195 **
2196 ** This routine is used within assert() and testcase() macros only
2197 ** and does not appear in a normal build.
2198 */
2199 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2200   int i;
2201   struct yColCache *p;
2202   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2203     int r = p->iReg;
2204     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2205   }
2206   return 0;
2207 }
2208 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2209 
2210 /*
2211 ** If the last instruction coded is an ephemeral copy of any of
2212 ** the registers in the nReg registers beginning with iReg, then
2213 ** convert the last instruction from OP_SCopy to OP_Copy.
2214 */
2215 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2216   VdbeOp *pOp;
2217   Vdbe *v;
2218 
2219   assert( pParse->db->mallocFailed==0 );
2220   v = pParse->pVdbe;
2221   assert( v!=0 );
2222   pOp = sqlite3VdbeGetOp(v, -1);
2223   assert( pOp!=0 );
2224   if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2225     pOp->opcode = OP_Copy;
2226   }
2227 }
2228 
2229 /*
2230 ** Generate code to store the value of the iAlias-th alias in register
2231 ** target.  The first time this is called, pExpr is evaluated to compute
2232 ** the value of the alias.  The value is stored in an auxiliary register
2233 ** and the number of that register is returned.  On subsequent calls,
2234 ** the register number is returned without generating any code.
2235 **
2236 ** Note that in order for this to work, code must be generated in the
2237 ** same order that it is executed.
2238 **
2239 ** Aliases are numbered starting with 1.  So iAlias is in the range
2240 ** of 1 to pParse->nAlias inclusive.
2241 **
2242 ** pParse->aAlias[iAlias-1] records the register number where the value
2243 ** of the iAlias-th alias is stored.  If zero, that means that the
2244 ** alias has not yet been computed.
2245 */
2246 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
2247 #if 0
2248   sqlite3 *db = pParse->db;
2249   int iReg;
2250   if( pParse->nAliasAlloc<pParse->nAlias ){
2251     pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
2252                                  sizeof(pParse->aAlias[0])*pParse->nAlias );
2253     testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
2254     if( db->mallocFailed ) return 0;
2255     memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
2256            (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
2257     pParse->nAliasAlloc = pParse->nAlias;
2258   }
2259   assert( iAlias>0 && iAlias<=pParse->nAlias );
2260   iReg = pParse->aAlias[iAlias-1];
2261   if( iReg==0 ){
2262     if( pParse->iCacheLevel>0 ){
2263       iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2264     }else{
2265       iReg = ++pParse->nMem;
2266       sqlite3ExprCode(pParse, pExpr, iReg);
2267       pParse->aAlias[iAlias-1] = iReg;
2268     }
2269   }
2270   return iReg;
2271 #else
2272   UNUSED_PARAMETER(iAlias);
2273   return sqlite3ExprCodeTarget(pParse, pExpr, target);
2274 #endif
2275 }
2276 
2277 /*
2278 ** Generate code into the current Vdbe to evaluate the given
2279 ** expression.  Attempt to store the results in register "target".
2280 ** Return the register where results are stored.
2281 **
2282 ** With this routine, there is no guarantee that results will
2283 ** be stored in target.  The result might be stored in some other
2284 ** register if it is convenient to do so.  The calling function
2285 ** must check the return code and move the results to the desired
2286 ** register.
2287 */
2288 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2289   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2290   int op;                   /* The opcode being coded */
2291   int inReg = target;       /* Results stored in register inReg */
2292   int regFree1 = 0;         /* If non-zero free this temporary register */
2293   int regFree2 = 0;         /* If non-zero free this temporary register */
2294   int r1, r2, r3, r4;       /* Various register numbers */
2295   sqlite3 *db = pParse->db; /* The database connection */
2296 
2297   assert( target>0 && target<=pParse->nMem );
2298   if( v==0 ){
2299     assert( pParse->db->mallocFailed );
2300     return 0;
2301   }
2302 
2303   if( pExpr==0 ){
2304     op = TK_NULL;
2305   }else{
2306     op = pExpr->op;
2307   }
2308   switch( op ){
2309     case TK_AGG_COLUMN: {
2310       AggInfo *pAggInfo = pExpr->pAggInfo;
2311       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2312       if( !pAggInfo->directMode ){
2313         assert( pCol->iMem>0 );
2314         inReg = pCol->iMem;
2315         break;
2316       }else if( pAggInfo->useSortingIdx ){
2317         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2318                               pCol->iSorterColumn, target);
2319         break;
2320       }
2321       /* Otherwise, fall thru into the TK_COLUMN case */
2322     }
2323     case TK_COLUMN: {
2324       if( pExpr->iTable<0 ){
2325         /* This only happens when coding check constraints */
2326         assert( pParse->ckBase>0 );
2327         inReg = pExpr->iColumn + pParse->ckBase;
2328       }else{
2329         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2330                                  pExpr->iColumn, pExpr->iTable, target);
2331       }
2332       break;
2333     }
2334     case TK_INTEGER: {
2335       codeInteger(pParse, pExpr, 0, target);
2336       break;
2337     }
2338 #ifndef SQLITE_OMIT_FLOATING_POINT
2339     case TK_FLOAT: {
2340       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2341       codeReal(v, pExpr->u.zToken, 0, target);
2342       break;
2343     }
2344 #endif
2345     case TK_STRING: {
2346       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2347       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2348       break;
2349     }
2350     case TK_NULL: {
2351       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2352       break;
2353     }
2354 #ifndef SQLITE_OMIT_BLOB_LITERAL
2355     case TK_BLOB: {
2356       int n;
2357       const char *z;
2358       char *zBlob;
2359       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2360       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2361       assert( pExpr->u.zToken[1]=='\'' );
2362       z = &pExpr->u.zToken[2];
2363       n = sqlite3Strlen30(z) - 1;
2364       assert( z[n]=='\'' );
2365       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2366       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2367       break;
2368     }
2369 #endif
2370     case TK_VARIABLE: {
2371       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2372       assert( pExpr->u.zToken!=0 );
2373       assert( pExpr->u.zToken[0]!=0 );
2374       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2375       if( pExpr->u.zToken[1]!=0 ){
2376         sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
2377       }
2378       break;
2379     }
2380     case TK_REGISTER: {
2381       inReg = pExpr->iTable;
2382       break;
2383     }
2384     case TK_AS: {
2385       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
2386       break;
2387     }
2388 #ifndef SQLITE_OMIT_CAST
2389     case TK_CAST: {
2390       /* Expressions of the form:   CAST(pLeft AS token) */
2391       int aff, to_op;
2392       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2393       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2394       aff = sqlite3AffinityType(pExpr->u.zToken);
