1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.214 2005/07/29 15:10:18 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_AS ){ 39 return sqlite3ExprAffinity(pExpr->pLeft); 40 } 41 if( op==TK_SELECT ){ 42 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 43 } 44 #ifndef SQLITE_OMIT_CAST 45 if( op==TK_CAST ){ 46 return sqlite3AffinityType(&pExpr->token); 47 } 48 #endif 49 return pExpr->affinity; 50 } 51 52 /* 53 ** Return the default collation sequence for the expression pExpr. If 54 ** there is no default collation type, return 0. 55 */ 56 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 57 CollSeq *pColl = 0; 58 if( pExpr ){ 59 pColl = pExpr->pColl; 60 if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){ 61 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 62 } 63 } 64 if( sqlite3CheckCollSeq(pParse, pColl) ){ 65 pColl = 0; 66 } 67 return pColl; 68 } 69 70 /* 71 ** pExpr is an operand of a comparison operator. aff2 is the 72 ** type affinity of the other operand. This routine returns the 73 ** type affinity that should be used for the comparison operator. 74 */ 75 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 76 char aff1 = sqlite3ExprAffinity(pExpr); 77 if( aff1 && aff2 ){ 78 /* Both sides of the comparison are columns. If one has numeric or 79 ** integer affinity, use that. Otherwise use no affinity. 80 */ 81 if( aff1==SQLITE_AFF_INTEGER || aff2==SQLITE_AFF_INTEGER ){ 82 return SQLITE_AFF_INTEGER; 83 }else if( aff1==SQLITE_AFF_NUMERIC || aff2==SQLITE_AFF_NUMERIC ){ 84 return SQLITE_AFF_NUMERIC; 85 }else{ 86 return SQLITE_AFF_NONE; 87 } 88 }else if( !aff1 && !aff2 ){ 89 /* Neither side of the comparison is a column. Compare the 90 ** results directly. 91 */ 92 /* return SQLITE_AFF_NUMERIC; // Ticket #805 */ 93 return SQLITE_AFF_NONE; 94 }else{ 95 /* One side is a column, the other is not. Use the columns affinity. */ 96 assert( aff1==0 || aff2==0 ); 97 return (aff1 + aff2); 98 } 99 } 100 101 /* 102 ** pExpr is a comparison operator. Return the type affinity that should 103 ** be applied to both operands prior to doing the comparison. 104 */ 105 static char comparisonAffinity(Expr *pExpr){ 106 char aff; 107 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 108 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 109 pExpr->op==TK_NE ); 110 assert( pExpr->pLeft ); 111 aff = sqlite3ExprAffinity(pExpr->pLeft); 112 if( pExpr->pRight ){ 113 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 114 } 115 else if( pExpr->pSelect ){ 116 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 117 } 118 else if( !aff ){ 119 aff = SQLITE_AFF_NUMERIC; 120 } 121 return aff; 122 } 123 124 /* 125 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 126 ** idx_affinity is the affinity of an indexed column. Return true 127 ** if the index with affinity idx_affinity may be used to implement 128 ** the comparison in pExpr. 129 */ 130 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 131 char aff = comparisonAffinity(pExpr); 132 return 133 (aff==SQLITE_AFF_NONE) || 134 (aff==SQLITE_AFF_NUMERIC && idx_affinity==SQLITE_AFF_INTEGER) || 135 (aff==SQLITE_AFF_INTEGER && idx_affinity==SQLITE_AFF_NUMERIC) || 136 (aff==idx_affinity); 137 } 138 139 /* 140 ** Return the P1 value that should be used for a binary comparison 141 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 142 ** If jumpIfNull is true, then set the low byte of the returned 143 ** P1 value to tell the opcode to jump if either expression 144 ** evaluates to NULL. 145 */ 146 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 147 char aff = sqlite3ExprAffinity(pExpr2); 148 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 149 } 150 151 /* 152 ** Return a pointer to the collation sequence that should be used by 153 ** a binary comparison operator comparing pLeft and pRight. 154 ** 155 ** If the left hand expression has a collating sequence type, then it is 156 ** used. Otherwise the collation sequence for the right hand expression 157 ** is used, or the default (BINARY) if neither expression has a collating 158 ** type. 159 */ 160 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ 161 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); 162 if( !pColl ){ 163 pColl = sqlite3ExprCollSeq(pParse, pRight); 164 } 165 return pColl; 166 } 167 168 /* 169 ** Generate code for a comparison operator. 170 */ 171 static int codeCompare( 172 Parse *pParse, /* The parsing (and code generating) context */ 173 Expr *pLeft, /* The left operand */ 174 Expr *pRight, /* The right operand */ 175 int opcode, /* The comparison opcode */ 176 int dest, /* Jump here if true. */ 177 int jumpIfNull /* If true, jump if either operand is NULL */ 178 ){ 179 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 180 CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight); 181 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 182 } 183 184 /* 185 ** Construct a new expression node and return a pointer to it. Memory 186 ** for this node is obtained from sqliteMalloc(). The calling function 187 ** is responsible for making sure the node eventually gets freed. 188 */ 189 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 190 Expr *pNew; 191 pNew = sqliteMalloc( sizeof(Expr) ); 192 if( pNew==0 ){ 193 /* When malloc fails, delete pLeft and pRight. Expressions passed to 194 ** this function must always be allocated with sqlite3Expr() for this 195 ** reason. 196 */ 197 sqlite3ExprDelete(pLeft); 198 sqlite3ExprDelete(pRight); 199 return 0; 200 } 201 pNew->op = op; 202 pNew->pLeft = pLeft; 203 pNew->pRight = pRight; 204 pNew->iAgg = -1; 205 if( pToken ){ 206 assert( pToken->dyn==0 ); 207 pNew->span = pNew->token = *pToken; 208 }else if( pLeft && pRight ){ 209 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 210 } 211 return pNew; 212 } 213 214 /* 215 ** When doing a nested parse, you can include terms in an expression 216 ** that look like this: #0 #1 #2 ... These terms refer to elements 217 ** on the stack. "#0" means the top of the stack. 218 ** "#1" means the next down on the stack. And so forth. 219 ** 220 ** This routine is called by the parser to deal with on of those terms. 221 ** It immediately generates code to store the value in a memory location. 222 ** The returns an expression that will code to extract the value from 223 ** that memory location as needed. 224 */ 225 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 226 Vdbe *v = pParse->pVdbe; 227 Expr *p; 228 int depth; 229 if( v==0 ) return 0; 230 if( pParse->nested==0 ){ 231 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 232 return 0; 233 } 234 p = sqlite3Expr(TK_REGISTER, 0, 0, pToken); 235 if( p==0 ){ 236 return 0; /* Malloc failed */ 237 } 238 depth = atoi(&pToken->z[1]); 239 p->iTable = pParse->nMem++; 240 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 241 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 242 return p; 243 } 244 245 /* 246 ** Join two expressions using an AND operator. If either expression is 247 ** NULL, then just return the other expression. 248 */ 249 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ 250 if( pLeft==0 ){ 251 return pRight; 252 }else if( pRight==0 ){ 253 return pLeft; 254 }else{ 255 return sqlite3Expr(TK_AND, pLeft, pRight, 0); 256 } 257 } 258 259 /* 260 ** Set the Expr.span field of the given expression to span all 261 ** text between the two given tokens. 262 */ 263 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 264 assert( pRight!=0 ); 265 assert( pLeft!=0 ); 266 if( !sqlite3_malloc_failed && pRight->z && pLeft->z ){ 267 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 268 if( pLeft->dyn==0 && pRight->dyn==0 ){ 269 pExpr->span.z = pLeft->z; 270 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 271 }else{ 272 pExpr->span.z = 0; 273 } 274 } 275 } 276 277 /* 278 ** Construct a new expression node for a function with multiple 279 ** arguments. 280 */ 281 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ 282 Expr *pNew; 283 pNew = sqliteMalloc( sizeof(Expr) ); 284 if( pNew==0 ){ 285 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 286 return 0; 287 } 288 pNew->op = TK_FUNCTION; 289 pNew->pList = pList; 290 if( pToken ){ 291 assert( pToken->dyn==0 ); 292 pNew->token = *pToken; 293 }else{ 294 pNew->token.z = 0; 295 } 296 pNew->span = pNew->token; 297 return pNew; 298 } 299 300 /* 301 ** Assign a variable number to an expression that encodes a wildcard 302 ** in the original SQL statement. 