1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 if( pCollName->n>0 ){ 99 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 100 if( pNew ){ 101 pNew->pLeft = pExpr; 102 pNew->flags |= EP_Collate|EP_Skip; 103 pExpr = pNew; 104 } 105 } 106 return pExpr; 107 } 108 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 109 Token s; 110 assert( zC!=0 ); 111 sqlite3TokenInit(&s, (char*)zC); 112 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 113 } 114 115 /* 116 ** Skip over any TK_COLLATE operators. 117 */ 118 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 119 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 120 assert( pExpr->op==TK_COLLATE ); 121 pExpr = pExpr->pLeft; 122 } 123 return pExpr; 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators and/or any unlikely() 128 ** or likelihood() or likely() functions at the root of an 129 ** expression. 130 */ 131 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 132 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 133 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 134 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 135 assert( pExpr->x.pList->nExpr>0 ); 136 assert( pExpr->op==TK_FUNCTION ); 137 pExpr = pExpr->x.pList->a[0].pExpr; 138 }else{ 139 assert( pExpr->op==TK_COLLATE ); 140 pExpr = pExpr->pLeft; 141 } 142 } 143 return pExpr; 144 } 145 146 /* 147 ** Return the collation sequence for the expression pExpr. If 148 ** there is no defined collating sequence, return NULL. 149 ** 150 ** See also: sqlite3ExprNNCollSeq() 151 ** 152 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 153 ** default collation if pExpr has no defined collation. 154 ** 155 ** The collating sequence might be determined by a COLLATE operator 156 ** or by the presence of a column with a defined collating sequence. 157 ** COLLATE operators take first precedence. Left operands take 158 ** precedence over right operands. 159 */ 160 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 161 sqlite3 *db = pParse->db; 162 CollSeq *pColl = 0; 163 const Expr *p = pExpr; 164 while( p ){ 165 int op = p->op; 166 if( op==TK_REGISTER ) op = p->op2; 167 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 168 && p->y.pTab!=0 169 ){ 170 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 171 ** a TK_COLUMN but was previously evaluated and cached in a register */ 172 int j = p->iColumn; 173 if( j>=0 ){ 174 const char *zColl = p->y.pTab->aCol[j].zColl; 175 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 176 } 177 break; 178 } 179 if( op==TK_CAST || op==TK_UPLUS ){ 180 p = p->pLeft; 181 continue; 182 } 183 if( op==TK_VECTOR ){ 184 p = p->x.pList->a[0].pExpr; 185 continue; 186 } 187 if( op==TK_COLLATE ){ 188 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 189 break; 190 } 191 if( p->flags & EP_Collate ){ 192 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 193 p = p->pLeft; 194 }else{ 195 Expr *pNext = p->pRight; 196 /* The Expr.x union is never used at the same time as Expr.pRight */ 197 assert( p->x.pList==0 || p->pRight==0 ); 198 if( p->x.pList!=0 199 && !db->mallocFailed 200 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 201 ){ 202 int i; 203 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 204 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 205 pNext = p->x.pList->a[i].pExpr; 206 break; 207 } 208 } 209 } 210 p = pNext; 211 } 212 }else{ 213 break; 214 } 215 } 216 if( sqlite3CheckCollSeq(pParse, pColl) ){ 217 pColl = 0; 218 } 219 return pColl; 220 } 221 222 /* 223 ** Return the collation sequence for the expression pExpr. If 224 ** there is no defined collating sequence, return a pointer to the 225 ** defautl collation sequence. 226 ** 227 ** See also: sqlite3ExprCollSeq() 228 ** 229 ** The sqlite3ExprCollSeq() routine works the same except that it 230 ** returns NULL if there is no defined collation. 231 */ 232 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 233 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 234 if( p==0 ) p = pParse->db->pDfltColl; 235 assert( p!=0 ); 236 return p; 237 } 238 239 /* 240 ** Return TRUE if the two expressions have equivalent collating sequences. 241 */ 242 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 243 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 244 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 245 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 246 } 247 248 /* 249 ** pExpr is an operand of a comparison operator. aff2 is the 250 ** type affinity of the other operand. This routine returns the 251 ** type affinity that should be used for the comparison operator. 252 */ 253 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 254 char aff1 = sqlite3ExprAffinity(pExpr); 255 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 256 /* Both sides of the comparison are columns. If one has numeric 257 ** affinity, use that. Otherwise use no affinity. 258 */ 259 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 260 return SQLITE_AFF_NUMERIC; 261 }else{ 262 return SQLITE_AFF_BLOB; 263 } 264 }else{ 265 /* One side is a column, the other is not. Use the columns affinity. */ 266 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 267 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 268 } 269 } 270 271 /* 272 ** pExpr is a comparison operator. Return the type affinity that should 273 ** be applied to both operands prior to doing the comparison. 274 */ 275 static char comparisonAffinity(const Expr *pExpr){ 276 char aff; 277 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 278 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 279 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 280 assert( pExpr->pLeft ); 281 aff = sqlite3ExprAffinity(pExpr->pLeft); 282 if( pExpr->pRight ){ 283 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 284 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 285 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 286 }else if( aff==0 ){ 287 aff = SQLITE_AFF_BLOB; 288 } 289 return aff; 290 } 291 292 /* 293 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 294 ** idx_affinity is the affinity of an indexed column. Return true 295 ** if the index with affinity idx_affinity may be used to implement 296 ** the comparison in pExpr. 297 */ 298 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 299 char aff = comparisonAffinity(pExpr); 300 if( aff<SQLITE_AFF_TEXT ){ 301 return 1; 302 } 303 if( aff==SQLITE_AFF_TEXT ){ 304 return idx_affinity==SQLITE_AFF_TEXT; 305 } 306 return sqlite3IsNumericAffinity(idx_affinity); 307 } 308 309 /* 310 ** Return the P5 value that should be used for a binary comparison 311 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 312 */ 313 static u8 binaryCompareP5( 314 const Expr *pExpr1, /* Left operand */ 315 const Expr *pExpr2, /* Right operand */ 316 int jumpIfNull /* Extra flags added to P5 */ 317 ){ 318 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 319 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 320 return aff; 321 } 322 323 /* 324 ** Return a pointer to the collation sequence that should be used by 325 ** a binary comparison operator comparing pLeft and pRight. 326 ** 327 ** If the left hand expression has a collating sequence type, then it is 328 ** used. Otherwise the collation sequence for the right hand expression 329 ** is used, or the default (BINARY) if neither expression has a collating 330 ** type. 331 ** 332 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 333 ** it is not considered. 334 */ 335 CollSeq *sqlite3BinaryCompareCollSeq( 336 Parse *pParse, 337 const Expr *pLeft, 338 const Expr *pRight 339 ){ 340 CollSeq *pColl; 341 assert( pLeft ); 342 if( pLeft->flags & EP_Collate ){ 343 pColl = sqlite3ExprCollSeq(pParse, pLeft); 344 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 345 pColl = sqlite3ExprCollSeq(pParse, pRight); 346 }else{ 347 pColl = sqlite3ExprCollSeq(pParse, pLeft); 348 if( !pColl ){ 349 pColl = sqlite3ExprCollSeq(pParse, pRight); 350 } 351 } 352 return pColl; 353 } 354 355 /* Expresssion p is a comparison operator. Return a collation sequence 356 ** appropriate for the comparison operator. 357 ** 358 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 359 ** However, if the OP_Commuted flag is set, then the order of the operands 360 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 361 ** correct collating sequence is found. 362 */ 363 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 364 if( ExprHasProperty(p, EP_Commuted) ){ 365 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 366 }else{ 367 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 368 } 369 } 370 371 /* 372 ** Generate code for a comparison operator. 373 */ 374 static int codeCompare( 375 Parse *pParse, /* The parsing (and code generating) context */ 376 Expr *pLeft, /* The left operand */ 377 Expr *pRight, /* The right operand */ 378 int opcode, /* The comparison opcode */ 379 int in1, int in2, /* Register holding operands */ 380 int dest, /* Jump here if true. */ 381 int jumpIfNull, /* If true, jump if either operand is NULL */ 382 int isCommuted /* The comparison has been commuted */ 383 ){ 384 int p5; 385 int addr; 386 CollSeq *p4; 387 388 if( pParse->nErr ) return 0; 389 if( isCommuted ){ 390 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 391 }else{ 392 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 393 } 394 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 395 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 396 (void*)p4, P4_COLLSEQ); 397 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 398 return addr; 399 } 400 401 /* 402 ** Return true if expression pExpr is a vector, or false otherwise. 403 ** 404 ** A vector is defined as any expression that results in two or more 405 ** columns of result. Every TK_VECTOR node is an vector because the 406 ** parser will not generate a TK_VECTOR with fewer than two entries. 407 ** But a TK_SELECT might be either a vector or a scalar. It is only 408 ** considered a vector if it has two or more result columns. 409 */ 410 int sqlite3ExprIsVector(Expr *pExpr){ 411 return sqlite3ExprVectorSize(pExpr)>1; 412 } 413 414 /* 415 ** If the expression passed as the only argument is of type TK_VECTOR 416 ** return the number of expressions in the vector. Or, if the expression 417 ** is a sub-select, return the number of columns in the sub-select. For 418 ** any other type of expression, return 1. 419 */ 420 int sqlite3ExprVectorSize(Expr *pExpr){ 421 u8 op = pExpr->op; 422 if( op==TK_REGISTER ) op = pExpr->op2; 423 if( op==TK_VECTOR ){ 424 return pExpr->x.pList->nExpr; 425 }else if( op==TK_SELECT ){ 426 return pExpr->x.pSelect->pEList->nExpr; 427 }else{ 428 return 1; 429 } 430 } 431 432 /* 433 ** Return a pointer to a subexpression of pVector that is the i-th 434 ** column of the vector (numbered starting with 0). The caller must 435 ** ensure that i is within range. 436 ** 437 ** If pVector is really a scalar (and "scalar" here includes subqueries 438 ** that return a single column!) then return pVector unmodified. 439 ** 440 ** pVector retains ownership of the returned subexpression. 441 ** 442 ** If the vector is a (SELECT ...) then the expression returned is 443 ** just the expression for the i-th term of the result set, and may 444 ** not be ready for evaluation because the table cursor has not yet 445 ** been positioned. 446 */ 447 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 448 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 449 if( sqlite3ExprIsVector(pVector) ){ 450 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 451 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 452 return pVector->x.pSelect->pEList->a[i].pExpr; 453 }else{ 454 return pVector->x.pList->a[i].pExpr; 455 } 456 } 457 return pVector; 458 } 459 460 /* 461 ** Compute and return a new Expr object which when passed to 462 ** sqlite3ExprCode() will generate all necessary code to compute 463 ** the iField-th column of the vector expression pVector. 464 ** 465 ** It is ok for pVector to be a scalar (as long as iField==0). 466 ** In that case, this routine works like sqlite3ExprDup(). 467 ** 468 ** The caller owns the returned Expr object and is responsible for 469 ** ensuring that the returned value eventually gets freed. 470 ** 471 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 472 ** then the returned object will reference pVector and so pVector must remain 473 ** valid for the life of the returned object. If pVector is a TK_VECTOR 474 ** or a scalar expression, then it can be deleted as soon as this routine 475 ** returns. 476 ** 477 ** A trick to cause a TK_SELECT pVector to be deleted together with 478 ** the returned Expr object is to attach the pVector to the pRight field 479 ** of the returned TK_SELECT_COLUMN Expr object. 480 */ 481 Expr *sqlite3ExprForVectorField( 482 Parse *pParse, /* Parsing context */ 483 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 484 int iField /* Which column of the vector to return */ 485 ){ 486 Expr *pRet; 487 if( pVector->op==TK_SELECT ){ 488 assert( pVector->flags & EP_xIsSelect ); 489 /* The TK_SELECT_COLUMN Expr node: 490 ** 491 ** pLeft: pVector containing TK_SELECT. Not deleted. 492 ** pRight: not used. But recursively deleted. 493 ** iColumn: Index of a column in pVector 494 ** iTable: 0 or the number of columns on the LHS of an assignment 495 ** pLeft->iTable: First in an array of register holding result, or 0 496 ** if the result is not yet computed. 497 ** 498 ** sqlite3ExprDelete() specifically skips the recursive delete of 499 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 500 ** can be attached to pRight to cause this node to take ownership of 501 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 502 ** with the same pLeft pointer to the pVector, but only one of them 503 ** will own the pVector. 504 */ 505 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 506 if( pRet ){ 507 pRet->iColumn = iField; 508 pRet->pLeft = pVector; 509 } 510 assert( pRet==0 || pRet->iTable==0 ); 511 }else{ 512 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 513 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 514 sqlite3RenameTokenRemap(pParse, pRet, pVector); 515 } 516 return pRet; 517 } 518 519 /* 520 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 521 ** it. Return the register in which the result is stored (or, if the 522 ** sub-select returns more than one column, the first in an array 523 ** of registers in which the result is stored). 524 ** 525 ** If pExpr is not a TK_SELECT expression, return 0. 526 */ 527 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 528 int reg = 0; 529 #ifndef SQLITE_OMIT_SUBQUERY 530 if( pExpr->op==TK_SELECT ){ 531 reg = sqlite3CodeSubselect(pParse, pExpr); 532 } 533 #endif 534 return reg; 535 } 536 537 /* 538 ** Argument pVector points to a vector expression - either a TK_VECTOR 539 ** or TK_SELECT that returns more than one column. This function returns 540 ** the register number of a register that contains the value of 541 ** element iField of the vector. 542 ** 543 ** If pVector is a TK_SELECT expression, then code for it must have 544 ** already been generated using the exprCodeSubselect() routine. In this 545 ** case parameter regSelect should be the first in an array of registers 546 ** containing the results of the sub-select. 547 ** 548 ** If pVector is of type TK_VECTOR, then code for the requested field 549 ** is generated. In this case (*pRegFree) may be set to the number of 550 ** a temporary register to be freed by the caller before returning. 551 ** 552 ** Before returning, output parameter (*ppExpr) is set to point to the 553 ** Expr object corresponding to element iElem of the vector. 554 */ 555 static int exprVectorRegister( 556 Parse *pParse, /* Parse context */ 557 Expr *pVector, /* Vector to extract element from */ 558 int iField, /* Field to extract from pVector */ 559 int regSelect, /* First in array of registers */ 560 Expr **ppExpr, /* OUT: Expression element */ 561 int *pRegFree /* OUT: Temp register to free */ 562 ){ 563 u8 op = pVector->op; 564 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 565 if( op==TK_REGISTER ){ 566 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 567 return pVector->iTable+iField; 568 } 569 if( op==TK_SELECT ){ 570 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 571 return regSelect+iField; 572 } 573 if( op==TK_VECTOR ){ 574 *ppExpr = pVector->x.pList->a[iField].pExpr; 575 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 576 } 577 return 0; 578 } 579 580 /* 581 ** Expression pExpr is a comparison between two vector values. Compute 582 ** the result of the comparison (1, 0, or NULL) and write that 583 ** result into register dest. 584 ** 585 ** The caller must satisfy the following preconditions: 586 ** 587 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 588 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 589 ** otherwise: op==pExpr->op and p5==0 590 */ 591 static void codeVectorCompare( 592 Parse *pParse, /* Code generator context */ 593 Expr *pExpr, /* The comparison operation */ 594 int dest, /* Write results into this register */ 595 u8 op, /* Comparison operator */ 596 u8 p5 /* SQLITE_NULLEQ or zero */ 597 ){ 598 Vdbe *v = pParse->pVdbe; 599 Expr *pLeft = pExpr->pLeft; 600 Expr *pRight = pExpr->pRight; 601 int nLeft = sqlite3ExprVectorSize(pLeft); 602 int i; 603 int regLeft = 0; 604 int regRight = 0; 605 u8 opx = op; 606 int addrCmp = 0; 607 int addrDone = sqlite3VdbeMakeLabel(pParse); 608 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 609 610 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 611 if( pParse->nErr ) return; 612 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 613 sqlite3ErrorMsg(pParse, "row value misused"); 614 return; 615 } 616 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 617 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 618 || pExpr->op==TK_LT || pExpr->op==TK_GT 619 || pExpr->op==TK_LE || pExpr->op==TK_GE 620 ); 621 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 622 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 623 assert( p5==0 || pExpr->op!=op ); 624 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 625 626 if( op==TK_LE ) opx = TK_LT; 627 if( op==TK_GE ) opx = TK_GT; 628 if( op==TK_NE ) opx = TK_EQ; 629 630 regLeft = exprCodeSubselect(pParse, pLeft); 631 regRight = exprCodeSubselect(pParse, pRight); 632 633 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 634 for(i=0; 1 /*Loop exits by "break"*/; i++){ 635 int regFree1 = 0, regFree2 = 0; 636 Expr *pL, *pR; 637 int r1, r2; 638 assert( i>=0 && i<nLeft ); 639 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 640 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 641 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 642 addrCmp = sqlite3VdbeCurrentAddr(v); 643 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 644 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 645 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 646 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 647 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 648 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 649 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 650 sqlite3ReleaseTempReg(pParse, regFree1); 651 sqlite3ReleaseTempReg(pParse, regFree2); 652 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 653 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 654 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 655 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 656 } 657 if( p5==SQLITE_NULLEQ ){ 658 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 659 }else{ 660 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 661 } 662 if( i==nLeft-1 ){ 663 break; 664 } 665 if( opx==TK_EQ ){ 666 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 667 }else{ 668 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 669 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 670 if( i==nLeft-2 ) opx = op; 671 } 672 } 673 sqlite3VdbeJumpHere(v, addrCmp); 674 sqlite3VdbeResolveLabel(v, addrDone); 675 if( op==TK_NE ){ 676 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 677 } 678 } 679 680 #if SQLITE_MAX_EXPR_DEPTH>0 681 /* 682 ** Check that argument nHeight is less than or equal to the maximum 683 ** expression depth allowed. If it is not, leave an error message in 684 ** pParse. 685 */ 686 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 687 int rc = SQLITE_OK; 688 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 689 if( nHeight>mxHeight ){ 690 sqlite3ErrorMsg(pParse, 691 "Expression tree is too large (maximum depth %d)", mxHeight 692 ); 693 rc = SQLITE_ERROR; 694 } 695 return rc; 696 } 697 698 /* The following three functions, heightOfExpr(), heightOfExprList() 699 ** and heightOfSelect(), are used to determine the maximum height 700 ** of any expression tree referenced by the structure passed as the 701 ** first argument. 702 ** 703 ** If this maximum height is greater than the current value pointed 704 ** to by pnHeight, the second parameter, then set *pnHeight to that 705 ** value. 706 */ 707 static void heightOfExpr(Expr *p, int *pnHeight){ 708 if( p ){ 709 if( p->nHeight>*pnHeight ){ 710 *pnHeight = p->nHeight; 711 } 712 } 713 } 714 static void heightOfExprList(ExprList *p, int *pnHeight){ 715 if( p ){ 716 int i; 717 for(i=0; i<p->nExpr; i++){ 718 heightOfExpr(p->a[i].pExpr, pnHeight); 719 } 720 } 721 } 722 static void heightOfSelect(Select *pSelect, int *pnHeight){ 723 Select *p; 724 for(p=pSelect; p; p=p->pPrior){ 725 heightOfExpr(p->pWhere, pnHeight); 726 heightOfExpr(p->pHaving, pnHeight); 727 heightOfExpr(p->pLimit, pnHeight); 728 heightOfExprList(p->pEList, pnHeight); 729 heightOfExprList(p->pGroupBy, pnHeight); 730 heightOfExprList(p->pOrderBy, pnHeight); 731 } 732 } 733 734 /* 735 ** Set the Expr.nHeight variable in the structure passed as an 736 ** argument. An expression with no children, Expr.pList or 737 ** Expr.pSelect member has a height of 1. Any other expression 738 ** has a height equal to the maximum height of any other 739 ** referenced Expr plus one. 740 ** 741 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 742 ** if appropriate. 743 */ 744 static void exprSetHeight(Expr *p){ 745 int nHeight = 0; 746 heightOfExpr(p->pLeft, &nHeight); 747 heightOfExpr(p->pRight, &nHeight); 748 if( ExprHasProperty(p, EP_xIsSelect) ){ 749 heightOfSelect(p->x.pSelect, &nHeight); 750 }else if( p->x.pList ){ 751 heightOfExprList(p->x.pList, &nHeight); 752 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 753 } 754 p->nHeight = nHeight + 1; 755 } 756 757 /* 758 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 759 ** the height is greater than the maximum allowed expression depth, 760 ** leave an error in pParse. 761 ** 762 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 763 ** Expr.flags. 764 */ 765 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 766 if( pParse->nErr ) return; 767 exprSetHeight(p); 768 sqlite3ExprCheckHeight(pParse, p->nHeight); 769 } 770 771 /* 772 ** Return the maximum height of any expression tree referenced 773 ** by the select statement passed as an argument. 774 */ 775 int sqlite3SelectExprHeight(Select *p){ 776 int nHeight = 0; 777 heightOfSelect(p, &nHeight); 778 return nHeight; 779 } 780 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 781 /* 782 ** Propagate all EP_Propagate flags from the Expr.x.pList into 783 ** Expr.flags. 784 */ 785 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 786 if( pParse->nErr ) return; 787 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 788 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 789 } 790 } 791 #define exprSetHeight(y) 792 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 793 794 /* 795 ** This routine is the core allocator for Expr nodes. 796 ** 797 ** Construct a new expression node and return a pointer to it. Memory 798 ** for this node and for the pToken argument is a single allocation 799 ** obtained from sqlite3DbMalloc(). The calling function 800 ** is responsible for making sure the node eventually gets freed. 801 ** 802 ** If dequote is true, then the token (if it exists) is dequoted. 803 ** If dequote is false, no dequoting is performed. The deQuote 804 ** parameter is ignored if pToken is NULL or if the token does not 805 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 806 ** then the EP_DblQuoted flag is set on the expression node. 807 ** 808 ** Special case: If op==TK_INTEGER and pToken points to a string that 809 ** can be translated into a 32-bit integer, then the token is not 810 ** stored in u.zToken. Instead, the integer values is written 811 ** into u.iValue and the EP_IntValue flag is set. No extra storage 812 ** is allocated to hold the integer text and the dequote flag is ignored. 813 */ 814 Expr *sqlite3ExprAlloc( 815 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 816 int op, /* Expression opcode */ 817 const Token *pToken, /* Token argument. Might be NULL */ 818 int dequote /* True to dequote */ 819 ){ 820 Expr *pNew; 821 int nExtra = 0; 822 int iValue = 0; 823 824 assert( db!=0 ); 825 if( pToken ){ 826 if( op!=TK_INTEGER || pToken->z==0 827 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 828 nExtra = pToken->n+1; 829 assert( iValue>=0 ); 830 } 831 } 832 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 833 if( pNew ){ 834 memset(pNew, 0, sizeof(Expr)); 835 pNew->op = (u8)op; 836 pNew->iAgg = -1; 837 if( pToken ){ 838 if( nExtra==0 ){ 839 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 840 pNew->u.iValue = iValue; 841 }else{ 842 pNew->u.zToken = (char*)&pNew[1]; 843 assert( pToken->z!=0 || pToken->n==0 ); 844 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 845 pNew->u.zToken[pToken->n] = 0; 846 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 847 sqlite3DequoteExpr(pNew); 848 } 849 } 850 } 851 #if SQLITE_MAX_EXPR_DEPTH>0 852 pNew->nHeight = 1; 853 #endif 854 } 855 return pNew; 856 } 857 858 /* 859 ** Allocate a new expression node from a zero-terminated token that has 860 ** already been dequoted. 861 */ 862 Expr *sqlite3Expr( 863 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 864 int op, /* Expression opcode */ 865 const char *zToken /* Token argument. Might be NULL */ 866 ){ 867 Token x; 868 x.z = zToken; 869 x.n = sqlite3Strlen30(zToken); 870 return sqlite3ExprAlloc(db, op, &x, 0); 871 } 872 873 /* 874 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 875 ** 876 ** If pRoot==NULL that means that a memory allocation error has occurred. 