2395       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2396       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2397       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2398       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2399       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2400       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2401       testcase( to_op==OP_ToText );
2402       testcase( to_op==OP_ToBlob );
2403       testcase( to_op==OP_ToNumeric );
2404       testcase( to_op==OP_ToInt );
2405       testcase( to_op==OP_ToReal );
2406       if( inReg!=target ){
2407         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2408         inReg = target;
2409       }
2410       sqlite3VdbeAddOp1(v, to_op, inReg);
2411       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2412       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2413       break;
2414     }
2415 #endif /* SQLITE_OMIT_CAST */
2416     case TK_LT:
2417     case TK_LE:
2418     case TK_GT:
2419     case TK_GE:
2420     case TK_NE:
2421     case TK_EQ: {
2422       assert( TK_LT==OP_Lt );
2423       assert( TK_LE==OP_Le );
2424       assert( TK_GT==OP_Gt );
2425       assert( TK_GE==OP_Ge );
2426       assert( TK_EQ==OP_Eq );
2427       assert( TK_NE==OP_Ne );
2428       testcase( op==TK_LT );
2429       testcase( op==TK_LE );
2430       testcase( op==TK_GT );
2431       testcase( op==TK_GE );
2432       testcase( op==TK_EQ );
2433       testcase( op==TK_NE );
2434       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2435       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2436       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2437                   r1, r2, inReg, SQLITE_STOREP2);
2438       testcase( regFree1==0 );
2439       testcase( regFree2==0 );
2440       break;
2441     }
2442     case TK_IS:
2443     case TK_ISNOT: {
2444       testcase( op==TK_IS );
2445       testcase( op==TK_ISNOT );
2446       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2447       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2448       op = (op==TK_IS) ? TK_EQ : TK_NE;
2449       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2450                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2451       testcase( regFree1==0 );
2452       testcase( regFree2==0 );
2453       break;
2454     }
2455     case TK_AND:
2456     case TK_OR:
2457     case TK_PLUS:
2458     case TK_STAR:
2459     case TK_MINUS:
2460     case TK_REM:
2461     case TK_BITAND:
2462     case TK_BITOR:
2463     case TK_SLASH:
2464     case TK_LSHIFT:
2465     case TK_RSHIFT:
2466     case TK_CONCAT: {
2467       assert( TK_AND==OP_And );
2468       assert( TK_OR==OP_Or );
2469       assert( TK_PLUS==OP_Add );
2470       assert( TK_MINUS==OP_Subtract );
2471       assert( TK_REM==OP_Remainder );
2472       assert( TK_BITAND==OP_BitAnd );
2473       assert( TK_BITOR==OP_BitOr );
2474       assert( TK_SLASH==OP_Divide );
2475       assert( TK_LSHIFT==OP_ShiftLeft );
2476       assert( TK_RSHIFT==OP_ShiftRight );
2477       assert( TK_CONCAT==OP_Concat );
2478       testcase( op==TK_AND );
2479       testcase( op==TK_OR );
2480       testcase( op==TK_PLUS );
2481       testcase( op==TK_MINUS );
2482       testcase( op==TK_REM );
2483       testcase( op==TK_BITAND );
2484       testcase( op==TK_BITOR );
2485       testcase( op==TK_SLASH );
2486       testcase( op==TK_LSHIFT );
2487       testcase( op==TK_RSHIFT );
2488       testcase( op==TK_CONCAT );
2489       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2490       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2491       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2492       testcase( regFree1==0 );
2493       testcase( regFree2==0 );
2494       break;
2495     }
2496     case TK_UMINUS: {
2497       Expr *pLeft = pExpr->pLeft;
2498       assert( pLeft );
2499       if( pLeft->op==TK_INTEGER ){
2500         codeInteger(pParse, pLeft, 1, target);
2501 #ifndef SQLITE_OMIT_FLOATING_POINT
2502       }else if( pLeft->op==TK_FLOAT ){
2503         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2504         codeReal(v, pLeft->u.zToken, 1, target);
2505 #endif
2506       }else{
2507         regFree1 = r1 = sqlite3GetTempReg(pParse);
2508         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2509         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2510         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2511         testcase( regFree2==0 );
2512       }
2513       inReg = target;
2514       break;
2515     }
2516     case TK_BITNOT:
2517     case TK_NOT: {
2518       assert( TK_BITNOT==OP_BitNot );
2519       assert( TK_NOT==OP_Not );
2520       testcase( op==TK_BITNOT );
2521       testcase( op==TK_NOT );
2522       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2523       testcase( regFree1==0 );
2524       inReg = target;
2525       sqlite3VdbeAddOp2(v, op, r1, inReg);
2526       break;
2527     }
2528     case TK_ISNULL:
2529     case TK_NOTNULL: {
2530       int addr;
2531       assert( TK_ISNULL==OP_IsNull );
2532       assert( TK_NOTNULL==OP_NotNull );
2533       testcase( op==TK_ISNULL );
2534       testcase( op==TK_NOTNULL );
2535       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2536       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2537       testcase( regFree1==0 );
2538       addr = sqlite3VdbeAddOp1(v, op, r1);
2539       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2540       sqlite3VdbeJumpHere(v, addr);
2541       break;
2542     }
2543     case TK_AGG_FUNCTION: {
2544       AggInfo *pInfo = pExpr->pAggInfo;
2545       if( pInfo==0 ){
2546         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2548       }else{
2549         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2550       }
2551       break;
2552     }
2553     case TK_CONST_FUNC:
2554     case TK_FUNCTION: {
2555       ExprList *pFarg;       /* List of function arguments */
2556       int nFarg;             /* Number of function arguments */
2557       FuncDef *pDef;         /* The function definition object */
2558       int nId;               /* Length of the function name in bytes */
2559       const char *zId;       /* The function name */
2560       int constMask = 0;     /* Mask of function arguments that are constant */
2561       int i;                 /* Loop counter */
2562       u8 enc = ENC(db);      /* The text encoding used by this database */
2563       CollSeq *pColl = 0;    /* A collating sequence */
2564 
2565       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2566       testcase( op==TK_CONST_FUNC );
2567       testcase( op==TK_FUNCTION );
2568       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2569         pFarg = 0;
2570       }else{
2571         pFarg = pExpr->x.pList;
2572       }
2573       nFarg = pFarg ? pFarg->nExpr : 0;
2574       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2575       zId = pExpr->u.zToken;
2576       nId = sqlite3Strlen30(zId);
2577       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2578       if( pDef==0 ){
2579         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2580         break;
2581       }
2582 
2583       /* Attempt a direct implementation of the built-in COALESCE() and
2584       ** IFNULL() functions.  This avoids unnecessary evalation of
2585       ** arguments past the first non-NULL argument.