303 ** 304 ** Wildcards consisting of a single "?" are assigned the next sequential 305 ** variable number. 306 ** 307 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 308 ** sure "nnn" is not too be to avoid a denial of service attack when 309 ** the SQL statement comes from an external source. 310 ** 311 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 312 ** as the previous instance of the same wildcard. Or if this is the first 313 ** instance of the wildcard, the next sequenial variable number is 314 ** assigned. 315 */ 316 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 317 Token *pToken; 318 if( pExpr==0 ) return; 319 pToken = &pExpr->token; 320 assert( pToken->n>=1 ); 321 assert( pToken->z!=0 ); 322 assert( pToken->z[0]!=0 ); 323 if( pToken->n==1 ){ 324 /* Wildcard of the form "?". Assign the next variable number */ 325 pExpr->iTable = ++pParse->nVar; 326 }else if( pToken->z[0]=='?' ){ 327 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 328 ** use it as the variable number */ 329 int i; 330 pExpr->iTable = i = atoi(&pToken->z[1]); 331 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 332 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 333 SQLITE_MAX_VARIABLE_NUMBER); 334 } 335 if( i>pParse->nVar ){ 336 pParse->nVar = i; 337 } 338 }else{ 339 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 340 ** number as the prior appearance of the same name, or if the name 341 ** has never appeared before, reuse the same variable number 342 */ 343 int i, n; 344 n = pToken->n; 345 for(i=0; i<pParse->nVarExpr; i++){ 346 Expr *pE; 347 if( (pE = pParse->apVarExpr[i])!=0 348 && pE->token.n==n 349 && memcmp(pE->token.z, pToken->z, n)==0 ){ 350 pExpr->iTable = pE->iTable; 351 break; 352 } 353 } 354 if( i>=pParse->nVarExpr ){ 355 pExpr->iTable = ++pParse->nVar; 356 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 357 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 358 pParse->apVarExpr = sqliteRealloc(pParse->apVarExpr, 359 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); 360 } 361 if( !sqlite3_malloc_failed ){ 362 assert( pParse->apVarExpr!=0 ); 363 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 364 } 365 } 366 } 367 } 368 369 /* 370 ** Recursively delete an expression tree. 371 */ 372 void sqlite3ExprDelete(Expr *p){ 373 if( p==0 ) return; 374 if( p->span.dyn ) sqliteFree((char*)p->span.z); 375 if( p->token.dyn ) sqliteFree((char*)p->token.z); 376 sqlite3ExprDelete(p->pLeft); 377 sqlite3ExprDelete(p->pRight); 378 sqlite3ExprListDelete(p->pList); 379 sqlite3SelectDelete(p->pSelect); 380 sqliteFree(p); 381 } 382 383 384 /* 385 ** The following group of routines make deep copies of expressions, 386 ** expression lists, ID lists, and select statements. The copies can 387 ** be deleted (by being passed to their respective ...Delete() routines) 388 ** without effecting the originals. 389 ** 390 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 391 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 392 ** by subsequent calls to sqlite*ListAppend() routines. 393 ** 394 ** Any tables that the SrcList might point to are not duplicated. 395 */ 396 Expr *sqlite3ExprDup(Expr *p){ 397 Expr *pNew; 398 if( p==0 ) return 0; 399 pNew = sqliteMallocRaw( sizeof(*p) ); 400 if( pNew==0 ) return 0; 401 memcpy(pNew, p, sizeof(*pNew)); 402 if( p->token.z!=0 ){ 403 pNew->token.z = sqliteStrNDup(p->token.z, p->token.n); 404 pNew->token.dyn = 1; 405 }else{ 406 assert( pNew->token.z==0 ); 407 } 408 pNew->span.z = 0; 409 pNew->pLeft = sqlite3ExprDup(p->pLeft); 410 pNew->pRight = sqlite3ExprDup(p->pRight); 411 pNew->pList = sqlite3ExprListDup(p->pList); 412 pNew->pSelect = sqlite3SelectDup(p->pSelect); 413 pNew->pTab = p->pTab; 414 return pNew; 415 } 416 void sqlite3TokenCopy(Token *pTo, Token *pFrom){ 417 if( pTo->dyn ) sqliteFree((char*)pTo->z); 418 if( pFrom->z ){ 419 pTo->n = pFrom->n; 420 pTo->z = sqliteStrNDup(pFrom->z, pFrom->n); 421 pTo->dyn = 1; 422 }else{ 423 pTo->z = 0; 424 } 425 } 426 ExprList *sqlite3ExprListDup(ExprList *p){ 427 ExprList *pNew; 428 struct ExprList_item *pItem, *pOldItem; 429 int i; 430 if( p==0 ) return 0; 431 pNew = sqliteMalloc( sizeof(*pNew) ); 432 if( pNew==0 ) return 0; 433 pNew->nExpr = pNew->nAlloc = p->nExpr; 434 pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); 435 if( pItem==0 ){ 436 sqliteFree(pNew); 437 return 0; 438 } 439 pOldItem = p->a; 440 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 441 Expr *pNewExpr, *pOldExpr; 442 pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); 443 if( pOldExpr->span.z!=0 && pNewExpr ){ 444 /* Always make a copy of the span for top-level expressions in the 445 ** expression list. The logic in SELECT processing that determines 446 ** the names of columns in the result set needs this information */ 447 sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); 448 } 449 assert( pNewExpr==0 || pNewExpr->span.z!=0 450 || pOldExpr->span.z==0 || sqlite3_malloc_failed ); 451 pItem->zName = sqliteStrDup(pOldItem->zName); 452 pItem->sortOrder = pOldItem->sortOrder; 453 pItem->isAgg = pOldItem->isAgg; 454 pItem->done = 0; 455 } 456 return pNew; 457 } 458 459 /* 460 ** If cursors, triggers, views and subqueries are all omitted from 461 ** the build, then none of the following routines, except for 462 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 463 ** called with a NULL argument. 464 */ 465 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 466 || !defined(SQLITE_OMIT_SUBQUERY) 467 SrcList *sqlite3SrcListDup(SrcList *p){ 468 SrcList *pNew; 469 int i; 470 int nByte; 471 if( p==0 ) return 0; 472 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 473 pNew = sqliteMallocRaw( nByte ); 474 if( pNew==0 ) return 0; 475 pNew->nSrc = pNew->nAlloc = p->nSrc; 476 for(i=0; i<p->nSrc; i++){ 477 struct SrcList_item *pNewItem = &pNew->a[i]; 478 struct SrcList_item *pOldItem = &p->a[i]; 479 Table *pTab; 480 pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); 481 pNewItem->zName = sqliteStrDup(pOldItem->zName); 482 pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); 483 pNewItem->jointype = pOldItem->jointype; 484 pNewItem->iCursor = pOldItem->iCursor; 485 pTab = pNewItem->pTab = pOldItem->pTab; 486 if( pTab ){ 487 pTab->nRef++; 488 } 489 pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); 490 pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); 491 pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); 492 pNewItem->colUsed = pOldItem->colUsed; 493 } 494 return pNew; 495 } 496 IdList *sqlite3IdListDup(IdList *p){ 497 IdList *pNew; 498 int i; 499 if( p==0 ) return 0; 500 pNew = sqliteMallocRaw( sizeof(*pNew) ); 501 if( pNew==0 ) return 0; 502 pNew->nId = pNew->nAlloc = p->nId; 503 pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); 504 if( pNew->a==0 ){ 505 sqliteFree(pNew); 506 return 0; 507 } 508 for(i=0; i<p->nId; i++){ 509 struct IdList_item *pNewItem = &pNew->a[i]; 510 struct IdList_item *pOldItem = &p->a[i]; 511 pNewItem->zName = sqliteStrDup(pOldItem->zName); 512 pNewItem->idx = pOldItem->idx; 513 } 514 return pNew; 515 } 516 Select *sqlite3SelectDup(Select *p){ 517 Select *pNew; 518 if( p==0 ) return 0; 519 pNew = sqliteMallocRaw( sizeof(*p) ); 520 if( pNew==0 ) return 0; 521 pNew->isDistinct = p->isDistinct; 522 pNew->pEList = sqlite3ExprListDup(p->pEList); 523 pNew->pSrc = sqlite3SrcListDup(p->pSrc); 524 pNew->pWhere = sqlite3ExprDup(p->pWhere); 525 pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); 526 pNew->pHaving = sqlite3ExprDup(p->pHaving); 527 pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); 528 pNew->op = p->op; 529 pNew->pPrior = sqlite3SelectDup(p->pPrior); 530 pNew->pLimit = sqlite3ExprDup(p->pLimit); 531 pNew->pOffset = sqlite3ExprDup(p->pOffset); 532 pNew->iLimit = -1; 533 pNew->iOffset = -1; 534 pNew->ppOpenVirtual = 0; 535 pNew->isResolved = p->isResolved; 536 pNew->isAgg = p->isAgg; 537 return pNew; 538 } 539 #else 540 Select *sqlite3SelectDup(Select *p){ 541 assert( p==0 ); 542 return 0; 543 } 544 #endif 545 546 547 /* 548 ** Add a new element to the end of an expression list. If pList is 549 ** initially NULL, then create a new expression list. 550 */ 551 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ 552 if( pList==0 ){ 553 pList = sqliteMalloc( sizeof(ExprList) ); 554 if( pList==0 ){ 555 goto no_mem; 556 } 557 assert( pList->nAlloc==0 ); 558 } 559 if( pList->nAlloc<=pList->nExpr ){ 560 struct ExprList_item *a; 561 int n = pList->nAlloc*2 + 4; 562 a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); 563 if( a==0 ){ 564 goto no_mem; 565 } 566 pList->a = a; 567 pList->nAlloc = n; 568 } 569 assert( pList->a!