1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 assert( pExpr->iColumn < pExpr->iTable ); 75 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 76 return sqlite3ExprAffinity( 77 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 78 ); 79 } 80 if( op==TK_VECTOR ){ 81 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 82 } 83 return pExpr->affExpr; 84 } 85 86 /* 87 ** Set the collating sequence for expression pExpr to be the collating 88 ** sequence named by pToken. Return a pointer to a new Expr node that 89 ** implements the COLLATE operator. 90 ** 91 ** If a memory allocation error occurs, that fact is recorded in pParse->db 92 ** and the pExpr parameter is returned unchanged. 93 */ 94 Expr *sqlite3ExprAddCollateToken( 95 const Parse *pParse, /* Parsing context */ 96 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 97 const Token *pCollName, /* Name of collating sequence */ 98 int dequote /* True to dequote pCollName */ 99 ){ 100 if( pCollName->n>0 ){ 101 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 102 if( pNew ){ 103 pNew->pLeft = pExpr; 104 pNew->flags |= EP_Collate|EP_Skip; 105 pExpr = pNew; 106 } 107 } 108 return pExpr; 109 } 110 Expr *sqlite3ExprAddCollateString( 111 const Parse *pParse, /* Parsing context */ 112 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 113 const char *zC /* The collating sequence name */ 114 ){ 115 Token s; 116 assert( zC!=0 ); 117 sqlite3TokenInit(&s, (char*)zC); 118 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators. 123 */ 124 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 125 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 126 assert( pExpr->op==TK_COLLATE ); 127 pExpr = pExpr->pLeft; 128 } 129 return pExpr; 130 } 131 132 /* 133 ** Skip over any TK_COLLATE operators and/or any unlikely() 134 ** or likelihood() or likely() functions at the root of an 135 ** expression. 136 */ 137 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 138 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 139 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 140 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 141 assert( pExpr->x.pList->nExpr>0 ); 142 assert( pExpr->op==TK_FUNCTION ); 143 pExpr = pExpr->x.pList->a[0].pExpr; 144 }else{ 145 assert( pExpr->op==TK_COLLATE ); 146 pExpr = pExpr->pLeft; 147 } 148 } 149 return pExpr; 150 } 151 152 /* 153 ** Return the collation sequence for the expression pExpr. If 154 ** there is no defined collating sequence, return NULL. 155 ** 156 ** See also: sqlite3ExprNNCollSeq() 157 ** 158 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 159 ** default collation if pExpr has no defined collation. 160 ** 161 ** The collating sequence might be determined by a COLLATE operator 162 ** or by the presence of a column with a defined collating sequence. 163 ** COLLATE operators take first precedence. Left operands take 164 ** precedence over right operands. 165 */ 166 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 167 sqlite3 *db = pParse->db; 168 CollSeq *pColl = 0; 169 const Expr *p = pExpr; 170 while( p ){ 171 int op = p->op; 172 if( op==TK_REGISTER ) op = p->op2; 173 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 174 && p->y.pTab!=0 175 ){ 176 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 177 ** a TK_COLUMN but was previously evaluated and cached in a register */ 178 int j = p->iColumn; 179 if( j>=0 ){ 180 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 181 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 182 } 183 break; 184 } 185 if( op==TK_CAST || op==TK_UPLUS ){ 186 p = p->pLeft; 187 continue; 188 } 189 if( op==TK_VECTOR ){ 190 p = p->x.pList->a[0].pExpr; 191 continue; 192 } 193 if( op==TK_COLLATE ){ 194 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 195 break; 196 } 197 if( p->flags & EP_Collate ){ 198 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 199 p = p->pLeft; 200 }else{ 201 Expr *pNext = p->pRight; 202 /* The Expr.x union is never used at the same time as Expr.pRight */ 203 assert( p->x.pList==0 || p->pRight==0 ); 204 if( p->x.pList!=0 205 && !db->mallocFailed 206 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 207 ){ 208 int i; 209 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 210 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 211 pNext = p->x.pList->a[i].pExpr; 212 break; 213 } 214 } 215 } 216 p = pNext; 217 } 218 }else{ 219 break; 220 } 221 } 222 if( sqlite3CheckCollSeq(pParse, pColl) ){ 223 pColl = 0; 224 } 225 return pColl; 226 } 227 228 /* 229 ** Return the collation sequence for the expression pExpr. If 230 ** there is no defined collating sequence, return a pointer to the 231 ** defautl collation sequence. 232 ** 233 ** See also: sqlite3ExprCollSeq() 234 ** 235 ** The sqlite3ExprCollSeq() routine works the same except that it 236 ** returns NULL if there is no defined collation. 237 */ 238 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 239 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 240 if( p==0 ) p = pParse->db->pDfltColl; 241 assert( p!=0 ); 242 return p; 243 } 244 245 /* 246 ** Return TRUE if the two expressions have equivalent collating sequences. 247 */ 248 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 249 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 250 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 251 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 252 } 253 254 /* 255 ** pExpr is an operand of a comparison operator. aff2 is the 256 ** type affinity of the other operand. This routine returns the 257 ** type affinity that should be used for the comparison operator. 258 */ 259 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 260 char aff1 = sqlite3ExprAffinity(pExpr); 261 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 262 /* Both sides of the comparison are columns. If one has numeric 263 ** affinity, use that. Otherwise use no affinity. 264 */ 265 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 266 return SQLITE_AFF_NUMERIC; 267 }else{ 268 return SQLITE_AFF_BLOB; 269 } 270 }else{ 271 /* One side is a column, the other is not. Use the columns affinity. */ 272 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 273 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 274 } 275 } 276 277 /* 278 ** pExpr is a comparison operator. Return the type affinity that should 279 ** be applied to both operands prior to doing the comparison. 280 */ 281 static char comparisonAffinity(const Expr *pExpr){ 282 char aff; 283 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 284 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 285 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 286 assert( pExpr->pLeft ); 287 aff = sqlite3ExprAffinity(pExpr->pLeft); 288 if( pExpr->pRight ){ 289 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 290 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 291 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 292 }else if( aff==0 ){ 293 aff = SQLITE_AFF_BLOB; 294 } 295 return aff; 296 } 297 298 /* 299 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 300 ** idx_affinity is the affinity of an indexed column. Return true 301 ** if the index with affinity idx_affinity may be used to implement 302 ** the comparison in pExpr. 303 */ 304 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 305 char aff = comparisonAffinity(pExpr); 306 if( aff<SQLITE_AFF_TEXT ){ 307 return 1; 308 } 309 if( aff==SQLITE_AFF_TEXT ){ 310 return idx_affinity==SQLITE_AFF_TEXT; 311 } 312 return sqlite3IsNumericAffinity(idx_affinity); 313 } 314 315 /* 316 ** Return the P5 value that should be used for a binary comparison 317 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 318 */ 319 static u8 binaryCompareP5( 320 const Expr *pExpr1, /* Left operand */ 321 const Expr *pExpr2, /* Right operand */ 322 int jumpIfNull /* Extra flags added to P5 */ 323 ){ 324 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 325 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 326 return aff; 327 } 328 329 /* 330 ** Return a pointer to the collation sequence that should be used by 331 ** a binary comparison operator comparing pLeft and pRight. 332 ** 333 ** If the left hand expression has a collating sequence type, then it is 334 ** used. Otherwise the collation sequence for the right hand expression 335 ** is used, or the default (BINARY) if neither expression has a collating 336 ** type. 337 ** 338 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 339 ** it is not considered. 340 */ 341 CollSeq *sqlite3BinaryCompareCollSeq( 342 Parse *pParse, 343 const Expr *pLeft, 344 const Expr *pRight 345 ){ 346 CollSeq *pColl; 347 assert( pLeft ); 348 if( pLeft->flags & EP_Collate ){ 349 pColl = sqlite3ExprCollSeq(pParse, pLeft); 350 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 351 pColl = sqlite3ExprCollSeq(pParse, pRight); 352 }else{ 353 pColl = sqlite3ExprCollSeq(pParse, pLeft); 354 if( !pColl ){ 355 pColl = sqlite3ExprCollSeq(pParse, pRight); 356 } 357 } 358 return pColl; 359 } 360 361 /* Expresssion p is a comparison operator. Return a collation sequence 362 ** appropriate for the comparison operator. 363 ** 364 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 365 ** However, if the OP_Commuted flag is set, then the order of the operands 366 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 367 ** correct collating sequence is found. 368 */ 369 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 370 if( ExprHasProperty(p, EP_Commuted) ){ 371 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 372 }else{ 373 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 374 } 375 } 376 377 /* 378 ** Generate code for a comparison operator. 379 */ 380 static int codeCompare( 381 Parse *pParse, /* The parsing (and code generating) context */ 382 Expr *pLeft, /* The left operand */ 383 Expr *pRight, /* The right operand */ 384 int opcode, /* The comparison opcode */ 385 int in1, int in2, /* Register holding operands */ 386 int dest, /* Jump here if true. */ 387 int jumpIfNull, /* If true, jump if either operand is NULL */ 388 int isCommuted /* The comparison has been commuted */ 389 ){ 390 int p5; 391 int addr; 392 CollSeq *p4; 393 394 if( pParse->nErr ) return 0; 395 if( isCommuted ){ 396 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 397 }else{ 398 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 399 } 400 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 401 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 402 (void*)p4, P4_COLLSEQ); 403 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 404 return addr; 405 } 406 407 /* 408 ** Return true if expression pExpr is a vector, or false otherwise. 409 ** 410 ** A vector is defined as any expression that results in two or more 411 ** columns of result. Every TK_VECTOR node is an vector because the 412 ** parser will not generate a TK_VECTOR with fewer than two entries. 413 ** But a TK_SELECT might be either a vector or a scalar. It is only 414 ** considered a vector if it has two or more result columns. 415 */ 416 int sqlite3ExprIsVector(const Expr *pExpr){ 417 return sqlite3ExprVectorSize(pExpr)>1; 418 } 419 420 /* 421 ** If the expression passed as the only argument is of type TK_VECTOR 422 ** return the number of expressions in the vector. Or, if the expression 423 ** is a sub-select, return the number of columns in the sub-select. For 424 ** any other type of expression, return 1. 425 */ 426 int sqlite3ExprVectorSize(const Expr *pExpr){ 427 u8 op = pExpr->op; 428 if( op==TK_REGISTER ) op = pExpr->op2; 429 if( op==TK_VECTOR ){ 430 return pExpr->x.pList->nExpr; 431 }else if( op==TK_SELECT ){ 432 return pExpr->x.pSelect->pEList->nExpr; 433 }else{ 434 return 1; 435 } 436 } 437 438 /* 439 ** Return a pointer to a subexpression of pVector that is the i-th 440 ** column of the vector (numbered starting with 0). The caller must 441 ** ensure that i is within range. 442 ** 443 ** If pVector is really a scalar (and "scalar" here includes subqueries 444 ** that return a single column!) then return pVector unmodified. 445 ** 446 ** pVector retains ownership of the returned subexpression. 447 ** 448 ** If the vector is a (SELECT ...) then the expression returned is 449 ** just the expression for the i-th term of the result set, and may 450 ** not be ready for evaluation because the table cursor has not yet 451 ** been positioned. 452 */ 453 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 454 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 455 if( sqlite3ExprIsVector(pVector) ){ 456 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 457 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 458 return pVector->x.pSelect->pEList->a[i].pExpr; 459 }else{ 460 return pVector->x.pList->a[i].pExpr; 461 } 462 } 463 return pVector; 464 } 465 466 /* 467 ** Compute and return a new Expr object which when passed to 468 ** sqlite3ExprCode() will generate all necessary code to compute 469 ** the iField-th column of the vector expression pVector. 470 ** 471 ** It is ok for pVector to be a scalar (as long as iField==0). 472 ** In that case, this routine works like sqlite3ExprDup(). 473 ** 474 ** The caller owns the returned Expr object and is responsible for 475 ** ensuring that the returned value eventually gets freed. 476 ** 477 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 478 ** then the returned object will reference pVector and so pVector must remain 479 ** valid for the life of the returned object. If pVector is a TK_VECTOR 480 ** or a scalar expression, then it can be deleted as soon as this routine 481 ** returns. 482 ** 483 ** A trick to cause a TK_SELECT pVector to be deleted together with 484 ** the returned Expr object is to attach the pVector to the pRight field 485 ** of the returned TK_SELECT_COLUMN Expr object. 486 */ 487 Expr *sqlite3ExprForVectorField( 488 Parse *pParse, /* Parsing context */ 489 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 490 int iField, /* Which column of the vector to return */ 491 int nField /* Total number of columns in the vector */ 492 ){ 493 Expr *pRet; 494 if( pVector->op==TK_SELECT ){ 495 assert( pVector->flags & EP_xIsSelect ); 496 /* The TK_SELECT_COLUMN Expr node: 497 ** 498 ** pLeft: pVector containing TK_SELECT. Not deleted. 499 ** pRight: not used. But recursively deleted. 500 ** iColumn: Index of a column in pVector 501 ** iTable: 0 or the number of columns on the LHS of an assignment 502 ** pLeft->iTable: First in an array of register holding result, or 0 503 ** if the result is not yet computed. 504 ** 505 ** sqlite3ExprDelete() specifically skips the recursive delete of 506 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 507 ** can be attached to pRight to cause this node to take ownership of 508 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 509 ** with the same pLeft pointer to the pVector, but only one of them 510 ** will own the pVector. 511 */ 512 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 513 if( pRet ){ 514 pRet->iTable = nField; 515 pRet->iColumn = iField; 516 pRet->pLeft = pVector; 517 } 518 }else{ 519 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 520 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 521 sqlite3RenameTokenRemap(pParse, pRet, pVector); 522 } 523 return pRet; 524 } 525 526 /* 527 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 528 ** it. Return the register in which the result is stored (or, if the 529 ** sub-select returns more than one column, the first in an array 530 ** of registers in which the result is stored). 531 ** 532 ** If pExpr is not a TK_SELECT expression, return 0. 533 */ 534 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 535 int reg = 0; 536 #ifndef SQLITE_OMIT_SUBQUERY 537 if( pExpr->op==TK_SELECT ){ 538 reg = sqlite3CodeSubselect(pParse, pExpr); 539 } 540 #endif 541 return reg; 542 } 543 544 /* 545 ** Argument pVector points to a vector expression - either a TK_VECTOR 546 ** or TK_SELECT that returns more than one column. This function returns 547 ** the register number of a register that contains the value of 548 ** element iField of the vector. 549 ** 550 ** If pVector is a TK_SELECT expression, then code for it must have 551 ** already been generated using the exprCodeSubselect() routine. In this 552 ** case parameter regSelect should be the first in an array of registers 553 ** containing the results of the sub-select. 554 ** 555 ** If pVector is of type TK_VECTOR, then code for the requested field 556 ** is generated. In this case (*pRegFree) may be set to the number of 557 ** a temporary register to be freed by the caller before returning. 558 ** 559 ** Before returning, output parameter (*ppExpr) is set to point to the 560 ** Expr object corresponding to element iElem of the vector. 561 */ 562 static int exprVectorRegister( 563 Parse *pParse, /* Parse context */ 564 Expr *pVector, /* Vector to extract element from */ 565 int iField, /* Field to extract from pVector */ 566 int regSelect, /* First in array of registers */ 567 Expr **ppExpr, /* OUT: Expression element */ 568 int *pRegFree /* OUT: Temp register to free */ 569 ){ 570 u8 op = pVector->op; 571 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 572 if( op==TK_REGISTER ){ 573 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 574 return pVector->iTable+iField; 575 } 576 if( op==TK_SELECT ){ 577 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 578 return regSelect+iField; 579 } 580 if( op==TK_VECTOR ){ 581 *ppExpr = pVector->x.pList->a[iField].pExpr; 582 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 583 } 584 return 0; 585 } 586 587 /* 588 ** Expression pExpr is a comparison between two vector values. Compute 589 ** the result of the comparison (1, 0, or NULL) and write that 590 ** result into register dest. 591 ** 592 ** The caller must satisfy the following preconditions: 593 ** 594 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 595 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 596 ** otherwise: op==pExpr->op and p5==0 597 */ 598 static void codeVectorCompare( 599 Parse *pParse, /* Code generator context */ 600 Expr *pExpr, /* The comparison operation */ 601 int dest, /* Write results into this register */ 602 u8 op, /* Comparison operator */ 603 u8 p5 /* SQLITE_NULLEQ or zero */ 604 ){ 605 Vdbe *v = pParse->pVdbe; 606 Expr *pLeft = pExpr->pLeft; 607 Expr *pRight = pExpr->pRight; 608 int nLeft = sqlite3ExprVectorSize(pLeft); 609 int i; 610 int regLeft = 0; 611 int regRight = 0; 612 u8 opx = op; 613 int addrCmp = 0; 614 int addrDone = sqlite3VdbeMakeLabel(pParse); 615 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 616 617 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 618 if( pParse->nErr ) return; 619 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 620 sqlite3ErrorMsg(pParse, "row value misused"); 621 return; 622 } 623 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 624 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 625 || pExpr->op==TK_LT || pExpr->op==TK_GT 626 || pExpr->op==TK_LE || pExpr->op==TK_GE 627 ); 628 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 629 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 630 assert( p5==0 || pExpr->op!=op ); 631 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 632 633 if( op==TK_LE ) opx = TK_LT; 634 if( op==TK_GE ) opx = TK_GT; 635 if( op==TK_NE ) opx = TK_EQ; 636 637 regLeft = exprCodeSubselect(pParse, pLeft); 638 regRight = exprCodeSubselect(pParse, pRight); 639 640 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 641 for(i=0; 1 /*Loop exits by "break"*/; i++){ 642 int regFree1 = 0, regFree2 = 0; 643 Expr *pL = 0, *pR = 0; 644 int r1, r2; 645 assert( i>=0 && i<nLeft ); 646 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 647 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 648 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 649 addrCmp = sqlite3VdbeCurrentAddr(v); 650 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 651 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 652 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 653 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 654 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 655 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 656 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 657 sqlite3ReleaseTempReg(pParse, regFree1); 658 sqlite3ReleaseTempReg(pParse, regFree2); 659 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 660 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 661 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 662 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 663 } 664 if( p5==SQLITE_NULLEQ ){ 665 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 666 }else{ 667 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 668 } 669 if( i==nLeft-1 ){ 670 break; 671 } 672 if( opx==TK_EQ ){ 673 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 674 }else{ 675 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 676 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 677 if( i==nLeft-2 ) opx = op; 678 } 679 } 680 sqlite3VdbeJumpHere(v, addrCmp); 681 sqlite3VdbeResolveLabel(v, addrDone); 682 if( op==TK_NE ){ 683 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 684 } 685 } 686 687 #if SQLITE_MAX_EXPR_DEPTH>0 688 /* 689 ** Check that argument nHeight is less than or equal to the maximum 690 ** expression depth allowed. If it is not, leave an error message in 691 ** pParse. 692 */ 693 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 694 int rc = SQLITE_OK; 695 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 696 if( nHeight>mxHeight ){ 697 sqlite3ErrorMsg(pParse, 698 "Expression tree is too large (maximum depth %d)", mxHeight 699 ); 700 rc = SQLITE_ERROR; 701 } 702 return rc; 703 } 704 705 /* The following three functions, heightOfExpr(), heightOfExprList() 706 ** and heightOfSelect(), are used to determine the maximum height 707 ** of any expression tree referenced by the structure passed as the 708 ** first argument. 709 ** 710 ** If this maximum height is greater than the current value pointed 711 ** to by pnHeight, the second parameter, then set *pnHeight to that 712 ** value. 713 */ 714 static void heightOfExpr(const Expr *p, int *pnHeight){ 715 if( p ){ 716 if( p->nHeight>*pnHeight ){ 717 *pnHeight = p->nHeight; 718 } 719 } 720 } 721 static void heightOfExprList(const ExprList *p, int *pnHeight){ 722 if( p ){ 723 int i; 724 for(i=0; i<p->nExpr; i++){ 725 heightOfExpr(p->a[i].pExpr, pnHeight); 726 } 727 } 728 } 729 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 730 const Select *p; 731 for(p=pSelect; p; p=p->pPrior){ 732 heightOfExpr(p->pWhere, pnHeight); 733 heightOfExpr(p->pHaving, pnHeight); 734 heightOfExpr(p->pLimit, pnHeight); 735 heightOfExprList(p->pEList, pnHeight); 736 heightOfExprList(p->pGroupBy, pnHeight); 737 heightOfExprList(p->pOrderBy, pnHeight); 738 } 739 } 740 741 /* 742 ** Set the Expr.nHeight variable in the structure passed as an 743 ** argument. An expression with no children, Expr.pList or 744 ** Expr.pSelect member has a height of 1. Any other expression 745 ** has a height equal to the maximum height of any other 746 ** referenced Expr plus one. 747 ** 748 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 749 ** if appropriate. 750 */ 751 static void exprSetHeight(Expr *p){ 752 int nHeight = 0; 753 heightOfExpr(p->pLeft, &nHeight); 754 heightOfExpr(p->pRight, &nHeight); 755 if( ExprHasProperty(p, EP_xIsSelect) ){ 756 heightOfSelect(p->x.pSelect, &nHeight); 757 }else if( p->x.pList ){ 758 heightOfExprList(p->x.pList, &nHeight); 759 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 760 } 761 p->nHeight = nHeight + 1; 762 } 763 764 /* 765 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 766 ** the height is greater than the maximum allowed expression depth, 767 ** leave an error in pParse. 768 ** 769 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 770 ** Expr.flags. 771 */ 772 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 773 if( pParse->nErr ) return; 774 exprSetHeight(p); 775 sqlite3ExprCheckHeight(pParse, p->nHeight); 776 } 777 778 /* 779 ** Return the maximum height of any expression tree referenced 780 ** by the select statement passed as an argument. 781 */ 782 int sqlite3SelectExprHeight(const Select *p){ 783 int nHeight = 0; 784 heightOfSelect(p, &nHeight); 785 return nHeight; 786 } 787 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 788 /* 789 ** Propagate all EP_Propagate flags from the Expr.x.pList into 790 ** Expr.flags. 791 */ 792 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 793 if( pParse->nErr ) return; 794 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 795 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 796 } 797 } 798 #define exprSetHeight(y) 799 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 800 801 /* 802 ** This routine is the core allocator for Expr nodes. 803 ** 804 ** Construct a new expression node and return a pointer to it. Memory 805 ** for this node and for the pToken argument is a single allocation 806 ** obtained from sqlite3DbMalloc(). The calling function 807 ** is responsible for making sure the node eventually gets freed. 808 ** 809 ** If dequote is true, then the token (if it exists) is dequoted. 810 ** If dequote is false, no dequoting is performed. The deQuote 811 ** parameter is ignored if pToken is NULL or if the token does not 812 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 813 ** then the EP_DblQuoted flag is set on the expression node. 814 ** 815 ** Special case: If op==TK_INTEGER and pToken points to a string that 816 ** can be translated into a 32-bit integer, then the token is not 817 ** stored in u.zToken. Instead, the integer values is written 818 ** into u.iValue and the EP_IntValue flag is set. No extra storage 819 ** is allocated to hold the integer text and the dequote flag is ignored. 820 */ 821 Expr *sqlite3ExprAlloc( 822 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 823 int op, /* Expression opcode */ 824 const Token *pToken, /* Token argument. Might be NULL */ 825 int dequote /* True to dequote */ 826 ){ 827 Expr *pNew; 828 int nExtra = 0; 829 int iValue = 0; 830 831 assert( db!=0 ); 832 if( pToken ){ 833 if( op!=TK_INTEGER || pToken->z==0 834 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 835 nExtra = pToken->n+1; 836 assert( iValue>=0 ); 837 } 838 } 839 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 840 if( pNew ){ 841 memset(pNew, 0, sizeof(Expr)); 842 pNew->op = (u8)op; 843 pNew->iAgg = -1; 844 if( pToken ){ 845 if( nExtra==0 ){ 846 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 847 pNew->u.iValue = iValue; 848 }else{ 849 pNew->u.zToken = (char*)&pNew[1]; 850 assert( pToken->z!