xref: /sqlite-3.40.0/src/expr.c (revision 50420545)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   op = pExpr->op;
37   if( op==TK_SELECT ){
38     assert( pExpr->flags&EP_xIsSelect );
39     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     assert( !ExprHasProperty(pExpr, EP_IntValue) );
44     return sqlite3AffinityType(pExpr->u.zToken);
45   }
46 #endif
47   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
48    && pExpr->pTab!=0
49   ){
50     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
51     ** a TK_COLUMN but was previously evaluated and cached in a register */
52     int j = pExpr->iColumn;
53     if( j<0 ) return SQLITE_AFF_INTEGER;
54     assert( pExpr->pTab && j<pExpr->pTab->nCol );
55     return pExpr->pTab->aCol[j].affinity;
56   }
57   return pExpr->affinity;
58 }
59 
60 /*
61 ** Set the collating sequence for expression pExpr to be the collating
62 ** sequence named by pToken.   Return a pointer to a new Expr node that
63 ** implements the COLLATE operator.
64 **
65 ** If a memory allocation error occurs, that fact is recorded in pParse->db
66 ** and the pExpr parameter is returned unchanged.
67 */
68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){
69   if( pCollName->n>0 ){
70     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
71     if( pNew ){
72       pNew->pLeft = pExpr;
73       pNew->flags |= EP_Collate;
74       pExpr = pNew;
75     }
76   }
77   return pExpr;
78 }
79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
80   Token s;
81   assert( zC!=0 );
82   s.z = zC;
83   s.n = sqlite3Strlen30(s.z);
84   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
85 }
86 
87 /*
88 ** Skip over any TK_COLLATE and/or TK_AS operators at the root of
89 ** an expression.
90 */
91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
92   while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){
93     pExpr = pExpr->pLeft;
94   }
95   return pExpr;
96 }
97 
98 /*
99 ** Return the collation sequence for the expression pExpr. If
100 ** there is no defined collating sequence, return NULL.
101 **
102 ** The collating sequence might be determined by a COLLATE operator
103 ** or by the presence of a column with a defined collating sequence.
104 ** COLLATE operators take first precedence.  Left operands take
105 ** precedence over right operands.
106 */
107 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
108   sqlite3 *db = pParse->db;
109   CollSeq *pColl = 0;
110   Expr *p = pExpr;
111   while( p ){
112     int op = p->op;
113     if( op==TK_CAST || op==TK_UPLUS ){
114       p = p->pLeft;
115       continue;
116     }
117     assert( op!=TK_REGISTER || p->op2!=TK_COLLATE );
118     if( op==TK_COLLATE ){
119       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
120       break;
121     }
122     if( p->pTab!=0
123      && (op==TK_AGG_COLUMN || op==TK_COLUMN
124           || op==TK_REGISTER || op==TK_TRIGGER)
125     ){
126       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
127       ** a TK_COLUMN but was previously evaluated and cached in a register */
128       int j = p->iColumn;
129       if( j>=0 ){
130         const char *zColl = p->pTab->aCol[j].zColl;
131         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
132       }
133       break;
134     }
135     if( p->flags & EP_Collate ){
136       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
137         p = p->pLeft;
138       }else{
139         p = p->pRight;
140       }
141     }else{
142       break;
143     }
144   }
145   if( sqlite3CheckCollSeq(pParse, pColl) ){
146     pColl = 0;
147   }
148   return pColl;
149 }
150 
151 /*
152 ** pExpr is an operand of a comparison operator.  aff2 is the
153 ** type affinity of the other operand.  This routine returns the
154 ** type affinity that should be used for the comparison operator.
155 */
156 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
157   char aff1 = sqlite3ExprAffinity(pExpr);
158   if( aff1 && aff2 ){
159     /* Both sides of the comparison are columns. If one has numeric
160     ** affinity, use that. Otherwise use no affinity.
161     */
162     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
163       return SQLITE_AFF_NUMERIC;
164     }else{
165       return SQLITE_AFF_NONE;
166     }
167   }else if( !aff1 && !aff2 ){
168     /* Neither side of the comparison is a column.  Compare the
169     ** results directly.
170     */
171     return SQLITE_AFF_NONE;
172   }else{
173     /* One side is a column, the other is not. Use the columns affinity. */
174     assert( aff1==0 || aff2==0 );
175     return (aff1 + aff2);
176   }
177 }
178 
179 /*
180 ** pExpr is a comparison operator.  Return the type affinity that should
181 ** be applied to both operands prior to doing the comparison.
182 */
183 static char comparisonAffinity(Expr *pExpr){
184   char aff;
185   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
186           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
187           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
188   assert( pExpr->pLeft );
189   aff = sqlite3ExprAffinity(pExpr->pLeft);
190   if( pExpr->pRight ){
191     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
192   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
193     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
194   }else if( !aff ){
195     aff = SQLITE_AFF_NONE;
196   }
197   return aff;
198 }
199 
200 /*
201 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
202 ** idx_affinity is the affinity of an indexed column. Return true
203 ** if the index with affinity idx_affinity may be used to implement
204 ** the comparison in pExpr.
205 */
206 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
207   char aff = comparisonAffinity(pExpr);
208   switch( aff ){
209     case SQLITE_AFF_NONE:
210       return 1;
211     case SQLITE_AFF_TEXT:
212       return idx_affinity==SQLITE_AFF_TEXT;
213     default:
214       return sqlite3IsNumericAffinity(idx_affinity);
215   }
216 }
217 
218 /*
219 ** Return the P5 value that should be used for a binary comparison
220 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
221 */
222 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
223   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
224   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
225   return aff;
226 }
227 
228 /*
229 ** Return a pointer to the collation sequence that should be used by
230 ** a binary comparison operator comparing pLeft and pRight.
231 **
232 ** If the left hand expression has a collating sequence type, then it is
233 ** used. Otherwise the collation sequence for the right hand expression
234 ** is used, or the default (BINARY) if neither expression has a collating
235 ** type.
236 **
237 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
238 ** it is not considered.
239 */
240 CollSeq *sqlite3BinaryCompareCollSeq(
241   Parse *pParse,
242   Expr *pLeft,
243   Expr *pRight
244 ){
245   CollSeq *pColl;
246   assert( pLeft );
247   if( pLeft->flags & EP_Collate ){
248     pColl = sqlite3ExprCollSeq(pParse, pLeft);
249   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
250     pColl = sqlite3ExprCollSeq(pParse, pRight);
251   }else{
252     pColl = sqlite3ExprCollSeq(pParse, pLeft);
253     if( !pColl ){
254       pColl = sqlite3ExprCollSeq(pParse, pRight);
255     }
256   }
257   return pColl;
258 }
259 
260 /*
261 ** Generate code for a comparison operator.
262 */
263 static int codeCompare(
264   Parse *pParse,    /* The parsing (and code generating) context */
265   Expr *pLeft,      /* The left operand */
266   Expr *pRight,     /* The right operand */
267   int opcode,       /* The comparison opcode */
268   int in1, int in2, /* Register holding operands */
269   int dest,         /* Jump here if true.  */
270   int jumpIfNull    /* If true, jump if either operand is NULL */
271 ){
272   int p5;
273   int addr;
274   CollSeq *p4;
275 
276   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
277   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
278   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
279                            (void*)p4, P4_COLLSEQ);
280   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
281   return addr;
282 }
283 
284 #if SQLITE_MAX_EXPR_DEPTH>0
285 /*
286 ** Check that argument nHeight is less than or equal to the maximum
287 ** expression depth allowed. If it is not, leave an error message in
288 ** pParse.
289 */
290 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
291   int rc = SQLITE_OK;
292   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
293   if( nHeight>mxHeight ){
294     sqlite3ErrorMsg(pParse,
295        "Expression tree is too large (maximum depth %d)", mxHeight
296     );
297     rc = SQLITE_ERROR;
298   }
299   return rc;
300 }
301 
302 /* The following three functions, heightOfExpr(), heightOfExprList()
303 ** and heightOfSelect(), are used to determine the maximum height
304 ** of any expression tree referenced by the structure passed as the
305 ** first argument.
306 **
307 ** If this maximum height is greater than the current value pointed
308 ** to by pnHeight, the second parameter, then set *pnHeight to that
309 ** value.
310 */
311 static void heightOfExpr(Expr *p, int *pnHeight){
312   if( p ){
313     if( p->nHeight>*pnHeight ){
314       *pnHeight = p->nHeight;
315     }
316   }
317 }
318 static void heightOfExprList(ExprList *p, int *pnHeight){
319   if( p ){
320     int i;
321     for(i=0; i<p->nExpr; i++){
322       heightOfExpr(p->a[i].pExpr, pnHeight);
323     }
324   }
325 }
326 static void heightOfSelect(Select *p, int *pnHeight){
327   if( p ){
328     heightOfExpr(p->pWhere, pnHeight);
329     heightOfExpr(p->pHaving, pnHeight);
330     heightOfExpr(p->pLimit, pnHeight);
331     heightOfExpr(p->pOffset, pnHeight);
332     heightOfExprList(p->pEList, pnHeight);
333     heightOfExprList(p->pGroupBy, pnHeight);
334     heightOfExprList(p->pOrderBy, pnHeight);
335     heightOfSelect(p->pPrior, pnHeight);
336   }
337 }
338 
339 /*
340 ** Set the Expr.nHeight variable in the structure passed as an
341 ** argument. An expression with no children, Expr.pList or
342 ** Expr.pSelect member has a height of 1. Any other expression
343 ** has a height equal to the maximum height of any other
344 ** referenced Expr plus one.
345 */
346 static void exprSetHeight(Expr *p){
347   int nHeight = 0;
348   heightOfExpr(p->pLeft, &nHeight);
349   heightOfExpr(p->pRight, &nHeight);
350   if( ExprHasProperty(p, EP_xIsSelect) ){
351     heightOfSelect(p->x.pSelect, &nHeight);
352   }else{
353     heightOfExprList(p->x.pList, &nHeight);
354   }
355   p->nHeight = nHeight + 1;
356 }
357 
358 /*
359 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
360 ** the height is greater than the maximum allowed expression depth,
361 ** leave an error in pParse.
362 */
363 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
364   exprSetHeight(p);
365   sqlite3ExprCheckHeight(pParse, p->nHeight);
366 }
367 
368 /*
369 ** Return the maximum height of any expression tree referenced
370 ** by the select statement passed as an argument.
371 */
372 int sqlite3SelectExprHeight(Select *p){
373   int nHeight = 0;
374   heightOfSelect(p, &nHeight);
375   return nHeight;
376 }
377 #else
378   #define exprSetHeight(y)
379 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
380 
381 /*
382 ** This routine is the core allocator for Expr nodes.
383 **
384 ** Construct a new expression node and return a pointer to it.  Memory
385 ** for this node and for the pToken argument is a single allocation
386 ** obtained from sqlite3DbMalloc().  The calling function
387 ** is responsible for making sure the node eventually gets freed.
388 **
389 ** If dequote is true, then the token (if it exists) is dequoted.
390 ** If dequote is false, no dequoting is performance.  The deQuote
391 ** parameter is ignored if pToken is NULL or if the token does not
392 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
393 ** then the EP_DblQuoted flag is set on the expression node.
394 **
395 ** Special case:  If op==TK_INTEGER and pToken points to a string that
396 ** can be translated into a 32-bit integer, then the token is not
397 ** stored in u.zToken.  Instead, the integer values is written
398 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
399 ** is allocated to hold the integer text and the dequote flag is ignored.
400 */
401 Expr *sqlite3ExprAlloc(
402   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
403   int op,                 /* Expression opcode */
404   const Token *pToken,    /* Token argument.  Might be NULL */
405   int dequote             /* True to dequote */
406 ){
407   Expr *pNew;
408   int nExtra = 0;
409   int iValue = 0;
410 
411   if( pToken ){
412     if( op!=TK_INTEGER || pToken->z==0
413           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
414       nExtra = pToken->n+1;
415       assert( iValue>=0 );
416     }
417   }
418   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
419   if( pNew ){
420     pNew->op = (u8)op;
421     pNew->iAgg = -1;
422     if( pToken ){
423       if( nExtra==0 ){
424         pNew->flags |= EP_IntValue;
425         pNew->u.iValue = iValue;
426       }else{
427         int c;
428         pNew->u.zToken = (char*)&pNew[1];
429         assert( pToken->z!=0 || pToken->n==0 );
430         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
431         pNew->u.zToken[pToken->n] = 0;
432         if( dequote && nExtra>=3
433              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
434           sqlite3Dequote(pNew->u.zToken);
435           if( c=='"' ) pNew->flags |= EP_DblQuoted;
436         }
437       }
438     }
439 #if SQLITE_MAX_EXPR_DEPTH>0
440     pNew->nHeight = 1;
441 #endif
442   }
443   return pNew;
444 }
445 
446 /*
447 ** Allocate a new expression node from a zero-terminated token that has
448 ** already been dequoted.
449 */
450 Expr *sqlite3Expr(
451   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
452   int op,                 /* Expression opcode */
453   const char *zToken      /* Token argument.  Might be NULL */
454 ){
455   Token x;
456   x.z = zToken;
457   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
458   return sqlite3ExprAlloc(db, op, &x, 0);
459 }
460 
461 /*
462 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
463 **
464 ** If pRoot==NULL that means that a memory allocation error has occurred.
465 ** In that case, delete the subtrees pLeft and pRight.
466 */
467 void sqlite3ExprAttachSubtrees(
468   sqlite3 *db,
469   Expr *pRoot,
470   Expr *pLeft,
471   Expr *pRight
472 ){
473   if( pRoot==0 ){
474     assert( db->mallocFailed );
475     sqlite3ExprDelete(db, pLeft);
476     sqlite3ExprDelete(db, pRight);
477   }else{
478     if( pRight ){
479       pRoot->pRight = pRight;
480       pRoot->flags |= EP_Collate & pRight->flags;
481     }
482     if( pLeft ){
483       pRoot->pLeft = pLeft;
484       pRoot->flags |= EP_Collate & pLeft->flags;
485     }
486     exprSetHeight(pRoot);
487   }
488 }
489 
490 /*
491 ** Allocate a Expr node which joins as many as two subtrees.
492 **
493 ** One or both of the subtrees can be NULL.  Return a pointer to the new
494 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
495 ** free the subtrees and return NULL.
496 */
497 Expr *sqlite3PExpr(
498   Parse *pParse,          /* Parsing context */
499   int op,                 /* Expression opcode */
500   Expr *pLeft,            /* Left operand */
501   Expr *pRight,           /* Right operand */
502   const Token *pToken     /* Argument token */
503 ){
504   Expr *p;
505   if( op==TK_AND && pLeft && pRight ){
506     /* Take advantage of short-circuit false optimization for AND */
507     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
508   }else{
509     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
510     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
511   }
512   if( p ) {
513     sqlite3ExprCheckHeight(pParse, p->nHeight);
514   }
515   return p;
516 }
517 
518 /*
519 ** Return 1 if an expression must be FALSE in all cases and 0 if the
520 ** expression might be true.  This is an optimization.  If is OK to
521 ** return 0 here even if the expression really is always false (a
522 ** false negative).  But it is a bug to return 1 if the expression
523 ** might be true in some rare circumstances (a false positive.)
524 **
525 ** Note that if the expression is part of conditional for a
526 ** LEFT JOIN, then we cannot determine at compile-time whether or not
527 ** is it true or false, so always return 0.
528 */
529 static int exprAlwaysFalse(Expr *p){
530   int v = 0;
531   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
532   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
533   return v==0;
534 }
535 
536 /*
537 ** Join two expressions using an AND operator.  If either expression is
538 ** NULL, then just return the other expression.
539 **
540 ** If one side or the other of the AND is known to be false, then instead
541 ** of returning an AND expression, just return a constant expression with
542 ** a value of false.
543 */
544 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
545   if( pLeft==0 ){
546     return pRight;
547   }else if( pRight==0 ){
548     return pLeft;
549   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
550     sqlite3ExprDelete(db, pLeft);
551     sqlite3ExprDelete(db, pRight);
552     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
553   }else{
554     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
555     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
556     return pNew;
557   }
558 }
559 
560 /*
561 ** Construct a new expression node for a function with multiple
562 ** arguments.