=0 ); 570 if( pExpr || pName ){ 571 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 572 memset(pItem, 0, sizeof(*pItem)); 573 pItem->zName = sqlite3NameFromToken(pName); 574 pItem->pExpr = pExpr; 575 } 576 return pList; 577 578 no_mem: 579 /* Avoid leaking memory if malloc has failed. */ 580 sqlite3ExprDelete(pExpr); 581 sqlite3ExprListDelete(pList); 582 return 0; 583 } 584 585 /* 586 ** Delete an entire expression list. 587 */ 588 void sqlite3ExprListDelete(ExprList *pList){ 589 int i; 590 struct ExprList_item *pItem; 591 if( pList==0 ) return; 592 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 593 assert( pList->nExpr<=pList->nAlloc ); 594 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 595 sqlite3ExprDelete(pItem->pExpr); 596 sqliteFree(pItem->zName); 597 } 598 sqliteFree(pList->a); 599 sqliteFree(pList); 600 } 601 602 /* 603 ** Walk an expression tree. Call xFunc for each node visited. 604 ** 605 ** The return value from xFunc determines whether the tree walk continues. 606 ** 0 means continue walking the tree. 1 means do not walk children 607 ** of the current node but continue with siblings. 2 means abandon 608 ** the tree walk completely. 609 ** 610 ** The return value from this routine is 1 to abandon the tree walk 611 ** and 0 to continue. 612 */ 613 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 614 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 615 int rc; 616 if( pExpr==0 ) return 0; 617 rc = (*xFunc)(pArg, pExpr); 618 if( rc==0 ){ 619 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 620 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 621 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 622 } 623 return rc>1; 624 } 625 626 /* 627 ** Call walkExprTree() for every expression in list p. 628 */ 629 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 630 int i; 631 struct ExprList_item *pItem; 632 if( !p ) return 0; 633 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 634 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 635 } 636 return 0; 637 } 638 639 /* 640 ** Call walkExprTree() for every expression in Select p, not including 641 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 642 ** or OFFSET expressions.. 643 */ 644 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 645 walkExprList(p->pEList, xFunc, pArg); 646 walkExprTree(p->pWhere, xFunc, pArg); 647 walkExprList(p->pGroupBy, xFunc, pArg); 648 walkExprTree(p->pHaving, xFunc, pArg); 649 walkExprList(p->pOrderBy, xFunc, pArg); 650 return 0; 651 } 652 653 654 /* 655 ** This routine is designed as an xFunc for walkExprTree(). 656 ** 657 ** pArg is really a pointer to an integer. If we can tell by looking 658 ** at pExpr that the expression that contains pExpr is not a constant 659 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 660 ** If pExpr does does not disqualify the expression from being a constant 661 ** then do nothing. 662 ** 663 ** After walking the whole tree, if no nodes are found that disqualify 664 ** the expression as constant, then we assume the whole expression 665 ** is constant. See sqlite3ExprIsConstant() for additional information. 666 */ 667 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 668 switch( pExpr->op ){ 669 /* Consider functions to be constant if all their arguments are constant 670 ** and *pArg==2 */ 671 case TK_FUNCTION: 672 if( *((int*)pArg)==2 ) return 0; 673 /* Fall through */ 674 case TK_ID: 675 case TK_COLUMN: 676 case TK_DOT: 677 case TK_AGG_FUNCTION: 678 #ifndef SQLITE_OMIT_SUBQUERY 679 case TK_SELECT: 680 case TK_EXISTS: 681 #endif 682 *((int*)pArg) = 0; 683 return 2; 684 default: 685 return 0; 686 } 687 } 688 689 /* 690 ** Walk an expression tree. Return 1 if the expression is constant 691 ** and 0 if it involves variables or function calls. 692 ** 693 ** For the purposes of this function, a double-quoted string (ex: "abc") 694 ** is considered a variable but a single-quoted string (ex: 'abc') is 695 ** a constant. 696 */ 697 int sqlite3ExprIsConstant(Expr *p){ 698 int isConst = 1; 699 walkExprTree(p, exprNodeIsConstant, &isConst); 700 return isConst; 701 } 702 703 /* 704 ** Walk an expression tree. Return 1 if the expression is constant 705 ** or a function call with constant arguments. Return and 0 if there 706 ** are any variables. 707 ** 708 ** For the purposes of this function, a double-quoted string (ex: "abc") 709 ** is considered a variable but a single-quoted string (ex: 'abc') is 710 ** a constant. 711 */ 712 int sqlite3ExprIsConstantOrFunction(Expr *p){ 713 int isConst = 2; 714 walkExprTree(p, exprNodeIsConstant, &isConst); 715 return isConst!=0; 716 } 717 718 /* 719 ** If the expression p codes a constant integer that is small enough 720 ** to fit in a 32-bit integer, return 1 and put the value of the integer 721 ** in *pValue. If the expression is not an integer or if it is too big 722 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 723 */ 724 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 725 switch( p->op ){ 726 case TK_INTEGER: { 727 if( sqlite3GetInt32(p->token.z, pValue) ){ 728 return 1; 729 } 730 break; 731 } 732 case TK_UPLUS: { 733 return sqlite3ExprIsInteger(p->pLeft, pValue); 734 } 735 case TK_UMINUS: { 736 int v; 737 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 738 *pValue = -v; 739 return 1; 740 } 741 break; 742 } 743 default: break; 744 } 745 return 0; 746 } 747 748 /* 749 ** Return TRUE if the given string is a row-id column name. 750 */ 751 int sqlite3IsRowid(const char *z){ 752 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 753 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 754 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 755 return 0; 756 } 757 758 /* 759 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 760 ** that name in the set of source tables in pSrcList and make the pExpr 761 ** expression node refer back to that source column. The following changes 762 ** are made to pExpr: 763 ** 764 ** pExpr->iDb Set the index in db->aDb[] of the database holding 765 ** the table. 766 ** pExpr->iTable Set to the cursor number for the table obtained 767 ** from pSrcList. 768 ** pExpr->iColumn Set to the column number within the table. 769 ** pExpr->op Set to TK_COLUMN. 770 ** pExpr->pLeft Any expression this points to is deleted 771 ** pExpr->pRight Any expression this points to is deleted. 772 ** 773 ** The pDbToken is the name of the database (the "X"). This value may be 774 ** NULL meaning that name is of the form Y.Z or Z. Any available database 775 ** can be used. The pTableToken is the name of the table (the "Y"). This 776 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 777 ** means that the form of the name is Z and that columns from any table 778 ** can be used. 779 ** 780 ** If the name cannot be resolved unambiguously, leave an error message 781 ** in pParse and return non-zero. Return zero on success. 