1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( op==TK_CAST || op==TK_UPLUS ){ 145 p = p->pLeft; 146 continue; 147 } 148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 150 break; 151 } 152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 153 || op==TK_REGISTER || op==TK_TRIGGER) 154 && p->pTab!=0 155 ){ 156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 157 ** a TK_COLUMN but was previously evaluated and cached in a register */ 158 int j = p->iColumn; 159 if( j>=0 ){ 160 const char *zColl = p->pTab->aCol[j].zColl; 161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 162 } 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 if( i>0 ) sqlite3ExprCachePush(pParse); 585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 594 sqlite3ReleaseTempReg(pParse, regFree1); 595 sqlite3ReleaseTempReg(pParse, regFree2); 596 if( i>0 ) sqlite3ExprCachePop(pParse); 597 if( i==nLeft-1 ){ 598 break; 599 } 600 if( opx==TK_EQ ){ 601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else if( opx==TK_NE ){ 604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 605 p5 |= SQLITE_KEEPNULL; 606 }else{ 607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 609 VdbeCoverageIf(v, op==TK_LT); 610 VdbeCoverageIf(v, op==TK_GT); 611 VdbeCoverageIf(v, op==TK_LE); 612 VdbeCoverageIf(v, op==TK_GE); 613 if( i==nLeft-2 ) opx = op; 614 } 615 } 616 sqlite3VdbeResolveLabel(v, addrDone); 617 } 618 619 #if SQLITE_MAX_EXPR_DEPTH>0 620 /* 621 ** Check that argument nHeight is less than or equal to the maximum 622 ** expression depth allowed. If it is not, leave an error message in 623 ** pParse. 624 */ 625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 626 int rc = SQLITE_OK; 627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 628 if( nHeight>mxHeight ){ 629 sqlite3ErrorMsg(pParse, 630 "Expression tree is too large (maximum depth %d)", mxHeight 631 ); 632 rc = SQLITE_ERROR; 633 } 634 return rc; 635 } 636 637 /* The following three functions, heightOfExpr(), heightOfExprList() 638 ** and heightOfSelect(), are used to determine the maximum height 639 ** of any expression tree referenced by the structure passed as the 640 ** first argument. 641 ** 642 ** If this maximum height is greater than the current value pointed 643 ** to by pnHeight, the second parameter, then set *pnHeight to that 644 ** value. 645 */ 646 static void heightOfExpr(Expr *p, int *pnHeight){ 647 if( p ){ 648 if( p->nHeight>*pnHeight ){ 649 *pnHeight = p->nHeight; 650 } 651 } 652 } 653 static void heightOfExprList(ExprList *p, int *pnHeight){ 654 if( p ){ 655 int i; 656 for(i=0; i<p->nExpr; i++){ 657 heightOfExpr(p->a[i].pExpr, pnHeight); 658 } 659 } 660 } 661 static void heightOfSelect(Select *p, int *pnHeight){ 662 if( p ){ 663 heightOfExpr(p->pWhere, pnHeight); 664 heightOfExpr(p->pHaving, pnHeight); 665 heightOfExpr(p->pLimit, pnHeight); 666 heightOfExpr(p->pOffset, pnHeight); 667 heightOfExprList(p->pEList, pnHeight); 668 heightOfExprList(p->pGroupBy, pnHeight); 669 heightOfExprList(p->pOrderBy, pnHeight); 670 heightOfSelect(p->pPrior, pnHeight); 671 } 672 } 673 674 /* 675 ** Set the Expr.nHeight variable in the structure passed as an 676 ** argument. An expression with no children, Expr.pList or 677 ** Expr.pSelect member has a height of 1. Any other expression 678 ** has a height equal to the maximum height of any other 679 ** referenced Expr plus one. 680 ** 681 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 682 ** if appropriate. 683 */ 684 static void exprSetHeight(Expr *p){ 685 int nHeight = 0; 686 heightOfExpr(p->pLeft, &nHeight); 687 heightOfExpr(p->pRight, &nHeight); 688 if( ExprHasProperty(p, EP_xIsSelect) ){ 689 heightOfSelect(p->x.pSelect, &nHeight); 690 }else if( p->x.pList ){ 691 heightOfExprList(p->x.pList, &nHeight); 692 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 693 } 694 p->nHeight = nHeight + 1; 695 } 696 697 /* 698 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 699 ** the height is greater than the maximum allowed expression depth, 700 ** leave an error in pParse. 701 ** 702 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 703 ** Expr.flags. 704 */ 705 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 706 if( pParse->nErr ) return; 707 exprSetHeight(p); 708 sqlite3ExprCheckHeight(pParse, p->nHeight); 709 } 710 711 /* 712 ** Return the maximum height of any expression tree referenced 713 ** by the select statement passed as an argument. 714 */ 715 int sqlite3SelectExprHeight(Select *p){ 716 int nHeight = 0; 717 heightOfSelect(p, &nHeight); 718 return nHeight; 719 } 720 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 721 /* 722 ** Propagate all EP_Propagate flags from the Expr.x.pList into 723 ** Expr.flags. 724 */ 725 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 726 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 727 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 728 } 729 } 730 #define exprSetHeight(y) 731 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 732 733 /* 734 ** This routine is the core allocator for Expr nodes. 735 ** 736 ** Construct a new expression node and return a pointer to it. Memory 737 ** for this node and for the pToken argument is a single allocation 738 ** obtained from sqlite3DbMalloc(). The calling function 739 ** is responsible for making sure the node eventually gets freed. 740 ** 741 ** If dequote is true, then the token (if it exists) is dequoted. 742 ** If dequote is false, no dequoting is performed. The deQuote 743 ** parameter is ignored if pToken is NULL or if the token does not 744 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 745 ** then the EP_DblQuoted flag is set on the expression node. 746 ** 747 ** Special case: If op==TK_INTEGER and pToken points to a string that 748 ** can be translated into a 32-bit integer, then the token is not 749 ** stored in u.zToken. Instead, the integer values is written 750 ** into u.iValue and the EP_IntValue flag is set. No extra storage 751 ** is allocated to hold the integer text and the dequote flag is ignored. 752 */ 753 Expr *sqlite3ExprAlloc( 754 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 755 int op, /* Expression opcode */ 756 const Token *pToken, /* Token argument. Might be NULL */ 757 int dequote /* True to dequote */ 758 ){ 759 Expr *pNew; 760 int nExtra = 0; 761 int iValue = 0; 762 763 assert( db!=0 ); 764 if( pToken ){ 765 if( op!=TK_INTEGER || pToken->z==0 766 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 767 nExtra = pToken->n+1; 768 assert( iValue>=0 ); 769 } 770 } 771 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 772 if( pNew ){ 773 memset(pNew, 0, sizeof(Expr)); 774 pNew->op = (u8)op; 775 pNew->iAgg = -1; 776 if( pToken ){ 777 if( nExtra==0 ){ 778 pNew->flags |= EP_IntValue|EP_Leaf; 779 pNew->u.iValue = iValue; 780 }else{ 781 pNew->u.zToken = (char*)&pNew[1]; 782 assert( pToken->z!=0 || pToken->n==0 ); 783 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 784 pNew->u.zToken[pToken->n] = 0; 785 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 786 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 787 sqlite3Dequote(pNew->u.zToken); 788 } 789 } 790 } 791 #if SQLITE_MAX_EXPR_DEPTH>0 792 pNew->nHeight = 1; 793 #endif 794 } 795 return pNew; 796 } 797 798 /* 799 ** Allocate a new expression node from a zero-terminated token that has 800 ** already been dequoted. 801 */ 802 Expr *sqlite3Expr( 803 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 804 int op, /* Expression opcode */ 805 const char *zToken /* Token argument. Might be NULL */ 806 ){ 807 Token x; 808 x.z = zToken; 809 x.n = sqlite3Strlen30(zToken); 810 return sqlite3ExprAlloc(db, op, &x, 0); 811 } 812 813 /* 814 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 815 ** 816 ** If pRoot==NULL that means that a memory allocation error has occurred. 817 ** In that case, delete the subtrees pLeft and pRight. 818 */ 819 void sqlite3ExprAttachSubtrees( 820 sqlite3 *db, 821 Expr *pRoot, 822 Expr *pLeft, 823 Expr *pRight 824 ){ 825 if( pRoot==0 ){ 826 assert( db->mallocFailed ); 827 sqlite3ExprDelete(db, pLeft); 828 sqlite3ExprDelete(db, pRight); 829 }else{ 830 if( pRight ){ 831 pRoot->pRight = pRight; 832 pRoot->flags |= EP_Propagate & pRight->flags; 833 } 834 if( pLeft ){ 835 pRoot->pLeft = pLeft; 836 pRoot->flags |= EP_Propagate & pLeft->flags; 837 } 838 exprSetHeight(pRoot); 839 } 840 } 841 842 /* 843 ** Allocate an Expr node which joins as many as two subtrees. 844 ** 845 ** One or both of the subtrees can be NULL. Return a pointer to the new 846 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 847 ** free the subtrees and return NULL. 848 */ 849 Expr *sqlite3PExpr( 850 Parse *pParse, /* Parsing context */ 851 int op, /* Expression opcode */ 852 Expr *pLeft, /* Left operand */ 853 Expr *pRight /* Right operand */ 854 ){ 855 Expr *p; 856 if( op==TK_AND && pParse->nErr==0 ){ 857 /* Take advantage of short-circuit false optimization for AND */ 858 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 859 }else{ 860 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 861 if( p ){ 862 memset(p, 0, sizeof(Expr)); 863 p->op = op & TKFLG_MASK; 864 p->iAgg = -1; 865 } 866 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 867 } 868 if( p ) { 869 sqlite3ExprCheckHeight(pParse, p->nHeight); 870 } 871 return p; 872 } 873 874 /* 875 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 876 ** do a memory allocation failure) then delete the pSelect object. 877 */ 878 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 879 if( pExpr ){ 880 pExpr->x.pSelect = pSelect; 881 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 882 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 883 }else{ 884 assert( pParse->db->mallocFailed ); 885 sqlite3SelectDelete(pParse->db, pSelect); 886 } 887 } 888 889 890 /* 891 ** If the expression is always either TRUE or FALSE (respectively), 892 ** then return 1. If one cannot determine the truth value of the 893 ** expression at compile-time return 0. 894 ** 895 ** This is an optimization. If is OK to return 0 here even if 896 ** the expression really is always false or false (a false negative). 897 ** But it is a bug to return 1 if the expression might have different 898 ** boolean values in different circumstances (a false positive.) 899 ** 900 ** Note that if the expression is part of conditional for a 901 ** LEFT JOIN, then we cannot determine at compile-time whether or not 902 ** is it true or false, so always return 0. 903 */ 904 static int exprAlwaysTrue(Expr *p){ 905 int v = 0; 906 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 907 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 908 return v!=0; 909 } 910 static int exprAlwaysFalse(Expr *p){ 911 int v = 0; 912 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 913 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 914 return v==0; 915 } 916 917 /* 918 ** Join two expressions using an AND operator. If either expression is 919 ** NULL, then just return the other expression. 920 ** 921 ** If one side or the other of the AND is known to be false, then instead 922 ** of returning an AND expression, just return a constant expression with 923 ** a value of false. 924 */ 925 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 926 if( pLeft==0 ){ 927 return pRight; 928 }else if( pRight==0 ){ 929 return pLeft; 930 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 931 sqlite3ExprDelete(db, pLeft); 932 sqlite3ExprDelete(db, pRight); 933 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 934 }else{ 935 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 936 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 937 return pNew; 938 } 939 } 940 941 /* 942 ** Construct a new expression node for a function with multiple 943 ** arguments. 944 */ 945 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 946 Expr *pNew; 947 sqlite3 *db = pParse->db; 948 assert( pToken ); 949 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 950 if( pNew==0 ){ 951 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 952 return 0; 953 } 954 pNew->x.pList = pList; 955 ExprSetProperty(pNew, EP_HasFunc); 956 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 957 sqlite3ExprSetHeightAndFlags(pParse, pNew); 958 return pNew; 959 } 960 961 /* 962 ** Assign a variable number to an expression that encodes a wildcard 963 ** in the original SQL statement. 964 ** 965 ** Wildcards consisting of a single "?" are assigned the next sequential 966 ** variable number. 967 ** 968 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 969 ** sure "nnn" is not too big to avoid a denial of service attack when 970 ** the SQL statement comes from an external source. 971 ** 972 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 973 ** as the previous instance of the same wildcard. Or if this is the first 974 ** instance of the wildcard, the next sequential variable number is 975 ** assigned. 976 */ 977 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 978 sqlite3 *db = pParse->db; 979 const char *z; 980 ynVar x; 981 982 if( pExpr==0 ) return; 983 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 984 z = pExpr->u.zToken; 985 assert( z!=0 ); 986 assert( z[0]!=0 ); 987 assert( n==(u32)sqlite3Strlen30(z) ); 988 if( z[1]==0 ){ 989 /* Wildcard of the form "?". Assign the next variable number */ 990 assert( z[0]=='?' ); 991 x = (ynVar)(++pParse->nVar); 992 }else{ 993 int doAdd = 0; 994 if( z[0]=='?' ){ 995 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 996 ** use it as the variable number */ 997 i64 i; 998 int bOk; 999 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1000 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1001 bOk = 1; 1002 }else{ 1003 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1004 } 1005 testcase( i==0 ); 1006 testcase( i==1 ); 1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1008 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1009 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1010 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1011 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1012 return; 1013 } 1014 x = (ynVar)i; 1015 if( x>pParse->nVar ){ 1016 pParse->nVar = (int)x; 1017 doAdd = 1; 1018 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1019 doAdd = 1; 1020 } 1021 }else{ 1022 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1023 ** number as the prior appearance of the same name, or if the name 1024 ** has never appeared before, reuse the same variable number 1025 */ 1026 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1027 if( x==0 ){ 1028 x = (ynVar)(++pParse->nVar); 1029 doAdd = 1; 1030 } 1031 } 1032 if( doAdd ){ 1033 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1034 } 1035 } 1036 pExpr->iColumn = x; 1037 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1038 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1039 } 1040 } 1041 1042 /* 1043 ** Recursively delete an expression tree. 1044 */ 1045 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1046 assert( p!=0 ); 1047 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1048 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1049 #ifdef SQLITE_DEBUG 1050 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1051 assert( p->pLeft==0 ); 1052 assert( p->pRight==0 ); 1053 assert( p->x.pSelect==0 ); 1054 } 1055 #endif 1056 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1057 /* The Expr.x union is never used at the same time as Expr.pRight */ 1058 assert( p->x.pList==0 || p->pRight==0 ); 1059 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1060 if( p->pRight ){ 1061 sqlite3ExprDeleteNN(db, p->pRight); 1062 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1063 sqlite3SelectDelete(db, p->x.pSelect); 1064 }else{ 1065 sqlite3ExprListDelete(db, p->x.pList); 1066 } 1067 } 1068 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1069 if( !ExprHasProperty(p, EP_Static) ){ 1070 sqlite3DbFreeNN(db, p); 1071 } 1072 } 1073 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1074 if( p ) sqlite3ExprDeleteNN(db, p); 1075 } 1076 1077 /* 1078 ** Return the number of bytes allocated for the expression structure 1079 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1080 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1081 */ 1082 static int exprStructSize(Expr *p){ 1083 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1084 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1085 return EXPR_FULLSIZE; 1086 } 1087 1088 /* 1089 ** The dupedExpr*Size() routines each return the number of bytes required 1090 ** to store a copy of an expression or expression tree. They differ in 1091 ** how much of the tree is measured. 1092 ** 1093 ** dupedExprStructSize() Size of only the Expr structure 1094 ** dupedExprNodeSize() Size of Expr + space for token 1095 ** dupedExprSize() Expr + token + subtree components 1096 ** 1097 *************************************************************************** 1098 ** 1099 ** The dupedExprStructSize() function returns two values OR-ed together: 1100 ** (1) the space required for a copy of the Expr structure only and 1101 ** (2) the EP_xxx flags that indicate what the structure size should be. 1102 ** The return values is always one of: 1103 ** 1104 ** EXPR_FULLSIZE 1105 ** EXPR_REDUCEDSIZE | EP_Reduced 1106 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1107 ** 1108 ** The size of the structure can be found by masking the return value 1109 ** of this routine with 0xfff. The flags can be found by masking the 1110 ** return value with EP_Reduced|EP_TokenOnly. 1111 ** 1112 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1113 ** (unreduced) Expr objects as they or originally constructed by the parser. 1114 ** During expression analysis, extra information is computed and moved into 1115 ** later parts of teh Expr object and that extra information might get chopped 1116 ** off if the expression is reduced. Note also that it does not work to 1117 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1118 ** to reduce a pristine expression tree from the parser. The implementation 1119 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1120 ** to enforce this constraint. 1121 */ 1122 static int dupedExprStructSize(Expr *p, int flags){ 1123 int nSize; 1124 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1125 assert( EXPR_FULLSIZE<=0xfff ); 1126 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1127 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1128 nSize = EXPR_FULLSIZE; 1129 }else{ 1130 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1131 assert( !ExprHasProperty(p, EP_FromJoin) ); 1132 assert( !ExprHasProperty(p, EP_MemToken) ); 1133 assert( !ExprHasProperty(p, EP_NoReduce) ); 1134 if( p->pLeft || p->x.pList ){ 1135 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1136 }else{ 1137 assert( p->pRight==0 ); 1138 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1139 } 1140 } 1141 return nSize; 1142 } 1143 1144 /* 1145 ** This function returns the space in bytes required to store the copy 1146 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1147 ** string is defined.) 1148 */ 1149 static int dupedExprNodeSize(Expr *p, int flags){ 1150 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1151 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1152 nByte += sqlite3Strlen30(p->u.zToken)+1; 1153 } 1154 return ROUND8(nByte); 1155 } 1156 1157 /* 1158 ** Return the number of bytes required to create a duplicate of the 1159 ** expression passed as the first argument. The second argument is a 1160 ** mask containing EXPRDUP_XXX flags. 1161 ** 1162 ** The value returned includes space to create a copy of the Expr struct 1163 ** itself and the buffer referred to by Expr.u.zToken, if any. 1164 ** 1165 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1166 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1167 ** and Expr.pRight variables (but not for any structures pointed to or 1168 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1169 */ 1170 static int dupedExprSize(Expr *p, int flags){ 1171 int nByte = 0; 1172 if( p ){ 1173 nByte = dupedExprNodeSize(p, flags); 1174 if( flags&EXPRDUP_REDUCE ){ 1175 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1176 } 1177 } 1178 return nByte; 1179 } 1180 1181 /* 1182 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1183 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1184 ** to store the copy of expression p, the copies of p->u.zToken 1185 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1186 ** if any. Before returning, *pzBuffer is set to the first byte past the 1187 ** portion of the buffer copied into by this function. 