1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 44 return sqlite3AffinityType(pExpr->u.zToken); 45 } 46 #endif 47 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 48 && pExpr->pTab!=0 49 ){ 50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 51 ** a TK_COLUMN but was previously evaluated and cached in a register */ 52 int j = pExpr->iColumn; 53 if( j<0 ) return SQLITE_AFF_INTEGER; 54 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 55 return pExpr->pTab->aCol[j].affinity; 56 } 57 return pExpr->affinity; 58 } 59 60 /* 61 ** Set the collating sequence for expression pExpr to be the collating 62 ** sequence named by pToken. Return a pointer to a new Expr node that 63 ** implements the COLLATE operator. 64 ** 65 ** If a memory allocation error occurs, that fact is recorded in pParse->db 66 ** and the pExpr parameter is returned unchanged. 67 */ 68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 69 if( pCollName->n>0 ){ 70 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 71 if( pNew ){ 72 pNew->pLeft = pExpr; 73 pNew->flags |= EP_Collate; 74 pExpr = pNew; 75 } 76 } 77 return pExpr; 78 } 79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 80 Token s; 81 assert( zC!=0 ); 82 s.z = zC; 83 s.n = sqlite3Strlen30(s.z); 84 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 85 } 86 87 /* 88 ** Skip over any TK_COLLATE and/or TK_AS operators at the root of 89 ** an expression. 90 */ 91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 92 while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){ 93 pExpr = pExpr->pLeft; 94 } 95 return pExpr; 96 } 97 98 /* 99 ** Return the collation sequence for the expression pExpr. If 100 ** there is no defined collating sequence, return NULL. 101 ** 102 ** The collating sequence might be determined by a COLLATE operator 103 ** or by the presence of a column with a defined collating sequence. 104 ** COLLATE operators take first precedence. Left operands take 105 ** precedence over right operands. 106 */ 107 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 108 sqlite3 *db = pParse->db; 109 CollSeq *pColl = 0; 110 Expr *p = pExpr; 111 while( p ){ 112 int op = p->op; 113 if( op==TK_CAST || op==TK_UPLUS ){ 114 p = p->pLeft; 115 continue; 116 } 117 assert( op!=TK_REGISTER || p->op2!=TK_COLLATE ); 118 if( op==TK_COLLATE ){ 119 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 120 break; 121 } 122 if( p->pTab!=0 123 && (op==TK_AGG_COLUMN || op==TK_COLUMN 124 || op==TK_REGISTER || op==TK_TRIGGER) 125 ){ 126 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 127 ** a TK_COLUMN but was previously evaluated and cached in a register */ 128 int j = p->iColumn; 129 if( j>=0 ){ 130 const char *zColl = p->pTab->aCol[j].zColl; 131 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 132 } 133 break; 134 } 135 if( p->flags & EP_Collate ){ 136 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 137 p = p->pLeft; 138 }else{ 139 p = p->pRight; 140 } 141 }else{ 142 break; 143 } 144 } 145 if( sqlite3CheckCollSeq(pParse, pColl) ){ 146 pColl = 0; 147 } 148 return pColl; 149 } 150 151 /* 152 ** pExpr is an operand of a comparison operator. aff2 is the 153 ** type affinity of the other operand. This routine returns the 154 ** type affinity that should be used for the comparison operator. 155 */ 156 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 157 char aff1 = sqlite3ExprAffinity(pExpr); 158 if( aff1 && aff2 ){ 159 /* Both sides of the comparison are columns. If one has numeric 160 ** affinity, use that. Otherwise use no affinity. 161 */ 162 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 163 return SQLITE_AFF_NUMERIC; 164 }else{ 165 return SQLITE_AFF_NONE; 166 } 167 }else if( !aff1 && !aff2 ){ 168 /* Neither side of the comparison is a column. Compare the 169 ** results directly. 170 */ 171 return SQLITE_AFF_NONE; 172 }else{ 173 /* One side is a column, the other is not. Use the columns affinity. */ 174 assert( aff1==0 || aff2==0 ); 175 return (aff1 + aff2); 176 } 177 } 178 179 /* 180 ** pExpr is a comparison operator. Return the type affinity that should 181 ** be applied to both operands prior to doing the comparison. 182 */ 183 static char comparisonAffinity(Expr *pExpr){ 184 char aff; 185 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 186 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 187 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 188 assert( pExpr->pLeft ); 189 aff = sqlite3ExprAffinity(pExpr->pLeft); 190 if( pExpr->pRight ){ 191 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 192 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 193 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 194 }else if( !aff ){ 195 aff = SQLITE_AFF_NONE; 196 } 197 return aff; 198 } 199 200 /* 201 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 202 ** idx_affinity is the affinity of an indexed column. Return true 203 ** if the index with affinity idx_affinity may be used to implement 204 ** the comparison in pExpr. 205 */ 206 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 207 char aff = comparisonAffinity(pExpr); 208 switch( aff ){ 209 case SQLITE_AFF_NONE: 210 return 1; 211 case SQLITE_AFF_TEXT: 212 return idx_affinity==SQLITE_AFF_TEXT; 213 default: 214 return sqlite3IsNumericAffinity(idx_affinity); 215 } 216 } 217 218 /* 219 ** Return the P5 value that should be used for a binary comparison 220 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 221 */ 222 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 223 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 224 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 225 return aff; 226 } 227 228 /* 229 ** Return a pointer to the collation sequence that should be used by 230 ** a binary comparison operator comparing pLeft and pRight. 231 ** 232 ** If the left hand expression has a collating sequence type, then it is 233 ** used. Otherwise the collation sequence for the right hand expression 234 ** is used, or the default (BINARY) if neither expression has a collating 235 ** type. 236 ** 237 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 238 ** it is not considered. 239 */ 240 CollSeq *sqlite3BinaryCompareCollSeq( 241 Parse *pParse, 242 Expr *pLeft, 243 Expr *pRight 244 ){ 245 CollSeq *pColl; 246 assert( pLeft ); 247 if( pLeft->flags & EP_Collate ){ 248 pColl = sqlite3ExprCollSeq(pParse, pLeft); 249 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 250 pColl = sqlite3ExprCollSeq(pParse, pRight); 251 }else{ 252 pColl = sqlite3ExprCollSeq(pParse, pLeft); 253 if( !pColl ){ 254 pColl = sqlite3ExprCollSeq(pParse, pRight); 255 } 256 } 257 return pColl; 258 } 259 260 /* 261 ** Generate code for a comparison operator. 262 */ 263 static int codeCompare( 264 Parse *pParse, /* The parsing (and code generating) context */ 265 Expr *pLeft, /* The left operand */ 266 Expr *pRight, /* The right operand */ 267 int opcode, /* The comparison opcode */ 268 int in1, int in2, /* Register holding operands */ 269 int dest, /* Jump here if true. */ 270 int jumpIfNull /* If true, jump if either operand is NULL */ 271 ){ 272 int p5; 273 int addr; 274 CollSeq *p4; 275 276 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 277 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 278 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 279 (void*)p4, P4_COLLSEQ); 280 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 281 return addr; 282 } 283 284 #if SQLITE_MAX_EXPR_DEPTH>0 285 /* 286 ** Check that argument nHeight is less than or equal to the maximum 287 ** expression depth allowed. If it is not, leave an error message in 288 ** pParse. 289 */ 290 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 291 int rc = SQLITE_OK; 292 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 293 if( nHeight>mxHeight ){ 294 sqlite3ErrorMsg(pParse, 295 "Expression tree is too large (maximum depth %d)", mxHeight 296 ); 297 rc = SQLITE_ERROR; 298 } 299 return rc; 300 } 301 302 /* The following three functions, heightOfExpr(), heightOfExprList() 303 ** and heightOfSelect(), are used to determine the maximum height 304 ** of any expression tree referenced by the structure passed as the 305 ** first argument. 306 ** 307 ** If this maximum height is greater than the current value pointed 308 ** to by pnHeight, the second parameter, then set *pnHeight to that 309 ** value. 310 */ 311 static void heightOfExpr(Expr *p, int *pnHeight){ 312 if( p ){ 313 if( p->nHeight>*pnHeight ){ 314 *pnHeight = p->nHeight; 315 } 316 } 317 } 318 static void heightOfExprList(ExprList *p, int *pnHeight){ 319 if( p ){ 320 int i; 321 for(i=0; i<p->nExpr; i++){ 322 heightOfExpr(p->a[i].pExpr, pnHeight); 323 } 324 } 325 } 326 static void heightOfSelect(Select *p, int *pnHeight){ 327 if( p ){ 328 heightOfExpr(p->pWhere, pnHeight); 329 heightOfExpr(p->pHaving, pnHeight); 330 heightOfExpr(p->pLimit, pnHeight); 331 heightOfExpr(p->pOffset, pnHeight); 332 heightOfExprList(p->pEList, pnHeight); 333 heightOfExprList(p->pGroupBy, pnHeight); 334 heightOfExprList(p->pOrderBy, pnHeight); 335 heightOfSelect(p->pPrior, pnHeight); 336 } 337 } 338 339 /* 340 ** Set the Expr.nHeight variable in the structure passed as an 341 ** argument. An expression with no children, Expr.pList or 342 ** Expr.pSelect member has a height of 1. Any other expression 343 ** has a height equal to the maximum height of any other 344 ** referenced Expr plus one. 345 */ 346 static void exprSetHeight(Expr *p){ 347 int nHeight = 0; 348 heightOfExpr(p->pLeft, &nHeight); 349 heightOfExpr(p->pRight, &nHeight); 350 if( ExprHasProperty(p, EP_xIsSelect) ){ 351 heightOfSelect(p->x.pSelect, &nHeight); 352 }else{ 353 heightOfExprList(p->x.pList, &nHeight); 354 } 355 p->nHeight = nHeight + 1; 356 } 357 358 /* 359 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 360 ** the height is greater than the maximum allowed expression depth, 361 ** leave an error in pParse. 362 */ 363 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 364 exprSetHeight(p); 365 sqlite3ExprCheckHeight(pParse, p->nHeight); 366 } 367 368 /* 369 ** Return the maximum height of any expression tree referenced 370 ** by the select statement passed as an argument. 371 */ 372 int sqlite3SelectExprHeight(Select *p){ 373 int nHeight = 0; 374 heightOfSelect(p, &nHeight); 375 return nHeight; 376 } 377 #else 378 #define exprSetHeight(y) 379 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 380 381 /* 382 ** This routine is the core allocator for Expr nodes. 383 ** 384 ** Construct a new expression node and return a pointer to it. Memory 385 ** for this node and for the pToken argument is a single allocation 386 ** obtained from sqlite3DbMalloc(). The calling function 387 ** is responsible for making sure the node eventually gets freed. 388 ** 389 ** If dequote is true, then the token (if it exists) is dequoted. 390 ** If dequote is false, no dequoting is performance. The deQuote 391 ** parameter is ignored if pToken is NULL or if the token does not 392 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 393 ** then the EP_DblQuoted flag is set on the expression node. 394 ** 395 ** Special case: If op==TK_INTEGER and pToken points to a string that 396 ** can be translated into a 32-bit integer, then the token is not 397 ** stored in u.zToken. Instead, the integer values is written 398 ** into u.iValue and the EP_IntValue flag is set. No extra storage 399 ** is allocated to hold the integer text and the dequote flag is ignored. 400 */ 401 Expr *sqlite3ExprAlloc( 402 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 403 int op, /* Expression opcode */ 404 const Token *pToken, /* Token argument. Might be NULL */ 405 int dequote /* True to dequote */ 406 ){ 407 Expr *pNew; 408 int nExtra = 0; 409 int iValue = 0; 410 411 if( pToken ){ 412 if( op!=TK_INTEGER || pToken->z==0 413 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 414 nExtra = pToken->n+1; 415 assert( iValue>=0 ); 416 } 417 } 418 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 419 if( pNew ){ 420 pNew->op = (u8)op; 421 pNew->iAgg = -1; 422 if( pToken ){ 423 if( nExtra==0 ){ 424 pNew->flags |= EP_IntValue; 425 pNew->u.iValue = iValue; 426 }else{ 427 int c; 428 pNew->u.zToken = (char*)&pNew[1]; 429 assert( pToken->z!=0 || pToken->n==0 ); 430 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 431 pNew->u.zToken[pToken->n] = 0; 432 if( dequote && nExtra>=3 433 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 434 sqlite3Dequote(pNew->u.zToken); 435 if( c=='"' ) pNew->flags |= EP_DblQuoted; 436 } 437 } 438 } 439 #if SQLITE_MAX_EXPR_DEPTH>0 440 pNew->nHeight = 1; 441 #endif 442 } 443 return pNew; 444 } 445 446 /* 447 ** Allocate a new expression node from a zero-terminated token that has 448 ** already been dequoted. 449 */ 450 Expr *sqlite3Expr( 451 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 452 int op, /* Expression opcode */ 453 const char *zToken /* Token argument. Might be NULL */ 454 ){ 455 Token x; 456 x.z = zToken; 457 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 458 return sqlite3ExprAlloc(db, op, &x, 0); 459 } 460 461 /* 462 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 463 ** 464 ** If pRoot==NULL that means that a memory allocation error has occurred. 465 ** In that case, delete the subtrees pLeft and pRight. 466 */ 467 void sqlite3ExprAttachSubtrees( 468 sqlite3 *db, 469 Expr *pRoot, 470 Expr *pLeft, 471 Expr *pRight 472 ){ 473 if( pRoot==0 ){ 474 assert( db->mallocFailed ); 475 sqlite3ExprDelete(db, pLeft); 476 sqlite3ExprDelete(db, pRight); 477 }else{ 478 if( pRight ){ 479 pRoot->pRight = pRight; 480 pRoot->flags |= EP_Collate & pRight->flags; 481 } 482 if( pLeft ){ 483 pRoot->pLeft = pLeft; 484 pRoot->flags |= EP_Collate & pLeft->flags; 485 } 486 exprSetHeight(pRoot); 487 } 488 } 489 490 /* 491 ** Allocate a Expr node which joins as many as two subtrees. 492 ** 493 ** One or both of the subtrees can be NULL. Return a pointer to the new 494 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 495 ** free the subtrees and return NULL. 496 */ 497 Expr *sqlite3PExpr( 498 Parse *pParse, /* Parsing context */ 499 int op, /* Expression opcode */ 500 Expr *pLeft, /* Left operand */ 501 Expr *pRight, /* Right operand */ 502 const Token *pToken /* Argument token */ 503 ){ 504 Expr *p; 505 if( op==TK_AND && pLeft && pRight ){ 506 /* Take advantage of short-circuit false optimization for AND */ 507 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 508 }else{ 509 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 510 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 511 } 512 if( p ) { 513 sqlite3ExprCheckHeight(pParse, p->nHeight); 514 } 515 return p; 516 } 517 518 /* 519 ** Return 1 if an expression must be FALSE in all cases and 0 if the 520 ** expression might be true. This is an optimization. If is OK to 521 ** return 0 here even if the expression really is always false (a 522 ** false negative). But it is a bug to return 1 if the expression 523 ** might be true in some rare circumstances (a false positive.) 524 ** 525 ** Note that if the expression is part of conditional for a 526 ** LEFT JOIN, then we cannot determine at compile-time whether or not 527 ** is it true or false, so always return 0. 528 */ 529 static int exprAlwaysFalse(Expr *p){ 530 int v = 0; 531 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 532 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 533 return v==0; 534 } 535 536 /* 537 ** Join two expressions using an AND operator. If either expression is 538 ** NULL, then just return the other expression. 539 ** 540 ** If one side or the other of the AND is known to be false, then instead 541 ** of returning an AND expression, just return a constant expression with 542 ** a value of false. 543 */ 544 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 545 if( pLeft==0 ){ 546 return pRight; 547 }else if( pRight==0 ){ 548 return pLeft; 549 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 550 sqlite3ExprDelete(db, pLeft); 551 sqlite3ExprDelete(db, pRight); 552 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 553 }else{ 554 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 555 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 556 return pNew; 557 } 558 } 559 560 /* 561 ** Construct a new expression node for a function with multiple 562 ** arguments. 563 */ 564 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 565 Expr *pNew; 566 sqlite3 *db = pParse->db; 567 assert( pToken ); 568 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 569 if( pNew==0 ){ 570 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 571 return 0; 572 } 573 pNew->x.pList = pList; 574 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 575 sqlite3ExprSetHeight(pParse, pNew); 576 return pNew; 577 } 578 579 /* 580 ** Assign a variable number to an expression that encodes a wildcard 581 ** in the original SQL statement. 582 ** 583 ** Wildcards consisting of a single "?" are assigned the next sequential 584 ** variable number. 585 ** 586 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 587 ** sure "nnn" is not too be to avoid a denial of service attack when 588 ** the SQL statement comes from an external source. 589 ** 590 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 591 ** as the previous instance of the same wildcard. Or if this is the first 592 ** instance of the wildcard, the next sequenial variable number is 593 ** assigned. 