563 */
564 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
565   Expr *pNew;
566   sqlite3 *db = pParse->db;
567   assert( pToken );
568   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
569   if( pNew==0 ){
570     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
571     return 0;
572   }
573   pNew->x.pList = pList;
574   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
575   sqlite3ExprSetHeight(pParse, pNew);
576   return pNew;
577 }
578 
579 /*
580 ** Assign a variable number to an expression that encodes a wildcard
581 ** in the original SQL statement.
582 **
583 ** Wildcards consisting of a single "?" are assigned the next sequential
584 ** variable number.
585 **
586 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
587 ** sure "nnn" is not too be to avoid a denial of service attack when
588 ** the SQL statement comes from an external source.
589 **
590 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
591 ** as the previous instance of the same wildcard.  Or if this is the first
592 ** instance of the wildcard, the next sequenial variable number is
593 ** assigned.
594 */
595 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
596   sqlite3 *db = pParse->db;
597   const char *z;
598 
599   if( pExpr==0 ) return;
600   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
601   z = pExpr->u.zToken;
602   assert( z!=0 );
603   assert( z[0]!=0 );
604   if( z[1]==0 ){
605     /* Wildcard of the form "?".  Assign the next variable number */
606     assert( z[0]=='?' );
607     pExpr->iColumn = (ynVar)(++pParse->nVar);
608   }else{
609     ynVar x = 0;
610     u32 n = sqlite3Strlen30(z);
611     if( z[0]=='?' ){
612       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
613       ** use it as the variable number */
614       i64 i;
615       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
616       pExpr->iColumn = x = (ynVar)i;
617       testcase( i==0 );
618       testcase( i==1 );
619       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
620       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
621       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
622         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
623             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
624         x = 0;
625       }
626       if( i>pParse->nVar ){
627         pParse->nVar = (int)i;
628       }
629     }else{
630       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
631       ** number as the prior appearance of the same name, or if the name
632       ** has never appeared before, reuse the same variable number
633       */
634       ynVar i;
635       for(i=0; i<pParse->nzVar; i++){
636         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
637           pExpr->iColumn = x = (ynVar)i+1;
638           break;
639         }
640       }
641       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
642     }
643     if( x>0 ){
644       if( x>pParse->nzVar ){
645         char **a;
646         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
647         if( a==0 ) return;  /* Error reported through db->mallocFailed */
648         pParse->azVar = a;
649         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
650         pParse->nzVar = x;
651       }
652       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
653         sqlite3DbFree(db, pParse->azVar[x-1]);
654         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
655       }
656     }
657   }
658   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
659     sqlite3ErrorMsg(pParse, "too many SQL variables");
660   }
661 }
662 
663 /*
664 ** Recursively delete an expression tree.
665 */
666 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
667   if( p==0 ) return;
668   /* Sanity check: Assert that the IntValue is non-negative if it exists */
669   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
670   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
671     sqlite3ExprDelete(db, p->pLeft);
672     sqlite3ExprDelete(db, p->pRight);
673     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
674       sqlite3DbFree(db, p->u.zToken);
675     }
676     if( ExprHasProperty(p, EP_xIsSelect) ){
677       sqlite3SelectDelete(db, p->x.pSelect);
678     }else{
679       sqlite3ExprListDelete(db, p->x.pList);
680     }
681   }
682   if( !ExprHasProperty(p, EP_Static) ){
683     sqlite3DbFree(db, p);
684   }
685 }
686 
687 /*
688 ** Return the number of bytes allocated for the expression structure
689 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
690 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
691 */
692 static int exprStructSize(Expr *p){
693   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
694   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
695   return EXPR_FULLSIZE;
696 }
697 
698 /*
699 ** The dupedExpr*Size() routines each return the number of bytes required
700 ** to store a copy of an expression or expression tree.  They differ in
701 ** how much of the tree is measured.
702 **
703 **     dupedExprStructSize()     Size of only the Expr structure
704 **     dupedExprNodeSize()       Size of Expr + space for token
705 **     dupedExprSize()           Expr + token + subtree components
706 **
707 ***************************************************************************
708 **
709 ** The dupedExprStructSize() function returns two values OR-ed together:
710 ** (1) the space required for a copy of the Expr structure only and
711 ** (2) the EP_xxx flags that indicate what the structure size should be.
712 ** The return values is always one of:
713 **
714 **      EXPR_FULLSIZE
715 **      EXPR_REDUCEDSIZE   | EP_Reduced
716 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
717 **
718 ** The size of the structure can be found by masking the return value
719 ** of this routine with 0xfff.  The flags can be found by masking the
720 ** return value with EP_Reduced|EP_TokenOnly.
721 **
722 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
723 ** (unreduced) Expr objects as they or originally constructed by the parser.
724 ** During expression analysis, extra information is computed and moved into
725 ** later parts of teh Expr object and that extra information might get chopped
726 ** off if the expression is reduced.  Note also that it does not work to
727 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
728 ** to reduce a pristine expression tree from the parser.  The implementation
729 ** of dupedExprStructSize() contain multiple assert() statements that attempt
730 ** to enforce this constraint.
731 */
732 static int dupedExprStructSize(Expr *p, int flags){
733   int nSize;
734   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
735   if( 0==(flags&EXPRDUP_REDUCE) ){
736     nSize = EXPR_FULLSIZE;
737   }else{
738     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
739     assert( !ExprHasProperty(p, EP_FromJoin) );
740     assert( (p->flags2 & EP2_MallocedToken)==0 );
741     assert( (p->flags2 & EP2_Irreducible)==0 );
742     if( p->pLeft || p->pRight || p->x.pList ){
743       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
744     }else{
745       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
746     }
747   }
748   return nSize;
749 }
750 
751 /*
752 ** This function returns the space in bytes required to store the copy
753 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
754 ** string is defined.)
755 */
756 static int dupedExprNodeSize(Expr *p, int flags){
757   int nByte = dupedExprStructSize(p, flags) & 0xfff;
758   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
759     nByte += sqlite3Strlen30(p->u.zToken)+1;
760   }
761   return ROUND8(nByte);
762 }
763 
764 /*
765 ** Return the number of bytes required to create a duplicate of the
766 ** expression passed as the first argument. The second argument is a
767 ** mask containing EXPRDUP_XXX flags.
768 **
769 ** The value returned includes space to create a copy of the Expr struct
770 ** itself and the buffer referred to by Expr.u.zToken, if any.
771 **
772 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
773 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
774 ** and Expr.pRight variables (but not for any structures pointed to or
775 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
776 */
777 static int dupedExprSize(Expr *p, int flags){
778   int nByte = 0;
779   if( p ){
780     nByte = dupedExprNodeSize(p, flags);
781     if( flags&EXPRDUP_REDUCE ){
782       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
783     }
784   }
785   return nByte;
786 }
787 
788 /*
789 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
790 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
791 ** to store the copy of expression p, the copies of p->u.zToken
792 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
793 ** if any. Before returning, *pzBuffer is set to the first byte passed the
794 ** portion of the buffer copied into by this function.
795 */
796 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
797   Expr *pNew = 0;                      /* Value to return */
798   if( p ){
799     const int isReduced = (flags&EXPRDUP_REDUCE);
800     u8 *zAlloc;
801     u32 staticFlag = 0;
802 
803     assert( pzBuffer==0 || isReduced );
804 
805     /* Figure out where to write the new Expr structure. */
806     if( pzBuffer ){
807       zAlloc = *pzBuffer;
808       staticFlag = EP_Static;
809     }else{
810       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
811     }
812     pNew = (Expr *)zAlloc;
813 
814     if( pNew ){
815       /* Set nNewSize to the size allocated for the structure pointed to
816       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
817       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
818       ** by the copy of the p->u.zToken string (if any).
819       */
820       const unsigned nStructSize = dupedExprStructSize(p, flags);
821       const int nNewSize = nStructSize & 0xfff;
822       int nToken;
823       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
824         nToken = sqlite3Strlen30(p->u.zToken) + 1;
825       }else{
826         nToken = 0;
827       }
828       if( isReduced ){
829         assert( ExprHasProperty(p, EP_Reduced)==0 );
830         memcpy(zAlloc, p, nNewSize);
831       }else{
832         int nSize = exprStructSize(p);
833         memcpy(zAlloc, p, nSize);
834         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
835       }
836 
837       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
838       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
839       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
840       pNew->flags |= staticFlag;
841 
842       /* Copy the p->u.zToken string, if any. */
843       if( nToken ){
844         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
845         memcpy(zToken, p->u.zToken, nToken);
846       }
847 
848       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
849         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
850         if( ExprHasProperty(p, EP_xIsSelect) ){
851           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
852         }else{
853           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
854         }
855       }
856 
857       /* Fill in pNew->pLeft and pNew->pRight. */
858       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
859         zAlloc += dupedExprNodeSize(p, flags);
860         if( ExprHasProperty(pNew, EP_Reduced) ){
861           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
862           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
863         }
864         if( pzBuffer ){
865           *pzBuffer = zAlloc;
866         }
867       }else{
868         pNew->flags2 = 0;
869         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
870           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
871           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
872         }
873       }
874 
875     }
876   }
877   return pNew;
878 }
879 
880 /*
881 ** The following group of routines make deep copies of expressions,
882 ** expression lists, ID lists, and select statements.  The copies can
883 ** be deleted (by being passed to their respective ...Delete() routines)
884 ** without effecting the originals.
885 **
886 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
887 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
888 ** by subsequent calls to sqlite*ListAppend() routines.
889 **
890 ** Any tables that the SrcList might point to are not duplicated.
891 **
892 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
893 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
894 ** truncated version of the usual Expr structure that will be stored as
895 ** part of the in-memory representation of the database schema.
896 */
897 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
898   return exprDup(db, p, flags, 0);
899 }
900 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
901   ExprList *pNew;
902   struct ExprList_item *pItem, *pOldItem;
903   int i;
904   if( p==0 ) return 0;
905   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
906   if( pNew==0 ) return 0;
907   pNew->iECursor = 0;
908   pNew->nExpr = i = p->nExpr;
909   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
910   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
911   if( pItem==0 ){
912     sqlite3DbFree(db, pNew);
913     return 0;
914   }
915   pOldItem = p->a;
916   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
917     Expr *pOldExpr = pOldItem->pExpr;
918     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
919     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
920     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
921     pItem->sortOrder = pOldItem->sortOrder;
922     pItem->done = 0;
923     pItem->iOrderByCol = pOldItem->iOrderByCol;
924     pItem->iAlias = pOldItem->iAlias;
925   }
926   return pNew;
927 }
928 
929 /*
930 ** If cursors, triggers, views and subqueries are all omitted from
931 ** the build, then none of the following routines, except for
932 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
933 ** called with a NULL argument.
934 */
935 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
936  || !defined(SQLITE_OMIT_SUBQUERY)
937 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
938   SrcList *pNew;
939   int i;
940   int nByte;
941   if( p==0 ) return 0;
942   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
943   pNew = sqlite3DbMallocRaw(db, nByte );
944   if( pNew==0 ) return 0;
945   pNew->nSrc = pNew->nAlloc = p->nSrc;
946   for(i=0; i<p->nSrc; i++){
947     struct SrcList_item *pNewItem = &pNew->a[i];
948     struct SrcList_item *pOldItem = &p->a[i];
949     Table *pTab;
950     pNewItem->pSchema = pOldItem->pSchema;
951     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
952     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
953     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
954     pNewItem->jointype = pOldItem->jointype;
955     pNewItem->iCursor = pOldItem->iCursor;
956     pNewItem->addrFillSub = pOldItem->addrFillSub;
957     pNewItem->regReturn = pOldItem->regReturn;
958     pNewItem->isCorrelated = pOldItem->isCorrelated;
959     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
960     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
961     pNewItem->notIndexed = pOldItem->notIndexed;
962     pNewItem->pIndex = pOldItem->pIndex;
963     pTab = pNewItem->pTab = pOldItem->pTab;
964     if( pTab ){
965       pTab->nRef++;
966     }
967     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
968     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
969     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
970     pNewItem->colUsed = pOldItem->colUsed;
971   }
972   return pNew;
973 }
974 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
975   IdList *pNew;
976   int i;
977   if( p==0 ) return 0;
978   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
979   if( pNew==0 ) return 0;
980   pNew->nId = p->nId;
981   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
982   if( pNew->a==0 ){
983     sqlite3DbFree(db, pNew);
984     return 0;
985   }
986   /* Note that because the size of the allocation for p->a[] is not
987   ** necessarily a power of two, sqlite3IdListAppend() may not be called
988   ** on the duplicate created by this function. */
989   for(i=0; i<p->nId; i++){
990     struct IdList_item *pNewItem = &pNew->a[i];
991     struct IdList_item *pOldItem = &p->a[i];
992     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
993     pNewItem->idx = pOldItem->idx;
994   }
995   return pNew;
996 }
997 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
998   Select *pNew, *pPrior;
999   if( p==0 ) return 0;
1000   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1001   if( pNew==0 ) return 0;
1002   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1003   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1004   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1005   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1006   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1007   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1008   pNew->op = p->op;
1009   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1010   if( pPrior ) pPrior->pNext = pNew;
1011   pNew->pNext = 0;
1012   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1013   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1014   pNew->iLimit = 0;
1015   pNew->iOffset = 0;
1016   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1017   pNew->pRightmost = 0;
1018   pNew->addrOpenEphm[0] = -1;
1019   pNew->addrOpenEphm[1] = -1;
1020   pNew->addrOpenEphm[2] = -1;
1021   return pNew;
1022 }
1023 #else
1024 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1025   assert( p==0 );
1026   return 0;
1027 }
1028 #endif
1029 
1030 
1031 /*
1032 ** Add a new element to the end of an expression list.  If pList is
1033 ** initially NULL, then create a new expression list.
1034 **
1035 ** If a memory allocation error occurs, the entire list is freed and
1036 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1037 ** that the new entry was successfully appended.
1038 */
1039 ExprList *sqlite3ExprListAppend(
1040   Parse *pParse,          /* Parsing context */
1041   ExprList *pList,        /* List to which to append. Might be NULL */
1042   Expr *pExpr             /* Expression to be appended. Might be NULL */
1043 ){
1044   sqlite3 *db = pParse->db;
1045   if( pList==0 ){
1046     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1047     if( pList==0 ){
1048       goto no_mem;
1049     }
1050     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1051     if( pList->a==0 ) goto no_mem;
1052   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1053     struct ExprList_item *a;
1054     assert( pList->nExpr>0 );
1055     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1056     if( a==0 ){
1057       goto no_mem;
1058     }
1059     pList->a = a;
1060   }
1061   assert( pList->a!=0 );
1062   if( 1 ){
1063     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1064     memset(pItem, 0, sizeof(*pItem));
1065     pItem->pExpr = pExpr;
1066   }
1067   return pList;
1068 
1069 no_mem:
1070   /* Avoid leaking memory if malloc has failed. */
1071   sqlite3ExprDelete(db, pExpr);
1072   sqlite3ExprListDelete(db, pList);
1073   return 0;
1074 }
1075 
1076 /*
1077 ** Set the ExprList.a[].zName element of the most recently added item
1078 ** on the expression list.
1079 **
1080 ** pList might be NULL following an OOM error.  But pName should never be
1081 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1082 ** is set.
1083 */
1084 void sqlite3ExprListSetName(
1085   Parse *pParse,          /* Parsing context */
1086   ExprList *pList,        /* List to which to add the span. */
1087   Token *pName,           /* Name to be added */
1088   int dequote             /* True to cause the name to be dequoted */
1089 ){
1090   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1091   if( pList ){
1092     struct ExprList_item *pItem;
1093     assert( pList->nExpr>0 );
1094     pItem = &pList->a[pList->nExpr-1];
1095     assert( pItem->zName==0 );
1096     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1097     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1098   }
1099 }
1100 
1101 /*
1102 ** Set the ExprList.a[].zSpan element of the most recently added item
1103 ** on the expression list.
1104 **
1105 ** pList might be NULL following an OOM error.  But pSpan should never be
1106 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1107 ** is set.
