1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( p ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 assert( iValue>=0 ); 393 } 394 } 395 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 396 if( pNew ){ 397 pNew->op = (u8)op; 398 pNew->iAgg = -1; 399 if( pToken ){ 400 if( nExtra==0 ){ 401 pNew->flags |= EP_IntValue; 402 pNew->u.iValue = iValue; 403 }else{ 404 int c; 405 pNew->u.zToken = (char*)&pNew[1]; 406 assert( pToken->z!=0 || pToken->n==0 ); 407 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 408 pNew->u.zToken[pToken->n] = 0; 409 if( dequote && nExtra>=3 410 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 411 sqlite3Dequote(pNew->u.zToken); 412 if( c=='"' ) pNew->flags |= EP_DblQuoted; 413 } 414 } 415 } 416 #if SQLITE_MAX_EXPR_DEPTH>0 417 pNew->nHeight = 1; 418 #endif 419 } 420 return pNew; 421 } 422 423 /* 424 ** Allocate a new expression node from a zero-terminated token that has 425 ** already been dequoted. 426 */ 427 Expr *sqlite3Expr( 428 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 429 int op, /* Expression opcode */ 430 const char *zToken /* Token argument. Might be NULL */ 431 ){ 432 Token x; 433 x.z = zToken; 434 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 435 return sqlite3ExprAlloc(db, op, &x, 0); 436 } 437 438 /* 439 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 440 ** 441 ** If pRoot==NULL that means that a memory allocation error has occurred. 442 ** In that case, delete the subtrees pLeft and pRight. 443 */ 444 void sqlite3ExprAttachSubtrees( 445 sqlite3 *db, 446 Expr *pRoot, 447 Expr *pLeft, 448 Expr *pRight 449 ){ 450 if( pRoot==0 ){ 451 assert( db->mallocFailed ); 452 sqlite3ExprDelete(db, pLeft); 453 sqlite3ExprDelete(db, pRight); 454 }else{ 455 if( pRight ){ 456 pRoot->pRight = pRight; 457 if( pRight->flags & EP_ExpCollate ){ 458 pRoot->flags |= EP_ExpCollate; 459 pRoot->pColl = pRight->pColl; 460 } 461 } 462 if( pLeft ){ 463 pRoot->pLeft = pLeft; 464 if( pLeft->flags & EP_ExpCollate ){ 465 pRoot->flags |= EP_ExpCollate; 466 pRoot->pColl = pLeft->pColl; 467 } 468 } 469 exprSetHeight(pRoot); 470 } 471 } 472 473 /* 474 ** Allocate a Expr node which joins as many as two subtrees. 475 ** 476 ** One or both of the subtrees can be NULL. Return a pointer to the new 477 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 478 ** free the subtrees and return NULL. 479 */ 480 Expr *sqlite3PExpr( 481 Parse *pParse, /* Parsing context */ 482 int op, /* Expression opcode */ 483 Expr *pLeft, /* Left operand */ 484 Expr *pRight, /* Right operand */ 485 const Token *pToken /* Argument token */ 486 ){ 487 Expr *p; 488 if( op==TK_AND && pLeft && pRight ){ 489 /* Take advantage of short-circuit false optimization for AND */ 490 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 491 }else{ 492 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 493 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 494 } 495 if( p ) { 496 sqlite3ExprCheckHeight(pParse, p->nHeight); 497 } 498 return p; 499 } 500 501 /* 502 ** Return 1 if an expression must be FALSE in all cases and 0 if the 503 ** expression might be true. This is an optimization. If is OK to 504 ** return 0 here even if the expression really is always false (a 505 ** false negative). But it is a bug to return 1 if the expression 506 ** might be true in some rare circumstances (a false positive.) 507 ** 508 ** Note that if the expression is part of conditional for a 509 ** LEFT JOIN, then we cannot determine at compile-time whether or not 510 ** is it true or false, so always return 0. 511 */ 512 static int exprAlwaysFalse(Expr *p){ 513 int v = 0; 514 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 515 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 516 return v==0; 517 } 518 519 /* 520 ** Join two expressions using an AND operator. If either expression is 521 ** NULL, then just return the other expression. 522 ** 523 ** If one side or the other of the AND is known to be false, then instead 524 ** of returning an AND expression, just return a constant expression with 525 ** a value of false. 526 */ 527 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 528 if( pLeft==0 ){ 529 return pRight; 530 }else if( pRight==0 ){ 531 return pLeft; 532 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 533 sqlite3ExprDelete(db, pLeft); 534 sqlite3ExprDelete(db, pRight); 535 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 536 }else{ 537 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 538 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 539 return pNew; 540 } 541 } 542 543 /* 544 ** Construct a new expression node for a function with multiple 545 ** arguments. 546 */ 547 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 548 Expr *pNew; 549 sqlite3 *db = pParse->db; 550 assert( pToken ); 551 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 552 if( pNew==0 ){ 553 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 554 return 0; 555 } 556 pNew->x.pList = pList; 557 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 558 sqlite3ExprSetHeight(pParse, pNew); 559 return pNew; 560 } 561 562 /* 563 ** Assign a variable number to an expression that encodes a wildcard 564 ** in the original SQL statement. 565 ** 566 ** Wildcards consisting of a single "?" are assigned the next sequential 567 ** variable number. 568 ** 569 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 570 ** sure "nnn" is not too be to avoid a denial of service attack when 571 ** the SQL statement comes from an external source. 572 ** 573 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 574 ** as the previous instance of the same wildcard. Or if this is the first 575 ** instance of the wildcard, the next sequenial variable number is 576 ** assigned. 577 */ 578 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 579 sqlite3 *db = pParse->db; 580 const char *z; 581 582 if( pExpr==0 ) return; 583 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 584 z = pExpr->u.zToken; 585 assert( z!=0 ); 586 assert( z[0]!=0 ); 587 if( z[1]==0 ){ 588 /* Wildcard of the form "?". Assign the next variable number */ 589 assert( z[0]=='?' ); 590 pExpr->iColumn = (ynVar)(++pParse->nVar); 591 }else{ 592 ynVar x = 0; 593 u32 n = sqlite3Strlen30(z); 594 if( z[0]=='?' ){ 595 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 596 ** use it as the variable number */ 597 i64 i; 598 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 599 pExpr->iColumn = x = (ynVar)i; 600 testcase( i==0 ); 601 testcase( i==1 ); 602 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 603 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 604 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 605 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 606 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 607 x = 0; 608 } 609 if( i>pParse->nVar ){ 610 pParse->nVar = (int)i; 611 } 612 }else{ 613 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 614 ** number as the prior appearance of the same name, or if the name 615 ** has never appeared before, reuse the same variable number 616 */ 617 ynVar i; 618 for(i=0; i<pParse->nzVar; i++){ 619 if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){ 620 pExpr->iColumn = x = (ynVar)i+1; 621 break; 622 } 623 } 624 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 625 } 626 if( x>0 ){ 627 if( x>pParse->nzVar ){ 628 char **a; 629 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 630 if( a==0 ) return; /* Error reported through db->mallocFailed */ 631 pParse->azVar = a; 632 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 633 pParse->nzVar = x; 634 } 635 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 636 sqlite3DbFree(db, pParse->azVar[x-1]); 637 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 638 } 639 } 640 } 641 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 642 sqlite3ErrorMsg(pParse, "too many SQL variables"); 643 } 644 } 645 646 /* 647 ** Recursively delete an expression tree. 648 */ 649 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 650 if( p==0 ) return; 651 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 652 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 653 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 654 sqlite3ExprDelete(db, p->pLeft); 655 sqlite3ExprDelete(db, p->pRight); 656 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 657 sqlite3DbFree(db, p->u.zToken); 658 } 659 if( ExprHasProperty(p, EP_xIsSelect) ){ 660 sqlite3SelectDelete(db, p->x.pSelect); 661 }else{ 662 sqlite3ExprListDelete(db, p->x.pList); 663 } 664 } 665 if( !ExprHasProperty(p, EP_Static) ){ 666 sqlite3DbFree(db, p); 667 } 668 } 669 670 /* 671 ** Return the number of bytes allocated for the expression structure 672 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 673 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 674 */ 675 static int exprStructSize(Expr *p){ 676 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 677 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 678 return EXPR_FULLSIZE; 679 } 680 681 /* 682 ** The dupedExpr*Size() routines each return the number of bytes required 683 ** to store a copy of an expression or expression tree. They differ in 684 ** how much of the tree is measured. 685 ** 686 ** dupedExprStructSize() Size of only the Expr structure 687 ** dupedExprNodeSize() Size of Expr + space for token 688 ** dupedExprSize() Expr + token + subtree components 689 ** 690 *************************************************************************** 691 ** 692 ** The dupedExprStructSize() function returns two values OR-ed together: 693 ** (1) the space required for a copy of the Expr structure only and 694 ** (2) the EP_xxx flags that indicate what the structure size should be. 695 ** The return values is always one of: 696 ** 697 ** EXPR_FULLSIZE 698 ** EXPR_REDUCEDSIZE | EP_Reduced 699 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 700 ** 701 ** The size of the structure can be found by masking the return value 702 ** of this routine with 0xfff. The flags can be found by masking the 703 ** return value with EP_Reduced|EP_TokenOnly. 704 ** 705 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 706 ** (unreduced) Expr objects as they or originally constructed by the parser. 707 ** During expression analysis, extra information is computed and moved into 708 ** later parts of teh Expr object and that extra information might get chopped 709 ** off if the expression is reduced. Note also that it does not work to 710 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 711 ** to reduce a pristine expression tree from the parser. The implementation 712 ** of dupedExprStructSize() contain multiple assert() statements that attempt 713 ** to enforce this constraint. 714 */ 715 static int dupedExprStructSize(Expr *p, int flags){ 716 int nSize; 717 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 718 if( 0==(flags&EXPRDUP_REDUCE) ){ 719 nSize = EXPR_FULLSIZE; 720 }else{ 721 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 722 assert( !ExprHasProperty(p, EP_FromJoin) ); 723 assert( (p->flags2 & EP2_MallocedToken)==0 ); 724 assert( (p->flags2 & EP2_Irreducible)==0 ); 725 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 726 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 727 }else{ 728 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 729 } 730 } 731 return nSize; 732 } 733 734 /* 735 ** This function returns the space in bytes required to store the copy 736 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 737 ** string is defined.) 738 */ 739 static int dupedExprNodeSize(Expr *p, int flags){ 740 int nByte = dupedExprStructSize(p, flags) & 0xfff; 741 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 742 nByte += sqlite3Strlen30(p->u.zToken)+1; 743 } 744 return ROUND8(nByte); 745 } 746 747 /* 748 ** Return the number of bytes required to create a duplicate of the 749 ** expression passed as the first argument. The second argument is a 750 ** mask containing EXPRDUP_XXX flags. 751 ** 752 ** The value returned includes space to create a copy of the Expr struct 753 ** itself and the buffer referred to by Expr.u.zToken, if any. 754 ** 755 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 756 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 757 ** and Expr.pRight variables (but not for any structures pointed to or 758 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 759 */ 760 static int dupedExprSize(Expr *p, int flags){ 761 int nByte = 0; 762 if( p ){ 763 nByte = dupedExprNodeSize(p, flags); 764 if( flags&EXPRDUP_REDUCE ){ 765 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 766 } 767 } 768 return nByte; 769 } 770 771 /* 772 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 773 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 774 ** to store the copy of expression p, the copies of p->u.zToken 775 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 776 ** if any. Before returning, *pzBuffer is set to the first byte passed the 777 ** portion of the buffer copied into by this function. 778 */ 779 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 780 Expr *pNew = 0; /* Value to return */ 781 if( p ){ 782 const int isReduced = (flags&EXPRDUP_REDUCE); 783 u8 *zAlloc; 784 u32 staticFlag = 0; 785 786 assert( pzBuffer==0 || isReduced ); 787 788 /* Figure out where to write the new Expr structure. */ 789 if( pzBuffer ){ 790 zAlloc = *pzBuffer; 791 staticFlag = EP_Static; 792 }else{ 793 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 794 } 795 pNew = (Expr *)zAlloc; 796 797 if( pNew ){ 798 /* Set nNewSize to the size allocated for the structure pointed to 799 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 800 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 801 ** by the copy of the p->u.zToken string (if any). 802 */ 803 const unsigned nStructSize = dupedExprStructSize(p, flags); 804 const int nNewSize = nStructSize & 0xfff; 805 int nToken; 806 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 807 nToken = sqlite3Strlen30(p->u.zToken) + 1; 808 }else{ 809 nToken = 0; 810 } 811 if( isReduced ){ 812 assert( ExprHasProperty(p, EP_Reduced)==0 ); 813 memcpy(zAlloc, p, nNewSize); 814 }else{ 815 int nSize = exprStructSize(p); 816 memcpy(zAlloc, p, nSize); 817 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 818 } 819 820 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 821 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 822 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 823 pNew->flags |= staticFlag; 824 825 /* Copy the p->u.zToken string, if any. */ 826 if( nToken ){ 827 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 828 memcpy(zToken, p->u.zToken, nToken); 829 } 830 831 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 832 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 833 if( ExprHasProperty(p, EP_xIsSelect) ){ 834 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 835 }else{ 836 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 837 } 838 } 839 840 /* Fill in pNew->pLeft and pNew->pRight. */ 841 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 842 zAlloc += dupedExprNodeSize(p, flags); 843 if( ExprHasProperty(pNew, EP_Reduced) ){ 844 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 845 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 846 } 847 if( pzBuffer ){ 848 *pzBuffer = zAlloc; 849 } 850 }else{ 851 pNew->flags2 = 0; 852 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 853 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 854 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 855 } 856 } 857 858 } 859 } 860 return pNew; 861 } 862 863 /* 864 ** The following group of routines make deep copies of expressions, 865 ** expression lists, ID lists, and select statements. The copies can 866 ** be deleted (by being passed to their respective ...Delete() routines) 867 ** without effecting the originals. 