xref: /sqlite-3.40.0/src/expr.c (revision 4b67c655)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){
57     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
58   }
59   if( op==TK_SELECT ){
60     assert( pExpr->flags&EP_xIsSelect );
61     assert( pExpr->x.pSelect!=0 );
62     assert( pExpr->x.pSelect->pEList!=0 );
63     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
64     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
65   }
66 #ifndef SQLITE_OMIT_CAST
67   if( op==TK_CAST ){
68     assert( !ExprHasProperty(pExpr, EP_IntValue) );
69     return sqlite3AffinityType(pExpr->u.zToken, 0);
70   }
71 #endif
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     assert( pExpr->iColumn < pExpr->iTable );
75     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
76     return sqlite3ExprAffinity(
77         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
78     );
79   }
80   if( op==TK_VECTOR ){
81     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
82   }
83   return pExpr->affExpr;
84 }
85 
86 /*
87 ** Set the collating sequence for expression pExpr to be the collating
88 ** sequence named by pToken.   Return a pointer to a new Expr node that
89 ** implements the COLLATE operator.
90 **
91 ** If a memory allocation error occurs, that fact is recorded in pParse->db
92 ** and the pExpr parameter is returned unchanged.
93 */
94 Expr *sqlite3ExprAddCollateToken(
95   const Parse *pParse,     /* Parsing context */
96   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
97   const Token *pCollName,  /* Name of collating sequence */
98   int dequote              /* True to dequote pCollName */
99 ){
100   if( pCollName->n>0 ){
101     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
102     if( pNew ){
103       pNew->pLeft = pExpr;
104       pNew->flags |= EP_Collate|EP_Skip;
105       pExpr = pNew;
106     }
107   }
108   return pExpr;
109 }
110 Expr *sqlite3ExprAddCollateString(
111   const Parse *pParse,  /* Parsing context */
112   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
113   const char *zC        /* The collating sequence name */
114 ){
115   Token s;
116   assert( zC!=0 );
117   sqlite3TokenInit(&s, (char*)zC);
118   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
119 }
120 
121 /*
122 ** Skip over any TK_COLLATE operators.
123 */
124 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
125   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
126     assert( pExpr->op==TK_COLLATE );
127     pExpr = pExpr->pLeft;
128   }
129   return pExpr;
130 }
131 
132 /*
133 ** Skip over any TK_COLLATE operators and/or any unlikely()
134 ** or likelihood() or likely() functions at the root of an
135 ** expression.
136 */
137 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
138   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
139     if( ExprHasProperty(pExpr, EP_Unlikely) ){
140       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
141       assert( pExpr->x.pList->nExpr>0 );
142       assert( pExpr->op==TK_FUNCTION );
143       pExpr = pExpr->x.pList->a[0].pExpr;
144     }else{
145       assert( pExpr->op==TK_COLLATE );
146       pExpr = pExpr->pLeft;
147     }
148   }
149   return pExpr;
150 }
151 
152 /*
153 ** Return the collation sequence for the expression pExpr. If
154 ** there is no defined collating sequence, return NULL.
155 **
156 ** See also: sqlite3ExprNNCollSeq()
157 **
158 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
159 ** default collation if pExpr has no defined collation.
160 **
161 ** The collating sequence might be determined by a COLLATE operator
162 ** or by the presence of a column with a defined collating sequence.
163 ** COLLATE operators take first precedence.  Left operands take
164 ** precedence over right operands.
165 */
166 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
167   sqlite3 *db = pParse->db;
168   CollSeq *pColl = 0;
169   const Expr *p = pExpr;
170   while( p ){
171     int op = p->op;
172     if( op==TK_REGISTER ) op = p->op2;
173     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
174      && p->y.pTab!=0
175     ){
176       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
177       ** a TK_COLUMN but was previously evaluated and cached in a register */
178       int j = p->iColumn;
179       if( j>=0 ){
180         const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
181         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
182       }
183       break;
184     }
185     if( op==TK_CAST || op==TK_UPLUS ){
186       p = p->pLeft;
187       continue;
188     }
189     if( op==TK_VECTOR ){
190       p = p->x.pList->a[0].pExpr;
191       continue;
192     }
193     if( op==TK_COLLATE ){
194       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
195       break;
196     }
197     if( p->flags & EP_Collate ){
198       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
199         p = p->pLeft;
200       }else{
201         Expr *pNext  = p->pRight;
202         /* The Expr.x union is never used at the same time as Expr.pRight */
203         assert( p->x.pList==0 || p->pRight==0 );
204         if( p->x.pList!=0
205          && !db->mallocFailed
206          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
207         ){
208           int i;
209           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
210             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
211               pNext = p->x.pList->a[i].pExpr;
212               break;
213             }
214           }
215         }
216         p = pNext;
217       }
218     }else{
219       break;
220     }
221   }
222   if( sqlite3CheckCollSeq(pParse, pColl) ){
223     pColl = 0;
224   }
225   return pColl;
226 }
227 
228 /*
229 ** Return the collation sequence for the expression pExpr. If
230 ** there is no defined collating sequence, return a pointer to the
231 ** defautl collation sequence.
232 **
233 ** See also: sqlite3ExprCollSeq()
234 **
235 ** The sqlite3ExprCollSeq() routine works the same except that it
236 ** returns NULL if there is no defined collation.
237 */
238 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
239   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
240   if( p==0 ) p = pParse->db->pDfltColl;
241   assert( p!=0 );
242   return p;
243 }
244 
245 /*
246 ** Return TRUE if the two expressions have equivalent collating sequences.
247 */
248 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
249   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
250   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
251   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
252 }
253 
254 /*
255 ** pExpr is an operand of a comparison operator.  aff2 is the
256 ** type affinity of the other operand.  This routine returns the
257 ** type affinity that should be used for the comparison operator.
258 */
259 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
260   char aff1 = sqlite3ExprAffinity(pExpr);
261   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
262     /* Both sides of the comparison are columns. If one has numeric
263     ** affinity, use that. Otherwise use no affinity.
264     */
265     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
266       return SQLITE_AFF_NUMERIC;
267     }else{
268       return SQLITE_AFF_BLOB;
269     }
270   }else{
271     /* One side is a column, the other is not. Use the columns affinity. */
272     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
273     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
274   }
275 }
276 
277 /*
278 ** pExpr is a comparison operator.  Return the type affinity that should
279 ** be applied to both operands prior to doing the comparison.
280 */
281 static char comparisonAffinity(const Expr *pExpr){
282   char aff;
283   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
284           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
285           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
286   assert( pExpr->pLeft );
287   aff = sqlite3ExprAffinity(pExpr->pLeft);
288   if( pExpr->pRight ){
289     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
290   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
291     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
292   }else if( aff==0 ){
293     aff = SQLITE_AFF_BLOB;
294   }
295   return aff;
296 }
297 
298 /*
299 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
300 ** idx_affinity is the affinity of an indexed column. Return true
301 ** if the index with affinity idx_affinity may be used to implement
302 ** the comparison in pExpr.
303 */
304 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
305   char aff = comparisonAffinity(pExpr);
306   if( aff<SQLITE_AFF_TEXT ){
307     return 1;
308   }
309   if( aff==SQLITE_AFF_TEXT ){
310     return idx_affinity==SQLITE_AFF_TEXT;
311   }
312   return sqlite3IsNumericAffinity(idx_affinity);
313 }
314 
315 /*
316 ** Return the P5 value that should be used for a binary comparison
317 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
318 */
319 static u8 binaryCompareP5(
320   const Expr *pExpr1,   /* Left operand */
321   const Expr *pExpr2,   /* Right operand */
322   int jumpIfNull        /* Extra flags added to P5 */
323 ){
324   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
325   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
326   return aff;
327 }
328 
329 /*
330 ** Return a pointer to the collation sequence that should be used by
331 ** a binary comparison operator comparing pLeft and pRight.
332 **
333 ** If the left hand expression has a collating sequence type, then it is
334 ** used. Otherwise the collation sequence for the right hand expression
335 ** is used, or the default (BINARY) if neither expression has a collating
336 ** type.
337 **
338 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
339 ** it is not considered.
340 */
341 CollSeq *sqlite3BinaryCompareCollSeq(
342   Parse *pParse,
343   const Expr *pLeft,
344   const Expr *pRight
345 ){
346   CollSeq *pColl;
347   assert( pLeft );
348   if( pLeft->flags & EP_Collate ){
349     pColl = sqlite3ExprCollSeq(pParse, pLeft);
350   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
351     pColl = sqlite3ExprCollSeq(pParse, pRight);
352   }else{
353     pColl = sqlite3ExprCollSeq(pParse, pLeft);
354     if( !pColl ){
355       pColl = sqlite3ExprCollSeq(pParse, pRight);
356     }
357   }
358   return pColl;
359 }
360 
361 /* Expresssion p is a comparison operator.  Return a collation sequence
362 ** appropriate for the comparison operator.
363 **
364 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
365 ** However, if the OP_Commuted flag is set, then the order of the operands
366 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
367 ** correct collating sequence is found.
368 */
369 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
370   if( ExprHasProperty(p, EP_Commuted) ){
371     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
372   }else{
373     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
374   }
375 }
376 
377 /*
378 ** Generate code for a comparison operator.
379 */
380 static int codeCompare(
381   Parse *pParse,    /* The parsing (and code generating) context */
382   Expr *pLeft,      /* The left operand */
383   Expr *pRight,     /* The right operand */
384   int opcode,       /* The comparison opcode */
385   int in1, int in2, /* Register holding operands */
386   int dest,         /* Jump here if true.  */
387   int jumpIfNull,   /* If true, jump if either operand is NULL */
388   int isCommuted    /* The comparison has been commuted */
389 ){
390   int p5;
391   int addr;
392   CollSeq *p4;
393 
394   if( pParse->nErr ) return 0;
395   if( isCommuted ){
396     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
397   }else{
398     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
399   }
400   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
401   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
402                            (void*)p4, P4_COLLSEQ);
403   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
404   return addr;
405 }
406 
407 /*
408 ** Return true if expression pExpr is a vector, or false otherwise.
409 **
410 ** A vector is defined as any expression that results in two or more
411 ** columns of result.  Every TK_VECTOR node is an vector because the
412 ** parser will not generate a TK_VECTOR with fewer than two entries.
413 ** But a TK_SELECT might be either a vector or a scalar. It is only
414 ** considered a vector if it has two or more result columns.
415 */
416 int sqlite3ExprIsVector(const Expr *pExpr){
417   return sqlite3ExprVectorSize(pExpr)>1;
418 }
419 
420 /*
421 ** If the expression passed as the only argument is of type TK_VECTOR
422 ** return the number of expressions in the vector. Or, if the expression
423 ** is a sub-select, return the number of columns in the sub-select. For
424 ** any other type of expression, return 1.
425 */
426 int sqlite3ExprVectorSize(const Expr *pExpr){
427   u8 op = pExpr->op;
428   if( op==TK_REGISTER ) op = pExpr->op2;
429   if( op==TK_VECTOR ){
430     return pExpr->x.pList->nExpr;
431   }else if( op==TK_SELECT ){
432     return pExpr->x.pSelect->pEList->nExpr;
433   }else{
434     return 1;
435   }
436 }
437 
438 /*
439 ** Return a pointer to a subexpression of pVector that is the i-th
440 ** column of the vector (numbered starting with 0).  The caller must
441 ** ensure that i is within range.
442 **
443 ** If pVector is really a scalar (and "scalar" here includes subqueries
444 ** that return a single column!) then return pVector unmodified.
445 **
446 ** pVector retains ownership of the returned subexpression.
447 **
448 ** If the vector is a (SELECT ...) then the expression returned is
449 ** just the expression for the i-th term of the result set, and may
450 ** not be ready for evaluation because the table cursor has not yet
451 ** been positioned.
452 */
453 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
454   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
455   if( sqlite3ExprIsVector(pVector) ){
456     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
457     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
458       return pVector->x.pSelect->pEList->a[i].pExpr;
459     }else{
460       return pVector->x.pList->a[i].pExpr;
461     }
462   }
463   return pVector;
464 }
465 
466 /*
467 ** Compute and return a new Expr object which when passed to
468 ** sqlite3ExprCode() will generate all necessary code to compute
469 ** the iField-th column of the vector expression pVector.
470 **
471 ** It is ok for pVector to be a scalar (as long as iField==0).
472 ** In that case, this routine works like sqlite3ExprDup().
473 **
474 ** The caller owns the returned Expr object and is responsible for
475 ** ensuring that the returned value eventually gets freed.
476 **
477 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
478 ** then the returned object will reference pVector and so pVector must remain
479 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
480 ** or a scalar expression, then it can be deleted as soon as this routine
481 ** returns.
482 **
483 ** A trick to cause a TK_SELECT pVector to be deleted together with
484 ** the returned Expr object is to attach the pVector to the pRight field
485 ** of the returned TK_SELECT_COLUMN Expr object.
486 */
487 Expr *sqlite3ExprForVectorField(
488   Parse *pParse,       /* Parsing context */
489   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
490   int iField,          /* Which column of the vector to return */
491   int nField           /* Total number of columns in the vector */
492 ){
493   Expr *pRet;
494   if( pVector->op==TK_SELECT ){
495     assert( pVector->flags & EP_xIsSelect );
496     /* The TK_SELECT_COLUMN Expr node:
497     **
498     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
499     ** pRight:          not used.  But recursively deleted.
500     ** iColumn:         Index of a column in pVector
501     ** iTable:          0 or the number of columns on the LHS of an assignment
502     ** pLeft->iTable:   First in an array of register holding result, or 0
503     **                  if the result is not yet computed.
504     **
505     ** sqlite3ExprDelete() specifically skips the recursive delete of
506     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
507     ** can be attached to pRight to cause this node to take ownership of
508     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
509     ** with the same pLeft pointer to the pVector, but only one of them
510     ** will own the pVector.
511     */
512     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
513     if( pRet ){
514       pRet->iTable = nField;
515       pRet->iColumn = iField;
516       pRet->pLeft = pVector;
517     }
518   }else{
519     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
520     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
521     sqlite3RenameTokenRemap(pParse, pRet, pVector);
522   }
523   return pRet;
524 }
525 
526 /*
527 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
528 ** it. Return the register in which the result is stored (or, if the
529 ** sub-select returns more than one column, the first in an array
530 ** of registers in which the result is stored).
531 **
532 ** If pExpr is not a TK_SELECT expression, return 0.
533 */
534 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
535   int reg = 0;
536 #ifndef SQLITE_OMIT_SUBQUERY
537   if( pExpr->op==TK_SELECT ){
538     reg = sqlite3CodeSubselect(pParse, pExpr);
539   }
540 #endif
541   return reg;
542 }
543 
544 /*
545 ** Argument pVector points to a vector expression - either a TK_VECTOR
546 ** or TK_SELECT that returns more than one column. This function returns
547 ** the register number of a register that contains the value of
548 ** element iField of the vector.
549 **
550 ** If pVector is a TK_SELECT expression, then code for it must have
551 ** already been generated using the exprCodeSubselect() routine. In this
552 ** case parameter regSelect should be the first in an array of registers
553 ** containing the results of the sub-select.
554 **
555 ** If pVector is of type TK_VECTOR, then code for the requested field
556 ** is generated. In this case (*pRegFree) may be set to the number of
557 ** a temporary register to be freed by the caller before returning.
558 **
559 ** Before returning, output parameter (*ppExpr) is set to point to the
560 ** Expr object corresponding to element iElem of the vector.
561 */
562 static int exprVectorRegister(
563   Parse *pParse,                  /* Parse context */
564   Expr *pVector,                  /* Vector to extract element from */
565   int iField,                     /* Field to extract from pVector */
566   int regSelect,                  /* First in array of registers */
567   Expr **ppExpr,                  /* OUT: Expression element */
568   int *pRegFree                   /* OUT: Temp register to free */
569 ){
570   u8 op = pVector->op;
571   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
572   if( op==TK_REGISTER ){
573     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
574     return pVector->iTable+iField;
575   }
576   if( op==TK_SELECT ){
577     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
578      return regSelect+iField;
579   }
580   if( op==TK_VECTOR ){
581     *ppExpr = pVector->x.pList->a[iField].pExpr;
582     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
583   }
584   return 0;
585 }
586 
587 /*
588 ** Expression pExpr is a comparison between two vector values. Compute
589 ** the result of the comparison (1, 0, or NULL) and write that
590 ** result into register dest.
591 **
592 ** The caller must satisfy the following preconditions:
593 **
594 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
595 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
596 **    otherwise:                op==pExpr->op and p5==0
597 */
598 static void codeVectorCompare(
599   Parse *pParse,        /* Code generator context */
600   Expr *pExpr,          /* The comparison operation */
601   int dest,             /* Write results into this register */
602   u8 op,                /* Comparison operator */
603   u8 p5                 /* SQLITE_NULLEQ or zero */
604 ){
605   Vdbe *v = pParse->pVdbe;
606   Expr *pLeft = pExpr->pLeft;
607   Expr *pRight = pExpr->pRight;
608   int nLeft = sqlite3ExprVectorSize(pLeft);
609   int i;
610   int regLeft = 0;
611   int regRight = 0;
612   u8 opx = op;
613   int addrCmp = 0;
614   int addrDone = sqlite3VdbeMakeLabel(pParse);
615   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
616 
617   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
618   if( pParse->nErr ) return;
619   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
620     sqlite3ErrorMsg(pParse, "row value misused");
621     return;
622   }
623   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
624        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
625        || pExpr->op==TK_LT || pExpr->op==TK_GT
626        || pExpr->op==TK_LE || pExpr->op==TK_GE
627   );
628   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
629             || (pExpr->op==TK_ISNOT && op==TK_NE) );
630   assert( p5==0 || pExpr->op!=op );
631   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
632 
633   if( op==TK_LE ) opx = TK_LT;
634   if( op==TK_GE ) opx = TK_GT;
635   if( op==TK_NE ) opx = TK_EQ;
636 
637   regLeft = exprCodeSubselect(pParse, pLeft);
638   regRight = exprCodeSubselect(pParse, pRight);
639 
640   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
641   for(i=0; 1 /*Loop exits by "break"*/; i++){
642     int regFree1 = 0, regFree2 = 0;
643     Expr *pL = 0, *pR = 0;
644     int r1, r2;
645     assert( i>=0 && i<nLeft );
646     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
647     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
648     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
649     addrCmp = sqlite3VdbeCurrentAddr(v);
650     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
651     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
652     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
653     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
654     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
655     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
656     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
657     sqlite3ReleaseTempReg(pParse, regFree1);
658     sqlite3ReleaseTempReg(pParse, regFree2);
659     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
660       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
661       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
662       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
663     }
664     if( p5==SQLITE_NULLEQ ){
665       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
666     }else{
667       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
668     }
669     if( i==nLeft-1 ){
670       break;
671     }
672     if( opx==TK_EQ ){
673       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
674     }else{
675       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
676       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
677       if( i==nLeft-2 ) opx = op;
678     }
679   }
680   sqlite3VdbeJumpHere(v, addrCmp);
681   sqlite3VdbeResolveLabel(v, addrDone);
682   if( op==TK_NE ){
683     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
684   }
685 }
686 
687 #if SQLITE_MAX_EXPR_DEPTH>0
688 /*
689 ** Check that argument nHeight is less than or equal to the maximum
690 ** expression depth allowed. If it is not, leave an error message in
691 ** pParse.
692 */
693 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
694   int rc = SQLITE_OK;
695   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
696   if( nHeight>mxHeight ){
697     sqlite3ErrorMsg(pParse,
698        "Expression tree is too large (maximum depth %d)", mxHeight
699     );
700     rc = SQLITE_ERROR;
701   }
702   return rc;
703 }
704 
705 /* The following three functions, heightOfExpr(), heightOfExprList()
706 ** and heightOfSelect(), are used to determine the maximum height
707 ** of any expression tree referenced by the structure passed as the
708 ** first argument.
709 **
710 ** If this maximum height is greater than the current value pointed
711 ** to by pnHeight, the second parameter, then set *pnHeight to that
712 ** value.
713 */
714 static void heightOfExpr(const Expr *p, int *pnHeight){
715   if( p ){
716     if( p->nHeight>*pnHeight ){
717       *pnHeight = p->nHeight;
718     }
719   }
720 }
721 static void heightOfExprList(const ExprList *p, int *pnHeight){
722   if( p ){
723     int i;
724     for(i=0; i<p->nExpr; i++){
725       heightOfExpr(p->a[i].pExpr, pnHeight);
726     }
727   }
728 }
729 static void heightOfSelect(const Select *pSelect, int *pnHeight){
730   const Select *p;
731   for(p=pSelect; p; p=p->pPrior){
732     heightOfExpr(p->pWhere, pnHeight);
733     heightOfExpr(p->pHaving, pnHeight);
734     heightOfExpr(p->pLimit, pnHeight);
735     heightOfExprList(p->pEList, pnHeight);
736     heightOfExprList(p->pGroupBy, pnHeight);
737     heightOfExprList(p->pOrderBy, pnHeight);
738   }
739 }
740 
741 /*
742 ** Set the Expr.nHeight variable in the structure passed as an
743 ** argument. An expression with no children, Expr.pList or
744 ** Expr.pSelect member has a height of 1. Any other expression
745 ** has a height equal to the maximum height of any other
746 ** referenced Expr plus one.
747 **
748 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
749 ** if appropriate.
750 */
751 static void exprSetHeight(Expr *p){
752   int nHeight = 0;
753   heightOfExpr(p->pLeft, &nHeight);
754   heightOfExpr(p->pRight, &nHeight);
755   if( ExprHasProperty(p, EP_xIsSelect) ){
756     heightOfSelect(p->x.pSelect, &nHeight);
757   }else if( p->x.pList ){
758     heightOfExprList(p->x.pList, &nHeight);
759     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
760   }
761   p->nHeight = nHeight + 1;
762 }
763 
764 /*
765 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
766 ** the height is greater than the maximum allowed expression depth,
767 ** leave an error in pParse.
768 **
769 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
770 ** Expr.flags.
771 */
772 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
773   if( pParse->nErr ) return;
774   exprSetHeight(p);
775   sqlite3ExprCheckHeight(pParse, p->nHeight);
776 }
777 
778 /*
779 ** Return the maximum height of any expression tree referenced
780 ** by the select statement passed as an argument.
781 */
782 int sqlite3SelectExprHeight(const Select *p){
783   int nHeight = 0;
784   heightOfSelect(p, &nHeight);
785   return nHeight;
786 }
787 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
788 /*
789 ** Propagate all EP_Propagate flags from the Expr.x.pList into
790 ** Expr.flags.
791 */
792 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
793   if( pParse->nErr ) return;
794   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
795     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
796   }
797 }
798 #define exprSetHeight(y)
799 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
800 
801 /*
802 ** This routine is the core allocator for Expr nodes.
803 **
804 ** Construct a new expression node and return a pointer to it.  Memory
805 ** for this node and for the pToken argument is a single allocation
806 ** obtained from sqlite3DbMalloc().  The calling function
807 ** is responsible for making sure the node eventually gets freed.
808 **
809 ** If dequote is true, then the token (if it exists) is dequoted.
810 ** If dequote is false, no dequoting is performed.  The deQuote
811 ** parameter is ignored if pToken is NULL or if the token does not
812 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
813 ** then the EP_DblQuoted flag is set on the expression node.
814 **
815 ** Special case:  If op==TK_INTEGER and pToken points to a string that
816 ** can be translated into a 32-bit integer, then the token is not
817 ** stored in u.zToken.  Instead, the integer values is written
818 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
819 ** is allocated to hold the integer text and the dequote flag is ignored.