1188 */ 1189 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1190 Expr *pNew; /* Value to return */ 1191 u8 *zAlloc; /* Memory space from which to build Expr object */ 1192 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1193 1194 assert( db!=0 ); 1195 assert( p ); 1196 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1197 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1198 1199 /* Figure out where to write the new Expr structure. */ 1200 if( pzBuffer ){ 1201 zAlloc = *pzBuffer; 1202 staticFlag = EP_Static; 1203 }else{ 1204 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1205 staticFlag = 0; 1206 } 1207 pNew = (Expr *)zAlloc; 1208 1209 if( pNew ){ 1210 /* Set nNewSize to the size allocated for the structure pointed to 1211 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1212 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1213 ** by the copy of the p->u.zToken string (if any). 1214 */ 1215 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1216 const int nNewSize = nStructSize & 0xfff; 1217 int nToken; 1218 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1219 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1220 }else{ 1221 nToken = 0; 1222 } 1223 if( dupFlags ){ 1224 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1225 memcpy(zAlloc, p, nNewSize); 1226 }else{ 1227 u32 nSize = (u32)exprStructSize(p); 1228 memcpy(zAlloc, p, nSize); 1229 if( nSize<EXPR_FULLSIZE ){ 1230 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1231 } 1232 } 1233 1234 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1235 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1236 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1237 pNew->flags |= staticFlag; 1238 1239 /* Copy the p->u.zToken string, if any. */ 1240 if( nToken ){ 1241 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1242 memcpy(zToken, p->u.zToken, nToken); 1243 } 1244 1245 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1246 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1247 if( ExprHasProperty(p, EP_xIsSelect) ){ 1248 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1249 }else{ 1250 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1251 } 1252 } 1253 1254 /* Fill in pNew->pLeft and pNew->pRight. */ 1255 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1256 zAlloc += dupedExprNodeSize(p, dupFlags); 1257 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1258 pNew->pLeft = p->pLeft ? 1259 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1260 pNew->pRight = p->pRight ? 1261 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1262 } 1263 if( pzBuffer ){ 1264 *pzBuffer = zAlloc; 1265 } 1266 }else{ 1267 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1268 if( pNew->op==TK_SELECT_COLUMN ){ 1269 pNew->pLeft = p->pLeft; 1270 assert( p->iColumn==0 || p->pRight==0 ); 1271 assert( p->pRight==0 || p->pRight==p->pLeft ); 1272 }else{ 1273 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1274 } 1275 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1276 } 1277 } 1278 } 1279 return pNew; 1280 } 1281 1282 /* 1283 ** Create and return a deep copy of the object passed as the second 1284 ** argument. If an OOM condition is encountered, NULL is returned 1285 ** and the db->mallocFailed flag set. 1286 */ 1287 #ifndef SQLITE_OMIT_CTE 1288 static With *withDup(sqlite3 *db, With *p){ 1289 With *pRet = 0; 1290 if( p ){ 1291 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1292 pRet = sqlite3DbMallocZero(db, nByte); 1293 if( pRet ){ 1294 int i; 1295 pRet->nCte = p->nCte; 1296 for(i=0; i<p->nCte; i++){ 1297 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1298 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1299 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1300 } 1301 } 1302 } 1303 return pRet; 1304 } 1305 #else 1306 # define withDup(x,y) 0 1307 #endif 1308 1309 /* 1310 ** The following group of routines make deep copies of expressions, 1311 ** expression lists, ID lists, and select statements. The copies can 1312 ** be deleted (by being passed to their respective ...Delete() routines) 1313 ** without effecting the originals. 1314 ** 1315 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1316 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1317 ** by subsequent calls to sqlite*ListAppend() routines. 1318 ** 1319 ** Any tables that the SrcList might point to are not duplicated. 1320 ** 1321 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1322 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1323 ** truncated version of the usual Expr structure that will be stored as 1324 ** part of the in-memory representation of the database schema. 1325 */ 1326 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1327 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1328 return p ? exprDup(db, p, flags, 0) : 0; 1329 } 1330 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1331 ExprList *pNew; 1332 struct ExprList_item *pItem, *pOldItem; 1333 int i; 1334 Expr *pPriorSelectCol = 0; 1335 assert( db!=0 ); 1336 if( p==0 ) return 0; 1337 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1338 if( pNew==0 ) return 0; 1339 pNew->nExpr = p->nExpr; 1340 pItem = pNew->a; 1341 pOldItem = p->a; 1342 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1343 Expr *pOldExpr = pOldItem->pExpr; 1344 Expr *pNewExpr; 1345 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1346 if( pOldExpr 1347 && pOldExpr->op==TK_SELECT_COLUMN 1348 && (pNewExpr = pItem->pExpr)!=0 1349 ){ 1350 assert( pNewExpr->iColumn==0 || i>0 ); 1351 if( pNewExpr->iColumn==0 ){ 1352 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1353 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1354 }else{ 1355 assert( i>0 ); 1356 assert( pItem[-1].pExpr!=0 ); 1357 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1358 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1359 pNewExpr->pLeft = pPriorSelectCol; 1360 } 1361 } 1362 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1363 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1364 pItem->sortOrder = pOldItem->sortOrder; 1365 pItem->done = 0; 1366 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1367 pItem->u = pOldItem->u; 1368 } 1369 return pNew; 1370 } 1371 1372 /* 1373 ** If cursors, triggers, views and subqueries are all omitted from 1374 ** the build, then none of the following routines, except for 1375 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1376 ** called with a NULL argument. 1377 */ 1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1379 || !defined(SQLITE_OMIT_SUBQUERY) 1380 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1381 SrcList *pNew; 1382 int i; 1383 int nByte; 1384 assert( db!=0 ); 1385 if( p==0 ) return 0; 1386 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1387 pNew = sqlite3DbMallocRawNN(db, nByte ); 1388 if( pNew==0 ) return 0; 1389 pNew->nSrc = pNew->nAlloc = p->nSrc; 1390 for(i=0; i<p->nSrc; i++){ 1391 struct SrcList_item *pNewItem = &pNew->a[i]; 1392 struct SrcList_item *pOldItem = &p->a[i]; 1393 Table *pTab; 1394 pNewItem->pSchema = pOldItem->pSchema; 1395 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1396 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1397 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1398 pNewItem->fg = pOldItem->fg; 1399 pNewItem->iCursor = pOldItem->iCursor; 1400 pNewItem->addrFillSub = pOldItem->addrFillSub; 1401 pNewItem->regReturn = pOldItem->regReturn; 1402 if( pNewItem->fg.isIndexedBy ){ 1403 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1404 } 1405 pNewItem->pIBIndex = pOldItem->pIBIndex; 1406 if( pNewItem->fg.isTabFunc ){ 1407 pNewItem->u1.pFuncArg = 1408 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1409 } 1410 pTab = pNewItem->pTab = pOldItem->pTab; 1411 if( pTab ){ 1412 pTab->nTabRef++; 1413 } 1414 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1415 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1416 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1417 pNewItem->colUsed = pOldItem->colUsed; 1418 } 1419 return pNew; 1420 } 1421 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1422 IdList *pNew; 1423 int i; 1424 assert( db!=0 ); 1425 if( p==0 ) return 0; 1426 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1427 if( pNew==0 ) return 0; 1428 pNew->nId = p->nId; 1429 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1430 if( pNew->a==0 ){ 1431 sqlite3DbFreeNN(db, pNew); 1432 return 0; 1433 } 1434 /* Note that because the size of the allocation for p->a[] is not 1435 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1436 ** on the duplicate created by this function. */ 1437 for(i=0; i<p->nId; i++){ 1438 struct IdList_item *pNewItem = &pNew->a[i]; 1439 struct IdList_item *pOldItem = &p->a[i]; 1440 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1441 pNewItem->idx = pOldItem->idx; 1442 } 1443 return pNew; 1444 } 1445 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1446 Select *pRet = 0; 1447 Select *pNext = 0; 1448 Select **pp = &pRet; 1449 Select *p; 1450 1451 assert( db!=0 ); 1452 for(p=pDup; p; p=p->pPrior){ 1453 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1454 if( pNew==0 ) break; 1455 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1456 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1457 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1458 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1459 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1460 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1461 pNew->op = p->op; 1462 pNew->pNext = pNext; 1463 pNew->pPrior = 0; 1464 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1465 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1466 pNew->iLimit = 0; 1467 pNew->iOffset = 0; 1468 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1469 pNew->addrOpenEphm[0] = -1; 1470 pNew->addrOpenEphm[1] = -1; 1471 pNew->nSelectRow = p->nSelectRow; 1472 pNew->pWith = withDup(db, p->pWith); 1473 sqlite3SelectSetName(pNew, p->zSelName); 1474 *pp = pNew; 1475 pp = &pNew->pPrior; 1476 pNext = pNew; 1477 } 1478 1479 return pRet; 1480 } 1481 #else 1482 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1483 assert( p==0 ); 1484 return 0; 1485 } 1486 #endif 1487 1488 1489 /* 1490 ** Add a new element to the end of an expression list. If pList is 1491 ** initially NULL, then create a new expression list. 1492 ** 1493 ** The pList argument must be either NULL or a pointer to an ExprList 1494 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1495 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1496 ** Reason: This routine assumes that the number of slots in pList->a[] 1497 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1498 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1499 ** 1500 ** If a memory allocation error occurs, the entire list is freed and 1501 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1502 ** that the new entry was successfully appended. 1503 */ 1504 ExprList *sqlite3ExprListAppend( 1505 Parse *pParse, /* Parsing context */ 1506 ExprList *pList, /* List to which to append. Might be NULL */ 1507 Expr *pExpr /* Expression to be appended. Might be NULL */ 1508 ){ 1509 struct ExprList_item *pItem; 1510 sqlite3 *db = pParse->db; 1511 assert( db!=0 ); 1512 if( pList==0 ){ 1513 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1514 if( pList==0 ){ 1515 goto no_mem; 1516 } 1517 pList->nExpr = 0; 1518 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1519 ExprList *pNew; 1520 pNew = sqlite3DbRealloc(db, pList, 1521 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1522 if( pNew==0 ){ 1523 goto no_mem; 1524 } 1525 pList = pNew; 1526 } 1527 pItem = &pList->a[pList->nExpr++]; 1528 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1529 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1530 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1531 pItem->pExpr = pExpr; 1532 return pList; 1533 1534 no_mem: 1535 /* Avoid leaking memory if malloc has failed. */ 1536 sqlite3ExprDelete(db, pExpr); 1537 sqlite3ExprListDelete(db, pList); 1538 return 0; 1539 } 1540 1541 /* 1542 ** pColumns and pExpr form a vector assignment which is part of the SET 1543 ** clause of an UPDATE statement. Like this: 1544 ** 1545 ** (a,b,c) = (expr1,expr2,expr3) 1546 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1547 ** 1548 ** For each term of the vector assignment, append new entries to the 1549 ** expression list pList. In the case of a subquery on the RHS, append 1550 ** TK_SELECT_COLUMN expressions. 1551 */ 1552 ExprList *sqlite3ExprListAppendVector( 1553 Parse *pParse, /* Parsing context */ 1554 ExprList *pList, /* List to which to append. Might be NULL */ 1555 IdList *pColumns, /* List of names of LHS of the assignment */ 1556 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1557 ){ 1558 sqlite3 *db = pParse->db; 1559 int n; 1560 int i; 1561 int iFirst = pList ? pList->nExpr : 0; 1562 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1563 ** exit prior to this routine being invoked */ 1564 if( NEVER(pColumns==0) ) goto vector_append_error; 1565 if( pExpr==0 ) goto vector_append_error; 1566 1567 /* If the RHS is a vector, then we can immediately check to see that 1568 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1569 ** wildcards ("*") in the result set of the SELECT must be expanded before 1570 ** we can do the size check, so defer the size check until code generation. 1571 */ 1572 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1573 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1574 pColumns->nId, n); 1575 goto vector_append_error; 1576 } 1577 1578 for(i=0; i<pColumns->nId; i++){ 1579 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1580 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1581 if( pList ){ 1582 assert( pList->nExpr==iFirst+i+1 ); 1583 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1584 pColumns->a[i].zName = 0; 1585 } 1586 } 1587 1588 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1589 Expr *pFirst = pList->a[iFirst].pExpr; 1590 assert( pFirst!=0 ); 1591 assert( pFirst->op==TK_SELECT_COLUMN ); 1592 1593 /* Store the SELECT statement in pRight so it will be deleted when 1594 ** sqlite3ExprListDelete() is called */ 1595 pFirst->pRight = pExpr; 1596 pExpr = 0; 1597 1598 /* Remember the size of the LHS in iTable so that we can check that 1599 ** the RHS and LHS sizes match during code generation. */ 1600 pFirst->iTable = pColumns->nId; 1601 } 1602 1603 vector_append_error: 1604 sqlite3ExprDelete(db, pExpr); 1605 sqlite3IdListDelete(db, pColumns); 1606 return pList; 1607 } 1608 1609 /* 1610 ** Set the sort order for the last element on the given ExprList. 1611 */ 1612 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1613 if( p==0 ) return; 1614 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1615 assert( p->nExpr>0 ); 1616 if( iSortOrder<0 ){ 1617 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1618 return; 1619 } 1620 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1621 } 1622 1623 /* 1624 ** Set the ExprList.a[].zName element of the most recently added item 1625 ** on the expression list. 1626 ** 1627 ** pList might be NULL following an OOM error. But pName should never be 1628 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1629 ** is set. 1630 */ 1631 void sqlite3ExprListSetName( 1632 Parse *pParse, /* Parsing context */ 1633 ExprList *pList, /* List to which to add the span. */ 1634 Token *pName, /* Name to be added */ 1635 int dequote /* True to cause the name to be dequoted */ 1636 ){ 1637 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1638 if( pList ){ 1639 struct ExprList_item *pItem; 1640 assert( pList->nExpr>0 ); 1641 pItem = &pList->a[pList->nExpr-1]; 1642 assert( pItem->zName==0 ); 1643 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1644 if( dequote ) sqlite3Dequote(pItem->zName); 1645 } 1646 } 1647 1648 /* 1649 ** Set the ExprList.a[].zSpan element of the most recently added item 1650 ** on the expression list. 1651 ** 1652 ** pList might be NULL following an OOM error. But pSpan should never be 1653 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1654 ** is set. 1655 */ 1656 void sqlite3ExprListSetSpan( 1657 Parse *pParse, /* Parsing context */ 1658 ExprList *pList, /* List to which to add the span. */ 1659 ExprSpan *pSpan /* The span to be added */ 1660 ){ 1661 sqlite3 *db = pParse->db; 1662 assert( pList!=0 || db->mallocFailed!=0 ); 1663 if( pList ){ 1664 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1665 assert( pList->nExpr>0 ); 1666 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1667 sqlite3DbFree(db, pItem->zSpan); 1668 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1669 (int)(pSpan->zEnd - pSpan->zStart)); 1670 } 1671 } 1672 1673 /* 1674 ** If the expression list pEList contains more than iLimit elements, 1675 ** leave an error message in pParse. 1676 */ 1677 void sqlite3ExprListCheckLength( 1678 Parse *pParse, 1679 ExprList *pEList, 1680 const char *zObject 1681 ){ 1682 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1683 testcase( pEList && pEList->nExpr==mx ); 1684 testcase( pEList && pEList->nExpr==mx+1 ); 1685 if( pEList && pEList->nExpr>mx ){ 1686 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1687 } 1688 } 1689 1690 /* 1691 ** Delete an entire expression list. 1692 */ 1693 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1694 int i = pList->nExpr; 1695 struct ExprList_item *pItem = pList->a; 1696 assert( pList->nExpr>0 ); 1697 do{ 1698 sqlite3ExprDelete(db, pItem->pExpr); 1699 sqlite3DbFree(db, pItem->zName); 1700 sqlite3DbFree(db, pItem->zSpan); 1701 pItem++; 1702 }while( --i>0 ); 1703 sqlite3DbFreeNN(db, pList); 1704 } 1705 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1706 if( pList ) exprListDeleteNN(db, pList); 1707 } 1708 1709 /* 1710 ** Return the bitwise-OR of all Expr.flags fields in the given 1711 ** ExprList. 1712 */ 1713 u32 sqlite3ExprListFlags(const ExprList *pList){ 1714 int i; 1715 u32 m = 0; 1716 assert( pList!=0 ); 1717 for(i=0; i<pList->nExpr; i++){ 1718 Expr *pExpr = pList->a[i].pExpr; 1719 assert( pExpr!=0 ); 1720 m |= pExpr->flags; 1721 } 1722 return m; 1723 } 1724 1725 /* 1726 ** This is a SELECT-node callback for the expression walker that 1727 ** always "fails". By "fail" in this case, we mean set 1728 ** pWalker->eCode to zero and abort. 1729 ** 1730 ** This callback is used by multiple expression walkers. 1731 */ 1732 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1733 UNUSED_PARAMETER(NotUsed); 1734 pWalker->eCode = 0; 1735 return WRC_Abort; 1736 } 1737 1738 /* 1739 ** These routines are Walker callbacks used to check expressions to 1740 ** see if they are "constant" for some definition of constant. The 1741 ** Walker.eCode value determines the type of "constant" we are looking 1742 ** for. 1743 ** 1744 ** These callback routines are used to implement the following: 1745 ** 1746 ** sqlite3ExprIsConstant() pWalker->eCode==1 1747 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1748 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1749 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1750 ** 1751 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1752 ** is found to not be a constant. 1753 ** 1754 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1755 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1756 ** an existing schema and 4 when processing a new statement. A bound 1757 ** parameter raises an error for new statements, but is silently converted 1758 ** to NULL for existing schemas. This allows sqlite_master tables that 1759 ** contain a bound parameter because they were generated by older versions 1760 ** of SQLite to be parsed by newer versions of SQLite without raising a 1761 ** malformed schema error. 