868 ** 869 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 870 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 871 ** by subsequent calls to sqlite*ListAppend() routines. 872 ** 873 ** Any tables that the SrcList might point to are not duplicated. 874 ** 875 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 876 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 877 ** truncated version of the usual Expr structure that will be stored as 878 ** part of the in-memory representation of the database schema. 879 */ 880 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 881 return exprDup(db, p, flags, 0); 882 } 883 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 884 ExprList *pNew; 885 struct ExprList_item *pItem, *pOldItem; 886 int i; 887 if( p==0 ) return 0; 888 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 889 if( pNew==0 ) return 0; 890 pNew->iECursor = 0; 891 pNew->nExpr = i = p->nExpr; 892 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 893 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 894 if( pItem==0 ){ 895 sqlite3DbFree(db, pNew); 896 return 0; 897 } 898 pOldItem = p->a; 899 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 900 Expr *pOldExpr = pOldItem->pExpr; 901 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 902 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 903 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 904 pItem->sortOrder = pOldItem->sortOrder; 905 pItem->done = 0; 906 pItem->iOrderByCol = pOldItem->iOrderByCol; 907 pItem->iAlias = pOldItem->iAlias; 908 } 909 return pNew; 910 } 911 912 /* 913 ** If cursors, triggers, views and subqueries are all omitted from 914 ** the build, then none of the following routines, except for 915 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 916 ** called with a NULL argument. 917 */ 918 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 919 || !defined(SQLITE_OMIT_SUBQUERY) 920 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 921 SrcList *pNew; 922 int i; 923 int nByte; 924 if( p==0 ) return 0; 925 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 926 pNew = sqlite3DbMallocRaw(db, nByte ); 927 if( pNew==0 ) return 0; 928 pNew->nSrc = pNew->nAlloc = p->nSrc; 929 for(i=0; i<p->nSrc; i++){ 930 struct SrcList_item *pNewItem = &pNew->a[i]; 931 struct SrcList_item *pOldItem = &p->a[i]; 932 Table *pTab; 933 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 934 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 935 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 936 pNewItem->jointype = pOldItem->jointype; 937 pNewItem->iCursor = pOldItem->iCursor; 938 pNewItem->addrFillSub = pOldItem->addrFillSub; 939 pNewItem->regReturn = pOldItem->regReturn; 940 pNewItem->isCorrelated = pOldItem->isCorrelated; 941 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 942 pNewItem->notIndexed = pOldItem->notIndexed; 943 pNewItem->pIndex = pOldItem->pIndex; 944 pTab = pNewItem->pTab = pOldItem->pTab; 945 if( pTab ){ 946 pTab->nRef++; 947 } 948 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 949 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 950 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 951 pNewItem->colUsed = pOldItem->colUsed; 952 } 953 return pNew; 954 } 955 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 956 IdList *pNew; 957 int i; 958 if( p==0 ) return 0; 959 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 960 if( pNew==0 ) return 0; 961 pNew->nId = p->nId; 962 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 963 if( pNew->a==0 ){ 964 sqlite3DbFree(db, pNew); 965 return 0; 966 } 967 /* Note that because the size of the allocation for p->a[] is not 968 ** necessarily a power of two, sqlite3IdListAppend() may not be called 969 ** on the duplicate created by this function. */ 970 for(i=0; i<p->nId; i++){ 971 struct IdList_item *pNewItem = &pNew->a[i]; 972 struct IdList_item *pOldItem = &p->a[i]; 973 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 974 pNewItem->idx = pOldItem->idx; 975 } 976 return pNew; 977 } 978 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 979 Select *pNew, *pPrior; 980 if( p==0 ) return 0; 981 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 982 if( pNew==0 ) return 0; 983 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 984 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 985 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 986 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 987 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 988 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 989 pNew->op = p->op; 990 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 991 if( pPrior ) pPrior->pNext = pNew; 992 pNew->pNext = 0; 993 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 994 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 995 pNew->iLimit = 0; 996 pNew->iOffset = 0; 997 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 998 pNew->pRightmost = 0; 999 pNew->addrOpenEphm[0] = -1; 1000 pNew->addrOpenEphm[1] = -1; 1001 pNew->addrOpenEphm[2] = -1; 1002 return pNew; 1003 } 1004 #else 1005 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1006 assert( p==0 ); 1007 return 0; 1008 } 1009 #endif 1010 1011 1012 /* 1013 ** Add a new element to the end of an expression list. If pList is 1014 ** initially NULL, then create a new expression list. 1015 ** 1016 ** If a memory allocation error occurs, the entire list is freed and 1017 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1018 ** that the new entry was successfully appended. 1019 */ 1020 ExprList *sqlite3ExprListAppend( 1021 Parse *pParse, /* Parsing context */ 1022 ExprList *pList, /* List to which to append. Might be NULL */ 1023 Expr *pExpr /* Expression to be appended. Might be NULL */ 1024 ){ 1025 sqlite3 *db = pParse->db; 1026 if( pList==0 ){ 1027 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1028 if( pList==0 ){ 1029 goto no_mem; 1030 } 1031 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1032 if( pList->a==0 ) goto no_mem; 1033 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1034 struct ExprList_item *a; 1035 assert( pList->nExpr>0 ); 1036 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1037 if( a==0 ){ 1038 goto no_mem; 1039 } 1040 pList->a = a; 1041 } 1042 assert( pList->a!=0 ); 1043 if( 1 ){ 1044 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1045 memset(pItem, 0, sizeof(*pItem)); 1046 pItem->pExpr = pExpr; 1047 } 1048 return pList; 1049 1050 no_mem: 1051 /* Avoid leaking memory if malloc has failed. */ 1052 sqlite3ExprDelete(db, pExpr); 1053 sqlite3ExprListDelete(db, pList); 1054 return 0; 1055 } 1056 1057 /* 1058 ** Set the ExprList.a[].zName element of the most recently added item 1059 ** on the expression list. 1060 ** 1061 ** pList might be NULL following an OOM error. But pName should never be 1062 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1063 ** is set. 1064 */ 1065 void sqlite3ExprListSetName( 1066 Parse *pParse, /* Parsing context */ 1067 ExprList *pList, /* List to which to add the span. */ 1068 Token *pName, /* Name to be added */ 1069 int dequote /* True to cause the name to be dequoted */ 1070 ){ 1071 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1072 if( pList ){ 1073 struct ExprList_item *pItem; 1074 assert( pList->nExpr>0 ); 1075 pItem = &pList->a[pList->nExpr-1]; 1076 assert( pItem->zName==0 ); 1077 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1078 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1079 } 1080 } 1081 1082 /* 1083 ** Set the ExprList.a[].zSpan element of the most recently added item 1084 ** on the expression list. 1085 ** 1086 ** pList might be NULL following an OOM error. But pSpan should never be 1087 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1088 ** is set. 1089 */ 1090 void sqlite3ExprListSetSpan( 1091 Parse *pParse, /* Parsing context */ 1092 ExprList *pList, /* List to which to add the span. */ 1093 ExprSpan *pSpan /* The span to be added */ 1094 ){ 1095 sqlite3 *db = pParse->db; 1096 assert( pList!=0 || db->mallocFailed!=0 ); 1097 if( pList ){ 1098 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1099 assert( pList->nExpr>0 ); 1100 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1101 sqlite3DbFree(db, pItem->zSpan); 1102 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1103 (int)(pSpan->zEnd - pSpan->zStart)); 1104 } 1105 } 1106 1107 /* 1108 ** If the expression list pEList contains more than iLimit elements, 1109 ** leave an error message in pParse. 1110 */ 1111 void sqlite3ExprListCheckLength( 1112 Parse *pParse, 1113 ExprList *pEList, 1114 const char *zObject 1115 ){ 1116 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1117 testcase( pEList && pEList->nExpr==mx ); 1118 testcase( pEList && pEList->nExpr==mx+1 ); 1119 if( pEList && pEList->nExpr>mx ){ 1120 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1121 } 1122 } 1123 1124 /* 1125 ** Delete an entire expression list. 1126 */ 1127 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1128 int i; 1129 struct ExprList_item *pItem; 1130 if( pList==0 ) return; 1131 assert( pList->a!=0 || pList->nExpr==0 ); 1132 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1133 sqlite3ExprDelete(db, pItem->pExpr); 1134 sqlite3DbFree(db, pItem->zName); 1135 sqlite3DbFree(db, pItem->zSpan); 1136 } 1137 sqlite3DbFree(db, pList->a); 1138 sqlite3DbFree(db, pList); 1139 } 1140 1141 /* 1142 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1143 ** to an integer. These routines are checking an expression to see 1144 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1145 ** not constant. 1146 ** 1147 ** These callback routines are used to implement the following: 1148 ** 1149 ** sqlite3ExprIsConstant() 1150 ** sqlite3ExprIsConstantNotJoin() 1151 ** sqlite3ExprIsConstantOrFunction() 1152 ** 1153 */ 1154 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1155 1156 /* If pWalker->u.i is 3 then any term of the expression that comes from 1157 ** the ON or USING clauses of a join disqualifies the expression 1158 ** from being considered constant. */ 1159 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1160 pWalker->u.i = 0; 1161 return WRC_Abort; 1162 } 1163 1164 switch( pExpr->op ){ 1165 /* Consider functions to be constant if all their arguments are constant 1166 ** and pWalker->u.i==2 */ 1167 case TK_FUNCTION: 1168 if( pWalker->u.i==2 ) return 0; 1169 /* Fall through */ 1170 case TK_ID: 1171 case TK_COLUMN: 1172 case TK_AGG_FUNCTION: 1173 case TK_AGG_COLUMN: 1174 testcase( pExpr->op==TK_ID ); 1175 testcase( pExpr->op==TK_COLUMN ); 1176 testcase( pExpr->op==TK_AGG_FUNCTION ); 1177 testcase( pExpr->op==TK_AGG_COLUMN ); 1178 pWalker->u.i = 0; 1179 return WRC_Abort; 1180 default: 1181 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1182 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1183 return WRC_Continue; 1184 } 1185 } 1186 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1187 UNUSED_PARAMETER(NotUsed); 1188 pWalker->u.i = 0; 1189 return WRC_Abort; 1190 } 1191 static int exprIsConst(Expr *p, int initFlag){ 1192 Walker w; 1193 w.u.i = initFlag; 1194 w.xExprCallback = exprNodeIsConstant; 1195 w.xSelectCallback = selectNodeIsConstant; 1196 sqlite3WalkExpr(&w, p); 1197 return w.u.i; 1198 } 1199 1200 /* 1201 ** Walk an expression tree. Return 1 if the expression is constant 1202 ** and 0 if it involves variables or function calls. 1203 ** 1204 ** For the purposes of this function, a double-quoted string (ex: "abc") 1205 ** is considered a variable but a single-quoted string (ex: 'abc') is 1206 ** a constant. 1207 */ 1208 int sqlite3ExprIsConstant(Expr *p){ 1209 return exprIsConst(p, 1); 1210 } 1211 1212 /* 1213 ** Walk an expression tree. Return 1 if the expression is constant 1214 ** that does no originate from the ON or USING clauses of a join. 1215 ** Return 0 if it involves variables or function calls or terms from 1216 ** an ON or USING clause. 1217 */ 1218 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1219 return exprIsConst(p, 3); 1220 } 1221 1222 /* 1223 ** Walk an expression tree. Return 1 if the expression is constant 1224 ** or a function call with constant arguments. Return and 0 if there 1225 ** are any variables. 1226 ** 1227 ** For the purposes of this function, a double-quoted string (ex: "abc") 1228 ** is considered a variable but a single-quoted string (ex: 'abc') is 1229 ** a constant. 1230 */ 1231 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1232 return exprIsConst(p, 2); 1233 } 1234 1235 /* 1236 ** If the expression p codes a constant integer that is small enough 1237 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1238 ** in *pValue. If the expression is not an integer or if it is too big 1239 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1240 */ 1241 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1242 int rc = 0; 1243 1244 /* If an expression is an integer literal that fits in a signed 32-bit 1245 ** integer, then the EP_IntValue flag will have already been set */ 1246 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1247 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1248 1249 if( p->flags & EP_IntValue ){ 1250 *pValue = p->u.iValue; 1251 return 1; 1252 } 1253 switch( p->op ){ 1254 case TK_UPLUS: { 1255 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1256 break; 1257 } 1258 case TK_UMINUS: { 1259 int v; 1260 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1261 *pValue = -v; 1262 rc = 1; 1263 } 1264 break; 1265 } 1266 default: break; 1267 } 1268 return rc; 1269 } 1270 1271 /* 1272 ** Return FALSE if there is no chance that the expression can be NULL. 1273 ** 1274 ** If the expression might be NULL or if the expression is too complex 1275 ** to tell return TRUE. 1276 ** 1277 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1278 ** when we know that a value cannot be NULL. Hence, a false positive 1279 ** (returning TRUE when in fact the expression can never be NULL) might 1280 ** be a small performance hit but is otherwise harmless. On the other 1281 ** hand, a false negative (returning FALSE when the result could be NULL) 1282 ** will likely result in an incorrect answer. So when in doubt, return 1283 ** TRUE. 1284 */ 1285 int sqlite3ExprCanBeNull(const Expr *p){ 1286 u8 op; 1287 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1288 op = p->op; 1289 if( op==TK_REGISTER ) op = p->op2; 1290 switch( op ){ 1291 case TK_INTEGER: 1292 case TK_STRING: 1293 case TK_FLOAT: 1294 case TK_BLOB: 1295 return 0; 1296 default: 1297 return 1; 1298 } 1299 } 1300 1301 /* 1302 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1303 ** to location iDest if the value in iReg is NULL. The value in iReg 1304 ** was computed by pExpr. If we can look at pExpr at compile-time and 1305 ** determine that it can never generate a NULL, then the OP_IsNull operation 1306 ** can be omitted. 1307 */ 1308 void sqlite3ExprCodeIsNullJump( 1309 Vdbe *v, /* The VDBE under construction */ 1310 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1311 int iReg, /* Test the value in this register for NULL */ 1312 int iDest /* Jump here if the value is null */ 1313 ){ 1314 if( sqlite3ExprCanBeNull(pExpr) ){ 1315 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1316 } 1317 } 1318 1319 /* 1320 ** Return TRUE if the given expression is a constant which would be 1321 ** unchanged by OP_Affinity with the affinity given in the second 1322 ** argument. 1323 ** 1324 ** This routine is used to determine if the OP_Affinity operation 1325 ** can be omitted. When in doubt return FALSE. A false negative 1326 ** is harmless. A false positive, however, can result in the wrong 1327 ** answer. 