877 ** In that case, delete the subtrees pLeft and pRight. 878 */ 879 void sqlite3ExprAttachSubtrees( 880 sqlite3 *db, 881 Expr *pRoot, 882 Expr *pLeft, 883 Expr *pRight 884 ){ 885 if( pRoot==0 ){ 886 assert( db->mallocFailed ); 887 sqlite3ExprDelete(db, pLeft); 888 sqlite3ExprDelete(db, pRight); 889 }else{ 890 if( pRight ){ 891 pRoot->pRight = pRight; 892 pRoot->flags |= EP_Propagate & pRight->flags; 893 } 894 if( pLeft ){ 895 pRoot->pLeft = pLeft; 896 pRoot->flags |= EP_Propagate & pLeft->flags; 897 } 898 exprSetHeight(pRoot); 899 } 900 } 901 902 /* 903 ** Allocate an Expr node which joins as many as two subtrees. 904 ** 905 ** One or both of the subtrees can be NULL. Return a pointer to the new 906 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 907 ** free the subtrees and return NULL. 908 */ 909 Expr *sqlite3PExpr( 910 Parse *pParse, /* Parsing context */ 911 int op, /* Expression opcode */ 912 Expr *pLeft, /* Left operand */ 913 Expr *pRight /* Right operand */ 914 ){ 915 Expr *p; 916 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 917 if( p ){ 918 memset(p, 0, sizeof(Expr)); 919 p->op = op & 0xff; 920 p->iAgg = -1; 921 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 922 sqlite3ExprCheckHeight(pParse, p->nHeight); 923 }else{ 924 sqlite3ExprDelete(pParse->db, pLeft); 925 sqlite3ExprDelete(pParse->db, pRight); 926 } 927 return p; 928 } 929 930 /* 931 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 932 ** do a memory allocation failure) then delete the pSelect object. 933 */ 934 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 935 if( pExpr ){ 936 pExpr->x.pSelect = pSelect; 937 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 938 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 939 }else{ 940 assert( pParse->db->mallocFailed ); 941 sqlite3SelectDelete(pParse->db, pSelect); 942 } 943 } 944 945 946 /* 947 ** Join two expressions using an AND operator. If either expression is 948 ** NULL, then just return the other expression. 949 ** 950 ** If one side or the other of the AND is known to be false, then instead 951 ** of returning an AND expression, just return a constant expression with 952 ** a value of false. 953 */ 954 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 955 sqlite3 *db = pParse->db; 956 if( pLeft==0 ){ 957 return pRight; 958 }else if( pRight==0 ){ 959 return pLeft; 960 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 961 && !IN_RENAME_OBJECT 962 ){ 963 sqlite3ExprDeferredDelete(pParse, pLeft); 964 sqlite3ExprDeferredDelete(pParse, pRight); 965 return sqlite3Expr(db, TK_INTEGER, "0"); 966 }else{ 967 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 968 } 969 } 970 971 /* 972 ** Construct a new expression node for a function with multiple 973 ** arguments. 974 */ 975 Expr *sqlite3ExprFunction( 976 Parse *pParse, /* Parsing context */ 977 ExprList *pList, /* Argument list */ 978 Token *pToken, /* Name of the function */ 979 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 980 ){ 981 Expr *pNew; 982 sqlite3 *db = pParse->db; 983 assert( pToken ); 984 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 985 if( pNew==0 ){ 986 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 987 return 0; 988 } 989 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 990 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 991 } 992 pNew->x.pList = pList; 993 ExprSetProperty(pNew, EP_HasFunc); 994 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 995 sqlite3ExprSetHeightAndFlags(pParse, pNew); 996 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 997 return pNew; 998 } 999 1000 /* 1001 ** Check to see if a function is usable according to current access 1002 ** rules: 1003 ** 1004 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1005 ** 1006 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1007 ** top-level SQL 1008 ** 1009 ** If the function is not usable, create an error. 1010 */ 1011 void sqlite3ExprFunctionUsable( 1012 Parse *pParse, /* Parsing and code generating context */ 1013 Expr *pExpr, /* The function invocation */ 1014 FuncDef *pDef /* The function being invoked */ 1015 ){ 1016 assert( !IN_RENAME_OBJECT ); 1017 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1018 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1019 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1020 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1021 ){ 1022 /* Functions prohibited in triggers and views if: 1023 ** (1) tagged with SQLITE_DIRECTONLY 1024 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1025 ** is tagged with SQLITE_FUNC_UNSAFE) and 1026 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1027 ** that the schema is possibly tainted). 1028 */ 1029 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1030 } 1031 } 1032 } 1033 1034 /* 1035 ** Assign a variable number to an expression that encodes a wildcard 1036 ** in the original SQL statement. 1037 ** 1038 ** Wildcards consisting of a single "?" are assigned the next sequential 1039 ** variable number. 1040 ** 1041 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1042 ** sure "nnn" is not too big to avoid a denial of service attack when 1043 ** the SQL statement comes from an external source. 1044 ** 1045 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1046 ** as the previous instance of the same wildcard. Or if this is the first 1047 ** instance of the wildcard, the next sequential variable number is 1048 ** assigned. 1049 */ 1050 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1051 sqlite3 *db = pParse->db; 1052 const char *z; 1053 ynVar x; 1054 1055 if( pExpr==0 ) return; 1056 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1057 z = pExpr->u.zToken; 1058 assert( z!=0 ); 1059 assert( z[0]!=0 ); 1060 assert( n==(u32)sqlite3Strlen30(z) ); 1061 if( z[1]==0 ){ 1062 /* Wildcard of the form "?". Assign the next variable number */ 1063 assert( z[0]=='?' ); 1064 x = (ynVar)(++pParse->nVar); 1065 }else{ 1066 int doAdd = 0; 1067 if( z[0]=='?' ){ 1068 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1069 ** use it as the variable number */ 1070 i64 i; 1071 int bOk; 1072 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1073 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1074 bOk = 1; 1075 }else{ 1076 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1077 } 1078 testcase( i==0 ); 1079 testcase( i==1 ); 1080 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1081 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1082 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1083 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1084 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1085 return; 1086 } 1087 x = (ynVar)i; 1088 if( x>pParse->nVar ){ 1089 pParse->nVar = (int)x; 1090 doAdd = 1; 1091 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1092 doAdd = 1; 1093 } 1094 }else{ 1095 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1096 ** number as the prior appearance of the same name, or if the name 1097 ** has never appeared before, reuse the same variable number 1098 */ 1099 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1100 if( x==0 ){ 1101 x = (ynVar)(++pParse->nVar); 1102 doAdd = 1; 1103 } 1104 } 1105 if( doAdd ){ 1106 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1107 } 1108 } 1109 pExpr->iColumn = x; 1110 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1111 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1112 } 1113 } 1114 1115 /* 1116 ** Recursively delete an expression tree. 1117 */ 1118 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1119 assert( p!=0 ); 1120 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1121 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1122 1123 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1124 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1125 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1126 #ifdef SQLITE_DEBUG 1127 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1128 assert( p->pLeft==0 ); 1129 assert( p->pRight==0 ); 1130 assert( p->x.pSelect==0 ); 1131 } 1132 #endif 1133 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1134 /* The Expr.x union is never used at the same time as Expr.pRight */ 1135 assert( p->x.pList==0 || p->pRight==0 ); 1136 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1137 if( p->pRight ){ 1138 assert( !ExprHasProperty(p, EP_WinFunc) ); 1139 sqlite3ExprDeleteNN(db, p->pRight); 1140 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1141 assert( !ExprHasProperty(p, EP_WinFunc) ); 1142 sqlite3SelectDelete(db, p->x.pSelect); 1143 }else{ 1144 sqlite3ExprListDelete(db, p->x.pList); 1145 #ifndef SQLITE_OMIT_WINDOWFUNC 1146 if( ExprHasProperty(p, EP_WinFunc) ){ 1147 sqlite3WindowDelete(db, p->y.pWin); 1148 } 1149 #endif 1150 } 1151 } 1152 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1153 if( !ExprHasProperty(p, EP_Static) ){ 1154 sqlite3DbFreeNN(db, p); 1155 } 1156 } 1157 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1158 if( p ) sqlite3ExprDeleteNN(db, p); 1159 } 1160 1161 1162 /* 1163 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1164 ** This is similar to sqlite3ExprDelete() except that the delete is 1165 ** deferred untilthe pParse is deleted. 1166 ** 1167 ** The pExpr might be deleted immediately on an OOM error. 1168 ** 1169 ** The deferred delete is (currently) implemented by adding the 1170 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1171 */ 1172 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1173 pParse->pConstExpr = 1174 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1175 } 1176 1177 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1178 ** expression. 1179 */ 1180 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1181 if( p ){ 1182 if( IN_RENAME_OBJECT ){ 1183 sqlite3RenameExprUnmap(pParse, p); 1184 } 1185 sqlite3ExprDeleteNN(pParse->db, p); 1186 } 1187 } 1188 1189 /* 1190 ** Return the number of bytes allocated for the expression structure 1191 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1192 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1193 */ 1194 static int exprStructSize(Expr *p){ 1195 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1196 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1197 return EXPR_FULLSIZE; 1198 } 1199 1200 /* 1201 ** The dupedExpr*Size() routines each return the number of bytes required 1202 ** to store a copy of an expression or expression tree. They differ in 1203 ** how much of the tree is measured. 1204 ** 1205 ** dupedExprStructSize() Size of only the Expr structure 1206 ** dupedExprNodeSize() Size of Expr + space for token 1207 ** dupedExprSize() Expr + token + subtree components 1208 ** 1209 *************************************************************************** 1210 ** 1211 ** The dupedExprStructSize() function returns two values OR-ed together: 1212 ** (1) the space required for a copy of the Expr structure only and 1213 ** (2) the EP_xxx flags that indicate what the structure size should be. 1214 ** The return values is always one of: 1215 ** 1216 ** EXPR_FULLSIZE 1217 ** EXPR_REDUCEDSIZE | EP_Reduced 1218 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1219 ** 1220 ** The size of the structure can be found by masking the return value 1221 ** of this routine with 0xfff. The flags can be found by masking the 1222 ** return value with EP_Reduced|EP_TokenOnly. 1223 ** 1224 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1225 ** (unreduced) Expr objects as they or originally constructed by the parser. 1226 ** During expression analysis, extra information is computed and moved into 1227 ** later parts of the Expr object and that extra information might get chopped 1228 ** off if the expression is reduced. Note also that it does not work to 1229 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1230 ** to reduce a pristine expression tree from the parser. The implementation 1231 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1232 ** to enforce this constraint. 1233 */ 1234 static int dupedExprStructSize(Expr *p, int flags){ 1235 int nSize; 1236 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1237 assert( EXPR_FULLSIZE<=0xfff ); 1238 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1239 if( 0==flags || p->op==TK_SELECT_COLUMN 1240 #ifndef SQLITE_OMIT_WINDOWFUNC 1241 || ExprHasProperty(p, EP_WinFunc) 1242 #endif 1243 ){ 1244 nSize = EXPR_FULLSIZE; 1245 }else{ 1246 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1247 assert( !ExprHasProperty(p, EP_FromJoin) ); 1248 assert( !ExprHasProperty(p, EP_MemToken) ); 1249 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1250 if( p->pLeft || p->x.pList ){ 1251 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1252 }else{ 1253 assert( p->pRight==0 ); 1254 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1255 } 1256 } 1257 return nSize; 1258 } 1259 1260 /* 1261 ** This function returns the space in bytes required to store the copy 1262 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1263 ** string is defined.) 1264 */ 1265 static int dupedExprNodeSize(Expr *p, int flags){ 1266 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1267 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1268 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1269 } 1270 return ROUND8(nByte); 1271 } 1272 1273 /* 1274 ** Return the number of bytes required to create a duplicate of the 1275 ** expression passed as the first argument. The second argument is a 1276 ** mask containing EXPRDUP_XXX flags. 1277 ** 1278 ** The value returned includes space to create a copy of the Expr struct 1279 ** itself and the buffer referred to by Expr.u.zToken, if any. 1280 ** 1281 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1282 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1283 ** and Expr.pRight variables (but not for any structures pointed to or 1284 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1285 */ 1286 static int dupedExprSize(Expr *p, int flags){ 1287 int nByte = 0; 1288 if( p ){ 1289 nByte = dupedExprNodeSize(p, flags); 1290 if( flags&EXPRDUP_REDUCE ){ 1291 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1292 } 1293 } 1294 return nByte; 1295 } 1296 1297 /* 1298 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1299 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1300 ** to store the copy of expression p, the copies of p->u.zToken 1301 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1302 ** if any. Before returning, *pzBuffer is set to the first byte past the 1303 ** portion of the buffer copied into by this function. 1304 */ 1305 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1306 Expr *pNew; /* Value to return */ 1307 u8 *zAlloc; /* Memory space from which to build Expr object */ 1308 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1309 1310 assert( db!=0 ); 1311 assert( p ); 1312 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1313 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1314 1315 /* Figure out where to write the new Expr structure. */ 1316 if( pzBuffer ){ 1317 zAlloc = *pzBuffer; 1318 staticFlag = EP_Static; 1319 assert( zAlloc!=0 ); 1320 }else{ 1321 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1322 staticFlag = 0; 1323 } 1324 pNew = (Expr *)zAlloc; 1325 1326 if( pNew ){ 1327 /* Set nNewSize to the size allocated for the structure pointed to 1328 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1329 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1330 ** by the copy of the p->u.zToken string (if any). 1331 */ 1332 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1333 const int nNewSize = nStructSize & 0xfff; 1334 int nToken; 1335 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1336 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1337 }else{ 1338 nToken = 0; 1339 } 1340 if( dupFlags ){ 1341 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1342 memcpy(zAlloc, p, nNewSize); 1343 }else{ 1344 u32 nSize = (u32)exprStructSize(p); 1345 memcpy(zAlloc, p, nSize); 1346 if( nSize<EXPR_FULLSIZE ){ 1347 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1348 } 1349 } 1350 1351 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1352 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1353 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1354 pNew->flags |= staticFlag; 1355 ExprClearVVAProperties(pNew); 1356 if( dupFlags ){ 1357 ExprSetVVAProperty(pNew, EP_Immutable); 1358 } 1359 1360 /* Copy the p->u.zToken string, if any. */ 1361 if( nToken ){ 1362 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1363 memcpy(zToken, p->u.zToken, nToken); 1364 } 1365 1366 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1367 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1368 if( ExprHasProperty(p, EP_xIsSelect) ){ 1369 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1370 }else{ 1371 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1372 } 1373 } 1374 1375 /* Fill in pNew->pLeft and pNew->pRight. */ 1376 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1377 zAlloc += dupedExprNodeSize(p, dupFlags); 1378 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1379 pNew->pLeft = p->pLeft ? 1380 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1381 pNew->pRight = p->pRight ? 1382 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1383 } 1384 #ifndef SQLITE_OMIT_WINDOWFUNC 1385 if( ExprHasProperty(p, EP_WinFunc) ){ 1386 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1387 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1388 } 1389 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1390 if( pzBuffer ){ 1391 *pzBuffer = zAlloc; 1392 } 1393 }else{ 1394 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1395 if( pNew->op==TK_SELECT_COLUMN ){ 1396 pNew->pLeft = p->pLeft; 1397 assert( p->iColumn==0 || p->pRight==0 ); 1398 assert( p->pRight==0 || p->pRight==p->pLeft 1399 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1400 }else{ 1401 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1402 } 1403 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1404 } 1405 } 1406 } 1407 return pNew; 1408 } 1409 1410 /* 1411 ** Create and return a deep copy of the object passed as the second 1412 ** argument. If an OOM condition is encountered, NULL is returned 1413 ** and the db->mallocFailed flag set. 1414 */ 1415 #ifndef SQLITE_OMIT_CTE 1416 static With *withDup(sqlite3 *db, With *p){ 1417 With *pRet = 0; 1418 if( p ){ 1419 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1420 pRet = sqlite3DbMallocZero(db, nByte); 1421 if( pRet ){ 1422 int i; 1423 pRet->nCte = p->nCte; 1424 for(i=0; i<p->nCte; i++){ 1425 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1426 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1427 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1428 } 1429 } 1430 } 1431 return pRet; 1432 } 1433 #else 1434 # define withDup(x,y) 0 1435 #endif 1436 1437 #ifndef SQLITE_OMIT_WINDOWFUNC 1438 /* 1439 ** The gatherSelectWindows() procedure and its helper routine 1440 ** gatherSelectWindowsCallback() are used to scan all the expressions 1441 ** an a newly duplicated SELECT statement and gather all of the Window 1442 ** objects found there, assembling them onto the linked list at Select->pWin. 1443 */ 1444 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1445 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1446 Select *pSelect = pWalker->u.pSelect; 1447 Window *pWin = pExpr->y.pWin; 1448 assert( pWin ); 1449 assert( IsWindowFunc(pExpr) ); 1450 assert( pWin->ppThis==0 ); 1451 sqlite3WindowLink(pSelect, pWin); 1452 } 1453 return WRC_Continue; 1454 } 1455 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1456 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1457 } 1458 static void gatherSelectWindows(Select *p){ 1459 Walker w; 1460 w.xExprCallback = gatherSelectWindowsCallback; 1461 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1462 w.xSelectCallback2 = 0; 1463 w.pParse = 0; 1464 w.u.pSelect = p; 1465 sqlite3WalkSelect(&w, p); 1466 } 1467 #endif 1468 1469 1470 /* 1471 ** The following group of routines make deep copies of expressions, 1472 ** expression lists, ID lists, and select statements. The copies can 1473 ** be deleted (by being passed to their respective ...Delete() routines) 1474 ** without effecting the originals. 1475 ** 1476 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1477 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1478 ** by subsequent calls to sqlite*ListAppend() routines. 1479 ** 1480 ** Any tables that the SrcList might point to are not duplicated. 1481 ** 1482 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1483 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1484 ** truncated version of the usual Expr structure that will be stored as 1485 ** part of the in-memory representation of the database schema. 1486 */ 1487 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1488 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1489 return p ? exprDup(db, p, flags, 0) : 0; 1490 } 1491 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1492 ExprList *pNew; 1493 struct ExprList_item *pItem, *pOldItem; 1494 int i; 1495 Expr *pPriorSelectCol = 0; 1496 assert( db!=0 ); 1497 if( p==0 ) return 0; 1498 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1499 if( pNew==0 ) return 0; 1500 pNew->nExpr = p->nExpr; 1501 pNew->nAlloc = p->nAlloc; 1502 pItem = pNew->a; 1503 pOldItem = p->a; 1504 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1505 Expr *pOldExpr = pOldItem->pExpr; 1506 Expr *pNewExpr; 1507 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1508 if( pOldExpr 1509 && pOldExpr->op==TK_SELECT_COLUMN 1510 && (pNewExpr = pItem->pExpr)!=0 1511 ){ 1512 assert( pNewExpr->iColumn==0 || i>0 ); 1513 if( pNewExpr->iColumn==0 ){ 1514 assert( pOldExpr->pLeft==pOldExpr->pRight 1515 || ExprHasProperty(pOldExpr->pLeft, EP_Subquery) ); 1516 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1517 }else{ 1518 assert( i>0 ); 1519 assert( pItem[-1].pExpr!=0 ); 1520 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1521 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1522 pNewExpr->pLeft = pPriorSelectCol; 1523 } 1524 } 1525 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1526 pItem->sortFlags = pOldItem->sortFlags; 1527 pItem->eEName = pOldItem->eEName; 1528 pItem->done = 0; 1529 pItem->bNulls = pOldItem->bNulls; 1530 pItem->bSorterRef = pOldItem->bSorterRef; 1531 pItem->u = pOldItem->u; 1532 } 1533 return pNew; 1534 } 1535 1536 /* 1537 ** If cursors, triggers, views and subqueries are all omitted from 1538 ** the build, then none of the following routines, except for 1539 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1540 ** called with a NULL argument. 1541 */ 1542 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1543 || !defined(SQLITE_OMIT_SUBQUERY) 1544 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1545 SrcList *pNew; 1546 int i; 1547 int nByte; 1548 assert( db!=0 ); 1549 if( p==0 ) return 0; 1550 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1551 pNew = sqlite3DbMallocRawNN(db, nByte ); 1552 if( pNew==0 ) return 0; 1553 pNew->nSrc = pNew->nAlloc = p->nSrc; 1554 for(i=0; i<p->nSrc; i++){ 1555 SrcItem *pNewItem = &pNew->a[i]; 1556 SrcItem *pOldItem = &p->a[i]; 1557 Table *pTab; 1558 pNewItem->pSchema = pOldItem->pSchema; 1559 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1560 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1561 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1562 pNewItem->fg = pOldItem->fg; 1563 pNewItem->iCursor = pOldItem->iCursor; 1564 pNewItem->addrFillSub = pOldItem->addrFillSub; 1565 pNewItem->regReturn = pOldItem->regReturn; 1566 if( pNewItem->fg.isIndexedBy ){ 1567 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1568 } 1569 pNewItem->u2 = pOldItem->u2; 1570 if( pNewItem->fg.isCte ){ 1571 pNewItem->u2.pCteUse->nUse++; 1572 } 1573 if( pNewItem->fg.isTabFunc ){ 1574 pNewItem->u1.pFuncArg = 1575 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1576 } 1577 pTab = pNewItem->pTab = pOldItem->pTab; 1578 if( pTab ){ 1579 pTab->nTabRef++; 1580 } 1581 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1582 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1583 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1584 pNewItem->colUsed = pOldItem->colUsed; 1585 } 1586 return pNew; 1587 } 1588 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1589 IdList *pNew; 1590 int i; 1591 assert( db!=0 ); 1592 if( p==0 ) return 0; 1593 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1594 if( pNew==0 ) return 0; 1595 pNew->nId = p->nId; 1596 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1597 if( pNew->a==0 ){ 1598 sqlite3DbFreeNN(db, pNew); 1599 return 0; 1600 } 1601 /* Note that because the size of the allocation for p->a[] is not 1602 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1603 ** on the duplicate created by this function. */ 1604 for(i=0; i<p->nId; i++){ 1605 struct IdList_item *pNewItem = &pNew->a[i]; 1606 struct IdList_item *pOldItem = &p->a[i]; 1607 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1608 pNewItem->idx = pOldItem->idx; 1609 } 1610 return pNew; 1611 } 1612 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1613 Select *pRet = 0; 1614 Select *pNext = 0; 1615 Select **pp = &pRet; 1616 Select *p; 1617 1618 assert( db!=0 ); 1619 for(p=pDup; p; p=p->pPrior){ 1620 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1621 if( pNew==0 ) break; 1622 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1623 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1624 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1625 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1626 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1627 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1628 pNew->op = p->op; 1629 pNew->pNext = pNext; 1630 pNew->pPrior = 0; 1631 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1632 pNew->iLimit = 0; 1633 pNew->iOffset = 0; 1634 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1635 pNew->addrOpenEphm[0] = -1; 1636 pNew->addrOpenEphm[1] = -1; 1637 pNew->nSelectRow = p->nSelectRow; 1638 pNew->pWith = withDup(db, p->pWith); 1639 #ifndef SQLITE_OMIT_WINDOWFUNC 1640 pNew->pWin = 0; 1641 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1642 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1643 #endif 1644 pNew->selId = p->selId; 1645 if( db->mallocFailed ){ 1646 /* Any prior OOM might have left the Select object incomplete. 