xref: /sqlite-3.40.0/src/expr.c (revision 48864df9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   op = pExpr->op;
37   if( op==TK_SELECT ){
38     assert( pExpr->flags&EP_xIsSelect );
39     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     assert( !ExprHasProperty(pExpr, EP_IntValue) );
44     return sqlite3AffinityType(pExpr->u.zToken);
45   }
46 #endif
47   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
48    && pExpr->pTab!=0
49   ){
50     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
51     ** a TK_COLUMN but was previously evaluated and cached in a register */
52     int j = pExpr->iColumn;
53     if( j<0 ) return SQLITE_AFF_INTEGER;
54     assert( pExpr->pTab && j<pExpr->pTab->nCol );
55     return pExpr->pTab->aCol[j].affinity;
56   }
57   return pExpr->affinity;
58 }
59 
60 /*
61 ** Set the collating sequence for expression pExpr to be the collating
62 ** sequence named by pToken.   Return a pointer to a new Expr node that
63 ** implements the COLLATE operator.
64 **
65 ** If a memory allocation error occurs, that fact is recorded in pParse->db
66 ** and the pExpr parameter is returned unchanged.
67 */
68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){
69   if( pCollName->n>0 ){
70     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
71     if( pNew ){
72       pNew->pLeft = pExpr;
73       pNew->flags |= EP_Collate;
74       pExpr = pNew;
75     }
76   }
77   return pExpr;
78 }
79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
80   Token s;
81   assert( zC!=0 );
82   s.z = zC;
83   s.n = sqlite3Strlen30(s.z);
84   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
85 }
86 
87 /*
88 ** Skip over any TK_COLLATE and/or TK_AS operators at the root of
89 ** an expression.
90 */
91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
92   while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){
93     pExpr = pExpr->pLeft;
94   }
95   return pExpr;
96 }
97 
98 /*
99 ** Return the collation sequence for the expression pExpr. If
100 ** there is no defined collating sequence, return NULL.
101 **
102 ** The collating sequence might be determined by a COLLATE operator
103 ** or by the presence of a column with a defined collating sequence.
104 ** COLLATE operators take first precedence.  Left operands take
105 ** precedence over right operands.
106 */
107 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
108   sqlite3 *db = pParse->db;
109   CollSeq *pColl = 0;
110   Expr *p = pExpr;
111   while( p ){
112     int op = p->op;
113     if( op==TK_CAST || op==TK_UPLUS ){
114       p = p->pLeft;
115       continue;
116     }
117     assert( op!=TK_REGISTER || p->op2!=TK_COLLATE );
118     if( op==TK_COLLATE ){
119       if( db->init.busy ){
120         /* Do not report errors when parsing while the schema */
121         pColl = sqlite3FindCollSeq(db, ENC(db), p->u.zToken, 0);
122       }else{
123         pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
124       }
125       break;
126     }
127     if( p->pTab!=0
128      && (op==TK_AGG_COLUMN || op==TK_COLUMN
129           || op==TK_REGISTER || op==TK_TRIGGER)
130     ){
131       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
132       ** a TK_COLUMN but was previously evaluated and cached in a register */
133       int j = p->iColumn;
134       if( j>=0 ){
135         const char *zColl = p->pTab->aCol[j].zColl;
136         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
137       }
138       break;
139     }
140     if( p->flags & EP_Collate ){
141       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
142         p = p->pLeft;
143       }else{
144         p = p->pRight;
145       }
146     }else{
147       break;
148     }
149   }
150   if( sqlite3CheckCollSeq(pParse, pColl) ){
151     pColl = 0;
152   }
153   return pColl;
154 }
155 
156 /*
157 ** pExpr is an operand of a comparison operator.  aff2 is the
158 ** type affinity of the other operand.  This routine returns the
159 ** type affinity that should be used for the comparison operator.
160 */
161 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
162   char aff1 = sqlite3ExprAffinity(pExpr);
163   if( aff1 && aff2 ){
164     /* Both sides of the comparison are columns. If one has numeric
165     ** affinity, use that. Otherwise use no affinity.
166     */
167     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
168       return SQLITE_AFF_NUMERIC;
169     }else{
170       return SQLITE_AFF_NONE;
171     }
172   }else if( !aff1 && !aff2 ){
173     /* Neither side of the comparison is a column.  Compare the
174     ** results directly.
175     */
176     return SQLITE_AFF_NONE;
177   }else{
178     /* One side is a column, the other is not. Use the columns affinity. */
179     assert( aff1==0 || aff2==0 );
180     return (aff1 + aff2);
181   }
182 }
183 
184 /*
185 ** pExpr is a comparison operator.  Return the type affinity that should
186 ** be applied to both operands prior to doing the comparison.
187 */
188 static char comparisonAffinity(Expr *pExpr){
189   char aff;
190   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
191           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
192           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
193   assert( pExpr->pLeft );
194   aff = sqlite3ExprAffinity(pExpr->pLeft);
195   if( pExpr->pRight ){
196     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
197   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
198     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
199   }else if( !aff ){
200     aff = SQLITE_AFF_NONE;
201   }
202   return aff;
203 }
204 
205 /*
206 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
207 ** idx_affinity is the affinity of an indexed column. Return true
208 ** if the index with affinity idx_affinity may be used to implement
209 ** the comparison in pExpr.
210 */
211 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
212   char aff = comparisonAffinity(pExpr);
213   switch( aff ){
214     case SQLITE_AFF_NONE:
215       return 1;
216     case SQLITE_AFF_TEXT:
217       return idx_affinity==SQLITE_AFF_TEXT;
218     default:
219       return sqlite3IsNumericAffinity(idx_affinity);
220   }
221 }
222 
223 /*
224 ** Return the P5 value that should be used for a binary comparison
225 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
226 */
227 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
228   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
229   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
230   return aff;
231 }
232 
233 /*
234 ** Return a pointer to the collation sequence that should be used by
235 ** a binary comparison operator comparing pLeft and pRight.
236 **
237 ** If the left hand expression has a collating sequence type, then it is
238 ** used. Otherwise the collation sequence for the right hand expression
239 ** is used, or the default (BINARY) if neither expression has a collating
240 ** type.
241 **
242 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
243 ** it is not considered.
244 */
245 CollSeq *sqlite3BinaryCompareCollSeq(
246   Parse *pParse,
247   Expr *pLeft,
248   Expr *pRight
249 ){
250   CollSeq *pColl;
251   assert( pLeft );
252   if( pLeft->flags & EP_Collate ){
253     pColl = sqlite3ExprCollSeq(pParse, pLeft);
254   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
255     pColl = sqlite3ExprCollSeq(pParse, pRight);
256   }else{
257     pColl = sqlite3ExprCollSeq(pParse, pLeft);
258     if( !pColl ){
259       pColl = sqlite3ExprCollSeq(pParse, pRight);
260     }
261   }
262   return pColl;
263 }
264 
265 /*
266 ** Generate code for a comparison operator.
267 */
268 static int codeCompare(
269   Parse *pParse,    /* The parsing (and code generating) context */
270   Expr *pLeft,      /* The left operand */
271   Expr *pRight,     /* The right operand */
272   int opcode,       /* The comparison opcode */
273   int in1, int in2, /* Register holding operands */
274   int dest,         /* Jump here if true.  */
275   int jumpIfNull    /* If true, jump if either operand is NULL */
276 ){
277   int p5;
278   int addr;
279   CollSeq *p4;
280 
281   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
282   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
283   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
284                            (void*)p4, P4_COLLSEQ);
285   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
286   return addr;
287 }
288 
289 #if SQLITE_MAX_EXPR_DEPTH>0
290 /*
291 ** Check that argument nHeight is less than or equal to the maximum
292 ** expression depth allowed. If it is not, leave an error message in
293 ** pParse.
294 */
295 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
296   int rc = SQLITE_OK;
297   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
298   if( nHeight>mxHeight ){
299     sqlite3ErrorMsg(pParse,
300        "Expression tree is too large (maximum depth %d)", mxHeight
301     );
302     rc = SQLITE_ERROR;
303   }
304   return rc;
305 }
306 
307 /* The following three functions, heightOfExpr(), heightOfExprList()
308 ** and heightOfSelect(), are used to determine the maximum height
309 ** of any expression tree referenced by the structure passed as the
310 ** first argument.
311 **
312 ** If this maximum height is greater than the current value pointed
313 ** to by pnHeight, the second parameter, then set *pnHeight to that
314 ** value.
315 */
316 static void heightOfExpr(Expr *p, int *pnHeight){
317   if( p ){
318     if( p->nHeight>*pnHeight ){
319       *pnHeight = p->nHeight;
320     }
321   }
322 }
323 static void heightOfExprList(ExprList *p, int *pnHeight){
324   if( p ){
325     int i;
326     for(i=0; i<p->nExpr; i++){
327       heightOfExpr(p->a[i].pExpr, pnHeight);
328     }
329   }
330 }
331 static void heightOfSelect(Select *p, int *pnHeight){
332   if( p ){
333     heightOfExpr(p->pWhere, pnHeight);
334     heightOfExpr(p->pHaving, pnHeight);
335     heightOfExpr(p->pLimit, pnHeight);
336     heightOfExpr(p->pOffset, pnHeight);
337     heightOfExprList(p->pEList, pnHeight);
338     heightOfExprList(p->pGroupBy, pnHeight);
339     heightOfExprList(p->pOrderBy, pnHeight);
340     heightOfSelect(p->pPrior, pnHeight);
341   }
342 }
343 
344 /*
345 ** Set the Expr.nHeight variable in the structure passed as an
346 ** argument. An expression with no children, Expr.pList or
347 ** Expr.pSelect member has a height of 1. Any other expression
348 ** has a height equal to the maximum height of any other
349 ** referenced Expr plus one.
350 */
351 static void exprSetHeight(Expr *p){
352   int nHeight = 0;
353   heightOfExpr(p->pLeft, &nHeight);
354   heightOfExpr(p->pRight, &nHeight);
355   if( ExprHasProperty(p, EP_xIsSelect) ){
356     heightOfSelect(p->x.pSelect, &nHeight);
357   }else{
358     heightOfExprList(p->x.pList, &nHeight);
359   }
360   p->nHeight = nHeight + 1;
361 }
362 
363 /*
364 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
365 ** the height is greater than the maximum allowed expression depth,
366 ** leave an error in pParse.
367 */
368 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
369   exprSetHeight(p);
370   sqlite3ExprCheckHeight(pParse, p->nHeight);
371 }
372 
373 /*
374 ** Return the maximum height of any expression tree referenced
375 ** by the select statement passed as an argument.
376 */
377 int sqlite3SelectExprHeight(Select *p){
378   int nHeight = 0;
379   heightOfSelect(p, &nHeight);
380   return nHeight;
381 }
382 #else
383   #define exprSetHeight(y)
384 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
385 
386 /*
387 ** This routine is the core allocator for Expr nodes.
388 **
389 ** Construct a new expression node and return a pointer to it.  Memory
390 ** for this node and for the pToken argument is a single allocation
391 ** obtained from sqlite3DbMalloc().  The calling function
392 ** is responsible for making sure the node eventually gets freed.
393 **
394 ** If dequote is true, then the token (if it exists) is dequoted.
395 ** If dequote is false, no dequoting is performance.  The deQuote
396 ** parameter is ignored if pToken is NULL or if the token does not
397 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
398 ** then the EP_DblQuoted flag is set on the expression node.
399 **
400 ** Special case:  If op==TK_INTEGER and pToken points to a string that
401 ** can be translated into a 32-bit integer, then the token is not
402 ** stored in u.zToken.  Instead, the integer values is written
403 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
404 ** is allocated to hold the integer text and the dequote flag is ignored.
405 */
406 Expr *sqlite3ExprAlloc(
407   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
408   int op,                 /* Expression opcode */
409   const Token *pToken,    /* Token argument.  Might be NULL */
410   int dequote             /* True to dequote */
411 ){
412   Expr *pNew;
413   int nExtra = 0;
414   int iValue = 0;
415 
416   if( pToken ){
417     if( op!=TK_INTEGER || pToken->z==0
418           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
419       nExtra = pToken->n+1;
420       assert( iValue>=0 );
421     }
422   }
423   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
424   if( pNew ){
425     pNew->op = (u8)op;
426     pNew->iAgg = -1;
427     if( pToken ){
428       if( nExtra==0 ){
429         pNew->flags |= EP_IntValue;
430         pNew->u.iValue = iValue;
431       }else{
432         int c;
433         pNew->u.zToken = (char*)&pNew[1];
434         assert( pToken->z!=0 || pToken->n==0 );
435         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
436         pNew->u.zToken[pToken->n] = 0;
437         if( dequote && nExtra>=3
438              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
439           sqlite3Dequote(pNew->u.zToken);
440           if( c=='"' ) pNew->flags |= EP_DblQuoted;
441         }
442       }
443     }
444 #if SQLITE_MAX_EXPR_DEPTH>0
445     pNew->nHeight = 1;
446 #endif
447   }
448   return pNew;
449 }
450 
451 /*
452 ** Allocate a new expression node from a zero-terminated token that has
453 ** already been dequoted.
454 */
455 Expr *sqlite3Expr(
456   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
457   int op,                 /* Expression opcode */
458   const char *zToken      /* Token argument.  Might be NULL */
459 ){
460   Token x;
461   x.z = zToken;
462   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
463   return sqlite3ExprAlloc(db, op, &x, 0);
464 }
465 
466 /*
467 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
468 **
469 ** If pRoot==NULL that means that a memory allocation error has occurred.
470 ** In that case, delete the subtrees pLeft and pRight.