1762 */ 1763 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1764 1765 /* If pWalker->eCode is 2 then any term of the expression that comes from 1766 ** the ON or USING clauses of a left join disqualifies the expression 1767 ** from being considered constant. */ 1768 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1769 pWalker->eCode = 0; 1770 return WRC_Abort; 1771 } 1772 1773 switch( pExpr->op ){ 1774 /* Consider functions to be constant if all their arguments are constant 1775 ** and either pWalker->eCode==4 or 5 or the function has the 1776 ** SQLITE_FUNC_CONST flag. */ 1777 case TK_FUNCTION: 1778 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1779 return WRC_Continue; 1780 }else{ 1781 pWalker->eCode = 0; 1782 return WRC_Abort; 1783 } 1784 case TK_ID: 1785 case TK_COLUMN: 1786 case TK_AGG_FUNCTION: 1787 case TK_AGG_COLUMN: 1788 testcase( pExpr->op==TK_ID ); 1789 testcase( pExpr->op==TK_COLUMN ); 1790 testcase( pExpr->op==TK_AGG_FUNCTION ); 1791 testcase( pExpr->op==TK_AGG_COLUMN ); 1792 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1793 return WRC_Continue; 1794 } 1795 /* Fall through */ 1796 case TK_IF_NULL_ROW: 1797 testcase( pExpr->op==TK_IF_NULL_ROW ); 1798 pWalker->eCode = 0; 1799 return WRC_Abort; 1800 case TK_VARIABLE: 1801 if( pWalker->eCode==5 ){ 1802 /* Silently convert bound parameters that appear inside of CREATE 1803 ** statements into a NULL when parsing the CREATE statement text out 1804 ** of the sqlite_master table */ 1805 pExpr->op = TK_NULL; 1806 }else if( pWalker->eCode==4 ){ 1807 /* A bound parameter in a CREATE statement that originates from 1808 ** sqlite3_prepare() causes an error */ 1809 pWalker->eCode = 0; 1810 return WRC_Abort; 1811 } 1812 /* Fall through */ 1813 default: 1814 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */ 1815 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */ 1816 return WRC_Continue; 1817 } 1818 } 1819 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1820 Walker w; 1821 w.eCode = initFlag; 1822 w.xExprCallback = exprNodeIsConstant; 1823 w.xSelectCallback = sqlite3SelectWalkFail; 1824 #ifdef SQLITE_DEBUG 1825 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1826 #endif 1827 w.u.iCur = iCur; 1828 sqlite3WalkExpr(&w, p); 1829 return w.eCode; 1830 } 1831 1832 /* 1833 ** Walk an expression tree. Return non-zero if the expression is constant 1834 ** and 0 if it involves variables or function calls. 1835 ** 1836 ** For the purposes of this function, a double-quoted string (ex: "abc") 1837 ** is considered a variable but a single-quoted string (ex: 'abc') is 1838 ** a constant. 1839 */ 1840 int sqlite3ExprIsConstant(Expr *p){ 1841 return exprIsConst(p, 1, 0); 1842 } 1843 1844 /* 1845 ** Walk an expression tree. Return non-zero if the expression is constant 1846 ** that does no originate from the ON or USING clauses of a join. 1847 ** Return 0 if it involves variables or function calls or terms from 1848 ** an ON or USING clause. 1849 */ 1850 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1851 return exprIsConst(p, 2, 0); 1852 } 1853 1854 /* 1855 ** Walk an expression tree. Return non-zero if the expression is constant 1856 ** for any single row of the table with cursor iCur. In other words, the 1857 ** expression must not refer to any non-deterministic function nor any 1858 ** table other than iCur. 1859 */ 1860 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1861 return exprIsConst(p, 3, iCur); 1862 } 1863 1864 1865 /* 1866 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1867 */ 1868 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1869 ExprList *pGroupBy = pWalker->u.pGroupBy; 1870 int i; 1871 1872 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1873 ** it constant. */ 1874 for(i=0; i<pGroupBy->nExpr; i++){ 1875 Expr *p = pGroupBy->a[i].pExpr; 1876 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1877 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1878 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1879 return WRC_Prune; 1880 } 1881 } 1882 } 1883 1884 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1885 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1886 pWalker->eCode = 0; 1887 return WRC_Abort; 1888 } 1889 1890 return exprNodeIsConstant(pWalker, pExpr); 1891 } 1892 1893 /* 1894 ** Walk the expression tree passed as the first argument. Return non-zero 1895 ** if the expression consists entirely of constants or copies of terms 1896 ** in pGroupBy that sort with the BINARY collation sequence. 1897 ** 1898 ** This routine is used to determine if a term of the HAVING clause can 1899 ** be promoted into the WHERE clause. In order for such a promotion to work, 1900 ** the value of the HAVING clause term must be the same for all members of 1901 ** a "group". The requirement that the GROUP BY term must be BINARY 1902 ** assumes that no other collating sequence will have a finer-grained 1903 ** grouping than binary. In other words (A=B COLLATE binary) implies 1904 ** A=B in every other collating sequence. The requirement that the 1905 ** GROUP BY be BINARY is stricter than necessary. It would also work 1906 ** to promote HAVING clauses that use the same alternative collating 1907 ** sequence as the GROUP BY term, but that is much harder to check, 1908 ** alternative collating sequences are uncommon, and this is only an 1909 ** optimization, so we take the easy way out and simply require the 1910 ** GROUP BY to use the BINARY collating sequence. 1911 */ 1912 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1913 Walker w; 1914 w.eCode = 1; 1915 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1916 w.xSelectCallback = 0; 1917 w.u.pGroupBy = pGroupBy; 1918 w.pParse = pParse; 1919 sqlite3WalkExpr(&w, p); 1920 return w.eCode; 1921 } 1922 1923 /* 1924 ** Walk an expression tree. Return non-zero if the expression is constant 1925 ** or a function call with constant arguments. Return and 0 if there 1926 ** are any variables. 1927 ** 1928 ** For the purposes of this function, a double-quoted string (ex: "abc") 1929 ** is considered a variable but a single-quoted string (ex: 'abc') is 1930 ** a constant. 1931 */ 1932 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1933 assert( isInit==0 || isInit==1 ); 1934 return exprIsConst(p, 4+isInit, 0); 1935 } 1936 1937 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1938 /* 1939 ** Walk an expression tree. Return 1 if the expression contains a 1940 ** subquery of some kind. Return 0 if there are no subqueries. 1941 */ 1942 int sqlite3ExprContainsSubquery(Expr *p){ 1943 Walker w; 1944 w.eCode = 1; 1945 w.xExprCallback = sqlite3ExprWalkNoop; 1946 w.xSelectCallback = sqlite3SelectWalkFail; 1947 #ifdef SQLITE_DEBUG 1948 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1949 #endif 1950 sqlite3WalkExpr(&w, p); 1951 return w.eCode==0; 1952 } 1953 #endif 1954 1955 /* 1956 ** If the expression p codes a constant integer that is small enough 1957 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1958 ** in *pValue. If the expression is not an integer or if it is too big 1959 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1960 */ 1961 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1962 int rc = 0; 1963 if( p==0 ) return 0; /* Can only happen following on OOM */ 1964 1965 /* If an expression is an integer literal that fits in a signed 32-bit 1966 ** integer, then the EP_IntValue flag will have already been set */ 1967 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1968 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1969 1970 if( p->flags & EP_IntValue ){ 1971 *pValue = p->u.iValue; 1972 return 1; 1973 } 1974 switch( p->op ){ 1975 case TK_UPLUS: { 1976 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1977 break; 1978 } 1979 case TK_UMINUS: { 1980 int v; 1981 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1982 assert( v!=(-2147483647-1) ); 1983 *pValue = -v; 1984 rc = 1; 1985 } 1986 break; 1987 } 1988 default: break; 1989 } 1990 return rc; 1991 } 1992 1993 /* 1994 ** Return FALSE if there is no chance that the expression can be NULL. 1995 ** 1996 ** If the expression might be NULL or if the expression is too complex 1997 ** to tell return TRUE. 1998 ** 1999 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2000 ** when we know that a value cannot be NULL. Hence, a false positive 2001 ** (returning TRUE when in fact the expression can never be NULL) might 2002 ** be a small performance hit but is otherwise harmless. On the other 2003 ** hand, a false negative (returning FALSE when the result could be NULL) 2004 ** will likely result in an incorrect answer. So when in doubt, return 2005 ** TRUE. 2006 */ 2007 int sqlite3ExprCanBeNull(const Expr *p){ 2008 u8 op; 2009 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2010 op = p->op; 2011 if( op==TK_REGISTER ) op = p->op2; 2012 switch( op ){ 2013 case TK_INTEGER: 2014 case TK_STRING: 2015 case TK_FLOAT: 2016 case TK_BLOB: 2017 return 0; 2018 case TK_COLUMN: 2019 return ExprHasProperty(p, EP_CanBeNull) || 2020 p->pTab==0 || /* Reference to column of index on expression */ 2021 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 2022 default: 2023 return 1; 2024 } 2025 } 2026 2027 /* 2028 ** Return TRUE if the given expression is a constant which would be 2029 ** unchanged by OP_Affinity with the affinity given in the second 2030 ** argument. 2031 ** 2032 ** This routine is used to determine if the OP_Affinity operation 2033 ** can be omitted. When in doubt return FALSE. A false negative 2034 ** is harmless. A false positive, however, can result in the wrong 2035 ** answer. 2036 */ 2037 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2038 u8 op; 2039 if( aff==SQLITE_AFF_BLOB ) return 1; 2040 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2041 op = p->op; 2042 if( op==TK_REGISTER ) op = p->op2; 2043 switch( op ){ 2044 case TK_INTEGER: { 2045 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2046 } 2047 case TK_FLOAT: { 2048 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2049 } 2050 case TK_STRING: { 2051 return aff==SQLITE_AFF_TEXT; 2052 } 2053 case TK_BLOB: { 2054 return 1; 2055 } 2056 case TK_COLUMN: { 2057 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2058 return p->iColumn<0 2059 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2060 } 2061 default: { 2062 return 0; 2063 } 2064 } 2065 } 2066 2067 /* 2068 ** Return TRUE if the given string is a row-id column name. 2069 */ 2070 int sqlite3IsRowid(const char *z){ 2071 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2072 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2073 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2074 return 0; 2075 } 2076 2077 /* 2078 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2079 ** that can be simplified to a direct table access, then return 2080 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2081 ** or if the SELECT statement needs to be manifested into a transient 2082 ** table, then return NULL. 2083 */ 2084 #ifndef SQLITE_OMIT_SUBQUERY 2085 static Select *isCandidateForInOpt(Expr *pX){ 2086 Select *p; 2087 SrcList *pSrc; 2088 ExprList *pEList; 2089 Table *pTab; 2090 int i; 2091 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2092 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2093 p = pX->x.pSelect; 2094 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2095 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2096 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2097 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2098 return 0; /* No DISTINCT keyword and no aggregate functions */ 2099 } 2100 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2101 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2102 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 2103 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2104 pSrc = p->pSrc; 2105 assert( pSrc!=0 ); 2106 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2107 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2108 pTab = pSrc->a[0].pTab; 2109 assert( pTab!=0 ); 2110 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2111 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2112 pEList = p->pEList; 2113 assert( pEList!=0 ); 2114 /* All SELECT results must be columns. */ 2115 for(i=0; i<pEList->nExpr; i++){ 2116 Expr *pRes = pEList->a[i].pExpr; 2117 if( pRes->op!=TK_COLUMN ) return 0; 2118 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2119 } 2120 return p; 2121 } 2122 #endif /* SQLITE_OMIT_SUBQUERY */ 2123 2124 #ifndef SQLITE_OMIT_SUBQUERY 2125 /* 2126 ** Generate code that checks the left-most column of index table iCur to see if 2127 ** it contains any NULL entries. Cause the register at regHasNull to be set 2128 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2129 ** to be set to NULL if iCur contains one or more NULL values. 2130 */ 2131 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2132 int addr1; 2133 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2134 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2135 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2136 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2137 VdbeComment((v, "first_entry_in(%d)", iCur)); 2138 sqlite3VdbeJumpHere(v, addr1); 2139 } 2140 #endif 2141 2142 2143 #ifndef SQLITE_OMIT_SUBQUERY 2144 /* 2145 ** The argument is an IN operator with a list (not a subquery) on the 2146 ** right-hand side. Return TRUE if that list is constant. 2147 */ 2148 static int sqlite3InRhsIsConstant(Expr *pIn){ 2149 Expr *pLHS; 2150 int res; 2151 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2152 pLHS = pIn->pLeft; 2153 pIn->pLeft = 0; 2154 res = sqlite3ExprIsConstant(pIn); 2155 pIn->pLeft = pLHS; 2156 return res; 2157 } 2158 #endif 2159 2160 /* 2161 ** This function is used by the implementation of the IN (...) operator. 2162 ** The pX parameter is the expression on the RHS of the IN operator, which 2163 ** might be either a list of expressions or a subquery. 2164 ** 2165 ** The job of this routine is to find or create a b-tree object that can 2166 ** be used either to test for membership in the RHS set or to iterate through 2167 ** all members of the RHS set, skipping duplicates. 2168 ** 2169 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2170 ** and pX->iTable is set to the index of that cursor. 2171 ** 2172 ** The returned value of this function indicates the b-tree type, as follows: 2173 ** 2174 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2175 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2176 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2177 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2178 ** populated epheremal table. 2179 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2180 ** implemented as a sequence of comparisons. 2181 ** 2182 ** An existing b-tree might be used if the RHS expression pX is a simple 2183 ** subquery such as: 2184 ** 2185 ** SELECT <column1>, <column2>... FROM <table> 2186 ** 2187 ** If the RHS of the IN operator is a list or a more complex subquery, then 2188 ** an ephemeral table might need to be generated from the RHS and then 2189 ** pX->iTable made to point to the ephemeral table instead of an 2190 ** existing table. 2191 ** 2192 ** The inFlags parameter must contain exactly one of the bits 2193 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2194 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2195 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2196 ** IN index will be used to loop over all values of the RHS of the 2197 ** IN operator. 2198 ** 2199 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2200 ** through the set members) then the b-tree must not contain duplicates. 2201 ** An epheremal table must be used unless the selected columns are guaranteed 2202 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2203 ** a UNIQUE constraint or index. 2204 ** 2205 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2206 ** for fast set membership tests) then an epheremal table must 2207 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2208 ** index can be found with the specified <columns> as its left-most. 2209 ** 2210 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2211 ** if the RHS of the IN operator is a list (not a subquery) then this 2212 ** routine might decide that creating an ephemeral b-tree for membership 2213 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2214 ** calling routine should implement the IN operator using a sequence 2215 ** of Eq or Ne comparison operations. 2216 ** 2217 ** When the b-tree is being used for membership tests, the calling function 2218 ** might need to know whether or not the RHS side of the IN operator 2219 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2220 ** if there is any chance that the (...) might contain a NULL value at 2221 ** runtime, then a register is allocated and the register number written 2222 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2223 ** NULL value, then *prRhsHasNull is left unchanged. 2224 ** 2225 ** If a register is allocated and its location stored in *prRhsHasNull, then 2226 ** the value in that register will be NULL if the b-tree contains one or more 2227 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2228 ** NULL values. 2229 ** 2230 ** If the aiMap parameter is not NULL, it must point to an array containing 2231 ** one element for each column returned by the SELECT statement on the RHS 2232 ** of the IN(...) operator. The i'th entry of the array is populated with the 2233 ** offset of the index column that matches the i'th column returned by the 2234 ** SELECT. For example, if the expression and selected index are: 2235 ** 2236 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2237 ** CREATE INDEX i1 ON t1(b, c, a); 2238 ** 2239 ** then aiMap[] is populated with {2, 0, 1}. 2240 */ 2241 #ifndef SQLITE_OMIT_SUBQUERY 2242 int sqlite3FindInIndex( 2243 Parse *pParse, /* Parsing context */ 2244 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2245 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2246 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2247 int *aiMap /* Mapping from Index fields to RHS fields */ 2248 ){ 2249 Select *p; /* SELECT to the right of IN operator */ 2250 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2251 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2252 int mustBeUnique; /* True if RHS must be unique */ 2253 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2254 2255 assert( pX->op==TK_IN ); 2256 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2257 2258 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2259 ** whether or not the SELECT result contains NULL values, check whether 2260 ** or not NULL is actually possible (it may not be, for example, due 2261 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2262 ** set prRhsHasNull to 0 before continuing. */ 2263 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2264 int i; 2265 ExprList *pEList = pX->x.pSelect->pEList; 2266 for(i=0; i<pEList->nExpr; i++){ 2267 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2268 } 2269 if( i==pEList->nExpr ){ 2270 prRhsHasNull = 0; 2271 } 2272 } 2273 2274 /* Check to see if an existing table or index can be used to 2275 ** satisfy the query. This is preferable to generating a new 2276 ** ephemeral table. */ 2277 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2278 sqlite3 *db = pParse->db; /* Database connection */ 2279 Table *pTab; /* Table <table>. */ 2280 i16 iDb; /* Database idx for pTab */ 2281 ExprList *pEList = p->pEList; 2282 int nExpr = pEList->nExpr; 2283 2284 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2285 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2286 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2287 pTab = p->pSrc->a[0].pTab; 2288 2289 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2290 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2291 sqlite3CodeVerifySchema(pParse, iDb); 2292 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2293 2294 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2295 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2296 /* The "x IN (SELECT rowid FROM table)" case */ 2297 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2298 VdbeCoverage(v); 2299 2300 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2301 eType = IN_INDEX_ROWID; 2302 2303 sqlite3VdbeJumpHere(v, iAddr); 2304 }else{ 2305 Index *pIdx; /* Iterator variable */ 2306 int affinity_ok = 1; 2307 int i; 2308 2309 /* Check that the affinity that will be used to perform each 2310 ** comparison is the same as the affinity of each column in table 2311 ** on the RHS of the IN operator. If it not, it is not possible to 2312 ** use any index of the RHS table. */ 2313 for(i=0; i<nExpr && affinity_ok; i++){ 2314 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2315 int iCol = pEList->a[i].pExpr->iColumn; 2316 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2317 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2318 testcase( cmpaff==SQLITE_AFF_BLOB ); 2319 testcase( cmpaff==SQLITE_AFF_TEXT ); 2320 switch( cmpaff ){ 2321 case SQLITE_AFF_BLOB: 2322 break; 2323 case SQLITE_AFF_TEXT: 2324 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2325 ** other has no affinity and the other side is TEXT. Hence, 2326 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2327 ** and for the term on the LHS of the IN to have no affinity. */ 2328 