=0 || pToken->n==0 ); 851 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 852 pNew->u.zToken[pToken->n] = 0; 853 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 854 sqlite3DequoteExpr(pNew); 855 } 856 } 857 } 858 #if SQLITE_MAX_EXPR_DEPTH>0 859 pNew->nHeight = 1; 860 #endif 861 } 862 return pNew; 863 } 864 865 /* 866 ** Allocate a new expression node from a zero-terminated token that has 867 ** already been dequoted. 868 */ 869 Expr *sqlite3Expr( 870 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 871 int op, /* Expression opcode */ 872 const char *zToken /* Token argument. Might be NULL */ 873 ){ 874 Token x; 875 x.z = zToken; 876 x.n = sqlite3Strlen30(zToken); 877 return sqlite3ExprAlloc(db, op, &x, 0); 878 } 879 880 /* 881 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 882 ** 883 ** If pRoot==NULL that means that a memory allocation error has occurred. 884 ** In that case, delete the subtrees pLeft and pRight. 885 */ 886 void sqlite3ExprAttachSubtrees( 887 sqlite3 *db, 888 Expr *pRoot, 889 Expr *pLeft, 890 Expr *pRight 891 ){ 892 if( pRoot==0 ){ 893 assert( db->mallocFailed ); 894 sqlite3ExprDelete(db, pLeft); 895 sqlite3ExprDelete(db, pRight); 896 }else{ 897 if( pRight ){ 898 pRoot->pRight = pRight; 899 pRoot->flags |= EP_Propagate & pRight->flags; 900 } 901 if( pLeft ){ 902 pRoot->pLeft = pLeft; 903 pRoot->flags |= EP_Propagate & pLeft->flags; 904 } 905 exprSetHeight(pRoot); 906 } 907 } 908 909 /* 910 ** Allocate an Expr node which joins as many as two subtrees. 911 ** 912 ** One or both of the subtrees can be NULL. Return a pointer to the new 913 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 914 ** free the subtrees and return NULL. 915 */ 916 Expr *sqlite3PExpr( 917 Parse *pParse, /* Parsing context */ 918 int op, /* Expression opcode */ 919 Expr *pLeft, /* Left operand */ 920 Expr *pRight /* Right operand */ 921 ){ 922 Expr *p; 923 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 924 if( p ){ 925 memset(p, 0, sizeof(Expr)); 926 p->op = op & 0xff; 927 p->iAgg = -1; 928 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 929 sqlite3ExprCheckHeight(pParse, p->nHeight); 930 }else{ 931 sqlite3ExprDelete(pParse->db, pLeft); 932 sqlite3ExprDelete(pParse->db, pRight); 933 } 934 return p; 935 } 936 937 /* 938 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 939 ** do a memory allocation failure) then delete the pSelect object. 940 */ 941 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 942 if( pExpr ){ 943 pExpr->x.pSelect = pSelect; 944 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 945 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 946 }else{ 947 assert( pParse->db->mallocFailed ); 948 sqlite3SelectDelete(pParse->db, pSelect); 949 } 950 } 951 952 /* 953 ** Expression list pEList is a list of vector values. This function 954 ** converts the contents of pEList to a VALUES(...) Select statement 955 ** returning 1 row for each element of the list. For example, the 956 ** expression list: 957 ** 958 ** ( (1,2), (3,4) (5,6) ) 959 ** 960 ** is translated to the equivalent of: 961 ** 962 ** VALUES(1,2), (3,4), (5,6) 963 ** 964 ** Each of the vector values in pEList must contain exactly nElem terms. 965 ** If a list element that is not a vector or does not contain nElem terms, 966 ** an error message is left in pParse. 967 ** 968 ** This is used as part of processing IN(...) expressions with a list 969 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 970 */ 971 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 972 int ii; 973 Select *pRet = 0; 974 assert( nElem>1 ); 975 for(ii=0; ii<pEList->nExpr; ii++){ 976 Select *pSel; 977 Expr *pExpr = pEList->a[ii].pExpr; 978 int nExprElem = (pExpr->op==TK_VECTOR ? pExpr->x.pList->nExpr : 1); 979 if( nExprElem!=nElem ){ 980 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 981 nExprElem, nExprElem>1?"s":"", nElem 982 ); 983 break; 984 } 985 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 986 pExpr->x.pList = 0; 987 if( pSel ){ 988 if( pRet ){ 989 pSel->op = TK_ALL; 990 pSel->pPrior = pRet; 991 } 992 pRet = pSel; 993 } 994 } 995 996 if( pRet && pRet->pPrior ){ 997 pRet->selFlags |= SF_MultiValue; 998 } 999 sqlite3ExprListDelete(pParse->db, pEList); 1000 return pRet; 1001 } 1002 1003 /* 1004 ** Join two expressions using an AND operator. If either expression is 1005 ** NULL, then just return the other expression. 1006 ** 1007 ** If one side or the other of the AND is known to be false, then instead 1008 ** of returning an AND expression, just return a constant expression with 1009 ** a value of false. 1010 */ 1011 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1012 sqlite3 *db = pParse->db; 1013 if( pLeft==0 ){ 1014 return pRight; 1015 }else if( pRight==0 ){ 1016 return pLeft; 1017 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1018 && !IN_RENAME_OBJECT 1019 ){ 1020 sqlite3ExprDeferredDelete(pParse, pLeft); 1021 sqlite3ExprDeferredDelete(pParse, pRight); 1022 return sqlite3Expr(db, TK_INTEGER, "0"); 1023 }else{ 1024 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1025 } 1026 } 1027 1028 /* 1029 ** Construct a new expression node for a function with multiple 1030 ** arguments. 1031 */ 1032 Expr *sqlite3ExprFunction( 1033 Parse *pParse, /* Parsing context */ 1034 ExprList *pList, /* Argument list */ 1035 const Token *pToken, /* Name of the function */ 1036 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1037 ){ 1038 Expr *pNew; 1039 sqlite3 *db = pParse->db; 1040 assert( pToken ); 1041 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1042 if( pNew==0 ){ 1043 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1044 return 0; 1045 } 1046 if( pList 1047 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1048 && !pParse->nested 1049 ){ 1050 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1051 } 1052 pNew->x.pList = pList; 1053 ExprSetProperty(pNew, EP_HasFunc); 1054 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1055 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1056 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1057 return pNew; 1058 } 1059 1060 /* 1061 ** Check to see if a function is usable according to current access 1062 ** rules: 1063 ** 1064 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1065 ** 1066 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1067 ** top-level SQL 1068 ** 1069 ** If the function is not usable, create an error. 1070 */ 1071 void sqlite3ExprFunctionUsable( 1072 Parse *pParse, /* Parsing and code generating context */ 1073 const Expr *pExpr, /* The function invocation */ 1074 const FuncDef *pDef /* The function being invoked */ 1075 ){ 1076 assert( !IN_RENAME_OBJECT ); 1077 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1078 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1079 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1080 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1081 ){ 1082 /* Functions prohibited in triggers and views if: 1083 ** (1) tagged with SQLITE_DIRECTONLY 1084 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1085 ** is tagged with SQLITE_FUNC_UNSAFE) and 1086 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1087 ** that the schema is possibly tainted). 1088 */ 1089 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1090 } 1091 } 1092 } 1093 1094 /* 1095 ** Assign a variable number to an expression that encodes a wildcard 1096 ** in the original SQL statement. 1097 ** 1098 ** Wildcards consisting of a single "?" are assigned the next sequential 1099 ** variable number. 1100 ** 1101 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1102 ** sure "nnn" is not too big to avoid a denial of service attack when 1103 ** the SQL statement comes from an external source. 1104 ** 1105 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1106 ** as the previous instance of the same wildcard. Or if this is the first 1107 ** instance of the wildcard, the next sequential variable number is 1108 ** assigned. 1109 */ 1110 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1111 sqlite3 *db = pParse->db; 1112 const char *z; 1113 ynVar x; 1114 1115 if( pExpr==0 ) return; 1116 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1117 z = pExpr->u.zToken; 1118 assert( z!=0 ); 1119 assert( z[0]!=0 ); 1120 assert( n==(u32)sqlite3Strlen30(z) ); 1121 if( z[1]==0 ){ 1122 /* Wildcard of the form "?". Assign the next variable number */ 1123 assert( z[0]=='?' ); 1124 x = (ynVar)(++pParse->nVar); 1125 }else{ 1126 int doAdd = 0; 1127 if( z[0]=='?' ){ 1128 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1129 ** use it as the variable number */ 1130 i64 i; 1131 int bOk; 1132 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1133 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1134 bOk = 1; 1135 }else{ 1136 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1137 } 1138 testcase( i==0 ); 1139 testcase( i==1 ); 1140 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1141 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1142 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1143 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1144 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1145 return; 1146 } 1147 x = (ynVar)i; 1148 if( x>pParse->nVar ){ 1149 pParse->nVar = (int)x; 1150 doAdd = 1; 1151 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1152 doAdd = 1; 1153 } 1154 }else{ 1155 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1156 ** number as the prior appearance of the same name, or if the name 1157 ** has never appeared before, reuse the same variable number 1158 */ 1159 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1160 if( x==0 ){ 1161 x = (ynVar)(++pParse->nVar); 1162 doAdd = 1; 1163 } 1164 } 1165 if( doAdd ){ 1166 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1167 } 1168 } 1169 pExpr->iColumn = x; 1170 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1171 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1172 } 1173 } 1174 1175 /* 1176 ** Recursively delete an expression tree. 1177 */ 1178 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1179 assert( p!=0 ); 1180 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1181 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1182 1183 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1184 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1185 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1186 #ifdef SQLITE_DEBUG 1187 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1188 assert( p->pLeft==0 ); 1189 assert( p->pRight==0 ); 1190 assert( p->x.pSelect==0 ); 1191 } 1192 #endif 1193 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1194 /* The Expr.x union is never used at the same time as Expr.pRight */ 1195 assert( p->x.pList==0 || p->pRight==0 ); 1196 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1197 if( p->pRight ){ 1198 assert( !ExprHasProperty(p, EP_WinFunc) ); 1199 sqlite3ExprDeleteNN(db, p->pRight); 1200 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1201 assert( !ExprHasProperty(p, EP_WinFunc) ); 1202 sqlite3SelectDelete(db, p->x.pSelect); 1203 }else{ 1204 sqlite3ExprListDelete(db, p->x.pList); 1205 #ifndef SQLITE_OMIT_WINDOWFUNC 1206 if( ExprHasProperty(p, EP_WinFunc) ){ 1207 sqlite3WindowDelete(db, p->y.pWin); 1208 } 1209 #endif 1210 } 1211 } 1212 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1213 if( !ExprHasProperty(p, EP_Static) ){ 1214 sqlite3DbFreeNN(db, p); 1215 } 1216 } 1217 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1218 if( p ) sqlite3ExprDeleteNN(db, p); 1219 } 1220 1221 1222 /* 1223 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1224 ** This is similar to sqlite3ExprDelete() except that the delete is 1225 ** deferred untilthe pParse is deleted. 1226 ** 1227 ** The pExpr might be deleted immediately on an OOM error. 1228 ** 1229 ** The deferred delete is (currently) implemented by adding the 1230 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1231 */ 1232 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1233 pParse->pConstExpr = 1234 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1235 } 1236 1237 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1238 ** expression. 1239 */ 1240 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1241 if( p ){ 1242 if( IN_RENAME_OBJECT ){ 1243 sqlite3RenameExprUnmap(pParse, p); 1244 } 1245 sqlite3ExprDeleteNN(pParse->db, p); 1246 } 1247 } 1248 1249 /* 1250 ** Return the number of bytes allocated for the expression structure 1251 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1252 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1253 */ 1254 static int exprStructSize(const Expr *p){ 1255 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1256 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1257 return EXPR_FULLSIZE; 1258 } 1259 1260 /* 1261 ** The dupedExpr*Size() routines each return the number of bytes required 1262 ** to store a copy of an expression or expression tree. They differ in 1263 ** how much of the tree is measured. 1264 ** 1265 ** dupedExprStructSize() Size of only the Expr structure 1266 ** dupedExprNodeSize() Size of Expr + space for token 1267 ** dupedExprSize() Expr + token + subtree components 1268 ** 1269 *************************************************************************** 1270 ** 1271 ** The dupedExprStructSize() function returns two values OR-ed together: 1272 ** (1) the space required for a copy of the Expr structure only and 1273 ** (2) the EP_xxx flags that indicate what the structure size should be. 1274 ** The return values is always one of: 1275 ** 1276 ** EXPR_FULLSIZE 1277 ** EXPR_REDUCEDSIZE | EP_Reduced 1278 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1279 ** 1280 ** The size of the structure can be found by masking the return value 1281 ** of this routine with 0xfff. The flags can be found by masking the 1282 ** return value with EP_Reduced|EP_TokenOnly. 1283 ** 1284 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1285 ** (unreduced) Expr objects as they or originally constructed by the parser. 1286 ** During expression analysis, extra information is computed and moved into 1287 ** later parts of the Expr object and that extra information might get chopped 1288 ** off if the expression is reduced. Note also that it does not work to 1289 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1290 ** to reduce a pristine expression tree from the parser. The implementation 1291 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1292 ** to enforce this constraint. 1293 */ 1294 static int dupedExprStructSize(const Expr *p, int flags){ 1295 int nSize; 1296 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1297 assert( EXPR_FULLSIZE<=0xfff ); 1298 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1299 if( 0==flags || p->op==TK_SELECT_COLUMN 1300 #ifndef SQLITE_OMIT_WINDOWFUNC 1301 || ExprHasProperty(p, EP_WinFunc) 1302 #endif 1303 ){ 1304 nSize = EXPR_FULLSIZE; 1305 }else{ 1306 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1307 assert( !ExprHasProperty(p, EP_FromJoin) ); 1308 assert( !ExprHasProperty(p, EP_MemToken) ); 1309 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1310 if( p->pLeft || p->x.pList ){ 1311 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1312 }else{ 1313 assert( p->pRight==0 ); 1314 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1315 } 1316 } 1317 return nSize; 1318 } 1319 1320 /* 1321 ** This function returns the space in bytes required to store the copy 1322 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1323 ** string is defined.) 1324 */ 1325 static int dupedExprNodeSize(const Expr *p, int flags){ 1326 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1327 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1328 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1329 } 1330 return ROUND8(nByte); 1331 } 1332 1333 /* 1334 ** Return the number of bytes required to create a duplicate of the 1335 ** expression passed as the first argument. The second argument is a 1336 ** mask containing EXPRDUP_XXX flags. 1337 ** 1338 ** The value returned includes space to create a copy of the Expr struct 1339 ** itself and the buffer referred to by Expr.u.zToken, if any. 1340 ** 1341 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1342 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1343 ** and Expr.pRight variables (but not for any structures pointed to or 1344 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1345 */ 1346 static int dupedExprSize(const Expr *p, int flags){ 1347 int nByte = 0; 1348 if( p ){ 1349 nByte = dupedExprNodeSize(p, flags); 1350 if( flags&EXPRDUP_REDUCE ){ 1351 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1352 } 1353 } 1354 return nByte; 1355 } 1356 1357 /* 1358 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1359 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1360 ** to store the copy of expression p, the copies of p->u.zToken 1361 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1362 ** if any. Before returning, *pzBuffer is set to the first byte past the 1363 ** portion of the buffer copied into by this function. 1364 */ 1365 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1366 Expr *pNew; /* Value to return */ 1367 u8 *zAlloc; /* Memory space from which to build Expr object */ 1368 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1369 1370 assert( db!=0 ); 1371 assert( p ); 1372 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1373 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1374 1375 /* Figure out where to write the new Expr structure. */ 1376 if( pzBuffer ){ 1377 zAlloc = *pzBuffer; 1378 staticFlag = EP_Static; 1379 assert( zAlloc!=0 ); 1380 }else{ 1381 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1382 staticFlag = 0; 1383 } 1384 pNew = (Expr *)zAlloc; 1385 1386 if( pNew ){ 1387 /* Set nNewSize to the size allocated for the structure pointed to 1388 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1389 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1390 ** by the copy of the p->u.zToken string (if any). 1391 */ 1392 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1393 const int nNewSize = nStructSize & 0xfff; 1394 int nToken; 1395 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1396 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1397 }else{ 1398 nToken = 0; 1399 } 1400 if( dupFlags ){ 1401 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1402 memcpy(zAlloc, p, nNewSize); 1403 }else{ 1404 u32 nSize = (u32)exprStructSize(p); 1405 memcpy(zAlloc, p, nSize); 1406 if( nSize<EXPR_FULLSIZE ){ 1407 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1408 } 1409 } 1410 1411 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1412 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1413 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1414 pNew->flags |= staticFlag; 1415 ExprClearVVAProperties(pNew); 1416 if( dupFlags ){ 1417 ExprSetVVAProperty(pNew, EP_Immutable); 1418 } 1419 1420 /* Copy the p->u.zToken string, if any. */ 1421 if( nToken ){ 1422 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1423 memcpy(zToken, p->u.zToken, nToken); 1424 } 1425 1426 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1427 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1428 if( ExprHasProperty(p, EP_xIsSelect) ){ 1429 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1430 }else{ 1431 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1432 } 1433 } 1434 1435 /* Fill in pNew->pLeft and pNew->pRight. */ 1436 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1437 zAlloc += dupedExprNodeSize(p, dupFlags); 1438 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1439 pNew->pLeft = p->pLeft ? 1440 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1441 pNew->pRight = p->pRight ? 1442 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1443 } 1444 #ifndef SQLITE_OMIT_WINDOWFUNC 1445 if( ExprHasProperty(p, EP_WinFunc) ){ 1446 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1447 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1448 } 1449 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1450 if( pzBuffer ){ 1451 *pzBuffer = zAlloc; 1452 } 1453 }else{ 1454 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1455 if( pNew->op==TK_SELECT_COLUMN ){ 1456 pNew->pLeft = p->pLeft; 1457 assert( p->pRight==0 || p->pRight==p->pLeft 1458 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1459 }else{ 1460 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1461 } 1462 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1463 } 1464 } 1465 } 1466 return pNew; 1467 } 1468 1469 /* 1470 ** Create and return a deep copy of the object passed as the second 1471 ** argument. If an OOM condition is encountered, NULL is returned 1472 ** and the db->mallocFailed flag set. 1473 */ 1474 #ifndef SQLITE_OMIT_CTE 1475 With *sqlite3WithDup(sqlite3 *db, With *p){ 1476 With *pRet = 0; 1477 if( p ){ 1478 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1479 pRet = sqlite3DbMallocZero(db, nByte); 1480 if( pRet ){ 1481 int i; 1482 pRet->nCte = p->nCte; 1483 for(i=0; i<p->nCte; i++){ 1484 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1485 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1486 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1487 } 1488 } 1489 } 1490 return pRet; 1491 } 1492 #else 1493 # define sqlite3WithDup(x,y) 0 1494 #endif 1495 1496 #ifndef SQLITE_OMIT_WINDOWFUNC 1497 /* 1498 ** The gatherSelectWindows() procedure and its helper routine 1499 ** gatherSelectWindowsCallback() are used to scan all the expressions 1500 ** an a newly duplicated SELECT statement and gather all of the Window 1501 ** objects found there, assembling them onto the linked list at Select->pWin. 1502 */ 1503 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1504 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1505 Select *pSelect = pWalker->u.pSelect; 1506 Window *pWin = pExpr->y.pWin; 1507 assert( pWin ); 1508 assert( IsWindowFunc(pExpr) ); 1509 assert( pWin->ppThis==0 ); 1510 sqlite3WindowLink(pSelect, pWin); 1511 } 1512 return WRC_Continue; 1513 } 1514 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1515 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1516 } 1517 static void gatherSelectWindows(Select *p){ 1518 Walker w; 1519 w.xExprCallback = gatherSelectWindowsCallback; 1520 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1521 w.xSelectCallback2 = 0; 1522 w.pParse = 0; 1523 w.u.pSelect = p; 1524 sqlite3WalkSelect(&w, p); 1525 } 1526 #endif 1527 1528 1529 /* 1530 ** The following group of routines make deep copies of expressions, 1531 ** expression lists, ID lists, and select statements. The copies can 1532 ** be deleted (by being passed to their respective ...Delete() routines) 1533 ** without effecting the originals. 1534 ** 1535 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1536 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1537 ** by subsequent calls to sqlite*ListAppend() routines. 1538 ** 1539 ** Any tables that the SrcList might point to are not duplicated. 1540 ** 1541 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1542 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1543 ** truncated version of the usual Expr structure that will be stored as 1544 ** part of the in-memory representation of the database schema. 1545 */ 1546 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1547 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1548 return p ? exprDup(db, p, flags, 0) : 0; 1549 } 1550 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1551 ExprList *pNew; 1552 struct ExprList_item *pItem; 1553 const struct ExprList_item *pOldItem; 1554 int i; 1555 Expr *pPriorSelectColOld = 0; 1556 Expr *pPriorSelectColNew = 0; 1557 assert( db!=0 ); 1558 if( p==0 ) return 0; 1559 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1560 if( pNew==0 ) return 0; 1561 pNew->nExpr = p->nExpr; 1562 pNew->nAlloc = p->nAlloc; 1563 pItem = pNew->a; 1564 pOldItem = p->a; 1565 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1566 Expr *pOldExpr = pOldItem->pExpr; 1567 Expr *pNewExpr; 1568 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1569 if( pOldExpr 1570 && pOldExpr->op==TK_SELECT_COLUMN 1571 && (pNewExpr = pItem->pExpr)!=0 1572 ){ 1573 if( pNewExpr->pRight ){ 1574 pPriorSelectColOld = pOldExpr->pRight; 1575 pPriorSelectColNew = pNewExpr->pRight; 1576 pNewExpr->pLeft = pNewExpr->pRight; 1577 }else{ 1578 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1579 pPriorSelectColOld = pOldExpr->pLeft; 1580 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1581 pNewExpr->pRight = pPriorSelectColNew; 1582 } 1583 pNewExpr->pLeft = pPriorSelectColNew; 1584 } 1585 } 1586 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1587 pItem->sortFlags = pOldItem->sortFlags; 1588 pItem->eEName = pOldItem->eEName; 1589 pItem->done = 0; 1590 pItem->bNulls = pOldItem->bNulls; 1591 pItem->bSorterRef = pOldItem->bSorterRef; 1592 pItem->u = pOldItem->u; 1593 } 1594 return pNew; 1595 } 1596 1597 /* 1598 ** If cursors, triggers, views and subqueries are all omitted from 1599 ** the build, then none of the following routines, except for 1600 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1601 ** called with a NULL argument. 1602 */ 1603 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1604 || !defined(SQLITE_OMIT_SUBQUERY) 1605 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1606 SrcList *pNew; 1607 int i; 1608 int nByte; 1609 assert( db!=0 ); 1610 if( p==0 ) return 0; 1611 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1612 pNew = sqlite3DbMallocRawNN(db, nByte ); 1613 if( pNew==0 ) return 0; 1614 pNew->nSrc = pNew->nAlloc = p->nSrc; 1615 for(i=0; i<p->nSrc; i++){ 1616 SrcItem *pNewItem = &pNew->a[i]; 1617 const SrcItem *pOldItem = &p->a[i]; 1618 Table *pTab; 1619 pNewItem->pSchema = pOldItem->pSchema; 1620 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1621 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1622 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1623 pNewItem->fg = pOldItem->fg; 1624 pNewItem->iCursor = pOldItem->iCursor; 1625 pNewItem->addrFillSub = pOldItem->addrFillSub; 1626 pNewItem->regReturn = pOldItem->regReturn; 1627 if( pNewItem->fg.isIndexedBy ){ 1628 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1629 } 1630 pNewItem->u2 = pOldItem->u2; 1631 if( pNewItem->fg.isCte ){ 1632 pNewItem->u2.pCteUse->nUse++; 1633 } 1634 if( pNewItem->fg.isTabFunc ){ 1635 pNewItem->u1.pFuncArg = 1636 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1637 } 1638 pTab = pNewItem->pTab = pOldItem->pTab; 1639 if( pTab ){ 1640 pTab->nTabRef++; 1641 } 1642 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1643 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1644 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1645 pNewItem->colUsed = pOldItem->colUsed; 1646 } 1647 return pNew; 1648 } 1649 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1650 IdList *pNew; 1651 int i; 1652 assert( db!