xref: /sqlite-3.40.0/src/expr.c (revision 4df68e0a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){
57     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
58   }
59   if( op==TK_SELECT ){
60     assert( pExpr->flags&EP_xIsSelect );
61     assert( pExpr->x.pSelect!=0 );
62     assert( pExpr->x.pSelect->pEList!=0 );
63     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
64     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
65   }
66 #ifndef SQLITE_OMIT_CAST
67   if( op==TK_CAST ){
68     assert( !ExprHasProperty(pExpr, EP_IntValue) );
69     return sqlite3AffinityType(pExpr->u.zToken, 0);
70   }
71 #endif
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     return sqlite3ExprAffinity(
75         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76     );
77   }
78   if( op==TK_VECTOR ){
79     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80   }
81   return pExpr->affExpr;
82 }
83 
84 /*
85 ** Set the collating sequence for expression pExpr to be the collating
86 ** sequence named by pToken.   Return a pointer to a new Expr node that
87 ** implements the COLLATE operator.
88 **
89 ** If a memory allocation error occurs, that fact is recorded in pParse->db
90 ** and the pExpr parameter is returned unchanged.
91 */
92 Expr *sqlite3ExprAddCollateToken(
93   Parse *pParse,           /* Parsing context */
94   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
95   const Token *pCollName,  /* Name of collating sequence */
96   int dequote              /* True to dequote pCollName */
97 ){
98   if( pCollName->n>0 ){
99     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
100     if( pNew ){
101       pNew->pLeft = pExpr;
102       pNew->flags |= EP_Collate|EP_Skip;
103       pExpr = pNew;
104     }
105   }
106   return pExpr;
107 }
108 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
109   Token s;
110   assert( zC!=0 );
111   sqlite3TokenInit(&s, (char*)zC);
112   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
113 }
114 
115 /*
116 ** Skip over any TK_COLLATE operators.
117 */
118 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
119   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
120     assert( pExpr->op==TK_COLLATE );
121     pExpr = pExpr->pLeft;
122   }
123   return pExpr;
124 }
125 
126 /*
127 ** Skip over any TK_COLLATE operators and/or any unlikely()
128 ** or likelihood() or likely() functions at the root of an
129 ** expression.
130 */
131 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
132   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
133     if( ExprHasProperty(pExpr, EP_Unlikely) ){
134       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
135       assert( pExpr->x.pList->nExpr>0 );
136       assert( pExpr->op==TK_FUNCTION );
137       pExpr = pExpr->x.pList->a[0].pExpr;
138     }else{
139       assert( pExpr->op==TK_COLLATE );
140       pExpr = pExpr->pLeft;
141     }
142   }
143   return pExpr;
144 }
145 
146 /*
147 ** Return the collation sequence for the expression pExpr. If
148 ** there is no defined collating sequence, return NULL.
149 **
150 ** See also: sqlite3ExprNNCollSeq()
151 **
152 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
153 ** default collation if pExpr has no defined collation.
154 **
155 ** The collating sequence might be determined by a COLLATE operator
156 ** or by the presence of a column with a defined collating sequence.
157 ** COLLATE operators take first precedence.  Left operands take
158 ** precedence over right operands.
159 */
160 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
161   sqlite3 *db = pParse->db;
162   CollSeq *pColl = 0;
163   const Expr *p = pExpr;
164   while( p ){
165     int op = p->op;
166     if( op==TK_REGISTER ) op = p->op2;
167     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
168      && p->y.pTab!=0
169     ){
170       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
171       ** a TK_COLUMN but was previously evaluated and cached in a register */
172       int j = p->iColumn;
173       if( j>=0 ){
174         const char *zColl = p->y.pTab->aCol[j].zColl;
175         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
176       }
177       break;
178     }
179     if( op==TK_CAST || op==TK_UPLUS ){
180       p = p->pLeft;
181       continue;
182     }
183     if( op==TK_VECTOR ){
184       p = p->x.pList->a[0].pExpr;
185       continue;
186     }
187     if( op==TK_COLLATE ){
188       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
189       break;
190     }
191     if( p->flags & EP_Collate ){
192       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
193         p = p->pLeft;
194       }else{
195         Expr *pNext  = p->pRight;
196         /* The Expr.x union is never used at the same time as Expr.pRight */
197         assert( p->x.pList==0 || p->pRight==0 );
198         if( p->x.pList!=0
199          && !db->mallocFailed
200          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
201         ){
202           int i;
203           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
204             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
205               pNext = p->x.pList->a[i].pExpr;
206               break;
207             }
208           }
209         }
210         p = pNext;
211       }
212     }else{
213       break;
214     }
215   }
216   if( sqlite3CheckCollSeq(pParse, pColl) ){
217     pColl = 0;
218   }
219   return pColl;
220 }
221 
222 /*
223 ** Return the collation sequence for the expression pExpr. If
224 ** there is no defined collating sequence, return a pointer to the
225 ** defautl collation sequence.
226 **
227 ** See also: sqlite3ExprCollSeq()
228 **
229 ** The sqlite3ExprCollSeq() routine works the same except that it
230 ** returns NULL if there is no defined collation.
231 */
232 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
233   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
234   if( p==0 ) p = pParse->db->pDfltColl;
235   assert( p!=0 );
236   return p;
237 }
238 
239 /*
240 ** Return TRUE if the two expressions have equivalent collating sequences.
241 */
242 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
243   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
244   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
245   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
246 }
247 
248 /*
249 ** pExpr is an operand of a comparison operator.  aff2 is the
250 ** type affinity of the other operand.  This routine returns the
251 ** type affinity that should be used for the comparison operator.
252 */
253 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
254   char aff1 = sqlite3ExprAffinity(pExpr);
255   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
256     /* Both sides of the comparison are columns. If one has numeric
257     ** affinity, use that. Otherwise use no affinity.
258     */
259     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
260       return SQLITE_AFF_NUMERIC;
261     }else{
262       return SQLITE_AFF_BLOB;
263     }
264   }else{
265     /* One side is a column, the other is not. Use the columns affinity. */
266     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
267     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
268   }
269 }
270 
271 /*
272 ** pExpr is a comparison operator.  Return the type affinity that should
273 ** be applied to both operands prior to doing the comparison.
274 */
275 static char comparisonAffinity(const Expr *pExpr){
276   char aff;
277   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
278           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
279           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
280   assert( pExpr->pLeft );
281   aff = sqlite3ExprAffinity(pExpr->pLeft);
282   if( pExpr->pRight ){
283     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
284   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
285     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
286   }else if( aff==0 ){
287     aff = SQLITE_AFF_BLOB;
288   }
289   return aff;
290 }
291 
292 /*
293 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
294 ** idx_affinity is the affinity of an indexed column. Return true
295 ** if the index with affinity idx_affinity may be used to implement
296 ** the comparison in pExpr.
297 */
298 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
299   char aff = comparisonAffinity(pExpr);
300   if( aff<SQLITE_AFF_TEXT ){
301     return 1;
302   }
303   if( aff==SQLITE_AFF_TEXT ){
304     return idx_affinity==SQLITE_AFF_TEXT;
305   }
306   return sqlite3IsNumericAffinity(idx_affinity);
307 }
308 
309 /*
310 ** Return the P5 value that should be used for a binary comparison
311 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
312 */
313 static u8 binaryCompareP5(
314   const Expr *pExpr1,   /* Left operand */
315   const Expr *pExpr2,   /* Right operand */
316   int jumpIfNull        /* Extra flags added to P5 */
317 ){
318   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
319   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
320   return aff;
321 }
322 
323 /*
324 ** Return a pointer to the collation sequence that should be used by
325 ** a binary comparison operator comparing pLeft and pRight.
326 **
327 ** If the left hand expression has a collating sequence type, then it is
328 ** used. Otherwise the collation sequence for the right hand expression
329 ** is used, or the default (BINARY) if neither expression has a collating
330 ** type.
331 **
332 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
333 ** it is not considered.
334 */
335 CollSeq *sqlite3BinaryCompareCollSeq(
336   Parse *pParse,
337   const Expr *pLeft,
338   const Expr *pRight
339 ){
340   CollSeq *pColl;
341   assert( pLeft );
342   if( pLeft->flags & EP_Collate ){
343     pColl = sqlite3ExprCollSeq(pParse, pLeft);
344   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
345     pColl = sqlite3ExprCollSeq(pParse, pRight);
346   }else{
347     pColl = sqlite3ExprCollSeq(pParse, pLeft);
348     if( !pColl ){
349       pColl = sqlite3ExprCollSeq(pParse, pRight);
350     }
351   }
352   return pColl;
353 }
354 
355 /* Expresssion p is a comparison operator.  Return a collation sequence
356 ** appropriate for the comparison operator.
357 **
358 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
359 ** However, if the OP_Commuted flag is set, then the order of the operands
360 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
361 ** correct collating sequence is found.
362 */
363 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
364   if( ExprHasProperty(p, EP_Commuted) ){
365     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
366   }else{
367     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
368   }
369 }
370 
371 /*
372 ** Generate code for a comparison operator.
373 */
374 static int codeCompare(
375   Parse *pParse,    /* The parsing (and code generating) context */
376   Expr *pLeft,      /* The left operand */
377   Expr *pRight,     /* The right operand */
378   int opcode,       /* The comparison opcode */
379   int in1, int in2, /* Register holding operands */
380   int dest,         /* Jump here if true.  */
381   int jumpIfNull,   /* If true, jump if either operand is NULL */
382   int isCommuted    /* The comparison has been commuted */
383 ){
384   int p5;
385   int addr;
386   CollSeq *p4;
387 
388   if( pParse->nErr ) return 0;
389   if( isCommuted ){
390     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
391   }else{
392     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
393   }
394   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
395   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
396                            (void*)p4, P4_COLLSEQ);
397   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
398   return addr;
399 }
400 
401 /*
402 ** Return true if expression pExpr is a vector, or false otherwise.
403 **
404 ** A vector is defined as any expression that results in two or more
405 ** columns of result.  Every TK_VECTOR node is an vector because the
406 ** parser will not generate a TK_VECTOR with fewer than two entries.
407 ** But a TK_SELECT might be either a vector or a scalar. It is only
408 ** considered a vector if it has two or more result columns.
409 */
410 int sqlite3ExprIsVector(Expr *pExpr){
411   return sqlite3ExprVectorSize(pExpr)>1;
412 }
413 
414 /*
415 ** If the expression passed as the only argument is of type TK_VECTOR
416 ** return the number of expressions in the vector. Or, if the expression
417 ** is a sub-select, return the number of columns in the sub-select. For
418 ** any other type of expression, return 1.
419 */
420 int sqlite3ExprVectorSize(Expr *pExpr){
421   u8 op = pExpr->op;
422   if( op==TK_REGISTER ) op = pExpr->op2;
423   if( op==TK_VECTOR ){
424     return pExpr->x.pList->nExpr;
425   }else if( op==TK_SELECT ){
426     return pExpr->x.pSelect->pEList->nExpr;
427   }else{
428     return 1;
429   }
430 }
431 
432 /*
433 ** Return a pointer to a subexpression of pVector that is the i-th
434 ** column of the vector (numbered starting with 0).  The caller must
435 ** ensure that i is within range.
436 **
437 ** If pVector is really a scalar (and "scalar" here includes subqueries
438 ** that return a single column!) then return pVector unmodified.
439 **
440 ** pVector retains ownership of the returned subexpression.
441 **
442 ** If the vector is a (SELECT ...) then the expression returned is
443 ** just the expression for the i-th term of the result set, and may
444 ** not be ready for evaluation because the table cursor has not yet
445 ** been positioned.
446 */
447 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
448   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
449   if( sqlite3ExprIsVector(pVector) ){
450     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
451     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
452       return pVector->x.pSelect->pEList->a[i].pExpr;
453     }else{
454       return pVector->x.pList->a[i].pExpr;
455     }
456   }
457   return pVector;
458 }
459 
460 /*
461 ** Compute and return a new Expr object which when passed to
462 ** sqlite3ExprCode() will generate all necessary code to compute
463 ** the iField-th column of the vector expression pVector.
464 **
465 ** It is ok for pVector to be a scalar (as long as iField==0).
466 ** In that case, this routine works like sqlite3ExprDup().
467 **
468 ** The caller owns the returned Expr object and is responsible for
469 ** ensuring that the returned value eventually gets freed.
470 **
471 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
472 ** then the returned object will reference pVector and so pVector must remain
473 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
474 ** or a scalar expression, then it can be deleted as soon as this routine
475 ** returns.
476 **
477 ** A trick to cause a TK_SELECT pVector to be deleted together with
478 ** the returned Expr object is to attach the pVector to the pRight field
479 ** of the returned TK_SELECT_COLUMN Expr object.
480 */
481 Expr *sqlite3ExprForVectorField(
482   Parse *pParse,       /* Parsing context */
483   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
484   int iField           /* Which column of the vector to return */
485 ){
486   Expr *pRet;
487   if( pVector->op==TK_SELECT ){
488     assert( pVector->flags & EP_xIsSelect );
489     /* The TK_SELECT_COLUMN Expr node:
490     **
491     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
492     ** pRight:          not used.  But recursively deleted.
493     ** iColumn:         Index of a column in pVector
494     ** iTable:          0 or the number of columns on the LHS of an assignment
495     ** pLeft->iTable:   First in an array of register holding result, or 0
496     **                  if the result is not yet computed.
497     **
498     ** sqlite3ExprDelete() specifically skips the recursive delete of
499     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
500     ** can be attached to pRight to cause this node to take ownership of
501     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
502     ** with the same pLeft pointer to the pVector, but only one of them
503     ** will own the pVector.
504     */
505     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
506     if( pRet ){
507       pRet->iColumn = iField;
508       pRet->pLeft = pVector;
509     }
510     assert( pRet==0 || pRet->iTable==0 );
511   }else{
512     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
513     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
514     sqlite3RenameTokenRemap(pParse, pRet, pVector);
515   }
516   return pRet;
517 }
518 
519 /*
520 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
521 ** it. Return the register in which the result is stored (or, if the
522 ** sub-select returns more than one column, the first in an array
523 ** of registers in which the result is stored).
524 **
525 ** If pExpr is not a TK_SELECT expression, return 0.
526 */
527 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
528   int reg = 0;
529 #ifndef SQLITE_OMIT_SUBQUERY
530   if( pExpr->op==TK_SELECT ){
531     reg = sqlite3CodeSubselect(pParse, pExpr);
532   }
533 #endif
534   return reg;
535 }
536 
537 /*
538 ** Argument pVector points to a vector expression - either a TK_VECTOR
539 ** or TK_SELECT that returns more than one column. This function returns
540 ** the register number of a register that contains the value of
541 ** element iField of the vector.
542 **
543 ** If pVector is a TK_SELECT expression, then code for it must have
544 ** already been generated using the exprCodeSubselect() routine. In this
545 ** case parameter regSelect should be the first in an array of registers
546 ** containing the results of the sub-select.
547 **
548 ** If pVector is of type TK_VECTOR, then code for the requested field
549 ** is generated. In this case (*pRegFree) may be set to the number of
550 ** a temporary register to be freed by the caller before returning.
551 **
552 ** Before returning, output parameter (*ppExpr) is set to point to the
553 ** Expr object corresponding to element iElem of the vector.
554 */
555 static int exprVectorRegister(
556   Parse *pParse,                  /* Parse context */
557   Expr *pVector,                  /* Vector to extract element from */
558   int iField,                     /* Field to extract from pVector */
559   int regSelect,                  /* First in array of registers */
560   Expr **ppExpr,                  /* OUT: Expression element */
561   int *pRegFree                   /* OUT: Temp register to free */
562 ){
563   u8 op = pVector->op;
564   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
565   if( op==TK_REGISTER ){
566     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
567     return pVector->iTable+iField;
568   }
569   if( op==TK_SELECT ){
570     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
571      return regSelect+iField;
572   }
573   if( op==TK_VECTOR ){
574     *ppExpr = pVector->x.pList->a[iField].pExpr;
575     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
576   }
577   return 0;
578 }
579 
580 /*
581 ** Expression pExpr is a comparison between two vector values. Compute
582 ** the result of the comparison (1, 0, or NULL) and write that
583 ** result into register dest.
584 **
585 ** The caller must satisfy the following preconditions:
586 **
587 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
588 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
589 **    otherwise:                op==pExpr->op and p5==0
590 */
591 static void codeVectorCompare(
592   Parse *pParse,        /* Code generator context */
593   Expr *pExpr,          /* The comparison operation */
594   int dest,             /* Write results into this register */
595   u8 op,                /* Comparison operator */
596   u8 p5                 /* SQLITE_NULLEQ or zero */
597 ){
598   Vdbe *v = pParse->pVdbe;
599   Expr *pLeft = pExpr->pLeft;
600   Expr *pRight = pExpr->pRight;
601   int nLeft = sqlite3ExprVectorSize(pLeft);
602   int i;
603   int regLeft = 0;
604   int regRight = 0;
605   u8 opx = op;
606   int addrCmp = 0;
607   int addrDone = sqlite3VdbeMakeLabel(pParse);
608   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
609 
610   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
611   if( pParse->nErr ) return;
612   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
613     sqlite3ErrorMsg(pParse, "row value misused");
614     return;
615   }
616   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
617        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
618        || pExpr->op==TK_LT || pExpr->op==TK_GT
619        || pExpr->op==TK_LE || pExpr->op==TK_GE
620   );
621   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
622             || (pExpr->op==TK_ISNOT && op==TK_NE) );
623   assert( p5==0 || pExpr->op!=op );
624   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
625 
626   if( op==TK_LE ) opx = TK_LT;
627   if( op==TK_GE ) opx = TK_GT;
628   if( op==TK_NE ) opx = TK_EQ;
629 
630   regLeft = exprCodeSubselect(pParse, pLeft);
631   regRight = exprCodeSubselect(pParse, pRight);
632 
633   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
634   for(i=0; 1 /*Loop exits by "break"*/; i++){
635     int regFree1 = 0, regFree2 = 0;
636     Expr *pL, *pR;
637     int r1, r2;
638     assert( i>=0 && i<nLeft );
639     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
640     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
641     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
642     addrCmp = sqlite3VdbeCurrentAddr(v);
643     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
644     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
645     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
646     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
647     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
648     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
649     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
650     sqlite3ReleaseTempReg(pParse, regFree1);
651     sqlite3ReleaseTempReg(pParse, regFree2);
652     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
653       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
654       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
655       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
656     }
657     if( p5==SQLITE_NULLEQ ){
658       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
659     }else{
660       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
661     }
662     if( i==nLeft-1 ){
663       break;
664     }
665     if( opx==TK_EQ ){
666       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
667     }else{
668       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
669       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
670       if( i==nLeft-2 ) opx = op;
671     }
672   }
673   sqlite3VdbeJumpHere(v, addrCmp);
674   sqlite3VdbeResolveLabel(v, addrDone);
675   if( op==TK_NE ){
676     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
677   }
678 }
679 
680 #if SQLITE_MAX_EXPR_DEPTH>0
681 /*
682 ** Check that argument nHeight is less than or equal to the maximum
683 ** expression depth allowed. If it is not, leave an error message in
684 ** pParse.
685 */
686 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
687   int rc = SQLITE_OK;
688   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
689   if( nHeight>mxHeight ){
690     sqlite3ErrorMsg(pParse,
691        "Expression tree is too large (maximum depth %d)", mxHeight
692     );
693     rc = SQLITE_ERROR;
694   }
695   return rc;
696 }
697 
698 /* The following three functions, heightOfExpr(), heightOfExprList()
699 ** and heightOfSelect(), are used to determine the maximum height
700 ** of any expression tree referenced by the structure passed as the
701 ** first argument.
702 **
703 ** If this maximum height is greater than the current value pointed
704 ** to by pnHeight, the second parameter, then set *pnHeight to that
705 ** value.
706 */
707 static void heightOfExpr(Expr *p, int *pnHeight){
708   if( p ){
709     if( p->nHeight>*pnHeight ){
710       *pnHeight = p->nHeight;
711     }
712   }
713 }
714 static void heightOfExprList(ExprList *p, int *pnHeight){
715   if( p ){
716     int i;
717     for(i=0; i<p->nExpr; i++){
718       heightOfExpr(p->a[i].pExpr, pnHeight);
719     }
720   }
721 }
722 static void heightOfSelect(Select *pSelect, int *pnHeight){
723   Select *p;
724   for(p=pSelect; p; p=p->pPrior){
725     heightOfExpr(p->pWhere, pnHeight);
726     heightOfExpr(p->pHaving, pnHeight);
727     heightOfExpr(p->pLimit, pnHeight);
728     heightOfExprList(p->pEList, pnHeight);
729     heightOfExprList(p->pGroupBy, pnHeight);
730     heightOfExprList(p->pOrderBy, pnHeight);
731   }
732 }
733 
734 /*
735 ** Set the Expr.nHeight variable in the structure passed as an
736 ** argument. An expression with no children, Expr.pList or
737 ** Expr.pSelect member has a height of 1. Any other expression
738 ** has a height equal to the maximum height of any other
739 ** referenced Expr plus one.
740 **
741 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
742 ** if appropriate.
743 */
744 static void exprSetHeight(Expr *p){
745   int nHeight = 0;
746   heightOfExpr(p->pLeft, &nHeight);
747   heightOfExpr(p->pRight, &nHeight);
748   if( ExprHasProperty(p, EP_xIsSelect) ){
749     heightOfSelect(p->x.pSelect, &nHeight);
750   }else if( p->x.pList ){
751     heightOfExprList(p->x.pList, &nHeight);
752     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
753   }
754   p->nHeight = nHeight + 1;
755 }
756 
757 /*
758 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
759 ** the height is greater than the maximum allowed expression depth,
760 ** leave an error in pParse.
761 **
762 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
763 ** Expr.flags.
764 */
765 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
766   if( pParse->nErr ) return;
767   exprSetHeight(p);
768   sqlite3ExprCheckHeight(pParse, p->nHeight);
769 }
770 
771 /*
772 ** Return the maximum height of any expression tree referenced
773 ** by the select statement passed as an argument.
774 */
775 int sqlite3SelectExprHeight(Select *p){
776   int nHeight = 0;
777   heightOfSelect(p, &nHeight);
778   return nHeight;
779 }
780 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
781 /*
782 ** Propagate all EP_Propagate flags from the Expr.x.pList into
783 ** Expr.flags.
784 */
785 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
786   if( pParse->nErr ) return;
787   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
788     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
789   }
790 }
791 #define exprSetHeight(y)
792 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
793 
794 /*
795 ** This routine is the core allocator for Expr nodes.
796 **
797 ** Construct a new expression node and return a pointer to it.  Memory
798 ** for this node and for the pToken argument is a single allocation
799 ** obtained from sqlite3DbMalloc().  The calling function
800 ** is responsible for making sure the node eventually gets freed.
801 **
802 ** If dequote is true, then the token (if it exists) is dequoted.
803 ** If dequote is false, no dequoting is performed.  The deQuote
804 ** parameter is ignored if pToken is NULL or if the token does not
805 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
806 ** then the EP_DblQuoted flag is set on the expression node.
807 **
808 ** Special case:  If op==TK_INTEGER and pToken points to a string that
809 ** can be translated into a 32-bit integer, then the token is not
810 ** stored in u.zToken.  Instead, the integer values is written
811 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
812 ** is allocated to hold the integer text and the dequote flag is ignored.