assert( idxaff==SQLITE_AFF_TEXT ); 2329 break; 2330 default: 2331 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2332 } 2333 } 2334 2335 if( affinity_ok ){ 2336 /* Search for an existing index that will work for this IN operator */ 2337 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2338 Bitmask colUsed; /* Columns of the index used */ 2339 Bitmask mCol; /* Mask for the current column */ 2340 if( pIdx->nColumn<nExpr ) continue; 2341 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2342 ** BITMASK(nExpr) without overflowing */ 2343 testcase( pIdx->nColumn==BMS-2 ); 2344 testcase( pIdx->nColumn==BMS-1 ); 2345 if( pIdx->nColumn>=BMS-1 ) continue; 2346 if( mustBeUnique ){ 2347 if( pIdx->nKeyCol>nExpr 2348 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2349 ){ 2350 continue; /* This index is not unique over the IN RHS columns */ 2351 } 2352 } 2353 2354 colUsed = 0; /* Columns of index used so far */ 2355 for(i=0; i<nExpr; i++){ 2356 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2357 Expr *pRhs = pEList->a[i].pExpr; 2358 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2359 int j; 2360 2361 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2362 for(j=0; j<nExpr; j++){ 2363 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2364 assert( pIdx->azColl[j] ); 2365 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2366 continue; 2367 } 2368 break; 2369 } 2370 if( j==nExpr ) break; 2371 mCol = MASKBIT(j); 2372 if( mCol & colUsed ) break; /* Each column used only once */ 2373 colUsed |= mCol; 2374 if( aiMap ) aiMap[i] = j; 2375 } 2376 2377 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2378 if( colUsed==(MASKBIT(nExpr)-1) ){ 2379 /* If we reach this point, that means the index pIdx is usable */ 2380 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2381 #ifndef SQLITE_OMIT_EXPLAIN 2382 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2383 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2384 P4_DYNAMIC); 2385 #endif 2386 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2388 VdbeComment((v, "%s", pIdx->zName)); 2389 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2390 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2391 2392 if( prRhsHasNull ){ 2393 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2394 i64 mask = (1<<nExpr)-1; 2395 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2396 iTab, 0, 0, (u8*)&mask, P4_INT64); 2397 #endif 2398 *prRhsHasNull = ++pParse->nMem; 2399 if( nExpr==1 ){ 2400 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2401 } 2402 } 2403 sqlite3VdbeJumpHere(v, iAddr); 2404 } 2405 } /* End loop over indexes */ 2406 } /* End if( affinity_ok ) */ 2407 } /* End if not an rowid index */ 2408 } /* End attempt to optimize using an index */ 2409 2410 /* If no preexisting index is available for the IN clause 2411 ** and IN_INDEX_NOOP is an allowed reply 2412 ** and the RHS of the IN operator is a list, not a subquery 2413 ** and the RHS is not constant or has two or fewer terms, 2414 ** then it is not worth creating an ephemeral table to evaluate 2415 ** the IN operator so return IN_INDEX_NOOP. 2416 */ 2417 if( eType==0 2418 && (inFlags & IN_INDEX_NOOP_OK) 2419 && !ExprHasProperty(pX, EP_xIsSelect) 2420 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2421 ){ 2422 eType = IN_INDEX_NOOP; 2423 } 2424 2425 if( eType==0 ){ 2426 /* Could not find an existing table or index to use as the RHS b-tree. 2427 ** We will have to generate an ephemeral table to do the job. 2428 */ 2429 u32 savedNQueryLoop = pParse->nQueryLoop; 2430 int rMayHaveNull = 0; 2431 eType = IN_INDEX_EPH; 2432 if( inFlags & IN_INDEX_LOOP ){ 2433 pParse->nQueryLoop = 0; 2434 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2435 eType = IN_INDEX_ROWID; 2436 } 2437 }else if( prRhsHasNull ){ 2438 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2439 } 2440 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2441 pParse->nQueryLoop = savedNQueryLoop; 2442 }else{ 2443 pX->iTable = iTab; 2444 } 2445 2446 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2447 int i, n; 2448 n = sqlite3ExprVectorSize(pX->pLeft); 2449 for(i=0; i<n; i++) aiMap[i] = i; 2450 } 2451 return eType; 2452 } 2453 #endif 2454 2455 #ifndef SQLITE_OMIT_SUBQUERY 2456 /* 2457 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2458 ** function allocates and returns a nul-terminated string containing 2459 ** the affinities to be used for each column of the comparison. 2460 ** 2461 ** It is the responsibility of the caller to ensure that the returned 2462 ** string is eventually freed using sqlite3DbFree(). 2463 */ 2464 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2465 Expr *pLeft = pExpr->pLeft; 2466 int nVal = sqlite3ExprVectorSize(pLeft); 2467 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2468 char *zRet; 2469 2470 assert( pExpr->op==TK_IN ); 2471 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2472 if( zRet ){ 2473 int i; 2474 for(i=0; i<nVal; i++){ 2475 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2476 char a = sqlite3ExprAffinity(pA); 2477 if( pSelect ){ 2478 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2479 }else{ 2480 zRet[i] = a; 2481 } 2482 } 2483 zRet[nVal] = '\0'; 2484 } 2485 return zRet; 2486 } 2487 #endif 2488 2489 #ifndef SQLITE_OMIT_SUBQUERY 2490 /* 2491 ** Load the Parse object passed as the first argument with an error 2492 ** message of the form: 2493 ** 2494 ** "sub-select returns N columns - expected M" 2495 */ 2496 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2497 const char *zFmt = "sub-select returns %d columns - expected %d"; 2498 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2499 } 2500 #endif 2501 2502 /* 2503 ** Expression pExpr is a vector that has been used in a context where 2504 ** it is not permitted. If pExpr is a sub-select vector, this routine 2505 ** loads the Parse object with a message of the form: 2506 ** 2507 ** "sub-select returns N columns - expected 1" 2508 ** 2509 ** Or, if it is a regular scalar vector: 2510 ** 2511 ** "row value misused" 2512 */ 2513 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2514 #ifndef SQLITE_OMIT_SUBQUERY 2515 if( pExpr->flags & EP_xIsSelect ){ 2516 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2517 }else 2518 #endif 2519 { 2520 sqlite3ErrorMsg(pParse, "row value misused"); 2521 } 2522 } 2523 2524 /* 2525 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2526 ** or IN operators. Examples: 2527 ** 2528 ** (SELECT a FROM b) -- subquery 2529 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2530 ** x IN (4,5,11) -- IN operator with list on right-hand side 2531 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2532 ** 2533 ** The pExpr parameter describes the expression that contains the IN 2534 ** operator or subquery. 2535 ** 2536 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2537 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2538 ** to some integer key column of a table B-Tree. In this case, use an 2539 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2540 ** (slower) variable length keys B-Tree. 2541 ** 2542 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2543 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2544 ** All this routine does is initialize the register given by rMayHaveNull 2545 ** to NULL. Calling routines will take care of changing this register 2546 ** value to non-NULL if the RHS is NULL-free. 2547 ** 2548 ** For a SELECT or EXISTS operator, return the register that holds the 2549 ** result. For a multi-column SELECT, the result is stored in a contiguous 2550 ** array of registers and the return value is the register of the left-most 2551 ** result column. Return 0 for IN operators or if an error occurs. 2552 */ 2553 #ifndef SQLITE_OMIT_SUBQUERY 2554 int sqlite3CodeSubselect( 2555 Parse *pParse, /* Parsing context */ 2556 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2557 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2558 int isRowid /* If true, LHS of IN operator is a rowid */ 2559 ){ 2560 int jmpIfDynamic = -1; /* One-time test address */ 2561 int rReg = 0; /* Register storing resulting */ 2562 Vdbe *v = sqlite3GetVdbe(pParse); 2563 if( NEVER(v==0) ) return 0; 2564 sqlite3ExprCachePush(pParse); 2565 2566 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2567 ** is encountered if any of the following is true: 2568 ** 2569 ** * The right-hand side is a correlated subquery 2570 ** * The right-hand side is an expression list containing variables 2571 ** * We are inside a trigger 2572 ** 2573 ** If all of the above are false, then we can run this code just once 2574 ** save the results, and reuse the same result on subsequent invocations. 2575 */ 2576 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2577 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2578 } 2579 2580 #ifndef SQLITE_OMIT_EXPLAIN 2581 if( pParse->explain==2 ){ 2582 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2583 jmpIfDynamic>=0?"":"CORRELATED ", 2584 pExpr->op==TK_IN?"LIST":"SCALAR", 2585 pParse->iNextSelectId 2586 ); 2587 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2588 } 2589 #endif 2590 2591 switch( pExpr->op ){ 2592 case TK_IN: { 2593 int addr; /* Address of OP_OpenEphemeral instruction */ 2594 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2595 KeyInfo *pKeyInfo = 0; /* Key information */ 2596 int nVal; /* Size of vector pLeft */ 2597 2598 nVal = sqlite3ExprVectorSize(pLeft); 2599 assert( !isRowid || nVal==1 ); 2600 2601 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2602 ** expression it is handled the same way. An ephemeral table is 2603 ** filled with index keys representing the results from the 2604 ** SELECT or the <exprlist>. 2605 ** 2606 ** If the 'x' expression is a column value, or the SELECT... 2607 ** statement returns a column value, then the affinity of that 2608 ** column is used to build the index keys. If both 'x' and the 2609 ** SELECT... statement are columns, then numeric affinity is used 2610 ** if either column has NUMERIC or INTEGER affinity. If neither 2611 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2612 ** is used. 2613 */ 2614 pExpr->iTable = pParse->nTab++; 2615 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2616 pExpr->iTable, (isRowid?0:nVal)); 2617 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2618 2619 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2620 /* Case 1: expr IN (SELECT ...) 2621 ** 2622 ** Generate code to write the results of the select into the temporary 2623 ** table allocated and opened above. 2624 */ 2625 Select *pSelect = pExpr->x.pSelect; 2626 ExprList *pEList = pSelect->pEList; 2627 2628 assert( !isRowid ); 2629 /* If the LHS and RHS of the IN operator do not match, that 2630 ** error will have been caught long before we reach this point. */ 2631 if( ALWAYS(pEList->nExpr==nVal) ){ 2632 SelectDest dest; 2633 int i; 2634 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2635 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2636 pSelect->iLimit = 0; 2637 testcase( pSelect->selFlags & SF_Distinct ); 2638 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2639 if( sqlite3Select(pParse, pSelect, &dest) ){ 2640 sqlite3DbFree(pParse->db, dest.zAffSdst); 2641 sqlite3KeyInfoUnref(pKeyInfo); 2642 return 0; 2643 } 2644 sqlite3DbFree(pParse->db, dest.zAffSdst); 2645 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2646 assert( pEList!=0 ); 2647 assert( pEList->nExpr>0 ); 2648 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2649 for(i=0; i<nVal; i++){ 2650 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2651 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2652 pParse, p, pEList->a[i].pExpr 2653 ); 2654 } 2655 } 2656 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2657 /* Case 2: expr IN (exprlist) 2658 ** 2659 ** For each expression, build an index key from the evaluation and 2660 ** store it in the temporary table. If <expr> is a column, then use 2661 ** that columns affinity when building index keys. If <expr> is not 2662 ** a column, use numeric affinity. 2663 */ 2664 char affinity; /* Affinity of the LHS of the IN */ 2665 int i; 2666 ExprList *pList = pExpr->x.pList; 2667 struct ExprList_item *pItem; 2668 int r1, r2, r3; 2669 2670 affinity = sqlite3ExprAffinity(pLeft); 2671 if( !affinity ){ 2672 affinity = SQLITE_AFF_BLOB; 2673 } 2674 if( pKeyInfo ){ 2675 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2676 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2677 } 2678 2679 /* Loop through each expression in <exprlist>. */ 2680 r1 = sqlite3GetTempReg(pParse); 2681 r2 = sqlite3GetTempReg(pParse); 2682 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2683 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2684 Expr *pE2 = pItem->pExpr; 2685 int iValToIns; 2686 2687 /* If the expression is not constant then we will need to 2688 ** disable the test that was generated above that makes sure 2689 ** this code only executes once. Because for a non-constant 2690 ** expression we need to rerun this code each time. 2691 */ 2692 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2693 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2694 jmpIfDynamic = -1; 2695 } 2696 2697 /* Evaluate the expression and insert it into the temp table */ 2698 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2699 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2700 }else{ 2701 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2702 if( isRowid ){ 2703 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2704 sqlite3VdbeCurrentAddr(v)+2); 2705 VdbeCoverage(v); 2706 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2707 }else{ 2708 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2709 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2710 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2711 } 2712 } 2713 } 2714 sqlite3ReleaseTempReg(pParse, r1); 2715 sqlite3ReleaseTempReg(pParse, r2); 2716 } 2717 if( pKeyInfo ){ 2718 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2719 } 2720 break; 2721 } 2722 2723 case TK_EXISTS: 2724 case TK_SELECT: 2725 default: { 2726 /* Case 3: (SELECT ... FROM ...) 2727 ** or: EXISTS(SELECT ... FROM ...) 2728 ** 2729 ** For a SELECT, generate code to put the values for all columns of 2730 ** the first row into an array of registers and return the index of 2731 ** the first register. 2732 ** 2733 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2734 ** into a register and return that register number. 2735 ** 2736 ** In both cases, the query is augmented with "LIMIT 1". Any 2737 ** preexisting limit is discarded in place of the new LIMIT 1. 2738 */ 2739 Select *pSel; /* SELECT statement to encode */ 2740 SelectDest dest; /* How to deal with SELECT result */ 2741 int nReg; /* Registers to allocate */ 2742 2743 testcase( pExpr->op==TK_EXISTS ); 2744 testcase( pExpr->op==TK_SELECT ); 2745 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2746 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2747 2748 pSel = pExpr->x.pSelect; 2749 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2750 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2751 pParse->nMem += nReg; 2752 if( pExpr->op==TK_SELECT ){ 2753 dest.eDest = SRT_Mem; 2754 dest.iSdst = dest.iSDParm; 2755 dest.nSdst = nReg; 2756 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2757 VdbeComment((v, "Init subquery result")); 2758 }else{ 2759 dest.eDest = SRT_Exists; 2760 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2761 VdbeComment((v, "Init EXISTS result")); 2762 } 2763 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2764 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2765 &sqlite3IntTokens[1], 0); 2766 pSel->iLimit = 0; 2767 pSel->selFlags &= ~SF_MultiValue; 2768 if( sqlite3Select(pParse, pSel, &dest) ){ 2769 return 0; 2770 } 2771 rReg = dest.iSDParm; 2772 ExprSetVVAProperty(pExpr, EP_NoReduce); 2773 break; 2774 } 2775 } 2776 2777 if( rHasNullFlag ){ 2778 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2779 } 2780 2781 if( jmpIfDynamic>=0 ){ 2782 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2783 } 2784 sqlite3ExprCachePop(pParse); 2785 2786 return rReg; 2787 } 2788 #endif /* SQLITE_OMIT_SUBQUERY */ 2789 2790 #ifndef SQLITE_OMIT_SUBQUERY 2791 /* 2792 ** Expr pIn is an IN(...) expression. This function checks that the 2793 ** sub-select on the RHS of the IN() operator has the same number of 2794 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2795 ** a sub-query, that the LHS is a vector of size 1. 2796 */ 2797 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2798 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2799 if( (pIn->flags & EP_xIsSelect) ){ 2800 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2801 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2802 return 1; 2803 } 2804 }else if( nVector!=1 ){ 2805 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2806 return 1; 2807 } 2808 return 0; 2809 } 2810 #endif 2811 2812 #ifndef SQLITE_OMIT_SUBQUERY 2813 /* 2814 ** Generate code for an IN expression. 2815 ** 2816 ** x IN (SELECT ...) 2817 ** x IN (value, value, ...) 2818 ** 2819 ** The left-hand side (LHS) is a scalar or vector expression. The 2820 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2821 ** subquery. If the RHS is a subquery, the number of result columns must 2822 ** match the number of columns in the vector on the LHS. If the RHS is 2823 ** a list of values, the LHS must be a scalar. 2824 ** 2825 ** The IN operator is true if the LHS value is contained within the RHS. 2826 ** The result is false if the LHS is definitely not in the RHS. The 2827 ** result is NULL if the presence of the LHS in the RHS cannot be 2828 ** determined due to NULLs. 2829 ** 2830 ** This routine generates code that jumps to destIfFalse if the LHS is not 2831 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2832 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2833 ** within the RHS then fall through. 2834 ** 2835 ** See the separate in-operator.md documentation file in the canonical 2836 ** SQLite source tree for additional information. 2837 */ 2838 static void sqlite3ExprCodeIN( 2839 Parse *pParse, /* Parsing and code generating context */ 2840 Expr *pExpr, /* The IN expression */ 2841 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2842 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2843 ){ 2844 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2845 int eType; /* Type of the RHS */ 2846 int rLhs; /* Register(s) holding the LHS values */ 2847 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2848 Vdbe *v; /* Statement under construction */ 2849 int *aiMap = 0; /* Map from vector field to index column */ 2850 char *zAff = 0; /* Affinity string for comparisons */ 2851 int nVector; /* Size of vectors for this IN operator */ 2852 int iDummy; /* Dummy parameter to exprCodeVector() */ 2853 Expr *pLeft; /* The LHS of the IN operator */ 2854 int i; /* loop counter */ 2855 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2856 int destStep6 = 0; /* Start of code for Step 6 */ 2857 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2858 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2859 int addrTop; /* Top of the step-6 loop */ 2860 2861 pLeft = pExpr->pLeft; 2862 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2863 zAff = exprINAffinity(pParse, pExpr); 2864 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2865 aiMap = (int*)sqlite3DbMallocZero( 2866 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2867 ); 2868 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2869 2870 /* Attempt to compute the RHS. After this step, if anything other than 2871 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2872 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2873 ** the RHS has not yet been coded. */ 2874 v = pParse->pVdbe; 2875 assert( v!=0 ); /* OOM detected prior to this routine */ 2876 VdbeNoopComment((v, "begin IN expr")); 2877 eType = sqlite3FindInIndex(pParse, pExpr, 2878 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2879 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2880 2881 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2882 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2883 ); 2884 #ifdef SQLITE_DEBUG 2885 /* Confirm that aiMap[] contains nVector integer values between 0 and 2886 ** nVector-1. */ 2887 for(i=0; i<nVector; i++){ 2888 int j, cnt; 2889 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2890 assert( cnt==1 ); 2891 } 2892 #endif 2893 2894 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2895 ** vector, then it is stored in an array of nVector registers starting 2896 ** at r1. 