471 */
472 void sqlite3ExprAttachSubtrees(
473   sqlite3 *db,
474   Expr *pRoot,
475   Expr *pLeft,
476   Expr *pRight
477 ){
478   if( pRoot==0 ){
479     assert( db->mallocFailed );
480     sqlite3ExprDelete(db, pLeft);
481     sqlite3ExprDelete(db, pRight);
482   }else{
483     if( pRight ){
484       pRoot->pRight = pRight;
485       pRoot->flags |= EP_Collate & pRight->flags;
486     }
487     if( pLeft ){
488       pRoot->pLeft = pLeft;
489       pRoot->flags |= EP_Collate & pLeft->flags;
490     }
491     exprSetHeight(pRoot);
492   }
493 }
494 
495 /*
496 ** Allocate a Expr node which joins as many as two subtrees.
497 **
498 ** One or both of the subtrees can be NULL.  Return a pointer to the new
499 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
500 ** free the subtrees and return NULL.
501 */
502 Expr *sqlite3PExpr(
503   Parse *pParse,          /* Parsing context */
504   int op,                 /* Expression opcode */
505   Expr *pLeft,            /* Left operand */
506   Expr *pRight,           /* Right operand */
507   const Token *pToken     /* Argument token */
508 ){
509   Expr *p;
510   if( op==TK_AND && pLeft && pRight ){
511     /* Take advantage of short-circuit false optimization for AND */
512     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
513   }else{
514     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
515     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
516   }
517   if( p ) {
518     sqlite3ExprCheckHeight(pParse, p->nHeight);
519   }
520   return p;
521 }
522 
523 /*
524 ** Return 1 if an expression must be FALSE in all cases and 0 if the
525 ** expression might be true.  This is an optimization.  If is OK to
526 ** return 0 here even if the expression really is always false (a
527 ** false negative).  But it is a bug to return 1 if the expression
528 ** might be true in some rare circumstances (a false positive.)
529 **
530 ** Note that if the expression is part of conditional for a
531 ** LEFT JOIN, then we cannot determine at compile-time whether or not
532 ** is it true or false, so always return 0.
533 */
534 static int exprAlwaysFalse(Expr *p){
535   int v = 0;
536   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
537   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
538   return v==0;
539 }
540 
541 /*
542 ** Join two expressions using an AND operator.  If either expression is
543 ** NULL, then just return the other expression.
544 **
545 ** If one side or the other of the AND is known to be false, then instead
546 ** of returning an AND expression, just return a constant expression with
547 ** a value of false.
548 */
549 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
550   if( pLeft==0 ){
551     return pRight;
552   }else if( pRight==0 ){
553     return pLeft;
554   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
555     sqlite3ExprDelete(db, pLeft);
556     sqlite3ExprDelete(db, pRight);
557     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
558   }else{
559     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
560     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
561     return pNew;
562   }
563 }
564 
565 /*
566 ** Construct a new expression node for a function with multiple
567 ** arguments.
568 */
569 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
570   Expr *pNew;
571   sqlite3 *db = pParse->db;
572   assert( pToken );
573   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
574   if( pNew==0 ){
575     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
576     return 0;
577   }
578   pNew->x.pList = pList;
579   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
580   sqlite3ExprSetHeight(pParse, pNew);
581   return pNew;
582 }
583 
584 /*
585 ** Assign a variable number to an expression that encodes a wildcard
586 ** in the original SQL statement.
587 **
588 ** Wildcards consisting of a single "?" are assigned the next sequential
589 ** variable number.
590 **
591 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
592 ** sure "nnn" is not too be to avoid a denial of service attack when
593 ** the SQL statement comes from an external source.
594 **
595 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
596 ** as the previous instance of the same wildcard.  Or if this is the first
597 ** instance of the wildcard, the next sequenial variable number is
598 ** assigned.
599 */
600 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
601   sqlite3 *db = pParse->db;
602   const char *z;
603 
604   if( pExpr==0 ) return;
605   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
606   z = pExpr->u.zToken;
607   assert( z!=0 );
608   assert( z[0]!=0 );
609   if( z[1]==0 ){
610     /* Wildcard of the form "?".  Assign the next variable number */
611     assert( z[0]=='?' );
612     pExpr->iColumn = (ynVar)(++pParse->nVar);
613   }else{
614     ynVar x = 0;
615     u32 n = sqlite3Strlen30(z);
616     if( z[0]=='?' ){
617       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
618       ** use it as the variable number */
619       i64 i;
620       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
621       pExpr->iColumn = x = (ynVar)i;
622       testcase( i==0 );
623       testcase( i==1 );
624       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
625       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
626       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
627         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
628             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
629         x = 0;
630       }
631       if( i>pParse->nVar ){
632         pParse->nVar = (int)i;
633       }
634     }else{
635       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
636       ** number as the prior appearance of the same name, or if the name
637       ** has never appeared before, reuse the same variable number
638       */
639       ynVar i;
640       for(i=0; i<pParse->nzVar; i++){
641         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
642           pExpr->iColumn = x = (ynVar)i+1;
643           break;
644         }
645       }
646       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
647     }
648     if( x>0 ){
649       if( x>pParse->nzVar ){
650         char **a;
651         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
652         if( a==0 ) return;  /* Error reported through db->mallocFailed */
653         pParse->azVar = a;
654         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
655         pParse->nzVar = x;
656       }
657       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
658         sqlite3DbFree(db, pParse->azVar[x-1]);
659         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
660       }
661     }
662   }
663   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
664     sqlite3ErrorMsg(pParse, "too many SQL variables");
665   }
666 }
667 
668 /*
669 ** Recursively delete an expression tree.
670 */
671 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
672   if( p==0 ) return;
673   /* Sanity check: Assert that the IntValue is non-negative if it exists */
674   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
675   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
676     sqlite3ExprDelete(db, p->pLeft);
677     sqlite3ExprDelete(db, p->pRight);
678     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
679       sqlite3DbFree(db, p->u.zToken);
680     }
681     if( ExprHasProperty(p, EP_xIsSelect) ){
682       sqlite3SelectDelete(db, p->x.pSelect);
683     }else{
684       sqlite3ExprListDelete(db, p->x.pList);
685     }
686   }
687   if( !ExprHasProperty(p, EP_Static) ){
688     sqlite3DbFree(db, p);
689   }
690 }
691 
692 /*
693 ** Return the number of bytes allocated for the expression structure
694 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
695 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
696 */
697 static int exprStructSize(Expr *p){
698   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
699   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
700   return EXPR_FULLSIZE;
701 }
702 
703 /*
704 ** The dupedExpr*Size() routines each return the number of bytes required
705 ** to store a copy of an expression or expression tree.  They differ in
706 ** how much of the tree is measured.
707 **
708 **     dupedExprStructSize()     Size of only the Expr structure
709 **     dupedExprNodeSize()       Size of Expr + space for token
710 **     dupedExprSize()           Expr + token + subtree components
711 **
712 ***************************************************************************
713 **
714 ** The dupedExprStructSize() function returns two values OR-ed together:
715 ** (1) the space required for a copy of the Expr structure only and
716 ** (2) the EP_xxx flags that indicate what the structure size should be.
717 ** The return values is always one of:
718 **
719 **      EXPR_FULLSIZE
720 **      EXPR_REDUCEDSIZE   | EP_Reduced
721 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
722 **
723 ** The size of the structure can be found by masking the return value
724 ** of this routine with 0xfff.  The flags can be found by masking the
725 ** return value with EP_Reduced|EP_TokenOnly.
726 **
727 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
728 ** (unreduced) Expr objects as they or originally constructed by the parser.
729 ** During expression analysis, extra information is computed and moved into
730 ** later parts of teh Expr object and that extra information might get chopped
731 ** off if the expression is reduced.  Note also that it does not work to
732 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
733 ** to reduce a pristine expression tree from the parser.  The implementation
734 ** of dupedExprStructSize() contain multiple assert() statements that attempt
735 ** to enforce this constraint.
736 */
737 static int dupedExprStructSize(Expr *p, int flags){
738   int nSize;
739   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
740   if( 0==(flags&EXPRDUP_REDUCE) ){
741     nSize = EXPR_FULLSIZE;
742   }else{
743     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
744     assert( !ExprHasProperty(p, EP_FromJoin) );
745     assert( (p->flags2 & EP2_MallocedToken)==0 );
746     assert( (p->flags2 & EP2_Irreducible)==0 );
747     if( p->pLeft || p->pRight || p->x.pList ){
748       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
749     }else{
750       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
751     }
752   }
753   return nSize;
754 }
755 
756 /*
757 ** This function returns the space in bytes required to store the copy
758 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
759 ** string is defined.)
760 */
761 static int dupedExprNodeSize(Expr *p, int flags){
762   int nByte = dupedExprStructSize(p, flags) & 0xfff;
763   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
764     nByte += sqlite3Strlen30(p->u.zToken)+1;
765   }
766   return ROUND8(nByte);
767 }
768 
769 /*
770 ** Return the number of bytes required to create a duplicate of the
771 ** expression passed as the first argument. The second argument is a
772 ** mask containing EXPRDUP_XXX flags.
773 **
774 ** The value returned includes space to create a copy of the Expr struct
775 ** itself and the buffer referred to by Expr.u.zToken, if any.
776 **
777 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
778 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
779 ** and Expr.pRight variables (but not for any structures pointed to or
780 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
781 */
782 static int dupedExprSize(Expr *p, int flags){
783   int nByte = 0;
784   if( p ){
785     nByte = dupedExprNodeSize(p, flags);
786     if( flags&EXPRDUP_REDUCE ){
787       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
788     }
789   }
790   return nByte;
791 }
792 
793 /*
794 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
795 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
796 ** to store the copy of expression p, the copies of p->u.zToken
797 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
798 ** if any. Before returning, *pzBuffer is set to the first byte passed the
799 ** portion of the buffer copied into by this function.
800 */
801 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
802   Expr *pNew = 0;                      /* Value to return */
803   if( p ){
804     const int isReduced = (flags&EXPRDUP_REDUCE);
805     u8 *zAlloc;
806     u32 staticFlag = 0;
807 
808     assert( pzBuffer==0 || isReduced );
809 
810     /* Figure out where to write the new Expr structure. */
811     if( pzBuffer ){
812       zAlloc = *pzBuffer;
813       staticFlag = EP_Static;
814     }else{
815       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
816     }
817     pNew = (Expr *)zAlloc;
818 
819     if( pNew ){
820       /* Set nNewSize to the size allocated for the structure pointed to
821       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
822       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
823       ** by the copy of the p->u.zToken string (if any).
824       */
825       const unsigned nStructSize = dupedExprStructSize(p, flags);
826       const int nNewSize = nStructSize & 0xfff;
827       int nToken;
828       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
829         nToken = sqlite3Strlen30(p->u.zToken) + 1;
830       }else{
831         nToken = 0;
832       }
833       if( isReduced ){
834         assert( ExprHasProperty(p, EP_Reduced)==0 );
835         memcpy(zAlloc, p, nNewSize);
836       }else{
837         int nSize = exprStructSize(p);
838         memcpy(zAlloc, p, nSize);
839         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
840       }
841 
842       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
843       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
844       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
845       pNew->flags |= staticFlag;
846 
847       /* Copy the p->u.zToken string, if any. */
848       if( nToken ){
849         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
850         memcpy(zToken, p->u.zToken, nToken);
851       }
852 
853       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
854         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
855         if( ExprHasProperty(p, EP_xIsSelect) ){
856           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
857         }else{
858           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
859         }
860       }
861 
862       /* Fill in pNew->pLeft and pNew->pRight. */
863       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
864         zAlloc += dupedExprNodeSize(p, flags);
865         if( ExprHasProperty(pNew, EP_Reduced) ){
866           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
867           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
868         }
869         if( pzBuffer ){
870           *pzBuffer = zAlloc;
871         }
872       }else{
873         pNew->flags2 = 0;
874         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
875           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
876           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
877         }
878       }
879 
880     }
881   }
882   return pNew;
883 }
884 
885 /*
886 ** The following group of routines make deep copies of expressions,
887 ** expression lists, ID lists, and select statements.  The copies can
888 ** be deleted (by being passed to their respective ...Delete() routines)
889 ** without effecting the originals.
890 **
891 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
892 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
893 ** by subsequent calls to sqlite*ListAppend() routines.
894 **
895 ** Any tables that the SrcList might point to are not duplicated.
896 **
897 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
898 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
899 ** truncated version of the usual Expr structure that will be stored as
900 ** part of the in-memory representation of the database schema.
901 */
902 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
903   return exprDup(db, p, flags, 0);
904 }
905 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
906   ExprList *pNew;
907   struct ExprList_item *pItem, *pOldItem;
908   int i;
909   if( p==0 ) return 0;
910   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
911   if( pNew==0 ) return 0;
912   pNew->iECursor = 0;
913   pNew->nExpr = i = p->nExpr;
914   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
915   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
916   if( pItem==0 ){
917     sqlite3DbFree(db, pNew);
918     return 0;
919   }
920   pOldItem = p->a;
921   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
922     Expr *pOldExpr = pOldItem->pExpr;
923     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
924     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
925     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
926     pItem->sortOrder = pOldItem->sortOrder;
927     pItem->done = 0;
928     pItem->iOrderByCol = pOldItem->iOrderByCol;
929     pItem->iAlias = pOldItem->iAlias;
930   }
931   return pNew;
932 }
933 
934 /*
935 ** If cursors, triggers, views and subqueries are all omitted from
936 ** the build, then none of the following routines, except for
937 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
938 ** called with a NULL argument.
