xref: /sqlite-3.40.0/src/expr.c (revision 4e8ad3bc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( op==TK_CAST || op==TK_UPLUS ){
145       p = p->pLeft;
146       continue;
147     }
148     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
149       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
150       break;
151     }
152     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
153           || op==TK_REGISTER || op==TK_TRIGGER)
154      && p->pTab!=0
155     ){
156       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157       ** a TK_COLUMN but was previously evaluated and cached in a register */
158       int j = p->iColumn;
159       if( j>=0 ){
160         const char *zColl = p->pTab->aCol[j].zColl;
161         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
162       }
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468   }
469   return pRet;
470 }
471 
472 /*
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
477 **
478 ** If pExpr is not a TK_SELECT expression, return 0.
479 */
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481   int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483   if( pExpr->op==TK_SELECT ){
484     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
485   }
486 #endif
487   return reg;
488 }
489 
490 /*
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
495 **
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
500 **
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
504 **
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
507 */
508 static int exprVectorRegister(
509   Parse *pParse,                  /* Parse context */
510   Expr *pVector,                  /* Vector to extract element from */
511   int iField,                     /* Field to extract from pVector */
512   int regSelect,                  /* First in array of registers */
513   Expr **ppExpr,                  /* OUT: Expression element */
514   int *pRegFree                   /* OUT: Temp register to free */
515 ){
516   u8 op = pVector->op;
517   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518   if( op==TK_REGISTER ){
519     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520     return pVector->iTable+iField;
521   }
522   if( op==TK_SELECT ){
523     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524      return regSelect+iField;
525   }
526   *ppExpr = pVector->x.pList->a[iField].pExpr;
527   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
528 }
529 
530 /*
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
534 **
535 ** The caller must satisfy the following preconditions:
536 **
537 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
538 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
539 **    otherwise:                op==pExpr->op and p5==0
540 */
541 static void codeVectorCompare(
542   Parse *pParse,        /* Code generator context */
543   Expr *pExpr,          /* The comparison operation */
544   int dest,             /* Write results into this register */
545   u8 op,                /* Comparison operator */
546   u8 p5                 /* SQLITE_NULLEQ or zero */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   Expr *pLeft = pExpr->pLeft;
550   Expr *pRight = pExpr->pRight;
551   int nLeft = sqlite3ExprVectorSize(pLeft);
552   int i;
553   int regLeft = 0;
554   int regRight = 0;
555   u8 opx = op;
556   int addrDone = sqlite3VdbeMakeLabel(v);
557 
558   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559     sqlite3ErrorMsg(pParse, "row value misused");
560     return;
561   }
562   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564        || pExpr->op==TK_LT || pExpr->op==TK_GT
565        || pExpr->op==TK_LE || pExpr->op==TK_GE
566   );
567   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568             || (pExpr->op==TK_ISNOT && op==TK_NE) );
569   assert( p5==0 || pExpr->op!=op );
570   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
571 
572   p5 |= SQLITE_STOREP2;
573   if( opx==TK_LE ) opx = TK_LT;
574   if( opx==TK_GE ) opx = TK_GT;
575 
576   regLeft = exprCodeSubselect(pParse, pLeft);
577   regRight = exprCodeSubselect(pParse, pRight);
578 
579   for(i=0; 1 /*Loop exits by "break"*/; i++){
580     int regFree1 = 0, regFree2 = 0;
581     Expr *pL, *pR;
582     int r1, r2;
583     assert( i>=0 && i<nLeft );
584     if( i>0 ) sqlite3ExprCachePush(pParse);
585     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594     sqlite3ReleaseTempReg(pParse, regFree1);
595     sqlite3ReleaseTempReg(pParse, regFree2);
596     if( i>0 ) sqlite3ExprCachePop(pParse);
597     if( i==nLeft-1 ){
598       break;
599     }
600     if( opx==TK_EQ ){
601       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
602       p5 |= SQLITE_KEEPNULL;
603     }else if( opx==TK_NE ){
604       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
605       p5 |= SQLITE_KEEPNULL;
606     }else{
607       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
608       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
609       VdbeCoverageIf(v, op==TK_LT);
610       VdbeCoverageIf(v, op==TK_GT);
611       VdbeCoverageIf(v, op==TK_LE);
612       VdbeCoverageIf(v, op==TK_GE);
613       if( i==nLeft-2 ) opx = op;
614     }
615   }
616   sqlite3VdbeResolveLabel(v, addrDone);
617 }
618 
619 #if SQLITE_MAX_EXPR_DEPTH>0
620 /*
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
623 ** pParse.
624 */
625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
626   int rc = SQLITE_OK;
627   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
628   if( nHeight>mxHeight ){
629     sqlite3ErrorMsg(pParse,
630        "Expression tree is too large (maximum depth %d)", mxHeight
631     );
632     rc = SQLITE_ERROR;
633   }
634   return rc;
635 }
636 
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
640 ** first argument.
641 **
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
644 ** value.
645 */
646 static void heightOfExpr(Expr *p, int *pnHeight){
647   if( p ){
648     if( p->nHeight>*pnHeight ){
649       *pnHeight = p->nHeight;
650     }
651   }
652 }
653 static void heightOfExprList(ExprList *p, int *pnHeight){
654   if( p ){
655     int i;
656     for(i=0; i<p->nExpr; i++){
657       heightOfExpr(p->a[i].pExpr, pnHeight);
658     }
659   }
660 }
661 static void heightOfSelect(Select *p, int *pnHeight){
662   if( p ){
663     heightOfExpr(p->pWhere, pnHeight);
664     heightOfExpr(p->pHaving, pnHeight);
665     heightOfExpr(p->pLimit, pnHeight);
666     heightOfExpr(p->pOffset, pnHeight);
667     heightOfExprList(p->pEList, pnHeight);
668     heightOfExprList(p->pGroupBy, pnHeight);
669     heightOfExprList(p->pOrderBy, pnHeight);
670     heightOfSelect(p->pPrior, pnHeight);
671   }
672 }
673 
674 /*
675 ** Set the Expr.nHeight variable in the structure passed as an
676 ** argument. An expression with no children, Expr.pList or
677 ** Expr.pSelect member has a height of 1. Any other expression
678 ** has a height equal to the maximum height of any other
679 ** referenced Expr plus one.
680 **
681 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
682 ** if appropriate.
683 */
684 static void exprSetHeight(Expr *p){
685   int nHeight = 0;
686   heightOfExpr(p->pLeft, &nHeight);
687   heightOfExpr(p->pRight, &nHeight);
688   if( ExprHasProperty(p, EP_xIsSelect) ){
689     heightOfSelect(p->x.pSelect, &nHeight);
690   }else if( p->x.pList ){
691     heightOfExprList(p->x.pList, &nHeight);
692     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
693   }
694   p->nHeight = nHeight + 1;
695 }
696 
697 /*
698 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
699 ** the height is greater than the maximum allowed expression depth,
700 ** leave an error in pParse.
701 **
702 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
703 ** Expr.flags.
704 */
705 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
706   if( pParse->nErr ) return;
707   exprSetHeight(p);
708   sqlite3ExprCheckHeight(pParse, p->nHeight);
709 }
710 
711 /*
712 ** Return the maximum height of any expression tree referenced
713 ** by the select statement passed as an argument.
714 */
715 int sqlite3SelectExprHeight(Select *p){
716   int nHeight = 0;
717   heightOfSelect(p, &nHeight);
718   return nHeight;
719 }
720 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
721 /*
722 ** Propagate all EP_Propagate flags from the Expr.x.pList into
723 ** Expr.flags.
724 */
725 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
726   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
727     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
728   }
729 }
730 #define exprSetHeight(y)
731 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
732 
733 /*
734 ** This routine is the core allocator for Expr nodes.
735 **
736 ** Construct a new expression node and return a pointer to it.  Memory
737 ** for this node and for the pToken argument is a single allocation
738 ** obtained from sqlite3DbMalloc().  The calling function
739 ** is responsible for making sure the node eventually gets freed.
740 **
741 ** If dequote is true, then the token (if it exists) is dequoted.
742 ** If dequote is false, no dequoting is performed.  The deQuote
743 ** parameter is ignored if pToken is NULL or if the token does not
744 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
745 ** then the EP_DblQuoted flag is set on the expression node.
746 **
747 ** Special case:  If op==TK_INTEGER and pToken points to a string that
748 ** can be translated into a 32-bit integer, then the token is not
749 ** stored in u.zToken.  Instead, the integer values is written
750 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
751 ** is allocated to hold the integer text and the dequote flag is ignored.
752 */
753 Expr *sqlite3ExprAlloc(
754   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
755   int op,                 /* Expression opcode */
756   const Token *pToken,    /* Token argument.  Might be NULL */
757   int dequote             /* True to dequote */
758 ){
759   Expr *pNew;
760   int nExtra = 0;
761   int iValue = 0;
762 
763   assert( db!=0 );
764   if( pToken ){
765     if( op!=TK_INTEGER || pToken->z==0
766           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
767       nExtra = pToken->n+1;
768       assert( iValue>=0 );
769     }
770   }
771   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
772   if( pNew ){
773     memset(pNew, 0, sizeof(Expr));
774     pNew->op = (u8)op;
775     pNew->iAgg = -1;
776     if( pToken ){
777       if( nExtra==0 ){
778         pNew->flags |= EP_IntValue|EP_Leaf;
779         pNew->u.iValue = iValue;
780       }else{
781         pNew->u.zToken = (char*)&pNew[1];
782         assert( pToken->z!=0 || pToken->n==0 );
783         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
784         pNew->u.zToken[pToken->n] = 0;
785         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
786           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
787           sqlite3Dequote(pNew->u.zToken);
788         }
789       }
790     }
791 #if SQLITE_MAX_EXPR_DEPTH>0
792     pNew->nHeight = 1;
793 #endif
794   }
795   return pNew;
796 }
797 
798 /*
799 ** Allocate a new expression node from a zero-terminated token that has
800 ** already been dequoted.
801 */
802 Expr *sqlite3Expr(
803   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
804   int op,                 /* Expression opcode */
805   const char *zToken      /* Token argument.  Might be NULL */
806 ){
807   Token x;
808   x.z = zToken;
809   x.n = sqlite3Strlen30(zToken);
810   return sqlite3ExprAlloc(db, op, &x, 0);
811 }
812 
813 /*
814 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
815 **
816 ** If pRoot==NULL that means that a memory allocation error has occurred.
817 ** In that case, delete the subtrees pLeft and pRight.
818 */
819 void sqlite3ExprAttachSubtrees(
820   sqlite3 *db,
821   Expr *pRoot,
822   Expr *pLeft,
823   Expr *pRight
824 ){
825   if( pRoot==0 ){
826     assert( db->mallocFailed );
827     sqlite3ExprDelete(db, pLeft);
828     sqlite3ExprDelete(db, pRight);
829   }else{
830     if( pRight ){
831       pRoot->pRight = pRight;
832       pRoot->flags |= EP_Propagate & pRight->flags;
833     }
834     if( pLeft ){
835       pRoot->pLeft = pLeft;
836       pRoot->flags |= EP_Propagate & pLeft->flags;
837     }
838     exprSetHeight(pRoot);
839   }
840 }
841 
842 /*
843 ** Allocate an Expr node which joins as many as two subtrees.
844 **
845 ** One or both of the subtrees can be NULL.  Return a pointer to the new
846 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
847 ** free the subtrees and return NULL.
848 */
849 Expr *sqlite3PExpr(
850   Parse *pParse,          /* Parsing context */
851   int op,                 /* Expression opcode */
852   Expr *pLeft,            /* Left operand */
853   Expr *pRight            /* Right operand */
854 ){
855   Expr *p;
856   if( op==TK_AND && pParse->nErr==0 ){
857     /* Take advantage of short-circuit false optimization for AND */
858     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
859   }else{
860     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
861     if( p ){
862       memset(p, 0, sizeof(Expr));
863       p->op = op & TKFLG_MASK;
864       p->iAgg = -1;
865     }
866     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
867   }
868   if( p ) {
869     sqlite3ExprCheckHeight(pParse, p->nHeight);
870   }
871   return p;
872 }
873 
874 /*
875 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
876 ** do a memory allocation failure) then delete the pSelect object.
877 */
878 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
879   if( pExpr ){
880     pExpr->x.pSelect = pSelect;
881     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
882     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
883   }else{
884     assert( pParse->db->mallocFailed );
885     sqlite3SelectDelete(pParse->db, pSelect);
886   }
887 }
888 
889 
890 /*
891 ** If the expression is always either TRUE or FALSE (respectively),
892 ** then return 1.  If one cannot determine the truth value of the
893 ** expression at compile-time return 0.
894 **
895 ** This is an optimization.  If is OK to return 0 here even if
896 ** the expression really is always false or false (a false negative).
897 ** But it is a bug to return 1 if the expression might have different
898 ** boolean values in different circumstances (a false positive.)
899 **
900 ** Note that if the expression is part of conditional for a
901 ** LEFT JOIN, then we cannot determine at compile-time whether or not
902 ** is it true or false, so always return 0.
903 */
904 static int exprAlwaysTrue(Expr *p){
905   int v = 0;
906   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
907   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
908   return v!=0;
909 }
910 static int exprAlwaysFalse(Expr *p){
911   int v = 0;
912   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
913   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
914   return v==0;
915 }
916 
917 /*
918 ** Join two expressions using an AND operator.  If either expression is
919 ** NULL, then just return the other expression.
920 **
921 ** If one side or the other of the AND is known to be false, then instead
922 ** of returning an AND expression, just return a constant expression with
923 ** a value of false.
924 */
925 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
926   if( pLeft==0 ){
927     return pRight;
928   }else if( pRight==0 ){
929     return pLeft;
930   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
931     sqlite3ExprDelete(db, pLeft);
932     sqlite3ExprDelete(db, pRight);
933     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
934   }else{
935     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
936     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
937     return pNew;
938   }
939 }
940 
941 /*
942 ** Construct a new expression node for a function with multiple
943 ** arguments.
944 */
945 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
946   Expr *pNew;
947   sqlite3 *db = pParse->db;
948   assert( pToken );
949   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
950   if( pNew==0 ){
951     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
952     return 0;
953   }
954   pNew->x.pList = pList;
955   ExprSetProperty(pNew, EP_HasFunc);
956   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
957   sqlite3ExprSetHeightAndFlags(pParse, pNew);
958   return pNew;
959 }
960 
961 /*
962 ** Assign a variable number to an expression that encodes a wildcard
963 ** in the original SQL statement.
964 **
965 ** Wildcards consisting of a single "?" are assigned the next sequential
966 ** variable number.
967 **
968 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
969 ** sure "nnn" is not too big to avoid a denial of service attack when
970 ** the SQL statement comes from an external source.
971 **
972 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
973 ** as the previous instance of the same wildcard.  Or if this is the first
974 ** instance of the wildcard, the next sequential variable number is
975 ** assigned.
976 */
977 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
978   sqlite3 *db = pParse->db;
979   const char *z;
980   ynVar x;
981 
982   if( pExpr==0 ) return;
983   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
984   z = pExpr->u.zToken;
985   assert( z!=0 );
986   assert( z[0]!=0 );
987   assert( n==(u32)sqlite3Strlen30(z) );
988   if( z[1]==0 ){
989     /* Wildcard of the form "?".  Assign the next variable number */
990     assert( z[0]=='?' );
991     x = (ynVar)(++pParse->nVar);
992   }else{
993     int doAdd = 0;
994     if( z[0]=='?' ){
995       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
996       ** use it as the variable number */
997       i64 i;
998       int bOk;
999       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1000         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1001         bOk = 1;
1002       }else{
1003         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1004       }
1005       testcase( i==0 );
1006       testcase( i==1 );
1007       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1008       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1009       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1010         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1011             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1012         return;
1013       }
1014       x = (ynVar)i;
1015       if( x>pParse->nVar ){
1016         pParse->nVar = (int)x;
1017         doAdd = 1;
1018       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1019         doAdd = 1;
1020       }
1021     }else{
1022       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1023       ** number as the prior appearance of the same name, or if the name
1024       ** has never appeared before, reuse the same variable number
1025       */
1026       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1027       if( x==0 ){
1028         x = (ynVar)(++pParse->nVar);
1029         doAdd = 1;
1030       }
1031     }
1032     if( doAdd ){
1033       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1034     }
1035   }
1036   pExpr->iColumn = x;
1037   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1038     sqlite3ErrorMsg(pParse, "too many SQL variables");
1039   }
1040 }
1041 
1042 /*
1043 ** Recursively delete an expression tree.
1044 */
1045 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1046   assert( p!=0 );
1047   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1048   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1049 #ifdef SQLITE_DEBUG
1050   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1051     assert( p->pLeft==0 );
1052     assert( p->pRight==0 );
1053     assert( p->x.pSelect==0 );
1054   }
1055 #endif
1056   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1057     /* The Expr.x union is never used at the same time as Expr.pRight */
1058     assert( p->x.pList==0 || p->pRight==0 );
1059     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1060     if( p->pRight ){
1061       sqlite3ExprDeleteNN(db, p->pRight);
1062     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1063       sqlite3SelectDelete(db, p->x.pSelect);
1064     }else{
1065       sqlite3ExprListDelete(db, p->x.pList);
1066     }
1067   }
1068   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1069   if( !ExprHasProperty(p, EP_Static) ){
1070     sqlite3DbFreeNN(db, p);
1071   }
1072 }
1073 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1074   if( p ) sqlite3ExprDeleteNN(db, p);
1075 }
1076 
1077 /*
1078 ** Return the number of bytes allocated for the expression structure
1079 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1080 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1081 */
1082 static int exprStructSize(Expr *p){
1083   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1084   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1085   return EXPR_FULLSIZE;
1086 }
1087 
1088 /*
1089 ** The dupedExpr*Size() routines each return the number of bytes required
1090 ** to store a copy of an expression or expression tree.  They differ in
1091 ** how much of the tree is measured.
1092 **
1093 **     dupedExprStructSize()     Size of only the Expr structure
1094 **     dupedExprNodeSize()       Size of Expr + space for token
1095 **     dupedExprSize()           Expr + token + subtree components
1096 **
1097 ***************************************************************************
1098 **
1099 ** The dupedExprStructSize() function returns two values OR-ed together:
1100 ** (1) the space required for a copy of the Expr structure only and
1101 ** (2) the EP_xxx flags that indicate what the structure size should be.
1102 ** The return values is always one of:
1103 **
1104 **      EXPR_FULLSIZE
1105 **      EXPR_REDUCEDSIZE   | EP_Reduced
1106 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1107 **
1108 ** The size of the structure can be found by masking the return value
1109 ** of this routine with 0xfff.  The flags can be found by masking the
1110 ** return value with EP_Reduced|EP_TokenOnly.