2897 ** 2898 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2899 ** so that the fields are in the same order as an existing index. The 2900 ** aiMap[] array contains a mapping from the original LHS field order to 2901 ** the field order that matches the RHS index. 2902 */ 2903 sqlite3ExprCachePush(pParse); 2904 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2905 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2906 if( i==nVector ){ 2907 /* LHS fields are not reordered */ 2908 rLhs = rLhsOrig; 2909 }else{ 2910 /* Need to reorder the LHS fields according to aiMap */ 2911 rLhs = sqlite3GetTempRange(pParse, nVector); 2912 for(i=0; i<nVector; i++){ 2913 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2914 } 2915 } 2916 2917 /* If sqlite3FindInIndex() did not find or create an index that is 2918 ** suitable for evaluating the IN operator, then evaluate using a 2919 ** sequence of comparisons. 2920 ** 2921 ** This is step (1) in the in-operator.md optimized algorithm. 2922 */ 2923 if( eType==IN_INDEX_NOOP ){ 2924 ExprList *pList = pExpr->x.pList; 2925 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2926 int labelOk = sqlite3VdbeMakeLabel(v); 2927 int r2, regToFree; 2928 int regCkNull = 0; 2929 int ii; 2930 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2931 if( destIfNull!=destIfFalse ){ 2932 regCkNull = sqlite3GetTempReg(pParse); 2933 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2934 } 2935 for(ii=0; ii<pList->nExpr; ii++){ 2936 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2937 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2938 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2939 } 2940 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2941 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2942 (void*)pColl, P4_COLLSEQ); 2943 VdbeCoverageIf(v, ii<pList->nExpr-1); 2944 VdbeCoverageIf(v, ii==pList->nExpr-1); 2945 sqlite3VdbeChangeP5(v, zAff[0]); 2946 }else{ 2947 assert( destIfNull==destIfFalse ); 2948 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2949 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2950 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2951 } 2952 sqlite3ReleaseTempReg(pParse, regToFree); 2953 } 2954 if( regCkNull ){ 2955 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2956 sqlite3VdbeGoto(v, destIfFalse); 2957 } 2958 sqlite3VdbeResolveLabel(v, labelOk); 2959 sqlite3ReleaseTempReg(pParse, regCkNull); 2960 goto sqlite3ExprCodeIN_finished; 2961 } 2962 2963 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2964 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2965 ** We will then skip the binary search of the RHS. 2966 */ 2967 if( destIfNull==destIfFalse ){ 2968 destStep2 = destIfFalse; 2969 }else{ 2970 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2971 } 2972 for(i=0; i<nVector; i++){ 2973 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2974 if( sqlite3ExprCanBeNull(p) ){ 2975 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2976 VdbeCoverage(v); 2977 } 2978 } 2979 2980 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2981 ** of the RHS using the LHS as a probe. If found, the result is 2982 ** true. 2983 */ 2984 if( eType==IN_INDEX_ROWID ){ 2985 /* In this case, the RHS is the ROWID of table b-tree and so we also 2986 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2987 ** into a single opcode. */ 2988 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2989 VdbeCoverage(v); 2990 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2991 }else{ 2992 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2993 if( destIfFalse==destIfNull ){ 2994 /* Combine Step 3 and Step 5 into a single opcode */ 2995 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2996 rLhs, nVector); VdbeCoverage(v); 2997 goto sqlite3ExprCodeIN_finished; 2998 } 2999 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3000 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 3001 rLhs, nVector); VdbeCoverage(v); 3002 } 3003 3004 /* Step 4. If the RHS is known to be non-NULL and we did not find 3005 ** an match on the search above, then the result must be FALSE. 3006 */ 3007 if( rRhsHasNull && nVector==1 ){ 3008 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3009 VdbeCoverage(v); 3010 } 3011 3012 /* Step 5. If we do not care about the difference between NULL and 3013 ** FALSE, then just return false. 3014 */ 3015 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3016 3017 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3018 ** If any comparison is NULL, then the result is NULL. If all 3019 ** comparisons are FALSE then the final result is FALSE. 3020 ** 3021 ** For a scalar LHS, it is sufficient to check just the first row 3022 ** of the RHS. 3023 */ 3024 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3025 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 3026 VdbeCoverage(v); 3027 if( nVector>1 ){ 3028 destNotNull = sqlite3VdbeMakeLabel(v); 3029 }else{ 3030 /* For nVector==1, combine steps 6 and 7 by immediately returning 3031 ** FALSE if the first comparison is not NULL */ 3032 destNotNull = destIfFalse; 3033 } 3034 for(i=0; i<nVector; i++){ 3035 Expr *p; 3036 CollSeq *pColl; 3037 int r3 = sqlite3GetTempReg(pParse); 3038 p = sqlite3VectorFieldSubexpr(pLeft, i); 3039 pColl = sqlite3ExprCollSeq(pParse, p); 3040 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3041 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3042 (void*)pColl, P4_COLLSEQ); 3043 VdbeCoverage(v); 3044 sqlite3ReleaseTempReg(pParse, r3); 3045 } 3046 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3047 if( nVector>1 ){ 3048 sqlite3VdbeResolveLabel(v, destNotNull); 3049 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3050 VdbeCoverage(v); 3051 3052 /* Step 7: If we reach this point, we know that the result must 3053 ** be false. */ 3054 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3055 } 3056 3057 /* Jumps here in order to return true. */ 3058 sqlite3VdbeJumpHere(v, addrTruthOp); 3059 3060 sqlite3ExprCodeIN_finished: 3061 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3062 sqlite3ExprCachePop(pParse); 3063 VdbeComment((v, "end IN expr")); 3064 sqlite3ExprCodeIN_oom_error: 3065 sqlite3DbFree(pParse->db, aiMap); 3066 sqlite3DbFree(pParse->db, zAff); 3067 } 3068 #endif /* SQLITE_OMIT_SUBQUERY */ 3069 3070 #ifndef SQLITE_OMIT_FLOATING_POINT 3071 /* 3072 ** Generate an instruction that will put the floating point 3073 ** value described by z[0..n-1] into register iMem. 3074 ** 3075 ** The z[] string will probably not be zero-terminated. But the 3076 ** z[n] character is guaranteed to be something that does not look 3077 ** like the continuation of the number. 3078 */ 3079 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3080 if( ALWAYS(z!=0) ){ 3081 double value; 3082 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3083 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3084 if( negateFlag ) value = -value; 3085 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3086 } 3087 } 3088 #endif 3089 3090 3091 /* 3092 ** Generate an instruction that will put the integer describe by 3093 ** text z[0..n-1] into register iMem. 3094 ** 3095 ** Expr.u.zToken is always UTF8 and zero-terminated. 3096 */ 3097 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3098 Vdbe *v = pParse->pVdbe; 3099 if( pExpr->flags & EP_IntValue ){ 3100 int i = pExpr->u.iValue; 3101 assert( i>=0 ); 3102 if( negFlag ) i = -i; 3103 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3104 }else{ 3105 int c; 3106 i64 value; 3107 const char *z = pExpr->u.zToken; 3108 assert( z!=0 ); 3109 c = sqlite3DecOrHexToI64(z, &value); 3110 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3111 #ifdef SQLITE_OMIT_FLOATING_POINT 3112 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3113 #else 3114 #ifndef SQLITE_OMIT_HEX_INTEGER 3115 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3116 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3117 }else 3118 #endif 3119 { 3120 codeReal(v, z, negFlag, iMem); 3121 } 3122 #endif 3123 }else{ 3124 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3125 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3126 } 3127 } 3128 } 3129 3130 /* 3131 ** Erase column-cache entry number i 3132 */ 3133 static void cacheEntryClear(Parse *pParse, int i){ 3134 if( pParse->aColCache[i].tempReg ){ 3135 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3136 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3137 } 3138 } 3139 pParse->nColCache--; 3140 if( i<pParse->nColCache ){ 3141 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3142 } 3143 } 3144 3145 3146 /* 3147 ** Record in the column cache that a particular column from a 3148 ** particular table is stored in a particular register. 3149 */ 3150 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3151 int i; 3152 int minLru; 3153 int idxLru; 3154 struct yColCache *p; 3155 3156 /* Unless an error has occurred, register numbers are always positive. */ 3157 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3158 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3159 3160 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3161 ** for testing only - to verify that SQLite always gets the same answer 3162 ** with and without the column cache. 3163 */ 3164 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3165 3166 /* First replace any existing entry. 3167 ** 3168 ** Actually, the way the column cache is currently used, we are guaranteed 3169 ** that the object will never already be in cache. Verify this guarantee. 3170 */ 3171 #ifndef NDEBUG 3172 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3173 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3174 } 3175 #endif 3176 3177 /* If the cache is already full, delete the least recently used entry */ 3178 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3179 minLru = 0x7fffffff; 3180 idxLru = -1; 3181 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3182 if( p->lru<minLru ){ 3183 idxLru = i; 3184 minLru = p->lru; 3185 } 3186 } 3187 p = &pParse->aColCache[idxLru]; 3188 }else{ 3189 p = &pParse->aColCache[pParse->nColCache++]; 3190 } 3191 3192 /* Add the new entry to the end of the cache */ 3193 p->iLevel = pParse->iCacheLevel; 3194 p->iTable = iTab; 3195 p->iColumn = iCol; 3196 p->iReg = iReg; 3197 p->tempReg = 0; 3198 p->lru = pParse->iCacheCnt++; 3199 } 3200 3201 /* 3202 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3203 ** Purge the range of registers from the column cache. 3204 */ 3205 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3206 int i = 0; 3207 while( i<pParse->nColCache ){ 3208 struct yColCache *p = &pParse->aColCache[i]; 3209 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3210 cacheEntryClear(pParse, i); 3211 }else{ 3212 i++; 3213 } 3214 } 3215 } 3216 3217 /* 3218 ** Remember the current column cache context. Any new entries added 3219 ** added to the column cache after this call are removed when the 3220 ** corresponding pop occurs. 3221 */ 3222 void sqlite3ExprCachePush(Parse *pParse){ 3223 pParse->iCacheLevel++; 3224 #ifdef SQLITE_DEBUG 3225 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3226 printf("PUSH to %d\n", pParse->iCacheLevel); 3227 } 3228 #endif 3229 } 3230 3231 /* 3232 ** Remove from the column cache any entries that were added since the 3233 ** the previous sqlite3ExprCachePush operation. In other words, restore 3234 ** the cache to the state it was in prior the most recent Push. 3235 */ 3236 void sqlite3ExprCachePop(Parse *pParse){ 3237 int i = 0; 3238 assert( pParse->iCacheLevel>=1 ); 3239 pParse->iCacheLevel--; 3240 #ifdef SQLITE_DEBUG 3241 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3242 printf("POP to %d\n", pParse->iCacheLevel); 3243 } 3244 #endif 3245 while( i<pParse->nColCache ){ 3246 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3247 cacheEntryClear(pParse, i); 3248 }else{ 3249 i++; 3250 } 3251 } 3252 } 3253 3254 /* 3255 ** When a cached column is reused, make sure that its register is 3256 ** no longer available as a temp register. ticket #3879: that same 3257 ** register might be in the cache in multiple places, so be sure to 3258 ** get them all. 3259 */ 3260 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3261 int i; 3262 struct yColCache *p; 3263 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3264 if( p->iReg==iReg ){ 3265 p->tempReg = 0; 3266 } 3267 } 3268 } 3269 3270 /* Generate code that will load into register regOut a value that is 3271 ** appropriate for the iIdxCol-th column of index pIdx. 3272 */ 3273 void sqlite3ExprCodeLoadIndexColumn( 3274 Parse *pParse, /* The parsing context */ 3275 Index *pIdx, /* The index whose column is to be loaded */ 3276 int iTabCur, /* Cursor pointing to a table row */ 3277 int iIdxCol, /* The column of the index to be loaded */ 3278 int regOut /* Store the index column value in this register */ 3279 ){ 3280 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3281 if( iTabCol==XN_EXPR ){ 3282 assert( pIdx->aColExpr ); 3283 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3284 pParse->iSelfTab = iTabCur + 1; 3285 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3286 pParse->iSelfTab = 0; 3287 }else{ 3288 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3289 iTabCol, regOut); 3290 } 3291 } 3292 3293 /* 3294 ** Generate code to extract the value of the iCol-th column of a table. 3295 */ 3296 void sqlite3ExprCodeGetColumnOfTable( 3297 Vdbe *v, /* The VDBE under construction */ 3298 Table *pTab, /* The table containing the value */ 3299 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3300 int iCol, /* Index of the column to extract */ 3301 int regOut /* Extract the value into this register */ 3302 ){ 3303 if( pTab==0 ){ 3304 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3305 return; 3306 } 3307 if( iCol<0 || iCol==pTab->iPKey ){ 3308 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3309 }else{ 3310 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3311 int x = iCol; 3312 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3313 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3314 } 3315 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3316 } 3317 if( iCol>=0 ){ 3318 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3319 } 3320 } 3321 3322 /* 3323 ** Generate code that will extract the iColumn-th column from 3324 ** table pTab and store the column value in a register. 3325 ** 3326 ** An effort is made to store the column value in register iReg. This 3327 ** is not garanteeed for GetColumn() - the result can be stored in 3328 ** any register. But the result is guaranteed to land in register iReg 3329 ** for GetColumnToReg(). 3330 ** 3331 ** There must be an open cursor to pTab in iTable when this routine 3332 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3333 */ 3334 int sqlite3ExprCodeGetColumn( 3335 Parse *pParse, /* Parsing and code generating context */ 3336 Table *pTab, /* Description of the table we are reading from */ 3337 int iColumn, /* Index of the table column */ 3338 int iTable, /* The cursor pointing to the table */ 3339 int iReg, /* Store results here */ 3340 u8 p5 /* P5 value for OP_Column + FLAGS */ 3341 ){ 3342 Vdbe *v = pParse->pVdbe; 3343 int i; 3344 struct yColCache *p; 3345 3346 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3347 if( p->iTable==iTable && p->iColumn==iColumn ){ 3348 p->lru = pParse->iCacheCnt++; 3349 sqlite3ExprCachePinRegister(pParse, p->iReg); 3350 return p->iReg; 3351 } 3352 } 3353 assert( v!=0 ); 3354 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3355 if( p5 ){ 3356 sqlite3VdbeChangeP5(v, p5); 3357 }else{ 3358 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3359 } 3360 return iReg; 3361 } 3362 void sqlite3ExprCodeGetColumnToReg( 3363 Parse *pParse, /* Parsing and code generating context */ 3364 Table *pTab, /* Description of the table we are reading from */ 3365 int iColumn, /* Index of the table column */ 3366 int iTable, /* The cursor pointing to the table */ 3367 int iReg /* Store results here */ 3368 ){ 3369 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3370 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3371 } 3372 3373 3374 /* 3375 ** Clear all column cache entries. 3376 */ 3377 void sqlite3ExprCacheClear(Parse *pParse){ 3378 int i; 3379 3380 #ifdef SQLITE_DEBUG 3381 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3382 printf("CLEAR\n"); 3383 } 3384 #endif 3385 for(i=0; i<pParse->nColCache; i++){ 3386 if( pParse->aColCache[i].tempReg 3387 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3388 ){ 3389 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3390 } 3391 } 3392 pParse->nColCache = 0; 3393 } 3394 3395 /* 3396 ** Record the fact that an affinity change has occurred on iCount 3397 ** registers starting with iStart. 3398 */ 3399 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3400 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3401 } 3402 3403 /* 3404 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3405 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3406 */ 3407 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3408 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3409 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3410 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3411 } 3412 3413 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3414 /* 3415 ** Return true if any register in the range iFrom..iTo (inclusive) 3416 ** is used as part of the column cache. 3417 ** 3418 ** This routine is used within assert() and testcase() macros only 3419 ** and does not appear in a normal build. 3420 */ 3421 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3422 int i; 3423 struct yColCache *p; 3424 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3425 int r = p->iReg; 3426 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3427 } 3428 return 0; 3429 } 3430 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3431 3432 3433 /* 3434 ** Convert a scalar expression node to a TK_REGISTER referencing 3435 ** register iReg. The caller must ensure that iReg already contains 3436 ** the correct value for the expression. 3437 */ 3438 static void exprToRegister(Expr *p, int iReg){ 3439 p->op2 = p->op; 3440 p->op = TK_REGISTER; 3441 p->iTable = iReg; 3442 ExprClearProperty(p, EP_Skip); 3443 } 3444 3445 /* 3446 ** Evaluate an expression (either a vector or a scalar expression) and store 3447 ** the result in continguous temporary registers. Return the index of 3448 ** the first register used to store the result. 3449 ** 3450 ** If the returned result register is a temporary scalar, then also write 3451 ** that register number into *piFreeable. If the returned result register 3452 ** is not a temporary or if the expression is a vector set *piFreeable 3453 ** to 0. 3454 */ 3455 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3456 int iResult; 3457 int nResult = sqlite3ExprVectorSize(p); 3458 if( nResult==1 ){ 3459 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3460 }else{ 3461 *piFreeable = 0; 3462 if( p->op==TK_SELECT ){ 3463 #if SQLITE_OMIT_SUBQUERY 3464 iResult = 0; 3465 #else 3466 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3467 #endif 3468 }else{ 3469 int i; 3470 iResult = pParse->nMem+1; 3471 pParse->nMem += nResult; 3472 for(i=0; i<nResult; i++){ 3473 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3474 } 3475 } 3476 } 3477 return iResult; 3478 } 3479 3480 3481 /* 3482 ** Generate code into the current Vdbe to evaluate the given 3483 ** expression. Attempt to store the results in register "target". 3484 ** Return the register where results are stored. 3485 ** 3486 ** With this routine, there is no guarantee that results will 3487 ** be stored in target. The result might be stored in some other 3488 ** register if it is convenient to do so. The calling function 3489 ** must check the return code and move the results to the desired 3490 ** register. 