782 */ 783 static int lookupName( 784 Parse *pParse, /* The parsing context */ 785 Token *pDbToken, /* Name of the database containing table, or NULL */ 786 Token *pTableToken, /* Name of table containing column, or NULL */ 787 Token *pColumnToken, /* Name of the column. */ 788 NameContext *pNC, /* The name context used to resolve the name */ 789 Expr *pExpr /* Make this EXPR node point to the selected column */ 790 ){ 791 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 792 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 793 char *zCol = 0; /* Name of the column. The "Z" */ 794 int i, j; /* Loop counters */ 795 int cnt = 0; /* Number of matching column names */ 796 int cntTab = 0; /* Number of matching table names */ 797 sqlite3 *db = pParse->db; /* The database */ 798 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 799 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 800 NameContext *pTopNC = pNC; /* First namecontext in the list */ 801 802 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 803 zDb = sqlite3NameFromToken(pDbToken); 804 zTab = sqlite3NameFromToken(pTableToken); 805 zCol = sqlite3NameFromToken(pColumnToken); 806 if( sqlite3_malloc_failed ){ 807 goto lookupname_end; 808 } 809 810 pExpr->iTable = -1; 811 while( pNC && cnt==0 ){ 812 SrcList *pSrcList = pNC->pSrcList; 813 ExprList *pEList = pNC->pEList; 814 815 /* assert( zTab==0 || pEList==0 ); */ 816 if( pSrcList ){ 817 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 818 Table *pTab = pItem->pTab; 819 Column *pCol; 820 821 if( pTab==0 ) continue; 822 assert( pTab->nCol>0 ); 823 if( zTab ){ 824 if( pItem->zAlias ){ 825 char *zTabName = pItem->zAlias; 826 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 827 }else{ 828 char *zTabName = pTab->zName; 829 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 830 if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){ 831 continue; 832 } 833 } 834 } 835 if( 0==(cntTab++) ){ 836 pExpr->iTable = pItem->iCursor; 837 pExpr->iDb = pTab->iDb; 838 pMatch = pItem; 839 } 840 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 841 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 842 IdList *pUsing; 843 cnt++; 844 pExpr->iTable = pItem->iCursor; 845 pMatch = pItem; 846 pExpr->iDb = pTab->iDb; 847 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 848 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 849 pExpr->affinity = pTab->aCol[j].affinity; 850 pExpr->pColl = pTab->aCol[j].pColl; 851 if( pItem->jointype & JT_NATURAL ){ 852 /* If this match occurred in the left table of a natural join, 853 ** then skip the right table to avoid a duplicate match */ 854 pItem++; 855 i++; 856 } 857 if( (pUsing = pItem->pUsing)!=0 ){ 858 /* If this match occurs on a column that is in the USING clause 859 ** of a join, skip the search of the right table of the join 860 ** to avoid a duplicate match there. */ 861 int k; 862 for(k=0; k<pUsing->nId; k++){ 863 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 864 pItem++; 865 i++; 866 break; 867 } 868 } 869 } 870 break; 871 } 872 } 873 } 874 } 875 876 #ifndef SQLITE_OMIT_TRIGGER 877 /* If we have not already resolved the name, then maybe 878 ** it is a new.* or old.* trigger argument reference 879 */ 880 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 881 TriggerStack *pTriggerStack = pParse->trigStack; 882 Table *pTab = 0; 883 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 884 pExpr->iTable = pTriggerStack->newIdx; 885 assert( pTriggerStack->pTab ); 886 pTab = pTriggerStack->pTab; 887 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 888 pExpr->iTable = pTriggerStack->oldIdx; 889 assert( pTriggerStack->pTab ); 890 pTab = pTriggerStack->pTab; 891 } 892 893 if( pTab ){ 894 int j; 895 Column *pCol = pTab->aCol; 896 897 pExpr->iDb = pTab->iDb; 898 cntTab++; 899 for(j=0; j < pTab->nCol; j++, pCol++) { 900 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 901 cnt++; 902 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 903 pExpr->affinity = pTab->aCol[j].affinity; 904 pExpr->pColl = pTab->aCol[j].pColl; 905 pExpr->pTab = pTab; 906 break; 907 } 908 } 909 } 910 } 911 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 912 913 /* 914 ** Perhaps the name is a reference to the ROWID 915 */ 916 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 917 cnt = 1; 918 pExpr->iColumn = -1; 919 pExpr->affinity = SQLITE_AFF_INTEGER; 920 } 921 922 /* 923 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 924 ** might refer to an result-set alias. This happens, for example, when 925 ** we are resolving names in the WHERE clause of the following command: 926 ** 927 ** SELECT a+b AS x FROM table WHERE x<10; 928 ** 929 ** In cases like this, replace pExpr with a copy of the expression that 930 ** forms the result set entry ("a+b" in the example) and return immediately. 931 ** Note that the expression in the result set should have already been 932 ** resolved by the time the WHERE clause is resolved. 933 */ 934 if( cnt==0 && pEList!=0 && zTab==0 ){ 935 for(j=0; j<pEList->nExpr; j++){ 936 char *zAs = pEList->a[j].zName; 937 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 938 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 939 pExpr->op = TK_AS; 940 pExpr->iColumn = j; 941 pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); 942 cnt = 1; 943 assert( zTab==0 && zDb==0 ); 944 goto lookupname_end_2; 945 } 946 } 947 } 948 949 /* Advance to the next name context. The loop will exit when either 950 ** we have a match (cnt>0) or when we run out of name contexts. 951 */ 952 if( cnt==0 ){ 953 pNC = pNC->pNext; 954 } 955 } 956 957 /* 958 ** If X and Y are NULL (in other words if only the column name Z is 959 ** supplied) and the value of Z is enclosed in double-quotes, then 960 ** Z is a string literal if it doesn't match any column names. In that 961 ** case, we need to return right away and not make any changes to 962 ** pExpr. 963 ** 964 ** Because no reference was made to outer contexts, the pNC->nRef 965 ** fields are not changed in any context. 966 */ 967 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 968 sqliteFree(zCol); 969 return 0; 970 } 971 972 /* 973 ** cnt==0 means there was not match. cnt>1 means there were two or 974 ** more matches. Either way, we have an error. 975 */ 976 if( cnt!=1 ){ 977 char *z = 0; 978 char *zErr; 979 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 980 if( zDb ){ 981 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, 0); 982 }else if( zTab ){ 983 sqlite3SetString(&z, zTab, ".", zCol, 0); 984 }else{ 985 z = sqliteStrDup(zCol); 986 } 987 sqlite3ErrorMsg(pParse, zErr, z); 988 sqliteFree(z); 989 pTopNC->nErr++; 990 } 991 992 /* If a column from a table in pSrcList is referenced, then record 993 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 994 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 995 ** column number is greater than the number of bits in the bitmask 996 ** then set the high-order bit of the bitmask. 997 */ 998 if( pExpr->iColumn>=0 && pMatch!=0 ){ 999 int n = pExpr->iColumn; 1000 if( n>=sizeof(Bitmask)*8 ){ 1001 n = sizeof(Bitmask)*8-1; 1002 } 1003 assert( pMatch->iCursor==pExpr->iTable ); 1004 pMatch->colUsed |= 1<<n; 1005 } 1006 1007 lookupname_end: 1008 /* Clean up and return 1009 */ 1010 sqliteFree(zDb); 1011 sqliteFree(zTab); 1012 sqlite3ExprDelete(pExpr->pLeft); 1013 pExpr->pLeft = 0; 1014 sqlite3ExprDelete(pExpr->pRight); 1015 pExpr->pRight = 0; 1016 pExpr->op = TK_COLUMN; 1017 lookupname_end_2: 1018 sqliteFree(zCol); 1019 if( cnt==1 ){ 1020 assert( pNC!=0 ); 1021 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); 1022 if( pMatch && !pMatch->pSelect ){ 1023 pExpr->pTab = pMatch->pTab; 1024 } 1025 /* Increment the nRef value on all name contexts from TopNC up to 1026 ** the point where the name matched. */ 1027 for(;;){ 1028 assert( pTopNC!=0 ); 1029 pTopNC->nRef++; 1030 if( pTopNC==pNC ) break; 1031 pTopNC = pTopNC->pNext; 1032 } 1033 return 0; 1034 } else { 1035 return 1; 1036 } 1037 } 1038 1039 /* 1040 ** This routine is designed as an xFunc for walkExprTree(). 1041 ** 1042 ** Resolve symbolic names into TK_COLUMN operators for the current 1043 ** node in the expression tree. Return 0 to continue the search down 1044 ** the tree or 2 to abort the tree walk. 1045 ** 1046 ** This routine also does error checking and name resolution for 1047 ** function names. The operator for aggregate functions is changed 1048 ** to TK_AGG_FUNCTION. 1049 */ 1050 static int nameResolverStep(void *pArg, Expr *pExpr){ 1051 NameContext *pNC = (NameContext*)pArg; 1052 SrcList *pSrcList; 1053 Parse *pParse; 1054 1055 if( pExpr==0 ) return 1; 1056 assert( pNC!=0 ); 1057 pSrcList = pNC->pSrcList; 1058 pParse = pNC->pParse; 1059 1060 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1061 ExprSetProperty(pExpr, EP_Resolved); 1062 #ifndef NDEBUG 1063 if( pSrcList ){ 1064 int i; 1065 for(i=0; i<pSrcList->nSrc; i++){ 1066 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1067 } 1068 } 1069 #endif 1070 switch( pExpr->op ){ 1071 /* Double-quoted strings (ex: "abc") are used as identifiers if 1072 ** possible. Otherwise they remain as strings. Single-quoted 1073 ** strings (ex: 'abc') are always string literals. 1074 */ 1075 case TK_STRING: { 1076 if( pExpr->token.z[0]=='\'' ) break; 1077 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1078 } 1079 /* A lone identifier is the name of a column. 