594 */ 595 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 596 sqlite3 *db = pParse->db; 597 const char *z; 598 599 if( pExpr==0 ) return; 600 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 601 z = pExpr->u.zToken; 602 assert( z!=0 ); 603 assert( z[0]!=0 ); 604 if( z[1]==0 ){ 605 /* Wildcard of the form "?". Assign the next variable number */ 606 assert( z[0]=='?' ); 607 pExpr->iColumn = (ynVar)(++pParse->nVar); 608 }else{ 609 ynVar x = 0; 610 u32 n = sqlite3Strlen30(z); 611 if( z[0]=='?' ){ 612 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 613 ** use it as the variable number */ 614 i64 i; 615 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 616 pExpr->iColumn = x = (ynVar)i; 617 testcase( i==0 ); 618 testcase( i==1 ); 619 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 620 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 621 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 622 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 623 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 624 x = 0; 625 } 626 if( i>pParse->nVar ){ 627 pParse->nVar = (int)i; 628 } 629 }else{ 630 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 631 ** number as the prior appearance of the same name, or if the name 632 ** has never appeared before, reuse the same variable number 633 */ 634 ynVar i; 635 for(i=0; i<pParse->nzVar; i++){ 636 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 637 pExpr->iColumn = x = (ynVar)i+1; 638 break; 639 } 640 } 641 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 642 } 643 if( x>0 ){ 644 if( x>pParse->nzVar ){ 645 char **a; 646 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 647 if( a==0 ) return; /* Error reported through db->mallocFailed */ 648 pParse->azVar = a; 649 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 650 pParse->nzVar = x; 651 } 652 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 653 sqlite3DbFree(db, pParse->azVar[x-1]); 654 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 655 } 656 } 657 } 658 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 659 sqlite3ErrorMsg(pParse, "too many SQL variables"); 660 } 661 } 662 663 /* 664 ** Recursively delete an expression tree. 665 */ 666 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 667 if( p==0 ) return; 668 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 669 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 670 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 671 sqlite3ExprDelete(db, p->pLeft); 672 sqlite3ExprDelete(db, p->pRight); 673 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 674 sqlite3DbFree(db, p->u.zToken); 675 } 676 if( ExprHasProperty(p, EP_xIsSelect) ){ 677 sqlite3SelectDelete(db, p->x.pSelect); 678 }else{ 679 sqlite3ExprListDelete(db, p->x.pList); 680 } 681 } 682 if( !ExprHasProperty(p, EP_Static) ){ 683 sqlite3DbFree(db, p); 684 } 685 } 686 687 /* 688 ** Return the number of bytes allocated for the expression structure 689 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 690 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 691 */ 692 static int exprStructSize(Expr *p){ 693 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 694 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 695 return EXPR_FULLSIZE; 696 } 697 698 /* 699 ** The dupedExpr*Size() routines each return the number of bytes required 700 ** to store a copy of an expression or expression tree. They differ in 701 ** how much of the tree is measured. 702 ** 703 ** dupedExprStructSize() Size of only the Expr structure 704 ** dupedExprNodeSize() Size of Expr + space for token 705 ** dupedExprSize() Expr + token + subtree components 706 ** 707 *************************************************************************** 708 ** 709 ** The dupedExprStructSize() function returns two values OR-ed together: 710 ** (1) the space required for a copy of the Expr structure only and 711 ** (2) the EP_xxx flags that indicate what the structure size should be. 712 ** The return values is always one of: 713 ** 714 ** EXPR_FULLSIZE 715 ** EXPR_REDUCEDSIZE | EP_Reduced 716 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 717 ** 718 ** The size of the structure can be found by masking the return value 719 ** of this routine with 0xfff. The flags can be found by masking the 720 ** return value with EP_Reduced|EP_TokenOnly. 721 ** 722 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 723 ** (unreduced) Expr objects as they or originally constructed by the parser. 724 ** During expression analysis, extra information is computed and moved into 725 ** later parts of teh Expr object and that extra information might get chopped 726 ** off if the expression is reduced. Note also that it does not work to 727 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 728 ** to reduce a pristine expression tree from the parser. The implementation 729 ** of dupedExprStructSize() contain multiple assert() statements that attempt 730 ** to enforce this constraint. 731 */ 732 static int dupedExprStructSize(Expr *p, int flags){ 733 int nSize; 734 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 735 if( 0==(flags&EXPRDUP_REDUCE) ){ 736 nSize = EXPR_FULLSIZE; 737 }else{ 738 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 739 assert( !ExprHasProperty(p, EP_FromJoin) ); 740 assert( (p->flags2 & EP2_MallocedToken)==0 ); 741 assert( (p->flags2 & EP2_Irreducible)==0 ); 742 if( p->pLeft || p->pRight || p->x.pList ){ 743 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 744 }else{ 745 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 746 } 747 } 748 return nSize; 749 } 750 751 /* 752 ** This function returns the space in bytes required to store the copy 753 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 754 ** string is defined.) 755 */ 756 static int dupedExprNodeSize(Expr *p, int flags){ 757 int nByte = dupedExprStructSize(p, flags) & 0xfff; 758 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 759 nByte += sqlite3Strlen30(p->u.zToken)+1; 760 } 761 return ROUND8(nByte); 762 } 763 764 /* 765 ** Return the number of bytes required to create a duplicate of the 766 ** expression passed as the first argument. The second argument is a 767 ** mask containing EXPRDUP_XXX flags. 768 ** 769 ** The value returned includes space to create a copy of the Expr struct 770 ** itself and the buffer referred to by Expr.u.zToken, if any. 771 ** 772 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 773 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 774 ** and Expr.pRight variables (but not for any structures pointed to or 775 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 776 */ 777 static int dupedExprSize(Expr *p, int flags){ 778 int nByte = 0; 779 if( p ){ 780 nByte = dupedExprNodeSize(p, flags); 781 if( flags&EXPRDUP_REDUCE ){ 782 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 783 } 784 } 785 return nByte; 786 } 787 788 /* 789 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 790 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 791 ** to store the copy of expression p, the copies of p->u.zToken 792 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 793 ** if any. Before returning, *pzBuffer is set to the first byte passed the 794 ** portion of the buffer copied into by this function. 795 */ 796 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 797 Expr *pNew = 0; /* Value to return */ 798 if( p ){ 799 const int isReduced = (flags&EXPRDUP_REDUCE); 800 u8 *zAlloc; 801 u32 staticFlag = 0; 802 803 assert( pzBuffer==0 || isReduced ); 804 805 /* Figure out where to write the new Expr structure. */ 806 if( pzBuffer ){ 807 zAlloc = *pzBuffer; 808 staticFlag = EP_Static; 809 }else{ 810 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 811 } 812 pNew = (Expr *)zAlloc; 813 814 if( pNew ){ 815 /* Set nNewSize to the size allocated for the structure pointed to 816 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 817 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 818 ** by the copy of the p->u.zToken string (if any). 819 */ 820 const unsigned nStructSize = dupedExprStructSize(p, flags); 821 const int nNewSize = nStructSize & 0xfff; 822 int nToken; 823 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 824 nToken = sqlite3Strlen30(p->u.zToken) + 1; 825 }else{ 826 nToken = 0; 827 } 828 if( isReduced ){ 829 assert( ExprHasProperty(p, EP_Reduced)==0 ); 830 memcpy(zAlloc, p, nNewSize); 831 }else{ 832 int nSize = exprStructSize(p); 833 memcpy(zAlloc, p, nSize); 834 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 835 } 836 837 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 838 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 839 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 840 pNew->flags |= staticFlag; 841 842 /* Copy the p->u.zToken string, if any. */ 843 if( nToken ){ 844 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 845 memcpy(zToken, p->u.zToken, nToken); 846 } 847 848 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 849 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 850 if( ExprHasProperty(p, EP_xIsSelect) ){ 851 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 852 }else{ 853 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 854 } 855 } 856 857 /* Fill in pNew->pLeft and pNew->pRight. */ 858 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 859 zAlloc += dupedExprNodeSize(p, flags); 860 if( ExprHasProperty(pNew, EP_Reduced) ){ 861 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 862 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 863 } 864 if( pzBuffer ){ 865 *pzBuffer = zAlloc; 866 } 867 }else{ 868 pNew->flags2 = 0; 869 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 870 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 871 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 872 } 873 } 874 875 } 876 } 877 return pNew; 878 } 879 880 /* 881 ** The following group of routines make deep copies of expressions, 882 ** expression lists, ID lists, and select statements. The copies can 883 ** be deleted (by being passed to their respective ...Delete() routines) 884 ** without effecting the originals. 885 ** 886 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 887 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 888 ** by subsequent calls to sqlite*ListAppend() routines. 889 ** 890 ** Any tables that the SrcList might point to are not duplicated. 891 ** 892 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 893 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 894 ** truncated version of the usual Expr structure that will be stored as 895 ** part of the in-memory representation of the database schema. 896 */ 897 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 898 return exprDup(db, p, flags, 0); 899 } 900 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 901 ExprList *pNew; 902 struct ExprList_item *pItem, *pOldItem; 903 int i; 904 if( p==0 ) return 0; 905 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 906 if( pNew==0 ) return 0; 907 pNew->iECursor = 0; 908 pNew->nExpr = i = p->nExpr; 909 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 910 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 911 if( pItem==0 ){ 912 sqlite3DbFree(db, pNew); 913 return 0; 914 } 915 pOldItem = p->a; 916 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 917 Expr *pOldExpr = pOldItem->pExpr; 918 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 919 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 920 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 921 pItem->sortOrder = pOldItem->sortOrder; 922 pItem->done = 0; 923 pItem->iOrderByCol = pOldItem->iOrderByCol; 924 pItem->iAlias = pOldItem->iAlias; 925 } 926 return pNew; 927 } 928 929 /* 930 ** If cursors, triggers, views and subqueries are all omitted from 931 ** the build, then none of the following routines, except for 932 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 933 ** called with a NULL argument. 934 */ 935 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 936 || !defined(SQLITE_OMIT_SUBQUERY) 937 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 938 SrcList *pNew; 939 int i; 940 int nByte; 941 if( p==0 ) return 0; 942 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 943 pNew = sqlite3DbMallocRaw(db, nByte ); 944 if( pNew==0 ) return 0; 945 pNew->nSrc = pNew->nAlloc = p->nSrc; 946 for(i=0; i<p->nSrc; i++){ 947 struct SrcList_item *pNewItem = &pNew->a[i]; 948 struct SrcList_item *pOldItem = &p->a[i]; 949 Table *pTab; 950 pNewItem->pSchema = pOldItem->pSchema; 951 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 952 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 953 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 954 pNewItem->jointype = pOldItem->jointype; 955 pNewItem->iCursor = pOldItem->iCursor; 956 pNewItem->addrFillSub = pOldItem->addrFillSub; 957 pNewItem->regReturn = pOldItem->regReturn; 958 pNewItem->isCorrelated = pOldItem->isCorrelated; 959 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 960 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 961 pNewItem->notIndexed = pOldItem->notIndexed; 962 pNewItem->pIndex = pOldItem->pIndex; 963 pTab = pNewItem->pTab = pOldItem->pTab; 964 if( pTab ){ 965 pTab->nRef++; 966 } 967 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 968 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 969 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 970 pNewItem->colUsed = pOldItem->colUsed; 971 } 972 return pNew; 973 } 974 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 975 IdList *pNew; 976 int i; 977 if( p==0 ) return 0; 978 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 979 if( pNew==0 ) return 0; 980 pNew->nId = p->nId; 981 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 982 if( pNew->a==0 ){ 983 sqlite3DbFree(db, pNew); 984 return 0; 985 } 986 /* Note that because the size of the allocation for p->a[] is not 987 ** necessarily a power of two, sqlite3IdListAppend() may not be called 988 ** on the duplicate created by this function. */ 989 for(i=0; i<p->nId; i++){ 990 struct IdList_item *pNewItem = &pNew->a[i]; 991 struct IdList_item *pOldItem = &p->a[i]; 992 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 993 pNewItem->idx = pOldItem->idx; 994 } 995 return pNew; 996 } 997 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 998 Select *pNew, *pPrior; 999 if( p==0 ) return 0; 1000 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1001 if( pNew==0 ) return 0; 1002 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1003 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1004 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1005 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1006 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1007 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1008 pNew->op = p->op; 1009 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1010 if( pPrior ) pPrior->pNext = pNew; 1011 pNew->pNext = 0; 1012 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1013 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1014 pNew->iLimit = 0; 1015 pNew->iOffset = 0; 1016 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1017 pNew->pRightmost = 0; 1018 pNew->addrOpenEphm[0] = -1; 1019 pNew->addrOpenEphm[1] = -1; 1020 pNew->addrOpenEphm[2] = -1; 1021 return pNew; 1022 } 1023 #else 1024 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1025 assert( p==0 ); 1026 return 0; 1027 } 1028 #endif 1029 1030 1031 /* 1032 ** Add a new element to the end of an expression list. If pList is 1033 ** initially NULL, then create a new expression list. 1034 ** 1035 ** If a memory allocation error occurs, the entire list is freed and 1036 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1037 ** that the new entry was successfully appended. 1038 */ 1039 ExprList *sqlite3ExprListAppend( 1040 Parse *pParse, /* Parsing context */ 1041 ExprList *pList, /* List to which to append. Might be NULL */ 1042 Expr *pExpr /* Expression to be appended. Might be NULL */ 1043 ){ 1044 sqlite3 *db = pParse->db; 1045 if( pList==0 ){ 1046 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1047 if( pList==0 ){ 1048 goto no_mem; 1049 } 1050 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1051 if( pList->a==0 ) goto no_mem; 1052 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1053 struct ExprList_item *a; 1054 assert( pList->nExpr>0 ); 1055 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1056 if( a==0 ){ 1057 goto no_mem; 1058 } 1059 pList->a = a; 1060 } 1061 assert( pList->a!=0 ); 1062 if( 1 ){ 1063 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1064 memset(pItem, 0, sizeof(*pItem)); 1065 pItem->pExpr = pExpr; 1066 } 1067 return pList; 1068 1069 no_mem: 1070 /* Avoid leaking memory if malloc has failed. */ 1071 sqlite3ExprDelete(db, pExpr); 1072 sqlite3ExprListDelete(db, pList); 1073 return 0; 1074 } 1075 1076 /* 1077 ** Set the ExprList.a[].zName element of the most recently added item 1078 ** on the expression list. 1079 ** 1080 ** pList might be NULL following an OOM error. But pName should never be 1081 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1082 ** is set. 1083 */ 1084 void sqlite3ExprListSetName( 1085 Parse *pParse, /* Parsing context */ 1086 ExprList *pList, /* List to which to add the span. */ 1087 Token *pName, /* Name to be added */ 1088 int dequote /* True to cause the name to be dequoted */ 1089 ){ 1090 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1091 if( pList ){ 1092 struct ExprList_item *pItem; 1093 assert( pList->nExpr>0 ); 1094 pItem = &pList->a[pList->nExpr-1]; 1095 assert( pItem->zName==0 ); 1096 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1097 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1098 } 1099 } 1100 1101 /* 1102 ** Set the ExprList.a[].zSpan element of the most recently added item 1103 ** on the expression list. 1104 ** 1105 ** pList might be NULL following an OOM error. But pSpan should never be 1106 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1107 ** is set. 1108 */ 1109 void sqlite3ExprListSetSpan( 1110 Parse *pParse, /* Parsing context */ 1111 ExprList *pList, /* List to which to add the span. */ 1112 ExprSpan *pSpan /* The span to be added */ 1113 ){ 1114 sqlite3 *db = pParse->db; 1115 assert( pList!