2586       */
2587       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2588         int endCoalesce = sqlite3VdbeMakeLabel(v);
2589         assert( nFarg>=2 );
2590         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2591         for(i=1; i<nFarg; i++){
2592           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2593           sqlite3ExprCacheRemove(pParse, target, 1);
2594           sqlite3ExprCachePush(pParse);
2595           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2596           sqlite3ExprCachePop(pParse, 1);
2597         }
2598         sqlite3VdbeResolveLabel(v, endCoalesce);
2599         break;
2600       }
2601 
2602 
2603       if( pFarg ){
2604         r1 = sqlite3GetTempRange(pParse, nFarg);
2605         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2606         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2607         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2608       }else{
2609         r1 = 0;
2610       }
2611 #ifndef SQLITE_OMIT_VIRTUALTABLE
2612       /* Possibly overload the function if the first argument is
2613       ** a virtual table column.
2614       **
2615       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2616       ** second argument, not the first, as the argument to test to
2617       ** see if it is a column in a virtual table.  This is done because
2618       ** the left operand of infix functions (the operand we want to
2619       ** control overloading) ends up as the second argument to the
2620       ** function.  The expression "A glob B" is equivalent to
2621       ** "glob(B,A).  We want to use the A in "A glob B" to test
2622       ** for function overloading.  But we use the B term in "glob(B,A)".
2623       */
2624       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2625         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2626       }else if( nFarg>0 ){
2627         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2628       }
2629 #endif
2630       for(i=0; i<nFarg; i++){
2631         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2632           constMask |= (1<<i);
2633         }
2634         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2635           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2636         }
2637       }
2638       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2639         if( !pColl ) pColl = db->pDfltColl;
2640         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2641       }
2642       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2643                         (char*)pDef, P4_FUNCDEF);
2644       sqlite3VdbeChangeP5(v, (u8)nFarg);
2645       if( nFarg ){
2646         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2647       }
2648       break;
2649     }
2650 #ifndef SQLITE_OMIT_SUBQUERY
2651     case TK_EXISTS:
2652     case TK_SELECT: {
2653       testcase( op==TK_EXISTS );
2654       testcase( op==TK_SELECT );
2655       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2656       break;
2657     }
2658     case TK_IN: {
2659       int destIfFalse = sqlite3VdbeMakeLabel(v);
2660       int destIfNull = sqlite3VdbeMakeLabel(v);
2661       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2662       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2663       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2664       sqlite3VdbeResolveLabel(v, destIfFalse);
2665       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2666       sqlite3VdbeResolveLabel(v, destIfNull);
2667       break;
2668     }
2669 #endif /* SQLITE_OMIT_SUBQUERY */
2670 
2671 
2672     /*
2673     **    x BETWEEN y AND z
2674     **
2675     ** This is equivalent to
2676     **
2677     **    x>=y AND x<=z
2678     **
2679     ** X is stored in pExpr->pLeft.
2680     ** Y is stored in pExpr->pList->a[0].pExpr.
2681     ** Z is stored in pExpr->pList->a[1].pExpr.
2682     */
2683     case TK_BETWEEN: {
2684       Expr *pLeft = pExpr->pLeft;
2685       struct ExprList_item *pLItem = pExpr->x.pList->a;
2686       Expr *pRight = pLItem->pExpr;
2687 
2688       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2689       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2690       testcase( regFree1==0 );
2691       testcase( regFree2==0 );
2692       r3 = sqlite3GetTempReg(pParse);
2693       r4 = sqlite3GetTempReg(pParse);
2694       codeCompare(pParse, pLeft, pRight, OP_Ge,
2695                   r1, r2, r3, SQLITE_STOREP2);
2696       pLItem++;
2697       pRight = pLItem->pExpr;
2698       sqlite3ReleaseTempReg(pParse, regFree2);
2699       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2700       testcase( regFree2==0 );
2701       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2702       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2703       sqlite3ReleaseTempReg(pParse, r3);
2704       sqlite3ReleaseTempReg(pParse, r4);
2705       break;
2706     }
2707     case TK_UPLUS: {
2708       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2709       break;
2710     }
2711 
2712     case TK_TRIGGER: {
2713       /* If the opcode is TK_TRIGGER, then the expression is a reference
2714       ** to a column in the new.* or old.* pseudo-tables available to
2715       ** trigger programs. In this case Expr.iTable is set to 1 for the
2716       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2717       ** is set to the column of the pseudo-table to read, or to -1 to
2718       ** read the rowid field.
2719       **
2720       ** The expression is implemented using an OP_Param opcode. The p1
2721       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2722       ** to reference another column of the old.* pseudo-table, where
2723       ** i is the index of the column. For a new.rowid reference, p1 is
2724       ** set to (n+1), where n is the number of columns in each pseudo-table.
2725       ** For a reference to any other column in the new.* pseudo-table, p1
2726       ** is set to (n+2+i), where n and i are as defined previously. For
2727       ** example, if the table on which triggers are being fired is
2728       ** declared as:
2729       **
2730       **   CREATE TABLE t1(a, b);
2731       **
2732       ** Then p1 is interpreted as follows:
2733       **
2734       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2735       **   p1==1   ->    old.a         p1==4   ->    new.a
2736       **   p1==2   ->    old.b         p1==5   ->    new.b
2737       */
2738       Table *pTab = pExpr->pTab;
2739       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2740 
2741       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2742       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2743       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2744       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2745 
2746       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2747       VdbeComment((v, "%s.%s -> $%d",
2748         (pExpr->iTable ? "new" : "old"),
2749         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2750         target
2751       ));
2752 
2753 #ifndef SQLITE_OMIT_FLOATING_POINT
2754       /* If the column has REAL affinity, it may currently be stored as an
2755       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2756       if( pExpr->iColumn>=0
2757        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2758       ){
2759         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2760       }
2761 #endif
2762       break;
2763     }
2764 
2765 
2766     /*
2767     ** Form A:
2768     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2769     **
2770     ** Form B:
2771     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2772     **
2773     ** Form A is can be transformed into the equivalent form B as follows:
2774     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2775     **        WHEN x=eN THEN rN ELSE y END
2776     **
2777     ** X (if it exists) is in pExpr->pLeft.