1647 ** Delete the whole thing rather than allow an incomplete Select 1648 ** to be used by the code generator. */ 1649 pNew->pNext = 0; 1650 sqlite3SelectDelete(db, pNew); 1651 break; 1652 } 1653 *pp = pNew; 1654 pp = &pNew->pPrior; 1655 pNext = pNew; 1656 } 1657 1658 return pRet; 1659 } 1660 #else 1661 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1662 assert( p==0 ); 1663 return 0; 1664 } 1665 #endif 1666 1667 1668 /* 1669 ** Add a new element to the end of an expression list. If pList is 1670 ** initially NULL, then create a new expression list. 1671 ** 1672 ** The pList argument must be either NULL or a pointer to an ExprList 1673 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1674 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1675 ** Reason: This routine assumes that the number of slots in pList->a[] 1676 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1677 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1678 ** 1679 ** If a memory allocation error occurs, the entire list is freed and 1680 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1681 ** that the new entry was successfully appended. 1682 */ 1683 static const struct ExprList_item zeroItem = {0}; 1684 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1685 sqlite3 *db, /* Database handle. Used for memory allocation */ 1686 Expr *pExpr /* Expression to be appended. Might be NULL */ 1687 ){ 1688 struct ExprList_item *pItem; 1689 ExprList *pList; 1690 1691 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1692 if( pList==0 ){ 1693 sqlite3ExprDelete(db, pExpr); 1694 return 0; 1695 } 1696 pList->nAlloc = 4; 1697 pList->nExpr = 1; 1698 pItem = &pList->a[0]; 1699 *pItem = zeroItem; 1700 pItem->pExpr = pExpr; 1701 return pList; 1702 } 1703 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1704 sqlite3 *db, /* Database handle. Used for memory allocation */ 1705 ExprList *pList, /* List to which to append. Might be NULL */ 1706 Expr *pExpr /* Expression to be appended. Might be NULL */ 1707 ){ 1708 struct ExprList_item *pItem; 1709 ExprList *pNew; 1710 pList->nAlloc *= 2; 1711 pNew = sqlite3DbRealloc(db, pList, 1712 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1713 if( pNew==0 ){ 1714 sqlite3ExprListDelete(db, pList); 1715 sqlite3ExprDelete(db, pExpr); 1716 return 0; 1717 }else{ 1718 pList = pNew; 1719 } 1720 pItem = &pList->a[pList->nExpr++]; 1721 *pItem = zeroItem; 1722 pItem->pExpr = pExpr; 1723 return pList; 1724 } 1725 ExprList *sqlite3ExprListAppend( 1726 Parse *pParse, /* Parsing context */ 1727 ExprList *pList, /* List to which to append. Might be NULL */ 1728 Expr *pExpr /* Expression to be appended. Might be NULL */ 1729 ){ 1730 struct ExprList_item *pItem; 1731 if( pList==0 ){ 1732 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1733 } 1734 if( pList->nAlloc<pList->nExpr+1 ){ 1735 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1736 } 1737 pItem = &pList->a[pList->nExpr++]; 1738 *pItem = zeroItem; 1739 pItem->pExpr = pExpr; 1740 return pList; 1741 } 1742 1743 /* 1744 ** pColumns and pExpr form a vector assignment which is part of the SET 1745 ** clause of an UPDATE statement. Like this: 1746 ** 1747 ** (a,b,c) = (expr1,expr2,expr3) 1748 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1749 ** 1750 ** For each term of the vector assignment, append new entries to the 1751 ** expression list pList. In the case of a subquery on the RHS, append 1752 ** TK_SELECT_COLUMN expressions. 1753 */ 1754 ExprList *sqlite3ExprListAppendVector( 1755 Parse *pParse, /* Parsing context */ 1756 ExprList *pList, /* List to which to append. Might be NULL */ 1757 IdList *pColumns, /* List of names of LHS of the assignment */ 1758 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1759 ){ 1760 sqlite3 *db = pParse->db; 1761 int n; 1762 int i; 1763 int iFirst = pList ? pList->nExpr : 0; 1764 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1765 ** exit prior to this routine being invoked */ 1766 if( NEVER(pColumns==0) ) goto vector_append_error; 1767 if( pExpr==0 ) goto vector_append_error; 1768 1769 /* If the RHS is a vector, then we can immediately check to see that 1770 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1771 ** wildcards ("*") in the result set of the SELECT must be expanded before 1772 ** we can do the size check, so defer the size check until code generation. 1773 */ 1774 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1775 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1776 pColumns->nId, n); 1777 goto vector_append_error; 1778 } 1779 1780 for(i=0; i<pColumns->nId; i++){ 1781 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1782 assert( pSubExpr!=0 || db->mallocFailed ); 1783 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1784 if( pSubExpr==0 ) continue; 1785 pSubExpr->iTable = pColumns->nId; 1786 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1787 if( pList ){ 1788 assert( pList->nExpr==iFirst+i+1 ); 1789 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1790 pColumns->a[i].zName = 0; 1791 } 1792 } 1793 1794 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1795 Expr *pFirst = pList->a[iFirst].pExpr; 1796 assert( pFirst!=0 ); 1797 assert( pFirst->op==TK_SELECT_COLUMN ); 1798 1799 /* Store the SELECT statement in pRight so it will be deleted when 1800 ** sqlite3ExprListDelete() is called */ 1801 pFirst->pRight = pExpr; 1802 pExpr = 0; 1803 1804 /* Remember the size of the LHS in iTable so that we can check that 1805 ** the RHS and LHS sizes match during code generation. */ 1806 pFirst->iTable = pColumns->nId; 1807 } 1808 1809 vector_append_error: 1810 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1811 sqlite3IdListDelete(db, pColumns); 1812 return pList; 1813 } 1814 1815 /* 1816 ** Set the sort order for the last element on the given ExprList. 1817 */ 1818 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1819 struct ExprList_item *pItem; 1820 if( p==0 ) return; 1821 assert( p->nExpr>0 ); 1822 1823 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1824 assert( iSortOrder==SQLITE_SO_UNDEFINED 1825 || iSortOrder==SQLITE_SO_ASC 1826 || iSortOrder==SQLITE_SO_DESC 1827 ); 1828 assert( eNulls==SQLITE_SO_UNDEFINED 1829 || eNulls==SQLITE_SO_ASC 1830 || eNulls==SQLITE_SO_DESC 1831 ); 1832 1833 pItem = &p->a[p->nExpr-1]; 1834 assert( pItem->bNulls==0 ); 1835 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1836 iSortOrder = SQLITE_SO_ASC; 1837 } 1838 pItem->sortFlags = (u8)iSortOrder; 1839 1840 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1841 pItem->bNulls = 1; 1842 if( iSortOrder!=eNulls ){ 1843 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1844 } 1845 } 1846 } 1847 1848 /* 1849 ** Set the ExprList.a[].zEName element of the most recently added item 1850 ** on the expression list. 1851 ** 1852 ** pList might be NULL following an OOM error. But pName should never be 1853 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1854 ** is set. 1855 */ 1856 void sqlite3ExprListSetName( 1857 Parse *pParse, /* Parsing context */ 1858 ExprList *pList, /* List to which to add the span. */ 1859 Token *pName, /* Name to be added */ 1860 int dequote /* True to cause the name to be dequoted */ 1861 ){ 1862 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1863 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1864 if( pList ){ 1865 struct ExprList_item *pItem; 1866 assert( pList->nExpr>0 ); 1867 pItem = &pList->a[pList->nExpr-1]; 1868 assert( pItem->zEName==0 ); 1869 assert( pItem->eEName==ENAME_NAME ); 1870 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1871 if( dequote ){ 1872 /* If dequote==0, then pName->z does not point to part of a DDL 1873 ** statement handled by the parser. And so no token need be added 1874 ** to the token-map. */ 1875 sqlite3Dequote(pItem->zEName); 1876 if( IN_RENAME_OBJECT ){ 1877 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1878 } 1879 } 1880 } 1881 } 1882 1883 /* 1884 ** Set the ExprList.a[].zSpan element of the most recently added item 1885 ** on the expression list. 1886 ** 1887 ** pList might be NULL following an OOM error. But pSpan should never be 1888 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1889 ** is set. 1890 */ 1891 void sqlite3ExprListSetSpan( 1892 Parse *pParse, /* Parsing context */ 1893 ExprList *pList, /* List to which to add the span. */ 1894 const char *zStart, /* Start of the span */ 1895 const char *zEnd /* End of the span */ 1896 ){ 1897 sqlite3 *db = pParse->db; 1898 assert( pList!=0 || db->mallocFailed!=0 ); 1899 if( pList ){ 1900 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1901 assert( pList->nExpr>0 ); 1902 if( pItem->zEName==0 ){ 1903 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1904 pItem->eEName = ENAME_SPAN; 1905 } 1906 } 1907 } 1908 1909 /* 1910 ** If the expression list pEList contains more than iLimit elements, 1911 ** leave an error message in pParse. 1912 */ 1913 void sqlite3ExprListCheckLength( 1914 Parse *pParse, 1915 ExprList *pEList, 1916 const char *zObject 1917 ){ 1918 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1919 testcase( pEList && pEList->nExpr==mx ); 1920 testcase( pEList && pEList->nExpr==mx+1 ); 1921 if( pEList && pEList->nExpr>mx ){ 1922 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1923 } 1924 } 1925 1926 /* 1927 ** Delete an entire expression list. 1928 */ 1929 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1930 int i = pList->nExpr; 1931 struct ExprList_item *pItem = pList->a; 1932 assert( pList->nExpr>0 ); 1933 do{ 1934 sqlite3ExprDelete(db, pItem->pExpr); 1935 sqlite3DbFree(db, pItem->zEName); 1936 pItem++; 1937 }while( --i>0 ); 1938 sqlite3DbFreeNN(db, pList); 1939 } 1940 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1941 if( pList ) exprListDeleteNN(db, pList); 1942 } 1943 1944 /* 1945 ** Return the bitwise-OR of all Expr.flags fields in the given 1946 ** ExprList. 1947 */ 1948 u32 sqlite3ExprListFlags(const ExprList *pList){ 1949 int i; 1950 u32 m = 0; 1951 assert( pList!=0 ); 1952 for(i=0; i<pList->nExpr; i++){ 1953 Expr *pExpr = pList->a[i].pExpr; 1954 assert( pExpr!=0 ); 1955 m |= pExpr->flags; 1956 } 1957 return m; 1958 } 1959 1960 /* 1961 ** This is a SELECT-node callback for the expression walker that 1962 ** always "fails". By "fail" in this case, we mean set 1963 ** pWalker->eCode to zero and abort. 1964 ** 1965 ** This callback is used by multiple expression walkers. 1966 */ 1967 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1968 UNUSED_PARAMETER(NotUsed); 1969 pWalker->eCode = 0; 1970 return WRC_Abort; 1971 } 1972 1973 /* 1974 ** Check the input string to see if it is "true" or "false" (in any case). 1975 ** 1976 ** If the string is.... Return 1977 ** "true" EP_IsTrue 1978 ** "false" EP_IsFalse 1979 ** anything else 0 1980 */ 1981 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1982 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1983 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1984 return 0; 1985 } 1986 1987 1988 /* 1989 ** If the input expression is an ID with the name "true" or "false" 1990 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1991 ** the conversion happened, and zero if the expression is unaltered. 1992 */ 1993 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1994 u32 v; 1995 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1996 if( !ExprHasProperty(pExpr, EP_Quoted) 1997 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1998 ){ 1999 pExpr->op = TK_TRUEFALSE; 2000 ExprSetProperty(pExpr, v); 2001 return 1; 2002 } 2003 return 0; 2004 } 2005 2006 /* 2007 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2008 ** and 0 if it is FALSE. 2009 */ 2010 int sqlite3ExprTruthValue(const Expr *pExpr){ 2011 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2012 assert( pExpr->op==TK_TRUEFALSE ); 2013 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2014 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2015 return pExpr->u.zToken[4]==0; 2016 } 2017 2018 /* 2019 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2020 ** terms that are always true or false. Return the simplified expression. 2021 ** Or return the original expression if no simplification is possible. 2022 ** 2023 ** Examples: 2024 ** 2025 ** (x<10) AND true => (x<10) 2026 ** (x<10) AND false => false 2027 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2028 ** (x<10) AND (y=22 OR true) => (x<10) 2029 ** (y=22) OR true => true 2030 */ 2031 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2032 assert( pExpr!=0 ); 2033 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2034 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2035 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2036 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2037 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2038 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2039 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2040 } 2041 } 2042 return pExpr; 2043 } 2044 2045 2046 /* 2047 ** These routines are Walker callbacks used to check expressions to 2048 ** see if they are "constant" for some definition of constant. The 2049 ** Walker.eCode value determines the type of "constant" we are looking 2050 ** for. 2051 ** 2052 ** These callback routines are used to implement the following: 2053 ** 2054 ** sqlite3ExprIsConstant() pWalker->eCode==1 2055 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2056 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2057 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2058 ** 2059 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2060 ** is found to not be a constant. 2061 ** 2062 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2063 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2064 ** when parsing an existing schema out of the sqlite_schema table and 4 2065 ** when processing a new CREATE TABLE statement. A bound parameter raises 2066 ** an error for new statements, but is silently converted 2067 ** to NULL for existing schemas. This allows sqlite_schema tables that 2068 ** contain a bound parameter because they were generated by older versions 2069 ** of SQLite to be parsed by newer versions of SQLite without raising a 2070 ** malformed schema error. 2071 */ 2072 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2073 2074 /* If pWalker->eCode is 2 then any term of the expression that comes from 2075 ** the ON or USING clauses of a left join disqualifies the expression 2076 ** from being considered constant. */ 2077 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2078 pWalker->eCode = 0; 2079 return WRC_Abort; 2080 } 2081 2082 switch( pExpr->op ){ 2083 /* Consider functions to be constant if all their arguments are constant 2084 ** and either pWalker->eCode==4 or 5 or the function has the 2085 ** SQLITE_FUNC_CONST flag. */ 2086 case TK_FUNCTION: 2087 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2088 && !ExprHasProperty(pExpr, EP_WinFunc) 2089 ){ 2090 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2091 return WRC_Continue; 2092 }else{ 2093 pWalker->eCode = 0; 2094 return WRC_Abort; 2095 } 2096 case TK_ID: 2097 /* Convert "true" or "false" in a DEFAULT clause into the 2098 ** appropriate TK_TRUEFALSE operator */ 2099 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2100 return WRC_Prune; 2101 } 2102 /* no break */ deliberate_fall_through 2103 case TK_COLUMN: 2104 case TK_AGG_FUNCTION: 2105 case TK_AGG_COLUMN: 2106 testcase( pExpr->op==TK_ID ); 2107 testcase( pExpr->op==TK_COLUMN ); 2108 testcase( pExpr->op==TK_AGG_FUNCTION ); 2109 testcase( pExpr->op==TK_AGG_COLUMN ); 2110 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2111 return WRC_Continue; 2112 } 2113 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2114 return WRC_Continue; 2115 } 2116 /* no break */ deliberate_fall_through 2117 case TK_IF_NULL_ROW: 2118 case TK_REGISTER: 2119 case TK_DOT: 2120 testcase( pExpr->op==TK_REGISTER ); 2121 testcase( pExpr->op==TK_IF_NULL_ROW ); 2122 testcase( pExpr->op==TK_DOT ); 2123 pWalker->eCode = 0; 2124 return WRC_Abort; 2125 case TK_VARIABLE: 2126 if( pWalker->eCode==5 ){ 2127 /* Silently convert bound parameters that appear inside of CREATE 2128 ** statements into a NULL when parsing the CREATE statement text out 2129 ** of the sqlite_schema table */ 2130 pExpr->op = TK_NULL; 2131 }else if( pWalker->eCode==4 ){ 2132 /* A bound parameter in a CREATE statement that originates from 2133 ** sqlite3_prepare() causes an error */ 2134 pWalker->eCode = 0; 2135 return WRC_Abort; 2136 } 2137 /* no break */ deliberate_fall_through 2138 default: 2139 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2140 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2141 return WRC_Continue; 2142 } 2143 } 2144 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2145 Walker w; 2146 w.eCode = initFlag; 2147 w.xExprCallback = exprNodeIsConstant; 2148 w.xSelectCallback = sqlite3SelectWalkFail; 2149 #ifdef SQLITE_DEBUG 2150 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2151 #endif 2152 w.u.iCur = iCur; 2153 sqlite3WalkExpr(&w, p); 2154 return w.eCode; 2155 } 2156 2157 /* 2158 ** Walk an expression tree. Return non-zero if the expression is constant 2159 ** and 0 if it involves variables or function calls. 2160 ** 2161 ** For the purposes of this function, a double-quoted string (ex: "abc") 2162 ** is considered a variable but a single-quoted string (ex: 'abc') is 2163 ** a constant. 2164 */ 2165 int sqlite3ExprIsConstant(Expr *p){ 2166 return exprIsConst(p, 1, 0); 2167 } 2168 2169 /* 2170 ** Walk an expression tree. Return non-zero if 2171 ** 2172 ** (1) the expression is constant, and 2173 ** (2) the expression does originate in the ON or USING clause 2174 ** of a LEFT JOIN, and 2175 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2176 ** operands created by the constant propagation optimization. 2177 ** 2178 ** When this routine returns true, it indicates that the expression 2179 ** can be added to the pParse->pConstExpr list and evaluated once when 2180 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2181 */ 2182 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2183 return exprIsConst(p, 2, 0); 2184 } 2185 2186 /* 2187 ** Walk an expression tree. Return non-zero if the expression is constant 2188 ** for any single row of the table with cursor iCur. In other words, the 2189 ** expression must not refer to any non-deterministic function nor any 2190 ** table other than iCur. 2191 */ 2192 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2193 return exprIsConst(p, 3, iCur); 2194 } 2195 2196 2197 /* 2198 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2199 */ 2200 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2201 ExprList *pGroupBy = pWalker->u.pGroupBy; 2202 int i; 2203 2204 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2205 ** it constant. */ 2206 for(i=0; i<pGroupBy->nExpr; i++){ 2207 Expr *p = pGroupBy->a[i].pExpr; 2208 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2209 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2210 if( sqlite3IsBinary(pColl) ){ 2211 return WRC_Prune; 2212 } 2213 } 2214 } 2215 2216 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2217 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2218 pWalker->eCode = 0; 2219 return WRC_Abort; 2220 } 2221 2222 return exprNodeIsConstant(pWalker, pExpr); 2223 } 2224 2225 /* 2226 ** Walk the expression tree passed as the first argument. Return non-zero 2227 ** if the expression consists entirely of constants or copies of terms 2228 ** in pGroupBy that sort with the BINARY collation sequence. 2229 ** 2230 ** This routine is used to determine if a term of the HAVING clause can 2231 ** be promoted into the WHERE clause. In order for such a promotion to work, 2232 ** the value of the HAVING clause term must be the same for all members of 2233 ** a "group". The requirement that the GROUP BY term must be BINARY 2234 ** assumes that no other collating sequence will have a finer-grained 2235 ** grouping than binary. In other words (A=B COLLATE binary) implies 2236 ** A=B in every other collating sequence. The requirement that the 2237 ** GROUP BY be BINARY is stricter than necessary. It would also work 2238 ** to promote HAVING clauses that use the same alternative collating 2239 ** sequence as the GROUP BY term, but that is much harder to check, 2240 ** alternative collating sequences are uncommon, and this is only an 2241 ** optimization, so we take the easy way out and simply require the 2242 ** GROUP BY to use the BINARY collating sequence. 2243 */ 2244 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2245 Walker w; 2246 w.eCode = 1; 2247 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2248 w.xSelectCallback = 0; 2249 w.u.pGroupBy = pGroupBy; 2250 w.pParse = pParse; 2251 sqlite3WalkExpr(&w, p); 2252 return w.eCode; 2253 } 2254 2255 /* 2256 ** Walk an expression tree for the DEFAULT field of a column definition 2257 ** in a CREATE TABLE statement. Return non-zero if the expression is 2258 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2259 ** the expression is constant or a function call with constant arguments. 2260 ** Return and 0 if there are any variables. 2261 ** 2262 ** isInit is true when parsing from sqlite_schema. isInit is false when 2263 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2264 ** (such as ? or $abc) in the expression are converted into NULL. When 2265 ** isInit is false, parameters raise an error. Parameters should not be 2266 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2267 ** allowed it, so we need to support it when reading sqlite_schema for 2268 ** backwards compatibility. 2269 ** 2270 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2271 ** 2272 ** For the purposes of this function, a double-quoted string (ex: "abc") 2273 ** is considered a variable but a single-quoted string (ex: 'abc') is 2274 ** a constant. 2275 */ 2276 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2277 assert( isInit==0 || isInit==1 ); 2278 return exprIsConst(p, 4+isInit, 0); 2279 } 2280 2281 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2282 /* 2283 ** Walk an expression tree. Return 1 if the expression contains a 2284 ** subquery of some kind. Return 0 if there are no subqueries. 2285 */ 2286 int sqlite3ExprContainsSubquery(Expr *p){ 2287 Walker w; 2288 w.eCode = 1; 2289 w.xExprCallback = sqlite3ExprWalkNoop; 2290 w.xSelectCallback = sqlite3SelectWalkFail; 2291 #ifdef SQLITE_DEBUG 2292 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2293 #endif 2294 sqlite3WalkExpr(&w, p); 2295 return w.eCode==0; 2296 } 2297 #endif 2298 2299 /* 2300 ** If the expression p codes a constant integer that is small enough 2301 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2302 ** in *pValue. If the expression is not an integer or if it is too big 2303 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2304 */ 2305 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2306 int rc = 0; 2307 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2308 2309 /* If an expression is an integer literal that fits in a signed 32-bit 2310 ** integer, then the EP_IntValue flag will have already been set */ 2311 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2312 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2313 2314 if( p->flags & EP_IntValue ){ 2315 *pValue = p->u.iValue; 2316 return 1; 2317 } 2318 switch( p->op ){ 2319 case TK_UPLUS: { 2320 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2321 break; 2322 } 2323 case TK_UMINUS: { 2324 int v; 2325 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2326 assert( v!=(-2147483647-1) ); 2327 *pValue = -v; 2328 rc = 1; 2329 } 2330 break; 2331 } 2332 default: break; 2333 } 2334 return rc; 2335 } 2336 2337 /* 2338 ** Return FALSE if there is no chance that the expression can be NULL. 2339 ** 2340 ** If the expression might be NULL or if the expression is too complex 2341 ** to tell return TRUE. 2342 ** 2343 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2344 ** when we know that a value cannot be NULL. Hence, a false positive 2345 ** (returning TRUE when in fact the expression can never be NULL) might 2346 ** be a small performance hit but is otherwise harmless. On the other 2347 ** hand, a false negative (returning FALSE when the result could be NULL) 2348 ** will likely result in an incorrect answer. So when in doubt, return 2349 ** TRUE. 2350 */ 2351 int sqlite3ExprCanBeNull(const Expr *p){ 2352 u8 op; 2353 assert( p!=0 ); 2354 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2355 p = p->pLeft; 2356 assert( p!=0 ); 2357 } 2358 op = p->op; 2359 if( op==TK_REGISTER ) op = p->op2; 2360 switch( op ){ 2361 case TK_INTEGER: 2362 case TK_STRING: 2363 case TK_FLOAT: 2364 case TK_BLOB: 2365 return 0; 2366 case TK_COLUMN: 2367 return ExprHasProperty(p, EP_CanBeNull) || 2368 p->y.pTab==0 || /* Reference to column of index on expression */ 2369 (p->iColumn>=0 2370 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2371 && p->y.pTab->aCol[p->iColumn].notNull==0); 2372 default: 2373 return 1; 2374 } 2375 } 2376 2377 /* 2378 ** Return TRUE if the given expression is a constant which would be 2379 ** unchanged by OP_Affinity with the affinity given in the second 2380 ** argument. 2381 ** 2382 ** This routine is used to determine if the OP_Affinity operation 2383 ** can be omitted. When in doubt return FALSE. A false negative 2384 ** is harmless. A false positive, however, can result in the wrong 2385 ** answer. 