939 */
940 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
941  || !defined(SQLITE_OMIT_SUBQUERY)
942 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
943   SrcList *pNew;
944   int i;
945   int nByte;
946   if( p==0 ) return 0;
947   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
948   pNew = sqlite3DbMallocRaw(db, nByte );
949   if( pNew==0 ) return 0;
950   pNew->nSrc = pNew->nAlloc = p->nSrc;
951   for(i=0; i<p->nSrc; i++){
952     struct SrcList_item *pNewItem = &pNew->a[i];
953     struct SrcList_item *pOldItem = &p->a[i];
954     Table *pTab;
955     pNewItem->pSchema = pOldItem->pSchema;
956     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
957     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
958     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
959     pNewItem->jointype = pOldItem->jointype;
960     pNewItem->iCursor = pOldItem->iCursor;
961     pNewItem->addrFillSub = pOldItem->addrFillSub;
962     pNewItem->regReturn = pOldItem->regReturn;
963     pNewItem->isCorrelated = pOldItem->isCorrelated;
964     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
965     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
966     pNewItem->notIndexed = pOldItem->notIndexed;
967     pNewItem->pIndex = pOldItem->pIndex;
968     pTab = pNewItem->pTab = pOldItem->pTab;
969     if( pTab ){
970       pTab->nRef++;
971     }
972     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
973     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
974     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
975     pNewItem->colUsed = pOldItem->colUsed;
976   }
977   return pNew;
978 }
979 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
980   IdList *pNew;
981   int i;
982   if( p==0 ) return 0;
983   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
984   if( pNew==0 ) return 0;
985   pNew->nId = p->nId;
986   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
987   if( pNew->a==0 ){
988     sqlite3DbFree(db, pNew);
989     return 0;
990   }
991   /* Note that because the size of the allocation for p->a[] is not
992   ** necessarily a power of two, sqlite3IdListAppend() may not be called
993   ** on the duplicate created by this function. */
994   for(i=0; i<p->nId; i++){
995     struct IdList_item *pNewItem = &pNew->a[i];
996     struct IdList_item *pOldItem = &p->a[i];
997     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
998     pNewItem->idx = pOldItem->idx;
999   }
1000   return pNew;
1001 }
1002 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1003   Select *pNew, *pPrior;
1004   if( p==0 ) return 0;
1005   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1006   if( pNew==0 ) return 0;
1007   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1008   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1009   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1010   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1011   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1012   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1013   pNew->op = p->op;
1014   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1015   if( pPrior ) pPrior->pNext = pNew;
1016   pNew->pNext = 0;
1017   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1018   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1019   pNew->iLimit = 0;
1020   pNew->iOffset = 0;
1021   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1022   pNew->pRightmost = 0;
1023   pNew->addrOpenEphm[0] = -1;
1024   pNew->addrOpenEphm[1] = -1;
1025   pNew->addrOpenEphm[2] = -1;
1026   return pNew;
1027 }
1028 #else
1029 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1030   assert( p==0 );
1031   return 0;
1032 }
1033 #endif
1034 
1035 
1036 /*
1037 ** Add a new element to the end of an expression list.  If pList is
1038 ** initially NULL, then create a new expression list.
1039 **
1040 ** If a memory allocation error occurs, the entire list is freed and
1041 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1042 ** that the new entry was successfully appended.
1043 */
1044 ExprList *sqlite3ExprListAppend(
1045   Parse *pParse,          /* Parsing context */
1046   ExprList *pList,        /* List to which to append. Might be NULL */
1047   Expr *pExpr             /* Expression to be appended. Might be NULL */
1048 ){
1049   sqlite3 *db = pParse->db;
1050   if( pList==0 ){
1051     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1052     if( pList==0 ){
1053       goto no_mem;
1054     }
1055     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1056     if( pList->a==0 ) goto no_mem;
1057   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1058     struct ExprList_item *a;
1059     assert( pList->nExpr>0 );
1060     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1061     if( a==0 ){
1062       goto no_mem;
1063     }
1064     pList->a = a;
1065   }
1066   assert( pList->a!=0 );
1067   if( 1 ){
1068     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1069     memset(pItem, 0, sizeof(*pItem));
1070     pItem->pExpr = pExpr;
1071   }
1072   return pList;
1073 
1074 no_mem:
1075   /* Avoid leaking memory if malloc has failed. */
1076   sqlite3ExprDelete(db, pExpr);
1077   sqlite3ExprListDelete(db, pList);
1078   return 0;
1079 }
1080 
1081 /*
1082 ** Set the ExprList.a[].zName element of the most recently added item
1083 ** on the expression list.
1084 **
1085 ** pList might be NULL following an OOM error.  But pName should never be
1086 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1087 ** is set.
1088 */
1089 void sqlite3ExprListSetName(
1090   Parse *pParse,          /* Parsing context */
1091   ExprList *pList,        /* List to which to add the span. */
1092   Token *pName,           /* Name to be added */
1093   int dequote             /* True to cause the name to be dequoted */
1094 ){
1095   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1096   if( pList ){
1097     struct ExprList_item *pItem;
1098     assert( pList->nExpr>0 );
1099     pItem = &pList->a[pList->nExpr-1];
1100     assert( pItem->zName==0 );
1101     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1102     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1103   }
1104 }
1105 
1106 /*
1107 ** Set the ExprList.a[].zSpan element of the most recently added item
1108 ** on the expression list.
1109 **
1110 ** pList might be NULL following an OOM error.  But pSpan should never be
1111 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1112 ** is set.
1113 */
1114 void sqlite3ExprListSetSpan(
1115   Parse *pParse,          /* Parsing context */
1116   ExprList *pList,        /* List to which to add the span. */
1117   ExprSpan *pSpan         /* The span to be added */
1118 ){
1119   sqlite3 *db = pParse->db;
1120   assert( pList!=0 || db->mallocFailed!=0 );
1121   if( pList ){
1122     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1123     assert( pList->nExpr>0 );
1124     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1125     sqlite3DbFree(db, pItem->zSpan);
1126     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1127                                     (int)(pSpan->zEnd - pSpan->zStart));
1128   }
1129 }
1130 
1131 /*
1132 ** If the expression list pEList contains more than iLimit elements,
1133 ** leave an error message in pParse.
1134 */
1135 void sqlite3ExprListCheckLength(
1136   Parse *pParse,
1137   ExprList *pEList,
1138   const char *zObject
1139 ){
1140   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1141   testcase( pEList && pEList->nExpr==mx );
1142   testcase( pEList && pEList->nExpr==mx+1 );
1143   if( pEList && pEList->nExpr>mx ){
1144     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1145   }
1146 }
1147 
1148 /*
1149 ** Delete an entire expression list.
1150 */
1151 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1152   int i;
1153   struct ExprList_item *pItem;
1154   if( pList==0 ) return;
1155   assert( pList->a!=0 || pList->nExpr==0 );
1156   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1157     sqlite3ExprDelete(db, pItem->pExpr);
1158     sqlite3DbFree(db, pItem->zName);
1159     sqlite3DbFree(db, pItem->zSpan);
1160   }
1161   sqlite3DbFree(db, pList->a);
1162   sqlite3DbFree(db, pList);
1163 }
1164 
1165 /*
1166 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1167 ** to an integer.  These routines are checking an expression to see
1168 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1169 ** not constant.
1170 **
1171 ** These callback routines are used to implement the following:
1172 **
1173 **     sqlite3ExprIsConstant()
1174 **     sqlite3ExprIsConstantNotJoin()
1175 **     sqlite3ExprIsConstantOrFunction()
1176 **
1177 */
1178 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1179 
1180   /* If pWalker->u.i is 3 then any term of the expression that comes from
1181   ** the ON or USING clauses of a join disqualifies the expression
1182   ** from being considered constant. */
1183   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1184     pWalker->u.i = 0;
1185     return WRC_Abort;
1186   }
1187 
1188   switch( pExpr->op ){
1189     /* Consider functions to be constant if all their arguments are constant
1190     ** and pWalker->u.i==2 */
1191     case TK_FUNCTION:
1192       if( pWalker->u.i==2 ) return 0;
1193       /* Fall through */
1194     case TK_ID:
1195     case TK_COLUMN:
1196     case TK_AGG_FUNCTION:
1197     case TK_AGG_COLUMN:
1198       testcase( pExpr->op==TK_ID );
1199       testcase( pExpr->op==TK_COLUMN );
1200       testcase( pExpr->op==TK_AGG_FUNCTION );
1201       testcase( pExpr->op==TK_AGG_COLUMN );
1202       pWalker->u.i = 0;
1203       return WRC_Abort;
1204     default:
1205       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1206       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1207       return WRC_Continue;
1208   }
1209 }
1210 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1211   UNUSED_PARAMETER(NotUsed);
1212   pWalker->u.i = 0;
1213   return WRC_Abort;
1214 }
1215 static int exprIsConst(Expr *p, int initFlag){
1216   Walker w;
1217   w.u.i = initFlag;
1218   w.xExprCallback = exprNodeIsConstant;
1219   w.xSelectCallback = selectNodeIsConstant;
1220   sqlite3WalkExpr(&w, p);
1221   return w.u.i;
1222 }
1223 
1224 /*
1225 ** Walk an expression tree.  Return 1 if the expression is constant
1226 ** and 0 if it involves variables or function calls.
1227 **
1228 ** For the purposes of this function, a double-quoted string (ex: "abc")
1229 ** is considered a variable but a single-quoted string (ex: 'abc') is
1230 ** a constant.
1231 */
1232 int sqlite3ExprIsConstant(Expr *p){
1233   return exprIsConst(p, 1);
1234 }
1235 
1236 /*
1237 ** Walk an expression tree.  Return 1 if the expression is constant
1238 ** that does no originate from the ON or USING clauses of a join.
1239 ** Return 0 if it involves variables or function calls or terms from
1240 ** an ON or USING clause.
1241 */
1242 int sqlite3ExprIsConstantNotJoin(Expr *p){
1243   return exprIsConst(p, 3);
1244 }
1245 
1246 /*
1247 ** Walk an expression tree.  Return 1 if the expression is constant
1248 ** or a function call with constant arguments.  Return and 0 if there
1249 ** are any variables.
1250 **
1251 ** For the purposes of this function, a double-quoted string (ex: "abc")
1252 ** is considered a variable but a single-quoted string (ex: 'abc') is
1253 ** a constant.
1254 */
1255 int sqlite3ExprIsConstantOrFunction(Expr *p){
1256   return exprIsConst(p, 2);
1257 }
1258 
1259 /*
1260 ** If the expression p codes a constant integer that is small enough
1261 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1262 ** in *pValue.  If the expression is not an integer or if it is too big
1263 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1264 */
1265 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1266   int rc = 0;
1267 
1268   /* If an expression is an integer literal that fits in a signed 32-bit
1269   ** integer, then the EP_IntValue flag will have already been set */
1270   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1271            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1272 
1273   if( p->flags & EP_IntValue ){
1274     *pValue = p->u.iValue;
1275     return 1;
1276   }
1277   switch( p->op ){
1278     case TK_UPLUS: {
1279       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1280       break;
1281     }
1282     case TK_UMINUS: {
1283       int v;
1284       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1285         *pValue = -v;
1286         rc = 1;
1287       }
1288       break;
1289     }
1290     default: break;
1291   }
1292   return rc;
1293 }
1294 
1295 /*
1296 ** Return FALSE if there is no chance that the expression can be NULL.
1297 **
1298 ** If the expression might be NULL or if the expression is too complex
1299 ** to tell return TRUE.
1300 **
1301 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1302 ** when we know that a value cannot be NULL.  Hence, a false positive
1303 ** (returning TRUE when in fact the expression can never be NULL) might
1304 ** be a small performance hit but is otherwise harmless.  On the other
1305 ** hand, a false negative (returning FALSE when the result could be NULL)
1306 ** will likely result in an incorrect answer.  So when in doubt, return
1307 ** TRUE.
1308 */
1309 int sqlite3ExprCanBeNull(const Expr *p){
1310   u8 op;
1311   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1312   op = p->op;
1313   if( op==TK_REGISTER ) op = p->op2;
1314   switch( op ){
1315     case TK_INTEGER:
1316     case TK_STRING:
1317     case TK_FLOAT:
1318     case TK_BLOB:
1319       return 0;
1320     default:
1321       return 1;
1322   }
1323 }
1324 
1325 /*
1326 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1327 ** to location iDest if the value in iReg is NULL.  The value in iReg
1328 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1329 ** determine that it can never generate a NULL, then the OP_IsNull operation
1330 ** can be omitted.
1331 */
1332 void sqlite3ExprCodeIsNullJump(
1333   Vdbe *v,            /* The VDBE under construction */
1334   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1335   int iReg,           /* Test the value in this register for NULL */
1336   int iDest           /* Jump here if the value is null */
1337 ){
1338   if( sqlite3ExprCanBeNull(pExpr) ){
1339     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1340   }
1341 }
1342 
1343 /*
1344 ** Return TRUE if the given expression is a constant which would be
1345 ** unchanged by OP_Affinity with the affinity given in the second
1346 ** argument.
1347 **
1348 ** This routine is used to determine if the OP_Affinity operation
1349 ** can be omitted.  When in doubt return FALSE.  A false negative
1350 ** is harmless.  A false positive, however, can result in the wrong
1351 ** answer.
1352 */
1353 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1354   u8 op;
1355   if( aff==SQLITE_AFF_NONE ) return 1;
1356   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1357   op = p->op;
1358   if( op==TK_REGISTER ) op = p->op2;
1359   switch( op ){
1360     case TK_INTEGER: {
1361       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1362     }
1363     case TK_FLOAT: {
1364       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1365     }
1366     case TK_STRING: {
1367       return aff==SQLITE_AFF_TEXT;
1368     }
1369     case TK_BLOB: {
1370       return 1;
1371     }
1372     case TK_COLUMN: {
1373       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1374       return p->iColumn<0
1375           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1376     }
1377     default: {
1378       return 0;
1379     }
1380   }
1381 }
1382 
1383 /*
1384 ** Return TRUE if the given string is a row-id column name.