1328 */ 1329 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1330 u8 op; 1331 if( aff==SQLITE_AFF_NONE ) return 1; 1332 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1333 op = p->op; 1334 if( op==TK_REGISTER ) op = p->op2; 1335 switch( op ){ 1336 case TK_INTEGER: { 1337 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1338 } 1339 case TK_FLOAT: { 1340 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1341 } 1342 case TK_STRING: { 1343 return aff==SQLITE_AFF_TEXT; 1344 } 1345 case TK_BLOB: { 1346 return 1; 1347 } 1348 case TK_COLUMN: { 1349 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1350 return p->iColumn<0 1351 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1352 } 1353 default: { 1354 return 0; 1355 } 1356 } 1357 } 1358 1359 /* 1360 ** Return TRUE if the given string is a row-id column name. 1361 */ 1362 int sqlite3IsRowid(const char *z){ 1363 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1364 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1365 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1366 return 0; 1367 } 1368 1369 /* 1370 ** Return true if we are able to the IN operator optimization on a 1371 ** query of the form 1372 ** 1373 ** x IN (SELECT ...) 1374 ** 1375 ** Where the SELECT... clause is as specified by the parameter to this 1376 ** routine. 1377 ** 1378 ** The Select object passed in has already been preprocessed and no 1379 ** errors have been found. 1380 */ 1381 #ifndef SQLITE_OMIT_SUBQUERY 1382 static int isCandidateForInOpt(Select *p){ 1383 SrcList *pSrc; 1384 ExprList *pEList; 1385 Table *pTab; 1386 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1387 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1388 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1389 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1390 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1391 return 0; /* No DISTINCT keyword and no aggregate functions */ 1392 } 1393 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1394 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1395 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1396 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1397 pSrc = p->pSrc; 1398 assert( pSrc!=0 ); 1399 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1400 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1401 pTab = pSrc->a[0].pTab; 1402 if( NEVER(pTab==0) ) return 0; 1403 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1404 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1405 pEList = p->pEList; 1406 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1407 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1408 return 1; 1409 } 1410 #endif /* SQLITE_OMIT_SUBQUERY */ 1411 1412 /* 1413 ** Code an OP_Once instruction and allocate space for its flag. Return the 1414 ** address of the new instruction. 1415 */ 1416 int sqlite3CodeOnce(Parse *pParse){ 1417 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1418 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1419 } 1420 1421 /* 1422 ** This function is used by the implementation of the IN (...) operator. 1423 ** It's job is to find or create a b-tree structure that may be used 1424 ** either to test for membership of the (...) set or to iterate through 1425 ** its members, skipping duplicates. 1426 ** 1427 ** The index of the cursor opened on the b-tree (database table, database index 1428 ** or ephermal table) is stored in pX->iTable before this function returns. 1429 ** The returned value of this function indicates the b-tree type, as follows: 1430 ** 1431 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1432 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1433 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1434 ** populated epheremal table. 1435 ** 1436 ** An existing b-tree may only be used if the SELECT is of the simple 1437 ** form: 1438 ** 1439 ** SELECT <column> FROM <table> 1440 ** 1441 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1442 ** through the set members, skipping any duplicates. In this case an 1443 ** epheremal table must be used unless the selected <column> is guaranteed 1444 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1445 ** has a UNIQUE constraint or UNIQUE index. 1446 ** 1447 ** If the prNotFound parameter is not 0, then the b-tree will be used 1448 ** for fast set membership tests. In this case an epheremal table must 1449 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1450 ** be found with <column> as its left-most column. 1451 ** 1452 ** When the b-tree is being used for membership tests, the calling function 1453 ** needs to know whether or not the structure contains an SQL NULL 1454 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1455 ** If there is any chance that the (...) might contain a NULL value at 1456 ** runtime, then a register is allocated and the register number written 1457 ** to *prNotFound. If there is no chance that the (...) contains a 1458 ** NULL value, then *prNotFound is left unchanged. 1459 ** 1460 ** If a register is allocated and its location stored in *prNotFound, then 1461 ** its initial value is NULL. If the (...) does not remain constant 1462 ** for the duration of the query (i.e. the SELECT within the (...) 1463 ** is a correlated subquery) then the value of the allocated register is 1464 ** reset to NULL each time the subquery is rerun. This allows the 1465 ** caller to use vdbe code equivalent to the following: 1466 ** 1467 ** if( register==NULL ){ 1468 ** has_null = <test if data structure contains null> 1469 ** register = 1 1470 ** } 1471 ** 1472 ** in order to avoid running the <test if data structure contains null> 1473 ** test more often than is necessary. 1474 */ 1475 #ifndef SQLITE_OMIT_SUBQUERY 1476 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1477 Select *p; /* SELECT to the right of IN operator */ 1478 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1479 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1480 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1481 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1482 1483 assert( pX->op==TK_IN ); 1484 1485 /* Check to see if an existing table or index can be used to 1486 ** satisfy the query. This is preferable to generating a new 1487 ** ephemeral table. 1488 */ 1489 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1490 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1491 sqlite3 *db = pParse->db; /* Database connection */ 1492 Table *pTab; /* Table <table>. */ 1493 Expr *pExpr; /* Expression <column> */ 1494 int iCol; /* Index of column <column> */ 1495 int iDb; /* Database idx for pTab */ 1496 1497 assert( p ); /* Because of isCandidateForInOpt(p) */ 1498 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1499 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1500 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1501 pTab = p->pSrc->a[0].pTab; 1502 pExpr = p->pEList->a[0].pExpr; 1503 iCol = pExpr->iColumn; 1504 1505 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1506 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1507 sqlite3CodeVerifySchema(pParse, iDb); 1508 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1509 1510 /* This function is only called from two places. In both cases the vdbe 1511 ** has already been allocated. So assume sqlite3GetVdbe() is always 1512 ** successful here. 1513 */ 1514 assert(v); 1515 if( iCol<0 ){ 1516 int iAddr; 1517 1518 iAddr = sqlite3CodeOnce(pParse); 1519 1520 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1521 eType = IN_INDEX_ROWID; 1522 1523 sqlite3VdbeJumpHere(v, iAddr); 1524 }else{ 1525 Index *pIdx; /* Iterator variable */ 1526 1527 /* The collation sequence used by the comparison. If an index is to 1528 ** be used in place of a temp-table, it must be ordered according 1529 ** to this collation sequence. */ 1530 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1531 1532 /* Check that the affinity that will be used to perform the 1533 ** comparison is the same as the affinity of the column. If 1534 ** it is not, it is not possible to use any index. 1535 */ 1536 char aff = comparisonAffinity(pX); 1537 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1538 1539 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1540 if( (pIdx->aiColumn[0]==iCol) 1541 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1542 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1543 ){ 1544 int iAddr; 1545 char *pKey; 1546 1547 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1548 iAddr = sqlite3CodeOnce(pParse); 1549 1550 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1551 pKey,P4_KEYINFO_HANDOFF); 1552 VdbeComment((v, "%s", pIdx->zName)); 1553 eType = IN_INDEX_INDEX; 1554 1555 sqlite3VdbeJumpHere(v, iAddr); 1556 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1557 *prNotFound = ++pParse->nMem; 1558 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1559 } 1560 } 1561 } 1562 } 1563 } 1564 1565 if( eType==0 ){ 1566 /* Could not found an existing table or index to use as the RHS b-tree. 1567 ** We will have to generate an ephemeral table to do the job. 1568 */ 1569 double savedNQueryLoop = pParse->nQueryLoop; 1570 int rMayHaveNull = 0; 1571 eType = IN_INDEX_EPH; 1572 if( prNotFound ){ 1573 *prNotFound = rMayHaveNull = ++pParse->nMem; 1574 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1575 }else{ 1576 testcase( pParse->nQueryLoop>(double)1 ); 1577 pParse->nQueryLoop = (double)1; 1578 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1579 eType = IN_INDEX_ROWID; 1580 } 1581 } 1582 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1583 pParse->nQueryLoop = savedNQueryLoop; 1584 }else{ 1585 pX->iTable = iTab; 1586 } 1587 return eType; 1588 } 1589 #endif 1590 1591 /* 1592 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1593 ** or IN operators. Examples: 1594 ** 1595 ** (SELECT a FROM b) -- subquery 1596 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1597 ** x IN (4,5,11) -- IN operator with list on right-hand side 1598 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1599 ** 1600 ** The pExpr parameter describes the expression that contains the IN 1601 ** operator or subquery. 1602 ** 1603 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1604 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1605 ** to some integer key column of a table B-Tree. In this case, use an 1606 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1607 ** (slower) variable length keys B-Tree. 1608 ** 1609 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1610 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1611 ** Furthermore, the IN is in a WHERE clause and that we really want 1612 ** to iterate over the RHS of the IN operator in order to quickly locate 1613 ** all corresponding LHS elements. All this routine does is initialize 1614 ** the register given by rMayHaveNull to NULL. Calling routines will take 1615 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1616 ** 1617 ** If rMayHaveNull is zero, that means that the subquery is being used 1618 ** for membership testing only. There is no need to initialize any 1619 ** registers to indicate the presense or absence of NULLs on the RHS. 1620 ** 1621 ** For a SELECT or EXISTS operator, return the register that holds the 1622 ** result. For IN operators or if an error occurs, the return value is 0. 1623 */ 1624 #ifndef SQLITE_OMIT_SUBQUERY 1625 int sqlite3CodeSubselect( 1626 Parse *pParse, /* Parsing context */ 1627 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1628 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1629 int isRowid /* If true, LHS of IN operator is a rowid */ 1630 ){ 1631 int testAddr = -1; /* One-time test address */ 1632 int rReg = 0; /* Register storing resulting */ 1633 Vdbe *v = sqlite3GetVdbe(pParse); 1634 if( NEVER(v==0) ) return 0; 1635 sqlite3ExprCachePush(pParse); 1636 1637 /* This code must be run in its entirety every time it is encountered 1638 ** if any of the following is true: 1639 ** 1640 ** * The right-hand side is a correlated subquery 1641 ** * The right-hand side is an expression list containing variables 1642 ** * We are inside a trigger 1643 ** 1644 ** If all of the above are false, then we can run this code just once 1645 ** save the results, and reuse the same result on subsequent invocations. 1646 */ 1647 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1648 testAddr = sqlite3CodeOnce(pParse); 1649 } 1650 1651 #ifndef SQLITE_OMIT_EXPLAIN 1652 if( pParse->explain==2 ){ 1653 char *zMsg = sqlite3MPrintf( 1654 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1655 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1656 ); 1657 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1658 } 1659 #endif 1660 1661 switch( pExpr->op ){ 1662 case TK_IN: { 1663 char affinity; /* Affinity of the LHS of the IN */ 1664 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1665 int addr; /* Address of OP_OpenEphemeral instruction */ 1666 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1667 1668 if( rMayHaveNull ){ 1669 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1670 } 1671 1672 affinity = sqlite3ExprAffinity(pLeft); 1673 1674 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1675 ** expression it is handled the same way. An ephemeral table is 1676 ** filled with single-field index keys representing the results 1677 ** from the SELECT or the <exprlist>. 1678 ** 1679 ** If the 'x' expression is a column value, or the SELECT... 1680 ** statement returns a column value, then the affinity of that 1681 ** column is used to build the index keys. If both 'x' and the 1682 ** SELECT... statement are columns, then numeric affinity is used 1683 ** if either column has NUMERIC or INTEGER affinity. If neither 1684 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1685 ** is used. 1686 */ 1687 pExpr->iTable = pParse->nTab++; 1688 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1689 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1690 memset(&keyInfo, 0, sizeof(keyInfo)); 1691 keyInfo.nField = 1; 1692 1693 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1694 /* Case 1: expr IN (SELECT ...) 1695 ** 1696 ** Generate code to write the results of the select into the temporary 1697 ** table allocated and opened above. 1698 */ 1699 SelectDest dest; 1700 ExprList *pEList; 1701 1702 assert( !isRowid ); 1703 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1704 dest.affinity = (u8)affinity; 1705 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1706 pExpr->x.pSelect->iLimit = 0; 1707 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1708 return 0; 1709 } 1710 pEList = pExpr->x.pSelect->pEList; 1711 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1712 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1713 pEList->a[0].pExpr); 1714 } 1715 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1716 /* Case 2: expr IN (exprlist) 1717 ** 1718 ** For each expression, build an index key from the evaluation and 1719 ** store it in the temporary table. If <expr> is a column, then use 1720 ** that columns affinity when building index keys. If <expr> is not 1721 ** a column, use numeric affinity. 