820 */
821 Expr *sqlite3ExprAlloc(
822   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
823   int op,                 /* Expression opcode */
824   const Token *pToken,    /* Token argument.  Might be NULL */
825   int dequote             /* True to dequote */
826 ){
827   Expr *pNew;
828   int nExtra = 0;
829   int iValue = 0;
830 
831   assert( db!=0 );
832   if( pToken ){
833     if( op!=TK_INTEGER || pToken->z==0
834           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
835       nExtra = pToken->n+1;
836       assert( iValue>=0 );
837     }
838   }
839   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
840   if( pNew ){
841     memset(pNew, 0, sizeof(Expr));
842     pNew->op = (u8)op;
843     pNew->iAgg = -1;
844     if( pToken ){
845       if( nExtra==0 ){
846         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
847         pNew->u.iValue = iValue;
848       }else{
849         pNew->u.zToken = (char*)&pNew[1];
850         assert( pToken->z!=0 || pToken->n==0 );
851         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
852         pNew->u.zToken[pToken->n] = 0;
853         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
854           sqlite3DequoteExpr(pNew);
855         }
856       }
857     }
858 #if SQLITE_MAX_EXPR_DEPTH>0
859     pNew->nHeight = 1;
860 #endif
861   }
862   return pNew;
863 }
864 
865 /*
866 ** Allocate a new expression node from a zero-terminated token that has
867 ** already been dequoted.
868 */
869 Expr *sqlite3Expr(
870   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
871   int op,                 /* Expression opcode */
872   const char *zToken      /* Token argument.  Might be NULL */
873 ){
874   Token x;
875   x.z = zToken;
876   x.n = sqlite3Strlen30(zToken);
877   return sqlite3ExprAlloc(db, op, &x, 0);
878 }
879 
880 /*
881 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
882 **
883 ** If pRoot==NULL that means that a memory allocation error has occurred.
884 ** In that case, delete the subtrees pLeft and pRight.
885 */
886 void sqlite3ExprAttachSubtrees(
887   sqlite3 *db,
888   Expr *pRoot,
889   Expr *pLeft,
890   Expr *pRight
891 ){
892   if( pRoot==0 ){
893     assert( db->mallocFailed );
894     sqlite3ExprDelete(db, pLeft);
895     sqlite3ExprDelete(db, pRight);
896   }else{
897     if( pRight ){
898       pRoot->pRight = pRight;
899       pRoot->flags |= EP_Propagate & pRight->flags;
900     }
901     if( pLeft ){
902       pRoot->pLeft = pLeft;
903       pRoot->flags |= EP_Propagate & pLeft->flags;
904     }
905     exprSetHeight(pRoot);
906   }
907 }
908 
909 /*
910 ** Allocate an Expr node which joins as many as two subtrees.
911 **
912 ** One or both of the subtrees can be NULL.  Return a pointer to the new
913 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
914 ** free the subtrees and return NULL.
915 */
916 Expr *sqlite3PExpr(
917   Parse *pParse,          /* Parsing context */
918   int op,                 /* Expression opcode */
919   Expr *pLeft,            /* Left operand */
920   Expr *pRight            /* Right operand */
921 ){
922   Expr *p;
923   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
924   if( p ){
925     memset(p, 0, sizeof(Expr));
926     p->op = op & 0xff;
927     p->iAgg = -1;
928     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
929     sqlite3ExprCheckHeight(pParse, p->nHeight);
930   }else{
931     sqlite3ExprDelete(pParse->db, pLeft);
932     sqlite3ExprDelete(pParse->db, pRight);
933   }
934   return p;
935 }
936 
937 /*
938 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
939 ** do a memory allocation failure) then delete the pSelect object.
940 */
941 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
942   if( pExpr ){
943     pExpr->x.pSelect = pSelect;
944     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
945     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
946   }else{
947     assert( pParse->db->mallocFailed );
948     sqlite3SelectDelete(pParse->db, pSelect);
949   }
950 }
951 
952 /*
953 ** Expression list pEList is a list of vector values. This function
954 ** converts the contents of pEList to a VALUES(...) Select statement
955 ** returning 1 row for each element of the list. For example, the
956 ** expression list:
957 **
958 **   ( (1,2), (3,4) (5,6) )
959 **
960 ** is translated to the equivalent of:
961 **
962 **   VALUES(1,2), (3,4), (5,6)
963 **
964 ** Each of the vector values in pEList must contain exactly nElem terms.
965 ** If a list element that is not a vector or does not contain nElem terms,
966 ** an error message is left in pParse.
967 **
968 ** This is used as part of processing IN(...) expressions with a list
969 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
970 */
971 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
972   int ii;
973   Select *pRet = 0;
974   assert( nElem>1 );
975   for(ii=0; ii<pEList->nExpr; ii++){
976     Select *pSel;
977     Expr *pExpr = pEList->a[ii].pExpr;
978     int nExprElem = (pExpr->op==TK_VECTOR ? pExpr->x.pList->nExpr : 1);
979     if( nExprElem!=nElem ){
980       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
981           nExprElem, nExprElem>1?"s":"", nElem
982       );
983       break;
984     }
985     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
986     pExpr->x.pList = 0;
987     if( pSel ){
988       if( pRet ){
989         pSel->op = TK_ALL;
990         pSel->pPrior = pRet;
991       }
992       pRet = pSel;
993     }
994   }
995 
996   if( pRet && pRet->pPrior ){
997     pRet->selFlags |= SF_MultiValue;
998   }
999   sqlite3ExprListDelete(pParse->db, pEList);
1000   return pRet;
1001 }
1002 
1003 /*
1004 ** Join two expressions using an AND operator.  If either expression is
1005 ** NULL, then just return the other expression.
1006 **
1007 ** If one side or the other of the AND is known to be false, then instead
1008 ** of returning an AND expression, just return a constant expression with
1009 ** a value of false.
1010 */
1011 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1012   sqlite3 *db = pParse->db;
1013   if( pLeft==0  ){
1014     return pRight;
1015   }else if( pRight==0 ){
1016     return pLeft;
1017   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1018          && !IN_RENAME_OBJECT
1019   ){
1020     sqlite3ExprDeferredDelete(pParse, pLeft);
1021     sqlite3ExprDeferredDelete(pParse, pRight);
1022     return sqlite3Expr(db, TK_INTEGER, "0");
1023   }else{
1024     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1025   }
1026 }
1027 
1028 /*
1029 ** Construct a new expression node for a function with multiple
1030 ** arguments.
1031 */
1032 Expr *sqlite3ExprFunction(
1033   Parse *pParse,        /* Parsing context */
1034   ExprList *pList,      /* Argument list */
1035   const Token *pToken,  /* Name of the function */
1036   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1037 ){
1038   Expr *pNew;
1039   sqlite3 *db = pParse->db;
1040   assert( pToken );
1041   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1042   if( pNew==0 ){
1043     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1044     return 0;
1045   }
1046   if( pList
1047    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1048    && !pParse->nested
1049   ){
1050     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1051   }
1052   pNew->x.pList = pList;
1053   ExprSetProperty(pNew, EP_HasFunc);
1054   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1055   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1056   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1057   return pNew;
1058 }
1059 
1060 /*
1061 ** Check to see if a function is usable according to current access
1062 ** rules:
1063 **
1064 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1065 **
1066 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1067 **                                top-level SQL
1068 **
1069 ** If the function is not usable, create an error.
1070 */
1071 void sqlite3ExprFunctionUsable(
1072   Parse *pParse,         /* Parsing and code generating context */
1073   const Expr *pExpr,     /* The function invocation */
1074   const FuncDef *pDef    /* The function being invoked */
1075 ){
1076   assert( !IN_RENAME_OBJECT );
1077   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1078   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1079     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1080      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1081     ){
1082       /* Functions prohibited in triggers and views if:
1083       **     (1) tagged with SQLITE_DIRECTONLY
1084       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1085       **         is tagged with SQLITE_FUNC_UNSAFE) and
1086       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1087       **         that the schema is possibly tainted).
1088       */
1089       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1090     }
1091   }
1092 }
1093 
1094 /*
1095 ** Assign a variable number to an expression that encodes a wildcard
1096 ** in the original SQL statement.
1097 **
1098 ** Wildcards consisting of a single "?" are assigned the next sequential
1099 ** variable number.
1100 **
1101 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1102 ** sure "nnn" is not too big to avoid a denial of service attack when
1103 ** the SQL statement comes from an external source.
1104 **
1105 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1106 ** as the previous instance of the same wildcard.  Or if this is the first
1107 ** instance of the wildcard, the next sequential variable number is
1108 ** assigned.
1109 */
1110 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1111   sqlite3 *db = pParse->db;
1112   const char *z;
1113   ynVar x;
1114 
1115   if( pExpr==0 ) return;
1116   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1117   z = pExpr->u.zToken;
1118   assert( z!=0 );
1119   assert( z[0]!=0 );
1120   assert( n==(u32)sqlite3Strlen30(z) );
1121   if( z[1]==0 ){
1122     /* Wildcard of the form "?".  Assign the next variable number */
1123     assert( z[0]=='?' );
1124     x = (ynVar)(++pParse->nVar);
1125   }else{
1126     int doAdd = 0;
1127     if( z[0]=='?' ){
1128       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1129       ** use it as the variable number */
1130       i64 i;
1131       int bOk;
1132       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1133         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1134         bOk = 1;
1135       }else{
1136         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1137       }
1138       testcase( i==0 );
1139       testcase( i==1 );
1140       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1141       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1142       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1143         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1144             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1145         return;
1146       }
1147       x = (ynVar)i;
1148       if( x>pParse->nVar ){
1149         pParse->nVar = (int)x;
1150         doAdd = 1;
1151       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1152         doAdd = 1;
1153       }
1154     }else{
1155       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1156       ** number as the prior appearance of the same name, or if the name
1157       ** has never appeared before, reuse the same variable number
1158       */
1159       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1160       if( x==0 ){
1161         x = (ynVar)(++pParse->nVar);
1162         doAdd = 1;
1163       }
1164     }
1165     if( doAdd ){
1166       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1167     }
1168   }
1169   pExpr->iColumn = x;
1170   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1171     sqlite3ErrorMsg(pParse, "too many SQL variables");
1172   }
1173 }
1174 
1175 /*
1176 ** Recursively delete an expression tree.
1177 */
1178 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1179   assert( p!=0 );
1180   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1181   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1182 
1183   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1184   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1185           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1186 #ifdef SQLITE_DEBUG
1187   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1188     assert( p->pLeft==0 );
1189     assert( p->pRight==0 );
1190     assert( p->x.pSelect==0 );
1191   }
1192 #endif
1193   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1194     /* The Expr.x union is never used at the same time as Expr.pRight */
1195     assert( p->x.pList==0 || p->pRight==0 );
1196     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1197     if( p->pRight ){
1198       assert( !ExprHasProperty(p, EP_WinFunc) );
1199       sqlite3ExprDeleteNN(db, p->pRight);
1200     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1201       assert( !ExprHasProperty(p, EP_WinFunc) );
1202       sqlite3SelectDelete(db, p->x.pSelect);
1203     }else{
1204       sqlite3ExprListDelete(db, p->x.pList);
1205 #ifndef SQLITE_OMIT_WINDOWFUNC
1206       if( ExprHasProperty(p, EP_WinFunc) ){
1207         sqlite3WindowDelete(db, p->y.pWin);
1208       }
1209 #endif
1210     }
1211   }
1212   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1213   if( !ExprHasProperty(p, EP_Static) ){
1214     sqlite3DbFreeNN(db, p);
1215   }
1216 }
1217 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1218   if( p ) sqlite3ExprDeleteNN(db, p);
1219 }
1220 
1221 
1222 /*
1223 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1224 ** This is similar to sqlite3ExprDelete() except that the delete is
1225 ** deferred untilthe pParse is deleted.
1226 **
1227 ** The pExpr might be deleted immediately on an OOM error.
1228 **
1229 ** The deferred delete is (currently) implemented by adding the
1230 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1231 */
1232 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1233   pParse->pConstExpr =
1234       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1235 }
1236 
1237 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1238 ** expression.
1239 */
1240 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1241   if( p ){
1242     if( IN_RENAME_OBJECT ){
1243       sqlite3RenameExprUnmap(pParse, p);
1244     }
1245     sqlite3ExprDeleteNN(pParse->db, p);
1246   }
1247 }
1248 
1249 /*
1250 ** Return the number of bytes allocated for the expression structure
1251 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1252 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1253 */
1254 static int exprStructSize(const Expr *p){
1255   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1256   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1257   return EXPR_FULLSIZE;
1258 }
1259 
1260 /*
1261 ** The dupedExpr*Size() routines each return the number of bytes required
1262 ** to store a copy of an expression or expression tree.  They differ in
1263 ** how much of the tree is measured.
1264 **
1265 **     dupedExprStructSize()     Size of only the Expr structure
1266 **     dupedExprNodeSize()       Size of Expr + space for token
1267 **     dupedExprSize()           Expr + token + subtree components
1268 **
1269 ***************************************************************************
1270 **
1271 ** The dupedExprStructSize() function returns two values OR-ed together:
1272 ** (1) the space required for a copy of the Expr structure only and
1273 ** (2) the EP_xxx flags that indicate what the structure size should be.
1274 ** The return values is always one of:
1275 **
1276 **      EXPR_FULLSIZE
1277 **      EXPR_REDUCEDSIZE   | EP_Reduced
1278 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1279 **
1280 ** The size of the structure can be found by masking the return value
1281 ** of this routine with 0xfff.  The flags can be found by masking the
1282 ** return value with EP_Reduced|EP_TokenOnly.
1283 **
1284 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1285 ** (unreduced) Expr objects as they or originally constructed by the parser.
1286 ** During expression analysis, extra information is computed and moved into
1287 ** later parts of the Expr object and that extra information might get chopped
1288 ** off if the expression is reduced.  Note also that it does not work to
1289 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1290 ** to reduce a pristine expression tree from the parser.  The implementation
1291 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1292 ** to enforce this constraint.
1293 */
1294 static int dupedExprStructSize(const Expr *p, int flags){
1295   int nSize;
1296   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1297   assert( EXPR_FULLSIZE<=0xfff );
1298   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1299   if( 0==flags || p->op==TK_SELECT_COLUMN
1300 #ifndef SQLITE_OMIT_WINDOWFUNC
1301    || ExprHasProperty(p, EP_WinFunc)
1302 #endif
1303   ){
1304     nSize = EXPR_FULLSIZE;
1305   }else{
1306     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1307     assert( !ExprHasProperty(p, EP_FromJoin) );
1308     assert( !ExprHasProperty(p, EP_MemToken) );
1309     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1310     if( p->pLeft || p->x.pList ){
1311       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1312     }else{
1313       assert( p->pRight==0 );
1314       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1315     }
1316   }
1317   return nSize;
1318 }
1319 
1320 /*
1321 ** This function returns the space in bytes required to store the copy
1322 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1323 ** string is defined.)
1324 */
1325 static int dupedExprNodeSize(const Expr *p, int flags){
1326   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1327   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1328     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1329   }
1330   return ROUND8(nByte);
1331 }
1332 
1333 /*
1334 ** Return the number of bytes required to create a duplicate of the
1335 ** expression passed as the first argument. The second argument is a
1336 ** mask containing EXPRDUP_XXX flags.
1337 **
1338 ** The value returned includes space to create a copy of the Expr struct
1339 ** itself and the buffer referred to by Expr.u.zToken, if any.
1340 **
1341 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1342 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1343 ** and Expr.pRight variables (but not for any structures pointed to or
1344 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1345 */
1346 static int dupedExprSize(const Expr *p, int flags){
1347   int nByte = 0;
1348   if( p ){
1349     nByte = dupedExprNodeSize(p, flags);
1350     if( flags&EXPRDUP_REDUCE ){
1351       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1352     }
1353   }
1354   return nByte;
1355 }
1356 
1357 /*
1358 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1359 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1360 ** to store the copy of expression p, the copies of p->u.zToken
1361 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1362 ** if any. Before returning, *pzBuffer is set to the first byte past the
1363 ** portion of the buffer copied into by this function.
1364 */
1365 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1366   Expr *pNew;           /* Value to return */
1367   u8 *zAlloc;           /* Memory space from which to build Expr object */
1368   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1369 
1370   assert( db!=0 );
1371   assert( p );
1372   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1373   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1374 
1375   /* Figure out where to write the new Expr structure. */
1376   if( pzBuffer ){
1377     zAlloc = *pzBuffer;
1378     staticFlag = EP_Static;
1379     assert( zAlloc!=0 );
1380   }else{
1381     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1382     staticFlag = 0;
1383   }
1384   pNew = (Expr *)zAlloc;
1385 
1386   if( pNew ){
1387     /* Set nNewSize to the size allocated for the structure pointed to
1388     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1389     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1390     ** by the copy of the p->u.zToken string (if any).
1391     */
1392     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1393     const int nNewSize = nStructSize & 0xfff;
1394     int nToken;
1395     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1396       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1397     }else{
1398       nToken = 0;
1399     }
1400     if( dupFlags ){
1401       assert( ExprHasProperty(p, EP_Reduced)==0 );
1402       memcpy(zAlloc, p, nNewSize);
1403     }else{
1404       u32 nSize = (u32)exprStructSize(p);
1405       memcpy(zAlloc, p, nSize);
1406       if( nSize<EXPR_FULLSIZE ){
1407         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1408       }
1409     }
1410 
1411     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1412     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1413     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1414     pNew->flags |= staticFlag;
1415     ExprClearVVAProperties(pNew);
1416     if( dupFlags ){
1417       ExprSetVVAProperty(pNew, EP_Immutable);
1418     }
1419 
1420     /* Copy the p->u.zToken string, if any. */
1421     if( nToken ){
1422       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1423       memcpy(zToken, p->u.zToken, nToken);
1424     }
1425 
1426     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1427       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1428       if( ExprHasProperty(p, EP_xIsSelect) ){
1429         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1430       }else{
1431         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1432       }
1433     }
1434 
1435     /* Fill in pNew->pLeft and pNew->pRight. */
1436     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1437       zAlloc += dupedExprNodeSize(p, dupFlags);
1438       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1439         pNew->pLeft = p->pLeft ?
1440                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1441         pNew->pRight = p->pRight ?
1442                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1443       }
1444 #ifndef SQLITE_OMIT_WINDOWFUNC
1445       if( ExprHasProperty(p, EP_WinFunc) ){
1446         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1447         assert( ExprHasProperty(pNew, EP_WinFunc) );
1448       }
1449 #endif /* SQLITE_OMIT_WINDOWFUNC */
1450       if( pzBuffer ){
1451         *pzBuffer = zAlloc;
1452       }
1453     }else{
1454       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1455         if( pNew->op==TK_SELECT_COLUMN ){
1456           pNew->pLeft = p->pLeft;
1457           assert( p->pRight==0  || p->pRight==p->pLeft
1458                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1459         }else{
1460           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1461         }
1462         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1463       }
1464     }
1465   }
1466   return pNew;
1467 }
1468 
1469 /*
1470 ** Create and return a deep copy of the object passed as the second
1471 ** argument. If an OOM condition is encountered, NULL is returned
1472 ** and the db->mallocFailed flag set.
1473 */
1474 #ifndef SQLITE_OMIT_CTE
1475 With *sqlite3WithDup(sqlite3 *db, With *p){
1476   With *pRet = 0;
1477   if( p ){
1478     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1479     pRet = sqlite3DbMallocZero(db, nByte);
1480     if( pRet ){
1481       int i;
1482       pRet->nCte = p->nCte;
1483       for(i=0; i<p->nCte; i++){
1484         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1485         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1486         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1487       }
1488     }
1489   }
1490   return pRet;
1491 }
1492 #else
1493 # define sqlite3WithDup(x,y) 0
1494 #endif
1495 
1496 #ifndef SQLITE_OMIT_WINDOWFUNC
1497 /*
1498 ** The gatherSelectWindows() procedure and its helper routine
1499 ** gatherSelectWindowsCallback() are used to scan all the expressions
1500 ** an a newly duplicated SELECT statement and gather all of the Window
1501 ** objects found there, assembling them onto the linked list at Select->pWin.
1502 */
1503 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1504   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1505     Select *pSelect = pWalker->u.pSelect;
1506     Window *pWin = pExpr->y.pWin;
1507     assert( pWin );
1508     assert( IsWindowFunc(pExpr) );
1509     assert( pWin->ppThis==0 );
1510     sqlite3WindowLink(pSelect, pWin);
1511   }
1512   return WRC_Continue;
1513 }
1514 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1515   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1516 }
1517 static void gatherSelectWindows(Select *p){
1518   Walker w;
1519   w.xExprCallback = gatherSelectWindowsCallback;
1520   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1521   w.xSelectCallback2 = 0;
1522   w.pParse = 0;
1523   w.u.pSelect = p;
1524   sqlite3WalkSelect(&w, p);
1525 }
1526 #endif
1527 
1528 
1529 /*
1530 ** The following group of routines make deep copies of expressions,
1531 ** expression lists, ID lists, and select statements.  The copies can
1532 ** be deleted (by being passed to their respective ...Delete() routines)
1533 ** without effecting the originals.
1534 **
1535 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1536 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1537 ** by subsequent calls to sqlite*ListAppend() routines.
1538 **
1539 ** Any tables that the SrcList might point to are not duplicated.
1540 **
1541 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1542 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1543 ** truncated version of the usual Expr structure that will be stored as
1544 ** part of the in-memory representation of the database schema.
1545 */
1546 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1547   assert( flags==0 || flags==EXPRDUP_REDUCE );
1548   return p ? exprDup(db, p, flags, 0) : 0;
1549 }
1550 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1551   ExprList *pNew;
1552   struct ExprList_item *pItem;
1553   const struct ExprList_item *pOldItem;
1554   int i;
1555   Expr *pPriorSelectColOld = 0;
1556   Expr *pPriorSelectColNew = 0;
1557   assert( db!=0 );
1558   if( p==0 ) return 0;
1559   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1560   if( pNew==0 ) return 0;
1561   pNew->nExpr = p->nExpr;
1562   pNew->nAlloc = p->nAlloc;
1563   pItem = pNew->a;
1564   pOldItem = p->a;
1565   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1566     Expr *pOldExpr = pOldItem->pExpr;
1567     Expr *pNewExpr;
1568     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1569     if( pOldExpr
1570      && pOldExpr->op==TK_SELECT_COLUMN
1571      && (pNewExpr = pItem->pExpr)!=0
1572     ){
1573       if( pNewExpr->pRight ){
1574         pPriorSelectColOld = pOldExpr->pRight;
1575         pPriorSelectColNew = pNewExpr->pRight;
1576         pNewExpr->pLeft = pNewExpr->pRight;
1577       }else{
1578         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1579           pPriorSelectColOld = pOldExpr->pLeft;
1580           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1581           pNewExpr->pRight = pPriorSelectColNew;
1582         }
1583         pNewExpr->pLeft = pPriorSelectColNew;
1584       }
1585     }
1586     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1587     pItem->sortFlags = pOldItem->sortFlags;
1588     pItem->eEName = pOldItem->eEName;
1589     pItem->done = 0;
1590     pItem->bNulls = pOldItem->bNulls;
1591     pItem->bSorterRef = pOldItem->bSorterRef;
1592     pItem->u = pOldItem->u;
1593   }
1594   return pNew;
1595 }
1596 
1597 /*
1598 ** If cursors, triggers, views and subqueries are all omitted from
1599 ** the build, then none of the following routines, except for
1600 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1601 ** called with a NULL argument.