=0 ); 1653 if( p==0 ) return 0; 1654 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1655 if( pNew==0 ) return 0; 1656 pNew->nId = p->nId; 1657 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1658 if( pNew->a==0 ){ 1659 sqlite3DbFreeNN(db, pNew); 1660 return 0; 1661 } 1662 /* Note that because the size of the allocation for p->a[] is not 1663 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1664 ** on the duplicate created by this function. */ 1665 for(i=0; i<p->nId; i++){ 1666 struct IdList_item *pNewItem = &pNew->a[i]; 1667 struct IdList_item *pOldItem = &p->a[i]; 1668 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1669 pNewItem->idx = pOldItem->idx; 1670 } 1671 return pNew; 1672 } 1673 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1674 Select *pRet = 0; 1675 Select *pNext = 0; 1676 Select **pp = &pRet; 1677 const Select *p; 1678 1679 assert( db!=0 ); 1680 for(p=pDup; p; p=p->pPrior){ 1681 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1682 if( pNew==0 ) break; 1683 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1684 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1685 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1686 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1687 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1688 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1689 pNew->op = p->op; 1690 pNew->pNext = pNext; 1691 pNew->pPrior = 0; 1692 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1693 pNew->iLimit = 0; 1694 pNew->iOffset = 0; 1695 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1696 pNew->addrOpenEphm[0] = -1; 1697 pNew->addrOpenEphm[1] = -1; 1698 pNew->nSelectRow = p->nSelectRow; 1699 pNew->pWith = sqlite3WithDup(db, p->pWith); 1700 #ifndef SQLITE_OMIT_WINDOWFUNC 1701 pNew->pWin = 0; 1702 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1703 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1704 #endif 1705 pNew->selId = p->selId; 1706 if( db->mallocFailed ){ 1707 /* Any prior OOM might have left the Select object incomplete. 1708 ** Delete the whole thing rather than allow an incomplete Select 1709 ** to be used by the code generator. */ 1710 pNew->pNext = 0; 1711 sqlite3SelectDelete(db, pNew); 1712 break; 1713 } 1714 *pp = pNew; 1715 pp = &pNew->pPrior; 1716 pNext = pNew; 1717 } 1718 1719 return pRet; 1720 } 1721 #else 1722 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1723 assert( p==0 ); 1724 return 0; 1725 } 1726 #endif 1727 1728 1729 /* 1730 ** Add a new element to the end of an expression list. If pList is 1731 ** initially NULL, then create a new expression list. 1732 ** 1733 ** The pList argument must be either NULL or a pointer to an ExprList 1734 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1735 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1736 ** Reason: This routine assumes that the number of slots in pList->a[] 1737 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1738 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1739 ** 1740 ** If a memory allocation error occurs, the entire list is freed and 1741 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1742 ** that the new entry was successfully appended. 1743 */ 1744 static const struct ExprList_item zeroItem = {0}; 1745 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1746 sqlite3 *db, /* Database handle. Used for memory allocation */ 1747 Expr *pExpr /* Expression to be appended. Might be NULL */ 1748 ){ 1749 struct ExprList_item *pItem; 1750 ExprList *pList; 1751 1752 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1753 if( pList==0 ){ 1754 sqlite3ExprDelete(db, pExpr); 1755 return 0; 1756 } 1757 pList->nAlloc = 4; 1758 pList->nExpr = 1; 1759 pItem = &pList->a[0]; 1760 *pItem = zeroItem; 1761 pItem->pExpr = pExpr; 1762 return pList; 1763 } 1764 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1765 sqlite3 *db, /* Database handle. Used for memory allocation */ 1766 ExprList *pList, /* List to which to append. Might be NULL */ 1767 Expr *pExpr /* Expression to be appended. Might be NULL */ 1768 ){ 1769 struct ExprList_item *pItem; 1770 ExprList *pNew; 1771 pList->nAlloc *= 2; 1772 pNew = sqlite3DbRealloc(db, pList, 1773 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1774 if( pNew==0 ){ 1775 sqlite3ExprListDelete(db, pList); 1776 sqlite3ExprDelete(db, pExpr); 1777 return 0; 1778 }else{ 1779 pList = pNew; 1780 } 1781 pItem = &pList->a[pList->nExpr++]; 1782 *pItem = zeroItem; 1783 pItem->pExpr = pExpr; 1784 return pList; 1785 } 1786 ExprList *sqlite3ExprListAppend( 1787 Parse *pParse, /* Parsing context */ 1788 ExprList *pList, /* List to which to append. Might be NULL */ 1789 Expr *pExpr /* Expression to be appended. Might be NULL */ 1790 ){ 1791 struct ExprList_item *pItem; 1792 if( pList==0 ){ 1793 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1794 } 1795 if( pList->nAlloc<pList->nExpr+1 ){ 1796 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1797 } 1798 pItem = &pList->a[pList->nExpr++]; 1799 *pItem = zeroItem; 1800 pItem->pExpr = pExpr; 1801 return pList; 1802 } 1803 1804 /* 1805 ** pColumns and pExpr form a vector assignment which is part of the SET 1806 ** clause of an UPDATE statement. Like this: 1807 ** 1808 ** (a,b,c) = (expr1,expr2,expr3) 1809 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1810 ** 1811 ** For each term of the vector assignment, append new entries to the 1812 ** expression list pList. In the case of a subquery on the RHS, append 1813 ** TK_SELECT_COLUMN expressions. 1814 */ 1815 ExprList *sqlite3ExprListAppendVector( 1816 Parse *pParse, /* Parsing context */ 1817 ExprList *pList, /* List to which to append. Might be NULL */ 1818 IdList *pColumns, /* List of names of LHS of the assignment */ 1819 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1820 ){ 1821 sqlite3 *db = pParse->db; 1822 int n; 1823 int i; 1824 int iFirst = pList ? pList->nExpr : 0; 1825 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1826 ** exit prior to this routine being invoked */ 1827 if( NEVER(pColumns==0) ) goto vector_append_error; 1828 if( pExpr==0 ) goto vector_append_error; 1829 1830 /* If the RHS is a vector, then we can immediately check to see that 1831 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1832 ** wildcards ("*") in the result set of the SELECT must be expanded before 1833 ** we can do the size check, so defer the size check until code generation. 1834 */ 1835 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1836 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1837 pColumns->nId, n); 1838 goto vector_append_error; 1839 } 1840 1841 for(i=0; i<pColumns->nId; i++){ 1842 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1843 assert( pSubExpr!=0 || db->mallocFailed ); 1844 if( pSubExpr==0 ) continue; 1845 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1846 if( pList ){ 1847 assert( pList->nExpr==iFirst+i+1 ); 1848 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1849 pColumns->a[i].zName = 0; 1850 } 1851 } 1852 1853 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1854 Expr *pFirst = pList->a[iFirst].pExpr; 1855 assert( pFirst!=0 ); 1856 assert( pFirst->op==TK_SELECT_COLUMN ); 1857 1858 /* Store the SELECT statement in pRight so it will be deleted when 1859 ** sqlite3ExprListDelete() is called */ 1860 pFirst->pRight = pExpr; 1861 pExpr = 0; 1862 1863 /* Remember the size of the LHS in iTable so that we can check that 1864 ** the RHS and LHS sizes match during code generation. */ 1865 pFirst->iTable = pColumns->nId; 1866 } 1867 1868 vector_append_error: 1869 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1870 sqlite3IdListDelete(db, pColumns); 1871 return pList; 1872 } 1873 1874 /* 1875 ** Set the sort order for the last element on the given ExprList. 1876 */ 1877 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1878 struct ExprList_item *pItem; 1879 if( p==0 ) return; 1880 assert( p->nExpr>0 ); 1881 1882 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1883 assert( iSortOrder==SQLITE_SO_UNDEFINED 1884 || iSortOrder==SQLITE_SO_ASC 1885 || iSortOrder==SQLITE_SO_DESC 1886 ); 1887 assert( eNulls==SQLITE_SO_UNDEFINED 1888 || eNulls==SQLITE_SO_ASC 1889 || eNulls==SQLITE_SO_DESC 1890 ); 1891 1892 pItem = &p->a[p->nExpr-1]; 1893 assert( pItem->bNulls==0 ); 1894 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1895 iSortOrder = SQLITE_SO_ASC; 1896 } 1897 pItem->sortFlags = (u8)iSortOrder; 1898 1899 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1900 pItem->bNulls = 1; 1901 if( iSortOrder!=eNulls ){ 1902 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1903 } 1904 } 1905 } 1906 1907 /* 1908 ** Set the ExprList.a[].zEName element of the most recently added item 1909 ** on the expression list. 1910 ** 1911 ** pList might be NULL following an OOM error. But pName should never be 1912 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1913 ** is set. 1914 */ 1915 void sqlite3ExprListSetName( 1916 Parse *pParse, /* Parsing context */ 1917 ExprList *pList, /* List to which to add the span. */ 1918 const Token *pName, /* Name to be added */ 1919 int dequote /* True to cause the name to be dequoted */ 1920 ){ 1921 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1922 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1923 if( pList ){ 1924 struct ExprList_item *pItem; 1925 assert( pList->nExpr>0 ); 1926 pItem = &pList->a[pList->nExpr-1]; 1927 assert( pItem->zEName==0 ); 1928 assert( pItem->eEName==ENAME_NAME ); 1929 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1930 if( dequote ){ 1931 /* If dequote==0, then pName->z does not point to part of a DDL 1932 ** statement handled by the parser. And so no token need be added 1933 ** to the token-map. */ 1934 sqlite3Dequote(pItem->zEName); 1935 if( IN_RENAME_OBJECT ){ 1936 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1937 } 1938 } 1939 } 1940 } 1941 1942 /* 1943 ** Set the ExprList.a[].zSpan element of the most recently added item 1944 ** on the expression list. 1945 ** 1946 ** pList might be NULL following an OOM error. But pSpan should never be 1947 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1948 ** is set. 1949 */ 1950 void sqlite3ExprListSetSpan( 1951 Parse *pParse, /* Parsing context */ 1952 ExprList *pList, /* List to which to add the span. */ 1953 const char *zStart, /* Start of the span */ 1954 const char *zEnd /* End of the span */ 1955 ){ 1956 sqlite3 *db = pParse->db; 1957 assert( pList!=0 || db->mallocFailed!=0 ); 1958 if( pList ){ 1959 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1960 assert( pList->nExpr>0 ); 1961 if( pItem->zEName==0 ){ 1962 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1963 pItem->eEName = ENAME_SPAN; 1964 } 1965 } 1966 } 1967 1968 /* 1969 ** If the expression list pEList contains more than iLimit elements, 1970 ** leave an error message in pParse. 1971 */ 1972 void sqlite3ExprListCheckLength( 1973 Parse *pParse, 1974 ExprList *pEList, 1975 const char *zObject 1976 ){ 1977 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1978 testcase( pEList && pEList->nExpr==mx ); 1979 testcase( pEList && pEList->nExpr==mx+1 ); 1980 if( pEList && pEList->nExpr>mx ){ 1981 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1982 } 1983 } 1984 1985 /* 1986 ** Delete an entire expression list. 1987 */ 1988 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1989 int i = pList->nExpr; 1990 struct ExprList_item *pItem = pList->a; 1991 assert( pList->nExpr>0 ); 1992 do{ 1993 sqlite3ExprDelete(db, pItem->pExpr); 1994 sqlite3DbFree(db, pItem->zEName); 1995 pItem++; 1996 }while( --i>0 ); 1997 sqlite3DbFreeNN(db, pList); 1998 } 1999 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2000 if( pList ) exprListDeleteNN(db, pList); 2001 } 2002 2003 /* 2004 ** Return the bitwise-OR of all Expr.flags fields in the given 2005 ** ExprList. 2006 */ 2007 u32 sqlite3ExprListFlags(const ExprList *pList){ 2008 int i; 2009 u32 m = 0; 2010 assert( pList!=0 ); 2011 for(i=0; i<pList->nExpr; i++){ 2012 Expr *pExpr = pList->a[i].pExpr; 2013 assert( pExpr!=0 ); 2014 m |= pExpr->flags; 2015 } 2016 return m; 2017 } 2018 2019 /* 2020 ** This is a SELECT-node callback for the expression walker that 2021 ** always "fails". By "fail" in this case, we mean set 2022 ** pWalker->eCode to zero and abort. 2023 ** 2024 ** This callback is used by multiple expression walkers. 2025 */ 2026 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2027 UNUSED_PARAMETER(NotUsed); 2028 pWalker->eCode = 0; 2029 return WRC_Abort; 2030 } 2031 2032 /* 2033 ** Check the input string to see if it is "true" or "false" (in any case). 2034 ** 2035 ** If the string is.... Return 2036 ** "true" EP_IsTrue 2037 ** "false" EP_IsFalse 2038 ** anything else 0 2039 */ 2040 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2041 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2042 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2043 return 0; 2044 } 2045 2046 2047 /* 2048 ** If the input expression is an ID with the name "true" or "false" 2049 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2050 ** the conversion happened, and zero if the expression is unaltered. 2051 */ 2052 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2053 u32 v; 2054 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2055 if( !ExprHasProperty(pExpr, EP_Quoted) 2056 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2057 ){ 2058 pExpr->op = TK_TRUEFALSE; 2059 ExprSetProperty(pExpr, v); 2060 return 1; 2061 } 2062 return 0; 2063 } 2064 2065 /* 2066 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2067 ** and 0 if it is FALSE. 2068 */ 2069 int sqlite3ExprTruthValue(const Expr *pExpr){ 2070 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2071 assert( pExpr->op==TK_TRUEFALSE ); 2072 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2073 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2074 return pExpr->u.zToken[4]==0; 2075 } 2076 2077 /* 2078 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2079 ** terms that are always true or false. Return the simplified expression. 2080 ** Or return the original expression if no simplification is possible. 2081 ** 2082 ** Examples: 2083 ** 2084 ** (x<10) AND true => (x<10) 2085 ** (x<10) AND false => false 2086 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2087 ** (x<10) AND (y=22 OR true) => (x<10) 2088 ** (y=22) OR true => true 2089 */ 2090 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2091 assert( pExpr!=0 ); 2092 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2093 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2094 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2095 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2096 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2097 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2098 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2099 } 2100 } 2101 return pExpr; 2102 } 2103 2104 2105 /* 2106 ** These routines are Walker callbacks used to check expressions to 2107 ** see if they are "constant" for some definition of constant. The 2108 ** Walker.eCode value determines the type of "constant" we are looking 2109 ** for. 2110 ** 2111 ** These callback routines are used to implement the following: 2112 ** 2113 ** sqlite3ExprIsConstant() pWalker->eCode==1 2114 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2115 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2116 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2117 ** 2118 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2119 ** is found to not be a constant. 2120 ** 2121 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2122 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2123 ** when parsing an existing schema out of the sqlite_schema table and 4 2124 ** when processing a new CREATE TABLE statement. A bound parameter raises 2125 ** an error for new statements, but is silently converted 2126 ** to NULL for existing schemas. This allows sqlite_schema tables that 2127 ** contain a bound parameter because they were generated by older versions 2128 ** of SQLite to be parsed by newer versions of SQLite without raising a 2129 ** malformed schema error. 2130 */ 2131 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2132 2133 /* If pWalker->eCode is 2 then any term of the expression that comes from 2134 ** the ON or USING clauses of a left join disqualifies the expression 2135 ** from being considered constant. */ 2136 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2137 pWalker->eCode = 0; 2138 return WRC_Abort; 2139 } 2140 2141 switch( pExpr->op ){ 2142 /* Consider functions to be constant if all their arguments are constant 2143 ** and either pWalker->eCode==4 or 5 or the function has the 2144 ** SQLITE_FUNC_CONST flag. */ 2145 case TK_FUNCTION: 2146 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2147 && !ExprHasProperty(pExpr, EP_WinFunc) 2148 ){ 2149 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2150 return WRC_Continue; 2151 }else{ 2152 pWalker->eCode = 0; 2153 return WRC_Abort; 2154 } 2155 case TK_ID: 2156 /* Convert "true" or "false" in a DEFAULT clause into the 2157 ** appropriate TK_TRUEFALSE operator */ 2158 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2159 return WRC_Prune; 2160 } 2161 /* no break */ deliberate_fall_through 2162 case TK_COLUMN: 2163 case TK_AGG_FUNCTION: 2164 case TK_AGG_COLUMN: 2165 testcase( pExpr->op==TK_ID ); 2166 testcase( pExpr->op==TK_COLUMN ); 2167 testcase( pExpr->op==TK_AGG_FUNCTION ); 2168 testcase( pExpr->op==TK_AGG_COLUMN ); 2169 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2170 return WRC_Continue; 2171 } 2172 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2173 return WRC_Continue; 2174 } 2175 /* no break */ deliberate_fall_through 2176 case TK_IF_NULL_ROW: 2177 case TK_REGISTER: 2178 case TK_DOT: 2179 testcase( pExpr->op==TK_REGISTER ); 2180 testcase( pExpr->op==TK_IF_NULL_ROW ); 2181 testcase( pExpr->op==TK_DOT ); 2182 pWalker->eCode = 0; 2183 return WRC_Abort; 2184 case TK_VARIABLE: 2185 if( pWalker->eCode==5 ){ 2186 /* Silently convert bound parameters that appear inside of CREATE 2187 ** statements into a NULL when parsing the CREATE statement text out 2188 ** of the sqlite_schema table */ 2189 pExpr->op = TK_NULL; 2190 }else if( pWalker->eCode==4 ){ 2191 /* A bound parameter in a CREATE statement that originates from 2192 ** sqlite3_prepare() causes an error */ 2193 pWalker->eCode = 0; 2194 return WRC_Abort; 2195 } 2196 /* no break */ deliberate_fall_through 2197 default: 2198 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2199 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2200 return WRC_Continue; 2201 } 2202 } 2203 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2204 Walker w; 2205 w.eCode = initFlag; 2206 w.xExprCallback = exprNodeIsConstant; 2207 w.xSelectCallback = sqlite3SelectWalkFail; 2208 #ifdef SQLITE_DEBUG 2209 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2210 #endif 2211 w.u.iCur = iCur; 2212 sqlite3WalkExpr(&w, p); 2213 return w.eCode; 2214 } 2215 2216 /* 2217 ** Walk an expression tree. Return non-zero if the expression is constant 2218 ** and 0 if it involves variables or function calls. 2219 ** 2220 ** For the purposes of this function, a double-quoted string (ex: "abc") 2221 ** is considered a variable but a single-quoted string (ex: 'abc') is 2222 ** a constant. 2223 */ 2224 int sqlite3ExprIsConstant(Expr *p){ 2225 return exprIsConst(p, 1, 0); 2226 } 2227 2228 /* 2229 ** Walk an expression tree. Return non-zero if 2230 ** 2231 ** (1) the expression is constant, and 2232 ** (2) the expression does originate in the ON or USING clause 2233 ** of a LEFT JOIN, and 2234 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2235 ** operands created by the constant propagation optimization. 2236 ** 2237 ** When this routine returns true, it indicates that the expression 2238 ** can be added to the pParse->pConstExpr list and evaluated once when 2239 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2240 */ 2241 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2242 return exprIsConst(p, 2, 0); 2243 } 2244 2245 /* 2246 ** Walk an expression tree. Return non-zero if the expression is constant 2247 ** for any single row of the table with cursor iCur. In other words, the 2248 ** expression must not refer to any non-deterministic function nor any 2249 ** table other than iCur. 2250 */ 2251 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2252 return exprIsConst(p, 3, iCur); 2253 } 2254 2255 2256 /* 2257 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2258 */ 2259 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2260 ExprList *pGroupBy = pWalker->u.pGroupBy; 2261 int i; 2262 2263 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2264 ** it constant. */ 2265 for(i=0; i<pGroupBy->nExpr; i++){ 2266 Expr *p = pGroupBy->a[i].pExpr; 2267 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2268 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2269 if( sqlite3IsBinary(pColl) ){ 2270 return WRC_Prune; 2271 } 2272 } 2273 } 2274 2275 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2276 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2277 pWalker->eCode = 0; 2278 return WRC_Abort; 2279 } 2280 2281 return exprNodeIsConstant(pWalker, pExpr); 2282 } 2283 2284 /* 2285 ** Walk the expression tree passed as the first argument. Return non-zero 2286 ** if the expression consists entirely of constants or copies of terms 2287 ** in pGroupBy that sort with the BINARY collation sequence. 2288 ** 2289 ** This routine is used to determine if a term of the HAVING clause can 2290 ** be promoted into the WHERE clause. In order for such a promotion to work, 2291 ** the value of the HAVING clause term must be the same for all members of 2292 ** a "group". The requirement that the GROUP BY term must be BINARY 2293 ** assumes that no other collating sequence will have a finer-grained 2294 ** grouping than binary. In other words (A=B COLLATE binary) implies 2295 ** A=B in every other collating sequence. The requirement that the 2296 ** GROUP BY be BINARY is stricter than necessary. It would also work 2297 ** to promote HAVING clauses that use the same alternative collating 2298 ** sequence as the GROUP BY term, but that is much harder to check, 2299 ** alternative collating sequences are uncommon, and this is only an 2300 ** optimization, so we take the easy way out and simply require the 2301 ** GROUP BY to use the BINARY collating sequence. 2302 */ 2303 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2304 Walker w; 2305 w.eCode = 1; 2306 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2307 w.xSelectCallback = 0; 2308 w.u.pGroupBy = pGroupBy; 2309 w.pParse = pParse; 2310 sqlite3WalkExpr(&w, p); 2311 return w.eCode; 2312 } 2313 2314 /* 2315 ** Walk an expression tree for the DEFAULT field of a column definition 2316 ** in a CREATE TABLE statement. Return non-zero if the expression is 2317 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2318 ** the expression is constant or a function call with constant arguments. 2319 ** Return and 0 if there are any variables. 2320 ** 2321 ** isInit is true when parsing from sqlite_schema. isInit is false when 2322 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2323 ** (such as ? or $abc) in the expression are converted into NULL. When 2324 ** isInit is false, parameters raise an error. Parameters should not be 2325 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2326 ** allowed it, so we need to support it when reading sqlite_schema for 2327 ** backwards compatibility. 2328 ** 2329 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2330 ** 2331 ** For the purposes of this function, a double-quoted string (ex: "abc") 2332 ** is considered a variable but a single-quoted string (ex: 'abc') is 2333 ** a constant. 2334 */ 2335 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2336 assert( isInit==0 || isInit==1 ); 2337 return exprIsConst(p, 4+isInit, 0); 2338 } 2339 2340 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2341 /* 2342 ** Walk an expression tree. Return 1 if the expression contains a 2343 ** subquery of some kind. Return 0 if there are no subqueries. 2344 */ 2345 int sqlite3ExprContainsSubquery(Expr *p){ 2346 Walker w; 2347 w.eCode = 1; 2348 w.xExprCallback = sqlite3ExprWalkNoop; 2349 w.xSelectCallback = sqlite3SelectWalkFail; 2350 #ifdef SQLITE_DEBUG 2351 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2352 #endif 2353 sqlite3WalkExpr(&w, p); 2354 return w.eCode==0; 2355 } 2356 #endif 2357 2358 /* 2359 ** If the expression p codes a constant integer that is small enough 2360 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2361 ** in *pValue. If the expression is not an integer or if it is too big 2362 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2363 */ 2364 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2365 int rc = 0; 2366 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2367 2368 /* If an expression is an integer literal that fits in a signed 32-bit 2369 ** integer, then the EP_IntValue flag will have already been set */ 2370 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2371 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2372 2373 if( p->flags & EP_IntValue ){ 2374 *pValue = p->u.iValue; 2375 return 1; 2376 } 2377 switch( p->op ){ 2378 case TK_UPLUS: { 2379 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2380 break; 2381 } 2382 case TK_UMINUS: { 2383 int v; 2384 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2385 assert( v!=(-2147483647-1) ); 2386 *pValue = -v; 2387 rc = 1; 2388 } 2389 break; 2390 } 2391 default: break; 2392 } 2393 return rc; 2394 } 2395 2396 /* 2397 ** Return FALSE if there is no chance that the expression can be NULL. 2398 ** 2399 ** If the expression might be NULL or if the expression is too complex 2400 ** to tell return TRUE. 2401 ** 2402 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2403 ** when we know that a value cannot be NULL. Hence, a false positive 2404 ** (returning TRUE when in fact the expression can never be NULL) might 2405 ** be a small performance hit but is otherwise harmless. On the other 2406 ** hand, a false negative (returning FALSE when the result could be NULL) 2407 ** will likely result in an incorrect answer. So when in doubt, return 2408 ** TRUE. 2409 */ 2410 int sqlite3ExprCanBeNull(const Expr *p){ 2411 u8 op; 2412 assert( p!=0 ); 2413 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2414 p = p->pLeft; 2415 assert( p!=0 ); 2416 } 2417 op = p->op; 2418 if( op==TK_REGISTER ) op = p->op2; 2419 switch( op ){ 2420 case TK_INTEGER: 2421 case TK_STRING: 2422 case TK_FLOAT: 2423 case TK_BLOB: 2424 return 0; 2425 case TK_COLUMN: 2426 return ExprHasProperty(p, EP_CanBeNull) || 2427 p->y.pTab==0 || /* Reference to column of index on expression */ 2428 (p->iColumn>=0 2429 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2430 && p->y.pTab->aCol[p->iColumn].notNull==0); 2431 default: 2432 return 1; 2433 } 2434 } 2435 2436 /* 2437 ** Return TRUE if the given expression is a constant which would be 2438 ** unchanged by OP_Affinity with the affinity given in the second 2439 ** argument. 