1111 **
1112 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1113 ** (unreduced) Expr objects as they or originally constructed by the parser.
1114 ** During expression analysis, extra information is computed and moved into
1115 ** later parts of teh Expr object and that extra information might get chopped
1116 ** off if the expression is reduced.  Note also that it does not work to
1117 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1118 ** to reduce a pristine expression tree from the parser.  The implementation
1119 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1120 ** to enforce this constraint.
1121 */
1122 static int dupedExprStructSize(Expr *p, int flags){
1123   int nSize;
1124   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1125   assert( EXPR_FULLSIZE<=0xfff );
1126   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1127   if( 0==flags || p->op==TK_SELECT_COLUMN ){
1128     nSize = EXPR_FULLSIZE;
1129   }else{
1130     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1131     assert( !ExprHasProperty(p, EP_FromJoin) );
1132     assert( !ExprHasProperty(p, EP_MemToken) );
1133     assert( !ExprHasProperty(p, EP_NoReduce) );
1134     if( p->pLeft || p->x.pList ){
1135       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1136     }else{
1137       assert( p->pRight==0 );
1138       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1139     }
1140   }
1141   return nSize;
1142 }
1143 
1144 /*
1145 ** This function returns the space in bytes required to store the copy
1146 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1147 ** string is defined.)
1148 */
1149 static int dupedExprNodeSize(Expr *p, int flags){
1150   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1151   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1152     nByte += sqlite3Strlen30(p->u.zToken)+1;
1153   }
1154   return ROUND8(nByte);
1155 }
1156 
1157 /*
1158 ** Return the number of bytes required to create a duplicate of the
1159 ** expression passed as the first argument. The second argument is a
1160 ** mask containing EXPRDUP_XXX flags.
1161 **
1162 ** The value returned includes space to create a copy of the Expr struct
1163 ** itself and the buffer referred to by Expr.u.zToken, if any.
1164 **
1165 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1166 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1167 ** and Expr.pRight variables (but not for any structures pointed to or
1168 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1169 */
1170 static int dupedExprSize(Expr *p, int flags){
1171   int nByte = 0;
1172   if( p ){
1173     nByte = dupedExprNodeSize(p, flags);
1174     if( flags&EXPRDUP_REDUCE ){
1175       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1176     }
1177   }
1178   return nByte;
1179 }
1180 
1181 /*
1182 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1183 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1184 ** to store the copy of expression p, the copies of p->u.zToken
1185 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1186 ** if any. Before returning, *pzBuffer is set to the first byte past the
1187 ** portion of the buffer copied into by this function.
1188 */
1189 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1190   Expr *pNew;           /* Value to return */
1191   u8 *zAlloc;           /* Memory space from which to build Expr object */
1192   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1193 
1194   assert( db!=0 );
1195   assert( p );
1196   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1197   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1198 
1199   /* Figure out where to write the new Expr structure. */
1200   if( pzBuffer ){
1201     zAlloc = *pzBuffer;
1202     staticFlag = EP_Static;
1203   }else{
1204     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1205     staticFlag = 0;
1206   }
1207   pNew = (Expr *)zAlloc;
1208 
1209   if( pNew ){
1210     /* Set nNewSize to the size allocated for the structure pointed to
1211     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1212     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1213     ** by the copy of the p->u.zToken string (if any).
1214     */
1215     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1216     const int nNewSize = nStructSize & 0xfff;
1217     int nToken;
1218     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1219       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1220     }else{
1221       nToken = 0;
1222     }
1223     if( dupFlags ){
1224       assert( ExprHasProperty(p, EP_Reduced)==0 );
1225       memcpy(zAlloc, p, nNewSize);
1226     }else{
1227       u32 nSize = (u32)exprStructSize(p);
1228       memcpy(zAlloc, p, nSize);
1229       if( nSize<EXPR_FULLSIZE ){
1230         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1231       }
1232     }
1233 
1234     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1235     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1236     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1237     pNew->flags |= staticFlag;
1238 
1239     /* Copy the p->u.zToken string, if any. */
1240     if( nToken ){
1241       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1242       memcpy(zToken, p->u.zToken, nToken);
1243     }
1244 
1245     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1246       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1247       if( ExprHasProperty(p, EP_xIsSelect) ){
1248         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1249       }else{
1250         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1251       }
1252     }
1253 
1254     /* Fill in pNew->pLeft and pNew->pRight. */
1255     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1256       zAlloc += dupedExprNodeSize(p, dupFlags);
1257       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1258         pNew->pLeft = p->pLeft ?
1259                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1260         pNew->pRight = p->pRight ?
1261                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1262       }
1263       if( pzBuffer ){
1264         *pzBuffer = zAlloc;
1265       }
1266     }else{
1267       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1268         if( pNew->op==TK_SELECT_COLUMN ){
1269           pNew->pLeft = p->pLeft;
1270           assert( p->iColumn==0 || p->pRight==0 );
1271           assert( p->pRight==0  || p->pRight==p->pLeft );
1272         }else{
1273           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1274         }
1275         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1276       }
1277     }
1278   }
1279   return pNew;
1280 }
1281 
1282 /*
1283 ** Create and return a deep copy of the object passed as the second
1284 ** argument. If an OOM condition is encountered, NULL is returned
1285 ** and the db->mallocFailed flag set.
1286 */
1287 #ifndef SQLITE_OMIT_CTE
1288 static With *withDup(sqlite3 *db, With *p){
1289   With *pRet = 0;
1290   if( p ){
1291     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1292     pRet = sqlite3DbMallocZero(db, nByte);
1293     if( pRet ){
1294       int i;
1295       pRet->nCte = p->nCte;
1296       for(i=0; i<p->nCte; i++){
1297         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1298         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1299         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1300       }
1301     }
1302   }
1303   return pRet;
1304 }
1305 #else
1306 # define withDup(x,y) 0
1307 #endif
1308 
1309 /*
1310 ** The following group of routines make deep copies of expressions,
1311 ** expression lists, ID lists, and select statements.  The copies can
1312 ** be deleted (by being passed to their respective ...Delete() routines)
1313 ** without effecting the originals.
1314 **
1315 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1316 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1317 ** by subsequent calls to sqlite*ListAppend() routines.
1318 **
1319 ** Any tables that the SrcList might point to are not duplicated.
1320 **
1321 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1322 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1323 ** truncated version of the usual Expr structure that will be stored as
1324 ** part of the in-memory representation of the database schema.
1325 */
1326 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1327   assert( flags==0 || flags==EXPRDUP_REDUCE );
1328   return p ? exprDup(db, p, flags, 0) : 0;
1329 }
1330 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1331   ExprList *pNew;
1332   struct ExprList_item *pItem, *pOldItem;
1333   int i;
1334   Expr *pPriorSelectCol = 0;
1335   assert( db!=0 );
1336   if( p==0 ) return 0;
1337   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1338   if( pNew==0 ) return 0;
1339   pNew->nExpr = p->nExpr;
1340   pItem = pNew->a;
1341   pOldItem = p->a;
1342   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1343     Expr *pOldExpr = pOldItem->pExpr;
1344     Expr *pNewExpr;
1345     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1346     if( pOldExpr
1347      && pOldExpr->op==TK_SELECT_COLUMN
1348      && (pNewExpr = pItem->pExpr)!=0
1349     ){
1350       assert( pNewExpr->iColumn==0 || i>0 );
1351       if( pNewExpr->iColumn==0 ){
1352         assert( pOldExpr->pLeft==pOldExpr->pRight );
1353         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1354       }else{
1355         assert( i>0 );
1356         assert( pItem[-1].pExpr!=0 );
1357         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1358         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1359         pNewExpr->pLeft = pPriorSelectCol;
1360       }
1361     }
1362     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1363     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1364     pItem->sortOrder = pOldItem->sortOrder;
1365     pItem->done = 0;
1366     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1367     pItem->u = pOldItem->u;
1368   }
1369   return pNew;
1370 }
1371 
1372 /*
1373 ** If cursors, triggers, views and subqueries are all omitted from
1374 ** the build, then none of the following routines, except for
1375 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1376 ** called with a NULL argument.
1377 */
1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1379  || !defined(SQLITE_OMIT_SUBQUERY)
1380 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1381   SrcList *pNew;
1382   int i;
1383   int nByte;
1384   assert( db!=0 );
1385   if( p==0 ) return 0;
1386   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1387   pNew = sqlite3DbMallocRawNN(db, nByte );
1388   if( pNew==0 ) return 0;
1389   pNew->nSrc = pNew->nAlloc = p->nSrc;
1390   for(i=0; i<p->nSrc; i++){
1391     struct SrcList_item *pNewItem = &pNew->a[i];
1392     struct SrcList_item *pOldItem = &p->a[i];
1393     Table *pTab;
1394     pNewItem->pSchema = pOldItem->pSchema;
1395     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1396     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1397     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1398     pNewItem->fg = pOldItem->fg;
1399     pNewItem->iCursor = pOldItem->iCursor;
1400     pNewItem->addrFillSub = pOldItem->addrFillSub;
1401     pNewItem->regReturn = pOldItem->regReturn;
1402     if( pNewItem->fg.isIndexedBy ){
1403       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1404     }
1405     pNewItem->pIBIndex = pOldItem->pIBIndex;
1406     if( pNewItem->fg.isTabFunc ){
1407       pNewItem->u1.pFuncArg =
1408           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1409     }
1410     pTab = pNewItem->pTab = pOldItem->pTab;
1411     if( pTab ){
1412       pTab->nTabRef++;
1413     }
1414     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1415     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1416     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1417     pNewItem->colUsed = pOldItem->colUsed;
1418   }
1419   return pNew;
1420 }
1421 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1422   IdList *pNew;
1423   int i;
1424   assert( db!=0 );
1425   if( p==0 ) return 0;
1426   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1427   if( pNew==0 ) return 0;
1428   pNew->nId = p->nId;
1429   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1430   if( pNew->a==0 ){
1431     sqlite3DbFreeNN(db, pNew);
1432     return 0;
1433   }
1434   /* Note that because the size of the allocation for p->a[] is not
1435   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1436   ** on the duplicate created by this function. */
1437   for(i=0; i<p->nId; i++){
1438     struct IdList_item *pNewItem = &pNew->a[i];
1439     struct IdList_item *pOldItem = &p->a[i];
1440     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1441     pNewItem->idx = pOldItem->idx;
1442   }
1443   return pNew;
1444 }
1445 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1446   Select *pRet = 0;
1447   Select *pNext = 0;
1448   Select **pp = &pRet;
1449   Select *p;
1450 
1451   assert( db!=0 );
1452   for(p=pDup; p; p=p->pPrior){
1453     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1454     if( pNew==0 ) break;
1455     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1456     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1457     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1458     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1459     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1460     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1461     pNew->op = p->op;
1462     pNew->pNext = pNext;
1463     pNew->pPrior = 0;
1464     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1465     pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1466     pNew->iLimit = 0;
1467     pNew->iOffset = 0;
1468     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1469     pNew->addrOpenEphm[0] = -1;
1470     pNew->addrOpenEphm[1] = -1;
1471     pNew->nSelectRow = p->nSelectRow;
1472     pNew->pWith = withDup(db, p->pWith);
1473     sqlite3SelectSetName(pNew, p->zSelName);
1474     *pp = pNew;
1475     pp = &pNew->pPrior;
1476     pNext = pNew;
1477   }
1478 
1479   return pRet;
1480 }
1481 #else
1482 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1483   assert( p==0 );
1484   return 0;
1485 }
1486 #endif
1487 
1488 
1489 /*
1490 ** Add a new element to the end of an expression list.  If pList is
1491 ** initially NULL, then create a new expression list.
1492 **
1493 ** The pList argument must be either NULL or a pointer to an ExprList
1494 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1495 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1496 ** Reason:  This routine assumes that the number of slots in pList->a[]
1497 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1498 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1499 **
1500 ** If a memory allocation error occurs, the entire list is freed and
1501 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1502 ** that the new entry was successfully appended.
1503 */
1504 ExprList *sqlite3ExprListAppend(
1505   Parse *pParse,          /* Parsing context */
1506   ExprList *pList,        /* List to which to append. Might be NULL */
1507   Expr *pExpr             /* Expression to be appended. Might be NULL */
1508 ){
1509   struct ExprList_item *pItem;
1510   sqlite3 *db = pParse->db;
1511   assert( db!=0 );
1512   if( pList==0 ){
1513     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1514     if( pList==0 ){
1515       goto no_mem;
1516     }
1517     pList->nExpr = 0;
1518   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1519     ExprList *pNew;
1520     pNew = sqlite3DbRealloc(db, pList,
1521              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1522     if( pNew==0 ){
1523       goto no_mem;
1524     }
1525     pList = pNew;
1526   }
1527   pItem = &pList->a[pList->nExpr++];
1528   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1529   assert( offsetof(struct ExprList_item,pExpr)==0 );
1530   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1531   pItem->pExpr = pExpr;
1532   return pList;
1533 
1534 no_mem:
1535   /* Avoid leaking memory if malloc has failed. */
1536   sqlite3ExprDelete(db, pExpr);
1537   sqlite3ExprListDelete(db, pList);
1538   return 0;
1539 }
1540 
1541 /*
1542 ** pColumns and pExpr form a vector assignment which is part of the SET
1543 ** clause of an UPDATE statement.  Like this:
1544 **
1545 **        (a,b,c) = (expr1,expr2,expr3)
1546 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1547 **
1548 ** For each term of the vector assignment, append new entries to the
1549 ** expression list pList.  In the case of a subquery on the RHS, append
1550 ** TK_SELECT_COLUMN expressions.
1551 */
1552 ExprList *sqlite3ExprListAppendVector(
1553   Parse *pParse,         /* Parsing context */
1554   ExprList *pList,       /* List to which to append. Might be NULL */
1555   IdList *pColumns,      /* List of names of LHS of the assignment */
1556   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1557 ){
1558   sqlite3 *db = pParse->db;
1559   int n;
1560   int i;
1561   int iFirst = pList ? pList->nExpr : 0;
1562   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1563   ** exit prior to this routine being invoked */
1564   if( NEVER(pColumns==0) ) goto vector_append_error;
1565   if( pExpr==0 ) goto vector_append_error;
1566 
1567   /* If the RHS is a vector, then we can immediately check to see that
1568   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1569   ** wildcards ("*") in the result set of the SELECT must be expanded before
1570   ** we can do the size check, so defer the size check until code generation.
1571   */
1572   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1573     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1574                     pColumns->nId, n);
1575     goto vector_append_error;
1576   }
1577 
1578   for(i=0; i<pColumns->nId; i++){
1579     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1580     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1581     if( pList ){
1582       assert( pList->nExpr==iFirst+i+1 );
1583       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1584       pColumns->a[i].zName = 0;
1585     }
1586   }
1587 
1588   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1589     Expr *pFirst = pList->a[iFirst].pExpr;
1590     assert( pFirst!=0 );
1591     assert( pFirst->op==TK_SELECT_COLUMN );
1592 
1593     /* Store the SELECT statement in pRight so it will be deleted when
1594     ** sqlite3ExprListDelete() is called */
1595     pFirst->pRight = pExpr;
1596     pExpr = 0;
1597 
1598     /* Remember the size of the LHS in iTable so that we can check that
1599     ** the RHS and LHS sizes match during code generation. */
1600     pFirst->iTable = pColumns->nId;
1601   }
1602 
1603 vector_append_error:
1604   sqlite3ExprDelete(db, pExpr);
1605   sqlite3IdListDelete(db, pColumns);
1606   return pList;
1607 }
1608 
1609 /*
1610 ** Set the sort order for the last element on the given ExprList.
1611 */
1612 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1613   if( p==0 ) return;
1614   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1615   assert( p->nExpr>0 );
1616   if( iSortOrder<0 ){
1617     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1618     return;
1619   }
1620   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1621 }
1622 
1623 /*
1624 ** Set the ExprList.a[].zName element of the most recently added item
1625 ** on the expression list.
1626 **
1627 ** pList might be NULL following an OOM error.  But pName should never be
1628 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1629 ** is set.
1630 */
1631 void sqlite3ExprListSetName(
1632   Parse *pParse,          /* Parsing context */
1633   ExprList *pList,        /* List to which to add the span. */
1634   Token *pName,           /* Name to be added */
1635   int dequote             /* True to cause the name to be dequoted */
1636 ){
1637   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1638   if( pList ){
1639     struct ExprList_item *pItem;
1640     assert( pList->nExpr>0 );
1641     pItem = &pList->a[pList->nExpr-1];
1642     assert( pItem->zName==0 );
1643     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1644     if( dequote ) sqlite3Dequote(pItem->zName);
1645   }
1646 }
1647 
1648 /*
1649 ** Set the ExprList.a[].zSpan element of the most recently added item
1650 ** on the expression list.
1651 **
1652 ** pList might be NULL following an OOM error.  But pSpan should never be
1653 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1654 ** is set.
1655 */
1656 void sqlite3ExprListSetSpan(
1657   Parse *pParse,          /* Parsing context */
1658   ExprList *pList,        /* List to which to add the span. */
1659   ExprSpan *pSpan         /* The span to be added */
1660 ){
1661   sqlite3 *db = pParse->db;
1662   assert( pList!=0 || db->mallocFailed!=0 );
1663   if( pList ){
1664     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1665     assert( pList->nExpr>0 );
1666     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1667     sqlite3DbFree(db, pItem->zSpan);
1668     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1669                                     (int)(pSpan->zEnd - pSpan->zStart));
1670   }
1671 }
1672 
1673 /*
1674 ** If the expression list pEList contains more than iLimit elements,
1675 ** leave an error message in pParse.
1676 */
1677 void sqlite3ExprListCheckLength(
1678   Parse *pParse,
1679   ExprList *pEList,
1680   const char *zObject
1681 ){
1682   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1683   testcase( pEList && pEList->nExpr==mx );
1684   testcase( pEList && pEList->nExpr==mx+1 );
1685   if( pEList && pEList->nExpr>mx ){
1686     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1687   }
1688 }
1689 
1690 /*
1691 ** Delete an entire expression list.
1692 */
1693 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1694   int i = pList->nExpr;
1695   struct ExprList_item *pItem =  pList->a;
1696   assert( pList->nExpr>0 );
1697   do{
1698     sqlite3ExprDelete(db, pItem->pExpr);
1699     sqlite3DbFree(db, pItem->zName);
1700     sqlite3DbFree(db, pItem->zSpan);
1701     pItem++;
1702   }while( --i>0 );
1703   sqlite3DbFreeNN(db, pList);
1704 }
1705 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1706   if( pList ) exprListDeleteNN(db, pList);
1707 }
1708 
1709 /*
1710 ** Return the bitwise-OR of all Expr.flags fields in the given
1711 ** ExprList.