1722 */ 1723 int i; 1724 ExprList *pList = pExpr->x.pList; 1725 struct ExprList_item *pItem; 1726 int r1, r2, r3; 1727 1728 if( !affinity ){ 1729 affinity = SQLITE_AFF_NONE; 1730 } 1731 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1732 1733 /* Loop through each expression in <exprlist>. */ 1734 r1 = sqlite3GetTempReg(pParse); 1735 r2 = sqlite3GetTempReg(pParse); 1736 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1737 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1738 Expr *pE2 = pItem->pExpr; 1739 int iValToIns; 1740 1741 /* If the expression is not constant then we will need to 1742 ** disable the test that was generated above that makes sure 1743 ** this code only executes once. Because for a non-constant 1744 ** expression we need to rerun this code each time. 1745 */ 1746 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1747 sqlite3VdbeChangeToNoop(v, testAddr); 1748 testAddr = -1; 1749 } 1750 1751 /* Evaluate the expression and insert it into the temp table */ 1752 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1753 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1754 }else{ 1755 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1756 if( isRowid ){ 1757 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1758 sqlite3VdbeCurrentAddr(v)+2); 1759 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1760 }else{ 1761 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1762 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1763 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1764 } 1765 } 1766 } 1767 sqlite3ReleaseTempReg(pParse, r1); 1768 sqlite3ReleaseTempReg(pParse, r2); 1769 } 1770 if( !isRowid ){ 1771 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1772 } 1773 break; 1774 } 1775 1776 case TK_EXISTS: 1777 case TK_SELECT: 1778 default: { 1779 /* If this has to be a scalar SELECT. Generate code to put the 1780 ** value of this select in a memory cell and record the number 1781 ** of the memory cell in iColumn. If this is an EXISTS, write 1782 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1783 ** and record that memory cell in iColumn. 1784 */ 1785 Select *pSel; /* SELECT statement to encode */ 1786 SelectDest dest; /* How to deal with SELECt result */ 1787 1788 testcase( pExpr->op==TK_EXISTS ); 1789 testcase( pExpr->op==TK_SELECT ); 1790 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1791 1792 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1793 pSel = pExpr->x.pSelect; 1794 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1795 if( pExpr->op==TK_SELECT ){ 1796 dest.eDest = SRT_Mem; 1797 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1798 VdbeComment((v, "Init subquery result")); 1799 }else{ 1800 dest.eDest = SRT_Exists; 1801 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1802 VdbeComment((v, "Init EXISTS result")); 1803 } 1804 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1805 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1806 &sqlite3IntTokens[1]); 1807 pSel->iLimit = 0; 1808 if( sqlite3Select(pParse, pSel, &dest) ){ 1809 return 0; 1810 } 1811 rReg = dest.iParm; 1812 ExprSetIrreducible(pExpr); 1813 break; 1814 } 1815 } 1816 1817 if( testAddr>=0 ){ 1818 sqlite3VdbeJumpHere(v, testAddr); 1819 } 1820 sqlite3ExprCachePop(pParse, 1); 1821 1822 return rReg; 1823 } 1824 #endif /* SQLITE_OMIT_SUBQUERY */ 1825 1826 #ifndef SQLITE_OMIT_SUBQUERY 1827 /* 1828 ** Generate code for an IN expression. 1829 ** 1830 ** x IN (SELECT ...) 1831 ** x IN (value, value, ...) 1832 ** 1833 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1834 ** is an array of zero or more values. The expression is true if the LHS is 1835 ** contained within the RHS. The value of the expression is unknown (NULL) 1836 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1837 ** RHS contains one or more NULL values. 1838 ** 1839 ** This routine generates code will jump to destIfFalse if the LHS is not 1840 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1841 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1842 ** within the RHS then fall through. 1843 */ 1844 static void sqlite3ExprCodeIN( 1845 Parse *pParse, /* Parsing and code generating context */ 1846 Expr *pExpr, /* The IN expression */ 1847 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1848 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1849 ){ 1850 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1851 char affinity; /* Comparison affinity to use */ 1852 int eType; /* Type of the RHS */ 1853 int r1; /* Temporary use register */ 1854 Vdbe *v; /* Statement under construction */ 1855 1856 /* Compute the RHS. After this step, the table with cursor 1857 ** pExpr->iTable will contains the values that make up the RHS. 1858 */ 1859 v = pParse->pVdbe; 1860 assert( v!=0 ); /* OOM detected prior to this routine */ 1861 VdbeNoopComment((v, "begin IN expr")); 1862 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1863 1864 /* Figure out the affinity to use to create a key from the results 1865 ** of the expression. affinityStr stores a static string suitable for 1866 ** P4 of OP_MakeRecord. 1867 */ 1868 affinity = comparisonAffinity(pExpr); 1869 1870 /* Code the LHS, the <expr> from "<expr> IN (...)". 1871 */ 1872 sqlite3ExprCachePush(pParse); 1873 r1 = sqlite3GetTempReg(pParse); 1874 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1875 1876 /* If the LHS is NULL, then the result is either false or NULL depending 1877 ** on whether the RHS is empty or not, respectively. 1878 */ 1879 if( destIfNull==destIfFalse ){ 1880 /* Shortcut for the common case where the false and NULL outcomes are 1881 ** the same. */ 1882 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1883 }else{ 1884 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1885 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1886 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1887 sqlite3VdbeJumpHere(v, addr1); 1888 } 1889 1890 if( eType==IN_INDEX_ROWID ){ 1891 /* In this case, the RHS is the ROWID of table b-tree 1892 */ 1893 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1894 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1895 }else{ 1896 /* In this case, the RHS is an index b-tree. 1897 */ 1898 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1899 1900 /* If the set membership test fails, then the result of the 1901 ** "x IN (...)" expression must be either 0 or NULL. If the set 1902 ** contains no NULL values, then the result is 0. If the set 1903 ** contains one or more NULL values, then the result of the 1904 ** expression is also NULL. 1905 */ 1906 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1907 /* This branch runs if it is known at compile time that the RHS 1908 ** cannot contain NULL values. This happens as the result 1909 ** of a "NOT NULL" constraint in the database schema. 1910 ** 1911 ** Also run this branch if NULL is equivalent to FALSE 1912 ** for this particular IN operator. 1913 */ 1914 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1915 1916 }else{ 1917 /* In this branch, the RHS of the IN might contain a NULL and 1918 ** the presence of a NULL on the RHS makes a difference in the 1919 ** outcome. 1920 */ 1921 int j1, j2, j3; 1922 1923 /* First check to see if the LHS is contained in the RHS. If so, 1924 ** then the presence of NULLs in the RHS does not matter, so jump 1925 ** over all of the code that follows. 1926 */ 1927 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1928 1929 /* Here we begin generating code that runs if the LHS is not 1930 ** contained within the RHS. Generate additional code that 1931 ** tests the RHS for NULLs. If the RHS contains a NULL then 1932 ** jump to destIfNull. If there are no NULLs in the RHS then 1933 ** jump to destIfFalse. 1934 */ 1935 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1936 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1937 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1938 sqlite3VdbeJumpHere(v, j3); 1939 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1940 sqlite3VdbeJumpHere(v, j2); 1941 1942 /* Jump to the appropriate target depending on whether or not 1943 ** the RHS contains a NULL 1944 */ 1945 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1946 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1947 1948 /* The OP_Found at the top of this branch jumps here when true, 1949 ** causing the overall IN expression evaluation to fall through. 1950 */ 1951 sqlite3VdbeJumpHere(v, j1); 1952 } 1953 } 1954 sqlite3ReleaseTempReg(pParse, r1); 1955 sqlite3ExprCachePop(pParse, 1); 1956 VdbeComment((v, "end IN expr")); 1957 } 1958 #endif /* SQLITE_OMIT_SUBQUERY */ 1959 1960 /* 1961 ** Duplicate an 8-byte value 1962 */ 1963 static char *dup8bytes(Vdbe *v, const char *in){ 1964 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1965 if( out ){ 1966 memcpy(out, in, 8); 1967 } 1968 return out; 1969 } 1970 1971 #ifndef SQLITE_OMIT_FLOATING_POINT 1972 /* 1973 ** Generate an instruction that will put the floating point 1974 ** value described by z[0..n-1] into register iMem. 1975 ** 1976 ** The z[] string will probably not be zero-terminated. But the 1977 ** z[n] character is guaranteed to be something that does not look 1978 ** like the continuation of the number. 1979 */ 1980 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1981 if( ALWAYS(z!=0) ){ 1982 double value; 1983 char *zV; 1984 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1985 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1986 if( negateFlag ) value = -value; 1987 zV = dup8bytes(v, (char*)&value); 1988 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1989 } 1990 } 1991 #endif 1992 1993 1994 /* 1995 ** Generate an instruction that will put the integer describe by 1996 ** text z[0..n-1] into register iMem. 1997 ** 1998 ** Expr.u.zToken is always UTF8 and zero-terminated. 1999 */ 2000 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2001 Vdbe *v = pParse->pVdbe; 2002 if( pExpr->flags & EP_IntValue ){ 2003 int i = pExpr->u.iValue; 2004 assert( i>=0 ); 2005 if( negFlag ) i = -i; 2006 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2007 }else{ 2008 int c; 2009 i64 value; 2010 const char *z = pExpr->u.zToken; 2011 assert( z!=0 ); 2012 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2013 if( c==0 || (c==2 && negFlag) ){ 2014 char *zV; 2015 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2016 zV = dup8bytes(v, (char*)&value); 2017 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2018 }else{ 2019 #ifdef SQLITE_OMIT_FLOATING_POINT 2020 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2021 #else 2022 codeReal(v, z, negFlag, iMem); 2023 #endif 2024 } 2025 } 2026 } 2027 2028 /* 2029 ** Clear a cache entry. 2030 */ 2031 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2032 if( p->tempReg ){ 2033 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2034 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2035 } 2036 p->tempReg = 0; 2037 } 2038 } 2039 2040 2041 /* 2042 ** Record in the column cache that a particular column from a 2043 ** particular table is stored in a particular register. 2044 */ 2045 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2046 int i; 2047 int minLru; 2048 int idxLru; 2049 struct yColCache *p; 2050 2051 assert( iReg>0 ); /* Register numbers are always positive */ 2052 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2053 2054 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2055 ** for testing only - to verify that SQLite always gets the same answer 2056 ** with and without the column cache. 2057 */ 2058 if( pParse->db->flags & SQLITE_ColumnCache ) return; 2059 2060 /* First replace any existing entry. 2061 ** 2062 ** Actually, the way the column cache is currently used, we are guaranteed 2063 ** that the object will never already be in cache. Verify this guarantee. 2064 */ 2065 #ifndef NDEBUG 2066 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2067 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2068 } 2069 #endif 2070 2071 /* Find an empty slot and replace it */ 2072 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2073 if( p->iReg==0 ){ 2074 p->iLevel = pParse->iCacheLevel; 2075 p->iTable = iTab; 2076 p->iColumn = iCol; 2077 p->iReg = iReg; 2078 p->tempReg = 0; 2079 p->lru = pParse->iCacheCnt++; 2080 return; 2081 } 2082 } 2083 2084 /* Replace the last recently used */ 2085 minLru = 0x7fffffff; 2086 idxLru = -1; 2087 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2088 if( p->lru<minLru ){ 2089 idxLru = i; 2090 minLru = p->lru; 2091 } 2092 } 2093 if( ALWAYS(idxLru>=0) ){ 2094 p = &pParse->aColCache[idxLru]; 2095 p->iLevel = pParse->iCacheLevel; 2096 p->iTable = iTab; 2097 p->iColumn = iCol; 2098 p->iReg = iReg; 2099 p->tempReg = 0; 2100 p->lru = pParse->iCacheCnt++; 2101 return; 2102 } 2103 } 2104 2105 /* 2106 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2107 ** Purge the range of registers from the column cache. 2108 */ 2109 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2110 int i; 2111 int iLast = iReg + nReg - 1; 2112 struct yColCache *p; 2113 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2114 int r = p->iReg; 2115 if( r>=iReg && r<=iLast ){ 2116 cacheEntryClear(pParse, p); 2117 p->iReg = 0; 2118 } 2119 } 2120 } 2121 2122 /* 2123 ** Remember the current column cache context. Any new entries added 2124 ** added to the column cache after this call are removed when the 2125 ** corresponding pop occurs. 2126 */ 2127 void sqlite3ExprCachePush(Parse *pParse){ 2128 pParse->iCacheLevel++; 2129 } 2130 2131 /* 2132 ** Remove from the column cache any entries that were added since the 2133 ** the previous N Push operations. In other words, restore the cache 2134 ** to the state it was in N Pushes ago. 2135 */ 2136 void sqlite3ExprCachePop(Parse *pParse, int N){ 2137 int i; 2138 struct yColCache *p; 2139 assert( N>0 ); 2140 assert( pParse->iCacheLevel>=N ); 2141 pParse->iCacheLevel -= N; 2142 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2143 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2144 cacheEntryClear(pParse, p); 2145 p->iReg = 0; 2146 } 2147 } 2148 } 2149 2150 /* 2151 ** When a cached column is reused, make sure that its register is 2152 ** no longer available as a temp register. ticket #3879: that same 2153 ** register might be in the cache in multiple places, so be sure to 2154 ** get them all. 2155 */ 2156 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2157 int i; 2158 struct yColCache *p; 2159 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2160 if( p->iReg==iReg ){ 2161 p->tempReg = 0; 2162 } 2163 } 2164 } 2165 2166 /* 2167 ** Generate code to extract the value of the iCol-th column of a table. 2168 */ 2169 void sqlite3ExprCodeGetColumnOfTable( 2170 Vdbe *v, /* The VDBE under construction */ 2171 Table *pTab, /* The table containing the value */ 2172 int iTabCur, /* The cursor for this table */ 2173 int iCol, /* Index of the column to extract */ 2174 int regOut /* Extract the valud into this register */ 2175 ){ 2176 if( iCol<0 || iCol==pTab->iPKey ){ 2177 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2178 }else{ 2179 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2180 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2181 } 2182 if( iCol>=0 ){ 2183 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2184 } 2185 } 2186 2187 /* 2188 ** Generate code that will extract the iColumn-th column from 2189 ** table pTab and store the column value in a register. An effort 2190 ** is made to store the column value in register iReg, but this is 2191 ** not guaranteed. The location of the column value is returned. 2192 ** 2193 ** There must be an open cursor to pTab in iTable when this routine 2194 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2195 */ 2196 int sqlite3ExprCodeGetColumn( 2197 Parse *pParse, /* Parsing and code generating context */ 2198 Table *pTab, /* Description of the table we are reading from */ 2199 int iColumn, /* Index of the table column */ 2200 int iTable, /* The cursor pointing to the table */ 2201 int iReg, /* Store results here */ 2202 u8 p5 /* P5 value for OP_Column */ 2203 ){ 2204 Vdbe *v = pParse->pVdbe; 2205 int i; 2206 struct yColCache *p; 2207 2208 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2209 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2210 p->lru = pParse->iCacheCnt++; 2211 sqlite3ExprCachePinRegister(pParse, p->iReg); 2212 return p->iReg; 2213 } 2214 } 2215 assert( v!