813 */
814 Expr *sqlite3ExprAlloc(
815   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
816   int op,                 /* Expression opcode */
817   const Token *pToken,    /* Token argument.  Might be NULL */
818   int dequote             /* True to dequote */
819 ){
820   Expr *pNew;
821   int nExtra = 0;
822   int iValue = 0;
823 
824   assert( db!=0 );
825   if( pToken ){
826     if( op!=TK_INTEGER || pToken->z==0
827           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
828       nExtra = pToken->n+1;
829       assert( iValue>=0 );
830     }
831   }
832   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
833   if( pNew ){
834     memset(pNew, 0, sizeof(Expr));
835     pNew->op = (u8)op;
836     pNew->iAgg = -1;
837     if( pToken ){
838       if( nExtra==0 ){
839         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
840         pNew->u.iValue = iValue;
841       }else{
842         pNew->u.zToken = (char*)&pNew[1];
843         assert( pToken->z!=0 || pToken->n==0 );
844         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
845         pNew->u.zToken[pToken->n] = 0;
846         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
847           sqlite3DequoteExpr(pNew);
848         }
849       }
850     }
851 #if SQLITE_MAX_EXPR_DEPTH>0
852     pNew->nHeight = 1;
853 #endif
854   }
855   return pNew;
856 }
857 
858 /*
859 ** Allocate a new expression node from a zero-terminated token that has
860 ** already been dequoted.
861 */
862 Expr *sqlite3Expr(
863   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
864   int op,                 /* Expression opcode */
865   const char *zToken      /* Token argument.  Might be NULL */
866 ){
867   Token x;
868   x.z = zToken;
869   x.n = sqlite3Strlen30(zToken);
870   return sqlite3ExprAlloc(db, op, &x, 0);
871 }
872 
873 /*
874 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
875 **
876 ** If pRoot==NULL that means that a memory allocation error has occurred.
877 ** In that case, delete the subtrees pLeft and pRight.
878 */
879 void sqlite3ExprAttachSubtrees(
880   sqlite3 *db,
881   Expr *pRoot,
882   Expr *pLeft,
883   Expr *pRight
884 ){
885   if( pRoot==0 ){
886     assert( db->mallocFailed );
887     sqlite3ExprDelete(db, pLeft);
888     sqlite3ExprDelete(db, pRight);
889   }else{
890     if( pRight ){
891       pRoot->pRight = pRight;
892       pRoot->flags |= EP_Propagate & pRight->flags;
893     }
894     if( pLeft ){
895       pRoot->pLeft = pLeft;
896       pRoot->flags |= EP_Propagate & pLeft->flags;
897     }
898     exprSetHeight(pRoot);
899   }
900 }
901 
902 /*
903 ** Allocate an Expr node which joins as many as two subtrees.
904 **
905 ** One or both of the subtrees can be NULL.  Return a pointer to the new
906 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
907 ** free the subtrees and return NULL.
908 */
909 Expr *sqlite3PExpr(
910   Parse *pParse,          /* Parsing context */
911   int op,                 /* Expression opcode */
912   Expr *pLeft,            /* Left operand */
913   Expr *pRight            /* Right operand */
914 ){
915   Expr *p;
916   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
917   if( p ){
918     memset(p, 0, sizeof(Expr));
919     p->op = op & 0xff;
920     p->iAgg = -1;
921     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
922     sqlite3ExprCheckHeight(pParse, p->nHeight);
923   }else{
924     sqlite3ExprDelete(pParse->db, pLeft);
925     sqlite3ExprDelete(pParse->db, pRight);
926   }
927   return p;
928 }
929 
930 /*
931 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
932 ** do a memory allocation failure) then delete the pSelect object.
933 */
934 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
935   if( pExpr ){
936     pExpr->x.pSelect = pSelect;
937     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
938     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
939   }else{
940     assert( pParse->db->mallocFailed );
941     sqlite3SelectDelete(pParse->db, pSelect);
942   }
943 }
944 
945 
946 /*
947 ** Join two expressions using an AND operator.  If either expression is
948 ** NULL, then just return the other expression.
949 **
950 ** If one side or the other of the AND is known to be false, then instead
951 ** of returning an AND expression, just return a constant expression with
952 ** a value of false.
953 */
954 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
955   sqlite3 *db = pParse->db;
956   if( pLeft==0  ){
957     return pRight;
958   }else if( pRight==0 ){
959     return pLeft;
960   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
961          && !IN_RENAME_OBJECT
962   ){
963     sqlite3ExprDeferredDelete(pParse, pLeft);
964     sqlite3ExprDeferredDelete(pParse, pRight);
965     return sqlite3Expr(db, TK_INTEGER, "0");
966   }else{
967     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
968   }
969 }
970 
971 /*
972 ** Construct a new expression node for a function with multiple
973 ** arguments.
974 */
975 Expr *sqlite3ExprFunction(
976   Parse *pParse,        /* Parsing context */
977   ExprList *pList,      /* Argument list */
978   Token *pToken,        /* Name of the function */
979   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
980 ){
981   Expr *pNew;
982   sqlite3 *db = pParse->db;
983   assert( pToken );
984   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
985   if( pNew==0 ){
986     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
987     return 0;
988   }
989   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
990     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
991   }
992   pNew->x.pList = pList;
993   ExprSetProperty(pNew, EP_HasFunc);
994   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
995   sqlite3ExprSetHeightAndFlags(pParse, pNew);
996   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
997   return pNew;
998 }
999 
1000 /*
1001 ** Check to see if a function is usable according to current access
1002 ** rules:
1003 **
1004 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1005 **
1006 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1007 **                                top-level SQL
1008 **
1009 ** If the function is not usable, create an error.
1010 */
1011 void sqlite3ExprFunctionUsable(
1012   Parse *pParse,         /* Parsing and code generating context */
1013   Expr *pExpr,           /* The function invocation */
1014   FuncDef *pDef          /* The function being invoked */
1015 ){
1016   assert( !IN_RENAME_OBJECT );
1017   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1018   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1019     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1020      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1021     ){
1022       /* Functions prohibited in triggers and views if:
1023       **     (1) tagged with SQLITE_DIRECTONLY
1024       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1025       **         is tagged with SQLITE_FUNC_UNSAFE) and
1026       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1027       **         that the schema is possibly tainted).
1028       */
1029       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1030     }
1031   }
1032 }
1033 
1034 /*
1035 ** Assign a variable number to an expression that encodes a wildcard
1036 ** in the original SQL statement.
1037 **
1038 ** Wildcards consisting of a single "?" are assigned the next sequential
1039 ** variable number.
1040 **
1041 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1042 ** sure "nnn" is not too big to avoid a denial of service attack when
1043 ** the SQL statement comes from an external source.
1044 **
1045 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1046 ** as the previous instance of the same wildcard.  Or if this is the first
1047 ** instance of the wildcard, the next sequential variable number is
1048 ** assigned.
1049 */
1050 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1051   sqlite3 *db = pParse->db;
1052   const char *z;
1053   ynVar x;
1054 
1055   if( pExpr==0 ) return;
1056   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1057   z = pExpr->u.zToken;
1058   assert( z!=0 );
1059   assert( z[0]!=0 );
1060   assert( n==(u32)sqlite3Strlen30(z) );
1061   if( z[1]==0 ){
1062     /* Wildcard of the form "?".  Assign the next variable number */
1063     assert( z[0]=='?' );
1064     x = (ynVar)(++pParse->nVar);
1065   }else{
1066     int doAdd = 0;
1067     if( z[0]=='?' ){
1068       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1069       ** use it as the variable number */
1070       i64 i;
1071       int bOk;
1072       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1073         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1074         bOk = 1;
1075       }else{
1076         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1077       }
1078       testcase( i==0 );
1079       testcase( i==1 );
1080       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1081       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1082       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1083         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1084             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1085         return;
1086       }
1087       x = (ynVar)i;
1088       if( x>pParse->nVar ){
1089         pParse->nVar = (int)x;
1090         doAdd = 1;
1091       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1092         doAdd = 1;
1093       }
1094     }else{
1095       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1096       ** number as the prior appearance of the same name, or if the name
1097       ** has never appeared before, reuse the same variable number
1098       */
1099       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1100       if( x==0 ){
1101         x = (ynVar)(++pParse->nVar);
1102         doAdd = 1;
1103       }
1104     }
1105     if( doAdd ){
1106       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1107     }
1108   }
1109   pExpr->iColumn = x;
1110   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1111     sqlite3ErrorMsg(pParse, "too many SQL variables");
1112   }
1113 }
1114 
1115 /*
1116 ** Recursively delete an expression tree.
1117 */
1118 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1119   assert( p!=0 );
1120   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1121   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1122 
1123   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1124   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1125           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1126 #ifdef SQLITE_DEBUG
1127   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1128     assert( p->pLeft==0 );
1129     assert( p->pRight==0 );
1130     assert( p->x.pSelect==0 );
1131   }
1132 #endif
1133   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1134     /* The Expr.x union is never used at the same time as Expr.pRight */
1135     assert( p->x.pList==0 || p->pRight==0 );
1136     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1137     if( p->pRight ){
1138       assert( !ExprHasProperty(p, EP_WinFunc) );
1139       sqlite3ExprDeleteNN(db, p->pRight);
1140     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1141       assert( !ExprHasProperty(p, EP_WinFunc) );
1142       sqlite3SelectDelete(db, p->x.pSelect);
1143     }else{
1144       sqlite3ExprListDelete(db, p->x.pList);
1145 #ifndef SQLITE_OMIT_WINDOWFUNC
1146       if( ExprHasProperty(p, EP_WinFunc) ){
1147         sqlite3WindowDelete(db, p->y.pWin);
1148       }
1149 #endif
1150     }
1151   }
1152   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1153   if( !ExprHasProperty(p, EP_Static) ){
1154     sqlite3DbFreeNN(db, p);
1155   }
1156 }
1157 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1158   if( p ) sqlite3ExprDeleteNN(db, p);
1159 }
1160 
1161 
1162 /*
1163 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1164 ** This is similar to sqlite3ExprDelete() except that the delete is
1165 ** deferred untilthe pParse is deleted.
1166 **
1167 ** The pExpr might be deleted immediately on an OOM error.
1168 **
1169 ** The deferred delete is (currently) implemented by adding the
1170 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1171 */
1172 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1173   pParse->pConstExpr =
1174       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1175 }
1176 
1177 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1178 ** expression.
1179 */
1180 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1181   if( p ){
1182     if( IN_RENAME_OBJECT ){
1183       sqlite3RenameExprUnmap(pParse, p);
1184     }
1185     sqlite3ExprDeleteNN(pParse->db, p);
1186   }
1187 }
1188 
1189 /*
1190 ** Return the number of bytes allocated for the expression structure
1191 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1192 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1193 */
1194 static int exprStructSize(Expr *p){
1195   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1196   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1197   return EXPR_FULLSIZE;
1198 }
1199 
1200 /*
1201 ** The dupedExpr*Size() routines each return the number of bytes required
1202 ** to store a copy of an expression or expression tree.  They differ in
1203 ** how much of the tree is measured.
1204 **
1205 **     dupedExprStructSize()     Size of only the Expr structure
1206 **     dupedExprNodeSize()       Size of Expr + space for token
1207 **     dupedExprSize()           Expr + token + subtree components
1208 **
1209 ***************************************************************************
1210 **
1211 ** The dupedExprStructSize() function returns two values OR-ed together:
1212 ** (1) the space required for a copy of the Expr structure only and
1213 ** (2) the EP_xxx flags that indicate what the structure size should be.
1214 ** The return values is always one of:
1215 **
1216 **      EXPR_FULLSIZE
1217 **      EXPR_REDUCEDSIZE   | EP_Reduced
1218 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1219 **
1220 ** The size of the structure can be found by masking the return value
1221 ** of this routine with 0xfff.  The flags can be found by masking the
1222 ** return value with EP_Reduced|EP_TokenOnly.
1223 **
1224 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1225 ** (unreduced) Expr objects as they or originally constructed by the parser.
1226 ** During expression analysis, extra information is computed and moved into
1227 ** later parts of the Expr object and that extra information might get chopped
1228 ** off if the expression is reduced.  Note also that it does not work to
1229 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1230 ** to reduce a pristine expression tree from the parser.  The implementation
1231 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1232 ** to enforce this constraint.
1233 */
1234 static int dupedExprStructSize(Expr *p, int flags){
1235   int nSize;
1236   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1237   assert( EXPR_FULLSIZE<=0xfff );
1238   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1239   if( 0==flags || p->op==TK_SELECT_COLUMN
1240 #ifndef SQLITE_OMIT_WINDOWFUNC
1241    || ExprHasProperty(p, EP_WinFunc)
1242 #endif
1243   ){
1244     nSize = EXPR_FULLSIZE;
1245   }else{
1246     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1247     assert( !ExprHasProperty(p, EP_FromJoin) );
1248     assert( !ExprHasProperty(p, EP_MemToken) );
1249     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1250     if( p->pLeft || p->x.pList ){
1251       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1252     }else{
1253       assert( p->pRight==0 );
1254       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1255     }
1256   }
1257   return nSize;
1258 }
1259 
1260 /*
1261 ** This function returns the space in bytes required to store the copy
1262 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1263 ** string is defined.)
1264 */
1265 static int dupedExprNodeSize(Expr *p, int flags){
1266   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1267   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1268     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1269   }
1270   return ROUND8(nByte);
1271 }
1272 
1273 /*
1274 ** Return the number of bytes required to create a duplicate of the
1275 ** expression passed as the first argument. The second argument is a
1276 ** mask containing EXPRDUP_XXX flags.
1277 **
1278 ** The value returned includes space to create a copy of the Expr struct
1279 ** itself and the buffer referred to by Expr.u.zToken, if any.
1280 **
1281 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1282 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1283 ** and Expr.pRight variables (but not for any structures pointed to or
1284 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1285 */
1286 static int dupedExprSize(Expr *p, int flags){
1287   int nByte = 0;
1288   if( p ){
1289     nByte = dupedExprNodeSize(p, flags);
1290     if( flags&EXPRDUP_REDUCE ){
1291       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1292     }
1293   }
1294   return nByte;
1295 }
1296 
1297 /*
1298 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1299 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1300 ** to store the copy of expression p, the copies of p->u.zToken
1301 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1302 ** if any. Before returning, *pzBuffer is set to the first byte past the
1303 ** portion of the buffer copied into by this function.
1304 */
1305 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1306   Expr *pNew;           /* Value to return */
1307   u8 *zAlloc;           /* Memory space from which to build Expr object */
1308   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1309 
1310   assert( db!=0 );
1311   assert( p );
1312   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1313   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1314 
1315   /* Figure out where to write the new Expr structure. */
1316   if( pzBuffer ){
1317     zAlloc = *pzBuffer;
1318     staticFlag = EP_Static;
1319     assert( zAlloc!=0 );
1320   }else{
1321     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1322     staticFlag = 0;
1323   }
1324   pNew = (Expr *)zAlloc;
1325 
1326   if( pNew ){
1327     /* Set nNewSize to the size allocated for the structure pointed to
1328     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1329     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1330     ** by the copy of the p->u.zToken string (if any).
1331     */
1332     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1333     const int nNewSize = nStructSize & 0xfff;
1334     int nToken;
1335     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1336       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1337     }else{
1338       nToken = 0;
1339     }
1340     if( dupFlags ){
1341       assert( ExprHasProperty(p, EP_Reduced)==0 );
1342       memcpy(zAlloc, p, nNewSize);
1343     }else{
1344       u32 nSize = (u32)exprStructSize(p);
1345       memcpy(zAlloc, p, nSize);
1346       if( nSize<EXPR_FULLSIZE ){
1347         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1348       }
1349     }
1350 
1351     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1352     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1353     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1354     pNew->flags |= staticFlag;
1355     ExprClearVVAProperties(pNew);
1356     if( dupFlags ){
1357       ExprSetVVAProperty(pNew, EP_Immutable);
1358     }
1359 
1360     /* Copy the p->u.zToken string, if any. */
1361     if( nToken ){
1362       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1363       memcpy(zToken, p->u.zToken, nToken);
1364     }
1365 
1366     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1367       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1368       if( ExprHasProperty(p, EP_xIsSelect) ){
1369         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1370       }else{
1371         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1372       }
1373     }
1374 
1375     /* Fill in pNew->pLeft and pNew->pRight. */
1376     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1377       zAlloc += dupedExprNodeSize(p, dupFlags);
1378       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1379         pNew->pLeft = p->pLeft ?
1380                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1381         pNew->pRight = p->pRight ?
1382                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1383       }
1384 #ifndef SQLITE_OMIT_WINDOWFUNC
1385       if( ExprHasProperty(p, EP_WinFunc) ){
1386         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1387         assert( ExprHasProperty(pNew, EP_WinFunc) );
1388       }
1389 #endif /* SQLITE_OMIT_WINDOWFUNC */
1390       if( pzBuffer ){
1391         *pzBuffer = zAlloc;
1392       }
1393     }else{
1394       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1395         if( pNew->op==TK_SELECT_COLUMN ){
1396           pNew->pLeft = p->pLeft;
1397           assert( p->iColumn==0 || p->pRight==0 );
1398           assert( p->pRight==0  || p->pRight==p->pLeft
1399                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1400         }else{
1401           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1402         }
1403         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1404       }
1405     }
1406   }
1407   return pNew;
1408 }
1409 
1410 /*
1411 ** Create and return a deep copy of the object passed as the second
1412 ** argument. If an OOM condition is encountered, NULL is returned
1413 ** and the db->mallocFailed flag set.
1414 */
1415 #ifndef SQLITE_OMIT_CTE
1416 static With *withDup(sqlite3 *db, With *p){
1417   With *pRet = 0;
1418   if( p ){
1419     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1420     pRet = sqlite3DbMallocZero(db, nByte);
1421     if( pRet ){
1422       int i;
1423       pRet->nCte = p->nCte;
1424       for(i=0; i<p->nCte; i++){
1425         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1426         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1427         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1428       }
1429     }
1430   }
1431   return pRet;
1432 }
1433 #else
1434 # define withDup(x,y) 0
1435 #endif
1436 
1437 #ifndef SQLITE_OMIT_WINDOWFUNC
1438 /*
1439 ** The gatherSelectWindows() procedure and its helper routine
1440 ** gatherSelectWindowsCallback() are used to scan all the expressions
1441 ** an a newly duplicated SELECT statement and gather all of the Window
1442 ** objects found there, assembling them onto the linked list at Select->pWin.
1443 */
1444 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1445   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1446     Select *pSelect = pWalker->u.pSelect;
1447     Window *pWin = pExpr->y.pWin;
1448     assert( pWin );
1449     assert( IsWindowFunc(pExpr) );
1450     assert( pWin->ppThis==0 );
1451     sqlite3WindowLink(pSelect, pWin);
1452   }
1453   return WRC_Continue;
1454 }
1455 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1456   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1457 }
1458 static void gatherSelectWindows(Select *p){
1459   Walker w;
1460   w.xExprCallback = gatherSelectWindowsCallback;
1461   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1462   w.xSelectCallback2 = 0;
1463   w.pParse = 0;
1464   w.u.pSelect = p;
1465   sqlite3WalkSelect(&w, p);
1466 }
1467 #endif
1468 
1469 
1470 /*
1471 ** The following group of routines make deep copies of expressions,
1472 ** expression lists, ID lists, and select statements.  The copies can
1473 ** be deleted (by being passed to their respective ...Delete() routines)
1474 ** without effecting the originals.
1475 **
1476 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1477 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1478 ** by subsequent calls to sqlite*ListAppend() routines.
1479 **
1480 ** Any tables that the SrcList might point to are not duplicated.
1481 **
1482 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1483 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1484 ** truncated version of the usual Expr structure that will be stored as
1485 ** part of the in-memory representation of the database schema.
1486 */
1487 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1488   assert( flags==0 || flags==EXPRDUP_REDUCE );
1489   return p ? exprDup(db, p, flags, 0) : 0;
1490 }
1491 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1492   ExprList *pNew;
1493   struct ExprList_item *pItem, *pOldItem;
1494   int i;
1495   Expr *pPriorSelectCol = 0;
1496   assert( db!=0 );
1497   if( p==0 ) return 0;
1498   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1499   if( pNew==0 ) return 0;
1500   pNew->nExpr = p->nExpr;
1501   pNew->nAlloc = p->nAlloc;
1502   pItem = pNew->a;
1503   pOldItem = p->a;
1504   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1505     Expr *pOldExpr = pOldItem->pExpr;
1506     Expr *pNewExpr;
1507     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1508     if( pOldExpr
1509      && pOldExpr->op==TK_SELECT_COLUMN
1510      && (pNewExpr = pItem->pExpr)!=0
1511     ){
1512       assert( pNewExpr->iColumn==0 || i>0 );
1513       if( pNewExpr->iColumn==0 ){
1514         assert( pOldExpr->pLeft==pOldExpr->pRight
1515              || ExprHasProperty(pOldExpr->pLeft, EP_Subquery) );
1516         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1517       }else{
1518         assert( i>0 );
1519         assert( pItem[-1].pExpr!=0 );
1520         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1521         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1522         pNewExpr->pLeft = pPriorSelectCol;
1523       }
1524     }
1525     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1526     pItem->sortFlags = pOldItem->sortFlags;
1527     pItem->eEName = pOldItem->eEName;
1528     pItem->done = 0;
1529     pItem->bNulls = pOldItem->bNulls;
1530     pItem->bSorterRef = pOldItem->bSorterRef;
1531     pItem->u = pOldItem->u;
1532   }
1533   return pNew;
1534 }
1535 
1536 /*
1537 ** If cursors, triggers, views and subqueries are all omitted from
1538 ** the build, then none of the following routines, except for
1539 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1540 ** called with a NULL argument.
1541 */
1542 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1543  || !defined(SQLITE_OMIT_SUBQUERY)
1544 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1545   SrcList *pNew;
1546   int i;
1547   int nByte;
1548   assert( db!=0 );
1549   if( p==0 ) return 0;
1550   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1551   pNew = sqlite3DbMallocRawNN(db, nByte );
1552   if( pNew==0 ) return 0;
1553   pNew->nSrc = pNew->nAlloc = p->nSrc;
1554   for(i=0; i<p->nSrc; i++){
1555     SrcItem *pNewItem = &pNew->a[i];
1556     SrcItem *pOldItem = &p->a[i];
1557     Table *pTab;
1558     pNewItem->pSchema = pOldItem->pSchema;
1559     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1560     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1561     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1562     pNewItem->fg = pOldItem->fg;
1563     pNewItem->iCursor = pOldItem->iCursor;
1564     pNewItem->addrFillSub = pOldItem->addrFillSub;
1565     pNewItem->regReturn = pOldItem->regReturn;
1566     if( pNewItem->fg.isIndexedBy ){
1567       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1568     }
1569     pNewItem->u2 = pOldItem->u2;
1570     if( pNewItem->fg.isCte ){
1571       pNewItem->u2.pCteUse->nUse++;
1572     }
1573     if( pNewItem->fg.isTabFunc ){
1574       pNewItem->u1.pFuncArg =
1575           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1576     }
1577     pTab = pNewItem->pTab = pOldItem->pTab;
1578     if( pTab ){
1579       pTab->nTabRef++;
1580     }
1581     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1582     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1583     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1584     pNewItem->colUsed = pOldItem->colUsed;
1585   }
1586   return pNew;
1587 }
1588 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1589   IdList *pNew;
1590   int i;
1591   assert( db!=0 );
1592   if( p==0 ) return 0;
1593   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1594   if( pNew==0 ) return 0;
1595   pNew->nId = p->nId;
1596   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1597   if( pNew->a==0 ){
1598     sqlite3DbFreeNN(db, pNew);
1599     return 0;
1600   }
1601   /* Note that because the size of the allocation for p->a[] is not
1602   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1603   ** on the duplicate created by this function. */
1604   for(i=0; i<p->nId; i++){
1605     struct IdList_item *pNewItem = &pNew->a[i];
1606     struct IdList_item *pOldItem = &p->a[i];
1607     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1608     pNewItem->idx = pOldItem->idx;
1609   }
1610   return pNew;
1611 }
1612 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1613   Select *pRet = 0;
1614   Select *pNext = 0;
1615   Select **pp = &pRet;
1616   Select *p;
1617 
1618   assert( db!=0 );
1619   for(p=pDup; p; p=p->pPrior){
1620     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1621     if( pNew==0 ) break;
1622     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1623     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1624     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1625     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1626     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1627     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1628     pNew->op = p->op;
1629     pNew->pNext = pNext;
1630     pNew->pPrior = 0;
1631     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1632     pNew->iLimit = 0;
1633     pNew->iOffset = 0;
1634     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1635     pNew->addrOpenEphm[0] = -1;
1636     pNew->addrOpenEphm[1] = -1;
1637     pNew->nSelectRow = p->nSelectRow;
1638     pNew->pWith = withDup(db, p->pWith);
1639 #ifndef SQLITE_OMIT_WINDOWFUNC
1640     pNew->pWin = 0;
1641     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1642     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1643 #endif
1644     pNew->selId = p->selId;
1645     if( db->mallocFailed ){
1646       /* Any prior OOM might have left the Select object incomplete.