2440 ** 2441 ** This routine is used to determine if the OP_Affinity operation 2442 ** can be omitted. When in doubt return FALSE. A false negative 2443 ** is harmless. A false positive, however, can result in the wrong 2444 ** answer. 2445 */ 2446 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2447 u8 op; 2448 int unaryMinus = 0; 2449 if( aff==SQLITE_AFF_BLOB ) return 1; 2450 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2451 if( p->op==TK_UMINUS ) unaryMinus = 1; 2452 p = p->pLeft; 2453 } 2454 op = p->op; 2455 if( op==TK_REGISTER ) op = p->op2; 2456 switch( op ){ 2457 case TK_INTEGER: { 2458 return aff>=SQLITE_AFF_NUMERIC; 2459 } 2460 case TK_FLOAT: { 2461 return aff>=SQLITE_AFF_NUMERIC; 2462 } 2463 case TK_STRING: { 2464 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2465 } 2466 case TK_BLOB: { 2467 return !unaryMinus; 2468 } 2469 case TK_COLUMN: { 2470 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2471 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2472 } 2473 default: { 2474 return 0; 2475 } 2476 } 2477 } 2478 2479 /* 2480 ** Return TRUE if the given string is a row-id column name. 2481 */ 2482 int sqlite3IsRowid(const char *z){ 2483 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2484 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2485 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2486 return 0; 2487 } 2488 2489 /* 2490 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2491 ** that can be simplified to a direct table access, then return 2492 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2493 ** or if the SELECT statement needs to be manifested into a transient 2494 ** table, then return NULL. 2495 */ 2496 #ifndef SQLITE_OMIT_SUBQUERY 2497 static Select *isCandidateForInOpt(const Expr *pX){ 2498 Select *p; 2499 SrcList *pSrc; 2500 ExprList *pEList; 2501 Table *pTab; 2502 int i; 2503 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2504 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2505 p = pX->x.pSelect; 2506 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2507 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2508 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2509 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2510 return 0; /* No DISTINCT keyword and no aggregate functions */ 2511 } 2512 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2513 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2514 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2515 pSrc = p->pSrc; 2516 assert( pSrc!=0 ); 2517 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2518 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2519 pTab = pSrc->a[0].pTab; 2520 assert( pTab!=0 ); 2521 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2522 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2523 pEList = p->pEList; 2524 assert( pEList!=0 ); 2525 /* All SELECT results must be columns. */ 2526 for(i=0; i<pEList->nExpr; i++){ 2527 Expr *pRes = pEList->a[i].pExpr; 2528 if( pRes->op!=TK_COLUMN ) return 0; 2529 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2530 } 2531 return p; 2532 } 2533 #endif /* SQLITE_OMIT_SUBQUERY */ 2534 2535 #ifndef SQLITE_OMIT_SUBQUERY 2536 /* 2537 ** Generate code that checks the left-most column of index table iCur to see if 2538 ** it contains any NULL entries. Cause the register at regHasNull to be set 2539 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2540 ** to be set to NULL if iCur contains one or more NULL values. 2541 */ 2542 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2543 int addr1; 2544 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2545 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2546 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2547 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2548 VdbeComment((v, "first_entry_in(%d)", iCur)); 2549 sqlite3VdbeJumpHere(v, addr1); 2550 } 2551 #endif 2552 2553 2554 #ifndef SQLITE_OMIT_SUBQUERY 2555 /* 2556 ** The argument is an IN operator with a list (not a subquery) on the 2557 ** right-hand side. Return TRUE if that list is constant. 2558 */ 2559 static int sqlite3InRhsIsConstant(Expr *pIn){ 2560 Expr *pLHS; 2561 int res; 2562 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2563 pLHS = pIn->pLeft; 2564 pIn->pLeft = 0; 2565 res = sqlite3ExprIsConstant(pIn); 2566 pIn->pLeft = pLHS; 2567 return res; 2568 } 2569 #endif 2570 2571 /* 2572 ** This function is used by the implementation of the IN (...) operator. 2573 ** The pX parameter is the expression on the RHS of the IN operator, which 2574 ** might be either a list of expressions or a subquery. 2575 ** 2576 ** The job of this routine is to find or create a b-tree object that can 2577 ** be used either to test for membership in the RHS set or to iterate through 2578 ** all members of the RHS set, skipping duplicates. 2579 ** 2580 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2581 ** and pX->iTable is set to the index of that cursor. 2582 ** 2583 ** The returned value of this function indicates the b-tree type, as follows: 2584 ** 2585 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2586 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2587 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2588 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2589 ** populated epheremal table. 2590 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2591 ** implemented as a sequence of comparisons. 2592 ** 2593 ** An existing b-tree might be used if the RHS expression pX is a simple 2594 ** subquery such as: 2595 ** 2596 ** SELECT <column1>, <column2>... FROM <table> 2597 ** 2598 ** If the RHS of the IN operator is a list or a more complex subquery, then 2599 ** an ephemeral table might need to be generated from the RHS and then 2600 ** pX->iTable made to point to the ephemeral table instead of an 2601 ** existing table. 2602 ** 2603 ** The inFlags parameter must contain, at a minimum, one of the bits 2604 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2605 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2606 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2607 ** be used to loop over all values of the RHS of the IN operator. 2608 ** 2609 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2610 ** through the set members) then the b-tree must not contain duplicates. 2611 ** An epheremal table will be created unless the selected columns are guaranteed 2612 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2613 ** a UNIQUE constraint or index. 2614 ** 2615 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2616 ** for fast set membership tests) then an epheremal table must 2617 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2618 ** index can be found with the specified <columns> as its left-most. 2619 ** 2620 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2621 ** if the RHS of the IN operator is a list (not a subquery) then this 2622 ** routine might decide that creating an ephemeral b-tree for membership 2623 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2624 ** calling routine should implement the IN operator using a sequence 2625 ** of Eq or Ne comparison operations. 2626 ** 2627 ** When the b-tree is being used for membership tests, the calling function 2628 ** might need to know whether or not the RHS side of the IN operator 2629 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2630 ** if there is any chance that the (...) might contain a NULL value at 2631 ** runtime, then a register is allocated and the register number written 2632 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2633 ** NULL value, then *prRhsHasNull is left unchanged. 2634 ** 2635 ** If a register is allocated and its location stored in *prRhsHasNull, then 2636 ** the value in that register will be NULL if the b-tree contains one or more 2637 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2638 ** NULL values. 2639 ** 2640 ** If the aiMap parameter is not NULL, it must point to an array containing 2641 ** one element for each column returned by the SELECT statement on the RHS 2642 ** of the IN(...) operator. The i'th entry of the array is populated with the 2643 ** offset of the index column that matches the i'th column returned by the 2644 ** SELECT. For example, if the expression and selected index are: 2645 ** 2646 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2647 ** CREATE INDEX i1 ON t1(b, c, a); 2648 ** 2649 ** then aiMap[] is populated with {2, 0, 1}. 2650 */ 2651 #ifndef SQLITE_OMIT_SUBQUERY 2652 int sqlite3FindInIndex( 2653 Parse *pParse, /* Parsing context */ 2654 Expr *pX, /* The IN expression */ 2655 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2656 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2657 int *aiMap, /* Mapping from Index fields to RHS fields */ 2658 int *piTab /* OUT: index to use */ 2659 ){ 2660 Select *p; /* SELECT to the right of IN operator */ 2661 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2662 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2663 int mustBeUnique; /* True if RHS must be unique */ 2664 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2665 2666 assert( pX->op==TK_IN ); 2667 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2668 2669 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2670 ** whether or not the SELECT result contains NULL values, check whether 2671 ** or not NULL is actually possible (it may not be, for example, due 2672 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2673 ** set prRhsHasNull to 0 before continuing. */ 2674 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2675 int i; 2676 ExprList *pEList = pX->x.pSelect->pEList; 2677 for(i=0; i<pEList->nExpr; i++){ 2678 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2679 } 2680 if( i==pEList->nExpr ){ 2681 prRhsHasNull = 0; 2682 } 2683 } 2684 2685 /* Check to see if an existing table or index can be used to 2686 ** satisfy the query. This is preferable to generating a new 2687 ** ephemeral table. */ 2688 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2689 sqlite3 *db = pParse->db; /* Database connection */ 2690 Table *pTab; /* Table <table>. */ 2691 int iDb; /* Database idx for pTab */ 2692 ExprList *pEList = p->pEList; 2693 int nExpr = pEList->nExpr; 2694 2695 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2696 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2697 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2698 pTab = p->pSrc->a[0].pTab; 2699 2700 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2701 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2702 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2703 sqlite3CodeVerifySchema(pParse, iDb); 2704 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2705 2706 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2707 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2708 /* The "x IN (SELECT rowid FROM table)" case */ 2709 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2710 VdbeCoverage(v); 2711 2712 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2713 eType = IN_INDEX_ROWID; 2714 ExplainQueryPlan((pParse, 0, 2715 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2716 sqlite3VdbeJumpHere(v, iAddr); 2717 }else{ 2718 Index *pIdx; /* Iterator variable */ 2719 int affinity_ok = 1; 2720 int i; 2721 2722 /* Check that the affinity that will be used to perform each 2723 ** comparison is the same as the affinity of each column in table 2724 ** on the RHS of the IN operator. If it not, it is not possible to 2725 ** use any index of the RHS table. */ 2726 for(i=0; i<nExpr && affinity_ok; i++){ 2727 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2728 int iCol = pEList->a[i].pExpr->iColumn; 2729 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2730 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2731 testcase( cmpaff==SQLITE_AFF_BLOB ); 2732 testcase( cmpaff==SQLITE_AFF_TEXT ); 2733 switch( cmpaff ){ 2734 case SQLITE_AFF_BLOB: 2735 break; 2736 case SQLITE_AFF_TEXT: 2737 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2738 ** other has no affinity and the other side is TEXT. Hence, 2739 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2740 ** and for the term on the LHS of the IN to have no affinity. */ 2741 assert( idxaff==SQLITE_AFF_TEXT ); 2742 break; 2743 default: 2744 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2745 } 2746 } 2747 2748 if( affinity_ok ){ 2749 /* Search for an existing index that will work for this IN operator */ 2750 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2751 Bitmask colUsed; /* Columns of the index used */ 2752 Bitmask mCol; /* Mask for the current column */ 2753 if( pIdx->nColumn<nExpr ) continue; 2754 if( pIdx->pPartIdxWhere!=0 ) continue; 2755 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2756 ** BITMASK(nExpr) without overflowing */ 2757 testcase( pIdx->nColumn==BMS-2 ); 2758 testcase( pIdx->nColumn==BMS-1 ); 2759 if( pIdx->nColumn>=BMS-1 ) continue; 2760 if( mustBeUnique ){ 2761 if( pIdx->nKeyCol>nExpr 2762 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2763 ){ 2764 continue; /* This index is not unique over the IN RHS columns */ 2765 } 2766 } 2767 2768 colUsed = 0; /* Columns of index used so far */ 2769 for(i=0; i<nExpr; i++){ 2770 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2771 Expr *pRhs = pEList->a[i].pExpr; 2772 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2773 int j; 2774 2775 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2776 for(j=0; j<nExpr; j++){ 2777 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2778 assert( pIdx->azColl[j] ); 2779 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2780 continue; 2781 } 2782 break; 2783 } 2784 if( j==nExpr ) break; 2785 mCol = MASKBIT(j); 2786 if( mCol & colUsed ) break; /* Each column used only once */ 2787 colUsed |= mCol; 2788 if( aiMap ) aiMap[i] = j; 2789 } 2790 2791 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2792 if( colUsed==(MASKBIT(nExpr)-1) ){ 2793 /* If we reach this point, that means the index pIdx is usable */ 2794 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2795 ExplainQueryPlan((pParse, 0, 2796 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2797 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2798 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2799 VdbeComment((v, "%s", pIdx->zName)); 2800 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2801 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2802 2803 if( prRhsHasNull ){ 2804 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2805 i64 mask = (1<<nExpr)-1; 2806 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2807 iTab, 0, 0, (u8*)&mask, P4_INT64); 2808 #endif 2809 *prRhsHasNull = ++pParse->nMem; 2810 if( nExpr==1 ){ 2811 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2812 } 2813 } 2814 sqlite3VdbeJumpHere(v, iAddr); 2815 } 2816 } /* End loop over indexes */ 2817 } /* End if( affinity_ok ) */ 2818 } /* End if not an rowid index */ 2819 } /* End attempt to optimize using an index */ 2820 2821 /* If no preexisting index is available for the IN clause 2822 ** and IN_INDEX_NOOP is an allowed reply 2823 ** and the RHS of the IN operator is a list, not a subquery 2824 ** and the RHS is not constant or has two or fewer terms, 2825 ** then it is not worth creating an ephemeral table to evaluate 2826 ** the IN operator so return IN_INDEX_NOOP. 2827 */ 2828 if( eType==0 2829 && (inFlags & IN_INDEX_NOOP_OK) 2830 && !ExprHasProperty(pX, EP_xIsSelect) 2831 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2832 ){ 2833 eType = IN_INDEX_NOOP; 2834 } 2835 2836 if( eType==0 ){ 2837 /* Could not find an existing table or index to use as the RHS b-tree. 2838 ** We will have to generate an ephemeral table to do the job. 2839 */ 2840 u32 savedNQueryLoop = pParse->nQueryLoop; 2841 int rMayHaveNull = 0; 2842 eType = IN_INDEX_EPH; 2843 if( inFlags & IN_INDEX_LOOP ){ 2844 pParse->nQueryLoop = 0; 2845 }else if( prRhsHasNull ){ 2846 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2847 } 2848 assert( pX->op==TK_IN ); 2849 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2850 if( rMayHaveNull ){ 2851 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2852 } 2853 pParse->nQueryLoop = savedNQueryLoop; 2854 } 2855 2856 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2857 int i, n; 2858 n = sqlite3ExprVectorSize(pX->pLeft); 2859 for(i=0; i<n; i++) aiMap[i] = i; 2860 } 2861 *piTab = iTab; 2862 return eType; 2863 } 2864 #endif 2865 2866 #ifndef SQLITE_OMIT_SUBQUERY 2867 /* 2868 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2869 ** function allocates and returns a nul-terminated string containing 2870 ** the affinities to be used for each column of the comparison. 2871 ** 2872 ** It is the responsibility of the caller to ensure that the returned 2873 ** string is eventually freed using sqlite3DbFree(). 2874 */ 2875 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2876 Expr *pLeft = pExpr->pLeft; 2877 int nVal = sqlite3ExprVectorSize(pLeft); 2878 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2879 char *zRet; 2880 2881 assert( pExpr->op==TK_IN ); 2882 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2883 if( zRet ){ 2884 int i; 2885 for(i=0; i<nVal; i++){ 2886 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2887 char a = sqlite3ExprAffinity(pA); 2888 if( pSelect ){ 2889 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2890 }else{ 2891 zRet[i] = a; 2892 } 2893 } 2894 zRet[nVal] = '\0'; 2895 } 2896 return zRet; 2897 } 2898 #endif 2899 2900 #ifndef SQLITE_OMIT_SUBQUERY 2901 /* 2902 ** Load the Parse object passed as the first argument with an error 2903 ** message of the form: 2904 ** 2905 ** "sub-select returns N columns - expected M" 2906 */ 2907 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2908 if( pParse->nErr==0 ){ 2909 const char *zFmt = "sub-select returns %d columns - expected %d"; 2910 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2911 } 2912 } 2913 #endif 2914 2915 /* 2916 ** Expression pExpr is a vector that has been used in a context where 2917 ** it is not permitted. If pExpr is a sub-select vector, this routine 2918 ** loads the Parse object with a message of the form: 2919 ** 2920 ** "sub-select returns N columns - expected 1" 2921 ** 2922 ** Or, if it is a regular scalar vector: 2923 ** 2924 ** "row value misused" 2925 */ 2926 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2927 #ifndef SQLITE_OMIT_SUBQUERY 2928 if( pExpr->flags & EP_xIsSelect ){ 2929 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2930 }else 2931 #endif 2932 { 2933 sqlite3ErrorMsg(pParse, "row value misused"); 2934 } 2935 } 2936 2937 #ifndef SQLITE_OMIT_SUBQUERY 2938 /* 2939 ** Generate code that will construct an ephemeral table containing all terms 2940 ** in the RHS of an IN operator. The IN operator can be in either of two 2941 ** forms: 2942 ** 2943 ** x IN (4,5,11) -- IN operator with list on right-hand side 2944 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2945 ** 2946 ** The pExpr parameter is the IN operator. The cursor number for the 2947 ** constructed ephermeral table is returned. The first time the ephemeral 2948 ** table is computed, the cursor number is also stored in pExpr->iTable, 2949 ** however the cursor number returned might not be the same, as it might 2950 ** have been duplicated using OP_OpenDup. 2951 ** 2952 ** If the LHS expression ("x" in the examples) is a column value, or 2953 ** the SELECT statement returns a column value, then the affinity of that 2954 ** column is used to build the index keys. If both 'x' and the 2955 ** SELECT... statement are columns, then numeric affinity is used 2956 ** if either column has NUMERIC or INTEGER affinity. If neither 2957 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2958 ** is used. 2959 */ 2960 void sqlite3CodeRhsOfIN( 2961 Parse *pParse, /* Parsing context */ 2962 Expr *pExpr, /* The IN operator */ 2963 int iTab /* Use this cursor number */ 2964 ){ 2965 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2966 int addr; /* Address of OP_OpenEphemeral instruction */ 2967 Expr *pLeft; /* the LHS of the IN operator */ 2968 KeyInfo *pKeyInfo = 0; /* Key information */ 2969 int nVal; /* Size of vector pLeft */ 2970 Vdbe *v; /* The prepared statement under construction */ 2971 2972 v = pParse->pVdbe; 2973 assert( v!=0 ); 2974 2975 /* The evaluation of the IN must be repeated every time it 2976 ** is encountered if any of the following is true: 2977 ** 2978 ** * The right-hand side is a correlated subquery 2979 ** * The right-hand side is an expression list containing variables 2980 ** * We are inside a trigger 2981 ** 2982 ** If all of the above are false, then we can compute the RHS just once 2983 ** and reuse it many names. 2984 */ 2985 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2986 /* Reuse of the RHS is allowed */ 2987 /* If this routine has already been coded, but the previous code 2988 ** might not have been invoked yet, so invoke it now as a subroutine. 2989 */ 2990 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2991 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2992 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2993 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2994 pExpr->x.pSelect->selId)); 2995 } 2996 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2997 pExpr->y.sub.iAddr); 2998 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2999 sqlite3VdbeJumpHere(v, addrOnce); 3000 return; 3001 } 3002 3003 /* Begin coding the subroutine */ 3004 ExprSetProperty(pExpr, EP_Subrtn); 3005 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3006 pExpr->y.sub.regReturn = ++pParse->nMem; 3007 pExpr->y.sub.iAddr = 3008 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3009 VdbeComment((v, "return address")); 3010 3011 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3012 } 3013 3014 /* Check to see if this is a vector IN operator */ 3015 pLeft = pExpr->pLeft; 3016 nVal = sqlite3ExprVectorSize(pLeft); 3017 3018 /* Construct the ephemeral table that will contain the content of 3019 ** RHS of the IN operator. 3020 */ 3021 pExpr->iTable = iTab; 3022 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3023 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3024 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3025 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3026 }else{ 3027 VdbeComment((v, "RHS of IN operator")); 3028 } 3029 #endif 3030 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3031 3032 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3033 /* Case 1: expr IN (SELECT ...) 3034 ** 3035 ** Generate code to write the results of the select into the temporary 3036 ** table allocated and opened above. 3037 */ 3038 Select *pSelect = pExpr->x.pSelect; 3039 ExprList *pEList = pSelect->pEList; 3040 3041 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3042 addrOnce?"":"CORRELATED ", pSelect->selId 3043 )); 3044 /* If the LHS and RHS of the IN operator do not match, that 3045 ** error will have been caught long before we reach this point. */ 3046 if( ALWAYS(pEList->nExpr==nVal) ){ 3047 Select *pCopy; 3048 SelectDest dest; 3049 int i; 3050 int rc; 3051 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3052 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3053 pSelect->iLimit = 0; 3054 testcase( pSelect->selFlags & SF_Distinct ); 3055 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3056 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3057 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3058 sqlite3SelectDelete(pParse->db, pCopy); 3059 sqlite3DbFree(pParse->db, dest.zAffSdst); 3060 if( rc ){ 3061 sqlite3KeyInfoUnref(pKeyInfo); 3062 return; 3063 } 3064 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3065 assert( pEList!=0 ); 3066 assert( pEList->nExpr>0 ); 3067 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3068 for(i=0; i<nVal; i++){ 3069 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3070 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3071 pParse, p, pEList->a[i].pExpr 3072 ); 3073 } 3074 } 3075 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3076 /* Case 2: expr IN (exprlist) 3077 ** 3078 ** For each expression, build an index key from the evaluation and 3079 ** store it in the temporary table. If <expr> is a column, then use 3080 ** that columns affinity when building index keys. If <expr> is not 3081 ** a column, use numeric affinity. 3082 */ 3083 char affinity; /* Affinity of the LHS of the IN */ 3084 int i; 3085 ExprList *pList = pExpr->x.pList; 3086 struct ExprList_item *pItem; 3087 int r1, r2; 3088 affinity = sqlite3ExprAffinity(pLeft); 3089 if( affinity<=SQLITE_AFF_NONE ){ 3090 affinity = SQLITE_AFF_BLOB; 3091 }else if( affinity==SQLITE_AFF_REAL ){ 3092 affinity = SQLITE_AFF_NUMERIC; 3093 } 3094 if( pKeyInfo ){ 3095 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3096 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3097 } 3098 3099 /* Loop through each expression in <exprlist>. */ 3100 r1 = sqlite3GetTempReg(pParse); 3101 r2 = sqlite3GetTempReg(pParse); 3102 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3103 Expr *pE2 = pItem->pExpr; 3104 3105 /* If the expression is not constant then we will need to 3106 ** disable the test that was generated above that makes sure 3107 ** this code only executes once. Because for a non-constant 3108 ** expression we need to rerun this code each time. 3109 */ 3110 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3111 sqlite3VdbeChangeToNoop(v, addrOnce); 3112 ExprClearProperty(pExpr, EP_Subrtn); 3113 addrOnce = 0; 3114 } 3115 3116 /* Evaluate the expression and insert it into the temp table */ 3117 sqlite3ExprCode(pParse, pE2, r1); 3118 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3119 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3120 } 3121 sqlite3ReleaseTempReg(pParse, r1); 3122 sqlite3ReleaseTempReg(pParse, r2); 3123 } 3124 if( pKeyInfo ){ 3125 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3126 } 3127 if( addrOnce ){ 3128 sqlite3VdbeJumpHere(v, addrOnce); 3129 /* Subroutine return */ 3130 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3131 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3132 sqlite3ClearTempRegCache(pParse); 3133 } 3134 } 3135 #endif /* SQLITE_OMIT_SUBQUERY */ 3136 3137 /* 3138 ** Generate code for scalar subqueries used as a subquery expression 3139 ** or EXISTS operator: 3140 ** 3141 ** (SELECT a FROM b) -- subquery 3142 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3143 ** 3144 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3145 ** 3146 ** Return the register that holds the result. For a multi-column SELECT, 3147 ** the result is stored in a contiguous array of registers and the 3148 ** return value is the register of the left-most result column. 