1712 */
1713 u32 sqlite3ExprListFlags(const ExprList *pList){
1714   int i;
1715   u32 m = 0;
1716   assert( pList!=0 );
1717   for(i=0; i<pList->nExpr; i++){
1718      Expr *pExpr = pList->a[i].pExpr;
1719      assert( pExpr!=0 );
1720      m |= pExpr->flags;
1721   }
1722   return m;
1723 }
1724 
1725 /*
1726 ** This is a SELECT-node callback for the expression walker that
1727 ** always "fails".  By "fail" in this case, we mean set
1728 ** pWalker->eCode to zero and abort.
1729 **
1730 ** This callback is used by multiple expression walkers.
1731 */
1732 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1733   UNUSED_PARAMETER(NotUsed);
1734   pWalker->eCode = 0;
1735   return WRC_Abort;
1736 }
1737 
1738 /*
1739 ** These routines are Walker callbacks used to check expressions to
1740 ** see if they are "constant" for some definition of constant.  The
1741 ** Walker.eCode value determines the type of "constant" we are looking
1742 ** for.
1743 **
1744 ** These callback routines are used to implement the following:
1745 **
1746 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1747 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1748 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1749 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1750 **
1751 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1752 ** is found to not be a constant.
1753 **
1754 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1755 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1756 ** an existing schema and 4 when processing a new statement.  A bound
1757 ** parameter raises an error for new statements, but is silently converted
1758 ** to NULL for existing schemas.  This allows sqlite_master tables that
1759 ** contain a bound parameter because they were generated by older versions
1760 ** of SQLite to be parsed by newer versions of SQLite without raising a
1761 ** malformed schema error.
1762 */
1763 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1764 
1765   /* If pWalker->eCode is 2 then any term of the expression that comes from
1766   ** the ON or USING clauses of a left join disqualifies the expression
1767   ** from being considered constant. */
1768   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1769     pWalker->eCode = 0;
1770     return WRC_Abort;
1771   }
1772 
1773   switch( pExpr->op ){
1774     /* Consider functions to be constant if all their arguments are constant
1775     ** and either pWalker->eCode==4 or 5 or the function has the
1776     ** SQLITE_FUNC_CONST flag. */
1777     case TK_FUNCTION:
1778       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1779         return WRC_Continue;
1780       }else{
1781         pWalker->eCode = 0;
1782         return WRC_Abort;
1783       }
1784     case TK_ID:
1785     case TK_COLUMN:
1786     case TK_AGG_FUNCTION:
1787     case TK_AGG_COLUMN:
1788       testcase( pExpr->op==TK_ID );
1789       testcase( pExpr->op==TK_COLUMN );
1790       testcase( pExpr->op==TK_AGG_FUNCTION );
1791       testcase( pExpr->op==TK_AGG_COLUMN );
1792       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1793         return WRC_Continue;
1794       }
1795       /* Fall through */
1796     case TK_IF_NULL_ROW:
1797       testcase( pExpr->op==TK_IF_NULL_ROW );
1798       pWalker->eCode = 0;
1799       return WRC_Abort;
1800     case TK_VARIABLE:
1801       if( pWalker->eCode==5 ){
1802         /* Silently convert bound parameters that appear inside of CREATE
1803         ** statements into a NULL when parsing the CREATE statement text out
1804         ** of the sqlite_master table */
1805         pExpr->op = TK_NULL;
1806       }else if( pWalker->eCode==4 ){
1807         /* A bound parameter in a CREATE statement that originates from
1808         ** sqlite3_prepare() causes an error */
1809         pWalker->eCode = 0;
1810         return WRC_Abort;
1811       }
1812       /* Fall through */
1813     default:
1814       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */
1815       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */
1816       return WRC_Continue;
1817   }
1818 }
1819 static int exprIsConst(Expr *p, int initFlag, int iCur){
1820   Walker w;
1821   w.eCode = initFlag;
1822   w.xExprCallback = exprNodeIsConstant;
1823   w.xSelectCallback = sqlite3SelectWalkFail;
1824 #ifdef SQLITE_DEBUG
1825   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1826 #endif
1827   w.u.iCur = iCur;
1828   sqlite3WalkExpr(&w, p);
1829   return w.eCode;
1830 }
1831 
1832 /*
1833 ** Walk an expression tree.  Return non-zero if the expression is constant
1834 ** and 0 if it involves variables or function calls.
1835 **
1836 ** For the purposes of this function, a double-quoted string (ex: "abc")
1837 ** is considered a variable but a single-quoted string (ex: 'abc') is
1838 ** a constant.
1839 */
1840 int sqlite3ExprIsConstant(Expr *p){
1841   return exprIsConst(p, 1, 0);
1842 }
1843 
1844 /*
1845 ** Walk an expression tree.  Return non-zero if the expression is constant
1846 ** that does no originate from the ON or USING clauses of a join.
1847 ** Return 0 if it involves variables or function calls or terms from
1848 ** an ON or USING clause.
1849 */
1850 int sqlite3ExprIsConstantNotJoin(Expr *p){
1851   return exprIsConst(p, 2, 0);
1852 }
1853 
1854 /*
1855 ** Walk an expression tree.  Return non-zero if the expression is constant
1856 ** for any single row of the table with cursor iCur.  In other words, the
1857 ** expression must not refer to any non-deterministic function nor any
1858 ** table other than iCur.
1859 */
1860 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1861   return exprIsConst(p, 3, iCur);
1862 }
1863 
1864 
1865 /*
1866 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1867 */
1868 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1869   ExprList *pGroupBy = pWalker->u.pGroupBy;
1870   int i;
1871 
1872   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1873   ** it constant.  */
1874   for(i=0; i<pGroupBy->nExpr; i++){
1875     Expr *p = pGroupBy->a[i].pExpr;
1876     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1877       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1878       if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1879         return WRC_Prune;
1880       }
1881     }
1882   }
1883 
1884   /* Check if pExpr is a sub-select. If so, consider it variable. */
1885   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1886     pWalker->eCode = 0;
1887     return WRC_Abort;
1888   }
1889 
1890   return exprNodeIsConstant(pWalker, pExpr);
1891 }
1892 
1893 /*
1894 ** Walk the expression tree passed as the first argument. Return non-zero
1895 ** if the expression consists entirely of constants or copies of terms
1896 ** in pGroupBy that sort with the BINARY collation sequence.
1897 **
1898 ** This routine is used to determine if a term of the HAVING clause can
1899 ** be promoted into the WHERE clause.  In order for such a promotion to work,
1900 ** the value of the HAVING clause term must be the same for all members of
1901 ** a "group".  The requirement that the GROUP BY term must be BINARY
1902 ** assumes that no other collating sequence will have a finer-grained
1903 ** grouping than binary.  In other words (A=B COLLATE binary) implies
1904 ** A=B in every other collating sequence.  The requirement that the
1905 ** GROUP BY be BINARY is stricter than necessary.  It would also work
1906 ** to promote HAVING clauses that use the same alternative collating
1907 ** sequence as the GROUP BY term, but that is much harder to check,
1908 ** alternative collating sequences are uncommon, and this is only an
1909 ** optimization, so we take the easy way out and simply require the
1910 ** GROUP BY to use the BINARY collating sequence.
1911 */
1912 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1913   Walker w;
1914   w.eCode = 1;
1915   w.xExprCallback = exprNodeIsConstantOrGroupBy;
1916   w.xSelectCallback = 0;
1917   w.u.pGroupBy = pGroupBy;
1918   w.pParse = pParse;
1919   sqlite3WalkExpr(&w, p);
1920   return w.eCode;
1921 }
1922 
1923 /*
1924 ** Walk an expression tree.  Return non-zero if the expression is constant
1925 ** or a function call with constant arguments.  Return and 0 if there
1926 ** are any variables.
1927 **
1928 ** For the purposes of this function, a double-quoted string (ex: "abc")
1929 ** is considered a variable but a single-quoted string (ex: 'abc') is
1930 ** a constant.
1931 */
1932 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1933   assert( isInit==0 || isInit==1 );
1934   return exprIsConst(p, 4+isInit, 0);
1935 }
1936 
1937 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1938 /*
1939 ** Walk an expression tree.  Return 1 if the expression contains a
1940 ** subquery of some kind.  Return 0 if there are no subqueries.
1941 */
1942 int sqlite3ExprContainsSubquery(Expr *p){
1943   Walker w;
1944   w.eCode = 1;
1945   w.xExprCallback = sqlite3ExprWalkNoop;
1946   w.xSelectCallback = sqlite3SelectWalkFail;
1947 #ifdef SQLITE_DEBUG
1948   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1949 #endif
1950   sqlite3WalkExpr(&w, p);
1951   return w.eCode==0;
1952 }
1953 #endif
1954 
1955 /*
1956 ** If the expression p codes a constant integer that is small enough
1957 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1958 ** in *pValue.  If the expression is not an integer or if it is too big
1959 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1960 */
1961 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1962   int rc = 0;
1963   if( p==0 ) return 0;  /* Can only happen following on OOM */
1964 
1965   /* If an expression is an integer literal that fits in a signed 32-bit
1966   ** integer, then the EP_IntValue flag will have already been set */
1967   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1968            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1969 
1970   if( p->flags & EP_IntValue ){
1971     *pValue = p->u.iValue;
1972     return 1;
1973   }
1974   switch( p->op ){
1975     case TK_UPLUS: {
1976       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1977       break;
1978     }
1979     case TK_UMINUS: {
1980       int v;
1981       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1982         assert( v!=(-2147483647-1) );
1983         *pValue = -v;
1984         rc = 1;
1985       }
1986       break;
1987     }
1988     default: break;
1989   }
1990   return rc;
1991 }
1992 
1993 /*
1994 ** Return FALSE if there is no chance that the expression can be NULL.
1995 **
1996 ** If the expression might be NULL or if the expression is too complex
1997 ** to tell return TRUE.
1998 **
1999 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2000 ** when we know that a value cannot be NULL.  Hence, a false positive
2001 ** (returning TRUE when in fact the expression can never be NULL) might
2002 ** be a small performance hit but is otherwise harmless.  On the other
2003 ** hand, a false negative (returning FALSE when the result could be NULL)
2004 ** will likely result in an incorrect answer.  So when in doubt, return
2005 ** TRUE.
2006 */
2007 int sqlite3ExprCanBeNull(const Expr *p){
2008   u8 op;
2009   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2010   op = p->op;
2011   if( op==TK_REGISTER ) op = p->op2;
2012   switch( op ){
2013     case TK_INTEGER:
2014     case TK_STRING:
2015     case TK_FLOAT:
2016     case TK_BLOB:
2017       return 0;
2018     case TK_COLUMN:
2019       return ExprHasProperty(p, EP_CanBeNull) ||
2020              p->pTab==0 ||  /* Reference to column of index on expression */
2021              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2022     default:
2023       return 1;
2024   }
2025 }
2026 
2027 /*
2028 ** Return TRUE if the given expression is a constant which would be
2029 ** unchanged by OP_Affinity with the affinity given in the second
2030 ** argument.
2031 **
2032 ** This routine is used to determine if the OP_Affinity operation
2033 ** can be omitted.  When in doubt return FALSE.  A false negative
2034 ** is harmless.  A false positive, however, can result in the wrong
2035 ** answer.
2036 */
2037 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2038   u8 op;
2039   if( aff==SQLITE_AFF_BLOB ) return 1;
2040   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2041   op = p->op;
2042   if( op==TK_REGISTER ) op = p->op2;
2043   switch( op ){
2044     case TK_INTEGER: {
2045       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2046     }
2047     case TK_FLOAT: {
2048       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2049     }
2050     case TK_STRING: {
2051       return aff==SQLITE_AFF_TEXT;
2052     }
2053     case TK_BLOB: {
2054       return 1;
2055     }
2056     case TK_COLUMN: {
2057       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2058       return p->iColumn<0
2059           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2060     }
2061     default: {
2062       return 0;
2063     }
2064   }
2065 }
2066 
2067 /*
2068 ** Return TRUE if the given string is a row-id column name.
2069 */
2070 int sqlite3IsRowid(const char *z){
2071   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2072   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2073   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2074   return 0;
2075 }
2076 
2077 /*
2078 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2079 ** that can be simplified to a direct table access, then return
2080 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2081 ** or if the SELECT statement needs to be manifested into a transient
2082 ** table, then return NULL.
2083 */
2084 #ifndef SQLITE_OMIT_SUBQUERY
2085 static Select *isCandidateForInOpt(Expr *pX){
2086   Select *p;
2087   SrcList *pSrc;
2088   ExprList *pEList;
2089   Table *pTab;
2090   int i;
2091   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2092   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2093   p = pX->x.pSelect;
2094   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2095   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2096     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2097     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2098     return 0; /* No DISTINCT keyword and no aggregate functions */
2099   }
2100   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2101   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2102   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
2103   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2104   pSrc = p->pSrc;
2105   assert( pSrc!=0 );
2106   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2107   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2108   pTab = pSrc->a[0].pTab;
2109   assert( pTab!=0 );
2110   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2111   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2112   pEList = p->pEList;
2113   assert( pEList!=0 );
2114   /* All SELECT results must be columns. */
2115   for(i=0; i<pEList->nExpr; i++){
2116     Expr *pRes = pEList->a[i].pExpr;
2117     if( pRes->op!=TK_COLUMN ) return 0;
2118     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2119   }
2120   return p;
2121 }
2122 #endif /* SQLITE_OMIT_SUBQUERY */
2123 
2124 #ifndef SQLITE_OMIT_SUBQUERY
2125 /*
2126 ** Generate code that checks the left-most column of index table iCur to see if
2127 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2128 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2129 ** to be set to NULL if iCur contains one or more NULL values.
2130 */
2131 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2132   int addr1;
2133   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2134   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2135   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2136   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2137   VdbeComment((v, "first_entry_in(%d)", iCur));
2138   sqlite3VdbeJumpHere(v, addr1);
2139 }
2140 #endif
2141 
2142 
2143 #ifndef SQLITE_OMIT_SUBQUERY
2144 /*
2145 ** The argument is an IN operator with a list (not a subquery) on the
2146 ** right-hand side.  Return TRUE if that list is constant.
2147 */
2148 static int sqlite3InRhsIsConstant(Expr *pIn){
2149   Expr *pLHS;
2150   int res;
2151   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2152   pLHS = pIn->pLeft;
2153   pIn->pLeft = 0;
2154   res = sqlite3ExprIsConstant(pIn);
2155   pIn->pLeft = pLHS;
2156   return res;
2157 }
2158 #endif
2159 
2160 /*
2161 ** This function is used by the implementation of the IN (...) operator.
2162 ** The pX parameter is the expression on the RHS of the IN operator, which
2163 ** might be either a list of expressions or a subquery.
2164 **
2165 ** The job of this routine is to find or create a b-tree object that can
2166 ** be used either to test for membership in the RHS set or to iterate through
2167 ** all members of the RHS set, skipping duplicates.
2168 **
2169 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2170 ** and pX->iTable is set to the index of that cursor.
2171 **
2172 ** The returned value of this function indicates the b-tree type, as follows:
2173 **
2174 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2175 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2176 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2177 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2178 **                         populated epheremal table.
2179 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2180 **                         implemented as a sequence of comparisons.
2181 **
2182 ** An existing b-tree might be used if the RHS expression pX is a simple
2183 ** subquery such as:
2184 **
2185 **     SELECT <column1>, <column2>... FROM <table>
2186 **
2187 ** If the RHS of the IN operator is a list or a more complex subquery, then
2188 ** an ephemeral table might need to be generated from the RHS and then
2189 ** pX->iTable made to point to the ephemeral table instead of an
2190 ** existing table.
2191 **
2192 ** The inFlags parameter must contain exactly one of the bits
2193 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
2194 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2195 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
2196 ** IN index will be used to loop over all values of the RHS of the
2197 ** IN operator.
2198 **
2199 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2200 ** through the set members) then the b-tree must not contain duplicates.
2201 ** An epheremal table must be used unless the selected columns are guaranteed
2202 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2203 ** a UNIQUE constraint or index.
2204 **
2205 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2206 ** for fast set membership tests) then an epheremal table must
2207 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2208 ** index can be found with the specified <columns> as its left-most.
2209 **
2210 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2211 ** if the RHS of the IN operator is a list (not a subquery) then this
2212 ** routine might decide that creating an ephemeral b-tree for membership
2213 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2214 ** calling routine should implement the IN operator using a sequence
2215 ** of Eq or Ne comparison operations.
2216 **
2217 ** When the b-tree is being used for membership tests, the calling function
2218 ** might need to know whether or not the RHS side of the IN operator
2219 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2220 ** if there is any chance that the (...) might contain a NULL value at
2221 ** runtime, then a register is allocated and the register number written
2222 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2223 ** NULL value, then *prRhsHasNull is left unchanged.
2224 **
2225 ** If a register is allocated and its location stored in *prRhsHasNull, then
2226 ** the value in that register will be NULL if the b-tree contains one or more
2227 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2228 ** NULL values.
2229 **
2230 ** If the aiMap parameter is not NULL, it must point to an array containing
2231 ** one element for each column returned by the SELECT statement on the RHS
2232 ** of the IN(...) operator. The i'th entry of the array is populated with the
2233 ** offset of the index column that matches the i'th column returned by the
2234 ** SELECT. For example, if the expression and selected index are:
2235 **
2236 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2237 **   CREATE INDEX i1 ON t1(b, c, a);
2238 **
2239 ** then aiMap[] is populated with {2, 0, 1}.