1647       ** Delete the whole thing rather than allow an incomplete Select
1648       ** to be used by the code generator. */
1649       pNew->pNext = 0;
1650       sqlite3SelectDelete(db, pNew);
1651       break;
1652     }
1653     *pp = pNew;
1654     pp = &pNew->pPrior;
1655     pNext = pNew;
1656   }
1657 
1658   return pRet;
1659 }
1660 #else
1661 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1662   assert( p==0 );
1663   return 0;
1664 }
1665 #endif
1666 
1667 
1668 /*
1669 ** Add a new element to the end of an expression list.  If pList is
1670 ** initially NULL, then create a new expression list.
1671 **
1672 ** The pList argument must be either NULL or a pointer to an ExprList
1673 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1674 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1675 ** Reason:  This routine assumes that the number of slots in pList->a[]
1676 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1677 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1678 **
1679 ** If a memory allocation error occurs, the entire list is freed and
1680 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1681 ** that the new entry was successfully appended.
1682 */
1683 static const struct ExprList_item zeroItem = {0};
1684 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1685   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1686   Expr *pExpr             /* Expression to be appended. Might be NULL */
1687 ){
1688   struct ExprList_item *pItem;
1689   ExprList *pList;
1690 
1691   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1692   if( pList==0 ){
1693     sqlite3ExprDelete(db, pExpr);
1694     return 0;
1695   }
1696   pList->nAlloc = 4;
1697   pList->nExpr = 1;
1698   pItem = &pList->a[0];
1699   *pItem = zeroItem;
1700   pItem->pExpr = pExpr;
1701   return pList;
1702 }
1703 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1704   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1705   ExprList *pList,        /* List to which to append. Might be NULL */
1706   Expr *pExpr             /* Expression to be appended. Might be NULL */
1707 ){
1708   struct ExprList_item *pItem;
1709   ExprList *pNew;
1710   pList->nAlloc *= 2;
1711   pNew = sqlite3DbRealloc(db, pList,
1712        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1713   if( pNew==0 ){
1714     sqlite3ExprListDelete(db, pList);
1715     sqlite3ExprDelete(db, pExpr);
1716     return 0;
1717   }else{
1718     pList = pNew;
1719   }
1720   pItem = &pList->a[pList->nExpr++];
1721   *pItem = zeroItem;
1722   pItem->pExpr = pExpr;
1723   return pList;
1724 }
1725 ExprList *sqlite3ExprListAppend(
1726   Parse *pParse,          /* Parsing context */
1727   ExprList *pList,        /* List to which to append. Might be NULL */
1728   Expr *pExpr             /* Expression to be appended. Might be NULL */
1729 ){
1730   struct ExprList_item *pItem;
1731   if( pList==0 ){
1732     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1733   }
1734   if( pList->nAlloc<pList->nExpr+1 ){
1735     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1736   }
1737   pItem = &pList->a[pList->nExpr++];
1738   *pItem = zeroItem;
1739   pItem->pExpr = pExpr;
1740   return pList;
1741 }
1742 
1743 /*
1744 ** pColumns and pExpr form a vector assignment which is part of the SET
1745 ** clause of an UPDATE statement.  Like this:
1746 **
1747 **        (a,b,c) = (expr1,expr2,expr3)
1748 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1749 **
1750 ** For each term of the vector assignment, append new entries to the
1751 ** expression list pList.  In the case of a subquery on the RHS, append
1752 ** TK_SELECT_COLUMN expressions.
1753 */
1754 ExprList *sqlite3ExprListAppendVector(
1755   Parse *pParse,         /* Parsing context */
1756   ExprList *pList,       /* List to which to append. Might be NULL */
1757   IdList *pColumns,      /* List of names of LHS of the assignment */
1758   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1759 ){
1760   sqlite3 *db = pParse->db;
1761   int n;
1762   int i;
1763   int iFirst = pList ? pList->nExpr : 0;
1764   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1765   ** exit prior to this routine being invoked */
1766   if( NEVER(pColumns==0) ) goto vector_append_error;
1767   if( pExpr==0 ) goto vector_append_error;
1768 
1769   /* If the RHS is a vector, then we can immediately check to see that
1770   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1771   ** wildcards ("*") in the result set of the SELECT must be expanded before
1772   ** we can do the size check, so defer the size check until code generation.
1773   */
1774   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1775     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1776                     pColumns->nId, n);
1777     goto vector_append_error;
1778   }
1779 
1780   for(i=0; i<pColumns->nId; i++){
1781     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1782     assert( pSubExpr!=0 || db->mallocFailed );
1783     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1784     if( pSubExpr==0 ) continue;
1785     pSubExpr->iTable = pColumns->nId;
1786     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1787     if( pList ){
1788       assert( pList->nExpr==iFirst+i+1 );
1789       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1790       pColumns->a[i].zName = 0;
1791     }
1792   }
1793 
1794   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1795     Expr *pFirst = pList->a[iFirst].pExpr;
1796     assert( pFirst!=0 );
1797     assert( pFirst->op==TK_SELECT_COLUMN );
1798 
1799     /* Store the SELECT statement in pRight so it will be deleted when
1800     ** sqlite3ExprListDelete() is called */
1801     pFirst->pRight = pExpr;
1802     pExpr = 0;
1803 
1804     /* Remember the size of the LHS in iTable so that we can check that
1805     ** the RHS and LHS sizes match during code generation. */
1806     pFirst->iTable = pColumns->nId;
1807   }
1808 
1809 vector_append_error:
1810   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1811   sqlite3IdListDelete(db, pColumns);
1812   return pList;
1813 }
1814 
1815 /*
1816 ** Set the sort order for the last element on the given ExprList.
1817 */
1818 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1819   struct ExprList_item *pItem;
1820   if( p==0 ) return;
1821   assert( p->nExpr>0 );
1822 
1823   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1824   assert( iSortOrder==SQLITE_SO_UNDEFINED
1825        || iSortOrder==SQLITE_SO_ASC
1826        || iSortOrder==SQLITE_SO_DESC
1827   );
1828   assert( eNulls==SQLITE_SO_UNDEFINED
1829        || eNulls==SQLITE_SO_ASC
1830        || eNulls==SQLITE_SO_DESC
1831   );
1832 
1833   pItem = &p->a[p->nExpr-1];
1834   assert( pItem->bNulls==0 );
1835   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1836     iSortOrder = SQLITE_SO_ASC;
1837   }
1838   pItem->sortFlags = (u8)iSortOrder;
1839 
1840   if( eNulls!=SQLITE_SO_UNDEFINED ){
1841     pItem->bNulls = 1;
1842     if( iSortOrder!=eNulls ){
1843       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1844     }
1845   }
1846 }
1847 
1848 /*
1849 ** Set the ExprList.a[].zEName element of the most recently added item
1850 ** on the expression list.
1851 **
1852 ** pList might be NULL following an OOM error.  But pName should never be
1853 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1854 ** is set.
1855 */
1856 void sqlite3ExprListSetName(
1857   Parse *pParse,          /* Parsing context */
1858   ExprList *pList,        /* List to which to add the span. */
1859   Token *pName,           /* Name to be added */
1860   int dequote             /* True to cause the name to be dequoted */
1861 ){
1862   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1863   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1864   if( pList ){
1865     struct ExprList_item *pItem;
1866     assert( pList->nExpr>0 );
1867     pItem = &pList->a[pList->nExpr-1];
1868     assert( pItem->zEName==0 );
1869     assert( pItem->eEName==ENAME_NAME );
1870     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1871     if( dequote ){
1872       /* If dequote==0, then pName->z does not point to part of a DDL
1873       ** statement handled by the parser. And so no token need be added
1874       ** to the token-map.  */
1875       sqlite3Dequote(pItem->zEName);
1876       if( IN_RENAME_OBJECT ){
1877         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1878       }
1879     }
1880   }
1881 }
1882 
1883 /*
1884 ** Set the ExprList.a[].zSpan element of the most recently added item
1885 ** on the expression list.
1886 **
1887 ** pList might be NULL following an OOM error.  But pSpan should never be
1888 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1889 ** is set.
1890 */
1891 void sqlite3ExprListSetSpan(
1892   Parse *pParse,          /* Parsing context */
1893   ExprList *pList,        /* List to which to add the span. */
1894   const char *zStart,     /* Start of the span */
1895   const char *zEnd        /* End of the span */
1896 ){
1897   sqlite3 *db = pParse->db;
1898   assert( pList!=0 || db->mallocFailed!=0 );
1899   if( pList ){
1900     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1901     assert( pList->nExpr>0 );
1902     if( pItem->zEName==0 ){
1903       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1904       pItem->eEName = ENAME_SPAN;
1905     }
1906   }
1907 }
1908 
1909 /*
1910 ** If the expression list pEList contains more than iLimit elements,
1911 ** leave an error message in pParse.
1912 */
1913 void sqlite3ExprListCheckLength(
1914   Parse *pParse,
1915   ExprList *pEList,
1916   const char *zObject
1917 ){
1918   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1919   testcase( pEList && pEList->nExpr==mx );
1920   testcase( pEList && pEList->nExpr==mx+1 );
1921   if( pEList && pEList->nExpr>mx ){
1922     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1923   }
1924 }
1925 
1926 /*
1927 ** Delete an entire expression list.
1928 */
1929 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1930   int i = pList->nExpr;
1931   struct ExprList_item *pItem =  pList->a;
1932   assert( pList->nExpr>0 );
1933   do{
1934     sqlite3ExprDelete(db, pItem->pExpr);
1935     sqlite3DbFree(db, pItem->zEName);
1936     pItem++;
1937   }while( --i>0 );
1938   sqlite3DbFreeNN(db, pList);
1939 }
1940 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1941   if( pList ) exprListDeleteNN(db, pList);
1942 }
1943 
1944 /*
1945 ** Return the bitwise-OR of all Expr.flags fields in the given
1946 ** ExprList.
1947 */
1948 u32 sqlite3ExprListFlags(const ExprList *pList){
1949   int i;
1950   u32 m = 0;
1951   assert( pList!=0 );
1952   for(i=0; i<pList->nExpr; i++){
1953      Expr *pExpr = pList->a[i].pExpr;
1954      assert( pExpr!=0 );
1955      m |= pExpr->flags;
1956   }
1957   return m;
1958 }
1959 
1960 /*
1961 ** This is a SELECT-node callback for the expression walker that
1962 ** always "fails".  By "fail" in this case, we mean set
1963 ** pWalker->eCode to zero and abort.
1964 **
1965 ** This callback is used by multiple expression walkers.
1966 */
1967 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1968   UNUSED_PARAMETER(NotUsed);
1969   pWalker->eCode = 0;
1970   return WRC_Abort;
1971 }
1972 
1973 /*
1974 ** Check the input string to see if it is "true" or "false" (in any case).
1975 **
1976 **       If the string is....           Return
1977 **         "true"                         EP_IsTrue
1978 **         "false"                        EP_IsFalse
1979 **         anything else                  0
1980 */
1981 u32 sqlite3IsTrueOrFalse(const char *zIn){
1982   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1983   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1984   return 0;
1985 }
1986 
1987 
1988 /*
1989 ** If the input expression is an ID with the name "true" or "false"
1990 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1991 ** the conversion happened, and zero if the expression is unaltered.
1992 */
1993 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1994   u32 v;
1995   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1996   if( !ExprHasProperty(pExpr, EP_Quoted)
1997    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1998   ){
1999     pExpr->op = TK_TRUEFALSE;
2000     ExprSetProperty(pExpr, v);
2001     return 1;
2002   }
2003   return 0;
2004 }
2005 
2006 /*
2007 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2008 ** and 0 if it is FALSE.
2009 */
2010 int sqlite3ExprTruthValue(const Expr *pExpr){
2011   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2012   assert( pExpr->op==TK_TRUEFALSE );
2013   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2014        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2015   return pExpr->u.zToken[4]==0;
2016 }
2017 
2018 /*
2019 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2020 ** terms that are always true or false.  Return the simplified expression.
2021 ** Or return the original expression if no simplification is possible.
2022 **
2023 ** Examples:
2024 **
2025 **     (x<10) AND true                =>   (x<10)
2026 **     (x<10) AND false               =>   false
2027 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2028 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2029 **     (y=22) OR true                 =>   true
2030 */
2031 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2032   assert( pExpr!=0 );
2033   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2034     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2035     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2036     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2037       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2038     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2039       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2040     }
2041   }
2042   return pExpr;
2043 }
2044 
2045 
2046 /*
2047 ** These routines are Walker callbacks used to check expressions to
2048 ** see if they are "constant" for some definition of constant.  The
2049 ** Walker.eCode value determines the type of "constant" we are looking
2050 ** for.
2051 **
2052 ** These callback routines are used to implement the following:
2053 **
2054 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2055 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2056 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2057 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2058 **
2059 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2060 ** is found to not be a constant.
2061 **
2062 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2063 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2064 ** when parsing an existing schema out of the sqlite_schema table and 4
2065 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2066 ** an error for new statements, but is silently converted
2067 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2068 ** contain a bound parameter because they were generated by older versions
2069 ** of SQLite to be parsed by newer versions of SQLite without raising a
2070 ** malformed schema error.
2071 */
2072 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2073 
2074   /* If pWalker->eCode is 2 then any term of the expression that comes from
2075   ** the ON or USING clauses of a left join disqualifies the expression
2076   ** from being considered constant. */
2077   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2078     pWalker->eCode = 0;
2079     return WRC_Abort;
2080   }
2081 
2082   switch( pExpr->op ){
2083     /* Consider functions to be constant if all their arguments are constant
2084     ** and either pWalker->eCode==4 or 5 or the function has the
2085     ** SQLITE_FUNC_CONST flag. */
2086     case TK_FUNCTION:
2087       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2088        && !ExprHasProperty(pExpr, EP_WinFunc)
2089       ){
2090         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2091         return WRC_Continue;
2092       }else{
2093         pWalker->eCode = 0;
2094         return WRC_Abort;
2095       }
2096     case TK_ID:
2097       /* Convert "true" or "false" in a DEFAULT clause into the
2098       ** appropriate TK_TRUEFALSE operator */
2099       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2100         return WRC_Prune;
2101       }
2102       /* no break */ deliberate_fall_through
2103     case TK_COLUMN:
2104     case TK_AGG_FUNCTION:
2105     case TK_AGG_COLUMN:
2106       testcase( pExpr->op==TK_ID );
2107       testcase( pExpr->op==TK_COLUMN );
2108       testcase( pExpr->op==TK_AGG_FUNCTION );
2109       testcase( pExpr->op==TK_AGG_COLUMN );
2110       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2111         return WRC_Continue;
2112       }
2113       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2114         return WRC_Continue;
2115       }
2116       /* no break */ deliberate_fall_through
2117     case TK_IF_NULL_ROW:
2118     case TK_REGISTER:
2119     case TK_DOT:
2120       testcase( pExpr->op==TK_REGISTER );
2121       testcase( pExpr->op==TK_IF_NULL_ROW );
2122       testcase( pExpr->op==TK_DOT );
2123       pWalker->eCode = 0;
2124       return WRC_Abort;
2125     case TK_VARIABLE:
2126       if( pWalker->eCode==5 ){
2127         /* Silently convert bound parameters that appear inside of CREATE
2128         ** statements into a NULL when parsing the CREATE statement text out
2129         ** of the sqlite_schema table */
2130         pExpr->op = TK_NULL;
2131       }else if( pWalker->eCode==4 ){
2132         /* A bound parameter in a CREATE statement that originates from
2133         ** sqlite3_prepare() causes an error */
2134         pWalker->eCode = 0;
2135         return WRC_Abort;
2136       }
2137       /* no break */ deliberate_fall_through
2138     default:
2139       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2140       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2141       return WRC_Continue;
2142   }
2143 }
2144 static int exprIsConst(Expr *p, int initFlag, int iCur){
2145   Walker w;
2146   w.eCode = initFlag;
2147   w.xExprCallback = exprNodeIsConstant;
2148   w.xSelectCallback = sqlite3SelectWalkFail;
2149 #ifdef SQLITE_DEBUG
2150   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2151 #endif
2152   w.u.iCur = iCur;
2153   sqlite3WalkExpr(&w, p);
2154   return w.eCode;
2155 }
2156 
2157 /*
2158 ** Walk an expression tree.  Return non-zero if the expression is constant
2159 ** and 0 if it involves variables or function calls.
2160 **
2161 ** For the purposes of this function, a double-quoted string (ex: "abc")
2162 ** is considered a variable but a single-quoted string (ex: 'abc') is
2163 ** a constant.
2164 */
2165 int sqlite3ExprIsConstant(Expr *p){
2166   return exprIsConst(p, 1, 0);
2167 }
2168 
2169 /*
2170 ** Walk an expression tree.  Return non-zero if
2171 **
2172 **   (1) the expression is constant, and
2173 **   (2) the expression does originate in the ON or USING clause
2174 **       of a LEFT JOIN, and
2175 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2176 **       operands created by the constant propagation optimization.
2177 **
2178 ** When this routine returns true, it indicates that the expression
2179 ** can be added to the pParse->pConstExpr list and evaluated once when
2180 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2181 */
2182 int sqlite3ExprIsConstantNotJoin(Expr *p){
2183   return exprIsConst(p, 2, 0);
2184 }
2185 
2186 /*
2187 ** Walk an expression tree.  Return non-zero if the expression is constant
2188 ** for any single row of the table with cursor iCur.  In other words, the
2189 ** expression must not refer to any non-deterministic function nor any
2190 ** table other than iCur.
2191 */
2192 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2193   return exprIsConst(p, 3, iCur);
2194 }
2195 
2196 
2197 /*
2198 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2199 */
2200 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2201   ExprList *pGroupBy = pWalker->u.pGroupBy;
2202   int i;
2203 
2204   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2205   ** it constant.  */
2206   for(i=0; i<pGroupBy->nExpr; i++){
2207     Expr *p = pGroupBy->a[i].pExpr;
2208     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2209       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2210       if( sqlite3IsBinary(pColl) ){
2211         return WRC_Prune;
2212       }
2213     }
2214   }
2215 
2216   /* Check if pExpr is a sub-select. If so, consider it variable. */
2217   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2218     pWalker->eCode = 0;
2219     return WRC_Abort;
2220   }
2221 
2222   return exprNodeIsConstant(pWalker, pExpr);
2223 }
2224 
2225 /*
2226 ** Walk the expression tree passed as the first argument. Return non-zero
2227 ** if the expression consists entirely of constants or copies of terms
2228 ** in pGroupBy that sort with the BINARY collation sequence.
2229 **
2230 ** This routine is used to determine if a term of the HAVING clause can
2231 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2232 ** the value of the HAVING clause term must be the same for all members of
2233 ** a "group".  The requirement that the GROUP BY term must be BINARY
2234 ** assumes that no other collating sequence will have a finer-grained
2235 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2236 ** A=B in every other collating sequence.  The requirement that the
2237 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2238 ** to promote HAVING clauses that use the same alternative collating
2239 ** sequence as the GROUP BY term, but that is much harder to check,
2240 ** alternative collating sequences are uncommon, and this is only an
2241 ** optimization, so we take the easy way out and simply require the
2242 ** GROUP BY to use the BINARY collating sequence.
2243 */
2244 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2245   Walker w;
2246   w.eCode = 1;
2247   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2248   w.xSelectCallback = 0;
2249   w.u.pGroupBy = pGroupBy;
2250   w.pParse = pParse;
2251   sqlite3WalkExpr(&w, p);
2252   return w.eCode;
2253 }
2254 
2255 /*
2256 ** Walk an expression tree for the DEFAULT field of a column definition
2257 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2258 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2259 ** the expression is constant or a function call with constant arguments.
2260 ** Return and 0 if there are any variables.
2261 **
2262 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2263 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2264 ** (such as ? or $abc) in the expression are converted into NULL.  When
2265 ** isInit is false, parameters raise an error.  Parameters should not be
2266 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2267 ** allowed it, so we need to support it when reading sqlite_schema for
2268 ** backwards compatibility.
2269 **
2270 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2271 **
2272 ** For the purposes of this function, a double-quoted string (ex: "abc")
2273 ** is considered a variable but a single-quoted string (ex: 'abc') is
2274 ** a constant.
2275 */
2276 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2277   assert( isInit==0 || isInit==1 );
2278   return exprIsConst(p, 4+isInit, 0);
2279 }
2280 
2281 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2282 /*
2283 ** Walk an expression tree.  Return 1 if the expression contains a
2284 ** subquery of some kind.  Return 0 if there are no subqueries.
2285 */
2286 int sqlite3ExprContainsSubquery(Expr *p){
2287   Walker w;
2288   w.eCode = 1;
2289   w.xExprCallback = sqlite3ExprWalkNoop;
2290   w.xSelectCallback = sqlite3SelectWalkFail;
2291 #ifdef SQLITE_DEBUG
2292   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2293 #endif
2294   sqlite3WalkExpr(&w, p);
2295   return w.eCode==0;
2296 }
2297 #endif
2298 
2299 /*
2300 ** If the expression p codes a constant integer that is small enough
2301 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2302 ** in *pValue.  If the expression is not an integer or if it is too big
2303 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2304 */
2305 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2306   int rc = 0;
2307   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2308 
2309   /* If an expression is an integer literal that fits in a signed 32-bit
2310   ** integer, then the EP_IntValue flag will have already been set */
2311   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2312            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2313 
2314   if( p->flags & EP_IntValue ){
2315     *pValue = p->u.iValue;
2316     return 1;
2317   }
2318   switch( p->op ){
2319     case TK_UPLUS: {
2320       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2321       break;
2322     }
2323     case TK_UMINUS: {
2324       int v;
2325       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2326         assert( v!=(-2147483647-1) );
2327         *pValue = -v;
2328         rc = 1;
2329       }
2330       break;
2331     }
2332     default: break;
2333   }
2334   return rc;
2335 }
2336 
2337 /*
2338 ** Return FALSE if there is no chance that the expression can be NULL.
2339 **
2340 ** If the expression might be NULL or if the expression is too complex
2341 ** to tell return TRUE.
2342 **
2343 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2344 ** when we know that a value cannot be NULL.  Hence, a false positive
2345 ** (returning TRUE when in fact the expression can never be NULL) might
2346 ** be a small performance hit but is otherwise harmless.  On the other
2347 ** hand, a false negative (returning FALSE when the result could be NULL)
2348 ** will likely result in an incorrect answer.  So when in doubt, return
2349 ** TRUE.