3149 ** Return 0 if an error occurs. 3150 */ 3151 #ifndef SQLITE_OMIT_SUBQUERY 3152 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3153 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3154 int rReg = 0; /* Register storing resulting */ 3155 Select *pSel; /* SELECT statement to encode */ 3156 SelectDest dest; /* How to deal with SELECT result */ 3157 int nReg; /* Registers to allocate */ 3158 Expr *pLimit; /* New limit expression */ 3159 3160 Vdbe *v = pParse->pVdbe; 3161 assert( v!=0 ); 3162 if( pParse->nErr ) return 0; 3163 testcase( pExpr->op==TK_EXISTS ); 3164 testcase( pExpr->op==TK_SELECT ); 3165 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3166 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3167 pSel = pExpr->x.pSelect; 3168 3169 /* If this routine has already been coded, then invoke it as a 3170 ** subroutine. */ 3171 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3172 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3173 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3174 pExpr->y.sub.iAddr); 3175 return pExpr->iTable; 3176 } 3177 3178 /* Begin coding the subroutine */ 3179 ExprSetProperty(pExpr, EP_Subrtn); 3180 pExpr->y.sub.regReturn = ++pParse->nMem; 3181 pExpr->y.sub.iAddr = 3182 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3183 VdbeComment((v, "return address")); 3184 3185 3186 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3187 ** is encountered if any of the following is true: 3188 ** 3189 ** * The right-hand side is a correlated subquery 3190 ** * The right-hand side is an expression list containing variables 3191 ** * We are inside a trigger 3192 ** 3193 ** If all of the above are false, then we can run this code just once 3194 ** save the results, and reuse the same result on subsequent invocations. 3195 */ 3196 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3197 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3198 } 3199 3200 /* For a SELECT, generate code to put the values for all columns of 3201 ** the first row into an array of registers and return the index of 3202 ** the first register. 3203 ** 3204 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3205 ** into a register and return that register number. 3206 ** 3207 ** In both cases, the query is augmented with "LIMIT 1". Any 3208 ** preexisting limit is discarded in place of the new LIMIT 1. 3209 */ 3210 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3211 addrOnce?"":"CORRELATED ", pSel->selId)); 3212 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3213 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3214 pParse->nMem += nReg; 3215 if( pExpr->op==TK_SELECT ){ 3216 dest.eDest = SRT_Mem; 3217 dest.iSdst = dest.iSDParm; 3218 dest.nSdst = nReg; 3219 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3220 VdbeComment((v, "Init subquery result")); 3221 }else{ 3222 dest.eDest = SRT_Exists; 3223 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3224 VdbeComment((v, "Init EXISTS result")); 3225 } 3226 if( pSel->pLimit ){ 3227 /* The subquery already has a limit. If the pre-existing limit is X 3228 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3229 sqlite3 *db = pParse->db; 3230 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3231 if( pLimit ){ 3232 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3233 pLimit = sqlite3PExpr(pParse, TK_NE, 3234 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3235 } 3236 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3237 pSel->pLimit->pLeft = pLimit; 3238 }else{ 3239 /* If there is no pre-existing limit add a limit of 1 */ 3240 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3241 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3242 } 3243 pSel->iLimit = 0; 3244 if( sqlite3Select(pParse, pSel, &dest) ){ 3245 if( pParse->nErr ){ 3246 pExpr->op2 = pExpr->op; 3247 pExpr->op = TK_ERROR; 3248 } 3249 return 0; 3250 } 3251 pExpr->iTable = rReg = dest.iSDParm; 3252 ExprSetVVAProperty(pExpr, EP_NoReduce); 3253 if( addrOnce ){ 3254 sqlite3VdbeJumpHere(v, addrOnce); 3255 } 3256 3257 /* Subroutine return */ 3258 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3259 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3260 sqlite3ClearTempRegCache(pParse); 3261 return rReg; 3262 } 3263 #endif /* SQLITE_OMIT_SUBQUERY */ 3264 3265 #ifndef SQLITE_OMIT_SUBQUERY 3266 /* 3267 ** Expr pIn is an IN(...) expression. This function checks that the 3268 ** sub-select on the RHS of the IN() operator has the same number of 3269 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3270 ** a sub-query, that the LHS is a vector of size 1. 3271 */ 3272 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3273 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3274 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3275 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3276 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3277 return 1; 3278 } 3279 }else if( nVector!=1 ){ 3280 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3281 return 1; 3282 } 3283 return 0; 3284 } 3285 #endif 3286 3287 #ifndef SQLITE_OMIT_SUBQUERY 3288 /* 3289 ** Generate code for an IN expression. 3290 ** 3291 ** x IN (SELECT ...) 3292 ** x IN (value, value, ...) 3293 ** 3294 ** The left-hand side (LHS) is a scalar or vector expression. The 3295 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3296 ** subquery. If the RHS is a subquery, the number of result columns must 3297 ** match the number of columns in the vector on the LHS. If the RHS is 3298 ** a list of values, the LHS must be a scalar. 3299 ** 3300 ** The IN operator is true if the LHS value is contained within the RHS. 3301 ** The result is false if the LHS is definitely not in the RHS. The 3302 ** result is NULL if the presence of the LHS in the RHS cannot be 3303 ** determined due to NULLs. 3304 ** 3305 ** This routine generates code that jumps to destIfFalse if the LHS is not 3306 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3307 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3308 ** within the RHS then fall through. 3309 ** 3310 ** See the separate in-operator.md documentation file in the canonical 3311 ** SQLite source tree for additional information. 3312 */ 3313 static void sqlite3ExprCodeIN( 3314 Parse *pParse, /* Parsing and code generating context */ 3315 Expr *pExpr, /* The IN expression */ 3316 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3317 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3318 ){ 3319 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3320 int eType; /* Type of the RHS */ 3321 int rLhs; /* Register(s) holding the LHS values */ 3322 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3323 Vdbe *v; /* Statement under construction */ 3324 int *aiMap = 0; /* Map from vector field to index column */ 3325 char *zAff = 0; /* Affinity string for comparisons */ 3326 int nVector; /* Size of vectors for this IN operator */ 3327 int iDummy; /* Dummy parameter to exprCodeVector() */ 3328 Expr *pLeft; /* The LHS of the IN operator */ 3329 int i; /* loop counter */ 3330 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3331 int destStep6 = 0; /* Start of code for Step 6 */ 3332 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3333 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3334 int addrTop; /* Top of the step-6 loop */ 3335 int iTab = 0; /* Index to use */ 3336 u8 okConstFactor = pParse->okConstFactor; 3337 3338 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3339 pLeft = pExpr->pLeft; 3340 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3341 zAff = exprINAffinity(pParse, pExpr); 3342 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3343 aiMap = (int*)sqlite3DbMallocZero( 3344 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3345 ); 3346 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3347 3348 /* Attempt to compute the RHS. After this step, if anything other than 3349 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3350 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3351 ** the RHS has not yet been coded. */ 3352 v = pParse->pVdbe; 3353 assert( v!=0 ); /* OOM detected prior to this routine */ 3354 VdbeNoopComment((v, "begin IN expr")); 3355 eType = sqlite3FindInIndex(pParse, pExpr, 3356 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3357 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3358 aiMap, &iTab); 3359 3360 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3361 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3362 ); 3363 #ifdef SQLITE_DEBUG 3364 /* Confirm that aiMap[] contains nVector integer values between 0 and 3365 ** nVector-1. */ 3366 for(i=0; i<nVector; i++){ 3367 int j, cnt; 3368 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3369 assert( cnt==1 ); 3370 } 3371 #endif 3372 3373 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3374 ** vector, then it is stored in an array of nVector registers starting 3375 ** at r1. 3376 ** 3377 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3378 ** so that the fields are in the same order as an existing index. The 3379 ** aiMap[] array contains a mapping from the original LHS field order to 3380 ** the field order that matches the RHS index. 3381 ** 3382 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3383 ** even if it is constant, as OP_Affinity may be used on the register 3384 ** by code generated below. */ 3385 assert( pParse->okConstFactor==okConstFactor ); 3386 pParse->okConstFactor = 0; 3387 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3388 pParse->okConstFactor = okConstFactor; 3389 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3390 if( i==nVector ){ 3391 /* LHS fields are not reordered */ 3392 rLhs = rLhsOrig; 3393 }else{ 3394 /* Need to reorder the LHS fields according to aiMap */ 3395 rLhs = sqlite3GetTempRange(pParse, nVector); 3396 for(i=0; i<nVector; i++){ 3397 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3398 } 3399 } 3400 3401 /* If sqlite3FindInIndex() did not find or create an index that is 3402 ** suitable for evaluating the IN operator, then evaluate using a 3403 ** sequence of comparisons. 3404 ** 3405 ** This is step (1) in the in-operator.md optimized algorithm. 3406 */ 3407 if( eType==IN_INDEX_NOOP ){ 3408 ExprList *pList = pExpr->x.pList; 3409 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3410 int labelOk = sqlite3VdbeMakeLabel(pParse); 3411 int r2, regToFree; 3412 int regCkNull = 0; 3413 int ii; 3414 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3415 if( destIfNull!=destIfFalse ){ 3416 regCkNull = sqlite3GetTempReg(pParse); 3417 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3418 } 3419 for(ii=0; ii<pList->nExpr; ii++){ 3420 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3421 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3422 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3423 } 3424 sqlite3ReleaseTempReg(pParse, regToFree); 3425 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3426 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3427 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3428 (void*)pColl, P4_COLLSEQ); 3429 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3430 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3431 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3432 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3433 sqlite3VdbeChangeP5(v, zAff[0]); 3434 }else{ 3435 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3436 assert( destIfNull==destIfFalse ); 3437 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3438 (void*)pColl, P4_COLLSEQ); 3439 VdbeCoverageIf(v, op==OP_Ne); 3440 VdbeCoverageIf(v, op==OP_IsNull); 3441 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3442 } 3443 } 3444 if( regCkNull ){ 3445 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3446 sqlite3VdbeGoto(v, destIfFalse); 3447 } 3448 sqlite3VdbeResolveLabel(v, labelOk); 3449 sqlite3ReleaseTempReg(pParse, regCkNull); 3450 goto sqlite3ExprCodeIN_finished; 3451 } 3452 3453 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3454 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3455 ** We will then skip the binary search of the RHS. 3456 */ 3457 if( destIfNull==destIfFalse ){ 3458 destStep2 = destIfFalse; 3459 }else{ 3460 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3461 } 3462 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3463 for(i=0; i<nVector; i++){ 3464 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3465 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3466 if( sqlite3ExprCanBeNull(p) ){ 3467 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3468 VdbeCoverage(v); 3469 } 3470 } 3471 3472 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3473 ** of the RHS using the LHS as a probe. If found, the result is 3474 ** true. 3475 */ 3476 if( eType==IN_INDEX_ROWID ){ 3477 /* In this case, the RHS is the ROWID of table b-tree and so we also 3478 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3479 ** into a single opcode. */ 3480 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3481 VdbeCoverage(v); 3482 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3483 }else{ 3484 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3485 if( destIfFalse==destIfNull ){ 3486 /* Combine Step 3 and Step 5 into a single opcode */ 3487 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3488 rLhs, nVector); VdbeCoverage(v); 3489 goto sqlite3ExprCodeIN_finished; 3490 } 3491 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3492 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3493 rLhs, nVector); VdbeCoverage(v); 3494 } 3495 3496 /* Step 4. If the RHS is known to be non-NULL and we did not find 3497 ** an match on the search above, then the result must be FALSE. 3498 */ 3499 if( rRhsHasNull && nVector==1 ){ 3500 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3501 VdbeCoverage(v); 3502 } 3503 3504 /* Step 5. If we do not care about the difference between NULL and 3505 ** FALSE, then just return false. 3506 */ 3507 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3508 3509 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3510 ** If any comparison is NULL, then the result is NULL. If all 3511 ** comparisons are FALSE then the final result is FALSE. 3512 ** 3513 ** For a scalar LHS, it is sufficient to check just the first row 3514 ** of the RHS. 3515 */ 3516 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3517 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3518 VdbeCoverage(v); 3519 if( nVector>1 ){ 3520 destNotNull = sqlite3VdbeMakeLabel(pParse); 3521 }else{ 3522 /* For nVector==1, combine steps 6 and 7 by immediately returning 3523 ** FALSE if the first comparison is not NULL */ 3524 destNotNull = destIfFalse; 3525 } 3526 for(i=0; i<nVector; i++){ 3527 Expr *p; 3528 CollSeq *pColl; 3529 int r3 = sqlite3GetTempReg(pParse); 3530 p = sqlite3VectorFieldSubexpr(pLeft, i); 3531 pColl = sqlite3ExprCollSeq(pParse, p); 3532 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3533 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3534 (void*)pColl, P4_COLLSEQ); 3535 VdbeCoverage(v); 3536 sqlite3ReleaseTempReg(pParse, r3); 3537 } 3538 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3539 if( nVector>1 ){ 3540 sqlite3VdbeResolveLabel(v, destNotNull); 3541 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3542 VdbeCoverage(v); 3543 3544 /* Step 7: If we reach this point, we know that the result must 3545 ** be false. */ 3546 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3547 } 3548 3549 /* Jumps here in order to return true. */ 3550 sqlite3VdbeJumpHere(v, addrTruthOp); 3551 3552 sqlite3ExprCodeIN_finished: 3553 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3554 VdbeComment((v, "end IN expr")); 3555 sqlite3ExprCodeIN_oom_error: 3556 sqlite3DbFree(pParse->db, aiMap); 3557 sqlite3DbFree(pParse->db, zAff); 3558 } 3559 #endif /* SQLITE_OMIT_SUBQUERY */ 3560 3561 #ifndef SQLITE_OMIT_FLOATING_POINT 3562 /* 3563 ** Generate an instruction that will put the floating point 3564 ** value described by z[0..n-1] into register iMem. 3565 ** 3566 ** The z[] string will probably not be zero-terminated. But the 3567 ** z[n] character is guaranteed to be something that does not look 3568 ** like the continuation of the number. 3569 */ 3570 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3571 if( ALWAYS(z!=0) ){ 3572 double value; 3573 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3574 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3575 if( negateFlag ) value = -value; 3576 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3577 } 3578 } 3579 #endif 3580 3581 3582 /* 3583 ** Generate an instruction that will put the integer describe by 3584 ** text z[0..n-1] into register iMem. 3585 ** 3586 ** Expr.u.zToken is always UTF8 and zero-terminated. 3587 */ 3588 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3589 Vdbe *v = pParse->pVdbe; 3590 if( pExpr->flags & EP_IntValue ){ 3591 int i = pExpr->u.iValue; 3592 assert( i>=0 ); 3593 if( negFlag ) i = -i; 3594 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3595 }else{ 3596 int c; 3597 i64 value; 3598 const char *z = pExpr->u.zToken; 3599 assert( z!=0 ); 3600 c = sqlite3DecOrHexToI64(z, &value); 3601 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3602 #ifdef SQLITE_OMIT_FLOATING_POINT 3603 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3604 #else 3605 #ifndef SQLITE_OMIT_HEX_INTEGER 3606 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3607 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3608 }else 3609 #endif 3610 { 3611 codeReal(v, z, negFlag, iMem); 3612 } 3613 #endif 3614 }else{ 3615 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3616 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3617 } 3618 } 3619 } 3620 3621 3622 /* Generate code that will load into register regOut a value that is 3623 ** appropriate for the iIdxCol-th column of index pIdx. 3624 */ 3625 void sqlite3ExprCodeLoadIndexColumn( 3626 Parse *pParse, /* The parsing context */ 3627 Index *pIdx, /* The index whose column is to be loaded */ 3628 int iTabCur, /* Cursor pointing to a table row */ 3629 int iIdxCol, /* The column of the index to be loaded */ 3630 int regOut /* Store the index column value in this register */ 3631 ){ 3632 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3633 if( iTabCol==XN_EXPR ){ 3634 assert( pIdx->aColExpr ); 3635 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3636 pParse->iSelfTab = iTabCur + 1; 3637 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3638 pParse->iSelfTab = 0; 3639 }else{ 3640 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3641 iTabCol, regOut); 3642 } 3643 } 3644 3645 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3646 /* 3647 ** Generate code that will compute the value of generated column pCol 3648 ** and store the result in register regOut 3649 */ 3650 void sqlite3ExprCodeGeneratedColumn( 3651 Parse *pParse, /* Parsing context */ 3652 Table *pTab, /* Table containing the generated column */ 3653 Column *pCol, /* The generated column */ 3654 int regOut /* Put the result in this register */ 3655 ){ 3656 int iAddr; 3657 Vdbe *v = pParse->pVdbe; 3658 assert( v!=0 ); 3659 assert( pParse->iSelfTab!=0 ); 3660 if( pParse->iSelfTab>0 ){ 3661 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3662 }else{ 3663 iAddr = 0; 3664 } 3665 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3666 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3667 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3668 } 3669 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3670 } 3671 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3672 3673 /* 3674 ** Generate code to extract the value of the iCol-th column of a table. 3675 */ 3676 void sqlite3ExprCodeGetColumnOfTable( 3677 Vdbe *v, /* Parsing context */ 3678 Table *pTab, /* The table containing the value */ 3679 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3680 int iCol, /* Index of the column to extract */ 3681 int regOut /* Extract the value into this register */ 3682 ){ 3683 Column *pCol; 3684 assert( v!=0 ); 3685 if( pTab==0 ){ 3686 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3687 return; 3688 } 3689 if( iCol<0 || iCol==pTab->iPKey ){ 3690 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3691 }else{ 3692 int op; 3693 int x; 3694 if( IsVirtual(pTab) ){ 3695 op = OP_VColumn; 3696 x = iCol; 3697 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3698 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3699 Parse *pParse = sqlite3VdbeParser(v); 3700 if( pCol->colFlags & COLFLAG_BUSY ){ 3701 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3702 pCol->zCnName); 3703 }else{ 3704 int savedSelfTab = pParse->iSelfTab; 3705 pCol->colFlags |= COLFLAG_BUSY; 3706 pParse->iSelfTab = iTabCur+1; 3707 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3708 pParse->iSelfTab = savedSelfTab; 3709 pCol->colFlags &= ~COLFLAG_BUSY; 3710 } 3711 return; 3712 #endif 3713 }else if( !HasRowid(pTab) ){ 3714 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3715 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3716 op = OP_Column; 3717 }else{ 3718 x = sqlite3TableColumnToStorage(pTab,iCol); 3719 testcase( x!=iCol ); 3720 op = OP_Column; 3721 } 3722 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3723 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3724 } 3725 } 3726 3727 /* 3728 ** Generate code that will extract the iColumn-th column from 3729 ** table pTab and store the column value in register iReg. 3730 ** 3731 ** There must be an open cursor to pTab in iTable when this routine 3732 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3733 */ 3734 int sqlite3ExprCodeGetColumn( 3735 Parse *pParse, /* Parsing and code generating context */ 3736 Table *pTab, /* Description of the table we are reading from */ 3737 int iColumn, /* Index of the table column */ 3738 int iTable, /* The cursor pointing to the table */ 3739 int iReg, /* Store results here */ 3740 u8 p5 /* P5 value for OP_Column + FLAGS */ 3741 ){ 3742 assert( pParse->pVdbe!=0 ); 3743 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3744 if( p5 ){ 3745 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3746 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3747 } 3748 return iReg; 3749 } 3750 3751 /* 3752 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3753 ** over to iTo..iTo+nReg-1. 3754 */ 3755 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3756 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3757 } 3758 3759 /* 3760 ** Convert a scalar expression node to a TK_REGISTER referencing 3761 ** register iReg. The caller must ensure that iReg already contains 3762 ** the correct value for the expression. 3763 */ 3764 static void exprToRegister(Expr *pExpr, int iReg){ 3765 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3766 if( NEVER(p==0) ) return; 3767 p->op2 = p->op; 3768 p->op = TK_REGISTER; 3769 p->iTable = iReg; 3770 ExprClearProperty(p, EP_Skip); 3771 } 3772 3773 /* 3774 ** Evaluate an expression (either a vector or a scalar expression) and store 3775 ** the result in continguous temporary registers. Return the index of 3776 ** the first register used to store the result. 3777 ** 3778 ** If the returned result register is a temporary scalar, then also write 3779 ** that register number into *piFreeable. If the returned result register 3780 ** is not a temporary or if the expression is a vector set *piFreeable 3781 ** to 0. 3782 */ 3783 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3784 int iResult; 3785 int nResult = sqlite3ExprVectorSize(p); 3786 if( nResult==1 ){ 3787 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3788 }else{ 3789 *piFreeable = 0; 3790 if( p->op==TK_SELECT ){ 3791 #if SQLITE_OMIT_SUBQUERY 3792 iResult = 0; 3793 #else 3794 iResult = sqlite3CodeSubselect(pParse, p); 3795 #endif 3796 }else{ 3797 int i; 3798 iResult = pParse->nMem+1; 3799 pParse->nMem += nResult; 3800 for(i=0; i<nResult; i++){ 3801 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3802 } 3803 } 3804 } 3805 return iResult; 3806 } 3807 3808 /* 3809 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3810 ** so that a subsequent copy will not be merged into this one. 3811 */ 3812 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3813 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3814 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3815 } 3816 } 3817 3818 /* 3819 ** Generate code to implement special SQL functions that are implemented 3820 ** in-line rather than by using the usual callbacks. 3821 */ 3822 static int exprCodeInlineFunction( 3823 Parse *pParse, /* Parsing context */ 3824 ExprList *pFarg, /* List of function arguments */ 3825 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3826 int target /* Store function result in this register */ 3827 ){ 3828 int nFarg; 3829 Vdbe *v = pParse->pVdbe; 3830 assert( v!=0 ); 3831 assert( pFarg!=0 ); 3832 nFarg = pFarg->nExpr; 3833 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3834 switch( iFuncId ){ 3835 case INLINEFUNC_coalesce: { 3836 /* Attempt a direct implementation of the built-in COALESCE() and 3837 ** IFNULL() functions. This avoids unnecessary evaluation of 3838 ** arguments past the first non-NULL argument. 3839 */ 3840 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3841 int i; 3842 assert( nFarg>=2 ); 3843 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3844 for(i=1; i<nFarg; i++){ 3845 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3846 VdbeCoverage(v); 3847 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3848 } 3849 setDoNotMergeFlagOnCopy(v); 3850 sqlite3VdbeResolveLabel(v, endCoalesce); 3851 break; 3852 } 3853 case INLINEFUNC_iif: { 3854 Expr caseExpr; 3855 memset(&caseExpr, 0, sizeof(caseExpr)); 3856 caseExpr.op = TK_CASE; 3857 caseExpr.x.pList = pFarg; 3858 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3859 } 3860 3861 default: { 3862 /* The UNLIKELY() function is a no-op. The result is the value 3863 ** of the first argument. 