=0 || db->mallocFailed!=0 ); 1116 if( pList ){ 1117 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1118 assert( pList->nExpr>0 ); 1119 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1120 sqlite3DbFree(db, pItem->zSpan); 1121 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1122 (int)(pSpan->zEnd - pSpan->zStart)); 1123 } 1124 } 1125 1126 /* 1127 ** If the expression list pEList contains more than iLimit elements, 1128 ** leave an error message in pParse. 1129 */ 1130 void sqlite3ExprListCheckLength( 1131 Parse *pParse, 1132 ExprList *pEList, 1133 const char *zObject 1134 ){ 1135 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1136 testcase( pEList && pEList->nExpr==mx ); 1137 testcase( pEList && pEList->nExpr==mx+1 ); 1138 if( pEList && pEList->nExpr>mx ){ 1139 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1140 } 1141 } 1142 1143 /* 1144 ** Delete an entire expression list. 1145 */ 1146 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1147 int i; 1148 struct ExprList_item *pItem; 1149 if( pList==0 ) return; 1150 assert( pList->a!=0 || pList->nExpr==0 ); 1151 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1152 sqlite3ExprDelete(db, pItem->pExpr); 1153 sqlite3DbFree(db, pItem->zName); 1154 sqlite3DbFree(db, pItem->zSpan); 1155 } 1156 sqlite3DbFree(db, pList->a); 1157 sqlite3DbFree(db, pList); 1158 } 1159 1160 /* 1161 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1162 ** to an integer. These routines are checking an expression to see 1163 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1164 ** not constant. 1165 ** 1166 ** These callback routines are used to implement the following: 1167 ** 1168 ** sqlite3ExprIsConstant() 1169 ** sqlite3ExprIsConstantNotJoin() 1170 ** sqlite3ExprIsConstantOrFunction() 1171 ** 1172 */ 1173 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1174 1175 /* If pWalker->u.i is 3 then any term of the expression that comes from 1176 ** the ON or USING clauses of a join disqualifies the expression 1177 ** from being considered constant. */ 1178 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1179 pWalker->u.i = 0; 1180 return WRC_Abort; 1181 } 1182 1183 switch( pExpr->op ){ 1184 /* Consider functions to be constant if all their arguments are constant 1185 ** and pWalker->u.i==2 */ 1186 case TK_FUNCTION: 1187 if( pWalker->u.i==2 ) return 0; 1188 /* Fall through */ 1189 case TK_ID: 1190 case TK_COLUMN: 1191 case TK_AGG_FUNCTION: 1192 case TK_AGG_COLUMN: 1193 testcase( pExpr->op==TK_ID ); 1194 testcase( pExpr->op==TK_COLUMN ); 1195 testcase( pExpr->op==TK_AGG_FUNCTION ); 1196 testcase( pExpr->op==TK_AGG_COLUMN ); 1197 pWalker->u.i = 0; 1198 return WRC_Abort; 1199 default: 1200 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1201 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1202 return WRC_Continue; 1203 } 1204 } 1205 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1206 UNUSED_PARAMETER(NotUsed); 1207 pWalker->u.i = 0; 1208 return WRC_Abort; 1209 } 1210 static int exprIsConst(Expr *p, int initFlag){ 1211 Walker w; 1212 memset(&w, 0, sizeof(w)); 1213 w.u.i = initFlag; 1214 w.xExprCallback = exprNodeIsConstant; 1215 w.xSelectCallback = selectNodeIsConstant; 1216 sqlite3WalkExpr(&w, p); 1217 return w.u.i; 1218 } 1219 1220 /* 1221 ** Walk an expression tree. Return 1 if the expression is constant 1222 ** and 0 if it involves variables or function calls. 1223 ** 1224 ** For the purposes of this function, a double-quoted string (ex: "abc") 1225 ** is considered a variable but a single-quoted string (ex: 'abc') is 1226 ** a constant. 1227 */ 1228 int sqlite3ExprIsConstant(Expr *p){ 1229 return exprIsConst(p, 1); 1230 } 1231 1232 /* 1233 ** Walk an expression tree. Return 1 if the expression is constant 1234 ** that does no originate from the ON or USING clauses of a join. 1235 ** Return 0 if it involves variables or function calls or terms from 1236 ** an ON or USING clause. 1237 */ 1238 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1239 return exprIsConst(p, 3); 1240 } 1241 1242 /* 1243 ** Walk an expression tree. Return 1 if the expression is constant 1244 ** or a function call with constant arguments. Return and 0 if there 1245 ** are any variables. 1246 ** 1247 ** For the purposes of this function, a double-quoted string (ex: "abc") 1248 ** is considered a variable but a single-quoted string (ex: 'abc') is 1249 ** a constant. 1250 */ 1251 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1252 return exprIsConst(p, 2); 1253 } 1254 1255 /* 1256 ** If the expression p codes a constant integer that is small enough 1257 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1258 ** in *pValue. If the expression is not an integer or if it is too big 1259 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1260 */ 1261 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1262 int rc = 0; 1263 1264 /* If an expression is an integer literal that fits in a signed 32-bit 1265 ** integer, then the EP_IntValue flag will have already been set */ 1266 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1267 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1268 1269 if( p->flags & EP_IntValue ){ 1270 *pValue = p->u.iValue; 1271 return 1; 1272 } 1273 switch( p->op ){ 1274 case TK_UPLUS: { 1275 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1276 break; 1277 } 1278 case TK_UMINUS: { 1279 int v; 1280 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1281 *pValue = -v; 1282 rc = 1; 1283 } 1284 break; 1285 } 1286 default: break; 1287 } 1288 return rc; 1289 } 1290 1291 /* 1292 ** Return FALSE if there is no chance that the expression can be NULL. 1293 ** 1294 ** If the expression might be NULL or if the expression is too complex 1295 ** to tell return TRUE. 1296 ** 1297 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1298 ** when we know that a value cannot be NULL. Hence, a false positive 1299 ** (returning TRUE when in fact the expression can never be NULL) might 1300 ** be a small performance hit but is otherwise harmless. On the other 1301 ** hand, a false negative (returning FALSE when the result could be NULL) 1302 ** will likely result in an incorrect answer. So when in doubt, return 1303 ** TRUE. 1304 */ 1305 int sqlite3ExprCanBeNull(const Expr *p){ 1306 u8 op; 1307 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1308 op = p->op; 1309 if( op==TK_REGISTER ) op = p->op2; 1310 switch( op ){ 1311 case TK_INTEGER: 1312 case TK_STRING: 1313 case TK_FLOAT: 1314 case TK_BLOB: 1315 return 0; 1316 default: 1317 return 1; 1318 } 1319 } 1320 1321 /* 1322 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1323 ** to location iDest if the value in iReg is NULL. The value in iReg 1324 ** was computed by pExpr. If we can look at pExpr at compile-time and 1325 ** determine that it can never generate a NULL, then the OP_IsNull operation 1326 ** can be omitted. 1327 */ 1328 void sqlite3ExprCodeIsNullJump( 1329 Vdbe *v, /* The VDBE under construction */ 1330 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1331 int iReg, /* Test the value in this register for NULL */ 1332 int iDest /* Jump here if the value is null */ 1333 ){ 1334 if( sqlite3ExprCanBeNull(pExpr) ){ 1335 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1336 } 1337 } 1338 1339 /* 1340 ** Return TRUE if the given expression is a constant which would be 1341 ** unchanged by OP_Affinity with the affinity given in the second 1342 ** argument. 1343 ** 1344 ** This routine is used to determine if the OP_Affinity operation 1345 ** can be omitted. When in doubt return FALSE. A false negative 1346 ** is harmless. A false positive, however, can result in the wrong 1347 ** answer. 1348 */ 1349 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1350 u8 op; 1351 if( aff==SQLITE_AFF_NONE ) return 1; 1352 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1353 op = p->op; 1354 if( op==TK_REGISTER ) op = p->op2; 1355 switch( op ){ 1356 case TK_INTEGER: { 1357 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1358 } 1359 case TK_FLOAT: { 1360 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1361 } 1362 case TK_STRING: { 1363 return aff==SQLITE_AFF_TEXT; 1364 } 1365 case TK_BLOB: { 1366 return 1; 1367 } 1368 case TK_COLUMN: { 1369 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1370 return p->iColumn<0 1371 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1372 } 1373 default: { 1374 return 0; 1375 } 1376 } 1377 } 1378 1379 /* 1380 ** Return TRUE if the given string is a row-id column name. 1381 */ 1382 int sqlite3IsRowid(const char *z){ 1383 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1384 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1385 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1386 return 0; 1387 } 1388 1389 /* 1390 ** Return true if we are able to the IN operator optimization on a 1391 ** query of the form 1392 ** 1393 ** x IN (SELECT ...) 1394 ** 1395 ** Where the SELECT... clause is as specified by the parameter to this 1396 ** routine. 1397 ** 1398 ** The Select object passed in has already been preprocessed and no 1399 ** errors have been found. 1400 */ 1401 #ifndef SQLITE_OMIT_SUBQUERY 1402 static int isCandidateForInOpt(Select *p){ 1403 SrcList *pSrc; 1404 ExprList *pEList; 1405 Table *pTab; 1406 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1407 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1408 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1409 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1410 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1411 return 0; /* No DISTINCT keyword and no aggregate functions */ 1412 } 1413 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1414 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1415 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1416 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1417 pSrc = p->pSrc; 1418 assert( pSrc!=0 ); 1419 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1420 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1421 pTab = pSrc->a[0].pTab; 1422 if( NEVER(pTab==0) ) return 0; 1423 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1424 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1425 pEList = p->pEList; 1426 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1427 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1428 return 1; 1429 } 1430 #endif /* SQLITE_OMIT_SUBQUERY */ 1431 1432 /* 1433 ** Code an OP_Once instruction and allocate space for its flag. Return the 1434 ** address of the new instruction. 1435 */ 1436 int sqlite3CodeOnce(Parse *pParse){ 1437 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1438 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1439 } 1440 1441 /* 1442 ** This function is used by the implementation of the IN (...) operator. 1443 ** The pX parameter is the expression on the RHS of the IN operator, which 1444 ** might be either a list of expressions or a subquery. 1445 ** 1446 ** The job of this routine is to find or create a b-tree object that can 1447 ** be used either to test for membership in the RHS set or to iterate through 1448 ** all members of the RHS set, skipping duplicates. 1449 ** 1450 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1451 ** and pX->iTable is set to the index of that cursor. 1452 ** 1453 ** The returned value of this function indicates the b-tree type, as follows: 1454 ** 1455 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1456 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1457 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1458 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1459 ** populated epheremal table. 1460 ** 1461 ** An existing b-tree might be used if the RHS expression pX is a simple 1462 ** subquery such as: 1463 ** 1464 ** SELECT <column> FROM <table> 1465 ** 1466 ** If the RHS of the IN operator is a list or a more complex subquery, then 1467 ** an ephemeral table might need to be generated from the RHS and then 1468 ** pX->iTable made to point to the ephermeral table instead of an 1469 ** existing table. 1470 ** 1471 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1472 ** through the set members, skipping any duplicates. In this case an 1473 ** epheremal table must be used unless the selected <column> is guaranteed 1474 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1475 ** has a UNIQUE constraint or UNIQUE index. 1476 ** 1477 ** If the prNotFound parameter is not 0, then the b-tree will be used 1478 ** for fast set membership tests. In this case an epheremal table must 1479 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1480 ** be found with <column> as its left-most column. 1481 ** 1482 ** When the b-tree is being used for membership tests, the calling function 1483 ** needs to know whether or not the structure contains an SQL NULL 1484 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1485 ** If there is any chance that the (...) might contain a NULL value at 1486 ** runtime, then a register is allocated and the register number written 1487 ** to *prNotFound. If there is no chance that the (...) contains a 1488 ** NULL value, then *prNotFound is left unchanged. 1489 ** 1490 ** If a register is allocated and its location stored in *prNotFound, then 1491 ** its initial value is NULL. If the (...) does not remain constant 1492 ** for the duration of the query (i.e. the SELECT within the (...) 1493 ** is a correlated subquery) then the value of the allocated register is 1494 ** reset to NULL each time the subquery is rerun. This allows the 1495 ** caller to use vdbe code equivalent to the following: 1496 ** 1497 ** if( register==NULL ){ 1498 ** has_null = <test if data structure contains null> 1499 ** register = 1 1500 ** } 1501 ** 1502 ** in order to avoid running the <test if data structure contains null> 1503 ** test more often than is necessary. 1504 */ 1505 #ifndef SQLITE_OMIT_SUBQUERY 1506 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1507 Select *p; /* SELECT to the right of IN operator */ 1508 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1509 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1510 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1511 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1512 1513 assert( pX->op==TK_IN ); 1514 1515 /* Check to see if an existing table or index can be used to 1516 ** satisfy the query. This is preferable to generating a new 1517 ** ephemeral table. 1518 */ 1519 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1520 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1521 sqlite3 *db = pParse->db; /* Database connection */ 1522 Table *pTab; /* Table <table>. */ 1523 Expr *pExpr; /* Expression <column> */ 1524 int iCol; /* Index of column <column> */ 1525 int iDb; /* Database idx for pTab */ 1526 1527 assert( p ); /* Because of isCandidateForInOpt(p) */ 1528 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1529 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1530 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1531 pTab = p->pSrc->a[0].pTab; 1532 pExpr = p->pEList->a[0].pExpr; 1533 iCol = pExpr->iColumn; 1534 1535 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1536 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1537 sqlite3CodeVerifySchema(pParse, iDb); 1538 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1539 1540 /* This function is only called from two places. In both cases the vdbe 1541 ** has already been allocated. So assume sqlite3GetVdbe() is always 1542 ** successful here. 1543 */ 1544 assert(v); 1545 if( iCol<0 ){ 1546 int iAddr; 1547 1548 iAddr = sqlite3CodeOnce(pParse); 1549 1550 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1551 eType = IN_INDEX_ROWID; 1552 1553 sqlite3VdbeJumpHere(v, iAddr); 1554 }else{ 1555 Index *pIdx; /* Iterator variable */ 1556 1557 /* The collation sequence used by the comparison. If an index is to 1558 ** be used in place of a temp-table, it must be ordered according 1559 ** to this collation sequence. */ 1560 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1561 1562 /* Check that the affinity that will be used to perform the 1563 ** comparison is the same as the affinity of the column. If 1564 ** it is not, it is not possible to use any index. 