1108 */
1109 void sqlite3ExprListSetSpan(
1110   Parse *pParse,          /* Parsing context */
1111   ExprList *pList,        /* List to which to add the span. */
1112   ExprSpan *pSpan         /* The span to be added */
1113 ){
1114   sqlite3 *db = pParse->db;
1115   assert( pList!=0 || db->mallocFailed!=0 );
1116   if( pList ){
1117     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1118     assert( pList->nExpr>0 );
1119     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1120     sqlite3DbFree(db, pItem->zSpan);
1121     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1122                                     (int)(pSpan->zEnd - pSpan->zStart));
1123   }
1124 }
1125 
1126 /*
1127 ** If the expression list pEList contains more than iLimit elements,
1128 ** leave an error message in pParse.
1129 */
1130 void sqlite3ExprListCheckLength(
1131   Parse *pParse,
1132   ExprList *pEList,
1133   const char *zObject
1134 ){
1135   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1136   testcase( pEList && pEList->nExpr==mx );
1137   testcase( pEList && pEList->nExpr==mx+1 );
1138   if( pEList && pEList->nExpr>mx ){
1139     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1140   }
1141 }
1142 
1143 /*
1144 ** Delete an entire expression list.
1145 */
1146 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1147   int i;
1148   struct ExprList_item *pItem;
1149   if( pList==0 ) return;
1150   assert( pList->a!=0 || pList->nExpr==0 );
1151   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1152     sqlite3ExprDelete(db, pItem->pExpr);
1153     sqlite3DbFree(db, pItem->zName);
1154     sqlite3DbFree(db, pItem->zSpan);
1155   }
1156   sqlite3DbFree(db, pList->a);
1157   sqlite3DbFree(db, pList);
1158 }
1159 
1160 /*
1161 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1162 ** to an integer.  These routines are checking an expression to see
1163 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1164 ** not constant.
1165 **
1166 ** These callback routines are used to implement the following:
1167 **
1168 **     sqlite3ExprIsConstant()
1169 **     sqlite3ExprIsConstantNotJoin()
1170 **     sqlite3ExprIsConstantOrFunction()
1171 **
1172 */
1173 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1174 
1175   /* If pWalker->u.i is 3 then any term of the expression that comes from
1176   ** the ON or USING clauses of a join disqualifies the expression
1177   ** from being considered constant. */
1178   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1179     pWalker->u.i = 0;
1180     return WRC_Abort;
1181   }
1182 
1183   switch( pExpr->op ){
1184     /* Consider functions to be constant if all their arguments are constant
1185     ** and pWalker->u.i==2 */
1186     case TK_FUNCTION:
1187       if( pWalker->u.i==2 ) return 0;
1188       /* Fall through */
1189     case TK_ID:
1190     case TK_COLUMN:
1191     case TK_AGG_FUNCTION:
1192     case TK_AGG_COLUMN:
1193       testcase( pExpr->op==TK_ID );
1194       testcase( pExpr->op==TK_COLUMN );
1195       testcase( pExpr->op==TK_AGG_FUNCTION );
1196       testcase( pExpr->op==TK_AGG_COLUMN );
1197       pWalker->u.i = 0;
1198       return WRC_Abort;
1199     default:
1200       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1201       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1202       return WRC_Continue;
1203   }
1204 }
1205 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1206   UNUSED_PARAMETER(NotUsed);
1207   pWalker->u.i = 0;
1208   return WRC_Abort;
1209 }
1210 static int exprIsConst(Expr *p, int initFlag){
1211   Walker w;
1212   memset(&w, 0, sizeof(w));
1213   w.u.i = initFlag;
1214   w.xExprCallback = exprNodeIsConstant;
1215   w.xSelectCallback = selectNodeIsConstant;
1216   sqlite3WalkExpr(&w, p);
1217   return w.u.i;
1218 }
1219 
1220 /*
1221 ** Walk an expression tree.  Return 1 if the expression is constant
1222 ** and 0 if it involves variables or function calls.
1223 **
1224 ** For the purposes of this function, a double-quoted string (ex: "abc")
1225 ** is considered a variable but a single-quoted string (ex: 'abc') is
1226 ** a constant.
1227 */
1228 int sqlite3ExprIsConstant(Expr *p){
1229   return exprIsConst(p, 1);
1230 }
1231 
1232 /*
1233 ** Walk an expression tree.  Return 1 if the expression is constant
1234 ** that does no originate from the ON or USING clauses of a join.
1235 ** Return 0 if it involves variables or function calls or terms from
1236 ** an ON or USING clause.
1237 */
1238 int sqlite3ExprIsConstantNotJoin(Expr *p){
1239   return exprIsConst(p, 3);
1240 }
1241 
1242 /*
1243 ** Walk an expression tree.  Return 1 if the expression is constant
1244 ** or a function call with constant arguments.  Return and 0 if there
1245 ** are any variables.
1246 **
1247 ** For the purposes of this function, a double-quoted string (ex: "abc")
1248 ** is considered a variable but a single-quoted string (ex: 'abc') is
1249 ** a constant.
1250 */
1251 int sqlite3ExprIsConstantOrFunction(Expr *p){
1252   return exprIsConst(p, 2);
1253 }
1254 
1255 /*
1256 ** If the expression p codes a constant integer that is small enough
1257 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1258 ** in *pValue.  If the expression is not an integer or if it is too big
1259 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1260 */
1261 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1262   int rc = 0;
1263 
1264   /* If an expression is an integer literal that fits in a signed 32-bit
1265   ** integer, then the EP_IntValue flag will have already been set */
1266   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1267            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1268 
1269   if( p->flags & EP_IntValue ){
1270     *pValue = p->u.iValue;
1271     return 1;
1272   }
1273   switch( p->op ){
1274     case TK_UPLUS: {
1275       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1276       break;
1277     }
1278     case TK_UMINUS: {
1279       int v;
1280       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1281         *pValue = -v;
1282         rc = 1;
1283       }
1284       break;
1285     }
1286     default: break;
1287   }
1288   return rc;
1289 }
1290 
1291 /*
1292 ** Return FALSE if there is no chance that the expression can be NULL.
1293 **
1294 ** If the expression might be NULL or if the expression is too complex
1295 ** to tell return TRUE.
1296 **
1297 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1298 ** when we know that a value cannot be NULL.  Hence, a false positive
1299 ** (returning TRUE when in fact the expression can never be NULL) might
1300 ** be a small performance hit but is otherwise harmless.  On the other
1301 ** hand, a false negative (returning FALSE when the result could be NULL)
1302 ** will likely result in an incorrect answer.  So when in doubt, return
1303 ** TRUE.
1304 */
1305 int sqlite3ExprCanBeNull(const Expr *p){
1306   u8 op;
1307   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1308   op = p->op;
1309   if( op==TK_REGISTER ) op = p->op2;
1310   switch( op ){
1311     case TK_INTEGER:
1312     case TK_STRING:
1313     case TK_FLOAT:
1314     case TK_BLOB:
1315       return 0;
1316     default:
1317       return 1;
1318   }
1319 }
1320 
1321 /*
1322 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1323 ** to location iDest if the value in iReg is NULL.  The value in iReg
1324 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1325 ** determine that it can never generate a NULL, then the OP_IsNull operation
1326 ** can be omitted.
1327 */
1328 void sqlite3ExprCodeIsNullJump(
1329   Vdbe *v,            /* The VDBE under construction */
1330   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1331   int iReg,           /* Test the value in this register for NULL */
1332   int iDest           /* Jump here if the value is null */
1333 ){
1334   if( sqlite3ExprCanBeNull(pExpr) ){
1335     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1336   }
1337 }
1338 
1339 /*
1340 ** Return TRUE if the given expression is a constant which would be
1341 ** unchanged by OP_Affinity with the affinity given in the second
1342 ** argument.
1343 **
1344 ** This routine is used to determine if the OP_Affinity operation
1345 ** can be omitted.  When in doubt return FALSE.  A false negative
1346 ** is harmless.  A false positive, however, can result in the wrong
1347 ** answer.
1348 */
1349 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1350   u8 op;
1351   if( aff==SQLITE_AFF_NONE ) return 1;
1352   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1353   op = p->op;
1354   if( op==TK_REGISTER ) op = p->op2;
1355   switch( op ){
1356     case TK_INTEGER: {
1357       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1358     }
1359     case TK_FLOAT: {
1360       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1361     }
1362     case TK_STRING: {
1363       return aff==SQLITE_AFF_TEXT;
1364     }
1365     case TK_BLOB: {
1366       return 1;
1367     }
1368     case TK_COLUMN: {
1369       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1370       return p->iColumn<0
1371           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1372     }
1373     default: {
1374       return 0;
1375     }
1376   }
1377 }
1378 
1379 /*
1380 ** Return TRUE if the given string is a row-id column name.
1381 */
1382 int sqlite3IsRowid(const char *z){
1383   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1384   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1385   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1386   return 0;
1387 }
1388 
1389 /*
1390 ** Return true if we are able to the IN operator optimization on a
1391 ** query of the form
1392 **
1393 **       x IN (SELECT ...)
1394 **
1395 ** Where the SELECT... clause is as specified by the parameter to this
1396 ** routine.
1397 **
1398 ** The Select object passed in has already been preprocessed and no
1399 ** errors have been found.
1400 */
1401 #ifndef SQLITE_OMIT_SUBQUERY
1402 static int isCandidateForInOpt(Select *p){
1403   SrcList *pSrc;
1404   ExprList *pEList;
1405   Table *pTab;
1406   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1407   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1408   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1409     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1410     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1411     return 0; /* No DISTINCT keyword and no aggregate functions */
1412   }
1413   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1414   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1415   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1416   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1417   pSrc = p->pSrc;
1418   assert( pSrc!=0 );
1419   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1420   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1421   pTab = pSrc->a[0].pTab;
1422   if( NEVER(pTab==0) ) return 0;
1423   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1424   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1425   pEList = p->pEList;
1426   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1427   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1428   return 1;
1429 }
1430 #endif /* SQLITE_OMIT_SUBQUERY */
1431 
1432 /*
1433 ** Code an OP_Once instruction and allocate space for its flag. Return the
1434 ** address of the new instruction.
1435 */
1436 int sqlite3CodeOnce(Parse *pParse){
1437   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1438   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1439 }
1440 
1441 /*
1442 ** This function is used by the implementation of the IN (...) operator.
1443 ** The pX parameter is the expression on the RHS of the IN operator, which
1444 ** might be either a list of expressions or a subquery.
1445 **
1446 ** The job of this routine is to find or create a b-tree object that can
1447 ** be used either to test for membership in the RHS set or to iterate through
1448 ** all members of the RHS set, skipping duplicates.
1449 **
1450 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1451 ** and pX->iTable is set to the index of that cursor.
1452 **
1453 ** The returned value of this function indicates the b-tree type, as follows:
1454 **
1455 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1456 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1457 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1458 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1459 **                         populated epheremal table.
1460 **
1461 ** An existing b-tree might be used if the RHS expression pX is a simple
1462 ** subquery such as:
1463 **
1464 **     SELECT <column> FROM <table>
1465 **
1466 ** If the RHS of the IN operator is a list or a more complex subquery, then
1467 ** an ephemeral table might need to be generated from the RHS and then
1468 ** pX->iTable made to point to the ephermeral table instead of an
1469 ** existing table.
1470 **
1471 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1472 ** through the set members, skipping any duplicates. In this case an
1473 ** epheremal table must be used unless the selected <column> is guaranteed
1474 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1475 ** has a UNIQUE constraint or UNIQUE index.
1476 **
1477 ** If the prNotFound parameter is not 0, then the b-tree will be used
1478 ** for fast set membership tests. In this case an epheremal table must
1479 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1480 ** be found with <column> as its left-most column.
1481 **
1482 ** When the b-tree is being used for membership tests, the calling function
1483 ** needs to know whether or not the structure contains an SQL NULL
1484 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1485 ** If there is any chance that the (...) might contain a NULL value at
1486 ** runtime, then a register is allocated and the register number written
1487 ** to *prNotFound. If there is no chance that the (...) contains a
1488 ** NULL value, then *prNotFound is left unchanged.
1489 **
1490 ** If a register is allocated and its location stored in *prNotFound, then
1491 ** its initial value is NULL.  If the (...) does not remain constant
1492 ** for the duration of the query (i.e. the SELECT within the (...)
1493 ** is a correlated subquery) then the value of the allocated register is
1494 ** reset to NULL each time the subquery is rerun. This allows the
1495 ** caller to use vdbe code equivalent to the following:
1496 **
1497 **   if( register==NULL ){
1498 **     has_null = <test if data structure contains null>
1499 **     register = 1
1500 **   }
1501 **
1502 ** in order to avoid running the <test if data structure contains null>
1503 ** test more often than is necessary.
1504 */
1505 #ifndef SQLITE_OMIT_SUBQUERY
1506 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1507   Select *p;                            /* SELECT to the right of IN operator */
1508   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1509   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1510   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1511   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1512 
1513   assert( pX->op==TK_IN );
1514 
1515   /* Check to see if an existing table or index can be used to
1516   ** satisfy the query.  This is preferable to generating a new
1517   ** ephemeral table.
1518   */
1519   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1520   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1521     sqlite3 *db = pParse->db;              /* Database connection */
1522     Table *pTab;                           /* Table <table>. */
1523     Expr *pExpr;                           /* Expression <column> */
1524     int iCol;                              /* Index of column <column> */
1525     int iDb;                               /* Database idx for pTab */
1526 
1527     assert( p );                        /* Because of isCandidateForInOpt(p) */
1528     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1529     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1530     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1531     pTab = p->pSrc->a[0].pTab;
1532     pExpr = p->pEList->a[0].pExpr;
1533     iCol = pExpr->iColumn;
1534 
1535     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1536     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1537     sqlite3CodeVerifySchema(pParse, iDb);
1538     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1539 
1540     /* This function is only called from two places. In both cases the vdbe
1541     ** has already been allocated. So assume sqlite3GetVdbe() is always
1542     ** successful here.
1543     */
1544     assert(v);
1545     if( iCol<0 ){
1546       int iAddr;
1547 
1548       iAddr = sqlite3CodeOnce(pParse);
1549 
1550       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1551       eType = IN_INDEX_ROWID;
1552 
1553       sqlite3VdbeJumpHere(v, iAddr);
1554     }else{
1555       Index *pIdx;                         /* Iterator variable */
1556 
1557       /* The collation sequence used by the comparison. If an index is to
1558       ** be used in place of a temp-table, it must be ordered according
1559       ** to this collation sequence.  */
1560       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1561 
1562       /* Check that the affinity that will be used to perform the
1563       ** comparison is the same as the affinity of the column. If
1564       ** it is not, it is not possible to use any index.
1565       */
1566       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1567 
1568       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1569         if( (pIdx->aiColumn[0]==iCol)
1570          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1571          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1572         ){
1573           int iAddr;
1574           char *pKey;
1575 
1576           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1577           iAddr = sqlite3CodeOnce(pParse);
1578 
1579           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1580                                pKey,P4_KEYINFO_HANDOFF);
1581           VdbeComment((v, "%s", pIdx->zName));
1582           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1583           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1584 
1585           sqlite3VdbeJumpHere(v, iAddr);
1586           if( prNotFound && !pTab->aCol[iCol].notNull ){
1587             *prNotFound = ++pParse->nMem;
1588             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1589           }
1590         }
1591       }
1592     }
1593   }
1594 
1595   if( eType==0 ){
1596     /* Could not found an existing table or index to use as the RHS b-tree.
1597     ** We will have to generate an ephemeral table to do the job.
1598     */
1599     double savedNQueryLoop = pParse->nQueryLoop;
1600     int rMayHaveNull = 0;
1601     eType = IN_INDEX_EPH;
1602     if( prNotFound ){
1603       *prNotFound = rMayHaveNull = ++pParse->nMem;
1604       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1605     }else{
1606       testcase( pParse->nQueryLoop>(double)1 );
1607       pParse->nQueryLoop = (double)1;
1608       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1609         eType = IN_INDEX_ROWID;
1610       }
1611     }
1612     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1613     pParse->nQueryLoop = savedNQueryLoop;
1614   }else{
1615     pX->iTable = iTab;
1616   }
1617   return eType;
1618 }
1619 #endif
1620 
1621 /*
1622 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1623 ** or IN operators.  Examples:
1624 **
1625 **     (SELECT a FROM b)          -- subquery
1626 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1627 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1628 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1629 **
1630 ** The pExpr parameter describes the expression that contains the IN
1631 ** operator or subquery.
1632 **
1633 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1634 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1635 ** to some integer key column of a table B-Tree. In this case, use an
1636 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1637 ** (slower) variable length keys B-Tree.