1602 */
1603 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1604  || !defined(SQLITE_OMIT_SUBQUERY)
1605 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1606   SrcList *pNew;
1607   int i;
1608   int nByte;
1609   assert( db!=0 );
1610   if( p==0 ) return 0;
1611   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1612   pNew = sqlite3DbMallocRawNN(db, nByte );
1613   if( pNew==0 ) return 0;
1614   pNew->nSrc = pNew->nAlloc = p->nSrc;
1615   for(i=0; i<p->nSrc; i++){
1616     SrcItem *pNewItem = &pNew->a[i];
1617     const SrcItem *pOldItem = &p->a[i];
1618     Table *pTab;
1619     pNewItem->pSchema = pOldItem->pSchema;
1620     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1621     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1622     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1623     pNewItem->fg = pOldItem->fg;
1624     pNewItem->iCursor = pOldItem->iCursor;
1625     pNewItem->addrFillSub = pOldItem->addrFillSub;
1626     pNewItem->regReturn = pOldItem->regReturn;
1627     if( pNewItem->fg.isIndexedBy ){
1628       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1629     }
1630     pNewItem->u2 = pOldItem->u2;
1631     if( pNewItem->fg.isCte ){
1632       pNewItem->u2.pCteUse->nUse++;
1633     }
1634     if( pNewItem->fg.isTabFunc ){
1635       pNewItem->u1.pFuncArg =
1636           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1637     }
1638     pTab = pNewItem->pTab = pOldItem->pTab;
1639     if( pTab ){
1640       pTab->nTabRef++;
1641     }
1642     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1643     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1644     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1645     pNewItem->colUsed = pOldItem->colUsed;
1646   }
1647   return pNew;
1648 }
1649 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1650   IdList *pNew;
1651   int i;
1652   assert( db!=0 );
1653   if( p==0 ) return 0;
1654   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1655   if( pNew==0 ) return 0;
1656   pNew->nId = p->nId;
1657   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1658   if( pNew->a==0 ){
1659     sqlite3DbFreeNN(db, pNew);
1660     return 0;
1661   }
1662   /* Note that because the size of the allocation for p->a[] is not
1663   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1664   ** on the duplicate created by this function. */
1665   for(i=0; i<p->nId; i++){
1666     struct IdList_item *pNewItem = &pNew->a[i];
1667     struct IdList_item *pOldItem = &p->a[i];
1668     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1669     pNewItem->idx = pOldItem->idx;
1670   }
1671   return pNew;
1672 }
1673 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1674   Select *pRet = 0;
1675   Select *pNext = 0;
1676   Select **pp = &pRet;
1677   const Select *p;
1678 
1679   assert( db!=0 );
1680   for(p=pDup; p; p=p->pPrior){
1681     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1682     if( pNew==0 ) break;
1683     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1684     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1685     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1686     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1687     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1688     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1689     pNew->op = p->op;
1690     pNew->pNext = pNext;
1691     pNew->pPrior = 0;
1692     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1693     pNew->iLimit = 0;
1694     pNew->iOffset = 0;
1695     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1696     pNew->addrOpenEphm[0] = -1;
1697     pNew->addrOpenEphm[1] = -1;
1698     pNew->nSelectRow = p->nSelectRow;
1699     pNew->pWith = sqlite3WithDup(db, p->pWith);
1700 #ifndef SQLITE_OMIT_WINDOWFUNC
1701     pNew->pWin = 0;
1702     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1703     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1704 #endif
1705     pNew->selId = p->selId;
1706     if( db->mallocFailed ){
1707       /* Any prior OOM might have left the Select object incomplete.
1708       ** Delete the whole thing rather than allow an incomplete Select
1709       ** to be used by the code generator. */
1710       pNew->pNext = 0;
1711       sqlite3SelectDelete(db, pNew);
1712       break;
1713     }
1714     *pp = pNew;
1715     pp = &pNew->pPrior;
1716     pNext = pNew;
1717   }
1718 
1719   return pRet;
1720 }
1721 #else
1722 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1723   assert( p==0 );
1724   return 0;
1725 }
1726 #endif
1727 
1728 
1729 /*
1730 ** Add a new element to the end of an expression list.  If pList is
1731 ** initially NULL, then create a new expression list.
1732 **
1733 ** The pList argument must be either NULL or a pointer to an ExprList
1734 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1735 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1736 ** Reason:  This routine assumes that the number of slots in pList->a[]
1737 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1738 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1739 **
1740 ** If a memory allocation error occurs, the entire list is freed and
1741 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1742 ** that the new entry was successfully appended.
1743 */
1744 static const struct ExprList_item zeroItem = {0};
1745 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1746   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1747   Expr *pExpr             /* Expression to be appended. Might be NULL */
1748 ){
1749   struct ExprList_item *pItem;
1750   ExprList *pList;
1751 
1752   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1753   if( pList==0 ){
1754     sqlite3ExprDelete(db, pExpr);
1755     return 0;
1756   }
1757   pList->nAlloc = 4;
1758   pList->nExpr = 1;
1759   pItem = &pList->a[0];
1760   *pItem = zeroItem;
1761   pItem->pExpr = pExpr;
1762   return pList;
1763 }
1764 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1765   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1766   ExprList *pList,        /* List to which to append. Might be NULL */
1767   Expr *pExpr             /* Expression to be appended. Might be NULL */
1768 ){
1769   struct ExprList_item *pItem;
1770   ExprList *pNew;
1771   pList->nAlloc *= 2;
1772   pNew = sqlite3DbRealloc(db, pList,
1773        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1774   if( pNew==0 ){
1775     sqlite3ExprListDelete(db, pList);
1776     sqlite3ExprDelete(db, pExpr);
1777     return 0;
1778   }else{
1779     pList = pNew;
1780   }
1781   pItem = &pList->a[pList->nExpr++];
1782   *pItem = zeroItem;
1783   pItem->pExpr = pExpr;
1784   return pList;
1785 }
1786 ExprList *sqlite3ExprListAppend(
1787   Parse *pParse,          /* Parsing context */
1788   ExprList *pList,        /* List to which to append. Might be NULL */
1789   Expr *pExpr             /* Expression to be appended. Might be NULL */
1790 ){
1791   struct ExprList_item *pItem;
1792   if( pList==0 ){
1793     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1794   }
1795   if( pList->nAlloc<pList->nExpr+1 ){
1796     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1797   }
1798   pItem = &pList->a[pList->nExpr++];
1799   *pItem = zeroItem;
1800   pItem->pExpr = pExpr;
1801   return pList;
1802 }
1803 
1804 /*
1805 ** pColumns and pExpr form a vector assignment which is part of the SET
1806 ** clause of an UPDATE statement.  Like this:
1807 **
1808 **        (a,b,c) = (expr1,expr2,expr3)
1809 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1810 **
1811 ** For each term of the vector assignment, append new entries to the
1812 ** expression list pList.  In the case of a subquery on the RHS, append
1813 ** TK_SELECT_COLUMN expressions.
1814 */
1815 ExprList *sqlite3ExprListAppendVector(
1816   Parse *pParse,         /* Parsing context */
1817   ExprList *pList,       /* List to which to append. Might be NULL */
1818   IdList *pColumns,      /* List of names of LHS of the assignment */
1819   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1820 ){
1821   sqlite3 *db = pParse->db;
1822   int n;
1823   int i;
1824   int iFirst = pList ? pList->nExpr : 0;
1825   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1826   ** exit prior to this routine being invoked */
1827   if( NEVER(pColumns==0) ) goto vector_append_error;
1828   if( pExpr==0 ) goto vector_append_error;
1829 
1830   /* If the RHS is a vector, then we can immediately check to see that
1831   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1832   ** wildcards ("*") in the result set of the SELECT must be expanded before
1833   ** we can do the size check, so defer the size check until code generation.
1834   */
1835   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1836     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1837                     pColumns->nId, n);
1838     goto vector_append_error;
1839   }
1840 
1841   for(i=0; i<pColumns->nId; i++){
1842     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1843     assert( pSubExpr!=0 || db->mallocFailed );
1844     if( pSubExpr==0 ) continue;
1845     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1846     if( pList ){
1847       assert( pList->nExpr==iFirst+i+1 );
1848       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1849       pColumns->a[i].zName = 0;
1850     }
1851   }
1852 
1853   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1854     Expr *pFirst = pList->a[iFirst].pExpr;
1855     assert( pFirst!=0 );
1856     assert( pFirst->op==TK_SELECT_COLUMN );
1857 
1858     /* Store the SELECT statement in pRight so it will be deleted when
1859     ** sqlite3ExprListDelete() is called */
1860     pFirst->pRight = pExpr;
1861     pExpr = 0;
1862 
1863     /* Remember the size of the LHS in iTable so that we can check that
1864     ** the RHS and LHS sizes match during code generation. */
1865     pFirst->iTable = pColumns->nId;
1866   }
1867 
1868 vector_append_error:
1869   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1870   sqlite3IdListDelete(db, pColumns);
1871   return pList;
1872 }
1873 
1874 /*
1875 ** Set the sort order for the last element on the given ExprList.
1876 */
1877 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1878   struct ExprList_item *pItem;
1879   if( p==0 ) return;
1880   assert( p->nExpr>0 );
1881 
1882   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1883   assert( iSortOrder==SQLITE_SO_UNDEFINED
1884        || iSortOrder==SQLITE_SO_ASC
1885        || iSortOrder==SQLITE_SO_DESC
1886   );
1887   assert( eNulls==SQLITE_SO_UNDEFINED
1888        || eNulls==SQLITE_SO_ASC
1889        || eNulls==SQLITE_SO_DESC
1890   );
1891 
1892   pItem = &p->a[p->nExpr-1];
1893   assert( pItem->bNulls==0 );
1894   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1895     iSortOrder = SQLITE_SO_ASC;
1896   }
1897   pItem->sortFlags = (u8)iSortOrder;
1898 
1899   if( eNulls!=SQLITE_SO_UNDEFINED ){
1900     pItem->bNulls = 1;
1901     if( iSortOrder!=eNulls ){
1902       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1903     }
1904   }
1905 }
1906 
1907 /*
1908 ** Set the ExprList.a[].zEName element of the most recently added item
1909 ** on the expression list.
1910 **
1911 ** pList might be NULL following an OOM error.  But pName should never be
1912 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1913 ** is set.
1914 */
1915 void sqlite3ExprListSetName(
1916   Parse *pParse,          /* Parsing context */
1917   ExprList *pList,        /* List to which to add the span. */
1918   const Token *pName,     /* Name to be added */
1919   int dequote             /* True to cause the name to be dequoted */
1920 ){
1921   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1922   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1923   if( pList ){
1924     struct ExprList_item *pItem;
1925     assert( pList->nExpr>0 );
1926     pItem = &pList->a[pList->nExpr-1];
1927     assert( pItem->zEName==0 );
1928     assert( pItem->eEName==ENAME_NAME );
1929     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1930     if( dequote ){
1931       /* If dequote==0, then pName->z does not point to part of a DDL
1932       ** statement handled by the parser. And so no token need be added
1933       ** to the token-map.  */
1934       sqlite3Dequote(pItem->zEName);
1935       if( IN_RENAME_OBJECT ){
1936         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1937       }
1938     }
1939   }
1940 }
1941 
1942 /*
1943 ** Set the ExprList.a[].zSpan element of the most recently added item
1944 ** on the expression list.
1945 **
1946 ** pList might be NULL following an OOM error.  But pSpan should never be
1947 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1948 ** is set.
1949 */
1950 void sqlite3ExprListSetSpan(
1951   Parse *pParse,          /* Parsing context */
1952   ExprList *pList,        /* List to which to add the span. */
1953   const char *zStart,     /* Start of the span */
1954   const char *zEnd        /* End of the span */
1955 ){
1956   sqlite3 *db = pParse->db;
1957   assert( pList!=0 || db->mallocFailed!=0 );
1958   if( pList ){
1959     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1960     assert( pList->nExpr>0 );
1961     if( pItem->zEName==0 ){
1962       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1963       pItem->eEName = ENAME_SPAN;
1964     }
1965   }
1966 }
1967 
1968 /*
1969 ** If the expression list pEList contains more than iLimit elements,
1970 ** leave an error message in pParse.
1971 */
1972 void sqlite3ExprListCheckLength(
1973   Parse *pParse,
1974   ExprList *pEList,
1975   const char *zObject
1976 ){
1977   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1978   testcase( pEList && pEList->nExpr==mx );
1979   testcase( pEList && pEList->nExpr==mx+1 );
1980   if( pEList && pEList->nExpr>mx ){
1981     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1982   }
1983 }
1984 
1985 /*
1986 ** Delete an entire expression list.
1987 */
1988 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1989   int i = pList->nExpr;
1990   struct ExprList_item *pItem =  pList->a;
1991   assert( pList->nExpr>0 );
1992   do{
1993     sqlite3ExprDelete(db, pItem->pExpr);
1994     sqlite3DbFree(db, pItem->zEName);
1995     pItem++;
1996   }while( --i>0 );
1997   sqlite3DbFreeNN(db, pList);
1998 }
1999 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2000   if( pList ) exprListDeleteNN(db, pList);
2001 }
2002 
2003 /*
2004 ** Return the bitwise-OR of all Expr.flags fields in the given
2005 ** ExprList.
2006 */
2007 u32 sqlite3ExprListFlags(const ExprList *pList){
2008   int i;
2009   u32 m = 0;
2010   assert( pList!=0 );
2011   for(i=0; i<pList->nExpr; i++){
2012      Expr *pExpr = pList->a[i].pExpr;
2013      assert( pExpr!=0 );
2014      m |= pExpr->flags;
2015   }
2016   return m;
2017 }
2018 
2019 /*
2020 ** This is a SELECT-node callback for the expression walker that
2021 ** always "fails".  By "fail" in this case, we mean set
2022 ** pWalker->eCode to zero and abort.
2023 **
2024 ** This callback is used by multiple expression walkers.
2025 */
2026 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2027   UNUSED_PARAMETER(NotUsed);
2028   pWalker->eCode = 0;
2029   return WRC_Abort;
2030 }
2031 
2032 /*
2033 ** Check the input string to see if it is "true" or "false" (in any case).
2034 **
2035 **       If the string is....           Return
2036 **         "true"                         EP_IsTrue
2037 **         "false"                        EP_IsFalse
2038 **         anything else                  0
2039 */
2040 u32 sqlite3IsTrueOrFalse(const char *zIn){
2041   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2042   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2043   return 0;
2044 }
2045 
2046 
2047 /*
2048 ** If the input expression is an ID with the name "true" or "false"
2049 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2050 ** the conversion happened, and zero if the expression is unaltered.
2051 */
2052 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2053   u32 v;
2054   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2055   if( !ExprHasProperty(pExpr, EP_Quoted)
2056    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2057   ){
2058     pExpr->op = TK_TRUEFALSE;
2059     ExprSetProperty(pExpr, v);
2060     return 1;
2061   }
2062   return 0;
2063 }
2064 
2065 /*
2066 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2067 ** and 0 if it is FALSE.
2068 */
2069 int sqlite3ExprTruthValue(const Expr *pExpr){
2070   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2071   assert( pExpr->op==TK_TRUEFALSE );
2072   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2073        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2074   return pExpr->u.zToken[4]==0;
2075 }
2076 
2077 /*
2078 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2079 ** terms that are always true or false.  Return the simplified expression.
2080 ** Or return the original expression if no simplification is possible.
2081 **
2082 ** Examples:
2083 **
2084 **     (x<10) AND true                =>   (x<10)
2085 **     (x<10) AND false               =>   false
2086 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2087 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2088 **     (y=22) OR true                 =>   true
2089 */
2090 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2091   assert( pExpr!=0 );
2092   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2093     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2094     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2095     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2096       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2097     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2098       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2099     }
2100   }
2101   return pExpr;
2102 }
2103 
2104 
2105 /*
2106 ** These routines are Walker callbacks used to check expressions to
2107 ** see if they are "constant" for some definition of constant.  The
2108 ** Walker.eCode value determines the type of "constant" we are looking
2109 ** for.
2110 **
2111 ** These callback routines are used to implement the following:
2112 **
2113 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2114 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2115 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2116 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2117 **
2118 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2119 ** is found to not be a constant.
2120 **
2121 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2122 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2123 ** when parsing an existing schema out of the sqlite_schema table and 4
2124 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2125 ** an error for new statements, but is silently converted
2126 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2127 ** contain a bound parameter because they were generated by older versions
2128 ** of SQLite to be parsed by newer versions of SQLite without raising a
2129 ** malformed schema error.
2130 */
2131 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2132 
2133   /* If pWalker->eCode is 2 then any term of the expression that comes from
2134   ** the ON or USING clauses of a left join disqualifies the expression
2135   ** from being considered constant. */
2136   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2137     pWalker->eCode = 0;
2138     return WRC_Abort;
2139   }
2140 
2141   switch( pExpr->op ){
2142     /* Consider functions to be constant if all their arguments are constant
2143     ** and either pWalker->eCode==4 or 5 or the function has the
2144     ** SQLITE_FUNC_CONST flag. */
2145     case TK_FUNCTION:
2146       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2147        && !ExprHasProperty(pExpr, EP_WinFunc)
2148       ){
2149         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2150         return WRC_Continue;
2151       }else{
2152         pWalker->eCode = 0;
2153         return WRC_Abort;
2154       }
2155     case TK_ID:
2156       /* Convert "true" or "false" in a DEFAULT clause into the
2157       ** appropriate TK_TRUEFALSE operator */
2158       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2159         return WRC_Prune;
2160       }
2161       /* no break */ deliberate_fall_through
2162     case TK_COLUMN:
2163     case TK_AGG_FUNCTION:
2164     case TK_AGG_COLUMN:
2165       testcase( pExpr->op==TK_ID );
2166       testcase( pExpr->op==TK_COLUMN );
2167       testcase( pExpr->op==TK_AGG_FUNCTION );
2168       testcase( pExpr->op==TK_AGG_COLUMN );
2169       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2170         return WRC_Continue;
2171       }
2172       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2173         return WRC_Continue;
2174       }
2175       /* no break */ deliberate_fall_through
2176     case TK_IF_NULL_ROW:
2177     case TK_REGISTER:
2178     case TK_DOT:
2179       testcase( pExpr->op==TK_REGISTER );
2180       testcase( pExpr->op==TK_IF_NULL_ROW );
2181       testcase( pExpr->op==TK_DOT );
2182       pWalker->eCode = 0;
2183       return WRC_Abort;
2184     case TK_VARIABLE:
2185       if( pWalker->eCode==5 ){
2186         /* Silently convert bound parameters that appear inside of CREATE
2187         ** statements into a NULL when parsing the CREATE statement text out
2188         ** of the sqlite_schema table */
2189         pExpr->op = TK_NULL;
2190       }else if( pWalker->eCode==4 ){
2191         /* A bound parameter in a CREATE statement that originates from
2192         ** sqlite3_prepare() causes an error */
2193         pWalker->eCode = 0;
2194         return WRC_Abort;
2195       }
2196       /* no break */ deliberate_fall_through
2197     default:
2198       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2199       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2200       return WRC_Continue;
2201   }
2202 }
2203 static int exprIsConst(Expr *p, int initFlag, int iCur){
2204   Walker w;
2205   w.eCode = initFlag;
2206   w.xExprCallback = exprNodeIsConstant;
2207   w.xSelectCallback = sqlite3SelectWalkFail;
2208 #ifdef SQLITE_DEBUG
2209   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2210 #endif
2211   w.u.iCur = iCur;
2212   sqlite3WalkExpr(&w, p);
2213   return w.eCode;
2214 }
2215 
2216 /*
2217 ** Walk an expression tree.  Return non-zero if the expression is constant
2218 ** and 0 if it involves variables or function calls.
2219 **
2220 ** For the purposes of this function, a double-quoted string (ex: "abc")
2221 ** is considered a variable but a single-quoted string (ex: 'abc') is
2222 ** a constant.
2223 */
2224 int sqlite3ExprIsConstant(Expr *p){
2225   return exprIsConst(p, 1, 0);
2226 }
2227 
2228 /*
2229 ** Walk an expression tree.  Return non-zero if
2230 **
2231 **   (1) the expression is constant, and
2232 **   (2) the expression does originate in the ON or USING clause
2233 **       of a LEFT JOIN, and
2234 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2235 **       operands created by the constant propagation optimization.
2236 **
2237 ** When this routine returns true, it indicates that the expression
2238 ** can be added to the pParse->pConstExpr list and evaluated once when
2239 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2240 */
2241 int sqlite3ExprIsConstantNotJoin(Expr *p){
2242   return exprIsConst(p, 2, 0);
2243 }
2244 
2245 /*
2246 ** Walk an expression tree.  Return non-zero if the expression is constant
2247 ** for any single row of the table with cursor iCur.  In other words, the
2248 ** expression must not refer to any non-deterministic function nor any
2249 ** table other than iCur.
2250 */
2251 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2252   return exprIsConst(p, 3, iCur);
2253 }
2254 
2255 
2256 /*
2257 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2258 */
2259 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2260   ExprList *pGroupBy = pWalker->u.pGroupBy;
2261   int i;
2262 
2263   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2264   ** it constant.  */
2265   for(i=0; i<pGroupBy->nExpr; i++){
2266     Expr *p = pGroupBy->a[i].pExpr;
2267     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2268       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2269       if( sqlite3IsBinary(pColl) ){
2270         return WRC_Prune;
2271       }
2272     }
2273   }
2274 
2275   /* Check if pExpr is a sub-select. If so, consider it variable. */
2276   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2277     pWalker->eCode = 0;
2278     return WRC_Abort;
2279   }
2280 
2281   return exprNodeIsConstant(pWalker, pExpr);
2282 }
2283 
2284 /*
2285 ** Walk the expression tree passed as the first argument. Return non-zero
2286 ** if the expression consists entirely of constants or copies of terms
2287 ** in pGroupBy that sort with the BINARY collation sequence.
2288 **
2289 ** This routine is used to determine if a term of the HAVING clause can
2290 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2291 ** the value of the HAVING clause term must be the same for all members of
2292 ** a "group".  The requirement that the GROUP BY term must be BINARY
2293 ** assumes that no other collating sequence will have a finer-grained
2294 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2295 ** A=B in every other collating sequence.  The requirement that the
2296 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2297 ** to promote HAVING clauses that use the same alternative collating
2298 ** sequence as the GROUP BY term, but that is much harder to check,
2299 ** alternative collating sequences are uncommon, and this is only an
2300 ** optimization, so we take the easy way out and simply require the
2301 ** GROUP BY to use the BINARY collating sequence.
2302 */
2303 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2304   Walker w;
2305   w.eCode = 1;
2306   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2307   w.xSelectCallback = 0;
2308   w.u.pGroupBy = pGroupBy;
2309   w.pParse = pParse;
2310   sqlite3WalkExpr(&w, p);
2311   return w.eCode;
2312 }
2313 
2314 /*
2315 ** Walk an expression tree for the DEFAULT field of a column definition
2316 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2317 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2318 ** the expression is constant or a function call with constant arguments.
2319 ** Return and 0 if there are any variables.
2320 **
2321 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2322 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2323 ** (such as ? or $abc) in the expression are converted into NULL.  When
2324 ** isInit is false, parameters raise an error.  Parameters should not be
2325 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2326 ** allowed it, so we need to support it when reading sqlite_schema for
2327 ** backwards compatibility.
2328 **
2329 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2330 **
2331 ** For the purposes of this function, a double-quoted string (ex: "abc")
2332 ** is considered a variable but a single-quoted string (ex: 'abc') is
2333 ** a constant.
2334 */
2335 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2336   assert( isInit==0 || isInit==1 );
2337   return exprIsConst(p, 4+isInit, 0);
2338 }
2339 
2340 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2341 /*
2342 ** Walk an expression tree.  Return 1 if the expression contains a
2343 ** subquery of some kind.  Return 0 if there are no subqueries.
2344 */
2345 int sqlite3ExprContainsSubquery(Expr *p){
2346   Walker w;
2347   w.eCode = 1;
2348   w.xExprCallback = sqlite3ExprWalkNoop;
2349   w.xSelectCallback = sqlite3SelectWalkFail;
2350 #ifdef SQLITE_DEBUG
2351   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2352 #endif
2353   sqlite3WalkExpr(&w, p);
2354   return w.eCode==0;
2355 }
2356 #endif
2357 
2358 /*
2359 ** If the expression p codes a constant integer that is small enough
2360 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2361 ** in *pValue.  If the expression is not an integer or if it is too big
2362 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2363 */
2364 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2365   int rc = 0;
2366   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2367 
2368   /* If an expression is an integer literal that fits in a signed 32-bit
2369   ** integer, then the EP_IntValue flag will have already been set */
2370   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2371            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2372 
2373   if( p->flags & EP_IntValue ){
2374     *pValue = p->u.iValue;
2375     return 1;
2376   }
2377   switch( p->op ){
2378     case TK_UPLUS: {
2379       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2380       break;
2381     }
2382     case TK_UMINUS: {
2383       int v;
2384       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2385         assert( v!=(-2147483647-1) );
2386         *pValue = -v;
2387         rc = 1;
2388       }
2389       break;
2390     }
2391     default: break;
2392   }
2393   return rc;
2394 }
2395 
2396 /*
2397 ** Return FALSE if there is no chance that the expression can be NULL.
2398 **
2399 ** If the expression might be NULL or if the expression is too complex
2400 ** to tell return TRUE.