1565 */ 1566 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1567 1568 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1569 if( (pIdx->aiColumn[0]==iCol) 1570 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1571 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1572 ){ 1573 int iAddr; 1574 char *pKey; 1575 1576 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1577 iAddr = sqlite3CodeOnce(pParse); 1578 1579 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1580 pKey,P4_KEYINFO_HANDOFF); 1581 VdbeComment((v, "%s", pIdx->zName)); 1582 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1583 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1584 1585 sqlite3VdbeJumpHere(v, iAddr); 1586 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1587 *prNotFound = ++pParse->nMem; 1588 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1589 } 1590 } 1591 } 1592 } 1593 } 1594 1595 if( eType==0 ){ 1596 /* Could not found an existing table or index to use as the RHS b-tree. 1597 ** We will have to generate an ephemeral table to do the job. 1598 */ 1599 double savedNQueryLoop = pParse->nQueryLoop; 1600 int rMayHaveNull = 0; 1601 eType = IN_INDEX_EPH; 1602 if( prNotFound ){ 1603 *prNotFound = rMayHaveNull = ++pParse->nMem; 1604 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1605 }else{ 1606 testcase( pParse->nQueryLoop>(double)1 ); 1607 pParse->nQueryLoop = (double)1; 1608 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1609 eType = IN_INDEX_ROWID; 1610 } 1611 } 1612 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1613 pParse->nQueryLoop = savedNQueryLoop; 1614 }else{ 1615 pX->iTable = iTab; 1616 } 1617 return eType; 1618 } 1619 #endif 1620 1621 /* 1622 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1623 ** or IN operators. Examples: 1624 ** 1625 ** (SELECT a FROM b) -- subquery 1626 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1627 ** x IN (4,5,11) -- IN operator with list on right-hand side 1628 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1629 ** 1630 ** The pExpr parameter describes the expression that contains the IN 1631 ** operator or subquery. 1632 ** 1633 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1634 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1635 ** to some integer key column of a table B-Tree. In this case, use an 1636 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1637 ** (slower) variable length keys B-Tree. 1638 ** 1639 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1640 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1641 ** Furthermore, the IN is in a WHERE clause and that we really want 1642 ** to iterate over the RHS of the IN operator in order to quickly locate 1643 ** all corresponding LHS elements. All this routine does is initialize 1644 ** the register given by rMayHaveNull to NULL. Calling routines will take 1645 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1646 ** 1647 ** If rMayHaveNull is zero, that means that the subquery is being used 1648 ** for membership testing only. There is no need to initialize any 1649 ** registers to indicate the presence or absence of NULLs on the RHS. 1650 ** 1651 ** For a SELECT or EXISTS operator, return the register that holds the 1652 ** result. For IN operators or if an error occurs, the return value is 0. 1653 */ 1654 #ifndef SQLITE_OMIT_SUBQUERY 1655 int sqlite3CodeSubselect( 1656 Parse *pParse, /* Parsing context */ 1657 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1658 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1659 int isRowid /* If true, LHS of IN operator is a rowid */ 1660 ){ 1661 int testAddr = -1; /* One-time test address */ 1662 int rReg = 0; /* Register storing resulting */ 1663 Vdbe *v = sqlite3GetVdbe(pParse); 1664 if( NEVER(v==0) ) return 0; 1665 sqlite3ExprCachePush(pParse); 1666 1667 /* This code must be run in its entirety every time it is encountered 1668 ** if any of the following is true: 1669 ** 1670 ** * The right-hand side is a correlated subquery 1671 ** * The right-hand side is an expression list containing variables 1672 ** * We are inside a trigger 1673 ** 1674 ** If all of the above are false, then we can run this code just once 1675 ** save the results, and reuse the same result on subsequent invocations. 1676 */ 1677 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1678 testAddr = sqlite3CodeOnce(pParse); 1679 } 1680 1681 #ifndef SQLITE_OMIT_EXPLAIN 1682 if( pParse->explain==2 ){ 1683 char *zMsg = sqlite3MPrintf( 1684 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1685 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1686 ); 1687 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1688 } 1689 #endif 1690 1691 switch( pExpr->op ){ 1692 case TK_IN: { 1693 char affinity; /* Affinity of the LHS of the IN */ 1694 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1695 static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ 1696 int addr; /* Address of OP_OpenEphemeral instruction */ 1697 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1698 1699 if( rMayHaveNull ){ 1700 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1701 } 1702 1703 affinity = sqlite3ExprAffinity(pLeft); 1704 1705 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1706 ** expression it is handled the same way. An ephemeral table is 1707 ** filled with single-field index keys representing the results 1708 ** from the SELECT or the <exprlist>. 1709 ** 1710 ** If the 'x' expression is a column value, or the SELECT... 1711 ** statement returns a column value, then the affinity of that 1712 ** column is used to build the index keys. If both 'x' and the 1713 ** SELECT... statement are columns, then numeric affinity is used 1714 ** if either column has NUMERIC or INTEGER affinity. If neither 1715 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1716 ** is used. 1717 */ 1718 pExpr->iTable = pParse->nTab++; 1719 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1720 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1721 memset(&keyInfo, 0, sizeof(keyInfo)); 1722 keyInfo.nField = 1; 1723 keyInfo.aSortOrder = &sortOrder; 1724 1725 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1726 /* Case 1: expr IN (SELECT ...) 1727 ** 1728 ** Generate code to write the results of the select into the temporary 1729 ** table allocated and opened above. 1730 */ 1731 SelectDest dest; 1732 ExprList *pEList; 1733 1734 assert( !isRowid ); 1735 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1736 dest.affSdst = (u8)affinity; 1737 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1738 pExpr->x.pSelect->iLimit = 0; 1739 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1740 return 0; 1741 } 1742 pEList = pExpr->x.pSelect->pEList; 1743 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1744 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1745 pEList->a[0].pExpr); 1746 } 1747 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1748 /* Case 2: expr IN (exprlist) 1749 ** 1750 ** For each expression, build an index key from the evaluation and 1751 ** store it in the temporary table. If <expr> is a column, then use 1752 ** that columns affinity when building index keys. If <expr> is not 1753 ** a column, use numeric affinity. 1754 */ 1755 int i; 1756 ExprList *pList = pExpr->x.pList; 1757 struct ExprList_item *pItem; 1758 int r1, r2, r3; 1759 1760 if( !affinity ){ 1761 affinity = SQLITE_AFF_NONE; 1762 } 1763 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1764 keyInfo.aSortOrder = &sortOrder; 1765 1766 /* Loop through each expression in <exprlist>. */ 1767 r1 = sqlite3GetTempReg(pParse); 1768 r2 = sqlite3GetTempReg(pParse); 1769 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1770 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1771 Expr *pE2 = pItem->pExpr; 1772 int iValToIns; 1773 1774 /* If the expression is not constant then we will need to 1775 ** disable the test that was generated above that makes sure 1776 ** this code only executes once. Because for a non-constant 1777 ** expression we need to rerun this code each time. 1778 */ 1779 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1780 sqlite3VdbeChangeToNoop(v, testAddr); 1781 testAddr = -1; 1782 } 1783 1784 /* Evaluate the expression and insert it into the temp table */ 1785 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1786 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1787 }else{ 1788 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1789 if( isRowid ){ 1790 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1791 sqlite3VdbeCurrentAddr(v)+2); 1792 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1793 }else{ 1794 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1795 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1796 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1797 } 1798 } 1799 } 1800 sqlite3ReleaseTempReg(pParse, r1); 1801 sqlite3ReleaseTempReg(pParse, r2); 1802 } 1803 if( !isRowid ){ 1804 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1805 } 1806 break; 1807 } 1808 1809 case TK_EXISTS: 1810 case TK_SELECT: 1811 default: { 1812 /* If this has to be a scalar SELECT. Generate code to put the 1813 ** value of this select in a memory cell and record the number 1814 ** of the memory cell in iColumn. If this is an EXISTS, write 1815 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1816 ** and record that memory cell in iColumn. 1817 */ 1818 Select *pSel; /* SELECT statement to encode */ 1819 SelectDest dest; /* How to deal with SELECt result */ 1820 1821 testcase( pExpr->op==TK_EXISTS ); 1822 testcase( pExpr->op==TK_SELECT ); 1823 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1824 1825 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1826 pSel = pExpr->x.pSelect; 1827 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1828 if( pExpr->op==TK_SELECT ){ 1829 dest.eDest = SRT_Mem; 1830 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1831 VdbeComment((v, "Init subquery result")); 1832 }else{ 1833 dest.eDest = SRT_Exists; 1834 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1835 VdbeComment((v, "Init EXISTS result")); 1836 } 1837 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1838 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1839 &sqlite3IntTokens[1]); 1840 pSel->iLimit = 0; 1841 if( sqlite3Select(pParse, pSel, &dest) ){ 1842 return 0; 1843 } 1844 rReg = dest.iSDParm; 1845 ExprSetIrreducible(pExpr); 1846 break; 1847 } 1848 } 1849 1850 if( testAddr>=0 ){ 1851 sqlite3VdbeJumpHere(v, testAddr); 1852 } 1853 sqlite3ExprCachePop(pParse, 1); 1854 1855 return rReg; 1856 } 1857 #endif /* SQLITE_OMIT_SUBQUERY */ 1858 1859 #ifndef SQLITE_OMIT_SUBQUERY 1860 /* 1861 ** Generate code for an IN expression. 1862 ** 1863 ** x IN (SELECT ...) 1864 ** x IN (value, value, ...) 1865 ** 1866 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1867 ** is an array of zero or more values. The expression is true if the LHS is 1868 ** contained within the RHS. The value of the expression is unknown (NULL) 1869 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1870 ** RHS contains one or more NULL values. 1871 ** 1872 ** This routine generates code will jump to destIfFalse if the LHS is not 1873 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1874 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1875 ** within the RHS then fall through. 1876 */ 1877 static void sqlite3ExprCodeIN( 1878 Parse *pParse, /* Parsing and code generating context */ 1879 Expr *pExpr, /* The IN expression */ 1880 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1881 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1882 ){ 1883 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1884 char affinity; /* Comparison affinity to use */ 1885 int eType; /* Type of the RHS */ 1886 int r1; /* Temporary use register */ 1887 Vdbe *v; /* Statement under construction */ 1888 1889 /* Compute the RHS. After this step, the table with cursor 1890 ** pExpr->iTable will contains the values that make up the RHS. 1891 */ 1892 v = pParse->pVdbe; 1893 assert( v!=0 ); /* OOM detected prior to this routine */ 1894 VdbeNoopComment((v, "begin IN expr")); 1895 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1896 1897 /* Figure out the affinity to use to create a key from the results 1898 ** of the expression. affinityStr stores a static string suitable for 1899 ** P4 of OP_MakeRecord. 1900 */ 1901 affinity = comparisonAffinity(pExpr); 1902 1903 /* Code the LHS, the <expr> from "<expr> IN (...)". 1904 */ 1905 sqlite3ExprCachePush(pParse); 1906 r1 = sqlite3GetTempReg(pParse); 1907 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1908 1909 /* If the LHS is NULL, then the result is either false or NULL depending 1910 ** on whether the RHS is empty or not, respectively. 1911 */ 1912 if( destIfNull==destIfFalse ){ 1913 /* Shortcut for the common case where the false and NULL outcomes are 1914 ** the same. */ 1915 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1916 }else{ 1917 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1918 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1919 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1920 sqlite3VdbeJumpHere(v, addr1); 1921 } 1922 1923 if( eType==IN_INDEX_ROWID ){ 1924 /* In this case, the RHS is the ROWID of table b-tree 1925 */ 1926 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1927 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1928 }else{ 1929 /* In this case, the RHS is an index b-tree. 1930 */ 1931 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1932 1933 /* If the set membership test fails, then the result of the 1934 ** "x IN (...)" expression must be either 0 or NULL. If the set 1935 ** contains no NULL values, then the result is 0. If the set 1936 ** contains one or more NULL values, then the result of the 1937 ** expression is also NULL. 1938 */ 1939 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1940 /* This branch runs if it is known at compile time that the RHS 1941 ** cannot contain NULL values. This happens as the result 1942 ** of a "NOT NULL" constraint in the database schema. 1943 ** 1944 ** Also run this branch if NULL is equivalent to FALSE 1945 ** for this particular IN operator. 1946 */ 1947 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1948 1949 }else{ 1950 /* In this branch, the RHS of the IN might contain a NULL and 1951 ** the presence of a NULL on the RHS makes a difference in the 1952 ** outcome. 1953 */ 1954 int j1, j2, j3; 1955 1956 /* First check to see if the LHS is contained in the RHS. If so, 1957 ** then the presence of NULLs in the RHS does not matter, so jump 1958 ** over all of the code that follows. 1959 */ 1960 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1961 1962 /* Here we begin generating code that runs if the LHS is not 1963 ** contained within the RHS. Generate additional code that 1964 ** tests the RHS for NULLs. If the RHS contains a NULL then 1965 ** jump to destIfNull. If there are no NULLs in the RHS then 1966 ** jump to destIfFalse. 1967 */ 1968 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1969 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1970 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1971 sqlite3VdbeJumpHere(v, j3); 1972 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1973 sqlite3VdbeJumpHere(v, j2); 1974 1975 /* Jump to the appropriate target depending on whether or not 1976 ** the RHS contains a NULL 1977 */ 1978 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1979 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1980 1981 /* The OP_Found at the top of this branch jumps here when true, 1982 ** causing the overall IN expression evaluation to fall through. 1983 */ 1984 sqlite3VdbeJumpHere(v, j1); 1985 } 1986 } 1987 sqlite3ReleaseTempReg(pParse, r1); 1988 sqlite3ExprCachePop(pParse, 1); 1989 VdbeComment((v, "end IN expr")); 1990 } 1991 #endif /* SQLITE_OMIT_SUBQUERY */ 1992 1993 /* 1994 ** Duplicate an 8-byte value 1995 */ 1996 static char *dup8bytes(Vdbe *v, const char *in){ 1997 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1998 if( out ){ 1999 memcpy(out, in, 8); 2000 } 2001 return out; 2002 } 2003 2004 #ifndef SQLITE_OMIT_FLOATING_POINT 2005 /* 2006 ** Generate an instruction that will put the floating point 2007 ** value described by z[0..n-1] into register iMem. 2008 ** 2009 ** The z[] string will probably not be zero-terminated. But the 2010 ** z[n] character is guaranteed to be something that does not look 2011 ** like the continuation of the number. 2012 */ 2013 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2014 if( ALWAYS(z!=0) ){ 2015 double value; 2016 char *zV; 2017 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2018 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2019 if( negateFlag ) value = -value; 2020 zV = dup8bytes(v, (char*)&value); 2021 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2022 } 2023 } 2024 #endif 2025 2026 2027 /* 2028 ** Generate an instruction that will put the integer describe by 2029 ** text z[0..n-1] into register iMem. 2030 ** 2031 ** Expr.u.zToken is always UTF8 and zero-terminated. 2032 */ 2033 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2034 Vdbe *v = pParse->pVdbe; 2035 if( pExpr->flags & EP_IntValue ){ 2036 int i = pExpr->u.iValue; 2037 assert( i>=0 ); 2038 if( negFlag ) i = -i; 2039 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2040 }else{ 2041 int c; 2042 i64 value; 2043 const char *z = pExpr->u.zToken; 2044 assert( z!=0 ); 2045 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2046 if( c==0 || (c==2 && negFlag) ){ 2047 char *zV; 2048 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2049 zV = dup8bytes(v, (char*)&value); 2050 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2051 }else{ 2052 #ifdef SQLITE_OMIT_FLOATING_POINT 2053 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2054 #else 2055 codeReal(v, z, negFlag, iMem); 2056 #endif 2057 } 2058 } 2059 } 2060 2061 /* 2062 ** Clear a cache entry. 