3864 */ 3865 assert( nFarg==1 || nFarg==2 ); 3866 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3867 break; 3868 } 3869 3870 /*********************************************************************** 3871 ** Test-only SQL functions that are only usable if enabled 3872 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3873 */ 3874 #if !defined(SQLITE_UNTESTABLE) 3875 case INLINEFUNC_expr_compare: { 3876 /* Compare two expressions using sqlite3ExprCompare() */ 3877 assert( nFarg==2 ); 3878 sqlite3VdbeAddOp2(v, OP_Integer, 3879 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3880 target); 3881 break; 3882 } 3883 3884 case INLINEFUNC_expr_implies_expr: { 3885 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3886 assert( nFarg==2 ); 3887 sqlite3VdbeAddOp2(v, OP_Integer, 3888 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3889 target); 3890 break; 3891 } 3892 3893 case INLINEFUNC_implies_nonnull_row: { 3894 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3895 Expr *pA1; 3896 assert( nFarg==2 ); 3897 pA1 = pFarg->a[1].pExpr; 3898 if( pA1->op==TK_COLUMN ){ 3899 sqlite3VdbeAddOp2(v, OP_Integer, 3900 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3901 target); 3902 }else{ 3903 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3904 } 3905 break; 3906 } 3907 3908 case INLINEFUNC_affinity: { 3909 /* The AFFINITY() function evaluates to a string that describes 3910 ** the type affinity of the argument. This is used for testing of 3911 ** the SQLite type logic. 3912 */ 3913 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3914 char aff; 3915 assert( nFarg==1 ); 3916 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3917 sqlite3VdbeLoadString(v, target, 3918 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3919 break; 3920 } 3921 #endif /* !defined(SQLITE_UNTESTABLE) */ 3922 } 3923 return target; 3924 } 3925 3926 3927 /* 3928 ** Generate code into the current Vdbe to evaluate the given 3929 ** expression. Attempt to store the results in register "target". 3930 ** Return the register where results are stored. 3931 ** 3932 ** With this routine, there is no guarantee that results will 3933 ** be stored in target. The result might be stored in some other 3934 ** register if it is convenient to do so. The calling function 3935 ** must check the return code and move the results to the desired 3936 ** register. 3937 */ 3938 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3939 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3940 int op; /* The opcode being coded */ 3941 int inReg = target; /* Results stored in register inReg */ 3942 int regFree1 = 0; /* If non-zero free this temporary register */ 3943 int regFree2 = 0; /* If non-zero free this temporary register */ 3944 int r1, r2; /* Various register numbers */ 3945 Expr tempX; /* Temporary expression node */ 3946 int p5 = 0; 3947 3948 assert( target>0 && target<=pParse->nMem ); 3949 assert( v!=0 ); 3950 3951 expr_code_doover: 3952 if( pExpr==0 ){ 3953 op = TK_NULL; 3954 }else{ 3955 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3956 op = pExpr->op; 3957 } 3958 switch( op ){ 3959 case TK_AGG_COLUMN: { 3960 AggInfo *pAggInfo = pExpr->pAggInfo; 3961 struct AggInfo_col *pCol; 3962 assert( pAggInfo!=0 ); 3963 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3964 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3965 if( !pAggInfo->directMode ){ 3966 assert( pCol->iMem>0 ); 3967 return pCol->iMem; 3968 }else if( pAggInfo->useSortingIdx ){ 3969 Table *pTab = pCol->pTab; 3970 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3971 pCol->iSorterColumn, target); 3972 if( pCol->iColumn<0 ){ 3973 VdbeComment((v,"%s.rowid",pTab->zName)); 3974 }else{ 3975 VdbeComment((v,"%s.%s", 3976 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 3977 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3978 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3979 } 3980 } 3981 return target; 3982 } 3983 /* Otherwise, fall thru into the TK_COLUMN case */ 3984 /* no break */ deliberate_fall_through 3985 } 3986 case TK_COLUMN: { 3987 int iTab = pExpr->iTable; 3988 int iReg; 3989 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3990 /* This COLUMN expression is really a constant due to WHERE clause 3991 ** constraints, and that constant is coded by the pExpr->pLeft 3992 ** expresssion. However, make sure the constant has the correct 3993 ** datatype by applying the Affinity of the table column to the 3994 ** constant. 3995 */ 3996 int aff; 3997 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3998 if( pExpr->y.pTab ){ 3999 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4000 }else{ 4001 aff = pExpr->affExpr; 4002 } 4003 if( aff>SQLITE_AFF_BLOB ){ 4004 static const char zAff[] = "B\000C\000D\000E"; 4005 assert( SQLITE_AFF_BLOB=='A' ); 4006 assert( SQLITE_AFF_TEXT=='B' ); 4007 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4008 &zAff[(aff-'B')*2], P4_STATIC); 4009 } 4010 return iReg; 4011 } 4012 if( iTab<0 ){ 4013 if( pParse->iSelfTab<0 ){ 4014 /* Other columns in the same row for CHECK constraints or 4015 ** generated columns or for inserting into partial index. 4016 ** The row is unpacked into registers beginning at 4017 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4018 ** immediately prior to the first column. 4019 */ 4020 Column *pCol; 4021 Table *pTab = pExpr->y.pTab; 4022 int iSrc; 4023 int iCol = pExpr->iColumn; 4024 assert( pTab!=0 ); 4025 assert( iCol>=XN_ROWID ); 4026 assert( iCol<pTab->nCol ); 4027 if( iCol<0 ){ 4028 return -1-pParse->iSelfTab; 4029 } 4030 pCol = pTab->aCol + iCol; 4031 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4032 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4033 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4034 if( pCol->colFlags & COLFLAG_GENERATED ){ 4035 if( pCol->colFlags & COLFLAG_BUSY ){ 4036 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4037 pCol->zCnName); 4038 return 0; 4039 } 4040 pCol->colFlags |= COLFLAG_BUSY; 4041 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4042 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4043 } 4044 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4045 return iSrc; 4046 }else 4047 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4048 if( pCol->affinity==SQLITE_AFF_REAL ){ 4049 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4050 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4051 return target; 4052 }else{ 4053 return iSrc; 4054 } 4055 }else{ 4056 /* Coding an expression that is part of an index where column names 4057 ** in the index refer to the table to which the index belongs */ 4058 iTab = pParse->iSelfTab - 1; 4059 } 4060 } 4061 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4062 pExpr->iColumn, iTab, target, 4063 pExpr->op2); 4064 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4065 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4066 } 4067 return iReg; 4068 } 4069 case TK_INTEGER: { 4070 codeInteger(pParse, pExpr, 0, target); 4071 return target; 4072 } 4073 case TK_TRUEFALSE: { 4074 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4075 return target; 4076 } 4077 #ifndef SQLITE_OMIT_FLOATING_POINT 4078 case TK_FLOAT: { 4079 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4080 codeReal(v, pExpr->u.zToken, 0, target); 4081 return target; 4082 } 4083 #endif 4084 case TK_STRING: { 4085 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4086 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4087 return target; 4088 } 4089 default: { 4090 /* Make NULL the default case so that if a bug causes an illegal 4091 ** Expr node to be passed into this function, it will be handled 4092 ** sanely and not crash. But keep the assert() to bring the problem 4093 ** to the attention of the developers. */ 4094 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4095 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4096 return target; 4097 } 4098 #ifndef SQLITE_OMIT_BLOB_LITERAL 4099 case TK_BLOB: { 4100 int n; 4101 const char *z; 4102 char *zBlob; 4103 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4104 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4105 assert( pExpr->u.zToken[1]=='\'' ); 4106 z = &pExpr->u.zToken[2]; 4107 n = sqlite3Strlen30(z) - 1; 4108 assert( z[n]=='\'' ); 4109 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4110 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4111 return target; 4112 } 4113 #endif 4114 case TK_VARIABLE: { 4115 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4116 assert( pExpr->u.zToken!=0 ); 4117 assert( pExpr->u.zToken[0]!=0 ); 4118 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4119 if( pExpr->u.zToken[1]!=0 ){ 4120 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4121 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4122 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4123 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4124 } 4125 return target; 4126 } 4127 case TK_REGISTER: { 4128 return pExpr->iTable; 4129 } 4130 #ifndef SQLITE_OMIT_CAST 4131 case TK_CAST: { 4132 /* Expressions of the form: CAST(pLeft AS token) */ 4133 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4134 if( inReg!=target ){ 4135 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4136 inReg = target; 4137 } 4138 sqlite3VdbeAddOp2(v, OP_Cast, target, 4139 sqlite3AffinityType(pExpr->u.zToken, 0)); 4140 return inReg; 4141 } 4142 #endif /* SQLITE_OMIT_CAST */ 4143 case TK_IS: 4144 case TK_ISNOT: 4145 op = (op==TK_IS) ? TK_EQ : TK_NE; 4146 p5 = SQLITE_NULLEQ; 4147 /* fall-through */ 4148 case TK_LT: 4149 case TK_LE: 4150 case TK_GT: 4151 case TK_GE: 4152 case TK_NE: 4153 case TK_EQ: { 4154 Expr *pLeft = pExpr->pLeft; 4155 if( sqlite3ExprIsVector(pLeft) ){ 4156 codeVectorCompare(pParse, pExpr, target, op, p5); 4157 }else{ 4158 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4159 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4160 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4161 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4162 sqlite3VdbeCurrentAddr(v)+2, p5, 4163 ExprHasProperty(pExpr,EP_Commuted)); 4164 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4165 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4166 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4167 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4168 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4169 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4170 if( p5==SQLITE_NULLEQ ){ 4171 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4172 }else{ 4173 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4174 } 4175 testcase( regFree1==0 ); 4176 testcase( regFree2==0 ); 4177 } 4178 break; 4179 } 4180 case TK_AND: 4181 case TK_OR: 4182 case TK_PLUS: 4183 case TK_STAR: 4184 case TK_MINUS: 4185 case TK_REM: 4186 case TK_BITAND: 4187 case TK_BITOR: 4188 case TK_SLASH: 4189 case TK_LSHIFT: 4190 case TK_RSHIFT: 4191 case TK_CONCAT: { 4192 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4193 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4194 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4195 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4196 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4197 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4198 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4199 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4200 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4201 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4202 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4203 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4204 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4205 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4206 testcase( regFree1==0 ); 4207 testcase( regFree2==0 ); 4208 break; 4209 } 4210 case TK_UMINUS: { 4211 Expr *pLeft = pExpr->pLeft; 4212 assert( pLeft ); 4213 if( pLeft->op==TK_INTEGER ){ 4214 codeInteger(pParse, pLeft, 1, target); 4215 return target; 4216 #ifndef SQLITE_OMIT_FLOATING_POINT 4217 }else if( pLeft->op==TK_FLOAT ){ 4218 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4219 codeReal(v, pLeft->u.zToken, 1, target); 4220 return target; 4221 #endif 4222 }else{ 4223 tempX.op = TK_INTEGER; 4224 tempX.flags = EP_IntValue|EP_TokenOnly; 4225 tempX.u.iValue = 0; 4226 ExprClearVVAProperties(&tempX); 4227 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4228 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4229 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4230 testcase( regFree2==0 ); 4231 } 4232 break; 4233 } 4234 case TK_BITNOT: 4235 case TK_NOT: { 4236 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4237 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4238 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4239 testcase( regFree1==0 ); 4240 sqlite3VdbeAddOp2(v, op, r1, inReg); 4241 break; 4242 } 4243 case TK_TRUTH: { 4244 int isTrue; /* IS TRUE or IS NOT TRUE */ 4245 int bNormal; /* IS TRUE or IS FALSE */ 4246 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4247 testcase( regFree1==0 ); 4248 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4249 bNormal = pExpr->op2==TK_IS; 4250 testcase( isTrue && bNormal); 4251 testcase( !isTrue && bNormal); 4252 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4253 break; 4254 } 4255 case TK_ISNULL: 4256 case TK_NOTNULL: { 4257 int addr; 4258 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4259 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4260 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4261 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4262 testcase( regFree1==0 ); 4263 addr = sqlite3VdbeAddOp1(v, op, r1); 4264 VdbeCoverageIf(v, op==TK_ISNULL); 4265 VdbeCoverageIf(v, op==TK_NOTNULL); 4266 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4267 sqlite3VdbeJumpHere(v, addr); 4268 break; 4269 } 4270 case TK_AGG_FUNCTION: { 4271 AggInfo *pInfo = pExpr->pAggInfo; 4272 if( pInfo==0 4273 || NEVER(pExpr->iAgg<0) 4274 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4275 ){ 4276 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4277 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4278 }else{ 4279 return pInfo->aFunc[pExpr->iAgg].iMem; 4280 } 4281 break; 4282 } 4283 case TK_FUNCTION: { 4284 ExprList *pFarg; /* List of function arguments */ 4285 int nFarg; /* Number of function arguments */ 4286 FuncDef *pDef; /* The function definition object */ 4287 const char *zId; /* The function name */ 4288 u32 constMask = 0; /* Mask of function arguments that are constant */ 4289 int i; /* Loop counter */ 4290 sqlite3 *db = pParse->db; /* The database connection */ 4291 u8 enc = ENC(db); /* The text encoding used by this database */ 4292 CollSeq *pColl = 0; /* A collating sequence */ 4293 4294 #ifndef SQLITE_OMIT_WINDOWFUNC 4295 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4296 return pExpr->y.pWin->regResult; 4297 } 4298 #endif 4299 4300 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4301 /* SQL functions can be expensive. So try to avoid running them 4302 ** multiple times if we know they always give the same result */ 4303 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4304 } 4305 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4306 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4307 pFarg = pExpr->x.pList; 4308 nFarg = pFarg ? pFarg->nExpr : 0; 4309 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4310 zId = pExpr->u.zToken; 4311 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4312 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4313 if( pDef==0 && pParse->explain ){ 4314 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4315 } 4316 #endif 4317 if( pDef==0 || pDef->xFinalize!=0 ){ 4318 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4319 break; 4320 } 4321 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4322 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4323 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4324 return exprCodeInlineFunction(pParse, pFarg, 4325 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4326 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4327 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4328 } 4329 4330 for(i=0; i<nFarg; i++){ 4331 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4332 testcase( i==31 ); 4333 constMask |= MASKBIT32(i); 4334 } 4335 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4336 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4337 } 4338 } 4339 if( pFarg ){ 4340 if( constMask ){ 4341 r1 = pParse->nMem+1; 4342 pParse->nMem += nFarg; 4343 }else{ 4344 r1 = sqlite3GetTempRange(pParse, nFarg); 4345 } 4346 4347 /* For length() and typeof() functions with a column argument, 4348 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4349 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4350 ** loading. 4351 */ 4352 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4353 u8 exprOp; 4354 assert( nFarg==1 ); 4355 assert( pFarg->a[0].pExpr!=0 ); 4356 exprOp = pFarg->a[0].pExpr->op; 4357 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4358 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4359 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4360 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4361 pFarg->a[0].pExpr->op2 = 4362 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4363 } 4364 } 4365 4366 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4367 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4368 }else{ 4369 r1 = 0; 4370 } 4371 #ifndef SQLITE_OMIT_VIRTUALTABLE 4372 /* Possibly overload the function if the first argument is 4373 ** a virtual table column. 4374 ** 4375 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4376 ** second argument, not the first, as the argument to test to 4377 ** see if it is a column in a virtual table. This is done because 4378 ** the left operand of infix functions (the operand we want to 4379 ** control overloading) ends up as the second argument to the 4380 ** function. The expression "A glob B" is equivalent to 4381 ** "glob(B,A). We want to use the A in "A glob B" to test 4382 ** for function overloading. But we use the B term in "glob(B,A)". 4383 */ 4384 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4385 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4386 }else if( nFarg>0 ){ 4387 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4388 } 4389 #endif 4390 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4391 if( !pColl ) pColl = db->pDfltColl; 4392 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4393 } 4394 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4395 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4396 Expr *pArg = pFarg->a[0].pExpr; 4397 if( pArg->op==TK_COLUMN ){ 4398 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4399 }else{ 4400 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4401 } 4402 }else 4403 #endif 4404 { 4405 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4406 pDef, pExpr->op2); 4407 } 4408 if( nFarg ){ 4409 if( constMask==0 ){ 4410 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4411 }else{ 4412 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4413 } 4414 } 4415 return target; 4416 } 4417 #ifndef SQLITE_OMIT_SUBQUERY 4418 case TK_EXISTS: 4419 case TK_SELECT: { 4420 int nCol; 4421 testcase( op==TK_EXISTS ); 4422 testcase( op==TK_SELECT ); 4423 if( pParse->db->mallocFailed ){ 4424 return 0; 4425 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4426 sqlite3SubselectError(pParse, nCol, 1); 4427 }else{ 4428 return sqlite3CodeSubselect(pParse, pExpr); 4429 } 4430 break; 4431 } 4432 case TK_SELECT_COLUMN: { 4433 int n; 4434 if( pExpr->pLeft->iTable==0 ){ 4435 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4436 } 4437 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR ); 4438 n = sqlite3ExprVectorSize(pExpr->pLeft); 4439 if( pExpr->iTable!=n ){ 4440 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4441 pExpr->iTable, n); 4442 } 4443 return pExpr->pLeft->iTable + pExpr->iColumn; 4444 } 4445 case TK_IN: { 4446 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4447 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4448 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4449 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4450 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4451 sqlite3VdbeResolveLabel(v, destIfFalse); 4452 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4453 sqlite3VdbeResolveLabel(v, destIfNull); 4454 return target; 4455 } 4456 #endif /* SQLITE_OMIT_SUBQUERY */ 4457 4458 4459 /* 4460 ** x BETWEEN y AND z 4461 ** 4462 ** This is equivalent to 4463 ** 4464 ** x>=y AND x<=z 4465 ** 4466 ** X is stored in pExpr->pLeft. 4467 ** Y is stored in pExpr->pList->a[0].pExpr. 4468 ** Z is stored in pExpr->pList->a[1].pExpr. 4469 */ 4470 case TK_BETWEEN: { 4471 exprCodeBetween(pParse, pExpr, target, 0, 0); 4472 return target; 4473 } 4474 case TK_SPAN: 4475 case TK_COLLATE: 4476 case TK_UPLUS: { 4477 pExpr = pExpr->pLeft; 4478 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4479 } 4480 4481 case TK_TRIGGER: { 4482 /* If the opcode is TK_TRIGGER, then the expression is a reference 4483 ** to a column in the new.* or old.* pseudo-tables available to 4484 ** trigger programs. In this case Expr.iTable is set to 1 for the 4485 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4486 ** is set to the column of the pseudo-table to read, or to -1 to 4487 ** read the rowid field. 4488 ** 4489 ** The expression is implemented using an OP_Param opcode. The p1 4490 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4491 ** to reference another column of the old.* pseudo-table, where 4492 ** i is the index of the column. For a new.rowid reference, p1 is 4493 ** set to (n+1), where n is the number of columns in each pseudo-table. 4494 ** For a reference to any other column in the new.* pseudo-table, p1 4495 ** is set to (n+2+i), where n and i are as defined previously. For 4496 ** example, if the table on which triggers are being fired is 4497 ** declared as: 4498 ** 4499 ** CREATE TABLE t1(a, b); 4500 ** 4501 ** Then p1 is interpreted as follows: 4502 ** 4503 ** p1==0 -> old.rowid p1==3 -> new.rowid 4504 ** p1==1 -> old.a p1==4 -> new.a 4505 ** p1==2 -> old.b p1==5 -> new.b 4506 */ 4507 Table *pTab = pExpr->y.pTab; 4508 int iCol = pExpr->iColumn; 4509 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4510 + sqlite3TableColumnToStorage(pTab, iCol); 4511 4512 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4513 assert( iCol>=-1 && iCol<pTab->nCol ); 4514 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4515 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4516 4517 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4518 VdbeComment((v, "r[%d]=%s.%s", target, 4519 (pExpr->iTable ? "new" : "old"), 4520 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4521 )); 4522 4523 #ifndef SQLITE_OMIT_FLOATING_POINT 4524 /* If the column has REAL affinity, it may currently be stored as an 4525 ** integer. Use OP_RealAffinity to make sure it is really real. 4526 ** 4527 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4528 ** floating point when extracting it from the record. */ 4529 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4530 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4531 } 4532 #endif 4533 break; 4534 } 4535 4536 case TK_VECTOR: { 4537 sqlite3ErrorMsg(pParse, "row value misused"); 4538 break; 4539 } 4540 4541 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4542 ** that derive from the right-hand table of a LEFT JOIN. The 4543 ** Expr.iTable value is the table number for the right-hand table. 4544 ** The expression is only evaluated if that table is not currently 4545 ** on a LEFT JOIN NULL row. 4546 */ 4547 case TK_IF_NULL_ROW: { 4548 int addrINR; 4549 u8 okConstFactor = pParse->okConstFactor; 4550 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4551 /* Temporarily disable factoring of constant expressions, since 4552 ** even though expressions may appear to be constant, they are not 4553 ** really constant because they originate from the right-hand side 4554 ** of a LEFT JOIN. */ 4555 pParse->okConstFactor = 0; 4556 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4557 pParse->okConstFactor = okConstFactor; 4558 sqlite3VdbeJumpHere(v, addrINR); 4559 sqlite3VdbeChangeP3(v, addrINR, inReg); 4560 break; 4561 } 4562 4563 /* 4564 ** Form A: 4565 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4566 ** 4567 ** Form B: 4568 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4569 ** 4570 ** Form A is can be transformed into the equivalent form B as follows: 4571 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4572 ** WHEN x=eN THEN rN ELSE y END 4573 ** 4574 ** X (if it exists) is in pExpr->pLeft. 4575 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4576 ** odd. The Y is also optional. If the number of elements in x.pList 4577 ** is even, then Y is omitted and the "otherwise" result is NULL. 4578 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4579 ** 4580 ** The result of the expression is the Ri for the first matching Ei, 4581 ** or if there is no matching Ei, the ELSE term Y, or if there is 4582 ** no ELSE term, NULL. 4583 */ 4584 case TK_CASE: { 4585 int endLabel; /* GOTO label for end of CASE stmt */ 4586 int nextCase; /* GOTO label for next WHEN clause */ 4587 int nExpr; /* 2x number of WHEN terms */ 4588 int i; /* Loop counter */ 4589 ExprList *pEList; /* List of WHEN terms */ 4590 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4591 Expr opCompare; /* The X==Ei expression */ 4592 Expr *pX; /* The X expression */ 4593 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4594 Expr *pDel = 0; 4595 sqlite3 *db = pParse->db; 4596 4597 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4598 assert(pExpr->x.pList->nExpr > 0); 4599 pEList = pExpr->x.pList; 4600 aListelem = pEList->a; 4601 nExpr = pEList->nExpr; 4602 endLabel = sqlite3VdbeMakeLabel(pParse); 4603 if( (pX = pExpr->pLeft)!=0 ){ 4604 pDel = sqlite3ExprDup(db, pX, 0); 4605 if( db->mallocFailed ){ 4606 sqlite3ExprDelete(db, pDel); 4607 break; 4608 } 4609 testcase( pX->op==TK_COLUMN ); 4610 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4611 testcase( regFree1==0 ); 4612 memset(&opCompare, 0, sizeof(opCompare)); 4613 opCompare.op = TK_EQ; 4614 opCompare.pLeft = pDel; 4615 pTest = &opCompare; 4616 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4617 ** The value in regFree1 might get SCopy-ed into the file result. 4618 ** So make sure that the regFree1 register is not reused for other 4619 ** purposes and possibly overwritten. */ 4620 regFree1 = 0; 4621 } 4622 for(i=0; i<nExpr-1; i=i+2){ 4623 if( pX ){ 4624 assert( pTest!=0 ); 4625 opCompare.pRight = aListelem[i].pExpr; 4626 }else{ 4627 pTest = aListelem[i].pExpr; 4628 } 4629 nextCase = sqlite3VdbeMakeLabel(pParse); 4630 testcase( pTest->op==TK_COLUMN ); 4631 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4632 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4633 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4634 sqlite3VdbeGoto(v, endLabel); 4635 sqlite3VdbeResolveLabel(v, nextCase); 4636 } 4637 if( (nExpr&1)!