1080 */ 1081 case TK_ID: { 1082 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1083 return 1; 1084 } 1085 1086 /* A table name and column name: ID.ID 1087 ** Or a database, table and column: ID.ID.ID 1088 */ 1089 case TK_DOT: { 1090 Token *pColumn; 1091 Token *pTable; 1092 Token *pDb; 1093 Expr *pRight; 1094 1095 /* if( pSrcList==0 ) break; */ 1096 pRight = pExpr->pRight; 1097 if( pRight->op==TK_ID ){ 1098 pDb = 0; 1099 pTable = &pExpr->pLeft->token; 1100 pColumn = &pRight->token; 1101 }else{ 1102 assert( pRight->op==TK_DOT ); 1103 pDb = &pExpr->pLeft->token; 1104 pTable = &pRight->pLeft->token; 1105 pColumn = &pRight->pRight->token; 1106 } 1107 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1108 return 1; 1109 } 1110 1111 /* Resolve function names 1112 */ 1113 case TK_CONST_FUNC: 1114 case TK_FUNCTION: { 1115 ExprList *pList = pExpr->pList; /* The argument list */ 1116 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1117 int no_such_func = 0; /* True if no such function exists */ 1118 int wrong_num_args = 0; /* True if wrong number of arguments */ 1119 int is_agg = 0; /* True if is an aggregate function */ 1120 int i; 1121 int nId; /* Number of characters in function name */ 1122 const char *zId; /* The function name. */ 1123 FuncDef *pDef; /* Information about the function */ 1124 int enc = pParse->db->enc; /* The database encoding */ 1125 1126 zId = pExpr->token.z; 1127 nId = pExpr->token.n; 1128 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1129 if( pDef==0 ){ 1130 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1131 if( pDef==0 ){ 1132 no_such_func = 1; 1133 }else{ 1134 wrong_num_args = 1; 1135 } 1136 }else{ 1137 is_agg = pDef->xFunc==0; 1138 } 1139 if( is_agg && !pNC->allowAgg ){ 1140 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1141 pNC->nErr++; 1142 is_agg = 0; 1143 }else if( no_such_func ){ 1144 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1145 pNC->nErr++; 1146 }else if( wrong_num_args ){ 1147 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1148 nId, zId); 1149 pNC->nErr++; 1150 } 1151 if( is_agg ){ 1152 pExpr->op = TK_AGG_FUNCTION; 1153 pNC->hasAgg = 1; 1154 } 1155 if( is_agg ) pNC->allowAgg = 0; 1156 for(i=0; pNC->nErr==0 && i<n; i++){ 1157 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1158 } 1159 if( is_agg ) pNC->allowAgg = 1; 1160 /* FIX ME: Compute pExpr->affinity based on the expected return 1161 ** type of the function 1162 */ 1163 return is_agg; 1164 } 1165 #ifndef SQLITE_OMIT_SUBQUERY 1166 case TK_SELECT: 1167 case TK_EXISTS: 1168 #endif 1169 case TK_IN: { 1170 if( pExpr->pSelect ){ 1171 int nRef = pNC->nRef; 1172 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1173 assert( pNC->nRef>=nRef ); 1174 if( nRef!=pNC->nRef ){ 1175 ExprSetProperty(pExpr, EP_VarSelect); 1176 } 1177 } 1178 } 1179 } 1180 return 0; 1181 } 1182 1183 /* 1184 ** This routine walks an expression tree and resolves references to 1185 ** table columns. Nodes of the form ID.ID or ID resolve into an 1186 ** index to the table in the table list and a column offset. The 1187 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1188 ** value is changed to the index of the referenced table in pTabList 1189 ** plus the "base" value. The base value will ultimately become the 1190 ** VDBE cursor number for a cursor that is pointing into the referenced 1191 ** table. The Expr.iColumn value is changed to the index of the column 1192 ** of the referenced table. The Expr.iColumn value for the special 1193 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1194 ** alias for ROWID. 1195 ** 1196 ** Also resolve function names and check the functions for proper 1197 ** usage. Make sure all function names are recognized and all functions 1198 ** have the correct number of arguments. Leave an error message 1199 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1200 ** 1201 ** If the expression contains aggregate functions then set the EP_Agg 1202 ** property on the expression. 1203 */ 1204 int sqlite3ExprResolveNames( 1205 NameContext *pNC, /* Namespace to resolve expressions in. */ 1206 Expr *pExpr /* The expression to be analyzed. */ 1207 ){ 1208 if( pExpr==0 ) return 0; 1209 walkExprTree(pExpr, nameResolverStep, pNC); 1210 if( pNC->nErr>0 ){ 1211 ExprSetProperty(pExpr, EP_Error); 1212 } 1213 return ExprHasProperty(pExpr, EP_Error); 1214 } 1215 1216 /* 1217 ** A pointer instance of this structure is used to pass information 1218 ** through walkExprTree into codeSubqueryStep(). 1219 */ 1220 typedef struct QueryCoder QueryCoder; 1221 struct QueryCoder { 1222 Parse *pParse; /* The parsing context */ 1223 NameContext *pNC; /* Namespace of first enclosing query */ 1224 }; 1225 1226 1227 /* 1228 ** Generate code for subqueries and IN operators. 1229 ** 1230 ** IN operators comes in two forms: 1231 ** 1232 ** expr IN (exprlist) 1233 ** and 1234 ** expr IN (SELECT ...) 1235 ** 1236 ** The first form is handled by creating a set holding the list 1237 ** of allowed values. The second form causes the SELECT to generate 1238 ** a temporary table. 1239 */ 1240 #ifndef SQLITE_OMIT_SUBQUERY 1241 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1242 int testAddr = 0; /* One-time test address */ 1243 Vdbe *v = sqlite3GetVdbe(pParse); 1244 if( v==0 ) return; 1245 1246 /* This code must be run in its entirety every time it is encountered 1247 ** if any of the following is true: 1248 ** 1249 ** * The right-hand side is a correlated subquery 1250 ** * The right-hand side is an expression list containing variables 1251 ** * We are inside a trigger 1252 ** 1253 ** If all of the above are false, then we can run this code just once 1254 ** save the results, and reuse the same result on subsequent invocations. 1255 */ 1256 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1257 int mem = pParse->nMem++; 1258 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1259 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1260 assert( testAddr>0 ); 1261 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1262 sqlite3VdbeAddOp(v, OP_MemStore, mem, 1); 1263 } 1264 1265 if( pExpr->pSelect ){ 1266 sqlite3VdbeAddOp(v, OP_AggContextPush, 0, 0); 1267 } 1268 1269 switch( pExpr->op ){ 1270 case TK_IN: { 1271 char affinity; 1272 KeyInfo keyInfo; 1273 int addr; /* Address of OP_OpenVirtual instruction */ 1274 1275 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1276 1277 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1278 ** expression it is handled the same way. A virtual table is 1279 ** filled with single-field index keys representing the results 1280 ** from the SELECT or the <exprlist>. 1281 ** 1282 ** If the 'x' expression is a column value, or the SELECT... 1283 ** statement returns a column value, then the affinity of that 1284 ** column is used to build the index keys. If both 'x' and the 1285 ** SELECT... statement are columns, then numeric affinity is used 1286 ** if either column has NUMERIC or INTEGER affinity. If neither 1287 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1288 ** is used. 1289 */ 1290 pExpr->iTable = pParse->nTab++; 1291 addr = sqlite3VdbeAddOp(v, OP_OpenVirtual, pExpr->iTable, 0); 1292 memset(&keyInfo, 0, sizeof(keyInfo)); 1293 keyInfo.nField = 1; 1294 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1295 1296 if( pExpr->pSelect ){ 1297 /* Case 1: expr IN (SELECT ...) 1298 ** 1299 ** Generate code to write the results of the select into the temporary 1300 ** table allocated and opened above. 1301 */ 1302 int iParm = pExpr->iTable + (((int)affinity)<<16); 1303 ExprList *pEList; 1304 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1305 sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); 1306 pEList = pExpr->pSelect->pEList; 1307 if( pEList && pEList->nExpr>0 ){ 1308 keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, 1309 pEList->a[0].pExpr); 1310 } 1311 }else if( pExpr->pList ){ 1312 /* Case 2: expr IN (exprlist) 1313 ** 1314 ** For each expression, build an index key from the evaluation and 1315 ** store it in the temporary table. If <expr> is a column, then use 1316 ** that columns affinity when building index keys. If <expr> is not 1317 ** a column, use numeric affinity. 