2063 */ 2064 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2065 if( p->tempReg ){ 2066 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2067 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2068 } 2069 p->tempReg = 0; 2070 } 2071 } 2072 2073 2074 /* 2075 ** Record in the column cache that a particular column from a 2076 ** particular table is stored in a particular register. 2077 */ 2078 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2079 int i; 2080 int minLru; 2081 int idxLru; 2082 struct yColCache *p; 2083 2084 assert( iReg>0 ); /* Register numbers are always positive */ 2085 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2086 2087 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2088 ** for testing only - to verify that SQLite always gets the same answer 2089 ** with and without the column cache. 2090 */ 2091 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2092 2093 /* First replace any existing entry. 2094 ** 2095 ** Actually, the way the column cache is currently used, we are guaranteed 2096 ** that the object will never already be in cache. Verify this guarantee. 2097 */ 2098 #ifndef NDEBUG 2099 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2100 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2101 } 2102 #endif 2103 2104 /* Find an empty slot and replace it */ 2105 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2106 if( p->iReg==0 ){ 2107 p->iLevel = pParse->iCacheLevel; 2108 p->iTable = iTab; 2109 p->iColumn = iCol; 2110 p->iReg = iReg; 2111 p->tempReg = 0; 2112 p->lru = pParse->iCacheCnt++; 2113 return; 2114 } 2115 } 2116 2117 /* Replace the last recently used */ 2118 minLru = 0x7fffffff; 2119 idxLru = -1; 2120 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2121 if( p->lru<minLru ){ 2122 idxLru = i; 2123 minLru = p->lru; 2124 } 2125 } 2126 if( ALWAYS(idxLru>=0) ){ 2127 p = &pParse->aColCache[idxLru]; 2128 p->iLevel = pParse->iCacheLevel; 2129 p->iTable = iTab; 2130 p->iColumn = iCol; 2131 p->iReg = iReg; 2132 p->tempReg = 0; 2133 p->lru = pParse->iCacheCnt++; 2134 return; 2135 } 2136 } 2137 2138 /* 2139 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2140 ** Purge the range of registers from the column cache. 2141 */ 2142 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2143 int i; 2144 int iLast = iReg + nReg - 1; 2145 struct yColCache *p; 2146 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2147 int r = p->iReg; 2148 if( r>=iReg && r<=iLast ){ 2149 cacheEntryClear(pParse, p); 2150 p->iReg = 0; 2151 } 2152 } 2153 } 2154 2155 /* 2156 ** Remember the current column cache context. Any new entries added 2157 ** added to the column cache after this call are removed when the 2158 ** corresponding pop occurs. 2159 */ 2160 void sqlite3ExprCachePush(Parse *pParse){ 2161 pParse->iCacheLevel++; 2162 } 2163 2164 /* 2165 ** Remove from the column cache any entries that were added since the 2166 ** the previous N Push operations. In other words, restore the cache 2167 ** to the state it was in N Pushes ago. 2168 */ 2169 void sqlite3ExprCachePop(Parse *pParse, int N){ 2170 int i; 2171 struct yColCache *p; 2172 assert( N>0 ); 2173 assert( pParse->iCacheLevel>=N ); 2174 pParse->iCacheLevel -= N; 2175 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2176 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2177 cacheEntryClear(pParse, p); 2178 p->iReg = 0; 2179 } 2180 } 2181 } 2182 2183 /* 2184 ** When a cached column is reused, make sure that its register is 2185 ** no longer available as a temp register. ticket #3879: that same 2186 ** register might be in the cache in multiple places, so be sure to 2187 ** get them all. 2188 */ 2189 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2190 int i; 2191 struct yColCache *p; 2192 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2193 if( p->iReg==iReg ){ 2194 p->tempReg = 0; 2195 } 2196 } 2197 } 2198 2199 /* 2200 ** Generate code to extract the value of the iCol-th column of a table. 2201 */ 2202 void sqlite3ExprCodeGetColumnOfTable( 2203 Vdbe *v, /* The VDBE under construction */ 2204 Table *pTab, /* The table containing the value */ 2205 int iTabCur, /* The cursor for this table */ 2206 int iCol, /* Index of the column to extract */ 2207 int regOut /* Extract the valud into this register */ 2208 ){ 2209 if( iCol<0 || iCol==pTab->iPKey ){ 2210 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2211 }else{ 2212 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2213 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2214 } 2215 if( iCol>=0 ){ 2216 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2217 } 2218 } 2219 2220 /* 2221 ** Generate code that will extract the iColumn-th column from 2222 ** table pTab and store the column value in a register. An effort 2223 ** is made to store the column value in register iReg, but this is 2224 ** not guaranteed. The location of the column value is returned. 2225 ** 2226 ** There must be an open cursor to pTab in iTable when this routine 2227 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2228 */ 2229 int sqlite3ExprCodeGetColumn( 2230 Parse *pParse, /* Parsing and code generating context */ 2231 Table *pTab, /* Description of the table we are reading from */ 2232 int iColumn, /* Index of the table column */ 2233 int iTable, /* The cursor pointing to the table */ 2234 int iReg, /* Store results here */ 2235 u8 p5 /* P5 value for OP_Column */ 2236 ){ 2237 Vdbe *v = pParse->pVdbe; 2238 int i; 2239 struct yColCache *p; 2240 2241 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2242 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2243 p->lru = pParse->iCacheCnt++; 2244 sqlite3ExprCachePinRegister(pParse, p->iReg); 2245 return p->iReg; 2246 } 2247 } 2248 assert( v!=0 ); 2249 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2250 if( p5 ){ 2251 sqlite3VdbeChangeP5(v, p5); 2252 }else{ 2253 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2254 } 2255 return iReg; 2256 } 2257 2258 /* 2259 ** Clear all column cache entries. 2260 */ 2261 void sqlite3ExprCacheClear(Parse *pParse){ 2262 int i; 2263 struct yColCache *p; 2264 2265 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2266 if( p->iReg ){ 2267 cacheEntryClear(pParse, p); 2268 p->iReg = 0; 2269 } 2270 } 2271 } 2272 2273 /* 2274 ** Record the fact that an affinity change has occurred on iCount 2275 ** registers starting with iStart. 2276 */ 2277 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2278 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2279 } 2280 2281 /* 2282 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2283 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2284 */ 2285 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2286 int i; 2287 struct yColCache *p; 2288 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2289 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); 2290 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2291 int x = p->iReg; 2292 if( x>=iFrom && x<iFrom+nReg ){ 2293 p->iReg += iTo-iFrom; 2294 } 2295 } 2296 } 2297 2298 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2299 /* 2300 ** Return true if any register in the range iFrom..iTo (inclusive) 2301 ** is used as part of the column cache. 2302 ** 2303 ** This routine is used within assert() and testcase() macros only 2304 ** and does not appear in a normal build. 2305 */ 2306 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2307 int i; 2308 struct yColCache *p; 2309 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2310 int r = p->iReg; 2311 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2312 } 2313 return 0; 2314 } 2315 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2316 2317 /* 2318 ** Generate code into the current Vdbe to evaluate the given 2319 ** expression. Attempt to store the results in register "target". 2320 ** Return the register where results are stored. 2321 ** 2322 ** With this routine, there is no guarantee that results will 2323 ** be stored in target. The result might be stored in some other 2324 ** register if it is convenient to do so. The calling function 2325 ** must check the return code and move the results to the desired 2326 ** register. 2327 */ 2328 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2329 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2330 int op; /* The opcode being coded */ 2331 int inReg = target; /* Results stored in register inReg */ 2332 int regFree1 = 0; /* If non-zero free this temporary register */ 2333 int regFree2 = 0; /* If non-zero free this temporary register */ 2334 int r1, r2, r3, r4; /* Various register numbers */ 2335 sqlite3 *db = pParse->db; /* The database connection */ 2336 2337 assert( target>0 && target<=pParse->nMem ); 2338 if( v==0 ){ 2339 assert( pParse->db->mallocFailed ); 2340 return 0; 2341 } 2342 2343 if( pExpr==0 ){ 2344 op = TK_NULL; 2345 }else{ 2346 op = pExpr->op; 2347 } 2348 switch( op ){ 2349 case TK_AGG_COLUMN: { 2350 AggInfo *pAggInfo = pExpr->pAggInfo; 2351 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2352 if( !pAggInfo->directMode ){ 2353 assert( pCol->iMem>0 ); 2354 inReg = pCol->iMem; 2355 break; 2356 }else if( pAggInfo->useSortingIdx ){ 2357 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2358 pCol->iSorterColumn, target); 2359 break; 2360 } 2361 /* Otherwise, fall thru into the TK_COLUMN case */ 2362 } 2363 case TK_COLUMN: { 2364 if( pExpr->iTable<0 ){ 2365 /* This only happens when coding check constraints */ 2366 assert( pParse->ckBase>0 ); 2367 inReg = pExpr->iColumn + pParse->ckBase; 2368 }else{ 2369 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2370 pExpr->iColumn, pExpr->iTable, target, 2371 pExpr->op2); 2372 } 2373 break; 2374 } 2375 case TK_INTEGER: { 2376 codeInteger(pParse, pExpr, 0, target); 2377 break; 2378 } 2379 #ifndef SQLITE_OMIT_FLOATING_POINT 2380 case TK_FLOAT: { 2381 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2382 codeReal(v, pExpr->u.zToken, 0, target); 2383 break; 2384 } 2385 #endif 2386 case TK_STRING: { 2387 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2388 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2389 break; 2390 } 2391 case TK_NULL: { 2392 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2393 break; 2394 } 2395 #ifndef SQLITE_OMIT_BLOB_LITERAL 2396 case TK_BLOB: { 2397 int n; 2398 const char *z; 2399 char *zBlob; 2400 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2401 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2402 assert( pExpr->u.zToken[1]=='\'' ); 2403 z = &pExpr->u.zToken[2]; 2404 n = sqlite3Strlen30(z) - 1; 2405 assert( z[n]=='\'' ); 2406 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2407 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2408 break; 2409 } 2410 #endif 2411 case TK_VARIABLE: { 2412 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2413 assert( pExpr->u.zToken!=0 ); 2414 assert( pExpr->u.zToken[0]!=0 ); 2415 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2416 if( pExpr->u.zToken[1]!=0 ){ 2417 assert( pExpr->u.zToken[0]=='?' 2418 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2419 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2420 } 2421 break; 2422 } 2423 case TK_REGISTER: { 2424 inReg = pExpr->iTable; 2425 break; 2426 } 2427 case TK_AS: { 2428 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2429 break; 2430 } 2431 #ifndef SQLITE_OMIT_CAST 2432 case TK_CAST: { 2433 /* Expressions of the form: CAST(pLeft AS token) */ 2434 int aff, to_op; 2435 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2436 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2437 aff = sqlite3AffinityType(pExpr->u.zToken); 2438 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2439 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2440 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2441 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2442 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2443 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2444 testcase( to_op==OP_ToText ); 2445 testcase( to_op==OP_ToBlob ); 2446 testcase( to_op==OP_ToNumeric ); 2447 testcase( to_op==OP_ToInt ); 2448 testcase( to_op==OP_ToReal ); 2449 if( inReg!=target ){ 2450 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2451 inReg = target; 2452 } 2453 sqlite3VdbeAddOp1(v, to_op, inReg); 2454 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2455 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2456 break; 2457 } 2458 #endif /* SQLITE_OMIT_CAST */ 2459 case TK_LT: 2460 case TK_LE: 2461 case TK_GT: 2462 case TK_GE: 2463 case TK_NE: 2464 case TK_EQ: { 2465 assert( TK_LT==OP_Lt ); 2466 assert( TK_LE==OP_Le ); 2467 assert( TK_GT==OP_Gt ); 2468 assert( TK_GE==OP_Ge ); 2469 assert( TK_EQ==OP_Eq ); 2470 assert( TK_NE==OP_Ne ); 2471 testcase( op==TK_LT ); 2472 testcase( op==TK_LE ); 2473 testcase( op==TK_GT ); 2474 testcase( op==TK_GE ); 2475 testcase( op==TK_EQ ); 2476 testcase( op==TK_NE ); 2477 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2478 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2479 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2480 r1, r2, inReg, SQLITE_STOREP2); 2481 testcase( regFree1==0 ); 2482 testcase( regFree2==0 ); 2483 break; 2484 } 2485 case TK_IS: 2486 case TK_ISNOT: { 2487 testcase( op==TK_IS ); 2488 testcase( op==TK_ISNOT ); 2489 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2490 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2491 op = (op==TK_IS) ? TK_EQ : TK_NE; 2492 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2493 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2494 testcase( regFree1==0 ); 2495 testcase( regFree2==0 ); 2496 break; 2497 } 2498 case TK_AND: 2499 case TK_OR: 2500 case TK_PLUS: 2501 case TK_STAR: 2502 case TK_MINUS: 2503 case TK_REM: 2504 case TK_BITAND: 2505 case TK_BITOR: 2506 case TK_SLASH: 2507 case TK_LSHIFT: 2508 case TK_RSHIFT: 2509 case TK_CONCAT: { 2510 assert( TK_AND==OP_And ); 2511 assert( TK_OR==OP_Or ); 2512 assert( TK_PLUS==OP_Add ); 2513 assert( TK_MINUS==OP_Subtract ); 2514 assert( TK_REM==OP_Remainder ); 2515 assert( TK_BITAND==OP_BitAnd ); 2516 assert( TK_BITOR==OP_BitOr ); 2517 assert( TK_SLASH==OP_Divide ); 2518 assert( TK_LSHIFT==OP_ShiftLeft ); 2519 assert( TK_RSHIFT==OP_ShiftRight ); 2520 assert( TK_CONCAT==OP_Concat ); 2521 testcase( op==TK_AND ); 2522 testcase( op==TK_OR ); 2523 testcase( op==TK_PLUS ); 2524 testcase( op==TK_MINUS ); 2525 testcase( op==TK_REM ); 2526 testcase( op==TK_BITAND ); 2527 testcase( op==TK_BITOR ); 2528 testcase( op==TK_SLASH ); 2529 testcase( op==TK_LSHIFT ); 2530 testcase( op==TK_RSHIFT ); 2531 testcase( op==TK_CONCAT ); 2532 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2533 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2534 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2535 testcase( regFree1==0 ); 2536 testcase( regFree2==0 ); 2537 break; 2538 } 2539 case TK_UMINUS: { 2540 Expr *pLeft = pExpr->pLeft; 2541 assert( pLeft ); 2542 if( pLeft->op==TK_INTEGER ){ 2543 codeInteger(pParse, pLeft, 1, target); 2544 #ifndef SQLITE_OMIT_FLOATING_POINT 2545 }else if( pLeft->op==TK_FLOAT ){ 2546 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2547 codeReal(v, pLeft->u.zToken, 1, target); 2548 #endif 2549 }else{ 2550 regFree1 = r1 = sqlite3GetTempReg(pParse); 2551 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2552 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2553 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2554 testcase( regFree2==0 ); 2555 } 2556 inReg = target; 2557 break; 2558 } 2559 case TK_BITNOT: 2560 case TK_NOT: { 2561 assert( TK_BITNOT==OP_BitNot ); 2562 assert( TK_NOT==OP_Not ); 2563 testcase( op==TK_BITNOT ); 2564 testcase( op==TK_NOT ); 2565 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2566 testcase( regFree1==0 ); 2567 inReg = target; 2568 sqlite3VdbeAddOp2(v, op, r1, inReg); 2569 break; 2570 } 2571 case TK_ISNULL: 2572 case TK_NOTNULL: { 2573 int addr; 2574 assert( TK_ISNULL==OP_IsNull ); 2575 assert( TK_NOTNULL==OP_NotNull ); 2576 testcase( op==TK_ISNULL ); 2577 testcase( op==TK_NOTNULL ); 2578 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2579 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2580 testcase( regFree1==0 ); 2581 addr = sqlite3VdbeAddOp1(v, op, r1); 2582 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2583 sqlite3VdbeJumpHere(v, addr); 2584 break; 2585 } 2586 case TK_AGG_FUNCTION: { 2587 AggInfo *pInfo = pExpr->pAggInfo; 2588 if( pInfo==0 ){ 2589 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2590 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2591 }else{ 2592 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2593 } 2594 break; 2595 } 2596 case TK_CONST_FUNC: 2597 case TK_FUNCTION: { 2598 ExprList *pFarg; /* List of function arguments */ 2599 int nFarg; /* Number of function arguments */ 2600 FuncDef *pDef; /* The function definition object */ 2601 int nId; /* Length of the function name in bytes */ 2602 const char *zId; /* The function name */ 2603 int constMask = 0; /* Mask of function arguments that are constant */ 2604 int i; /* Loop counter */ 2605 u8 enc = ENC(db); /* The text encoding used by this database */ 2606 CollSeq *pColl = 0; /* A collating sequence */ 2607 2608 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2609 testcase( op==TK_CONST_FUNC ); 2610 testcase( op==TK_FUNCTION ); 2611 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2612 pFarg = 0; 2613 }else{ 2614 pFarg = pExpr->x.pList; 2615 } 2616 nFarg = pFarg ? pFarg->nExpr : 0; 2617 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2618 zId = pExpr->u.zToken; 2619 nId = sqlite3Strlen30(zId); 2620 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2621 if( pDef==0 ){ 2622 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2623 break; 2624 } 2625 2626 /* Attempt a direct implementation of the built-in COALESCE() and 2627 ** IFNULL() functions. This avoids unnecessary evalation of 2628 ** arguments past the first non-NULL argument. 