2240 */
2241 #ifndef SQLITE_OMIT_SUBQUERY
2242 int sqlite3FindInIndex(
2243   Parse *pParse,             /* Parsing context */
2244   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2245   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2246   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2247   int *aiMap                 /* Mapping from Index fields to RHS fields */
2248 ){
2249   Select *p;                            /* SELECT to the right of IN operator */
2250   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2251   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2252   int mustBeUnique;                     /* True if RHS must be unique */
2253   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2254 
2255   assert( pX->op==TK_IN );
2256   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2257 
2258   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2259   ** whether or not the SELECT result contains NULL values, check whether
2260   ** or not NULL is actually possible (it may not be, for example, due
2261   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2262   ** set prRhsHasNull to 0 before continuing.  */
2263   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2264     int i;
2265     ExprList *pEList = pX->x.pSelect->pEList;
2266     for(i=0; i<pEList->nExpr; i++){
2267       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2268     }
2269     if( i==pEList->nExpr ){
2270       prRhsHasNull = 0;
2271     }
2272   }
2273 
2274   /* Check to see if an existing table or index can be used to
2275   ** satisfy the query.  This is preferable to generating a new
2276   ** ephemeral table.  */
2277   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2278     sqlite3 *db = pParse->db;              /* Database connection */
2279     Table *pTab;                           /* Table <table>. */
2280     i16 iDb;                               /* Database idx for pTab */
2281     ExprList *pEList = p->pEList;
2282     int nExpr = pEList->nExpr;
2283 
2284     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2285     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2286     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2287     pTab = p->pSrc->a[0].pTab;
2288 
2289     /* Code an OP_Transaction and OP_TableLock for <table>. */
2290     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2291     sqlite3CodeVerifySchema(pParse, iDb);
2292     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2293 
2294     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2295     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2296       /* The "x IN (SELECT rowid FROM table)" case */
2297       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2298       VdbeCoverage(v);
2299 
2300       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2301       eType = IN_INDEX_ROWID;
2302 
2303       sqlite3VdbeJumpHere(v, iAddr);
2304     }else{
2305       Index *pIdx;                         /* Iterator variable */
2306       int affinity_ok = 1;
2307       int i;
2308 
2309       /* Check that the affinity that will be used to perform each
2310       ** comparison is the same as the affinity of each column in table
2311       ** on the RHS of the IN operator.  If it not, it is not possible to
2312       ** use any index of the RHS table.  */
2313       for(i=0; i<nExpr && affinity_ok; i++){
2314         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2315         int iCol = pEList->a[i].pExpr->iColumn;
2316         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2317         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2318         testcase( cmpaff==SQLITE_AFF_BLOB );
2319         testcase( cmpaff==SQLITE_AFF_TEXT );
2320         switch( cmpaff ){
2321           case SQLITE_AFF_BLOB:
2322             break;
2323           case SQLITE_AFF_TEXT:
2324             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2325             ** other has no affinity and the other side is TEXT.  Hence,
2326             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2327             ** and for the term on the LHS of the IN to have no affinity. */
2328             assert( idxaff==SQLITE_AFF_TEXT );
2329             break;
2330           default:
2331             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2332         }
2333       }
2334 
2335       if( affinity_ok ){
2336         /* Search for an existing index that will work for this IN operator */
2337         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2338           Bitmask colUsed;      /* Columns of the index used */
2339           Bitmask mCol;         /* Mask for the current column */
2340           if( pIdx->nColumn<nExpr ) continue;
2341           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2342           ** BITMASK(nExpr) without overflowing */
2343           testcase( pIdx->nColumn==BMS-2 );
2344           testcase( pIdx->nColumn==BMS-1 );
2345           if( pIdx->nColumn>=BMS-1 ) continue;
2346           if( mustBeUnique ){
2347             if( pIdx->nKeyCol>nExpr
2348              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2349             ){
2350               continue;  /* This index is not unique over the IN RHS columns */
2351             }
2352           }
2353 
2354           colUsed = 0;   /* Columns of index used so far */
2355           for(i=0; i<nExpr; i++){
2356             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2357             Expr *pRhs = pEList->a[i].pExpr;
2358             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2359             int j;
2360 
2361             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2362             for(j=0; j<nExpr; j++){
2363               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2364               assert( pIdx->azColl[j] );
2365               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2366                 continue;
2367               }
2368               break;
2369             }
2370             if( j==nExpr ) break;
2371             mCol = MASKBIT(j);
2372             if( mCol & colUsed ) break; /* Each column used only once */
2373             colUsed |= mCol;
2374             if( aiMap ) aiMap[i] = j;
2375           }
2376 
2377           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2378           if( colUsed==(MASKBIT(nExpr)-1) ){
2379             /* If we reach this point, that means the index pIdx is usable */
2380             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2381 #ifndef SQLITE_OMIT_EXPLAIN
2382             sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2383               sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2384               P4_DYNAMIC);
2385 #endif
2386             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2387             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2388             VdbeComment((v, "%s", pIdx->zName));
2389             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2390             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2391 
2392             if( prRhsHasNull ){
2393 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2394               i64 mask = (1<<nExpr)-1;
2395               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2396                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2397 #endif
2398               *prRhsHasNull = ++pParse->nMem;
2399               if( nExpr==1 ){
2400                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2401               }
2402             }
2403             sqlite3VdbeJumpHere(v, iAddr);
2404           }
2405         } /* End loop over indexes */
2406       } /* End if( affinity_ok ) */
2407     } /* End if not an rowid index */
2408   } /* End attempt to optimize using an index */
2409 
2410   /* If no preexisting index is available for the IN clause
2411   ** and IN_INDEX_NOOP is an allowed reply
2412   ** and the RHS of the IN operator is a list, not a subquery
2413   ** and the RHS is not constant or has two or fewer terms,
2414   ** then it is not worth creating an ephemeral table to evaluate
2415   ** the IN operator so return IN_INDEX_NOOP.
2416   */
2417   if( eType==0
2418    && (inFlags & IN_INDEX_NOOP_OK)
2419    && !ExprHasProperty(pX, EP_xIsSelect)
2420    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2421   ){
2422     eType = IN_INDEX_NOOP;
2423   }
2424 
2425   if( eType==0 ){
2426     /* Could not find an existing table or index to use as the RHS b-tree.
2427     ** We will have to generate an ephemeral table to do the job.
2428     */
2429     u32 savedNQueryLoop = pParse->nQueryLoop;
2430     int rMayHaveNull = 0;
2431     eType = IN_INDEX_EPH;
2432     if( inFlags & IN_INDEX_LOOP ){
2433       pParse->nQueryLoop = 0;
2434       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2435         eType = IN_INDEX_ROWID;
2436       }
2437     }else if( prRhsHasNull ){
2438       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2439     }
2440     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2441     pParse->nQueryLoop = savedNQueryLoop;
2442   }else{
2443     pX->iTable = iTab;
2444   }
2445 
2446   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2447     int i, n;
2448     n = sqlite3ExprVectorSize(pX->pLeft);
2449     for(i=0; i<n; i++) aiMap[i] = i;
2450   }
2451   return eType;
2452 }
2453 #endif
2454 
2455 #ifndef SQLITE_OMIT_SUBQUERY
2456 /*
2457 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2458 ** function allocates and returns a nul-terminated string containing
2459 ** the affinities to be used for each column of the comparison.
2460 **
2461 ** It is the responsibility of the caller to ensure that the returned
2462 ** string is eventually freed using sqlite3DbFree().
2463 */
2464 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2465   Expr *pLeft = pExpr->pLeft;
2466   int nVal = sqlite3ExprVectorSize(pLeft);
2467   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2468   char *zRet;
2469 
2470   assert( pExpr->op==TK_IN );
2471   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2472   if( zRet ){
2473     int i;
2474     for(i=0; i<nVal; i++){
2475       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2476       char a = sqlite3ExprAffinity(pA);
2477       if( pSelect ){
2478         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2479       }else{
2480         zRet[i] = a;
2481       }
2482     }
2483     zRet[nVal] = '\0';
2484   }
2485   return zRet;
2486 }
2487 #endif
2488 
2489 #ifndef SQLITE_OMIT_SUBQUERY
2490 /*
2491 ** Load the Parse object passed as the first argument with an error
2492 ** message of the form:
2493 **
2494 **   "sub-select returns N columns - expected M"
2495 */
2496 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2497   const char *zFmt = "sub-select returns %d columns - expected %d";
2498   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2499 }
2500 #endif
2501 
2502 /*
2503 ** Expression pExpr is a vector that has been used in a context where
2504 ** it is not permitted. If pExpr is a sub-select vector, this routine
2505 ** loads the Parse object with a message of the form:
2506 **
2507 **   "sub-select returns N columns - expected 1"
2508 **
2509 ** Or, if it is a regular scalar vector:
2510 **
2511 **   "row value misused"
2512 */
2513 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2514 #ifndef SQLITE_OMIT_SUBQUERY
2515   if( pExpr->flags & EP_xIsSelect ){
2516     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2517   }else
2518 #endif
2519   {
2520     sqlite3ErrorMsg(pParse, "row value misused");
2521   }
2522 }
2523 
2524 /*
2525 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2526 ** or IN operators.  Examples:
2527 **
2528 **     (SELECT a FROM b)          -- subquery
2529 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2530 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2531 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2532 **
2533 ** The pExpr parameter describes the expression that contains the IN
2534 ** operator or subquery.
2535 **
2536 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2537 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2538 ** to some integer key column of a table B-Tree. In this case, use an
2539 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2540 ** (slower) variable length keys B-Tree.
2541 **
2542 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2543 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2544 ** All this routine does is initialize the register given by rMayHaveNull
2545 ** to NULL.  Calling routines will take care of changing this register
2546 ** value to non-NULL if the RHS is NULL-free.
2547 **
2548 ** For a SELECT or EXISTS operator, return the register that holds the
2549 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2550 ** array of registers and the return value is the register of the left-most
2551 ** result column.  Return 0 for IN operators or if an error occurs.
2552 */
2553 #ifndef SQLITE_OMIT_SUBQUERY
2554 int sqlite3CodeSubselect(
2555   Parse *pParse,          /* Parsing context */
2556   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2557   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2558   int isRowid             /* If true, LHS of IN operator is a rowid */
2559 ){
2560   int jmpIfDynamic = -1;                      /* One-time test address */
2561   int rReg = 0;                           /* Register storing resulting */
2562   Vdbe *v = sqlite3GetVdbe(pParse);
2563   if( NEVER(v==0) ) return 0;
2564   sqlite3ExprCachePush(pParse);
2565 
2566   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2567   ** is encountered if any of the following is true:
2568   **
2569   **    *  The right-hand side is a correlated subquery
2570   **    *  The right-hand side is an expression list containing variables
2571   **    *  We are inside a trigger
2572   **
2573   ** If all of the above are false, then we can run this code just once
2574   ** save the results, and reuse the same result on subsequent invocations.
2575   */
2576   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2577     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2578   }
2579 
2580 #ifndef SQLITE_OMIT_EXPLAIN
2581   if( pParse->explain==2 ){
2582     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2583         jmpIfDynamic>=0?"":"CORRELATED ",
2584         pExpr->op==TK_IN?"LIST":"SCALAR",
2585         pParse->iNextSelectId
2586     );
2587     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2588   }
2589 #endif
2590 
2591   switch( pExpr->op ){
2592     case TK_IN: {
2593       int addr;                   /* Address of OP_OpenEphemeral instruction */
2594       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2595       KeyInfo *pKeyInfo = 0;      /* Key information */
2596       int nVal;                   /* Size of vector pLeft */
2597 
2598       nVal = sqlite3ExprVectorSize(pLeft);
2599       assert( !isRowid || nVal==1 );
2600 
2601       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2602       ** expression it is handled the same way.  An ephemeral table is
2603       ** filled with index keys representing the results from the
2604       ** SELECT or the <exprlist>.
2605       **
2606       ** If the 'x' expression is a column value, or the SELECT...
2607       ** statement returns a column value, then the affinity of that
2608       ** column is used to build the index keys. If both 'x' and the
2609       ** SELECT... statement are columns, then numeric affinity is used
2610       ** if either column has NUMERIC or INTEGER affinity. If neither
2611       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2612       ** is used.
2613       */
2614       pExpr->iTable = pParse->nTab++;
2615       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2616           pExpr->iTable, (isRowid?0:nVal));
2617       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2618 
2619       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2620         /* Case 1:     expr IN (SELECT ...)
2621         **
2622         ** Generate code to write the results of the select into the temporary
2623         ** table allocated and opened above.
2624         */
2625         Select *pSelect = pExpr->x.pSelect;
2626         ExprList *pEList = pSelect->pEList;
2627 
2628         assert( !isRowid );
2629         /* If the LHS and RHS of the IN operator do not match, that
2630         ** error will have been caught long before we reach this point. */
2631         if( ALWAYS(pEList->nExpr==nVal) ){
2632           SelectDest dest;
2633           int i;
2634           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2635           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2636           pSelect->iLimit = 0;
2637           testcase( pSelect->selFlags & SF_Distinct );
2638           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2639           if( sqlite3Select(pParse, pSelect, &dest) ){
2640             sqlite3DbFree(pParse->db, dest.zAffSdst);
2641             sqlite3KeyInfoUnref(pKeyInfo);
2642             return 0;
2643           }
2644           sqlite3DbFree(pParse->db, dest.zAffSdst);
2645           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2646           assert( pEList!=0 );
2647           assert( pEList->nExpr>0 );
2648           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2649           for(i=0; i<nVal; i++){
2650             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2651             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2652                 pParse, p, pEList->a[i].pExpr
2653             );
2654           }
2655         }
2656       }else if( ALWAYS(pExpr->x.pList!=0) ){
2657         /* Case 2:     expr IN (exprlist)
2658         **
2659         ** For each expression, build an index key from the evaluation and
2660         ** store it in the temporary table. If <expr> is a column, then use
2661         ** that columns affinity when building index keys. If <expr> is not
2662         ** a column, use numeric affinity.
2663         */
2664         char affinity;            /* Affinity of the LHS of the IN */
2665         int i;
2666         ExprList *pList = pExpr->x.pList;
2667         struct ExprList_item *pItem;
2668         int r1, r2, r3;
2669 
2670         affinity = sqlite3ExprAffinity(pLeft);
2671         if( !affinity ){
2672           affinity = SQLITE_AFF_BLOB;
2673         }
2674         if( pKeyInfo ){
2675           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2676           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2677         }
2678 
2679         /* Loop through each expression in <exprlist>. */
2680         r1 = sqlite3GetTempReg(pParse);
2681         r2 = sqlite3GetTempReg(pParse);
2682         if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2683         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2684           Expr *pE2 = pItem->pExpr;
2685           int iValToIns;
2686 
2687           /* If the expression is not constant then we will need to
2688           ** disable the test that was generated above that makes sure
2689           ** this code only executes once.  Because for a non-constant
2690           ** expression we need to rerun this code each time.
2691           */
2692           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2693             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2694             jmpIfDynamic = -1;
2695           }
2696 
2697           /* Evaluate the expression and insert it into the temp table */
2698           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2699             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2700           }else{
2701             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2702             if( isRowid ){
2703               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2704                                 sqlite3VdbeCurrentAddr(v)+2);
2705               VdbeCoverage(v);
2706               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2707             }else{
2708               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2709               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2710               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2711             }
2712           }
2713         }
2714         sqlite3ReleaseTempReg(pParse, r1);
2715         sqlite3ReleaseTempReg(pParse, r2);
2716       }
2717       if( pKeyInfo ){
2718         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2719       }
2720       break;
2721     }
2722 
2723     case TK_EXISTS:
2724     case TK_SELECT:
2725     default: {
2726       /* Case 3:    (SELECT ... FROM ...)
2727       **     or:    EXISTS(SELECT ... FROM ...)
2728       **
2729       ** For a SELECT, generate code to put the values for all columns of
2730       ** the first row into an array of registers and return the index of
2731       ** the first register.
2732       **
2733       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2734       ** into a register and return that register number.
2735       **
2736       ** In both cases, the query is augmented with "LIMIT 1".  Any
2737       ** preexisting limit is discarded in place of the new LIMIT 1.
2738       */
2739       Select *pSel;                         /* SELECT statement to encode */
2740       SelectDest dest;                      /* How to deal with SELECT result */
2741       int nReg;                             /* Registers to allocate */
2742 
2743       testcase( pExpr->op==TK_EXISTS );
2744       testcase( pExpr->op==TK_SELECT );
2745       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2746       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2747 
2748       pSel = pExpr->x.pSelect;
2749       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2750       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2751       pParse->nMem += nReg;
2752       if( pExpr->op==TK_SELECT ){
2753         dest.eDest = SRT_Mem;
2754         dest.iSdst = dest.iSDParm;
2755         dest.nSdst = nReg;
2756         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2757         VdbeComment((v, "Init subquery result"));
2758       }else{
2759         dest.eDest = SRT_Exists;
2760         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2761         VdbeComment((v, "Init EXISTS result"));
2762       }
2763       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2764       pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,
2765                                   &sqlite3IntTokens[1], 0);
2766       pSel->iLimit = 0;
2767       pSel->selFlags &= ~SF_MultiValue;
2768       if( sqlite3Select(pParse, pSel, &dest) ){
2769         return 0;
2770       }
2771       rReg = dest.iSDParm;
2772       ExprSetVVAProperty(pExpr, EP_NoReduce);
2773       break;
2774     }
2775   }
2776 
2777   if( rHasNullFlag ){
2778     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2779   }
2780 
2781   if( jmpIfDynamic>=0 ){
2782     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2783   }
2784   sqlite3ExprCachePop(pParse);
2785 
2786   return rReg;
2787 }
2788 #endif /* SQLITE_OMIT_SUBQUERY */
2789 
2790 #ifndef SQLITE_OMIT_SUBQUERY
2791 /*
2792 ** Expr pIn is an IN(...) expression. This function checks that the
2793 ** sub-select on the RHS of the IN() operator has the same number of
2794 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2795 ** a sub-query, that the LHS is a vector of size 1.
2796 */
2797 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2798   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2799   if( (pIn->flags & EP_xIsSelect) ){
2800     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2801       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2802       return 1;
2803     }
2804   }else if( nVector!=1 ){
2805     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2806     return 1;
2807   }
2808   return 0;
2809 }
2810 #endif
2811 
2812 #ifndef SQLITE_OMIT_SUBQUERY
2813 /*
2814 ** Generate code for an IN expression.
2815 **
2816 **      x IN (SELECT ...)
2817 **      x IN (value, value, ...)
2818 **
2819 ** The left-hand side (LHS) is a scalar or vector expression.  The
2820 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2821 ** subquery.  If the RHS is a subquery, the number of result columns must
2822 ** match the number of columns in the vector on the LHS.  If the RHS is
2823 ** a list of values, the LHS must be a scalar.
2824 **
2825 ** The IN operator is true if the LHS value is contained within the RHS.
2826 ** The result is false if the LHS is definitely not in the RHS.  The
2827 ** result is NULL if the presence of the LHS in the RHS cannot be
2828 ** determined due to NULLs.
2829 **
2830 ** This routine generates code that jumps to destIfFalse if the LHS is not
2831 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2832 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2833 ** within the RHS then fall through.
2834 **
2835 ** See the separate in-operator.md documentation file in the canonical
2836 ** SQLite source tree for additional information.