2401 **
2402 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2403 ** when we know that a value cannot be NULL.  Hence, a false positive
2404 ** (returning TRUE when in fact the expression can never be NULL) might
2405 ** be a small performance hit but is otherwise harmless.  On the other
2406 ** hand, a false negative (returning FALSE when the result could be NULL)
2407 ** will likely result in an incorrect answer.  So when in doubt, return
2408 ** TRUE.
2409 */
2410 int sqlite3ExprCanBeNull(const Expr *p){
2411   u8 op;
2412   assert( p!=0 );
2413   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2414     p = p->pLeft;
2415     assert( p!=0 );
2416   }
2417   op = p->op;
2418   if( op==TK_REGISTER ) op = p->op2;
2419   switch( op ){
2420     case TK_INTEGER:
2421     case TK_STRING:
2422     case TK_FLOAT:
2423     case TK_BLOB:
2424       return 0;
2425     case TK_COLUMN:
2426       return ExprHasProperty(p, EP_CanBeNull) ||
2427              p->y.pTab==0 ||  /* Reference to column of index on expression */
2428              (p->iColumn>=0
2429               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2430               && p->y.pTab->aCol[p->iColumn].notNull==0);
2431     default:
2432       return 1;
2433   }
2434 }
2435 
2436 /*
2437 ** Return TRUE if the given expression is a constant which would be
2438 ** unchanged by OP_Affinity with the affinity given in the second
2439 ** argument.
2440 **
2441 ** This routine is used to determine if the OP_Affinity operation
2442 ** can be omitted.  When in doubt return FALSE.  A false negative
2443 ** is harmless.  A false positive, however, can result in the wrong
2444 ** answer.
2445 */
2446 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2447   u8 op;
2448   int unaryMinus = 0;
2449   if( aff==SQLITE_AFF_BLOB ) return 1;
2450   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2451     if( p->op==TK_UMINUS ) unaryMinus = 1;
2452     p = p->pLeft;
2453   }
2454   op = p->op;
2455   if( op==TK_REGISTER ) op = p->op2;
2456   switch( op ){
2457     case TK_INTEGER: {
2458       return aff>=SQLITE_AFF_NUMERIC;
2459     }
2460     case TK_FLOAT: {
2461       return aff>=SQLITE_AFF_NUMERIC;
2462     }
2463     case TK_STRING: {
2464       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2465     }
2466     case TK_BLOB: {
2467       return !unaryMinus;
2468     }
2469     case TK_COLUMN: {
2470       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2471       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2472     }
2473     default: {
2474       return 0;
2475     }
2476   }
2477 }
2478 
2479 /*
2480 ** Return TRUE if the given string is a row-id column name.
2481 */
2482 int sqlite3IsRowid(const char *z){
2483   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2484   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2485   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2486   return 0;
2487 }
2488 
2489 /*
2490 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2491 ** that can be simplified to a direct table access, then return
2492 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2493 ** or if the SELECT statement needs to be manifested into a transient
2494 ** table, then return NULL.
2495 */
2496 #ifndef SQLITE_OMIT_SUBQUERY
2497 static Select *isCandidateForInOpt(const Expr *pX){
2498   Select *p;
2499   SrcList *pSrc;
2500   ExprList *pEList;
2501   Table *pTab;
2502   int i;
2503   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2504   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2505   p = pX->x.pSelect;
2506   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2507   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2508     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2509     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2510     return 0; /* No DISTINCT keyword and no aggregate functions */
2511   }
2512   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2513   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2514   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2515   pSrc = p->pSrc;
2516   assert( pSrc!=0 );
2517   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2518   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2519   pTab = pSrc->a[0].pTab;
2520   assert( pTab!=0 );
2521   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2522   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2523   pEList = p->pEList;
2524   assert( pEList!=0 );
2525   /* All SELECT results must be columns. */
2526   for(i=0; i<pEList->nExpr; i++){
2527     Expr *pRes = pEList->a[i].pExpr;
2528     if( pRes->op!=TK_COLUMN ) return 0;
2529     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2530   }
2531   return p;
2532 }
2533 #endif /* SQLITE_OMIT_SUBQUERY */
2534 
2535 #ifndef SQLITE_OMIT_SUBQUERY
2536 /*
2537 ** Generate code that checks the left-most column of index table iCur to see if
2538 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2539 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2540 ** to be set to NULL if iCur contains one or more NULL values.
2541 */
2542 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2543   int addr1;
2544   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2545   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2546   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2547   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2548   VdbeComment((v, "first_entry_in(%d)", iCur));
2549   sqlite3VdbeJumpHere(v, addr1);
2550 }
2551 #endif
2552 
2553 
2554 #ifndef SQLITE_OMIT_SUBQUERY
2555 /*
2556 ** The argument is an IN operator with a list (not a subquery) on the
2557 ** right-hand side.  Return TRUE if that list is constant.
2558 */
2559 static int sqlite3InRhsIsConstant(Expr *pIn){
2560   Expr *pLHS;
2561   int res;
2562   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2563   pLHS = pIn->pLeft;
2564   pIn->pLeft = 0;
2565   res = sqlite3ExprIsConstant(pIn);
2566   pIn->pLeft = pLHS;
2567   return res;
2568 }
2569 #endif
2570 
2571 /*
2572 ** This function is used by the implementation of the IN (...) operator.
2573 ** The pX parameter is the expression on the RHS of the IN operator, which
2574 ** might be either a list of expressions or a subquery.
2575 **
2576 ** The job of this routine is to find or create a b-tree object that can
2577 ** be used either to test for membership in the RHS set or to iterate through
2578 ** all members of the RHS set, skipping duplicates.
2579 **
2580 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2581 ** and pX->iTable is set to the index of that cursor.
2582 **
2583 ** The returned value of this function indicates the b-tree type, as follows:
2584 **
2585 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2586 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2587 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2588 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2589 **                         populated epheremal table.
2590 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2591 **                         implemented as a sequence of comparisons.
2592 **
2593 ** An existing b-tree might be used if the RHS expression pX is a simple
2594 ** subquery such as:
2595 **
2596 **     SELECT <column1>, <column2>... FROM <table>
2597 **
2598 ** If the RHS of the IN operator is a list or a more complex subquery, then
2599 ** an ephemeral table might need to be generated from the RHS and then
2600 ** pX->iTable made to point to the ephemeral table instead of an
2601 ** existing table.
2602 **
2603 ** The inFlags parameter must contain, at a minimum, one of the bits
2604 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2605 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2606 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2607 ** be used to loop over all values of the RHS of the IN operator.
2608 **
2609 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2610 ** through the set members) then the b-tree must not contain duplicates.
2611 ** An epheremal table will be created unless the selected columns are guaranteed
2612 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2613 ** a UNIQUE constraint or index.
2614 **
2615 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2616 ** for fast set membership tests) then an epheremal table must
2617 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2618 ** index can be found with the specified <columns> as its left-most.
2619 **
2620 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2621 ** if the RHS of the IN operator is a list (not a subquery) then this
2622 ** routine might decide that creating an ephemeral b-tree for membership
2623 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2624 ** calling routine should implement the IN operator using a sequence
2625 ** of Eq or Ne comparison operations.
2626 **
2627 ** When the b-tree is being used for membership tests, the calling function
2628 ** might need to know whether or not the RHS side of the IN operator
2629 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2630 ** if there is any chance that the (...) might contain a NULL value at
2631 ** runtime, then a register is allocated and the register number written
2632 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2633 ** NULL value, then *prRhsHasNull is left unchanged.
2634 **
2635 ** If a register is allocated and its location stored in *prRhsHasNull, then
2636 ** the value in that register will be NULL if the b-tree contains one or more
2637 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2638 ** NULL values.
2639 **
2640 ** If the aiMap parameter is not NULL, it must point to an array containing
2641 ** one element for each column returned by the SELECT statement on the RHS
2642 ** of the IN(...) operator. The i'th entry of the array is populated with the
2643 ** offset of the index column that matches the i'th column returned by the
2644 ** SELECT. For example, if the expression and selected index are:
2645 **
2646 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2647 **   CREATE INDEX i1 ON t1(b, c, a);
2648 **
2649 ** then aiMap[] is populated with {2, 0, 1}.
2650 */
2651 #ifndef SQLITE_OMIT_SUBQUERY
2652 int sqlite3FindInIndex(
2653   Parse *pParse,             /* Parsing context */
2654   Expr *pX,                  /* The IN expression */
2655   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2656   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2657   int *aiMap,                /* Mapping from Index fields to RHS fields */
2658   int *piTab                 /* OUT: index to use */
2659 ){
2660   Select *p;                            /* SELECT to the right of IN operator */
2661   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2662   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2663   int mustBeUnique;                     /* True if RHS must be unique */
2664   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2665 
2666   assert( pX->op==TK_IN );
2667   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2668 
2669   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2670   ** whether or not the SELECT result contains NULL values, check whether
2671   ** or not NULL is actually possible (it may not be, for example, due
2672   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2673   ** set prRhsHasNull to 0 before continuing.  */
2674   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2675     int i;
2676     ExprList *pEList = pX->x.pSelect->pEList;
2677     for(i=0; i<pEList->nExpr; i++){
2678       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2679     }
2680     if( i==pEList->nExpr ){
2681       prRhsHasNull = 0;
2682     }
2683   }
2684 
2685   /* Check to see if an existing table or index can be used to
2686   ** satisfy the query.  This is preferable to generating a new
2687   ** ephemeral table.  */
2688   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2689     sqlite3 *db = pParse->db;              /* Database connection */
2690     Table *pTab;                           /* Table <table>. */
2691     int iDb;                               /* Database idx for pTab */
2692     ExprList *pEList = p->pEList;
2693     int nExpr = pEList->nExpr;
2694 
2695     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2696     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2697     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2698     pTab = p->pSrc->a[0].pTab;
2699 
2700     /* Code an OP_Transaction and OP_TableLock for <table>. */
2701     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2702     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2703     sqlite3CodeVerifySchema(pParse, iDb);
2704     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2705 
2706     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2707     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2708       /* The "x IN (SELECT rowid FROM table)" case */
2709       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2710       VdbeCoverage(v);
2711 
2712       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2713       eType = IN_INDEX_ROWID;
2714       ExplainQueryPlan((pParse, 0,
2715             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2716       sqlite3VdbeJumpHere(v, iAddr);
2717     }else{
2718       Index *pIdx;                         /* Iterator variable */
2719       int affinity_ok = 1;
2720       int i;
2721 
2722       /* Check that the affinity that will be used to perform each
2723       ** comparison is the same as the affinity of each column in table
2724       ** on the RHS of the IN operator.  If it not, it is not possible to
2725       ** use any index of the RHS table.  */
2726       for(i=0; i<nExpr && affinity_ok; i++){
2727         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2728         int iCol = pEList->a[i].pExpr->iColumn;
2729         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2730         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2731         testcase( cmpaff==SQLITE_AFF_BLOB );
2732         testcase( cmpaff==SQLITE_AFF_TEXT );
2733         switch( cmpaff ){
2734           case SQLITE_AFF_BLOB:
2735             break;
2736           case SQLITE_AFF_TEXT:
2737             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2738             ** other has no affinity and the other side is TEXT.  Hence,
2739             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2740             ** and for the term on the LHS of the IN to have no affinity. */
2741             assert( idxaff==SQLITE_AFF_TEXT );
2742             break;
2743           default:
2744             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2745         }
2746       }
2747 
2748       if( affinity_ok ){
2749         /* Search for an existing index that will work for this IN operator */
2750         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2751           Bitmask colUsed;      /* Columns of the index used */
2752           Bitmask mCol;         /* Mask for the current column */
2753           if( pIdx->nColumn<nExpr ) continue;
2754           if( pIdx->pPartIdxWhere!=0 ) continue;
2755           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2756           ** BITMASK(nExpr) without overflowing */
2757           testcase( pIdx->nColumn==BMS-2 );
2758           testcase( pIdx->nColumn==BMS-1 );
2759           if( pIdx->nColumn>=BMS-1 ) continue;
2760           if( mustBeUnique ){
2761             if( pIdx->nKeyCol>nExpr
2762              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2763             ){
2764               continue;  /* This index is not unique over the IN RHS columns */
2765             }
2766           }
2767 
2768           colUsed = 0;   /* Columns of index used so far */
2769           for(i=0; i<nExpr; i++){
2770             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2771             Expr *pRhs = pEList->a[i].pExpr;
2772             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2773             int j;
2774 
2775             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2776             for(j=0; j<nExpr; j++){
2777               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2778               assert( pIdx->azColl[j] );
2779               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2780                 continue;
2781               }
2782               break;
2783             }
2784             if( j==nExpr ) break;
2785             mCol = MASKBIT(j);
2786             if( mCol & colUsed ) break; /* Each column used only once */
2787             colUsed |= mCol;
2788             if( aiMap ) aiMap[i] = j;
2789           }
2790 
2791           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2792           if( colUsed==(MASKBIT(nExpr)-1) ){
2793             /* If we reach this point, that means the index pIdx is usable */
2794             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2795             ExplainQueryPlan((pParse, 0,
2796                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2797             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2798             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2799             VdbeComment((v, "%s", pIdx->zName));
2800             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2801             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2802 
2803             if( prRhsHasNull ){
2804 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2805               i64 mask = (1<<nExpr)-1;
2806               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2807                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2808 #endif
2809               *prRhsHasNull = ++pParse->nMem;
2810               if( nExpr==1 ){
2811                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2812               }
2813             }
2814             sqlite3VdbeJumpHere(v, iAddr);
2815           }
2816         } /* End loop over indexes */
2817       } /* End if( affinity_ok ) */
2818     } /* End if not an rowid index */
2819   } /* End attempt to optimize using an index */
2820 
2821   /* If no preexisting index is available for the IN clause
2822   ** and IN_INDEX_NOOP is an allowed reply
2823   ** and the RHS of the IN operator is a list, not a subquery
2824   ** and the RHS is not constant or has two or fewer terms,
2825   ** then it is not worth creating an ephemeral table to evaluate
2826   ** the IN operator so return IN_INDEX_NOOP.
2827   */
2828   if( eType==0
2829    && (inFlags & IN_INDEX_NOOP_OK)
2830    && !ExprHasProperty(pX, EP_xIsSelect)
2831    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2832   ){
2833     eType = IN_INDEX_NOOP;
2834   }
2835 
2836   if( eType==0 ){
2837     /* Could not find an existing table or index to use as the RHS b-tree.
2838     ** We will have to generate an ephemeral table to do the job.
2839     */
2840     u32 savedNQueryLoop = pParse->nQueryLoop;
2841     int rMayHaveNull = 0;
2842     eType = IN_INDEX_EPH;
2843     if( inFlags & IN_INDEX_LOOP ){
2844       pParse->nQueryLoop = 0;
2845     }else if( prRhsHasNull ){
2846       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2847     }
2848     assert( pX->op==TK_IN );
2849     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2850     if( rMayHaveNull ){
2851       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2852     }
2853     pParse->nQueryLoop = savedNQueryLoop;
2854   }
2855 
2856   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2857     int i, n;
2858     n = sqlite3ExprVectorSize(pX->pLeft);
2859     for(i=0; i<n; i++) aiMap[i] = i;
2860   }
2861   *piTab = iTab;
2862   return eType;
2863 }
2864 #endif
2865 
2866 #ifndef SQLITE_OMIT_SUBQUERY
2867 /*
2868 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2869 ** function allocates and returns a nul-terminated string containing
2870 ** the affinities to be used for each column of the comparison.
2871 **
2872 ** It is the responsibility of the caller to ensure that the returned
2873 ** string is eventually freed using sqlite3DbFree().
2874 */
2875 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2876   Expr *pLeft = pExpr->pLeft;
2877   int nVal = sqlite3ExprVectorSize(pLeft);
2878   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2879   char *zRet;
2880 
2881   assert( pExpr->op==TK_IN );
2882   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2883   if( zRet ){
2884     int i;
2885     for(i=0; i<nVal; i++){
2886       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2887       char a = sqlite3ExprAffinity(pA);
2888       if( pSelect ){
2889         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2890       }else{
2891         zRet[i] = a;
2892       }
2893     }
2894     zRet[nVal] = '\0';
2895   }
2896   return zRet;
2897 }
2898 #endif
2899 
2900 #ifndef SQLITE_OMIT_SUBQUERY
2901 /*
2902 ** Load the Parse object passed as the first argument with an error
2903 ** message of the form:
2904 **
2905 **   "sub-select returns N columns - expected M"
2906 */
2907 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2908   if( pParse->nErr==0 ){
2909     const char *zFmt = "sub-select returns %d columns - expected %d";
2910     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2911   }
2912 }
2913 #endif
2914 
2915 /*
2916 ** Expression pExpr is a vector that has been used in a context where
2917 ** it is not permitted. If pExpr is a sub-select vector, this routine
2918 ** loads the Parse object with a message of the form:
2919 **
2920 **   "sub-select returns N columns - expected 1"
2921 **
2922 ** Or, if it is a regular scalar vector:
2923 **
2924 **   "row value misused"
2925 */
2926 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2927 #ifndef SQLITE_OMIT_SUBQUERY
2928   if( pExpr->flags & EP_xIsSelect ){
2929     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2930   }else
2931 #endif
2932   {
2933     sqlite3ErrorMsg(pParse, "row value misused");
2934   }
2935 }
2936 
2937 #ifndef SQLITE_OMIT_SUBQUERY
2938 /*
2939 ** Generate code that will construct an ephemeral table containing all terms
2940 ** in the RHS of an IN operator.  The IN operator can be in either of two
2941 ** forms:
2942 **
2943 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2944 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2945 **
2946 ** The pExpr parameter is the IN operator.  The cursor number for the
2947 ** constructed ephermeral table is returned.  The first time the ephemeral
2948 ** table is computed, the cursor number is also stored in pExpr->iTable,
2949 ** however the cursor number returned might not be the same, as it might
2950 ** have been duplicated using OP_OpenDup.
2951 **
2952 ** If the LHS expression ("x" in the examples) is a column value, or
2953 ** the SELECT statement returns a column value, then the affinity of that
2954 ** column is used to build the index keys. If both 'x' and the
2955 ** SELECT... statement are columns, then numeric affinity is used
2956 ** if either column has NUMERIC or INTEGER affinity. If neither
2957 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2958 ** is used.
2959 */
2960 void sqlite3CodeRhsOfIN(
2961   Parse *pParse,          /* Parsing context */
2962   Expr *pExpr,            /* The IN operator */
2963   int iTab                /* Use this cursor number */
2964 ){
2965   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2966   int addr;                   /* Address of OP_OpenEphemeral instruction */
2967   Expr *pLeft;                /* the LHS of the IN operator */
2968   KeyInfo *pKeyInfo = 0;      /* Key information */
2969   int nVal;                   /* Size of vector pLeft */
2970   Vdbe *v;                    /* The prepared statement under construction */
2971 
2972   v = pParse->pVdbe;
2973   assert( v!=0 );
2974 
2975   /* The evaluation of the IN must be repeated every time it
2976   ** is encountered if any of the following is true:
2977   **
2978   **    *  The right-hand side is a correlated subquery
2979   **    *  The right-hand side is an expression list containing variables
2980   **    *  We are inside a trigger
2981   **
2982   ** If all of the above are false, then we can compute the RHS just once
2983   ** and reuse it many names.
2984   */
2985   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2986     /* Reuse of the RHS is allowed */
2987     /* If this routine has already been coded, but the previous code
2988     ** might not have been invoked yet, so invoke it now as a subroutine.
2989     */
2990     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2991       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2992       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2993         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2994               pExpr->x.pSelect->selId));
2995       }
2996       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2997                         pExpr->y.sub.iAddr);
2998       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2999       sqlite3VdbeJumpHere(v, addrOnce);
3000       return;
3001     }
3002 
3003     /* Begin coding the subroutine */
3004     ExprSetProperty(pExpr, EP_Subrtn);
3005     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3006     pExpr->y.sub.regReturn = ++pParse->nMem;
3007     pExpr->y.sub.iAddr =
3008       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3009     VdbeComment((v, "return address"));
3010 
3011     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3012   }
3013 
3014   /* Check to see if this is a vector IN operator */
3015   pLeft = pExpr->pLeft;
3016   nVal = sqlite3ExprVectorSize(pLeft);
3017 
3018   /* Construct the ephemeral table that will contain the content of
3019   ** RHS of the IN operator.
3020   */
3021   pExpr->iTable = iTab;
3022   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3023 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3024   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3025     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3026   }else{
3027     VdbeComment((v, "RHS of IN operator"));
3028   }
3029 #endif
3030   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3031 
3032   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3033     /* Case 1:     expr IN (SELECT ...)
3034     **
3035     ** Generate code to write the results of the select into the temporary
3036     ** table allocated and opened above.
3037     */
3038     Select *pSelect = pExpr->x.pSelect;
3039     ExprList *pEList = pSelect->pEList;
3040 
3041     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3042         addrOnce?"":"CORRELATED ", pSelect->selId
3043     ));
3044     /* If the LHS and RHS of the IN operator do not match, that
3045     ** error will have been caught long before we reach this point. */
3046     if( ALWAYS(pEList->nExpr==nVal) ){
3047       Select *pCopy;
3048       SelectDest dest;
3049       int i;
3050       int rc;
3051       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3052       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3053       pSelect->iLimit = 0;
3054       testcase( pSelect->selFlags & SF_Distinct );
3055       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3056       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3057       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3058       sqlite3SelectDelete(pParse->db, pCopy);
3059       sqlite3DbFree(pParse->db, dest.zAffSdst);
3060       if( rc ){
3061         sqlite3KeyInfoUnref(pKeyInfo);
3062         return;
3063       }
3064       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3065       assert( pEList!=0 );
3066       assert( pEList->nExpr>0 );
3067       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3068       for(i=0; i<nVal; i++){
3069         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3070         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3071             pParse, p, pEList->a[i].pExpr
3072         );
3073       }
3074     }
3075   }else if( ALWAYS(pExpr->x.pList!=0) ){
3076     /* Case 2:     expr IN (exprlist)
3077     **
3078     ** For each expression, build an index key from the evaluation and
3079     ** store it in the temporary table. If <expr> is a column, then use
3080     ** that columns affinity when building index keys. If <expr> is not
3081     ** a column, use numeric affinity.
3082     */
3083     char affinity;            /* Affinity of the LHS of the IN */
3084     int i;
3085     ExprList *pList = pExpr->x.pList;
3086     struct ExprList_item *pItem;
3087     int r1, r2;
3088     affinity = sqlite3ExprAffinity(pLeft);
3089     if( affinity<=SQLITE_AFF_NONE ){
3090       affinity = SQLITE_AFF_BLOB;
3091     }else if( affinity==SQLITE_AFF_REAL ){
3092       affinity = SQLITE_AFF_NUMERIC;
3093     }
3094     if( pKeyInfo ){
3095       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3096       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3097     }
3098 
3099     /* Loop through each expression in <exprlist>. */
3100     r1 = sqlite3GetTempReg(pParse);
3101     r2 = sqlite3GetTempReg(pParse);
3102     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3103       Expr *pE2 = pItem->pExpr;
3104 
3105       /* If the expression is not constant then we will need to
3106       ** disable the test that was generated above that makes sure
3107       ** this code only executes once.  Because for a non-constant
3108       ** expression we need to rerun this code each time.
3109       */
3110       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3111         sqlite3VdbeChangeToNoop(v, addrOnce);
3112         ExprClearProperty(pExpr, EP_Subrtn);
3113         addrOnce = 0;
3114       }
3115 
3116       /* Evaluate the expression and insert it into the temp table */
3117       sqlite3ExprCode(pParse, pE2, r1);
3118       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3119       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3120     }
3121     sqlite3ReleaseTempReg(pParse, r1);
3122     sqlite3ReleaseTempReg(pParse, r2);
3123   }
3124   if( pKeyInfo ){
3125     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3126   }
3127   if( addrOnce ){
3128     sqlite3VdbeJumpHere(v, addrOnce);
3129     /* Subroutine return */
3130     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3131     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3132     sqlite3ClearTempRegCache(pParse);
3133   }
3134 }
3135 #endif /* SQLITE_OMIT_SUBQUERY */
3136 
3137 /*
3138 ** Generate code for scalar subqueries used as a subquery expression
3139 ** or EXISTS operator:
3140 **
3141 **     (SELECT a FROM b)          -- subquery
3142 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3143 **
3144 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3145 **
3146 ** Return the register that holds the result.  For a multi-column SELECT,
3147 ** the result is stored in a contiguous array of registers and the
3148 ** return value is the register of the left-most result column.