1638 **
1639 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1640 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1641 ** Furthermore, the IN is in a WHERE clause and that we really want
1642 ** to iterate over the RHS of the IN operator in order to quickly locate
1643 ** all corresponding LHS elements.  All this routine does is initialize
1644 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1645 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1646 **
1647 ** If rMayHaveNull is zero, that means that the subquery is being used
1648 ** for membership testing only.  There is no need to initialize any
1649 ** registers to indicate the presence or absence of NULLs on the RHS.
1650 **
1651 ** For a SELECT or EXISTS operator, return the register that holds the
1652 ** result.  For IN operators or if an error occurs, the return value is 0.
1653 */
1654 #ifndef SQLITE_OMIT_SUBQUERY
1655 int sqlite3CodeSubselect(
1656   Parse *pParse,          /* Parsing context */
1657   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1658   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1659   int isRowid             /* If true, LHS of IN operator is a rowid */
1660 ){
1661   int testAddr = -1;                      /* One-time test address */
1662   int rReg = 0;                           /* Register storing resulting */
1663   Vdbe *v = sqlite3GetVdbe(pParse);
1664   if( NEVER(v==0) ) return 0;
1665   sqlite3ExprCachePush(pParse);
1666 
1667   /* This code must be run in its entirety every time it is encountered
1668   ** if any of the following is true:
1669   **
1670   **    *  The right-hand side is a correlated subquery
1671   **    *  The right-hand side is an expression list containing variables
1672   **    *  We are inside a trigger
1673   **
1674   ** If all of the above are false, then we can run this code just once
1675   ** save the results, and reuse the same result on subsequent invocations.
1676   */
1677   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){
1678     testAddr = sqlite3CodeOnce(pParse);
1679   }
1680 
1681 #ifndef SQLITE_OMIT_EXPLAIN
1682   if( pParse->explain==2 ){
1683     char *zMsg = sqlite3MPrintf(
1684         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1685         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1686     );
1687     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1688   }
1689 #endif
1690 
1691   switch( pExpr->op ){
1692     case TK_IN: {
1693       char affinity;              /* Affinity of the LHS of the IN */
1694       KeyInfo keyInfo;            /* Keyinfo for the generated table */
1695       static u8 sortOrder = 0;    /* Fake aSortOrder for keyInfo */
1696       int addr;                   /* Address of OP_OpenEphemeral instruction */
1697       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1698 
1699       if( rMayHaveNull ){
1700         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1701       }
1702 
1703       affinity = sqlite3ExprAffinity(pLeft);
1704 
1705       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1706       ** expression it is handled the same way.  An ephemeral table is
1707       ** filled with single-field index keys representing the results
1708       ** from the SELECT or the <exprlist>.
1709       **
1710       ** If the 'x' expression is a column value, or the SELECT...
1711       ** statement returns a column value, then the affinity of that
1712       ** column is used to build the index keys. If both 'x' and the
1713       ** SELECT... statement are columns, then numeric affinity is used
1714       ** if either column has NUMERIC or INTEGER affinity. If neither
1715       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1716       ** is used.
1717       */
1718       pExpr->iTable = pParse->nTab++;
1719       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1720       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1721       memset(&keyInfo, 0, sizeof(keyInfo));
1722       keyInfo.nField = 1;
1723       keyInfo.aSortOrder = &sortOrder;
1724 
1725       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1726         /* Case 1:     expr IN (SELECT ...)
1727         **
1728         ** Generate code to write the results of the select into the temporary
1729         ** table allocated and opened above.
1730         */
1731         SelectDest dest;
1732         ExprList *pEList;
1733 
1734         assert( !isRowid );
1735         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1736         dest.affSdst = (u8)affinity;
1737         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1738         pExpr->x.pSelect->iLimit = 0;
1739         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1740           return 0;
1741         }
1742         pEList = pExpr->x.pSelect->pEList;
1743         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1744           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1745               pEList->a[0].pExpr);
1746         }
1747       }else if( ALWAYS(pExpr->x.pList!=0) ){
1748         /* Case 2:     expr IN (exprlist)
1749         **
1750         ** For each expression, build an index key from the evaluation and
1751         ** store it in the temporary table. If <expr> is a column, then use
1752         ** that columns affinity when building index keys. If <expr> is not
1753         ** a column, use numeric affinity.
1754         */
1755         int i;
1756         ExprList *pList = pExpr->x.pList;
1757         struct ExprList_item *pItem;
1758         int r1, r2, r3;
1759 
1760         if( !affinity ){
1761           affinity = SQLITE_AFF_NONE;
1762         }
1763         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1764         keyInfo.aSortOrder = &sortOrder;
1765 
1766         /* Loop through each expression in <exprlist>. */
1767         r1 = sqlite3GetTempReg(pParse);
1768         r2 = sqlite3GetTempReg(pParse);
1769         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1770         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1771           Expr *pE2 = pItem->pExpr;
1772           int iValToIns;
1773 
1774           /* If the expression is not constant then we will need to
1775           ** disable the test that was generated above that makes sure
1776           ** this code only executes once.  Because for a non-constant
1777           ** expression we need to rerun this code each time.
1778           */
1779           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1780             sqlite3VdbeChangeToNoop(v, testAddr);
1781             testAddr = -1;
1782           }
1783 
1784           /* Evaluate the expression and insert it into the temp table */
1785           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1786             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1787           }else{
1788             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1789             if( isRowid ){
1790               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1791                                 sqlite3VdbeCurrentAddr(v)+2);
1792               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1793             }else{
1794               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1795               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1796               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1797             }
1798           }
1799         }
1800         sqlite3ReleaseTempReg(pParse, r1);
1801         sqlite3ReleaseTempReg(pParse, r2);
1802       }
1803       if( !isRowid ){
1804         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1805       }
1806       break;
1807     }
1808 
1809     case TK_EXISTS:
1810     case TK_SELECT:
1811     default: {
1812       /* If this has to be a scalar SELECT.  Generate code to put the
1813       ** value of this select in a memory cell and record the number
1814       ** of the memory cell in iColumn.  If this is an EXISTS, write
1815       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1816       ** and record that memory cell in iColumn.
1817       */
1818       Select *pSel;                         /* SELECT statement to encode */
1819       SelectDest dest;                      /* How to deal with SELECt result */
1820 
1821       testcase( pExpr->op==TK_EXISTS );
1822       testcase( pExpr->op==TK_SELECT );
1823       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1824 
1825       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1826       pSel = pExpr->x.pSelect;
1827       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1828       if( pExpr->op==TK_SELECT ){
1829         dest.eDest = SRT_Mem;
1830         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1831         VdbeComment((v, "Init subquery result"));
1832       }else{
1833         dest.eDest = SRT_Exists;
1834         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1835         VdbeComment((v, "Init EXISTS result"));
1836       }
1837       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1838       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1839                                   &sqlite3IntTokens[1]);
1840       pSel->iLimit = 0;
1841       if( sqlite3Select(pParse, pSel, &dest) ){
1842         return 0;
1843       }
1844       rReg = dest.iSDParm;
1845       ExprSetIrreducible(pExpr);
1846       break;
1847     }
1848   }
1849 
1850   if( testAddr>=0 ){
1851     sqlite3VdbeJumpHere(v, testAddr);
1852   }
1853   sqlite3ExprCachePop(pParse, 1);
1854 
1855   return rReg;
1856 }
1857 #endif /* SQLITE_OMIT_SUBQUERY */
1858 
1859 #ifndef SQLITE_OMIT_SUBQUERY
1860 /*
1861 ** Generate code for an IN expression.
1862 **
1863 **      x IN (SELECT ...)
1864 **      x IN (value, value, ...)
1865 **
1866 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1867 ** is an array of zero or more values.  The expression is true if the LHS is
1868 ** contained within the RHS.  The value of the expression is unknown (NULL)
1869 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1870 ** RHS contains one or more NULL values.
1871 **
1872 ** This routine generates code will jump to destIfFalse if the LHS is not
1873 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1874 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1875 ** within the RHS then fall through.
1876 */
1877 static void sqlite3ExprCodeIN(
1878   Parse *pParse,        /* Parsing and code generating context */
1879   Expr *pExpr,          /* The IN expression */
1880   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1881   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1882 ){
1883   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1884   char affinity;        /* Comparison affinity to use */
1885   int eType;            /* Type of the RHS */
1886   int r1;               /* Temporary use register */
1887   Vdbe *v;              /* Statement under construction */
1888 
1889   /* Compute the RHS.   After this step, the table with cursor
1890   ** pExpr->iTable will contains the values that make up the RHS.
1891   */
1892   v = pParse->pVdbe;
1893   assert( v!=0 );       /* OOM detected prior to this routine */
1894   VdbeNoopComment((v, "begin IN expr"));
1895   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1896 
1897   /* Figure out the affinity to use to create a key from the results
1898   ** of the expression. affinityStr stores a static string suitable for
1899   ** P4 of OP_MakeRecord.
1900   */
1901   affinity = comparisonAffinity(pExpr);
1902 
1903   /* Code the LHS, the <expr> from "<expr> IN (...)".
1904   */
1905   sqlite3ExprCachePush(pParse);
1906   r1 = sqlite3GetTempReg(pParse);
1907   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1908 
1909   /* If the LHS is NULL, then the result is either false or NULL depending
1910   ** on whether the RHS is empty or not, respectively.
1911   */
1912   if( destIfNull==destIfFalse ){
1913     /* Shortcut for the common case where the false and NULL outcomes are
1914     ** the same. */
1915     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1916   }else{
1917     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1918     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1919     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1920     sqlite3VdbeJumpHere(v, addr1);
1921   }
1922 
1923   if( eType==IN_INDEX_ROWID ){
1924     /* In this case, the RHS is the ROWID of table b-tree
1925     */
1926     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1927     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1928   }else{
1929     /* In this case, the RHS is an index b-tree.
1930     */
1931     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1932 
1933     /* If the set membership test fails, then the result of the
1934     ** "x IN (...)" expression must be either 0 or NULL. If the set
1935     ** contains no NULL values, then the result is 0. If the set
1936     ** contains one or more NULL values, then the result of the
1937     ** expression is also NULL.
1938     */
1939     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1940       /* This branch runs if it is known at compile time that the RHS
1941       ** cannot contain NULL values. This happens as the result
1942       ** of a "NOT NULL" constraint in the database schema.
1943       **
1944       ** Also run this branch if NULL is equivalent to FALSE
1945       ** for this particular IN operator.
1946       */
1947       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1948 
1949     }else{
1950       /* In this branch, the RHS of the IN might contain a NULL and
1951       ** the presence of a NULL on the RHS makes a difference in the
1952       ** outcome.
1953       */
1954       int j1, j2, j3;
1955 
1956       /* First check to see if the LHS is contained in the RHS.  If so,
1957       ** then the presence of NULLs in the RHS does not matter, so jump
1958       ** over all of the code that follows.
1959       */
1960       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1961 
1962       /* Here we begin generating code that runs if the LHS is not
1963       ** contained within the RHS.  Generate additional code that
1964       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1965       ** jump to destIfNull.  If there are no NULLs in the RHS then
1966       ** jump to destIfFalse.
1967       */
1968       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1969       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1970       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1971       sqlite3VdbeJumpHere(v, j3);
1972       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1973       sqlite3VdbeJumpHere(v, j2);
1974 
1975       /* Jump to the appropriate target depending on whether or not
1976       ** the RHS contains a NULL
1977       */
1978       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1979       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1980 
1981       /* The OP_Found at the top of this branch jumps here when true,
1982       ** causing the overall IN expression evaluation to fall through.
1983       */
1984       sqlite3VdbeJumpHere(v, j1);
1985     }
1986   }
1987   sqlite3ReleaseTempReg(pParse, r1);
1988   sqlite3ExprCachePop(pParse, 1);
1989   VdbeComment((v, "end IN expr"));
1990 }
1991 #endif /* SQLITE_OMIT_SUBQUERY */
1992 
1993 /*
1994 ** Duplicate an 8-byte value
1995 */
1996 static char *dup8bytes(Vdbe *v, const char *in){
1997   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1998   if( out ){
1999     memcpy(out, in, 8);
2000   }
2001   return out;
2002 }
2003 
2004 #ifndef SQLITE_OMIT_FLOATING_POINT
2005 /*
2006 ** Generate an instruction that will put the floating point
2007 ** value described by z[0..n-1] into register iMem.
2008 **
2009 ** The z[] string will probably not be zero-terminated.  But the
2010 ** z[n] character is guaranteed to be something that does not look
2011 ** like the continuation of the number.
2012 */
2013 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2014   if( ALWAYS(z!=0) ){
2015     double value;
2016     char *zV;
2017     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2018     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2019     if( negateFlag ) value = -value;
2020     zV = dup8bytes(v, (char*)&value);
2021     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2022   }
2023 }
2024 #endif
2025 
2026 
2027 /*
2028 ** Generate an instruction that will put the integer describe by
2029 ** text z[0..n-1] into register iMem.
2030 **
2031 ** Expr.u.zToken is always UTF8 and zero-terminated.
2032 */
2033 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2034   Vdbe *v = pParse->pVdbe;
2035   if( pExpr->flags & EP_IntValue ){
2036     int i = pExpr->u.iValue;
2037     assert( i>=0 );
2038     if( negFlag ) i = -i;
2039     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2040   }else{
2041     int c;
2042     i64 value;
2043     const char *z = pExpr->u.zToken;
2044     assert( z!=0 );
2045     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2046     if( c==0 || (c==2 && negFlag) ){
2047       char *zV;
2048       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2049       zV = dup8bytes(v, (char*)&value);
2050       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2051     }else{
2052 #ifdef SQLITE_OMIT_FLOATING_POINT
2053       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2054 #else
2055       codeReal(v, z, negFlag, iMem);
2056 #endif
2057     }
2058   }
2059 }
2060 
2061 /*
2062 ** Clear a cache entry.
2063 */
2064 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2065   if( p->tempReg ){
2066     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2067       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2068     }
2069     p->tempReg = 0;
2070   }
2071 }
2072 
2073 
2074 /*
2075 ** Record in the column cache that a particular column from a
2076 ** particular table is stored in a particular register.
2077 */
2078 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2079   int i;
2080   int minLru;
2081   int idxLru;
2082   struct yColCache *p;
2083 
2084   assert( iReg>0 );  /* Register numbers are always positive */
2085   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2086 
2087   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2088   ** for testing only - to verify that SQLite always gets the same answer
2089   ** with and without the column cache.
2090   */
2091   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2092 
2093   /* First replace any existing entry.
2094   **
2095   ** Actually, the way the column cache is currently used, we are guaranteed
2096   ** that the object will never already be in cache.  Verify this guarantee.
2097   */
2098 #ifndef NDEBUG
2099   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2100     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2101   }
2102 #endif
2103 
2104   /* Find an empty slot and replace it */
2105   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2106     if( p->iReg==0 ){
2107       p->iLevel = pParse->iCacheLevel;
2108       p->iTable = iTab;
2109       p->iColumn = iCol;
2110       p->iReg = iReg;
2111       p->tempReg = 0;
2112       p->lru = pParse->iCacheCnt++;
2113       return;
2114     }
2115   }
2116 
2117   /* Replace the last recently used */
2118   minLru = 0x7fffffff;
2119   idxLru = -1;
2120   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2121     if( p->lru<minLru ){
2122       idxLru = i;
2123       minLru = p->lru;
2124     }
2125   }
2126   if( ALWAYS(idxLru>=0) ){
2127     p = &pParse->aColCache[idxLru];
2128     p->iLevel = pParse->iCacheLevel;
2129     p->iTable = iTab;
2130     p->iColumn = iCol;
2131     p->iReg = iReg;
2132     p->tempReg = 0;
2133     p->lru = pParse->iCacheCnt++;
2134     return;
2135   }
2136 }
2137 
2138 /*
2139 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2140 ** Purge the range of registers from the column cache.
2141 */
2142 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2143   int i;
2144   int iLast = iReg + nReg - 1;
2145   struct yColCache *p;
2146   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2147     int r = p->iReg;
2148     if( r>=iReg && r<=iLast ){
2149       cacheEntryClear(pParse, p);
2150       p->iReg = 0;
2151     }
2152   }
2153 }
2154 
2155 /*
2156 ** Remember the current column cache context.  Any new entries added
2157 ** added to the column cache after this call are removed when the
2158 ** corresponding pop occurs.