2837 */
2838 static void sqlite3ExprCodeIN(
2839   Parse *pParse,        /* Parsing and code generating context */
2840   Expr *pExpr,          /* The IN expression */
2841   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2842   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2843 ){
2844   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2845   int eType;            /* Type of the RHS */
2846   int rLhs;             /* Register(s) holding the LHS values */
2847   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2848   Vdbe *v;              /* Statement under construction */
2849   int *aiMap = 0;       /* Map from vector field to index column */
2850   char *zAff = 0;       /* Affinity string for comparisons */
2851   int nVector;          /* Size of vectors for this IN operator */
2852   int iDummy;           /* Dummy parameter to exprCodeVector() */
2853   Expr *pLeft;          /* The LHS of the IN operator */
2854   int i;                /* loop counter */
2855   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2856   int destStep6 = 0;    /* Start of code for Step 6 */
2857   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2858   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2859   int addrTop;          /* Top of the step-6 loop */
2860 
2861   pLeft = pExpr->pLeft;
2862   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2863   zAff = exprINAffinity(pParse, pExpr);
2864   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2865   aiMap = (int*)sqlite3DbMallocZero(
2866       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2867   );
2868   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2869 
2870   /* Attempt to compute the RHS. After this step, if anything other than
2871   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2872   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2873   ** the RHS has not yet been coded.  */
2874   v = pParse->pVdbe;
2875   assert( v!=0 );       /* OOM detected prior to this routine */
2876   VdbeNoopComment((v, "begin IN expr"));
2877   eType = sqlite3FindInIndex(pParse, pExpr,
2878                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2879                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2880 
2881   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2882        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2883   );
2884 #ifdef SQLITE_DEBUG
2885   /* Confirm that aiMap[] contains nVector integer values between 0 and
2886   ** nVector-1. */
2887   for(i=0; i<nVector; i++){
2888     int j, cnt;
2889     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2890     assert( cnt==1 );
2891   }
2892 #endif
2893 
2894   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2895   ** vector, then it is stored in an array of nVector registers starting
2896   ** at r1.
2897   **
2898   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2899   ** so that the fields are in the same order as an existing index.   The
2900   ** aiMap[] array contains a mapping from the original LHS field order to
2901   ** the field order that matches the RHS index.
2902   */
2903   sqlite3ExprCachePush(pParse);
2904   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2905   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2906   if( i==nVector ){
2907     /* LHS fields are not reordered */
2908     rLhs = rLhsOrig;
2909   }else{
2910     /* Need to reorder the LHS fields according to aiMap */
2911     rLhs = sqlite3GetTempRange(pParse, nVector);
2912     for(i=0; i<nVector; i++){
2913       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2914     }
2915   }
2916 
2917   /* If sqlite3FindInIndex() did not find or create an index that is
2918   ** suitable for evaluating the IN operator, then evaluate using a
2919   ** sequence of comparisons.
2920   **
2921   ** This is step (1) in the in-operator.md optimized algorithm.
2922   */
2923   if( eType==IN_INDEX_NOOP ){
2924     ExprList *pList = pExpr->x.pList;
2925     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2926     int labelOk = sqlite3VdbeMakeLabel(v);
2927     int r2, regToFree;
2928     int regCkNull = 0;
2929     int ii;
2930     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2931     if( destIfNull!=destIfFalse ){
2932       regCkNull = sqlite3GetTempReg(pParse);
2933       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2934     }
2935     for(ii=0; ii<pList->nExpr; ii++){
2936       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2937       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2938         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2939       }
2940       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2941         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2942                           (void*)pColl, P4_COLLSEQ);
2943         VdbeCoverageIf(v, ii<pList->nExpr-1);
2944         VdbeCoverageIf(v, ii==pList->nExpr-1);
2945         sqlite3VdbeChangeP5(v, zAff[0]);
2946       }else{
2947         assert( destIfNull==destIfFalse );
2948         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2949                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2950         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2951       }
2952       sqlite3ReleaseTempReg(pParse, regToFree);
2953     }
2954     if( regCkNull ){
2955       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2956       sqlite3VdbeGoto(v, destIfFalse);
2957     }
2958     sqlite3VdbeResolveLabel(v, labelOk);
2959     sqlite3ReleaseTempReg(pParse, regCkNull);
2960     goto sqlite3ExprCodeIN_finished;
2961   }
2962 
2963   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
2964   ** LHS does contain NULLs then the result must be either FALSE or NULL.
2965   ** We will then skip the binary search of the RHS.
2966   */
2967   if( destIfNull==destIfFalse ){
2968     destStep2 = destIfFalse;
2969   }else{
2970     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
2971   }
2972   for(i=0; i<nVector; i++){
2973     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
2974     if( sqlite3ExprCanBeNull(p) ){
2975       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
2976       VdbeCoverage(v);
2977     }
2978   }
2979 
2980   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
2981   ** of the RHS using the LHS as a probe.  If found, the result is
2982   ** true.
2983   */
2984   if( eType==IN_INDEX_ROWID ){
2985     /* In this case, the RHS is the ROWID of table b-tree and so we also
2986     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
2987     ** into a single opcode. */
2988     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
2989     VdbeCoverage(v);
2990     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
2991   }else{
2992     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
2993     if( destIfFalse==destIfNull ){
2994       /* Combine Step 3 and Step 5 into a single opcode */
2995       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
2996                            rLhs, nVector); VdbeCoverage(v);
2997       goto sqlite3ExprCodeIN_finished;
2998     }
2999     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3000     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3001                                       rLhs, nVector); VdbeCoverage(v);
3002   }
3003 
3004   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3005   ** an match on the search above, then the result must be FALSE.
3006   */
3007   if( rRhsHasNull && nVector==1 ){
3008     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3009     VdbeCoverage(v);
3010   }
3011 
3012   /* Step 5.  If we do not care about the difference between NULL and
3013   ** FALSE, then just return false.
3014   */
3015   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3016 
3017   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3018   ** If any comparison is NULL, then the result is NULL.  If all
3019   ** comparisons are FALSE then the final result is FALSE.
3020   **
3021   ** For a scalar LHS, it is sufficient to check just the first row
3022   ** of the RHS.
3023   */
3024   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3025   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3026   VdbeCoverage(v);
3027   if( nVector>1 ){
3028     destNotNull = sqlite3VdbeMakeLabel(v);
3029   }else{
3030     /* For nVector==1, combine steps 6 and 7 by immediately returning
3031     ** FALSE if the first comparison is not NULL */
3032     destNotNull = destIfFalse;
3033   }
3034   for(i=0; i<nVector; i++){
3035     Expr *p;
3036     CollSeq *pColl;
3037     int r3 = sqlite3GetTempReg(pParse);
3038     p = sqlite3VectorFieldSubexpr(pLeft, i);
3039     pColl = sqlite3ExprCollSeq(pParse, p);
3040     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3041     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3042                       (void*)pColl, P4_COLLSEQ);
3043     VdbeCoverage(v);
3044     sqlite3ReleaseTempReg(pParse, r3);
3045   }
3046   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3047   if( nVector>1 ){
3048     sqlite3VdbeResolveLabel(v, destNotNull);
3049     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3050     VdbeCoverage(v);
3051 
3052     /* Step 7:  If we reach this point, we know that the result must
3053     ** be false. */
3054     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3055   }
3056 
3057   /* Jumps here in order to return true. */
3058   sqlite3VdbeJumpHere(v, addrTruthOp);
3059 
3060 sqlite3ExprCodeIN_finished:
3061   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3062   sqlite3ExprCachePop(pParse);
3063   VdbeComment((v, "end IN expr"));
3064 sqlite3ExprCodeIN_oom_error:
3065   sqlite3DbFree(pParse->db, aiMap);
3066   sqlite3DbFree(pParse->db, zAff);
3067 }
3068 #endif /* SQLITE_OMIT_SUBQUERY */
3069 
3070 #ifndef SQLITE_OMIT_FLOATING_POINT
3071 /*
3072 ** Generate an instruction that will put the floating point
3073 ** value described by z[0..n-1] into register iMem.
3074 **
3075 ** The z[] string will probably not be zero-terminated.  But the
3076 ** z[n] character is guaranteed to be something that does not look
3077 ** like the continuation of the number.
3078 */
3079 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3080   if( ALWAYS(z!=0) ){
3081     double value;
3082     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3083     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3084     if( negateFlag ) value = -value;
3085     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3086   }
3087 }
3088 #endif
3089 
3090 
3091 /*
3092 ** Generate an instruction that will put the integer describe by
3093 ** text z[0..n-1] into register iMem.
3094 **
3095 ** Expr.u.zToken is always UTF8 and zero-terminated.
3096 */
3097 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3098   Vdbe *v = pParse->pVdbe;
3099   if( pExpr->flags & EP_IntValue ){
3100     int i = pExpr->u.iValue;
3101     assert( i>=0 );
3102     if( negFlag ) i = -i;
3103     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3104   }else{
3105     int c;
3106     i64 value;
3107     const char *z = pExpr->u.zToken;
3108     assert( z!=0 );
3109     c = sqlite3DecOrHexToI64(z, &value);
3110     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3111 #ifdef SQLITE_OMIT_FLOATING_POINT
3112       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3113 #else
3114 #ifndef SQLITE_OMIT_HEX_INTEGER
3115       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3116         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3117       }else
3118 #endif
3119       {
3120         codeReal(v, z, negFlag, iMem);
3121       }
3122 #endif
3123     }else{
3124       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3125       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3126     }
3127   }
3128 }
3129 
3130 /*
3131 ** Erase column-cache entry number i
3132 */
3133 static void cacheEntryClear(Parse *pParse, int i){
3134   if( pParse->aColCache[i].tempReg ){
3135     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3136       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3137     }
3138   }
3139   pParse->nColCache--;
3140   if( i<pParse->nColCache ){
3141     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3142   }
3143 }
3144 
3145 
3146 /*
3147 ** Record in the column cache that a particular column from a
3148 ** particular table is stored in a particular register.
3149 */
3150 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3151   int i;
3152   int minLru;
3153   int idxLru;
3154   struct yColCache *p;
3155 
3156   /* Unless an error has occurred, register numbers are always positive. */
3157   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3158   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
3159 
3160   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
3161   ** for testing only - to verify that SQLite always gets the same answer
3162   ** with and without the column cache.
3163   */
3164   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3165 
3166   /* First replace any existing entry.
3167   **
3168   ** Actually, the way the column cache is currently used, we are guaranteed
3169   ** that the object will never already be in cache.  Verify this guarantee.
3170   */
3171 #ifndef NDEBUG
3172   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3173     assert( p->iTable!=iTab || p->iColumn!=iCol );
3174   }
3175 #endif
3176 
3177   /* If the cache is already full, delete the least recently used entry */
3178   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3179     minLru = 0x7fffffff;
3180     idxLru = -1;
3181     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3182       if( p->lru<minLru ){
3183         idxLru = i;
3184         minLru = p->lru;
3185       }
3186     }
3187     p = &pParse->aColCache[idxLru];
3188   }else{
3189     p = &pParse->aColCache[pParse->nColCache++];
3190   }
3191 
3192   /* Add the new entry to the end of the cache */
3193   p->iLevel = pParse->iCacheLevel;
3194   p->iTable = iTab;
3195   p->iColumn = iCol;
3196   p->iReg = iReg;
3197   p->tempReg = 0;
3198   p->lru = pParse->iCacheCnt++;
3199 }
3200 
3201 /*
3202 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3203 ** Purge the range of registers from the column cache.
3204 */
3205 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3206   int i = 0;
3207   while( i<pParse->nColCache ){
3208     struct yColCache *p = &pParse->aColCache[i];
3209     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3210       cacheEntryClear(pParse, i);
3211     }else{
3212       i++;
3213     }
3214   }
3215 }
3216 
3217 /*
3218 ** Remember the current column cache context.  Any new entries added
3219 ** added to the column cache after this call are removed when the
3220 ** corresponding pop occurs.
3221 */
3222 void sqlite3ExprCachePush(Parse *pParse){
3223   pParse->iCacheLevel++;
3224 #ifdef SQLITE_DEBUG
3225   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3226     printf("PUSH to %d\n", pParse->iCacheLevel);
3227   }
3228 #endif
3229 }
3230 
3231 /*
3232 ** Remove from the column cache any entries that were added since the
3233 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3234 ** the cache to the state it was in prior the most recent Push.
3235 */
3236 void sqlite3ExprCachePop(Parse *pParse){
3237   int i = 0;
3238   assert( pParse->iCacheLevel>=1 );
3239   pParse->iCacheLevel--;
3240 #ifdef SQLITE_DEBUG
3241   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3242     printf("POP  to %d\n", pParse->iCacheLevel);
3243   }
3244 #endif
3245   while( i<pParse->nColCache ){
3246     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3247       cacheEntryClear(pParse, i);
3248     }else{
3249       i++;
3250     }
3251   }
3252 }
3253 
3254 /*
3255 ** When a cached column is reused, make sure that its register is
3256 ** no longer available as a temp register.  ticket #3879:  that same
3257 ** register might be in the cache in multiple places, so be sure to
3258 ** get them all.
3259 */
3260 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3261   int i;
3262   struct yColCache *p;
3263   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3264     if( p->iReg==iReg ){
3265       p->tempReg = 0;
3266     }
3267   }
3268 }
3269 
3270 /* Generate code that will load into register regOut a value that is
3271 ** appropriate for the iIdxCol-th column of index pIdx.
3272 */
3273 void sqlite3ExprCodeLoadIndexColumn(
3274   Parse *pParse,  /* The parsing context */
3275   Index *pIdx,    /* The index whose column is to be loaded */
3276   int iTabCur,    /* Cursor pointing to a table row */
3277   int iIdxCol,    /* The column of the index to be loaded */
3278   int regOut      /* Store the index column value in this register */
3279 ){
3280   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3281   if( iTabCol==XN_EXPR ){
3282     assert( pIdx->aColExpr );
3283     assert( pIdx->aColExpr->nExpr>iIdxCol );
3284     pParse->iSelfTab = iTabCur + 1;
3285     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3286     pParse->iSelfTab = 0;
3287   }else{
3288     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3289                                     iTabCol, regOut);
3290   }
3291 }
3292 
3293 /*
3294 ** Generate code to extract the value of the iCol-th column of a table.
3295 */
3296 void sqlite3ExprCodeGetColumnOfTable(
3297   Vdbe *v,        /* The VDBE under construction */
3298   Table *pTab,    /* The table containing the value */
3299   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3300   int iCol,       /* Index of the column to extract */
3301   int regOut      /* Extract the value into this register */
3302 ){
3303   if( pTab==0 ){
3304     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3305     return;
3306   }
3307   if( iCol<0 || iCol==pTab->iPKey ){
3308     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3309   }else{
3310     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3311     int x = iCol;
3312     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3313       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3314     }
3315     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3316   }
3317   if( iCol>=0 ){
3318     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3319   }
3320 }
3321 
3322 /*
3323 ** Generate code that will extract the iColumn-th column from
3324 ** table pTab and store the column value in a register.
3325 **
3326 ** An effort is made to store the column value in register iReg.  This
3327 ** is not garanteeed for GetColumn() - the result can be stored in
3328 ** any register.  But the result is guaranteed to land in register iReg
3329 ** for GetColumnToReg().
3330 **
3331 ** There must be an open cursor to pTab in iTable when this routine
3332 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3333 */
3334 int sqlite3ExprCodeGetColumn(
3335   Parse *pParse,   /* Parsing and code generating context */
3336   Table *pTab,     /* Description of the table we are reading from */
3337   int iColumn,     /* Index of the table column */
3338   int iTable,      /* The cursor pointing to the table */
3339   int iReg,        /* Store results here */
3340   u8 p5            /* P5 value for OP_Column + FLAGS */
3341 ){
3342   Vdbe *v = pParse->pVdbe;
3343   int i;
3344   struct yColCache *p;
3345 
3346   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3347     if( p->iTable==iTable && p->iColumn==iColumn ){
3348       p->lru = pParse->iCacheCnt++;
3349       sqlite3ExprCachePinRegister(pParse, p->iReg);
3350       return p->iReg;
3351     }
3352   }
3353   assert( v!=0 );
3354   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3355   if( p5 ){
3356     sqlite3VdbeChangeP5(v, p5);
3357   }else{
3358     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3359   }
3360   return iReg;
3361 }
3362 void sqlite3ExprCodeGetColumnToReg(
3363   Parse *pParse,   /* Parsing and code generating context */
3364   Table *pTab,     /* Description of the table we are reading from */
3365   int iColumn,     /* Index of the table column */
3366   int iTable,      /* The cursor pointing to the table */
3367   int iReg         /* Store results here */
3368 ){
3369   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3370   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3371 }
3372 
3373 
3374 /*
3375 ** Clear all column cache entries.
3376 */
3377 void sqlite3ExprCacheClear(Parse *pParse){
3378   int i;
3379 
3380 #ifdef SQLITE_DEBUG
3381   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3382     printf("CLEAR\n");
3383   }
3384 #endif
3385   for(i=0; i<pParse->nColCache; i++){
3386     if( pParse->aColCache[i].tempReg
3387      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3388     ){
3389        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3390     }
3391   }
3392   pParse->nColCache = 0;
3393 }
3394 
3395 /*
3396 ** Record the fact that an affinity change has occurred on iCount
3397 ** registers starting with iStart.
3398 */
3399 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3400   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3401 }
3402 
3403 /*
3404 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3405 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3406 */
3407 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3408   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3409   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3410   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3411 }
3412 
3413 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3414 /*
3415 ** Return true if any register in the range iFrom..iTo (inclusive)
3416 ** is used as part of the column cache.
3417 **
3418 ** This routine is used within assert() and testcase() macros only
3419 ** and does not appear in a normal build.
3420 */
3421 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3422   int i;
3423   struct yColCache *p;
3424   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3425     int r = p->iReg;
3426     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3427   }
3428   return 0;
3429 }
3430 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3431 
3432 
3433 /*
3434 ** Convert a scalar expression node to a TK_REGISTER referencing
3435 ** register iReg.  The caller must ensure that iReg already contains
3436 ** the correct value for the expression.
3437 */
3438 static void exprToRegister(Expr *p, int iReg){
3439   p->op2 = p->op;
3440   p->op = TK_REGISTER;
3441   p->iTable = iReg;
3442   ExprClearProperty(p, EP_Skip);
3443 }
3444 
3445 /*
3446 ** Evaluate an expression (either a vector or a scalar expression) and store
3447 ** the result in continguous temporary registers.  Return the index of
3448 ** the first register used to store the result.
3449 **
3450 ** If the returned result register is a temporary scalar, then also write
3451 ** that register number into *piFreeable.  If the returned result register
3452 ** is not a temporary or if the expression is a vector set *piFreeable
3453 ** to 0.
3454 */
3455 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3456   int iResult;
3457   int nResult = sqlite3ExprVectorSize(p);
3458   if( nResult==1 ){
3459     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3460   }else{
3461     *piFreeable = 0;
3462     if( p->op==TK_SELECT ){
3463 #if SQLITE_OMIT_SUBQUERY
3464       iResult = 0;
3465 #else
3466       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3467 #endif
3468     }else{
3469       int i;
3470       iResult = pParse->nMem+1;
3471       pParse->nMem += nResult;
3472       for(i=0; i<nResult; i++){
3473         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3474       }
3475     }
3476   }
3477   return iResult;
3478 }
3479 
3480 
3481 /*
3482 ** Generate code into the current Vdbe to evaluate the given
3483 ** expression.  Attempt to store the results in register "target".
3484 ** Return the register where results are stored.