2350 */
2351 int sqlite3ExprCanBeNull(const Expr *p){
2352   u8 op;
2353   assert( p!=0 );
2354   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2355     p = p->pLeft;
2356     assert( p!=0 );
2357   }
2358   op = p->op;
2359   if( op==TK_REGISTER ) op = p->op2;
2360   switch( op ){
2361     case TK_INTEGER:
2362     case TK_STRING:
2363     case TK_FLOAT:
2364     case TK_BLOB:
2365       return 0;
2366     case TK_COLUMN:
2367       return ExprHasProperty(p, EP_CanBeNull) ||
2368              p->y.pTab==0 ||  /* Reference to column of index on expression */
2369              (p->iColumn>=0
2370               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2371               && p->y.pTab->aCol[p->iColumn].notNull==0);
2372     default:
2373       return 1;
2374   }
2375 }
2376 
2377 /*
2378 ** Return TRUE if the given expression is a constant which would be
2379 ** unchanged by OP_Affinity with the affinity given in the second
2380 ** argument.
2381 **
2382 ** This routine is used to determine if the OP_Affinity operation
2383 ** can be omitted.  When in doubt return FALSE.  A false negative
2384 ** is harmless.  A false positive, however, can result in the wrong
2385 ** answer.
2386 */
2387 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2388   u8 op;
2389   int unaryMinus = 0;
2390   if( aff==SQLITE_AFF_BLOB ) return 1;
2391   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2392     if( p->op==TK_UMINUS ) unaryMinus = 1;
2393     p = p->pLeft;
2394   }
2395   op = p->op;
2396   if( op==TK_REGISTER ) op = p->op2;
2397   switch( op ){
2398     case TK_INTEGER: {
2399       return aff>=SQLITE_AFF_NUMERIC;
2400     }
2401     case TK_FLOAT: {
2402       return aff>=SQLITE_AFF_NUMERIC;
2403     }
2404     case TK_STRING: {
2405       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2406     }
2407     case TK_BLOB: {
2408       return !unaryMinus;
2409     }
2410     case TK_COLUMN: {
2411       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2412       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2413     }
2414     default: {
2415       return 0;
2416     }
2417   }
2418 }
2419 
2420 /*
2421 ** Return TRUE if the given string is a row-id column name.
2422 */
2423 int sqlite3IsRowid(const char *z){
2424   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2425   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2426   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2427   return 0;
2428 }
2429 
2430 /*
2431 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2432 ** that can be simplified to a direct table access, then return
2433 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2434 ** or if the SELECT statement needs to be manifested into a transient
2435 ** table, then return NULL.
2436 */
2437 #ifndef SQLITE_OMIT_SUBQUERY
2438 static Select *isCandidateForInOpt(Expr *pX){
2439   Select *p;
2440   SrcList *pSrc;
2441   ExprList *pEList;
2442   Table *pTab;
2443   int i;
2444   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2445   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2446   p = pX->x.pSelect;
2447   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2448   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2449     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2450     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2451     return 0; /* No DISTINCT keyword and no aggregate functions */
2452   }
2453   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2454   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2455   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2456   pSrc = p->pSrc;
2457   assert( pSrc!=0 );
2458   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2459   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2460   pTab = pSrc->a[0].pTab;
2461   assert( pTab!=0 );
2462   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2463   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2464   pEList = p->pEList;
2465   assert( pEList!=0 );
2466   /* All SELECT results must be columns. */
2467   for(i=0; i<pEList->nExpr; i++){
2468     Expr *pRes = pEList->a[i].pExpr;
2469     if( pRes->op!=TK_COLUMN ) return 0;
2470     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2471   }
2472   return p;
2473 }
2474 #endif /* SQLITE_OMIT_SUBQUERY */
2475 
2476 #ifndef SQLITE_OMIT_SUBQUERY
2477 /*
2478 ** Generate code that checks the left-most column of index table iCur to see if
2479 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2480 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2481 ** to be set to NULL if iCur contains one or more NULL values.
2482 */
2483 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2484   int addr1;
2485   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2486   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2487   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2488   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2489   VdbeComment((v, "first_entry_in(%d)", iCur));
2490   sqlite3VdbeJumpHere(v, addr1);
2491 }
2492 #endif
2493 
2494 
2495 #ifndef SQLITE_OMIT_SUBQUERY
2496 /*
2497 ** The argument is an IN operator with a list (not a subquery) on the
2498 ** right-hand side.  Return TRUE if that list is constant.
2499 */
2500 static int sqlite3InRhsIsConstant(Expr *pIn){
2501   Expr *pLHS;
2502   int res;
2503   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2504   pLHS = pIn->pLeft;
2505   pIn->pLeft = 0;
2506   res = sqlite3ExprIsConstant(pIn);
2507   pIn->pLeft = pLHS;
2508   return res;
2509 }
2510 #endif
2511 
2512 /*
2513 ** This function is used by the implementation of the IN (...) operator.
2514 ** The pX parameter is the expression on the RHS of the IN operator, which
2515 ** might be either a list of expressions or a subquery.
2516 **
2517 ** The job of this routine is to find or create a b-tree object that can
2518 ** be used either to test for membership in the RHS set or to iterate through
2519 ** all members of the RHS set, skipping duplicates.
2520 **
2521 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2522 ** and pX->iTable is set to the index of that cursor.
2523 **
2524 ** The returned value of this function indicates the b-tree type, as follows:
2525 **
2526 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2527 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2528 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2529 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2530 **                         populated epheremal table.
2531 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2532 **                         implemented as a sequence of comparisons.
2533 **
2534 ** An existing b-tree might be used if the RHS expression pX is a simple
2535 ** subquery such as:
2536 **
2537 **     SELECT <column1>, <column2>... FROM <table>
2538 **
2539 ** If the RHS of the IN operator is a list or a more complex subquery, then
2540 ** an ephemeral table might need to be generated from the RHS and then
2541 ** pX->iTable made to point to the ephemeral table instead of an
2542 ** existing table.
2543 **
2544 ** The inFlags parameter must contain, at a minimum, one of the bits
2545 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2546 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2547 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2548 ** be used to loop over all values of the RHS of the IN operator.
2549 **
2550 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2551 ** through the set members) then the b-tree must not contain duplicates.
2552 ** An epheremal table will be created unless the selected columns are guaranteed
2553 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2554 ** a UNIQUE constraint or index.
2555 **
2556 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2557 ** for fast set membership tests) then an epheremal table must
2558 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2559 ** index can be found with the specified <columns> as its left-most.
2560 **
2561 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2562 ** if the RHS of the IN operator is a list (not a subquery) then this
2563 ** routine might decide that creating an ephemeral b-tree for membership
2564 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2565 ** calling routine should implement the IN operator using a sequence
2566 ** of Eq or Ne comparison operations.
2567 **
2568 ** When the b-tree is being used for membership tests, the calling function
2569 ** might need to know whether or not the RHS side of the IN operator
2570 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2571 ** if there is any chance that the (...) might contain a NULL value at
2572 ** runtime, then a register is allocated and the register number written
2573 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2574 ** NULL value, then *prRhsHasNull is left unchanged.
2575 **
2576 ** If a register is allocated and its location stored in *prRhsHasNull, then
2577 ** the value in that register will be NULL if the b-tree contains one or more
2578 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2579 ** NULL values.
2580 **
2581 ** If the aiMap parameter is not NULL, it must point to an array containing
2582 ** one element for each column returned by the SELECT statement on the RHS
2583 ** of the IN(...) operator. The i'th entry of the array is populated with the
2584 ** offset of the index column that matches the i'th column returned by the
2585 ** SELECT. For example, if the expression and selected index are:
2586 **
2587 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2588 **   CREATE INDEX i1 ON t1(b, c, a);
2589 **
2590 ** then aiMap[] is populated with {2, 0, 1}.
2591 */
2592 #ifndef SQLITE_OMIT_SUBQUERY
2593 int sqlite3FindInIndex(
2594   Parse *pParse,             /* Parsing context */
2595   Expr *pX,                  /* The IN expression */
2596   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2597   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2598   int *aiMap,                /* Mapping from Index fields to RHS fields */
2599   int *piTab                 /* OUT: index to use */
2600 ){
2601   Select *p;                            /* SELECT to the right of IN operator */
2602   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2603   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2604   int mustBeUnique;                     /* True if RHS must be unique */
2605   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2606 
2607   assert( pX->op==TK_IN );
2608   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2609 
2610   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2611   ** whether or not the SELECT result contains NULL values, check whether
2612   ** or not NULL is actually possible (it may not be, for example, due
2613   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2614   ** set prRhsHasNull to 0 before continuing.  */
2615   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2616     int i;
2617     ExprList *pEList = pX->x.pSelect->pEList;
2618     for(i=0; i<pEList->nExpr; i++){
2619       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2620     }
2621     if( i==pEList->nExpr ){
2622       prRhsHasNull = 0;
2623     }
2624   }
2625 
2626   /* Check to see if an existing table or index can be used to
2627   ** satisfy the query.  This is preferable to generating a new
2628   ** ephemeral table.  */
2629   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2630     sqlite3 *db = pParse->db;              /* Database connection */
2631     Table *pTab;                           /* Table <table>. */
2632     int iDb;                               /* Database idx for pTab */
2633     ExprList *pEList = p->pEList;
2634     int nExpr = pEList->nExpr;
2635 
2636     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2637     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2638     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2639     pTab = p->pSrc->a[0].pTab;
2640 
2641     /* Code an OP_Transaction and OP_TableLock for <table>. */
2642     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2643     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2644     sqlite3CodeVerifySchema(pParse, iDb);
2645     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2646 
2647     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2648     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2649       /* The "x IN (SELECT rowid FROM table)" case */
2650       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2651       VdbeCoverage(v);
2652 
2653       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2654       eType = IN_INDEX_ROWID;
2655       ExplainQueryPlan((pParse, 0,
2656             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2657       sqlite3VdbeJumpHere(v, iAddr);
2658     }else{
2659       Index *pIdx;                         /* Iterator variable */
2660       int affinity_ok = 1;
2661       int i;
2662 
2663       /* Check that the affinity that will be used to perform each
2664       ** comparison is the same as the affinity of each column in table
2665       ** on the RHS of the IN operator.  If it not, it is not possible to
2666       ** use any index of the RHS table.  */
2667       for(i=0; i<nExpr && affinity_ok; i++){
2668         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2669         int iCol = pEList->a[i].pExpr->iColumn;
2670         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2671         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2672         testcase( cmpaff==SQLITE_AFF_BLOB );
2673         testcase( cmpaff==SQLITE_AFF_TEXT );
2674         switch( cmpaff ){
2675           case SQLITE_AFF_BLOB:
2676             break;
2677           case SQLITE_AFF_TEXT:
2678             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2679             ** other has no affinity and the other side is TEXT.  Hence,
2680             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2681             ** and for the term on the LHS of the IN to have no affinity. */
2682             assert( idxaff==SQLITE_AFF_TEXT );
2683             break;
2684           default:
2685             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2686         }
2687       }
2688 
2689       if( affinity_ok ){
2690         /* Search for an existing index that will work for this IN operator */
2691         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2692           Bitmask colUsed;      /* Columns of the index used */
2693           Bitmask mCol;         /* Mask for the current column */
2694           if( pIdx->nColumn<nExpr ) continue;
2695           if( pIdx->pPartIdxWhere!=0 ) continue;
2696           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2697           ** BITMASK(nExpr) without overflowing */
2698           testcase( pIdx->nColumn==BMS-2 );
2699           testcase( pIdx->nColumn==BMS-1 );
2700           if( pIdx->nColumn>=BMS-1 ) continue;
2701           if( mustBeUnique ){
2702             if( pIdx->nKeyCol>nExpr
2703              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2704             ){
2705               continue;  /* This index is not unique over the IN RHS columns */
2706             }
2707           }
2708 
2709           colUsed = 0;   /* Columns of index used so far */
2710           for(i=0; i<nExpr; i++){
2711             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2712             Expr *pRhs = pEList->a[i].pExpr;
2713             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2714             int j;
2715 
2716             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2717             for(j=0; j<nExpr; j++){
2718               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2719               assert( pIdx->azColl[j] );
2720               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2721                 continue;
2722               }
2723               break;
2724             }
2725             if( j==nExpr ) break;
2726             mCol = MASKBIT(j);
2727             if( mCol & colUsed ) break; /* Each column used only once */
2728             colUsed |= mCol;
2729             if( aiMap ) aiMap[i] = j;
2730           }
2731 
2732           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2733           if( colUsed==(MASKBIT(nExpr)-1) ){
2734             /* If we reach this point, that means the index pIdx is usable */
2735             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2736             ExplainQueryPlan((pParse, 0,
2737                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2738             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2739             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2740             VdbeComment((v, "%s", pIdx->zName));
2741             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2742             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2743 
2744             if( prRhsHasNull ){
2745 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2746               i64 mask = (1<<nExpr)-1;
2747               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2748                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2749 #endif
2750               *prRhsHasNull = ++pParse->nMem;
2751               if( nExpr==1 ){
2752                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2753               }
2754             }
2755             sqlite3VdbeJumpHere(v, iAddr);
2756           }
2757         } /* End loop over indexes */
2758       } /* End if( affinity_ok ) */
2759     } /* End if not an rowid index */
2760   } /* End attempt to optimize using an index */
2761 
2762   /* If no preexisting index is available for the IN clause
2763   ** and IN_INDEX_NOOP is an allowed reply
2764   ** and the RHS of the IN operator is a list, not a subquery
2765   ** and the RHS is not constant or has two or fewer terms,
2766   ** then it is not worth creating an ephemeral table to evaluate
2767   ** the IN operator so return IN_INDEX_NOOP.
2768   */
2769   if( eType==0
2770    && (inFlags & IN_INDEX_NOOP_OK)
2771    && !ExprHasProperty(pX, EP_xIsSelect)
2772    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2773   ){
2774     eType = IN_INDEX_NOOP;
2775   }
2776 
2777   if( eType==0 ){
2778     /* Could not find an existing table or index to use as the RHS b-tree.
2779     ** We will have to generate an ephemeral table to do the job.
2780     */
2781     u32 savedNQueryLoop = pParse->nQueryLoop;
2782     int rMayHaveNull = 0;
2783     eType = IN_INDEX_EPH;
2784     if( inFlags & IN_INDEX_LOOP ){
2785       pParse->nQueryLoop = 0;
2786     }else if( prRhsHasNull ){
2787       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2788     }
2789     assert( pX->op==TK_IN );
2790     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2791     if( rMayHaveNull ){
2792       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2793     }
2794     pParse->nQueryLoop = savedNQueryLoop;
2795   }
2796 
2797   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2798     int i, n;
2799     n = sqlite3ExprVectorSize(pX->pLeft);
2800     for(i=0; i<n; i++) aiMap[i] = i;
2801   }
2802   *piTab = iTab;
2803   return eType;
2804 }
2805 #endif
2806 
2807 #ifndef SQLITE_OMIT_SUBQUERY
2808 /*
2809 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2810 ** function allocates and returns a nul-terminated string containing
2811 ** the affinities to be used for each column of the comparison.
2812 **
2813 ** It is the responsibility of the caller to ensure that the returned
2814 ** string is eventually freed using sqlite3DbFree().
2815 */
2816 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2817   Expr *pLeft = pExpr->pLeft;
2818   int nVal = sqlite3ExprVectorSize(pLeft);
2819   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2820   char *zRet;
2821 
2822   assert( pExpr->op==TK_IN );
2823   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2824   if( zRet ){
2825     int i;
2826     for(i=0; i<nVal; i++){
2827       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2828       char a = sqlite3ExprAffinity(pA);
2829       if( pSelect ){
2830         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2831       }else{
2832         zRet[i] = a;
2833       }
2834     }
2835     zRet[nVal] = '\0';
2836   }
2837   return zRet;
2838 }
2839 #endif
2840 
2841 #ifndef SQLITE_OMIT_SUBQUERY
2842 /*
2843 ** Load the Parse object passed as the first argument with an error
2844 ** message of the form:
2845 **
2846 **   "sub-select returns N columns - expected M"
2847 */
2848 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2849   if( pParse->nErr==0 ){
2850     const char *zFmt = "sub-select returns %d columns - expected %d";
2851     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2852   }
2853 }
2854 #endif
2855 
2856 /*
2857 ** Expression pExpr is a vector that has been used in a context where
2858 ** it is not permitted. If pExpr is a sub-select vector, this routine
2859 ** loads the Parse object with a message of the form:
2860 **
2861 **   "sub-select returns N columns - expected 1"
2862 **
2863 ** Or, if it is a regular scalar vector:
2864 **
2865 **   "row value misused"
2866 */
2867 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2868 #ifndef SQLITE_OMIT_SUBQUERY
2869   if( pExpr->flags & EP_xIsSelect ){
2870     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2871   }else
2872 #endif
2873   {
2874     sqlite3ErrorMsg(pParse, "row value misused");
2875   }
2876 }
2877 
2878 #ifndef SQLITE_OMIT_SUBQUERY
2879 /*
2880 ** Generate code that will construct an ephemeral table containing all terms
2881 ** in the RHS of an IN operator.  The IN operator can be in either of two
2882 ** forms:
2883 **
2884 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2885 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2886 **
2887 ** The pExpr parameter is the IN operator.  The cursor number for the
2888 ** constructed ephermeral table is returned.  The first time the ephemeral
2889 ** table is computed, the cursor number is also stored in pExpr->iTable,
2890 ** however the cursor number returned might not be the same, as it might
2891 ** have been duplicated using OP_OpenDup.
2892 **
2893 ** If the LHS expression ("x" in the examples) is a column value, or
2894 ** the SELECT statement returns a column value, then the affinity of that
2895 ** column is used to build the index keys. If both 'x' and the
2896 ** SELECT... statement are columns, then numeric affinity is used
2897 ** if either column has NUMERIC or INTEGER affinity. If neither
2898 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2899 ** is used.
2900 */
2901 void sqlite3CodeRhsOfIN(
2902   Parse *pParse,          /* Parsing context */
2903   Expr *pExpr,            /* The IN operator */
2904   int iTab                /* Use this cursor number */
2905 ){
2906   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2907   int addr;                   /* Address of OP_OpenEphemeral instruction */
2908   Expr *pLeft;                /* the LHS of the IN operator */
2909   KeyInfo *pKeyInfo = 0;      /* Key information */
2910   int nVal;                   /* Size of vector pLeft */
2911   Vdbe *v;                    /* The prepared statement under construction */
2912 
2913   v = pParse->pVdbe;
2914   assert( v!=0 );
2915 
2916   /* The evaluation of the IN must be repeated every time it
2917   ** is encountered if any of the following is true:
2918   **
2919   **    *  The right-hand side is a correlated subquery
2920   **    *  The right-hand side is an expression list containing variables
2921   **    *  We are inside a trigger
2922   **
2923   ** If all of the above are false, then we can compute the RHS just once
2924   ** and reuse it many names.
2925   */
2926   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2927     /* Reuse of the RHS is allowed */
2928     /* If this routine has already been coded, but the previous code
2929     ** might not have been invoked yet, so invoke it now as a subroutine.
2930     */
2931     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2932       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2933       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2934         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2935               pExpr->x.pSelect->selId));
2936       }
2937       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2938                         pExpr->y.sub.iAddr);
2939       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2940       sqlite3VdbeJumpHere(v, addrOnce);
2941       return;
2942     }
2943 
2944     /* Begin coding the subroutine */
2945     ExprSetProperty(pExpr, EP_Subrtn);
2946     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2947     pExpr->y.sub.regReturn = ++pParse->nMem;
2948     pExpr->y.sub.iAddr =
2949       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2950     VdbeComment((v, "return address"));
2951 
2952     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2953   }
2954 
2955   /* Check to see if this is a vector IN operator */
2956   pLeft = pExpr->pLeft;
2957   nVal = sqlite3ExprVectorSize(pLeft);
2958 
2959   /* Construct the ephemeral table that will contain the content of
2960   ** RHS of the IN operator.
2961   */
2962   pExpr->iTable = iTab;
2963   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2964 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2965   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2966     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2967   }else{
2968     VdbeComment((v, "RHS of IN operator"));
2969   }
2970 #endif
2971   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2972 
2973   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2974     /* Case 1:     expr IN (SELECT ...)
2975     **
2976     ** Generate code to write the results of the select into the temporary
2977     ** table allocated and opened above.
2978     */
2979     Select *pSelect = pExpr->x.pSelect;
2980     ExprList *pEList = pSelect->pEList;
2981 
2982     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2983         addrOnce?"":"CORRELATED ", pSelect->selId
2984     ));
2985     /* If the LHS and RHS of the IN operator do not match, that
2986     ** error will have been caught long before we reach this point. */
2987     if( ALWAYS(pEList->nExpr==nVal) ){
2988       SelectDest dest;
2989       int i;
2990       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2991       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2992       pSelect->iLimit = 0;
2993       testcase( pSelect->selFlags & SF_Distinct );
2994       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2995       if( sqlite3Select(pParse, pSelect, &dest) ){
2996         sqlite3DbFree(pParse->db, dest.zAffSdst);
2997         sqlite3KeyInfoUnref(pKeyInfo);
2998         return;
2999       }
3000       sqlite3DbFree(pParse->db, dest.zAffSdst);
3001       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3002       assert( pEList!=0 );
3003       assert( pEList->nExpr>0 );
3004       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3005       for(i=0; i<nVal; i++){
3006         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3007         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3008             pParse, p, pEList->a[i].pExpr
3009         );
3010       }
3011     }
3012   }else if( ALWAYS(pExpr->x.pList!=0) ){
3013     /* Case 2:     expr IN (exprlist)
3014     **
3015     ** For each expression, build an index key from the evaluation and
3016     ** store it in the temporary table. If <expr> is a column, then use
3017     ** that columns affinity when building index keys. If <expr> is not
3018     ** a column, use numeric affinity.
3019     */
3020     char affinity;            /* Affinity of the LHS of the IN */
3021     int i;
3022     ExprList *pList = pExpr->x.pList;
3023     struct ExprList_item *pItem;
3024     int r1, r2;
3025     affinity = sqlite3ExprAffinity(pLeft);
3026     if( affinity<=SQLITE_AFF_NONE ){
3027       affinity = SQLITE_AFF_BLOB;
3028     }else if( affinity==SQLITE_AFF_REAL ){
3029       affinity = SQLITE_AFF_NUMERIC;
3030     }
3031     if( pKeyInfo ){
3032       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3033       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3034     }
3035 
3036     /* Loop through each expression in <exprlist>. */
3037     r1 = sqlite3GetTempReg(pParse);
3038     r2 = sqlite3GetTempReg(pParse);
3039     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3040       Expr *pE2 = pItem->pExpr;
3041 
3042       /* If the expression is not constant then we will need to
3043       ** disable the test that was generated above that makes sure
3044       ** this code only executes once.  Because for a non-constant
3045       ** expression we need to rerun this code each time.
3046       */
3047       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3048         sqlite3VdbeChangeToNoop(v, addrOnce);
3049         ExprClearProperty(pExpr, EP_Subrtn);
3050         addrOnce = 0;
3051       }
3052 
3053       /* Evaluate the expression and insert it into the temp table */
3054       sqlite3ExprCode(pParse, pE2, r1);
3055       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3056       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3057     }
3058     sqlite3ReleaseTempReg(pParse, r1);
3059     sqlite3ReleaseTempReg(pParse, r2);
3060   }
3061   if( pKeyInfo ){
3062     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3063   }
3064   if( addrOnce ){
3065     sqlite3VdbeJumpHere(v, addrOnce);
3066     /* Subroutine return */
3067     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3068     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3069     sqlite3ClearTempRegCache(pParse);
3070   }
3071 }
3072 #endif /* SQLITE_OMIT_SUBQUERY */
3073 
3074 /*
3075 ** Generate code for scalar subqueries used as a subquery expression
3076 ** or EXISTS operator:
3077 **
3078 **     (SELECT a FROM b)          -- subquery
3079 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3080 **
3081 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3082 **
3083 ** Return the register that holds the result.  For a multi-column SELECT,
3084 ** the result is stored in a contiguous array of registers and the
3085 ** return value is the register of the left-most result column.
3086 ** Return 0 if an error occurs.