2159 */
2160 void sqlite3ExprCachePush(Parse *pParse){
2161   pParse->iCacheLevel++;
2162 }
2163 
2164 /*
2165 ** Remove from the column cache any entries that were added since the
2166 ** the previous N Push operations.  In other words, restore the cache
2167 ** to the state it was in N Pushes ago.
2168 */
2169 void sqlite3ExprCachePop(Parse *pParse, int N){
2170   int i;
2171   struct yColCache *p;
2172   assert( N>0 );
2173   assert( pParse->iCacheLevel>=N );
2174   pParse->iCacheLevel -= N;
2175   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2176     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2177       cacheEntryClear(pParse, p);
2178       p->iReg = 0;
2179     }
2180   }
2181 }
2182 
2183 /*
2184 ** When a cached column is reused, make sure that its register is
2185 ** no longer available as a temp register.  ticket #3879:  that same
2186 ** register might be in the cache in multiple places, so be sure to
2187 ** get them all.
2188 */
2189 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2190   int i;
2191   struct yColCache *p;
2192   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2193     if( p->iReg==iReg ){
2194       p->tempReg = 0;
2195     }
2196   }
2197 }
2198 
2199 /*
2200 ** Generate code to extract the value of the iCol-th column of a table.
2201 */
2202 void sqlite3ExprCodeGetColumnOfTable(
2203   Vdbe *v,        /* The VDBE under construction */
2204   Table *pTab,    /* The table containing the value */
2205   int iTabCur,    /* The cursor for this table */
2206   int iCol,       /* Index of the column to extract */
2207   int regOut      /* Extract the valud into this register */
2208 ){
2209   if( iCol<0 || iCol==pTab->iPKey ){
2210     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2211   }else{
2212     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2213     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2214   }
2215   if( iCol>=0 ){
2216     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2217   }
2218 }
2219 
2220 /*
2221 ** Generate code that will extract the iColumn-th column from
2222 ** table pTab and store the column value in a register.  An effort
2223 ** is made to store the column value in register iReg, but this is
2224 ** not guaranteed.  The location of the column value is returned.
2225 **
2226 ** There must be an open cursor to pTab in iTable when this routine
2227 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2228 */
2229 int sqlite3ExprCodeGetColumn(
2230   Parse *pParse,   /* Parsing and code generating context */
2231   Table *pTab,     /* Description of the table we are reading from */
2232   int iColumn,     /* Index of the table column */
2233   int iTable,      /* The cursor pointing to the table */
2234   int iReg,        /* Store results here */
2235   u8 p5            /* P5 value for OP_Column */
2236 ){
2237   Vdbe *v = pParse->pVdbe;
2238   int i;
2239   struct yColCache *p;
2240 
2241   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2242     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2243       p->lru = pParse->iCacheCnt++;
2244       sqlite3ExprCachePinRegister(pParse, p->iReg);
2245       return p->iReg;
2246     }
2247   }
2248   assert( v!=0 );
2249   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2250   if( p5 ){
2251     sqlite3VdbeChangeP5(v, p5);
2252   }else{
2253     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2254   }
2255   return iReg;
2256 }
2257 
2258 /*
2259 ** Clear all column cache entries.
2260 */
2261 void sqlite3ExprCacheClear(Parse *pParse){
2262   int i;
2263   struct yColCache *p;
2264 
2265   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2266     if( p->iReg ){
2267       cacheEntryClear(pParse, p);
2268       p->iReg = 0;
2269     }
2270   }
2271 }
2272 
2273 /*
2274 ** Record the fact that an affinity change has occurred on iCount
2275 ** registers starting with iStart.
2276 */
2277 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2278   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2279 }
2280 
2281 /*
2282 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2283 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2284 */
2285 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2286   int i;
2287   struct yColCache *p;
2288   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2289   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1);
2290   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2291     int x = p->iReg;
2292     if( x>=iFrom && x<iFrom+nReg ){
2293       p->iReg += iTo-iFrom;
2294     }
2295   }
2296 }
2297 
2298 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2299 /*
2300 ** Return true if any register in the range iFrom..iTo (inclusive)
2301 ** is used as part of the column cache.
2302 **
2303 ** This routine is used within assert() and testcase() macros only
2304 ** and does not appear in a normal build.
2305 */
2306 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2307   int i;
2308   struct yColCache *p;
2309   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2310     int r = p->iReg;
2311     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2312   }
2313   return 0;
2314 }
2315 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2316 
2317 /*
2318 ** Generate code into the current Vdbe to evaluate the given
2319 ** expression.  Attempt to store the results in register "target".
2320 ** Return the register where results are stored.
2321 **
2322 ** With this routine, there is no guarantee that results will
2323 ** be stored in target.  The result might be stored in some other
2324 ** register if it is convenient to do so.  The calling function
2325 ** must check the return code and move the results to the desired
2326 ** register.
2327 */
2328 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2329   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2330   int op;                   /* The opcode being coded */
2331   int inReg = target;       /* Results stored in register inReg */
2332   int regFree1 = 0;         /* If non-zero free this temporary register */
2333   int regFree2 = 0;         /* If non-zero free this temporary register */
2334   int r1, r2, r3, r4;       /* Various register numbers */
2335   sqlite3 *db = pParse->db; /* The database connection */
2336 
2337   assert( target>0 && target<=pParse->nMem );
2338   if( v==0 ){
2339     assert( pParse->db->mallocFailed );
2340     return 0;
2341   }
2342 
2343   if( pExpr==0 ){
2344     op = TK_NULL;
2345   }else{
2346     op = pExpr->op;
2347   }
2348   switch( op ){
2349     case TK_AGG_COLUMN: {
2350       AggInfo *pAggInfo = pExpr->pAggInfo;
2351       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2352       if( !pAggInfo->directMode ){
2353         assert( pCol->iMem>0 );
2354         inReg = pCol->iMem;
2355         break;
2356       }else if( pAggInfo->useSortingIdx ){
2357         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2358                               pCol->iSorterColumn, target);
2359         break;
2360       }
2361       /* Otherwise, fall thru into the TK_COLUMN case */
2362     }
2363     case TK_COLUMN: {
2364       if( pExpr->iTable<0 ){
2365         /* This only happens when coding check constraints */
2366         assert( pParse->ckBase>0 );
2367         inReg = pExpr->iColumn + pParse->ckBase;
2368       }else{
2369         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2370                                  pExpr->iColumn, pExpr->iTable, target,
2371                                  pExpr->op2);
2372       }
2373       break;
2374     }
2375     case TK_INTEGER: {
2376       codeInteger(pParse, pExpr, 0, target);
2377       break;
2378     }
2379 #ifndef SQLITE_OMIT_FLOATING_POINT
2380     case TK_FLOAT: {
2381       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2382       codeReal(v, pExpr->u.zToken, 0, target);
2383       break;
2384     }
2385 #endif
2386     case TK_STRING: {
2387       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2388       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2389       break;
2390     }
2391     case TK_NULL: {
2392       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2393       break;
2394     }
2395 #ifndef SQLITE_OMIT_BLOB_LITERAL
2396     case TK_BLOB: {
2397       int n;
2398       const char *z;
2399       char *zBlob;
2400       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2401       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2402       assert( pExpr->u.zToken[1]=='\'' );
2403       z = &pExpr->u.zToken[2];
2404       n = sqlite3Strlen30(z) - 1;
2405       assert( z[n]=='\'' );
2406       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2407       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2408       break;
2409     }
2410 #endif
2411     case TK_VARIABLE: {
2412       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2413       assert( pExpr->u.zToken!=0 );
2414       assert( pExpr->u.zToken[0]!=0 );
2415       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2416       if( pExpr->u.zToken[1]!=0 ){
2417         assert( pExpr->u.zToken[0]=='?'
2418              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2419         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2420       }
2421       break;
2422     }
2423     case TK_REGISTER: {
2424       inReg = pExpr->iTable;
2425       break;
2426     }
2427     case TK_AS: {
2428       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2429       break;
2430     }
2431 #ifndef SQLITE_OMIT_CAST
2432     case TK_CAST: {
2433       /* Expressions of the form:   CAST(pLeft AS token) */
2434       int aff, to_op;
2435       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2436       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2437       aff = sqlite3AffinityType(pExpr->u.zToken);
2438       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2439       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2440       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2441       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2442       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2443       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2444       testcase( to_op==OP_ToText );
2445       testcase( to_op==OP_ToBlob );
2446       testcase( to_op==OP_ToNumeric );
2447       testcase( to_op==OP_ToInt );
2448       testcase( to_op==OP_ToReal );
2449       if( inReg!=target ){
2450         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2451         inReg = target;
2452       }
2453       sqlite3VdbeAddOp1(v, to_op, inReg);
2454       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2455       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2456       break;
2457     }
2458 #endif /* SQLITE_OMIT_CAST */
2459     case TK_LT:
2460     case TK_LE:
2461     case TK_GT:
2462     case TK_GE:
2463     case TK_NE:
2464     case TK_EQ: {
2465       assert( TK_LT==OP_Lt );
2466       assert( TK_LE==OP_Le );
2467       assert( TK_GT==OP_Gt );
2468       assert( TK_GE==OP_Ge );
2469       assert( TK_EQ==OP_Eq );
2470       assert( TK_NE==OP_Ne );
2471       testcase( op==TK_LT );
2472       testcase( op==TK_LE );
2473       testcase( op==TK_GT );
2474       testcase( op==TK_GE );
2475       testcase( op==TK_EQ );
2476       testcase( op==TK_NE );
2477       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2478       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2479       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2480                   r1, r2, inReg, SQLITE_STOREP2);
2481       testcase( regFree1==0 );
2482       testcase( regFree2==0 );
2483       break;
2484     }
2485     case TK_IS:
2486     case TK_ISNOT: {
2487       testcase( op==TK_IS );
2488       testcase( op==TK_ISNOT );
2489       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2490       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2491       op = (op==TK_IS) ? TK_EQ : TK_NE;
2492       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2493                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2494       testcase( regFree1==0 );
2495       testcase( regFree2==0 );
2496       break;
2497     }
2498     case TK_AND:
2499     case TK_OR:
2500     case TK_PLUS:
2501     case TK_STAR:
2502     case TK_MINUS:
2503     case TK_REM:
2504     case TK_BITAND:
2505     case TK_BITOR:
2506     case TK_SLASH:
2507     case TK_LSHIFT:
2508     case TK_RSHIFT:
2509     case TK_CONCAT: {
2510       assert( TK_AND==OP_And );
2511       assert( TK_OR==OP_Or );
2512       assert( TK_PLUS==OP_Add );
2513       assert( TK_MINUS==OP_Subtract );
2514       assert( TK_REM==OP_Remainder );
2515       assert( TK_BITAND==OP_BitAnd );
2516       assert( TK_BITOR==OP_BitOr );
2517       assert( TK_SLASH==OP_Divide );
2518       assert( TK_LSHIFT==OP_ShiftLeft );
2519       assert( TK_RSHIFT==OP_ShiftRight );
2520       assert( TK_CONCAT==OP_Concat );
2521       testcase( op==TK_AND );
2522       testcase( op==TK_OR );
2523       testcase( op==TK_PLUS );
2524       testcase( op==TK_MINUS );
2525       testcase( op==TK_REM );
2526       testcase( op==TK_BITAND );
2527       testcase( op==TK_BITOR );
2528       testcase( op==TK_SLASH );
2529       testcase( op==TK_LSHIFT );
2530       testcase( op==TK_RSHIFT );
2531       testcase( op==TK_CONCAT );
2532       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2533       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2534       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2535       testcase( regFree1==0 );
2536       testcase( regFree2==0 );
2537       break;
2538     }
2539     case TK_UMINUS: {
2540       Expr *pLeft = pExpr->pLeft;
2541       assert( pLeft );
2542       if( pLeft->op==TK_INTEGER ){
2543         codeInteger(pParse, pLeft, 1, target);
2544 #ifndef SQLITE_OMIT_FLOATING_POINT
2545       }else if( pLeft->op==TK_FLOAT ){
2546         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547         codeReal(v, pLeft->u.zToken, 1, target);
2548 #endif
2549       }else{
2550         regFree1 = r1 = sqlite3GetTempReg(pParse);
2551         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2552         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2553         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2554         testcase( regFree2==0 );
2555       }
2556       inReg = target;
2557       break;
2558     }
2559     case TK_BITNOT:
2560     case TK_NOT: {
2561       assert( TK_BITNOT==OP_BitNot );
2562       assert( TK_NOT==OP_Not );
2563       testcase( op==TK_BITNOT );
2564       testcase( op==TK_NOT );
2565       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2566       testcase( regFree1==0 );
2567       inReg = target;
2568       sqlite3VdbeAddOp2(v, op, r1, inReg);
2569       break;
2570     }
2571     case TK_ISNULL:
2572     case TK_NOTNULL: {
2573       int addr;
2574       assert( TK_ISNULL==OP_IsNull );
2575       assert( TK_NOTNULL==OP_NotNull );
2576       testcase( op==TK_ISNULL );
2577       testcase( op==TK_NOTNULL );
2578       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2579       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2580       testcase( regFree1==0 );
2581       addr = sqlite3VdbeAddOp1(v, op, r1);
2582       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2583       sqlite3VdbeJumpHere(v, addr);
2584       break;
2585     }
2586     case TK_AGG_FUNCTION: {
2587       AggInfo *pInfo = pExpr->pAggInfo;
2588       if( pInfo==0 ){
2589         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2590         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2591       }else{
2592         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2593       }
2594       break;
2595     }
2596     case TK_CONST_FUNC:
2597     case TK_FUNCTION: {
2598       ExprList *pFarg;       /* List of function arguments */
2599       int nFarg;             /* Number of function arguments */
2600       FuncDef *pDef;         /* The function definition object */
2601       int nId;               /* Length of the function name in bytes */
2602       const char *zId;       /* The function name */
2603       int constMask = 0;     /* Mask of function arguments that are constant */
2604       int i;                 /* Loop counter */
2605       u8 enc = ENC(db);      /* The text encoding used by this database */
2606       CollSeq *pColl = 0;    /* A collating sequence */
2607 
2608       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2609       testcase( op==TK_CONST_FUNC );
2610       testcase( op==TK_FUNCTION );
2611       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2612         pFarg = 0;
2613       }else{
2614         pFarg = pExpr->x.pList;
2615       }
2616       nFarg = pFarg ? pFarg->nExpr : 0;
2617       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2618       zId = pExpr->u.zToken;
2619       nId = sqlite3Strlen30(zId);
2620       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2621       if( pDef==0 ){
2622         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2623         break;
2624       }
2625 
2626       /* Attempt a direct implementation of the built-in COALESCE() and
2627       ** IFNULL() functions.  This avoids unnecessary evalation of
2628       ** arguments past the first non-NULL argument.
2629       */
2630       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2631         int endCoalesce = sqlite3VdbeMakeLabel(v);
2632         assert( nFarg>=2 );
2633         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2634         for(i=1; i<nFarg; i++){
2635           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2636           sqlite3ExprCacheRemove(pParse, target, 1);
2637           sqlite3ExprCachePush(pParse);
2638           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2639           sqlite3ExprCachePop(pParse, 1);
2640         }
2641         sqlite3VdbeResolveLabel(v, endCoalesce);
2642         break;
2643       }
2644 
2645 
2646       if( pFarg ){
2647         r1 = sqlite3GetTempRange(pParse, nFarg);
2648 
2649         /* For length() and typeof() functions with a column argument,
2650         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2651         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2652         ** loading.
2653         */
2654         if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2655           u8 exprOp;
2656           assert( nFarg==1 );
2657           assert( pFarg->a[0].pExpr!=0 );
2658           exprOp = pFarg->a[0].pExpr->op;
2659           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2660             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2661             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2662             testcase( pDef->flags==SQLITE_FUNC_LENGTH );
2663             pFarg->a[0].pExpr->op2 = pDef->flags;
2664           }
2665         }
2666 
2667         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2668         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2669         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2670       }else{
2671         r1 = 0;
2672       }
2673 #ifndef SQLITE_OMIT_VIRTUALTABLE
2674       /* Possibly overload the function if the first argument is
2675       ** a virtual table column.