1385 */
1386 int sqlite3IsRowid(const char *z){
1387   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1388   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1389   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1390   return 0;
1391 }
1392 
1393 /*
1394 ** Return true if we are able to the IN operator optimization on a
1395 ** query of the form
1396 **
1397 **       x IN (SELECT ...)
1398 **
1399 ** Where the SELECT... clause is as specified by the parameter to this
1400 ** routine.
1401 **
1402 ** The Select object passed in has already been preprocessed and no
1403 ** errors have been found.
1404 */
1405 #ifndef SQLITE_OMIT_SUBQUERY
1406 static int isCandidateForInOpt(Select *p){
1407   SrcList *pSrc;
1408   ExprList *pEList;
1409   Table *pTab;
1410   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1411   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1412   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1413     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1414     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1415     return 0; /* No DISTINCT keyword and no aggregate functions */
1416   }
1417   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1418   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1419   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1420   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1421   pSrc = p->pSrc;
1422   assert( pSrc!=0 );
1423   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1424   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1425   pTab = pSrc->a[0].pTab;
1426   if( NEVER(pTab==0) ) return 0;
1427   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1428   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1429   pEList = p->pEList;
1430   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1431   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1432   return 1;
1433 }
1434 #endif /* SQLITE_OMIT_SUBQUERY */
1435 
1436 /*
1437 ** Code an OP_Once instruction and allocate space for its flag. Return the
1438 ** address of the new instruction.
1439 */
1440 int sqlite3CodeOnce(Parse *pParse){
1441   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1442   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1443 }
1444 
1445 /*
1446 ** This function is used by the implementation of the IN (...) operator.
1447 ** The pX parameter is the expression on the RHS of the IN operator, which
1448 ** might be either a list of expressions or a subquery.
1449 **
1450 ** The job of this routine is to find or create a b-tree object that can
1451 ** be used either to test for membership in the RHS set or to iterate through
1452 ** all members of the RHS set, skipping duplicates.
1453 **
1454 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1455 ** and pX->iTable is set to the index of that cursor.
1456 **
1457 ** The returned value of this function indicates the b-tree type, as follows:
1458 **
1459 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1460 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1461 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1462 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1463 **                         populated epheremal table.
1464 **
1465 ** An existing b-tree might be used if the RHS expression pX is a simple
1466 ** subquery such as:
1467 **
1468 **     SELECT <column> FROM <table>
1469 **
1470 ** If the RHS of the IN operator is a list or a more complex subquery, then
1471 ** an ephemeral table might need to be generated from the RHS and then
1472 ** pX->iTable made to point to the ephermeral table instead of an
1473 ** existing table.
1474 **
1475 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1476 ** through the set members, skipping any duplicates. In this case an
1477 ** epheremal table must be used unless the selected <column> is guaranteed
1478 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1479 ** has a UNIQUE constraint or UNIQUE index.
1480 **
1481 ** If the prNotFound parameter is not 0, then the b-tree will be used
1482 ** for fast set membership tests. In this case an epheremal table must
1483 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1484 ** be found with <column> as its left-most column.
1485 **
1486 ** When the b-tree is being used for membership tests, the calling function
1487 ** needs to know whether or not the structure contains an SQL NULL
1488 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1489 ** If there is any chance that the (...) might contain a NULL value at
1490 ** runtime, then a register is allocated and the register number written
1491 ** to *prNotFound. If there is no chance that the (...) contains a
1492 ** NULL value, then *prNotFound is left unchanged.
1493 **
1494 ** If a register is allocated and its location stored in *prNotFound, then
1495 ** its initial value is NULL.  If the (...) does not remain constant
1496 ** for the duration of the query (i.e. the SELECT within the (...)
1497 ** is a correlated subquery) then the value of the allocated register is
1498 ** reset to NULL each time the subquery is rerun. This allows the
1499 ** caller to use vdbe code equivalent to the following:
1500 **
1501 **   if( register==NULL ){
1502 **     has_null = <test if data structure contains null>
1503 **     register = 1
1504 **   }
1505 **
1506 ** in order to avoid running the <test if data structure contains null>
1507 ** test more often than is necessary.
1508 */
1509 #ifndef SQLITE_OMIT_SUBQUERY
1510 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1511   Select *p;                            /* SELECT to the right of IN operator */
1512   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1513   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1514   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1515   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1516 
1517   assert( pX->op==TK_IN );
1518 
1519   /* Check to see if an existing table or index can be used to
1520   ** satisfy the query.  This is preferable to generating a new
1521   ** ephemeral table.
1522   */
1523   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1524   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1525     sqlite3 *db = pParse->db;              /* Database connection */
1526     Table *pTab;                           /* Table <table>. */
1527     Expr *pExpr;                           /* Expression <column> */
1528     int iCol;                              /* Index of column <column> */
1529     int iDb;                               /* Database idx for pTab */
1530 
1531     assert( p );                        /* Because of isCandidateForInOpt(p) */
1532     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1533     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1534     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1535     pTab = p->pSrc->a[0].pTab;
1536     pExpr = p->pEList->a[0].pExpr;
1537     iCol = pExpr->iColumn;
1538 
1539     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1540     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1541     sqlite3CodeVerifySchema(pParse, iDb);
1542     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1543 
1544     /* This function is only called from two places. In both cases the vdbe
1545     ** has already been allocated. So assume sqlite3GetVdbe() is always
1546     ** successful here.
1547     */
1548     assert(v);
1549     if( iCol<0 ){
1550       int iAddr;
1551 
1552       iAddr = sqlite3CodeOnce(pParse);
1553 
1554       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1555       eType = IN_INDEX_ROWID;
1556 
1557       sqlite3VdbeJumpHere(v, iAddr);
1558     }else{
1559       Index *pIdx;                         /* Iterator variable */
1560 
1561       /* The collation sequence used by the comparison. If an index is to
1562       ** be used in place of a temp-table, it must be ordered according
1563       ** to this collation sequence.  */
1564       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1565 
1566       /* Check that the affinity that will be used to perform the
1567       ** comparison is the same as the affinity of the column. If
1568       ** it is not, it is not possible to use any index.
1569       */
1570       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1571 
1572       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1573         if( (pIdx->aiColumn[0]==iCol)
1574          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1575          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1576         ){
1577           int iAddr;
1578           char *pKey;
1579 
1580           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1581           iAddr = sqlite3CodeOnce(pParse);
1582 
1583           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1584                                pKey,P4_KEYINFO_HANDOFF);
1585           VdbeComment((v, "%s", pIdx->zName));
1586           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1587           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1588 
1589           sqlite3VdbeJumpHere(v, iAddr);
1590           if( prNotFound && !pTab->aCol[iCol].notNull ){
1591             *prNotFound = ++pParse->nMem;
1592             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1593           }
1594         }
1595       }
1596     }
1597   }
1598 
1599   if( eType==0 ){
1600     /* Could not found an existing table or index to use as the RHS b-tree.
1601     ** We will have to generate an ephemeral table to do the job.
1602     */
1603     double savedNQueryLoop = pParse->nQueryLoop;
1604     int rMayHaveNull = 0;
1605     eType = IN_INDEX_EPH;
1606     if( prNotFound ){
1607       *prNotFound = rMayHaveNull = ++pParse->nMem;
1608       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1609     }else{
1610       testcase( pParse->nQueryLoop>(double)1 );
1611       pParse->nQueryLoop = (double)1;
1612       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1613         eType = IN_INDEX_ROWID;
1614       }
1615     }
1616     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1617     pParse->nQueryLoop = savedNQueryLoop;
1618   }else{
1619     pX->iTable = iTab;
1620   }
1621   return eType;
1622 }
1623 #endif
1624 
1625 /*
1626 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1627 ** or IN operators.  Examples:
1628 **
1629 **     (SELECT a FROM b)          -- subquery
1630 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1631 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1632 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1633 **
1634 ** The pExpr parameter describes the expression that contains the IN
1635 ** operator or subquery.
1636 **
1637 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1638 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1639 ** to some integer key column of a table B-Tree. In this case, use an
1640 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1641 ** (slower) variable length keys B-Tree.
1642 **
1643 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1644 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1645 ** Furthermore, the IN is in a WHERE clause and that we really want
1646 ** to iterate over the RHS of the IN operator in order to quickly locate
1647 ** all corresponding LHS elements.  All this routine does is initialize
1648 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1649 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1650 **
1651 ** If rMayHaveNull is zero, that means that the subquery is being used
1652 ** for membership testing only.  There is no need to initialize any
1653 ** registers to indicate the presense or absence of NULLs on the RHS.
1654 **
1655 ** For a SELECT or EXISTS operator, return the register that holds the
1656 ** result.  For IN operators or if an error occurs, the return value is 0.
1657 */
1658 #ifndef SQLITE_OMIT_SUBQUERY
1659 int sqlite3CodeSubselect(
1660   Parse *pParse,          /* Parsing context */
1661   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1662   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1663   int isRowid             /* If true, LHS of IN operator is a rowid */
1664 ){
1665   int testAddr = -1;                      /* One-time test address */
1666   int rReg = 0;                           /* Register storing resulting */
1667   Vdbe *v = sqlite3GetVdbe(pParse);
1668   if( NEVER(v==0) ) return 0;
1669   sqlite3ExprCachePush(pParse);
1670 
1671   /* This code must be run in its entirety every time it is encountered
1672   ** if any of the following is true:
1673   **
1674   **    *  The right-hand side is a correlated subquery
1675   **    *  The right-hand side is an expression list containing variables
1676   **    *  We are inside a trigger
1677   **
1678   ** If all of the above are false, then we can run this code just once
1679   ** save the results, and reuse the same result on subsequent invocations.
1680   */
1681   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){
1682     testAddr = sqlite3CodeOnce(pParse);
1683   }
1684 
1685 #ifndef SQLITE_OMIT_EXPLAIN
1686   if( pParse->explain==2 ){
1687     char *zMsg = sqlite3MPrintf(
1688         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1689         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1690     );
1691     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1692   }
1693 #endif
1694 
1695   switch( pExpr->op ){
1696     case TK_IN: {
1697       char affinity;              /* Affinity of the LHS of the IN */
1698       KeyInfo keyInfo;            /* Keyinfo for the generated table */
1699       static u8 sortOrder = 0;    /* Fake aSortOrder for keyInfo */
1700       int addr;                   /* Address of OP_OpenEphemeral instruction */
1701       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1702 
1703       if( rMayHaveNull ){
1704         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1705       }
1706 
1707       affinity = sqlite3ExprAffinity(pLeft);
1708 
1709       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1710       ** expression it is handled the same way.  An ephemeral table is
1711       ** filled with single-field index keys representing the results
1712       ** from the SELECT or the <exprlist>.
1713       **
1714       ** If the 'x' expression is a column value, or the SELECT...
1715       ** statement returns a column value, then the affinity of that
1716       ** column is used to build the index keys. If both 'x' and the
1717       ** SELECT... statement are columns, then numeric affinity is used
1718       ** if either column has NUMERIC or INTEGER affinity. If neither
1719       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1720       ** is used.
1721       */
1722       pExpr->iTable = pParse->nTab++;
1723       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1724       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1725       memset(&keyInfo, 0, sizeof(keyInfo));
1726       keyInfo.nField = 1;
1727       keyInfo.aSortOrder = &sortOrder;
1728 
1729       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1730         /* Case 1:     expr IN (SELECT ...)
1731         **
1732         ** Generate code to write the results of the select into the temporary
1733         ** table allocated and opened above.
1734         */
1735         SelectDest dest;
1736         ExprList *pEList;
1737 
1738         assert( !isRowid );
1739         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1740         dest.affSdst = (u8)affinity;
1741         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1742         pExpr->x.pSelect->iLimit = 0;
1743         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1744           return 0;
1745         }
1746         pEList = pExpr->x.pSelect->pEList;
1747         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1748           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1749               pEList->a[0].pExpr);
1750         }
1751       }else if( ALWAYS(pExpr->x.pList!=0) ){
1752         /* Case 2:     expr IN (exprlist)
1753         **
1754         ** For each expression, build an index key from the evaluation and
1755         ** store it in the temporary table. If <expr> is a column, then use
1756         ** that columns affinity when building index keys. If <expr> is not
1757         ** a column, use numeric affinity.
1758         */
1759         int i;
1760         ExprList *pList = pExpr->x.pList;
1761         struct ExprList_item *pItem;
1762         int r1, r2, r3;
1763 
1764         if( !affinity ){
1765           affinity = SQLITE_AFF_NONE;
1766         }
1767         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1768         keyInfo.aSortOrder = &sortOrder;
1769 
1770         /* Loop through each expression in <exprlist>. */
1771         r1 = sqlite3GetTempReg(pParse);
1772         r2 = sqlite3GetTempReg(pParse);
1773         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1774         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1775           Expr *pE2 = pItem->pExpr;
1776           int iValToIns;
1777 
1778           /* If the expression is not constant then we will need to
1779           ** disable the test that was generated above that makes sure
1780           ** this code only executes once.  Because for a non-constant
1781           ** expression we need to rerun this code each time.