=0 ); 2216 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2217 if( p5 ){ 2218 sqlite3VdbeChangeP5(v, p5); 2219 }else{ 2220 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2221 } 2222 return iReg; 2223 } 2224 2225 /* 2226 ** Clear all column cache entries. 2227 */ 2228 void sqlite3ExprCacheClear(Parse *pParse){ 2229 int i; 2230 struct yColCache *p; 2231 2232 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2233 if( p->iReg ){ 2234 cacheEntryClear(pParse, p); 2235 p->iReg = 0; 2236 } 2237 } 2238 } 2239 2240 /* 2241 ** Record the fact that an affinity change has occurred on iCount 2242 ** registers starting with iStart. 2243 */ 2244 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2245 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2246 } 2247 2248 /* 2249 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2250 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2251 */ 2252 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2253 int i; 2254 struct yColCache *p; 2255 if( NEVER(iFrom==iTo) ) return; 2256 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2257 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2258 int x = p->iReg; 2259 if( x>=iFrom && x<iFrom+nReg ){ 2260 p->iReg += iTo-iFrom; 2261 } 2262 } 2263 } 2264 2265 /* 2266 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2267 ** over to iTo..iTo+nReg-1. 2268 */ 2269 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2270 int i; 2271 if( NEVER(iFrom==iTo) ) return; 2272 for(i=0; i<nReg; i++){ 2273 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2274 } 2275 } 2276 2277 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2278 /* 2279 ** Return true if any register in the range iFrom..iTo (inclusive) 2280 ** is used as part of the column cache. 2281 ** 2282 ** This routine is used within assert() and testcase() macros only 2283 ** and does not appear in a normal build. 2284 */ 2285 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2286 int i; 2287 struct yColCache *p; 2288 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2289 int r = p->iReg; 2290 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2291 } 2292 return 0; 2293 } 2294 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2295 2296 /* 2297 ** Generate code into the current Vdbe to evaluate the given 2298 ** expression. Attempt to store the results in register "target". 2299 ** Return the register where results are stored. 2300 ** 2301 ** With this routine, there is no guarantee that results will 2302 ** be stored in target. The result might be stored in some other 2303 ** register if it is convenient to do so. The calling function 2304 ** must check the return code and move the results to the desired 2305 ** register. 2306 */ 2307 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2308 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2309 int op; /* The opcode being coded */ 2310 int inReg = target; /* Results stored in register inReg */ 2311 int regFree1 = 0; /* If non-zero free this temporary register */ 2312 int regFree2 = 0; /* If non-zero free this temporary register */ 2313 int r1, r2, r3, r4; /* Various register numbers */ 2314 sqlite3 *db = pParse->db; /* The database connection */ 2315 2316 assert( target>0 && target<=pParse->nMem ); 2317 if( v==0 ){ 2318 assert( pParse->db->mallocFailed ); 2319 return 0; 2320 } 2321 2322 if( pExpr==0 ){ 2323 op = TK_NULL; 2324 }else{ 2325 op = pExpr->op; 2326 } 2327 switch( op ){ 2328 case TK_AGG_COLUMN: { 2329 AggInfo *pAggInfo = pExpr->pAggInfo; 2330 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2331 if( !pAggInfo->directMode ){ 2332 assert( pCol->iMem>0 ); 2333 inReg = pCol->iMem; 2334 break; 2335 }else if( pAggInfo->useSortingIdx ){ 2336 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2337 pCol->iSorterColumn, target); 2338 break; 2339 } 2340 /* Otherwise, fall thru into the TK_COLUMN case */ 2341 } 2342 case TK_COLUMN: { 2343 if( pExpr->iTable<0 ){ 2344 /* This only happens when coding check constraints */ 2345 assert( pParse->ckBase>0 ); 2346 inReg = pExpr->iColumn + pParse->ckBase; 2347 }else{ 2348 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2349 pExpr->iColumn, pExpr->iTable, target, 2350 pExpr->op2); 2351 } 2352 break; 2353 } 2354 case TK_INTEGER: { 2355 codeInteger(pParse, pExpr, 0, target); 2356 break; 2357 } 2358 #ifndef SQLITE_OMIT_FLOATING_POINT 2359 case TK_FLOAT: { 2360 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2361 codeReal(v, pExpr->u.zToken, 0, target); 2362 break; 2363 } 2364 #endif 2365 case TK_STRING: { 2366 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2367 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2368 break; 2369 } 2370 case TK_NULL: { 2371 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2372 break; 2373 } 2374 #ifndef SQLITE_OMIT_BLOB_LITERAL 2375 case TK_BLOB: { 2376 int n; 2377 const char *z; 2378 char *zBlob; 2379 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2380 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2381 assert( pExpr->u.zToken[1]=='\'' ); 2382 z = &pExpr->u.zToken[2]; 2383 n = sqlite3Strlen30(z) - 1; 2384 assert( z[n]=='\'' ); 2385 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2386 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2387 break; 2388 } 2389 #endif 2390 case TK_VARIABLE: { 2391 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2392 assert( pExpr->u.zToken!=0 ); 2393 assert( pExpr->u.zToken[0]!=0 ); 2394 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2395 if( pExpr->u.zToken[1]!=0 ){ 2396 assert( pExpr->u.zToken[0]=='?' 2397 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2398 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2399 } 2400 break; 2401 } 2402 case TK_REGISTER: { 2403 inReg = pExpr->iTable; 2404 break; 2405 } 2406 case TK_AS: { 2407 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2408 break; 2409 } 2410 #ifndef SQLITE_OMIT_CAST 2411 case TK_CAST: { 2412 /* Expressions of the form: CAST(pLeft AS token) */ 2413 int aff, to_op; 2414 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2415 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2416 aff = sqlite3AffinityType(pExpr->u.zToken); 2417 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2418 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2419 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2420 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2421 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2422 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2423 testcase( to_op==OP_ToText ); 2424 testcase( to_op==OP_ToBlob ); 2425 testcase( to_op==OP_ToNumeric ); 2426 testcase( to_op==OP_ToInt ); 2427 testcase( to_op==OP_ToReal ); 2428 if( inReg!=target ){ 2429 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2430 inReg = target; 2431 } 2432 sqlite3VdbeAddOp1(v, to_op, inReg); 2433 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2434 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2435 break; 2436 } 2437 #endif /* SQLITE_OMIT_CAST */ 2438 case TK_LT: 2439 case TK_LE: 2440 case TK_GT: 2441 case TK_GE: 2442 case TK_NE: 2443 case TK_EQ: { 2444 assert( TK_LT==OP_Lt ); 2445 assert( TK_LE==OP_Le ); 2446 assert( TK_GT==OP_Gt ); 2447 assert( TK_GE==OP_Ge ); 2448 assert( TK_EQ==OP_Eq ); 2449 assert( TK_NE==OP_Ne ); 2450 testcase( op==TK_LT ); 2451 testcase( op==TK_LE ); 2452 testcase( op==TK_GT ); 2453 testcase( op==TK_GE ); 2454 testcase( op==TK_EQ ); 2455 testcase( op==TK_NE ); 2456 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2457 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2458 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2459 r1, r2, inReg, SQLITE_STOREP2); 2460 testcase( regFree1==0 ); 2461 testcase( regFree2==0 ); 2462 break; 2463 } 2464 case TK_IS: 2465 case TK_ISNOT: { 2466 testcase( op==TK_IS ); 2467 testcase( op==TK_ISNOT ); 2468 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2469 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2470 op = (op==TK_IS) ? TK_EQ : TK_NE; 2471 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2472 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2473 testcase( regFree1==0 ); 2474 testcase( regFree2==0 ); 2475 break; 2476 } 2477 case TK_AND: 2478 case TK_OR: 2479 case TK_PLUS: 2480 case TK_STAR: 2481 case TK_MINUS: 2482 case TK_REM: 2483 case TK_BITAND: 2484 case TK_BITOR: 2485 case TK_SLASH: 2486 case TK_LSHIFT: 2487 case TK_RSHIFT: 2488 case TK_CONCAT: { 2489 assert( TK_AND==OP_And ); 2490 assert( TK_OR==OP_Or ); 2491 assert( TK_PLUS==OP_Add ); 2492 assert( TK_MINUS==OP_Subtract ); 2493 assert( TK_REM==OP_Remainder ); 2494 assert( TK_BITAND==OP_BitAnd ); 2495 assert( TK_BITOR==OP_BitOr ); 2496 assert( TK_SLASH==OP_Divide ); 2497 assert( TK_LSHIFT==OP_ShiftLeft ); 2498 assert( TK_RSHIFT==OP_ShiftRight ); 2499 assert( TK_CONCAT==OP_Concat ); 2500 testcase( op==TK_AND ); 2501 testcase( op==TK_OR ); 2502 testcase( op==TK_PLUS ); 2503 testcase( op==TK_MINUS ); 2504 testcase( op==TK_REM ); 2505 testcase( op==TK_BITAND ); 2506 testcase( op==TK_BITOR ); 2507 testcase( op==TK_SLASH ); 2508 testcase( op==TK_LSHIFT ); 2509 testcase( op==TK_RSHIFT ); 2510 testcase( op==TK_CONCAT ); 2511 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2512 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2513 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2514 testcase( regFree1==0 ); 2515 testcase( regFree2==0 ); 2516 break; 2517 } 2518 case TK_UMINUS: { 2519 Expr *pLeft = pExpr->pLeft; 2520 assert( pLeft ); 2521 if( pLeft->op==TK_INTEGER ){ 2522 codeInteger(pParse, pLeft, 1, target); 2523 #ifndef SQLITE_OMIT_FLOATING_POINT 2524 }else if( pLeft->op==TK_FLOAT ){ 2525 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2526 codeReal(v, pLeft->u.zToken, 1, target); 2527 #endif 2528 }else{ 2529 regFree1 = r1 = sqlite3GetTempReg(pParse); 2530 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2531 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2532 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2533 testcase( regFree2==0 ); 2534 } 2535 inReg = target; 2536 break; 2537 } 2538 case TK_BITNOT: 2539 case TK_NOT: { 2540 assert( TK_BITNOT==OP_BitNot ); 2541 assert( TK_NOT==OP_Not ); 2542 testcase( op==TK_BITNOT ); 2543 testcase( op==TK_NOT ); 2544 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2545 testcase( regFree1==0 ); 2546 inReg = target; 2547 sqlite3VdbeAddOp2(v, op, r1, inReg); 2548 break; 2549 } 2550 case TK_ISNULL: 2551 case TK_NOTNULL: { 2552 int addr; 2553 assert( TK_ISNULL==OP_IsNull ); 2554 assert( TK_NOTNULL==OP_NotNull ); 2555 testcase( op==TK_ISNULL ); 2556 testcase( op==TK_NOTNULL ); 2557 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2558 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2559 testcase( regFree1==0 ); 2560 addr = sqlite3VdbeAddOp1(v, op, r1); 2561 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2562 sqlite3VdbeJumpHere(v, addr); 2563 break; 2564 } 2565 case TK_AGG_FUNCTION: { 2566 AggInfo *pInfo = pExpr->pAggInfo; 2567 if( pInfo==0 ){ 2568 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2569 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2570 }else{ 2571 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2572 } 2573 break; 2574 } 2575 case TK_CONST_FUNC: 2576 case TK_FUNCTION: { 2577 ExprList *pFarg; /* List of function arguments */ 2578 int nFarg; /* Number of function arguments */ 2579 FuncDef *pDef; /* The function definition object */ 2580 int nId; /* Length of the function name in bytes */ 2581 const char *zId; /* The function name */ 2582 int constMask = 0; /* Mask of function arguments that are constant */ 2583 int i; /* Loop counter */ 2584 u8 enc = ENC(db); /* The text encoding used by this database */ 2585 CollSeq *pColl = 0; /* A collating sequence */ 2586 2587 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2588 testcase( op==TK_CONST_FUNC ); 2589 testcase( op==TK_FUNCTION ); 2590 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2591 pFarg = 0; 2592 }else{ 2593 pFarg = pExpr->x.pList; 2594 } 2595 nFarg = pFarg ? pFarg->nExpr : 0; 2596 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2597 zId = pExpr->u.zToken; 2598 nId = sqlite3Strlen30(zId); 2599 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2600 if( pDef==0 ){ 2601 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2602 break; 2603 } 2604 2605 /* Attempt a direct implementation of the built-in COALESCE() and 2606 ** IFNULL() functions. This avoids unnecessary evalation of 2607 ** arguments past the first non-NULL argument. 2608 */ 2609 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2610 int endCoalesce = sqlite3VdbeMakeLabel(v); 2611 assert( nFarg>=2 ); 2612 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2613 for(i=1; i<nFarg; i++){ 2614 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2615 sqlite3ExprCacheRemove(pParse, target, 1); 2616 sqlite3ExprCachePush(pParse); 2617 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2618 sqlite3ExprCachePop(pParse, 1); 2619 } 2620 sqlite3VdbeResolveLabel(v, endCoalesce); 2621 break; 2622 } 2623 2624 2625 if( pFarg ){ 2626 r1 = sqlite3GetTempRange(pParse, nFarg); 2627 2628 /* For length() and typeof() functions with a column argument, 2629 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2630 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2631 ** loading. 2632 */ 2633 if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2634 u8 exprOp; 2635 assert( nFarg==1 ); 2636 assert( pFarg->a[0].pExpr!=0 ); 2637 exprOp = pFarg->a[0].pExpr->op; 2638 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2639 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2640 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2641 testcase( pDef->flags==SQLITE_FUNC_LENGTH ); 2642 pFarg->a[0].pExpr->op2 = pDef->flags; 2643 } 2644 } 2645 2646 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2647 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2648 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2649 }else{ 2650 r1 = 0; 2651 } 2652 #ifndef SQLITE_OMIT_VIRTUALTABLE 2653 /* Possibly overload the function if the first argument is 2654 ** a virtual table column. 2655 ** 2656 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2657 ** second argument, not the first, as the argument to test to 2658 ** see if it is a column in a virtual table. This is done because 2659 ** the left operand of infix functions (the operand we want to 2660 ** control overloading) ends up as the second argument to the 2661 ** function. The expression "A glob B" is equivalent to 2662 ** "glob(B,A). We want to use the A in "A glob B" to test 2663 ** for function overloading. But we use the B term in "glob(B,A)". 2664 */ 2665 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2666 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2667 }else if( nFarg>0 ){ 2668 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2669 } 2670 #endif 2671 for(i=0; i<nFarg; i++){ 2672 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2673 constMask |= (1<<i); 2674 } 2675 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2676 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2677 } 2678 } 2679 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2680 if( !pColl ) pColl = db->pDfltColl; 2681 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2682 } 2683 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2684 (char*)pDef, P4_FUNCDEF); 2685 sqlite3VdbeChangeP5(v, (u8)nFarg); 2686 if( nFarg ){ 2687 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2688 } 2689 break; 2690 } 2691 #ifndef SQLITE_OMIT_SUBQUERY 2692 case TK_EXISTS: 2693 case TK_SELECT: { 2694 testcase( op==TK_EXISTS ); 2695 testcase( op==TK_SELECT ); 2696 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2697 break; 2698 } 2699 case TK_IN: { 2700 int destIfFalse = sqlite3VdbeMakeLabel(v); 2701 int destIfNull = sqlite3VdbeMakeLabel(v); 2702 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2703 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2704 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2705 sqlite3VdbeResolveLabel(v, destIfFalse); 2706 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2707 sqlite3VdbeResolveLabel(v, destIfNull); 2708 break; 2709 } 2710 #endif /* SQLITE_OMIT_SUBQUERY */ 2711 2712 2713 /* 2714 ** x BETWEEN y AND z 2715 ** 2716 ** This is equivalent to 2717 ** 2718 ** x>=y AND x<=z 2719 ** 2720 ** X is stored in pExpr->pLeft. 