3087 */
3088 #ifndef SQLITE_OMIT_SUBQUERY
3089 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3090   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3091   int rReg = 0;               /* Register storing resulting */
3092   Select *pSel;               /* SELECT statement to encode */
3093   SelectDest dest;            /* How to deal with SELECT result */
3094   int nReg;                   /* Registers to allocate */
3095   Expr *pLimit;               /* New limit expression */
3096 
3097   Vdbe *v = pParse->pVdbe;
3098   assert( v!=0 );
3099   if( pParse->nErr ) return 0;
3100   testcase( pExpr->op==TK_EXISTS );
3101   testcase( pExpr->op==TK_SELECT );
3102   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3103   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3104   pSel = pExpr->x.pSelect;
3105 
3106   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3107   ** is encountered if any of the following is true:
3108   **
3109   **    *  The right-hand side is a correlated subquery
3110   **    *  The right-hand side is an expression list containing variables
3111   **    *  We are inside a trigger
3112   **
3113   ** If all of the above are false, then we can run this code just once
3114   ** save the results, and reuse the same result on subsequent invocations.
3115   */
3116   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3117     /* If this routine has already been coded, then invoke it as a
3118     ** subroutine. */
3119     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3120       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3121       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3122                         pExpr->y.sub.iAddr);
3123       return pExpr->iTable;
3124     }
3125 
3126     /* Begin coding the subroutine */
3127     ExprSetProperty(pExpr, EP_Subrtn);
3128     pExpr->y.sub.regReturn = ++pParse->nMem;
3129     pExpr->y.sub.iAddr =
3130       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3131     VdbeComment((v, "return address"));
3132 
3133     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3134   }
3135 
3136   /* For a SELECT, generate code to put the values for all columns of
3137   ** the first row into an array of registers and return the index of
3138   ** the first register.
3139   **
3140   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3141   ** into a register and return that register number.
3142   **
3143   ** In both cases, the query is augmented with "LIMIT 1".  Any
3144   ** preexisting limit is discarded in place of the new LIMIT 1.
3145   */
3146   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3147         addrOnce?"":"CORRELATED ", pSel->selId));
3148   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3149   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3150   pParse->nMem += nReg;
3151   if( pExpr->op==TK_SELECT ){
3152     dest.eDest = SRT_Mem;
3153     dest.iSdst = dest.iSDParm;
3154     dest.nSdst = nReg;
3155     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3156     VdbeComment((v, "Init subquery result"));
3157   }else{
3158     dest.eDest = SRT_Exists;
3159     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3160     VdbeComment((v, "Init EXISTS result"));
3161   }
3162   if( pSel->pLimit ){
3163     /* The subquery already has a limit.  If the pre-existing limit is X
3164     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3165     sqlite3 *db = pParse->db;
3166     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3167     if( pLimit ){
3168       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3169       pLimit = sqlite3PExpr(pParse, TK_NE,
3170                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3171     }
3172     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3173     pSel->pLimit->pLeft = pLimit;
3174   }else{
3175     /* If there is no pre-existing limit add a limit of 1 */
3176     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3177     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3178   }
3179   pSel->iLimit = 0;
3180   if( sqlite3Select(pParse, pSel, &dest) ){
3181     if( pParse->nErr ){
3182       pExpr->op2 = pExpr->op;
3183       pExpr->op = TK_ERROR;
3184     }
3185     return 0;
3186   }
3187   pExpr->iTable = rReg = dest.iSDParm;
3188   ExprSetVVAProperty(pExpr, EP_NoReduce);
3189   if( addrOnce ){
3190     sqlite3VdbeJumpHere(v, addrOnce);
3191 
3192     /* Subroutine return */
3193     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3194     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3195     sqlite3ClearTempRegCache(pParse);
3196   }
3197 
3198   return rReg;
3199 }
3200 #endif /* SQLITE_OMIT_SUBQUERY */
3201 
3202 #ifndef SQLITE_OMIT_SUBQUERY
3203 /*
3204 ** Expr pIn is an IN(...) expression. This function checks that the
3205 ** sub-select on the RHS of the IN() operator has the same number of
3206 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3207 ** a sub-query, that the LHS is a vector of size 1.
3208 */
3209 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3210   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3211   if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){
3212     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3213       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3214       return 1;
3215     }
3216   }else if( nVector!=1 ){
3217     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3218     return 1;
3219   }
3220   return 0;
3221 }
3222 #endif
3223 
3224 #ifndef SQLITE_OMIT_SUBQUERY
3225 /*
3226 ** Generate code for an IN expression.
3227 **
3228 **      x IN (SELECT ...)
3229 **      x IN (value, value, ...)
3230 **
3231 ** The left-hand side (LHS) is a scalar or vector expression.  The
3232 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3233 ** subquery.  If the RHS is a subquery, the number of result columns must
3234 ** match the number of columns in the vector on the LHS.  If the RHS is
3235 ** a list of values, the LHS must be a scalar.
3236 **
3237 ** The IN operator is true if the LHS value is contained within the RHS.
3238 ** The result is false if the LHS is definitely not in the RHS.  The
3239 ** result is NULL if the presence of the LHS in the RHS cannot be
3240 ** determined due to NULLs.
3241 **
3242 ** This routine generates code that jumps to destIfFalse if the LHS is not
3243 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3244 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3245 ** within the RHS then fall through.
3246 **
3247 ** See the separate in-operator.md documentation file in the canonical
3248 ** SQLite source tree for additional information.
3249 */
3250 static void sqlite3ExprCodeIN(
3251   Parse *pParse,        /* Parsing and code generating context */
3252   Expr *pExpr,          /* The IN expression */
3253   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3254   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3255 ){
3256   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3257   int eType;            /* Type of the RHS */
3258   int rLhs;             /* Register(s) holding the LHS values */
3259   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3260   Vdbe *v;              /* Statement under construction */
3261   int *aiMap = 0;       /* Map from vector field to index column */
3262   char *zAff = 0;       /* Affinity string for comparisons */
3263   int nVector;          /* Size of vectors for this IN operator */
3264   int iDummy;           /* Dummy parameter to exprCodeVector() */
3265   Expr *pLeft;          /* The LHS of the IN operator */
3266   int i;                /* loop counter */
3267   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3268   int destStep6 = 0;    /* Start of code for Step 6 */
3269   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3270   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3271   int addrTop;          /* Top of the step-6 loop */
3272   int iTab = 0;         /* Index to use */
3273   u8 okConstFactor = pParse->okConstFactor;
3274 
3275   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3276   pLeft = pExpr->pLeft;
3277   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3278   zAff = exprINAffinity(pParse, pExpr);
3279   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3280   aiMap = (int*)sqlite3DbMallocZero(
3281       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3282   );
3283   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3284 
3285   /* Attempt to compute the RHS. After this step, if anything other than
3286   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3287   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3288   ** the RHS has not yet been coded.  */
3289   v = pParse->pVdbe;
3290   assert( v!=0 );       /* OOM detected prior to this routine */
3291   VdbeNoopComment((v, "begin IN expr"));
3292   eType = sqlite3FindInIndex(pParse, pExpr,
3293                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3294                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3295                              aiMap, &iTab);
3296 
3297   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3298        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3299   );
3300 #ifdef SQLITE_DEBUG
3301   /* Confirm that aiMap[] contains nVector integer values between 0 and
3302   ** nVector-1. */
3303   for(i=0; i<nVector; i++){
3304     int j, cnt;
3305     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3306     assert( cnt==1 );
3307   }
3308 #endif
3309 
3310   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3311   ** vector, then it is stored in an array of nVector registers starting
3312   ** at r1.
3313   **
3314   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3315   ** so that the fields are in the same order as an existing index.   The
3316   ** aiMap[] array contains a mapping from the original LHS field order to
3317   ** the field order that matches the RHS index.
3318   **
3319   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3320   ** even if it is constant, as OP_Affinity may be used on the register
3321   ** by code generated below.  */
3322   assert( pParse->okConstFactor==okConstFactor );
3323   pParse->okConstFactor = 0;
3324   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3325   pParse->okConstFactor = okConstFactor;
3326   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3327   if( i==nVector ){
3328     /* LHS fields are not reordered */
3329     rLhs = rLhsOrig;
3330   }else{
3331     /* Need to reorder the LHS fields according to aiMap */
3332     rLhs = sqlite3GetTempRange(pParse, nVector);
3333     for(i=0; i<nVector; i++){
3334       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3335     }
3336   }
3337 
3338   /* If sqlite3FindInIndex() did not find or create an index that is
3339   ** suitable for evaluating the IN operator, then evaluate using a
3340   ** sequence of comparisons.
3341   **
3342   ** This is step (1) in the in-operator.md optimized algorithm.
3343   */
3344   if( eType==IN_INDEX_NOOP ){
3345     ExprList *pList = pExpr->x.pList;
3346     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3347     int labelOk = sqlite3VdbeMakeLabel(pParse);
3348     int r2, regToFree;
3349     int regCkNull = 0;
3350     int ii;
3351     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3352     if( destIfNull!=destIfFalse ){
3353       regCkNull = sqlite3GetTempReg(pParse);
3354       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3355     }
3356     for(ii=0; ii<pList->nExpr; ii++){
3357       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3358       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3359         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3360       }
3361       sqlite3ReleaseTempReg(pParse, regToFree);
3362       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3363         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3364         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3365                           (void*)pColl, P4_COLLSEQ);
3366         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3367         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3368         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3369         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3370         sqlite3VdbeChangeP5(v, zAff[0]);
3371       }else{
3372         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3373         assert( destIfNull==destIfFalse );
3374         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3375                           (void*)pColl, P4_COLLSEQ);
3376         VdbeCoverageIf(v, op==OP_Ne);
3377         VdbeCoverageIf(v, op==OP_IsNull);
3378         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3379       }
3380     }
3381     if( regCkNull ){
3382       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3383       sqlite3VdbeGoto(v, destIfFalse);
3384     }
3385     sqlite3VdbeResolveLabel(v, labelOk);
3386     sqlite3ReleaseTempReg(pParse, regCkNull);
3387     goto sqlite3ExprCodeIN_finished;
3388   }
3389 
3390   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3391   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3392   ** We will then skip the binary search of the RHS.
3393   */
3394   if( destIfNull==destIfFalse ){
3395     destStep2 = destIfFalse;
3396   }else{
3397     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3398   }
3399   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3400   for(i=0; i<nVector; i++){
3401     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3402     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3403     if( sqlite3ExprCanBeNull(p) ){
3404       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3405       VdbeCoverage(v);
3406     }
3407   }
3408 
3409   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3410   ** of the RHS using the LHS as a probe.  If found, the result is
3411   ** true.
3412   */
3413   if( eType==IN_INDEX_ROWID ){
3414     /* In this case, the RHS is the ROWID of table b-tree and so we also
3415     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3416     ** into a single opcode. */
3417     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3418     VdbeCoverage(v);
3419     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3420   }else{
3421     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3422     if( destIfFalse==destIfNull ){
3423       /* Combine Step 3 and Step 5 into a single opcode */
3424       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3425                            rLhs, nVector); VdbeCoverage(v);
3426       goto sqlite3ExprCodeIN_finished;
3427     }
3428     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3429     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3430                                       rLhs, nVector); VdbeCoverage(v);
3431   }
3432 
3433   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3434   ** an match on the search above, then the result must be FALSE.
3435   */
3436   if( rRhsHasNull && nVector==1 ){
3437     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3438     VdbeCoverage(v);
3439   }
3440 
3441   /* Step 5.  If we do not care about the difference between NULL and
3442   ** FALSE, then just return false.
3443   */
3444   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3445 
3446   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3447   ** If any comparison is NULL, then the result is NULL.  If all
3448   ** comparisons are FALSE then the final result is FALSE.
3449   **
3450   ** For a scalar LHS, it is sufficient to check just the first row
3451   ** of the RHS.
3452   */
3453   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3454   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3455   VdbeCoverage(v);
3456   if( nVector>1 ){
3457     destNotNull = sqlite3VdbeMakeLabel(pParse);
3458   }else{
3459     /* For nVector==1, combine steps 6 and 7 by immediately returning
3460     ** FALSE if the first comparison is not NULL */
3461     destNotNull = destIfFalse;
3462   }
3463   for(i=0; i<nVector; i++){
3464     Expr *p;
3465     CollSeq *pColl;
3466     int r3 = sqlite3GetTempReg(pParse);
3467     p = sqlite3VectorFieldSubexpr(pLeft, i);
3468     pColl = sqlite3ExprCollSeq(pParse, p);
3469     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3470     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3471                       (void*)pColl, P4_COLLSEQ);
3472     VdbeCoverage(v);
3473     sqlite3ReleaseTempReg(pParse, r3);
3474   }
3475   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3476   if( nVector>1 ){
3477     sqlite3VdbeResolveLabel(v, destNotNull);
3478     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3479     VdbeCoverage(v);
3480 
3481     /* Step 7:  If we reach this point, we know that the result must
3482     ** be false. */
3483     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3484   }
3485 
3486   /* Jumps here in order to return true. */
3487   sqlite3VdbeJumpHere(v, addrTruthOp);
3488 
3489 sqlite3ExprCodeIN_finished:
3490   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3491   VdbeComment((v, "end IN expr"));
3492 sqlite3ExprCodeIN_oom_error:
3493   sqlite3DbFree(pParse->db, aiMap);
3494   sqlite3DbFree(pParse->db, zAff);
3495 }
3496 #endif /* SQLITE_OMIT_SUBQUERY */
3497 
3498 #ifndef SQLITE_OMIT_FLOATING_POINT
3499 /*
3500 ** Generate an instruction that will put the floating point
3501 ** value described by z[0..n-1] into register iMem.
3502 **
3503 ** The z[] string will probably not be zero-terminated.  But the
3504 ** z[n] character is guaranteed to be something that does not look
3505 ** like the continuation of the number.
3506 */
3507 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3508   if( ALWAYS(z!=0) ){
3509     double value;
3510     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3511     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3512     if( negateFlag ) value = -value;
3513     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3514   }
3515 }
3516 #endif
3517 
3518 
3519 /*
3520 ** Generate an instruction that will put the integer describe by
3521 ** text z[0..n-1] into register iMem.
3522 **
3523 ** Expr.u.zToken is always UTF8 and zero-terminated.
3524 */
3525 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3526   Vdbe *v = pParse->pVdbe;
3527   if( pExpr->flags & EP_IntValue ){
3528     int i = pExpr->u.iValue;
3529     assert( i>=0 );
3530     if( negFlag ) i = -i;
3531     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3532   }else{
3533     int c;
3534     i64 value;
3535     const char *z = pExpr->u.zToken;
3536     assert( z!=0 );
3537     c = sqlite3DecOrHexToI64(z, &value);
3538     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3539 #ifdef SQLITE_OMIT_FLOATING_POINT
3540       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3541 #else
3542 #ifndef SQLITE_OMIT_HEX_INTEGER
3543       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3544         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3545       }else
3546 #endif
3547       {
3548         codeReal(v, z, negFlag, iMem);
3549       }
3550 #endif
3551     }else{
3552       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3553       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3554     }
3555   }
3556 }
3557 
3558 
3559 /* Generate code that will load into register regOut a value that is
3560 ** appropriate for the iIdxCol-th column of index pIdx.
3561 */
3562 void sqlite3ExprCodeLoadIndexColumn(
3563   Parse *pParse,  /* The parsing context */
3564   Index *pIdx,    /* The index whose column is to be loaded */
3565   int iTabCur,    /* Cursor pointing to a table row */
3566   int iIdxCol,    /* The column of the index to be loaded */
3567   int regOut      /* Store the index column value in this register */
3568 ){
3569   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3570   if( iTabCol==XN_EXPR ){
3571     assert( pIdx->aColExpr );
3572     assert( pIdx->aColExpr->nExpr>iIdxCol );
3573     pParse->iSelfTab = iTabCur + 1;
3574     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3575     pParse->iSelfTab = 0;
3576   }else{
3577     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3578                                     iTabCol, regOut);
3579   }
3580 }
3581 
3582 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3583 /*
3584 ** Generate code that will compute the value of generated column pCol
3585 ** and store the result in register regOut
3586 */
3587 void sqlite3ExprCodeGeneratedColumn(
3588   Parse *pParse,
3589   Column *pCol,
3590   int regOut
3591 ){
3592   int iAddr;
3593   Vdbe *v = pParse->pVdbe;
3594   assert( v!=0 );
3595   assert( pParse->iSelfTab!=0 );
3596   if( pParse->iSelfTab>0 ){
3597     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3598   }else{
3599     iAddr = 0;
3600   }
3601   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3602   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3603     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3604   }
3605   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3606 }
3607 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3608 
3609 /*
3610 ** Generate code to extract the value of the iCol-th column of a table.
3611 */
3612 void sqlite3ExprCodeGetColumnOfTable(
3613   Vdbe *v,        /* Parsing context */
3614   Table *pTab,    /* The table containing the value */
3615   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3616   int iCol,       /* Index of the column to extract */
3617   int regOut      /* Extract the value into this register */
3618 ){
3619   Column *pCol;
3620   assert( v!=0 );
3621   if( pTab==0 ){
3622     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3623     return;
3624   }
3625   if( iCol<0 || iCol==pTab->iPKey ){
3626     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3627   }else{
3628     int op;
3629     int x;
3630     if( IsVirtual(pTab) ){
3631       op = OP_VColumn;
3632       x = iCol;
3633 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3634     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3635       Parse *pParse = sqlite3VdbeParser(v);
3636       if( pCol->colFlags & COLFLAG_BUSY ){
3637         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3638       }else{
3639         int savedSelfTab = pParse->iSelfTab;
3640         pCol->colFlags |= COLFLAG_BUSY;
3641         pParse->iSelfTab = iTabCur+1;
3642         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3643         pParse->iSelfTab = savedSelfTab;
3644         pCol->colFlags &= ~COLFLAG_BUSY;
3645       }
3646       return;
3647 #endif
3648     }else if( !HasRowid(pTab) ){
3649       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3650       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3651       op = OP_Column;
3652     }else{
3653       x = sqlite3TableColumnToStorage(pTab,iCol);
3654       testcase( x!=iCol );
3655       op = OP_Column;
3656     }
3657     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3658     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3659   }
3660 }
3661 
3662 /*
3663 ** Generate code that will extract the iColumn-th column from
3664 ** table pTab and store the column value in register iReg.
3665 **
3666 ** There must be an open cursor to pTab in iTable when this routine
3667 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3668 */
3669 int sqlite3ExprCodeGetColumn(
3670   Parse *pParse,   /* Parsing and code generating context */
3671   Table *pTab,     /* Description of the table we are reading from */
3672   int iColumn,     /* Index of the table column */
3673   int iTable,      /* The cursor pointing to the table */
3674   int iReg,        /* Store results here */
3675   u8 p5            /* P5 value for OP_Column + FLAGS */
3676 ){
3677   assert( pParse->pVdbe!=0 );
3678   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3679   if( p5 ){
3680     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3681     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3682   }
3683   return iReg;
3684 }
3685 
3686 /*
3687 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3688 ** over to iTo..iTo+nReg-1.
3689 */
3690 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3691   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3692 }
3693 
3694 /*
3695 ** Convert a scalar expression node to a TK_REGISTER referencing
3696 ** register iReg.  The caller must ensure that iReg already contains
3697 ** the correct value for the expression.
3698 */
3699 static void exprToRegister(Expr *pExpr, int iReg){
3700   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3701   if( NEVER(p==0) ) return;
3702   p->op2 = p->op;
3703   p->op = TK_REGISTER;
3704   p->iTable = iReg;
3705   ExprClearProperty(p, EP_Skip);
3706 }
3707 
3708 /*
3709 ** Evaluate an expression (either a vector or a scalar expression) and store
3710 ** the result in continguous temporary registers.  Return the index of
3711 ** the first register used to store the result.
3712 **
3713 ** If the returned result register is a temporary scalar, then also write
3714 ** that register number into *piFreeable.  If the returned result register
3715 ** is not a temporary or if the expression is a vector set *piFreeable
3716 ** to 0.
3717 */
3718 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3719   int iResult;
3720   int nResult = sqlite3ExprVectorSize(p);
3721   if( nResult==1 ){
3722     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3723   }else{
3724     *piFreeable = 0;
3725     if( p->op==TK_SELECT ){
3726 #if SQLITE_OMIT_SUBQUERY
3727       iResult = 0;
3728 #else
3729       iResult = sqlite3CodeSubselect(pParse, p);
3730 #endif
3731     }else{
3732       int i;
3733       iResult = pParse->nMem+1;
3734       pParse->nMem += nResult;
3735       for(i=0; i<nResult; i++){
3736         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3737       }
3738     }
3739   }
3740   return iResult;
3741 }
3742 
3743 /*
3744 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3745 ** so that a subsequent copy will not be merged into this one.
3746 */
3747 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3748   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3749     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3750   }
3751 }
3752 
3753 /*
3754 ** Generate code to implement special SQL functions that are implemented
3755 ** in-line rather than by using the usual callbacks.
3756 */
3757 static int exprCodeInlineFunction(
3758   Parse *pParse,        /* Parsing context */
3759   ExprList *pFarg,      /* List of function arguments */
3760   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3761   int target            /* Store function result in this register */
3762 ){
3763   int nFarg;
3764   Vdbe *v = pParse->pVdbe;
3765   assert( v!=0 );
3766   assert( pFarg!=0 );
3767   nFarg = pFarg->nExpr;
3768   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3769   switch( iFuncId ){
3770     case INLINEFUNC_coalesce: {
3771       /* Attempt a direct implementation of the built-in COALESCE() and
3772       ** IFNULL() functions.  This avoids unnecessary evaluation of
3773       ** arguments past the first non-NULL argument.
3774       */
3775       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3776       int i;
3777       assert( nFarg>=2 );
3778       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3779       for(i=1; i<nFarg; i++){
3780         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3781         VdbeCoverage(v);
3782         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3783       }
3784       setDoNotMergeFlagOnCopy(v);
3785       sqlite3VdbeResolveLabel(v, endCoalesce);
3786       break;
3787     }
3788     case INLINEFUNC_iif: {
3789       Expr caseExpr;
3790       memset(&caseExpr, 0, sizeof(caseExpr));
3791       caseExpr.op = TK_CASE;
3792       caseExpr.x.pList = pFarg;
3793       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3794     }
3795 
3796     default: {
3797       /* The UNLIKELY() function is a no-op.  The result is the value
3798       ** of the first argument.
3799       */
3800       assert( nFarg==1 || nFarg==2 );
3801       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3802       break;
3803     }
3804 
3805   /***********************************************************************
3806   ** Test-only SQL functions that are only usable if enabled
3807   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3808   */
3809     case INLINEFUNC_expr_compare: {
3810       /* Compare two expressions using sqlite3ExprCompare() */
3811       assert( nFarg==2 );
3812       sqlite3VdbeAddOp2(v, OP_Integer,
3813          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3814          target);
3815       break;
3816     }
3817 
3818     case INLINEFUNC_expr_implies_expr: {
3819       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3820       assert( nFarg==2 );
3821       sqlite3VdbeAddOp2(v, OP_Integer,
3822          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3823          target);
3824       break;
3825     }
3826 
3827     case INLINEFUNC_implies_nonnull_row: {
3828       /* REsult of sqlite3ExprImpliesNonNullRow() */
3829       Expr *pA1;
3830       assert( nFarg==2 );
3831       pA1 = pFarg->a[1].pExpr;
3832       if( pA1->op==TK_COLUMN ){
3833         sqlite3VdbeAddOp2(v, OP_Integer,
3834            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3835            target);
3836       }else{
3837         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3838       }
3839       break;
3840     }
3841 
3842 #ifdef SQLITE_DEBUG
3843     case INLINEFUNC_affinity: {
3844       /* The AFFINITY() function evaluates to a string that describes
3845       ** the type affinity of the argument.  This is used for testing of
3846       ** the SQLite type logic.