1318 */ 1319 int i; 1320 ExprList *pList = pExpr->pList; 1321 struct ExprList_item *pItem; 1322 1323 if( !affinity ){ 1324 affinity = SQLITE_AFF_NUMERIC; 1325 } 1326 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1327 1328 /* Loop through each expression in <exprlist>. */ 1329 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1330 Expr *pE2 = pItem->pExpr; 1331 1332 /* If the expression is not constant then we will need to 1333 ** disable the test that was generated above that makes sure 1334 ** this code only executes once. Because for a non-constant 1335 ** expression we need to rerun this code each time. 1336 */ 1337 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1338 VdbeOp *aOp = sqlite3VdbeGetOp(v, testAddr-1); 1339 int i; 1340 for(i=0; i<4; i++){ 1341 aOp[i].opcode = OP_Noop; 1342 } 1343 testAddr = 0; 1344 } 1345 1346 /* Evaluate the expression and insert it into the temp table */ 1347 sqlite3ExprCode(pParse, pE2); 1348 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1349 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1350 } 1351 } 1352 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1353 break; 1354 } 1355 1356 case TK_EXISTS: 1357 case TK_SELECT: { 1358 /* This has to be a scalar SELECT. Generate code to put the 1359 ** value of this select in a memory cell and record the number 1360 ** of the memory cell in iColumn. 1361 */ 1362 int sop; 1363 Select *pSel; 1364 1365 pExpr->iColumn = pParse->nMem++; 1366 pSel = pExpr->pSelect; 1367 if( pExpr->op==TK_SELECT ){ 1368 sop = SRT_Mem; 1369 }else{ 1370 static const Token one = { "1", 0, 1 }; 1371 sop = SRT_Exists; 1372 sqlite3ExprListDelete(pSel->pEList); 1373 pSel->pEList = sqlite3ExprListAppend(0, 1374 sqlite3Expr(TK_INTEGER, 0, 0, &one), 0); 1375 } 1376 sqlite3Select(pParse, pSel, sop, pExpr->iColumn, 0, 0, 0, 0); 1377 break; 1378 } 1379 } 1380 1381 if( pExpr->pSelect ){ 1382 sqlite3VdbeAddOp(v, OP_AggContextPop, 0, 0); 1383 } 1384 if( testAddr ){ 1385 sqlite3VdbeChangeP2(v, testAddr, sqlite3VdbeCurrentAddr(v)); 1386 } 1387 return; 1388 } 1389 #endif /* SQLITE_OMIT_SUBQUERY */ 1390 1391 /* 1392 ** Generate an instruction that will put the integer describe by 1393 ** text z[0..n-1] on the stack. 1394 */ 1395 static void codeInteger(Vdbe *v, const char *z, int n){ 1396 int i; 1397 if( sqlite3GetInt32(z, &i) ){ 1398 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1399 }else if( sqlite3FitsIn64Bits(z) ){ 1400 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); 1401 }else{ 1402 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); 1403 } 1404 } 1405 1406 /* 1407 ** Generate code into the current Vdbe to evaluate the given 1408 ** expression and leave the result on the top of stack. 1409 ** 1410 ** This code depends on the fact that certain token values (ex: TK_EQ) 1411 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1412 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1413 ** the make process cause these values to align. Assert()s in the code 1414 ** below verify that the numbers are aligned correctly. 1415 */ 1416 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1417 Vdbe *v = pParse->pVdbe; 1418 int op; 1419 if( v==0 ) return; 1420 if( pExpr==0 ){ 1421 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1422 return; 1423 } 1424 op = pExpr->op; 1425 switch( op ){ 1426 case TK_COLUMN: { 1427 if( !pParse->fillAgg && pExpr->iAgg>=0 ){ 1428 sqlite3VdbeAddOp(v, OP_AggGet, pExpr->iAggCtx, pExpr->iAgg); 1429 }else if( pExpr->iColumn>=0 ){ 1430 sqlite3VdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); 1431 sqlite3ColumnDefault(v, pExpr->pTab, pExpr->iColumn); 1432 }else{ 1433 sqlite3VdbeAddOp(v, OP_Rowid, pExpr->iTable, 0); 1434 } 1435 break; 1436 } 1437 case TK_INTEGER: { 1438 codeInteger(v, pExpr->token.z, pExpr->token.n); 1439 break; 1440 } 1441 case TK_FLOAT: 1442 case TK_STRING: { 1443 assert( TK_FLOAT==OP_Real ); 1444 assert( TK_STRING==OP_String8 ); 1445 sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z, pExpr->token.n); 1446 sqlite3VdbeDequoteP3(v, -1); 1447 break; 1448 } 1449 case TK_NULL: { 1450 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1451 break; 1452 } 1453 #ifndef SQLITE_OMIT_BLOB_LITERAL 1454 case TK_BLOB: { 1455 assert( TK_BLOB==OP_HexBlob ); 1456 sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z+1, pExpr->token.n-1); 1457 sqlite3VdbeDequoteP3(v, -1); 1458 break; 1459 } 1460 #endif 1461 case TK_VARIABLE: { 1462 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1463 if( pExpr->token.n>1 ){ 1464 sqlite3VdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); 1465 } 1466 break; 1467 } 1468 case TK_REGISTER: { 1469 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1470 break; 1471 } 1472 #ifndef SQLITE_OMIT_CAST 1473 case TK_CAST: { 1474 /* Expressions of the form: CAST(pLeft AS token) */ 1475 int aff, op; 1476 sqlite3ExprCode(pParse, pExpr->pLeft); 1477 aff = sqlite3AffinityType(&pExpr->token); 1478 switch( aff ){ 1479 case SQLITE_AFF_INTEGER: op = OP_ToInt; break; 1480 case SQLITE_AFF_NUMERIC: op = OP_ToNumeric; break; 1481 case SQLITE_AFF_TEXT: op = OP_ToText; break; 1482 case SQLITE_AFF_NONE: op = OP_ToBlob; break; 1483 } 1484 sqlite3VdbeAddOp(v, op, 0, 0); 1485 break; 1486 } 1487 #endif /* SQLITE_OMIT_CAST */ 1488 case TK_LT: 1489 case TK_LE: 1490 case TK_GT: 1491 case TK_GE: 1492 case TK_NE: 1493 case TK_EQ: { 1494 assert( TK_LT==OP_Lt ); 1495 assert( TK_LE==OP_Le ); 1496 assert( TK_GT==OP_Gt ); 1497 assert( TK_GE==OP_Ge ); 1498 assert( TK_EQ==OP_Eq ); 1499 assert( TK_NE==OP_Ne ); 1500 sqlite3ExprCode(pParse, pExpr->pLeft); 1501 sqlite3ExprCode(pParse, pExpr->pRight); 1502 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1503 break; 1504 } 1505 case TK_AND: 1506 case TK_OR: 1507 case TK_PLUS: 1508 case TK_STAR: 1509 case TK_MINUS: 1510 case TK_REM: 1511 case TK_BITAND: 1512 case TK_BITOR: 1513 case TK_SLASH: 1514 case TK_LSHIFT: 1515 case TK_RSHIFT: 1516 case TK_CONCAT: { 1517 assert( TK_AND==OP_And ); 1518 assert( TK_OR==OP_Or ); 1519 assert( TK_PLUS==OP_Add ); 1520 assert( TK_MINUS==OP_Subtract ); 1521 assert( TK_REM==OP_Remainder ); 1522 assert( TK_BITAND==OP_BitAnd ); 1523 assert( TK_BITOR==OP_BitOr ); 1524 assert( TK_SLASH==OP_Divide ); 1525 assert( TK_LSHIFT==OP_ShiftLeft ); 1526 assert( TK_RSHIFT==OP_ShiftRight ); 1527 assert( TK_CONCAT==OP_Concat ); 1528 sqlite3ExprCode(pParse, pExpr->pLeft); 1529 sqlite3ExprCode(pParse, pExpr->pRight); 1530 sqlite3VdbeAddOp(v, op, 0, 0); 1531 break; 1532 } 1533 case TK_UMINUS: { 1534 Expr *pLeft = pExpr->pLeft; 1535 assert( pLeft ); 1536 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1537 Token *p = &pLeft->token; 1538 char *z = sqliteMalloc( p->n + 2 ); 1539 sprintf(z, "-%.*s", p->n, p->z); 1540 if( pLeft->op==TK_FLOAT ){ 1541 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); 1542 }else{ 1543 codeInteger(v, z, p->n+1); 1544 } 1545 sqliteFree(z); 1546 break; 1547 } 1548 /* Fall through into TK_NOT */ 1549 } 1550 case TK_BITNOT: 1551 case TK_NOT: { 1552 assert( TK_BITNOT==OP_BitNot ); 1553 assert( TK_NOT==OP_Not ); 1554 sqlite3ExprCode(pParse, pExpr->pLeft); 1555 sqlite3VdbeAddOp(v, op, 0, 0); 1556 break; 1557 } 1558 case TK_ISNULL: 1559 case TK_NOTNULL: { 1560 int dest; 1561 assert( TK_ISNULL==OP_IsNull ); 1562 assert( TK_NOTNULL==OP_NotNull ); 1563 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1564 sqlite3ExprCode(pParse, pExpr->pLeft); 1565 dest = sqlite3VdbeCurrentAddr(v) + 2; 1566 sqlite3VdbeAddOp(v, op, 1, dest); 1567 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1568 break; 1569 } 1570 case TK_AGG_FUNCTION: { 1571 sqlite3VdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); 1572 break; 1573 } 1574 case TK_CONST_FUNC: 1575 case TK_FUNCTION: { 1576 ExprList *pList = pExpr->pList; 1577 int nExpr = pList ? pList->nExpr : 0; 1578 FuncDef *pDef; 1579 int nId; 1580 const char *zId; 1581 int p2 = 0; 1582 int i; 1583 u8 enc = pParse->db->enc; 1584 CollSeq *pColl = 0; 1585 zId = pExpr->token.z; 1586 nId = pExpr->token.n; 1587 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1588 assert( pDef!