2629 */ 2630 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2631 int endCoalesce = sqlite3VdbeMakeLabel(v); 2632 assert( nFarg>=2 ); 2633 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2634 for(i=1; i<nFarg; i++){ 2635 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2636 sqlite3ExprCacheRemove(pParse, target, 1); 2637 sqlite3ExprCachePush(pParse); 2638 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2639 sqlite3ExprCachePop(pParse, 1); 2640 } 2641 sqlite3VdbeResolveLabel(v, endCoalesce); 2642 break; 2643 } 2644 2645 2646 if( pFarg ){ 2647 r1 = sqlite3GetTempRange(pParse, nFarg); 2648 2649 /* For length() and typeof() functions with a column argument, 2650 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2651 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2652 ** loading. 2653 */ 2654 if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2655 u8 exprOp; 2656 assert( nFarg==1 ); 2657 assert( pFarg->a[0].pExpr!=0 ); 2658 exprOp = pFarg->a[0].pExpr->op; 2659 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2660 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2661 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2662 testcase( pDef->flags==SQLITE_FUNC_LENGTH ); 2663 pFarg->a[0].pExpr->op2 = pDef->flags; 2664 } 2665 } 2666 2667 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2668 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2669 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2670 }else{ 2671 r1 = 0; 2672 } 2673 #ifndef SQLITE_OMIT_VIRTUALTABLE 2674 /* Possibly overload the function if the first argument is 2675 ** a virtual table column. 2676 ** 2677 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2678 ** second argument, not the first, as the argument to test to 2679 ** see if it is a column in a virtual table. This is done because 2680 ** the left operand of infix functions (the operand we want to 2681 ** control overloading) ends up as the second argument to the 2682 ** function. The expression "A glob B" is equivalent to 2683 ** "glob(B,A). We want to use the A in "A glob B" to test 2684 ** for function overloading. But we use the B term in "glob(B,A)". 2685 */ 2686 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2687 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2688 }else if( nFarg>0 ){ 2689 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2690 } 2691 #endif 2692 for(i=0; i<nFarg; i++){ 2693 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2694 constMask |= (1<<i); 2695 } 2696 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2697 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2698 } 2699 } 2700 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2701 if( !pColl ) pColl = db->pDfltColl; 2702 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2703 } 2704 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2705 (char*)pDef, P4_FUNCDEF); 2706 sqlite3VdbeChangeP5(v, (u8)nFarg); 2707 if( nFarg ){ 2708 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2709 } 2710 break; 2711 } 2712 #ifndef SQLITE_OMIT_SUBQUERY 2713 case TK_EXISTS: 2714 case TK_SELECT: { 2715 testcase( op==TK_EXISTS ); 2716 testcase( op==TK_SELECT ); 2717 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2718 break; 2719 } 2720 case TK_IN: { 2721 int destIfFalse = sqlite3VdbeMakeLabel(v); 2722 int destIfNull = sqlite3VdbeMakeLabel(v); 2723 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2724 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2725 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2726 sqlite3VdbeResolveLabel(v, destIfFalse); 2727 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2728 sqlite3VdbeResolveLabel(v, destIfNull); 2729 break; 2730 } 2731 #endif /* SQLITE_OMIT_SUBQUERY */ 2732 2733 2734 /* 2735 ** x BETWEEN y AND z 2736 ** 2737 ** This is equivalent to 2738 ** 2739 ** x>=y AND x<=z 2740 ** 2741 ** X is stored in pExpr->pLeft. 2742 ** Y is stored in pExpr->pList->a[0].pExpr. 2743 ** Z is stored in pExpr->pList->a[1].pExpr. 2744 */ 2745 case TK_BETWEEN: { 2746 Expr *pLeft = pExpr->pLeft; 2747 struct ExprList_item *pLItem = pExpr->x.pList->a; 2748 Expr *pRight = pLItem->pExpr; 2749 2750 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2751 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2752 testcase( regFree1==0 ); 2753 testcase( regFree2==0 ); 2754 r3 = sqlite3GetTempReg(pParse); 2755 r4 = sqlite3GetTempReg(pParse); 2756 codeCompare(pParse, pLeft, pRight, OP_Ge, 2757 r1, r2, r3, SQLITE_STOREP2); 2758 pLItem++; 2759 pRight = pLItem->pExpr; 2760 sqlite3ReleaseTempReg(pParse, regFree2); 2761 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2762 testcase( regFree2==0 ); 2763 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2764 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2765 sqlite3ReleaseTempReg(pParse, r3); 2766 sqlite3ReleaseTempReg(pParse, r4); 2767 break; 2768 } 2769 case TK_COLLATE: 2770 case TK_UPLUS: { 2771 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2772 break; 2773 } 2774 2775 case TK_TRIGGER: { 2776 /* If the opcode is TK_TRIGGER, then the expression is a reference 2777 ** to a column in the new.* or old.* pseudo-tables available to 2778 ** trigger programs. In this case Expr.iTable is set to 1 for the 2779 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2780 ** is set to the column of the pseudo-table to read, or to -1 to 2781 ** read the rowid field. 2782 ** 2783 ** The expression is implemented using an OP_Param opcode. The p1 2784 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2785 ** to reference another column of the old.* pseudo-table, where 2786 ** i is the index of the column. For a new.rowid reference, p1 is 2787 ** set to (n+1), where n is the number of columns in each pseudo-table. 2788 ** For a reference to any other column in the new.* pseudo-table, p1 2789 ** is set to (n+2+i), where n and i are as defined previously. For 2790 ** example, if the table on which triggers are being fired is 2791 ** declared as: 2792 ** 2793 ** CREATE TABLE t1(a, b); 2794 ** 2795 ** Then p1 is interpreted as follows: 2796 ** 2797 ** p1==0 -> old.rowid p1==3 -> new.rowid 2798 ** p1==1 -> old.a p1==4 -> new.a 2799 ** p1==2 -> old.b p1==5 -> new.b 2800 */ 2801 Table *pTab = pExpr->pTab; 2802 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2803 2804 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2805 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2806 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2807 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2808 2809 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2810 VdbeComment((v, "%s.%s -> $%d", 2811 (pExpr->iTable ? "new" : "old"), 2812 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2813 target 2814 )); 2815 2816 #ifndef SQLITE_OMIT_FLOATING_POINT 2817 /* If the column has REAL affinity, it may currently be stored as an 2818 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2819 if( pExpr->iColumn>=0 2820 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2821 ){ 2822 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2823 } 2824 #endif 2825 break; 2826 } 2827 2828 2829 /* 2830 ** Form A: 2831 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2832 ** 2833 ** Form B: 2834 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2835 ** 2836 ** Form A is can be transformed into the equivalent form B as follows: 2837 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2838 ** WHEN x=eN THEN rN ELSE y END 2839 ** 2840 ** X (if it exists) is in pExpr->pLeft. 2841 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2842 ** ELSE clause and no other term matches, then the result of the 2843 ** exprssion is NULL. 2844 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2845 ** 2846 ** The result of the expression is the Ri for the first matching Ei, 2847 ** or if there is no matching Ei, the ELSE term Y, or if there is 2848 ** no ELSE term, NULL. 2849 */ 2850 default: assert( op==TK_CASE ); { 2851 int endLabel; /* GOTO label for end of CASE stmt */ 2852 int nextCase; /* GOTO label for next WHEN clause */ 2853 int nExpr; /* 2x number of WHEN terms */ 2854 int i; /* Loop counter */ 2855 ExprList *pEList; /* List of WHEN terms */ 2856 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2857 Expr opCompare; /* The X==Ei expression */ 2858 Expr cacheX; /* Cached expression X */ 2859 Expr *pX; /* The X expression */ 2860 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2861 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2862 2863 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2864 assert((pExpr->x.pList->nExpr % 2) == 0); 2865 assert(pExpr->x.pList->nExpr > 0); 2866 pEList = pExpr->x.pList; 2867 aListelem = pEList->a; 2868 nExpr = pEList->nExpr; 2869 endLabel = sqlite3VdbeMakeLabel(v); 2870 if( (pX = pExpr->pLeft)!=0 ){ 2871 cacheX = *pX; 2872 testcase( pX->op==TK_COLUMN ); 2873 testcase( pX->op==TK_REGISTER ); 2874 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2875 testcase( regFree1==0 ); 2876 cacheX.op = TK_REGISTER; 2877 opCompare.op = TK_EQ; 2878 opCompare.pLeft = &cacheX; 2879 pTest = &opCompare; 2880 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2881 ** The value in regFree1 might get SCopy-ed into the file result. 2882 ** So make sure that the regFree1 register is not reused for other 2883 ** purposes and possibly overwritten. */ 2884 regFree1 = 0; 2885 } 2886 for(i=0; i<nExpr; i=i+2){ 2887 sqlite3ExprCachePush(pParse); 2888 if( pX ){ 2889 assert( pTest!=0 ); 2890 opCompare.pRight = aListelem[i].pExpr; 2891 }else{ 2892 pTest = aListelem[i].pExpr; 2893 } 2894 nextCase = sqlite3VdbeMakeLabel(v); 2895 testcase( pTest->op==TK_COLUMN ); 2896 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2897 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2898 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2899 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2900 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2901 sqlite3ExprCachePop(pParse, 1); 2902 sqlite3VdbeResolveLabel(v, nextCase); 2903 } 2904 if( pExpr->pRight ){ 2905 sqlite3ExprCachePush(pParse); 2906 sqlite3ExprCode(pParse, pExpr->pRight, target); 2907 sqlite3ExprCachePop(pParse, 1); 2908 }else{ 2909 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2910 } 2911 assert( db->mallocFailed || pParse->nErr>0 2912 || pParse->iCacheLevel==iCacheLevel ); 2913 sqlite3VdbeResolveLabel(v, endLabel); 2914 break; 2915 } 2916 #ifndef SQLITE_OMIT_TRIGGER 2917 case TK_RAISE: { 2918 assert( pExpr->affinity==OE_Rollback 2919 || pExpr->affinity==OE_Abort 2920 || pExpr->affinity==OE_Fail 2921 || pExpr->affinity==OE_Ignore 2922 ); 2923 if( !pParse->pTriggerTab ){ 2924 sqlite3ErrorMsg(pParse, 2925 "RAISE() may only be used within a trigger-program"); 2926 return 0; 2927 } 2928 if( pExpr->affinity==OE_Abort ){ 2929 sqlite3MayAbort(pParse); 2930 } 2931 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2932 if( pExpr->affinity==OE_Ignore ){ 2933 sqlite3VdbeAddOp4( 2934 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2935 }else{ 2936 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 2937 pExpr->affinity, pExpr->u.zToken, 0); 2938 } 2939 2940 break; 2941 } 2942 #endif 2943 } 2944 sqlite3ReleaseTempReg(pParse, regFree1); 2945 sqlite3ReleaseTempReg(pParse, regFree2); 2946 return inReg; 2947 } 2948 2949 /* 2950 ** Generate code to evaluate an expression and store the results 2951 ** into a register. Return the register number where the results 2952 ** are stored. 2953 ** 2954 ** If the register is a temporary register that can be deallocated, 2955 ** then write its number into *pReg. If the result register is not 2956 ** a temporary, then set *pReg to zero. 2957 */ 2958 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2959 int r1 = sqlite3GetTempReg(pParse); 2960 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2961 if( r2==r1 ){ 2962 *pReg = r1; 2963 }else{ 2964 sqlite3ReleaseTempReg(pParse, r1); 2965 *pReg = 0; 2966 } 2967 return r2; 2968 } 2969 2970 /* 2971 ** Generate code that will evaluate expression pExpr and store the 2972 ** results in register target. The results are guaranteed to appear 2973 ** in register target. 2974 */ 2975 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2976 int inReg; 2977 2978 assert( target>0 && target<=pParse->nMem ); 2979 if( pExpr && pExpr->op==TK_REGISTER ){ 2980 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2981 }else{ 2982 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2983 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2984 if( inReg!=target && pParse->pVdbe ){ 2985 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2986 } 2987 } 2988 return target; 2989 } 2990 2991 /* 2992 ** Generate code that evalutes the given expression and puts the result 2993 ** in register target. 2994 ** 2995 ** Also make a copy of the expression results into another "cache" register 2996 ** and modify the expression so that the next time it is evaluated, 2997 ** the result is a copy of the cache register. 2998 ** 2999 ** This routine is used for expressions that are used multiple 3000 ** times. They are evaluated once and the results of the expression 3001 ** are reused. 3002 */ 3003 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3004 Vdbe *v = pParse->pVdbe; 3005 int inReg; 3006 inReg = sqlite3ExprCode(pParse, pExpr, target); 3007 assert( target>0 ); 3008 /* This routine is called for terms to INSERT or UPDATE. And the only 3009 ** other place where expressions can be converted into TK_REGISTER is 3010 ** in WHERE clause processing. So as currently implemented, there is 3011 ** no way for a TK_REGISTER to exist here. But it seems prudent to 3012 ** keep the ALWAYS() in case the conditions above change with future 3013 ** modifications or enhancements. */ 3014 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 3015 int iMem; 3016 iMem = ++pParse->nMem; 3017 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 3018 pExpr->iTable = iMem; 3019 pExpr->op2 = pExpr->op; 3020 pExpr->op = TK_REGISTER; 3021 } 3022 return inReg; 3023 } 3024 3025 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3026 /* 3027 ** Generate a human-readable explanation of an expression tree. 3028 */ 3029 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3030 int op; /* The opcode being coded */ 3031 const char *zBinOp = 0; /* Binary operator */ 3032 const char *zUniOp = 0; /* Unary operator */ 3033 if( pExpr==0 ){ 3034 op = TK_NULL; 3035 }else{ 3036 op = pExpr->op; 3037 } 3038 switch( op ){ 3039 case TK_AGG_COLUMN: { 3040 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3041 pExpr->iTable, pExpr->iColumn); 3042 break; 3043 } 3044 case TK_COLUMN: { 3045 if( pExpr->iTable<0 ){ 3046 /* This only happens when coding check constraints */ 3047 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3048 }else{ 3049 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3050 pExpr->iTable, pExpr->iColumn); 3051 } 3052 break; 3053 } 3054 case TK_INTEGER: { 3055 if( pExpr->flags & EP_IntValue ){ 3056 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3057 }else{ 3058 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3059 } 3060 break; 3061 } 3062 #ifndef SQLITE_OMIT_FLOATING_POINT 3063 case TK_FLOAT: { 3064 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3065 break; 3066 } 3067 #endif 3068 case TK_STRING: { 3069 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3070 break; 3071 } 3072 case TK_NULL: { 3073 sqlite3ExplainPrintf(pOut,"NULL"); 3074 break; 3075 } 3076 #ifndef SQLITE_OMIT_BLOB_LITERAL 3077 case TK_BLOB: { 3078 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3079 break; 3080 } 3081 #endif 3082 case TK_VARIABLE: { 3083 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3084 pExpr->u.zToken, pExpr->iColumn); 3085 break; 3086 } 3087 case TK_REGISTER: { 3088 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3089 break; 3090 } 3091 case TK_AS: { 3092 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3093 break; 3094 } 3095 #ifndef SQLITE_OMIT_CAST 3096 case TK_CAST: { 3097 /* Expressions of the form: CAST(pLeft AS token) */ 3098 const char *zAff = "unk"; 3099 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3100 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3101 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3102 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3103 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3104 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3105 } 3106 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3107 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3108 sqlite3ExplainPrintf(pOut, ")"); 3109 break; 3110 } 3111 #endif /* SQLITE_OMIT_CAST */ 3112 case TK_LT: zBinOp = "LT"; break; 3113 case TK_LE: zBinOp = "LE"; break; 3114 case TK_GT: zBinOp = "GT"; break; 3115 case TK_GE: zBinOp = "GE"; break; 3116 case TK_NE: zBinOp = "NE"; break; 3117 case TK_EQ: zBinOp = "EQ"; break; 3118 case TK_IS: zBinOp = "IS"; break; 3119 case TK_ISNOT: zBinOp = "ISNOT"; break; 3120 case TK_AND: zBinOp = "AND"; break; 3121 case TK_OR: zBinOp = "OR"; break; 3122 case TK_PLUS: zBinOp = "ADD"; break; 3123 case TK_STAR: zBinOp = "MUL"; break; 3124 case TK_MINUS: zBinOp = "SUB"; break; 3125 case TK_REM: zBinOp = "REM"; break; 3126 case TK_BITAND: zBinOp = "BITAND"; break; 3127 case TK_BITOR: zBinOp = "BITOR"; break; 3128 case TK_SLASH: zBinOp = "DIV"; break; 3129 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3130 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3131 case TK_CONCAT: zBinOp = "CONCAT"; break; 3132 3133 case TK_UMINUS: zUniOp = "UMINUS"; break; 3134 case TK_UPLUS: zUniOp = "UPLUS"; break; 3135 case TK_BITNOT: zUniOp = "BITNOT"; break; 3136 case TK_NOT: zUniOp = "NOT"; break; 3137 case TK_ISNULL: zUniOp = "ISNULL"; break; 3138 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3139 3140 case TK_COLLATE: { 3141 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3142 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3143 break; 3144 } 3145 3146 case TK_AGG_FUNCTION: 3147 case TK_CONST_FUNC: 3148 case TK_FUNCTION: { 3149 ExprList *pFarg; /* List of function arguments */ 3150 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3151 pFarg = 0; 3152 }else{ 3153 pFarg = pExpr->x.pList; 3154 } 3155 if( op==TK_AGG_FUNCTION ){ 3156 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3157 pExpr->op2, pExpr->u.zToken); 3158 }else{ 3159 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3160 } 3161 if( pFarg ){ 3162 sqlite3ExplainExprList(pOut, pFarg); 3163 } 3164 sqlite3ExplainPrintf(pOut, ")"); 3165 break; 3166 } 3167 #ifndef SQLITE_OMIT_SUBQUERY 3168 case TK_EXISTS: { 3169 sqlite3ExplainPrintf(pOut, "EXISTS("); 3170 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3171 sqlite3ExplainPrintf(pOut,")"); 3172 break; 3173 } 3174 case TK_SELECT: { 3175 sqlite3ExplainPrintf(pOut, "("); 3176 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3177 sqlite3ExplainPrintf(pOut, ")"); 3178 break; 3179 } 3180 case TK_IN: { 3181 sqlite3ExplainPrintf(pOut, "IN("); 3182 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3183 sqlite3ExplainPrintf(pOut, ","); 3184 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3185 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3186 }else{ 3187 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3188 } 3189 sqlite3ExplainPrintf(pOut, ")"); 3190 break; 3191 } 3192 #endif /* SQLITE_OMIT_SUBQUERY */ 3193 3194 /* 3195 ** x BETWEEN y AND z 3196 ** 3197 ** This is equivalent to 3198 ** 3199 ** x>=y AND x<=z 3200 ** 3201 ** X is stored in pExpr->pLeft. 