1782           */
1783           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1784             sqlite3VdbeChangeToNoop(v, testAddr);
1785             testAddr = -1;
1786           }
1787 
1788           /* Evaluate the expression and insert it into the temp table */
1789           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1790             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1791           }else{
1792             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1793             if( isRowid ){
1794               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1795                                 sqlite3VdbeCurrentAddr(v)+2);
1796               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1797             }else{
1798               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1799               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1800               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1801             }
1802           }
1803         }
1804         sqlite3ReleaseTempReg(pParse, r1);
1805         sqlite3ReleaseTempReg(pParse, r2);
1806       }
1807       if( !isRowid ){
1808         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1809       }
1810       break;
1811     }
1812 
1813     case TK_EXISTS:
1814     case TK_SELECT:
1815     default: {
1816       /* If this has to be a scalar SELECT.  Generate code to put the
1817       ** value of this select in a memory cell and record the number
1818       ** of the memory cell in iColumn.  If this is an EXISTS, write
1819       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1820       ** and record that memory cell in iColumn.
1821       */
1822       Select *pSel;                         /* SELECT statement to encode */
1823       SelectDest dest;                      /* How to deal with SELECt result */
1824 
1825       testcase( pExpr->op==TK_EXISTS );
1826       testcase( pExpr->op==TK_SELECT );
1827       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1828 
1829       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1830       pSel = pExpr->x.pSelect;
1831       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1832       if( pExpr->op==TK_SELECT ){
1833         dest.eDest = SRT_Mem;
1834         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1835         VdbeComment((v, "Init subquery result"));
1836       }else{
1837         dest.eDest = SRT_Exists;
1838         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1839         VdbeComment((v, "Init EXISTS result"));
1840       }
1841       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1842       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1843                                   &sqlite3IntTokens[1]);
1844       pSel->iLimit = 0;
1845       if( sqlite3Select(pParse, pSel, &dest) ){
1846         return 0;
1847       }
1848       rReg = dest.iSDParm;
1849       ExprSetIrreducible(pExpr);
1850       break;
1851     }
1852   }
1853 
1854   if( testAddr>=0 ){
1855     sqlite3VdbeJumpHere(v, testAddr);
1856   }
1857   sqlite3ExprCachePop(pParse, 1);
1858 
1859   return rReg;
1860 }
1861 #endif /* SQLITE_OMIT_SUBQUERY */
1862 
1863 #ifndef SQLITE_OMIT_SUBQUERY
1864 /*
1865 ** Generate code for an IN expression.
1866 **
1867 **      x IN (SELECT ...)
1868 **      x IN (value, value, ...)
1869 **
1870 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1871 ** is an array of zero or more values.  The expression is true if the LHS is
1872 ** contained within the RHS.  The value of the expression is unknown (NULL)
1873 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1874 ** RHS contains one or more NULL values.
1875 **
1876 ** This routine generates code will jump to destIfFalse if the LHS is not
1877 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1878 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1879 ** within the RHS then fall through.
1880 */
1881 static void sqlite3ExprCodeIN(
1882   Parse *pParse,        /* Parsing and code generating context */
1883   Expr *pExpr,          /* The IN expression */
1884   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1885   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1886 ){
1887   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1888   char affinity;        /* Comparison affinity to use */
1889   int eType;            /* Type of the RHS */
1890   int r1;               /* Temporary use register */
1891   Vdbe *v;              /* Statement under construction */
1892 
1893   /* Compute the RHS.   After this step, the table with cursor
1894   ** pExpr->iTable will contains the values that make up the RHS.
1895   */
1896   v = pParse->pVdbe;
1897   assert( v!=0 );       /* OOM detected prior to this routine */
1898   VdbeNoopComment((v, "begin IN expr"));
1899   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1900 
1901   /* Figure out the affinity to use to create a key from the results
1902   ** of the expression. affinityStr stores a static string suitable for
1903   ** P4 of OP_MakeRecord.
1904   */
1905   affinity = comparisonAffinity(pExpr);
1906 
1907   /* Code the LHS, the <expr> from "<expr> IN (...)".
1908   */
1909   sqlite3ExprCachePush(pParse);
1910   r1 = sqlite3GetTempReg(pParse);
1911   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1912 
1913   /* If the LHS is NULL, then the result is either false or NULL depending
1914   ** on whether the RHS is empty or not, respectively.
1915   */
1916   if( destIfNull==destIfFalse ){
1917     /* Shortcut for the common case where the false and NULL outcomes are
1918     ** the same. */
1919     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1920   }else{
1921     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1922     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1923     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1924     sqlite3VdbeJumpHere(v, addr1);
1925   }
1926 
1927   if( eType==IN_INDEX_ROWID ){
1928     /* In this case, the RHS is the ROWID of table b-tree
1929     */
1930     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1931     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1932   }else{
1933     /* In this case, the RHS is an index b-tree.
1934     */
1935     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1936 
1937     /* If the set membership test fails, then the result of the
1938     ** "x IN (...)" expression must be either 0 or NULL. If the set
1939     ** contains no NULL values, then the result is 0. If the set
1940     ** contains one or more NULL values, then the result of the
1941     ** expression is also NULL.
1942     */
1943     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1944       /* This branch runs if it is known at compile time that the RHS
1945       ** cannot contain NULL values. This happens as the result
1946       ** of a "NOT NULL" constraint in the database schema.
1947       **
1948       ** Also run this branch if NULL is equivalent to FALSE
1949       ** for this particular IN operator.
1950       */
1951       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1952 
1953     }else{
1954       /* In this branch, the RHS of the IN might contain a NULL and
1955       ** the presence of a NULL on the RHS makes a difference in the
1956       ** outcome.
1957       */
1958       int j1, j2, j3;
1959 
1960       /* First check to see if the LHS is contained in the RHS.  If so,
1961       ** then the presence of NULLs in the RHS does not matter, so jump
1962       ** over all of the code that follows.
1963       */
1964       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1965 
1966       /* Here we begin generating code that runs if the LHS is not
1967       ** contained within the RHS.  Generate additional code that
1968       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1969       ** jump to destIfNull.  If there are no NULLs in the RHS then
1970       ** jump to destIfFalse.
1971       */
1972       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1973       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1974       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1975       sqlite3VdbeJumpHere(v, j3);
1976       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1977       sqlite3VdbeJumpHere(v, j2);
1978 
1979       /* Jump to the appropriate target depending on whether or not
1980       ** the RHS contains a NULL
1981       */
1982       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1983       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1984 
1985       /* The OP_Found at the top of this branch jumps here when true,
1986       ** causing the overall IN expression evaluation to fall through.
1987       */
1988       sqlite3VdbeJumpHere(v, j1);
1989     }
1990   }
1991   sqlite3ReleaseTempReg(pParse, r1);
1992   sqlite3ExprCachePop(pParse, 1);
1993   VdbeComment((v, "end IN expr"));
1994 }
1995 #endif /* SQLITE_OMIT_SUBQUERY */
1996 
1997 /*
1998 ** Duplicate an 8-byte value
1999 */
2000 static char *dup8bytes(Vdbe *v, const char *in){
2001   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2002   if( out ){
2003     memcpy(out, in, 8);
2004   }
2005   return out;
2006 }
2007 
2008 #ifndef SQLITE_OMIT_FLOATING_POINT
2009 /*
2010 ** Generate an instruction that will put the floating point
2011 ** value described by z[0..n-1] into register iMem.
2012 **
2013 ** The z[] string will probably not be zero-terminated.  But the
2014 ** z[n] character is guaranteed to be something that does not look
2015 ** like the continuation of the number.
2016 */
2017 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2018   if( ALWAYS(z!=0) ){
2019     double value;
2020     char *zV;
2021     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2022     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2023     if( negateFlag ) value = -value;
2024     zV = dup8bytes(v, (char*)&value);
2025     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2026   }
2027 }
2028 #endif
2029 
2030 
2031 /*
2032 ** Generate an instruction that will put the integer describe by
2033 ** text z[0..n-1] into register iMem.
2034 **
2035 ** Expr.u.zToken is always UTF8 and zero-terminated.
2036 */
2037 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2038   Vdbe *v = pParse->pVdbe;
2039   if( pExpr->flags & EP_IntValue ){
2040     int i = pExpr->u.iValue;
2041     assert( i>=0 );
2042     if( negFlag ) i = -i;
2043     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2044   }else{
2045     int c;
2046     i64 value;
2047     const char *z = pExpr->u.zToken;
2048     assert( z!=0 );
2049     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2050     if( c==0 || (c==2 && negFlag) ){
2051       char *zV;
2052       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2053       zV = dup8bytes(v, (char*)&value);
2054       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2055     }else{
2056 #ifdef SQLITE_OMIT_FLOATING_POINT
2057       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2058 #else
2059       codeReal(v, z, negFlag, iMem);
2060 #endif
2061     }
2062   }
2063 }
2064 
2065 /*
2066 ** Clear a cache entry.
2067 */
2068 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2069   if( p->tempReg ){
2070     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2071       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2072     }
2073     p->tempReg = 0;
2074   }
2075 }
2076 
2077 
2078 /*
2079 ** Record in the column cache that a particular column from a
2080 ** particular table is stored in a particular register.
2081 */
2082 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2083   int i;
2084   int minLru;
2085   int idxLru;
2086   struct yColCache *p;
2087 
2088   assert( iReg>0 );  /* Register numbers are always positive */
2089   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2090 
2091   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2092   ** for testing only - to verify that SQLite always gets the same answer
2093   ** with and without the column cache.
2094   */
2095   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2096 
2097   /* First replace any existing entry.
2098   **
2099   ** Actually, the way the column cache is currently used, we are guaranteed
2100   ** that the object will never already be in cache.  Verify this guarantee.
2101   */
2102 #ifndef NDEBUG
2103   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2104     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2105   }
2106 #endif
2107 
2108   /* Find an empty slot and replace it */
2109   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2110     if( p->iReg==0 ){
2111       p->iLevel = pParse->iCacheLevel;
2112       p->iTable = iTab;
2113       p->iColumn = iCol;
2114       p->iReg = iReg;
2115       p->tempReg = 0;
2116       p->lru = pParse->iCacheCnt++;
2117       return;
2118     }
2119   }
2120 
2121   /* Replace the last recently used */
2122   minLru = 0x7fffffff;
2123   idxLru = -1;
2124   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2125     if( p->lru<minLru ){
2126       idxLru = i;
2127       minLru = p->lru;
2128     }
2129   }
2130   if( ALWAYS(idxLru>=0) ){
2131     p = &pParse->aColCache[idxLru];
2132     p->iLevel = pParse->iCacheLevel;
2133     p->iTable = iTab;
2134     p->iColumn = iCol;
2135     p->iReg = iReg;
2136     p->tempReg = 0;
2137     p->lru = pParse->iCacheCnt++;
2138     return;
2139   }
2140 }
2141 
2142 /*
2143 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2144 ** Purge the range of registers from the column cache.
2145 */
2146 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2147   int i;
2148   int iLast = iReg + nReg - 1;
2149   struct yColCache *p;
2150   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2151     int r = p->iReg;
2152     if( r>=iReg && r<=iLast ){
2153       cacheEntryClear(pParse, p);
2154       p->iReg = 0;
2155     }
2156   }
2157 }
2158 
2159 /*
2160 ** Remember the current column cache context.  Any new entries added
2161 ** added to the column cache after this call are removed when the
2162 ** corresponding pop occurs.
2163 */
2164 void sqlite3ExprCachePush(Parse *pParse){
2165   pParse->iCacheLevel++;
2166 }
2167 
2168 /*
2169 ** Remove from the column cache any entries that were added since the
2170 ** the previous N Push operations.  In other words, restore the cache
2171 ** to the state it was in N Pushes ago.
2172 */
2173 void sqlite3ExprCachePop(Parse *pParse, int N){
2174   int i;
2175   struct yColCache *p;
2176   assert( N>0 );
2177   assert( pParse->iCacheLevel>=N );
2178   pParse->iCacheLevel -= N;
2179   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2180     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2181       cacheEntryClear(pParse, p);
2182       p->iReg = 0;
2183     }
2184   }
2185 }
2186 
2187 /*
2188 ** When a cached column is reused, make sure that its register is
2189 ** no longer available as a temp register.  ticket #3879:  that same
2190 ** register might be in the cache in multiple places, so be sure to
2191 ** get them all.
2192 */
2193 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2194   int i;
2195   struct yColCache *p;
2196   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2197     if( p->iReg==iReg ){
2198       p->tempReg = 0;
2199     }
2200   }
2201 }
2202 
2203 /*
2204 ** Generate code to extract the value of the iCol-th column of a table.
2205 */
2206 void sqlite3ExprCodeGetColumnOfTable(
2207   Vdbe *v,        /* The VDBE under construction */
2208   Table *pTab,    /* The table containing the value */
2209   int iTabCur,    /* The cursor for this table */
2210   int iCol,       /* Index of the column to extract */
2211   int regOut      /* Extract the valud into this register */
2212 ){
2213   if( iCol<0 || iCol==pTab->iPKey ){
2214     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2215   }else{
2216     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2217     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2218   }
2219   if( iCol>=0 ){
2220     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2221   }
2222 }
2223 
2224 /*
2225 ** Generate code that will extract the iColumn-th column from
2226 ** table pTab and store the column value in a register.  An effort
2227 ** is made to store the column value in register iReg, but this is
2228 ** not guaranteed.  The location of the column value is returned.
2229 **
2230 ** There must be an open cursor to pTab in iTable when this routine
2231 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2232 */
2233 int sqlite3ExprCodeGetColumn(
2234   Parse *pParse,   /* Parsing and code generating context */
2235   Table *pTab,     /* Description of the table we are reading from */
2236   int iColumn,     /* Index of the table column */
2237   int iTable,      /* The cursor pointing to the table */
2238   int iReg,        /* Store results here */
2239   u8 p5            /* P5 value for OP_Column */
2240 ){
2241   Vdbe *v = pParse->pVdbe;
2242   int i;
2243   struct yColCache *p;
2244 
2245   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2246     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2247       p->lru = pParse->iCacheCnt++;
2248       sqlite3ExprCachePinRegister(pParse, p->iReg);
2249       return p->iReg;
2250     }
2251   }
2252   assert( v!=0 );
2253   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2254   if( p5 ){
2255     sqlite3VdbeChangeP5(v, p5);
2256   }else{
2257     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2258   }
2259   return iReg;
2260 }
2261 
2262 /*
2263 ** Clear all column cache entries.