3847       */
3848       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3849       char aff;
3850       assert( nFarg==1 );
3851       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3852       sqlite3VdbeLoadString(v, target,
3853               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3854       break;
3855     }
3856 #endif
3857   }
3858   return target;
3859 }
3860 
3861 
3862 /*
3863 ** Generate code into the current Vdbe to evaluate the given
3864 ** expression.  Attempt to store the results in register "target".
3865 ** Return the register where results are stored.
3866 **
3867 ** With this routine, there is no guarantee that results will
3868 ** be stored in target.  The result might be stored in some other
3869 ** register if it is convenient to do so.  The calling function
3870 ** must check the return code and move the results to the desired
3871 ** register.
3872 */
3873 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3874   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3875   int op;                   /* The opcode being coded */
3876   int inReg = target;       /* Results stored in register inReg */
3877   int regFree1 = 0;         /* If non-zero free this temporary register */
3878   int regFree2 = 0;         /* If non-zero free this temporary register */
3879   int r1, r2;               /* Various register numbers */
3880   Expr tempX;               /* Temporary expression node */
3881   int p5 = 0;
3882 
3883   assert( target>0 && target<=pParse->nMem );
3884   assert( v!=0 );
3885 
3886 expr_code_doover:
3887   if( pExpr==0 ){
3888     op = TK_NULL;
3889   }else{
3890     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3891     op = pExpr->op;
3892   }
3893   switch( op ){
3894     case TK_AGG_COLUMN: {
3895       AggInfo *pAggInfo = pExpr->pAggInfo;
3896       struct AggInfo_col *pCol;
3897       assert( pAggInfo!=0 );
3898       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3899       pCol = &pAggInfo->aCol[pExpr->iAgg];
3900       if( !pAggInfo->directMode ){
3901         assert( pCol->iMem>0 );
3902         return pCol->iMem;
3903       }else if( pAggInfo->useSortingIdx ){
3904         Table *pTab = pCol->pTab;
3905         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3906                               pCol->iSorterColumn, target);
3907         if( pCol->iColumn<0 ){
3908           VdbeComment((v,"%s.rowid",pTab->zName));
3909         }else{
3910           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3911           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3912             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3913           }
3914         }
3915         return target;
3916       }
3917       /* Otherwise, fall thru into the TK_COLUMN case */
3918       /* no break */ deliberate_fall_through
3919     }
3920     case TK_COLUMN: {
3921       int iTab = pExpr->iTable;
3922       int iReg;
3923       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3924         /* This COLUMN expression is really a constant due to WHERE clause
3925         ** constraints, and that constant is coded by the pExpr->pLeft
3926         ** expresssion.  However, make sure the constant has the correct
3927         ** datatype by applying the Affinity of the table column to the
3928         ** constant.
3929         */
3930         int aff;
3931         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3932         if( pExpr->y.pTab ){
3933           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3934         }else{
3935           aff = pExpr->affExpr;
3936         }
3937         if( aff>SQLITE_AFF_BLOB ){
3938           static const char zAff[] = "B\000C\000D\000E";
3939           assert( SQLITE_AFF_BLOB=='A' );
3940           assert( SQLITE_AFF_TEXT=='B' );
3941           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3942                             &zAff[(aff-'B')*2], P4_STATIC);
3943         }
3944         return iReg;
3945       }
3946       if( iTab<0 ){
3947         if( pParse->iSelfTab<0 ){
3948           /* Other columns in the same row for CHECK constraints or
3949           ** generated columns or for inserting into partial index.
3950           ** The row is unpacked into registers beginning at
3951           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3952           ** immediately prior to the first column.
3953           */
3954           Column *pCol;
3955           Table *pTab = pExpr->y.pTab;
3956           int iSrc;
3957           int iCol = pExpr->iColumn;
3958           assert( pTab!=0 );
3959           assert( iCol>=XN_ROWID );
3960           assert( iCol<pTab->nCol );
3961           if( iCol<0 ){
3962             return -1-pParse->iSelfTab;
3963           }
3964           pCol = pTab->aCol + iCol;
3965           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3966           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3967 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3968           if( pCol->colFlags & COLFLAG_GENERATED ){
3969             if( pCol->colFlags & COLFLAG_BUSY ){
3970               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3971                               pCol->zName);
3972               return 0;
3973             }
3974             pCol->colFlags |= COLFLAG_BUSY;
3975             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3976               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3977             }
3978             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3979             return iSrc;
3980           }else
3981 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3982           if( pCol->affinity==SQLITE_AFF_REAL ){
3983             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3984             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3985             return target;
3986           }else{
3987             return iSrc;
3988           }
3989         }else{
3990           /* Coding an expression that is part of an index where column names
3991           ** in the index refer to the table to which the index belongs */
3992           iTab = pParse->iSelfTab - 1;
3993         }
3994       }
3995       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3996                                pExpr->iColumn, iTab, target,
3997                                pExpr->op2);
3998       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3999         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4000       }
4001       return iReg;
4002     }
4003     case TK_INTEGER: {
4004       codeInteger(pParse, pExpr, 0, target);
4005       return target;
4006     }
4007     case TK_TRUEFALSE: {
4008       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4009       return target;
4010     }
4011 #ifndef SQLITE_OMIT_FLOATING_POINT
4012     case TK_FLOAT: {
4013       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4014       codeReal(v, pExpr->u.zToken, 0, target);
4015       return target;
4016     }
4017 #endif
4018     case TK_STRING: {
4019       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4020       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4021       return target;
4022     }
4023     default: {
4024       /* Make NULL the default case so that if a bug causes an illegal
4025       ** Expr node to be passed into this function, it will be handled
4026       ** sanely and not crash.  But keep the assert() to bring the problem
4027       ** to the attention of the developers. */
4028       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4029       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4030       return target;
4031     }
4032 #ifndef SQLITE_OMIT_BLOB_LITERAL
4033     case TK_BLOB: {
4034       int n;
4035       const char *z;
4036       char *zBlob;
4037       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4038       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4039       assert( pExpr->u.zToken[1]=='\'' );
4040       z = &pExpr->u.zToken[2];
4041       n = sqlite3Strlen30(z) - 1;
4042       assert( z[n]=='\'' );
4043       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4044       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4045       return target;
4046     }
4047 #endif
4048     case TK_VARIABLE: {
4049       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4050       assert( pExpr->u.zToken!=0 );
4051       assert( pExpr->u.zToken[0]!=0 );
4052       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4053       if( pExpr->u.zToken[1]!=0 ){
4054         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4055         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4056         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4057         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4058       }
4059       return target;
4060     }
4061     case TK_REGISTER: {
4062       return pExpr->iTable;
4063     }
4064 #ifndef SQLITE_OMIT_CAST
4065     case TK_CAST: {
4066       /* Expressions of the form:   CAST(pLeft AS token) */
4067       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4068       if( inReg!=target ){
4069         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4070         inReg = target;
4071       }
4072       sqlite3VdbeAddOp2(v, OP_Cast, target,
4073                         sqlite3AffinityType(pExpr->u.zToken, 0));
4074       return inReg;
4075     }
4076 #endif /* SQLITE_OMIT_CAST */
4077     case TK_IS:
4078     case TK_ISNOT:
4079       op = (op==TK_IS) ? TK_EQ : TK_NE;
4080       p5 = SQLITE_NULLEQ;
4081       /* fall-through */
4082     case TK_LT:
4083     case TK_LE:
4084     case TK_GT:
4085     case TK_GE:
4086     case TK_NE:
4087     case TK_EQ: {
4088       Expr *pLeft = pExpr->pLeft;
4089       if( sqlite3ExprIsVector(pLeft) ){
4090         codeVectorCompare(pParse, pExpr, target, op, p5);
4091       }else{
4092         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4093         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4094         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4095         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4096             sqlite3VdbeCurrentAddr(v)+2, p5,
4097             ExprHasProperty(pExpr,EP_Commuted));
4098         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4099         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4100         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4101         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4102         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4103         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4104         if( p5==SQLITE_NULLEQ ){
4105           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4106         }else{
4107           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4108         }
4109         testcase( regFree1==0 );
4110         testcase( regFree2==0 );
4111       }
4112       break;
4113     }
4114     case TK_AND:
4115     case TK_OR:
4116     case TK_PLUS:
4117     case TK_STAR:
4118     case TK_MINUS:
4119     case TK_REM:
4120     case TK_BITAND:
4121     case TK_BITOR:
4122     case TK_SLASH:
4123     case TK_LSHIFT:
4124     case TK_RSHIFT:
4125     case TK_CONCAT: {
4126       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4127       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4128       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4129       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4130       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4131       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4132       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4133       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4134       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4135       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4136       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4137       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4138       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4139       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4140       testcase( regFree1==0 );
4141       testcase( regFree2==0 );
4142       break;
4143     }
4144     case TK_UMINUS: {
4145       Expr *pLeft = pExpr->pLeft;
4146       assert( pLeft );
4147       if( pLeft->op==TK_INTEGER ){
4148         codeInteger(pParse, pLeft, 1, target);
4149         return target;
4150 #ifndef SQLITE_OMIT_FLOATING_POINT
4151       }else if( pLeft->op==TK_FLOAT ){
4152         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4153         codeReal(v, pLeft->u.zToken, 1, target);
4154         return target;
4155 #endif
4156       }else{
4157         tempX.op = TK_INTEGER;
4158         tempX.flags = EP_IntValue|EP_TokenOnly;
4159         tempX.u.iValue = 0;
4160         ExprClearVVAProperties(&tempX);
4161         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4162         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4163         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4164         testcase( regFree2==0 );
4165       }
4166       break;
4167     }
4168     case TK_BITNOT:
4169     case TK_NOT: {
4170       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4171       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4172       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4173       testcase( regFree1==0 );
4174       sqlite3VdbeAddOp2(v, op, r1, inReg);
4175       break;
4176     }
4177     case TK_TRUTH: {
4178       int isTrue;    /* IS TRUE or IS NOT TRUE */
4179       int bNormal;   /* IS TRUE or IS FALSE */
4180       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4181       testcase( regFree1==0 );
4182       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4183       bNormal = pExpr->op2==TK_IS;
4184       testcase( isTrue && bNormal);
4185       testcase( !isTrue && bNormal);
4186       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4187       break;
4188     }
4189     case TK_ISNULL:
4190     case TK_NOTNULL: {
4191       int addr;
4192       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4193       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4194       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4195       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4196       testcase( regFree1==0 );
4197       addr = sqlite3VdbeAddOp1(v, op, r1);
4198       VdbeCoverageIf(v, op==TK_ISNULL);
4199       VdbeCoverageIf(v, op==TK_NOTNULL);
4200       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4201       sqlite3VdbeJumpHere(v, addr);
4202       break;
4203     }
4204     case TK_AGG_FUNCTION: {
4205       AggInfo *pInfo = pExpr->pAggInfo;
4206       if( pInfo==0
4207        || NEVER(pExpr->iAgg<0)
4208        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4209       ){
4210         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4211         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4212       }else{
4213         return pInfo->aFunc[pExpr->iAgg].iMem;
4214       }
4215       break;
4216     }
4217     case TK_FUNCTION: {
4218       ExprList *pFarg;       /* List of function arguments */
4219       int nFarg;             /* Number of function arguments */
4220       FuncDef *pDef;         /* The function definition object */
4221       const char *zId;       /* The function name */
4222       u32 constMask = 0;     /* Mask of function arguments that are constant */
4223       int i;                 /* Loop counter */
4224       sqlite3 *db = pParse->db;  /* The database connection */
4225       u8 enc = ENC(db);      /* The text encoding used by this database */
4226       CollSeq *pColl = 0;    /* A collating sequence */
4227 
4228 #ifndef SQLITE_OMIT_WINDOWFUNC
4229       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4230         return pExpr->y.pWin->regResult;
4231       }
4232 #endif
4233 
4234       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4235         /* SQL functions can be expensive. So try to avoid running them
4236         ** multiple times if we know they always give the same result */
4237         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4238       }
4239       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4240       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4241       pFarg = pExpr->x.pList;
4242       nFarg = pFarg ? pFarg->nExpr : 0;
4243       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4244       zId = pExpr->u.zToken;
4245       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4246 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4247       if( pDef==0 && pParse->explain ){
4248         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4249       }
4250 #endif
4251       if( pDef==0 || pDef->xFinalize!=0 ){
4252         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4253         break;
4254       }
4255       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4256         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4257         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4258         return exprCodeInlineFunction(pParse, pFarg,
4259              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4260       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4261         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4262       }
4263 
4264       for(i=0; i<nFarg; i++){
4265         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4266           testcase( i==31 );
4267           constMask |= MASKBIT32(i);
4268         }
4269         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4270           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4271         }
4272       }
4273       if( pFarg ){
4274         if( constMask ){
4275           r1 = pParse->nMem+1;
4276           pParse->nMem += nFarg;
4277         }else{
4278           r1 = sqlite3GetTempRange(pParse, nFarg);
4279         }
4280 
4281         /* For length() and typeof() functions with a column argument,
4282         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4283         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4284         ** loading.
4285         */
4286         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4287           u8 exprOp;
4288           assert( nFarg==1 );
4289           assert( pFarg->a[0].pExpr!=0 );
4290           exprOp = pFarg->a[0].pExpr->op;
4291           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4292             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4293             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4294             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4295             pFarg->a[0].pExpr->op2 =
4296                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4297           }
4298         }
4299 
4300         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4301                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4302       }else{
4303         r1 = 0;
4304       }
4305 #ifndef SQLITE_OMIT_VIRTUALTABLE
4306       /* Possibly overload the function if the first argument is
4307       ** a virtual table column.
4308       **
4309       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4310       ** second argument, not the first, as the argument to test to
4311       ** see if it is a column in a virtual table.  This is done because
4312       ** the left operand of infix functions (the operand we want to
4313       ** control overloading) ends up as the second argument to the
4314       ** function.  The expression "A glob B" is equivalent to
4315       ** "glob(B,A).  We want to use the A in "A glob B" to test
4316       ** for function overloading.  But we use the B term in "glob(B,A)".
4317       */
4318       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4319         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4320       }else if( nFarg>0 ){
4321         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4322       }
4323 #endif
4324       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4325         if( !pColl ) pColl = db->pDfltColl;
4326         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4327       }
4328 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4329       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4330         Expr *pArg = pFarg->a[0].pExpr;
4331         if( pArg->op==TK_COLUMN ){
4332           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4333         }else{
4334           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4335         }
4336       }else
4337 #endif
4338       {
4339         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4340                                    pDef, pExpr->op2);
4341       }
4342       if( nFarg ){
4343         if( constMask==0 ){
4344           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4345         }else{
4346           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4347         }
4348       }
4349       return target;
4350     }
4351 #ifndef SQLITE_OMIT_SUBQUERY
4352     case TK_EXISTS:
4353     case TK_SELECT: {
4354       int nCol;
4355       testcase( op==TK_EXISTS );
4356       testcase( op==TK_SELECT );
4357       if( pParse->db->mallocFailed ){
4358         return 0;
4359       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4360         sqlite3SubselectError(pParse, nCol, 1);
4361       }else{
4362         return sqlite3CodeSubselect(pParse, pExpr);
4363       }
4364       break;
4365     }
4366     case TK_SELECT_COLUMN: {
4367       int n;
4368       if( pExpr->pLeft->iTable==0 ){
4369         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4370       }
4371       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT
4372                || pExpr->pLeft->op==TK_ERROR );
4373       if( pExpr->iTable!=0
4374        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4375       ){
4376         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4377                                 pExpr->iTable, n);
4378       }
4379       return pExpr->pLeft->iTable + pExpr->iColumn;
4380     }
4381     case TK_IN: {
4382       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4383       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4384       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4385       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4386       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4387       sqlite3VdbeResolveLabel(v, destIfFalse);
4388       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4389       sqlite3VdbeResolveLabel(v, destIfNull);
4390       return target;
4391     }
4392 #endif /* SQLITE_OMIT_SUBQUERY */
4393 
4394 
4395     /*
4396     **    x BETWEEN y AND z
4397     **
4398     ** This is equivalent to
4399     **
4400     **    x>=y AND x<=z
4401     **
4402     ** X is stored in pExpr->pLeft.
4403     ** Y is stored in pExpr->pList->a[0].pExpr.
4404     ** Z is stored in pExpr->pList->a[1].pExpr.
4405     */
4406     case TK_BETWEEN: {
4407       exprCodeBetween(pParse, pExpr, target, 0, 0);
4408       return target;
4409     }
4410     case TK_SPAN:
4411     case TK_COLLATE:
4412     case TK_UPLUS: {
4413       pExpr = pExpr->pLeft;
4414       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4415     }
4416 
4417     case TK_TRIGGER: {
4418       /* If the opcode is TK_TRIGGER, then the expression is a reference
4419       ** to a column in the new.* or old.* pseudo-tables available to
4420       ** trigger programs. In this case Expr.iTable is set to 1 for the
4421       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4422       ** is set to the column of the pseudo-table to read, or to -1 to
4423       ** read the rowid field.
4424       **
4425       ** The expression is implemented using an OP_Param opcode. The p1
4426       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4427       ** to reference another column of the old.* pseudo-table, where
4428       ** i is the index of the column. For a new.rowid reference, p1 is
4429       ** set to (n+1), where n is the number of columns in each pseudo-table.
4430       ** For a reference to any other column in the new.* pseudo-table, p1
4431       ** is set to (n+2+i), where n and i are as defined previously. For
4432       ** example, if the table on which triggers are being fired is
4433       ** declared as:
4434       **
4435       **   CREATE TABLE t1(a, b);
4436       **
4437       ** Then p1 is interpreted as follows:
4438       **
4439       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4440       **   p1==1   ->    old.a         p1==4   ->    new.a
4441       **   p1==2   ->    old.b         p1==5   ->    new.b
4442       */
4443       Table *pTab = pExpr->y.pTab;
4444       int iCol = pExpr->iColumn;
4445       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4446                      + sqlite3TableColumnToStorage(pTab, iCol);
4447 
4448       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4449       assert( iCol>=-1 && iCol<pTab->nCol );
4450       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4451       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4452 
4453       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4454       VdbeComment((v, "r[%d]=%s.%s", target,
4455         (pExpr->iTable ? "new" : "old"),
4456         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4457       ));
4458 
4459 #ifndef SQLITE_OMIT_FLOATING_POINT
4460       /* If the column has REAL affinity, it may currently be stored as an
4461       ** integer. Use OP_RealAffinity to make sure it is really real.
4462       **
4463       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4464       ** floating point when extracting it from the record.  */
4465       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4466         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4467       }
4468 #endif
4469       break;
4470     }
4471 
4472     case TK_VECTOR: {
4473       sqlite3ErrorMsg(pParse, "row value misused");
4474       break;
4475     }
4476 
4477     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4478     ** that derive from the right-hand table of a LEFT JOIN.  The
4479     ** Expr.iTable value is the table number for the right-hand table.
4480     ** The expression is only evaluated if that table is not currently
4481     ** on a LEFT JOIN NULL row.
4482     */
4483     case TK_IF_NULL_ROW: {
4484       int addrINR;
4485       u8 okConstFactor = pParse->okConstFactor;
4486       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4487       /* Temporarily disable factoring of constant expressions, since
4488       ** even though expressions may appear to be constant, they are not
4489       ** really constant because they originate from the right-hand side
4490       ** of a LEFT JOIN. */
4491       pParse->okConstFactor = 0;
4492       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4493       pParse->okConstFactor = okConstFactor;
4494       sqlite3VdbeJumpHere(v, addrINR);
4495       sqlite3VdbeChangeP3(v, addrINR, inReg);
4496       break;
4497     }
4498 
4499     /*
4500     ** Form A:
4501     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4502     **
4503     ** Form B:
4504     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4505     **
4506     ** Form A is can be transformed into the equivalent form B as follows:
4507     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4508     **        WHEN x=eN THEN rN ELSE y END
4509     **
4510     ** X (if it exists) is in pExpr->pLeft.
4511     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4512     ** odd.  The Y is also optional.  If the number of elements in x.pList
4513     ** is even, then Y is omitted and the "otherwise" result is NULL.
4514     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4515     **
4516     ** The result of the expression is the Ri for the first matching Ei,
4517     ** or if there is no matching Ei, the ELSE term Y, or if there is
4518     ** no ELSE term, NULL.
4519     */
4520     case TK_CASE: {
4521       int endLabel;                     /* GOTO label for end of CASE stmt */
4522       int nextCase;                     /* GOTO label for next WHEN clause */
4523       int nExpr;                        /* 2x number of WHEN terms */
4524       int i;                            /* Loop counter */
4525       ExprList *pEList;                 /* List of WHEN terms */
4526       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4527       Expr opCompare;                   /* The X==Ei expression */
4528       Expr *pX;                         /* The X expression */
4529       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4530       Expr *pDel = 0;
4531       sqlite3 *db = pParse->db;
4532 
4533       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4534       assert(pExpr->x.pList->nExpr > 0);
4535       pEList = pExpr->x.pList;
4536       aListelem = pEList->a;
4537       nExpr = pEList->nExpr;
4538       endLabel = sqlite3VdbeMakeLabel(pParse);
4539       if( (pX = pExpr->pLeft)!=0 ){
4540         pDel = sqlite3ExprDup(db, pX, 0);
4541         if( db->mallocFailed ){
4542           sqlite3ExprDelete(db, pDel);
4543           break;
4544         }
4545         testcase( pX->op==TK_COLUMN );
4546         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4547         testcase( regFree1==0 );
4548         memset(&opCompare, 0, sizeof(opCompare));
4549         opCompare.op = TK_EQ;
4550         opCompare.pLeft = pDel;
4551         pTest = &opCompare;
4552         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4553         ** The value in regFree1 might get SCopy-ed into the file result.
4554         ** So make sure that the regFree1 register is not reused for other
4555         ** purposes and possibly overwritten.  */
4556         regFree1 = 0;
4557       }
4558       for(i=0; i<nExpr-1; i=i+2){
4559         if( pX ){
4560           assert( pTest!=0 );
4561           opCompare.pRight = aListelem[i].pExpr;
4562         }else{
4563           pTest = aListelem[i].pExpr;
4564         }
4565         nextCase = sqlite3VdbeMakeLabel(pParse);
4566         testcase( pTest->op==TK_COLUMN );
4567         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4568         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4569         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4570         sqlite3VdbeGoto(v, endLabel);
4571         sqlite3VdbeResolveLabel(v, nextCase);
4572       }
4573       if( (nExpr&1)!=0 ){
4574         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4575       }else{
4576         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4577       }
4578       sqlite3ExprDelete(db, pDel);
4579       setDoNotMergeFlagOnCopy(v);
4580       sqlite3VdbeResolveLabel(v, endLabel);
4581       break;
4582     }
4583 #ifndef SQLITE_OMIT_TRIGGER
4584     case TK_RAISE: {
4585       assert( pExpr->affExpr==OE_Rollback
4586            || pExpr->affExpr==OE_Abort
4587            || pExpr->affExpr==OE_Fail
4588            || pExpr->affExpr==OE_Ignore
4589       );
4590       if( !pParse->pTriggerTab && !pParse->nested ){
4591         sqlite3ErrorMsg(pParse,
4592                        "RAISE() may only be used within a trigger-program");
4593         return 0;
4594       }
4595       if( pExpr->affExpr==OE_Abort ){
4596         sqlite3MayAbort(pParse);
4597       }
4598       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4599       if( pExpr->affExpr==OE_Ignore ){
4600         sqlite3VdbeAddOp4(
4601             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4602         VdbeCoverage(v);
4603       }else{
4604         sqlite3HaltConstraint(pParse,
4605              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4606              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4607       }
4608 
4609       break;
4610     }
4611 #endif
4612   }
4613   sqlite3ReleaseTempReg(pParse, regFree1);
4614   sqlite3ReleaseTempReg(pParse, regFree2);
4615   return inReg;
4616 }
4617 
4618 /*
4619 ** Generate code that will evaluate expression pExpr just one time
4620 ** per prepared statement execution.