=0 ){ 4638 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4639 }else{ 4640 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4641 } 4642 sqlite3ExprDelete(db, pDel); 4643 setDoNotMergeFlagOnCopy(v); 4644 sqlite3VdbeResolveLabel(v, endLabel); 4645 break; 4646 } 4647 #ifndef SQLITE_OMIT_TRIGGER 4648 case TK_RAISE: { 4649 assert( pExpr->affExpr==OE_Rollback 4650 || pExpr->affExpr==OE_Abort 4651 || pExpr->affExpr==OE_Fail 4652 || pExpr->affExpr==OE_Ignore 4653 ); 4654 if( !pParse->pTriggerTab && !pParse->nested ){ 4655 sqlite3ErrorMsg(pParse, 4656 "RAISE() may only be used within a trigger-program"); 4657 return 0; 4658 } 4659 if( pExpr->affExpr==OE_Abort ){ 4660 sqlite3MayAbort(pParse); 4661 } 4662 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4663 if( pExpr->affExpr==OE_Ignore ){ 4664 sqlite3VdbeAddOp4( 4665 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4666 VdbeCoverage(v); 4667 }else{ 4668 sqlite3HaltConstraint(pParse, 4669 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4670 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4671 } 4672 4673 break; 4674 } 4675 #endif 4676 } 4677 sqlite3ReleaseTempReg(pParse, regFree1); 4678 sqlite3ReleaseTempReg(pParse, regFree2); 4679 return inReg; 4680 } 4681 4682 /* 4683 ** Generate code that will evaluate expression pExpr just one time 4684 ** per prepared statement execution. 4685 ** 4686 ** If the expression uses functions (that might throw an exception) then 4687 ** guard them with an OP_Once opcode to ensure that the code is only executed 4688 ** once. If no functions are involved, then factor the code out and put it at 4689 ** the end of the prepared statement in the initialization section. 4690 ** 4691 ** If regDest>=0 then the result is always stored in that register and the 4692 ** result is not reusable. If regDest<0 then this routine is free to 4693 ** store the value whereever it wants. The register where the expression 4694 ** is stored is returned. When regDest<0, two identical expressions might 4695 ** code to the same register, if they do not contain function calls and hence 4696 ** are factored out into the initialization section at the end of the 4697 ** prepared statement. 4698 */ 4699 int sqlite3ExprCodeRunJustOnce( 4700 Parse *pParse, /* Parsing context */ 4701 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4702 int regDest /* Store the value in this register */ 4703 ){ 4704 ExprList *p; 4705 assert( ConstFactorOk(pParse) ); 4706 p = pParse->pConstExpr; 4707 if( regDest<0 && p ){ 4708 struct ExprList_item *pItem; 4709 int i; 4710 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4711 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4712 return pItem->u.iConstExprReg; 4713 } 4714 } 4715 } 4716 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4717 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4718 Vdbe *v = pParse->pVdbe; 4719 int addr; 4720 assert( v ); 4721 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4722 pParse->okConstFactor = 0; 4723 if( !pParse->db->mallocFailed ){ 4724 if( regDest<0 ) regDest = ++pParse->nMem; 4725 sqlite3ExprCode(pParse, pExpr, regDest); 4726 } 4727 pParse->okConstFactor = 1; 4728 sqlite3ExprDelete(pParse->db, pExpr); 4729 sqlite3VdbeJumpHere(v, addr); 4730 }else{ 4731 p = sqlite3ExprListAppend(pParse, p, pExpr); 4732 if( p ){ 4733 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4734 pItem->reusable = regDest<0; 4735 if( regDest<0 ) regDest = ++pParse->nMem; 4736 pItem->u.iConstExprReg = regDest; 4737 } 4738 pParse->pConstExpr = p; 4739 } 4740 return regDest; 4741 } 4742 4743 /* 4744 ** Generate code to evaluate an expression and store the results 4745 ** into a register. Return the register number where the results 4746 ** are stored. 4747 ** 4748 ** If the register is a temporary register that can be deallocated, 4749 ** then write its number into *pReg. If the result register is not 4750 ** a temporary, then set *pReg to zero. 4751 ** 4752 ** If pExpr is a constant, then this routine might generate this 4753 ** code to fill the register in the initialization section of the 4754 ** VDBE program, in order to factor it out of the evaluation loop. 4755 */ 4756 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4757 int r2; 4758 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4759 if( ConstFactorOk(pParse) 4760 && ALWAYS(pExpr!=0) 4761 && pExpr->op!=TK_REGISTER 4762 && sqlite3ExprIsConstantNotJoin(pExpr) 4763 ){ 4764 *pReg = 0; 4765 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4766 }else{ 4767 int r1 = sqlite3GetTempReg(pParse); 4768 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4769 if( r2==r1 ){ 4770 *pReg = r1; 4771 }else{ 4772 sqlite3ReleaseTempReg(pParse, r1); 4773 *pReg = 0; 4774 } 4775 } 4776 return r2; 4777 } 4778 4779 /* 4780 ** Generate code that will evaluate expression pExpr and store the 4781 ** results in register target. The results are guaranteed to appear 4782 ** in register target. 4783 */ 4784 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4785 int inReg; 4786 4787 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4788 assert( target>0 && target<=pParse->nMem ); 4789 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4790 if( pParse->pVdbe==0 ) return; 4791 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4792 if( inReg!=target ){ 4793 u8 op; 4794 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4795 op = OP_Copy; 4796 }else{ 4797 op = OP_SCopy; 4798 } 4799 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4800 } 4801 } 4802 4803 /* 4804 ** Make a transient copy of expression pExpr and then code it using 4805 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4806 ** except that the input expression is guaranteed to be unchanged. 4807 */ 4808 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4809 sqlite3 *db = pParse->db; 4810 pExpr = sqlite3ExprDup(db, pExpr, 0); 4811 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4812 sqlite3ExprDelete(db, pExpr); 4813 } 4814 4815 /* 4816 ** Generate code that will evaluate expression pExpr and store the 4817 ** results in register target. The results are guaranteed to appear 4818 ** in register target. If the expression is constant, then this routine 4819 ** might choose to code the expression at initialization time. 4820 */ 4821 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4822 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4823 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4824 }else{ 4825 sqlite3ExprCodeCopy(pParse, pExpr, target); 4826 } 4827 } 4828 4829 /* 4830 ** Generate code that pushes the value of every element of the given 4831 ** expression list into a sequence of registers beginning at target. 4832 ** 4833 ** Return the number of elements evaluated. The number returned will 4834 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4835 ** is defined. 4836 ** 4837 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4838 ** filled using OP_SCopy. OP_Copy must be used instead. 4839 ** 4840 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4841 ** factored out into initialization code. 4842 ** 4843 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4844 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4845 ** in registers at srcReg, and so the value can be copied from there. 4846 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4847 ** are simply omitted rather than being copied from srcReg. 4848 */ 4849 int sqlite3ExprCodeExprList( 4850 Parse *pParse, /* Parsing context */ 4851 ExprList *pList, /* The expression list to be coded */ 4852 int target, /* Where to write results */ 4853 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4854 u8 flags /* SQLITE_ECEL_* flags */ 4855 ){ 4856 struct ExprList_item *pItem; 4857 int i, j, n; 4858 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4859 Vdbe *v = pParse->pVdbe; 4860 assert( pList!=0 ); 4861 assert( target>0 ); 4862 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4863 n = pList->nExpr; 4864 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4865 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4866 Expr *pExpr = pItem->pExpr; 4867 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4868 if( pItem->bSorterRef ){ 4869 i--; 4870 n--; 4871 }else 4872 #endif 4873 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4874 if( flags & SQLITE_ECEL_OMITREF ){ 4875 i--; 4876 n--; 4877 }else{ 4878 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4879 } 4880 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4881 && sqlite3ExprIsConstantNotJoin(pExpr) 4882 ){ 4883 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4884 }else{ 4885 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4886 if( inReg!=target+i ){ 4887 VdbeOp *pOp; 4888 if( copyOp==OP_Copy 4889 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4890 && pOp->p1+pOp->p3+1==inReg 4891 && pOp->p2+pOp->p3+1==target+i 4892 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4893 ){ 4894 pOp->p3++; 4895 }else{ 4896 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4897 } 4898 } 4899 } 4900 } 4901 return n; 4902 } 4903 4904 /* 4905 ** Generate code for a BETWEEN operator. 4906 ** 4907 ** x BETWEEN y AND z 4908 ** 4909 ** The above is equivalent to 4910 ** 4911 ** x>=y AND x<=z 4912 ** 4913 ** Code it as such, taking care to do the common subexpression 4914 ** elimination of x. 4915 ** 4916 ** The xJumpIf parameter determines details: 4917 ** 4918 ** NULL: Store the boolean result in reg[dest] 4919 ** sqlite3ExprIfTrue: Jump to dest if true 4920 ** sqlite3ExprIfFalse: Jump to dest if false 4921 ** 4922 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4923 */ 4924 static void exprCodeBetween( 4925 Parse *pParse, /* Parsing and code generating context */ 4926 Expr *pExpr, /* The BETWEEN expression */ 4927 int dest, /* Jump destination or storage location */ 4928 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4929 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4930 ){ 4931 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4932 Expr compLeft; /* The x>=y term */ 4933 Expr compRight; /* The x<=z term */ 4934 int regFree1 = 0; /* Temporary use register */ 4935 Expr *pDel = 0; 4936 sqlite3 *db = pParse->db; 4937 4938 memset(&compLeft, 0, sizeof(Expr)); 4939 memset(&compRight, 0, sizeof(Expr)); 4940 memset(&exprAnd, 0, sizeof(Expr)); 4941 4942 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4943 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4944 if( db->mallocFailed==0 ){ 4945 exprAnd.op = TK_AND; 4946 exprAnd.pLeft = &compLeft; 4947 exprAnd.pRight = &compRight; 4948 compLeft.op = TK_GE; 4949 compLeft.pLeft = pDel; 4950 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4951 compRight.op = TK_LE; 4952 compRight.pLeft = pDel; 4953 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4954 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4955 if( xJump ){ 4956 xJump(pParse, &exprAnd, dest, jumpIfNull); 4957 }else{ 4958 /* Mark the expression is being from the ON or USING clause of a join 4959 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4960 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4961 ** for clarity, but we are out of bits in the Expr.flags field so we 4962 ** have to reuse the EP_FromJoin bit. Bummer. */ 4963 pDel->flags |= EP_FromJoin; 4964 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4965 } 4966 sqlite3ReleaseTempReg(pParse, regFree1); 4967 } 4968 sqlite3ExprDelete(db, pDel); 4969 4970 /* Ensure adequate test coverage */ 4971 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4972 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4973 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4974 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4975 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4976 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4977 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4978 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4979 testcase( xJump==0 ); 4980 } 4981 4982 /* 4983 ** Generate code for a boolean expression such that a jump is made 4984 ** to the label "dest" if the expression is true but execution 4985 ** continues straight thru if the expression is false. 4986 ** 4987 ** If the expression evaluates to NULL (neither true nor false), then 4988 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4989 ** 4990 ** This code depends on the fact that certain token values (ex: TK_EQ) 4991 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4992 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4993 ** the make process cause these values to align. Assert()s in the code 4994 ** below verify that the numbers are aligned correctly. 4995 */ 4996 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4997 Vdbe *v = pParse->pVdbe; 4998 int op = 0; 4999 int regFree1 = 0; 5000 int regFree2 = 0; 5001 int r1, r2; 5002 5003 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5004 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5005 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5006 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5007 op = pExpr->op; 5008 switch( op ){ 5009 case TK_AND: 5010 case TK_OR: { 5011 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5012 if( pAlt!=pExpr ){ 5013 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5014 }else if( op==TK_AND ){ 5015 int d2 = sqlite3VdbeMakeLabel(pParse); 5016 testcase( jumpIfNull==0 ); 5017 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5018 jumpIfNull^SQLITE_JUMPIFNULL); 5019 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5020 sqlite3VdbeResolveLabel(v, d2); 5021 }else{ 5022 testcase( jumpIfNull==0 ); 5023 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5024 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5025 } 5026 break; 5027 } 5028 case TK_NOT: { 5029 testcase( jumpIfNull==0 ); 5030 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5031 break; 5032 } 5033 case TK_TRUTH: { 5034 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5035 int isTrue; /* IS TRUE or IS NOT TRUE */ 5036 testcase( jumpIfNull==0 ); 5037 isNot = pExpr->op2==TK_ISNOT; 5038 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5039 testcase( isTrue && isNot ); 5040 testcase( !isTrue && isNot ); 5041 if( isTrue ^ isNot ){ 5042 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5043 isNot ? SQLITE_JUMPIFNULL : 0); 5044 }else{ 5045 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5046 isNot ? SQLITE_JUMPIFNULL : 0); 5047 } 5048 break; 5049 } 5050 case TK_IS: 5051 case TK_ISNOT: 5052 testcase( op==TK_IS ); 5053 testcase( op==TK_ISNOT ); 5054 op = (op==TK_IS) ? TK_EQ : TK_NE; 5055 jumpIfNull = SQLITE_NULLEQ; 5056 /* no break */ deliberate_fall_through 5057 case TK_LT: 5058 case TK_LE: 5059 case TK_GT: 5060 case TK_GE: 5061 case TK_NE: 5062 case TK_EQ: { 5063 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5064 testcase( jumpIfNull==0 ); 5065 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5066 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5067 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5068 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5069 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5070 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5071 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5072 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5073 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5074 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5075 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5076 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5077 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5078 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5079 testcase( regFree1==0 ); 5080 testcase( regFree2==0 ); 5081 break; 5082 } 5083 case TK_ISNULL: 5084 case TK_NOTNULL: { 5085 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5086 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5087 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5088 sqlite3VdbeAddOp2(v, op, r1, dest); 5089 VdbeCoverageIf(v, op==TK_ISNULL); 5090 VdbeCoverageIf(v, op==TK_NOTNULL); 5091 testcase( regFree1==0 ); 5092 break; 5093 } 5094 case TK_BETWEEN: { 5095 testcase( jumpIfNull==0 ); 5096 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5097 break; 5098 } 5099 #ifndef SQLITE_OMIT_SUBQUERY 5100 case TK_IN: { 5101 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5102 int destIfNull = jumpIfNull ? dest : destIfFalse; 5103 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5104 sqlite3VdbeGoto(v, dest); 5105 sqlite3VdbeResolveLabel(v, destIfFalse); 5106 break; 5107 } 5108 #endif 5109 default: { 5110 default_expr: 5111 if( ExprAlwaysTrue(pExpr) ){ 5112 sqlite3VdbeGoto(v, dest); 5113 }else if( ExprAlwaysFalse(pExpr) ){ 5114 /* No-op */ 5115 }else{ 5116 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5117 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5118 VdbeCoverage(v); 5119 testcase( regFree1==0 ); 5120 testcase( jumpIfNull==0 ); 5121 } 5122 break; 5123 } 5124 } 5125 sqlite3ReleaseTempReg(pParse, regFree1); 5126 sqlite3ReleaseTempReg(pParse, regFree2); 5127 } 5128 5129 /* 5130 ** Generate code for a boolean expression such that a jump is made 5131 ** to the label "dest" if the expression is false but execution 5132 ** continues straight thru if the expression is true. 5133 ** 5134 ** If the expression evaluates to NULL (neither true nor false) then 5135 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5136 ** is 0. 5137 */ 5138 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5139 Vdbe *v = pParse->pVdbe; 5140 int op = 0; 5141 int regFree1 = 0; 5142 int regFree2 = 0; 5143 int r1, r2; 5144 5145 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5146 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5147 if( pExpr==0 ) return; 5148 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5149 5150 /* The value of pExpr->op and op are related as follows: 5151 ** 5152 ** pExpr->op op 5153 ** --------- ---------- 5154 ** TK_ISNULL OP_NotNull 5155 ** TK_NOTNULL OP_IsNull 5156 ** TK_NE OP_Eq 5157 ** TK_EQ OP_Ne 5158 ** TK_GT OP_Le 5159 ** TK_LE OP_Gt 5160 ** TK_GE OP_Lt 5161 ** TK_LT OP_Ge 5162 ** 5163 ** For other values of pExpr->op, op is undefined and unused. 5164 ** The value of TK_ and OP_ constants are arranged such that we 5165 ** can compute the mapping above using the following expression. 5166 ** Assert()s verify that the computation is correct. 5167 */ 5168 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5169 5170 /* Verify correct alignment of TK_ and OP_ constants 5171 */ 5172 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5173 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5174 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5175 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5176 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5177 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5178 assert( pExpr->op!=TK_GT || op==OP_Le ); 5179 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5180 5181 switch( pExpr->op ){ 5182 case TK_AND: 5183 case TK_OR: { 5184 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5185 if( pAlt!=pExpr ){ 5186 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5187 }else if( pExpr->op==TK_AND ){ 5188 testcase( jumpIfNull==0 ); 5189 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5190 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5191 }else{ 5192 int d2 = sqlite3VdbeMakeLabel(pParse); 5193 testcase( jumpIfNull==0 ); 5194 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5195 jumpIfNull^SQLITE_JUMPIFNULL); 5196 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5197 sqlite3VdbeResolveLabel(v, d2); 5198 } 5199 break; 5200 } 5201 case TK_NOT: { 5202 testcase( jumpIfNull==0 ); 5203 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5204 break; 5205 } 5206 case TK_TRUTH: { 5207 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5208 int isTrue; /* IS TRUE or IS NOT TRUE */ 5209 testcase( jumpIfNull==0 ); 5210 isNot = pExpr->op2==TK_ISNOT; 5211 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5212 testcase( isTrue && isNot ); 5213 testcase( !isTrue && isNot ); 5214 if( isTrue ^ isNot ){ 5215 /* IS TRUE and IS NOT FALSE */ 5216 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5217 isNot ? 0 : SQLITE_JUMPIFNULL); 5218 5219 }else{ 5220 /* IS FALSE and IS NOT TRUE */ 5221 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5222 isNot ? 0 : SQLITE_JUMPIFNULL); 5223 } 5224 break; 5225 } 5226 case TK_IS: 5227 case TK_ISNOT: 5228 testcase( pExpr->op==TK_IS ); 5229 testcase( pExpr->op==TK_ISNOT ); 5230 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5231 jumpIfNull = SQLITE_NULLEQ; 5232 /* no break */ deliberate_fall_through 5233 case TK_LT: 5234 case TK_LE: 5235 case TK_GT: 5236 case TK_GE: 5237 case TK_NE: 5238 case TK_EQ: { 5239 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5240 testcase( jumpIfNull==0 ); 5241 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5242 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5243 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5244 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5245 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5246 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5247 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5248 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5249 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5250 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5251 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5252 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5253 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5254 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5255 testcase( regFree1==0 ); 5256 testcase( regFree2==0 ); 5257 break; 5258 } 5259 case TK_ISNULL: 5260 case TK_NOTNULL: { 5261 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5262 sqlite3VdbeAddOp2(v, op, r1, dest); 5263 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5264 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5265 testcase( regFree1==0 ); 5266 break; 5267 } 5268 case TK_BETWEEN: { 5269 testcase( jumpIfNull==0 ); 5270 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5271 break; 5272 } 5273 #ifndef SQLITE_OMIT_SUBQUERY 5274 case TK_IN: { 5275 if( jumpIfNull ){ 5276 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5277 }else{ 5278 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5279 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5280 sqlite3VdbeResolveLabel(v, destIfNull); 5281 } 5282 break; 5283 } 5284 #endif 5285 default: { 5286 default_expr: 5287 if( ExprAlwaysFalse(pExpr) ){ 5288 sqlite3VdbeGoto(v, dest); 5289 }else if( ExprAlwaysTrue(pExpr) ){ 5290 /* no-op */ 5291 }else{ 5292 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5293 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5294 VdbeCoverage(v); 5295 testcase( regFree1==0 ); 5296 testcase( jumpIfNull==0 ); 5297 } 5298 break; 5299 } 5300 } 5301 sqlite3ReleaseTempReg(pParse, regFree1); 5302 sqlite3ReleaseTempReg(pParse, regFree2); 5303 } 5304 5305 /* 5306 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5307 ** code generation, and that copy is deleted after code generation. This 5308 ** ensures that the original pExpr is unchanged. 5309 */ 5310 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5311 sqlite3 *db = pParse->db; 5312 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5313 if( db->mallocFailed==0 ){ 5314 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5315 } 5316 sqlite3ExprDelete(db, pCopy); 5317 } 5318 5319 /* 5320 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5321 ** type of expression. 5322 ** 5323 ** If pExpr is a simple SQL value - an integer, real, string, blob 5324 ** or NULL value - then the VDBE currently being prepared is configured 5325 ** to re-prepare each time a new value is bound to variable pVar. 5326 ** 5327 ** Additionally, if pExpr is a simple SQL value and the value is the 5328 ** same as that currently bound to variable pVar, non-zero is returned. 5329 ** Otherwise, if the values are not the same or if pExpr is not a simple 5330 ** SQL value, zero is returned. 5331 */ 5332 static int exprCompareVariable( 5333 const Parse *pParse, 5334 const Expr *pVar, 5335 const Expr *pExpr 5336 ){ 5337 int res = 0; 5338 int iVar; 5339 sqlite3_value *pL, *pR = 0; 5340 5341 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5342 if( pR ){ 5343 iVar = pVar->iColumn; 5344 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5345 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5346 if( pL ){ 5347 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5348 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5349 } 5350 res = 0==sqlite3MemCompare(pL, pR, 0); 5351 } 5352 sqlite3ValueFree(pR); 5353 sqlite3ValueFree(pL); 5354 } 5355 5356 return res; 5357 } 5358 5359 /* 5360 ** Do a deep comparison of two expression trees. Return 0 if the two 5361 ** expressions are completely identical. Return 1 if they differ only 5362 ** by a COLLATE operator at the top level. Return 2 if there are differences 5363 ** other than the top-level COLLATE operator. 5364 ** 5365 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5366 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5367 ** 5368 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5369 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5370 ** 5371 ** Sometimes this routine will return 2 even if the two expressions 5372 ** really are equivalent. If we cannot prove that the expressions are 5373 ** identical, we return 2 just to be safe. So if this routine 5374 ** returns 2, then you do not really know for certain if the two 5375 ** expressions are the same. But if you get a 0 or 1 return, then you 5376 ** can be sure the expressions are the same. In the places where 5377 ** this routine is used, it does not hurt to get an extra 2 - that 5378 ** just might result in some slightly slower code. But returning 5379 ** an incorrect 0 or 1 could lead to a malfunction. 5380 ** 5381 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5382 ** pParse->pReprepare can be matched against literals in pB. The 5383 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5384 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5385 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5386 ** pB causes a return value of 2. 5387 */ 5388 int sqlite3ExprCompare( 5389 const Parse *pParse, 5390 const Expr *pA, 5391 const Expr *pB, 5392 int iTab 5393 ){ 5394 u32 combinedFlags; 5395 if( pA==0 || pB==0 ){ 5396 return pB==pA ? 