=0 ); 1589 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1590 for(i=0; i<nExpr && i<32; i++){ 1591 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 1592 p2 |= (1<<i); 1593 } 1594 if( pDef->needCollSeq && !pColl ){ 1595 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1596 } 1597 } 1598 if( pDef->needCollSeq ){ 1599 if( !pColl ) pColl = pParse->db->pDfltColl; 1600 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 1601 } 1602 sqlite3VdbeOp3(v, OP_Function, nExpr, p2, (char*)pDef, P3_FUNCDEF); 1603 break; 1604 } 1605 #ifndef SQLITE_OMIT_SUBQUERY 1606 case TK_EXISTS: 1607 case TK_SELECT: { 1608 sqlite3CodeSubselect(pParse, pExpr); 1609 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 1610 VdbeComment((v, "# load subquery result")); 1611 break; 1612 } 1613 case TK_IN: { 1614 int addr; 1615 char affinity; 1616 sqlite3CodeSubselect(pParse, pExpr); 1617 1618 /* Figure out the affinity to use to create a key from the results 1619 ** of the expression. affinityStr stores a static string suitable for 1620 ** P3 of OP_MakeRecord. 1621 */ 1622 affinity = comparisonAffinity(pExpr); 1623 1624 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1625 1626 /* Code the <expr> from "<expr> IN (...)". The temporary table 1627 ** pExpr->iTable contains the values that make up the (...) set. 1628 */ 1629 sqlite3ExprCode(pParse, pExpr->pLeft); 1630 addr = sqlite3VdbeCurrentAddr(v); 1631 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 1632 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 1633 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1634 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 1635 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 1636 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 1637 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 1638 1639 break; 1640 } 1641 #endif 1642 case TK_BETWEEN: { 1643 Expr *pLeft = pExpr->pLeft; 1644 struct ExprList_item *pLItem = pExpr->pList->a; 1645 Expr *pRight = pLItem->pExpr; 1646 sqlite3ExprCode(pParse, pLeft); 1647 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1648 sqlite3ExprCode(pParse, pRight); 1649 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 1650 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 1651 pLItem++; 1652 pRight = pLItem->pExpr; 1653 sqlite3ExprCode(pParse, pRight); 1654 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 1655 sqlite3VdbeAddOp(v, OP_And, 0, 0); 1656 break; 1657 } 1658 case TK_UPLUS: 1659 case TK_AS: { 1660 sqlite3ExprCode(pParse, pExpr->pLeft); 1661 break; 1662 } 1663 case TK_CASE: { 1664 int expr_end_label; 1665 int jumpInst; 1666 int addr; 1667 int nExpr; 1668 int i; 1669 ExprList *pEList; 1670 struct ExprList_item *aListelem; 1671 1672 assert(pExpr->pList); 1673 assert((pExpr->pList->nExpr % 2) == 0); 1674 assert(pExpr->pList->nExpr > 0); 1675 pEList = pExpr->pList; 1676 aListelem = pEList->a; 1677 nExpr = pEList->nExpr; 1678 expr_end_label = sqlite3VdbeMakeLabel(v); 1679 if( pExpr->pLeft ){ 1680 sqlite3ExprCode(pParse, pExpr->pLeft); 1681 } 1682 for(i=0; i<nExpr; i=i+2){ 1683 sqlite3ExprCode(pParse, aListelem[i].pExpr); 1684 if( pExpr->pLeft ){ 1685 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 1686 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 1687 OP_Ne, 0, 1); 1688 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1689 }else{ 1690 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 1691 } 1692 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 1693 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 1694 addr = sqlite3VdbeCurrentAddr(v); 1695 sqlite3VdbeChangeP2(v, jumpInst, addr); 1696 } 1697 if( pExpr->pLeft ){ 1698 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1699 } 1700 if( pExpr->pRight ){ 1701 sqlite3ExprCode(pParse, pExpr->pRight); 1702 }else{ 1703 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1704 } 1705 sqlite3VdbeResolveLabel(v, expr_end_label); 1706 break; 1707 } 1708 #ifndef SQLITE_OMIT_TRIGGER 1709 case TK_RAISE: { 1710 if( !pParse->trigStack ){ 1711 sqlite3ErrorMsg(pParse, 1712 "RAISE() may only be used within a trigger-program"); 1713 return; 1714 } 1715 if( pExpr->iColumn!=OE_Ignore ){ 1716 assert( pExpr->iColumn==OE_Rollback || 1717 pExpr->iColumn == OE_Abort || 1718 pExpr->iColumn == OE_Fail ); 1719 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 1720 pExpr->token.z, pExpr->token.n); 1721 sqlite3VdbeDequoteP3(v, -1); 1722 } else { 1723 assert( pExpr->iColumn == OE_Ignore ); 1724 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 1725 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 1726 VdbeComment((v, "# raise(IGNORE)")); 1727 } 1728 } 1729 #endif 1730 break; 1731 } 1732 } 1733 1734 #ifndef SQLITE_OMIT_TRIGGER 1735 /* 1736 ** Generate code that evalutes the given expression and leaves the result 1737 ** on the stack. See also sqlite3ExprCode(). 1738 ** 1739 ** This routine might also cache the result and modify the pExpr tree 1740 ** so that it will make use of the cached result on subsequent evaluations 1741 ** rather than evaluate the whole expression again. Trivial expressions are 1742 ** not cached. If the expression is cached, its result is stored in a 1743 ** memory location. 1744 */ 1745 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 1746 Vdbe *v = pParse->pVdbe; 1747 int iMem; 1748 int addr1, addr2; 1749 if( v==0 ) return; 1750 addr1 = sqlite3VdbeCurrentAddr(v); 1751 sqlite3ExprCode(pParse, pExpr); 1752 addr2 = sqlite3VdbeCurrentAddr(v); 1753 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 1754 iMem = pExpr->iTable = pParse->nMem++; 1755 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 1756 pExpr->op = TK_REGISTER; 1757 } 1758 } 1759 #endif 1760 1761 /* 1762 ** Generate code that pushes the value of every element of the given 1763 ** expression list onto the stack. 1764 ** 1765 ** Return the number of elements pushed onto the stack. 1766 */ 1767 int sqlite3ExprCodeExprList( 1768 Parse *pParse, /* Parsing context */ 1769 ExprList *pList /* The expression list to be coded */ 1770 ){ 1771 struct ExprList_item *pItem; 1772 int i, n; 1773 Vdbe *v; 1774 if( pList==0 ) return 0; 1775 v = sqlite3GetVdbe(pParse); 1776 n = pList->nExpr; 1777 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 1778 sqlite3ExprCode(pParse, pItem->pExpr); 1779 } 1780 return n; 1781 } 1782 1783 /* 1784 ** Generate code for a boolean expression such that a jump is made 1785 ** to the label "dest" if the expression is true but execution 1786 ** continues straight thru if the expression is false. 1787 ** 1788 ** If the expression evaluates to NULL (neither true nor false), then 1789 ** take the jump if the jumpIfNull flag is true. 1790 ** 1791 ** This code depends on the fact that certain token values (ex: TK_EQ) 1792 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1793 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1794 ** the make process cause these values to align. Assert()s in the code 1795 ** below verify that the numbers are aligned correctly. 1796 */ 1797 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 1798 Vdbe *v = pParse->pVdbe; 1799 int op = 0; 1800 if( v==0 || pExpr==0 ) return; 1801 op = pExpr->op; 1802 switch( op ){ 1803 case TK_AND: { 1804 int d2 = sqlite3VdbeMakeLabel(v); 1805 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 1806 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1807 sqlite3VdbeResolveLabel(v, d2); 1808 break; 1809 } 1810 case TK_OR: { 1811 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 1812 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1813 break; 1814 } 1815 case TK_NOT: { 1816 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 1817 break; 1818 } 1819 case TK_LT: 1820 case TK_LE: 1821 case TK_GT: 1822 case TK_GE: 1823 case TK_NE: 1824 case TK_EQ: { 1825 assert( TK_LT==OP_Lt ); 1826 assert( TK_LE==OP_Le ); 1827 assert( TK_GT==OP_Gt ); 1828 assert( TK_GE==OP_Ge ); 1829 assert( TK_EQ==OP_Eq ); 1830 assert( TK_NE==OP_Ne ); 1831 sqlite3ExprCode(pParse, pExpr->pLeft); 1832 sqlite3ExprCode(pParse, pExpr->pRight); 1833 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 1834 break; 1835 } 1836 case TK_ISNULL: 1837 case TK_NOTNULL: { 1838 assert( TK_ISNULL==OP_IsNull ); 1839 assert( TK_NOTNULL==OP_NotNull ); 1840 sqlite3ExprCode(pParse, pExpr->pLeft); 1841 sqlite3VdbeAddOp(v, op, 1, dest); 1842 break; 1843 } 1844 case TK_BETWEEN: { 1845 /* The expression "x BETWEEN y AND z" is implemented as: 1846 ** 1847 ** 1 IF (x < y) GOTO 3 1848 ** 2 IF (x <= z) GOTO <dest> 1849 ** 3 ... 