3202 ** Y is stored in pExpr->pList->a[0].pExpr. 3203 ** Z is stored in pExpr->pList->a[1].pExpr. 3204 */ 3205 case TK_BETWEEN: { 3206 Expr *pX = pExpr->pLeft; 3207 Expr *pY = pExpr->x.pList->a[0].pExpr; 3208 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3209 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3210 sqlite3ExplainExpr(pOut, pX); 3211 sqlite3ExplainPrintf(pOut, ","); 3212 sqlite3ExplainExpr(pOut, pY); 3213 sqlite3ExplainPrintf(pOut, ","); 3214 sqlite3ExplainExpr(pOut, pZ); 3215 sqlite3ExplainPrintf(pOut, ")"); 3216 break; 3217 } 3218 case TK_TRIGGER: { 3219 /* If the opcode is TK_TRIGGER, then the expression is a reference 3220 ** to a column in the new.* or old.* pseudo-tables available to 3221 ** trigger programs. In this case Expr.iTable is set to 1 for the 3222 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3223 ** is set to the column of the pseudo-table to read, or to -1 to 3224 ** read the rowid field. 3225 */ 3226 sqlite3ExplainPrintf(pOut, "%s(%d)", 3227 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3228 break; 3229 } 3230 case TK_CASE: { 3231 sqlite3ExplainPrintf(pOut, "CASE("); 3232 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3233 sqlite3ExplainPrintf(pOut, ","); 3234 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3235 break; 3236 } 3237 #ifndef SQLITE_OMIT_TRIGGER 3238 case TK_RAISE: { 3239 const char *zType = "unk"; 3240 switch( pExpr->affinity ){ 3241 case OE_Rollback: zType = "rollback"; break; 3242 case OE_Abort: zType = "abort"; break; 3243 case OE_Fail: zType = "fail"; break; 3244 case OE_Ignore: zType = "ignore"; break; 3245 } 3246 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3247 break; 3248 } 3249 #endif 3250 } 3251 if( zBinOp ){ 3252 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3253 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3254 sqlite3ExplainPrintf(pOut,","); 3255 sqlite3ExplainExpr(pOut, pExpr->pRight); 3256 sqlite3ExplainPrintf(pOut,")"); 3257 }else if( zUniOp ){ 3258 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3259 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3260 sqlite3ExplainPrintf(pOut,")"); 3261 } 3262 } 3263 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3264 3265 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3266 /* 3267 ** Generate a human-readable explanation of an expression list. 3268 */ 3269 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3270 int i; 3271 if( pList==0 || pList->nExpr==0 ){ 3272 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3273 return; 3274 }else if( pList->nExpr==1 ){ 3275 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3276 }else{ 3277 sqlite3ExplainPush(pOut); 3278 for(i=0; i<pList->nExpr; i++){ 3279 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3280 sqlite3ExplainPush(pOut); 3281 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3282 sqlite3ExplainPop(pOut); 3283 if( pList->a[i].zName ){ 3284 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3285 } 3286 if( pList->a[i].bSpanIsTab ){ 3287 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3288 } 3289 if( i<pList->nExpr-1 ){ 3290 sqlite3ExplainNL(pOut); 3291 } 3292 } 3293 sqlite3ExplainPop(pOut); 3294 } 3295 } 3296 #endif /* SQLITE_DEBUG */ 3297 3298 /* 3299 ** Return TRUE if pExpr is an constant expression that is appropriate 3300 ** for factoring out of a loop. Appropriate expressions are: 3301 ** 3302 ** * Any expression that evaluates to two or more opcodes. 3303 ** 3304 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3305 ** or OP_Variable that does not need to be placed in a 3306 ** specific register. 3307 ** 3308 ** There is no point in factoring out single-instruction constant 3309 ** expressions that need to be placed in a particular register. 3310 ** We could factor them out, but then we would end up adding an 3311 ** OP_SCopy instruction to move the value into the correct register 3312 ** later. We might as well just use the original instruction and 3313 ** avoid the OP_SCopy. 3314 */ 3315 static int isAppropriateForFactoring(Expr *p){ 3316 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3317 return 0; /* Only constant expressions are appropriate for factoring */ 3318 } 3319 if( (p->flags & EP_FixedDest)==0 ){ 3320 return 1; /* Any constant without a fixed destination is appropriate */ 3321 } 3322 while( p->op==TK_UPLUS ) p = p->pLeft; 3323 switch( p->op ){ 3324 #ifndef SQLITE_OMIT_BLOB_LITERAL 3325 case TK_BLOB: 3326 #endif 3327 case TK_VARIABLE: 3328 case TK_INTEGER: 3329 case TK_FLOAT: 3330 case TK_NULL: 3331 case TK_STRING: { 3332 testcase( p->op==TK_BLOB ); 3333 testcase( p->op==TK_VARIABLE ); 3334 testcase( p->op==TK_INTEGER ); 3335 testcase( p->op==TK_FLOAT ); 3336 testcase( p->op==TK_NULL ); 3337 testcase( p->op==TK_STRING ); 3338 /* Single-instruction constants with a fixed destination are 3339 ** better done in-line. If we factor them, they will just end 3340 ** up generating an OP_SCopy to move the value to the destination 3341 ** register. */ 3342 return 0; 3343 } 3344 case TK_UMINUS: { 3345 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3346 return 0; 3347 } 3348 break; 3349 } 3350 default: { 3351 break; 3352 } 3353 } 3354 return 1; 3355 } 3356 3357 /* 3358 ** If pExpr is a constant expression that is appropriate for 3359 ** factoring out of a loop, then evaluate the expression 3360 ** into a register and convert the expression into a TK_REGISTER 3361 ** expression. 3362 */ 3363 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3364 Parse *pParse = pWalker->pParse; 3365 switch( pExpr->op ){ 3366 case TK_IN: 3367 case TK_REGISTER: { 3368 return WRC_Prune; 3369 } 3370 case TK_COLLATE: { 3371 return WRC_Continue; 3372 } 3373 case TK_FUNCTION: 3374 case TK_AGG_FUNCTION: 3375 case TK_CONST_FUNC: { 3376 /* The arguments to a function have a fixed destination. 3377 ** Mark them this way to avoid generated unneeded OP_SCopy 3378 ** instructions. 3379 */ 3380 ExprList *pList = pExpr->x.pList; 3381 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3382 if( pList ){ 3383 int i = pList->nExpr; 3384 struct ExprList_item *pItem = pList->a; 3385 for(; i>0; i--, pItem++){ 3386 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3387 } 3388 } 3389 break; 3390 } 3391 } 3392 if( isAppropriateForFactoring(pExpr) ){ 3393 int r1 = ++pParse->nMem; 3394 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3395 /* If r2!=r1, it means that register r1 is never used. That is harmless 3396 ** but suboptimal, so we want to know about the situation to fix it. 3397 ** Hence the following assert: */ 3398 assert( r2==r1 ); 3399 pExpr->op2 = pExpr->op; 3400 pExpr->op = TK_REGISTER; 3401 pExpr->iTable = r2; 3402 return WRC_Prune; 3403 } 3404 return WRC_Continue; 3405 } 3406 3407 /* 3408 ** Preevaluate constant subexpressions within pExpr and store the 3409 ** results in registers. Modify pExpr so that the constant subexpresions 3410 ** are TK_REGISTER opcodes that refer to the precomputed values. 3411 ** 3412 ** This routine is a no-op if the jump to the cookie-check code has 3413 ** already occur. Since the cookie-check jump is generated prior to 3414 ** any other serious processing, this check ensures that there is no 3415 ** way to accidently bypass the constant initializations. 3416 ** 3417 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3418 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3419 ** interface. This allows test logic to verify that the same answer is 3420 ** obtained for queries regardless of whether or not constants are 3421 ** precomputed into registers or if they are inserted in-line. 3422 */ 3423 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3424 Walker w; 3425 if( pParse->cookieGoto ) return; 3426 if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return; 3427 memset(&w, 0, sizeof(w)); 3428 w.xExprCallback = evalConstExpr; 3429 w.pParse = pParse; 3430 sqlite3WalkExpr(&w, pExpr); 3431 } 3432 3433 3434 /* 3435 ** Generate code that pushes the value of every element of the given 3436 ** expression list into a sequence of registers beginning at target. 3437 ** 3438 ** Return the number of elements evaluated. 3439 */ 3440 int sqlite3ExprCodeExprList( 3441 Parse *pParse, /* Parsing context */ 3442 ExprList *pList, /* The expression list to be coded */ 3443 int target, /* Where to write results */ 3444 int doHardCopy /* Make a hard copy of every element */ 3445 ){ 3446 struct ExprList_item *pItem; 3447 int i, n; 3448 assert( pList!=0 ); 3449 assert( target>0 ); 3450 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3451 n = pList->nExpr; 3452 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3453 Expr *pExpr = pItem->pExpr; 3454 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3455 if( inReg!=target+i ){ 3456 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3457 inReg, target+i); 3458 } 3459 } 3460 return n; 3461 } 3462 3463 /* 3464 ** Generate code for a BETWEEN operator. 3465 ** 3466 ** x BETWEEN y AND z 3467 ** 3468 ** The above is equivalent to 3469 ** 3470 ** x>=y AND x<=z 3471 ** 3472 ** Code it as such, taking care to do the common subexpression 3473 ** elementation of x. 3474 */ 3475 static void exprCodeBetween( 3476 Parse *pParse, /* Parsing and code generating context */ 3477 Expr *pExpr, /* The BETWEEN expression */ 3478 int dest, /* Jump here if the jump is taken */ 3479 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3480 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3481 ){ 3482 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3483 Expr compLeft; /* The x>=y term */ 3484 Expr compRight; /* The x<=z term */ 3485 Expr exprX; /* The x subexpression */ 3486 int regFree1 = 0; /* Temporary use register */ 3487 3488 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3489 exprX = *pExpr->pLeft; 3490 exprAnd.op = TK_AND; 3491 exprAnd.pLeft = &compLeft; 3492 exprAnd.pRight = &compRight; 3493 compLeft.op = TK_GE; 3494 compLeft.pLeft = &exprX; 3495 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3496 compRight.op = TK_LE; 3497 compRight.pLeft = &exprX; 3498 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3499 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3500 exprX.op = TK_REGISTER; 3501 if( jumpIfTrue ){ 3502 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3503 }else{ 3504 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3505 } 3506 sqlite3ReleaseTempReg(pParse, regFree1); 3507 3508 /* Ensure adequate test coverage */ 3509 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3510 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3511 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3512 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3513 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3514 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3515 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3516 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3517 } 3518 3519 /* 3520 ** Generate code for a boolean expression such that a jump is made 3521 ** to the label "dest" if the expression is true but execution 3522 ** continues straight thru if the expression is false. 3523 ** 3524 ** If the expression evaluates to NULL (neither true nor false), then 3525 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3526 ** 3527 ** This code depends on the fact that certain token values (ex: TK_EQ) 3528 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3529 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3530 ** the make process cause these values to align. Assert()s in the code 3531 ** below verify that the numbers are aligned correctly. 3532 */ 3533 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3534 Vdbe *v = pParse->pVdbe; 3535 int op = 0; 3536 int regFree1 = 0; 3537 int regFree2 = 0; 3538 int r1, r2; 3539 3540 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3541 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3542 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3543 op = pExpr->op; 3544 switch( op ){ 3545 case TK_AND: { 3546 int d2 = sqlite3VdbeMakeLabel(v); 3547 testcase( jumpIfNull==0 ); 3548 sqlite3ExprCachePush(pParse); 3549 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3550 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3551 sqlite3VdbeResolveLabel(v, d2); 3552 sqlite3ExprCachePop(pParse, 1); 3553 break; 3554 } 3555 case TK_OR: { 3556 testcase( jumpIfNull==0 ); 3557 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3558 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3559 break; 3560 } 3561 case TK_NOT: { 3562 testcase( jumpIfNull==0 ); 3563 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3564 break; 3565 } 3566 case TK_LT: 3567 case TK_LE: 3568 case TK_GT: 3569 case TK_GE: 3570 case TK_NE: 3571 case TK_EQ: { 3572 assert( TK_LT==OP_Lt ); 3573 assert( TK_LE==OP_Le ); 3574 assert( TK_GT==OP_Gt ); 3575 assert( TK_GE==OP_Ge ); 3576 assert( TK_EQ==OP_Eq ); 3577 assert( TK_NE==OP_Ne ); 3578 testcase( op==TK_LT ); 3579 testcase( op==TK_LE ); 3580 testcase( op==TK_GT ); 3581 testcase( op==TK_GE ); 3582 testcase( op==TK_EQ ); 3583 testcase( op==TK_NE ); 3584 testcase( jumpIfNull==0 ); 3585 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3586 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3587 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3588 r1, r2, dest, jumpIfNull); 3589 testcase( regFree1==0 ); 3590 testcase( regFree2==0 ); 3591 break; 3592 } 3593 case TK_IS: 3594 case TK_ISNOT: { 3595 testcase( op==TK_IS ); 3596 testcase( op==TK_ISNOT ); 3597 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3598 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3599 op = (op==TK_IS) ? TK_EQ : TK_NE; 3600 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3601 r1, r2, dest, SQLITE_NULLEQ); 3602 testcase( regFree1==0 ); 3603 testcase( regFree2==0 ); 3604 break; 3605 } 3606 case TK_ISNULL: 3607 case TK_NOTNULL: { 3608 assert( TK_ISNULL==OP_IsNull ); 3609 assert( TK_NOTNULL==OP_NotNull ); 3610 testcase( op==TK_ISNULL ); 3611 testcase( op==TK_NOTNULL ); 3612 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3613 sqlite3VdbeAddOp2(v, op, r1, dest); 3614 testcase( regFree1==0 ); 3615 break; 3616 } 3617 case TK_BETWEEN: { 3618 testcase( jumpIfNull==0 ); 3619 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3620 break; 3621 } 3622 #ifndef SQLITE_OMIT_SUBQUERY 3623 case TK_IN: { 3624 int destIfFalse = sqlite3VdbeMakeLabel(v); 3625 int destIfNull = jumpIfNull ? dest : destIfFalse; 3626 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3627 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3628 sqlite3VdbeResolveLabel(v, destIfFalse); 3629 break; 3630 } 3631 #endif 3632 default: { 3633 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3634 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3635 testcase( regFree1==0 ); 3636 testcase( jumpIfNull==0 ); 3637 break; 3638 } 3639 } 3640 sqlite3ReleaseTempReg(pParse, regFree1); 3641 sqlite3ReleaseTempReg(pParse, regFree2); 3642 } 3643 3644 /* 3645 ** Generate code for a boolean expression such that a jump is made 3646 ** to the label "dest" if the expression is false but execution 3647 ** continues straight thru if the expression is true. 3648 ** 3649 ** If the expression evaluates to NULL (neither true nor false) then 3650 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3651 ** is 0. 