2778     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2779     ** ELSE clause and no other term matches, then the result of the
2780     ** exprssion is NULL.
2781     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2782     **
2783     ** The result of the expression is the Ri for the first matching Ei,
2784     ** or if there is no matching Ei, the ELSE term Y, or if there is
2785     ** no ELSE term, NULL.
2786     */
2787     default: assert( op==TK_CASE ); {
2788       int endLabel;                     /* GOTO label for end of CASE stmt */
2789       int nextCase;                     /* GOTO label for next WHEN clause */
2790       int nExpr;                        /* 2x number of WHEN terms */
2791       int i;                            /* Loop counter */
2792       ExprList *pEList;                 /* List of WHEN terms */
2793       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2794       Expr opCompare;                   /* The X==Ei expression */
2795       Expr cacheX;                      /* Cached expression X */
2796       Expr *pX;                         /* The X expression */
2797       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2798       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2799 
2800       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2801       assert((pExpr->x.pList->nExpr % 2) == 0);
2802       assert(pExpr->x.pList->nExpr > 0);
2803       pEList = pExpr->x.pList;
2804       aListelem = pEList->a;
2805       nExpr = pEList->nExpr;
2806       endLabel = sqlite3VdbeMakeLabel(v);
2807       if( (pX = pExpr->pLeft)!=0 ){
2808         cacheX = *pX;
2809         testcase( pX->op==TK_COLUMN );
2810         testcase( pX->op==TK_REGISTER );
2811         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2812         testcase( regFree1==0 );
2813         cacheX.op = TK_REGISTER;
2814         opCompare.op = TK_EQ;
2815         opCompare.pLeft = &cacheX;
2816         pTest = &opCompare;
2817       }
2818       for(i=0; i<nExpr; i=i+2){
2819         sqlite3ExprCachePush(pParse);
2820         if( pX ){
2821           assert( pTest!=0 );
2822           opCompare.pRight = aListelem[i].pExpr;
2823         }else{
2824           pTest = aListelem[i].pExpr;
2825         }
2826         nextCase = sqlite3VdbeMakeLabel(v);
2827         testcase( pTest->op==TK_COLUMN );
2828         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2829         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2830         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2831         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2832         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2833         sqlite3ExprCachePop(pParse, 1);
2834         sqlite3VdbeResolveLabel(v, nextCase);
2835       }
2836       if( pExpr->pRight ){
2837         sqlite3ExprCachePush(pParse);
2838         sqlite3ExprCode(pParse, pExpr->pRight, target);
2839         sqlite3ExprCachePop(pParse, 1);
2840       }else{
2841         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2842       }
2843       assert( db->mallocFailed || pParse->nErr>0
2844            || pParse->iCacheLevel==iCacheLevel );
2845       sqlite3VdbeResolveLabel(v, endLabel);
2846       break;
2847     }
2848 #ifndef SQLITE_OMIT_TRIGGER
2849     case TK_RAISE: {
2850       assert( pExpr->affinity==OE_Rollback
2851            || pExpr->affinity==OE_Abort
2852            || pExpr->affinity==OE_Fail
2853            || pExpr->affinity==OE_Ignore
2854       );
2855       if( !pParse->pTriggerTab ){
2856         sqlite3ErrorMsg(pParse,
2857                        "RAISE() may only be used within a trigger-program");
2858         return 0;
2859       }
2860       if( pExpr->affinity==OE_Abort ){
2861         sqlite3MayAbort(pParse);
2862       }
2863       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2864       if( pExpr->affinity==OE_Ignore ){
2865         sqlite3VdbeAddOp4(
2866             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2867       }else{
2868         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2869       }
2870 
2871       break;
2872     }
2873 #endif
2874   }
2875   sqlite3ReleaseTempReg(pParse, regFree1);
2876   sqlite3ReleaseTempReg(pParse, regFree2);
2877   return inReg;
2878 }
2879 
2880 /*
2881 ** Generate code to evaluate an expression and store the results
2882 ** into a register.  Return the register number where the results
2883 ** are stored.
2884 **
2885 ** If the register is a temporary register that can be deallocated,
2886 ** then write its number into *pReg.  If the result register is not
2887 ** a temporary, then set *pReg to zero.
2888 */
2889 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2890   int r1 = sqlite3GetTempReg(pParse);
2891   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2892   if( r2==r1 ){
2893     *pReg = r1;
2894   }else{
2895     sqlite3ReleaseTempReg(pParse, r1);
2896     *pReg = 0;
2897   }
2898   return r2;
2899 }
2900 
2901 /*
2902 ** Generate code that will evaluate expression pExpr and store the
2903 ** results in register target.  The results are guaranteed to appear
2904 ** in register target.
2905 */
2906 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2907   int inReg;
2908 
2909   assert( target>0 && target<=pParse->nMem );
2910   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2911   assert( pParse->pVdbe || pParse->db->mallocFailed );
2912   if( inReg!=target && pParse->pVdbe ){
2913     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2914   }
2915   return target;
2916 }
2917 
2918 /*
2919 ** Generate code that evalutes the given expression and puts the result
2920 ** in register target.
2921 **
2922 ** Also make a copy of the expression results into another "cache" register
2923 ** and modify the expression so that the next time it is evaluated,
2924 ** the result is a copy of the cache register.
2925 **
2926 ** This routine is used for expressions that are used multiple
2927 ** times.  They are evaluated once and the results of the expression
2928 ** are reused.
2929 */
2930 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2931   Vdbe *v = pParse->pVdbe;
2932   int inReg;
2933   inReg = sqlite3ExprCode(pParse, pExpr, target);
2934   assert( target>0 );
2935   /* This routine is called for terms to INSERT or UPDATE.  And the only
2936   ** other place where expressions can be converted into TK_REGISTER is
2937   ** in WHERE clause processing.  So as currently implemented, there is
2938   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2939   ** keep the ALWAYS() in case the conditions above change with future
2940   ** modifications or enhancements. */
2941   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2942     int iMem;
2943     iMem = ++pParse->nMem;
2944     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2945     pExpr->iTable = iMem;
2946     pExpr->op2 = pExpr->op;
2947     pExpr->op = TK_REGISTER;
2948   }
2949   return inReg;
2950 }
2951 
2952 /*
2953 ** Return TRUE if pExpr is an constant expression that is appropriate
2954 ** for factoring out of a loop.  Appropriate expressions are:
2955 **
2956 **    *  Any expression that evaluates to two or more opcodes.
2957 **
2958 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2959 **       or OP_Variable that does not need to be placed in a
2960 **       specific register.