3149 ** Return 0 if an error occurs.
3150 */
3151 #ifndef SQLITE_OMIT_SUBQUERY
3152 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3153   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3154   int rReg = 0;               /* Register storing resulting */
3155   Select *pSel;               /* SELECT statement to encode */
3156   SelectDest dest;            /* How to deal with SELECT result */
3157   int nReg;                   /* Registers to allocate */
3158   Expr *pLimit;               /* New limit expression */
3159 
3160   Vdbe *v = pParse->pVdbe;
3161   assert( v!=0 );
3162   if( pParse->nErr ) return 0;
3163   testcase( pExpr->op==TK_EXISTS );
3164   testcase( pExpr->op==TK_SELECT );
3165   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3166   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3167   pSel = pExpr->x.pSelect;
3168 
3169   /* If this routine has already been coded, then invoke it as a
3170   ** subroutine. */
3171   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3172     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3173     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3174                       pExpr->y.sub.iAddr);
3175     return pExpr->iTable;
3176   }
3177 
3178   /* Begin coding the subroutine */
3179   ExprSetProperty(pExpr, EP_Subrtn);
3180   pExpr->y.sub.regReturn = ++pParse->nMem;
3181   pExpr->y.sub.iAddr =
3182     sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3183   VdbeComment((v, "return address"));
3184 
3185 
3186   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3187   ** is encountered if any of the following is true:
3188   **
3189   **    *  The right-hand side is a correlated subquery
3190   **    *  The right-hand side is an expression list containing variables
3191   **    *  We are inside a trigger
3192   **
3193   ** If all of the above are false, then we can run this code just once
3194   ** save the results, and reuse the same result on subsequent invocations.
3195   */
3196   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3197     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3198   }
3199 
3200   /* For a SELECT, generate code to put the values for all columns of
3201   ** the first row into an array of registers and return the index of
3202   ** the first register.
3203   **
3204   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3205   ** into a register and return that register number.
3206   **
3207   ** In both cases, the query is augmented with "LIMIT 1".  Any
3208   ** preexisting limit is discarded in place of the new LIMIT 1.
3209   */
3210   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3211         addrOnce?"":"CORRELATED ", pSel->selId));
3212   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3213   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3214   pParse->nMem += nReg;
3215   if( pExpr->op==TK_SELECT ){
3216     dest.eDest = SRT_Mem;
3217     dest.iSdst = dest.iSDParm;
3218     dest.nSdst = nReg;
3219     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3220     VdbeComment((v, "Init subquery result"));
3221   }else{
3222     dest.eDest = SRT_Exists;
3223     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3224     VdbeComment((v, "Init EXISTS result"));
3225   }
3226   if( pSel->pLimit ){
3227     /* The subquery already has a limit.  If the pre-existing limit is X
3228     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3229     sqlite3 *db = pParse->db;
3230     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3231     if( pLimit ){
3232       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3233       pLimit = sqlite3PExpr(pParse, TK_NE,
3234                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3235     }
3236     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3237     pSel->pLimit->pLeft = pLimit;
3238   }else{
3239     /* If there is no pre-existing limit add a limit of 1 */
3240     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3241     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3242   }
3243   pSel->iLimit = 0;
3244   if( sqlite3Select(pParse, pSel, &dest) ){
3245     if( pParse->nErr ){
3246       pExpr->op2 = pExpr->op;
3247       pExpr->op = TK_ERROR;
3248     }
3249     return 0;
3250   }
3251   pExpr->iTable = rReg = dest.iSDParm;
3252   ExprSetVVAProperty(pExpr, EP_NoReduce);
3253   if( addrOnce ){
3254     sqlite3VdbeJumpHere(v, addrOnce);
3255   }
3256 
3257   /* Subroutine return */
3258   sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3259   sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3260   sqlite3ClearTempRegCache(pParse);
3261   return rReg;
3262 }
3263 #endif /* SQLITE_OMIT_SUBQUERY */
3264 
3265 #ifndef SQLITE_OMIT_SUBQUERY
3266 /*
3267 ** Expr pIn is an IN(...) expression. This function checks that the
3268 ** sub-select on the RHS of the IN() operator has the same number of
3269 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3270 ** a sub-query, that the LHS is a vector of size 1.
3271 */
3272 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3273   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3274   if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){
3275     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3276       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3277       return 1;
3278     }
3279   }else if( nVector!=1 ){
3280     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3281     return 1;
3282   }
3283   return 0;
3284 }
3285 #endif
3286 
3287 #ifndef SQLITE_OMIT_SUBQUERY
3288 /*
3289 ** Generate code for an IN expression.
3290 **
3291 **      x IN (SELECT ...)
3292 **      x IN (value, value, ...)
3293 **
3294 ** The left-hand side (LHS) is a scalar or vector expression.  The
3295 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3296 ** subquery.  If the RHS is a subquery, the number of result columns must
3297 ** match the number of columns in the vector on the LHS.  If the RHS is
3298 ** a list of values, the LHS must be a scalar.
3299 **
3300 ** The IN operator is true if the LHS value is contained within the RHS.
3301 ** The result is false if the LHS is definitely not in the RHS.  The
3302 ** result is NULL if the presence of the LHS in the RHS cannot be
3303 ** determined due to NULLs.
3304 **
3305 ** This routine generates code that jumps to destIfFalse if the LHS is not
3306 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3307 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3308 ** within the RHS then fall through.
3309 **
3310 ** See the separate in-operator.md documentation file in the canonical
3311 ** SQLite source tree for additional information.
3312 */
3313 static void sqlite3ExprCodeIN(
3314   Parse *pParse,        /* Parsing and code generating context */
3315   Expr *pExpr,          /* The IN expression */
3316   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3317   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3318 ){
3319   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3320   int eType;            /* Type of the RHS */
3321   int rLhs;             /* Register(s) holding the LHS values */
3322   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3323   Vdbe *v;              /* Statement under construction */
3324   int *aiMap = 0;       /* Map from vector field to index column */
3325   char *zAff = 0;       /* Affinity string for comparisons */
3326   int nVector;          /* Size of vectors for this IN operator */
3327   int iDummy;           /* Dummy parameter to exprCodeVector() */
3328   Expr *pLeft;          /* The LHS of the IN operator */
3329   int i;                /* loop counter */
3330   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3331   int destStep6 = 0;    /* Start of code for Step 6 */
3332   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3333   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3334   int addrTop;          /* Top of the step-6 loop */
3335   int iTab = 0;         /* Index to use */
3336   u8 okConstFactor = pParse->okConstFactor;
3337 
3338   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3339   pLeft = pExpr->pLeft;
3340   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3341   zAff = exprINAffinity(pParse, pExpr);
3342   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3343   aiMap = (int*)sqlite3DbMallocZero(
3344       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3345   );
3346   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3347 
3348   /* Attempt to compute the RHS. After this step, if anything other than
3349   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3350   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3351   ** the RHS has not yet been coded.  */
3352   v = pParse->pVdbe;
3353   assert( v!=0 );       /* OOM detected prior to this routine */
3354   VdbeNoopComment((v, "begin IN expr"));
3355   eType = sqlite3FindInIndex(pParse, pExpr,
3356                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3357                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3358                              aiMap, &iTab);
3359 
3360   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3361        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3362   );
3363 #ifdef SQLITE_DEBUG
3364   /* Confirm that aiMap[] contains nVector integer values between 0 and
3365   ** nVector-1. */
3366   for(i=0; i<nVector; i++){
3367     int j, cnt;
3368     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3369     assert( cnt==1 );
3370   }
3371 #endif
3372 
3373   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3374   ** vector, then it is stored in an array of nVector registers starting
3375   ** at r1.
3376   **
3377   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3378   ** so that the fields are in the same order as an existing index.   The
3379   ** aiMap[] array contains a mapping from the original LHS field order to
3380   ** the field order that matches the RHS index.
3381   **
3382   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3383   ** even if it is constant, as OP_Affinity may be used on the register
3384   ** by code generated below.  */
3385   assert( pParse->okConstFactor==okConstFactor );
3386   pParse->okConstFactor = 0;
3387   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3388   pParse->okConstFactor = okConstFactor;
3389   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3390   if( i==nVector ){
3391     /* LHS fields are not reordered */
3392     rLhs = rLhsOrig;
3393   }else{
3394     /* Need to reorder the LHS fields according to aiMap */
3395     rLhs = sqlite3GetTempRange(pParse, nVector);
3396     for(i=0; i<nVector; i++){
3397       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3398     }
3399   }
3400 
3401   /* If sqlite3FindInIndex() did not find or create an index that is
3402   ** suitable for evaluating the IN operator, then evaluate using a
3403   ** sequence of comparisons.
3404   **
3405   ** This is step (1) in the in-operator.md optimized algorithm.
3406   */
3407   if( eType==IN_INDEX_NOOP ){
3408     ExprList *pList = pExpr->x.pList;
3409     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3410     int labelOk = sqlite3VdbeMakeLabel(pParse);
3411     int r2, regToFree;
3412     int regCkNull = 0;
3413     int ii;
3414     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3415     if( destIfNull!=destIfFalse ){
3416       regCkNull = sqlite3GetTempReg(pParse);
3417       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3418     }
3419     for(ii=0; ii<pList->nExpr; ii++){
3420       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3421       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3422         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3423       }
3424       sqlite3ReleaseTempReg(pParse, regToFree);
3425       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3426         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3427         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3428                           (void*)pColl, P4_COLLSEQ);
3429         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3430         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3431         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3432         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3433         sqlite3VdbeChangeP5(v, zAff[0]);
3434       }else{
3435         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3436         assert( destIfNull==destIfFalse );
3437         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3438                           (void*)pColl, P4_COLLSEQ);
3439         VdbeCoverageIf(v, op==OP_Ne);
3440         VdbeCoverageIf(v, op==OP_IsNull);
3441         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3442       }
3443     }
3444     if( regCkNull ){
3445       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3446       sqlite3VdbeGoto(v, destIfFalse);
3447     }
3448     sqlite3VdbeResolveLabel(v, labelOk);
3449     sqlite3ReleaseTempReg(pParse, regCkNull);
3450     goto sqlite3ExprCodeIN_finished;
3451   }
3452 
3453   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3454   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3455   ** We will then skip the binary search of the RHS.
3456   */
3457   if( destIfNull==destIfFalse ){
3458     destStep2 = destIfFalse;
3459   }else{
3460     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3461   }
3462   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3463   for(i=0; i<nVector; i++){
3464     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3465     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3466     if( sqlite3ExprCanBeNull(p) ){
3467       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3468       VdbeCoverage(v);
3469     }
3470   }
3471 
3472   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3473   ** of the RHS using the LHS as a probe.  If found, the result is
3474   ** true.
3475   */
3476   if( eType==IN_INDEX_ROWID ){
3477     /* In this case, the RHS is the ROWID of table b-tree and so we also
3478     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3479     ** into a single opcode. */
3480     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3481     VdbeCoverage(v);
3482     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3483   }else{
3484     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3485     if( destIfFalse==destIfNull ){
3486       /* Combine Step 3 and Step 5 into a single opcode */
3487       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3488                            rLhs, nVector); VdbeCoverage(v);
3489       goto sqlite3ExprCodeIN_finished;
3490     }
3491     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3492     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3493                                       rLhs, nVector); VdbeCoverage(v);
3494   }
3495 
3496   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3497   ** an match on the search above, then the result must be FALSE.
3498   */
3499   if( rRhsHasNull && nVector==1 ){
3500     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3501     VdbeCoverage(v);
3502   }
3503 
3504   /* Step 5.  If we do not care about the difference between NULL and
3505   ** FALSE, then just return false.
3506   */
3507   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3508 
3509   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3510   ** If any comparison is NULL, then the result is NULL.  If all
3511   ** comparisons are FALSE then the final result is FALSE.
3512   **
3513   ** For a scalar LHS, it is sufficient to check just the first row
3514   ** of the RHS.
3515   */
3516   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3517   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3518   VdbeCoverage(v);
3519   if( nVector>1 ){
3520     destNotNull = sqlite3VdbeMakeLabel(pParse);
3521   }else{
3522     /* For nVector==1, combine steps 6 and 7 by immediately returning
3523     ** FALSE if the first comparison is not NULL */
3524     destNotNull = destIfFalse;
3525   }
3526   for(i=0; i<nVector; i++){
3527     Expr *p;
3528     CollSeq *pColl;
3529     int r3 = sqlite3GetTempReg(pParse);
3530     p = sqlite3VectorFieldSubexpr(pLeft, i);
3531     pColl = sqlite3ExprCollSeq(pParse, p);
3532     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3533     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3534                       (void*)pColl, P4_COLLSEQ);
3535     VdbeCoverage(v);
3536     sqlite3ReleaseTempReg(pParse, r3);
3537   }
3538   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3539   if( nVector>1 ){
3540     sqlite3VdbeResolveLabel(v, destNotNull);
3541     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3542     VdbeCoverage(v);
3543 
3544     /* Step 7:  If we reach this point, we know that the result must
3545     ** be false. */
3546     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3547   }
3548 
3549   /* Jumps here in order to return true. */
3550   sqlite3VdbeJumpHere(v, addrTruthOp);
3551 
3552 sqlite3ExprCodeIN_finished:
3553   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3554   VdbeComment((v, "end IN expr"));
3555 sqlite3ExprCodeIN_oom_error:
3556   sqlite3DbFree(pParse->db, aiMap);
3557   sqlite3DbFree(pParse->db, zAff);
3558 }
3559 #endif /* SQLITE_OMIT_SUBQUERY */
3560 
3561 #ifndef SQLITE_OMIT_FLOATING_POINT
3562 /*
3563 ** Generate an instruction that will put the floating point
3564 ** value described by z[0..n-1] into register iMem.
3565 **
3566 ** The z[] string will probably not be zero-terminated.  But the
3567 ** z[n] character is guaranteed to be something that does not look
3568 ** like the continuation of the number.
3569 */
3570 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3571   if( ALWAYS(z!=0) ){
3572     double value;
3573     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3574     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3575     if( negateFlag ) value = -value;
3576     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3577   }
3578 }
3579 #endif
3580 
3581 
3582 /*
3583 ** Generate an instruction that will put the integer describe by
3584 ** text z[0..n-1] into register iMem.
3585 **
3586 ** Expr.u.zToken is always UTF8 and zero-terminated.
3587 */
3588 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3589   Vdbe *v = pParse->pVdbe;
3590   if( pExpr->flags & EP_IntValue ){
3591     int i = pExpr->u.iValue;
3592     assert( i>=0 );
3593     if( negFlag ) i = -i;
3594     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3595   }else{
3596     int c;
3597     i64 value;
3598     const char *z = pExpr->u.zToken;
3599     assert( z!=0 );
3600     c = sqlite3DecOrHexToI64(z, &value);
3601     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3602 #ifdef SQLITE_OMIT_FLOATING_POINT
3603       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3604 #else
3605 #ifndef SQLITE_OMIT_HEX_INTEGER
3606       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3607         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3608       }else
3609 #endif
3610       {
3611         codeReal(v, z, negFlag, iMem);
3612       }
3613 #endif
3614     }else{
3615       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3616       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3617     }
3618   }
3619 }
3620 
3621 
3622 /* Generate code that will load into register regOut a value that is
3623 ** appropriate for the iIdxCol-th column of index pIdx.
3624 */
3625 void sqlite3ExprCodeLoadIndexColumn(
3626   Parse *pParse,  /* The parsing context */
3627   Index *pIdx,    /* The index whose column is to be loaded */
3628   int iTabCur,    /* Cursor pointing to a table row */
3629   int iIdxCol,    /* The column of the index to be loaded */
3630   int regOut      /* Store the index column value in this register */
3631 ){
3632   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3633   if( iTabCol==XN_EXPR ){
3634     assert( pIdx->aColExpr );
3635     assert( pIdx->aColExpr->nExpr>iIdxCol );
3636     pParse->iSelfTab = iTabCur + 1;
3637     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3638     pParse->iSelfTab = 0;
3639   }else{
3640     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3641                                     iTabCol, regOut);
3642   }
3643 }
3644 
3645 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3646 /*
3647 ** Generate code that will compute the value of generated column pCol
3648 ** and store the result in register regOut
3649 */
3650 void sqlite3ExprCodeGeneratedColumn(
3651   Parse *pParse,     /* Parsing context */
3652   Table *pTab,       /* Table containing the generated column */
3653   Column *pCol,      /* The generated column */
3654   int regOut         /* Put the result in this register */
3655 ){
3656   int iAddr;
3657   Vdbe *v = pParse->pVdbe;
3658   assert( v!=0 );
3659   assert( pParse->iSelfTab!=0 );
3660   if( pParse->iSelfTab>0 ){
3661     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3662   }else{
3663     iAddr = 0;
3664   }
3665   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3666   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3667     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3668   }
3669   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3670 }
3671 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3672 
3673 /*
3674 ** Generate code to extract the value of the iCol-th column of a table.
3675 */
3676 void sqlite3ExprCodeGetColumnOfTable(
3677   Vdbe *v,        /* Parsing context */
3678   Table *pTab,    /* The table containing the value */
3679   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3680   int iCol,       /* Index of the column to extract */
3681   int regOut      /* Extract the value into this register */
3682 ){
3683   Column *pCol;
3684   assert( v!=0 );
3685   if( pTab==0 ){
3686     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3687     return;
3688   }
3689   if( iCol<0 || iCol==pTab->iPKey ){
3690     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3691   }else{
3692     int op;
3693     int x;
3694     if( IsVirtual(pTab) ){
3695       op = OP_VColumn;
3696       x = iCol;
3697 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3698     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3699       Parse *pParse = sqlite3VdbeParser(v);
3700       if( pCol->colFlags & COLFLAG_BUSY ){
3701         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3702                         pCol->zCnName);
3703       }else{
3704         int savedSelfTab = pParse->iSelfTab;
3705         pCol->colFlags |= COLFLAG_BUSY;
3706         pParse->iSelfTab = iTabCur+1;
3707         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3708         pParse->iSelfTab = savedSelfTab;
3709         pCol->colFlags &= ~COLFLAG_BUSY;
3710       }
3711       return;
3712 #endif
3713     }else if( !HasRowid(pTab) ){
3714       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3715       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3716       op = OP_Column;
3717     }else{
3718       x = sqlite3TableColumnToStorage(pTab,iCol);
3719       testcase( x!=iCol );
3720       op = OP_Column;
3721     }
3722     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3723     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3724   }
3725 }
3726 
3727 /*
3728 ** Generate code that will extract the iColumn-th column from
3729 ** table pTab and store the column value in register iReg.
3730 **
3731 ** There must be an open cursor to pTab in iTable when this routine
3732 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3733 */
3734 int sqlite3ExprCodeGetColumn(
3735   Parse *pParse,   /* Parsing and code generating context */
3736   Table *pTab,     /* Description of the table we are reading from */
3737   int iColumn,     /* Index of the table column */
3738   int iTable,      /* The cursor pointing to the table */
3739   int iReg,        /* Store results here */
3740   u8 p5            /* P5 value for OP_Column + FLAGS */
3741 ){
3742   assert( pParse->pVdbe!=0 );
3743   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3744   if( p5 ){
3745     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3746     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3747   }
3748   return iReg;
3749 }
3750 
3751 /*
3752 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3753 ** over to iTo..iTo+nReg-1.
3754 */
3755 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3756   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3757 }
3758 
3759 /*
3760 ** Convert a scalar expression node to a TK_REGISTER referencing
3761 ** register iReg.  The caller must ensure that iReg already contains
3762 ** the correct value for the expression.
3763 */
3764 static void exprToRegister(Expr *pExpr, int iReg){
3765   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3766   if( NEVER(p==0) ) return;
3767   p->op2 = p->op;
3768   p->op = TK_REGISTER;
3769   p->iTable = iReg;
3770   ExprClearProperty(p, EP_Skip);
3771 }
3772 
3773 /*
3774 ** Evaluate an expression (either a vector or a scalar expression) and store
3775 ** the result in continguous temporary registers.  Return the index of
3776 ** the first register used to store the result.
3777 **
3778 ** If the returned result register is a temporary scalar, then also write
3779 ** that register number into *piFreeable.  If the returned result register
3780 ** is not a temporary or if the expression is a vector set *piFreeable
3781 ** to 0.
3782 */
3783 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3784   int iResult;
3785   int nResult = sqlite3ExprVectorSize(p);
3786   if( nResult==1 ){
3787     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3788   }else{
3789     *piFreeable = 0;
3790     if( p->op==TK_SELECT ){
3791 #if SQLITE_OMIT_SUBQUERY
3792       iResult = 0;
3793 #else
3794       iResult = sqlite3CodeSubselect(pParse, p);
3795 #endif
3796     }else{
3797       int i;
3798       iResult = pParse->nMem+1;
3799       pParse->nMem += nResult;
3800       for(i=0; i<nResult; i++){
3801         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3802       }
3803     }
3804   }
3805   return iResult;
3806 }
3807 
3808 /*
3809 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3810 ** so that a subsequent copy will not be merged into this one.
3811 */
3812 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3813   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3814     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3815   }
3816 }
3817 
3818 /*
3819 ** Generate code to implement special SQL functions that are implemented
3820 ** in-line rather than by using the usual callbacks.
3821 */
3822 static int exprCodeInlineFunction(
3823   Parse *pParse,        /* Parsing context */
3824   ExprList *pFarg,      /* List of function arguments */
3825   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3826   int target            /* Store function result in this register */
3827 ){
3828   int nFarg;
3829   Vdbe *v = pParse->pVdbe;
3830   assert( v!=0 );
3831   assert( pFarg!=0 );
3832   nFarg = pFarg->nExpr;
3833   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3834   switch( iFuncId ){
3835     case INLINEFUNC_coalesce: {
3836       /* Attempt a direct implementation of the built-in COALESCE() and
3837       ** IFNULL() functions.  This avoids unnecessary evaluation of
3838       ** arguments past the first non-NULL argument.
3839       */
3840       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3841       int i;
3842       assert( nFarg>=2 );
3843       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3844       for(i=1; i<nFarg; i++){
3845         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3846         VdbeCoverage(v);
3847         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3848       }
3849       setDoNotMergeFlagOnCopy(v);
3850       sqlite3VdbeResolveLabel(v, endCoalesce);
3851       break;
3852     }
3853     case INLINEFUNC_iif: {
3854       Expr caseExpr;
3855       memset(&caseExpr, 0, sizeof(caseExpr));
3856       caseExpr.op = TK_CASE;
3857       caseExpr.x.pList = pFarg;
3858       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3859     }
3860 
3861     default: {
3862       /* The UNLIKELY() function is a no-op.  The result is the value
3863       ** of the first argument.
3864       */
3865       assert( nFarg==1 || nFarg==2 );
3866       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3867       break;
3868     }
3869 
3870   /***********************************************************************
3871   ** Test-only SQL functions that are only usable if enabled
3872   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3873   */
3874 #if !defined(SQLITE_UNTESTABLE)
3875     case INLINEFUNC_expr_compare: {
3876       /* Compare two expressions using sqlite3ExprCompare() */
3877       assert( nFarg==2 );
3878       sqlite3VdbeAddOp2(v, OP_Integer,
3879          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3880          target);
3881       break;
3882     }
3883 
3884     case INLINEFUNC_expr_implies_expr: {
3885       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3886       assert( nFarg==2 );
3887       sqlite3VdbeAddOp2(v, OP_Integer,
3888          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3889          target);
3890       break;
3891     }
3892 
3893     case INLINEFUNC_implies_nonnull_row: {
3894       /* REsult of sqlite3ExprImpliesNonNullRow() */
3895       Expr *pA1;
3896       assert( nFarg==2 );
3897       pA1 = pFarg->a[1].pExpr;
3898       if( pA1->op==TK_COLUMN ){
3899         sqlite3VdbeAddOp2(v, OP_Integer,
3900            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3901            target);
3902       }else{
3903         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3904       }
3905       break;
3906     }
3907 
3908     case INLINEFUNC_affinity: {
3909       /* The AFFINITY() function evaluates to a string that describes
3910       ** the type affinity of the argument.  This is used for testing of
3911       ** the SQLite type logic.