2676       **
2677       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2678       ** second argument, not the first, as the argument to test to
2679       ** see if it is a column in a virtual table.  This is done because
2680       ** the left operand of infix functions (the operand we want to
2681       ** control overloading) ends up as the second argument to the
2682       ** function.  The expression "A glob B" is equivalent to
2683       ** "glob(B,A).  We want to use the A in "A glob B" to test
2684       ** for function overloading.  But we use the B term in "glob(B,A)".
2685       */
2686       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2687         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2688       }else if( nFarg>0 ){
2689         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2690       }
2691 #endif
2692       for(i=0; i<nFarg; i++){
2693         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2694           constMask |= (1<<i);
2695         }
2696         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2697           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2698         }
2699       }
2700       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2701         if( !pColl ) pColl = db->pDfltColl;
2702         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2703       }
2704       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2705                         (char*)pDef, P4_FUNCDEF);
2706       sqlite3VdbeChangeP5(v, (u8)nFarg);
2707       if( nFarg ){
2708         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2709       }
2710       break;
2711     }
2712 #ifndef SQLITE_OMIT_SUBQUERY
2713     case TK_EXISTS:
2714     case TK_SELECT: {
2715       testcase( op==TK_EXISTS );
2716       testcase( op==TK_SELECT );
2717       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2718       break;
2719     }
2720     case TK_IN: {
2721       int destIfFalse = sqlite3VdbeMakeLabel(v);
2722       int destIfNull = sqlite3VdbeMakeLabel(v);
2723       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2724       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2725       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2726       sqlite3VdbeResolveLabel(v, destIfFalse);
2727       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2728       sqlite3VdbeResolveLabel(v, destIfNull);
2729       break;
2730     }
2731 #endif /* SQLITE_OMIT_SUBQUERY */
2732 
2733 
2734     /*
2735     **    x BETWEEN y AND z
2736     **
2737     ** This is equivalent to
2738     **
2739     **    x>=y AND x<=z
2740     **
2741     ** X is stored in pExpr->pLeft.
2742     ** Y is stored in pExpr->pList->a[0].pExpr.
2743     ** Z is stored in pExpr->pList->a[1].pExpr.
2744     */
2745     case TK_BETWEEN: {
2746       Expr *pLeft = pExpr->pLeft;
2747       struct ExprList_item *pLItem = pExpr->x.pList->a;
2748       Expr *pRight = pLItem->pExpr;
2749 
2750       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2751       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2752       testcase( regFree1==0 );
2753       testcase( regFree2==0 );
2754       r3 = sqlite3GetTempReg(pParse);
2755       r4 = sqlite3GetTempReg(pParse);
2756       codeCompare(pParse, pLeft, pRight, OP_Ge,
2757                   r1, r2, r3, SQLITE_STOREP2);
2758       pLItem++;
2759       pRight = pLItem->pExpr;
2760       sqlite3ReleaseTempReg(pParse, regFree2);
2761       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2762       testcase( regFree2==0 );
2763       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2764       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2765       sqlite3ReleaseTempReg(pParse, r3);
2766       sqlite3ReleaseTempReg(pParse, r4);
2767       break;
2768     }
2769     case TK_COLLATE:
2770     case TK_UPLUS: {
2771       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2772       break;
2773     }
2774 
2775     case TK_TRIGGER: {
2776       /* If the opcode is TK_TRIGGER, then the expression is a reference
2777       ** to a column in the new.* or old.* pseudo-tables available to
2778       ** trigger programs. In this case Expr.iTable is set to 1 for the
2779       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2780       ** is set to the column of the pseudo-table to read, or to -1 to
2781       ** read the rowid field.
2782       **
2783       ** The expression is implemented using an OP_Param opcode. The p1
2784       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2785       ** to reference another column of the old.* pseudo-table, where
2786       ** i is the index of the column. For a new.rowid reference, p1 is
2787       ** set to (n+1), where n is the number of columns in each pseudo-table.
2788       ** For a reference to any other column in the new.* pseudo-table, p1
2789       ** is set to (n+2+i), where n and i are as defined previously. For
2790       ** example, if the table on which triggers are being fired is
2791       ** declared as:
2792       **
2793       **   CREATE TABLE t1(a, b);
2794       **
2795       ** Then p1 is interpreted as follows:
2796       **
2797       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2798       **   p1==1   ->    old.a         p1==4   ->    new.a
2799       **   p1==2   ->    old.b         p1==5   ->    new.b
2800       */
2801       Table *pTab = pExpr->pTab;
2802       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2803 
2804       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2805       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2806       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2807       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2808 
2809       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2810       VdbeComment((v, "%s.%s -> $%d",
2811         (pExpr->iTable ? "new" : "old"),
2812         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2813         target
2814       ));
2815 
2816 #ifndef SQLITE_OMIT_FLOATING_POINT
2817       /* If the column has REAL affinity, it may currently be stored as an
2818       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2819       if( pExpr->iColumn>=0
2820        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2821       ){
2822         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2823       }
2824 #endif
2825       break;
2826     }
2827 
2828 
2829     /*
2830     ** Form A:
2831     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2832     **
2833     ** Form B:
2834     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2835     **
2836     ** Form A is can be transformed into the equivalent form B as follows:
2837     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2838     **        WHEN x=eN THEN rN ELSE y END
2839     **
2840     ** X (if it exists) is in pExpr->pLeft.
2841     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2842     ** ELSE clause and no other term matches, then the result of the
2843     ** exprssion is NULL.
2844     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2845     **
2846     ** The result of the expression is the Ri for the first matching Ei,
2847     ** or if there is no matching Ei, the ELSE term Y, or if there is
2848     ** no ELSE term, NULL.
2849     */
2850     default: assert( op==TK_CASE ); {
2851       int endLabel;                     /* GOTO label for end of CASE stmt */
2852       int nextCase;                     /* GOTO label for next WHEN clause */
2853       int nExpr;                        /* 2x number of WHEN terms */
2854       int i;                            /* Loop counter */
2855       ExprList *pEList;                 /* List of WHEN terms */
2856       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2857       Expr opCompare;                   /* The X==Ei expression */
2858       Expr cacheX;                      /* Cached expression X */
2859       Expr *pX;                         /* The X expression */
2860       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2861       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2862 
2863       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2864       assert((pExpr->x.pList->nExpr % 2) == 0);
2865       assert(pExpr->x.pList->nExpr > 0);
2866       pEList = pExpr->x.pList;
2867       aListelem = pEList->a;
2868       nExpr = pEList->nExpr;
2869       endLabel = sqlite3VdbeMakeLabel(v);
2870       if( (pX = pExpr->pLeft)!=0 ){
2871         cacheX = *pX;
2872         testcase( pX->op==TK_COLUMN );
2873         testcase( pX->op==TK_REGISTER );
2874         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2875         testcase( regFree1==0 );
2876         cacheX.op = TK_REGISTER;
2877         opCompare.op = TK_EQ;
2878         opCompare.pLeft = &cacheX;
2879         pTest = &opCompare;
2880         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2881         ** The value in regFree1 might get SCopy-ed into the file result.
2882         ** So make sure that the regFree1 register is not reused for other
2883         ** purposes and possibly overwritten.  */
2884         regFree1 = 0;
2885       }
2886       for(i=0; i<nExpr; i=i+2){
2887         sqlite3ExprCachePush(pParse);
2888         if( pX ){
2889           assert( pTest!=0 );
2890           opCompare.pRight = aListelem[i].pExpr;
2891         }else{
2892           pTest = aListelem[i].pExpr;
2893         }
2894         nextCase = sqlite3VdbeMakeLabel(v);
2895         testcase( pTest->op==TK_COLUMN );
2896         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2897         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2898         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2899         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2900         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2901         sqlite3ExprCachePop(pParse, 1);
2902         sqlite3VdbeResolveLabel(v, nextCase);
2903       }
2904       if( pExpr->pRight ){
2905         sqlite3ExprCachePush(pParse);
2906         sqlite3ExprCode(pParse, pExpr->pRight, target);
2907         sqlite3ExprCachePop(pParse, 1);
2908       }else{
2909         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2910       }
2911       assert( db->mallocFailed || pParse->nErr>0
2912            || pParse->iCacheLevel==iCacheLevel );
2913       sqlite3VdbeResolveLabel(v, endLabel);
2914       break;
2915     }
2916 #ifndef SQLITE_OMIT_TRIGGER
2917     case TK_RAISE: {
2918       assert( pExpr->affinity==OE_Rollback
2919            || pExpr->affinity==OE_Abort
2920            || pExpr->affinity==OE_Fail
2921            || pExpr->affinity==OE_Ignore
2922       );
2923       if( !pParse->pTriggerTab ){
2924         sqlite3ErrorMsg(pParse,
2925                        "RAISE() may only be used within a trigger-program");
2926         return 0;
2927       }
2928       if( pExpr->affinity==OE_Abort ){
2929         sqlite3MayAbort(pParse);
2930       }
2931       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2932       if( pExpr->affinity==OE_Ignore ){
2933         sqlite3VdbeAddOp4(
2934             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2935       }else{
2936         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
2937                               pExpr->affinity, pExpr->u.zToken, 0);
2938       }
2939 
2940       break;
2941     }
2942 #endif
2943   }
2944   sqlite3ReleaseTempReg(pParse, regFree1);
2945   sqlite3ReleaseTempReg(pParse, regFree2);
2946   return inReg;
2947 }
2948 
2949 /*
2950 ** Generate code to evaluate an expression and store the results
2951 ** into a register.  Return the register number where the results
2952 ** are stored.
2953 **
2954 ** If the register is a temporary register that can be deallocated,
2955 ** then write its number into *pReg.  If the result register is not
2956 ** a temporary, then set *pReg to zero.
2957 */
2958 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2959   int r1 = sqlite3GetTempReg(pParse);
2960   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2961   if( r2==r1 ){
2962     *pReg = r1;
2963   }else{
2964     sqlite3ReleaseTempReg(pParse, r1);
2965     *pReg = 0;
2966   }
2967   return r2;
2968 }
2969 
2970 /*
2971 ** Generate code that will evaluate expression pExpr and store the
2972 ** results in register target.  The results are guaranteed to appear
2973 ** in register target.
2974 */
2975 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2976   int inReg;
2977 
2978   assert( target>0 && target<=pParse->nMem );
2979   if( pExpr && pExpr->op==TK_REGISTER ){
2980     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2981   }else{
2982     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2983     assert( pParse->pVdbe || pParse->db->mallocFailed );
2984     if( inReg!=target && pParse->pVdbe ){
2985       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2986     }
2987   }
2988   return target;
2989 }
2990 
2991 /*
2992 ** Generate code that evalutes the given expression and puts the result
2993 ** in register target.
2994 **
2995 ** Also make a copy of the expression results into another "cache" register
2996 ** and modify the expression so that the next time it is evaluated,
2997 ** the result is a copy of the cache register.
2998 **
2999 ** This routine is used for expressions that are used multiple
3000 ** times.  They are evaluated once and the results of the expression
3001 ** are reused.
3002 */
3003 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3004   Vdbe *v = pParse->pVdbe;
3005   int inReg;
3006   inReg = sqlite3ExprCode(pParse, pExpr, target);
3007   assert( target>0 );
3008   /* This routine is called for terms to INSERT or UPDATE.  And the only
3009   ** other place where expressions can be converted into TK_REGISTER is
3010   ** in WHERE clause processing.  So as currently implemented, there is
3011   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
3012   ** keep the ALWAYS() in case the conditions above change with future
3013   ** modifications or enhancements. */
3014   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
3015     int iMem;
3016     iMem = ++pParse->nMem;
3017     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
3018     pExpr->iTable = iMem;
3019     pExpr->op2 = pExpr->op;
3020     pExpr->op = TK_REGISTER;
3021   }
3022   return inReg;
3023 }
3024 
3025 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3026 /*
3027 ** Generate a human-readable explanation of an expression tree.
3028 */
3029 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3030   int op;                   /* The opcode being coded */
3031   const char *zBinOp = 0;   /* Binary operator */
3032   const char *zUniOp = 0;   /* Unary operator */
3033   if( pExpr==0 ){
3034     op = TK_NULL;
3035   }else{
3036     op = pExpr->op;
3037   }
3038   switch( op ){
3039     case TK_AGG_COLUMN: {
3040       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3041             pExpr->iTable, pExpr->iColumn);
3042       break;
3043     }
3044     case TK_COLUMN: {
3045       if( pExpr->iTable<0 ){
3046         /* This only happens when coding check constraints */
3047         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3048       }else{
3049         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3050                              pExpr->iTable, pExpr->iColumn);
3051       }
3052       break;
3053     }
3054     case TK_INTEGER: {
3055       if( pExpr->flags & EP_IntValue ){
3056         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3057       }else{
3058         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3059       }
3060       break;
3061     }
3062 #ifndef SQLITE_OMIT_FLOATING_POINT
3063     case TK_FLOAT: {
3064       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3065       break;
3066     }
3067 #endif
3068     case TK_STRING: {
3069       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3070       break;
3071     }
3072     case TK_NULL: {
3073       sqlite3ExplainPrintf(pOut,"NULL");
3074       break;
3075     }
3076 #ifndef SQLITE_OMIT_BLOB_LITERAL
3077     case TK_BLOB: {
3078       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3079       break;
3080     }
3081 #endif
3082     case TK_VARIABLE: {
3083       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3084                            pExpr->u.zToken, pExpr->iColumn);
3085       break;
3086     }
3087     case TK_REGISTER: {
3088       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3089       break;
3090     }
3091     case TK_AS: {
3092       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3093       break;
3094     }
3095 #ifndef SQLITE_OMIT_CAST
3096     case TK_CAST: {
3097       /* Expressions of the form:   CAST(pLeft AS token) */
3098       const char *zAff = "unk";
3099       switch( sqlite3AffinityType(pExpr->u.zToken) ){
3100         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3101         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3102         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3103         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3104         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3105       }
3106       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3107       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3108       sqlite3ExplainPrintf(pOut, ")");
3109       break;
3110     }
3111 #endif /* SQLITE_OMIT_CAST */
3112     case TK_LT:      zBinOp = "LT";     break;
3113     case TK_LE:      zBinOp = "LE";     break;
3114     case TK_GT:      zBinOp = "GT";     break;
3115     case TK_GE:      zBinOp = "GE";     break;
3116     case TK_NE:      zBinOp = "NE";     break;
3117     case TK_EQ:      zBinOp = "EQ";     break;
3118     case TK_IS:      zBinOp = "IS";     break;
3119     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3120     case TK_AND:     zBinOp = "AND";    break;
3121     case TK_OR:      zBinOp = "OR";     break;
3122     case TK_PLUS:    zBinOp = "ADD";    break;
3123     case TK_STAR:    zBinOp = "MUL";    break;
3124     case TK_MINUS:   zBinOp = "SUB";    break;
3125     case TK_REM:     zBinOp = "REM";    break;
3126     case TK_BITAND:  zBinOp = "BITAND"; break;
3127     case TK_BITOR:   zBinOp = "BITOR";  break;
3128     case TK_SLASH:   zBinOp = "DIV";    break;
3129     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3130     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3131     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3132 
3133     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3134     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3135     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3136     case TK_NOT:     zUniOp = "NOT";    break;
3137     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3138     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3139 
3140     case TK_COLLATE: {
3141       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3142       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3143       break;
3144     }
3145 
3146     case TK_AGG_FUNCTION:
3147     case TK_CONST_FUNC:
3148     case TK_FUNCTION: {
3149       ExprList *pFarg;       /* List of function arguments */
3150       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
3151         pFarg = 0;
3152       }else{
3153         pFarg = pExpr->x.pList;
3154       }
3155       if( op==TK_AGG_FUNCTION ){
3156         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3157                              pExpr->op2, pExpr->u.zToken);
3158       }else{
3159         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3160       }
3161       if( pFarg ){
3162         sqlite3ExplainExprList(pOut, pFarg);
3163       }
3164       sqlite3ExplainPrintf(pOut, ")");
3165       break;
3166     }
3167 #ifndef SQLITE_OMIT_SUBQUERY
3168     case TK_EXISTS: {
3169       sqlite3ExplainPrintf(pOut, "EXISTS(");
3170       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3171       sqlite3ExplainPrintf(pOut,")");
3172       break;
3173     }
3174     case TK_SELECT: {
3175       sqlite3ExplainPrintf(pOut, "(");
3176       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3177       sqlite3ExplainPrintf(pOut, ")");
3178       break;
3179     }
3180     case TK_IN: {
3181       sqlite3ExplainPrintf(pOut, "IN(");
3182       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3183       sqlite3ExplainPrintf(pOut, ",");
3184       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3185         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3186       }else{
3187         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3188       }
3189       sqlite3ExplainPrintf(pOut, ")");
3190       break;
3191     }
3192 #endif /* SQLITE_OMIT_SUBQUERY */
3193 
3194     /*
3195     **    x BETWEEN y AND z
3196     **
3197     ** This is equivalent to
3198     **
3199     **    x>=y AND x<=z
3200     **
3201     ** X is stored in pExpr->pLeft.