2961 **
2962 ** There is no point in factoring out single-instruction constant
2963 ** expressions that need to be placed in a particular register.
2964 ** We could factor them out, but then we would end up adding an
2965 ** OP_SCopy instruction to move the value into the correct register
2966 ** later.  We might as well just use the original instruction and
2967 ** avoid the OP_SCopy.
2968 */
2969 static int isAppropriateForFactoring(Expr *p){
2970   if( !sqlite3ExprIsConstantNotJoin(p) ){
2971     return 0;  /* Only constant expressions are appropriate for factoring */
2972   }
2973   if( (p->flags & EP_FixedDest)==0 ){
2974     return 1;  /* Any constant without a fixed destination is appropriate */
2975   }
2976   while( p->op==TK_UPLUS ) p = p->pLeft;
2977   switch( p->op ){
2978 #ifndef SQLITE_OMIT_BLOB_LITERAL
2979     case TK_BLOB:
2980 #endif
2981     case TK_VARIABLE:
2982     case TK_INTEGER:
2983     case TK_FLOAT:
2984     case TK_NULL:
2985     case TK_STRING: {
2986       testcase( p->op==TK_BLOB );
2987       testcase( p->op==TK_VARIABLE );
2988       testcase( p->op==TK_INTEGER );
2989       testcase( p->op==TK_FLOAT );
2990       testcase( p->op==TK_NULL );
2991       testcase( p->op==TK_STRING );
2992       /* Single-instruction constants with a fixed destination are
2993       ** better done in-line.  If we factor them, they will just end
2994       ** up generating an OP_SCopy to move the value to the destination
2995       ** register. */
2996       return 0;
2997     }
2998     case TK_UMINUS: {
2999       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3000         return 0;
3001       }
3002       break;
3003     }
3004     default: {
3005       break;
3006     }
3007   }
3008   return 1;
3009 }
3010 
3011 /*
3012 ** If pExpr is a constant expression that is appropriate for
3013 ** factoring out of a loop, then evaluate the expression
3014 ** into a register and convert the expression into a TK_REGISTER
3015 ** expression.
3016 */
3017 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3018   Parse *pParse = pWalker->pParse;
3019   switch( pExpr->op ){
3020     case TK_IN:
3021     case TK_REGISTER: {
3022       return WRC_Prune;
3023     }
3024     case TK_FUNCTION:
3025     case TK_AGG_FUNCTION:
3026     case TK_CONST_FUNC: {
3027       /* The arguments to a function have a fixed destination.
3028       ** Mark them this way to avoid generated unneeded OP_SCopy
3029       ** instructions.
3030       */
3031       ExprList *pList = pExpr->x.pList;
3032       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3033       if( pList ){
3034         int i = pList->nExpr;
3035         struct ExprList_item *pItem = pList->a;
3036         for(; i>0; i--, pItem++){
3037           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3038         }
3039       }
3040       break;
3041     }
3042   }
3043   if( isAppropriateForFactoring(pExpr) ){
3044     int r1 = ++pParse->nMem;
3045     int r2;
3046     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3047     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3048     pExpr->op2 = pExpr->op;
3049     pExpr->op = TK_REGISTER;
3050     pExpr->iTable = r2;
3051     return WRC_Prune;
3052   }
3053   return WRC_Continue;
3054 }
3055 
3056 /*
3057 ** Preevaluate constant subexpressions within pExpr and store the
3058 ** results in registers.  Modify pExpr so that the constant subexpresions
3059 ** are TK_REGISTER opcodes that refer to the precomputed values.
3060 */
3061 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3062   Walker w;
3063   w.xExprCallback = evalConstExpr;
3064   w.xSelectCallback = 0;
3065   w.pParse = pParse;
3066   sqlite3WalkExpr(&w, pExpr);
3067 }
3068 
3069 
3070 /*
3071 ** Generate code that pushes the value of every element of the given
3072 ** expression list into a sequence of registers beginning at target.
3073 **
3074 ** Return the number of elements evaluated.
3075 */
3076 int sqlite3ExprCodeExprList(
3077   Parse *pParse,     /* Parsing context */
3078   ExprList *pList,   /* The expression list to be coded */
3079   int target,        /* Where to write results */
3080   int doHardCopy     /* Make a hard copy of every element */
3081 ){
3082   struct ExprList_item *pItem;
3083   int i, n;
3084   assert( pList!=0 );
3085   assert( target>0 );
3086   n = pList->nExpr;
3087   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3088     if( pItem->iAlias ){
3089       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
3090       Vdbe *v = sqlite3GetVdbe(pParse);
3091       if( iReg!=target+i ){
3092         sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
3093       }
3094     }else{
3095       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
3096     }
3097     if( doHardCopy && !pParse->db->mallocFailed ){
3098       sqlite3ExprHardCopy(pParse, target, n);
3099     }
3100   }
3101   return n;
3102 }
3103 
3104 /*
3105 ** Generate code for a BETWEEN operator.
3106 **
3107 **    x BETWEEN y AND z
3108 **
3109 ** The above is equivalent to
3110 **
3111 **    x>=y AND x<=z
3112 **
3113 ** Code it as such, taking care to do the common subexpression
3114 ** elementation of x.
3115 */
3116 static void exprCodeBetween(
3117   Parse *pParse,    /* Parsing and code generating context */
3118   Expr *pExpr,      /* The BETWEEN expression */
3119   int dest,         /* Jump here if the jump is taken */
3120   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3121   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3122 ){
3123   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3124   Expr compLeft;    /* The  x>=y  term */
3125   Expr compRight;   /* The  x<=z  term */
3126   Expr exprX;       /* The  x  subexpression */
3127   int regFree1 = 0; /* Temporary use register */
3128 
3129   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3130   exprX = *pExpr->pLeft;
3131   exprAnd.op = TK_AND;
3132   exprAnd.pLeft = &compLeft;
3133   exprAnd.pRight = &compRight;
3134   compLeft.op = TK_GE;
3135   compLeft.pLeft = &exprX;
3136   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3137   compRight.op = TK_LE;
3138   compRight.pLeft = &exprX;
3139   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3140   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3141   exprX.op = TK_REGISTER;
3142   if( jumpIfTrue ){
3143     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3144   }else{
3145     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3146   }
3147   sqlite3ReleaseTempReg(pParse, regFree1);
3148 
3149   /* Ensure adequate test coverage */
3150   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3151   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3152   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3153   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3154   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3155   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3156   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3157   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3158 }
3159 
3160 /*
3161 ** Generate code for a boolean expression such that a jump is made
3162 ** to the label "dest" if the expression is true but execution
3163 ** continues straight thru if the expression is false.