3912       */
3913       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3914       char aff;
3915       assert( nFarg==1 );
3916       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3917       sqlite3VdbeLoadString(v, target,
3918               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3919       break;
3920     }
3921 #endif /* !defined(SQLITE_UNTESTABLE) */
3922   }
3923   return target;
3924 }
3925 
3926 
3927 /*
3928 ** Generate code into the current Vdbe to evaluate the given
3929 ** expression.  Attempt to store the results in register "target".
3930 ** Return the register where results are stored.
3931 **
3932 ** With this routine, there is no guarantee that results will
3933 ** be stored in target.  The result might be stored in some other
3934 ** register if it is convenient to do so.  The calling function
3935 ** must check the return code and move the results to the desired
3936 ** register.
3937 */
3938 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3939   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3940   int op;                   /* The opcode being coded */
3941   int inReg = target;       /* Results stored in register inReg */
3942   int regFree1 = 0;         /* If non-zero free this temporary register */
3943   int regFree2 = 0;         /* If non-zero free this temporary register */
3944   int r1, r2;               /* Various register numbers */
3945   Expr tempX;               /* Temporary expression node */
3946   int p5 = 0;
3947 
3948   assert( target>0 && target<=pParse->nMem );
3949   assert( v!=0 );
3950 
3951 expr_code_doover:
3952   if( pExpr==0 ){
3953     op = TK_NULL;
3954   }else{
3955     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3956     op = pExpr->op;
3957   }
3958   switch( op ){
3959     case TK_AGG_COLUMN: {
3960       AggInfo *pAggInfo = pExpr->pAggInfo;
3961       struct AggInfo_col *pCol;
3962       assert( pAggInfo!=0 );
3963       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3964       pCol = &pAggInfo->aCol[pExpr->iAgg];
3965       if( !pAggInfo->directMode ){
3966         assert( pCol->iMem>0 );
3967         return pCol->iMem;
3968       }else if( pAggInfo->useSortingIdx ){
3969         Table *pTab = pCol->pTab;
3970         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3971                               pCol->iSorterColumn, target);
3972         if( pCol->iColumn<0 ){
3973           VdbeComment((v,"%s.rowid",pTab->zName));
3974         }else{
3975           VdbeComment((v,"%s.%s",
3976               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
3977           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3978             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3979           }
3980         }
3981         return target;
3982       }
3983       /* Otherwise, fall thru into the TK_COLUMN case */
3984       /* no break */ deliberate_fall_through
3985     }
3986     case TK_COLUMN: {
3987       int iTab = pExpr->iTable;
3988       int iReg;
3989       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3990         /* This COLUMN expression is really a constant due to WHERE clause
3991         ** constraints, and that constant is coded by the pExpr->pLeft
3992         ** expresssion.  However, make sure the constant has the correct
3993         ** datatype by applying the Affinity of the table column to the
3994         ** constant.
3995         */
3996         int aff;
3997         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3998         if( pExpr->y.pTab ){
3999           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4000         }else{
4001           aff = pExpr->affExpr;
4002         }
4003         if( aff>SQLITE_AFF_BLOB ){
4004           static const char zAff[] = "B\000C\000D\000E";
4005           assert( SQLITE_AFF_BLOB=='A' );
4006           assert( SQLITE_AFF_TEXT=='B' );
4007           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4008                             &zAff[(aff-'B')*2], P4_STATIC);
4009         }
4010         return iReg;
4011       }
4012       if( iTab<0 ){
4013         if( pParse->iSelfTab<0 ){
4014           /* Other columns in the same row for CHECK constraints or
4015           ** generated columns or for inserting into partial index.
4016           ** The row is unpacked into registers beginning at
4017           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4018           ** immediately prior to the first column.
4019           */
4020           Column *pCol;
4021           Table *pTab = pExpr->y.pTab;
4022           int iSrc;
4023           int iCol = pExpr->iColumn;
4024           assert( pTab!=0 );
4025           assert( iCol>=XN_ROWID );
4026           assert( iCol<pTab->nCol );
4027           if( iCol<0 ){
4028             return -1-pParse->iSelfTab;
4029           }
4030           pCol = pTab->aCol + iCol;
4031           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4032           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4033 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4034           if( pCol->colFlags & COLFLAG_GENERATED ){
4035             if( pCol->colFlags & COLFLAG_BUSY ){
4036               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4037                               pCol->zCnName);
4038               return 0;
4039             }
4040             pCol->colFlags |= COLFLAG_BUSY;
4041             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4042               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4043             }
4044             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4045             return iSrc;
4046           }else
4047 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4048           if( pCol->affinity==SQLITE_AFF_REAL ){
4049             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4050             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4051             return target;
4052           }else{
4053             return iSrc;
4054           }
4055         }else{
4056           /* Coding an expression that is part of an index where column names
4057           ** in the index refer to the table to which the index belongs */
4058           iTab = pParse->iSelfTab - 1;
4059         }
4060       }
4061       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4062                                pExpr->iColumn, iTab, target,
4063                                pExpr->op2);
4064       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4065         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4066       }
4067       return iReg;
4068     }
4069     case TK_INTEGER: {
4070       codeInteger(pParse, pExpr, 0, target);
4071       return target;
4072     }
4073     case TK_TRUEFALSE: {
4074       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4075       return target;
4076     }
4077 #ifndef SQLITE_OMIT_FLOATING_POINT
4078     case TK_FLOAT: {
4079       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4080       codeReal(v, pExpr->u.zToken, 0, target);
4081       return target;
4082     }
4083 #endif
4084     case TK_STRING: {
4085       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4086       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4087       return target;
4088     }
4089     default: {
4090       /* Make NULL the default case so that if a bug causes an illegal
4091       ** Expr node to be passed into this function, it will be handled
4092       ** sanely and not crash.  But keep the assert() to bring the problem
4093       ** to the attention of the developers. */
4094       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4095       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4096       return target;
4097     }
4098 #ifndef SQLITE_OMIT_BLOB_LITERAL
4099     case TK_BLOB: {
4100       int n;
4101       const char *z;
4102       char *zBlob;
4103       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4104       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4105       assert( pExpr->u.zToken[1]=='\'' );
4106       z = &pExpr->u.zToken[2];
4107       n = sqlite3Strlen30(z) - 1;
4108       assert( z[n]=='\'' );
4109       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4110       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4111       return target;
4112     }
4113 #endif
4114     case TK_VARIABLE: {
4115       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4116       assert( pExpr->u.zToken!=0 );
4117       assert( pExpr->u.zToken[0]!=0 );
4118       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4119       if( pExpr->u.zToken[1]!=0 ){
4120         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4121         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4122         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4123         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4124       }
4125       return target;
4126     }
4127     case TK_REGISTER: {
4128       return pExpr->iTable;
4129     }
4130 #ifndef SQLITE_OMIT_CAST
4131     case TK_CAST: {
4132       /* Expressions of the form:   CAST(pLeft AS token) */
4133       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4134       if( inReg!=target ){
4135         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4136         inReg = target;
4137       }
4138       sqlite3VdbeAddOp2(v, OP_Cast, target,
4139                         sqlite3AffinityType(pExpr->u.zToken, 0));
4140       return inReg;
4141     }
4142 #endif /* SQLITE_OMIT_CAST */
4143     case TK_IS:
4144     case TK_ISNOT:
4145       op = (op==TK_IS) ? TK_EQ : TK_NE;
4146       p5 = SQLITE_NULLEQ;
4147       /* fall-through */
4148     case TK_LT:
4149     case TK_LE:
4150     case TK_GT:
4151     case TK_GE:
4152     case TK_NE:
4153     case TK_EQ: {
4154       Expr *pLeft = pExpr->pLeft;
4155       if( sqlite3ExprIsVector(pLeft) ){
4156         codeVectorCompare(pParse, pExpr, target, op, p5);
4157       }else{
4158         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4159         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4160         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4161         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4162             sqlite3VdbeCurrentAddr(v)+2, p5,
4163             ExprHasProperty(pExpr,EP_Commuted));
4164         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4165         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4166         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4167         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4168         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4169         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4170         if( p5==SQLITE_NULLEQ ){
4171           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4172         }else{
4173           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4174         }
4175         testcase( regFree1==0 );
4176         testcase( regFree2==0 );
4177       }
4178       break;
4179     }
4180     case TK_AND:
4181     case TK_OR:
4182     case TK_PLUS:
4183     case TK_STAR:
4184     case TK_MINUS:
4185     case TK_REM:
4186     case TK_BITAND:
4187     case TK_BITOR:
4188     case TK_SLASH:
4189     case TK_LSHIFT:
4190     case TK_RSHIFT:
4191     case TK_CONCAT: {
4192       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4193       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4194       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4195       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4196       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4197       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4198       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4199       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4200       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4201       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4202       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4203       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4204       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4205       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4206       testcase( regFree1==0 );
4207       testcase( regFree2==0 );
4208       break;
4209     }
4210     case TK_UMINUS: {
4211       Expr *pLeft = pExpr->pLeft;
4212       assert( pLeft );
4213       if( pLeft->op==TK_INTEGER ){
4214         codeInteger(pParse, pLeft, 1, target);
4215         return target;
4216 #ifndef SQLITE_OMIT_FLOATING_POINT
4217       }else if( pLeft->op==TK_FLOAT ){
4218         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4219         codeReal(v, pLeft->u.zToken, 1, target);
4220         return target;
4221 #endif
4222       }else{
4223         tempX.op = TK_INTEGER;
4224         tempX.flags = EP_IntValue|EP_TokenOnly;
4225         tempX.u.iValue = 0;
4226         ExprClearVVAProperties(&tempX);
4227         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4228         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4229         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4230         testcase( regFree2==0 );
4231       }
4232       break;
4233     }
4234     case TK_BITNOT:
4235     case TK_NOT: {
4236       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4237       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4238       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4239       testcase( regFree1==0 );
4240       sqlite3VdbeAddOp2(v, op, r1, inReg);
4241       break;
4242     }
4243     case TK_TRUTH: {
4244       int isTrue;    /* IS TRUE or IS NOT TRUE */
4245       int bNormal;   /* IS TRUE or IS FALSE */
4246       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4247       testcase( regFree1==0 );
4248       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4249       bNormal = pExpr->op2==TK_IS;
4250       testcase( isTrue && bNormal);
4251       testcase( !isTrue && bNormal);
4252       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4253       break;
4254     }
4255     case TK_ISNULL:
4256     case TK_NOTNULL: {
4257       int addr;
4258       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4259       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4260       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4261       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4262       testcase( regFree1==0 );
4263       addr = sqlite3VdbeAddOp1(v, op, r1);
4264       VdbeCoverageIf(v, op==TK_ISNULL);
4265       VdbeCoverageIf(v, op==TK_NOTNULL);
4266       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4267       sqlite3VdbeJumpHere(v, addr);
4268       break;
4269     }
4270     case TK_AGG_FUNCTION: {
4271       AggInfo *pInfo = pExpr->pAggInfo;
4272       if( pInfo==0
4273        || NEVER(pExpr->iAgg<0)
4274        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4275       ){
4276         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4277         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4278       }else{
4279         return pInfo->aFunc[pExpr->iAgg].iMem;
4280       }
4281       break;
4282     }
4283     case TK_FUNCTION: {
4284       ExprList *pFarg;       /* List of function arguments */
4285       int nFarg;             /* Number of function arguments */
4286       FuncDef *pDef;         /* The function definition object */
4287       const char *zId;       /* The function name */
4288       u32 constMask = 0;     /* Mask of function arguments that are constant */
4289       int i;                 /* Loop counter */
4290       sqlite3 *db = pParse->db;  /* The database connection */
4291       u8 enc = ENC(db);      /* The text encoding used by this database */
4292       CollSeq *pColl = 0;    /* A collating sequence */
4293 
4294 #ifndef SQLITE_OMIT_WINDOWFUNC
4295       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4296         return pExpr->y.pWin->regResult;
4297       }
4298 #endif
4299 
4300       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4301         /* SQL functions can be expensive. So try to avoid running them
4302         ** multiple times if we know they always give the same result */
4303         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4304       }
4305       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4306       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4307       pFarg = pExpr->x.pList;
4308       nFarg = pFarg ? pFarg->nExpr : 0;
4309       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4310       zId = pExpr->u.zToken;
4311       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4312 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4313       if( pDef==0 && pParse->explain ){
4314         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4315       }
4316 #endif
4317       if( pDef==0 || pDef->xFinalize!=0 ){
4318         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4319         break;
4320       }
4321       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4322         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4323         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4324         return exprCodeInlineFunction(pParse, pFarg,
4325              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4326       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4327         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4328       }
4329 
4330       for(i=0; i<nFarg; i++){
4331         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4332           testcase( i==31 );
4333           constMask |= MASKBIT32(i);
4334         }
4335         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4336           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4337         }
4338       }
4339       if( pFarg ){
4340         if( constMask ){
4341           r1 = pParse->nMem+1;
4342           pParse->nMem += nFarg;
4343         }else{
4344           r1 = sqlite3GetTempRange(pParse, nFarg);
4345         }
4346 
4347         /* For length() and typeof() functions with a column argument,
4348         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4349         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4350         ** loading.
4351         */
4352         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4353           u8 exprOp;
4354           assert( nFarg==1 );
4355           assert( pFarg->a[0].pExpr!=0 );
4356           exprOp = pFarg->a[0].pExpr->op;
4357           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4358             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4359             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4360             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4361             pFarg->a[0].pExpr->op2 =
4362                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4363           }
4364         }
4365 
4366         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4367                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4368       }else{
4369         r1 = 0;
4370       }
4371 #ifndef SQLITE_OMIT_VIRTUALTABLE
4372       /* Possibly overload the function if the first argument is
4373       ** a virtual table column.
4374       **
4375       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4376       ** second argument, not the first, as the argument to test to
4377       ** see if it is a column in a virtual table.  This is done because
4378       ** the left operand of infix functions (the operand we want to
4379       ** control overloading) ends up as the second argument to the
4380       ** function.  The expression "A glob B" is equivalent to
4381       ** "glob(B,A).  We want to use the A in "A glob B" to test
4382       ** for function overloading.  But we use the B term in "glob(B,A)".
4383       */
4384       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4385         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4386       }else if( nFarg>0 ){
4387         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4388       }
4389 #endif
4390       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4391         if( !pColl ) pColl = db->pDfltColl;
4392         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4393       }
4394 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4395       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4396         Expr *pArg = pFarg->a[0].pExpr;
4397         if( pArg->op==TK_COLUMN ){
4398           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4399         }else{
4400           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4401         }
4402       }else
4403 #endif
4404       {
4405         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4406                                    pDef, pExpr->op2);
4407       }
4408       if( nFarg ){
4409         if( constMask==0 ){
4410           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4411         }else{
4412           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4413         }
4414       }
4415       return target;
4416     }
4417 #ifndef SQLITE_OMIT_SUBQUERY
4418     case TK_EXISTS:
4419     case TK_SELECT: {
4420       int nCol;
4421       testcase( op==TK_EXISTS );
4422       testcase( op==TK_SELECT );
4423       if( pParse->db->mallocFailed ){
4424         return 0;
4425       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4426         sqlite3SubselectError(pParse, nCol, 1);
4427       }else{
4428         return sqlite3CodeSubselect(pParse, pExpr);
4429       }
4430       break;
4431     }
4432     case TK_SELECT_COLUMN: {
4433       int n;
4434       if( pExpr->pLeft->iTable==0 ){
4435         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4436       }
4437       assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR );
4438       n = sqlite3ExprVectorSize(pExpr->pLeft);
4439       if( pExpr->iTable!=n ){
4440         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4441                                 pExpr->iTable, n);
4442       }
4443       return pExpr->pLeft->iTable + pExpr->iColumn;
4444     }
4445     case TK_IN: {
4446       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4447       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4448       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4449       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4450       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4451       sqlite3VdbeResolveLabel(v, destIfFalse);
4452       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4453       sqlite3VdbeResolveLabel(v, destIfNull);
4454       return target;
4455     }
4456 #endif /* SQLITE_OMIT_SUBQUERY */
4457 
4458 
4459     /*
4460     **    x BETWEEN y AND z
4461     **
4462     ** This is equivalent to
4463     **
4464     **    x>=y AND x<=z
4465     **
4466     ** X is stored in pExpr->pLeft.
4467     ** Y is stored in pExpr->pList->a[0].pExpr.
4468     ** Z is stored in pExpr->pList->a[1].pExpr.
4469     */
4470     case TK_BETWEEN: {
4471       exprCodeBetween(pParse, pExpr, target, 0, 0);
4472       return target;
4473     }
4474     case TK_SPAN:
4475     case TK_COLLATE:
4476     case TK_UPLUS: {
4477       pExpr = pExpr->pLeft;
4478       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4479     }
4480 
4481     case TK_TRIGGER: {
4482       /* If the opcode is TK_TRIGGER, then the expression is a reference
4483       ** to a column in the new.* or old.* pseudo-tables available to
4484       ** trigger programs. In this case Expr.iTable is set to 1 for the
4485       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4486       ** is set to the column of the pseudo-table to read, or to -1 to
4487       ** read the rowid field.
4488       **
4489       ** The expression is implemented using an OP_Param opcode. The p1
4490       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4491       ** to reference another column of the old.* pseudo-table, where
4492       ** i is the index of the column. For a new.rowid reference, p1 is
4493       ** set to (n+1), where n is the number of columns in each pseudo-table.
4494       ** For a reference to any other column in the new.* pseudo-table, p1
4495       ** is set to (n+2+i), where n and i are as defined previously. For
4496       ** example, if the table on which triggers are being fired is
4497       ** declared as:
4498       **
4499       **   CREATE TABLE t1(a, b);
4500       **
4501       ** Then p1 is interpreted as follows:
4502       **
4503       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4504       **   p1==1   ->    old.a         p1==4   ->    new.a
4505       **   p1==2   ->    old.b         p1==5   ->    new.b
4506       */
4507       Table *pTab = pExpr->y.pTab;
4508       int iCol = pExpr->iColumn;
4509       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4510                      + sqlite3TableColumnToStorage(pTab, iCol);
4511 
4512       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4513       assert( iCol>=-1 && iCol<pTab->nCol );
4514       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4515       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4516 
4517       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4518       VdbeComment((v, "r[%d]=%s.%s", target,
4519         (pExpr->iTable ? "new" : "old"),
4520         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4521       ));
4522 
4523 #ifndef SQLITE_OMIT_FLOATING_POINT
4524       /* If the column has REAL affinity, it may currently be stored as an
4525       ** integer. Use OP_RealAffinity to make sure it is really real.
4526       **
4527       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4528       ** floating point when extracting it from the record.  */
4529       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4530         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4531       }
4532 #endif
4533       break;
4534     }
4535 
4536     case TK_VECTOR: {
4537       sqlite3ErrorMsg(pParse, "row value misused");
4538       break;
4539     }
4540 
4541     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4542     ** that derive from the right-hand table of a LEFT JOIN.  The
4543     ** Expr.iTable value is the table number for the right-hand table.
4544     ** The expression is only evaluated if that table is not currently
4545     ** on a LEFT JOIN NULL row.
4546     */
4547     case TK_IF_NULL_ROW: {
4548       int addrINR;
4549       u8 okConstFactor = pParse->okConstFactor;
4550       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4551       /* Temporarily disable factoring of constant expressions, since
4552       ** even though expressions may appear to be constant, they are not
4553       ** really constant because they originate from the right-hand side
4554       ** of a LEFT JOIN. */
4555       pParse->okConstFactor = 0;
4556       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4557       pParse->okConstFactor = okConstFactor;
4558       sqlite3VdbeJumpHere(v, addrINR);
4559       sqlite3VdbeChangeP3(v, addrINR, inReg);
4560       break;
4561     }
4562 
4563     /*
4564     ** Form A:
4565     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4566     **
4567     ** Form B:
4568     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4569     **
4570     ** Form A is can be transformed into the equivalent form B as follows:
4571     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4572     **        WHEN x=eN THEN rN ELSE y END
4573     **
4574     ** X (if it exists) is in pExpr->pLeft.
4575     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4576     ** odd.  The Y is also optional.  If the number of elements in x.pList
4577     ** is even, then Y is omitted and the "otherwise" result is NULL.
4578     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4579     **
4580     ** The result of the expression is the Ri for the first matching Ei,
4581     ** or if there is no matching Ei, the ELSE term Y, or if there is
4582     ** no ELSE term, NULL.
4583     */
4584     case TK_CASE: {
4585       int endLabel;                     /* GOTO label for end of CASE stmt */
4586       int nextCase;                     /* GOTO label for next WHEN clause */
4587       int nExpr;                        /* 2x number of WHEN terms */
4588       int i;                            /* Loop counter */
4589       ExprList *pEList;                 /* List of WHEN terms */
4590       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4591       Expr opCompare;                   /* The X==Ei expression */
4592       Expr *pX;                         /* The X expression */
4593       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4594       Expr *pDel = 0;
4595       sqlite3 *db = pParse->db;
4596 
4597       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4598       assert(pExpr->x.pList->nExpr > 0);
4599       pEList = pExpr->x.pList;
4600       aListelem = pEList->a;
4601       nExpr = pEList->nExpr;
4602       endLabel = sqlite3VdbeMakeLabel(pParse);
4603       if( (pX = pExpr->pLeft)!=0 ){
4604         pDel = sqlite3ExprDup(db, pX, 0);
4605         if( db->mallocFailed ){
4606           sqlite3ExprDelete(db, pDel);
4607           break;
4608         }
4609         testcase( pX->op==TK_COLUMN );
4610         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4611         testcase( regFree1==0 );
4612         memset(&opCompare, 0, sizeof(opCompare));
4613         opCompare.op = TK_EQ;
4614         opCompare.pLeft = pDel;
4615         pTest = &opCompare;
4616         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4617         ** The value in regFree1 might get SCopy-ed into the file result.
4618         ** So make sure that the regFree1 register is not reused for other
4619         ** purposes and possibly overwritten.  */
4620         regFree1 = 0;
4621       }
4622       for(i=0; i<nExpr-1; i=i+2){
4623         if( pX ){
4624           assert( pTest!=0 );
4625           opCompare.pRight = aListelem[i].pExpr;
4626         }else{
4627           pTest = aListelem[i].pExpr;
4628         }
4629         nextCase = sqlite3VdbeMakeLabel(pParse);
4630         testcase( pTest->op==TK_COLUMN );
4631         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4632         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4633         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4634         sqlite3VdbeGoto(v, endLabel);
4635         sqlite3VdbeResolveLabel(v, nextCase);
4636       }
4637       if( (nExpr&1)!=0 ){
4638         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4639       }else{
4640         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4641       }
4642       sqlite3ExprDelete(db, pDel);
4643       setDoNotMergeFlagOnCopy(v);
4644       sqlite3VdbeResolveLabel(v, endLabel);
4645       break;
4646     }
4647 #ifndef SQLITE_OMIT_TRIGGER
4648     case TK_RAISE: {
4649       assert( pExpr->affExpr==OE_Rollback
4650            || pExpr->affExpr==OE_Abort
4651            || pExpr->affExpr==OE_Fail
4652            || pExpr->affExpr==OE_Ignore
4653       );
4654       if( !pParse->pTriggerTab && !pParse->nested ){
4655         sqlite3ErrorMsg(pParse,
4656                        "RAISE() may only be used within a trigger-program");
4657         return 0;
4658       }
4659       if( pExpr->affExpr==OE_Abort ){
4660         sqlite3MayAbort(pParse);
4661       }
4662       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4663       if( pExpr->affExpr==OE_Ignore ){
4664         sqlite3VdbeAddOp4(
4665             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4666         VdbeCoverage(v);
4667       }else{
4668         sqlite3HaltConstraint(pParse,
4669              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4670              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4671       }
4672 
4673       break;
4674     }
4675 #endif
4676   }
4677   sqlite3ReleaseTempReg(pParse, regFree1);
4678   sqlite3ReleaseTempReg(pParse, regFree2);
4679   return inReg;
4680 }
4681 
4682 /*
4683 ** Generate code that will evaluate expression pExpr just one time
4684 ** per prepared statement execution.