3485 **
3486 ** With this routine, there is no guarantee that results will
3487 ** be stored in target.  The result might be stored in some other
3488 ** register if it is convenient to do so.  The calling function
3489 ** must check the return code and move the results to the desired
3490 ** register.
3491 */
3492 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3493   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3494   int op;                   /* The opcode being coded */
3495   int inReg = target;       /* Results stored in register inReg */
3496   int regFree1 = 0;         /* If non-zero free this temporary register */
3497   int regFree2 = 0;         /* If non-zero free this temporary register */
3498   int r1, r2;               /* Various register numbers */
3499   Expr tempX;               /* Temporary expression node */
3500   int p5 = 0;
3501 
3502   assert( target>0 && target<=pParse->nMem );
3503   if( v==0 ){
3504     assert( pParse->db->mallocFailed );
3505     return 0;
3506   }
3507 
3508   if( pExpr==0 ){
3509     op = TK_NULL;
3510   }else{
3511     op = pExpr->op;
3512   }
3513   switch( op ){
3514     case TK_AGG_COLUMN: {
3515       AggInfo *pAggInfo = pExpr->pAggInfo;
3516       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3517       if( !pAggInfo->directMode ){
3518         assert( pCol->iMem>0 );
3519         return pCol->iMem;
3520       }else if( pAggInfo->useSortingIdx ){
3521         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3522                               pCol->iSorterColumn, target);
3523         return target;
3524       }
3525       /* Otherwise, fall thru into the TK_COLUMN case */
3526     }
3527     case TK_COLUMN: {
3528       int iTab = pExpr->iTable;
3529       if( iTab<0 ){
3530         if( pParse->iSelfTab<0 ){
3531           /* Generating CHECK constraints or inserting into partial index */
3532           return pExpr->iColumn - pParse->iSelfTab;
3533         }else{
3534           /* Coding an expression that is part of an index where column names
3535           ** in the index refer to the table to which the index belongs */
3536           iTab = pParse->iSelfTab - 1;
3537         }
3538       }
3539       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3540                                pExpr->iColumn, iTab, target,
3541                                pExpr->op2);
3542     }
3543     case TK_INTEGER: {
3544       codeInteger(pParse, pExpr, 0, target);
3545       return target;
3546     }
3547 #ifndef SQLITE_OMIT_FLOATING_POINT
3548     case TK_FLOAT: {
3549       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3550       codeReal(v, pExpr->u.zToken, 0, target);
3551       return target;
3552     }
3553 #endif
3554     case TK_STRING: {
3555       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3556       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3557       return target;
3558     }
3559     case TK_NULL: {
3560       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3561       return target;
3562     }
3563 #ifndef SQLITE_OMIT_BLOB_LITERAL
3564     case TK_BLOB: {
3565       int n;
3566       const char *z;
3567       char *zBlob;
3568       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3569       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3570       assert( pExpr->u.zToken[1]=='\'' );
3571       z = &pExpr->u.zToken[2];
3572       n = sqlite3Strlen30(z) - 1;
3573       assert( z[n]=='\'' );
3574       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3575       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3576       return target;
3577     }
3578 #endif
3579     case TK_VARIABLE: {
3580       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3581       assert( pExpr->u.zToken!=0 );
3582       assert( pExpr->u.zToken[0]!=0 );
3583       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3584       if( pExpr->u.zToken[1]!=0 ){
3585         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3586         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3587         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3588         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3589       }
3590       return target;
3591     }
3592     case TK_REGISTER: {
3593       return pExpr->iTable;
3594     }
3595 #ifndef SQLITE_OMIT_CAST
3596     case TK_CAST: {
3597       /* Expressions of the form:   CAST(pLeft AS token) */
3598       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3599       if( inReg!=target ){
3600         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3601         inReg = target;
3602       }
3603       sqlite3VdbeAddOp2(v, OP_Cast, target,
3604                         sqlite3AffinityType(pExpr->u.zToken, 0));
3605       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3606       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3607       return inReg;
3608     }
3609 #endif /* SQLITE_OMIT_CAST */
3610     case TK_IS:
3611     case TK_ISNOT:
3612       op = (op==TK_IS) ? TK_EQ : TK_NE;
3613       p5 = SQLITE_NULLEQ;
3614       /* fall-through */
3615     case TK_LT:
3616     case TK_LE:
3617     case TK_GT:
3618     case TK_GE:
3619     case TK_NE:
3620     case TK_EQ: {
3621       Expr *pLeft = pExpr->pLeft;
3622       if( sqlite3ExprIsVector(pLeft) ){
3623         codeVectorCompare(pParse, pExpr, target, op, p5);
3624       }else{
3625         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3626         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3627         codeCompare(pParse, pLeft, pExpr->pRight, op,
3628             r1, r2, inReg, SQLITE_STOREP2 | p5);
3629         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3630         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3631         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3632         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3633         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3634         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3635         testcase( regFree1==0 );
3636         testcase( regFree2==0 );
3637       }
3638       break;
3639     }
3640     case TK_AND:
3641     case TK_OR:
3642     case TK_PLUS:
3643     case TK_STAR:
3644     case TK_MINUS:
3645     case TK_REM:
3646     case TK_BITAND:
3647     case TK_BITOR:
3648     case TK_SLASH:
3649     case TK_LSHIFT:
3650     case TK_RSHIFT:
3651     case TK_CONCAT: {
3652       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3653       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3654       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3655       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3656       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3657       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3658       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3659       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3660       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3661       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3662       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3663       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3664       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3665       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3666       testcase( regFree1==0 );
3667       testcase( regFree2==0 );
3668       break;
3669     }
3670     case TK_UMINUS: {
3671       Expr *pLeft = pExpr->pLeft;
3672       assert( pLeft );
3673       if( pLeft->op==TK_INTEGER ){
3674         codeInteger(pParse, pLeft, 1, target);
3675         return target;
3676 #ifndef SQLITE_OMIT_FLOATING_POINT
3677       }else if( pLeft->op==TK_FLOAT ){
3678         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3679         codeReal(v, pLeft->u.zToken, 1, target);
3680         return target;
3681 #endif
3682       }else{
3683         tempX.op = TK_INTEGER;
3684         tempX.flags = EP_IntValue|EP_TokenOnly;
3685         tempX.u.iValue = 0;
3686         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3687         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3688         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3689         testcase( regFree2==0 );
3690       }
3691       break;
3692     }
3693     case TK_BITNOT:
3694     case TK_NOT: {
3695       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3696       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3697       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3698       testcase( regFree1==0 );
3699       sqlite3VdbeAddOp2(v, op, r1, inReg);
3700       break;
3701     }
3702     case TK_ISNULL:
3703     case TK_NOTNULL: {
3704       int addr;
3705       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3706       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3707       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3708       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3709       testcase( regFree1==0 );
3710       addr = sqlite3VdbeAddOp1(v, op, r1);
3711       VdbeCoverageIf(v, op==TK_ISNULL);
3712       VdbeCoverageIf(v, op==TK_NOTNULL);
3713       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3714       sqlite3VdbeJumpHere(v, addr);
3715       break;
3716     }
3717     case TK_AGG_FUNCTION: {
3718       AggInfo *pInfo = pExpr->pAggInfo;
3719       if( pInfo==0 ){
3720         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3721         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3722       }else{
3723         return pInfo->aFunc[pExpr->iAgg].iMem;
3724       }
3725       break;
3726     }
3727     case TK_FUNCTION: {
3728       ExprList *pFarg;       /* List of function arguments */
3729       int nFarg;             /* Number of function arguments */
3730       FuncDef *pDef;         /* The function definition object */
3731       const char *zId;       /* The function name */
3732       u32 constMask = 0;     /* Mask of function arguments that are constant */
3733       int i;                 /* Loop counter */
3734       sqlite3 *db = pParse->db;  /* The database connection */
3735       u8 enc = ENC(db);      /* The text encoding used by this database */
3736       CollSeq *pColl = 0;    /* A collating sequence */
3737 
3738       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3739         /* SQL functions can be expensive. So try to move constant functions
3740         ** out of the inner loop, even if that means an extra OP_Copy. */
3741         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3742       }
3743       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3744       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3745         pFarg = 0;
3746       }else{
3747         pFarg = pExpr->x.pList;
3748       }
3749       nFarg = pFarg ? pFarg->nExpr : 0;
3750       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3751       zId = pExpr->u.zToken;
3752       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3753 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3754       if( pDef==0 && pParse->explain ){
3755         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3756       }
3757 #endif
3758       if( pDef==0 || pDef->xFinalize!=0 ){
3759         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3760         break;
3761       }
3762 
3763       /* Attempt a direct implementation of the built-in COALESCE() and
3764       ** IFNULL() functions.  This avoids unnecessary evaluation of
3765       ** arguments past the first non-NULL argument.
3766       */
3767       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3768         int endCoalesce = sqlite3VdbeMakeLabel(v);
3769         assert( nFarg>=2 );
3770         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3771         for(i=1; i<nFarg; i++){
3772           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3773           VdbeCoverage(v);
3774           sqlite3ExprCacheRemove(pParse, target, 1);
3775           sqlite3ExprCachePush(pParse);
3776           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3777           sqlite3ExprCachePop(pParse);
3778         }
3779         sqlite3VdbeResolveLabel(v, endCoalesce);
3780         break;
3781       }
3782 
3783       /* The UNLIKELY() function is a no-op.  The result is the value
3784       ** of the first argument.
3785       */
3786       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3787         assert( nFarg>=1 );
3788         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3789       }
3790 
3791 #ifdef SQLITE_DEBUG
3792       /* The AFFINITY() function evaluates to a string that describes
3793       ** the type affinity of the argument.  This is used for testing of
3794       ** the SQLite type logic.
3795       */
3796       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3797         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3798         char aff;
3799         assert( nFarg==1 );
3800         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3801         sqlite3VdbeLoadString(v, target,
3802                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3803         return target;
3804       }
3805 #endif
3806 
3807       for(i=0; i<nFarg; i++){
3808         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3809           testcase( i==31 );
3810           constMask |= MASKBIT32(i);
3811         }
3812         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3813           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3814         }
3815       }
3816       if( pFarg ){
3817         if( constMask ){
3818           r1 = pParse->nMem+1;
3819           pParse->nMem += nFarg;
3820         }else{
3821           r1 = sqlite3GetTempRange(pParse, nFarg);
3822         }
3823 
3824         /* For length() and typeof() functions with a column argument,
3825         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3826         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3827         ** loading.
3828         */
3829         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3830           u8 exprOp;
3831           assert( nFarg==1 );
3832           assert( pFarg->a[0].pExpr!=0 );
3833           exprOp = pFarg->a[0].pExpr->op;
3834           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3835             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3836             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3837             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3838             pFarg->a[0].pExpr->op2 =
3839                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3840           }
3841         }
3842 
3843         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3844         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3845                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3846         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3847       }else{
3848         r1 = 0;
3849       }
3850 #ifndef SQLITE_OMIT_VIRTUALTABLE
3851       /* Possibly overload the function if the first argument is
3852       ** a virtual table column.
3853       **
3854       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3855       ** second argument, not the first, as the argument to test to
3856       ** see if it is a column in a virtual table.  This is done because
3857       ** the left operand of infix functions (the operand we want to
3858       ** control overloading) ends up as the second argument to the
3859       ** function.  The expression "A glob B" is equivalent to
3860       ** "glob(B,A).  We want to use the A in "A glob B" to test
3861       ** for function overloading.  But we use the B term in "glob(B,A)".
3862       */
3863       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3864         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3865       }else if( nFarg>0 ){
3866         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3867       }
3868 #endif
3869       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3870         if( !pColl ) pColl = db->pDfltColl;
3871         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3872       }
3873       sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3874                         constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3875       sqlite3VdbeChangeP5(v, (u8)nFarg);
3876       if( nFarg && constMask==0 ){
3877         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3878       }
3879       return target;
3880     }
3881 #ifndef SQLITE_OMIT_SUBQUERY
3882     case TK_EXISTS:
3883     case TK_SELECT: {
3884       int nCol;
3885       testcase( op==TK_EXISTS );
3886       testcase( op==TK_SELECT );
3887       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3888         sqlite3SubselectError(pParse, nCol, 1);
3889       }else{
3890         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3891       }
3892       break;
3893     }
3894     case TK_SELECT_COLUMN: {
3895       int n;
3896       if( pExpr->pLeft->iTable==0 ){
3897         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3898       }
3899       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3900       if( pExpr->iTable
3901        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3902       ){
3903         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3904                                 pExpr->iTable, n);
3905       }
3906       return pExpr->pLeft->iTable + pExpr->iColumn;
3907     }
3908     case TK_IN: {
3909       int destIfFalse = sqlite3VdbeMakeLabel(v);
3910       int destIfNull = sqlite3VdbeMakeLabel(v);
3911       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3912       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3913       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3914       sqlite3VdbeResolveLabel(v, destIfFalse);
3915       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3916       sqlite3VdbeResolveLabel(v, destIfNull);
3917       return target;
3918     }
3919 #endif /* SQLITE_OMIT_SUBQUERY */
3920 
3921 
3922     /*
3923     **    x BETWEEN y AND z
3924     **
3925     ** This is equivalent to
3926     **
3927     **    x>=y AND x<=z
3928     **
3929     ** X is stored in pExpr->pLeft.
3930     ** Y is stored in pExpr->pList->a[0].pExpr.
3931     ** Z is stored in pExpr->pList->a[1].pExpr.
3932     */
3933     case TK_BETWEEN: {
3934       exprCodeBetween(pParse, pExpr, target, 0, 0);
3935       return target;
3936     }
3937     case TK_SPAN:
3938     case TK_COLLATE:
3939     case TK_UPLUS: {
3940       return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3941     }
3942 
3943     case TK_TRIGGER: {
3944       /* If the opcode is TK_TRIGGER, then the expression is a reference
3945       ** to a column in the new.* or old.* pseudo-tables available to
3946       ** trigger programs. In this case Expr.iTable is set to 1 for the
3947       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3948       ** is set to the column of the pseudo-table to read, or to -1 to
3949       ** read the rowid field.
3950       **
3951       ** The expression is implemented using an OP_Param opcode. The p1
3952       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3953       ** to reference another column of the old.* pseudo-table, where
3954       ** i is the index of the column. For a new.rowid reference, p1 is
3955       ** set to (n+1), where n is the number of columns in each pseudo-table.
3956       ** For a reference to any other column in the new.* pseudo-table, p1
3957       ** is set to (n+2+i), where n and i are as defined previously. For
3958       ** example, if the table on which triggers are being fired is
3959       ** declared as:
3960       **
3961       **   CREATE TABLE t1(a, b);
3962       **
3963       ** Then p1 is interpreted as follows:
3964       **
3965       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3966       **   p1==1   ->    old.a         p1==4   ->    new.a
3967       **   p1==2   ->    old.b         p1==5   ->    new.b
3968       */
3969       Table *pTab = pExpr->pTab;
3970       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3971 
3972       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3973       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3974       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3975       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3976 
3977       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3978       VdbeComment((v, "%s.%s -> $%d",
3979         (pExpr->iTable ? "new" : "old"),
3980         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3981         target
3982       ));
3983 
3984 #ifndef SQLITE_OMIT_FLOATING_POINT
3985       /* If the column has REAL affinity, it may currently be stored as an
3986       ** integer. Use OP_RealAffinity to make sure it is really real.
3987       **
3988       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3989       ** floating point when extracting it from the record.  */
3990       if( pExpr->iColumn>=0
3991        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3992       ){
3993         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3994       }
3995 #endif
3996       break;
3997     }
3998 
3999     case TK_VECTOR: {
4000       sqlite3ErrorMsg(pParse, "row value misused");
4001       break;
4002     }
4003 
4004     case TK_IF_NULL_ROW: {
4005       int addrINR;
4006       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4007       sqlite3ExprCachePush(pParse);
4008       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4009       sqlite3ExprCachePop(pParse);
4010       sqlite3VdbeJumpHere(v, addrINR);
4011       sqlite3VdbeChangeP3(v, addrINR, inReg);
4012       break;
4013     }
4014 
4015     /*
4016     ** Form A:
4017     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4018     **
4019     ** Form B:
4020     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4021     **
4022     ** Form A is can be transformed into the equivalent form B as follows:
4023     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4024     **        WHEN x=eN THEN rN ELSE y END
4025     **
4026     ** X (if it exists) is in pExpr->pLeft.
4027     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4028     ** odd.  The Y is also optional.  If the number of elements in x.pList
4029     ** is even, then Y is omitted and the "otherwise" result is NULL.
4030     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4031     **
4032     ** The result of the expression is the Ri for the first matching Ei,
4033     ** or if there is no matching Ei, the ELSE term Y, or if there is
4034     ** no ELSE term, NULL.
4035     */
4036     default: assert( op==TK_CASE ); {
4037       int endLabel;                     /* GOTO label for end of CASE stmt */
4038       int nextCase;                     /* GOTO label for next WHEN clause */
4039       int nExpr;                        /* 2x number of WHEN terms */
4040       int i;                            /* Loop counter */
4041       ExprList *pEList;                 /* List of WHEN terms */
4042       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4043       Expr opCompare;                   /* The X==Ei expression */
4044       Expr *pX;                         /* The X expression */
4045       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4046       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4047 
4048       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4049       assert(pExpr->x.pList->nExpr > 0);
4050       pEList = pExpr->x.pList;
4051       aListelem = pEList->a;
4052       nExpr = pEList->nExpr;
4053       endLabel = sqlite3VdbeMakeLabel(v);
4054       if( (pX = pExpr->pLeft)!=0 ){
4055         tempX = *pX;
4056         testcase( pX->op==TK_COLUMN );
4057         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4058         testcase( regFree1==0 );
4059         memset(&opCompare, 0, sizeof(opCompare));
4060         opCompare.op = TK_EQ;
4061         opCompare.pLeft = &tempX;
4062         pTest = &opCompare;
4063         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4064         ** The value in regFree1 might get SCopy-ed into the file result.