3164 **
3165 ** If the expression evaluates to NULL (neither true nor false), then
3166 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3167 **
3168 ** This code depends on the fact that certain token values (ex: TK_EQ)
3169 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3170 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3171 ** the make process cause these values to align.  Assert()s in the code
3172 ** below verify that the numbers are aligned correctly.
3173 */
3174 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3175   Vdbe *v = pParse->pVdbe;
3176   int op = 0;
3177   int regFree1 = 0;
3178   int regFree2 = 0;
3179   int r1, r2;
3180 
3181   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3182   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3183   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3184   op = pExpr->op;
3185   switch( op ){
3186     case TK_AND: {
3187       int d2 = sqlite3VdbeMakeLabel(v);
3188       testcase( jumpIfNull==0 );
3189       sqlite3ExprCachePush(pParse);
3190       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3191       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3192       sqlite3VdbeResolveLabel(v, d2);
3193       sqlite3ExprCachePop(pParse, 1);
3194       break;
3195     }
3196     case TK_OR: {
3197       testcase( jumpIfNull==0 );
3198       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3199       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3200       break;
3201     }
3202     case TK_NOT: {
3203       testcase( jumpIfNull==0 );
3204       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3205       break;
3206     }
3207     case TK_LT:
3208     case TK_LE:
3209     case TK_GT:
3210     case TK_GE:
3211     case TK_NE:
3212     case TK_EQ: {
3213       assert( TK_LT==OP_Lt );
3214       assert( TK_LE==OP_Le );
3215       assert( TK_GT==OP_Gt );
3216       assert( TK_GE==OP_Ge );
3217       assert( TK_EQ==OP_Eq );
3218       assert( TK_NE==OP_Ne );
3219       testcase( op==TK_LT );
3220       testcase( op==TK_LE );
3221       testcase( op==TK_GT );
3222       testcase( op==TK_GE );
3223       testcase( op==TK_EQ );
3224       testcase( op==TK_NE );
3225       testcase( jumpIfNull==0 );
3226       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3227       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3228       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3229                   r1, r2, dest, jumpIfNull);
3230       testcase( regFree1==0 );
3231       testcase( regFree2==0 );
3232       break;
3233     }
3234     case TK_IS:
3235     case TK_ISNOT: {
3236       testcase( op==TK_IS );
3237       testcase( op==TK_ISNOT );
3238       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3239       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3240       op = (op==TK_IS) ? TK_EQ : TK_NE;
3241       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3242                   r1, r2, dest, SQLITE_NULLEQ);
3243       testcase( regFree1==0 );
3244       testcase( regFree2==0 );
3245       break;
3246     }
3247     case TK_ISNULL:
3248     case TK_NOTNULL: {
3249       assert( TK_ISNULL==OP_IsNull );
3250       assert( TK_NOTNULL==OP_NotNull );
3251       testcase( op==TK_ISNULL );
3252       testcase( op==TK_NOTNULL );
3253       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3254       sqlite3VdbeAddOp2(v, op, r1, dest);
3255       testcase( regFree1==0 );
3256       break;
3257     }
3258     case TK_BETWEEN: {
3259       testcase( jumpIfNull==0 );
3260       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3261       break;
3262     }
3263     case TK_IN: {
3264       int destIfFalse = sqlite3VdbeMakeLabel(v);
3265       int destIfNull = jumpIfNull ? dest : destIfFalse;
3266       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3267       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3268       sqlite3VdbeResolveLabel(v, destIfFalse);
3269       break;
3270     }
3271     default: {
3272       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3273       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3274       testcase( regFree1==0 );
3275       testcase( jumpIfNull==0 );
3276       break;
3277     }
3278   }
3279   sqlite3ReleaseTempReg(pParse, regFree1);
3280   sqlite3ReleaseTempReg(pParse, regFree2);
3281 }
3282 
3283 /*
3284 ** Generate code for a boolean expression such that a jump is made
3285 ** to the label "dest" if the expression is false but execution
3286 ** continues straight thru if the expression is true.
3287 **
3288 ** If the expression evaluates to NULL (neither true nor false) then
3289 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3290 ** is 0.
3291 */
3292 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3293   Vdbe *v = pParse->pVdbe;
3294   int op = 0;
3295   int regFree1 = 0;
3296   int regFree2 = 0;
3297   int r1, r2;
3298 
3299   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3300   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3301   if( pExpr==0 )    return;
3302 
3303   /* The value of pExpr->op and op are related as follows:
3304   **
3305   **       pExpr->op            op
3306   **       ---------          ----------
3307   **       TK_ISNULL          OP_NotNull
3308   **       TK_NOTNULL         OP_IsNull
3309   **       TK_NE              OP_Eq
3310   **       TK_EQ              OP_Ne
3311   **       TK_GT              OP_Le
3312   **       TK_LE              OP_Gt
3313   **       TK_GE              OP_Lt
3314   **       TK_LT              OP_Ge
3315   **
3316   ** For other values of pExpr->op, op is undefined and unused.
3317   ** The value of TK_ and OP_ constants are arranged such that we
3318   ** can compute the mapping above using the following expression.
3319   ** Assert()s verify that the computation is correct.