2721 ** Y is stored in pExpr->pList->a[0].pExpr. 2722 ** Z is stored in pExpr->pList->a[1].pExpr. 2723 */ 2724 case TK_BETWEEN: { 2725 Expr *pLeft = pExpr->pLeft; 2726 struct ExprList_item *pLItem = pExpr->x.pList->a; 2727 Expr *pRight = pLItem->pExpr; 2728 2729 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2730 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2731 testcase( regFree1==0 ); 2732 testcase( regFree2==0 ); 2733 r3 = sqlite3GetTempReg(pParse); 2734 r4 = sqlite3GetTempReg(pParse); 2735 codeCompare(pParse, pLeft, pRight, OP_Ge, 2736 r1, r2, r3, SQLITE_STOREP2); 2737 pLItem++; 2738 pRight = pLItem->pExpr; 2739 sqlite3ReleaseTempReg(pParse, regFree2); 2740 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2741 testcase( regFree2==0 ); 2742 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2743 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2744 sqlite3ReleaseTempReg(pParse, r3); 2745 sqlite3ReleaseTempReg(pParse, r4); 2746 break; 2747 } 2748 case TK_UPLUS: { 2749 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2750 break; 2751 } 2752 2753 case TK_TRIGGER: { 2754 /* If the opcode is TK_TRIGGER, then the expression is a reference 2755 ** to a column in the new.* or old.* pseudo-tables available to 2756 ** trigger programs. In this case Expr.iTable is set to 1 for the 2757 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2758 ** is set to the column of the pseudo-table to read, or to -1 to 2759 ** read the rowid field. 2760 ** 2761 ** The expression is implemented using an OP_Param opcode. The p1 2762 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2763 ** to reference another column of the old.* pseudo-table, where 2764 ** i is the index of the column. For a new.rowid reference, p1 is 2765 ** set to (n+1), where n is the number of columns in each pseudo-table. 2766 ** For a reference to any other column in the new.* pseudo-table, p1 2767 ** is set to (n+2+i), where n and i are as defined previously. For 2768 ** example, if the table on which triggers are being fired is 2769 ** declared as: 2770 ** 2771 ** CREATE TABLE t1(a, b); 2772 ** 2773 ** Then p1 is interpreted as follows: 2774 ** 2775 ** p1==0 -> old.rowid p1==3 -> new.rowid 2776 ** p1==1 -> old.a p1==4 -> new.a 2777 ** p1==2 -> old.b p1==5 -> new.b 2778 */ 2779 Table *pTab = pExpr->pTab; 2780 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2781 2782 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2783 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2784 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2785 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2786 2787 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2788 VdbeComment((v, "%s.%s -> $%d", 2789 (pExpr->iTable ? "new" : "old"), 2790 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2791 target 2792 )); 2793 2794 #ifndef SQLITE_OMIT_FLOATING_POINT 2795 /* If the column has REAL affinity, it may currently be stored as an 2796 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2797 if( pExpr->iColumn>=0 2798 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2799 ){ 2800 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2801 } 2802 #endif 2803 break; 2804 } 2805 2806 2807 /* 2808 ** Form A: 2809 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2810 ** 2811 ** Form B: 2812 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2813 ** 2814 ** Form A is can be transformed into the equivalent form B as follows: 2815 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2816 ** WHEN x=eN THEN rN ELSE y END 2817 ** 2818 ** X (if it exists) is in pExpr->pLeft. 2819 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2820 ** ELSE clause and no other term matches, then the result of the 2821 ** exprssion is NULL. 2822 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2823 ** 2824 ** The result of the expression is the Ri for the first matching Ei, 2825 ** or if there is no matching Ei, the ELSE term Y, or if there is 2826 ** no ELSE term, NULL. 2827 */ 2828 default: assert( op==TK_CASE ); { 2829 int endLabel; /* GOTO label for end of CASE stmt */ 2830 int nextCase; /* GOTO label for next WHEN clause */ 2831 int nExpr; /* 2x number of WHEN terms */ 2832 int i; /* Loop counter */ 2833 ExprList *pEList; /* List of WHEN terms */ 2834 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2835 Expr opCompare; /* The X==Ei expression */ 2836 Expr cacheX; /* Cached expression X */ 2837 Expr *pX; /* The X expression */ 2838 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2839 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2840 2841 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2842 assert((pExpr->x.pList->nExpr % 2) == 0); 2843 assert(pExpr->x.pList->nExpr > 0); 2844 pEList = pExpr->x.pList; 2845 aListelem = pEList->a; 2846 nExpr = pEList->nExpr; 2847 endLabel = sqlite3VdbeMakeLabel(v); 2848 if( (pX = pExpr->pLeft)!=0 ){ 2849 cacheX = *pX; 2850 testcase( pX->op==TK_COLUMN ); 2851 testcase( pX->op==TK_REGISTER ); 2852 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2853 testcase( regFree1==0 ); 2854 cacheX.op = TK_REGISTER; 2855 opCompare.op = TK_EQ; 2856 opCompare.pLeft = &cacheX; 2857 pTest = &opCompare; 2858 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2859 ** The value in regFree1 might get SCopy-ed into the file result. 2860 ** So make sure that the regFree1 register is not reused for other 2861 ** purposes and possibly overwritten. */ 2862 regFree1 = 0; 2863 } 2864 for(i=0; i<nExpr; i=i+2){ 2865 sqlite3ExprCachePush(pParse); 2866 if( pX ){ 2867 assert( pTest!=0 ); 2868 opCompare.pRight = aListelem[i].pExpr; 2869 }else{ 2870 pTest = aListelem[i].pExpr; 2871 } 2872 nextCase = sqlite3VdbeMakeLabel(v); 2873 testcase( pTest->op==TK_COLUMN ); 2874 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2875 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2876 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2877 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2878 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2879 sqlite3ExprCachePop(pParse, 1); 2880 sqlite3VdbeResolveLabel(v, nextCase); 2881 } 2882 if( pExpr->pRight ){ 2883 sqlite3ExprCachePush(pParse); 2884 sqlite3ExprCode(pParse, pExpr->pRight, target); 2885 sqlite3ExprCachePop(pParse, 1); 2886 }else{ 2887 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2888 } 2889 assert( db->mallocFailed || pParse->nErr>0 2890 || pParse->iCacheLevel==iCacheLevel ); 2891 sqlite3VdbeResolveLabel(v, endLabel); 2892 break; 2893 } 2894 #ifndef SQLITE_OMIT_TRIGGER 2895 case TK_RAISE: { 2896 assert( pExpr->affinity==OE_Rollback 2897 || pExpr->affinity==OE_Abort 2898 || pExpr->affinity==OE_Fail 2899 || pExpr->affinity==OE_Ignore 2900 ); 2901 if( !pParse->pTriggerTab ){ 2902 sqlite3ErrorMsg(pParse, 2903 "RAISE() may only be used within a trigger-program"); 2904 return 0; 2905 } 2906 if( pExpr->affinity==OE_Abort ){ 2907 sqlite3MayAbort(pParse); 2908 } 2909 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2910 if( pExpr->affinity==OE_Ignore ){ 2911 sqlite3VdbeAddOp4( 2912 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2913 }else{ 2914 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2915 } 2916 2917 break; 2918 } 2919 #endif 2920 } 2921 sqlite3ReleaseTempReg(pParse, regFree1); 2922 sqlite3ReleaseTempReg(pParse, regFree2); 2923 return inReg; 2924 } 2925 2926 /* 2927 ** Generate code to evaluate an expression and store the results 2928 ** into a register. Return the register number where the results 2929 ** are stored. 2930 ** 2931 ** If the register is a temporary register that can be deallocated, 2932 ** then write its number into *pReg. If the result register is not 2933 ** a temporary, then set *pReg to zero. 2934 */ 2935 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2936 int r1 = sqlite3GetTempReg(pParse); 2937 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2938 if( r2==r1 ){ 2939 *pReg = r1; 2940 }else{ 2941 sqlite3ReleaseTempReg(pParse, r1); 2942 *pReg = 0; 2943 } 2944 return r2; 2945 } 2946 2947 /* 2948 ** Generate code that will evaluate expression pExpr and store the 2949 ** results in register target. The results are guaranteed to appear 2950 ** in register target. 2951 */ 2952 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2953 int inReg; 2954 2955 assert( target>0 && target<=pParse->nMem ); 2956 if( pExpr && pExpr->op==TK_REGISTER ){ 2957 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2958 }else{ 2959 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2960 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2961 if( inReg!=target && pParse->pVdbe ){ 2962 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2963 } 2964 } 2965 return target; 2966 } 2967 2968 /* 2969 ** Generate code that evalutes the given expression and puts the result 2970 ** in register target. 2971 ** 2972 ** Also make a copy of the expression results into another "cache" register 2973 ** and modify the expression so that the next time it is evaluated, 2974 ** the result is a copy of the cache register. 2975 ** 2976 ** This routine is used for expressions that are used multiple 2977 ** times. They are evaluated once and the results of the expression 2978 ** are reused. 2979 */ 2980 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2981 Vdbe *v = pParse->pVdbe; 2982 int inReg; 2983 inReg = sqlite3ExprCode(pParse, pExpr, target); 2984 assert( target>0 ); 2985 /* This routine is called for terms to INSERT or UPDATE. And the only 2986 ** other place where expressions can be converted into TK_REGISTER is 2987 ** in WHERE clause processing. So as currently implemented, there is 2988 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2989 ** keep the ALWAYS() in case the conditions above change with future 2990 ** modifications or enhancements. */ 2991 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2992 int iMem; 2993 iMem = ++pParse->nMem; 2994 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2995 pExpr->iTable = iMem; 2996 pExpr->op2 = pExpr->op; 2997 pExpr->op = TK_REGISTER; 2998 } 2999 return inReg; 3000 } 3001 3002 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3003 /* 3004 ** Generate a human-readable explanation of an expression tree. 3005 */ 3006 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3007 int op; /* The opcode being coded */ 3008 const char *zBinOp = 0; /* Binary operator */ 3009 const char *zUniOp = 0; /* Unary operator */ 3010 if( pExpr==0 ){ 3011 op = TK_NULL; 3012 }else{ 3013 op = pExpr->op; 3014 } 3015 switch( op ){ 3016 case TK_AGG_COLUMN: { 3017 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3018 pExpr->iTable, pExpr->iColumn); 3019 break; 3020 } 3021 case TK_COLUMN: { 3022 if( pExpr->iTable<0 ){ 3023 /* This only happens when coding check constraints */ 3024 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3025 }else{ 3026 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3027 pExpr->iTable, pExpr->iColumn); 3028 } 3029 break; 3030 } 3031 case TK_INTEGER: { 3032 if( pExpr->flags & EP_IntValue ){ 3033 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3034 }else{ 3035 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3036 } 3037 break; 3038 } 3039 #ifndef SQLITE_OMIT_FLOATING_POINT 3040 case TK_FLOAT: { 3041 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3042 break; 3043 } 3044 #endif 3045 case TK_STRING: { 3046 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3047 break; 3048 } 3049 case TK_NULL: { 3050 sqlite3ExplainPrintf(pOut,"NULL"); 3051 break; 3052 } 3053 #ifndef SQLITE_OMIT_BLOB_LITERAL 3054 case TK_BLOB: { 3055 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3056 break; 3057 } 3058 #endif 3059 case TK_VARIABLE: { 3060 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3061 pExpr->u.zToken, pExpr->iColumn); 3062 break; 3063 } 3064 case TK_REGISTER: { 3065 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3066 break; 3067 } 3068 case TK_AS: { 3069 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3070 break; 3071 } 3072 #ifndef SQLITE_OMIT_CAST 3073 case TK_CAST: { 3074 /* Expressions of the form: CAST(pLeft AS token) */ 3075 const char *zAff = "unk"; 3076 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3077 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3078 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3079 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3080 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3081 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3082 } 3083 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3084 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3085 sqlite3ExplainPrintf(pOut, ")"); 3086 break; 3087 } 3088 #endif /* SQLITE_OMIT_CAST */ 3089 case TK_LT: zBinOp = "LT"; break; 3090 case TK_LE: zBinOp = "LE"; break; 3091 case TK_GT: zBinOp = "GT"; break; 3092 case TK_GE: zBinOp = "GE"; break; 3093 case TK_NE: zBinOp = "NE"; break; 3094 case TK_EQ: zBinOp = "EQ"; break; 3095 case TK_IS: zBinOp = "IS"; break; 3096 case TK_ISNOT: zBinOp = "ISNOT"; break; 3097 case TK_AND: zBinOp = "AND"; break; 3098 case TK_OR: zBinOp = "OR"; break; 3099 case TK_PLUS: zBinOp = "ADD"; break; 3100 case TK_STAR: zBinOp = "MUL"; break; 3101 case TK_MINUS: zBinOp = "SUB"; break; 3102 case TK_REM: zBinOp = "REM"; break; 3103 case TK_BITAND: zBinOp = "BITAND"; break; 3104 case TK_BITOR: zBinOp = "BITOR"; break; 3105 case TK_SLASH: zBinOp = "DIV"; break; 3106 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3107 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3108 case TK_CONCAT: zBinOp = "CONCAT"; break; 3109 3110 case TK_UMINUS: zUniOp = "UMINUS"; break; 3111 case TK_UPLUS: zUniOp = "UPLUS"; break; 3112 case TK_BITNOT: zUniOp = "BITNOT"; break; 3113 case TK_NOT: zUniOp = "NOT"; break; 3114 case TK_ISNULL: zUniOp = "ISNULL"; break; 3115 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3116 3117 case TK_AGG_FUNCTION: 3118 case TK_CONST_FUNC: 3119 case TK_FUNCTION: { 3120 ExprList *pFarg; /* List of function arguments */ 3121 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3122 pFarg = 0; 3123 }else{ 3124 pFarg = pExpr->x.pList; 3125 } 3126 sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(", 3127 op==TK_AGG_FUNCTION ? "AGG_" : "", 3128 pExpr->u.zToken); 3129 if( pFarg ){ 3130 sqlite3ExplainExprList(pOut, pFarg); 3131 } 3132 sqlite3ExplainPrintf(pOut, ")"); 3133 break; 3134 } 3135 #ifndef SQLITE_OMIT_SUBQUERY 3136 case TK_EXISTS: { 3137 sqlite3ExplainPrintf(pOut, "EXISTS("); 3138 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3139 sqlite3ExplainPrintf(pOut,")"); 3140 break; 3141 } 3142 case TK_SELECT: { 3143 sqlite3ExplainPrintf(pOut, "("); 3144 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3145 sqlite3ExplainPrintf(pOut, ")"); 3146 break; 3147 } 3148 case TK_IN: { 3149 sqlite3ExplainPrintf(pOut, "IN("); 3150 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3151 sqlite3ExplainPrintf(pOut, ","); 3152 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3153 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3154 }else{ 3155 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3156 } 3157 sqlite3ExplainPrintf(pOut, ")"); 3158 break; 3159 } 3160 #endif /* SQLITE_OMIT_SUBQUERY */ 3161 3162 /* 3163 ** x BETWEEN y AND z 3164 ** 3165 ** This is equivalent to 3166 ** 3167 ** x>=y AND x<=z 3168 ** 3169 ** X is stored in pExpr->pLeft. 