4685 **
4686 ** If the expression uses functions (that might throw an exception) then
4687 ** guard them with an OP_Once opcode to ensure that the code is only executed
4688 ** once. If no functions are involved, then factor the code out and put it at
4689 ** the end of the prepared statement in the initialization section.
4690 **
4691 ** If regDest>=0 then the result is always stored in that register and the
4692 ** result is not reusable.  If regDest<0 then this routine is free to
4693 ** store the value whereever it wants.  The register where the expression
4694 ** is stored is returned.  When regDest<0, two identical expressions might
4695 ** code to the same register, if they do not contain function calls and hence
4696 ** are factored out into the initialization section at the end of the
4697 ** prepared statement.
4698 */
4699 int sqlite3ExprCodeRunJustOnce(
4700   Parse *pParse,    /* Parsing context */
4701   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4702   int regDest       /* Store the value in this register */
4703 ){
4704   ExprList *p;
4705   assert( ConstFactorOk(pParse) );
4706   p = pParse->pConstExpr;
4707   if( regDest<0 && p ){
4708     struct ExprList_item *pItem;
4709     int i;
4710     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4711       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4712         return pItem->u.iConstExprReg;
4713       }
4714     }
4715   }
4716   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4717   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4718     Vdbe *v = pParse->pVdbe;
4719     int addr;
4720     assert( v );
4721     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4722     pParse->okConstFactor = 0;
4723     if( !pParse->db->mallocFailed ){
4724       if( regDest<0 ) regDest = ++pParse->nMem;
4725       sqlite3ExprCode(pParse, pExpr, regDest);
4726     }
4727     pParse->okConstFactor = 1;
4728     sqlite3ExprDelete(pParse->db, pExpr);
4729     sqlite3VdbeJumpHere(v, addr);
4730   }else{
4731     p = sqlite3ExprListAppend(pParse, p, pExpr);
4732     if( p ){
4733        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4734        pItem->reusable = regDest<0;
4735        if( regDest<0 ) regDest = ++pParse->nMem;
4736        pItem->u.iConstExprReg = regDest;
4737     }
4738     pParse->pConstExpr = p;
4739   }
4740   return regDest;
4741 }
4742 
4743 /*
4744 ** Generate code to evaluate an expression and store the results
4745 ** into a register.  Return the register number where the results
4746 ** are stored.
4747 **
4748 ** If the register is a temporary register that can be deallocated,
4749 ** then write its number into *pReg.  If the result register is not
4750 ** a temporary, then set *pReg to zero.
4751 **
4752 ** If pExpr is a constant, then this routine might generate this
4753 ** code to fill the register in the initialization section of the
4754 ** VDBE program, in order to factor it out of the evaluation loop.
4755 */
4756 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4757   int r2;
4758   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4759   if( ConstFactorOk(pParse)
4760    && ALWAYS(pExpr!=0)
4761    && pExpr->op!=TK_REGISTER
4762    && sqlite3ExprIsConstantNotJoin(pExpr)
4763   ){
4764     *pReg  = 0;
4765     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4766   }else{
4767     int r1 = sqlite3GetTempReg(pParse);
4768     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4769     if( r2==r1 ){
4770       *pReg = r1;
4771     }else{
4772       sqlite3ReleaseTempReg(pParse, r1);
4773       *pReg = 0;
4774     }
4775   }
4776   return r2;
4777 }
4778 
4779 /*
4780 ** Generate code that will evaluate expression pExpr and store the
4781 ** results in register target.  The results are guaranteed to appear
4782 ** in register target.
4783 */
4784 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4785   int inReg;
4786 
4787   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4788   assert( target>0 && target<=pParse->nMem );
4789   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4790   if( pParse->pVdbe==0 ) return;
4791   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4792   if( inReg!=target ){
4793     u8 op;
4794     if( ExprHasProperty(pExpr,EP_Subquery) ){
4795       op = OP_Copy;
4796     }else{
4797       op = OP_SCopy;
4798     }
4799     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4800   }
4801 }
4802 
4803 /*
4804 ** Make a transient copy of expression pExpr and then code it using
4805 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4806 ** except that the input expression is guaranteed to be unchanged.
4807 */
4808 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4809   sqlite3 *db = pParse->db;
4810   pExpr = sqlite3ExprDup(db, pExpr, 0);
4811   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4812   sqlite3ExprDelete(db, pExpr);
4813 }
4814 
4815 /*
4816 ** Generate code that will evaluate expression pExpr and store the
4817 ** results in register target.  The results are guaranteed to appear
4818 ** in register target.  If the expression is constant, then this routine
4819 ** might choose to code the expression at initialization time.
4820 */
4821 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4822   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4823     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4824   }else{
4825     sqlite3ExprCodeCopy(pParse, pExpr, target);
4826   }
4827 }
4828 
4829 /*
4830 ** Generate code that pushes the value of every element of the given
4831 ** expression list into a sequence of registers beginning at target.
4832 **
4833 ** Return the number of elements evaluated.  The number returned will
4834 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4835 ** is defined.
4836 **
4837 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4838 ** filled using OP_SCopy.  OP_Copy must be used instead.
4839 **
4840 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4841 ** factored out into initialization code.
4842 **
4843 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4844 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4845 ** in registers at srcReg, and so the value can be copied from there.
4846 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4847 ** are simply omitted rather than being copied from srcReg.
4848 */
4849 int sqlite3ExprCodeExprList(
4850   Parse *pParse,     /* Parsing context */
4851   ExprList *pList,   /* The expression list to be coded */
4852   int target,        /* Where to write results */
4853   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4854   u8 flags           /* SQLITE_ECEL_* flags */
4855 ){
4856   struct ExprList_item *pItem;
4857   int i, j, n;
4858   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4859   Vdbe *v = pParse->pVdbe;
4860   assert( pList!=0 );
4861   assert( target>0 );
4862   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4863   n = pList->nExpr;
4864   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4865   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4866     Expr *pExpr = pItem->pExpr;
4867 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4868     if( pItem->bSorterRef ){
4869       i--;
4870       n--;
4871     }else
4872 #endif
4873     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4874       if( flags & SQLITE_ECEL_OMITREF ){
4875         i--;
4876         n--;
4877       }else{
4878         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4879       }
4880     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4881            && sqlite3ExprIsConstantNotJoin(pExpr)
4882     ){
4883       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4884     }else{
4885       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4886       if( inReg!=target+i ){
4887         VdbeOp *pOp;
4888         if( copyOp==OP_Copy
4889          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4890          && pOp->p1+pOp->p3+1==inReg
4891          && pOp->p2+pOp->p3+1==target+i
4892          && pOp->p5==0  /* The do-not-merge flag must be clear */
4893         ){
4894           pOp->p3++;
4895         }else{
4896           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4897         }
4898       }
4899     }
4900   }
4901   return n;
4902 }
4903 
4904 /*
4905 ** Generate code for a BETWEEN operator.
4906 **
4907 **    x BETWEEN y AND z
4908 **
4909 ** The above is equivalent to
4910 **
4911 **    x>=y AND x<=z
4912 **
4913 ** Code it as such, taking care to do the common subexpression
4914 ** elimination of x.
4915 **
4916 ** The xJumpIf parameter determines details:
4917 **
4918 **    NULL:                   Store the boolean result in reg[dest]
4919 **    sqlite3ExprIfTrue:      Jump to dest if true
4920 **    sqlite3ExprIfFalse:     Jump to dest if false
4921 **
4922 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4923 */
4924 static void exprCodeBetween(
4925   Parse *pParse,    /* Parsing and code generating context */
4926   Expr *pExpr,      /* The BETWEEN expression */
4927   int dest,         /* Jump destination or storage location */
4928   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4929   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4930 ){
4931   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4932   Expr compLeft;    /* The  x>=y  term */
4933   Expr compRight;   /* The  x<=z  term */
4934   int regFree1 = 0; /* Temporary use register */
4935   Expr *pDel = 0;
4936   sqlite3 *db = pParse->db;
4937 
4938   memset(&compLeft, 0, sizeof(Expr));
4939   memset(&compRight, 0, sizeof(Expr));
4940   memset(&exprAnd, 0, sizeof(Expr));
4941 
4942   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4943   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4944   if( db->mallocFailed==0 ){
4945     exprAnd.op = TK_AND;
4946     exprAnd.pLeft = &compLeft;
4947     exprAnd.pRight = &compRight;
4948     compLeft.op = TK_GE;
4949     compLeft.pLeft = pDel;
4950     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4951     compRight.op = TK_LE;
4952     compRight.pLeft = pDel;
4953     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4954     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4955     if( xJump ){
4956       xJump(pParse, &exprAnd, dest, jumpIfNull);
4957     }else{
4958       /* Mark the expression is being from the ON or USING clause of a join
4959       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4960       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4961       ** for clarity, but we are out of bits in the Expr.flags field so we
4962       ** have to reuse the EP_FromJoin bit.  Bummer. */
4963       pDel->flags |= EP_FromJoin;
4964       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4965     }
4966     sqlite3ReleaseTempReg(pParse, regFree1);
4967   }
4968   sqlite3ExprDelete(db, pDel);
4969 
4970   /* Ensure adequate test coverage */
4971   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4972   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4973   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4974   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4975   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4976   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4977   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4978   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4979   testcase( xJump==0 );
4980 }
4981 
4982 /*
4983 ** Generate code for a boolean expression such that a jump is made
4984 ** to the label "dest" if the expression is true but execution
4985 ** continues straight thru if the expression is false.
4986 **
4987 ** If the expression evaluates to NULL (neither true nor false), then
4988 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4989 **
4990 ** This code depends on the fact that certain token values (ex: TK_EQ)
4991 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4992 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4993 ** the make process cause these values to align.  Assert()s in the code
4994 ** below verify that the numbers are aligned correctly.
4995 */
4996 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4997   Vdbe *v = pParse->pVdbe;
4998   int op = 0;
4999   int regFree1 = 0;
5000   int regFree2 = 0;
5001   int r1, r2;
5002 
5003   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5004   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5005   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5006   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5007   op = pExpr->op;
5008   switch( op ){
5009     case TK_AND:
5010     case TK_OR: {
5011       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5012       if( pAlt!=pExpr ){
5013         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5014       }else if( op==TK_AND ){
5015         int d2 = sqlite3VdbeMakeLabel(pParse);
5016         testcase( jumpIfNull==0 );
5017         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5018                            jumpIfNull^SQLITE_JUMPIFNULL);
5019         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5020         sqlite3VdbeResolveLabel(v, d2);
5021       }else{
5022         testcase( jumpIfNull==0 );
5023         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5024         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5025       }
5026       break;
5027     }
5028     case TK_NOT: {
5029       testcase( jumpIfNull==0 );
5030       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5031       break;
5032     }
5033     case TK_TRUTH: {
5034       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5035       int isTrue;     /* IS TRUE or IS NOT TRUE */
5036       testcase( jumpIfNull==0 );
5037       isNot = pExpr->op2==TK_ISNOT;
5038       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5039       testcase( isTrue && isNot );
5040       testcase( !isTrue && isNot );
5041       if( isTrue ^ isNot ){
5042         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5043                           isNot ? SQLITE_JUMPIFNULL : 0);
5044       }else{
5045         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5046                            isNot ? SQLITE_JUMPIFNULL : 0);
5047       }
5048       break;
5049     }
5050     case TK_IS:
5051     case TK_ISNOT:
5052       testcase( op==TK_IS );
5053       testcase( op==TK_ISNOT );
5054       op = (op==TK_IS) ? TK_EQ : TK_NE;
5055       jumpIfNull = SQLITE_NULLEQ;
5056       /* no break */ deliberate_fall_through
5057     case TK_LT:
5058     case TK_LE:
5059     case TK_GT:
5060     case TK_GE:
5061     case TK_NE:
5062     case TK_EQ: {
5063       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5064       testcase( jumpIfNull==0 );
5065       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5066       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5067       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5068                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5069       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5070       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5071       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5072       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5073       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5074       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5075       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5076       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5077       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5078       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5079       testcase( regFree1==0 );
5080       testcase( regFree2==0 );
5081       break;
5082     }
5083     case TK_ISNULL:
5084     case TK_NOTNULL: {
5085       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5086       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5087       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5088       sqlite3VdbeAddOp2(v, op, r1, dest);
5089       VdbeCoverageIf(v, op==TK_ISNULL);
5090       VdbeCoverageIf(v, op==TK_NOTNULL);
5091       testcase( regFree1==0 );
5092       break;
5093     }
5094     case TK_BETWEEN: {
5095       testcase( jumpIfNull==0 );
5096       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5097       break;
5098     }
5099 #ifndef SQLITE_OMIT_SUBQUERY
5100     case TK_IN: {
5101       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5102       int destIfNull = jumpIfNull ? dest : destIfFalse;
5103       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5104       sqlite3VdbeGoto(v, dest);
5105       sqlite3VdbeResolveLabel(v, destIfFalse);
5106       break;
5107     }
5108 #endif
5109     default: {
5110     default_expr:
5111       if( ExprAlwaysTrue(pExpr) ){
5112         sqlite3VdbeGoto(v, dest);
5113       }else if( ExprAlwaysFalse(pExpr) ){
5114         /* No-op */
5115       }else{
5116         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5117         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5118         VdbeCoverage(v);
5119         testcase( regFree1==0 );
5120         testcase( jumpIfNull==0 );
5121       }
5122       break;
5123     }
5124   }
5125   sqlite3ReleaseTempReg(pParse, regFree1);
5126   sqlite3ReleaseTempReg(pParse, regFree2);
5127 }
5128 
5129 /*
5130 ** Generate code for a boolean expression such that a jump is made
5131 ** to the label "dest" if the expression is false but execution
5132 ** continues straight thru if the expression is true.
5133 **
5134 ** If the expression evaluates to NULL (neither true nor false) then
5135 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5136 ** is 0.
5137 */
5138 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5139   Vdbe *v = pParse->pVdbe;
5140   int op = 0;
5141   int regFree1 = 0;
5142   int regFree2 = 0;
5143   int r1, r2;
5144 
5145   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5146   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5147   if( pExpr==0 )    return;
5148   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5149 
5150   /* The value of pExpr->op and op are related as follows:
5151   **
5152   **       pExpr->op            op
5153   **       ---------          ----------
5154   **       TK_ISNULL          OP_NotNull
5155   **       TK_NOTNULL         OP_IsNull
5156   **       TK_NE              OP_Eq
5157   **       TK_EQ              OP_Ne
5158   **       TK_GT              OP_Le
5159   **       TK_LE              OP_Gt
5160   **       TK_GE              OP_Lt
5161   **       TK_LT              OP_Ge
5162   **
5163   ** For other values of pExpr->op, op is undefined and unused.
5164   ** The value of TK_ and OP_ constants are arranged such that we
5165   ** can compute the mapping above using the following expression.
5166   ** Assert()s verify that the computation is correct.
5167   */
5168   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5169 
5170   /* Verify correct alignment of TK_ and OP_ constants
5171   */
5172   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5173   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5174   assert( pExpr->op!=TK_NE || op==OP_Eq );
5175   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5176   assert( pExpr->op!=TK_LT || op==OP_Ge );
5177   assert( pExpr->op!=TK_LE || op==OP_Gt );
5178   assert( pExpr->op!=TK_GT || op==OP_Le );
5179   assert( pExpr->op!=TK_GE || op==OP_Lt );
5180 
5181   switch( pExpr->op ){
5182     case TK_AND:
5183     case TK_OR: {
5184       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5185       if( pAlt!=pExpr ){
5186         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5187       }else if( pExpr->op==TK_AND ){
5188         testcase( jumpIfNull==0 );
5189         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5190         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5191       }else{
5192         int d2 = sqlite3VdbeMakeLabel(pParse);
5193         testcase( jumpIfNull==0 );
5194         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5195                           jumpIfNull^SQLITE_JUMPIFNULL);
5196         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5197         sqlite3VdbeResolveLabel(v, d2);
5198       }
5199       break;
5200     }
5201     case TK_NOT: {
5202       testcase( jumpIfNull==0 );
5203       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5204       break;
5205     }
5206     case TK_TRUTH: {
5207       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5208       int isTrue;  /* IS TRUE or IS NOT TRUE */
5209       testcase( jumpIfNull==0 );
5210       isNot = pExpr->op2==TK_ISNOT;
5211       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5212       testcase( isTrue && isNot );
5213       testcase( !isTrue && isNot );
5214       if( isTrue ^ isNot ){
5215         /* IS TRUE and IS NOT FALSE */
5216         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5217                            isNot ? 0 : SQLITE_JUMPIFNULL);
5218 
5219       }else{
5220         /* IS FALSE and IS NOT TRUE */
5221         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5222                           isNot ? 0 : SQLITE_JUMPIFNULL);
5223       }
5224       break;
5225     }
5226     case TK_IS:
5227     case TK_ISNOT:
5228       testcase( pExpr->op==TK_IS );
5229       testcase( pExpr->op==TK_ISNOT );
5230       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5231       jumpIfNull = SQLITE_NULLEQ;
5232       /* no break */ deliberate_fall_through
5233     case TK_LT:
5234     case TK_LE:
5235     case TK_GT:
5236     case TK_GE:
5237     case TK_NE:
5238     case TK_EQ: {
5239       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5240       testcase( jumpIfNull==0 );
5241       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5242       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5243       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5244                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5245       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5246       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5247       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5248       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5249       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5250       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5251       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5252       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5253       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5254       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5255       testcase( regFree1==0 );
5256       testcase( regFree2==0 );
5257       break;
5258     }
5259     case TK_ISNULL:
5260     case TK_NOTNULL: {
5261       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5262       sqlite3VdbeAddOp2(v, op, r1, dest);
5263       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5264       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5265       testcase( regFree1==0 );
5266       break;
5267     }
5268     case TK_BETWEEN: {
5269       testcase( jumpIfNull==0 );
5270       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5271       break;
5272     }
5273 #ifndef SQLITE_OMIT_SUBQUERY
5274     case TK_IN: {
5275       if( jumpIfNull ){
5276         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5277       }else{
5278         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5279         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5280         sqlite3VdbeResolveLabel(v, destIfNull);
5281       }
5282       break;
5283     }
5284 #endif
5285     default: {
5286     default_expr:
5287       if( ExprAlwaysFalse(pExpr) ){
5288         sqlite3VdbeGoto(v, dest);
5289       }else if( ExprAlwaysTrue(pExpr) ){
5290         /* no-op */
5291       }else{
5292         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5293         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5294         VdbeCoverage(v);
5295         testcase( regFree1==0 );
5296         testcase( jumpIfNull==0 );
5297       }
5298       break;
5299     }
5300   }
5301   sqlite3ReleaseTempReg(pParse, regFree1);
5302   sqlite3ReleaseTempReg(pParse, regFree2);
5303 }
5304 
5305 /*
5306 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5307 ** code generation, and that copy is deleted after code generation. This
5308 ** ensures that the original pExpr is unchanged.
5309 */
5310 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5311   sqlite3 *db = pParse->db;
5312   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5313   if( db->mallocFailed==0 ){
5314     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5315   }
5316   sqlite3ExprDelete(db, pCopy);
5317 }
5318 
5319 /*
5320 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5321 ** type of expression.
5322 **
5323 ** If pExpr is a simple SQL value - an integer, real, string, blob
5324 ** or NULL value - then the VDBE currently being prepared is configured
5325 ** to re-prepare each time a new value is bound to variable pVar.
5326 **
5327 ** Additionally, if pExpr is a simple SQL value and the value is the
5328 ** same as that currently bound to variable pVar, non-zero is returned.
5329 ** Otherwise, if the values are not the same or if pExpr is not a simple
5330 ** SQL value, zero is returned.
5331 */
5332 static int exprCompareVariable(
5333   const Parse *pParse,
5334   const Expr *pVar,
5335   const Expr *pExpr
5336 ){
5337   int res = 0;
5338   int iVar;
5339   sqlite3_value *pL, *pR = 0;
5340 
5341   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5342   if( pR ){
5343     iVar = pVar->iColumn;
5344     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5345     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5346     if( pL ){
5347       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5348         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5349       }
5350       res =  0==sqlite3MemCompare(pL, pR, 0);
5351     }
5352     sqlite3ValueFree(pR);
5353     sqlite3ValueFree(pL);
5354   }
5355 
5356   return res;
5357 }
5358 
5359 /*
5360 ** Do a deep comparison of two expression trees.  Return 0 if the two
5361 ** expressions are completely identical.  Return 1 if they differ only
5362 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5363 ** other than the top-level COLLATE operator.
5364 **
5365 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5366 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5367 **
5368 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5369 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5370 **
5371 ** Sometimes this routine will return 2 even if the two expressions
5372 ** really are equivalent.  If we cannot prove that the expressions are
5373 ** identical, we return 2 just to be safe.  So if this routine
5374 ** returns 2, then you do not really know for certain if the two
5375 ** expressions are the same.  But if you get a 0 or 1 return, then you
5376 ** can be sure the expressions are the same.  In the places where
5377 ** this routine is used, it does not hurt to get an extra 2 - that
5378 ** just might result in some slightly slower code.  But returning
5379 ** an incorrect 0 or 1 could lead to a malfunction.
5380 **
5381 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5382 ** pParse->pReprepare can be matched against literals in pB.  The
5383 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5384 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5385 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5386 ** pB causes a return value of 2.
5387 */
5388 int sqlite3ExprCompare(
5389   const Parse *pParse,
5390   const Expr *pA,
5391   const Expr *pB,
5392   int iTab
5393 ){
5394   u32 combinedFlags;
5395   if( pA==0 || pB==0 ){
5396     return pB==pA ? 0 : 2;
5397   }
5398   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5399     return 0;
5400   }
5401   combinedFlags = pA->flags | pB->flags;
5402   if( combinedFlags & EP_IntValue ){
5403     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5404       return 0;
5405     }
5406     return 2;
5407   }
5408   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5409     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5410       return 1;
5411     }
5412     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5413       return 1;
5414     }
5415     return 2;
5416   }
5417   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5418     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5419       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5420 #ifndef SQLITE_OMIT_WINDOWFUNC
5421       assert( pA->op==pB->op );
5422       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5423         return 2;
5424       }
5425       if( ExprHasProperty(pA,EP_WinFunc) ){
5426         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5427           return 2;
5428         }
5429       }
5430 #endif
5431     }else if( pA->op==TK_NULL ){
5432       return 0;
5433     }else if( pA->op==TK_COLLATE ){
5434       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5435     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5436       return 2;
5437     }
5438   }
5439   if( (pA->flags & (EP_Distinct|EP_Commuted))
5440      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5441   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5442     if( combinedFlags & EP_xIsSelect ) return 2;
5443     if( (combinedFlags & EP_FixedCol)==0
5444      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5445     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5446     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5447     if( pA->op!=TK_STRING
5448      && pA->op!=TK_TRUEFALSE
5449      && ALWAYS((combinedFlags & EP_Reduced)==0)
5450     ){
5451       if( pA->iColumn!=pB->iColumn ) return 2;
5452       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5453       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5454         return 2;
5455       }
5456     }
5457   }
5458   return 0;
5459 }
5460 
5461 /*
5462 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5463 ** if they are certainly different, or 2 if it is not possible to
5464 ** determine if they are identical or not.
5465 **
5466 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5467 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5468 **
5469 ** This routine might return non-zero for equivalent ExprLists.  The
5470 ** only consequence will be disabled optimizations.  But this routine
5471 ** must never return 0 if the two ExprList objects are different, or
5472 ** a malfunction will result.
5473 **
5474 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5475 ** always differs from a non-NULL pointer.
5476 */
5477 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5478   int i;
5479   if( pA==0 && pB==0 ) return 0;
5480   if( pA==0 || pB==0 ) return 1;
5481   if( pA->nExpr!=pB->nExpr ) return 1;
5482   for(i=0; i<pA->nExpr; i++){
5483     int res;
5484     Expr *pExprA = pA->a[i].pExpr;
5485     Expr *pExprB = pB->a[i].pExpr;
5486     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5487     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5488   }
5489   return 0;
5490 }
5491 
5492 /*
5493 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5494 ** are ignored.