4065         ** So make sure that the regFree1 register is not reused for other
4066         ** purposes and possibly overwritten.  */
4067         regFree1 = 0;
4068       }
4069       for(i=0; i<nExpr-1; i=i+2){
4070         sqlite3ExprCachePush(pParse);
4071         if( pX ){
4072           assert( pTest!=0 );
4073           opCompare.pRight = aListelem[i].pExpr;
4074         }else{
4075           pTest = aListelem[i].pExpr;
4076         }
4077         nextCase = sqlite3VdbeMakeLabel(v);
4078         testcase( pTest->op==TK_COLUMN );
4079         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4080         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4081         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4082         sqlite3VdbeGoto(v, endLabel);
4083         sqlite3ExprCachePop(pParse);
4084         sqlite3VdbeResolveLabel(v, nextCase);
4085       }
4086       if( (nExpr&1)!=0 ){
4087         sqlite3ExprCachePush(pParse);
4088         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4089         sqlite3ExprCachePop(pParse);
4090       }else{
4091         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4092       }
4093       assert( pParse->db->mallocFailed || pParse->nErr>0
4094            || pParse->iCacheLevel==iCacheLevel );
4095       sqlite3VdbeResolveLabel(v, endLabel);
4096       break;
4097     }
4098 #ifndef SQLITE_OMIT_TRIGGER
4099     case TK_RAISE: {
4100       assert( pExpr->affinity==OE_Rollback
4101            || pExpr->affinity==OE_Abort
4102            || pExpr->affinity==OE_Fail
4103            || pExpr->affinity==OE_Ignore
4104       );
4105       if( !pParse->pTriggerTab ){
4106         sqlite3ErrorMsg(pParse,
4107                        "RAISE() may only be used within a trigger-program");
4108         return 0;
4109       }
4110       if( pExpr->affinity==OE_Abort ){
4111         sqlite3MayAbort(pParse);
4112       }
4113       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4114       if( pExpr->affinity==OE_Ignore ){
4115         sqlite3VdbeAddOp4(
4116             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4117         VdbeCoverage(v);
4118       }else{
4119         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4120                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4121       }
4122 
4123       break;
4124     }
4125 #endif
4126   }
4127   sqlite3ReleaseTempReg(pParse, regFree1);
4128   sqlite3ReleaseTempReg(pParse, regFree2);
4129   return inReg;
4130 }
4131 
4132 /*
4133 ** Factor out the code of the given expression to initialization time.
4134 **
4135 ** If regDest>=0 then the result is always stored in that register and the
4136 ** result is not reusable.  If regDest<0 then this routine is free to
4137 ** store the value whereever it wants.  The register where the expression
4138 ** is stored is returned.  When regDest<0, two identical expressions will
4139 ** code to the same register.
4140 */
4141 int sqlite3ExprCodeAtInit(
4142   Parse *pParse,    /* Parsing context */
4143   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4144   int regDest       /* Store the value in this register */
4145 ){
4146   ExprList *p;
4147   assert( ConstFactorOk(pParse) );
4148   p = pParse->pConstExpr;
4149   if( regDest<0 && p ){
4150     struct ExprList_item *pItem;
4151     int i;
4152     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4153       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4154         return pItem->u.iConstExprReg;
4155       }
4156     }
4157   }
4158   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4159   p = sqlite3ExprListAppend(pParse, p, pExpr);
4160   if( p ){
4161      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4162      pItem->reusable = regDest<0;
4163      if( regDest<0 ) regDest = ++pParse->nMem;
4164      pItem->u.iConstExprReg = regDest;
4165   }
4166   pParse->pConstExpr = p;
4167   return regDest;
4168 }
4169 
4170 /*
4171 ** Generate code to evaluate an expression and store the results
4172 ** into a register.  Return the register number where the results
4173 ** are stored.
4174 **
4175 ** If the register is a temporary register that can be deallocated,
4176 ** then write its number into *pReg.  If the result register is not
4177 ** a temporary, then set *pReg to zero.
4178 **
4179 ** If pExpr is a constant, then this routine might generate this
4180 ** code to fill the register in the initialization section of the
4181 ** VDBE program, in order to factor it out of the evaluation loop.
4182 */
4183 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4184   int r2;
4185   pExpr = sqlite3ExprSkipCollate(pExpr);
4186   if( ConstFactorOk(pParse)
4187    && pExpr->op!=TK_REGISTER
4188    && sqlite3ExprIsConstantNotJoin(pExpr)
4189   ){
4190     *pReg  = 0;
4191     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4192   }else{
4193     int r1 = sqlite3GetTempReg(pParse);
4194     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4195     if( r2==r1 ){
4196       *pReg = r1;
4197     }else{
4198       sqlite3ReleaseTempReg(pParse, r1);
4199       *pReg = 0;
4200     }
4201   }
4202   return r2;
4203 }
4204 
4205 /*
4206 ** Generate code that will evaluate expression pExpr and store the
4207 ** results in register target.  The results are guaranteed to appear
4208 ** in register target.
4209 */
4210 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4211   int inReg;
4212 
4213   assert( target>0 && target<=pParse->nMem );
4214   if( pExpr && pExpr->op==TK_REGISTER ){
4215     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4216   }else{
4217     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4218     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4219     if( inReg!=target && pParse->pVdbe ){
4220       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4221     }
4222   }
4223 }
4224 
4225 /*
4226 ** Make a transient copy of expression pExpr and then code it using
4227 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4228 ** except that the input expression is guaranteed to be unchanged.
4229 */
4230 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4231   sqlite3 *db = pParse->db;
4232   pExpr = sqlite3ExprDup(db, pExpr, 0);
4233   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4234   sqlite3ExprDelete(db, pExpr);
4235 }
4236 
4237 /*
4238 ** Generate code that will evaluate expression pExpr and store the
4239 ** results in register target.  The results are guaranteed to appear
4240 ** in register target.  If the expression is constant, then this routine
4241 ** might choose to code the expression at initialization time.
4242 */
4243 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4244   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4245     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4246   }else{
4247     sqlite3ExprCode(pParse, pExpr, target);
4248   }
4249 }
4250 
4251 /*
4252 ** Generate code that evaluates the given expression and puts the result
4253 ** in register target.
4254 **
4255 ** Also make a copy of the expression results into another "cache" register
4256 ** and modify the expression so that the next time it is evaluated,
4257 ** the result is a copy of the cache register.
4258 **
4259 ** This routine is used for expressions that are used multiple
4260 ** times.  They are evaluated once and the results of the expression
4261 ** are reused.
4262 */
4263 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4264   Vdbe *v = pParse->pVdbe;
4265   int iMem;
4266 
4267   assert( target>0 );
4268   assert( pExpr->op!=TK_REGISTER );
4269   sqlite3ExprCode(pParse, pExpr, target);
4270   iMem = ++pParse->nMem;
4271   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4272   exprToRegister(pExpr, iMem);
4273 }
4274 
4275 /*
4276 ** Generate code that pushes the value of every element of the given
4277 ** expression list into a sequence of registers beginning at target.
4278 **
4279 ** Return the number of elements evaluated.  The number returned will
4280 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4281 ** is defined.
4282 **
4283 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4284 ** filled using OP_SCopy.  OP_Copy must be used instead.
4285 **
4286 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4287 ** factored out into initialization code.
4288 **
4289 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4290 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4291 ** in registers at srcReg, and so the value can be copied from there.
4292 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4293 ** are simply omitted rather than being copied from srcReg.
4294 */
4295 int sqlite3ExprCodeExprList(
4296   Parse *pParse,     /* Parsing context */
4297   ExprList *pList,   /* The expression list to be coded */
4298   int target,        /* Where to write results */
4299   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4300   u8 flags           /* SQLITE_ECEL_* flags */
4301 ){
4302   struct ExprList_item *pItem;
4303   int i, j, n;
4304   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4305   Vdbe *v = pParse->pVdbe;
4306   assert( pList!=0 );
4307   assert( target>0 );
4308   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4309   n = pList->nExpr;
4310   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4311   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4312     Expr *pExpr = pItem->pExpr;
4313     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4314       if( flags & SQLITE_ECEL_OMITREF ){
4315         i--;
4316         n--;
4317       }else{
4318         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4319       }
4320     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4321       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4322     }else{
4323       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4324       if( inReg!=target+i ){
4325         VdbeOp *pOp;
4326         if( copyOp==OP_Copy
4327          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4328          && pOp->p1+pOp->p3+1==inReg
4329          && pOp->p2+pOp->p3+1==target+i
4330         ){
4331           pOp->p3++;
4332         }else{
4333           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4334         }
4335       }
4336     }
4337   }
4338   return n;
4339 }
4340 
4341 /*
4342 ** Generate code for a BETWEEN operator.
4343 **
4344 **    x BETWEEN y AND z
4345 **
4346 ** The above is equivalent to
4347 **
4348 **    x>=y AND x<=z
4349 **
4350 ** Code it as such, taking care to do the common subexpression
4351 ** elimination of x.
4352 **
4353 ** The xJumpIf parameter determines details:
4354 **
4355 **    NULL:                   Store the boolean result in reg[dest]
4356 **    sqlite3ExprIfTrue:      Jump to dest if true
4357 **    sqlite3ExprIfFalse:     Jump to dest if false
4358 **
4359 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4360 */
4361 static void exprCodeBetween(
4362   Parse *pParse,    /* Parsing and code generating context */
4363   Expr *pExpr,      /* The BETWEEN expression */
4364   int dest,         /* Jump destination or storage location */
4365   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4366   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4367 ){
4368  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4369   Expr compLeft;    /* The  x>=y  term */
4370   Expr compRight;   /* The  x<=z  term */
4371   Expr exprX;       /* The  x  subexpression */
4372   int regFree1 = 0; /* Temporary use register */
4373 
4374 
4375   memset(&compLeft, 0, sizeof(Expr));
4376   memset(&compRight, 0, sizeof(Expr));
4377   memset(&exprAnd, 0, sizeof(Expr));
4378 
4379   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4380   exprX = *pExpr->pLeft;
4381   exprAnd.op = TK_AND;
4382   exprAnd.pLeft = &compLeft;
4383   exprAnd.pRight = &compRight;
4384   compLeft.op = TK_GE;
4385   compLeft.pLeft = &exprX;
4386   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4387   compRight.op = TK_LE;
4388   compRight.pLeft = &exprX;
4389   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4390   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4391   if( xJump ){
4392     xJump(pParse, &exprAnd, dest, jumpIfNull);
4393   }else{
4394     /* Mark the expression is being from the ON or USING clause of a join
4395     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4396     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4397     ** for clarity, but we are out of bits in the Expr.flags field so we
4398     ** have to reuse the EP_FromJoin bit.  Bummer. */
4399     exprX.flags |= EP_FromJoin;
4400     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4401   }
4402   sqlite3ReleaseTempReg(pParse, regFree1);
4403 
4404   /* Ensure adequate test coverage */
4405   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4406   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4407   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4408   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4409   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4410   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4411   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4412   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4413   testcase( xJump==0 );
4414 }
4415 
4416 /*
4417 ** Generate code for a boolean expression such that a jump is made
4418 ** to the label "dest" if the expression is true but execution
4419 ** continues straight thru if the expression is false.
4420 **
4421 ** If the expression evaluates to NULL (neither true nor false), then
4422 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4423 **
4424 ** This code depends on the fact that certain token values (ex: TK_EQ)
4425 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4426 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4427 ** the make process cause these values to align.  Assert()s in the code
4428 ** below verify that the numbers are aligned correctly.
4429 */
4430 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4431   Vdbe *v = pParse->pVdbe;
4432   int op = 0;
4433   int regFree1 = 0;
4434   int regFree2 = 0;
4435   int r1, r2;
4436 
4437   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4438   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4439   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4440   op = pExpr->op;
4441   switch( op ){
4442     case TK_AND: {
4443       int d2 = sqlite3VdbeMakeLabel(v);
4444       testcase( jumpIfNull==0 );
4445       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4446       sqlite3ExprCachePush(pParse);
4447       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4448       sqlite3VdbeResolveLabel(v, d2);
4449       sqlite3ExprCachePop(pParse);
4450       break;
4451     }
4452     case TK_OR: {
4453       testcase( jumpIfNull==0 );
4454       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4455       sqlite3ExprCachePush(pParse);
4456       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4457       sqlite3ExprCachePop(pParse);
4458       break;
4459     }
4460     case TK_NOT: {
4461       testcase( jumpIfNull==0 );
4462       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4463       break;
4464     }
4465     case TK_IS:
4466     case TK_ISNOT:
4467       testcase( op==TK_IS );
4468       testcase( op==TK_ISNOT );
4469       op = (op==TK_IS) ? TK_EQ : TK_NE;
4470       jumpIfNull = SQLITE_NULLEQ;
4471       /* Fall thru */
4472     case TK_LT:
4473     case TK_LE:
4474     case TK_GT:
4475     case TK_GE:
4476     case TK_NE:
4477     case TK_EQ: {
4478       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4479       testcase( jumpIfNull==0 );
4480       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4481       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4482       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4483                   r1, r2, dest, jumpIfNull);
4484       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4485       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4486       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4487       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4488       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4489       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4490       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4491       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4492       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4493       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4494       testcase( regFree1==0 );
4495       testcase( regFree2==0 );
4496       break;
4497     }
4498     case TK_ISNULL:
4499     case TK_NOTNULL: {
4500       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4501       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4502       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4503       sqlite3VdbeAddOp2(v, op, r1, dest);
4504       VdbeCoverageIf(v, op==TK_ISNULL);
4505       VdbeCoverageIf(v, op==TK_NOTNULL);
4506       testcase( regFree1==0 );
4507       break;
4508     }
4509     case TK_BETWEEN: {
4510       testcase( jumpIfNull==0 );
4511       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4512       break;
4513     }
4514 #ifndef SQLITE_OMIT_SUBQUERY
4515     case TK_IN: {
4516       int destIfFalse = sqlite3VdbeMakeLabel(v);
4517       int destIfNull = jumpIfNull ? dest : destIfFalse;
4518       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4519       sqlite3VdbeGoto(v, dest);
4520       sqlite3VdbeResolveLabel(v, destIfFalse);
4521       break;
4522     }
4523 #endif
4524     default: {
4525     default_expr:
4526       if( exprAlwaysTrue(pExpr) ){
4527         sqlite3VdbeGoto(v, dest);
4528       }else if( exprAlwaysFalse(pExpr) ){
4529         /* No-op */
4530       }else{
4531         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4532         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4533         VdbeCoverage(v);
4534         testcase( regFree1==0 );
4535         testcase( jumpIfNull==0 );
4536       }
4537       break;
4538     }
4539   }
4540   sqlite3ReleaseTempReg(pParse, regFree1);
4541   sqlite3ReleaseTempReg(pParse, regFree2);
4542 }
4543 
4544 /*
4545 ** Generate code for a boolean expression such that a jump is made
4546 ** to the label "dest" if the expression is false but execution
4547 ** continues straight thru if the expression is true.
4548 **
4549 ** If the expression evaluates to NULL (neither true nor false) then
4550 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4551 ** is 0.
4552 */
4553 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4554   Vdbe *v = pParse->pVdbe;
4555   int op = 0;
4556   int regFree1 = 0;
4557   int regFree2 = 0;
4558   int r1, r2;
4559 
4560   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4561   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4562   if( pExpr==0 )    return;
4563 
4564   /* The value of pExpr->op and op are related as follows:
4565   **
4566   **       pExpr->op            op
4567   **       ---------          ----------
4568   **       TK_ISNULL          OP_NotNull
4569   **       TK_NOTNULL         OP_IsNull
4570   **       TK_NE              OP_Eq
4571   **       TK_EQ              OP_Ne
4572   **       TK_GT              OP_Le
4573   **       TK_LE              OP_Gt
4574   **       TK_GE              OP_Lt
4575   **       TK_LT              OP_Ge
4576   **
4577   ** For other values of pExpr->op, op is undefined and unused.
4578   ** The value of TK_ and OP_ constants are arranged such that we
4579   ** can compute the mapping above using the following expression.
4580   ** Assert()s verify that the computation is correct.
4581   */
4582   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4583 
4584   /* Verify correct alignment of TK_ and OP_ constants
4585   */
4586   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4587   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4588   assert( pExpr->op!=TK_NE || op==OP_Eq );
4589   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4590   assert( pExpr->op!=TK_LT || op==OP_Ge );
4591   assert( pExpr->op!=TK_LE || op==OP_Gt );
4592   assert( pExpr->op!=TK_GT || op==OP_Le );
4593   assert( pExpr->op!=TK_GE || op==OP_Lt );
4594 
4595   switch( pExpr->op ){
4596     case TK_AND: {
4597       testcase( jumpIfNull==0 );
4598       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4599       sqlite3ExprCachePush(pParse);
4600       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4601       sqlite3ExprCachePop(pParse);
4602       break;
4603     }
4604     case TK_OR: {
4605       int d2 = sqlite3VdbeMakeLabel(v);
4606       testcase( jumpIfNull==0 );
4607       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4608       sqlite3ExprCachePush(pParse);
4609       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4610       sqlite3VdbeResolveLabel(v, d2);
4611       sqlite3ExprCachePop(pParse);
4612       break;
4613     }
4614     case TK_NOT: {
4615       testcase( jumpIfNull==0 );
4616       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4617       break;
4618     }
4619     case TK_IS:
4620     case TK_ISNOT:
4621       testcase( pExpr->op==TK_IS );
4622       testcase( pExpr->op==TK_ISNOT );
4623       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4624       jumpIfNull = SQLITE_NULLEQ;
4625       /* Fall thru */
4626     case TK_LT:
4627     case TK_LE:
4628     case TK_GT:
4629     case TK_GE:
4630     case TK_NE:
4631     case TK_EQ: {
4632       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4633       testcase( jumpIfNull==0 );
4634       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4635       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4636       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4637                   r1, r2, dest, jumpIfNull);
4638       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4639       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4640       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4641       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4642       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4643       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4644       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4645       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4646       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4647       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4648       testcase( regFree1==0 );
4649       testcase( regFree2==0 );
4650       break;
4651     }
4652     case TK_ISNULL:
4653     case TK_NOTNULL: {
4654       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4655       sqlite3VdbeAddOp2(v, op, r1, dest);
4656       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4657       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4658       testcase( regFree1==0 );
4659       break;
4660     }
4661     case TK_BETWEEN: {
4662       testcase( jumpIfNull==0 );
4663       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4664       break;
4665     }
4666 #ifndef SQLITE_OMIT_SUBQUERY
4667     case TK_IN: {
4668       if( jumpIfNull ){
4669         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4670       }else{
4671         int destIfNull = sqlite3VdbeMakeLabel(v);
4672         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4673         sqlite3VdbeResolveLabel(v, destIfNull);
4674       }
4675       break;
4676     }
4677 #endif
4678     default: {
4679     default_expr:
4680       if( exprAlwaysFalse(pExpr) ){
4681         sqlite3VdbeGoto(v, dest);
4682       }else if( exprAlwaysTrue(pExpr) ){
4683         /* no-op */
4684       }else{
4685         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4686         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4687         VdbeCoverage(v);
4688         testcase( regFree1==0 );
4689         testcase( jumpIfNull==0 );
4690       }
4691       break;
4692     }
4693   }
4694   sqlite3ReleaseTempReg(pParse, regFree1);
4695   sqlite3ReleaseTempReg(pParse, regFree2);
4696 }
4697 
4698 /*
4699 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4700 ** code generation, and that copy is deleted after code generation. This
4701 ** ensures that the original pExpr is unchanged.