3491 */ 3492 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3493 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3494 int op; /* The opcode being coded */ 3495 int inReg = target; /* Results stored in register inReg */ 3496 int regFree1 = 0; /* If non-zero free this temporary register */ 3497 int regFree2 = 0; /* If non-zero free this temporary register */ 3498 int r1, r2; /* Various register numbers */ 3499 Expr tempX; /* Temporary expression node */ 3500 int p5 = 0; 3501 3502 assert( target>0 && target<=pParse->nMem ); 3503 if( v==0 ){ 3504 assert( pParse->db->mallocFailed ); 3505 return 0; 3506 } 3507 3508 if( pExpr==0 ){ 3509 op = TK_NULL; 3510 }else{ 3511 op = pExpr->op; 3512 } 3513 switch( op ){ 3514 case TK_AGG_COLUMN: { 3515 AggInfo *pAggInfo = pExpr->pAggInfo; 3516 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3517 if( !pAggInfo->directMode ){ 3518 assert( pCol->iMem>0 ); 3519 return pCol->iMem; 3520 }else if( pAggInfo->useSortingIdx ){ 3521 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3522 pCol->iSorterColumn, target); 3523 return target; 3524 } 3525 /* Otherwise, fall thru into the TK_COLUMN case */ 3526 } 3527 case TK_COLUMN: { 3528 int iTab = pExpr->iTable; 3529 if( iTab<0 ){ 3530 if( pParse->iSelfTab<0 ){ 3531 /* Generating CHECK constraints or inserting into partial index */ 3532 return pExpr->iColumn - pParse->iSelfTab; 3533 }else{ 3534 /* Coding an expression that is part of an index where column names 3535 ** in the index refer to the table to which the index belongs */ 3536 iTab = pParse->iSelfTab - 1; 3537 } 3538 } 3539 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3540 pExpr->iColumn, iTab, target, 3541 pExpr->op2); 3542 } 3543 case TK_INTEGER: { 3544 codeInteger(pParse, pExpr, 0, target); 3545 return target; 3546 } 3547 #ifndef SQLITE_OMIT_FLOATING_POINT 3548 case TK_FLOAT: { 3549 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3550 codeReal(v, pExpr->u.zToken, 0, target); 3551 return target; 3552 } 3553 #endif 3554 case TK_STRING: { 3555 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3556 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3557 return target; 3558 } 3559 case TK_NULL: { 3560 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3561 return target; 3562 } 3563 #ifndef SQLITE_OMIT_BLOB_LITERAL 3564 case TK_BLOB: { 3565 int n; 3566 const char *z; 3567 char *zBlob; 3568 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3569 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3570 assert( pExpr->u.zToken[1]=='\'' ); 3571 z = &pExpr->u.zToken[2]; 3572 n = sqlite3Strlen30(z) - 1; 3573 assert( z[n]=='\'' ); 3574 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3575 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3576 return target; 3577 } 3578 #endif 3579 case TK_VARIABLE: { 3580 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3581 assert( pExpr->u.zToken!=0 ); 3582 assert( pExpr->u.zToken[0]!=0 ); 3583 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3584 if( pExpr->u.zToken[1]!=0 ){ 3585 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3586 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3587 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3588 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3589 } 3590 return target; 3591 } 3592 case TK_REGISTER: { 3593 return pExpr->iTable; 3594 } 3595 #ifndef SQLITE_OMIT_CAST 3596 case TK_CAST: { 3597 /* Expressions of the form: CAST(pLeft AS token) */ 3598 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3599 if( inReg!=target ){ 3600 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3601 inReg = target; 3602 } 3603 sqlite3VdbeAddOp2(v, OP_Cast, target, 3604 sqlite3AffinityType(pExpr->u.zToken, 0)); 3605 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3606 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3607 return inReg; 3608 } 3609 #endif /* SQLITE_OMIT_CAST */ 3610 case TK_IS: 3611 case TK_ISNOT: 3612 op = (op==TK_IS) ? TK_EQ : TK_NE; 3613 p5 = SQLITE_NULLEQ; 3614 /* fall-through */ 3615 case TK_LT: 3616 case TK_LE: 3617 case TK_GT: 3618 case TK_GE: 3619 case TK_NE: 3620 case TK_EQ: { 3621 Expr *pLeft = pExpr->pLeft; 3622 if( sqlite3ExprIsVector(pLeft) ){ 3623 codeVectorCompare(pParse, pExpr, target, op, p5); 3624 }else{ 3625 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3626 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3627 codeCompare(pParse, pLeft, pExpr->pRight, op, 3628 r1, r2, inReg, SQLITE_STOREP2 | p5); 3629 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3630 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3631 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3632 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3633 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3634 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3635 testcase( regFree1==0 ); 3636 testcase( regFree2==0 ); 3637 } 3638 break; 3639 } 3640 case TK_AND: 3641 case TK_OR: 3642 case TK_PLUS: 3643 case TK_STAR: 3644 case TK_MINUS: 3645 case TK_REM: 3646 case TK_BITAND: 3647 case TK_BITOR: 3648 case TK_SLASH: 3649 case TK_LSHIFT: 3650 case TK_RSHIFT: 3651 case TK_CONCAT: { 3652 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3653 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3654 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3655 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3656 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3657 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3658 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3659 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3660 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3661 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3662 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3663 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3664 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3665 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3666 testcase( regFree1==0 ); 3667 testcase( regFree2==0 ); 3668 break; 3669 } 3670 case TK_UMINUS: { 3671 Expr *pLeft = pExpr->pLeft; 3672 assert( pLeft ); 3673 if( pLeft->op==TK_INTEGER ){ 3674 codeInteger(pParse, pLeft, 1, target); 3675 return target; 3676 #ifndef SQLITE_OMIT_FLOATING_POINT 3677 }else if( pLeft->op==TK_FLOAT ){ 3678 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3679 codeReal(v, pLeft->u.zToken, 1, target); 3680 return target; 3681 #endif 3682 }else{ 3683 tempX.op = TK_INTEGER; 3684 tempX.flags = EP_IntValue|EP_TokenOnly; 3685 tempX.u.iValue = 0; 3686 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3687 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3688 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3689 testcase( regFree2==0 ); 3690 } 3691 break; 3692 } 3693 case TK_BITNOT: 3694 case TK_NOT: { 3695 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3696 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3697 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3698 testcase( regFree1==0 ); 3699 sqlite3VdbeAddOp2(v, op, r1, inReg); 3700 break; 3701 } 3702 case TK_ISNULL: 3703 case TK_NOTNULL: { 3704 int addr; 3705 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3706 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3707 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3708 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3709 testcase( regFree1==0 ); 3710 addr = sqlite3VdbeAddOp1(v, op, r1); 3711 VdbeCoverageIf(v, op==TK_ISNULL); 3712 VdbeCoverageIf(v, op==TK_NOTNULL); 3713 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3714 sqlite3VdbeJumpHere(v, addr); 3715 break; 3716 } 3717 case TK_AGG_FUNCTION: { 3718 AggInfo *pInfo = pExpr->pAggInfo; 3719 if( pInfo==0 ){ 3720 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3721 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3722 }else{ 3723 return pInfo->aFunc[pExpr->iAgg].iMem; 3724 } 3725 break; 3726 } 3727 case TK_FUNCTION: { 3728 ExprList *pFarg; /* List of function arguments */ 3729 int nFarg; /* Number of function arguments */ 3730 FuncDef *pDef; /* The function definition object */ 3731 const char *zId; /* The function name */ 3732 u32 constMask = 0; /* Mask of function arguments that are constant */ 3733 int i; /* Loop counter */ 3734 sqlite3 *db = pParse->db; /* The database connection */ 3735 u8 enc = ENC(db); /* The text encoding used by this database */ 3736 CollSeq *pColl = 0; /* A collating sequence */ 3737 3738 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3739 /* SQL functions can be expensive. So try to move constant functions 3740 ** out of the inner loop, even if that means an extra OP_Copy. */ 3741 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3742 } 3743 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3744 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3745 pFarg = 0; 3746 }else{ 3747 pFarg = pExpr->x.pList; 3748 } 3749 nFarg = pFarg ? pFarg->nExpr : 0; 3750 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3751 zId = pExpr->u.zToken; 3752 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3753 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3754 if( pDef==0 && pParse->explain ){ 3755 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3756 } 3757 #endif 3758 if( pDef==0 || pDef->xFinalize!=0 ){ 3759 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3760 break; 3761 } 3762 3763 /* Attempt a direct implementation of the built-in COALESCE() and 3764 ** IFNULL() functions. This avoids unnecessary evaluation of 3765 ** arguments past the first non-NULL argument. 3766 */ 3767 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3768 int endCoalesce = sqlite3VdbeMakeLabel(v); 3769 assert( nFarg>=2 ); 3770 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3771 for(i=1; i<nFarg; i++){ 3772 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3773 VdbeCoverage(v); 3774 sqlite3ExprCacheRemove(pParse, target, 1); 3775 sqlite3ExprCachePush(pParse); 3776 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3777 sqlite3ExprCachePop(pParse); 3778 } 3779 sqlite3VdbeResolveLabel(v, endCoalesce); 3780 break; 3781 } 3782 3783 /* The UNLIKELY() function is a no-op. The result is the value 3784 ** of the first argument. 3785 */ 3786 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3787 assert( nFarg>=1 ); 3788 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3789 } 3790 3791 #ifdef SQLITE_DEBUG 3792 /* The AFFINITY() function evaluates to a string that describes 3793 ** the type affinity of the argument. This is used for testing of 3794 ** the SQLite type logic. 3795 */ 3796 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3797 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3798 char aff; 3799 assert( nFarg==1 ); 3800 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3801 sqlite3VdbeLoadString(v, target, 3802 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3803 return target; 3804 } 3805 #endif 3806 3807 for(i=0; i<nFarg; i++){ 3808 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3809 testcase( i==31 ); 3810 constMask |= MASKBIT32(i); 3811 } 3812 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3813 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3814 } 3815 } 3816 if( pFarg ){ 3817 if( constMask ){ 3818 r1 = pParse->nMem+1; 3819 pParse->nMem += nFarg; 3820 }else{ 3821 r1 = sqlite3GetTempRange(pParse, nFarg); 3822 } 3823 3824 /* For length() and typeof() functions with a column argument, 3825 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3826 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3827 ** loading. 3828 */ 3829 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3830 u8 exprOp; 3831 assert( nFarg==1 ); 3832 assert( pFarg->a[0].pExpr!=0 ); 3833 exprOp = pFarg->a[0].pExpr->op; 3834 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3835 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3836 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3837 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3838 pFarg->a[0].pExpr->op2 = 3839 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3840 } 3841 } 3842 3843 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3844 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3845 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3846 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3847 }else{ 3848 r1 = 0; 3849 } 3850 #ifndef SQLITE_OMIT_VIRTUALTABLE 3851 /* Possibly overload the function if the first argument is 3852 ** a virtual table column. 3853 ** 3854 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3855 ** second argument, not the first, as the argument to test to 3856 ** see if it is a column in a virtual table. This is done because 3857 ** the left operand of infix functions (the operand we want to 3858 ** control overloading) ends up as the second argument to the 3859 ** function. The expression "A glob B" is equivalent to 3860 ** "glob(B,A). We want to use the A in "A glob B" to test 3861 ** for function overloading. But we use the B term in "glob(B,A)". 3862 */ 3863 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3864 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3865 }else if( nFarg>0 ){ 3866 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3867 } 3868 #endif 3869 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3870 if( !pColl ) pColl = db->pDfltColl; 3871 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3872 } 3873 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3874 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3875 sqlite3VdbeChangeP5(v, (u8)nFarg); 3876 if( nFarg && constMask==0 ){ 3877 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3878 } 3879 return target; 3880 } 3881 #ifndef SQLITE_OMIT_SUBQUERY 3882 case TK_EXISTS: 3883 case TK_SELECT: { 3884 int nCol; 3885 testcase( op==TK_EXISTS ); 3886 testcase( op==TK_SELECT ); 3887 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3888 sqlite3SubselectError(pParse, nCol, 1); 3889 }else{ 3890 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3891 } 3892 break; 3893 } 3894 case TK_SELECT_COLUMN: { 3895 int n; 3896 if( pExpr->pLeft->iTable==0 ){ 3897 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3898 } 3899 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3900 if( pExpr->iTable 3901 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3902 ){ 3903 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3904 pExpr->iTable, n); 3905 } 3906 return pExpr->pLeft->iTable + pExpr->iColumn; 3907 } 3908 case TK_IN: { 3909 int destIfFalse = sqlite3VdbeMakeLabel(v); 3910 int destIfNull = sqlite3VdbeMakeLabel(v); 3911 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3912 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3913 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3914 sqlite3VdbeResolveLabel(v, destIfFalse); 3915 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3916 sqlite3VdbeResolveLabel(v, destIfNull); 3917 return target; 3918 } 3919 #endif /* SQLITE_OMIT_SUBQUERY */ 3920 3921 3922 /* 3923 ** x BETWEEN y AND z 3924 ** 3925 ** This is equivalent to 3926 ** 3927 ** x>=y AND x<=z 3928 ** 3929 ** X is stored in pExpr->pLeft. 3930 ** Y is stored in pExpr->pList->a[0].pExpr. 3931 ** Z is stored in pExpr->pList->a[1].pExpr. 3932 */ 3933 case TK_BETWEEN: { 3934 exprCodeBetween(pParse, pExpr, target, 0, 0); 3935 return target; 3936 } 3937 case TK_SPAN: 3938 case TK_COLLATE: 3939 case TK_UPLUS: { 3940 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3941 } 3942 3943 case TK_TRIGGER: { 3944 /* If the opcode is TK_TRIGGER, then the expression is a reference 3945 ** to a column in the new.* or old.* pseudo-tables available to 3946 ** trigger programs. In this case Expr.iTable is set to 1 for the 3947 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3948 ** is set to the column of the pseudo-table to read, or to -1 to 3949 ** read the rowid field. 3950 ** 3951 ** The expression is implemented using an OP_Param opcode. The p1 3952 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3953 ** to reference another column of the old.* pseudo-table, where 3954 ** i is the index of the column. For a new.rowid reference, p1 is 3955 ** set to (n+1), where n is the number of columns in each pseudo-table. 3956 ** For a reference to any other column in the new.* pseudo-table, p1 3957 ** is set to (n+2+i), where n and i are as defined previously. For 3958 ** example, if the table on which triggers are being fired is 3959 ** declared as: 3960 ** 3961 ** CREATE TABLE t1(a, b); 3962 ** 3963 ** Then p1 is interpreted as follows: 3964 ** 3965 ** p1==0 -> old.rowid p1==3 -> new.rowid 3966 ** p1==1 -> old.a p1==4 -> new.a 3967 ** p1==2 -> old.b p1==5 -> new.b 3968 */ 3969 Table *pTab = pExpr->pTab; 3970 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3971 3972 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3973 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3974 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3975 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3976 3977 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3978 VdbeComment((v, "%s.%s -> $%d", 3979 (pExpr->iTable ? "new" : "old"), 3980 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3981 target 3982 )); 3983 3984 #ifndef SQLITE_OMIT_FLOATING_POINT 3985 /* If the column has REAL affinity, it may currently be stored as an 3986 ** integer. Use OP_RealAffinity to make sure it is really real. 3987 ** 3988 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3989 ** floating point when extracting it from the record. */ 3990 if( pExpr->iColumn>=0 3991 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3992 ){ 3993 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3994 } 3995 #endif 3996 break; 3997 } 3998 3999 case TK_VECTOR: { 4000 sqlite3ErrorMsg(pParse, "row value misused"); 4001 break; 4002 } 4003 4004 case TK_IF_NULL_ROW: { 4005 int addrINR; 4006 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4007 sqlite3ExprCachePush(pParse); 4008 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4009 sqlite3ExprCachePop(pParse); 4010 sqlite3VdbeJumpHere(v, addrINR); 4011 sqlite3VdbeChangeP3(v, addrINR, inReg); 4012 break; 4013 } 4014 4015 /* 4016 ** Form A: 4017 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4018 ** 4019 ** Form B: 4020 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4021 ** 4022 ** Form A is can be transformed into the equivalent form B as follows: 4023 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4024 ** WHEN x=eN THEN rN ELSE y END 4025 ** 4026 ** X (if it exists) is in pExpr->pLeft. 4027 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4028 ** odd. The Y is also optional. If the number of elements in x.pList 4029 ** is even, then Y is omitted and the "otherwise" result is NULL. 4030 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4031 ** 4032 ** The result of the expression is the Ri for the first matching Ei, 4033 ** or if there is no matching Ei, the ELSE term Y, or if there is 4034 ** no ELSE term, NULL. 4035 */ 4036 default: assert( op==TK_CASE ); { 4037 int endLabel; /* GOTO label for end of CASE stmt */ 4038 int nextCase; /* GOTO label for next WHEN clause */ 4039 int nExpr; /* 2x number of WHEN terms */ 4040 int i; /* Loop counter */ 4041 ExprList *pEList; /* List of WHEN terms */ 4042 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4043 Expr opCompare; /* The X==Ei expression */ 4044 Expr *pX; /* The X expression */ 4045 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4046 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4047 4048 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4049 assert(pExpr->x.pList->nExpr > 0); 4050 pEList = pExpr->x.pList; 4051 aListelem = pEList->a; 4052 nExpr = pEList->nExpr; 4053 endLabel = sqlite3VdbeMakeLabel(v); 4054 if( (pX = pExpr->pLeft)!=0 ){ 4055 tempX = *pX; 4056 testcase( pX->op==TK_COLUMN ); 4057 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4058 testcase( regFree1==0 ); 4059 memset(&opCompare, 0, sizeof(opCompare)); 4060 opCompare.op = TK_EQ; 4061 opCompare.pLeft = &tempX; 4062 pTest = &opCompare; 4063 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4064 ** The value in regFree1 might get SCopy-ed into the file result. 4065 ** So make sure that the regFree1 register is not reused for other 4066 ** purposes and possibly overwritten. */ 4067 regFree1 = 0; 4068 } 4069 for(i=0; i<nExpr-1; i=i+2){ 4070 sqlite3ExprCachePush(pParse); 4071 if( pX ){ 4072 assert( pTest!=0 ); 4073 opCompare.pRight = aListelem[i].pExpr; 4074 }else{ 4075 pTest = aListelem[i].pExpr; 4076 } 4077 nextCase = sqlite3VdbeMakeLabel(v); 4078 testcase( pTest->op==TK_COLUMN ); 4079 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4080 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4081 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4082 sqlite3VdbeGoto(v, endLabel); 4083 sqlite3ExprCachePop(pParse); 4084 sqlite3VdbeResolveLabel(v, nextCase); 4085 } 4086 if( (nExpr&1)!