3202     ** Y is stored in pExpr->pList->a[0].pExpr.
3203     ** Z is stored in pExpr->pList->a[1].pExpr.
3204     */
3205     case TK_BETWEEN: {
3206       Expr *pX = pExpr->pLeft;
3207       Expr *pY = pExpr->x.pList->a[0].pExpr;
3208       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3209       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3210       sqlite3ExplainExpr(pOut, pX);
3211       sqlite3ExplainPrintf(pOut, ",");
3212       sqlite3ExplainExpr(pOut, pY);
3213       sqlite3ExplainPrintf(pOut, ",");
3214       sqlite3ExplainExpr(pOut, pZ);
3215       sqlite3ExplainPrintf(pOut, ")");
3216       break;
3217     }
3218     case TK_TRIGGER: {
3219       /* If the opcode is TK_TRIGGER, then the expression is a reference
3220       ** to a column in the new.* or old.* pseudo-tables available to
3221       ** trigger programs. In this case Expr.iTable is set to 1 for the
3222       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3223       ** is set to the column of the pseudo-table to read, or to -1 to
3224       ** read the rowid field.
3225       */
3226       sqlite3ExplainPrintf(pOut, "%s(%d)",
3227           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3228       break;
3229     }
3230     case TK_CASE: {
3231       sqlite3ExplainPrintf(pOut, "CASE(");
3232       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3233       sqlite3ExplainPrintf(pOut, ",");
3234       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3235       break;
3236     }
3237 #ifndef SQLITE_OMIT_TRIGGER
3238     case TK_RAISE: {
3239       const char *zType = "unk";
3240       switch( pExpr->affinity ){
3241         case OE_Rollback:   zType = "rollback";  break;
3242         case OE_Abort:      zType = "abort";     break;
3243         case OE_Fail:       zType = "fail";      break;
3244         case OE_Ignore:     zType = "ignore";    break;
3245       }
3246       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3247       break;
3248     }
3249 #endif
3250   }
3251   if( zBinOp ){
3252     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3253     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3254     sqlite3ExplainPrintf(pOut,",");
3255     sqlite3ExplainExpr(pOut, pExpr->pRight);
3256     sqlite3ExplainPrintf(pOut,")");
3257   }else if( zUniOp ){
3258     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3259     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3260     sqlite3ExplainPrintf(pOut,")");
3261   }
3262 }
3263 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3264 
3265 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3266 /*
3267 ** Generate a human-readable explanation of an expression list.
3268 */
3269 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3270   int i;
3271   if( pList==0 || pList->nExpr==0 ){
3272     sqlite3ExplainPrintf(pOut, "(empty-list)");
3273     return;
3274   }else if( pList->nExpr==1 ){
3275     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3276   }else{
3277     sqlite3ExplainPush(pOut);
3278     for(i=0; i<pList->nExpr; i++){
3279       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3280       sqlite3ExplainPush(pOut);
3281       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3282       sqlite3ExplainPop(pOut);
3283       if( pList->a[i].zName ){
3284         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3285       }
3286       if( pList->a[i].bSpanIsTab ){
3287         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3288       }
3289       if( i<pList->nExpr-1 ){
3290         sqlite3ExplainNL(pOut);
3291       }
3292     }
3293     sqlite3ExplainPop(pOut);
3294   }
3295 }
3296 #endif /* SQLITE_DEBUG */
3297 
3298 /*
3299 ** Return TRUE if pExpr is an constant expression that is appropriate
3300 ** for factoring out of a loop.  Appropriate expressions are:
3301 **
3302 **    *  Any expression that evaluates to two or more opcodes.
3303 **
3304 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
3305 **       or OP_Variable that does not need to be placed in a
3306 **       specific register.
3307 **
3308 ** There is no point in factoring out single-instruction constant
3309 ** expressions that need to be placed in a particular register.
3310 ** We could factor them out, but then we would end up adding an
3311 ** OP_SCopy instruction to move the value into the correct register
3312 ** later.  We might as well just use the original instruction and
3313 ** avoid the OP_SCopy.
3314 */
3315 static int isAppropriateForFactoring(Expr *p){
3316   if( !sqlite3ExprIsConstantNotJoin(p) ){
3317     return 0;  /* Only constant expressions are appropriate for factoring */
3318   }
3319   if( (p->flags & EP_FixedDest)==0 ){
3320     return 1;  /* Any constant without a fixed destination is appropriate */
3321   }
3322   while( p->op==TK_UPLUS ) p = p->pLeft;
3323   switch( p->op ){
3324 #ifndef SQLITE_OMIT_BLOB_LITERAL
3325     case TK_BLOB:
3326 #endif
3327     case TK_VARIABLE:
3328     case TK_INTEGER:
3329     case TK_FLOAT:
3330     case TK_NULL:
3331     case TK_STRING: {
3332       testcase( p->op==TK_BLOB );
3333       testcase( p->op==TK_VARIABLE );
3334       testcase( p->op==TK_INTEGER );
3335       testcase( p->op==TK_FLOAT );
3336       testcase( p->op==TK_NULL );
3337       testcase( p->op==TK_STRING );
3338       /* Single-instruction constants with a fixed destination are
3339       ** better done in-line.  If we factor them, they will just end
3340       ** up generating an OP_SCopy to move the value to the destination
3341       ** register. */
3342       return 0;
3343     }
3344     case TK_UMINUS: {
3345       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3346         return 0;
3347       }
3348       break;
3349     }
3350     default: {
3351       break;
3352     }
3353   }
3354   return 1;
3355 }
3356 
3357 /*
3358 ** If pExpr is a constant expression that is appropriate for
3359 ** factoring out of a loop, then evaluate the expression
3360 ** into a register and convert the expression into a TK_REGISTER
3361 ** expression.
3362 */
3363 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3364   Parse *pParse = pWalker->pParse;
3365   switch( pExpr->op ){
3366     case TK_IN:
3367     case TK_REGISTER: {
3368       return WRC_Prune;
3369     }
3370     case TK_COLLATE: {
3371       return WRC_Continue;
3372     }
3373     case TK_FUNCTION:
3374     case TK_AGG_FUNCTION:
3375     case TK_CONST_FUNC: {
3376       /* The arguments to a function have a fixed destination.
3377       ** Mark them this way to avoid generated unneeded OP_SCopy
3378       ** instructions.
3379       */
3380       ExprList *pList = pExpr->x.pList;
3381       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3382       if( pList ){
3383         int i = pList->nExpr;
3384         struct ExprList_item *pItem = pList->a;
3385         for(; i>0; i--, pItem++){
3386           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3387         }
3388       }
3389       break;
3390     }
3391   }
3392   if( isAppropriateForFactoring(pExpr) ){
3393     int r1 = ++pParse->nMem;
3394     int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3395     /* If r2!=r1, it means that register r1 is never used.  That is harmless
3396     ** but suboptimal, so we want to know about the situation to fix it.
3397     ** Hence the following assert: */
3398     assert( r2==r1 );
3399     pExpr->op2 = pExpr->op;
3400     pExpr->op = TK_REGISTER;
3401     pExpr->iTable = r2;
3402     return WRC_Prune;
3403   }
3404   return WRC_Continue;
3405 }
3406 
3407 /*
3408 ** Preevaluate constant subexpressions within pExpr and store the
3409 ** results in registers.  Modify pExpr so that the constant subexpresions
3410 ** are TK_REGISTER opcodes that refer to the precomputed values.
3411 **
3412 ** This routine is a no-op if the jump to the cookie-check code has
3413 ** already occur.  Since the cookie-check jump is generated prior to
3414 ** any other serious processing, this check ensures that there is no
3415 ** way to accidently bypass the constant initializations.
3416 **
3417 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3418 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3419 ** interface.  This allows test logic to verify that the same answer is
3420 ** obtained for queries regardless of whether or not constants are
3421 ** precomputed into registers or if they are inserted in-line.
3422 */
3423 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3424   Walker w;
3425   if( pParse->cookieGoto ) return;
3426   if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return;
3427   memset(&w, 0, sizeof(w));
3428   w.xExprCallback = evalConstExpr;
3429   w.pParse = pParse;
3430   sqlite3WalkExpr(&w, pExpr);
3431 }
3432 
3433 
3434 /*
3435 ** Generate code that pushes the value of every element of the given
3436 ** expression list into a sequence of registers beginning at target.
3437 **
3438 ** Return the number of elements evaluated.
3439 */
3440 int sqlite3ExprCodeExprList(
3441   Parse *pParse,     /* Parsing context */
3442   ExprList *pList,   /* The expression list to be coded */
3443   int target,        /* Where to write results */
3444   int doHardCopy     /* Make a hard copy of every element */
3445 ){
3446   struct ExprList_item *pItem;
3447   int i, n;
3448   assert( pList!=0 );
3449   assert( target>0 );
3450   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3451   n = pList->nExpr;
3452   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3453     Expr *pExpr = pItem->pExpr;
3454     int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3455     if( inReg!=target+i ){
3456       sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3457                         inReg, target+i);
3458     }
3459   }
3460   return n;
3461 }
3462 
3463 /*
3464 ** Generate code for a BETWEEN operator.
3465 **
3466 **    x BETWEEN y AND z
3467 **
3468 ** The above is equivalent to
3469 **
3470 **    x>=y AND x<=z
3471 **
3472 ** Code it as such, taking care to do the common subexpression
3473 ** elementation of x.
3474 */
3475 static void exprCodeBetween(
3476   Parse *pParse,    /* Parsing and code generating context */
3477   Expr *pExpr,      /* The BETWEEN expression */
3478   int dest,         /* Jump here if the jump is taken */
3479   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3480   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3481 ){
3482   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3483   Expr compLeft;    /* The  x>=y  term */
3484   Expr compRight;   /* The  x<=z  term */
3485   Expr exprX;       /* The  x  subexpression */
3486   int regFree1 = 0; /* Temporary use register */
3487 
3488   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3489   exprX = *pExpr->pLeft;
3490   exprAnd.op = TK_AND;
3491   exprAnd.pLeft = &compLeft;
3492   exprAnd.pRight = &compRight;
3493   compLeft.op = TK_GE;
3494   compLeft.pLeft = &exprX;
3495   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3496   compRight.op = TK_LE;
3497   compRight.pLeft = &exprX;
3498   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3499   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3500   exprX.op = TK_REGISTER;
3501   if( jumpIfTrue ){
3502     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3503   }else{
3504     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3505   }
3506   sqlite3ReleaseTempReg(pParse, regFree1);
3507 
3508   /* Ensure adequate test coverage */
3509   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3510   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3511   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3512   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3513   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3514   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3515   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3516   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3517 }
3518 
3519 /*
3520 ** Generate code for a boolean expression such that a jump is made
3521 ** to the label "dest" if the expression is true but execution
3522 ** continues straight thru if the expression is false.
3523 **
3524 ** If the expression evaluates to NULL (neither true nor false), then
3525 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3526 **
3527 ** This code depends on the fact that certain token values (ex: TK_EQ)
3528 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3529 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3530 ** the make process cause these values to align.  Assert()s in the code
3531 ** below verify that the numbers are aligned correctly.
3532 */
3533 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3534   Vdbe *v = pParse->pVdbe;
3535   int op = 0;
3536   int regFree1 = 0;
3537   int regFree2 = 0;
3538   int r1, r2;
3539 
3540   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3541   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3542   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3543   op = pExpr->op;
3544   switch( op ){
3545     case TK_AND: {
3546       int d2 = sqlite3VdbeMakeLabel(v);
3547       testcase( jumpIfNull==0 );
3548       sqlite3ExprCachePush(pParse);
3549       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3550       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3551       sqlite3VdbeResolveLabel(v, d2);
3552       sqlite3ExprCachePop(pParse, 1);
3553       break;
3554     }
3555     case TK_OR: {
3556       testcase( jumpIfNull==0 );
3557       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3558       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3559       break;
3560     }
3561     case TK_NOT: {
3562       testcase( jumpIfNull==0 );
3563       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3564       break;
3565     }
3566     case TK_LT:
3567     case TK_LE:
3568     case TK_GT:
3569     case TK_GE:
3570     case TK_NE:
3571     case TK_EQ: {
3572       assert( TK_LT==OP_Lt );
3573       assert( TK_LE==OP_Le );
3574       assert( TK_GT==OP_Gt );
3575       assert( TK_GE==OP_Ge );
3576       assert( TK_EQ==OP_Eq );
3577       assert( TK_NE==OP_Ne );
3578       testcase( op==TK_LT );
3579       testcase( op==TK_LE );
3580       testcase( op==TK_GT );
3581       testcase( op==TK_GE );
3582       testcase( op==TK_EQ );
3583       testcase( op==TK_NE );
3584       testcase( jumpIfNull==0 );
3585       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3586       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3587       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3588                   r1, r2, dest, jumpIfNull);
3589       testcase( regFree1==0 );
3590       testcase( regFree2==0 );
3591       break;
3592     }
3593     case TK_IS:
3594     case TK_ISNOT: {
3595       testcase( op==TK_IS );
3596       testcase( op==TK_ISNOT );
3597       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3598       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3599       op = (op==TK_IS) ? TK_EQ : TK_NE;
3600       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3601                   r1, r2, dest, SQLITE_NULLEQ);
3602       testcase( regFree1==0 );
3603       testcase( regFree2==0 );
3604       break;
3605     }
3606     case TK_ISNULL:
3607     case TK_NOTNULL: {
3608       assert( TK_ISNULL==OP_IsNull );
3609       assert( TK_NOTNULL==OP_NotNull );
3610       testcase( op==TK_ISNULL );
3611       testcase( op==TK_NOTNULL );
3612       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3613       sqlite3VdbeAddOp2(v, op, r1, dest);
3614       testcase( regFree1==0 );
3615       break;
3616     }
3617     case TK_BETWEEN: {
3618       testcase( jumpIfNull==0 );
3619       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3620       break;
3621     }
3622 #ifndef SQLITE_OMIT_SUBQUERY
3623     case TK_IN: {
3624       int destIfFalse = sqlite3VdbeMakeLabel(v);
3625       int destIfNull = jumpIfNull ? dest : destIfFalse;
3626       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3627       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3628       sqlite3VdbeResolveLabel(v, destIfFalse);
3629       break;
3630     }
3631 #endif
3632     default: {
3633       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3634       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3635       testcase( regFree1==0 );
3636       testcase( jumpIfNull==0 );
3637       break;
3638     }
3639   }
3640   sqlite3ReleaseTempReg(pParse, regFree1);
3641   sqlite3ReleaseTempReg(pParse, regFree2);
3642 }
3643 
3644 /*
3645 ** Generate code for a boolean expression such that a jump is made
3646 ** to the label "dest" if the expression is false but execution
3647 ** continues straight thru if the expression is true.
3648 **
3649 ** If the expression evaluates to NULL (neither true nor false) then
3650 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3651 ** is 0.
3652 */
3653 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3654   Vdbe *v = pParse->pVdbe;
3655   int op = 0;
3656   int regFree1 = 0;
3657   int regFree2 = 0;
3658   int r1, r2;
3659 
3660   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3661   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3662   if( pExpr==0 )    return;
3663 
3664   /* The value of pExpr->op and op are related as follows:
3665   **
3666   **       pExpr->op            op
3667   **       ---------          ----------
3668   **       TK_ISNULL          OP_NotNull
3669   **       TK_NOTNULL         OP_IsNull
3670   **       TK_NE              OP_Eq
3671   **       TK_EQ              OP_Ne
3672   **       TK_GT              OP_Le
3673   **       TK_LE              OP_Gt
3674   **       TK_GE              OP_Lt
3675   **       TK_LT              OP_Ge
3676   **
3677   ** For other values of pExpr->op, op is undefined and unused.