0 : 2; 5397 } 5398 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5399 return 0; 5400 } 5401 combinedFlags = pA->flags | pB->flags; 5402 if( combinedFlags & EP_IntValue ){ 5403 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5404 return 0; 5405 } 5406 return 2; 5407 } 5408 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5409 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5410 return 1; 5411 } 5412 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5413 return 1; 5414 } 5415 return 2; 5416 } 5417 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5418 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5419 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5420 #ifndef SQLITE_OMIT_WINDOWFUNC 5421 assert( pA->op==pB->op ); 5422 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5423 return 2; 5424 } 5425 if( ExprHasProperty(pA,EP_WinFunc) ){ 5426 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5427 return 2; 5428 } 5429 } 5430 #endif 5431 }else if( pA->op==TK_NULL ){ 5432 return 0; 5433 }else if( pA->op==TK_COLLATE ){ 5434 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5435 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5436 return 2; 5437 } 5438 } 5439 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5440 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5441 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5442 if( combinedFlags & EP_xIsSelect ) return 2; 5443 if( (combinedFlags & EP_FixedCol)==0 5444 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5445 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5446 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5447 if( pA->op!=TK_STRING 5448 && pA->op!=TK_TRUEFALSE 5449 && ALWAYS((combinedFlags & EP_Reduced)==0) 5450 ){ 5451 if( pA->iColumn!=pB->iColumn ) return 2; 5452 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5453 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5454 return 2; 5455 } 5456 } 5457 } 5458 return 0; 5459 } 5460 5461 /* 5462 ** Compare two ExprList objects. Return 0 if they are identical, 1 5463 ** if they are certainly different, or 2 if it is not possible to 5464 ** determine if they are identical or not. 5465 ** 5466 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5467 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5468 ** 5469 ** This routine might return non-zero for equivalent ExprLists. The 5470 ** only consequence will be disabled optimizations. But this routine 5471 ** must never return 0 if the two ExprList objects are different, or 5472 ** a malfunction will result. 5473 ** 5474 ** Two NULL pointers are considered to be the same. But a NULL pointer 5475 ** always differs from a non-NULL pointer. 5476 */ 5477 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5478 int i; 5479 if( pA==0 && pB==0 ) return 0; 5480 if( pA==0 || pB==0 ) return 1; 5481 if( pA->nExpr!=pB->nExpr ) return 1; 5482 for(i=0; i<pA->nExpr; i++){ 5483 int res; 5484 Expr *pExprA = pA->a[i].pExpr; 5485 Expr *pExprB = pB->a[i].pExpr; 5486 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5487 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5488 } 5489 return 0; 5490 } 5491 5492 /* 5493 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5494 ** are ignored. 5495 */ 5496 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5497 return sqlite3ExprCompare(0, 5498 sqlite3ExprSkipCollateAndLikely(pA), 5499 sqlite3ExprSkipCollateAndLikely(pB), 5500 iTab); 5501 } 5502 5503 /* 5504 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5505 ** 5506 ** Or if seenNot is true, return non-zero if Expr p can only be 5507 ** non-NULL if pNN is not NULL 5508 */ 5509 static int exprImpliesNotNull( 5510 const Parse *pParse,/* Parsing context */ 5511 const Expr *p, /* The expression to be checked */ 5512 const Expr *pNN, /* The expression that is NOT NULL */ 5513 int iTab, /* Table being evaluated */ 5514 int seenNot /* Return true only if p can be any non-NULL value */ 5515 ){ 5516 assert( p ); 5517 assert( pNN ); 5518 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5519 return pNN->op!=TK_NULL; 5520 } 5521 switch( p->op ){ 5522 case TK_IN: { 5523 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5524 assert( ExprHasProperty(p,EP_xIsSelect) 5525 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5526 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5527 } 5528 case TK_BETWEEN: { 5529 ExprList *pList = p->x.pList; 5530 assert( pList!=0 ); 5531 assert( pList->nExpr==2 ); 5532 if( seenNot ) return 0; 5533 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5534 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5535 ){ 5536 return 1; 5537 } 5538 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5539 } 5540 case TK_EQ: 5541 case TK_NE: 5542 case TK_LT: 5543 case TK_LE: 5544 case TK_GT: 5545 case TK_GE: 5546 case TK_PLUS: 5547 case TK_MINUS: 5548 case TK_BITOR: 5549 case TK_LSHIFT: 5550 case TK_RSHIFT: 5551 case TK_CONCAT: 5552 seenNot = 1; 5553 /* no break */ deliberate_fall_through 5554 case TK_STAR: 5555 case TK_REM: 5556 case TK_BITAND: 5557 case TK_SLASH: { 5558 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5559 /* no break */ deliberate_fall_through 5560 } 5561 case TK_SPAN: 5562 case TK_COLLATE: 5563 case TK_UPLUS: 5564 case TK_UMINUS: { 5565 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5566 } 5567 case TK_TRUTH: { 5568 if( seenNot ) return 0; 5569 if( p->op2!=TK_IS ) return 0; 5570 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5571 } 5572 case TK_BITNOT: 5573 case TK_NOT: { 5574 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5575 } 5576 } 5577 return 0; 5578 } 5579 5580 /* 5581 ** Return true if we can prove the pE2 will always be true if pE1 is 5582 ** true. Return false if we cannot complete the proof or if pE2 might 5583 ** be false. Examples: 5584 ** 5585 ** pE1: x==5 pE2: x==5 Result: true 5586 ** pE1: x>0 pE2: x==5 Result: false 5587 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5588 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5589 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5590 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5591 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5592 ** 5593 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5594 ** Expr.iTable<0 then assume a table number given by iTab. 5595 ** 5596 ** If pParse is not NULL, then the values of bound variables in pE1 are 5597 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5598 ** modified to record which bound variables are referenced. If pParse 5599 ** is NULL, then false will be returned if pE1 contains any bound variables. 5600 ** 5601 ** When in doubt, return false. Returning true might give a performance 5602 ** improvement. Returning false might cause a performance reduction, but 5603 ** it will always give the correct answer and is hence always safe. 5604 */ 5605 int sqlite3ExprImpliesExpr( 5606 const Parse *pParse, 5607 const Expr *pE1, 5608 const Expr *pE2, 5609 int iTab 5610 ){ 5611 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5612 return 1; 5613 } 5614 if( pE2->op==TK_OR 5615 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5616 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5617 ){ 5618 return 1; 5619 } 5620 if( pE2->op==TK_NOTNULL 5621 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5622 ){ 5623 return 1; 5624 } 5625 return 0; 5626 } 5627 5628 /* 5629 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5630 ** If the expression node requires that the table at pWalker->iCur 5631 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5632 ** 5633 ** This routine controls an optimization. False positives (setting 5634 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5635 ** (never setting pWalker->eCode) is a harmless missed optimization. 5636 */ 5637 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5638 testcase( pExpr->op==TK_AGG_COLUMN ); 5639 testcase( pExpr->op==TK_AGG_FUNCTION ); 5640 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5641 switch( pExpr->op ){ 5642 case TK_ISNOT: 5643 case TK_ISNULL: 5644 case TK_NOTNULL: 5645 case TK_IS: 5646 case TK_OR: 5647 case TK_VECTOR: 5648 case TK_CASE: 5649 case TK_IN: 5650 case TK_FUNCTION: 5651 case TK_TRUTH: 5652 testcase( pExpr->op==TK_ISNOT ); 5653 testcase( pExpr->op==TK_ISNULL ); 5654 testcase( pExpr->op==TK_NOTNULL ); 5655 testcase( pExpr->op==TK_IS ); 5656 testcase( pExpr->op==TK_OR ); 5657 testcase( pExpr->op==TK_VECTOR ); 5658 testcase( pExpr->op==TK_CASE ); 5659 testcase( pExpr->op==TK_IN ); 5660 testcase( pExpr->op==TK_FUNCTION ); 5661 testcase( pExpr->op==TK_TRUTH ); 5662 return WRC_Prune; 5663 case TK_COLUMN: 5664 if( pWalker->u.iCur==pExpr->iTable ){ 5665 pWalker->eCode = 1; 5666 return WRC_Abort; 5667 } 5668 return WRC_Prune; 5669 5670 case TK_AND: 5671 if( pWalker->eCode==0 ){ 5672 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5673 if( pWalker->eCode ){ 5674 pWalker->eCode = 0; 5675 sqlite3WalkExpr(pWalker, pExpr->pRight); 5676 } 5677 } 5678 return WRC_Prune; 5679 5680 case TK_BETWEEN: 5681 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5682 assert( pWalker->eCode ); 5683 return WRC_Abort; 5684 } 5685 return WRC_Prune; 5686 5687 /* Virtual tables are allowed to use constraints like x=NULL. So 5688 ** a term of the form x=y does not prove that y is not null if x 5689 ** is the column of a virtual table */ 5690 case TK_EQ: 5691 case TK_NE: 5692 case TK_LT: 5693 case TK_LE: 5694 case TK_GT: 5695 case TK_GE: { 5696 Expr *pLeft = pExpr->pLeft; 5697 Expr *pRight = pExpr->pRight; 5698 testcase( pExpr->op==TK_EQ ); 5699 testcase( pExpr->op==TK_NE ); 5700 testcase( pExpr->op==TK_LT ); 5701 testcase( pExpr->op==TK_LE ); 5702 testcase( pExpr->op==TK_GT ); 5703 testcase( pExpr->op==TK_GE ); 5704 /* The y.pTab=0 assignment in wherecode.c always happens after the 5705 ** impliesNotNullRow() test */ 5706 if( (pLeft->op==TK_COLUMN && pLeft->y.pTab!=0 5707 && IsVirtual(pLeft->y.pTab)) 5708 || (pRight->op==TK_COLUMN && pRight->y.pTab!=0 5709 && IsVirtual(pRight->y.pTab)) 5710 ){ 5711 return WRC_Prune; 5712 } 5713 /* no break */ deliberate_fall_through 5714 } 5715 default: 5716 return WRC_Continue; 5717 } 5718 } 5719 5720 /* 5721 ** Return true (non-zero) if expression p can only be true if at least 5722 ** one column of table iTab is non-null. In other words, return true 5723 ** if expression p will always be NULL or false if every column of iTab 5724 ** is NULL. 5725 ** 5726 ** False negatives are acceptable. In other words, it is ok to return 5727 ** zero even if expression p will never be true of every column of iTab 5728 ** is NULL. A false negative is merely a missed optimization opportunity. 5729 ** 5730 ** False positives are not allowed, however. A false positive may result 5731 ** in an incorrect answer. 5732 ** 5733 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5734 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5735 ** 5736 ** This routine is used to check if a LEFT JOIN can be converted into 5737 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5738 ** clause requires that some column of the right table of the LEFT JOIN 5739 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5740 ** ordinary join. 5741 */ 5742 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5743 Walker w; 5744 p = sqlite3ExprSkipCollateAndLikely(p); 5745 if( p==0 ) return 0; 5746 if( p->op==TK_NOTNULL ){ 5747 p = p->pLeft; 5748 }else{ 5749 while( p->op==TK_AND ){ 5750 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5751 p = p->pRight; 5752 } 5753 } 5754 w.xExprCallback = impliesNotNullRow; 5755 w.xSelectCallback = 0; 5756 w.xSelectCallback2 = 0; 5757 w.eCode = 0; 5758 w.u.iCur = iTab; 5759 sqlite3WalkExpr(&w, p); 5760 return w.eCode; 5761 } 5762 5763 /* 5764 ** An instance of the following structure is used by the tree walker 5765 ** to determine if an expression can be evaluated by reference to the 5766 ** index only, without having to do a search for the corresponding 5767 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5768 ** is the cursor for the table. 5769 */ 5770 struct IdxCover { 5771 Index *pIdx; /* The index to be tested for coverage */ 5772 int iCur; /* Cursor number for the table corresponding to the index */ 5773 }; 5774 5775 /* 5776 ** Check to see if there are references to columns in table 5777 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5778 ** pWalker->u.pIdxCover->pIdx. 5779 */ 5780 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5781 if( pExpr->op==TK_COLUMN 5782 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5783 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5784 ){ 5785 pWalker->eCode = 1; 5786 return WRC_Abort; 5787 } 5788 return WRC_Continue; 5789 } 5790 5791 /* 5792 ** Determine if an index pIdx on table with cursor iCur contains will 5793 ** the expression pExpr. Return true if the index does cover the 5794 ** expression and false if the pExpr expression references table columns 5795 ** that are not found in the index pIdx. 5796 ** 5797 ** An index covering an expression means that the expression can be 5798 ** evaluated using only the index and without having to lookup the 5799 ** corresponding table entry. 5800 */ 5801 int sqlite3ExprCoveredByIndex( 5802 Expr *pExpr, /* The index to be tested */ 5803 int iCur, /* The cursor number for the corresponding table */ 5804 Index *pIdx /* The index that might be used for coverage */ 5805 ){ 5806 Walker w; 5807 struct IdxCover xcov; 5808 memset(&w, 0, sizeof(w)); 5809 xcov.iCur = iCur; 5810 xcov.pIdx = pIdx; 5811 w.xExprCallback = exprIdxCover; 5812 w.u.pIdxCover = &xcov; 5813 sqlite3WalkExpr(&w, pExpr); 5814 return !w.eCode; 5815 } 5816 5817 5818 /* 5819 ** An instance of the following structure is used by the tree walker 5820 ** to count references to table columns in the arguments of an 5821 ** aggregate function, in order to implement the 5822 ** sqlite3FunctionThisSrc() routine. 5823 */ 5824 struct SrcCount { 5825 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5826 int iSrcInner; /* Smallest cursor number in this context */ 5827 int nThis; /* Number of references to columns in pSrcList */ 5828 int nOther; /* Number of references to columns in other FROM clauses */ 5829 }; 5830 5831 /* 5832 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5833 ** SELECT with a FROM clause encountered during this iteration, set 5834 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5835 ** the FROM cause. 5836 */ 5837 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5838 struct SrcCount *p = pWalker->u.pSrcCount; 5839 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5840 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5841 } 5842 return WRC_Continue; 5843 } 5844 5845 /* 5846 ** Count the number of references to columns. 5847 */ 5848 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5849 /* There was once a NEVER() on the second term on the grounds that 5850 ** sqlite3FunctionUsesThisSrc() was always called before 5851 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5852 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5853 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5854 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5855 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5856 int i; 5857 struct SrcCount *p = pWalker->u.pSrcCount; 5858 SrcList *pSrc = p->pSrc; 5859 int nSrc = pSrc ? pSrc->nSrc : 0; 5860 for(i=0; i<nSrc; i++){ 5861 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5862 } 5863 if( i<nSrc ){ 5864 p->nThis++; 5865 }else if( pExpr->iTable<p->iSrcInner ){ 5866 /* In a well-formed parse tree (no name resolution errors), 5867 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5868 ** outer context. Those are the only ones to count as "other" */ 5869 p->nOther++; 5870 } 5871 } 5872 return WRC_Continue; 5873 } 5874 5875 /* 5876 ** Determine if any of the arguments to the pExpr Function reference 5877 ** pSrcList. Return true if they do. Also return true if the function 5878 ** has no arguments or has only constant arguments. Return false if pExpr 5879 ** references columns but not columns of tables found in pSrcList. 5880 */ 5881 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5882 Walker w; 5883 struct SrcCount cnt; 5884 assert( pExpr->op==TK_AGG_FUNCTION ); 5885 memset(&w, 0, sizeof(w)); 5886 w.xExprCallback = exprSrcCount; 5887 w.xSelectCallback = selectSrcCount; 5888 w.u.pSrcCount = &cnt; 5889 cnt.pSrc = pSrcList; 5890 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5891 cnt.nThis = 0; 5892 cnt.nOther = 0; 5893 sqlite3WalkExprList(&w, pExpr->x.pList); 5894 #ifndef SQLITE_OMIT_WINDOWFUNC 5895 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5896 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5897 } 5898 #endif 5899 return cnt.nThis>0 || cnt.nOther==0; 5900 } 5901 5902 /* 5903 ** This is a Walker expression node callback. 5904 ** 5905 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5906 ** object that is referenced does not refer directly to the Expr. If 5907 ** it does, make a copy. This is done because the pExpr argument is 5908 ** subject to change. 5909 ** 5910 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5911 ** This will cause the expression to be deleted automatically when the 5912 ** Parse object is destroyed, but the zero register number means that it 5913 ** will not generate any code in the preamble. 5914 */ 5915 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5916 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5917 && pExpr->pAggInfo!=0 5918 ){ 5919 AggInfo *pAggInfo = pExpr->pAggInfo; 5920 int iAgg = pExpr->iAgg; 5921 Parse *pParse = pWalker->pParse; 5922 sqlite3 *db = pParse->db; 5923 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5924 if( pExpr->op==TK_AGG_COLUMN ){ 5925 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5926 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5927 pExpr = sqlite3ExprDup(db, pExpr, 0); 5928 if( pExpr ){ 5929 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5930 sqlite3ExprDeferredDelete(pParse, pExpr); 5931 } 5932 } 5933 }else{ 5934 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5935 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5936 pExpr = sqlite3ExprDup(db, pExpr, 0); 5937 if( pExpr ){ 5938 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5939 sqlite3ExprDeferredDelete(pParse, pExpr); 5940 } 5941 } 5942 } 5943 } 5944 return WRC_Continue; 5945 } 5946 5947 /* 5948 ** Initialize a Walker object so that will persist AggInfo entries referenced 5949 ** by the tree that is walked. 5950 */ 5951 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5952 memset(pWalker, 0, sizeof(*pWalker)); 5953 pWalker->pParse = pParse; 5954 pWalker->xExprCallback = agginfoPersistExprCb; 5955 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5956 } 5957 5958 /* 5959 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5960 ** the new element. Return a negative number if malloc fails. 5961 */ 5962 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5963 int i; 5964 pInfo->aCol = sqlite3ArrayAllocate( 5965 db, 5966 pInfo->aCol, 5967 sizeof(pInfo->aCol[0]), 5968 &pInfo->nColumn, 5969 &i 5970 ); 5971 return i; 5972 } 5973 5974 /* 5975 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5976 ** the new element. Return a negative number if malloc fails. 5977 */ 5978 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5979 int i; 5980 pInfo->aFunc = sqlite3ArrayAllocate( 5981 db, 5982 pInfo->aFunc, 5983 sizeof(pInfo->aFunc[0]), 5984 &pInfo->nFunc, 5985 &i 5986 ); 5987 return i; 5988 } 5989 5990 /* 5991 ** This is the xExprCallback for a tree walker. It is used to 5992 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5993 ** for additional information. 5994 */ 5995 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5996 int i; 5997 NameContext *pNC = pWalker->u.pNC; 5998 Parse *pParse = pNC->pParse; 5999 SrcList *pSrcList = pNC->pSrcList; 6000 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6001 6002 assert( pNC->ncFlags & NC_UAggInfo ); 6003 switch( pExpr->op ){ 6004 case TK_AGG_COLUMN: 6005 case TK_COLUMN: { 6006 testcase( pExpr->op==TK_AGG_COLUMN ); 6007 testcase( pExpr->op==TK_COLUMN ); 6008 /* Check to see if the column is in one of the tables in the FROM 6009 ** clause of the aggregate query */ 6010 if( ALWAYS(pSrcList!=0) ){ 6011 SrcItem *pItem = pSrcList->a; 6012 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6013 struct AggInfo_col *pCol; 6014 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6015 if( pExpr->iTable==pItem->iCursor ){ 6016 /* If we reach this point, it means that pExpr refers to a table 6017 ** that is in the FROM clause of the aggregate query. 6018 ** 6019 ** Make an entry for the column in pAggInfo->aCol[] if there 6020 ** is not an entry there already. 6021 */ 6022 int k; 6023 pCol = pAggInfo->aCol; 6024 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6025 if( pCol->iTable==pExpr->iTable && 6026 pCol->iColumn==pExpr->iColumn ){ 6027 break; 6028 } 6029 } 6030 if( (k>=pAggInfo->nColumn) 6031 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6032 ){ 6033 pCol = &pAggInfo->aCol[k]; 6034 pCol->pTab = pExpr->y.pTab; 6035 pCol->iTable = pExpr->iTable; 6036 pCol->iColumn = pExpr->iColumn; 6037 pCol->iMem = ++pParse->nMem; 6038 pCol->iSorterColumn = -1; 6039 pCol->pCExpr = pExpr; 6040 if( pAggInfo->pGroupBy ){ 6041 int j, n; 6042 ExprList *pGB = pAggInfo->pGroupBy; 6043 struct ExprList_item *pTerm = pGB->a; 6044 n = pGB->nExpr; 6045 for(j=0; j<n; j++, pTerm++){ 6046 Expr *pE = pTerm->pExpr; 6047 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6048 pE->iColumn==pExpr->iColumn ){ 6049 pCol->iSorterColumn = j; 6050 break; 6051 } 6052 } 6053 } 6054 if( pCol->iSorterColumn<0 ){ 6055 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6056 } 6057 } 6058 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6059 ** because it was there before or because we just created it). 6060 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6061 ** pAggInfo->aCol[] entry. 6062 */ 6063 ExprSetVVAProperty(pExpr, EP_NoReduce); 6064 pExpr->pAggInfo = pAggInfo; 6065 pExpr->op = TK_AGG_COLUMN; 6066 pExpr->iAgg = (i16)k; 6067 break; 6068 } /* endif pExpr->iTable==pItem->iCursor */ 6069 } /* end loop over pSrcList */ 6070 } 6071 return WRC_Prune; 6072 } 6073 case TK_AGG_FUNCTION: { 6074 if( (pNC->ncFlags & NC_InAggFunc)==0 6075 && pWalker->walkerDepth==pExpr->op2 6076 ){ 6077 /* Check to see if pExpr is a duplicate of another aggregate 6078 ** function that is already in the pAggInfo structure 6079 */ 6080 struct AggInfo_func *pItem = pAggInfo->aFunc; 6081 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6082 if( pItem->pFExpr==pExpr ) break; 6083 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6084 break; 6085 } 6086 } 6087 if( i>=pAggInfo->nFunc ){ 6088 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6089 */ 6090 u8 enc = ENC(pParse->db); 6091 i = addAggInfoFunc(pParse->db, pAggInfo); 6092 if( i>=0 ){ 6093 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6094 pItem = &pAggInfo->aFunc[i]; 6095 pItem->pFExpr = pExpr; 6096 pItem->iMem = ++pParse->nMem; 6097 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6098 pItem->pFunc = sqlite3FindFunction(pParse->db, 6099 pExpr->u.zToken, 6100 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6101 if( pExpr->flags & EP_Distinct ){ 6102 pItem->iDistinct = pParse->nTab++; 6103 }else{ 6104 pItem->iDistinct = -1; 6105 } 6106 } 6107 } 6108 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6109 */ 6110 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6111 ExprSetVVAProperty(pExpr, EP_NoReduce); 6112 pExpr->iAgg = (i16)i; 6113 pExpr->pAggInfo = pAggInfo; 6114 return WRC_Prune; 6115 }else{ 6116 return WRC_Continue; 6117 } 6118 } 6119 } 6120 return WRC_Continue; 6121 } 6122 6123 /* 6124 ** Analyze the pExpr expression looking for aggregate functions and 6125 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6126 ** points to. Additional entries are made on the AggInfo object as 6127 ** necessary. 6128 ** 6129 ** This routine should only be called after the expression has been 6130 ** analyzed by sqlite3ResolveExprNames(). 6131 */ 6132 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6133 Walker w; 6134 w.xExprCallback = analyzeAggregate; 6135 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6136 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6137 w.walkerDepth = 0; 6138 w.u.pNC = pNC; 6139 w.pParse = 0; 6140 assert( pNC->pSrcList!=0 ); 6141 sqlite3WalkExpr(&w, pExpr); 6142 } 6143 6144 /* 6145 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6146 ** expression list. Return the number of errors. 6147 ** 6148 ** If an error is found, the analysis is cut short. 6149 */ 6150 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6151 struct ExprList_item *pItem; 6152 int i; 6153 if( pList ){ 6154 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6155 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6156 } 6157 } 6158 } 6159 6160 /* 6161 ** Allocate a single new register for use to hold some intermediate result. 6162 */ 6163 int sqlite3GetTempReg(Parse *pParse){ 6164 if( pParse->nTempReg==0 ){ 6165 return ++pParse->nMem; 6166 } 6167 return pParse->aTempReg[--pParse->nTempReg]; 6168 } 6169 6170 /* 6171 ** Deallocate a register, making available for reuse for some other 6172 ** purpose. 6173 */ 6174 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6175 if( iReg ){ 6176 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6177 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6178 pParse->aTempReg[pParse->nTempReg++] = iReg; 6179 } 6180 } 6181 } 6182 6183 /* 6184 ** Allocate or deallocate a block of nReg consecutive registers. 6185 */ 6186 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6187 int i, n; 6188 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6189 i = pParse->iRangeReg; 6190 n = pParse->nRangeReg; 6191 if( nReg<=n ){ 6192 pParse->iRangeReg += nReg; 6193 pParse->nRangeReg -= nReg; 6194 }else{ 6195 i = pParse->nMem+1; 6196 pParse->nMem += nReg; 6197 } 6198 return i; 6199 } 6200 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6201 if( nReg==1 ){ 6202 sqlite3ReleaseTempReg(pParse, iReg); 6203 return; 6204 } 6205 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6206 if( nReg>pParse->nRangeReg ){ 6207 pParse->nRangeReg = nReg; 6208 pParse->iRangeReg = iReg; 6209 } 6210 } 6211 6212 /* 6213 ** Mark all temporary registers as being unavailable for reuse. 6214 ** 6215 ** Always invoke this procedure after coding a subroutine or co-routine 6216 ** that might be invoked from other parts of the code, to ensure that 6217 ** the sub/co-routine does not use registers in common with the code that 6218 ** invokes the sub/co-routine. 6219 */ 6220 void sqlite3ClearTempRegCache(Parse *pParse){ 6221 pParse->nTempReg = 0; 6222 pParse->nRangeReg = 0; 6223 } 6224 6225 /* 6226 ** Validate that no temporary register falls within the range of 6227 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6228 ** statements. 6229 */ 6230 #ifdef SQLITE_DEBUG 6231 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6232 int i; 6233 if( pParse->nRangeReg>0 6234 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6235 && pParse->iRangeReg <= iLast 6236 ){ 6237 return 0; 6238 } 6239 for(i=0; i<pParse->nTempReg; i++){ 6240 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6241 return 0; 6242 } 6243 } 6244 return 1; 6245 } 6246 #endif /* SQLITE_DEBUG */ 6247