=0 ){ 4087 sqlite3ExprCachePush(pParse); 4088 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4089 sqlite3ExprCachePop(pParse); 4090 }else{ 4091 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4092 } 4093 assert( pParse->db->mallocFailed || pParse->nErr>0 4094 || pParse->iCacheLevel==iCacheLevel ); 4095 sqlite3VdbeResolveLabel(v, endLabel); 4096 break; 4097 } 4098 #ifndef SQLITE_OMIT_TRIGGER 4099 case TK_RAISE: { 4100 assert( pExpr->affinity==OE_Rollback 4101 || pExpr->affinity==OE_Abort 4102 || pExpr->affinity==OE_Fail 4103 || pExpr->affinity==OE_Ignore 4104 ); 4105 if( !pParse->pTriggerTab ){ 4106 sqlite3ErrorMsg(pParse, 4107 "RAISE() may only be used within a trigger-program"); 4108 return 0; 4109 } 4110 if( pExpr->affinity==OE_Abort ){ 4111 sqlite3MayAbort(pParse); 4112 } 4113 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4114 if( pExpr->affinity==OE_Ignore ){ 4115 sqlite3VdbeAddOp4( 4116 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4117 VdbeCoverage(v); 4118 }else{ 4119 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4120 pExpr->affinity, pExpr->u.zToken, 0, 0); 4121 } 4122 4123 break; 4124 } 4125 #endif 4126 } 4127 sqlite3ReleaseTempReg(pParse, regFree1); 4128 sqlite3ReleaseTempReg(pParse, regFree2); 4129 return inReg; 4130 } 4131 4132 /* 4133 ** Factor out the code of the given expression to initialization time. 4134 ** 4135 ** If regDest>=0 then the result is always stored in that register and the 4136 ** result is not reusable. If regDest<0 then this routine is free to 4137 ** store the value whereever it wants. The register where the expression 4138 ** is stored is returned. When regDest<0, two identical expressions will 4139 ** code to the same register. 4140 */ 4141 int sqlite3ExprCodeAtInit( 4142 Parse *pParse, /* Parsing context */ 4143 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4144 int regDest /* Store the value in this register */ 4145 ){ 4146 ExprList *p; 4147 assert( ConstFactorOk(pParse) ); 4148 p = pParse->pConstExpr; 4149 if( regDest<0 && p ){ 4150 struct ExprList_item *pItem; 4151 int i; 4152 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4153 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4154 return pItem->u.iConstExprReg; 4155 } 4156 } 4157 } 4158 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4159 p = sqlite3ExprListAppend(pParse, p, pExpr); 4160 if( p ){ 4161 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4162 pItem->reusable = regDest<0; 4163 if( regDest<0 ) regDest = ++pParse->nMem; 4164 pItem->u.iConstExprReg = regDest; 4165 } 4166 pParse->pConstExpr = p; 4167 return regDest; 4168 } 4169 4170 /* 4171 ** Generate code to evaluate an expression and store the results 4172 ** into a register. Return the register number where the results 4173 ** are stored. 4174 ** 4175 ** If the register is a temporary register that can be deallocated, 4176 ** then write its number into *pReg. If the result register is not 4177 ** a temporary, then set *pReg to zero. 4178 ** 4179 ** If pExpr is a constant, then this routine might generate this 4180 ** code to fill the register in the initialization section of the 4181 ** VDBE program, in order to factor it out of the evaluation loop. 4182 */ 4183 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4184 int r2; 4185 pExpr = sqlite3ExprSkipCollate(pExpr); 4186 if( ConstFactorOk(pParse) 4187 && pExpr->op!=TK_REGISTER 4188 && sqlite3ExprIsConstantNotJoin(pExpr) 4189 ){ 4190 *pReg = 0; 4191 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4192 }else{ 4193 int r1 = sqlite3GetTempReg(pParse); 4194 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4195 if( r2==r1 ){ 4196 *pReg = r1; 4197 }else{ 4198 sqlite3ReleaseTempReg(pParse, r1); 4199 *pReg = 0; 4200 } 4201 } 4202 return r2; 4203 } 4204 4205 /* 4206 ** Generate code that will evaluate expression pExpr and store the 4207 ** results in register target. The results are guaranteed to appear 4208 ** in register target. 4209 */ 4210 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4211 int inReg; 4212 4213 assert( target>0 && target<=pParse->nMem ); 4214 if( pExpr && pExpr->op==TK_REGISTER ){ 4215 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4216 }else{ 4217 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4218 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4219 if( inReg!=target && pParse->pVdbe ){ 4220 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4221 } 4222 } 4223 } 4224 4225 /* 4226 ** Make a transient copy of expression pExpr and then code it using 4227 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4228 ** except that the input expression is guaranteed to be unchanged. 4229 */ 4230 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4231 sqlite3 *db = pParse->db; 4232 pExpr = sqlite3ExprDup(db, pExpr, 0); 4233 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4234 sqlite3ExprDelete(db, pExpr); 4235 } 4236 4237 /* 4238 ** Generate code that will evaluate expression pExpr and store the 4239 ** results in register target. The results are guaranteed to appear 4240 ** in register target. If the expression is constant, then this routine 4241 ** might choose to code the expression at initialization time. 4242 */ 4243 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4244 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4245 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4246 }else{ 4247 sqlite3ExprCode(pParse, pExpr, target); 4248 } 4249 } 4250 4251 /* 4252 ** Generate code that evaluates the given expression and puts the result 4253 ** in register target. 4254 ** 4255 ** Also make a copy of the expression results into another "cache" register 4256 ** and modify the expression so that the next time it is evaluated, 4257 ** the result is a copy of the cache register. 4258 ** 4259 ** This routine is used for expressions that are used multiple 4260 ** times. They are evaluated once and the results of the expression 4261 ** are reused. 4262 */ 4263 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4264 Vdbe *v = pParse->pVdbe; 4265 int iMem; 4266 4267 assert( target>0 ); 4268 assert( pExpr->op!=TK_REGISTER ); 4269 sqlite3ExprCode(pParse, pExpr, target); 4270 iMem = ++pParse->nMem; 4271 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4272 exprToRegister(pExpr, iMem); 4273 } 4274 4275 /* 4276 ** Generate code that pushes the value of every element of the given 4277 ** expression list into a sequence of registers beginning at target. 4278 ** 4279 ** Return the number of elements evaluated. The number returned will 4280 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4281 ** is defined. 4282 ** 4283 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4284 ** filled using OP_SCopy. OP_Copy must be used instead. 4285 ** 4286 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4287 ** factored out into initialization code. 4288 ** 4289 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4290 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4291 ** in registers at srcReg, and so the value can be copied from there. 4292 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4293 ** are simply omitted rather than being copied from srcReg. 4294 */ 4295 int sqlite3ExprCodeExprList( 4296 Parse *pParse, /* Parsing context */ 4297 ExprList *pList, /* The expression list to be coded */ 4298 int target, /* Where to write results */ 4299 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4300 u8 flags /* SQLITE_ECEL_* flags */ 4301 ){ 4302 struct ExprList_item *pItem; 4303 int i, j, n; 4304 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4305 Vdbe *v = pParse->pVdbe; 4306 assert( pList!=0 ); 4307 assert( target>0 ); 4308 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4309 n = pList->nExpr; 4310 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4311 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4312 Expr *pExpr = pItem->pExpr; 4313 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4314 if( flags & SQLITE_ECEL_OMITREF ){ 4315 i--; 4316 n--; 4317 }else{ 4318 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4319 } 4320 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4321 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4322 }else{ 4323 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4324 if( inReg!=target+i ){ 4325 VdbeOp *pOp; 4326 if( copyOp==OP_Copy 4327 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4328 && pOp->p1+pOp->p3+1==inReg 4329 && pOp->p2+pOp->p3+1==target+i 4330 ){ 4331 pOp->p3++; 4332 }else{ 4333 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4334 } 4335 } 4336 } 4337 } 4338 return n; 4339 } 4340 4341 /* 4342 ** Generate code for a BETWEEN operator. 4343 ** 4344 ** x BETWEEN y AND z 4345 ** 4346 ** The above is equivalent to 4347 ** 4348 ** x>=y AND x<=z 4349 ** 4350 ** Code it as such, taking care to do the common subexpression 4351 ** elimination of x. 4352 ** 4353 ** The xJumpIf parameter determines details: 4354 ** 4355 ** NULL: Store the boolean result in reg[dest] 4356 ** sqlite3ExprIfTrue: Jump to dest if true 4357 ** sqlite3ExprIfFalse: Jump to dest if false 4358 ** 4359 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4360 */ 4361 static void exprCodeBetween( 4362 Parse *pParse, /* Parsing and code generating context */ 4363 Expr *pExpr, /* The BETWEEN expression */ 4364 int dest, /* Jump destination or storage location */ 4365 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4366 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4367 ){ 4368 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4369 Expr compLeft; /* The x>=y term */ 4370 Expr compRight; /* The x<=z term */ 4371 Expr exprX; /* The x subexpression */ 4372 int regFree1 = 0; /* Temporary use register */ 4373 4374 4375 memset(&compLeft, 0, sizeof(Expr)); 4376 memset(&compRight, 0, sizeof(Expr)); 4377 memset(&exprAnd, 0, sizeof(Expr)); 4378 4379 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4380 exprX = *pExpr->pLeft; 4381 exprAnd.op = TK_AND; 4382 exprAnd.pLeft = &compLeft; 4383 exprAnd.pRight = &compRight; 4384 compLeft.op = TK_GE; 4385 compLeft.pLeft = &exprX; 4386 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4387 compRight.op = TK_LE; 4388 compRight.pLeft = &exprX; 4389 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4390 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4391 if( xJump ){ 4392 xJump(pParse, &exprAnd, dest, jumpIfNull); 4393 }else{ 4394 /* Mark the expression is being from the ON or USING clause of a join 4395 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4396 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4397 ** for clarity, but we are out of bits in the Expr.flags field so we 4398 ** have to reuse the EP_FromJoin bit. Bummer. */ 4399 exprX.flags |= EP_FromJoin; 4400 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4401 } 4402 sqlite3ReleaseTempReg(pParse, regFree1); 4403 4404 /* Ensure adequate test coverage */ 4405 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4406 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4407 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4408 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4409 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4410 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4411 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4412 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4413 testcase( xJump==0 ); 4414 } 4415 4416 /* 4417 ** Generate code for a boolean expression such that a jump is made 4418 ** to the label "dest" if the expression is true but execution 4419 ** continues straight thru if the expression is false. 4420 ** 4421 ** If the expression evaluates to NULL (neither true nor false), then 4422 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4423 ** 4424 ** This code depends on the fact that certain token values (ex: TK_EQ) 4425 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4426 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4427 ** the make process cause these values to align. Assert()s in the code 4428 ** below verify that the numbers are aligned correctly. 4429 */ 4430 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4431 Vdbe *v = pParse->pVdbe; 4432 int op = 0; 4433 int regFree1 = 0; 4434 int regFree2 = 0; 4435 int r1, r2; 4436 4437 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4438 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4439 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4440 op = pExpr->op; 4441 switch( op ){ 4442 case TK_AND: { 4443 int d2 = sqlite3VdbeMakeLabel(v); 4444 testcase( jumpIfNull==0 ); 4445 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4446 sqlite3ExprCachePush(pParse); 4447 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4448 sqlite3VdbeResolveLabel(v, d2); 4449 sqlite3ExprCachePop(pParse); 4450 break; 4451 } 4452 case TK_OR: { 4453 testcase( jumpIfNull==0 ); 4454 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4455 sqlite3ExprCachePush(pParse); 4456 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4457 sqlite3ExprCachePop(pParse); 4458 break; 4459 } 4460 case TK_NOT: { 4461 testcase( jumpIfNull==0 ); 4462 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4463 break; 4464 } 4465 case TK_IS: 4466 case TK_ISNOT: 4467 testcase( op==TK_IS ); 4468 testcase( op==TK_ISNOT ); 4469 op = (op==TK_IS) ? TK_EQ : TK_NE; 4470 jumpIfNull = SQLITE_NULLEQ; 4471 /* Fall thru */ 4472 case TK_LT: 4473 case TK_LE: 4474 case TK_GT: 4475 case TK_GE: 4476 case TK_NE: 4477 case TK_EQ: { 4478 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4479 testcase( jumpIfNull==0 ); 4480 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4481 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4482 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4483 r1, r2, dest, jumpIfNull); 4484 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4485 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4486 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4487 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4488 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4489 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4490 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4491 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4492 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4493 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4494 testcase( regFree1==0 ); 4495 testcase( regFree2==0 ); 4496 break; 4497 } 4498 case TK_ISNULL: 4499 case TK_NOTNULL: { 4500 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4501 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4502 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4503 sqlite3VdbeAddOp2(v, op, r1, dest); 4504 VdbeCoverageIf(v, op==TK_ISNULL); 4505 VdbeCoverageIf(v, op==TK_NOTNULL); 4506 testcase( regFree1==0 ); 4507 break; 4508 } 4509 case TK_BETWEEN: { 4510 testcase( jumpIfNull==0 ); 4511 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4512 break; 4513 } 4514 #ifndef SQLITE_OMIT_SUBQUERY 4515 case TK_IN: { 4516 int destIfFalse = sqlite3VdbeMakeLabel(v); 4517 int destIfNull = jumpIfNull ? dest : destIfFalse; 4518 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4519 sqlite3VdbeGoto(v, dest); 4520 sqlite3VdbeResolveLabel(v, destIfFalse); 4521 break; 4522 } 4523 #endif 4524 default: { 4525 default_expr: 4526 if( exprAlwaysTrue(pExpr) ){ 4527 sqlite3VdbeGoto(v, dest); 4528 }else if( exprAlwaysFalse(pExpr) ){ 4529 /* No-op */ 4530 }else{ 4531 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4532 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4533 VdbeCoverage(v); 4534 testcase( regFree1==0 ); 4535 testcase( jumpIfNull==0 ); 4536 } 4537 break; 4538 } 4539 } 4540 sqlite3ReleaseTempReg(pParse, regFree1); 4541 sqlite3ReleaseTempReg(pParse, regFree2); 4542 } 4543 4544 /* 4545 ** Generate code for a boolean expression such that a jump is made 4546 ** to the label "dest" if the expression is false but execution 4547 ** continues straight thru if the expression is true. 4548 ** 4549 ** If the expression evaluates to NULL (neither true nor false) then 4550 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4551 ** is 0. 4552 */ 4553 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4554 Vdbe *v = pParse->pVdbe; 4555 int op = 0; 4556 int regFree1 = 0; 4557 int regFree2 = 0; 4558 int r1, r2; 4559 4560 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4561 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4562 if( pExpr==0 ) return; 4563 4564 /* The value of pExpr->op and op are related as follows: 4565 ** 4566 ** pExpr->op op 4567 ** --------- ---------- 4568 ** TK_ISNULL OP_NotNull 4569 ** TK_NOTNULL OP_IsNull 4570 ** TK_NE OP_Eq 4571 ** TK_EQ OP_Ne 4572 ** TK_GT OP_Le 4573 ** TK_LE OP_Gt 4574 ** TK_GE OP_Lt 4575 ** TK_LT OP_Ge 4576 ** 4577 ** For other values of pExpr->op, op is undefined and unused. 4578 ** The value of TK_ and OP_ constants are arranged such that we 4579 ** can compute the mapping above using the following expression. 4580 ** Assert()s verify that the computation is correct. 4581 */ 4582 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4583 4584 /* Verify correct alignment of TK_ and OP_ constants 4585 */ 4586 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4587 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4588 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4589 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4590 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4591 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4592 assert( pExpr->op!=TK_GT || op==OP_Le ); 4593 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4594 4595 switch( pExpr->op ){ 4596 case TK_AND: { 4597 testcase( jumpIfNull==0 ); 4598 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4599 sqlite3ExprCachePush(pParse); 4600 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4601 sqlite3ExprCachePop(pParse); 4602 break; 4603 } 4604 case TK_OR: { 4605 int d2 = sqlite3VdbeMakeLabel(v); 4606 testcase( jumpIfNull==0 ); 4607 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4608 sqlite3ExprCachePush(pParse); 4609 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4610 sqlite3VdbeResolveLabel(v, d2); 4611 sqlite3ExprCachePop(pParse); 4612 break; 4613 } 4614 case TK_NOT: { 4615 testcase( jumpIfNull==0 ); 4616 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4617 break; 4618 } 4619 case TK_IS: 4620 case TK_ISNOT: 4621 testcase( pExpr->op==TK_IS ); 4622 testcase( pExpr->op==TK_ISNOT ); 4623 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4624 jumpIfNull = SQLITE_NULLEQ; 4625 /* Fall thru */ 4626 case TK_LT: 4627 case TK_LE: 4628 case TK_GT: 4629 case TK_GE: 4630 case TK_NE: 4631 case TK_EQ: { 4632 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4633 testcase( jumpIfNull==0 ); 4634 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4635 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4636 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4637 r1, r2, dest, jumpIfNull); 4638 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4639 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4640 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4641 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4642 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4643 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4644 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4645 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4646 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4647 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4648 testcase( regFree1==0 ); 4649 testcase( regFree2==0 ); 4650 break; 4651 } 4652 case TK_ISNULL: 4653 case TK_NOTNULL: { 4654 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4655 sqlite3VdbeAddOp2(v, op, r1, dest); 4656 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4657 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4658 testcase( regFree1==0 ); 4659 break; 4660 } 4661 case TK_BETWEEN: { 4662 testcase( jumpIfNull==0 ); 4663 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4664 break; 4665 } 4666 #ifndef SQLITE_OMIT_SUBQUERY 4667 case TK_IN: { 4668 if( jumpIfNull ){ 4669 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4670 }else{ 4671 int destIfNull = sqlite3VdbeMakeLabel(v); 4672 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4673 sqlite3VdbeResolveLabel(v, destIfNull); 4674 } 4675 break; 4676 } 4677 #endif 4678 default: { 4679 default_expr: 4680 if( exprAlwaysFalse(pExpr) ){ 4681 sqlite3VdbeGoto(v, dest); 4682 }else if( exprAlwaysTrue(pExpr) ){ 4683 /* no-op */ 4684 }else{ 4685 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4686 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4687 VdbeCoverage(v); 4688 testcase( regFree1==0 ); 4689 testcase( jumpIfNull==0 ); 4690 } 4691 break; 4692 } 4693 } 4694 sqlite3ReleaseTempReg(pParse, regFree1); 4695 sqlite3ReleaseTempReg(pParse, regFree2); 4696 } 4697 4698 /* 4699 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4700 ** code generation, and that copy is deleted after code generation. This 4701 ** ensures that the original pExpr is unchanged. 