3320   */
3321   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3322 
3323   /* Verify correct alignment of TK_ and OP_ constants
3324   */
3325   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3326   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3327   assert( pExpr->op!=TK_NE || op==OP_Eq );
3328   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3329   assert( pExpr->op!=TK_LT || op==OP_Ge );
3330   assert( pExpr->op!=TK_LE || op==OP_Gt );
3331   assert( pExpr->op!=TK_GT || op==OP_Le );
3332   assert( pExpr->op!=TK_GE || op==OP_Lt );
3333 
3334   switch( pExpr->op ){
3335     case TK_AND: {
3336       testcase( jumpIfNull==0 );
3337       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3338       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3339       break;
3340     }
3341     case TK_OR: {
3342       int d2 = sqlite3VdbeMakeLabel(v);
3343       testcase( jumpIfNull==0 );
3344       sqlite3ExprCachePush(pParse);
3345       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3346       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3347       sqlite3VdbeResolveLabel(v, d2);
3348       sqlite3ExprCachePop(pParse, 1);
3349       break;
3350     }
3351     case TK_NOT: {
3352       testcase( jumpIfNull==0 );
3353       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3354       break;
3355     }
3356     case TK_LT:
3357     case TK_LE:
3358     case TK_GT:
3359     case TK_GE:
3360     case TK_NE:
3361     case TK_EQ: {
3362       testcase( op==TK_LT );
3363       testcase( op==TK_LE );
3364       testcase( op==TK_GT );
3365       testcase( op==TK_GE );
3366       testcase( op==TK_EQ );
3367       testcase( op==TK_NE );
3368       testcase( jumpIfNull==0 );
3369       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3370       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3371       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3372                   r1, r2, dest, jumpIfNull);
3373       testcase( regFree1==0 );
3374       testcase( regFree2==0 );
3375       break;
3376     }
3377     case TK_IS:
3378     case TK_ISNOT: {
3379       testcase( pExpr->op==TK_IS );
3380       testcase( pExpr->op==TK_ISNOT );
3381       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3382       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3383       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3384       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3385                   r1, r2, dest, SQLITE_NULLEQ);
3386       testcase( regFree1==0 );
3387       testcase( regFree2==0 );
3388       break;
3389     }
3390     case TK_ISNULL:
3391     case TK_NOTNULL: {
3392       testcase( op==TK_ISNULL );
3393       testcase( op==TK_NOTNULL );
3394       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3395       sqlite3VdbeAddOp2(v, op, r1, dest);
3396       testcase( regFree1==0 );
3397       break;
3398     }
3399     case TK_BETWEEN: {
3400       testcase( jumpIfNull==0 );
3401       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3402       break;
3403     }
3404     case TK_IN: {
3405       if( jumpIfNull ){
3406         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3407       }else{
3408         int destIfNull = sqlite3VdbeMakeLabel(v);
3409         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3410         sqlite3VdbeResolveLabel(v, destIfNull);
3411       }
3412       break;
3413     }
3414     default: {
3415       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3416       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3417       testcase( regFree1==0 );
3418       testcase( jumpIfNull==0 );
3419       break;
3420     }
3421   }
3422   sqlite3ReleaseTempReg(pParse, regFree1);
3423   sqlite3ReleaseTempReg(pParse, regFree2);
3424 }
3425 
3426 /*
3427 ** Do a deep comparison of two expression trees.  Return 0 if the two
3428 ** expressions are completely identical.  Return 1 if they differ only
3429 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3430 ** other than the top-level COLLATE operator.
3431 **
3432 ** Sometimes this routine will return 2 even if the two expressions
3433 ** really are equivalent.  If we cannot prove that the expressions are
3434 ** identical, we return 2 just to be safe.  So if this routine
3435 ** returns 2, then you do not really know for certain if the two
3436 ** expressions are the same.  But if you get a 0 or 1 return, then you
3437 ** can be sure the expressions are the same.  In the places where
3438 ** this routine is used, it does not hurt to get an extra 2 - that
3439 ** just might result in some slightly slower code.  But returning
3440 ** an incorrect 0 or 1 could lead to a malfunction.
3441 */
3442 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3443   if( pA==0||pB==0 ){
3444     return pB==pA ? 0 : 2;
3445   }
3446   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3447   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3448   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3449     return 2;
3450   }
3451   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3452   if( pA->op!=pB->op ) return 2;
3453   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3454   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3455   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3456   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3457   if( ExprHasProperty(pA, EP_IntValue) ){
3458     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3459       return 2;
3460     }
3461   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3462     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3463     if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3464       return 2;
3465     }
3466   }
3467   if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3468   if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3469   return 0;
3470 }
3471 
3472 /*
3473 ** Compare two ExprList objects.  Return 0 if they are identical and
3474 ** non-zero if they differ in any way.
3475 **
3476 ** This routine might return non-zero for equivalent ExprLists.  The
3477 ** only consequence will be disabled optimizations.  But this routine
3478 ** must never return 0 if the two ExprList objects are different, or
3479 ** a malfunction will result.
3480 **
3481 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3482 ** always differs from a non-NULL pointer.
3483 */
3484 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3485   int i;
3486   if( pA==0 && pB==0 ) return 0;
3487   if( pA==0 || pB==0 ) return 1;
3488   if( pA->nExpr!=pB->nExpr ) return 1;
3489   for(i=0; i<pA->nExpr; i++){
3490     Expr *pExprA = pA->a[i].pExpr;
3491     Expr *pExprB = pB->a[i].pExpr;
3492     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3493     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3494   }
3495   return 0;
3496 }
3497 
3498 /*
3499 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3500 ** the new element.  Return a negative number if malloc fails.
3501 */
3502 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3503   int i;
3504   pInfo->aCol = sqlite3ArrayAllocate(
3505        db,
3506        pInfo->aCol,
3507        sizeof(pInfo->aCol[0]),
3508        3,
3509        &pInfo->nColumn,
3510        &pInfo->nColumnAlloc,
3511        &i
3512   );
3513   return i;
3514 }
3515 
3516 /*
3517 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3518 ** the new element.  Return a negative number if malloc fails.
3519 */
3520 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3521   int i;
3522   pInfo->aFunc = sqlite3ArrayAllocate(
3523        db,
3524        pInfo->aFunc,
3525        sizeof(pInfo->aFunc[0]),
3526        3,
3527        &pInfo->nFunc,
3528        &pInfo->nFuncAlloc,
3529        &i
3530   );
3531   return i;
3532 }
3533 
3534 /*
3535 ** This is the xExprCallback for a tree walker.  It is used to
3536 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3537 ** for additional information.
3538 */
3539 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3540   int i;
3541   NameContext *pNC = pWalker->u.pNC;
3542   Parse *pParse = pNC->pParse;
3543   SrcList *pSrcList = pNC->pSrcList;
3544   AggInfo *pAggInfo = pNC->pAggInfo;
3545 
3546   switch( pExpr->op ){
3547     case TK_AGG_COLUMN:
3548     case TK_COLUMN: {
3549       testcase( pExpr->op==TK_AGG_COLUMN );
3550       testcase( pExpr->op==TK_COLUMN );
3551       /* Check to see if the column is in one of the tables in the FROM
3552       ** clause of the aggregate query */
3553       if( ALWAYS(pSrcList!=0) ){
3554         struct SrcList_item *pItem = pSrcList->a;
3555         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3556           struct AggInfo_col *pCol;
3557           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3558           if( pExpr->iTable==pItem->iCursor ){
3559             /* If we reach this point, it means that pExpr refers to a table
3560             ** that is in the FROM clause of the aggregate query.
3561             **
3562             ** Make an entry for the column in pAggInfo->aCol[] if there
3563             ** is not an entry there already.