4621 **
4622 ** If the expression uses functions (that might throw an exception) then
4623 ** guard them with an OP_Once opcode to ensure that the code is only executed
4624 ** once. If no functions are involved, then factor the code out and put it at
4625 ** the end of the prepared statement in the initialization section.
4626 **
4627 ** If regDest>=0 then the result is always stored in that register and the
4628 ** result is not reusable.  If regDest<0 then this routine is free to
4629 ** store the value whereever it wants.  The register where the expression
4630 ** is stored is returned.  When regDest<0, two identical expressions might
4631 ** code to the same register, if they do not contain function calls and hence
4632 ** are factored out into the initialization section at the end of the
4633 ** prepared statement.
4634 */
4635 int sqlite3ExprCodeRunJustOnce(
4636   Parse *pParse,    /* Parsing context */
4637   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4638   int regDest       /* Store the value in this register */
4639 ){
4640   ExprList *p;
4641   assert( ConstFactorOk(pParse) );
4642   p = pParse->pConstExpr;
4643   if( regDest<0 && p ){
4644     struct ExprList_item *pItem;
4645     int i;
4646     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4647       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4648         return pItem->u.iConstExprReg;
4649       }
4650     }
4651   }
4652   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4653   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4654     Vdbe *v = pParse->pVdbe;
4655     int addr;
4656     assert( v );
4657     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4658     pParse->okConstFactor = 0;
4659     if( !pParse->db->mallocFailed ){
4660       if( regDest<0 ) regDest = ++pParse->nMem;
4661       sqlite3ExprCode(pParse, pExpr, regDest);
4662     }
4663     pParse->okConstFactor = 1;
4664     sqlite3ExprDelete(pParse->db, pExpr);
4665     sqlite3VdbeJumpHere(v, addr);
4666   }else{
4667     p = sqlite3ExprListAppend(pParse, p, pExpr);
4668     if( p ){
4669        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4670        pItem->reusable = regDest<0;
4671        if( regDest<0 ) regDest = ++pParse->nMem;
4672        pItem->u.iConstExprReg = regDest;
4673     }
4674     pParse->pConstExpr = p;
4675   }
4676   return regDest;
4677 }
4678 
4679 /*
4680 ** Generate code to evaluate an expression and store the results
4681 ** into a register.  Return the register number where the results
4682 ** are stored.
4683 **
4684 ** If the register is a temporary register that can be deallocated,
4685 ** then write its number into *pReg.  If the result register is not
4686 ** a temporary, then set *pReg to zero.
4687 **
4688 ** If pExpr is a constant, then this routine might generate this
4689 ** code to fill the register in the initialization section of the
4690 ** VDBE program, in order to factor it out of the evaluation loop.
4691 */
4692 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4693   int r2;
4694   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4695   if( ConstFactorOk(pParse)
4696    && ALWAYS(pExpr!=0)
4697    && pExpr->op!=TK_REGISTER
4698    && sqlite3ExprIsConstantNotJoin(pExpr)
4699   ){
4700     *pReg  = 0;
4701     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4702   }else{
4703     int r1 = sqlite3GetTempReg(pParse);
4704     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4705     if( r2==r1 ){
4706       *pReg = r1;
4707     }else{
4708       sqlite3ReleaseTempReg(pParse, r1);
4709       *pReg = 0;
4710     }
4711   }
4712   return r2;
4713 }
4714 
4715 /*
4716 ** Generate code that will evaluate expression pExpr and store the
4717 ** results in register target.  The results are guaranteed to appear
4718 ** in register target.
4719 */
4720 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4721   int inReg;
4722 
4723   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4724   assert( target>0 && target<=pParse->nMem );
4725   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4726   if( pParse->pVdbe==0 ) return;
4727   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4728   if( inReg!=target ){
4729     u8 op;
4730     if( ExprHasProperty(pExpr,EP_Subquery) ){
4731       op = OP_Copy;
4732     }else{
4733       op = OP_SCopy;
4734     }
4735     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4736   }
4737 }
4738 
4739 /*
4740 ** Make a transient copy of expression pExpr and then code it using
4741 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4742 ** except that the input expression is guaranteed to be unchanged.
4743 */
4744 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4745   sqlite3 *db = pParse->db;
4746   pExpr = sqlite3ExprDup(db, pExpr, 0);
4747   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4748   sqlite3ExprDelete(db, pExpr);
4749 }
4750 
4751 /*
4752 ** Generate code that will evaluate expression pExpr and store the
4753 ** results in register target.  The results are guaranteed to appear
4754 ** in register target.  If the expression is constant, then this routine
4755 ** might choose to code the expression at initialization time.
4756 */
4757 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4758   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4759     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4760   }else{
4761     sqlite3ExprCodeCopy(pParse, pExpr, target);
4762   }
4763 }
4764 
4765 /*
4766 ** Generate code that pushes the value of every element of the given
4767 ** expression list into a sequence of registers beginning at target.
4768 **
4769 ** Return the number of elements evaluated.  The number returned will
4770 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4771 ** is defined.
4772 **
4773 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4774 ** filled using OP_SCopy.  OP_Copy must be used instead.
4775 **
4776 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4777 ** factored out into initialization code.
4778 **
4779 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4780 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4781 ** in registers at srcReg, and so the value can be copied from there.
4782 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4783 ** are simply omitted rather than being copied from srcReg.
4784 */
4785 int sqlite3ExprCodeExprList(
4786   Parse *pParse,     /* Parsing context */
4787   ExprList *pList,   /* The expression list to be coded */
4788   int target,        /* Where to write results */
4789   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4790   u8 flags           /* SQLITE_ECEL_* flags */
4791 ){
4792   struct ExprList_item *pItem;
4793   int i, j, n;
4794   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4795   Vdbe *v = pParse->pVdbe;
4796   assert( pList!=0 );
4797   assert( target>0 );
4798   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4799   n = pList->nExpr;
4800   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4801   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4802     Expr *pExpr = pItem->pExpr;
4803 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4804     if( pItem->bSorterRef ){
4805       i--;
4806       n--;
4807     }else
4808 #endif
4809     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4810       if( flags & SQLITE_ECEL_OMITREF ){
4811         i--;
4812         n--;
4813       }else{
4814         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4815       }
4816     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4817            && sqlite3ExprIsConstantNotJoin(pExpr)
4818     ){
4819       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4820     }else{
4821       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4822       if( inReg!=target+i ){
4823         VdbeOp *pOp;
4824         if( copyOp==OP_Copy
4825          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4826          && pOp->p1+pOp->p3+1==inReg
4827          && pOp->p2+pOp->p3+1==target+i
4828          && pOp->p5==0  /* The do-not-merge flag must be clear */
4829         ){
4830           pOp->p3++;
4831         }else{
4832           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4833         }
4834       }
4835     }
4836   }
4837   return n;
4838 }
4839 
4840 /*
4841 ** Generate code for a BETWEEN operator.
4842 **
4843 **    x BETWEEN y AND z
4844 **
4845 ** The above is equivalent to
4846 **
4847 **    x>=y AND x<=z
4848 **
4849 ** Code it as such, taking care to do the common subexpression
4850 ** elimination of x.
4851 **
4852 ** The xJumpIf parameter determines details:
4853 **
4854 **    NULL:                   Store the boolean result in reg[dest]
4855 **    sqlite3ExprIfTrue:      Jump to dest if true
4856 **    sqlite3ExprIfFalse:     Jump to dest if false
4857 **
4858 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4859 */
4860 static void exprCodeBetween(
4861   Parse *pParse,    /* Parsing and code generating context */
4862   Expr *pExpr,      /* The BETWEEN expression */
4863   int dest,         /* Jump destination or storage location */
4864   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4865   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4866 ){
4867   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4868   Expr compLeft;    /* The  x>=y  term */
4869   Expr compRight;   /* The  x<=z  term */
4870   int regFree1 = 0; /* Temporary use register */
4871   Expr *pDel = 0;
4872   sqlite3 *db = pParse->db;
4873 
4874   memset(&compLeft, 0, sizeof(Expr));
4875   memset(&compRight, 0, sizeof(Expr));
4876   memset(&exprAnd, 0, sizeof(Expr));
4877 
4878   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4879   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4880   if( db->mallocFailed==0 ){
4881     exprAnd.op = TK_AND;
4882     exprAnd.pLeft = &compLeft;
4883     exprAnd.pRight = &compRight;
4884     compLeft.op = TK_GE;
4885     compLeft.pLeft = pDel;
4886     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4887     compRight.op = TK_LE;
4888     compRight.pLeft = pDel;
4889     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4890     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4891     if( xJump ){
4892       xJump(pParse, &exprAnd, dest, jumpIfNull);
4893     }else{
4894       /* Mark the expression is being from the ON or USING clause of a join
4895       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4896       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4897       ** for clarity, but we are out of bits in the Expr.flags field so we
4898       ** have to reuse the EP_FromJoin bit.  Bummer. */
4899       pDel->flags |= EP_FromJoin;
4900       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4901     }
4902     sqlite3ReleaseTempReg(pParse, regFree1);
4903   }
4904   sqlite3ExprDelete(db, pDel);
4905 
4906   /* Ensure adequate test coverage */
4907   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4908   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4909   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4910   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4911   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4912   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4913   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4914   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4915   testcase( xJump==0 );
4916 }
4917 
4918 /*
4919 ** Generate code for a boolean expression such that a jump is made
4920 ** to the label "dest" if the expression is true but execution
4921 ** continues straight thru if the expression is false.
4922 **
4923 ** If the expression evaluates to NULL (neither true nor false), then
4924 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4925 **
4926 ** This code depends on the fact that certain token values (ex: TK_EQ)
4927 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4928 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4929 ** the make process cause these values to align.  Assert()s in the code
4930 ** below verify that the numbers are aligned correctly.
4931 */
4932 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4933   Vdbe *v = pParse->pVdbe;
4934   int op = 0;
4935   int regFree1 = 0;
4936   int regFree2 = 0;
4937   int r1, r2;
4938 
4939   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4940   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4941   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4942   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4943   op = pExpr->op;
4944   switch( op ){
4945     case TK_AND:
4946     case TK_OR: {
4947       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4948       if( pAlt!=pExpr ){
4949         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4950       }else if( op==TK_AND ){
4951         int d2 = sqlite3VdbeMakeLabel(pParse);
4952         testcase( jumpIfNull==0 );
4953         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4954                            jumpIfNull^SQLITE_JUMPIFNULL);
4955         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4956         sqlite3VdbeResolveLabel(v, d2);
4957       }else{
4958         testcase( jumpIfNull==0 );
4959         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4960         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4961       }
4962       break;
4963     }
4964     case TK_NOT: {
4965       testcase( jumpIfNull==0 );
4966       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4967       break;
4968     }
4969     case TK_TRUTH: {
4970       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4971       int isTrue;     /* IS TRUE or IS NOT TRUE */
4972       testcase( jumpIfNull==0 );
4973       isNot = pExpr->op2==TK_ISNOT;
4974       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4975       testcase( isTrue && isNot );
4976       testcase( !isTrue && isNot );
4977       if( isTrue ^ isNot ){
4978         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4979                           isNot ? SQLITE_JUMPIFNULL : 0);
4980       }else{
4981         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4982                            isNot ? SQLITE_JUMPIFNULL : 0);
4983       }
4984       break;
4985     }
4986     case TK_IS:
4987     case TK_ISNOT:
4988       testcase( op==TK_IS );
4989       testcase( op==TK_ISNOT );
4990       op = (op==TK_IS) ? TK_EQ : TK_NE;
4991       jumpIfNull = SQLITE_NULLEQ;
4992       /* no break */ deliberate_fall_through
4993     case TK_LT:
4994     case TK_LE:
4995     case TK_GT:
4996     case TK_GE:
4997     case TK_NE:
4998     case TK_EQ: {
4999       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5000       testcase( jumpIfNull==0 );
5001       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5002       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5003       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5004                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5005       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5006       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5007       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5008       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5009       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5010       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5011       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5012       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5013       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5014       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5015       testcase( regFree1==0 );
5016       testcase( regFree2==0 );
5017       break;
5018     }
5019     case TK_ISNULL:
5020     case TK_NOTNULL: {
5021       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5022       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5023       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5024       sqlite3VdbeAddOp2(v, op, r1, dest);
5025       VdbeCoverageIf(v, op==TK_ISNULL);
5026       VdbeCoverageIf(v, op==TK_NOTNULL);
5027       testcase( regFree1==0 );
5028       break;
5029     }
5030     case TK_BETWEEN: {
5031       testcase( jumpIfNull==0 );
5032       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5033       break;
5034     }
5035 #ifndef SQLITE_OMIT_SUBQUERY
5036     case TK_IN: {
5037       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5038       int destIfNull = jumpIfNull ? dest : destIfFalse;
5039       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5040       sqlite3VdbeGoto(v, dest);
5041       sqlite3VdbeResolveLabel(v, destIfFalse);
5042       break;
5043     }
5044 #endif
5045     default: {
5046     default_expr:
5047       if( ExprAlwaysTrue(pExpr) ){
5048         sqlite3VdbeGoto(v, dest);
5049       }else if( ExprAlwaysFalse(pExpr) ){
5050         /* No-op */
5051       }else{
5052         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5053         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5054         VdbeCoverage(v);
5055         testcase( regFree1==0 );
5056         testcase( jumpIfNull==0 );
5057       }
5058       break;
5059     }
5060   }
5061   sqlite3ReleaseTempReg(pParse, regFree1);
5062   sqlite3ReleaseTempReg(pParse, regFree2);
5063 }
5064 
5065 /*
5066 ** Generate code for a boolean expression such that a jump is made
5067 ** to the label "dest" if the expression is false but execution
5068 ** continues straight thru if the expression is true.
5069 **
5070 ** If the expression evaluates to NULL (neither true nor false) then
5071 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5072 ** is 0.
5073 */
5074 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5075   Vdbe *v = pParse->pVdbe;
5076   int op = 0;
5077   int regFree1 = 0;
5078   int regFree2 = 0;
5079   int r1, r2;
5080 
5081   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5082   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5083   if( pExpr==0 )    return;
5084   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5085 
5086   /* The value of pExpr->op and op are related as follows:
5087   **
5088   **       pExpr->op            op
5089   **       ---------          ----------
5090   **       TK_ISNULL          OP_NotNull
5091   **       TK_NOTNULL         OP_IsNull
5092   **       TK_NE              OP_Eq
5093   **       TK_EQ              OP_Ne
5094   **       TK_GT              OP_Le
5095   **       TK_LE              OP_Gt
5096   **       TK_GE              OP_Lt
5097   **       TK_LT              OP_Ge
5098   **
5099   ** For other values of pExpr->op, op is undefined and unused.
5100   ** The value of TK_ and OP_ constants are arranged such that we
5101   ** can compute the mapping above using the following expression.
5102   ** Assert()s verify that the computation is correct.
5103   */
5104   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5105 
5106   /* Verify correct alignment of TK_ and OP_ constants
5107   */
5108   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5109   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5110   assert( pExpr->op!=TK_NE || op==OP_Eq );
5111   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5112   assert( pExpr->op!=TK_LT || op==OP_Ge );
5113   assert( pExpr->op!=TK_LE || op==OP_Gt );
5114   assert( pExpr->op!=TK_GT || op==OP_Le );
5115   assert( pExpr->op!=TK_GE || op==OP_Lt );
5116 
5117   switch( pExpr->op ){
5118     case TK_AND:
5119     case TK_OR: {
5120       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5121       if( pAlt!=pExpr ){
5122         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5123       }else if( pExpr->op==TK_AND ){
5124         testcase( jumpIfNull==0 );
5125         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5126         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5127       }else{
5128         int d2 = sqlite3VdbeMakeLabel(pParse);
5129         testcase( jumpIfNull==0 );
5130         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5131                           jumpIfNull^SQLITE_JUMPIFNULL);
5132         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5133         sqlite3VdbeResolveLabel(v, d2);
5134       }
5135       break;
5136     }
5137     case TK_NOT: {
5138       testcase( jumpIfNull==0 );
5139       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5140       break;
5141     }
5142     case TK_TRUTH: {
5143       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5144       int isTrue;  /* IS TRUE or IS NOT TRUE */
5145       testcase( jumpIfNull==0 );
5146       isNot = pExpr->op2==TK_ISNOT;
5147       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5148       testcase( isTrue && isNot );
5149       testcase( !isTrue && isNot );
5150       if( isTrue ^ isNot ){
5151         /* IS TRUE and IS NOT FALSE */
5152         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5153                            isNot ? 0 : SQLITE_JUMPIFNULL);
5154 
5155       }else{
5156         /* IS FALSE and IS NOT TRUE */
5157         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5158                           isNot ? 0 : SQLITE_JUMPIFNULL);
5159       }
5160       break;
5161     }
5162     case TK_IS:
5163     case TK_ISNOT:
5164       testcase( pExpr->op==TK_IS );
5165       testcase( pExpr->op==TK_ISNOT );
5166       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5167       jumpIfNull = SQLITE_NULLEQ;
5168       /* no break */ deliberate_fall_through
5169     case TK_LT:
5170     case TK_LE:
5171     case TK_GT:
5172     case TK_GE:
5173     case TK_NE:
5174     case TK_EQ: {
5175       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5176       testcase( jumpIfNull==0 );
5177       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5178       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5179       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5180                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5181       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5182       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5183       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5184       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5185       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5186       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5187       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5188       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5189       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5190       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5191       testcase( regFree1==0 );
5192       testcase( regFree2==0 );
5193       break;
5194     }
5195     case TK_ISNULL:
5196     case TK_NOTNULL: {
5197       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5198       sqlite3VdbeAddOp2(v, op, r1, dest);
5199       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5200       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5201       testcase( regFree1==0 );
5202       break;
5203     }
5204     case TK_BETWEEN: {
5205       testcase( jumpIfNull==0 );
5206       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5207       break;
5208     }
5209 #ifndef SQLITE_OMIT_SUBQUERY
5210     case TK_IN: {
5211       if( jumpIfNull ){
5212         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5213       }else{
5214         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5215         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5216         sqlite3VdbeResolveLabel(v, destIfNull);
5217       }
5218       break;
5219     }
5220 #endif
5221     default: {
5222     default_expr:
5223       if( ExprAlwaysFalse(pExpr) ){
5224         sqlite3VdbeGoto(v, dest);
5225       }else if( ExprAlwaysTrue(pExpr) ){
5226         /* no-op */
5227       }else{
5228         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5229         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5230         VdbeCoverage(v);
5231         testcase( regFree1==0 );
5232         testcase( jumpIfNull==0 );
5233       }
5234       break;
5235     }
5236   }
5237   sqlite3ReleaseTempReg(pParse, regFree1);
5238   sqlite3ReleaseTempReg(pParse, regFree2);
5239 }
5240 
5241 /*
5242 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5243 ** code generation, and that copy is deleted after code generation. This
5244 ** ensures that the original pExpr is unchanged.
5245 */
5246 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5247   sqlite3 *db = pParse->db;
5248   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5249   if( db->mallocFailed==0 ){
5250     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5251   }
5252   sqlite3ExprDelete(db, pCopy);
5253 }
5254 
5255 /*
5256 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5257 ** type of expression.
5258 **
5259 ** If pExpr is a simple SQL value - an integer, real, string, blob
5260 ** or NULL value - then the VDBE currently being prepared is configured
5261 ** to re-prepare each time a new value is bound to variable pVar.
5262 **
5263 ** Additionally, if pExpr is a simple SQL value and the value is the
5264 ** same as that currently bound to variable pVar, non-zero is returned.
5265 ** Otherwise, if the values are not the same or if pExpr is not a simple
5266 ** SQL value, zero is returned.
5267 */
5268 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5269   int res = 0;
5270   int iVar;
5271   sqlite3_value *pL, *pR = 0;
5272 
5273   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5274   if( pR ){
5275     iVar = pVar->iColumn;
5276     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5277     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5278     if( pL ){
5279       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5280         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5281       }
5282       res =  0==sqlite3MemCompare(pL, pR, 0);
5283     }
5284     sqlite3ValueFree(pR);
5285     sqlite3ValueFree(pL);
5286   }
5287 
5288   return res;
5289 }
5290 
5291 /*
5292 ** Do a deep comparison of two expression trees.  Return 0 if the two
5293 ** expressions are completely identical.  Return 1 if they differ only
5294 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5295 ** other than the top-level COLLATE operator.
5296 **
5297 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5298 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5299 **
5300 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5301 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5302 **
5303 ** Sometimes this routine will return 2 even if the two expressions
5304 ** really are equivalent.  If we cannot prove that the expressions are
5305 ** identical, we return 2 just to be safe.  So if this routine
5306 ** returns 2, then you do not really know for certain if the two
5307 ** expressions are the same.  But if you get a 0 or 1 return, then you
5308 ** can be sure the expressions are the same.  In the places where
5309 ** this routine is used, it does not hurt to get an extra 2 - that
5310 ** just might result in some slightly slower code.  But returning
5311 ** an incorrect 0 or 1 could lead to a malfunction.
5312 **
5313 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5314 ** pParse->pReprepare can be matched against literals in pB.  The
5315 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5316 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5317 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5318 ** pB causes a return value of 2.
5319 */
5320 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5321   u32 combinedFlags;
5322   if( pA==0 || pB==0 ){
5323     return pB==pA ? 0 : 2;
5324   }
5325   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5326     return 0;
5327   }
5328   combinedFlags = pA->flags | pB->flags;
5329   if( combinedFlags & EP_IntValue ){
5330     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5331       return 0;
5332     }
5333     return 2;
5334   }
5335   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5336     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5337       return 1;
5338     }
5339     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5340       return 1;
5341     }
5342     return 2;
5343   }
5344   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5345     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5346       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5347 #ifndef SQLITE_OMIT_WINDOWFUNC
5348       assert( pA->op==pB->op );
5349       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5350         return 2;
5351       }
5352       if( ExprHasProperty(pA,EP_WinFunc) ){
5353         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5354           return 2;
5355         }
5356       }
5357 #endif
5358     }else if( pA->op==TK_NULL ){
5359       return 0;
5360     }else if( pA->op==TK_COLLATE ){
5361       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5362     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5363       return 2;
5364     }
5365   }
5366   if( (pA->flags & (EP_Distinct|EP_Commuted))
5367      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5368   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5369     if( combinedFlags & EP_xIsSelect ) return 2;
5370     if( (combinedFlags & EP_FixedCol)==0
5371      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5372     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5373     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5374     if( pA->op!=TK_STRING
5375      && pA->op!=TK_TRUEFALSE
5376      && ALWAYS((combinedFlags & EP_Reduced)==0)
5377     ){
5378       if( pA->iColumn!=pB->iColumn ) return 2;
5379       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5380       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5381         return 2;
5382       }
5383     }
5384   }
5385   return 0;
5386 }
5387 
5388 /*
5389 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5390 ** if they are certainly different, or 2 if it is not possible to
5391 ** determine if they are identical or not.
5392 **
5393 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5394 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5395 **
5396 ** This routine might return non-zero for equivalent ExprLists.  The
5397 ** only consequence will be disabled optimizations.  But this routine
5398 ** must never return 0 if the two ExprList objects are different, or
5399 ** a malfunction will result.
5400 **
5401 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5402 ** always differs from a non-NULL pointer.
5403 */
5404 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5405   int i;
5406   if( pA==0 && pB==0 ) return 0;
5407   if( pA==0 || pB==0 ) return 1;
5408   if( pA->nExpr!=pB->nExpr ) return 1;
5409   for(i=0; i<pA->nExpr; i++){
5410     int res;
5411     Expr *pExprA = pA->a[i].pExpr;
5412     Expr *pExprB = pB->a[i].pExpr;
5413     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5414     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5415   }
5416   return 0;
5417 }
5418 
5419 /*
5420 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5421 ** are ignored.