4702 */ 4703 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4704 sqlite3 *db = pParse->db; 4705 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4706 if( db->mallocFailed==0 ){ 4707 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4708 } 4709 sqlite3ExprDelete(db, pCopy); 4710 } 4711 4712 /* 4713 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4714 ** type of expression. 4715 ** 4716 ** If pExpr is a simple SQL value - an integer, real, string, blob 4717 ** or NULL value - then the VDBE currently being prepared is configured 4718 ** to re-prepare each time a new value is bound to variable pVar. 4719 ** 4720 ** Additionally, if pExpr is a simple SQL value and the value is the 4721 ** same as that currently bound to variable pVar, non-zero is returned. 4722 ** Otherwise, if the values are not the same or if pExpr is not a simple 4723 ** SQL value, zero is returned. 4724 */ 4725 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4726 int res = 0; 4727 int iVar; 4728 sqlite3_value *pL, *pR = 0; 4729 4730 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4731 if( pR ){ 4732 iVar = pVar->iColumn; 4733 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4734 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4735 if( pL ){ 4736 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4737 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4738 } 4739 res = 0==sqlite3MemCompare(pL, pR, 0); 4740 } 4741 sqlite3ValueFree(pR); 4742 sqlite3ValueFree(pL); 4743 } 4744 4745 return res; 4746 } 4747 4748 /* 4749 ** Do a deep comparison of two expression trees. Return 0 if the two 4750 ** expressions are completely identical. Return 1 if they differ only 4751 ** by a COLLATE operator at the top level. Return 2 if there are differences 4752 ** other than the top-level COLLATE operator. 4753 ** 4754 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4755 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4756 ** 4757 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4758 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4759 ** 4760 ** Sometimes this routine will return 2 even if the two expressions 4761 ** really are equivalent. If we cannot prove that the expressions are 4762 ** identical, we return 2 just to be safe. So if this routine 4763 ** returns 2, then you do not really know for certain if the two 4764 ** expressions are the same. But if you get a 0 or 1 return, then you 4765 ** can be sure the expressions are the same. In the places where 4766 ** this routine is used, it does not hurt to get an extra 2 - that 4767 ** just might result in some slightly slower code. But returning 4768 ** an incorrect 0 or 1 could lead to a malfunction. 4769 ** 4770 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4771 ** pParse->pReprepare can be matched against literals in pB. The 4772 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4773 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4774 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4775 ** pB causes a return value of 2. 4776 */ 4777 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4778 u32 combinedFlags; 4779 if( pA==0 || pB==0 ){ 4780 return pB==pA ? 0 : 2; 4781 } 4782 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4783 return 0; 4784 } 4785 combinedFlags = pA->flags | pB->flags; 4786 if( combinedFlags & EP_IntValue ){ 4787 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4788 return 0; 4789 } 4790 return 2; 4791 } 4792 if( pA->op!=pB->op ){ 4793 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4794 return 1; 4795 } 4796 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4797 return 1; 4798 } 4799 return 2; 4800 } 4801 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4802 if( pA->op==TK_FUNCTION ){ 4803 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4804 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4805 return pA->op==TK_COLLATE ? 1 : 2; 4806 } 4807 } 4808 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4809 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4810 if( combinedFlags & EP_xIsSelect ) return 2; 4811 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4812 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4813 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4814 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4815 if( pA->iColumn!=pB->iColumn ) return 2; 4816 if( pA->iTable!=pB->iTable 4817 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4818 } 4819 } 4820 return 0; 4821 } 4822 4823 /* 4824 ** Compare two ExprList objects. Return 0 if they are identical and 4825 ** non-zero if they differ in any way. 4826 ** 4827 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4828 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4829 ** 4830 ** This routine might return non-zero for equivalent ExprLists. The 4831 ** only consequence will be disabled optimizations. But this routine 4832 ** must never return 0 if the two ExprList objects are different, or 4833 ** a malfunction will result. 4834 ** 4835 ** Two NULL pointers are considered to be the same. But a NULL pointer 4836 ** always differs from a non-NULL pointer. 4837 */ 4838 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4839 int i; 4840 if( pA==0 && pB==0 ) return 0; 4841 if( pA==0 || pB==0 ) return 1; 4842 if( pA->nExpr!=pB->nExpr ) return 1; 4843 for(i=0; i<pA->nExpr; i++){ 4844 Expr *pExprA = pA->a[i].pExpr; 4845 Expr *pExprB = pB->a[i].pExpr; 4846 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4847 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4848 } 4849 return 0; 4850 } 4851 4852 /* 4853 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4854 ** are ignored. 4855 */ 4856 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4857 return sqlite3ExprCompare(0, 4858 sqlite3ExprSkipCollate(pA), 4859 sqlite3ExprSkipCollate(pB), 4860 iTab); 4861 } 4862 4863 /* 4864 ** Return true if we can prove the pE2 will always be true if pE1 is 4865 ** true. Return false if we cannot complete the proof or if pE2 might 4866 ** be false. Examples: 4867 ** 4868 ** pE1: x==5 pE2: x==5 Result: true 4869 ** pE1: x>0 pE2: x==5 Result: false 4870 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4871 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4872 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4873 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4874 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4875 ** 4876 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4877 ** Expr.iTable<0 then assume a table number given by iTab. 4878 ** 4879 ** If pParse is not NULL, then the values of bound variables in pE1 are 4880 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4881 ** modified to record which bound variables are referenced. If pParse 4882 ** is NULL, then false will be returned if pE1 contains any bound variables. 4883 ** 4884 ** When in doubt, return false. Returning true might give a performance 4885 ** improvement. Returning false might cause a performance reduction, but 4886 ** it will always give the correct answer and is hence always safe. 4887 */ 4888 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4889 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4890 return 1; 4891 } 4892 if( pE2->op==TK_OR 4893 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4894 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4895 ){ 4896 return 1; 4897 } 4898 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4899 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4900 testcase( pX!=pE1->pLeft ); 4901 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4902 } 4903 return 0; 4904 } 4905 4906 /* 4907 ** An instance of the following structure is used by the tree walker 4908 ** to determine if an expression can be evaluated by reference to the 4909 ** index only, without having to do a search for the corresponding 4910 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4911 ** is the cursor for the table. 4912 */ 4913 struct IdxCover { 4914 Index *pIdx; /* The index to be tested for coverage */ 4915 int iCur; /* Cursor number for the table corresponding to the index */ 4916 }; 4917 4918 /* 4919 ** Check to see if there are references to columns in table 4920 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4921 ** pWalker->u.pIdxCover->pIdx. 4922 */ 4923 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4924 if( pExpr->op==TK_COLUMN 4925 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4926 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4927 ){ 4928 pWalker->eCode = 1; 4929 return WRC_Abort; 4930 } 4931 return WRC_Continue; 4932 } 4933 4934 /* 4935 ** Determine if an index pIdx on table with cursor iCur contains will 4936 ** the expression pExpr. Return true if the index does cover the 4937 ** expression and false if the pExpr expression references table columns 4938 ** that are not found in the index pIdx. 4939 ** 4940 ** An index covering an expression means that the expression can be 4941 ** evaluated using only the index and without having to lookup the 4942 ** corresponding table entry. 4943 */ 4944 int sqlite3ExprCoveredByIndex( 4945 Expr *pExpr, /* The index to be tested */ 4946 int iCur, /* The cursor number for the corresponding table */ 4947 Index *pIdx /* The index that might be used for coverage */ 4948 ){ 4949 Walker w; 4950 struct IdxCover xcov; 4951 memset(&w, 0, sizeof(w)); 4952 xcov.iCur = iCur; 4953 xcov.pIdx = pIdx; 4954 w.xExprCallback = exprIdxCover; 4955 w.u.pIdxCover = &xcov; 4956 sqlite3WalkExpr(&w, pExpr); 4957 return !w.eCode; 4958 } 4959 4960 4961 /* 4962 ** An instance of the following structure is used by the tree walker 4963 ** to count references to table columns in the arguments of an 4964 ** aggregate function, in order to implement the 4965 ** sqlite3FunctionThisSrc() routine. 4966 */ 4967 struct SrcCount { 4968 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4969 int nThis; /* Number of references to columns in pSrcList */ 4970 int nOther; /* Number of references to columns in other FROM clauses */ 4971 }; 4972 4973 /* 4974 ** Count the number of references to columns. 4975 */ 4976 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4977 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4978 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4979 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4980 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4981 ** NEVER() will need to be removed. */ 4982 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4983 int i; 4984 struct SrcCount *p = pWalker->u.pSrcCount; 4985 SrcList *pSrc = p->pSrc; 4986 int nSrc = pSrc ? pSrc->nSrc : 0; 4987 for(i=0; i<nSrc; i++){ 4988 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4989 } 4990 if( i<nSrc ){ 4991 p->nThis++; 4992 }else{ 4993 p->nOther++; 4994 } 4995 } 4996 return WRC_Continue; 4997 } 4998 4999 /* 5000 ** Determine if any of the arguments to the pExpr Function reference 5001 ** pSrcList. Return true if they do. Also return true if the function 5002 ** has no arguments or has only constant arguments. Return false if pExpr 5003 ** references columns but not columns of tables found in pSrcList. 5004 */ 5005 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5006 Walker w; 5007 struct SrcCount cnt; 5008 assert( pExpr->op==TK_AGG_FUNCTION ); 5009 w.xExprCallback = exprSrcCount; 5010 w.xSelectCallback = 0; 5011 w.u.pSrcCount = &cnt; 5012 cnt.pSrc = pSrcList; 5013 cnt.nThis = 0; 5014 cnt.nOther = 0; 5015 sqlite3WalkExprList(&w, pExpr->x.pList); 5016 return cnt.nThis>0 || cnt.nOther==0; 5017 } 5018 5019 /* 5020 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5021 ** the new element. Return a negative number if malloc fails. 5022 */ 5023 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5024 int i; 5025 pInfo->aCol = sqlite3ArrayAllocate( 5026 db, 5027 pInfo->aCol, 5028 sizeof(pInfo->aCol[0]), 5029 &pInfo->nColumn, 5030 &i 5031 ); 5032 return i; 5033 } 5034 5035 /* 5036 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5037 ** the new element. Return a negative number if malloc fails. 5038 */ 5039 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5040 int i; 5041 pInfo->aFunc = sqlite3ArrayAllocate( 5042 db, 5043 pInfo->aFunc, 5044 sizeof(pInfo->aFunc[0]), 5045 &pInfo->nFunc, 5046 &i 5047 ); 5048 return i; 5049 } 5050 5051 /* 5052 ** This is the xExprCallback for a tree walker. It is used to 5053 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5054 ** for additional information. 5055 */ 5056 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5057 int i; 5058 NameContext *pNC = pWalker->u.pNC; 5059 Parse *pParse = pNC->pParse; 5060 SrcList *pSrcList = pNC->pSrcList; 5061 AggInfo *pAggInfo = pNC->pAggInfo; 5062 5063 switch( pExpr->op ){ 5064 case TK_AGG_COLUMN: 5065 case TK_COLUMN: { 5066 testcase( pExpr->op==TK_AGG_COLUMN ); 5067 testcase( pExpr->op==TK_COLUMN ); 5068 /* Check to see if the column is in one of the tables in the FROM 5069 ** clause of the aggregate query */ 5070 if( ALWAYS(pSrcList!=0) ){ 5071 struct SrcList_item *pItem = pSrcList->a; 5072 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5073 struct AggInfo_col *pCol; 5074 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5075 if( pExpr->iTable==pItem->iCursor ){ 5076 /* If we reach this point, it means that pExpr refers to a table 5077 ** that is in the FROM clause of the aggregate query. 5078 ** 5079 ** Make an entry for the column in pAggInfo->aCol[] if there 5080 ** is not an entry there already. 5081 */ 5082 int k; 5083 pCol = pAggInfo->aCol; 5084 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5085 if( pCol->iTable==pExpr->iTable && 5086 pCol->iColumn==pExpr->iColumn ){ 5087 break; 5088 } 5089 } 5090 if( (k>=pAggInfo->nColumn) 5091 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5092 ){ 5093 pCol = &pAggInfo->aCol[k]; 5094 pCol->pTab = pExpr->pTab; 5095 pCol->iTable = pExpr->iTable; 5096 pCol->iColumn = pExpr->iColumn; 5097 pCol->iMem = ++pParse->nMem; 5098 pCol->iSorterColumn = -1; 5099 pCol->pExpr = pExpr; 5100 if( pAggInfo->pGroupBy ){ 5101 int j, n; 5102 ExprList *pGB = pAggInfo->pGroupBy; 5103 struct ExprList_item *pTerm = pGB->a; 5104 n = pGB->nExpr; 5105 for(j=0; j<n; j++, pTerm++){ 5106 Expr *pE = pTerm->pExpr; 5107 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5108 pE->iColumn==pExpr->iColumn ){ 5109 pCol->iSorterColumn = j; 5110 break; 5111 } 5112 } 5113 } 5114 if( pCol->iSorterColumn<0 ){ 5115 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5116 } 5117 } 5118 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5119 ** because it was there before or because we just created it). 5120 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5121 ** pAggInfo->aCol[] entry. 5122 */ 5123 ExprSetVVAProperty(pExpr, EP_NoReduce); 5124 pExpr->pAggInfo = pAggInfo; 5125 pExpr->op = TK_AGG_COLUMN; 5126 pExpr->iAgg = (i16)k; 5127 break; 5128 } /* endif pExpr->iTable==pItem->iCursor */ 5129 } /* end loop over pSrcList */ 5130 } 5131 return WRC_Prune; 5132 } 5133 case TK_AGG_FUNCTION: { 5134 if( (pNC->ncFlags & NC_InAggFunc)==0 5135 && pWalker->walkerDepth==pExpr->op2 5136 ){ 5137 /* Check to see if pExpr is a duplicate of another aggregate 5138 ** function that is already in the pAggInfo structure 5139 */ 5140 struct AggInfo_func *pItem = pAggInfo->aFunc; 5141 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5142 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5143 break; 5144 } 5145 } 5146 if( i>=pAggInfo->nFunc ){ 5147 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5148 */ 5149 u8 enc = ENC(pParse->db); 5150 i = addAggInfoFunc(pParse->db, pAggInfo); 5151 if( i>=0 ){ 5152 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5153 pItem = &pAggInfo->aFunc[i]; 5154 pItem->pExpr = pExpr; 5155 pItem->iMem = ++pParse->nMem; 5156 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5157 pItem->pFunc = sqlite3FindFunction(pParse->db, 5158 pExpr->u.zToken, 5159 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5160 if( pExpr->flags & EP_Distinct ){ 5161 pItem->iDistinct = pParse->nTab++; 5162 }else{ 5163 pItem->iDistinct = -1; 5164 } 5165 } 5166 } 5167 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5168 */ 5169 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5170 ExprSetVVAProperty(pExpr, EP_NoReduce); 5171 pExpr->iAgg = (i16)i; 5172 pExpr->pAggInfo = pAggInfo; 5173 return WRC_Prune; 5174 }else{ 5175 return WRC_Continue; 5176 } 5177 } 5178 } 5179 return WRC_Continue; 5180 } 5181 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5182 UNUSED_PARAMETER(pSelect); 5183 pWalker->walkerDepth++; 5184 return WRC_Continue; 5185 } 5186 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5187 UNUSED_PARAMETER(pSelect); 5188 pWalker->walkerDepth--; 5189 } 5190 5191 /* 5192 ** Analyze the pExpr expression looking for aggregate functions and 5193 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5194 ** points to. Additional entries are made on the AggInfo object as 5195 ** necessary. 5196 ** 5197 ** This routine should only be called after the expression has been 5198 ** analyzed by sqlite3ResolveExprNames(). 5199 */ 5200 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5201 Walker w; 5202 w.xExprCallback = analyzeAggregate; 5203 w.xSelectCallback = analyzeAggregatesInSelect; 5204 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5205 w.walkerDepth = 0; 5206 w.u.pNC = pNC; 5207 assert( pNC->pSrcList!=0 ); 5208 sqlite3WalkExpr(&w, pExpr); 5209 } 5210 5211 /* 5212 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5213 ** expression list. Return the number of errors. 5214 ** 5215 ** If an error is found, the analysis is cut short. 5216 */ 5217 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5218 struct ExprList_item *pItem; 5219 int i; 5220 if( pList ){ 5221 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5222 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5223 } 5224 } 5225 } 5226 5227 /* 5228 ** Allocate a single new register for use to hold some intermediate result. 5229 */ 5230 int sqlite3GetTempReg(Parse *pParse){ 5231 if( pParse->nTempReg==0 ){ 5232 return ++pParse->nMem; 5233 } 5234 return pParse->aTempReg[--pParse->nTempReg]; 5235 } 5236 5237 /* 5238 ** Deallocate a register, making available for reuse for some other 5239 ** purpose. 5240 ** 5241 ** If a register is currently being used by the column cache, then 5242 ** the deallocation is deferred until the column cache line that uses 5243 ** the register becomes stale. 5244 */ 5245 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5246 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5247 int i; 5248 struct yColCache *p; 5249 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5250 if( p->iReg==iReg ){ 5251 p->tempReg = 1; 5252 return; 5253 } 5254 } 5255 pParse->aTempReg[pParse->nTempReg++] = iReg; 5256 } 5257 } 5258 5259 /* 5260 ** Allocate or deallocate a block of nReg consecutive registers. 5261 */ 5262 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5263 int i, n; 5264 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5265 i = pParse->iRangeReg; 5266 n = pParse->nRangeReg; 5267 if( nReg<=n ){ 5268 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5269 pParse->iRangeReg += nReg; 5270 pParse->nRangeReg -= nReg; 5271 }else{ 5272 i = pParse->nMem+1; 5273 pParse->nMem += nReg; 5274 } 5275 return i; 5276 } 5277 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5278 if( nReg==1 ){ 5279 sqlite3ReleaseTempReg(pParse, iReg); 5280 return; 5281 } 5282 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5283 if( nReg>pParse->nRangeReg ){ 5284 pParse->nRangeReg = nReg; 5285 pParse->iRangeReg = iReg; 5286 } 5287 } 5288 5289 /* 5290 ** Mark all temporary registers as being unavailable for reuse. 5291 */ 5292 void sqlite3ClearTempRegCache(Parse *pParse){ 5293 pParse->nTempReg = 0; 5294 pParse->nRangeReg = 0; 5295 } 5296 5297 /* 5298 ** Validate that no temporary register falls within the range of 5299 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5300 ** statements. 5301 */ 5302 #ifdef SQLITE_DEBUG 5303 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5304 int i; 5305 if( pParse->nRangeReg>0 5306 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5307 && pParse->iRangeReg <= iLast 5308 ){ 5309 return 0; 5310 } 5311 for(i=0; i<pParse->nTempReg; i++){ 5312 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5313 return 0; 5314 } 5315 } 5316 return 1; 5317 } 5318 #endif /* SQLITE_DEBUG */ 5319