3652 */ 3653 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3654 Vdbe *v = pParse->pVdbe; 3655 int op = 0; 3656 int regFree1 = 0; 3657 int regFree2 = 0; 3658 int r1, r2; 3659 3660 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3661 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3662 if( pExpr==0 ) return; 3663 3664 /* The value of pExpr->op and op are related as follows: 3665 ** 3666 ** pExpr->op op 3667 ** --------- ---------- 3668 ** TK_ISNULL OP_NotNull 3669 ** TK_NOTNULL OP_IsNull 3670 ** TK_NE OP_Eq 3671 ** TK_EQ OP_Ne 3672 ** TK_GT OP_Le 3673 ** TK_LE OP_Gt 3674 ** TK_GE OP_Lt 3675 ** TK_LT OP_Ge 3676 ** 3677 ** For other values of pExpr->op, op is undefined and unused. 3678 ** The value of TK_ and OP_ constants are arranged such that we 3679 ** can compute the mapping above using the following expression. 3680 ** Assert()s verify that the computation is correct. 3681 */ 3682 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3683 3684 /* Verify correct alignment of TK_ and OP_ constants 3685 */ 3686 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3687 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3688 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3689 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3690 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3691 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3692 assert( pExpr->op!=TK_GT || op==OP_Le ); 3693 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3694 3695 switch( pExpr->op ){ 3696 case TK_AND: { 3697 testcase( jumpIfNull==0 ); 3698 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3699 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3700 break; 3701 } 3702 case TK_OR: { 3703 int d2 = sqlite3VdbeMakeLabel(v); 3704 testcase( jumpIfNull==0 ); 3705 sqlite3ExprCachePush(pParse); 3706 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3707 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3708 sqlite3VdbeResolveLabel(v, d2); 3709 sqlite3ExprCachePop(pParse, 1); 3710 break; 3711 } 3712 case TK_NOT: { 3713 testcase( jumpIfNull==0 ); 3714 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3715 break; 3716 } 3717 case TK_LT: 3718 case TK_LE: 3719 case TK_GT: 3720 case TK_GE: 3721 case TK_NE: 3722 case TK_EQ: { 3723 testcase( op==TK_LT ); 3724 testcase( op==TK_LE ); 3725 testcase( op==TK_GT ); 3726 testcase( op==TK_GE ); 3727 testcase( op==TK_EQ ); 3728 testcase( op==TK_NE ); 3729 testcase( jumpIfNull==0 ); 3730 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3731 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3732 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3733 r1, r2, dest, jumpIfNull); 3734 testcase( regFree1==0 ); 3735 testcase( regFree2==0 ); 3736 break; 3737 } 3738 case TK_IS: 3739 case TK_ISNOT: { 3740 testcase( pExpr->op==TK_IS ); 3741 testcase( pExpr->op==TK_ISNOT ); 3742 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3743 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3744 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3745 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3746 r1, r2, dest, SQLITE_NULLEQ); 3747 testcase( regFree1==0 ); 3748 testcase( regFree2==0 ); 3749 break; 3750 } 3751 case TK_ISNULL: 3752 case TK_NOTNULL: { 3753 testcase( op==TK_ISNULL ); 3754 testcase( op==TK_NOTNULL ); 3755 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3756 sqlite3VdbeAddOp2(v, op, r1, dest); 3757 testcase( regFree1==0 ); 3758 break; 3759 } 3760 case TK_BETWEEN: { 3761 testcase( jumpIfNull==0 ); 3762 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3763 break; 3764 } 3765 #ifndef SQLITE_OMIT_SUBQUERY 3766 case TK_IN: { 3767 if( jumpIfNull ){ 3768 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3769 }else{ 3770 int destIfNull = sqlite3VdbeMakeLabel(v); 3771 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3772 sqlite3VdbeResolveLabel(v, destIfNull); 3773 } 3774 break; 3775 } 3776 #endif 3777 default: { 3778 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3779 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3780 testcase( regFree1==0 ); 3781 testcase( jumpIfNull==0 ); 3782 break; 3783 } 3784 } 3785 sqlite3ReleaseTempReg(pParse, regFree1); 3786 sqlite3ReleaseTempReg(pParse, regFree2); 3787 } 3788 3789 /* 3790 ** Do a deep comparison of two expression trees. Return 0 if the two 3791 ** expressions are completely identical. Return 1 if they differ only 3792 ** by a COLLATE operator at the top level. Return 2 if there are differences 3793 ** other than the top-level COLLATE operator. 3794 ** 3795 ** Sometimes this routine will return 2 even if the two expressions 3796 ** really are equivalent. If we cannot prove that the expressions are 3797 ** identical, we return 2 just to be safe. So if this routine 3798 ** returns 2, then you do not really know for certain if the two 3799 ** expressions are the same. But if you get a 0 or 1 return, then you 3800 ** can be sure the expressions are the same. In the places where 3801 ** this routine is used, it does not hurt to get an extra 2 - that 3802 ** just might result in some slightly slower code. But returning 3803 ** an incorrect 0 or 1 could lead to a malfunction. 3804 */ 3805 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3806 if( pA==0||pB==0 ){ 3807 return pB==pA ? 0 : 2; 3808 } 3809 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3810 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3811 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3812 return 2; 3813 } 3814 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3815 if( pA->op!=pB->op ){ 3816 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){ 3817 return 1; 3818 } 3819 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){ 3820 return 1; 3821 } 3822 return 2; 3823 } 3824 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3825 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3826 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3827 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3828 if( ExprHasProperty(pA, EP_IntValue) ){ 3829 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3830 return 2; 3831 } 3832 }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ 3833 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3834 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3835 return pA->op==TK_COLLATE ? 1 : 2; 3836 } 3837 } 3838 return 0; 3839 } 3840 3841 /* 3842 ** Compare two ExprList objects. Return 0 if they are identical and 3843 ** non-zero if they differ in any way. 3844 ** 3845 ** This routine might return non-zero for equivalent ExprLists. The 3846 ** only consequence will be disabled optimizations. But this routine 3847 ** must never return 0 if the two ExprList objects are different, or 3848 ** a malfunction will result. 3849 ** 3850 ** Two NULL pointers are considered to be the same. But a NULL pointer 3851 ** always differs from a non-NULL pointer. 3852 */ 3853 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3854 int i; 3855 if( pA==0 && pB==0 ) return 0; 3856 if( pA==0 || pB==0 ) return 1; 3857 if( pA->nExpr!=pB->nExpr ) return 1; 3858 for(i=0; i<pA->nExpr; i++){ 3859 Expr *pExprA = pA->a[i].pExpr; 3860 Expr *pExprB = pB->a[i].pExpr; 3861 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3862 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3863 } 3864 return 0; 3865 } 3866 3867 /* 3868 ** An instance of the following structure is used by the tree walker 3869 ** to count references to table columns in the arguments of an 3870 ** aggregate function, in order to implement the 3871 ** sqlite3FunctionThisSrc() routine. 3872 */ 3873 struct SrcCount { 3874 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3875 int nThis; /* Number of references to columns in pSrcList */ 3876 int nOther; /* Number of references to columns in other FROM clauses */ 3877 }; 3878 3879 /* 3880 ** Count the number of references to columns. 3881 */ 3882 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3883 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3884 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3885 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3886 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3887 ** NEVER() will need to be removed. */ 3888 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3889 int i; 3890 struct SrcCount *p = pWalker->u.pSrcCount; 3891 SrcList *pSrc = p->pSrc; 3892 for(i=0; i<pSrc->nSrc; i++){ 3893 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3894 } 3895 if( i<pSrc->nSrc ){ 3896 p->nThis++; 3897 }else{ 3898 p->nOther++; 3899 } 3900 } 3901 return WRC_Continue; 3902 } 3903 3904 /* 3905 ** Determine if any of the arguments to the pExpr Function reference 3906 ** pSrcList. Return true if they do. Also return true if the function 3907 ** has no arguments or has only constant arguments. Return false if pExpr 3908 ** references columns but not columns of tables found in pSrcList. 3909 */ 3910 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3911 Walker w; 3912 struct SrcCount cnt; 3913 assert( pExpr->op==TK_AGG_FUNCTION ); 3914 memset(&w, 0, sizeof(w)); 3915 w.xExprCallback = exprSrcCount; 3916 w.u.pSrcCount = &cnt; 3917 cnt.pSrc = pSrcList; 3918 cnt.nThis = 0; 3919 cnt.nOther = 0; 3920 sqlite3WalkExprList(&w, pExpr->x.pList); 3921 return cnt.nThis>0 || cnt.nOther==0; 3922 } 3923 3924 /* 3925 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3926 ** the new element. Return a negative number if malloc fails. 3927 */ 3928 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3929 int i; 3930 pInfo->aCol = sqlite3ArrayAllocate( 3931 db, 3932 pInfo->aCol, 3933 sizeof(pInfo->aCol[0]), 3934 &pInfo->nColumn, 3935 &i 3936 ); 3937 return i; 3938 } 3939 3940 /* 3941 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3942 ** the new element. Return a negative number if malloc fails. 3943 */ 3944 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3945 int i; 3946 pInfo->aFunc = sqlite3ArrayAllocate( 3947 db, 3948 pInfo->aFunc, 3949 sizeof(pInfo->aFunc[0]), 3950 &pInfo->nFunc, 3951 &i 3952 ); 3953 return i; 3954 } 3955 3956 /* 3957 ** This is the xExprCallback for a tree walker. It is used to 3958 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3959 ** for additional information. 3960 */ 3961 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3962 int i; 3963 NameContext *pNC = pWalker->u.pNC; 3964 Parse *pParse = pNC->pParse; 3965 SrcList *pSrcList = pNC->pSrcList; 3966 AggInfo *pAggInfo = pNC->pAggInfo; 3967 3968 switch( pExpr->op ){ 3969 case TK_AGG_COLUMN: 3970 case TK_COLUMN: { 3971 testcase( pExpr->op==TK_AGG_COLUMN ); 3972 testcase( pExpr->op==TK_COLUMN ); 3973 /* Check to see if the column is in one of the tables in the FROM 3974 ** clause of the aggregate query */ 3975 if( ALWAYS(pSrcList!=0) ){ 3976 struct SrcList_item *pItem = pSrcList->a; 3977 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3978 struct AggInfo_col *pCol; 3979 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3980 if( pExpr->iTable==pItem->iCursor ){ 3981 /* If we reach this point, it means that pExpr refers to a table 3982 ** that is in the FROM clause of the aggregate query. 3983 ** 3984 ** Make an entry for the column in pAggInfo->aCol[] if there 3985 ** is not an entry there already. 3986 */ 3987 int k; 3988 pCol = pAggInfo->aCol; 3989 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3990 if( pCol->iTable==pExpr->iTable && 3991 pCol->iColumn==pExpr->iColumn ){ 3992 break; 3993 } 3994 } 3995 if( (k>=pAggInfo->nColumn) 3996 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3997 ){ 3998 pCol = &pAggInfo->aCol[k]; 3999 pCol->pTab = pExpr->pTab; 4000 pCol->iTable = pExpr->iTable; 4001 pCol->iColumn = pExpr->iColumn; 4002 pCol->iMem = ++pParse->nMem; 4003 pCol->iSorterColumn = -1; 4004 pCol->pExpr = pExpr; 4005 if( pAggInfo->pGroupBy ){ 4006 int j, n; 4007 ExprList *pGB = pAggInfo->pGroupBy; 4008 struct ExprList_item *pTerm = pGB->a; 4009 n = pGB->nExpr; 4010 for(j=0; j<n; j++, pTerm++){ 4011 Expr *pE = pTerm->pExpr; 4012 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4013 pE->iColumn==pExpr->iColumn ){ 4014 pCol->iSorterColumn = j; 4015 break; 4016 } 4017 } 4018 } 4019 if( pCol->iSorterColumn<0 ){ 4020 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4021 } 4022 } 4023 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4024 ** because it was there before or because we just created it). 4025 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4026 ** pAggInfo->aCol[] entry. 4027 */ 4028 ExprSetIrreducible(pExpr); 4029 pExpr->pAggInfo = pAggInfo; 4030 pExpr->op = TK_AGG_COLUMN; 4031 pExpr->iAgg = (i16)k; 4032 break; 4033 } /* endif pExpr->iTable==pItem->iCursor */ 4034 } /* end loop over pSrcList */ 4035 } 4036 return WRC_Prune; 4037 } 4038 case TK_AGG_FUNCTION: { 4039 if( (pNC->ncFlags & NC_InAggFunc)==0 4040 && pWalker->walkerDepth==pExpr->op2 4041 ){ 4042 /* Check to see if pExpr is a duplicate of another aggregate 4043 ** function that is already in the pAggInfo structure 4044 */ 4045 struct AggInfo_func *pItem = pAggInfo->aFunc; 4046 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4047 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 4048 break; 4049 } 4050 } 4051 if( i>=pAggInfo->nFunc ){ 4052 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4053 */ 4054 u8 enc = ENC(pParse->db); 4055 i = addAggInfoFunc(pParse->db, pAggInfo); 4056 if( i>=0 ){ 4057 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4058 pItem = &pAggInfo->aFunc[i]; 4059 pItem->pExpr = pExpr; 4060 pItem->iMem = ++pParse->nMem; 4061 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4062 pItem->pFunc = sqlite3FindFunction(pParse->db, 4063 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4064 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4065 if( pExpr->flags & EP_Distinct ){ 4066 pItem->iDistinct = pParse->nTab++; 4067 }else{ 4068 pItem->iDistinct = -1; 4069 } 4070 } 4071 } 4072 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4073 */ 4074 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4075 ExprSetIrreducible(pExpr); 4076 pExpr->iAgg = (i16)i; 4077 pExpr->pAggInfo = pAggInfo; 4078 return WRC_Prune; 4079 }else{ 4080 return WRC_Continue; 4081 } 4082 } 4083 } 4084 return WRC_Continue; 4085 } 4086 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4087 UNUSED_PARAMETER(pWalker); 4088 UNUSED_PARAMETER(pSelect); 4089 return WRC_Continue; 4090 } 4091 4092 /* 4093 ** Analyze the pExpr expression looking for aggregate functions and 4094 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4095 ** points to. Additional entries are made on the AggInfo object as 4096 ** necessary. 4097 ** 4098 ** This routine should only be called after the expression has been 4099 ** analyzed by sqlite3ResolveExprNames(). 4100 */ 4101 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4102 Walker w; 4103 memset(&w, 0, sizeof(w)); 4104 w.xExprCallback = analyzeAggregate; 4105 w.xSelectCallback = analyzeAggregatesInSelect; 4106 w.u.pNC = pNC; 4107 assert( pNC->pSrcList!=0 ); 4108 sqlite3WalkExpr(&w, pExpr); 4109 } 4110 4111 /* 4112 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4113 ** expression list. Return the number of errors. 4114 ** 4115 ** If an error is found, the analysis is cut short. 4116 */ 4117 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4118 struct ExprList_item *pItem; 4119 int i; 4120 if( pList ){ 4121 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4122 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4123 } 4124 } 4125 } 4126 4127 /* 4128 ** Allocate a single new register for use to hold some intermediate result. 4129 */ 4130 int sqlite3GetTempReg(Parse *pParse){ 4131 if( pParse->nTempReg==0 ){ 4132 return ++pParse->nMem; 4133 } 4134 return pParse->aTempReg[--pParse->nTempReg]; 4135 } 4136 4137 /* 4138 ** Deallocate a register, making available for reuse for some other 4139 ** purpose. 4140 ** 4141 ** If a register is currently being used by the column cache, then 4142 ** the dallocation is deferred until the column cache line that uses 4143 ** the register becomes stale. 4144 */ 4145 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4146 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4147 int i; 4148 struct yColCache *p; 4149 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4150 if( p->iReg==iReg ){ 4151 p->tempReg = 1; 4152 return; 4153 } 4154 } 4155 pParse->aTempReg[pParse->nTempReg++] = iReg; 4156 } 4157 } 4158 4159 /* 4160 ** Allocate or deallocate a block of nReg consecutive registers 4161 */ 4162 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4163 int i, n; 4164 i = pParse->iRangeReg; 4165 n = pParse->nRangeReg; 4166 if( nReg<=n ){ 4167 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4168 pParse->iRangeReg += nReg; 4169 pParse->nRangeReg -= nReg; 4170 }else{ 4171 i = pParse->nMem+1; 4172 pParse->nMem += nReg; 4173 } 4174 return i; 4175 } 4176 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4177 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4178 if( nReg>pParse->nRangeReg ){ 4179 pParse->nRangeReg = nReg; 4180 pParse->iRangeReg = iReg; 4181 } 4182 } 4183 4184 /* 4185 ** Mark all temporary registers as being unavailable for reuse. 4186 */ 4187 void sqlite3ClearTempRegCache(Parse *pParse){ 4188 pParse->nTempReg = 0; 4189 pParse->nRangeReg = 0; 4190 } 4191