2264 */
2265 void sqlite3ExprCacheClear(Parse *pParse){
2266   int i;
2267   struct yColCache *p;
2268 
2269   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2270     if( p->iReg ){
2271       cacheEntryClear(pParse, p);
2272       p->iReg = 0;
2273     }
2274   }
2275 }
2276 
2277 /*
2278 ** Record the fact that an affinity change has occurred on iCount
2279 ** registers starting with iStart.
2280 */
2281 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2282   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2283 }
2284 
2285 /*
2286 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2287 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2288 */
2289 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2290   int i;
2291   struct yColCache *p;
2292   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2293   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1);
2294   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2295     int x = p->iReg;
2296     if( x>=iFrom && x<iFrom+nReg ){
2297       p->iReg += iTo-iFrom;
2298     }
2299   }
2300 }
2301 
2302 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2303 /*
2304 ** Return true if any register in the range iFrom..iTo (inclusive)
2305 ** is used as part of the column cache.
2306 **
2307 ** This routine is used within assert() and testcase() macros only
2308 ** and does not appear in a normal build.
2309 */
2310 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2311   int i;
2312   struct yColCache *p;
2313   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2314     int r = p->iReg;
2315     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2316   }
2317   return 0;
2318 }
2319 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2320 
2321 /*
2322 ** Generate code into the current Vdbe to evaluate the given
2323 ** expression.  Attempt to store the results in register "target".
2324 ** Return the register where results are stored.
2325 **
2326 ** With this routine, there is no guarantee that results will
2327 ** be stored in target.  The result might be stored in some other
2328 ** register if it is convenient to do so.  The calling function
2329 ** must check the return code and move the results to the desired
2330 ** register.
2331 */
2332 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2333   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2334   int op;                   /* The opcode being coded */
2335   int inReg = target;       /* Results stored in register inReg */
2336   int regFree1 = 0;         /* If non-zero free this temporary register */
2337   int regFree2 = 0;         /* If non-zero free this temporary register */
2338   int r1, r2, r3, r4;       /* Various register numbers */
2339   sqlite3 *db = pParse->db; /* The database connection */
2340 
2341   assert( target>0 && target<=pParse->nMem );
2342   if( v==0 ){
2343     assert( pParse->db->mallocFailed );
2344     return 0;
2345   }
2346 
2347   if( pExpr==0 ){
2348     op = TK_NULL;
2349   }else{
2350     op = pExpr->op;
2351   }
2352   switch( op ){
2353     case TK_AGG_COLUMN: {
2354       AggInfo *pAggInfo = pExpr->pAggInfo;
2355       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2356       if( !pAggInfo->directMode ){
2357         assert( pCol->iMem>0 );
2358         inReg = pCol->iMem;
2359         break;
2360       }else if( pAggInfo->useSortingIdx ){
2361         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2362                               pCol->iSorterColumn, target);
2363         break;
2364       }
2365       /* Otherwise, fall thru into the TK_COLUMN case */
2366     }
2367     case TK_COLUMN: {
2368       if( pExpr->iTable<0 ){
2369         /* This only happens when coding check constraints */
2370         assert( pParse->ckBase>0 );
2371         inReg = pExpr->iColumn + pParse->ckBase;
2372       }else{
2373         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2374                                  pExpr->iColumn, pExpr->iTable, target,
2375                                  pExpr->op2);
2376       }
2377       break;
2378     }
2379     case TK_INTEGER: {
2380       codeInteger(pParse, pExpr, 0, target);
2381       break;
2382     }
2383 #ifndef SQLITE_OMIT_FLOATING_POINT
2384     case TK_FLOAT: {
2385       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2386       codeReal(v, pExpr->u.zToken, 0, target);
2387       break;
2388     }
2389 #endif
2390     case TK_STRING: {
2391       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2392       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2393       break;
2394     }
2395     case TK_NULL: {
2396       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2397       break;
2398     }
2399 #ifndef SQLITE_OMIT_BLOB_LITERAL
2400     case TK_BLOB: {
2401       int n;
2402       const char *z;
2403       char *zBlob;
2404       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2405       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2406       assert( pExpr->u.zToken[1]=='\'' );
2407       z = &pExpr->u.zToken[2];
2408       n = sqlite3Strlen30(z) - 1;
2409       assert( z[n]=='\'' );
2410       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2411       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2412       break;
2413     }
2414 #endif
2415     case TK_VARIABLE: {
2416       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2417       assert( pExpr->u.zToken!=0 );
2418       assert( pExpr->u.zToken[0]!=0 );
2419       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2420       if( pExpr->u.zToken[1]!=0 ){
2421         assert( pExpr->u.zToken[0]=='?'
2422              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2423         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2424       }
2425       break;
2426     }
2427     case TK_REGISTER: {
2428       inReg = pExpr->iTable;
2429       break;
2430     }
2431     case TK_AS: {
2432       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2433       break;
2434     }
2435 #ifndef SQLITE_OMIT_CAST
2436     case TK_CAST: {
2437       /* Expressions of the form:   CAST(pLeft AS token) */
2438       int aff, to_op;
2439       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2440       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2441       aff = sqlite3AffinityType(pExpr->u.zToken);
2442       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2443       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2444       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2445       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2446       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2447       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2448       testcase( to_op==OP_ToText );
2449       testcase( to_op==OP_ToBlob );
2450       testcase( to_op==OP_ToNumeric );
2451       testcase( to_op==OP_ToInt );
2452       testcase( to_op==OP_ToReal );
2453       if( inReg!=target ){
2454         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2455         inReg = target;
2456       }
2457       sqlite3VdbeAddOp1(v, to_op, inReg);
2458       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2459       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2460       break;
2461     }
2462 #endif /* SQLITE_OMIT_CAST */
2463     case TK_LT:
2464     case TK_LE:
2465     case TK_GT:
2466     case TK_GE:
2467     case TK_NE:
2468     case TK_EQ: {
2469       assert( TK_LT==OP_Lt );
2470       assert( TK_LE==OP_Le );
2471       assert( TK_GT==OP_Gt );
2472       assert( TK_GE==OP_Ge );
2473       assert( TK_EQ==OP_Eq );
2474       assert( TK_NE==OP_Ne );
2475       testcase( op==TK_LT );
2476       testcase( op==TK_LE );
2477       testcase( op==TK_GT );
2478       testcase( op==TK_GE );
2479       testcase( op==TK_EQ );
2480       testcase( op==TK_NE );
2481       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2482       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2483       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2484                   r1, r2, inReg, SQLITE_STOREP2);
2485       testcase( regFree1==0 );
2486       testcase( regFree2==0 );
2487       break;
2488     }
2489     case TK_IS:
2490     case TK_ISNOT: {
2491       testcase( op==TK_IS );
2492       testcase( op==TK_ISNOT );
2493       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2494       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2495       op = (op==TK_IS) ? TK_EQ : TK_NE;
2496       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2497                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2498       testcase( regFree1==0 );
2499       testcase( regFree2==0 );
2500       break;
2501     }
2502     case TK_AND:
2503     case TK_OR:
2504     case TK_PLUS:
2505     case TK_STAR:
2506     case TK_MINUS:
2507     case TK_REM:
2508     case TK_BITAND:
2509     case TK_BITOR:
2510     case TK_SLASH:
2511     case TK_LSHIFT:
2512     case TK_RSHIFT:
2513     case TK_CONCAT: {
2514       assert( TK_AND==OP_And );
2515       assert( TK_OR==OP_Or );
2516       assert( TK_PLUS==OP_Add );
2517       assert( TK_MINUS==OP_Subtract );
2518       assert( TK_REM==OP_Remainder );
2519       assert( TK_BITAND==OP_BitAnd );
2520       assert( TK_BITOR==OP_BitOr );
2521       assert( TK_SLASH==OP_Divide );
2522       assert( TK_LSHIFT==OP_ShiftLeft );
2523       assert( TK_RSHIFT==OP_ShiftRight );
2524       assert( TK_CONCAT==OP_Concat );
2525       testcase( op==TK_AND );
2526       testcase( op==TK_OR );
2527       testcase( op==TK_PLUS );
2528       testcase( op==TK_MINUS );
2529       testcase( op==TK_REM );
2530       testcase( op==TK_BITAND );
2531       testcase( op==TK_BITOR );
2532       testcase( op==TK_SLASH );
2533       testcase( op==TK_LSHIFT );
2534       testcase( op==TK_RSHIFT );
2535       testcase( op==TK_CONCAT );
2536       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2537       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2538       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2539       testcase( regFree1==0 );
2540       testcase( regFree2==0 );
2541       break;
2542     }
2543     case TK_UMINUS: {
2544       Expr *pLeft = pExpr->pLeft;
2545       assert( pLeft );
2546       if( pLeft->op==TK_INTEGER ){
2547         codeInteger(pParse, pLeft, 1, target);
2548 #ifndef SQLITE_OMIT_FLOATING_POINT
2549       }else if( pLeft->op==TK_FLOAT ){
2550         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2551         codeReal(v, pLeft->u.zToken, 1, target);
2552 #endif
2553       }else{
2554         regFree1 = r1 = sqlite3GetTempReg(pParse);
2555         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2556         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2557         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2558         testcase( regFree2==0 );
2559       }
2560       inReg = target;
2561       break;
2562     }
2563     case TK_BITNOT:
2564     case TK_NOT: {
2565       assert( TK_BITNOT==OP_BitNot );
2566       assert( TK_NOT==OP_Not );
2567       testcase( op==TK_BITNOT );
2568       testcase( op==TK_NOT );
2569       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2570       testcase( regFree1==0 );
2571       inReg = target;
2572       sqlite3VdbeAddOp2(v, op, r1, inReg);
2573       break;
2574     }
2575     case TK_ISNULL:
2576     case TK_NOTNULL: {
2577       int addr;
2578       assert( TK_ISNULL==OP_IsNull );
2579       assert( TK_NOTNULL==OP_NotNull );
2580       testcase( op==TK_ISNULL );
2581       testcase( op==TK_NOTNULL );
2582       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2583       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2584       testcase( regFree1==0 );
2585       addr = sqlite3VdbeAddOp1(v, op, r1);
2586       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2587       sqlite3VdbeJumpHere(v, addr);
2588       break;
2589     }
2590     case TK_AGG_FUNCTION: {
2591       AggInfo *pInfo = pExpr->pAggInfo;
2592       if( pInfo==0 ){
2593         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2594         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2595       }else{
2596         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2597       }
2598       break;
2599     }
2600     case TK_CONST_FUNC:
2601     case TK_FUNCTION: {
2602       ExprList *pFarg;       /* List of function arguments */
2603       int nFarg;             /* Number of function arguments */
2604       FuncDef *pDef;         /* The function definition object */
2605       int nId;               /* Length of the function name in bytes */
2606       const char *zId;       /* The function name */
2607       int constMask = 0;     /* Mask of function arguments that are constant */
2608       int i;                 /* Loop counter */
2609       u8 enc = ENC(db);      /* The text encoding used by this database */
2610       CollSeq *pColl = 0;    /* A collating sequence */
2611 
2612       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2613       testcase( op==TK_CONST_FUNC );
2614       testcase( op==TK_FUNCTION );
2615       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2616         pFarg = 0;
2617       }else{
2618         pFarg = pExpr->x.pList;
2619       }
2620       nFarg = pFarg ? pFarg->nExpr : 0;
2621       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2622       zId = pExpr->u.zToken;
2623       nId = sqlite3Strlen30(zId);
2624       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2625       if( pDef==0 ){
2626         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2627         break;
2628       }
2629 
2630       /* Attempt a direct implementation of the built-in COALESCE() and
2631       ** IFNULL() functions.  This avoids unnecessary evalation of
2632       ** arguments past the first non-NULL argument.
2633       */
2634       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2635         int endCoalesce = sqlite3VdbeMakeLabel(v);
2636         assert( nFarg>=2 );
2637         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2638         for(i=1; i<nFarg; i++){
2639           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2640           sqlite3ExprCacheRemove(pParse, target, 1);
2641           sqlite3ExprCachePush(pParse);
2642           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2643           sqlite3ExprCachePop(pParse, 1);
2644         }
2645         sqlite3VdbeResolveLabel(v, endCoalesce);
2646         break;
2647       }
2648 
2649 
2650       if( pFarg ){
2651         r1 = sqlite3GetTempRange(pParse, nFarg);
2652 
2653         /* For length() and typeof() functions with a column argument,
2654         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2655         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2656         ** loading.
2657         */
2658         if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2659           u8 exprOp;
2660           assert( nFarg==1 );
2661           assert( pFarg->a[0].pExpr!=0 );
2662           exprOp = pFarg->a[0].pExpr->op;
2663           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2664             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2665             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2666             testcase( pDef->flags==SQLITE_FUNC_LENGTH );
2667             pFarg->a[0].pExpr->op2 = pDef->flags;
2668           }
2669         }
2670 
2671         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2672         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2673         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2674       }else{
2675         r1 = 0;
2676       }
2677 #ifndef SQLITE_OMIT_VIRTUALTABLE
2678       /* Possibly overload the function if the first argument is
2679       ** a virtual table column.
2680       **
2681       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2682       ** second argument, not the first, as the argument to test to
2683       ** see if it is a column in a virtual table.  This is done because
2684       ** the left operand of infix functions (the operand we want to
2685       ** control overloading) ends up as the second argument to the
2686       ** function.  The expression "A glob B" is equivalent to
2687       ** "glob(B,A).  We want to use the A in "A glob B" to test
2688       ** for function overloading.  But we use the B term in "glob(B,A)".