3170 ** Y is stored in pExpr->pList->a[0].pExpr. 3171 ** Z is stored in pExpr->pList->a[1].pExpr. 3172 */ 3173 case TK_BETWEEN: { 3174 Expr *pX = pExpr->pLeft; 3175 Expr *pY = pExpr->x.pList->a[0].pExpr; 3176 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3177 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3178 sqlite3ExplainExpr(pOut, pX); 3179 sqlite3ExplainPrintf(pOut, ","); 3180 sqlite3ExplainExpr(pOut, pY); 3181 sqlite3ExplainPrintf(pOut, ","); 3182 sqlite3ExplainExpr(pOut, pZ); 3183 sqlite3ExplainPrintf(pOut, ")"); 3184 break; 3185 } 3186 case TK_TRIGGER: { 3187 /* If the opcode is TK_TRIGGER, then the expression is a reference 3188 ** to a column in the new.* or old.* pseudo-tables available to 3189 ** trigger programs. In this case Expr.iTable is set to 1 for the 3190 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3191 ** is set to the column of the pseudo-table to read, or to -1 to 3192 ** read the rowid field. 3193 */ 3194 sqlite3ExplainPrintf(pOut, "%s(%d)", 3195 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3196 break; 3197 } 3198 case TK_CASE: { 3199 sqlite3ExplainPrintf(pOut, "CASE("); 3200 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3201 sqlite3ExplainPrintf(pOut, ","); 3202 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3203 break; 3204 } 3205 #ifndef SQLITE_OMIT_TRIGGER 3206 case TK_RAISE: { 3207 const char *zType = "unk"; 3208 switch( pExpr->affinity ){ 3209 case OE_Rollback: zType = "rollback"; break; 3210 case OE_Abort: zType = "abort"; break; 3211 case OE_Fail: zType = "fail"; break; 3212 case OE_Ignore: zType = "ignore"; break; 3213 } 3214 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3215 break; 3216 } 3217 #endif 3218 } 3219 if( zBinOp ){ 3220 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3221 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3222 sqlite3ExplainPrintf(pOut,","); 3223 sqlite3ExplainExpr(pOut, pExpr->pRight); 3224 sqlite3ExplainPrintf(pOut,")"); 3225 }else if( zUniOp ){ 3226 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3227 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3228 sqlite3ExplainPrintf(pOut,")"); 3229 } 3230 } 3231 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3232 3233 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3234 /* 3235 ** Generate a human-readable explanation of an expression list. 3236 */ 3237 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3238 int i; 3239 if( pList==0 || pList->nExpr==0 ){ 3240 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3241 return; 3242 }else if( pList->nExpr==1 ){ 3243 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3244 }else{ 3245 sqlite3ExplainPush(pOut); 3246 for(i=0; i<pList->nExpr; i++){ 3247 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3248 sqlite3ExplainPush(pOut); 3249 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3250 sqlite3ExplainPop(pOut); 3251 if( i<pList->nExpr-1 ){ 3252 sqlite3ExplainNL(pOut); 3253 } 3254 } 3255 sqlite3ExplainPop(pOut); 3256 } 3257 } 3258 #endif /* SQLITE_DEBUG */ 3259 3260 /* 3261 ** Return TRUE if pExpr is an constant expression that is appropriate 3262 ** for factoring out of a loop. Appropriate expressions are: 3263 ** 3264 ** * Any expression that evaluates to two or more opcodes. 3265 ** 3266 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3267 ** or OP_Variable that does not need to be placed in a 3268 ** specific register. 3269 ** 3270 ** There is no point in factoring out single-instruction constant 3271 ** expressions that need to be placed in a particular register. 3272 ** We could factor them out, but then we would end up adding an 3273 ** OP_SCopy instruction to move the value into the correct register 3274 ** later. We might as well just use the original instruction and 3275 ** avoid the OP_SCopy. 3276 */ 3277 static int isAppropriateForFactoring(Expr *p){ 3278 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3279 return 0; /* Only constant expressions are appropriate for factoring */ 3280 } 3281 if( (p->flags & EP_FixedDest)==0 ){ 3282 return 1; /* Any constant without a fixed destination is appropriate */ 3283 } 3284 while( p->op==TK_UPLUS ) p = p->pLeft; 3285 switch( p->op ){ 3286 #ifndef SQLITE_OMIT_BLOB_LITERAL 3287 case TK_BLOB: 3288 #endif 3289 case TK_VARIABLE: 3290 case TK_INTEGER: 3291 case TK_FLOAT: 3292 case TK_NULL: 3293 case TK_STRING: { 3294 testcase( p->op==TK_BLOB ); 3295 testcase( p->op==TK_VARIABLE ); 3296 testcase( p->op==TK_INTEGER ); 3297 testcase( p->op==TK_FLOAT ); 3298 testcase( p->op==TK_NULL ); 3299 testcase( p->op==TK_STRING ); 3300 /* Single-instruction constants with a fixed destination are 3301 ** better done in-line. If we factor them, they will just end 3302 ** up generating an OP_SCopy to move the value to the destination 3303 ** register. */ 3304 return 0; 3305 } 3306 case TK_UMINUS: { 3307 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3308 return 0; 3309 } 3310 break; 3311 } 3312 default: { 3313 break; 3314 } 3315 } 3316 return 1; 3317 } 3318 3319 /* 3320 ** If pExpr is a constant expression that is appropriate for 3321 ** factoring out of a loop, then evaluate the expression 3322 ** into a register and convert the expression into a TK_REGISTER 3323 ** expression. 3324 */ 3325 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3326 Parse *pParse = pWalker->pParse; 3327 switch( pExpr->op ){ 3328 case TK_IN: 3329 case TK_REGISTER: { 3330 return WRC_Prune; 3331 } 3332 case TK_FUNCTION: 3333 case TK_AGG_FUNCTION: 3334 case TK_CONST_FUNC: { 3335 /* The arguments to a function have a fixed destination. 3336 ** Mark them this way to avoid generated unneeded OP_SCopy 3337 ** instructions. 3338 */ 3339 ExprList *pList = pExpr->x.pList; 3340 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3341 if( pList ){ 3342 int i = pList->nExpr; 3343 struct ExprList_item *pItem = pList->a; 3344 for(; i>0; i--, pItem++){ 3345 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3346 } 3347 } 3348 break; 3349 } 3350 } 3351 if( isAppropriateForFactoring(pExpr) ){ 3352 int r1 = ++pParse->nMem; 3353 int r2; 3354 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3355 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3356 pExpr->op2 = pExpr->op; 3357 pExpr->op = TK_REGISTER; 3358 pExpr->iTable = r2; 3359 return WRC_Prune; 3360 } 3361 return WRC_Continue; 3362 } 3363 3364 /* 3365 ** Preevaluate constant subexpressions within pExpr and store the 3366 ** results in registers. Modify pExpr so that the constant subexpresions 3367 ** are TK_REGISTER opcodes that refer to the precomputed values. 3368 ** 3369 ** This routine is a no-op if the jump to the cookie-check code has 3370 ** already occur. Since the cookie-check jump is generated prior to 3371 ** any other serious processing, this check ensures that there is no 3372 ** way to accidently bypass the constant initializations. 3373 ** 3374 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3375 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3376 ** interface. This allows test logic to verify that the same answer is 3377 ** obtained for queries regardless of whether or not constants are 3378 ** precomputed into registers or if they are inserted in-line. 3379 */ 3380 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3381 Walker w; 3382 if( pParse->cookieGoto ) return; 3383 if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return; 3384 w.xExprCallback = evalConstExpr; 3385 w.xSelectCallback = 0; 3386 w.pParse = pParse; 3387 sqlite3WalkExpr(&w, pExpr); 3388 } 3389 3390 3391 /* 3392 ** Generate code that pushes the value of every element of the given 3393 ** expression list into a sequence of registers beginning at target. 3394 ** 3395 ** Return the number of elements evaluated. 3396 */ 3397 int sqlite3ExprCodeExprList( 3398 Parse *pParse, /* Parsing context */ 3399 ExprList *pList, /* The expression list to be coded */ 3400 int target, /* Where to write results */ 3401 int doHardCopy /* Make a hard copy of every element */ 3402 ){ 3403 struct ExprList_item *pItem; 3404 int i, n; 3405 assert( pList!=0 ); 3406 assert( target>0 ); 3407 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3408 n = pList->nExpr; 3409 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3410 Expr *pExpr = pItem->pExpr; 3411 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3412 if( inReg!=target+i ){ 3413 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3414 inReg, target+i); 3415 } 3416 } 3417 return n; 3418 } 3419 3420 /* 3421 ** Generate code for a BETWEEN operator. 3422 ** 3423 ** x BETWEEN y AND z 3424 ** 3425 ** The above is equivalent to 3426 ** 3427 ** x>=y AND x<=z 3428 ** 3429 ** Code it as such, taking care to do the common subexpression 3430 ** elementation of x. 3431 */ 3432 static void exprCodeBetween( 3433 Parse *pParse, /* Parsing and code generating context */ 3434 Expr *pExpr, /* The BETWEEN expression */ 3435 int dest, /* Jump here if the jump is taken */ 3436 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3437 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3438 ){ 3439 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3440 Expr compLeft; /* The x>=y term */ 3441 Expr compRight; /* The x<=z term */ 3442 Expr exprX; /* The x subexpression */ 3443 int regFree1 = 0; /* Temporary use register */ 3444 3445 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3446 exprX = *pExpr->pLeft; 3447 exprAnd.op = TK_AND; 3448 exprAnd.pLeft = &compLeft; 3449 exprAnd.pRight = &compRight; 3450 compLeft.op = TK_GE; 3451 compLeft.pLeft = &exprX; 3452 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3453 compRight.op = TK_LE; 3454 compRight.pLeft = &exprX; 3455 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3456 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3457 exprX.op = TK_REGISTER; 3458 if( jumpIfTrue ){ 3459 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3460 }else{ 3461 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3462 } 3463 sqlite3ReleaseTempReg(pParse, regFree1); 3464 3465 /* Ensure adequate test coverage */ 3466 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3467 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3468 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3469 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3470 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3471 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3472 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3473 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3474 } 3475 3476 /* 3477 ** Generate code for a boolean expression such that a jump is made 3478 ** to the label "dest" if the expression is true but execution 3479 ** continues straight thru if the expression is false. 3480 ** 3481 ** If the expression evaluates to NULL (neither true nor false), then 3482 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3483 ** 3484 ** This code depends on the fact that certain token values (ex: TK_EQ) 3485 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3486 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3487 ** the make process cause these values to align. Assert()s in the code 3488 ** below verify that the numbers are aligned correctly. 3489 */ 3490 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3491 Vdbe *v = pParse->pVdbe; 3492 int op = 0; 3493 int regFree1 = 0; 3494 int regFree2 = 0; 3495 int r1, r2; 3496 3497 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3498 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3499 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3500 op = pExpr->op; 3501 switch( op ){ 3502 case TK_AND: { 3503 int d2 = sqlite3VdbeMakeLabel(v); 3504 testcase( jumpIfNull==0 ); 3505 sqlite3ExprCachePush(pParse); 3506 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3507 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3508 sqlite3VdbeResolveLabel(v, d2); 3509 sqlite3ExprCachePop(pParse, 1); 3510 break; 3511 } 3512 case TK_OR: { 3513 testcase( jumpIfNull==0 ); 3514 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3515 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3516 break; 3517 } 3518 case TK_NOT: { 3519 testcase( jumpIfNull==0 ); 3520 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3521 break; 3522 } 3523 case TK_LT: 3524 case TK_LE: 3525 case TK_GT: 3526 case TK_GE: 3527 case TK_NE: 3528 case TK_EQ: { 3529 assert( TK_LT==OP_Lt ); 3530 assert( TK_LE==OP_Le ); 3531 assert( TK_GT==OP_Gt ); 3532 assert( TK_GE==OP_Ge ); 3533 assert( TK_EQ==OP_Eq ); 3534 assert( TK_NE==OP_Ne ); 3535 testcase( op==TK_LT ); 3536 testcase( op==TK_LE ); 3537 testcase( op==TK_GT ); 3538 testcase( op==TK_GE ); 3539 testcase( op==TK_EQ ); 3540 testcase( op==TK_NE ); 3541 testcase( jumpIfNull==0 ); 3542 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3543 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3544 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3545 r1, r2, dest, jumpIfNull); 3546 testcase( regFree1==0 ); 3547 testcase( regFree2==0 ); 3548 break; 3549 } 3550 case TK_IS: 3551 case TK_ISNOT: { 3552 testcase( op==TK_IS ); 3553 testcase( op==TK_ISNOT ); 3554 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3555 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3556 op = (op==TK_IS) ? TK_EQ : TK_NE; 3557 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3558 r1, r2, dest, SQLITE_NULLEQ); 3559 testcase( regFree1==0 ); 3560 testcase( regFree2==0 ); 3561 break; 3562 } 3563 case TK_ISNULL: 3564 case TK_NOTNULL: { 3565 assert( TK_ISNULL==OP_IsNull ); 3566 assert( TK_NOTNULL==OP_NotNull ); 3567 testcase( op==TK_ISNULL ); 3568 testcase( op==TK_NOTNULL ); 3569 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3570 sqlite3VdbeAddOp2(v, op, r1, dest); 3571 testcase( regFree1==0 ); 3572 break; 3573 } 3574 case TK_BETWEEN: { 3575 testcase( jumpIfNull==0 ); 3576 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3577 break; 3578 } 3579 #ifndef SQLITE_OMIT_SUBQUERY 3580 case TK_IN: { 3581 int destIfFalse = sqlite3VdbeMakeLabel(v); 3582 int destIfNull = jumpIfNull ? dest : destIfFalse; 3583 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3584 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3585 sqlite3VdbeResolveLabel(v, destIfFalse); 3586 break; 3587 } 3588 #endif 3589 default: { 3590 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3591 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3592 testcase( regFree1==0 ); 3593 testcase( jumpIfNull==0 ); 3594 break; 3595 } 3596 } 3597 sqlite3ReleaseTempReg(pParse, regFree1); 3598 sqlite3ReleaseTempReg(pParse, regFree2); 3599 } 3600 3601 /* 3602 ** Generate code for a boolean expression such that a jump is made 3603 ** to the label "dest" if the expression is false but execution 3604 ** continues straight thru if the expression is true. 3605 ** 3606 ** If the expression evaluates to NULL (neither true nor false) then 3607 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3608 ** is 0. 3609 */ 3610 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3611 Vdbe *v = pParse->pVdbe; 3612 int op = 0; 3613 int regFree1 = 0; 3614 int regFree2 = 0; 3615 int r1, r2; 3616 3617 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3618 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3619 if( pExpr==0 ) return; 3620 3621 /* The value of pExpr->op and op are related as follows: 3622 ** 3623 ** pExpr->op op 3624 ** --------- ---------- 3625 ** TK_ISNULL OP_NotNull 3626 ** TK_NOTNULL OP_IsNull 3627 ** TK_NE OP_Eq 3628 ** TK_EQ OP_Ne 3629 ** TK_GT OP_Le 3630 ** TK_LE OP_Gt 3631 ** TK_GE OP_Lt 3632 ** TK_LT OP_Ge 3633 ** 3634 ** For other values of pExpr->op, op is undefined and unused. 