5495 */
5496 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5497   return sqlite3ExprCompare(0,
5498              sqlite3ExprSkipCollateAndLikely(pA),
5499              sqlite3ExprSkipCollateAndLikely(pB),
5500              iTab);
5501 }
5502 
5503 /*
5504 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5505 **
5506 ** Or if seenNot is true, return non-zero if Expr p can only be
5507 ** non-NULL if pNN is not NULL
5508 */
5509 static int exprImpliesNotNull(
5510   const Parse *pParse,/* Parsing context */
5511   const Expr *p,      /* The expression to be checked */
5512   const Expr *pNN,    /* The expression that is NOT NULL */
5513   int iTab,           /* Table being evaluated */
5514   int seenNot         /* Return true only if p can be any non-NULL value */
5515 ){
5516   assert( p );
5517   assert( pNN );
5518   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5519     return pNN->op!=TK_NULL;
5520   }
5521   switch( p->op ){
5522     case TK_IN: {
5523       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5524       assert( ExprHasProperty(p,EP_xIsSelect)
5525            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5526       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5527     }
5528     case TK_BETWEEN: {
5529       ExprList *pList = p->x.pList;
5530       assert( pList!=0 );
5531       assert( pList->nExpr==2 );
5532       if( seenNot ) return 0;
5533       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5534        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5535       ){
5536         return 1;
5537       }
5538       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5539     }
5540     case TK_EQ:
5541     case TK_NE:
5542     case TK_LT:
5543     case TK_LE:
5544     case TK_GT:
5545     case TK_GE:
5546     case TK_PLUS:
5547     case TK_MINUS:
5548     case TK_BITOR:
5549     case TK_LSHIFT:
5550     case TK_RSHIFT:
5551     case TK_CONCAT:
5552       seenNot = 1;
5553       /* no break */ deliberate_fall_through
5554     case TK_STAR:
5555     case TK_REM:
5556     case TK_BITAND:
5557     case TK_SLASH: {
5558       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5559       /* no break */ deliberate_fall_through
5560     }
5561     case TK_SPAN:
5562     case TK_COLLATE:
5563     case TK_UPLUS:
5564     case TK_UMINUS: {
5565       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5566     }
5567     case TK_TRUTH: {
5568       if( seenNot ) return 0;
5569       if( p->op2!=TK_IS ) return 0;
5570       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5571     }
5572     case TK_BITNOT:
5573     case TK_NOT: {
5574       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5575     }
5576   }
5577   return 0;
5578 }
5579 
5580 /*
5581 ** Return true if we can prove the pE2 will always be true if pE1 is
5582 ** true.  Return false if we cannot complete the proof or if pE2 might
5583 ** be false.  Examples:
5584 **
5585 **     pE1: x==5       pE2: x==5             Result: true
5586 **     pE1: x>0        pE2: x==5             Result: false
5587 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5588 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5589 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5590 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5591 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5592 **
5593 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5594 ** Expr.iTable<0 then assume a table number given by iTab.
5595 **
5596 ** If pParse is not NULL, then the values of bound variables in pE1 are
5597 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5598 ** modified to record which bound variables are referenced.  If pParse
5599 ** is NULL, then false will be returned if pE1 contains any bound variables.
5600 **
5601 ** When in doubt, return false.  Returning true might give a performance
5602 ** improvement.  Returning false might cause a performance reduction, but
5603 ** it will always give the correct answer and is hence always safe.
5604 */
5605 int sqlite3ExprImpliesExpr(
5606   const Parse *pParse,
5607   const Expr *pE1,
5608   const Expr *pE2,
5609   int iTab
5610 ){
5611   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5612     return 1;
5613   }
5614   if( pE2->op==TK_OR
5615    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5616              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5617   ){
5618     return 1;
5619   }
5620   if( pE2->op==TK_NOTNULL
5621    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5622   ){
5623     return 1;
5624   }
5625   return 0;
5626 }
5627 
5628 /*
5629 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5630 ** If the expression node requires that the table at pWalker->iCur
5631 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5632 **
5633 ** This routine controls an optimization.  False positives (setting
5634 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5635 ** (never setting pWalker->eCode) is a harmless missed optimization.
5636 */
5637 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5638   testcase( pExpr->op==TK_AGG_COLUMN );
5639   testcase( pExpr->op==TK_AGG_FUNCTION );
5640   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5641   switch( pExpr->op ){
5642     case TK_ISNOT:
5643     case TK_ISNULL:
5644     case TK_NOTNULL:
5645     case TK_IS:
5646     case TK_OR:
5647     case TK_VECTOR:
5648     case TK_CASE:
5649     case TK_IN:
5650     case TK_FUNCTION:
5651     case TK_TRUTH:
5652       testcase( pExpr->op==TK_ISNOT );
5653       testcase( pExpr->op==TK_ISNULL );
5654       testcase( pExpr->op==TK_NOTNULL );
5655       testcase( pExpr->op==TK_IS );
5656       testcase( pExpr->op==TK_OR );
5657       testcase( pExpr->op==TK_VECTOR );
5658       testcase( pExpr->op==TK_CASE );
5659       testcase( pExpr->op==TK_IN );
5660       testcase( pExpr->op==TK_FUNCTION );
5661       testcase( pExpr->op==TK_TRUTH );
5662       return WRC_Prune;
5663     case TK_COLUMN:
5664       if( pWalker->u.iCur==pExpr->iTable ){
5665         pWalker->eCode = 1;
5666         return WRC_Abort;
5667       }
5668       return WRC_Prune;
5669 
5670     case TK_AND:
5671       if( pWalker->eCode==0 ){
5672         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5673         if( pWalker->eCode ){
5674           pWalker->eCode = 0;
5675           sqlite3WalkExpr(pWalker, pExpr->pRight);
5676         }
5677       }
5678       return WRC_Prune;
5679 
5680     case TK_BETWEEN:
5681       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5682         assert( pWalker->eCode );
5683         return WRC_Abort;
5684       }
5685       return WRC_Prune;
5686 
5687     /* Virtual tables are allowed to use constraints like x=NULL.  So
5688     ** a term of the form x=y does not prove that y is not null if x
5689     ** is the column of a virtual table */
5690     case TK_EQ:
5691     case TK_NE:
5692     case TK_LT:
5693     case TK_LE:
5694     case TK_GT:
5695     case TK_GE: {
5696       Expr *pLeft = pExpr->pLeft;
5697       Expr *pRight = pExpr->pRight;
5698       testcase( pExpr->op==TK_EQ );
5699       testcase( pExpr->op==TK_NE );
5700       testcase( pExpr->op==TK_LT );
5701       testcase( pExpr->op==TK_LE );
5702       testcase( pExpr->op==TK_GT );
5703       testcase( pExpr->op==TK_GE );
5704       /* The y.pTab=0 assignment in wherecode.c always happens after the
5705       ** impliesNotNullRow() test */
5706       if( (pLeft->op==TK_COLUMN && pLeft->y.pTab!=0
5707                                && IsVirtual(pLeft->y.pTab))
5708        || (pRight->op==TK_COLUMN && pRight->y.pTab!=0
5709                                && IsVirtual(pRight->y.pTab))
5710       ){
5711         return WRC_Prune;
5712       }
5713       /* no break */ deliberate_fall_through
5714     }
5715     default:
5716       return WRC_Continue;
5717   }
5718 }
5719 
5720 /*
5721 ** Return true (non-zero) if expression p can only be true if at least
5722 ** one column of table iTab is non-null.  In other words, return true
5723 ** if expression p will always be NULL or false if every column of iTab
5724 ** is NULL.
5725 **
5726 ** False negatives are acceptable.  In other words, it is ok to return
5727 ** zero even if expression p will never be true of every column of iTab
5728 ** is NULL.  A false negative is merely a missed optimization opportunity.
5729 **
5730 ** False positives are not allowed, however.  A false positive may result
5731 ** in an incorrect answer.
5732 **
5733 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5734 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5735 **
5736 ** This routine is used to check if a LEFT JOIN can be converted into
5737 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5738 ** clause requires that some column of the right table of the LEFT JOIN
5739 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5740 ** ordinary join.
5741 */
5742 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5743   Walker w;
5744   p = sqlite3ExprSkipCollateAndLikely(p);
5745   if( p==0 ) return 0;
5746   if( p->op==TK_NOTNULL ){
5747     p = p->pLeft;
5748   }else{
5749     while( p->op==TK_AND ){
5750       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5751       p = p->pRight;
5752     }
5753   }
5754   w.xExprCallback = impliesNotNullRow;
5755   w.xSelectCallback = 0;
5756   w.xSelectCallback2 = 0;
5757   w.eCode = 0;
5758   w.u.iCur = iTab;
5759   sqlite3WalkExpr(&w, p);
5760   return w.eCode;
5761 }
5762 
5763 /*
5764 ** An instance of the following structure is used by the tree walker
5765 ** to determine if an expression can be evaluated by reference to the
5766 ** index only, without having to do a search for the corresponding
5767 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5768 ** is the cursor for the table.
5769 */
5770 struct IdxCover {
5771   Index *pIdx;     /* The index to be tested for coverage */
5772   int iCur;        /* Cursor number for the table corresponding to the index */
5773 };
5774 
5775 /*
5776 ** Check to see if there are references to columns in table
5777 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5778 ** pWalker->u.pIdxCover->pIdx.
5779 */
5780 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5781   if( pExpr->op==TK_COLUMN
5782    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5783    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5784   ){
5785     pWalker->eCode = 1;
5786     return WRC_Abort;
5787   }
5788   return WRC_Continue;
5789 }
5790 
5791 /*
5792 ** Determine if an index pIdx on table with cursor iCur contains will
5793 ** the expression pExpr.  Return true if the index does cover the
5794 ** expression and false if the pExpr expression references table columns
5795 ** that are not found in the index pIdx.
5796 **
5797 ** An index covering an expression means that the expression can be
5798 ** evaluated using only the index and without having to lookup the
5799 ** corresponding table entry.
5800 */
5801 int sqlite3ExprCoveredByIndex(
5802   Expr *pExpr,        /* The index to be tested */
5803   int iCur,           /* The cursor number for the corresponding table */
5804   Index *pIdx         /* The index that might be used for coverage */
5805 ){
5806   Walker w;
5807   struct IdxCover xcov;
5808   memset(&w, 0, sizeof(w));
5809   xcov.iCur = iCur;
5810   xcov.pIdx = pIdx;
5811   w.xExprCallback = exprIdxCover;
5812   w.u.pIdxCover = &xcov;
5813   sqlite3WalkExpr(&w, pExpr);
5814   return !w.eCode;
5815 }
5816 
5817 
5818 /*
5819 ** An instance of the following structure is used by the tree walker
5820 ** to count references to table columns in the arguments of an
5821 ** aggregate function, in order to implement the
5822 ** sqlite3FunctionThisSrc() routine.
5823 */
5824 struct SrcCount {
5825   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5826   int iSrcInner;   /* Smallest cursor number in this context */
5827   int nThis;       /* Number of references to columns in pSrcList */
5828   int nOther;      /* Number of references to columns in other FROM clauses */
5829 };
5830 
5831 /*
5832 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5833 ** SELECT with a FROM clause encountered during this iteration, set
5834 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5835 ** the FROM cause.
5836 */
5837 static int selectSrcCount(Walker *pWalker, Select *pSel){
5838   struct SrcCount *p = pWalker->u.pSrcCount;
5839   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5840     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5841   }
5842   return WRC_Continue;
5843 }
5844 
5845 /*
5846 ** Count the number of references to columns.
5847 */
5848 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5849   /* There was once a NEVER() on the second term on the grounds that
5850   ** sqlite3FunctionUsesThisSrc() was always called before
5851   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5852   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5853   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5854   ** FunctionUsesThisSrc() when creating a new sub-select. */
5855   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5856     int i;
5857     struct SrcCount *p = pWalker->u.pSrcCount;
5858     SrcList *pSrc = p->pSrc;
5859     int nSrc = pSrc ? pSrc->nSrc : 0;
5860     for(i=0; i<nSrc; i++){
5861       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5862     }
5863     if( i<nSrc ){
5864       p->nThis++;
5865     }else if( pExpr->iTable<p->iSrcInner ){
5866       /* In a well-formed parse tree (no name resolution errors),
5867       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5868       ** outer context.  Those are the only ones to count as "other" */
5869       p->nOther++;
5870     }
5871   }
5872   return WRC_Continue;
5873 }
5874 
5875 /*
5876 ** Determine if any of the arguments to the pExpr Function reference
5877 ** pSrcList.  Return true if they do.  Also return true if the function
5878 ** has no arguments or has only constant arguments.  Return false if pExpr
5879 ** references columns but not columns of tables found in pSrcList.
5880 */
5881 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5882   Walker w;
5883   struct SrcCount cnt;
5884   assert( pExpr->op==TK_AGG_FUNCTION );
5885   memset(&w, 0, sizeof(w));
5886   w.xExprCallback = exprSrcCount;
5887   w.xSelectCallback = selectSrcCount;
5888   w.u.pSrcCount = &cnt;
5889   cnt.pSrc = pSrcList;
5890   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5891   cnt.nThis = 0;
5892   cnt.nOther = 0;
5893   sqlite3WalkExprList(&w, pExpr->x.pList);
5894 #ifndef SQLITE_OMIT_WINDOWFUNC
5895   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5896     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5897   }
5898 #endif
5899   return cnt.nThis>0 || cnt.nOther==0;
5900 }
5901 
5902 /*
5903 ** This is a Walker expression node callback.
5904 **
5905 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5906 ** object that is referenced does not refer directly to the Expr.  If
5907 ** it does, make a copy.  This is done because the pExpr argument is
5908 ** subject to change.
5909 **
5910 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5911 ** This will cause the expression to be deleted automatically when the
5912 ** Parse object is destroyed, but the zero register number means that it
5913 ** will not generate any code in the preamble.
5914 */
5915 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5916   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5917    && pExpr->pAggInfo!=0
5918   ){
5919     AggInfo *pAggInfo = pExpr->pAggInfo;
5920     int iAgg = pExpr->iAgg;
5921     Parse *pParse = pWalker->pParse;
5922     sqlite3 *db = pParse->db;
5923     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5924     if( pExpr->op==TK_AGG_COLUMN ){
5925       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5926       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5927         pExpr = sqlite3ExprDup(db, pExpr, 0);
5928         if( pExpr ){
5929           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5930           sqlite3ExprDeferredDelete(pParse, pExpr);
5931         }
5932       }
5933     }else{
5934       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5935       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5936         pExpr = sqlite3ExprDup(db, pExpr, 0);
5937         if( pExpr ){
5938           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5939           sqlite3ExprDeferredDelete(pParse, pExpr);
5940         }
5941       }
5942     }
5943   }
5944   return WRC_Continue;
5945 }
5946 
5947 /*
5948 ** Initialize a Walker object so that will persist AggInfo entries referenced
5949 ** by the tree that is walked.
5950 */
5951 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5952   memset(pWalker, 0, sizeof(*pWalker));
5953   pWalker->pParse = pParse;
5954   pWalker->xExprCallback = agginfoPersistExprCb;
5955   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5956 }
5957 
5958 /*
5959 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5960 ** the new element.  Return a negative number if malloc fails.
5961 */
5962 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5963   int i;
5964   pInfo->aCol = sqlite3ArrayAllocate(
5965        db,
5966        pInfo->aCol,
5967        sizeof(pInfo->aCol[0]),
5968        &pInfo->nColumn,
5969        &i
5970   );
5971   return i;
5972 }
5973 
5974 /*
5975 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5976 ** the new element.  Return a negative number if malloc fails.
5977 */
5978 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5979   int i;
5980   pInfo->aFunc = sqlite3ArrayAllocate(
5981        db,
5982        pInfo->aFunc,
5983        sizeof(pInfo->aFunc[0]),
5984        &pInfo->nFunc,
5985        &i
5986   );
5987   return i;
5988 }
5989 
5990 /*
5991 ** This is the xExprCallback for a tree walker.  It is used to
5992 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5993 ** for additional information.
5994 */
5995 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5996   int i;
5997   NameContext *pNC = pWalker->u.pNC;
5998   Parse *pParse = pNC->pParse;
5999   SrcList *pSrcList = pNC->pSrcList;
6000   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6001 
6002   assert( pNC->ncFlags & NC_UAggInfo );
6003   switch( pExpr->op ){
6004     case TK_AGG_COLUMN:
6005     case TK_COLUMN: {
6006       testcase( pExpr->op==TK_AGG_COLUMN );
6007       testcase( pExpr->op==TK_COLUMN );
6008       /* Check to see if the column is in one of the tables in the FROM
6009       ** clause of the aggregate query */
6010       if( ALWAYS(pSrcList!=0) ){
6011         SrcItem *pItem = pSrcList->a;
6012         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6013           struct AggInfo_col *pCol;
6014           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6015           if( pExpr->iTable==pItem->iCursor ){
6016             /* If we reach this point, it means that pExpr refers to a table
6017             ** that is in the FROM clause of the aggregate query.
6018             **
6019             ** Make an entry for the column in pAggInfo->aCol[] if there
6020             ** is not an entry there already.
6021             */
6022             int k;
6023             pCol = pAggInfo->aCol;
6024             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6025               if( pCol->iTable==pExpr->iTable &&
6026                   pCol->iColumn==pExpr->iColumn ){
6027                 break;
6028               }
6029             }
6030             if( (k>=pAggInfo->nColumn)
6031              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6032             ){
6033               pCol = &pAggInfo->aCol[k];
6034               pCol->pTab = pExpr->y.pTab;
6035               pCol->iTable = pExpr->iTable;
6036               pCol->iColumn = pExpr->iColumn;
6037               pCol->iMem = ++pParse->nMem;
6038               pCol->iSorterColumn = -1;
6039               pCol->pCExpr = pExpr;
6040               if( pAggInfo->pGroupBy ){
6041                 int j, n;
6042                 ExprList *pGB = pAggInfo->pGroupBy;
6043                 struct ExprList_item *pTerm = pGB->a;
6044                 n = pGB->nExpr;
6045                 for(j=0; j<n; j++, pTerm++){
6046                   Expr *pE = pTerm->pExpr;
6047                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6048                       pE->iColumn==pExpr->iColumn ){
6049                     pCol->iSorterColumn = j;
6050                     break;
6051                   }
6052                 }
6053               }
6054               if( pCol->iSorterColumn<0 ){
6055                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6056               }
6057             }
6058             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6059             ** because it was there before or because we just created it).
6060             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6061             ** pAggInfo->aCol[] entry.
6062             */
6063             ExprSetVVAProperty(pExpr, EP_NoReduce);
6064             pExpr->pAggInfo = pAggInfo;
6065             pExpr->op = TK_AGG_COLUMN;
6066             pExpr->iAgg = (i16)k;
6067             break;
6068           } /* endif pExpr->iTable==pItem->iCursor */
6069         } /* end loop over pSrcList */
6070       }
6071       return WRC_Prune;
6072     }
6073     case TK_AGG_FUNCTION: {
6074       if( (pNC->ncFlags & NC_InAggFunc)==0
6075        && pWalker->walkerDepth==pExpr->op2
6076       ){
6077         /* Check to see if pExpr is a duplicate of another aggregate
6078         ** function that is already in the pAggInfo structure
6079         */
6080         struct AggInfo_func *pItem = pAggInfo->aFunc;
6081         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6082           if( pItem->pFExpr==pExpr ) break;
6083           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6084             break;
6085           }
6086         }
6087         if( i>=pAggInfo->nFunc ){
6088           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6089           */
6090           u8 enc = ENC(pParse->db);
6091           i = addAggInfoFunc(pParse->db, pAggInfo);
6092           if( i>=0 ){
6093             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6094             pItem = &pAggInfo->aFunc[i];
6095             pItem->pFExpr = pExpr;
6096             pItem->iMem = ++pParse->nMem;
6097             assert( !ExprHasProperty(pExpr, EP_IntValue) );
6098             pItem->pFunc = sqlite3FindFunction(pParse->db,
6099                    pExpr->u.zToken,
6100                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6101             if( pExpr->flags & EP_Distinct ){
6102               pItem->iDistinct = pParse->nTab++;
6103             }else{
6104               pItem->iDistinct = -1;
6105             }
6106           }
6107         }
6108         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6109         */
6110         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6111         ExprSetVVAProperty(pExpr, EP_NoReduce);
6112         pExpr->iAgg = (i16)i;
6113         pExpr->pAggInfo = pAggInfo;
6114         return WRC_Prune;
6115       }else{
6116         return WRC_Continue;
6117       }
6118     }
6119   }
6120   return WRC_Continue;
6121 }
6122 
6123 /*
6124 ** Analyze the pExpr expression looking for aggregate functions and
6125 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6126 ** points to.  Additional entries are made on the AggInfo object as
6127 ** necessary.
6128 **
6129 ** This routine should only be called after the expression has been
6130 ** analyzed by sqlite3ResolveExprNames().
6131 */
6132 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6133   Walker w;
6134   w.xExprCallback = analyzeAggregate;
6135   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6136   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6137   w.walkerDepth = 0;
6138   w.u.pNC = pNC;
6139   w.pParse = 0;
6140   assert( pNC->pSrcList!=0 );
6141   sqlite3WalkExpr(&w, pExpr);
6142 }
6143 
6144 /*
6145 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6146 ** expression list.  Return the number of errors.
6147 **
6148 ** If an error is found, the analysis is cut short.
6149 */
6150 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6151   struct ExprList_item *pItem;
6152   int i;
6153   if( pList ){
6154     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6155       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6156     }
6157   }
6158 }
6159 
6160 /*
6161 ** Allocate a single new register for use to hold some intermediate result.
6162 */
6163 int sqlite3GetTempReg(Parse *pParse){
6164   if( pParse->nTempReg==0 ){
6165     return ++pParse->nMem;
6166   }
6167   return pParse->aTempReg[--pParse->nTempReg];
6168 }
6169 
6170 /*
6171 ** Deallocate a register, making available for reuse for some other
6172 ** purpose.
6173 */
6174 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6175   if( iReg ){
6176     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6177     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6178       pParse->aTempReg[pParse->nTempReg++] = iReg;
6179     }
6180   }
6181 }
6182 
6183 /*
6184 ** Allocate or deallocate a block of nReg consecutive registers.
6185 */
6186 int sqlite3GetTempRange(Parse *pParse, int nReg){
6187   int i, n;
6188   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6189   i = pParse->iRangeReg;
6190   n = pParse->nRangeReg;
6191   if( nReg<=n ){
6192     pParse->iRangeReg += nReg;
6193     pParse->nRangeReg -= nReg;
6194   }else{
6195     i = pParse->nMem+1;
6196     pParse->nMem += nReg;
6197   }
6198   return i;
6199 }
6200 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6201   if( nReg==1 ){
6202     sqlite3ReleaseTempReg(pParse, iReg);
6203     return;
6204   }
6205   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6206   if( nReg>pParse->nRangeReg ){
6207     pParse->nRangeReg = nReg;
6208     pParse->iRangeReg = iReg;
6209   }
6210 }
6211 
6212 /*
6213 ** Mark all temporary registers as being unavailable for reuse.
6214 **
6215 ** Always invoke this procedure after coding a subroutine or co-routine
6216 ** that might be invoked from other parts of the code, to ensure that
6217 ** the sub/co-routine does not use registers in common with the code that
6218 ** invokes the sub/co-routine.
6219 */
6220 void sqlite3ClearTempRegCache(Parse *pParse){
6221   pParse->nTempReg = 0;
6222   pParse->nRangeReg = 0;
6223 }
6224 
6225 /*
6226 ** Validate that no temporary register falls within the range of
6227 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6228 ** statements.
6229 */
6230 #ifdef SQLITE_DEBUG
6231 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6232   int i;
6233   if( pParse->nRangeReg>0
6234    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6235    && pParse->iRangeReg <= iLast
6236   ){
6237      return 0;
6238   }
6239   for(i=0; i<pParse->nTempReg; i++){
6240     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6241       return 0;
6242     }
6243   }
6244   return 1;
6245 }
6246 #endif /* SQLITE_DEBUG */
6247