3564             */
3565             int k;
3566             pCol = pAggInfo->aCol;
3567             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3568               if( pCol->iTable==pExpr->iTable &&
3569                   pCol->iColumn==pExpr->iColumn ){
3570                 break;
3571               }
3572             }
3573             if( (k>=pAggInfo->nColumn)
3574              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3575             ){
3576               pCol = &pAggInfo->aCol[k];
3577               pCol->pTab = pExpr->pTab;
3578               pCol->iTable = pExpr->iTable;
3579               pCol->iColumn = pExpr->iColumn;
3580               pCol->iMem = ++pParse->nMem;
3581               pCol->iSorterColumn = -1;
3582               pCol->pExpr = pExpr;
3583               if( pAggInfo->pGroupBy ){
3584                 int j, n;
3585                 ExprList *pGB = pAggInfo->pGroupBy;
3586                 struct ExprList_item *pTerm = pGB->a;
3587                 n = pGB->nExpr;
3588                 for(j=0; j<n; j++, pTerm++){
3589                   Expr *pE = pTerm->pExpr;
3590                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3591                       pE->iColumn==pExpr->iColumn ){
3592                     pCol->iSorterColumn = j;
3593                     break;
3594                   }
3595                 }
3596               }
3597               if( pCol->iSorterColumn<0 ){
3598                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3599               }
3600             }
3601             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3602             ** because it was there before or because we just created it).
3603             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3604             ** pAggInfo->aCol[] entry.
3605             */
3606             ExprSetIrreducible(pExpr);
3607             pExpr->pAggInfo = pAggInfo;
3608             pExpr->op = TK_AGG_COLUMN;
3609             pExpr->iAgg = (i16)k;
3610             break;
3611           } /* endif pExpr->iTable==pItem->iCursor */
3612         } /* end loop over pSrcList */
3613       }
3614       return WRC_Prune;
3615     }
3616     case TK_AGG_FUNCTION: {
3617       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3618       ** to be ignored */
3619       if( pNC->nDepth==0 ){
3620         /* Check to see if pExpr is a duplicate of another aggregate
3621         ** function that is already in the pAggInfo structure
3622         */
3623         struct AggInfo_func *pItem = pAggInfo->aFunc;
3624         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3625           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3626             break;
3627           }
3628         }
3629         if( i>=pAggInfo->nFunc ){
3630           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3631           */
3632           u8 enc = ENC(pParse->db);
3633           i = addAggInfoFunc(pParse->db, pAggInfo);
3634           if( i>=0 ){
3635             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3636             pItem = &pAggInfo->aFunc[i];
3637             pItem->pExpr = pExpr;
3638             pItem->iMem = ++pParse->nMem;
3639             assert( !ExprHasProperty(pExpr, EP_IntValue) );
3640             pItem->pFunc = sqlite3FindFunction(pParse->db,
3641                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3642                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3643             if( pExpr->flags & EP_Distinct ){
3644               pItem->iDistinct = pParse->nTab++;
3645             }else{
3646               pItem->iDistinct = -1;
3647             }
3648           }
3649         }
3650         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3651         */
3652         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3653         ExprSetIrreducible(pExpr);
3654         pExpr->iAgg = (i16)i;
3655         pExpr->pAggInfo = pAggInfo;
3656         return WRC_Prune;
3657       }
3658     }
3659   }
3660   return WRC_Continue;
3661 }
3662 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3663   NameContext *pNC = pWalker->u.pNC;
3664   if( pNC->nDepth==0 ){
3665     pNC->nDepth++;
3666     sqlite3WalkSelect(pWalker, pSelect);
3667     pNC->nDepth--;
3668     return WRC_Prune;
3669   }else{
3670     return WRC_Continue;
3671   }
3672 }
3673 
3674 /*
3675 ** Analyze the given expression looking for aggregate functions and
3676 ** for variables that need to be added to the pParse->aAgg[] array.
3677 ** Make additional entries to the pParse->aAgg[] array as necessary.
3678 **
3679 ** This routine should only be called after the expression has been
3680 ** analyzed by sqlite3ResolveExprNames().
3681 */
3682 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3683   Walker w;
3684   w.xExprCallback = analyzeAggregate;
3685   w.xSelectCallback = analyzeAggregatesInSelect;
3686   w.u.pNC = pNC;
3687   assert( pNC->pSrcList!=0 );
3688   sqlite3WalkExpr(&w, pExpr);
3689 }
3690 
3691 /*
3692 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3693 ** expression list.  Return the number of errors.
3694 **
3695 ** If an error is found, the analysis is cut short.
3696 */
3697 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3698   struct ExprList_item *pItem;
3699   int i;
3700   if( pList ){
3701     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3702       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3703     }
3704   }
3705 }
3706 
3707 /*
3708 ** Allocate a single new register for use to hold some intermediate result.
3709 */
3710 int sqlite3GetTempReg(Parse *pParse){
3711   if( pParse->nTempReg==0 ){
3712     return ++pParse->nMem;
3713   }
3714   return pParse->aTempReg[--pParse->nTempReg];
3715 }
3716 
3717 /*
3718 ** Deallocate a register, making available for reuse for some other
3719 ** purpose.
3720 **
3721 ** If a register is currently being used by the column cache, then
3722 ** the dallocation is deferred until the column cache line that uses
3723 ** the register becomes stale.
3724 */
3725 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3726   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3727     int i;
3728     struct yColCache *p;
3729     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3730       if( p->iReg==iReg ){
3731         p->tempReg = 1;
3732         return;
3733       }
3734     }
3735     pParse->aTempReg[pParse->nTempReg++] = iReg;
3736   }
3737 }
3738 
3739 /*
3740 ** Allocate or deallocate a block of nReg consecutive registers
3741 */
3742 int sqlite3GetTempRange(Parse *pParse, int nReg){
3743   int i, n;
3744   i = pParse->iRangeReg;
3745   n = pParse->nRangeReg;
3746   if( nReg<=n ){
3747     assert( !usedAsColumnCache(pParse, i, i+n-1) );
3748     pParse->iRangeReg += nReg;
3749     pParse->nRangeReg -= nReg;
3750   }else{
3751     i = pParse->nMem+1;
3752     pParse->nMem += nReg;
3753   }
3754   return i;
3755 }
3756 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3757   sqlite3ExprCacheRemove(pParse, iReg, nReg);
3758   if( nReg>pParse->nRangeReg ){
3759     pParse->nRangeReg = nReg;
3760     pParse->iRangeReg = iReg;
3761   }
3762 }
3763