4702 */
4703 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4704   sqlite3 *db = pParse->db;
4705   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4706   if( db->mallocFailed==0 ){
4707     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4708   }
4709   sqlite3ExprDelete(db, pCopy);
4710 }
4711 
4712 /*
4713 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4714 ** type of expression.
4715 **
4716 ** If pExpr is a simple SQL value - an integer, real, string, blob
4717 ** or NULL value - then the VDBE currently being prepared is configured
4718 ** to re-prepare each time a new value is bound to variable pVar.
4719 **
4720 ** Additionally, if pExpr is a simple SQL value and the value is the
4721 ** same as that currently bound to variable pVar, non-zero is returned.
4722 ** Otherwise, if the values are not the same or if pExpr is not a simple
4723 ** SQL value, zero is returned.
4724 */
4725 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4726   int res = 0;
4727   int iVar;
4728   sqlite3_value *pL, *pR = 0;
4729 
4730   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4731   if( pR ){
4732     iVar = pVar->iColumn;
4733     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4734     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4735     if( pL ){
4736       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4737         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4738       }
4739       res =  0==sqlite3MemCompare(pL, pR, 0);
4740     }
4741     sqlite3ValueFree(pR);
4742     sqlite3ValueFree(pL);
4743   }
4744 
4745   return res;
4746 }
4747 
4748 /*
4749 ** Do a deep comparison of two expression trees.  Return 0 if the two
4750 ** expressions are completely identical.  Return 1 if they differ only
4751 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4752 ** other than the top-level COLLATE operator.
4753 **
4754 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4755 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4756 **
4757 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4758 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4759 **
4760 ** Sometimes this routine will return 2 even if the two expressions
4761 ** really are equivalent.  If we cannot prove that the expressions are
4762 ** identical, we return 2 just to be safe.  So if this routine
4763 ** returns 2, then you do not really know for certain if the two
4764 ** expressions are the same.  But if you get a 0 or 1 return, then you
4765 ** can be sure the expressions are the same.  In the places where
4766 ** this routine is used, it does not hurt to get an extra 2 - that
4767 ** just might result in some slightly slower code.  But returning
4768 ** an incorrect 0 or 1 could lead to a malfunction.
4769 **
4770 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4771 ** pParse->pReprepare can be matched against literals in pB.  The
4772 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4773 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4774 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4775 ** pB causes a return value of 2.
4776 */
4777 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4778   u32 combinedFlags;
4779   if( pA==0 || pB==0 ){
4780     return pB==pA ? 0 : 2;
4781   }
4782   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4783     return 0;
4784   }
4785   combinedFlags = pA->flags | pB->flags;
4786   if( combinedFlags & EP_IntValue ){
4787     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4788       return 0;
4789     }
4790     return 2;
4791   }
4792   if( pA->op!=pB->op ){
4793     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4794       return 1;
4795     }
4796     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4797       return 1;
4798     }
4799     return 2;
4800   }
4801   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4802     if( pA->op==TK_FUNCTION ){
4803       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4804     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4805       return pA->op==TK_COLLATE ? 1 : 2;
4806     }
4807   }
4808   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4809   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4810     if( combinedFlags & EP_xIsSelect ) return 2;
4811     if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4812     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4813     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4814     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4815       if( pA->iColumn!=pB->iColumn ) return 2;
4816       if( pA->iTable!=pB->iTable
4817        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4818     }
4819   }
4820   return 0;
4821 }
4822 
4823 /*
4824 ** Compare two ExprList objects.  Return 0 if they are identical and
4825 ** non-zero if they differ in any way.
4826 **
4827 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4828 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4829 **
4830 ** This routine might return non-zero for equivalent ExprLists.  The
4831 ** only consequence will be disabled optimizations.  But this routine
4832 ** must never return 0 if the two ExprList objects are different, or
4833 ** a malfunction will result.
4834 **
4835 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4836 ** always differs from a non-NULL pointer.
4837 */
4838 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4839   int i;
4840   if( pA==0 && pB==0 ) return 0;
4841   if( pA==0 || pB==0 ) return 1;
4842   if( pA->nExpr!=pB->nExpr ) return 1;
4843   for(i=0; i<pA->nExpr; i++){
4844     Expr *pExprA = pA->a[i].pExpr;
4845     Expr *pExprB = pB->a[i].pExpr;
4846     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4847     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4848   }
4849   return 0;
4850 }
4851 
4852 /*
4853 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4854 ** are ignored.
4855 */
4856 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4857   return sqlite3ExprCompare(0,
4858              sqlite3ExprSkipCollate(pA),
4859              sqlite3ExprSkipCollate(pB),
4860              iTab);
4861 }
4862 
4863 /*
4864 ** Return true if we can prove the pE2 will always be true if pE1 is
4865 ** true.  Return false if we cannot complete the proof or if pE2 might
4866 ** be false.  Examples:
4867 **
4868 **     pE1: x==5       pE2: x==5             Result: true
4869 **     pE1: x>0        pE2: x==5             Result: false
4870 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4871 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4872 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4873 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4874 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4875 **
4876 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4877 ** Expr.iTable<0 then assume a table number given by iTab.
4878 **
4879 ** If pParse is not NULL, then the values of bound variables in pE1 are
4880 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4881 ** modified to record which bound variables are referenced.  If pParse
4882 ** is NULL, then false will be returned if pE1 contains any bound variables.
4883 **
4884 ** When in doubt, return false.  Returning true might give a performance
4885 ** improvement.  Returning false might cause a performance reduction, but
4886 ** it will always give the correct answer and is hence always safe.
4887 */
4888 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4889   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4890     return 1;
4891   }
4892   if( pE2->op==TK_OR
4893    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4894              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4895   ){
4896     return 1;
4897   }
4898   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4899     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4900     testcase( pX!=pE1->pLeft );
4901     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4902   }
4903   return 0;
4904 }
4905 
4906 /*
4907 ** An instance of the following structure is used by the tree walker
4908 ** to determine if an expression can be evaluated by reference to the
4909 ** index only, without having to do a search for the corresponding
4910 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4911 ** is the cursor for the table.
4912 */
4913 struct IdxCover {
4914   Index *pIdx;     /* The index to be tested for coverage */
4915   int iCur;        /* Cursor number for the table corresponding to the index */
4916 };
4917 
4918 /*
4919 ** Check to see if there are references to columns in table
4920 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4921 ** pWalker->u.pIdxCover->pIdx.
4922 */
4923 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4924   if( pExpr->op==TK_COLUMN
4925    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4926    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4927   ){
4928     pWalker->eCode = 1;
4929     return WRC_Abort;
4930   }
4931   return WRC_Continue;
4932 }
4933 
4934 /*
4935 ** Determine if an index pIdx on table with cursor iCur contains will
4936 ** the expression pExpr.  Return true if the index does cover the
4937 ** expression and false if the pExpr expression references table columns
4938 ** that are not found in the index pIdx.
4939 **
4940 ** An index covering an expression means that the expression can be
4941 ** evaluated using only the index and without having to lookup the
4942 ** corresponding table entry.
4943 */
4944 int sqlite3ExprCoveredByIndex(
4945   Expr *pExpr,        /* The index to be tested */
4946   int iCur,           /* The cursor number for the corresponding table */
4947   Index *pIdx         /* The index that might be used for coverage */
4948 ){
4949   Walker w;
4950   struct IdxCover xcov;
4951   memset(&w, 0, sizeof(w));
4952   xcov.iCur = iCur;
4953   xcov.pIdx = pIdx;
4954   w.xExprCallback = exprIdxCover;
4955   w.u.pIdxCover = &xcov;
4956   sqlite3WalkExpr(&w, pExpr);
4957   return !w.eCode;
4958 }
4959 
4960 
4961 /*
4962 ** An instance of the following structure is used by the tree walker
4963 ** to count references to table columns in the arguments of an
4964 ** aggregate function, in order to implement the
4965 ** sqlite3FunctionThisSrc() routine.
4966 */
4967 struct SrcCount {
4968   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4969   int nThis;       /* Number of references to columns in pSrcList */
4970   int nOther;      /* Number of references to columns in other FROM clauses */
4971 };
4972 
4973 /*
4974 ** Count the number of references to columns.
4975 */
4976 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4977   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4978   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4979   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4980   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4981   ** NEVER() will need to be removed. */
4982   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4983     int i;
4984     struct SrcCount *p = pWalker->u.pSrcCount;
4985     SrcList *pSrc = p->pSrc;
4986     int nSrc = pSrc ? pSrc->nSrc : 0;
4987     for(i=0; i<nSrc; i++){
4988       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4989     }
4990     if( i<nSrc ){
4991       p->nThis++;
4992     }else{
4993       p->nOther++;
4994     }
4995   }
4996   return WRC_Continue;
4997 }
4998 
4999 /*
5000 ** Determine if any of the arguments to the pExpr Function reference
5001 ** pSrcList.  Return true if they do.  Also return true if the function
5002 ** has no arguments or has only constant arguments.  Return false if pExpr
5003 ** references columns but not columns of tables found in pSrcList.
5004 */
5005 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5006   Walker w;
5007   struct SrcCount cnt;
5008   assert( pExpr->op==TK_AGG_FUNCTION );
5009   w.xExprCallback = exprSrcCount;
5010   w.xSelectCallback = 0;
5011   w.u.pSrcCount = &cnt;
5012   cnt.pSrc = pSrcList;
5013   cnt.nThis = 0;
5014   cnt.nOther = 0;
5015   sqlite3WalkExprList(&w, pExpr->x.pList);
5016   return cnt.nThis>0 || cnt.nOther==0;
5017 }
5018 
5019 /*
5020 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5021 ** the new element.  Return a negative number if malloc fails.
5022 */
5023 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5024   int i;
5025   pInfo->aCol = sqlite3ArrayAllocate(
5026        db,
5027        pInfo->aCol,
5028        sizeof(pInfo->aCol[0]),
5029        &pInfo->nColumn,
5030        &i
5031   );
5032   return i;
5033 }
5034 
5035 /*
5036 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5037 ** the new element.  Return a negative number if malloc fails.
5038 */
5039 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5040   int i;
5041   pInfo->aFunc = sqlite3ArrayAllocate(
5042        db,
5043        pInfo->aFunc,
5044        sizeof(pInfo->aFunc[0]),
5045        &pInfo->nFunc,
5046        &i
5047   );
5048   return i;
5049 }
5050 
5051 /*
5052 ** This is the xExprCallback for a tree walker.  It is used to
5053 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5054 ** for additional information.
5055 */
5056 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5057   int i;
5058   NameContext *pNC = pWalker->u.pNC;
5059   Parse *pParse = pNC->pParse;
5060   SrcList *pSrcList = pNC->pSrcList;
5061   AggInfo *pAggInfo = pNC->pAggInfo;
5062 
5063   switch( pExpr->op ){
5064     case TK_AGG_COLUMN:
5065     case TK_COLUMN: {
5066       testcase( pExpr->op==TK_AGG_COLUMN );
5067       testcase( pExpr->op==TK_COLUMN );
5068       /* Check to see if the column is in one of the tables in the FROM
5069       ** clause of the aggregate query */
5070       if( ALWAYS(pSrcList!=0) ){
5071         struct SrcList_item *pItem = pSrcList->a;
5072         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5073           struct AggInfo_col *pCol;
5074           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5075           if( pExpr->iTable==pItem->iCursor ){
5076             /* If we reach this point, it means that pExpr refers to a table
5077             ** that is in the FROM clause of the aggregate query.
5078             **
5079             ** Make an entry for the column in pAggInfo->aCol[] if there
5080             ** is not an entry there already.
5081             */
5082             int k;
5083             pCol = pAggInfo->aCol;
5084             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5085               if( pCol->iTable==pExpr->iTable &&
5086                   pCol->iColumn==pExpr->iColumn ){
5087                 break;
5088               }
5089             }
5090             if( (k>=pAggInfo->nColumn)
5091              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5092             ){
5093               pCol = &pAggInfo->aCol[k];
5094               pCol->pTab = pExpr->pTab;
5095               pCol->iTable = pExpr->iTable;
5096               pCol->iColumn = pExpr->iColumn;
5097               pCol->iMem = ++pParse->nMem;
5098               pCol->iSorterColumn = -1;
5099               pCol->pExpr = pExpr;
5100               if( pAggInfo->pGroupBy ){
5101                 int j, n;
5102                 ExprList *pGB = pAggInfo->pGroupBy;
5103                 struct ExprList_item *pTerm = pGB->a;
5104                 n = pGB->nExpr;
5105                 for(j=0; j<n; j++, pTerm++){
5106                   Expr *pE = pTerm->pExpr;
5107                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5108                       pE->iColumn==pExpr->iColumn ){
5109                     pCol->iSorterColumn = j;
5110                     break;
5111                   }
5112                 }
5113               }
5114               if( pCol->iSorterColumn<0 ){
5115                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5116               }
5117             }
5118             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5119             ** because it was there before or because we just created it).
5120             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5121             ** pAggInfo->aCol[] entry.
5122             */
5123             ExprSetVVAProperty(pExpr, EP_NoReduce);
5124             pExpr->pAggInfo = pAggInfo;
5125             pExpr->op = TK_AGG_COLUMN;
5126             pExpr->iAgg = (i16)k;
5127             break;
5128           } /* endif pExpr->iTable==pItem->iCursor */
5129         } /* end loop over pSrcList */
5130       }
5131       return WRC_Prune;
5132     }
5133     case TK_AGG_FUNCTION: {
5134       if( (pNC->ncFlags & NC_InAggFunc)==0
5135        && pWalker->walkerDepth==pExpr->op2
5136       ){
5137         /* Check to see if pExpr is a duplicate of another aggregate
5138         ** function that is already in the pAggInfo structure
5139         */
5140         struct AggInfo_func *pItem = pAggInfo->aFunc;
5141         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5142           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5143             break;
5144           }
5145         }
5146         if( i>=pAggInfo->nFunc ){
5147           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5148           */
5149           u8 enc = ENC(pParse->db);
5150           i = addAggInfoFunc(pParse->db, pAggInfo);
5151           if( i>=0 ){
5152             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5153             pItem = &pAggInfo->aFunc[i];
5154             pItem->pExpr = pExpr;
5155             pItem->iMem = ++pParse->nMem;
5156             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5157             pItem->pFunc = sqlite3FindFunction(pParse->db,
5158                    pExpr->u.zToken,
5159                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5160             if( pExpr->flags & EP_Distinct ){
5161               pItem->iDistinct = pParse->nTab++;
5162             }else{
5163               pItem->iDistinct = -1;
5164             }
5165           }
5166         }
5167         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5168         */
5169         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5170         ExprSetVVAProperty(pExpr, EP_NoReduce);
5171         pExpr->iAgg = (i16)i;
5172         pExpr->pAggInfo = pAggInfo;
5173         return WRC_Prune;
5174       }else{
5175         return WRC_Continue;
5176       }
5177     }
5178   }
5179   return WRC_Continue;
5180 }
5181 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5182   UNUSED_PARAMETER(pSelect);
5183   pWalker->walkerDepth++;
5184   return WRC_Continue;
5185 }
5186 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5187   UNUSED_PARAMETER(pSelect);
5188   pWalker->walkerDepth--;
5189 }
5190 
5191 /*
5192 ** Analyze the pExpr expression looking for aggregate functions and
5193 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5194 ** points to.  Additional entries are made on the AggInfo object as
5195 ** necessary.
5196 **
5197 ** This routine should only be called after the expression has been
5198 ** analyzed by sqlite3ResolveExprNames().
5199 */
5200 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5201   Walker w;
5202   w.xExprCallback = analyzeAggregate;
5203   w.xSelectCallback = analyzeAggregatesInSelect;
5204   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5205   w.walkerDepth = 0;
5206   w.u.pNC = pNC;
5207   assert( pNC->pSrcList!=0 );
5208   sqlite3WalkExpr(&w, pExpr);
5209 }
5210 
5211 /*
5212 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5213 ** expression list.  Return the number of errors.
5214 **
5215 ** If an error is found, the analysis is cut short.
5216 */
5217 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5218   struct ExprList_item *pItem;
5219   int i;
5220   if( pList ){
5221     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5222       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5223     }
5224   }
5225 }
5226 
5227 /*
5228 ** Allocate a single new register for use to hold some intermediate result.
5229 */
5230 int sqlite3GetTempReg(Parse *pParse){
5231   if( pParse->nTempReg==0 ){
5232     return ++pParse->nMem;
5233   }
5234   return pParse->aTempReg[--pParse->nTempReg];
5235 }
5236 
5237 /*
5238 ** Deallocate a register, making available for reuse for some other
5239 ** purpose.
5240 **
5241 ** If a register is currently being used by the column cache, then
5242 ** the deallocation is deferred until the column cache line that uses
5243 ** the register becomes stale.
5244 */
5245 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5246   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5247     int i;
5248     struct yColCache *p;
5249     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5250       if( p->iReg==iReg ){
5251         p->tempReg = 1;
5252         return;
5253       }
5254     }
5255     pParse->aTempReg[pParse->nTempReg++] = iReg;
5256   }
5257 }
5258 
5259 /*
5260 ** Allocate or deallocate a block of nReg consecutive registers.
5261 */
5262 int sqlite3GetTempRange(Parse *pParse, int nReg){
5263   int i, n;
5264   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5265   i = pParse->iRangeReg;
5266   n = pParse->nRangeReg;
5267   if( nReg<=n ){
5268     assert( !usedAsColumnCache(pParse, i, i+n-1) );
5269     pParse->iRangeReg += nReg;
5270     pParse->nRangeReg -= nReg;
5271   }else{
5272     i = pParse->nMem+1;
5273     pParse->nMem += nReg;
5274   }
5275   return i;
5276 }
5277 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5278   if( nReg==1 ){
5279     sqlite3ReleaseTempReg(pParse, iReg);
5280     return;
5281   }
5282   sqlite3ExprCacheRemove(pParse, iReg, nReg);
5283   if( nReg>pParse->nRangeReg ){
5284     pParse->nRangeReg = nReg;
5285     pParse->iRangeReg = iReg;
5286   }
5287 }
5288 
5289 /*
5290 ** Mark all temporary registers as being unavailable for reuse.
5291 */
5292 void sqlite3ClearTempRegCache(Parse *pParse){
5293   pParse->nTempReg = 0;
5294   pParse->nRangeReg = 0;
5295 }
5296 
5297 /*
5298 ** Validate that no temporary register falls within the range of
5299 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5300 ** statements.
5301 */
5302 #ifdef SQLITE_DEBUG
5303 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5304   int i;
5305   if( pParse->nRangeReg>0
5306    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5307    && pParse->iRangeReg <= iLast
5308   ){
5309      return 0;
5310   }
5311   for(i=0; i<pParse->nTempReg; i++){
5312     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5313       return 0;
5314     }
5315   }
5316   return 1;
5317 }
5318 #endif /* SQLITE_DEBUG */
5319