2386 */ 2387 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2388 u8 op; 2389 int unaryMinus = 0; 2390 if( aff==SQLITE_AFF_BLOB ) return 1; 2391 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2392 if( p->op==TK_UMINUS ) unaryMinus = 1; 2393 p = p->pLeft; 2394 } 2395 op = p->op; 2396 if( op==TK_REGISTER ) op = p->op2; 2397 switch( op ){ 2398 case TK_INTEGER: { 2399 return aff>=SQLITE_AFF_NUMERIC; 2400 } 2401 case TK_FLOAT: { 2402 return aff>=SQLITE_AFF_NUMERIC; 2403 } 2404 case TK_STRING: { 2405 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2406 } 2407 case TK_BLOB: { 2408 return !unaryMinus; 2409 } 2410 case TK_COLUMN: { 2411 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2412 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2413 } 2414 default: { 2415 return 0; 2416 } 2417 } 2418 } 2419 2420 /* 2421 ** Return TRUE if the given string is a row-id column name. 2422 */ 2423 int sqlite3IsRowid(const char *z){ 2424 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2425 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2426 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2427 return 0; 2428 } 2429 2430 /* 2431 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2432 ** that can be simplified to a direct table access, then return 2433 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2434 ** or if the SELECT statement needs to be manifested into a transient 2435 ** table, then return NULL. 2436 */ 2437 #ifndef SQLITE_OMIT_SUBQUERY 2438 static Select *isCandidateForInOpt(Expr *pX){ 2439 Select *p; 2440 SrcList *pSrc; 2441 ExprList *pEList; 2442 Table *pTab; 2443 int i; 2444 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2445 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2446 p = pX->x.pSelect; 2447 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2448 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2449 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2450 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2451 return 0; /* No DISTINCT keyword and no aggregate functions */ 2452 } 2453 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2454 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2455 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2456 pSrc = p->pSrc; 2457 assert( pSrc!=0 ); 2458 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2459 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2460 pTab = pSrc->a[0].pTab; 2461 assert( pTab!=0 ); 2462 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2463 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2464 pEList = p->pEList; 2465 assert( pEList!=0 ); 2466 /* All SELECT results must be columns. */ 2467 for(i=0; i<pEList->nExpr; i++){ 2468 Expr *pRes = pEList->a[i].pExpr; 2469 if( pRes->op!=TK_COLUMN ) return 0; 2470 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2471 } 2472 return p; 2473 } 2474 #endif /* SQLITE_OMIT_SUBQUERY */ 2475 2476 #ifndef SQLITE_OMIT_SUBQUERY 2477 /* 2478 ** Generate code that checks the left-most column of index table iCur to see if 2479 ** it contains any NULL entries. Cause the register at regHasNull to be set 2480 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2481 ** to be set to NULL if iCur contains one or more NULL values. 2482 */ 2483 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2484 int addr1; 2485 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2486 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2487 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2488 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2489 VdbeComment((v, "first_entry_in(%d)", iCur)); 2490 sqlite3VdbeJumpHere(v, addr1); 2491 } 2492 #endif 2493 2494 2495 #ifndef SQLITE_OMIT_SUBQUERY 2496 /* 2497 ** The argument is an IN operator with a list (not a subquery) on the 2498 ** right-hand side. Return TRUE if that list is constant. 2499 */ 2500 static int sqlite3InRhsIsConstant(Expr *pIn){ 2501 Expr *pLHS; 2502 int res; 2503 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2504 pLHS = pIn->pLeft; 2505 pIn->pLeft = 0; 2506 res = sqlite3ExprIsConstant(pIn); 2507 pIn->pLeft = pLHS; 2508 return res; 2509 } 2510 #endif 2511 2512 /* 2513 ** This function is used by the implementation of the IN (...) operator. 2514 ** The pX parameter is the expression on the RHS of the IN operator, which 2515 ** might be either a list of expressions or a subquery. 2516 ** 2517 ** The job of this routine is to find or create a b-tree object that can 2518 ** be used either to test for membership in the RHS set or to iterate through 2519 ** all members of the RHS set, skipping duplicates. 2520 ** 2521 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2522 ** and pX->iTable is set to the index of that cursor. 2523 ** 2524 ** The returned value of this function indicates the b-tree type, as follows: 2525 ** 2526 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2527 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2528 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2529 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2530 ** populated epheremal table. 2531 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2532 ** implemented as a sequence of comparisons. 2533 ** 2534 ** An existing b-tree might be used if the RHS expression pX is a simple 2535 ** subquery such as: 2536 ** 2537 ** SELECT <column1>, <column2>... FROM <table> 2538 ** 2539 ** If the RHS of the IN operator is a list or a more complex subquery, then 2540 ** an ephemeral table might need to be generated from the RHS and then 2541 ** pX->iTable made to point to the ephemeral table instead of an 2542 ** existing table. 2543 ** 2544 ** The inFlags parameter must contain, at a minimum, one of the bits 2545 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2546 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2547 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2548 ** be used to loop over all values of the RHS of the IN operator. 2549 ** 2550 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2551 ** through the set members) then the b-tree must not contain duplicates. 2552 ** An epheremal table will be created unless the selected columns are guaranteed 2553 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2554 ** a UNIQUE constraint or index. 2555 ** 2556 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2557 ** for fast set membership tests) then an epheremal table must 2558 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2559 ** index can be found with the specified <columns> as its left-most. 2560 ** 2561 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2562 ** if the RHS of the IN operator is a list (not a subquery) then this 2563 ** routine might decide that creating an ephemeral b-tree for membership 2564 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2565 ** calling routine should implement the IN operator using a sequence 2566 ** of Eq or Ne comparison operations. 2567 ** 2568 ** When the b-tree is being used for membership tests, the calling function 2569 ** might need to know whether or not the RHS side of the IN operator 2570 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2571 ** if there is any chance that the (...) might contain a NULL value at 2572 ** runtime, then a register is allocated and the register number written 2573 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2574 ** NULL value, then *prRhsHasNull is left unchanged. 2575 ** 2576 ** If a register is allocated and its location stored in *prRhsHasNull, then 2577 ** the value in that register will be NULL if the b-tree contains one or more 2578 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2579 ** NULL values. 2580 ** 2581 ** If the aiMap parameter is not NULL, it must point to an array containing 2582 ** one element for each column returned by the SELECT statement on the RHS 2583 ** of the IN(...) operator. The i'th entry of the array is populated with the 2584 ** offset of the index column that matches the i'th column returned by the 2585 ** SELECT. For example, if the expression and selected index are: 2586 ** 2587 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2588 ** CREATE INDEX i1 ON t1(b, c, a); 2589 ** 2590 ** then aiMap[] is populated with {2, 0, 1}. 2591 */ 2592 #ifndef SQLITE_OMIT_SUBQUERY 2593 int sqlite3FindInIndex( 2594 Parse *pParse, /* Parsing context */ 2595 Expr *pX, /* The IN expression */ 2596 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2597 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2598 int *aiMap, /* Mapping from Index fields to RHS fields */ 2599 int *piTab /* OUT: index to use */ 2600 ){ 2601 Select *p; /* SELECT to the right of IN operator */ 2602 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2603 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2604 int mustBeUnique; /* True if RHS must be unique */ 2605 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2606 2607 assert( pX->op==TK_IN ); 2608 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2609 2610 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2611 ** whether or not the SELECT result contains NULL values, check whether 2612 ** or not NULL is actually possible (it may not be, for example, due 2613 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2614 ** set prRhsHasNull to 0 before continuing. */ 2615 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2616 int i; 2617 ExprList *pEList = pX->x.pSelect->pEList; 2618 for(i=0; i<pEList->nExpr; i++){ 2619 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2620 } 2621 if( i==pEList->nExpr ){ 2622 prRhsHasNull = 0; 2623 } 2624 } 2625 2626 /* Check to see if an existing table or index can be used to 2627 ** satisfy the query. This is preferable to generating a new 2628 ** ephemeral table. */ 2629 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2630 sqlite3 *db = pParse->db; /* Database connection */ 2631 Table *pTab; /* Table <table>. */ 2632 int iDb; /* Database idx for pTab */ 2633 ExprList *pEList = p->pEList; 2634 int nExpr = pEList->nExpr; 2635 2636 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2637 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2638 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2639 pTab = p->pSrc->a[0].pTab; 2640 2641 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2642 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2643 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2644 sqlite3CodeVerifySchema(pParse, iDb); 2645 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2646 2647 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2648 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2649 /* The "x IN (SELECT rowid FROM table)" case */ 2650 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2651 VdbeCoverage(v); 2652 2653 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2654 eType = IN_INDEX_ROWID; 2655 ExplainQueryPlan((pParse, 0, 2656 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2657 sqlite3VdbeJumpHere(v, iAddr); 2658 }else{ 2659 Index *pIdx; /* Iterator variable */ 2660 int affinity_ok = 1; 2661 int i; 2662 2663 /* Check that the affinity that will be used to perform each 2664 ** comparison is the same as the affinity of each column in table 2665 ** on the RHS of the IN operator. If it not, it is not possible to 2666 ** use any index of the RHS table. */ 2667 for(i=0; i<nExpr && affinity_ok; i++){ 2668 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2669 int iCol = pEList->a[i].pExpr->iColumn; 2670 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2671 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2672 testcase( cmpaff==SQLITE_AFF_BLOB ); 2673 testcase( cmpaff==SQLITE_AFF_TEXT ); 2674 switch( cmpaff ){ 2675 case SQLITE_AFF_BLOB: 2676 break; 2677 case SQLITE_AFF_TEXT: 2678 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2679 ** other has no affinity and the other side is TEXT. Hence, 2680 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2681 ** and for the term on the LHS of the IN to have no affinity. */ 2682 assert( idxaff==SQLITE_AFF_TEXT ); 2683 break; 2684 default: 2685 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2686 } 2687 } 2688 2689 if( affinity_ok ){ 2690 /* Search for an existing index that will work for this IN operator */ 2691 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2692 Bitmask colUsed; /* Columns of the index used */ 2693 Bitmask mCol; /* Mask for the current column */ 2694 if( pIdx->nColumn<nExpr ) continue; 2695 if( pIdx->pPartIdxWhere!=0 ) continue; 2696 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2697 ** BITMASK(nExpr) without overflowing */ 2698 testcase( pIdx->nColumn==BMS-2 ); 2699 testcase( pIdx->nColumn==BMS-1 ); 2700 if( pIdx->nColumn>=BMS-1 ) continue; 2701 if( mustBeUnique ){ 2702 if( pIdx->nKeyCol>nExpr 2703 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2704 ){ 2705 continue; /* This index is not unique over the IN RHS columns */ 2706 } 2707 } 2708 2709 colUsed = 0; /* Columns of index used so far */ 2710 for(i=0; i<nExpr; i++){ 2711 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2712 Expr *pRhs = pEList->a[i].pExpr; 2713 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2714 int j; 2715 2716 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2717 for(j=0; j<nExpr; j++){ 2718 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2719 assert( pIdx->azColl[j] ); 2720 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2721 continue; 2722 } 2723 break; 2724 } 2725 if( j==nExpr ) break; 2726 mCol = MASKBIT(j); 2727 if( mCol & colUsed ) break; /* Each column used only once */ 2728 colUsed |= mCol; 2729 if( aiMap ) aiMap[i] = j; 2730 } 2731 2732 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2733 if( colUsed==(MASKBIT(nExpr)-1) ){ 2734 /* If we reach this point, that means the index pIdx is usable */ 2735 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2736 ExplainQueryPlan((pParse, 0, 2737 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2738 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2739 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2740 VdbeComment((v, "%s", pIdx->zName)); 2741 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2742 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2743 2744 if( prRhsHasNull ){ 2745 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2746 i64 mask = (1<<nExpr)-1; 2747 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2748 iTab, 0, 0, (u8*)&mask, P4_INT64); 2749 #endif 2750 *prRhsHasNull = ++pParse->nMem; 2751 if( nExpr==1 ){ 2752 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2753 } 2754 } 2755 sqlite3VdbeJumpHere(v, iAddr); 2756 } 2757 } /* End loop over indexes */ 2758 } /* End if( affinity_ok ) */ 2759 } /* End if not an rowid index */ 2760 } /* End attempt to optimize using an index */ 2761 2762 /* If no preexisting index is available for the IN clause 2763 ** and IN_INDEX_NOOP is an allowed reply 2764 ** and the RHS of the IN operator is a list, not a subquery 2765 ** and the RHS is not constant or has two or fewer terms, 2766 ** then it is not worth creating an ephemeral table to evaluate 2767 ** the IN operator so return IN_INDEX_NOOP. 2768 */ 2769 if( eType==0 2770 && (inFlags & IN_INDEX_NOOP_OK) 2771 && !ExprHasProperty(pX, EP_xIsSelect) 2772 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2773 ){ 2774 eType = IN_INDEX_NOOP; 2775 } 2776 2777 if( eType==0 ){ 2778 /* Could not find an existing table or index to use as the RHS b-tree. 2779 ** We will have to generate an ephemeral table to do the job. 2780 */ 2781 u32 savedNQueryLoop = pParse->nQueryLoop; 2782 int rMayHaveNull = 0; 2783 eType = IN_INDEX_EPH; 2784 if( inFlags & IN_INDEX_LOOP ){ 2785 pParse->nQueryLoop = 0; 2786 }else if( prRhsHasNull ){ 2787 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2788 } 2789 assert( pX->op==TK_IN ); 2790 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2791 if( rMayHaveNull ){ 2792 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2793 } 2794 pParse->nQueryLoop = savedNQueryLoop; 2795 } 2796 2797 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2798 int i, n; 2799 n = sqlite3ExprVectorSize(pX->pLeft); 2800 for(i=0; i<n; i++) aiMap[i] = i; 2801 } 2802 *piTab = iTab; 2803 return eType; 2804 } 2805 #endif 2806 2807 #ifndef SQLITE_OMIT_SUBQUERY 2808 /* 2809 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2810 ** function allocates and returns a nul-terminated string containing 2811 ** the affinities to be used for each column of the comparison. 2812 ** 2813 ** It is the responsibility of the caller to ensure that the returned 2814 ** string is eventually freed using sqlite3DbFree(). 2815 */ 2816 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2817 Expr *pLeft = pExpr->pLeft; 2818 int nVal = sqlite3ExprVectorSize(pLeft); 2819 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2820 char *zRet; 2821 2822 assert( pExpr->op==TK_IN ); 2823 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2824 if( zRet ){ 2825 int i; 2826 for(i=0; i<nVal; i++){ 2827 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2828 char a = sqlite3ExprAffinity(pA); 2829 if( pSelect ){ 2830 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2831 }else{ 2832 zRet[i] = a; 2833 } 2834 } 2835 zRet[nVal] = '\0'; 2836 } 2837 return zRet; 2838 } 2839 #endif 2840 2841 #ifndef SQLITE_OMIT_SUBQUERY 2842 /* 2843 ** Load the Parse object passed as the first argument with an error 2844 ** message of the form: 2845 ** 2846 ** "sub-select returns N columns - expected M" 2847 */ 2848 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2849 if( pParse->nErr==0 ){ 2850 const char *zFmt = "sub-select returns %d columns - expected %d"; 2851 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2852 } 2853 } 2854 #endif 2855 2856 /* 2857 ** Expression pExpr is a vector that has been used in a context where 2858 ** it is not permitted. If pExpr is a sub-select vector, this routine 2859 ** loads the Parse object with a message of the form: 2860 ** 2861 ** "sub-select returns N columns - expected 1" 2862 ** 2863 ** Or, if it is a regular scalar vector: 2864 ** 2865 ** "row value misused" 2866 */ 2867 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2868 #ifndef SQLITE_OMIT_SUBQUERY 2869 if( pExpr->flags & EP_xIsSelect ){ 2870 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2871 }else 2872 #endif 2873 { 2874 sqlite3ErrorMsg(pParse, "row value misused"); 2875 } 2876 } 2877 2878 #ifndef SQLITE_OMIT_SUBQUERY 2879 /* 2880 ** Generate code that will construct an ephemeral table containing all terms 2881 ** in the RHS of an IN operator. The IN operator can be in either of two 2882 ** forms: 2883 ** 2884 ** x IN (4,5,11) -- IN operator with list on right-hand side 2885 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2886 ** 2887 ** The pExpr parameter is the IN operator. The cursor number for the 2888 ** constructed ephermeral table is returned. The first time the ephemeral 2889 ** table is computed, the cursor number is also stored in pExpr->iTable, 2890 ** however the cursor number returned might not be the same, as it might 2891 ** have been duplicated using OP_OpenDup. 2892 ** 2893 ** If the LHS expression ("x" in the examples) is a column value, or 2894 ** the SELECT statement returns a column value, then the affinity of that 2895 ** column is used to build the index keys. If both 'x' and the 2896 ** SELECT... statement are columns, then numeric affinity is used 2897 ** if either column has NUMERIC or INTEGER affinity. If neither 2898 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2899 ** is used. 2900 */ 2901 void sqlite3CodeRhsOfIN( 2902 Parse *pParse, /* Parsing context */ 2903 Expr *pExpr, /* The IN operator */ 2904 int iTab /* Use this cursor number */ 2905 ){ 2906 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2907 int addr; /* Address of OP_OpenEphemeral instruction */ 2908 Expr *pLeft; /* the LHS of the IN operator */ 2909 KeyInfo *pKeyInfo = 0; /* Key information */ 2910 int nVal; /* Size of vector pLeft */ 2911 Vdbe *v; /* The prepared statement under construction */ 2912 2913 v = pParse->pVdbe; 2914 assert( v!=0 ); 2915 2916 /* The evaluation of the IN must be repeated every time it 2917 ** is encountered if any of the following is true: 2918 ** 2919 ** * The right-hand side is a correlated subquery 2920 ** * The right-hand side is an expression list containing variables 2921 ** * We are inside a trigger 2922 ** 2923 ** If all of the above are false, then we can compute the RHS just once 2924 ** and reuse it many names. 2925 */ 2926 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2927 /* Reuse of the RHS is allowed */ 2928 /* If this routine has already been coded, but the previous code 2929 ** might not have been invoked yet, so invoke it now as a subroutine. 2930 */ 2931 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2932 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2933 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2934 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2935 pExpr->x.pSelect->selId)); 2936 } 2937 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2938 pExpr->y.sub.iAddr); 2939 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2940 sqlite3VdbeJumpHere(v, addrOnce); 2941 return; 2942 } 2943 2944 /* Begin coding the subroutine */ 2945 ExprSetProperty(pExpr, EP_Subrtn); 2946 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2947 pExpr->y.sub.regReturn = ++pParse->nMem; 2948 pExpr->y.sub.iAddr = 2949 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2950 VdbeComment((v, "return address")); 2951 2952 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2953 } 2954 2955 /* Check to see if this is a vector IN operator */ 2956 pLeft = pExpr->pLeft; 2957 nVal = sqlite3ExprVectorSize(pLeft); 2958 2959 /* Construct the ephemeral table that will contain the content of 2960 ** RHS of the IN operator. 2961 */ 2962 pExpr->iTable = iTab; 2963 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2964 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2965 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2966 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2967 }else{ 2968 VdbeComment((v, "RHS of IN operator")); 2969 } 2970 #endif 2971 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2972 2973 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2974 /* Case 1: expr IN (SELECT ...) 2975 ** 2976 ** Generate code to write the results of the select into the temporary 2977 ** table allocated and opened above. 2978 */ 2979 Select *pSelect = pExpr->x.pSelect; 2980 ExprList *pEList = pSelect->pEList; 2981 2982 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2983 addrOnce?"":"CORRELATED ", pSelect->selId 2984 )); 2985 /* If the LHS and RHS of the IN operator do not match, that 2986 ** error will have been caught long before we reach this point. */ 2987 if( ALWAYS(pEList->nExpr==nVal) ){ 2988 SelectDest dest; 2989 int i; 2990 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2991 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2992 pSelect->iLimit = 0; 2993 testcase( pSelect->selFlags & SF_Distinct ); 2994 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2995 if( sqlite3Select(pParse, pSelect, &dest) ){ 2996 sqlite3DbFree(pParse->db, dest.zAffSdst); 2997 sqlite3KeyInfoUnref(pKeyInfo); 2998 return; 2999 } 3000 sqlite3DbFree(pParse->db, dest.zAffSdst); 3001 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3002 assert( pEList!=0 ); 3003 assert( pEList->nExpr>0 ); 3004 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3005 for(i=0; i<nVal; i++){ 3006 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3007 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3008 pParse, p, pEList->a[i].pExpr 3009 ); 3010 } 3011 } 3012 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3013 /* Case 2: expr IN (exprlist) 3014 ** 3015 ** For each expression, build an index key from the evaluation and 3016 ** store it in the temporary table. If <expr> is a column, then use 3017 ** that columns affinity when building index keys. If <expr> is not 3018 ** a column, use numeric affinity. 3019 */ 3020 char affinity; /* Affinity of the LHS of the IN */ 3021 int i; 3022 ExprList *pList = pExpr->x.pList; 3023 struct ExprList_item *pItem; 3024 int r1, r2; 3025 affinity = sqlite3ExprAffinity(pLeft); 3026 if( affinity<=SQLITE_AFF_NONE ){ 3027 affinity = SQLITE_AFF_BLOB; 3028 }else if( affinity==SQLITE_AFF_REAL ){ 3029 affinity = SQLITE_AFF_NUMERIC; 3030 } 3031 if( pKeyInfo ){ 3032 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3033 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3034 } 3035 3036 /* Loop through each expression in <exprlist>. */ 3037 r1 = sqlite3GetTempReg(pParse); 3038 r2 = sqlite3GetTempReg(pParse); 3039 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3040 Expr *pE2 = pItem->pExpr; 3041 3042 /* If the expression is not constant then we will need to 3043 ** disable the test that was generated above that makes sure 3044 ** this code only executes once. Because for a non-constant 3045 ** expression we need to rerun this code each time. 3046 */ 3047 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3048 sqlite3VdbeChangeToNoop(v, addrOnce); 3049 ExprClearProperty(pExpr, EP_Subrtn); 3050 addrOnce = 0; 3051 } 3052 3053 /* Evaluate the expression and insert it into the temp table */ 3054 sqlite3ExprCode(pParse, pE2, r1); 3055 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3056 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3057 } 3058 sqlite3ReleaseTempReg(pParse, r1); 3059 sqlite3ReleaseTempReg(pParse, r2); 3060 } 3061 if( pKeyInfo ){ 3062 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3063 } 3064 if( addrOnce ){ 3065 sqlite3VdbeJumpHere(v, addrOnce); 3066 /* Subroutine return */ 3067 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3068 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3069 sqlite3ClearTempRegCache(pParse); 3070 } 3071 } 3072 #endif /* SQLITE_OMIT_SUBQUERY */ 3073 3074 /* 3075 ** Generate code for scalar subqueries used as a subquery expression 3076 ** or EXISTS operator: 3077 ** 3078 ** (SELECT a FROM b) -- subquery 3079 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3080 ** 3081 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3082 ** 3083 ** Return the register that holds the result. For a multi-column SELECT, 3084 ** the result is stored in a contiguous array of registers and the 3085 ** return value is the register of the left-most result column. 3086 ** Return 0 if an error occurs. 3087 */ 3088 #ifndef SQLITE_OMIT_SUBQUERY 3089 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3090 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3091 int rReg = 0; /* Register storing resulting */ 3092 Select *pSel; /* SELECT statement to encode */ 3093 SelectDest dest; /* How to deal with SELECT result */ 3094 int nReg; /* Registers to allocate */ 3095 Expr *pLimit; /* New limit expression */ 3096 3097 Vdbe *v = pParse->pVdbe; 3098 assert( v!=0 ); 3099 if( pParse->nErr ) return 0; 3100 testcase( pExpr->op==TK_EXISTS ); 3101 testcase( pExpr->op==TK_SELECT ); 3102 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3103 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3104 pSel = pExpr->x.pSelect; 3105 3106 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3107 ** is encountered if any of the following is true: 3108 ** 3109 ** * The right-hand side is a correlated subquery 3110 ** * The right-hand side is an expression list containing variables 3111 ** * We are inside a trigger 3112 ** 3113 ** If all of the above are false, then we can run this code just once 3114 ** save the results, and reuse the same result on subsequent invocations. 