3678   ** The value of TK_ and OP_ constants are arranged such that we
3679   ** can compute the mapping above using the following expression.
3680   ** Assert()s verify that the computation is correct.
3681   */
3682   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3683 
3684   /* Verify correct alignment of TK_ and OP_ constants
3685   */
3686   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3687   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3688   assert( pExpr->op!=TK_NE || op==OP_Eq );
3689   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3690   assert( pExpr->op!=TK_LT || op==OP_Ge );
3691   assert( pExpr->op!=TK_LE || op==OP_Gt );
3692   assert( pExpr->op!=TK_GT || op==OP_Le );
3693   assert( pExpr->op!=TK_GE || op==OP_Lt );
3694 
3695   switch( pExpr->op ){
3696     case TK_AND: {
3697       testcase( jumpIfNull==0 );
3698       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3699       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3700       break;
3701     }
3702     case TK_OR: {
3703       int d2 = sqlite3VdbeMakeLabel(v);
3704       testcase( jumpIfNull==0 );
3705       sqlite3ExprCachePush(pParse);
3706       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3707       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3708       sqlite3VdbeResolveLabel(v, d2);
3709       sqlite3ExprCachePop(pParse, 1);
3710       break;
3711     }
3712     case TK_NOT: {
3713       testcase( jumpIfNull==0 );
3714       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3715       break;
3716     }
3717     case TK_LT:
3718     case TK_LE:
3719     case TK_GT:
3720     case TK_GE:
3721     case TK_NE:
3722     case TK_EQ: {
3723       testcase( op==TK_LT );
3724       testcase( op==TK_LE );
3725       testcase( op==TK_GT );
3726       testcase( op==TK_GE );
3727       testcase( op==TK_EQ );
3728       testcase( op==TK_NE );
3729       testcase( jumpIfNull==0 );
3730       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3731       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3732       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3733                   r1, r2, dest, jumpIfNull);
3734       testcase( regFree1==0 );
3735       testcase( regFree2==0 );
3736       break;
3737     }
3738     case TK_IS:
3739     case TK_ISNOT: {
3740       testcase( pExpr->op==TK_IS );
3741       testcase( pExpr->op==TK_ISNOT );
3742       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3743       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3744       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3745       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3746                   r1, r2, dest, SQLITE_NULLEQ);
3747       testcase( regFree1==0 );
3748       testcase( regFree2==0 );
3749       break;
3750     }
3751     case TK_ISNULL:
3752     case TK_NOTNULL: {
3753       testcase( op==TK_ISNULL );
3754       testcase( op==TK_NOTNULL );
3755       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3756       sqlite3VdbeAddOp2(v, op, r1, dest);
3757       testcase( regFree1==0 );
3758       break;
3759     }
3760     case TK_BETWEEN: {
3761       testcase( jumpIfNull==0 );
3762       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3763       break;
3764     }
3765 #ifndef SQLITE_OMIT_SUBQUERY
3766     case TK_IN: {
3767       if( jumpIfNull ){
3768         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3769       }else{
3770         int destIfNull = sqlite3VdbeMakeLabel(v);
3771         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3772         sqlite3VdbeResolveLabel(v, destIfNull);
3773       }
3774       break;
3775     }
3776 #endif
3777     default: {
3778       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3779       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3780       testcase( regFree1==0 );
3781       testcase( jumpIfNull==0 );
3782       break;
3783     }
3784   }
3785   sqlite3ReleaseTempReg(pParse, regFree1);
3786   sqlite3ReleaseTempReg(pParse, regFree2);
3787 }
3788 
3789 /*
3790 ** Do a deep comparison of two expression trees.  Return 0 if the two
3791 ** expressions are completely identical.  Return 1 if they differ only
3792 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3793 ** other than the top-level COLLATE operator.
3794 **
3795 ** Sometimes this routine will return 2 even if the two expressions
3796 ** really are equivalent.  If we cannot prove that the expressions are
3797 ** identical, we return 2 just to be safe.  So if this routine
3798 ** returns 2, then you do not really know for certain if the two
3799 ** expressions are the same.  But if you get a 0 or 1 return, then you
3800 ** can be sure the expressions are the same.  In the places where
3801 ** this routine is used, it does not hurt to get an extra 2 - that
3802 ** just might result in some slightly slower code.  But returning
3803 ** an incorrect 0 or 1 could lead to a malfunction.
3804 */
3805 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3806   if( pA==0||pB==0 ){
3807     return pB==pA ? 0 : 2;
3808   }
3809   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3810   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3811   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3812     return 2;
3813   }
3814   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3815   if( pA->op!=pB->op ){
3816     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){
3817       return 1;
3818     }
3819     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){
3820       return 1;
3821     }
3822     return 2;
3823   }
3824   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3825   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3826   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3827   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3828   if( ExprHasProperty(pA, EP_IntValue) ){
3829     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3830       return 2;
3831     }
3832   }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){
3833     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3834     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3835       return pA->op==TK_COLLATE ? 1 : 2;
3836     }
3837   }
3838   return 0;
3839 }
3840 
3841 /*
3842 ** Compare two ExprList objects.  Return 0 if they are identical and
3843 ** non-zero if they differ in any way.
3844 **
3845 ** This routine might return non-zero for equivalent ExprLists.  The
3846 ** only consequence will be disabled optimizations.  But this routine
3847 ** must never return 0 if the two ExprList objects are different, or
3848 ** a malfunction will result.
3849 **
3850 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3851 ** always differs from a non-NULL pointer.
3852 */
3853 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3854   int i;
3855   if( pA==0 && pB==0 ) return 0;
3856   if( pA==0 || pB==0 ) return 1;
3857   if( pA->nExpr!=pB->nExpr ) return 1;
3858   for(i=0; i<pA->nExpr; i++){
3859     Expr *pExprA = pA->a[i].pExpr;
3860     Expr *pExprB = pB->a[i].pExpr;
3861     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3862     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3863   }
3864   return 0;
3865 }
3866 
3867 /*
3868 ** An instance of the following structure is used by the tree walker
3869 ** to count references to table columns in the arguments of an
3870 ** aggregate function, in order to implement the
3871 ** sqlite3FunctionThisSrc() routine.
3872 */
3873 struct SrcCount {
3874   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3875   int nThis;       /* Number of references to columns in pSrcList */
3876   int nOther;      /* Number of references to columns in other FROM clauses */
3877 };
3878 
3879 /*
3880 ** Count the number of references to columns.
3881 */
3882 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3883   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3884   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3885   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3886   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3887   ** NEVER() will need to be removed. */
3888   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3889     int i;
3890     struct SrcCount *p = pWalker->u.pSrcCount;
3891     SrcList *pSrc = p->pSrc;
3892     for(i=0; i<pSrc->nSrc; i++){
3893       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3894     }
3895     if( i<pSrc->nSrc ){
3896       p->nThis++;
3897     }else{
3898       p->nOther++;
3899     }
3900   }
3901   return WRC_Continue;
3902 }
3903 
3904 /*
3905 ** Determine if any of the arguments to the pExpr Function reference
3906 ** pSrcList.  Return true if they do.  Also return true if the function
3907 ** has no arguments or has only constant arguments.  Return false if pExpr
3908 ** references columns but not columns of tables found in pSrcList.
3909 */
3910 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3911   Walker w;
3912   struct SrcCount cnt;
3913   assert( pExpr->op==TK_AGG_FUNCTION );
3914   memset(&w, 0, sizeof(w));
3915   w.xExprCallback = exprSrcCount;
3916   w.u.pSrcCount = &cnt;
3917   cnt.pSrc = pSrcList;
3918   cnt.nThis = 0;
3919   cnt.nOther = 0;
3920   sqlite3WalkExprList(&w, pExpr->x.pList);
3921   return cnt.nThis>0 || cnt.nOther==0;
3922 }
3923 
3924 /*
3925 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3926 ** the new element.  Return a negative number if malloc fails.
3927 */
3928 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3929   int i;
3930   pInfo->aCol = sqlite3ArrayAllocate(
3931        db,
3932        pInfo->aCol,
3933        sizeof(pInfo->aCol[0]),
3934        &pInfo->nColumn,
3935        &i
3936   );
3937   return i;
3938 }
3939 
3940 /*
3941 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3942 ** the new element.  Return a negative number if malloc fails.
3943 */
3944 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3945   int i;
3946   pInfo->aFunc = sqlite3ArrayAllocate(
3947        db,
3948        pInfo->aFunc,
3949        sizeof(pInfo->aFunc[0]),
3950        &pInfo->nFunc,
3951        &i
3952   );
3953   return i;
3954 }
3955 
3956 /*
3957 ** This is the xExprCallback for a tree walker.  It is used to
3958 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3959 ** for additional information.
3960 */
3961 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3962   int i;
3963   NameContext *pNC = pWalker->u.pNC;
3964   Parse *pParse = pNC->pParse;
3965   SrcList *pSrcList = pNC->pSrcList;
3966   AggInfo *pAggInfo = pNC->pAggInfo;
3967 
3968   switch( pExpr->op ){
3969     case TK_AGG_COLUMN:
3970     case TK_COLUMN: {
3971       testcase( pExpr->op==TK_AGG_COLUMN );
3972       testcase( pExpr->op==TK_COLUMN );
3973       /* Check to see if the column is in one of the tables in the FROM
3974       ** clause of the aggregate query */
3975       if( ALWAYS(pSrcList!=0) ){
3976         struct SrcList_item *pItem = pSrcList->a;
3977         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3978           struct AggInfo_col *pCol;
3979           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3980           if( pExpr->iTable==pItem->iCursor ){
3981             /* If we reach this point, it means that pExpr refers to a table
3982             ** that is in the FROM clause of the aggregate query.
3983             **
3984             ** Make an entry for the column in pAggInfo->aCol[] if there
3985             ** is not an entry there already.
3986             */
3987             int k;
3988             pCol = pAggInfo->aCol;
3989             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3990               if( pCol->iTable==pExpr->iTable &&
3991                   pCol->iColumn==pExpr->iColumn ){
3992                 break;
3993               }
3994             }
3995             if( (k>=pAggInfo->nColumn)
3996              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3997             ){
3998               pCol = &pAggInfo->aCol[k];
3999               pCol->pTab = pExpr->pTab;
4000               pCol->iTable = pExpr->iTable;
4001               pCol->iColumn = pExpr->iColumn;
4002               pCol->iMem = ++pParse->nMem;
4003               pCol->iSorterColumn = -1;
4004               pCol->pExpr = pExpr;
4005               if( pAggInfo->pGroupBy ){
4006                 int j, n;
4007                 ExprList *pGB = pAggInfo->pGroupBy;
4008                 struct ExprList_item *pTerm = pGB->a;
4009                 n = pGB->nExpr;
4010                 for(j=0; j<n; j++, pTerm++){
4011                   Expr *pE = pTerm->pExpr;
4012                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4013                       pE->iColumn==pExpr->iColumn ){
4014                     pCol->iSorterColumn = j;
4015                     break;
4016                   }
4017                 }
4018               }
4019               if( pCol->iSorterColumn<0 ){
4020                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4021               }
4022             }
4023             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4024             ** because it was there before or because we just created it).
4025             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4026             ** pAggInfo->aCol[] entry.
4027             */
4028             ExprSetIrreducible(pExpr);
4029             pExpr->pAggInfo = pAggInfo;
4030             pExpr->op = TK_AGG_COLUMN;
4031             pExpr->iAgg = (i16)k;
4032             break;
4033           } /* endif pExpr->iTable==pItem->iCursor */
4034         } /* end loop over pSrcList */
4035       }
4036       return WRC_Prune;
4037     }
4038     case TK_AGG_FUNCTION: {
4039       if( (pNC->ncFlags & NC_InAggFunc)==0
4040        && pWalker->walkerDepth==pExpr->op2
4041       ){
4042         /* Check to see if pExpr is a duplicate of another aggregate
4043         ** function that is already in the pAggInfo structure
4044         */
4045         struct AggInfo_func *pItem = pAggInfo->aFunc;
4046         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4047           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
4048             break;
4049           }
4050         }
4051         if( i>=pAggInfo->nFunc ){
4052           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4053           */
4054           u8 enc = ENC(pParse->db);
4055           i = addAggInfoFunc(pParse->db, pAggInfo);
4056           if( i>=0 ){
4057             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4058             pItem = &pAggInfo->aFunc[i];
4059             pItem->pExpr = pExpr;
4060             pItem->iMem = ++pParse->nMem;
4061             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4062             pItem->pFunc = sqlite3FindFunction(pParse->db,
4063                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4064                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4065             if( pExpr->flags & EP_Distinct ){
4066               pItem->iDistinct = pParse->nTab++;
4067             }else{
4068               pItem->iDistinct = -1;
4069             }
4070           }
4071         }
4072         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4073         */
4074         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4075         ExprSetIrreducible(pExpr);
4076         pExpr->iAgg = (i16)i;
4077         pExpr->pAggInfo = pAggInfo;
4078         return WRC_Prune;
4079       }else{
4080         return WRC_Continue;
4081       }
4082     }
4083   }
4084   return WRC_Continue;
4085 }
4086 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4087   UNUSED_PARAMETER(pWalker);
4088   UNUSED_PARAMETER(pSelect);
4089   return WRC_Continue;
4090 }
4091 
4092 /*
4093 ** Analyze the pExpr expression looking for aggregate functions and
4094 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4095 ** points to.  Additional entries are made on the AggInfo object as
4096 ** necessary.
4097 **
4098 ** This routine should only be called after the expression has been
4099 ** analyzed by sqlite3ResolveExprNames().
4100 */
4101 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4102   Walker w;
4103   memset(&w, 0, sizeof(w));
4104   w.xExprCallback = analyzeAggregate;
4105   w.xSelectCallback = analyzeAggregatesInSelect;
4106   w.u.pNC = pNC;
4107   assert( pNC->pSrcList!=0 );
4108   sqlite3WalkExpr(&w, pExpr);
4109 }
4110 
4111 /*
4112 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4113 ** expression list.  Return the number of errors.
4114 **
4115 ** If an error is found, the analysis is cut short.
4116 */
4117 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4118   struct ExprList_item *pItem;
4119   int i;
4120   if( pList ){
4121     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4122       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4123     }
4124   }
4125 }
4126 
4127 /*
4128 ** Allocate a single new register for use to hold some intermediate result.
4129 */
4130 int sqlite3GetTempReg(Parse *pParse){
4131   if( pParse->nTempReg==0 ){
4132     return ++pParse->nMem;
4133   }
4134   return pParse->aTempReg[--pParse->nTempReg];
4135 }
4136 
4137 /*
4138 ** Deallocate a register, making available for reuse for some other
4139 ** purpose.
4140 **
4141 ** If a register is currently being used by the column cache, then
4142 ** the dallocation is deferred until the column cache line that uses
4143 ** the register becomes stale.
4144 */
4145 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4146   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4147     int i;
4148     struct yColCache *p;
4149     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4150       if( p->iReg==iReg ){
4151         p->tempReg = 1;
4152         return;
4153       }
4154     }
4155     pParse->aTempReg[pParse->nTempReg++] = iReg;
4156   }
4157 }
4158 
4159 /*
4160 ** Allocate or deallocate a block of nReg consecutive registers
4161 */
4162 int sqlite3GetTempRange(Parse *pParse, int nReg){
4163   int i, n;
4164   i = pParse->iRangeReg;
4165   n = pParse->nRangeReg;
4166   if( nReg<=n ){
4167     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4168     pParse->iRangeReg += nReg;
4169     pParse->nRangeReg -= nReg;
4170   }else{
4171     i = pParse->nMem+1;
4172     pParse->nMem += nReg;
4173   }
4174   return i;
4175 }
4176 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4177   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4178   if( nReg>pParse->nRangeReg ){
4179     pParse->nRangeReg = nReg;
4180     pParse->iRangeReg = iReg;
4181   }
4182 }
4183 
4184 /*
4185 ** Mark all temporary registers as being unavailable for reuse.
4186 */
4187 void sqlite3ClearTempRegCache(Parse *pParse){
4188   pParse->nTempReg = 0;
4189   pParse->nRangeReg = 0;
4190 }
4191