1850 */ 1851 int addr; 1852 Expr *pLeft = pExpr->pLeft; 1853 Expr *pRight = pExpr->pList->a[0].pExpr; 1854 sqlite3ExprCode(pParse, pLeft); 1855 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1856 sqlite3ExprCode(pParse, pRight); 1857 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 1858 1859 pRight = pExpr->pList->a[1].pExpr; 1860 sqlite3ExprCode(pParse, pRight); 1861 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 1862 1863 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1864 sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); 1865 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1866 break; 1867 } 1868 default: { 1869 sqlite3ExprCode(pParse, pExpr); 1870 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 1871 break; 1872 } 1873 } 1874 } 1875 1876 /* 1877 ** Generate code for a boolean expression such that a jump is made 1878 ** to the label "dest" if the expression is false but execution 1879 ** continues straight thru if the expression is true. 1880 ** 1881 ** If the expression evaluates to NULL (neither true nor false) then 1882 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 1883 */ 1884 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 1885 Vdbe *v = pParse->pVdbe; 1886 int op = 0; 1887 if( v==0 || pExpr==0 ) return; 1888 1889 /* The value of pExpr->op and op are related as follows: 1890 ** 1891 ** pExpr->op op 1892 ** --------- ---------- 1893 ** TK_ISNULL OP_NotNull 1894 ** TK_NOTNULL OP_IsNull 1895 ** TK_NE OP_Eq 1896 ** TK_EQ OP_Ne 1897 ** TK_GT OP_Le 1898 ** TK_LE OP_Gt 1899 ** TK_GE OP_Lt 1900 ** TK_LT OP_Ge 1901 ** 1902 ** For other values of pExpr->op, op is undefined and unused. 1903 ** The value of TK_ and OP_ constants are arranged such that we 1904 ** can compute the mapping above using the following expression. 1905 ** Assert()s verify that the computation is correct. 1906 */ 1907 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 1908 1909 /* Verify correct alignment of TK_ and OP_ constants 1910 */ 1911 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 1912 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 1913 assert( pExpr->op!=TK_NE || op==OP_Eq ); 1914 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 1915 assert( pExpr->op!=TK_LT || op==OP_Ge ); 1916 assert( pExpr->op!=TK_LE || op==OP_Gt ); 1917 assert( pExpr->op!=TK_GT || op==OP_Le ); 1918 assert( pExpr->op!=TK_GE || op==OP_Lt ); 1919 1920 switch( pExpr->op ){ 1921 case TK_AND: { 1922 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 1923 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 1924 break; 1925 } 1926 case TK_OR: { 1927 int d2 = sqlite3VdbeMakeLabel(v); 1928 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 1929 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 1930 sqlite3VdbeResolveLabel(v, d2); 1931 break; 1932 } 1933 case TK_NOT: { 1934 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 1935 break; 1936 } 1937 case TK_LT: 1938 case TK_LE: 1939 case TK_GT: 1940 case TK_GE: 1941 case TK_NE: 1942 case TK_EQ: { 1943 sqlite3ExprCode(pParse, pExpr->pLeft); 1944 sqlite3ExprCode(pParse, pExpr->pRight); 1945 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 1946 break; 1947 } 1948 case TK_ISNULL: 1949 case TK_NOTNULL: { 1950 sqlite3ExprCode(pParse, pExpr->pLeft); 1951 sqlite3VdbeAddOp(v, op, 1, dest); 1952 break; 1953 } 1954 case TK_BETWEEN: { 1955 /* The expression is "x BETWEEN y AND z". It is implemented as: 1956 ** 1957 ** 1 IF (x >= y) GOTO 3 1958 ** 2 GOTO <dest> 1959 ** 3 IF (x > z) GOTO <dest> 1960 */ 1961 int addr; 1962 Expr *pLeft = pExpr->pLeft; 1963 Expr *pRight = pExpr->pList->a[0].pExpr; 1964 sqlite3ExprCode(pParse, pLeft); 1965 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1966 sqlite3ExprCode(pParse, pRight); 1967 addr = sqlite3VdbeCurrentAddr(v); 1968 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 1969 1970 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1971 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 1972 pRight = pExpr->pList->a[1].pExpr; 1973 sqlite3ExprCode(pParse, pRight); 1974 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 1975 break; 1976 } 1977 default: { 1978 sqlite3ExprCode(pParse, pExpr); 1979 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 1980 break; 1981 } 1982 } 1983 } 1984 1985 /* 1986 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 1987 ** if they are identical and return FALSE if they differ in any way. 1988 */ 1989 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 1990 int i; 1991 if( pA==0 ){ 1992 return pB==0; 1993 }else if( pB==0 ){ 1994 return 0; 1995 } 1996 if( pA->op!=pB->op ) return 0; 1997 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 1998 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 1999 if( pA->pList ){ 2000 if( pB->pList==0 ) return 0; 2001 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2002 for(i=0; i<pA->pList->nExpr; i++){ 2003 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2004 return 0; 2005 } 2006 } 2007 }else if( pB->pList ){ 2008 return 0; 2009 } 2010 if( pA->pSelect || pB->pSelect ) return 0; 2011 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2012 if( pA->token.z ){ 2013 if( pB->token.z==0 ) return 0; 2014 if( pB->token.n!=pA->token.n ) return 0; 2015 if( sqlite3StrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0; 2016 } 2017 return 1; 2018 } 2019 2020 /* 2021 ** Add a new element to the pParse->aAgg[] array and return its index. 2022 ** The new element is initialized to zero. The calling function is 2023 ** expected to fill it in. 2024 */ 2025 static int appendAggInfo(Parse *pParse){ 2026 if( (pParse->nAgg & 0x7)==0 ){ 2027 int amt = pParse->nAgg + 8; 2028 AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0])); 2029 if( aAgg==0 ){ 2030 return -1; 2031 } 2032 pParse->aAgg = aAgg; 2033 } 2034 memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0])); 2035 return pParse->nAgg++; 2036 } 2037 2038 /* 2039 ** This is an xFunc for walkExprTree() used to implement 2040 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2041 ** for additional information. 2042 ** 2043 ** This routine analyzes the aggregate function at pExpr. 2044 */ 2045 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2046 int i; 2047 AggExpr *aAgg; 2048 NameContext *pNC = (NameContext *)pArg; 2049 Parse *pParse = pNC->pParse; 2050 SrcList *pSrcList = pNC->pSrcList; 2051 2052 switch( pExpr->op ){ 2053 case TK_COLUMN: { 2054 for(i=0; pSrcList && i<pSrcList->nSrc; i++){ 2055 if( pExpr->iTable==pSrcList->a[i].iCursor ){ 2056 aAgg = pParse->aAgg; 2057 for(i=0; i<pParse->nAgg; i++){ 2058 if( aAgg[i].isAgg ) continue; 2059 if( aAgg[i].pExpr->iTable==pExpr->iTable 2060 && aAgg[i].pExpr->iColumn==pExpr->iColumn ){ 2061 break; 2062 } 2063 } 2064 if( i>=pParse->nAgg ){ 2065 i = appendAggInfo(pParse); 2066 if( i<0 ) return 1; 2067 pParse->aAgg[i].isAgg = 0; 2068 pParse->aAgg[i].pExpr = pExpr; 2069 } 2070 pExpr->iAgg = i; 2071 pExpr->iAggCtx = pNC->nDepth; 2072 return 1; 2073 } 2074 } 2075 return 1; 2076 } 2077 case TK_AGG_FUNCTION: { 2078 if( pNC->nDepth==0 ){ 2079 aAgg = pParse->aAgg; 2080 for(i=0; i<pParse->nAgg; i++){ 2081 if( !aAgg[i].isAgg ) continue; 2082 if( sqlite3ExprCompare(aAgg[i].pExpr, pExpr) ){ 2083 break; 2084 } 2085 } 2086 if( i>=pParse->nAgg ){ 2087 u8 enc = pParse->db->enc; 2088 i = appendAggInfo(pParse); 2089 if( i<0 ) return 1; 2090 pParse->aAgg[i].isAgg = 1; 2091 pParse->aAgg[i].pExpr = pExpr; 2092 pParse->aAgg[i].pFunc = sqlite3FindFunction(pParse->db, 2093 pExpr->token.z, pExpr->token.n, 2094 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2095 } 2096 pExpr->iAgg = i; 2097 return 1; 2098 } 2099 } 2100 } 2101 if( pExpr->pSelect ){ 2102 pNC->nDepth++; 2103 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2104 pNC->nDepth--; 2105 } 2106 return 0; 2107 } 2108 2109 /* 2110 ** Analyze the given expression looking for aggregate functions and 2111 ** for variables that need to be added to the pParse->aAgg[] array. 2112 ** Make additional entries to the pParse->aAgg[] array as necessary. 2113 ** 2114 ** This routine should only be called after the expression has been 2115 ** analyzed by sqlite3ExprResolveNames(). 2116 ** 2117 ** If errors are seen, leave an error message in zErrMsg and return 2118 ** the number of errors. 2119 */ 2120 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2121 int nErr = pNC->pParse->nErr; 2122 walkExprTree(pExpr, analyzeAggregate, pNC); 2123 return pNC->pParse->nErr - nErr; 2124 } 2125