3115 */ 3116 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3117 /* If this routine has already been coded, then invoke it as a 3118 ** subroutine. */ 3119 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3120 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3121 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3122 pExpr->y.sub.iAddr); 3123 return pExpr->iTable; 3124 } 3125 3126 /* Begin coding the subroutine */ 3127 ExprSetProperty(pExpr, EP_Subrtn); 3128 pExpr->y.sub.regReturn = ++pParse->nMem; 3129 pExpr->y.sub.iAddr = 3130 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3131 VdbeComment((v, "return address")); 3132 3133 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3134 } 3135 3136 /* For a SELECT, generate code to put the values for all columns of 3137 ** the first row into an array of registers and return the index of 3138 ** the first register. 3139 ** 3140 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3141 ** into a register and return that register number. 3142 ** 3143 ** In both cases, the query is augmented with "LIMIT 1". Any 3144 ** preexisting limit is discarded in place of the new LIMIT 1. 3145 */ 3146 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3147 addrOnce?"":"CORRELATED ", pSel->selId)); 3148 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3149 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3150 pParse->nMem += nReg; 3151 if( pExpr->op==TK_SELECT ){ 3152 dest.eDest = SRT_Mem; 3153 dest.iSdst = dest.iSDParm; 3154 dest.nSdst = nReg; 3155 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3156 VdbeComment((v, "Init subquery result")); 3157 }else{ 3158 dest.eDest = SRT_Exists; 3159 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3160 VdbeComment((v, "Init EXISTS result")); 3161 } 3162 if( pSel->pLimit ){ 3163 /* The subquery already has a limit. If the pre-existing limit is X 3164 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3165 sqlite3 *db = pParse->db; 3166 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3167 if( pLimit ){ 3168 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3169 pLimit = sqlite3PExpr(pParse, TK_NE, 3170 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3171 } 3172 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3173 pSel->pLimit->pLeft = pLimit; 3174 }else{ 3175 /* If there is no pre-existing limit add a limit of 1 */ 3176 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3177 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3178 } 3179 pSel->iLimit = 0; 3180 if( sqlite3Select(pParse, pSel, &dest) ){ 3181 if( pParse->nErr ){ 3182 pExpr->op2 = pExpr->op; 3183 pExpr->op = TK_ERROR; 3184 } 3185 return 0; 3186 } 3187 pExpr->iTable = rReg = dest.iSDParm; 3188 ExprSetVVAProperty(pExpr, EP_NoReduce); 3189 if( addrOnce ){ 3190 sqlite3VdbeJumpHere(v, addrOnce); 3191 3192 /* Subroutine return */ 3193 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3194 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3195 sqlite3ClearTempRegCache(pParse); 3196 } 3197 3198 return rReg; 3199 } 3200 #endif /* SQLITE_OMIT_SUBQUERY */ 3201 3202 #ifndef SQLITE_OMIT_SUBQUERY 3203 /* 3204 ** Expr pIn is an IN(...) expression. This function checks that the 3205 ** sub-select on the RHS of the IN() operator has the same number of 3206 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3207 ** a sub-query, that the LHS is a vector of size 1. 3208 */ 3209 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3210 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3211 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3212 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3213 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3214 return 1; 3215 } 3216 }else if( nVector!=1 ){ 3217 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3218 return 1; 3219 } 3220 return 0; 3221 } 3222 #endif 3223 3224 #ifndef SQLITE_OMIT_SUBQUERY 3225 /* 3226 ** Generate code for an IN expression. 3227 ** 3228 ** x IN (SELECT ...) 3229 ** x IN (value, value, ...) 3230 ** 3231 ** The left-hand side (LHS) is a scalar or vector expression. The 3232 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3233 ** subquery. If the RHS is a subquery, the number of result columns must 3234 ** match the number of columns in the vector on the LHS. If the RHS is 3235 ** a list of values, the LHS must be a scalar. 3236 ** 3237 ** The IN operator is true if the LHS value is contained within the RHS. 3238 ** The result is false if the LHS is definitely not in the RHS. The 3239 ** result is NULL if the presence of the LHS in the RHS cannot be 3240 ** determined due to NULLs. 3241 ** 3242 ** This routine generates code that jumps to destIfFalse if the LHS is not 3243 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3244 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3245 ** within the RHS then fall through. 3246 ** 3247 ** See the separate in-operator.md documentation file in the canonical 3248 ** SQLite source tree for additional information. 3249 */ 3250 static void sqlite3ExprCodeIN( 3251 Parse *pParse, /* Parsing and code generating context */ 3252 Expr *pExpr, /* The IN expression */ 3253 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3254 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3255 ){ 3256 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3257 int eType; /* Type of the RHS */ 3258 int rLhs; /* Register(s) holding the LHS values */ 3259 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3260 Vdbe *v; /* Statement under construction */ 3261 int *aiMap = 0; /* Map from vector field to index column */ 3262 char *zAff = 0; /* Affinity string for comparisons */ 3263 int nVector; /* Size of vectors for this IN operator */ 3264 int iDummy; /* Dummy parameter to exprCodeVector() */ 3265 Expr *pLeft; /* The LHS of the IN operator */ 3266 int i; /* loop counter */ 3267 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3268 int destStep6 = 0; /* Start of code for Step 6 */ 3269 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3270 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3271 int addrTop; /* Top of the step-6 loop */ 3272 int iTab = 0; /* Index to use */ 3273 u8 okConstFactor = pParse->okConstFactor; 3274 3275 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3276 pLeft = pExpr->pLeft; 3277 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3278 zAff = exprINAffinity(pParse, pExpr); 3279 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3280 aiMap = (int*)sqlite3DbMallocZero( 3281 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3282 ); 3283 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3284 3285 /* Attempt to compute the RHS. After this step, if anything other than 3286 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3287 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3288 ** the RHS has not yet been coded. */ 3289 v = pParse->pVdbe; 3290 assert( v!=0 ); /* OOM detected prior to this routine */ 3291 VdbeNoopComment((v, "begin IN expr")); 3292 eType = sqlite3FindInIndex(pParse, pExpr, 3293 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3294 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3295 aiMap, &iTab); 3296 3297 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3298 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3299 ); 3300 #ifdef SQLITE_DEBUG 3301 /* Confirm that aiMap[] contains nVector integer values between 0 and 3302 ** nVector-1. */ 3303 for(i=0; i<nVector; i++){ 3304 int j, cnt; 3305 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3306 assert( cnt==1 ); 3307 } 3308 #endif 3309 3310 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3311 ** vector, then it is stored in an array of nVector registers starting 3312 ** at r1. 3313 ** 3314 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3315 ** so that the fields are in the same order as an existing index. The 3316 ** aiMap[] array contains a mapping from the original LHS field order to 3317 ** the field order that matches the RHS index. 3318 ** 3319 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3320 ** even if it is constant, as OP_Affinity may be used on the register 3321 ** by code generated below. */ 3322 assert( pParse->okConstFactor==okConstFactor ); 3323 pParse->okConstFactor = 0; 3324 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3325 pParse->okConstFactor = okConstFactor; 3326 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3327 if( i==nVector ){ 3328 /* LHS fields are not reordered */ 3329 rLhs = rLhsOrig; 3330 }else{ 3331 /* Need to reorder the LHS fields according to aiMap */ 3332 rLhs = sqlite3GetTempRange(pParse, nVector); 3333 for(i=0; i<nVector; i++){ 3334 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3335 } 3336 } 3337 3338 /* If sqlite3FindInIndex() did not find or create an index that is 3339 ** suitable for evaluating the IN operator, then evaluate using a 3340 ** sequence of comparisons. 3341 ** 3342 ** This is step (1) in the in-operator.md optimized algorithm. 3343 */ 3344 if( eType==IN_INDEX_NOOP ){ 3345 ExprList *pList = pExpr->x.pList; 3346 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3347 int labelOk = sqlite3VdbeMakeLabel(pParse); 3348 int r2, regToFree; 3349 int regCkNull = 0; 3350 int ii; 3351 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3352 if( destIfNull!=destIfFalse ){ 3353 regCkNull = sqlite3GetTempReg(pParse); 3354 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3355 } 3356 for(ii=0; ii<pList->nExpr; ii++){ 3357 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3358 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3359 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3360 } 3361 sqlite3ReleaseTempReg(pParse, regToFree); 3362 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3363 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3364 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3365 (void*)pColl, P4_COLLSEQ); 3366 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3367 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3368 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3369 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3370 sqlite3VdbeChangeP5(v, zAff[0]); 3371 }else{ 3372 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3373 assert( destIfNull==destIfFalse ); 3374 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3375 (void*)pColl, P4_COLLSEQ); 3376 VdbeCoverageIf(v, op==OP_Ne); 3377 VdbeCoverageIf(v, op==OP_IsNull); 3378 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3379 } 3380 } 3381 if( regCkNull ){ 3382 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3383 sqlite3VdbeGoto(v, destIfFalse); 3384 } 3385 sqlite3VdbeResolveLabel(v, labelOk); 3386 sqlite3ReleaseTempReg(pParse, regCkNull); 3387 goto sqlite3ExprCodeIN_finished; 3388 } 3389 3390 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3391 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3392 ** We will then skip the binary search of the RHS. 3393 */ 3394 if( destIfNull==destIfFalse ){ 3395 destStep2 = destIfFalse; 3396 }else{ 3397 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3398 } 3399 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3400 for(i=0; i<nVector; i++){ 3401 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3402 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3403 if( sqlite3ExprCanBeNull(p) ){ 3404 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3405 VdbeCoverage(v); 3406 } 3407 } 3408 3409 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3410 ** of the RHS using the LHS as a probe. If found, the result is 3411 ** true. 3412 */ 3413 if( eType==IN_INDEX_ROWID ){ 3414 /* In this case, the RHS is the ROWID of table b-tree and so we also 3415 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3416 ** into a single opcode. */ 3417 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3418 VdbeCoverage(v); 3419 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3420 }else{ 3421 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3422 if( destIfFalse==destIfNull ){ 3423 /* Combine Step 3 and Step 5 into a single opcode */ 3424 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3425 rLhs, nVector); VdbeCoverage(v); 3426 goto sqlite3ExprCodeIN_finished; 3427 } 3428 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3429 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3430 rLhs, nVector); VdbeCoverage(v); 3431 } 3432 3433 /* Step 4. If the RHS is known to be non-NULL and we did not find 3434 ** an match on the search above, then the result must be FALSE. 3435 */ 3436 if( rRhsHasNull && nVector==1 ){ 3437 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3438 VdbeCoverage(v); 3439 } 3440 3441 /* Step 5. If we do not care about the difference between NULL and 3442 ** FALSE, then just return false. 3443 */ 3444 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3445 3446 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3447 ** If any comparison is NULL, then the result is NULL. If all 3448 ** comparisons are FALSE then the final result is FALSE. 3449 ** 3450 ** For a scalar LHS, it is sufficient to check just the first row 3451 ** of the RHS. 3452 */ 3453 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3454 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3455 VdbeCoverage(v); 3456 if( nVector>1 ){ 3457 destNotNull = sqlite3VdbeMakeLabel(pParse); 3458 }else{ 3459 /* For nVector==1, combine steps 6 and 7 by immediately returning 3460 ** FALSE if the first comparison is not NULL */ 3461 destNotNull = destIfFalse; 3462 } 3463 for(i=0; i<nVector; i++){ 3464 Expr *p; 3465 CollSeq *pColl; 3466 int r3 = sqlite3GetTempReg(pParse); 3467 p = sqlite3VectorFieldSubexpr(pLeft, i); 3468 pColl = sqlite3ExprCollSeq(pParse, p); 3469 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3470 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3471 (void*)pColl, P4_COLLSEQ); 3472 VdbeCoverage(v); 3473 sqlite3ReleaseTempReg(pParse, r3); 3474 } 3475 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3476 if( nVector>1 ){ 3477 sqlite3VdbeResolveLabel(v, destNotNull); 3478 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3479 VdbeCoverage(v); 3480 3481 /* Step 7: If we reach this point, we know that the result must 3482 ** be false. */ 3483 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3484 } 3485 3486 /* Jumps here in order to return true. */ 3487 sqlite3VdbeJumpHere(v, addrTruthOp); 3488 3489 sqlite3ExprCodeIN_finished: 3490 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3491 VdbeComment((v, "end IN expr")); 3492 sqlite3ExprCodeIN_oom_error: 3493 sqlite3DbFree(pParse->db, aiMap); 3494 sqlite3DbFree(pParse->db, zAff); 3495 } 3496 #endif /* SQLITE_OMIT_SUBQUERY */ 3497 3498 #ifndef SQLITE_OMIT_FLOATING_POINT 3499 /* 3500 ** Generate an instruction that will put the floating point 3501 ** value described by z[0..n-1] into register iMem. 3502 ** 3503 ** The z[] string will probably not be zero-terminated. But the 3504 ** z[n] character is guaranteed to be something that does not look 3505 ** like the continuation of the number. 3506 */ 3507 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3508 if( ALWAYS(z!=0) ){ 3509 double value; 3510 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3511 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3512 if( negateFlag ) value = -value; 3513 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3514 } 3515 } 3516 #endif 3517 3518 3519 /* 3520 ** Generate an instruction that will put the integer describe by 3521 ** text z[0..n-1] into register iMem. 3522 ** 3523 ** Expr.u.zToken is always UTF8 and zero-terminated. 3524 */ 3525 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3526 Vdbe *v = pParse->pVdbe; 3527 if( pExpr->flags & EP_IntValue ){ 3528 int i = pExpr->u.iValue; 3529 assert( i>=0 ); 3530 if( negFlag ) i = -i; 3531 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3532 }else{ 3533 int c; 3534 i64 value; 3535 const char *z = pExpr->u.zToken; 3536 assert( z!=0 ); 3537 c = sqlite3DecOrHexToI64(z, &value); 3538 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3539 #ifdef SQLITE_OMIT_FLOATING_POINT 3540 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3541 #else 3542 #ifndef SQLITE_OMIT_HEX_INTEGER 3543 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3544 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3545 }else 3546 #endif 3547 { 3548 codeReal(v, z, negFlag, iMem); 3549 } 3550 #endif 3551 }else{ 3552 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3553 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3554 } 3555 } 3556 } 3557 3558 3559 /* Generate code that will load into register regOut a value that is 3560 ** appropriate for the iIdxCol-th column of index pIdx. 3561 */ 3562 void sqlite3ExprCodeLoadIndexColumn( 3563 Parse *pParse, /* The parsing context */ 3564 Index *pIdx, /* The index whose column is to be loaded */ 3565 int iTabCur, /* Cursor pointing to a table row */ 3566 int iIdxCol, /* The column of the index to be loaded */ 3567 int regOut /* Store the index column value in this register */ 3568 ){ 3569 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3570 if( iTabCol==XN_EXPR ){ 3571 assert( pIdx->aColExpr ); 3572 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3573 pParse->iSelfTab = iTabCur + 1; 3574 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3575 pParse->iSelfTab = 0; 3576 }else{ 3577 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3578 iTabCol, regOut); 3579 } 3580 } 3581 3582 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3583 /* 3584 ** Generate code that will compute the value of generated column pCol 3585 ** and store the result in register regOut 3586 */ 3587 void sqlite3ExprCodeGeneratedColumn( 3588 Parse *pParse, 3589 Column *pCol, 3590 int regOut 3591 ){ 3592 int iAddr; 3593 Vdbe *v = pParse->pVdbe; 3594 assert( v!=0 ); 3595 assert( pParse->iSelfTab!=0 ); 3596 if( pParse->iSelfTab>0 ){ 3597 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3598 }else{ 3599 iAddr = 0; 3600 } 3601 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3602 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3603 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3604 } 3605 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3606 } 3607 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3608 3609 /* 3610 ** Generate code to extract the value of the iCol-th column of a table. 3611 */ 3612 void sqlite3ExprCodeGetColumnOfTable( 3613 Vdbe *v, /* Parsing context */ 3614 Table *pTab, /* The table containing the value */ 3615 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3616 int iCol, /* Index of the column to extract */ 3617 int regOut /* Extract the value into this register */ 3618 ){ 3619 Column *pCol; 3620 assert( v!=0 ); 3621 if( pTab==0 ){ 3622 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3623 return; 3624 } 3625 if( iCol<0 || iCol==pTab->iPKey ){ 3626 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3627 }else{ 3628 int op; 3629 int x; 3630 if( IsVirtual(pTab) ){ 3631 op = OP_VColumn; 3632 x = iCol; 3633 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3634 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3635 Parse *pParse = sqlite3VdbeParser(v); 3636 if( pCol->colFlags & COLFLAG_BUSY ){ 3637 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3638 }else{ 3639 int savedSelfTab = pParse->iSelfTab; 3640 pCol->colFlags |= COLFLAG_BUSY; 3641 pParse->iSelfTab = iTabCur+1; 3642 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3643 pParse->iSelfTab = savedSelfTab; 3644 pCol->colFlags &= ~COLFLAG_BUSY; 3645 } 3646 return; 3647 #endif 3648 }else if( !HasRowid(pTab) ){ 3649 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3650 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3651 op = OP_Column; 3652 }else{ 3653 x = sqlite3TableColumnToStorage(pTab,iCol); 3654 testcase( x!=iCol ); 3655 op = OP_Column; 3656 } 3657 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3658 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3659 } 3660 } 3661 3662 /* 3663 ** Generate code that will extract the iColumn-th column from 3664 ** table pTab and store the column value in register iReg. 3665 ** 3666 ** There must be an open cursor to pTab in iTable when this routine 3667 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3668 */ 3669 int sqlite3ExprCodeGetColumn( 3670 Parse *pParse, /* Parsing and code generating context */ 3671 Table *pTab, /* Description of the table we are reading from */ 3672 int iColumn, /* Index of the table column */ 3673 int iTable, /* The cursor pointing to the table */ 3674 int iReg, /* Store results here */ 3675 u8 p5 /* P5 value for OP_Column + FLAGS */ 3676 ){ 3677 assert( pParse->pVdbe!=0 ); 3678 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3679 if( p5 ){ 3680 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3681 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3682 } 3683 return iReg; 3684 } 3685 3686 /* 3687 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3688 ** over to iTo..iTo+nReg-1. 3689 */ 3690 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3691 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3692 } 3693 3694 /* 3695 ** Convert a scalar expression node to a TK_REGISTER referencing 3696 ** register iReg. The caller must ensure that iReg already contains 3697 ** the correct value for the expression. 3698 */ 3699 static void exprToRegister(Expr *pExpr, int iReg){ 3700 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3701 if( NEVER(p==0) ) return; 3702 p->op2 = p->op; 3703 p->op = TK_REGISTER; 3704 p->iTable = iReg; 3705 ExprClearProperty(p, EP_Skip); 3706 } 3707 3708 /* 3709 ** Evaluate an expression (either a vector or a scalar expression) and store 3710 ** the result in continguous temporary registers. Return the index of 3711 ** the first register used to store the result. 3712 ** 3713 ** If the returned result register is a temporary scalar, then also write 3714 ** that register number into *piFreeable. If the returned result register 3715 ** is not a temporary or if the expression is a vector set *piFreeable 3716 ** to 0. 3717 */ 3718 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3719 int iResult; 3720 int nResult = sqlite3ExprVectorSize(p); 3721 if( nResult==1 ){ 3722 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3723 }else{ 3724 *piFreeable = 0; 3725 if( p->op==TK_SELECT ){ 3726 #if SQLITE_OMIT_SUBQUERY 3727 iResult = 0; 3728 #else 3729 iResult = sqlite3CodeSubselect(pParse, p); 3730 #endif 3731 }else{ 3732 int i; 3733 iResult = pParse->nMem+1; 3734 pParse->nMem += nResult; 3735 for(i=0; i<nResult; i++){ 3736 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3737 } 3738 } 3739 } 3740 return iResult; 3741 } 3742 3743 /* 3744 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3745 ** so that a subsequent copy will not be merged into this one. 3746 */ 3747 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3748 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3749 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3750 } 3751 } 3752 3753 /* 3754 ** Generate code to implement special SQL functions that are implemented 3755 ** in-line rather than by using the usual callbacks. 3756 */ 3757 static int exprCodeInlineFunction( 3758 Parse *pParse, /* Parsing context */ 3759 ExprList *pFarg, /* List of function arguments */ 3760 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3761 int target /* Store function result in this register */ 3762 ){ 3763 int nFarg; 3764 Vdbe *v = pParse->pVdbe; 3765 assert( v!=0 ); 3766 assert( pFarg!=0 ); 3767 nFarg = pFarg->nExpr; 3768 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3769 switch( iFuncId ){ 3770 case INLINEFUNC_coalesce: { 3771 /* Attempt a direct implementation of the built-in COALESCE() and 3772 ** IFNULL() functions. This avoids unnecessary evaluation of 3773 ** arguments past the first non-NULL argument. 3774 */ 3775 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3776 int i; 3777 assert( nFarg>=2 ); 3778 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3779 for(i=1; i<nFarg; i++){ 3780 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3781 VdbeCoverage(v); 3782 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3783 } 3784 setDoNotMergeFlagOnCopy(v); 3785 sqlite3VdbeResolveLabel(v, endCoalesce); 3786 break; 3787 } 3788 case INLINEFUNC_iif: { 3789 Expr caseExpr; 3790 memset(&caseExpr, 0, sizeof(caseExpr)); 3791 caseExpr.op = TK_CASE; 3792 caseExpr.x.pList = pFarg; 3793 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3794 } 3795 3796 default: { 3797 /* The UNLIKELY() function is a no-op. The result is the value 3798 ** of the first argument. 3799 */ 3800 assert( nFarg==1 || nFarg==2 ); 3801 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3802 break; 3803 } 3804 3805 /*********************************************************************** 3806 ** Test-only SQL functions that are only usable if enabled 3807 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3808 */ 3809 case INLINEFUNC_expr_compare: { 3810 /* Compare two expressions using sqlite3ExprCompare() */ 3811 assert( nFarg==2 ); 3812 sqlite3VdbeAddOp2(v, OP_Integer, 3813 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3814 target); 3815 break; 3816 } 3817 3818 case INLINEFUNC_expr_implies_expr: { 3819 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3820 assert( nFarg==2 ); 3821 sqlite3VdbeAddOp2(v, OP_Integer, 3822 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3823 target); 3824 break; 3825 } 3826 3827 case INLINEFUNC_implies_nonnull_row: { 3828 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3829 Expr *pA1; 3830 assert( nFarg==2 ); 3831 pA1 = pFarg->a[1].pExpr; 3832 if( pA1->op==TK_COLUMN ){ 3833 sqlite3VdbeAddOp2(v, OP_Integer, 3834 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3835 target); 3836 }else{ 3837 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3838 } 3839 break; 3840 } 3841 3842 #ifdef SQLITE_DEBUG 3843 case INLINEFUNC_affinity: { 3844 /* The AFFINITY() function evaluates to a string that describes 3845 ** the type affinity of the argument. This is used for testing of 3846 ** the SQLite type logic. 