2689       */
2690       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2691         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2692       }else if( nFarg>0 ){
2693         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2694       }
2695 #endif
2696       for(i=0; i<nFarg; i++){
2697         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2698           constMask |= (1<<i);
2699         }
2700         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2701           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2702         }
2703       }
2704       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2705         if( !pColl ) pColl = db->pDfltColl;
2706         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2707       }
2708       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2709                         (char*)pDef, P4_FUNCDEF);
2710       sqlite3VdbeChangeP5(v, (u8)nFarg);
2711       if( nFarg ){
2712         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2713       }
2714       break;
2715     }
2716 #ifndef SQLITE_OMIT_SUBQUERY
2717     case TK_EXISTS:
2718     case TK_SELECT: {
2719       testcase( op==TK_EXISTS );
2720       testcase( op==TK_SELECT );
2721       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2722       break;
2723     }
2724     case TK_IN: {
2725       int destIfFalse = sqlite3VdbeMakeLabel(v);
2726       int destIfNull = sqlite3VdbeMakeLabel(v);
2727       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2728       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2729       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2730       sqlite3VdbeResolveLabel(v, destIfFalse);
2731       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2732       sqlite3VdbeResolveLabel(v, destIfNull);
2733       break;
2734     }
2735 #endif /* SQLITE_OMIT_SUBQUERY */
2736 
2737 
2738     /*
2739     **    x BETWEEN y AND z
2740     **
2741     ** This is equivalent to
2742     **
2743     **    x>=y AND x<=z
2744     **
2745     ** X is stored in pExpr->pLeft.
2746     ** Y is stored in pExpr->pList->a[0].pExpr.
2747     ** Z is stored in pExpr->pList->a[1].pExpr.
2748     */
2749     case TK_BETWEEN: {
2750       Expr *pLeft = pExpr->pLeft;
2751       struct ExprList_item *pLItem = pExpr->x.pList->a;
2752       Expr *pRight = pLItem->pExpr;
2753 
2754       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2755       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2756       testcase( regFree1==0 );
2757       testcase( regFree2==0 );
2758       r3 = sqlite3GetTempReg(pParse);
2759       r4 = sqlite3GetTempReg(pParse);
2760       codeCompare(pParse, pLeft, pRight, OP_Ge,
2761                   r1, r2, r3, SQLITE_STOREP2);
2762       pLItem++;
2763       pRight = pLItem->pExpr;
2764       sqlite3ReleaseTempReg(pParse, regFree2);
2765       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2766       testcase( regFree2==0 );
2767       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2768       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2769       sqlite3ReleaseTempReg(pParse, r3);
2770       sqlite3ReleaseTempReg(pParse, r4);
2771       break;
2772     }
2773     case TK_COLLATE:
2774     case TK_UPLUS: {
2775       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2776       break;
2777     }
2778 
2779     case TK_TRIGGER: {
2780       /* If the opcode is TK_TRIGGER, then the expression is a reference
2781       ** to a column in the new.* or old.* pseudo-tables available to
2782       ** trigger programs. In this case Expr.iTable is set to 1 for the
2783       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2784       ** is set to the column of the pseudo-table to read, or to -1 to
2785       ** read the rowid field.
2786       **
2787       ** The expression is implemented using an OP_Param opcode. The p1
2788       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2789       ** to reference another column of the old.* pseudo-table, where
2790       ** i is the index of the column. For a new.rowid reference, p1 is
2791       ** set to (n+1), where n is the number of columns in each pseudo-table.
2792       ** For a reference to any other column in the new.* pseudo-table, p1
2793       ** is set to (n+2+i), where n and i are as defined previously. For
2794       ** example, if the table on which triggers are being fired is
2795       ** declared as:
2796       **
2797       **   CREATE TABLE t1(a, b);
2798       **
2799       ** Then p1 is interpreted as follows:
2800       **
2801       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2802       **   p1==1   ->    old.a         p1==4   ->    new.a
2803       **   p1==2   ->    old.b         p1==5   ->    new.b
2804       */
2805       Table *pTab = pExpr->pTab;
2806       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2807 
2808       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2809       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2810       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2811       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2812 
2813       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2814       VdbeComment((v, "%s.%s -> $%d",
2815         (pExpr->iTable ? "new" : "old"),
2816         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2817         target
2818       ));
2819 
2820 #ifndef SQLITE_OMIT_FLOATING_POINT
2821       /* If the column has REAL affinity, it may currently be stored as an
2822       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2823       if( pExpr->iColumn>=0
2824        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2825       ){
2826         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2827       }
2828 #endif
2829       break;
2830     }
2831 
2832 
2833     /*
2834     ** Form A:
2835     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2836     **
2837     ** Form B:
2838     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2839     **
2840     ** Form A is can be transformed into the equivalent form B as follows:
2841     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2842     **        WHEN x=eN THEN rN ELSE y END
2843     **
2844     ** X (if it exists) is in pExpr->pLeft.
2845     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2846     ** ELSE clause and no other term matches, then the result of the
2847     ** exprssion is NULL.
2848     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2849     **
2850     ** The result of the expression is the Ri for the first matching Ei,
2851     ** or if there is no matching Ei, the ELSE term Y, or if there is
2852     ** no ELSE term, NULL.
2853     */
2854     default: assert( op==TK_CASE ); {
2855       int endLabel;                     /* GOTO label for end of CASE stmt */
2856       int nextCase;                     /* GOTO label for next WHEN clause */
2857       int nExpr;                        /* 2x number of WHEN terms */
2858       int i;                            /* Loop counter */
2859       ExprList *pEList;                 /* List of WHEN terms */
2860       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2861       Expr opCompare;                   /* The X==Ei expression */
2862       Expr cacheX;                      /* Cached expression X */
2863       Expr *pX;                         /* The X expression */
2864       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2865       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2866 
2867       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2868       assert((pExpr->x.pList->nExpr % 2) == 0);
2869       assert(pExpr->x.pList->nExpr > 0);
2870       pEList = pExpr->x.pList;
2871       aListelem = pEList->a;
2872       nExpr = pEList->nExpr;
2873       endLabel = sqlite3VdbeMakeLabel(v);
2874       if( (pX = pExpr->pLeft)!=0 ){
2875         cacheX = *pX;
2876         testcase( pX->op==TK_COLUMN );
2877         testcase( pX->op==TK_REGISTER );
2878         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2879         testcase( regFree1==0 );
2880         cacheX.op = TK_REGISTER;
2881         opCompare.op = TK_EQ;
2882         opCompare.pLeft = &cacheX;
2883         pTest = &opCompare;
2884         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2885         ** The value in regFree1 might get SCopy-ed into the file result.
2886         ** So make sure that the regFree1 register is not reused for other
2887         ** purposes and possibly overwritten.  */
2888         regFree1 = 0;
2889       }
2890       for(i=0; i<nExpr; i=i+2){
2891         sqlite3ExprCachePush(pParse);
2892         if( pX ){
2893           assert( pTest!=0 );
2894           opCompare.pRight = aListelem[i].pExpr;
2895         }else{
2896           pTest = aListelem[i].pExpr;
2897         }
2898         nextCase = sqlite3VdbeMakeLabel(v);
2899         testcase( pTest->op==TK_COLUMN );
2900         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2901         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2902         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2903         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2904         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2905         sqlite3ExprCachePop(pParse, 1);
2906         sqlite3VdbeResolveLabel(v, nextCase);
2907       }
2908       if( pExpr->pRight ){
2909         sqlite3ExprCachePush(pParse);
2910         sqlite3ExprCode(pParse, pExpr->pRight, target);
2911         sqlite3ExprCachePop(pParse, 1);
2912       }else{
2913         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2914       }
2915       assert( db->mallocFailed || pParse->nErr>0
2916            || pParse->iCacheLevel==iCacheLevel );
2917       sqlite3VdbeResolveLabel(v, endLabel);
2918       break;
2919     }
2920 #ifndef SQLITE_OMIT_TRIGGER
2921     case TK_RAISE: {
2922       assert( pExpr->affinity==OE_Rollback
2923            || pExpr->affinity==OE_Abort
2924            || pExpr->affinity==OE_Fail
2925            || pExpr->affinity==OE_Ignore
2926       );
2927       if( !pParse->pTriggerTab ){
2928         sqlite3ErrorMsg(pParse,
2929                        "RAISE() may only be used within a trigger-program");
2930         return 0;
2931       }
2932       if( pExpr->affinity==OE_Abort ){
2933         sqlite3MayAbort(pParse);
2934       }
2935       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2936       if( pExpr->affinity==OE_Ignore ){
2937         sqlite3VdbeAddOp4(
2938             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2939       }else{
2940         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
2941                               pExpr->affinity, pExpr->u.zToken, 0);
2942       }
2943 
2944       break;
2945     }
2946 #endif
2947   }
2948   sqlite3ReleaseTempReg(pParse, regFree1);
2949   sqlite3ReleaseTempReg(pParse, regFree2);
2950   return inReg;
2951 }
2952 
2953 /*
2954 ** Generate code to evaluate an expression and store the results
2955 ** into a register.  Return the register number where the results
2956 ** are stored.
2957 **
2958 ** If the register is a temporary register that can be deallocated,
2959 ** then write its number into *pReg.  If the result register is not
2960 ** a temporary, then set *pReg to zero.
2961 */
2962 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2963   int r1 = sqlite3GetTempReg(pParse);
2964   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2965   if( r2==r1 ){
2966     *pReg = r1;
2967   }else{
2968     sqlite3ReleaseTempReg(pParse, r1);
2969     *pReg = 0;
2970   }
2971   return r2;
2972 }
2973 
2974 /*
2975 ** Generate code that will evaluate expression pExpr and store the
2976 ** results in register target.  The results are guaranteed to appear
2977 ** in register target.
2978 */
2979 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2980   int inReg;
2981 
2982   assert( target>0 && target<=pParse->nMem );
2983   if( pExpr && pExpr->op==TK_REGISTER ){
2984     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2985   }else{
2986     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2987     assert( pParse->pVdbe || pParse->db->mallocFailed );
2988     if( inReg!=target && pParse->pVdbe ){
2989       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2990     }
2991   }
2992   return target;
2993 }
2994 
2995 /*
2996 ** Generate code that evalutes the given expression and puts the result
2997 ** in register target.
2998 **
2999 ** Also make a copy of the expression results into another "cache" register
3000 ** and modify the expression so that the next time it is evaluated,
3001 ** the result is a copy of the cache register.
3002 **
3003 ** This routine is used for expressions that are used multiple
3004 ** times.  They are evaluated once and the results of the expression
3005 ** are reused.
3006 */
3007 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3008   Vdbe *v = pParse->pVdbe;
3009   int inReg;
3010   inReg = sqlite3ExprCode(pParse, pExpr, target);
3011   assert( target>0 );
3012   /* This routine is called for terms to INSERT or UPDATE.  And the only
3013   ** other place where expressions can be converted into TK_REGISTER is
3014   ** in WHERE clause processing.  So as currently implemented, there is
3015   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
3016   ** keep the ALWAYS() in case the conditions above change with future
3017   ** modifications or enhancements. */
3018   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
3019     int iMem;
3020     iMem = ++pParse->nMem;
3021     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
3022     pExpr->iTable = iMem;
3023     pExpr->op2 = pExpr->op;
3024     pExpr->op = TK_REGISTER;
3025   }
3026   return inReg;
3027 }
3028 
3029 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3030 /*
3031 ** Generate a human-readable explanation of an expression tree.