3635 ** The value of TK_ and OP_ constants are arranged such that we 3636 ** can compute the mapping above using the following expression. 3637 ** Assert()s verify that the computation is correct. 3638 */ 3639 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3640 3641 /* Verify correct alignment of TK_ and OP_ constants 3642 */ 3643 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3644 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3645 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3646 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3647 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3648 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3649 assert( pExpr->op!=TK_GT || op==OP_Le ); 3650 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3651 3652 switch( pExpr->op ){ 3653 case TK_AND: { 3654 testcase( jumpIfNull==0 ); 3655 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3656 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3657 break; 3658 } 3659 case TK_OR: { 3660 int d2 = sqlite3VdbeMakeLabel(v); 3661 testcase( jumpIfNull==0 ); 3662 sqlite3ExprCachePush(pParse); 3663 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3664 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3665 sqlite3VdbeResolveLabel(v, d2); 3666 sqlite3ExprCachePop(pParse, 1); 3667 break; 3668 } 3669 case TK_NOT: { 3670 testcase( jumpIfNull==0 ); 3671 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3672 break; 3673 } 3674 case TK_LT: 3675 case TK_LE: 3676 case TK_GT: 3677 case TK_GE: 3678 case TK_NE: 3679 case TK_EQ: { 3680 testcase( op==TK_LT ); 3681 testcase( op==TK_LE ); 3682 testcase( op==TK_GT ); 3683 testcase( op==TK_GE ); 3684 testcase( op==TK_EQ ); 3685 testcase( op==TK_NE ); 3686 testcase( jumpIfNull==0 ); 3687 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3688 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3689 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3690 r1, r2, dest, jumpIfNull); 3691 testcase( regFree1==0 ); 3692 testcase( regFree2==0 ); 3693 break; 3694 } 3695 case TK_IS: 3696 case TK_ISNOT: { 3697 testcase( pExpr->op==TK_IS ); 3698 testcase( pExpr->op==TK_ISNOT ); 3699 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3700 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3701 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3702 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3703 r1, r2, dest, SQLITE_NULLEQ); 3704 testcase( regFree1==0 ); 3705 testcase( regFree2==0 ); 3706 break; 3707 } 3708 case TK_ISNULL: 3709 case TK_NOTNULL: { 3710 testcase( op==TK_ISNULL ); 3711 testcase( op==TK_NOTNULL ); 3712 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3713 sqlite3VdbeAddOp2(v, op, r1, dest); 3714 testcase( regFree1==0 ); 3715 break; 3716 } 3717 case TK_BETWEEN: { 3718 testcase( jumpIfNull==0 ); 3719 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3720 break; 3721 } 3722 #ifndef SQLITE_OMIT_SUBQUERY 3723 case TK_IN: { 3724 if( jumpIfNull ){ 3725 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3726 }else{ 3727 int destIfNull = sqlite3VdbeMakeLabel(v); 3728 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3729 sqlite3VdbeResolveLabel(v, destIfNull); 3730 } 3731 break; 3732 } 3733 #endif 3734 default: { 3735 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3736 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3737 testcase( regFree1==0 ); 3738 testcase( jumpIfNull==0 ); 3739 break; 3740 } 3741 } 3742 sqlite3ReleaseTempReg(pParse, regFree1); 3743 sqlite3ReleaseTempReg(pParse, regFree2); 3744 } 3745 3746 /* 3747 ** Do a deep comparison of two expression trees. Return 0 if the two 3748 ** expressions are completely identical. Return 1 if they differ only 3749 ** by a COLLATE operator at the top level. Return 2 if there are differences 3750 ** other than the top-level COLLATE operator. 3751 ** 3752 ** Sometimes this routine will return 2 even if the two expressions 3753 ** really are equivalent. If we cannot prove that the expressions are 3754 ** identical, we return 2 just to be safe. So if this routine 3755 ** returns 2, then you do not really know for certain if the two 3756 ** expressions are the same. But if you get a 0 or 1 return, then you 3757 ** can be sure the expressions are the same. In the places where 3758 ** this routine is used, it does not hurt to get an extra 2 - that 3759 ** just might result in some slightly slower code. But returning 3760 ** an incorrect 0 or 1 could lead to a malfunction. 3761 */ 3762 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3763 if( pA==0||pB==0 ){ 3764 return pB==pA ? 0 : 2; 3765 } 3766 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3767 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3768 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3769 return 2; 3770 } 3771 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3772 if( pA->op!=pB->op ) return 2; 3773 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3774 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3775 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3776 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3777 if( ExprHasProperty(pA, EP_IntValue) ){ 3778 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3779 return 2; 3780 } 3781 }else if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 3782 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3783 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3784 return 2; 3785 } 3786 } 3787 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3788 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3789 return 0; 3790 } 3791 3792 /* 3793 ** Compare two ExprList objects. Return 0 if they are identical and 3794 ** non-zero if they differ in any way. 3795 ** 3796 ** This routine might return non-zero for equivalent ExprLists. The 3797 ** only consequence will be disabled optimizations. But this routine 3798 ** must never return 0 if the two ExprList objects are different, or 3799 ** a malfunction will result. 3800 ** 3801 ** Two NULL pointers are considered to be the same. But a NULL pointer 3802 ** always differs from a non-NULL pointer. 3803 */ 3804 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3805 int i; 3806 if( pA==0 && pB==0 ) return 0; 3807 if( pA==0 || pB==0 ) return 1; 3808 if( pA->nExpr!=pB->nExpr ) return 1; 3809 for(i=0; i<pA->nExpr; i++){ 3810 Expr *pExprA = pA->a[i].pExpr; 3811 Expr *pExprB = pB->a[i].pExpr; 3812 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3813 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3814 } 3815 return 0; 3816 } 3817 3818 /* 3819 ** This is the expression callback for sqlite3FunctionUsesOtherSrc(). 3820 ** 3821 ** Determine if an expression references any table other than one of the 3822 ** tables in pWalker->u.pSrcList and abort if it does. 3823 */ 3824 static int exprUsesOtherSrc(Walker *pWalker, Expr *pExpr){ 3825 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 3826 int i; 3827 SrcList *pSrc = pWalker->u.pSrcList; 3828 for(i=0; i<pSrc->nSrc; i++){ 3829 if( pExpr->iTable==pSrc->a[i].iCursor ) return WRC_Continue; 3830 } 3831 return WRC_Abort; 3832 }else{ 3833 return WRC_Continue; 3834 } 3835 } 3836 3837 /* 3838 ** Determine if any of the arguments to the pExpr Function references 3839 ** any SrcList other than pSrcList. Return true if they do. Return 3840 ** false if pExpr has no argument or has only constant arguments or 3841 ** only references tables named in pSrcList. 3842 */ 3843 static int sqlite3FunctionUsesOtherSrc(Expr *pExpr, SrcList *pSrcList){ 3844 Walker w; 3845 assert( pExpr->op==TK_AGG_FUNCTION ); 3846 memset(&w, 0, sizeof(w)); 3847 w.xExprCallback = exprUsesOtherSrc; 3848 w.u.pSrcList = pSrcList; 3849 if( sqlite3WalkExprList(&w, pExpr->x.pList)!=WRC_Continue ) return 1; 3850 return 0; 3851 } 3852 3853 /* 3854 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3855 ** the new element. Return a negative number if malloc fails. 3856 */ 3857 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3858 int i; 3859 pInfo->aCol = sqlite3ArrayAllocate( 3860 db, 3861 pInfo->aCol, 3862 sizeof(pInfo->aCol[0]), 3863 &pInfo->nColumn, 3864 &i 3865 ); 3866 return i; 3867 } 3868 3869 /* 3870 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3871 ** the new element. Return a negative number if malloc fails. 3872 */ 3873 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3874 int i; 3875 pInfo->aFunc = sqlite3ArrayAllocate( 3876 db, 3877 pInfo->aFunc, 3878 sizeof(pInfo->aFunc[0]), 3879 &pInfo->nFunc, 3880 &i 3881 ); 3882 return i; 3883 } 3884 3885 /* 3886 ** This is the xExprCallback for a tree walker. It is used to 3887 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3888 ** for additional information. 3889 */ 3890 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3891 int i; 3892 NameContext *pNC = pWalker->u.pNC; 3893 Parse *pParse = pNC->pParse; 3894 SrcList *pSrcList = pNC->pSrcList; 3895 AggInfo *pAggInfo = pNC->pAggInfo; 3896 3897 switch( pExpr->op ){ 3898 case TK_AGG_COLUMN: 3899 case TK_COLUMN: { 3900 testcase( pExpr->op==TK_AGG_COLUMN ); 3901 testcase( pExpr->op==TK_COLUMN ); 3902 /* Check to see if the column is in one of the tables in the FROM 3903 ** clause of the aggregate query */ 3904 if( ALWAYS(pSrcList!=0) ){ 3905 struct SrcList_item *pItem = pSrcList->a; 3906 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3907 struct AggInfo_col *pCol; 3908 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3909 if( pExpr->iTable==pItem->iCursor ){ 3910 /* If we reach this point, it means that pExpr refers to a table 3911 ** that is in the FROM clause of the aggregate query. 3912 ** 3913 ** Make an entry for the column in pAggInfo->aCol[] if there 3914 ** is not an entry there already. 3915 */ 3916 int k; 3917 pCol = pAggInfo->aCol; 3918 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3919 if( pCol->iTable==pExpr->iTable && 3920 pCol->iColumn==pExpr->iColumn ){ 3921 break; 3922 } 3923 } 3924 if( (k>=pAggInfo->nColumn) 3925 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3926 ){ 3927 pCol = &pAggInfo->aCol[k]; 3928 pCol->pTab = pExpr->pTab; 3929 pCol->iTable = pExpr->iTable; 3930 pCol->iColumn = pExpr->iColumn; 3931 pCol->iMem = ++pParse->nMem; 3932 pCol->iSorterColumn = -1; 3933 pCol->pExpr = pExpr; 3934 if( pAggInfo->pGroupBy ){ 3935 int j, n; 3936 ExprList *pGB = pAggInfo->pGroupBy; 3937 struct ExprList_item *pTerm = pGB->a; 3938 n = pGB->nExpr; 3939 for(j=0; j<n; j++, pTerm++){ 3940 Expr *pE = pTerm->pExpr; 3941 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3942 pE->iColumn==pExpr->iColumn ){ 3943 pCol->iSorterColumn = j; 3944 break; 3945 } 3946 } 3947 } 3948 if( pCol->iSorterColumn<0 ){ 3949 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3950 } 3951 } 3952 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3953 ** because it was there before or because we just created it). 3954 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3955 ** pAggInfo->aCol[] entry. 3956 */ 3957 ExprSetIrreducible(pExpr); 3958 pExpr->pAggInfo = pAggInfo; 3959 pExpr->op = TK_AGG_COLUMN; 3960 pExpr->iAgg = (i16)k; 3961 break; 3962 } /* endif pExpr->iTable==pItem->iCursor */ 3963 } /* end loop over pSrcList */ 3964 } 3965 return WRC_Prune; 3966 } 3967 case TK_AGG_FUNCTION: { 3968 if( !sqlite3FunctionUsesOtherSrc(pExpr, pSrcList) ){ 3969 /* Check to see if pExpr is a duplicate of another aggregate 3970 ** function that is already in the pAggInfo structure 3971 */ 3972 struct AggInfo_func *pItem = pAggInfo->aFunc; 3973 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3974 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 3975 break; 3976 } 3977 } 3978 if( i>=pAggInfo->nFunc ){ 3979 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3980 */ 3981 u8 enc = ENC(pParse->db); 3982 i = addAggInfoFunc(pParse->db, pAggInfo); 3983 if( i>=0 ){ 3984 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3985 pItem = &pAggInfo->aFunc[i]; 3986 pItem->pExpr = pExpr; 3987 pItem->iMem = ++pParse->nMem; 3988 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3989 pItem->pFunc = sqlite3FindFunction(pParse->db, 3990 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3991 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3992 if( pExpr->flags & EP_Distinct ){ 3993 pItem->iDistinct = pParse->nTab++; 3994 }else{ 3995 pItem->iDistinct = -1; 3996 } 3997 } 3998 } 3999 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4000 */ 4001 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4002 ExprSetIrreducible(pExpr); 4003 pExpr->iAgg = (i16)i; 4004 pExpr->pAggInfo = pAggInfo; 4005 return WRC_Prune; 4006 } 4007 } 4008 } 4009 return WRC_Continue; 4010 } 4011 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4012 UNUSED_PARAMETER(pWalker); 4013 UNUSED_PARAMETER(pSelect); 4014 return WRC_Continue; 4015 } 4016 4017 /* 4018 ** Analyze the given expression looking for aggregate functions and 4019 ** for variables that need to be added to the pParse->aAgg[] array. 4020 ** Make additional entries to the pParse->aAgg[] array as necessary. 4021 ** 4022 ** This routine should only be called after the expression has been 4023 ** analyzed by sqlite3ResolveExprNames(). 4024 */ 4025 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4026 Walker w; 4027 memset(&w, 0, sizeof(w)); 4028 w.xExprCallback = analyzeAggregate; 4029 w.xSelectCallback = analyzeAggregatesInSelect; 4030 w.u.pNC = pNC; 4031 assert( pNC->pSrcList!=0 ); 4032 sqlite3WalkExpr(&w, pExpr); 4033 } 4034 4035 /* 4036 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4037 ** expression list. Return the number of errors. 4038 ** 4039 ** If an error is found, the analysis is cut short. 4040 */ 4041 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4042 struct ExprList_item *pItem; 4043 int i; 4044 if( pList ){ 4045 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4046 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4047 } 4048 } 4049 } 4050 4051 /* 4052 ** Allocate a single new register for use to hold some intermediate result. 4053 */ 4054 int sqlite3GetTempReg(Parse *pParse){ 4055 if( pParse->nTempReg==0 ){ 4056 return ++pParse->nMem; 4057 } 4058 return pParse->aTempReg[--pParse->nTempReg]; 4059 } 4060 4061 /* 4062 ** Deallocate a register, making available for reuse for some other 4063 ** purpose. 4064 ** 4065 ** If a register is currently being used by the column cache, then 4066 ** the dallocation is deferred until the column cache line that uses 4067 ** the register becomes stale. 4068 */ 4069 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4070 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4071 int i; 4072 struct yColCache *p; 4073 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4074 if( p->iReg==iReg ){ 4075 p->tempReg = 1; 4076 return; 4077 } 4078 } 4079 pParse->aTempReg[pParse->nTempReg++] = iReg; 4080 } 4081 } 4082 4083 /* 4084 ** Allocate or deallocate a block of nReg consecutive registers 4085 */ 4086 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4087 int i, n; 4088 i = pParse->iRangeReg; 4089 n = pParse->nRangeReg; 4090 if( nReg<=n ){ 4091 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4092 pParse->iRangeReg += nReg; 4093 pParse->nRangeReg -= nReg; 4094 }else{ 4095 i = pParse->nMem+1; 4096 pParse->nMem += nReg; 4097 } 4098 return i; 4099 } 4100 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4101 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4102 if( nReg>pParse->nRangeReg ){ 4103 pParse->nRangeReg = nReg; 4104 pParse->iRangeReg = iReg; 4105 } 4106 } 4107 4108 /* 4109 ** Mark all temporary registers as being unavailable for reuse. 4110 */ 4111 void sqlite3ClearTempRegCache(Parse *pParse){ 4112 pParse->nTempReg = 0; 4113 pParse->nRangeReg = 0; 4114 } 4115