3847 */ 3848 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3849 char aff; 3850 assert( nFarg==1 ); 3851 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3852 sqlite3VdbeLoadString(v, target, 3853 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3854 break; 3855 } 3856 #endif 3857 } 3858 return target; 3859 } 3860 3861 3862 /* 3863 ** Generate code into the current Vdbe to evaluate the given 3864 ** expression. Attempt to store the results in register "target". 3865 ** Return the register where results are stored. 3866 ** 3867 ** With this routine, there is no guarantee that results will 3868 ** be stored in target. The result might be stored in some other 3869 ** register if it is convenient to do so. The calling function 3870 ** must check the return code and move the results to the desired 3871 ** register. 3872 */ 3873 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3874 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3875 int op; /* The opcode being coded */ 3876 int inReg = target; /* Results stored in register inReg */ 3877 int regFree1 = 0; /* If non-zero free this temporary register */ 3878 int regFree2 = 0; /* If non-zero free this temporary register */ 3879 int r1, r2; /* Various register numbers */ 3880 Expr tempX; /* Temporary expression node */ 3881 int p5 = 0; 3882 3883 assert( target>0 && target<=pParse->nMem ); 3884 assert( v!=0 ); 3885 3886 expr_code_doover: 3887 if( pExpr==0 ){ 3888 op = TK_NULL; 3889 }else{ 3890 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3891 op = pExpr->op; 3892 } 3893 switch( op ){ 3894 case TK_AGG_COLUMN: { 3895 AggInfo *pAggInfo = pExpr->pAggInfo; 3896 struct AggInfo_col *pCol; 3897 assert( pAggInfo!=0 ); 3898 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3899 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3900 if( !pAggInfo->directMode ){ 3901 assert( pCol->iMem>0 ); 3902 return pCol->iMem; 3903 }else if( pAggInfo->useSortingIdx ){ 3904 Table *pTab = pCol->pTab; 3905 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3906 pCol->iSorterColumn, target); 3907 if( pCol->iColumn<0 ){ 3908 VdbeComment((v,"%s.rowid",pTab->zName)); 3909 }else{ 3910 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3911 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3912 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3913 } 3914 } 3915 return target; 3916 } 3917 /* Otherwise, fall thru into the TK_COLUMN case */ 3918 /* no break */ deliberate_fall_through 3919 } 3920 case TK_COLUMN: { 3921 int iTab = pExpr->iTable; 3922 int iReg; 3923 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3924 /* This COLUMN expression is really a constant due to WHERE clause 3925 ** constraints, and that constant is coded by the pExpr->pLeft 3926 ** expresssion. However, make sure the constant has the correct 3927 ** datatype by applying the Affinity of the table column to the 3928 ** constant. 3929 */ 3930 int aff; 3931 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3932 if( pExpr->y.pTab ){ 3933 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3934 }else{ 3935 aff = pExpr->affExpr; 3936 } 3937 if( aff>SQLITE_AFF_BLOB ){ 3938 static const char zAff[] = "B\000C\000D\000E"; 3939 assert( SQLITE_AFF_BLOB=='A' ); 3940 assert( SQLITE_AFF_TEXT=='B' ); 3941 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3942 &zAff[(aff-'B')*2], P4_STATIC); 3943 } 3944 return iReg; 3945 } 3946 if( iTab<0 ){ 3947 if( pParse->iSelfTab<0 ){ 3948 /* Other columns in the same row for CHECK constraints or 3949 ** generated columns or for inserting into partial index. 3950 ** The row is unpacked into registers beginning at 3951 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3952 ** immediately prior to the first column. 3953 */ 3954 Column *pCol; 3955 Table *pTab = pExpr->y.pTab; 3956 int iSrc; 3957 int iCol = pExpr->iColumn; 3958 assert( pTab!=0 ); 3959 assert( iCol>=XN_ROWID ); 3960 assert( iCol<pTab->nCol ); 3961 if( iCol<0 ){ 3962 return -1-pParse->iSelfTab; 3963 } 3964 pCol = pTab->aCol + iCol; 3965 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3966 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3967 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3968 if( pCol->colFlags & COLFLAG_GENERATED ){ 3969 if( pCol->colFlags & COLFLAG_BUSY ){ 3970 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3971 pCol->zName); 3972 return 0; 3973 } 3974 pCol->colFlags |= COLFLAG_BUSY; 3975 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3976 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3977 } 3978 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3979 return iSrc; 3980 }else 3981 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3982 if( pCol->affinity==SQLITE_AFF_REAL ){ 3983 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3984 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3985 return target; 3986 }else{ 3987 return iSrc; 3988 } 3989 }else{ 3990 /* Coding an expression that is part of an index where column names 3991 ** in the index refer to the table to which the index belongs */ 3992 iTab = pParse->iSelfTab - 1; 3993 } 3994 } 3995 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3996 pExpr->iColumn, iTab, target, 3997 pExpr->op2); 3998 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3999 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4000 } 4001 return iReg; 4002 } 4003 case TK_INTEGER: { 4004 codeInteger(pParse, pExpr, 0, target); 4005 return target; 4006 } 4007 case TK_TRUEFALSE: { 4008 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4009 return target; 4010 } 4011 #ifndef SQLITE_OMIT_FLOATING_POINT 4012 case TK_FLOAT: { 4013 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4014 codeReal(v, pExpr->u.zToken, 0, target); 4015 return target; 4016 } 4017 #endif 4018 case TK_STRING: { 4019 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4020 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4021 return target; 4022 } 4023 default: { 4024 /* Make NULL the default case so that if a bug causes an illegal 4025 ** Expr node to be passed into this function, it will be handled 4026 ** sanely and not crash. But keep the assert() to bring the problem 4027 ** to the attention of the developers. */ 4028 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4029 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4030 return target; 4031 } 4032 #ifndef SQLITE_OMIT_BLOB_LITERAL 4033 case TK_BLOB: { 4034 int n; 4035 const char *z; 4036 char *zBlob; 4037 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4038 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4039 assert( pExpr->u.zToken[1]=='\'' ); 4040 z = &pExpr->u.zToken[2]; 4041 n = sqlite3Strlen30(z) - 1; 4042 assert( z[n]=='\'' ); 4043 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4044 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4045 return target; 4046 } 4047 #endif 4048 case TK_VARIABLE: { 4049 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4050 assert( pExpr->u.zToken!=0 ); 4051 assert( pExpr->u.zToken[0]!=0 ); 4052 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4053 if( pExpr->u.zToken[1]!=0 ){ 4054 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4055 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4056 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4057 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4058 } 4059 return target; 4060 } 4061 case TK_REGISTER: { 4062 return pExpr->iTable; 4063 } 4064 #ifndef SQLITE_OMIT_CAST 4065 case TK_CAST: { 4066 /* Expressions of the form: CAST(pLeft AS token) */ 4067 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4068 if( inReg!=target ){ 4069 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4070 inReg = target; 4071 } 4072 sqlite3VdbeAddOp2(v, OP_Cast, target, 4073 sqlite3AffinityType(pExpr->u.zToken, 0)); 4074 return inReg; 4075 } 4076 #endif /* SQLITE_OMIT_CAST */ 4077 case TK_IS: 4078 case TK_ISNOT: 4079 op = (op==TK_IS) ? TK_EQ : TK_NE; 4080 p5 = SQLITE_NULLEQ; 4081 /* fall-through */ 4082 case TK_LT: 4083 case TK_LE: 4084 case TK_GT: 4085 case TK_GE: 4086 case TK_NE: 4087 case TK_EQ: { 4088 Expr *pLeft = pExpr->pLeft; 4089 if( sqlite3ExprIsVector(pLeft) ){ 4090 codeVectorCompare(pParse, pExpr, target, op, p5); 4091 }else{ 4092 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4093 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4094 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4095 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4096 sqlite3VdbeCurrentAddr(v)+2, p5, 4097 ExprHasProperty(pExpr,EP_Commuted)); 4098 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4099 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4100 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4101 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4102 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4103 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4104 if( p5==SQLITE_NULLEQ ){ 4105 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4106 }else{ 4107 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4108 } 4109 testcase( regFree1==0 ); 4110 testcase( regFree2==0 ); 4111 } 4112 break; 4113 } 4114 case TK_AND: 4115 case TK_OR: 4116 case TK_PLUS: 4117 case TK_STAR: 4118 case TK_MINUS: 4119 case TK_REM: 4120 case TK_BITAND: 4121 case TK_BITOR: 4122 case TK_SLASH: 4123 case TK_LSHIFT: 4124 case TK_RSHIFT: 4125 case TK_CONCAT: { 4126 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4127 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4128 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4129 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4130 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4131 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4132 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4133 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4134 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4135 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4136 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4137 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4138 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4139 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4140 testcase( regFree1==0 ); 4141 testcase( regFree2==0 ); 4142 break; 4143 } 4144 case TK_UMINUS: { 4145 Expr *pLeft = pExpr->pLeft; 4146 assert( pLeft ); 4147 if( pLeft->op==TK_INTEGER ){ 4148 codeInteger(pParse, pLeft, 1, target); 4149 return target; 4150 #ifndef SQLITE_OMIT_FLOATING_POINT 4151 }else if( pLeft->op==TK_FLOAT ){ 4152 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4153 codeReal(v, pLeft->u.zToken, 1, target); 4154 return target; 4155 #endif 4156 }else{ 4157 tempX.op = TK_INTEGER; 4158 tempX.flags = EP_IntValue|EP_TokenOnly; 4159 tempX.u.iValue = 0; 4160 ExprClearVVAProperties(&tempX); 4161 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4162 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4163 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4164 testcase( regFree2==0 ); 4165 } 4166 break; 4167 } 4168 case TK_BITNOT: 4169 case TK_NOT: { 4170 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4171 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4172 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4173 testcase( regFree1==0 ); 4174 sqlite3VdbeAddOp2(v, op, r1, inReg); 4175 break; 4176 } 4177 case TK_TRUTH: { 4178 int isTrue; /* IS TRUE or IS NOT TRUE */ 4179 int bNormal; /* IS TRUE or IS FALSE */ 4180 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4181 testcase( regFree1==0 ); 4182 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4183 bNormal = pExpr->op2==TK_IS; 4184 testcase( isTrue && bNormal); 4185 testcase( !isTrue && bNormal); 4186 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4187 break; 4188 } 4189 case TK_ISNULL: 4190 case TK_NOTNULL: { 4191 int addr; 4192 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4193 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4194 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4195 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4196 testcase( regFree1==0 ); 4197 addr = sqlite3VdbeAddOp1(v, op, r1); 4198 VdbeCoverageIf(v, op==TK_ISNULL); 4199 VdbeCoverageIf(v, op==TK_NOTNULL); 4200 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4201 sqlite3VdbeJumpHere(v, addr); 4202 break; 4203 } 4204 case TK_AGG_FUNCTION: { 4205 AggInfo *pInfo = pExpr->pAggInfo; 4206 if( pInfo==0 4207 || NEVER(pExpr->iAgg<0) 4208 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4209 ){ 4210 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4211 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4212 }else{ 4213 return pInfo->aFunc[pExpr->iAgg].iMem; 4214 } 4215 break; 4216 } 4217 case TK_FUNCTION: { 4218 ExprList *pFarg; /* List of function arguments */ 4219 int nFarg; /* Number of function arguments */ 4220 FuncDef *pDef; /* The function definition object */ 4221 const char *zId; /* The function name */ 4222 u32 constMask = 0; /* Mask of function arguments that are constant */ 4223 int i; /* Loop counter */ 4224 sqlite3 *db = pParse->db; /* The database connection */ 4225 u8 enc = ENC(db); /* The text encoding used by this database */ 4226 CollSeq *pColl = 0; /* A collating sequence */ 4227 4228 #ifndef SQLITE_OMIT_WINDOWFUNC 4229 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4230 return pExpr->y.pWin->regResult; 4231 } 4232 #endif 4233 4234 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4235 /* SQL functions can be expensive. So try to avoid running them 4236 ** multiple times if we know they always give the same result */ 4237 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4238 } 4239 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4240 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4241 pFarg = pExpr->x.pList; 4242 nFarg = pFarg ? pFarg->nExpr : 0; 4243 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4244 zId = pExpr->u.zToken; 4245 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4246 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4247 if( pDef==0 && pParse->explain ){ 4248 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4249 } 4250 #endif 4251 if( pDef==0 || pDef->xFinalize!=0 ){ 4252 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4253 break; 4254 } 4255 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4256 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4257 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4258 return exprCodeInlineFunction(pParse, pFarg, 4259 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4260 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4261 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4262 } 4263 4264 for(i=0; i<nFarg; i++){ 4265 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4266 testcase( i==31 ); 4267 constMask |= MASKBIT32(i); 4268 } 4269 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4270 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4271 } 4272 } 4273 if( pFarg ){ 4274 if( constMask ){ 4275 r1 = pParse->nMem+1; 4276 pParse->nMem += nFarg; 4277 }else{ 4278 r1 = sqlite3GetTempRange(pParse, nFarg); 4279 } 4280 4281 /* For length() and typeof() functions with a column argument, 4282 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4283 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4284 ** loading. 4285 */ 4286 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4287 u8 exprOp; 4288 assert( nFarg==1 ); 4289 assert( pFarg->a[0].pExpr!=0 ); 4290 exprOp = pFarg->a[0].pExpr->op; 4291 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4292 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4293 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4294 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4295 pFarg->a[0].pExpr->op2 = 4296 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4297 } 4298 } 4299 4300 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4301 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4302 }else{ 4303 r1 = 0; 4304 } 4305 #ifndef SQLITE_OMIT_VIRTUALTABLE 4306 /* Possibly overload the function if the first argument is 4307 ** a virtual table column. 4308 ** 4309 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4310 ** second argument, not the first, as the argument to test to 4311 ** see if it is a column in a virtual table. This is done because 4312 ** the left operand of infix functions (the operand we want to 4313 ** control overloading) ends up as the second argument to the 4314 ** function. The expression "A glob B" is equivalent to 4315 ** "glob(B,A). We want to use the A in "A glob B" to test 4316 ** for function overloading. But we use the B term in "glob(B,A)". 4317 */ 4318 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4319 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4320 }else if( nFarg>0 ){ 4321 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4322 } 4323 #endif 4324 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4325 if( !pColl ) pColl = db->pDfltColl; 4326 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4327 } 4328 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4329 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4330 Expr *pArg = pFarg->a[0].pExpr; 4331 if( pArg->op==TK_COLUMN ){ 4332 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4333 }else{ 4334 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4335 } 4336 }else 4337 #endif 4338 { 4339 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4340 pDef, pExpr->op2); 4341 } 4342 if( nFarg ){ 4343 if( constMask==0 ){ 4344 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4345 }else{ 4346 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4347 } 4348 } 4349 return target; 4350 } 4351 #ifndef SQLITE_OMIT_SUBQUERY 4352 case TK_EXISTS: 4353 case TK_SELECT: { 4354 int nCol; 4355 testcase( op==TK_EXISTS ); 4356 testcase( op==TK_SELECT ); 4357 if( pParse->db->mallocFailed ){ 4358 return 0; 4359 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4360 sqlite3SubselectError(pParse, nCol, 1); 4361 }else{ 4362 return sqlite3CodeSubselect(pParse, pExpr); 4363 } 4364 break; 4365 } 4366 case TK_SELECT_COLUMN: { 4367 int n; 4368 if( pExpr->pLeft->iTable==0 ){ 4369 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4370 } 4371 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT 4372 || pExpr->pLeft->op==TK_ERROR ); 4373 if( pExpr->iTable!=0 4374 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4375 ){ 4376 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4377 pExpr->iTable, n); 4378 } 4379 return pExpr->pLeft->iTable + pExpr->iColumn; 4380 } 4381 case TK_IN: { 4382 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4383 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4384 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4385 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4386 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4387 sqlite3VdbeResolveLabel(v, destIfFalse); 4388 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4389 sqlite3VdbeResolveLabel(v, destIfNull); 4390 return target; 4391 } 4392 #endif /* SQLITE_OMIT_SUBQUERY */ 4393 4394 4395 /* 4396 ** x BETWEEN y AND z 4397 ** 4398 ** This is equivalent to 4399 ** 4400 ** x>=y AND x<=z 4401 ** 4402 ** X is stored in pExpr->pLeft. 4403 ** Y is stored in pExpr->pList->a[0].pExpr. 4404 ** Z is stored in pExpr->pList->a[1].pExpr. 4405 */ 4406 case TK_BETWEEN: { 4407 exprCodeBetween(pParse, pExpr, target, 0, 0); 4408 return target; 4409 } 4410 case TK_SPAN: 4411 case TK_COLLATE: 4412 case TK_UPLUS: { 4413 pExpr = pExpr->pLeft; 4414 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4415 } 4416 4417 case TK_TRIGGER: { 4418 /* If the opcode is TK_TRIGGER, then the expression is a reference 4419 ** to a column in the new.* or old.* pseudo-tables available to 4420 ** trigger programs. In this case Expr.iTable is set to 1 for the 4421 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4422 ** is set to the column of the pseudo-table to read, or to -1 to 4423 ** read the rowid field. 4424 ** 4425 ** The expression is implemented using an OP_Param opcode. The p1 4426 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4427 ** to reference another column of the old.* pseudo-table, where 4428 ** i is the index of the column. For a new.rowid reference, p1 is 4429 ** set to (n+1), where n is the number of columns in each pseudo-table. 4430 ** For a reference to any other column in the new.* pseudo-table, p1 4431 ** is set to (n+2+i), where n and i are as defined previously. For 4432 ** example, if the table on which triggers are being fired is 4433 ** declared as: 4434 ** 4435 ** CREATE TABLE t1(a, b); 4436 ** 4437 ** Then p1 is interpreted as follows: 4438 ** 4439 ** p1==0 -> old.rowid p1==3 -> new.rowid 4440 ** p1==1 -> old.a p1==4 -> new.a 4441 ** p1==2 -> old.b p1==5 -> new.b 4442 */ 4443 Table *pTab = pExpr->y.pTab; 4444 int iCol = pExpr->iColumn; 4445 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4446 + sqlite3TableColumnToStorage(pTab, iCol); 4447 4448 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4449 assert( iCol>=-1 && iCol<pTab->nCol ); 4450 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4451 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4452 4453 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4454 VdbeComment((v, "r[%d]=%s.%s", target, 4455 (pExpr->iTable ? "new" : "old"), 4456 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4457 )); 4458 4459 #ifndef SQLITE_OMIT_FLOATING_POINT 4460 /* If the column has REAL affinity, it may currently be stored as an 4461 ** integer. Use OP_RealAffinity to make sure it is really real. 4462 ** 4463 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4464 ** floating point when extracting it from the record. */ 4465 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4466 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4467 } 4468 #endif 4469 break; 4470 } 4471 4472 case TK_VECTOR: { 4473 sqlite3ErrorMsg(pParse, "row value misused"); 4474 break; 4475 } 4476 4477 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4478 ** that derive from the right-hand table of a LEFT JOIN. The 4479 ** Expr.iTable value is the table number for the right-hand table. 4480 ** The expression is only evaluated if that table is not currently 4481 ** on a LEFT JOIN NULL row. 4482 */ 4483 case TK_IF_NULL_ROW: { 4484 int addrINR; 4485 u8 okConstFactor = pParse->okConstFactor; 4486 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4487 /* Temporarily disable factoring of constant expressions, since 4488 ** even though expressions may appear to be constant, they are not 4489 ** really constant because they originate from the right-hand side 4490 ** of a LEFT JOIN. */ 4491 pParse->okConstFactor = 0; 4492 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4493 pParse->okConstFactor = okConstFactor; 4494 sqlite3VdbeJumpHere(v, addrINR); 4495 sqlite3VdbeChangeP3(v, addrINR, inReg); 4496 break; 4497 } 4498 4499 /* 4500 ** Form A: 4501 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4502 ** 4503 ** Form B: 4504 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4505 ** 4506 ** Form A is can be transformed into the equivalent form B as follows: 4507 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4508 ** WHEN x=eN THEN rN ELSE y END 4509 ** 4510 ** X (if it exists) is in pExpr->pLeft. 4511 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4512 ** odd. The Y is also optional. If the number of elements in x.pList 4513 ** is even, then Y is omitted and the "otherwise" result is NULL. 4514 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4515 ** 4516 ** The result of the expression is the Ri for the first matching Ei, 4517 ** or if there is no matching Ei, the ELSE term Y, or if there is 4518 ** no ELSE term, NULL. 4519 */ 4520 case TK_CASE: { 4521 int endLabel; /* GOTO label for end of CASE stmt */ 4522 int nextCase; /* GOTO label for next WHEN clause */ 4523 int nExpr; /* 2x number of WHEN terms */ 4524 int i; /* Loop counter */ 4525 ExprList *pEList; /* List of WHEN terms */ 4526 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4527 Expr opCompare; /* The X==Ei expression */ 4528 Expr *pX; /* The X expression */ 4529 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4530 Expr *pDel = 0; 4531 sqlite3 *db = pParse->db; 4532 4533 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4534 assert(pExpr->x.pList->nExpr > 0); 4535 pEList = pExpr->x.pList; 4536 aListelem = pEList->a; 4537 nExpr = pEList->nExpr; 4538 endLabel = sqlite3VdbeMakeLabel(pParse); 4539 if( (pX = pExpr->pLeft)!=0 ){ 4540 pDel = sqlite3ExprDup(db, pX, 0); 4541 if( db->mallocFailed ){ 4542 sqlite3ExprDelete(db, pDel); 4543 break; 4544 } 4545 testcase( pX->op==TK_COLUMN ); 4546 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4547 testcase( regFree1==0 ); 4548 memset(&opCompare, 0, sizeof(opCompare)); 4549 opCompare.op = TK_EQ; 4550 opCompare.pLeft = pDel; 4551 pTest = &opCompare; 4552 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4553 ** The value in regFree1 might get SCopy-ed into the file result. 4554 ** So make sure that the regFree1 register is not reused for other 4555 ** purposes and possibly overwritten. */ 4556 regFree1 = 0; 4557 } 4558 for(i=0; i<nExpr-1; i=i+2){ 4559 if( pX ){ 4560 assert( pTest!=0 ); 4561 opCompare.pRight = aListelem[i].pExpr; 4562 }else{ 4563 pTest = aListelem[i].pExpr; 4564 } 4565 nextCase = sqlite3VdbeMakeLabel(pParse); 4566 testcase( pTest->op==TK_COLUMN ); 4567 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4568 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4569 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4570 sqlite3VdbeGoto(v, endLabel); 4571 sqlite3VdbeResolveLabel(v, nextCase); 4572 } 4573 if( (nExpr&1)!=0 ){ 4574 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4575 }else{ 4576 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4577 } 4578 sqlite3ExprDelete(db, pDel); 4579 setDoNotMergeFlagOnCopy(v); 4580 sqlite3VdbeResolveLabel(v, endLabel); 4581 break; 4582 } 4583 #ifndef SQLITE_OMIT_TRIGGER 4584 case TK_RAISE: { 4585 assert( pExpr->affExpr==OE_Rollback 4586 || pExpr->affExpr==OE_Abort 4587 || pExpr->affExpr==OE_Fail 4588 || pExpr->affExpr==OE_Ignore 4589 ); 4590 if( !pParse->pTriggerTab && !pParse->nested ){ 4591 sqlite3ErrorMsg(pParse, 4592 "RAISE() may only be used within a trigger-program"); 4593 return 0; 4594 } 4595 if( pExpr->affExpr==OE_Abort ){ 4596 sqlite3MayAbort(pParse); 4597 } 4598 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4599 if( pExpr->affExpr==OE_Ignore ){ 4600 sqlite3VdbeAddOp4( 4601 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4602 VdbeCoverage(v); 4603 }else{ 4604 sqlite3HaltConstraint(pParse, 4605 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4606 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4607 } 4608 4609 break; 4610 } 4611 #endif 4612 } 4613 sqlite3ReleaseTempReg(pParse, regFree1); 4614 sqlite3ReleaseTempReg(pParse, regFree2); 4615 return inReg; 4616 } 4617 4618 /* 4619 ** Generate code that will evaluate expression pExpr just one time 4620 ** per prepared statement execution. 