5422 */
5423 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5424   return sqlite3ExprCompare(0,
5425              sqlite3ExprSkipCollateAndLikely(pA),
5426              sqlite3ExprSkipCollateAndLikely(pB),
5427              iTab);
5428 }
5429 
5430 /*
5431 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5432 **
5433 ** Or if seenNot is true, return non-zero if Expr p can only be
5434 ** non-NULL if pNN is not NULL
5435 */
5436 static int exprImpliesNotNull(
5437   Parse *pParse,      /* Parsing context */
5438   Expr *p,            /* The expression to be checked */
5439   Expr *pNN,          /* The expression that is NOT NULL */
5440   int iTab,           /* Table being evaluated */
5441   int seenNot         /* Return true only if p can be any non-NULL value */
5442 ){
5443   assert( p );
5444   assert( pNN );
5445   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5446     return pNN->op!=TK_NULL;
5447   }
5448   switch( p->op ){
5449     case TK_IN: {
5450       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5451       assert( ExprHasProperty(p,EP_xIsSelect)
5452            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5453       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5454     }
5455     case TK_BETWEEN: {
5456       ExprList *pList = p->x.pList;
5457       assert( pList!=0 );
5458       assert( pList->nExpr==2 );
5459       if( seenNot ) return 0;
5460       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5461        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5462       ){
5463         return 1;
5464       }
5465       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5466     }
5467     case TK_EQ:
5468     case TK_NE:
5469     case TK_LT:
5470     case TK_LE:
5471     case TK_GT:
5472     case TK_GE:
5473     case TK_PLUS:
5474     case TK_MINUS:
5475     case TK_BITOR:
5476     case TK_LSHIFT:
5477     case TK_RSHIFT:
5478     case TK_CONCAT:
5479       seenNot = 1;
5480       /* no break */ deliberate_fall_through
5481     case TK_STAR:
5482     case TK_REM:
5483     case TK_BITAND:
5484     case TK_SLASH: {
5485       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5486       /* no break */ deliberate_fall_through
5487     }
5488     case TK_SPAN:
5489     case TK_COLLATE:
5490     case TK_UPLUS:
5491     case TK_UMINUS: {
5492       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5493     }
5494     case TK_TRUTH: {
5495       if( seenNot ) return 0;
5496       if( p->op2!=TK_IS ) return 0;
5497       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5498     }
5499     case TK_BITNOT:
5500     case TK_NOT: {
5501       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5502     }
5503   }
5504   return 0;
5505 }
5506 
5507 /*
5508 ** Return true if we can prove the pE2 will always be true if pE1 is
5509 ** true.  Return false if we cannot complete the proof or if pE2 might
5510 ** be false.  Examples:
5511 **
5512 **     pE1: x==5       pE2: x==5             Result: true
5513 **     pE1: x>0        pE2: x==5             Result: false
5514 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5515 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5516 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5517 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5518 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5519 **
5520 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5521 ** Expr.iTable<0 then assume a table number given by iTab.
5522 **
5523 ** If pParse is not NULL, then the values of bound variables in pE1 are
5524 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5525 ** modified to record which bound variables are referenced.  If pParse
5526 ** is NULL, then false will be returned if pE1 contains any bound variables.
5527 **
5528 ** When in doubt, return false.  Returning true might give a performance
5529 ** improvement.  Returning false might cause a performance reduction, but
5530 ** it will always give the correct answer and is hence always safe.
5531 */
5532 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5533   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5534     return 1;
5535   }
5536   if( pE2->op==TK_OR
5537    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5538              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5539   ){
5540     return 1;
5541   }
5542   if( pE2->op==TK_NOTNULL
5543    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5544   ){
5545     return 1;
5546   }
5547   return 0;
5548 }
5549 
5550 /*
5551 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5552 ** If the expression node requires that the table at pWalker->iCur
5553 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5554 **
5555 ** This routine controls an optimization.  False positives (setting
5556 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5557 ** (never setting pWalker->eCode) is a harmless missed optimization.
5558 */
5559 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5560   testcase( pExpr->op==TK_AGG_COLUMN );
5561   testcase( pExpr->op==TK_AGG_FUNCTION );
5562   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5563   switch( pExpr->op ){
5564     case TK_ISNOT:
5565     case TK_ISNULL:
5566     case TK_NOTNULL:
5567     case TK_IS:
5568     case TK_OR:
5569     case TK_VECTOR:
5570     case TK_CASE:
5571     case TK_IN:
5572     case TK_FUNCTION:
5573     case TK_TRUTH:
5574       testcase( pExpr->op==TK_ISNOT );
5575       testcase( pExpr->op==TK_ISNULL );
5576       testcase( pExpr->op==TK_NOTNULL );
5577       testcase( pExpr->op==TK_IS );
5578       testcase( pExpr->op==TK_OR );
5579       testcase( pExpr->op==TK_VECTOR );
5580       testcase( pExpr->op==TK_CASE );
5581       testcase( pExpr->op==TK_IN );
5582       testcase( pExpr->op==TK_FUNCTION );
5583       testcase( pExpr->op==TK_TRUTH );
5584       return WRC_Prune;
5585     case TK_COLUMN:
5586       if( pWalker->u.iCur==pExpr->iTable ){
5587         pWalker->eCode = 1;
5588         return WRC_Abort;
5589       }
5590       return WRC_Prune;
5591 
5592     case TK_AND:
5593       if( pWalker->eCode==0 ){
5594         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5595         if( pWalker->eCode ){
5596           pWalker->eCode = 0;
5597           sqlite3WalkExpr(pWalker, pExpr->pRight);
5598         }
5599       }
5600       return WRC_Prune;
5601 
5602     case TK_BETWEEN:
5603       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5604         assert( pWalker->eCode );
5605         return WRC_Abort;
5606       }
5607       return WRC_Prune;
5608 
5609     /* Virtual tables are allowed to use constraints like x=NULL.  So
5610     ** a term of the form x=y does not prove that y is not null if x
5611     ** is the column of a virtual table */
5612     case TK_EQ:
5613     case TK_NE:
5614     case TK_LT:
5615     case TK_LE:
5616     case TK_GT:
5617     case TK_GE: {
5618       Expr *pLeft = pExpr->pLeft;
5619       Expr *pRight = pExpr->pRight;
5620       testcase( pExpr->op==TK_EQ );
5621       testcase( pExpr->op==TK_NE );
5622       testcase( pExpr->op==TK_LT );
5623       testcase( pExpr->op==TK_LE );
5624       testcase( pExpr->op==TK_GT );
5625       testcase( pExpr->op==TK_GE );
5626       /* The y.pTab=0 assignment in wherecode.c always happens after the
5627       ** impliesNotNullRow() test */
5628       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5629                                && IsVirtual(pLeft->y.pTab))
5630        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5631                                && IsVirtual(pRight->y.pTab))
5632       ){
5633         return WRC_Prune;
5634       }
5635       /* no break */ deliberate_fall_through
5636     }
5637     default:
5638       return WRC_Continue;
5639   }
5640 }
5641 
5642 /*
5643 ** Return true (non-zero) if expression p can only be true if at least
5644 ** one column of table iTab is non-null.  In other words, return true
5645 ** if expression p will always be NULL or false if every column of iTab
5646 ** is NULL.
5647 **
5648 ** False negatives are acceptable.  In other words, it is ok to return
5649 ** zero even if expression p will never be true of every column of iTab
5650 ** is NULL.  A false negative is merely a missed optimization opportunity.
5651 **
5652 ** False positives are not allowed, however.  A false positive may result
5653 ** in an incorrect answer.
5654 **
5655 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5656 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5657 **
5658 ** This routine is used to check if a LEFT JOIN can be converted into
5659 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5660 ** clause requires that some column of the right table of the LEFT JOIN
5661 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5662 ** ordinary join.
5663 */
5664 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5665   Walker w;
5666   p = sqlite3ExprSkipCollateAndLikely(p);
5667   if( p==0 ) return 0;
5668   if( p->op==TK_NOTNULL ){
5669     p = p->pLeft;
5670   }else{
5671     while( p->op==TK_AND ){
5672       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5673       p = p->pRight;
5674     }
5675   }
5676   w.xExprCallback = impliesNotNullRow;
5677   w.xSelectCallback = 0;
5678   w.xSelectCallback2 = 0;
5679   w.eCode = 0;
5680   w.u.iCur = iTab;
5681   sqlite3WalkExpr(&w, p);
5682   return w.eCode;
5683 }
5684 
5685 /*
5686 ** An instance of the following structure is used by the tree walker
5687 ** to determine if an expression can be evaluated by reference to the
5688 ** index only, without having to do a search for the corresponding
5689 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5690 ** is the cursor for the table.
5691 */
5692 struct IdxCover {
5693   Index *pIdx;     /* The index to be tested for coverage */
5694   int iCur;        /* Cursor number for the table corresponding to the index */
5695 };
5696 
5697 /*
5698 ** Check to see if there are references to columns in table
5699 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5700 ** pWalker->u.pIdxCover->pIdx.
5701 */
5702 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5703   if( pExpr->op==TK_COLUMN
5704    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5705    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5706   ){
5707     pWalker->eCode = 1;
5708     return WRC_Abort;
5709   }
5710   return WRC_Continue;
5711 }
5712 
5713 /*
5714 ** Determine if an index pIdx on table with cursor iCur contains will
5715 ** the expression pExpr.  Return true if the index does cover the
5716 ** expression and false if the pExpr expression references table columns
5717 ** that are not found in the index pIdx.
5718 **
5719 ** An index covering an expression means that the expression can be
5720 ** evaluated using only the index and without having to lookup the
5721 ** corresponding table entry.
5722 */
5723 int sqlite3ExprCoveredByIndex(
5724   Expr *pExpr,        /* The index to be tested */
5725   int iCur,           /* The cursor number for the corresponding table */
5726   Index *pIdx         /* The index that might be used for coverage */
5727 ){
5728   Walker w;
5729   struct IdxCover xcov;
5730   memset(&w, 0, sizeof(w));
5731   xcov.iCur = iCur;
5732   xcov.pIdx = pIdx;
5733   w.xExprCallback = exprIdxCover;
5734   w.u.pIdxCover = &xcov;
5735   sqlite3WalkExpr(&w, pExpr);
5736   return !w.eCode;
5737 }
5738 
5739 
5740 /*
5741 ** An instance of the following structure is used by the tree walker
5742 ** to count references to table columns in the arguments of an
5743 ** aggregate function, in order to implement the
5744 ** sqlite3FunctionThisSrc() routine.
5745 */
5746 struct SrcCount {
5747   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5748   int iSrcInner;   /* Smallest cursor number in this context */
5749   int nThis;       /* Number of references to columns in pSrcList */
5750   int nOther;      /* Number of references to columns in other FROM clauses */
5751 };
5752 
5753 /*
5754 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5755 ** SELECT with a FROM clause encountered during this iteration, set
5756 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5757 ** the FROM cause.
5758 */
5759 static int selectSrcCount(Walker *pWalker, Select *pSel){
5760   struct SrcCount *p = pWalker->u.pSrcCount;
5761   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5762     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5763   }
5764   return WRC_Continue;
5765 }
5766 
5767 /*
5768 ** Count the number of references to columns.
5769 */
5770 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5771   /* There was once a NEVER() on the second term on the grounds that
5772   ** sqlite3FunctionUsesThisSrc() was always called before
5773   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5774   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5775   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5776   ** FunctionUsesThisSrc() when creating a new sub-select. */
5777   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5778     int i;
5779     struct SrcCount *p = pWalker->u.pSrcCount;
5780     SrcList *pSrc = p->pSrc;
5781     int nSrc = pSrc ? pSrc->nSrc : 0;
5782     for(i=0; i<nSrc; i++){
5783       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5784     }
5785     if( i<nSrc ){
5786       p->nThis++;
5787     }else if( pExpr->iTable<p->iSrcInner ){
5788       /* In a well-formed parse tree (no name resolution errors),
5789       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5790       ** outer context.  Those are the only ones to count as "other" */
5791       p->nOther++;
5792     }
5793   }
5794   return WRC_Continue;
5795 }
5796 
5797 /*
5798 ** Determine if any of the arguments to the pExpr Function reference
5799 ** pSrcList.  Return true if they do.  Also return true if the function
5800 ** has no arguments or has only constant arguments.  Return false if pExpr
5801 ** references columns but not columns of tables found in pSrcList.
5802 */
5803 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5804   Walker w;
5805   struct SrcCount cnt;
5806   assert( pExpr->op==TK_AGG_FUNCTION );
5807   memset(&w, 0, sizeof(w));
5808   w.xExprCallback = exprSrcCount;
5809   w.xSelectCallback = selectSrcCount;
5810   w.u.pSrcCount = &cnt;
5811   cnt.pSrc = pSrcList;
5812   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5813   cnt.nThis = 0;
5814   cnt.nOther = 0;
5815   sqlite3WalkExprList(&w, pExpr->x.pList);
5816 #ifndef SQLITE_OMIT_WINDOWFUNC
5817   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5818     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5819   }
5820 #endif
5821   return cnt.nThis>0 || cnt.nOther==0;
5822 }
5823 
5824 /*
5825 ** This is a Walker expression node callback.
5826 **
5827 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5828 ** object that is referenced does not refer directly to the Expr.  If
5829 ** it does, make a copy.  This is done because the pExpr argument is
5830 ** subject to change.
5831 **
5832 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5833 ** This will cause the expression to be deleted automatically when the
5834 ** Parse object is destroyed, but the zero register number means that it
5835 ** will not generate any code in the preamble.
5836 */
5837 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5838   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5839    && pExpr->pAggInfo!=0
5840   ){
5841     AggInfo *pAggInfo = pExpr->pAggInfo;
5842     int iAgg = pExpr->iAgg;
5843     Parse *pParse = pWalker->pParse;
5844     sqlite3 *db = pParse->db;
5845     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5846     if( pExpr->op==TK_AGG_COLUMN ){
5847       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5848       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5849         pExpr = sqlite3ExprDup(db, pExpr, 0);
5850         if( pExpr ){
5851           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5852           sqlite3ExprDeferredDelete(pParse, pExpr);
5853         }
5854       }
5855     }else{
5856       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5857       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5858         pExpr = sqlite3ExprDup(db, pExpr, 0);
5859         if( pExpr ){
5860           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5861           sqlite3ExprDeferredDelete(pParse, pExpr);
5862         }
5863       }
5864     }
5865   }
5866   return WRC_Continue;
5867 }
5868 
5869 /*
5870 ** Initialize a Walker object so that will persist AggInfo entries referenced
5871 ** by the tree that is walked.
5872 */
5873 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5874   memset(pWalker, 0, sizeof(*pWalker));
5875   pWalker->pParse = pParse;
5876   pWalker->xExprCallback = agginfoPersistExprCb;
5877   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5878 }
5879 
5880 /*
5881 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5882 ** the new element.  Return a negative number if malloc fails.
5883 */
5884 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5885   int i;
5886   pInfo->aCol = sqlite3ArrayAllocate(
5887        db,
5888        pInfo->aCol,
5889        sizeof(pInfo->aCol[0]),
5890        &pInfo->nColumn,
5891        &i
5892   );
5893   return i;
5894 }
5895 
5896 /*
5897 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5898 ** the new element.  Return a negative number if malloc fails.
5899 */
5900 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5901   int i;
5902   pInfo->aFunc = sqlite3ArrayAllocate(
5903        db,
5904        pInfo->aFunc,
5905        sizeof(pInfo->aFunc[0]),
5906        &pInfo->nFunc,
5907        &i
5908   );
5909   return i;
5910 }
5911 
5912 /*
5913 ** This is the xExprCallback for a tree walker.  It is used to
5914 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5915 ** for additional information.
5916 */
5917 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5918   int i;
5919   NameContext *pNC = pWalker->u.pNC;
5920   Parse *pParse = pNC->pParse;
5921   SrcList *pSrcList = pNC->pSrcList;
5922   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5923 
5924   assert( pNC->ncFlags & NC_UAggInfo );
5925   switch( pExpr->op ){
5926     case TK_AGG_COLUMN:
5927     case TK_COLUMN: {
5928       testcase( pExpr->op==TK_AGG_COLUMN );
5929       testcase( pExpr->op==TK_COLUMN );
5930       /* Check to see if the column is in one of the tables in the FROM
5931       ** clause of the aggregate query */
5932       if( ALWAYS(pSrcList!=0) ){
5933         SrcItem *pItem = pSrcList->a;
5934         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5935           struct AggInfo_col *pCol;
5936           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5937           if( pExpr->iTable==pItem->iCursor ){
5938             /* If we reach this point, it means that pExpr refers to a table
5939             ** that is in the FROM clause of the aggregate query.
5940             **
5941             ** Make an entry for the column in pAggInfo->aCol[] if there
5942             ** is not an entry there already.
5943             */
5944             int k;
5945             pCol = pAggInfo->aCol;
5946             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5947               if( pCol->iTable==pExpr->iTable &&
5948                   pCol->iColumn==pExpr->iColumn ){
5949                 break;
5950               }
5951             }
5952             if( (k>=pAggInfo->nColumn)
5953              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5954             ){
5955               pCol = &pAggInfo->aCol[k];
5956               pCol->pTab = pExpr->y.pTab;
5957               pCol->iTable = pExpr->iTable;
5958               pCol->iColumn = pExpr->iColumn;
5959               pCol->iMem = ++pParse->nMem;
5960               pCol->iSorterColumn = -1;
5961               pCol->pCExpr = pExpr;
5962               if( pAggInfo->pGroupBy ){
5963                 int j, n;
5964                 ExprList *pGB = pAggInfo->pGroupBy;
5965                 struct ExprList_item *pTerm = pGB->a;
5966                 n = pGB->nExpr;
5967                 for(j=0; j<n; j++, pTerm++){
5968                   Expr *pE = pTerm->pExpr;
5969                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5970                       pE->iColumn==pExpr->iColumn ){
5971                     pCol->iSorterColumn = j;
5972                     break;
5973                   }
5974                 }
5975               }
5976               if( pCol->iSorterColumn<0 ){
5977                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5978               }
5979             }
5980             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5981             ** because it was there before or because we just created it).
5982             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5983             ** pAggInfo->aCol[] entry.
5984             */
5985             ExprSetVVAProperty(pExpr, EP_NoReduce);
5986             pExpr->pAggInfo = pAggInfo;
5987             pExpr->op = TK_AGG_COLUMN;
5988             pExpr->iAgg = (i16)k;
5989             break;
5990           } /* endif pExpr->iTable==pItem->iCursor */
5991         } /* end loop over pSrcList */
5992       }
5993       return WRC_Prune;
5994     }
5995     case TK_AGG_FUNCTION: {
5996       if( (pNC->ncFlags & NC_InAggFunc)==0
5997        && pWalker->walkerDepth==pExpr->op2
5998       ){
5999         /* Check to see if pExpr is a duplicate of another aggregate
6000         ** function that is already in the pAggInfo structure
6001         */
6002         struct AggInfo_func *pItem = pAggInfo->aFunc;
6003         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6004           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6005             break;
6006           }
6007         }
6008         if( i>=pAggInfo->nFunc ){
6009           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6010           */
6011           u8 enc = ENC(pParse->db);
6012           i = addAggInfoFunc(pParse->db, pAggInfo);
6013           if( i>=0 ){
6014             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6015             pItem = &pAggInfo->aFunc[i];
6016             pItem->pFExpr = pExpr;
6017             pItem->iMem = ++pParse->nMem;
6018             assert( !ExprHasProperty(pExpr, EP_IntValue) );
6019             pItem->pFunc = sqlite3FindFunction(pParse->db,
6020                    pExpr->u.zToken,
6021                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6022             if( pExpr->flags & EP_Distinct ){
6023               pItem->iDistinct = pParse->nTab++;
6024             }else{
6025               pItem->iDistinct = -1;
6026             }
6027           }
6028         }
6029         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6030         */
6031         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6032         ExprSetVVAProperty(pExpr, EP_NoReduce);
6033         pExpr->iAgg = (i16)i;
6034         pExpr->pAggInfo = pAggInfo;
6035         return WRC_Prune;
6036       }else{
6037         return WRC_Continue;
6038       }
6039     }
6040   }
6041   return WRC_Continue;
6042 }
6043 
6044 /*
6045 ** Analyze the pExpr expression looking for aggregate functions and
6046 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6047 ** points to.  Additional entries are made on the AggInfo object as
6048 ** necessary.
6049 **
6050 ** This routine should only be called after the expression has been
6051 ** analyzed by sqlite3ResolveExprNames().
6052 */
6053 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6054   Walker w;
6055   w.xExprCallback = analyzeAggregate;
6056   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6057   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6058   w.walkerDepth = 0;
6059   w.u.pNC = pNC;
6060   w.pParse = 0;
6061   assert( pNC->pSrcList!=0 );
6062   sqlite3WalkExpr(&w, pExpr);
6063 }
6064 
6065 /*
6066 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6067 ** expression list.  Return the number of errors.
6068 **
6069 ** If an error is found, the analysis is cut short.
6070 */
6071 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6072   struct ExprList_item *pItem;
6073   int i;
6074   if( pList ){
6075     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6076       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6077     }
6078   }
6079 }
6080 
6081 /*
6082 ** Allocate a single new register for use to hold some intermediate result.
6083 */
6084 int sqlite3GetTempReg(Parse *pParse){
6085   if( pParse->nTempReg==0 ){
6086     return ++pParse->nMem;
6087   }
6088   return pParse->aTempReg[--pParse->nTempReg];
6089 }
6090 
6091 /*
6092 ** Deallocate a register, making available for reuse for some other
6093 ** purpose.
6094 */
6095 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6096   if( iReg ){
6097     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6098     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6099       pParse->aTempReg[pParse->nTempReg++] = iReg;
6100     }
6101   }
6102 }
6103 
6104 /*
6105 ** Allocate or deallocate a block of nReg consecutive registers.
6106 */
6107 int sqlite3GetTempRange(Parse *pParse, int nReg){
6108   int i, n;
6109   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6110   i = pParse->iRangeReg;
6111   n = pParse->nRangeReg;
6112   if( nReg<=n ){
6113     pParse->iRangeReg += nReg;
6114     pParse->nRangeReg -= nReg;
6115   }else{
6116     i = pParse->nMem+1;
6117     pParse->nMem += nReg;
6118   }
6119   return i;
6120 }
6121 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6122   if( nReg==1 ){
6123     sqlite3ReleaseTempReg(pParse, iReg);
6124     return;
6125   }
6126   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6127   if( nReg>pParse->nRangeReg ){
6128     pParse->nRangeReg = nReg;
6129     pParse->iRangeReg = iReg;
6130   }
6131 }
6132 
6133 /*
6134 ** Mark all temporary registers as being unavailable for reuse.
6135 **
6136 ** Always invoke this procedure after coding a subroutine or co-routine
6137 ** that might be invoked from other parts of the code, to ensure that
6138 ** the sub/co-routine does not use registers in common with the code that
6139 ** invokes the sub/co-routine.
6140 */
6141 void sqlite3ClearTempRegCache(Parse *pParse){
6142   pParse->nTempReg = 0;
6143   pParse->nRangeReg = 0;
6144 }
6145 
6146 /*
6147 ** Validate that no temporary register falls within the range of
6148 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6149 ** statements.
6150 */
6151 #ifdef SQLITE_DEBUG
6152 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6153   int i;
6154   if( pParse->nRangeReg>0
6155    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6156    && pParse->iRangeReg <= iLast
6157   ){
6158      return 0;
6159   }
6160   for(i=0; i<pParse->nTempReg; i++){
6161     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6162       return 0;
6163     }
6164   }
6165   return 1;
6166 }
6167 #endif /* SQLITE_DEBUG */
6168