4621 ** 4622 ** If the expression uses functions (that might throw an exception) then 4623 ** guard them with an OP_Once opcode to ensure that the code is only executed 4624 ** once. If no functions are involved, then factor the code out and put it at 4625 ** the end of the prepared statement in the initialization section. 4626 ** 4627 ** If regDest>=0 then the result is always stored in that register and the 4628 ** result is not reusable. If regDest<0 then this routine is free to 4629 ** store the value whereever it wants. The register where the expression 4630 ** is stored is returned. When regDest<0, two identical expressions might 4631 ** code to the same register, if they do not contain function calls and hence 4632 ** are factored out into the initialization section at the end of the 4633 ** prepared statement. 4634 */ 4635 int sqlite3ExprCodeRunJustOnce( 4636 Parse *pParse, /* Parsing context */ 4637 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4638 int regDest /* Store the value in this register */ 4639 ){ 4640 ExprList *p; 4641 assert( ConstFactorOk(pParse) ); 4642 p = pParse->pConstExpr; 4643 if( regDest<0 && p ){ 4644 struct ExprList_item *pItem; 4645 int i; 4646 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4647 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4648 return pItem->u.iConstExprReg; 4649 } 4650 } 4651 } 4652 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4653 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4654 Vdbe *v = pParse->pVdbe; 4655 int addr; 4656 assert( v ); 4657 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4658 pParse->okConstFactor = 0; 4659 if( !pParse->db->mallocFailed ){ 4660 if( regDest<0 ) regDest = ++pParse->nMem; 4661 sqlite3ExprCode(pParse, pExpr, regDest); 4662 } 4663 pParse->okConstFactor = 1; 4664 sqlite3ExprDelete(pParse->db, pExpr); 4665 sqlite3VdbeJumpHere(v, addr); 4666 }else{ 4667 p = sqlite3ExprListAppend(pParse, p, pExpr); 4668 if( p ){ 4669 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4670 pItem->reusable = regDest<0; 4671 if( regDest<0 ) regDest = ++pParse->nMem; 4672 pItem->u.iConstExprReg = regDest; 4673 } 4674 pParse->pConstExpr = p; 4675 } 4676 return regDest; 4677 } 4678 4679 /* 4680 ** Generate code to evaluate an expression and store the results 4681 ** into a register. Return the register number where the results 4682 ** are stored. 4683 ** 4684 ** If the register is a temporary register that can be deallocated, 4685 ** then write its number into *pReg. If the result register is not 4686 ** a temporary, then set *pReg to zero. 4687 ** 4688 ** If pExpr is a constant, then this routine might generate this 4689 ** code to fill the register in the initialization section of the 4690 ** VDBE program, in order to factor it out of the evaluation loop. 4691 */ 4692 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4693 int r2; 4694 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4695 if( ConstFactorOk(pParse) 4696 && ALWAYS(pExpr!=0) 4697 && pExpr->op!=TK_REGISTER 4698 && sqlite3ExprIsConstantNotJoin(pExpr) 4699 ){ 4700 *pReg = 0; 4701 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4702 }else{ 4703 int r1 = sqlite3GetTempReg(pParse); 4704 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4705 if( r2==r1 ){ 4706 *pReg = r1; 4707 }else{ 4708 sqlite3ReleaseTempReg(pParse, r1); 4709 *pReg = 0; 4710 } 4711 } 4712 return r2; 4713 } 4714 4715 /* 4716 ** Generate code that will evaluate expression pExpr and store the 4717 ** results in register target. The results are guaranteed to appear 4718 ** in register target. 4719 */ 4720 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4721 int inReg; 4722 4723 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4724 assert( target>0 && target<=pParse->nMem ); 4725 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4726 if( pParse->pVdbe==0 ) return; 4727 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4728 if( inReg!=target ){ 4729 u8 op; 4730 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4731 op = OP_Copy; 4732 }else{ 4733 op = OP_SCopy; 4734 } 4735 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4736 } 4737 } 4738 4739 /* 4740 ** Make a transient copy of expression pExpr and then code it using 4741 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4742 ** except that the input expression is guaranteed to be unchanged. 4743 */ 4744 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4745 sqlite3 *db = pParse->db; 4746 pExpr = sqlite3ExprDup(db, pExpr, 0); 4747 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4748 sqlite3ExprDelete(db, pExpr); 4749 } 4750 4751 /* 4752 ** Generate code that will evaluate expression pExpr and store the 4753 ** results in register target. The results are guaranteed to appear 4754 ** in register target. If the expression is constant, then this routine 4755 ** might choose to code the expression at initialization time. 4756 */ 4757 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4758 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4759 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4760 }else{ 4761 sqlite3ExprCodeCopy(pParse, pExpr, target); 4762 } 4763 } 4764 4765 /* 4766 ** Generate code that pushes the value of every element of the given 4767 ** expression list into a sequence of registers beginning at target. 4768 ** 4769 ** Return the number of elements evaluated. The number returned will 4770 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4771 ** is defined. 4772 ** 4773 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4774 ** filled using OP_SCopy. OP_Copy must be used instead. 4775 ** 4776 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4777 ** factored out into initialization code. 4778 ** 4779 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4780 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4781 ** in registers at srcReg, and so the value can be copied from there. 4782 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4783 ** are simply omitted rather than being copied from srcReg. 4784 */ 4785 int sqlite3ExprCodeExprList( 4786 Parse *pParse, /* Parsing context */ 4787 ExprList *pList, /* The expression list to be coded */ 4788 int target, /* Where to write results */ 4789 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4790 u8 flags /* SQLITE_ECEL_* flags */ 4791 ){ 4792 struct ExprList_item *pItem; 4793 int i, j, n; 4794 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4795 Vdbe *v = pParse->pVdbe; 4796 assert( pList!=0 ); 4797 assert( target>0 ); 4798 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4799 n = pList->nExpr; 4800 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4801 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4802 Expr *pExpr = pItem->pExpr; 4803 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4804 if( pItem->bSorterRef ){ 4805 i--; 4806 n--; 4807 }else 4808 #endif 4809 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4810 if( flags & SQLITE_ECEL_OMITREF ){ 4811 i--; 4812 n--; 4813 }else{ 4814 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4815 } 4816 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4817 && sqlite3ExprIsConstantNotJoin(pExpr) 4818 ){ 4819 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4820 }else{ 4821 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4822 if( inReg!=target+i ){ 4823 VdbeOp *pOp; 4824 if( copyOp==OP_Copy 4825 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4826 && pOp->p1+pOp->p3+1==inReg 4827 && pOp->p2+pOp->p3+1==target+i 4828 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4829 ){ 4830 pOp->p3++; 4831 }else{ 4832 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4833 } 4834 } 4835 } 4836 } 4837 return n; 4838 } 4839 4840 /* 4841 ** Generate code for a BETWEEN operator. 4842 ** 4843 ** x BETWEEN y AND z 4844 ** 4845 ** The above is equivalent to 4846 ** 4847 ** x>=y AND x<=z 4848 ** 4849 ** Code it as such, taking care to do the common subexpression 4850 ** elimination of x. 4851 ** 4852 ** The xJumpIf parameter determines details: 4853 ** 4854 ** NULL: Store the boolean result in reg[dest] 4855 ** sqlite3ExprIfTrue: Jump to dest if true 4856 ** sqlite3ExprIfFalse: Jump to dest if false 4857 ** 4858 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4859 */ 4860 static void exprCodeBetween( 4861 Parse *pParse, /* Parsing and code generating context */ 4862 Expr *pExpr, /* The BETWEEN expression */ 4863 int dest, /* Jump destination or storage location */ 4864 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4865 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4866 ){ 4867 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4868 Expr compLeft; /* The x>=y term */ 4869 Expr compRight; /* The x<=z term */ 4870 int regFree1 = 0; /* Temporary use register */ 4871 Expr *pDel = 0; 4872 sqlite3 *db = pParse->db; 4873 4874 memset(&compLeft, 0, sizeof(Expr)); 4875 memset(&compRight, 0, sizeof(Expr)); 4876 memset(&exprAnd, 0, sizeof(Expr)); 4877 4878 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4879 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4880 if( db->mallocFailed==0 ){ 4881 exprAnd.op = TK_AND; 4882 exprAnd.pLeft = &compLeft; 4883 exprAnd.pRight = &compRight; 4884 compLeft.op = TK_GE; 4885 compLeft.pLeft = pDel; 4886 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4887 compRight.op = TK_LE; 4888 compRight.pLeft = pDel; 4889 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4890 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4891 if( xJump ){ 4892 xJump(pParse, &exprAnd, dest, jumpIfNull); 4893 }else{ 4894 /* Mark the expression is being from the ON or USING clause of a join 4895 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4896 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4897 ** for clarity, but we are out of bits in the Expr.flags field so we 4898 ** have to reuse the EP_FromJoin bit. Bummer. */ 4899 pDel->flags |= EP_FromJoin; 4900 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4901 } 4902 sqlite3ReleaseTempReg(pParse, regFree1); 4903 } 4904 sqlite3ExprDelete(db, pDel); 4905 4906 /* Ensure adequate test coverage */ 4907 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4908 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4909 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4910 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4911 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4912 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4913 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4914 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4915 testcase( xJump==0 ); 4916 } 4917 4918 /* 4919 ** Generate code for a boolean expression such that a jump is made 4920 ** to the label "dest" if the expression is true but execution 4921 ** continues straight thru if the expression is false. 4922 ** 4923 ** If the expression evaluates to NULL (neither true nor false), then 4924 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4925 ** 4926 ** This code depends on the fact that certain token values (ex: TK_EQ) 4927 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4928 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4929 ** the make process cause these values to align. Assert()s in the code 4930 ** below verify that the numbers are aligned correctly. 4931 */ 4932 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4933 Vdbe *v = pParse->pVdbe; 4934 int op = 0; 4935 int regFree1 = 0; 4936 int regFree2 = 0; 4937 int r1, r2; 4938 4939 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4940 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4941 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4942 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4943 op = pExpr->op; 4944 switch( op ){ 4945 case TK_AND: 4946 case TK_OR: { 4947 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4948 if( pAlt!=pExpr ){ 4949 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4950 }else if( op==TK_AND ){ 4951 int d2 = sqlite3VdbeMakeLabel(pParse); 4952 testcase( jumpIfNull==0 ); 4953 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4954 jumpIfNull^SQLITE_JUMPIFNULL); 4955 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4956 sqlite3VdbeResolveLabel(v, d2); 4957 }else{ 4958 testcase( jumpIfNull==0 ); 4959 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4960 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4961 } 4962 break; 4963 } 4964 case TK_NOT: { 4965 testcase( jumpIfNull==0 ); 4966 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4967 break; 4968 } 4969 case TK_TRUTH: { 4970 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4971 int isTrue; /* IS TRUE or IS NOT TRUE */ 4972 testcase( jumpIfNull==0 ); 4973 isNot = pExpr->op2==TK_ISNOT; 4974 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4975 testcase( isTrue && isNot ); 4976 testcase( !isTrue && isNot ); 4977 if( isTrue ^ isNot ){ 4978 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4979 isNot ? SQLITE_JUMPIFNULL : 0); 4980 }else{ 4981 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4982 isNot ? SQLITE_JUMPIFNULL : 0); 4983 } 4984 break; 4985 } 4986 case TK_IS: 4987 case TK_ISNOT: 4988 testcase( op==TK_IS ); 4989 testcase( op==TK_ISNOT ); 4990 op = (op==TK_IS) ? TK_EQ : TK_NE; 4991 jumpIfNull = SQLITE_NULLEQ; 4992 /* no break */ deliberate_fall_through 4993 case TK_LT: 4994 case TK_LE: 4995 case TK_GT: 4996 case TK_GE: 4997 case TK_NE: 4998 case TK_EQ: { 4999 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5000 testcase( jumpIfNull==0 ); 5001 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5002 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5003 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5004 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5005 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5006 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5007 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5008 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5009 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5010 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5011 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5012 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5013 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5014 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5015 testcase( regFree1==0 ); 5016 testcase( regFree2==0 ); 5017 break; 5018 } 5019 case TK_ISNULL: 5020 case TK_NOTNULL: { 5021 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5022 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5023 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5024 sqlite3VdbeAddOp2(v, op, r1, dest); 5025 VdbeCoverageIf(v, op==TK_ISNULL); 5026 VdbeCoverageIf(v, op==TK_NOTNULL); 5027 testcase( regFree1==0 ); 5028 break; 5029 } 5030 case TK_BETWEEN: { 5031 testcase( jumpIfNull==0 ); 5032 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5033 break; 5034 } 5035 #ifndef SQLITE_OMIT_SUBQUERY 5036 case TK_IN: { 5037 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5038 int destIfNull = jumpIfNull ? dest : destIfFalse; 5039 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5040 sqlite3VdbeGoto(v, dest); 5041 sqlite3VdbeResolveLabel(v, destIfFalse); 5042 break; 5043 } 5044 #endif 5045 default: { 5046 default_expr: 5047 if( ExprAlwaysTrue(pExpr) ){ 5048 sqlite3VdbeGoto(v, dest); 5049 }else if( ExprAlwaysFalse(pExpr) ){ 5050 /* No-op */ 5051 }else{ 5052 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5053 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5054 VdbeCoverage(v); 5055 testcase( regFree1==0 ); 5056 testcase( jumpIfNull==0 ); 5057 } 5058 break; 5059 } 5060 } 5061 sqlite3ReleaseTempReg(pParse, regFree1); 5062 sqlite3ReleaseTempReg(pParse, regFree2); 5063 } 5064 5065 /* 5066 ** Generate code for a boolean expression such that a jump is made 5067 ** to the label "dest" if the expression is false but execution 5068 ** continues straight thru if the expression is true. 5069 ** 5070 ** If the expression evaluates to NULL (neither true nor false) then 5071 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5072 ** is 0. 5073 */ 5074 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5075 Vdbe *v = pParse->pVdbe; 5076 int op = 0; 5077 int regFree1 = 0; 5078 int regFree2 = 0; 5079 int r1, r2; 5080 5081 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5082 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5083 if( pExpr==0 ) return; 5084 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5085 5086 /* The value of pExpr->op and op are related as follows: 5087 ** 5088 ** pExpr->op op 5089 ** --------- ---------- 5090 ** TK_ISNULL OP_NotNull 5091 ** TK_NOTNULL OP_IsNull 5092 ** TK_NE OP_Eq 5093 ** TK_EQ OP_Ne 5094 ** TK_GT OP_Le 5095 ** TK_LE OP_Gt 5096 ** TK_GE OP_Lt 5097 ** TK_LT OP_Ge 5098 ** 5099 ** For other values of pExpr->op, op is undefined and unused. 5100 ** The value of TK_ and OP_ constants are arranged such that we 5101 ** can compute the mapping above using the following expression. 5102 ** Assert()s verify that the computation is correct. 5103 */ 5104 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5105 5106 /* Verify correct alignment of TK_ and OP_ constants 5107 */ 5108 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5109 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5110 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5111 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5112 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5113 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5114 assert( pExpr->op!=TK_GT || op==OP_Le ); 5115 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5116 5117 switch( pExpr->op ){ 5118 case TK_AND: 5119 case TK_OR: { 5120 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5121 if( pAlt!=pExpr ){ 5122 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5123 }else if( pExpr->op==TK_AND ){ 5124 testcase( jumpIfNull==0 ); 5125 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5126 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5127 }else{ 5128 int d2 = sqlite3VdbeMakeLabel(pParse); 5129 testcase( jumpIfNull==0 ); 5130 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5131 jumpIfNull^SQLITE_JUMPIFNULL); 5132 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5133 sqlite3VdbeResolveLabel(v, d2); 5134 } 5135 break; 5136 } 5137 case TK_NOT: { 5138 testcase( jumpIfNull==0 ); 5139 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5140 break; 5141 } 5142 case TK_TRUTH: { 5143 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5144 int isTrue; /* IS TRUE or IS NOT TRUE */ 5145 testcase( jumpIfNull==0 ); 5146 isNot = pExpr->op2==TK_ISNOT; 5147 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5148 testcase( isTrue && isNot ); 5149 testcase( !isTrue && isNot ); 5150 if( isTrue ^ isNot ){ 5151 /* IS TRUE and IS NOT FALSE */ 5152 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5153 isNot ? 0 : SQLITE_JUMPIFNULL); 5154 5155 }else{ 5156 /* IS FALSE and IS NOT TRUE */ 5157 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5158 isNot ? 0 : SQLITE_JUMPIFNULL); 5159 } 5160 break; 5161 } 5162 case TK_IS: 5163 case TK_ISNOT: 5164 testcase( pExpr->op==TK_IS ); 5165 testcase( pExpr->op==TK_ISNOT ); 5166 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5167 jumpIfNull = SQLITE_NULLEQ; 5168 /* no break */ deliberate_fall_through 5169 case TK_LT: 5170 case TK_LE: 5171 case TK_GT: 5172 case TK_GE: 5173 case TK_NE: 5174 case TK_EQ: { 5175 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5176 testcase( jumpIfNull==0 ); 5177 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5178 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5179 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5180 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5181 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5182 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5183 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5184 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5185 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5186 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5187 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5188 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5189 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5190 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5191 testcase( regFree1==0 ); 5192 testcase( regFree2==0 ); 5193 break; 5194 } 5195 case TK_ISNULL: 5196 case TK_NOTNULL: { 5197 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5198 sqlite3VdbeAddOp2(v, op, r1, dest); 5199 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5200 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5201 testcase( regFree1==0 ); 5202 break; 5203 } 5204 case TK_BETWEEN: { 5205 testcase( jumpIfNull==0 ); 5206 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5207 break; 5208 } 5209 #ifndef SQLITE_OMIT_SUBQUERY 5210 case TK_IN: { 5211 if( jumpIfNull ){ 5212 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5213 }else{ 5214 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5215 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5216 sqlite3VdbeResolveLabel(v, destIfNull); 5217 } 5218 break; 5219 } 5220 #endif 5221 default: { 5222 default_expr: 5223 if( ExprAlwaysFalse(pExpr) ){ 5224 sqlite3VdbeGoto(v, dest); 5225 }else if( ExprAlwaysTrue(pExpr) ){ 5226 /* no-op */ 5227 }else{ 5228 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5229 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5230 VdbeCoverage(v); 5231 testcase( regFree1==0 ); 5232 testcase( jumpIfNull==0 ); 5233 } 5234 break; 5235 } 5236 } 5237 sqlite3ReleaseTempReg(pParse, regFree1); 5238 sqlite3ReleaseTempReg(pParse, regFree2); 5239 } 5240 5241 /* 5242 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5243 ** code generation, and that copy is deleted after code generation. This 5244 ** ensures that the original pExpr is unchanged. 5245 */ 5246 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5247 sqlite3 *db = pParse->db; 5248 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5249 if( db->mallocFailed==0 ){ 5250 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5251 } 5252 sqlite3ExprDelete(db, pCopy); 5253 } 5254 5255 /* 5256 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5257 ** type of expression. 5258 ** 5259 ** If pExpr is a simple SQL value - an integer, real, string, blob 5260 ** or NULL value - then the VDBE currently being prepared is configured 5261 ** to re-prepare each time a new value is bound to variable pVar. 5262 ** 5263 ** Additionally, if pExpr is a simple SQL value and the value is the 5264 ** same as that currently bound to variable pVar, non-zero is returned. 5265 ** Otherwise, if the values are not the same or if pExpr is not a simple 5266 ** SQL value, zero is returned. 5267 */ 5268 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5269 int res = 0; 5270 int iVar; 5271 sqlite3_value *pL, *pR = 0; 5272 5273 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5274 if( pR ){ 5275 iVar = pVar->iColumn; 5276 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5277 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5278 if( pL ){ 5279 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5280 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5281 } 5282 res = 0==sqlite3MemCompare(pL, pR, 0); 5283 } 5284 sqlite3ValueFree(pR); 5285 sqlite3ValueFree(pL); 5286 } 5287 5288 return res; 5289 } 5290 5291 /* 5292 ** Do a deep comparison of two expression trees. Return 0 if the two 5293 ** expressions are completely identical. Return 1 if they differ only 5294 ** by a COLLATE operator at the top level. Return 2 if there are differences 5295 ** other than the top-level COLLATE operator. 5296 ** 5297 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5298 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5299 ** 5300 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5301 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5302 ** 5303 ** Sometimes this routine will return 2 even if the two expressions 5304 ** really are equivalent. If we cannot prove that the expressions are 5305 ** identical, we return 2 just to be safe. So if this routine 5306 ** returns 2, then you do not really know for certain if the two 5307 ** expressions are the same. But if you get a 0 or 1 return, then you 5308 ** can be sure the expressions are the same. In the places where 5309 ** this routine is used, it does not hurt to get an extra 2 - that 5310 ** just might result in some slightly slower code. But returning 5311 ** an incorrect 0 or 1 could lead to a malfunction. 5312 ** 5313 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5314 ** pParse->pReprepare can be matched against literals in pB. The 5315 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5316 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5317 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5318 ** pB causes a return value of 2. 5319 */ 5320 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5321 u32 combinedFlags; 5322 if( pA==0 || pB==0 ){ 5323 return pB==pA ? 0 : 2; 5324 } 5325 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5326 return 0; 5327 } 5328 combinedFlags = pA->flags | pB->flags; 5329 if( combinedFlags & EP_IntValue ){ 5330 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5331 return 0; 5332 } 5333 return 2; 5334 } 5335 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5336 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5337 return 1; 5338 } 5339 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5340 return 1; 5341 } 5342 return 2; 5343 } 5344 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5345 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5346 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5347 #ifndef SQLITE_OMIT_WINDOWFUNC 5348 assert( pA->op==pB->op ); 5349 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5350 return 2; 5351 } 5352 if( ExprHasProperty(pA,EP_WinFunc) ){ 5353 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5354 return 2; 5355 } 5356 } 5357 #endif 5358 }else if( pA->op==TK_NULL ){ 5359 return 0; 5360 }else if( pA->op==TK_COLLATE ){ 5361 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5362 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5363 return 2; 5364 } 5365 } 5366 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5367 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5368 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5369 if( combinedFlags & EP_xIsSelect ) return 2; 5370 if( (combinedFlags & EP_FixedCol)==0 5371 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5372 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5373 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5374 if( pA->op!=TK_STRING 5375 && pA->op!=TK_TRUEFALSE 5376 && ALWAYS((combinedFlags & EP_Reduced)==0) 5377 ){ 5378 if( pA->iColumn!=pB->iColumn ) return 2; 5379 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5380 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5381 return 2; 5382 } 5383 } 5384 } 5385 return 0; 5386 } 5387 5388 /* 5389 ** Compare two ExprList objects. Return 0 if they are identical, 1 5390 ** if they are certainly different, or 2 if it is not possible to 5391 ** determine if they are identical or not. 5392 ** 5393 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5394 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5395 ** 5396 ** This routine might return non-zero for equivalent ExprLists. The 5397 ** only consequence will be disabled optimizations. But this routine 5398 ** must never return 0 if the two ExprList objects are different, or 5399 ** a malfunction will result. 5400 ** 5401 ** Two NULL pointers are considered to be the same. But a NULL pointer 5402 ** always differs from a non-NULL pointer. 5403 */ 5404 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5405 int i; 5406 if( pA==0 && pB==0 ) return 0; 5407 if( pA==0 || pB==0 ) return 1; 5408 if( pA->nExpr!=pB->nExpr ) return 1; 5409 for(i=0; i<pA->nExpr; i++){ 5410 int res; 5411 Expr *pExprA = pA->a[i].pExpr; 5412 Expr *pExprB = pB->a[i].pExpr; 5413 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5414 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5415 } 5416 return 0; 5417 } 5418 5419 /* 5420 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5421 ** are ignored. 5422 */ 5423 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5424 return sqlite3ExprCompare(0, 5425 sqlite3ExprSkipCollateAndLikely(pA), 5426 sqlite3ExprSkipCollateAndLikely(pB), 5427 iTab); 5428 } 5429 5430 /* 5431 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5432 ** 5433 ** Or if seenNot is true, return non-zero if Expr p can only be 5434 ** non-NULL if pNN is not NULL 5435 */ 5436 static int exprImpliesNotNull( 5437 Parse *pParse, /* Parsing context */ 5438 Expr *p, /* The expression to be checked */ 5439 Expr *pNN, /* The expression that is NOT NULL */ 5440 int iTab, /* Table being evaluated */ 5441 int seenNot /* Return true only if p can be any non-NULL value */ 5442 ){ 5443 assert( p ); 5444 assert( pNN ); 5445 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5446 return pNN->op!=TK_NULL; 5447 } 5448 switch( p->op ){ 5449 case TK_IN: { 5450 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5451 assert( ExprHasProperty(p,EP_xIsSelect) 5452 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5453 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5454 } 5455 case TK_BETWEEN: { 5456 ExprList *pList = p->x.pList; 5457 assert( pList!=0 ); 5458 assert( pList->nExpr==2 ); 5459 if( seenNot ) return 0; 5460 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5461 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5462 ){ 5463 return 1; 5464 } 5465 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5466 } 5467 case TK_EQ: 5468 case TK_NE: 5469 case TK_LT: 5470 case TK_LE: 5471 case TK_GT: 5472 case TK_GE: 5473 case TK_PLUS: 5474 case TK_MINUS: 5475 case TK_BITOR: 5476 case TK_LSHIFT: 5477 case TK_RSHIFT: 5478 case TK_CONCAT: 5479 seenNot = 1; 5480 /* no break */ deliberate_fall_through 5481 case TK_STAR: 5482 case TK_REM: 5483 case TK_BITAND: 5484 case TK_SLASH: { 5485 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5486 /* no break */ deliberate_fall_through 5487 } 5488 case TK_SPAN: 5489 case TK_COLLATE: 5490 case TK_UPLUS: 5491 case TK_UMINUS: { 5492 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5493 } 5494 case TK_TRUTH: { 5495 if( seenNot ) return 0; 5496 if( p->op2!=TK_IS ) return 0; 5497 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5498 } 5499 case TK_BITNOT: 5500 case TK_NOT: { 5501 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5502 } 5503 } 5504 return 0; 5505 } 5506 5507 /* 5508 ** Return true if we can prove the pE2 will always be true if pE1 is 5509 ** true. Return false if we cannot complete the proof or if pE2 might 5510 ** be false. Examples: 5511 ** 5512 ** pE1: x==5 pE2: x==5 Result: true 5513 ** pE1: x>0 pE2: x==5 Result: false 5514 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5515 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5516 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5517 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5518 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5519 ** 5520 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5521 ** Expr.iTable<0 then assume a table number given by iTab. 5522 ** 5523 ** If pParse is not NULL, then the values of bound variables in pE1 are 5524 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5525 ** modified to record which bound variables are referenced. If pParse 5526 ** is NULL, then false will be returned if pE1 contains any bound variables. 5527 ** 5528 ** When in doubt, return false. Returning true might give a performance 5529 ** improvement. Returning false might cause a performance reduction, but 5530 ** it will always give the correct answer and is hence always safe. 5531 */ 5532 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5533 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5534 return 1; 5535 } 5536 if( pE2->op==TK_OR 5537 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5538 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5539 ){ 5540 return 1; 5541 } 5542 if( pE2->op==TK_NOTNULL 5543 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5544 ){ 5545 return 1; 5546 } 5547 return 0; 5548 } 5549 5550 /* 5551 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5552 ** If the expression node requires that the table at pWalker->iCur 5553 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5554 ** 5555 ** This routine controls an optimization. False positives (setting 5556 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5557 ** (never setting pWalker->eCode) is a harmless missed optimization. 5558 */ 5559 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5560 testcase( pExpr->op==TK_AGG_COLUMN ); 5561 testcase( pExpr->op==TK_AGG_FUNCTION ); 5562 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5563 switch( pExpr->op ){ 5564 case TK_ISNOT: 5565 case TK_ISNULL: 5566 case TK_NOTNULL: 5567 case TK_IS: 5568 case TK_OR: 5569 case TK_VECTOR: 5570 case TK_CASE: 5571 case TK_IN: 5572 case TK_FUNCTION: 5573 case TK_TRUTH: 5574 testcase( pExpr->op==TK_ISNOT ); 5575 testcase( pExpr->op==TK_ISNULL ); 5576 testcase( pExpr->op==TK_NOTNULL ); 5577 testcase( pExpr->op==TK_IS ); 5578 testcase( pExpr->op==TK_OR ); 5579 testcase( pExpr->op==TK_VECTOR ); 5580 testcase( pExpr->op==TK_CASE ); 5581 testcase( pExpr->op==TK_IN ); 5582 testcase( pExpr->op==TK_FUNCTION ); 5583 testcase( pExpr->op==TK_TRUTH ); 5584 return WRC_Prune; 5585 case TK_COLUMN: 5586 if( pWalker->u.iCur==pExpr->iTable ){ 5587 pWalker->eCode = 1; 5588 return WRC_Abort; 5589 } 5590 return WRC_Prune; 5591 5592 case TK_AND: 5593 if( pWalker->eCode==0 ){ 5594 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5595 if( pWalker->eCode ){ 5596 pWalker->eCode = 0; 5597 sqlite3WalkExpr(pWalker, pExpr->pRight); 5598 } 5599 } 5600 return WRC_Prune; 5601 5602 case TK_BETWEEN: 5603 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5604 assert( pWalker->eCode ); 5605 return WRC_Abort; 5606 } 5607 return WRC_Prune; 5608 5609 /* Virtual tables are allowed to use constraints like x=NULL. So 5610 ** a term of the form x=y does not prove that y is not null if x 5611 ** is the column of a virtual table */ 5612 case TK_EQ: 5613 case TK_NE: 5614 case TK_LT: 5615 case TK_LE: 5616 case TK_GT: 5617 case TK_GE: { 5618 Expr *pLeft = pExpr->pLeft; 5619 Expr *pRight = pExpr->pRight; 5620 testcase( pExpr->op==TK_EQ ); 5621 testcase( pExpr->op==TK_NE ); 5622 testcase( pExpr->op==TK_LT ); 5623 testcase( pExpr->op==TK_LE ); 5624 testcase( pExpr->op==TK_GT ); 5625 testcase( pExpr->op==TK_GE ); 5626 /* The y.pTab=0 assignment in wherecode.c always happens after the 5627 ** impliesNotNullRow() test */ 5628 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5629 && IsVirtual(pLeft->y.pTab)) 5630 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5631 && IsVirtual(pRight->y.pTab)) 5632 ){ 5633 return WRC_Prune; 5634 } 5635 /* no break */ deliberate_fall_through 5636 } 5637 default: 5638 return WRC_Continue; 5639 } 5640 } 5641 5642 /* 5643 ** Return true (non-zero) if expression p can only be true if at least 5644 ** one column of table iTab is non-null. In other words, return true 5645 ** if expression p will always be NULL or false if every column of iTab 5646 ** is NULL. 5647 ** 5648 ** False negatives are acceptable. In other words, it is ok to return 5649 ** zero even if expression p will never be true of every column of iTab 5650 ** is NULL. A false negative is merely a missed optimization opportunity. 5651 ** 5652 ** False positives are not allowed, however. A false positive may result 5653 ** in an incorrect answer. 5654 ** 5655 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5656 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5657 ** 5658 ** This routine is used to check if a LEFT JOIN can be converted into 5659 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5660 ** clause requires that some column of the right table of the LEFT JOIN 5661 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5662 ** ordinary join. 5663 */ 5664 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5665 Walker w; 5666 p = sqlite3ExprSkipCollateAndLikely(p); 5667 if( p==0 ) return 0; 5668 if( p->op==TK_NOTNULL ){ 5669 p = p->pLeft; 5670 }else{ 5671 while( p->op==TK_AND ){ 5672 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5673 p = p->pRight; 5674 } 5675 } 5676 w.xExprCallback = impliesNotNullRow; 5677 w.xSelectCallback = 0; 5678 w.xSelectCallback2 = 0; 5679 w.eCode = 0; 5680 w.u.iCur = iTab; 5681 sqlite3WalkExpr(&w, p); 5682 return w.eCode; 5683 } 5684 5685 /* 5686 ** An instance of the following structure is used by the tree walker 5687 ** to determine if an expression can be evaluated by reference to the 5688 ** index only, without having to do a search for the corresponding 5689 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5690 ** is the cursor for the table. 5691 */ 5692 struct IdxCover { 5693 Index *pIdx; /* The index to be tested for coverage */ 5694 int iCur; /* Cursor number for the table corresponding to the index */ 5695 }; 5696 5697 /* 5698 ** Check to see if there are references to columns in table 5699 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5700 ** pWalker->u.pIdxCover->pIdx. 5701 */ 5702 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5703 if( pExpr->op==TK_COLUMN 5704 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5705 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5706 ){ 5707 pWalker->eCode = 1; 5708 return WRC_Abort; 5709 } 5710 return WRC_Continue; 5711 } 5712 5713 /* 5714 ** Determine if an index pIdx on table with cursor iCur contains will 5715 ** the expression pExpr. Return true if the index does cover the 5716 ** expression and false if the pExpr expression references table columns 5717 ** that are not found in the index pIdx. 5718 ** 5719 ** An index covering an expression means that the expression can be 5720 ** evaluated using only the index and without having to lookup the 5721 ** corresponding table entry. 5722 */ 5723 int sqlite3ExprCoveredByIndex( 5724 Expr *pExpr, /* The index to be tested */ 5725 int iCur, /* The cursor number for the corresponding table */ 5726 Index *pIdx /* The index that might be used for coverage */ 5727 ){ 5728 Walker w; 5729 struct IdxCover xcov; 5730 memset(&w, 0, sizeof(w)); 5731 xcov.iCur = iCur; 5732 xcov.pIdx = pIdx; 5733 w.xExprCallback = exprIdxCover; 5734 w.u.pIdxCover = &xcov; 5735 sqlite3WalkExpr(&w, pExpr); 5736 return !w.eCode; 5737 } 5738 5739 5740 /* 5741 ** An instance of the following structure is used by the tree walker 5742 ** to count references to table columns in the arguments of an 5743 ** aggregate function, in order to implement the 5744 ** sqlite3FunctionThisSrc() routine. 5745 */ 5746 struct SrcCount { 5747 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5748 int iSrcInner; /* Smallest cursor number in this context */ 5749 int nThis; /* Number of references to columns in pSrcList */ 5750 int nOther; /* Number of references to columns in other FROM clauses */ 5751 }; 5752 5753 /* 5754 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5755 ** SELECT with a FROM clause encountered during this iteration, set 5756 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5757 ** the FROM cause. 5758 */ 5759 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5760 struct SrcCount *p = pWalker->u.pSrcCount; 5761 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5762 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5763 } 5764 return WRC_Continue; 5765 } 5766 5767 /* 5768 ** Count the number of references to columns. 5769 */ 5770 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5771 /* There was once a NEVER() on the second term on the grounds that 5772 ** sqlite3FunctionUsesThisSrc() was always called before 5773 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5774 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5775 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5776 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5777 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5778 int i; 5779 struct SrcCount *p = pWalker->u.pSrcCount; 5780 SrcList *pSrc = p->pSrc; 5781 int nSrc = pSrc ? pSrc->nSrc : 0; 5782 for(i=0; i<nSrc; i++){ 5783 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5784 } 5785 if( i<nSrc ){ 5786 p->nThis++; 5787 }else if( pExpr->iTable<p->iSrcInner ){ 5788 /* In a well-formed parse tree (no name resolution errors), 5789 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5790 ** outer context. Those are the only ones to count as "other" */ 5791 p->nOther++; 5792 } 5793 } 5794 return WRC_Continue; 5795 } 5796 5797 /* 5798 ** Determine if any of the arguments to the pExpr Function reference 5799 ** pSrcList. Return true if they do. Also return true if the function 5800 ** has no arguments or has only constant arguments. Return false if pExpr 5801 ** references columns but not columns of tables found in pSrcList. 5802 */ 5803 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5804 Walker w; 5805 struct SrcCount cnt; 5806 assert( pExpr->op==TK_AGG_FUNCTION ); 5807 memset(&w, 0, sizeof(w)); 5808 w.xExprCallback = exprSrcCount; 5809 w.xSelectCallback = selectSrcCount; 5810 w.u.pSrcCount = &cnt; 5811 cnt.pSrc = pSrcList; 5812 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5813 cnt.nThis = 0; 5814 cnt.nOther = 0; 5815 sqlite3WalkExprList(&w, pExpr->x.pList); 5816 #ifndef SQLITE_OMIT_WINDOWFUNC 5817 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5818 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5819 } 5820 #endif 5821 return cnt.nThis>0 || cnt.nOther==0; 5822 } 5823 5824 /* 5825 ** This is a Walker expression node callback. 5826 ** 5827 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5828 ** object that is referenced does not refer directly to the Expr. If 5829 ** it does, make a copy. This is done because the pExpr argument is 5830 ** subject to change. 5831 ** 5832 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5833 ** This will cause the expression to be deleted automatically when the 5834 ** Parse object is destroyed, but the zero register number means that it 5835 ** will not generate any code in the preamble. 5836 */ 5837 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5838 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5839 && pExpr->pAggInfo!=0 5840 ){ 5841 AggInfo *pAggInfo = pExpr->pAggInfo; 5842 int iAgg = pExpr->iAgg; 5843 Parse *pParse = pWalker->pParse; 5844 sqlite3 *db = pParse->db; 5845 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5846 if( pExpr->op==TK_AGG_COLUMN ){ 5847 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5848 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5849 pExpr = sqlite3ExprDup(db, pExpr, 0); 5850 if( pExpr ){ 5851 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5852 sqlite3ExprDeferredDelete(pParse, pExpr); 5853 } 5854 } 5855 }else{ 5856 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5857 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5858 pExpr = sqlite3ExprDup(db, pExpr, 0); 5859 if( pExpr ){ 5860 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5861 sqlite3ExprDeferredDelete(pParse, pExpr); 5862 } 5863 } 5864 } 5865 } 5866 return WRC_Continue; 5867 } 5868 5869 /* 5870 ** Initialize a Walker object so that will persist AggInfo entries referenced 5871 ** by the tree that is walked. 5872 */ 5873 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5874 memset(pWalker, 0, sizeof(*pWalker)); 5875 pWalker->pParse = pParse; 5876 pWalker->xExprCallback = agginfoPersistExprCb; 5877 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5878 } 5879 5880 /* 5881 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5882 ** the new element. Return a negative number if malloc fails. 5883 */ 5884 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5885 int i; 5886 pInfo->aCol = sqlite3ArrayAllocate( 5887 db, 5888 pInfo->aCol, 5889 sizeof(pInfo->aCol[0]), 5890 &pInfo->nColumn, 5891 &i 5892 ); 5893 return i; 5894 } 5895 5896 /* 5897 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5898 ** the new element. Return a negative number if malloc fails. 5899 */ 5900 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5901 int i; 5902 pInfo->aFunc = sqlite3ArrayAllocate( 5903 db, 5904 pInfo->aFunc, 5905 sizeof(pInfo->aFunc[0]), 5906 &pInfo->nFunc, 5907 &i 5908 ); 5909 return i; 5910 } 5911 5912 /* 5913 ** This is the xExprCallback for a tree walker. It is used to 5914 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5915 ** for additional information. 5916 */ 5917 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5918 int i; 5919 NameContext *pNC = pWalker->u.pNC; 5920 Parse *pParse = pNC->pParse; 5921 SrcList *pSrcList = pNC->pSrcList; 5922 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5923 5924 assert( pNC->ncFlags & NC_UAggInfo ); 5925 switch( pExpr->op ){ 5926 case TK_AGG_COLUMN: 5927 case TK_COLUMN: { 5928 testcase( pExpr->op==TK_AGG_COLUMN ); 5929 testcase( pExpr->op==TK_COLUMN ); 5930 /* Check to see if the column is in one of the tables in the FROM 5931 ** clause of the aggregate query */ 5932 if( ALWAYS(pSrcList!=0) ){ 5933 SrcItem *pItem = pSrcList->a; 5934 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5935 struct AggInfo_col *pCol; 5936 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5937 if( pExpr->iTable==pItem->iCursor ){ 5938 /* If we reach this point, it means that pExpr refers to a table 5939 ** that is in the FROM clause of the aggregate query. 5940 ** 5941 ** Make an entry for the column in pAggInfo->aCol[] if there 5942 ** is not an entry there already. 5943 */ 5944 int k; 5945 pCol = pAggInfo->aCol; 5946 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5947 if( pCol->iTable==pExpr->iTable && 5948 pCol->iColumn==pExpr->iColumn ){ 5949 break; 5950 } 5951 } 5952 if( (k>=pAggInfo->nColumn) 5953 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5954 ){ 5955 pCol = &pAggInfo->aCol[k]; 5956 pCol->pTab = pExpr->y.pTab; 5957 pCol->iTable = pExpr->iTable; 5958 pCol->iColumn = pExpr->iColumn; 5959 pCol->iMem = ++pParse->nMem; 5960 pCol->iSorterColumn = -1; 5961 pCol->pCExpr = pExpr; 5962 if( pAggInfo->pGroupBy ){ 5963 int j, n; 5964 ExprList *pGB = pAggInfo->pGroupBy; 5965 struct ExprList_item *pTerm = pGB->a; 5966 n = pGB->nExpr; 5967 for(j=0; j<n; j++, pTerm++){ 5968 Expr *pE = pTerm->pExpr; 5969 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5970 pE->iColumn==pExpr->iColumn ){ 5971 pCol->iSorterColumn = j; 5972 break; 5973 } 5974 } 5975 } 5976 if( pCol->iSorterColumn<0 ){ 5977 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5978 } 5979 } 5980 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5981 ** because it was there before or because we just created it). 5982 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5983 ** pAggInfo->aCol[] entry. 5984 */ 5985 ExprSetVVAProperty(pExpr, EP_NoReduce); 5986 pExpr->pAggInfo = pAggInfo; 5987 pExpr->op = TK_AGG_COLUMN; 5988 pExpr->iAgg = (i16)k; 5989 break; 5990 } /* endif pExpr->iTable==pItem->iCursor */ 5991 } /* end loop over pSrcList */ 5992 } 5993 return WRC_Prune; 5994 } 5995 case TK_AGG_FUNCTION: { 5996 if( (pNC->ncFlags & NC_InAggFunc)==0 5997 && pWalker->walkerDepth==pExpr->op2 5998 ){ 5999 /* Check to see if pExpr is a duplicate of another aggregate 6000 ** function that is already in the pAggInfo structure 6001 */ 6002 struct AggInfo_func *pItem = pAggInfo->aFunc; 6003 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6004 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6005 break; 6006 } 6007 } 6008 if( i>=pAggInfo->nFunc ){ 6009 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6010 */ 6011 u8 enc = ENC(pParse->db); 6012 i = addAggInfoFunc(pParse->db, pAggInfo); 6013 if( i>=0 ){ 6014 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6015 pItem = &pAggInfo->aFunc[i]; 6016 pItem->pFExpr = pExpr; 6017 pItem->iMem = ++pParse->nMem; 6018 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6019 pItem->pFunc = sqlite3FindFunction(pParse->db, 6020 pExpr->u.zToken, 6021 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6022 if( pExpr->flags & EP_Distinct ){ 6023 pItem->iDistinct = pParse->nTab++; 6024 }else{ 6025 pItem->iDistinct = -1; 6026 } 6027 } 6028 } 6029 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6030 */ 6031 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6032 ExprSetVVAProperty(pExpr, EP_NoReduce); 6033 pExpr->iAgg = (i16)i; 6034 pExpr->pAggInfo = pAggInfo; 6035 return WRC_Prune; 6036 }else{ 6037 return WRC_Continue; 6038 } 6039 } 6040 } 6041 return WRC_Continue; 6042 } 6043 6044 /* 6045 ** Analyze the pExpr expression looking for aggregate functions and 6046 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6047 ** points to. Additional entries are made on the AggInfo object as 6048 ** necessary. 6049 ** 6050 ** This routine should only be called after the expression has been 6051 ** analyzed by sqlite3ResolveExprNames(). 6052 */ 6053 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6054 Walker w; 6055 w.xExprCallback = analyzeAggregate; 6056 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6057 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6058 w.walkerDepth = 0; 6059 w.u.pNC = pNC; 6060 w.pParse = 0; 6061 assert( pNC->pSrcList!=0 ); 6062 sqlite3WalkExpr(&w, pExpr); 6063 } 6064 6065 /* 6066 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6067 ** expression list. Return the number of errors. 6068 ** 6069 ** If an error is found, the analysis is cut short. 6070 */ 6071 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6072 struct ExprList_item *pItem; 6073 int i; 6074 if( pList ){ 6075 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6076 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6077 } 6078 } 6079 } 6080 6081 /* 6082 ** Allocate a single new register for use to hold some intermediate result. 6083 */ 6084 int sqlite3GetTempReg(Parse *pParse){ 6085 if( pParse->nTempReg==0 ){ 6086 return ++pParse->nMem; 6087 } 6088 return pParse->aTempReg[--pParse->nTempReg]; 6089 } 6090 6091 /* 6092 ** Deallocate a register, making available for reuse for some other 6093 ** purpose. 6094 */ 6095 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6096 if( iReg ){ 6097 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6098 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6099 pParse->aTempReg[pParse->nTempReg++] = iReg; 6100 } 6101 } 6102 } 6103 6104 /* 6105 ** Allocate or deallocate a block of nReg consecutive registers. 6106 */ 6107 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6108 int i, n; 6109 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6110 i = pParse->iRangeReg; 6111 n = pParse->nRangeReg; 6112 if( nReg<=n ){ 6113 pParse->iRangeReg += nReg; 6114 pParse->nRangeReg -= nReg; 6115 }else{ 6116 i = pParse->nMem+1; 6117 pParse->nMem += nReg; 6118 } 6119 return i; 6120 } 6121 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6122 if( nReg==1 ){ 6123 sqlite3ReleaseTempReg(pParse, iReg); 6124 return; 6125 } 6126 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6127 if( nReg>pParse->nRangeReg ){ 6128 pParse->nRangeReg = nReg; 6129 pParse->iRangeReg = iReg; 6130 } 6131 } 6132 6133 /* 6134 ** Mark all temporary registers as being unavailable for reuse. 6135 ** 6136 ** Always invoke this procedure after coding a subroutine or co-routine 6137 ** that might be invoked from other parts of the code, to ensure that 6138 ** the sub/co-routine does not use registers in common with the code that 6139 ** invokes the sub/co-routine. 6140 */ 6141 void sqlite3ClearTempRegCache(Parse *pParse){ 6142 pParse->nTempReg = 0; 6143 pParse->nRangeReg = 0; 6144 } 6145 6146 /* 6147 ** Validate that no temporary register falls within the range of 6148 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6149 ** statements. 6150 */ 6151 #ifdef SQLITE_DEBUG 6152 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6153 int i; 6154 if( pParse->nRangeReg>0 6155 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6156 && pParse->iRangeReg <= iLast 6157 ){ 6158 return 0; 6159 } 6160 for(i=0; i<pParse->nTempReg; i++){ 6161 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6162 return 0; 6163 } 6164 } 6165 return 1; 6166 } 6167 #endif /* SQLITE_DEBUG */ 6168