3032 */
3033 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3034   int op;                   /* The opcode being coded */
3035   const char *zBinOp = 0;   /* Binary operator */
3036   const char *zUniOp = 0;   /* Unary operator */
3037   if( pExpr==0 ){
3038     op = TK_NULL;
3039   }else{
3040     op = pExpr->op;
3041   }
3042   switch( op ){
3043     case TK_AGG_COLUMN: {
3044       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3045             pExpr->iTable, pExpr->iColumn);
3046       break;
3047     }
3048     case TK_COLUMN: {
3049       if( pExpr->iTable<0 ){
3050         /* This only happens when coding check constraints */
3051         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3052       }else{
3053         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3054                              pExpr->iTable, pExpr->iColumn);
3055       }
3056       break;
3057     }
3058     case TK_INTEGER: {
3059       if( pExpr->flags & EP_IntValue ){
3060         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3061       }else{
3062         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3063       }
3064       break;
3065     }
3066 #ifndef SQLITE_OMIT_FLOATING_POINT
3067     case TK_FLOAT: {
3068       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3069       break;
3070     }
3071 #endif
3072     case TK_STRING: {
3073       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3074       break;
3075     }
3076     case TK_NULL: {
3077       sqlite3ExplainPrintf(pOut,"NULL");
3078       break;
3079     }
3080 #ifndef SQLITE_OMIT_BLOB_LITERAL
3081     case TK_BLOB: {
3082       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3083       break;
3084     }
3085 #endif
3086     case TK_VARIABLE: {
3087       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3088                            pExpr->u.zToken, pExpr->iColumn);
3089       break;
3090     }
3091     case TK_REGISTER: {
3092       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3093       break;
3094     }
3095     case TK_AS: {
3096       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3097       break;
3098     }
3099 #ifndef SQLITE_OMIT_CAST
3100     case TK_CAST: {
3101       /* Expressions of the form:   CAST(pLeft AS token) */
3102       const char *zAff = "unk";
3103       switch( sqlite3AffinityType(pExpr->u.zToken) ){
3104         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3105         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3106         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3107         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3108         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3109       }
3110       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3111       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3112       sqlite3ExplainPrintf(pOut, ")");
3113       break;
3114     }
3115 #endif /* SQLITE_OMIT_CAST */
3116     case TK_LT:      zBinOp = "LT";     break;
3117     case TK_LE:      zBinOp = "LE";     break;
3118     case TK_GT:      zBinOp = "GT";     break;
3119     case TK_GE:      zBinOp = "GE";     break;
3120     case TK_NE:      zBinOp = "NE";     break;
3121     case TK_EQ:      zBinOp = "EQ";     break;
3122     case TK_IS:      zBinOp = "IS";     break;
3123     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3124     case TK_AND:     zBinOp = "AND";    break;
3125     case TK_OR:      zBinOp = "OR";     break;
3126     case TK_PLUS:    zBinOp = "ADD";    break;
3127     case TK_STAR:    zBinOp = "MUL";    break;
3128     case TK_MINUS:   zBinOp = "SUB";    break;
3129     case TK_REM:     zBinOp = "REM";    break;
3130     case TK_BITAND:  zBinOp = "BITAND"; break;
3131     case TK_BITOR:   zBinOp = "BITOR";  break;
3132     case TK_SLASH:   zBinOp = "DIV";    break;
3133     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3134     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3135     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3136 
3137     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3138     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3139     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3140     case TK_NOT:     zUniOp = "NOT";    break;
3141     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3142     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3143 
3144     case TK_COLLATE: {
3145       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3146       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3147       break;
3148     }
3149 
3150     case TK_AGG_FUNCTION:
3151     case TK_CONST_FUNC:
3152     case TK_FUNCTION: {
3153       ExprList *pFarg;       /* List of function arguments */
3154       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
3155         pFarg = 0;
3156       }else{
3157         pFarg = pExpr->x.pList;
3158       }
3159       if( op==TK_AGG_FUNCTION ){
3160         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3161                              pExpr->op2, pExpr->u.zToken);
3162       }else{
3163         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3164       }
3165       if( pFarg ){
3166         sqlite3ExplainExprList(pOut, pFarg);
3167       }
3168       sqlite3ExplainPrintf(pOut, ")");
3169       break;
3170     }
3171 #ifndef SQLITE_OMIT_SUBQUERY
3172     case TK_EXISTS: {
3173       sqlite3ExplainPrintf(pOut, "EXISTS(");
3174       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3175       sqlite3ExplainPrintf(pOut,")");
3176       break;
3177     }
3178     case TK_SELECT: {
3179       sqlite3ExplainPrintf(pOut, "(");
3180       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3181       sqlite3ExplainPrintf(pOut, ")");
3182       break;
3183     }
3184     case TK_IN: {
3185       sqlite3ExplainPrintf(pOut, "IN(");
3186       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3187       sqlite3ExplainPrintf(pOut, ",");
3188       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3189         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3190       }else{
3191         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3192       }
3193       sqlite3ExplainPrintf(pOut, ")");
3194       break;
3195     }
3196 #endif /* SQLITE_OMIT_SUBQUERY */
3197 
3198     /*
3199     **    x BETWEEN y AND z
3200     **
3201     ** This is equivalent to
3202     **
3203     **    x>=y AND x<=z
3204     **
3205     ** X is stored in pExpr->pLeft.
3206     ** Y is stored in pExpr->pList->a[0].pExpr.
3207     ** Z is stored in pExpr->pList->a[1].pExpr.
3208     */
3209     case TK_BETWEEN: {
3210       Expr *pX = pExpr->pLeft;
3211       Expr *pY = pExpr->x.pList->a[0].pExpr;
3212       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3213       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3214       sqlite3ExplainExpr(pOut, pX);
3215       sqlite3ExplainPrintf(pOut, ",");
3216       sqlite3ExplainExpr(pOut, pY);
3217       sqlite3ExplainPrintf(pOut, ",");
3218       sqlite3ExplainExpr(pOut, pZ);
3219       sqlite3ExplainPrintf(pOut, ")");
3220       break;
3221     }
3222     case TK_TRIGGER: {
3223       /* If the opcode is TK_TRIGGER, then the expression is a reference
3224       ** to a column in the new.* or old.* pseudo-tables available to
3225       ** trigger programs. In this case Expr.iTable is set to 1 for the
3226       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3227       ** is set to the column of the pseudo-table to read, or to -1 to
3228       ** read the rowid field.
3229       */
3230       sqlite3ExplainPrintf(pOut, "%s(%d)",
3231           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3232       break;
3233     }
3234     case TK_CASE: {
3235       sqlite3ExplainPrintf(pOut, "CASE(");
3236       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3237       sqlite3ExplainPrintf(pOut, ",");
3238       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3239       break;
3240     }
3241 #ifndef SQLITE_OMIT_TRIGGER
3242     case TK_RAISE: {
3243       const char *zType = "unk";
3244       switch( pExpr->affinity ){
3245         case OE_Rollback:   zType = "rollback";  break;
3246         case OE_Abort:      zType = "abort";     break;
3247         case OE_Fail:       zType = "fail";      break;
3248         case OE_Ignore:     zType = "ignore";    break;
3249       }
3250       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3251       break;
3252     }
3253 #endif
3254   }
3255   if( zBinOp ){
3256     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3257     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3258     sqlite3ExplainPrintf(pOut,",");
3259     sqlite3ExplainExpr(pOut, pExpr->pRight);
3260     sqlite3ExplainPrintf(pOut,")");
3261   }else if( zUniOp ){
3262     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3263     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3264     sqlite3ExplainPrintf(pOut,")");
3265   }
3266 }
3267 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3268 
3269 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3270 /*
3271 ** Generate a human-readable explanation of an expression list.
3272 */
3273 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3274   int i;
3275   if( pList==0 || pList->nExpr==0 ){
3276     sqlite3ExplainPrintf(pOut, "(empty-list)");
3277     return;
3278   }else if( pList->nExpr==1 ){
3279     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3280   }else{
3281     sqlite3ExplainPush(pOut);
3282     for(i=0; i<pList->nExpr; i++){
3283       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3284       sqlite3ExplainPush(pOut);
3285       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3286       sqlite3ExplainPop(pOut);
3287       if( pList->a[i].zName ){
3288         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3289       }
3290       if( pList->a[i].bSpanIsTab ){
3291         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3292       }
3293       if( i<pList->nExpr-1 ){
3294         sqlite3ExplainNL(pOut);
3295       }
3296     }
3297     sqlite3ExplainPop(pOut);
3298   }
3299 }
3300 #endif /* SQLITE_DEBUG */
3301 
3302 /*
3303 ** Return TRUE if pExpr is an constant expression that is appropriate
3304 ** for factoring out of a loop.  Appropriate expressions are:
3305 **
3306 **    *  Any expression that evaluates to two or more opcodes.
3307 **
3308 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
3309 **       or OP_Variable that does not need to be placed in a
3310 **       specific register.
3311 **
3312 ** There is no point in factoring out single-instruction constant
3313 ** expressions that need to be placed in a particular register.
3314 ** We could factor them out, but then we would end up adding an
3315 ** OP_SCopy instruction to move the value into the correct register
3316 ** later.  We might as well just use the original instruction and
3317 ** avoid the OP_SCopy.
3318 */
3319 static int isAppropriateForFactoring(Expr *p){
3320   if( !sqlite3ExprIsConstantNotJoin(p) ){
3321     return 0;  /* Only constant expressions are appropriate for factoring */
3322   }
3323   if( (p->flags & EP_FixedDest)==0 ){
3324     return 1;  /* Any constant without a fixed destination is appropriate */
3325   }
3326   while( p->op==TK_UPLUS ) p = p->pLeft;
3327   switch( p->op ){
3328 #ifndef SQLITE_OMIT_BLOB_LITERAL
3329     case TK_BLOB:
3330 #endif
3331     case TK_VARIABLE:
3332     case TK_INTEGER:
3333     case TK_FLOAT:
3334     case TK_NULL:
3335     case TK_STRING: {
3336       testcase( p->op==TK_BLOB );
3337       testcase( p->op==TK_VARIABLE );
3338       testcase( p->op==TK_INTEGER );
3339       testcase( p->op==TK_FLOAT );
3340       testcase( p->op==TK_NULL );
3341       testcase( p->op==TK_STRING );
3342       /* Single-instruction constants with a fixed destination are
3343       ** better done in-line.  If we factor them, they will just end
3344       ** up generating an OP_SCopy to move the value to the destination
3345       ** register. */
3346       return 0;
3347     }
3348     case TK_UMINUS: {
3349       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3350         return 0;
3351       }
3352       break;
3353     }
3354     default: {
3355       break;
3356     }
3357   }
3358   return 1;
3359 }
3360 
3361 /*
3362 ** If pExpr is a constant expression that is appropriate for
3363 ** factoring out of a loop, then evaluate the expression
3364 ** into a register and convert the expression into a TK_REGISTER
3365 ** expression.
3366 */
3367 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3368   Parse *pParse = pWalker->pParse;
3369   switch( pExpr->op ){
3370     case TK_IN:
3371     case TK_REGISTER: {
3372       return WRC_Prune;
3373     }
3374     case TK_COLLATE: {
3375       return WRC_Continue;
3376     }
3377     case TK_FUNCTION:
3378     case TK_AGG_FUNCTION:
3379     case TK_CONST_FUNC: {
3380       /* The arguments to a function have a fixed destination.
3381       ** Mark them this way to avoid generated unneeded OP_SCopy
3382       ** instructions.
3383       */
3384       ExprList *pList = pExpr->x.pList;
3385       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3386       if( pList ){
3387         int i = pList->nExpr;
3388         struct ExprList_item *pItem = pList->a;
3389         for(; i>0; i--, pItem++){
3390           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3391         }
3392       }
3393       break;
3394     }
3395   }
3396   if( isAppropriateForFactoring(pExpr) ){
3397     int r1 = ++pParse->nMem;
3398     int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3399     /* If r2!=r1, it means that register r1 is never used.  That is harmless
3400     ** but suboptimal, so we want to know about the situation to fix it.
3401     ** Hence the following assert: */
3402     assert( r2==r1 );
3403     pExpr->op2 = pExpr->op;
3404     pExpr->op = TK_REGISTER;
3405     pExpr->iTable = r2;
3406     return WRC_Prune;
3407   }
3408   return WRC_Continue;
3409 }
3410 
3411 /*
3412 ** Preevaluate constant subexpressions within pExpr and store the
3413 ** results in registers.  Modify pExpr so that the constant subexpresions
3414 ** are TK_REGISTER opcodes that refer to the precomputed values.
3415 **
3416 ** This routine is a no-op if the jump to the cookie-check code has
3417 ** already occur.  Since the cookie-check jump is generated prior to
3418 ** any other serious processing, this check ensures that there is no
3419 ** way to accidently bypass the constant initializations.
3420 **
3421 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3422 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3423 ** interface.  This allows test logic to verify that the same answer is
3424 ** obtained for queries regardless of whether or not constants are
3425 ** precomputed into registers or if they are inserted in-line.
3426 */
3427 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3428   Walker w;
3429   if( pParse->cookieGoto ) return;
3430   if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return;
3431   w.xExprCallback = evalConstExpr;
3432   w.xSelectCallback = 0;
3433   w.pParse = pParse;
3434   sqlite3WalkExpr(&w, pExpr);
3435 }
3436 
3437 
3438 /*
3439 ** Generate code that pushes the value of every element of the given
3440 ** expression list into a sequence of registers beginning at target.
3441 **
3442 ** Return the number of elements evaluated.
3443 */
3444 int sqlite3ExprCodeExprList(
3445   Parse *pParse,     /* Parsing context */
3446   ExprList *pList,   /* The expression list to be coded */
3447   int target,        /* Where to write results */
3448   int doHardCopy     /* Make a hard copy of every element */
3449 ){
3450   struct ExprList_item *pItem;
3451   int i, n;
3452   assert( pList!=0 );
3453   assert( target>0 );
3454   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3455   n = pList->nExpr;
3456   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3457     Expr *pExpr = pItem->pExpr;
3458     int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3459     if( inReg!=target+i ){
3460       sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3461                         inReg, target+i);
3462     }
3463   }
3464   return n;
3465 }
3466 
3467 /*
3468 ** Generate code for a BETWEEN operator.
3469 **
3470 **    x BETWEEN y AND z
3471 **
3472 ** The above is equivalent to
3473 **
3474 **    x>=y AND x<=z
3475 **
3476 ** Code it as such, taking care to do the common subexpression
3477 ** elementation of x.
3478 */
3479 static void exprCodeBetween(
3480   Parse *pParse,    /* Parsing and code generating context */
3481   Expr *pExpr,      /* The BETWEEN expression */
3482   int dest,         /* Jump here if the jump is taken */
3483   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3484   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3485 ){
3486   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3487   Expr compLeft;    /* The  x>=y  term */
3488   Expr compRight;   /* The  x<=z  term */
3489   Expr exprX;       /* The  x  subexpression */
3490   int regFree1 = 0; /* Temporary use register */
3491 
3492   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3493   exprX = *pExpr->pLeft;
3494   exprAnd.op = TK_AND;
3495   exprAnd.pLeft = &compLeft;
3496   exprAnd.pRight = &compRight;
3497   compLeft.op = TK_GE;
3498   compLeft.pLeft = &exprX;
3499   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3500   compRight.op = TK_LE;
3501   compRight.pLeft = &exprX;
3502   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3503   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3504   exprX.op = TK_REGISTER;
3505   if( jumpIfTrue ){
3506     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3507   }else{
3508     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3509   }
3510   sqlite3ReleaseTempReg(pParse, regFree1);
3511 
3512   /* Ensure adequate test coverage */
3513   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3514   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3515   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3516   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3517   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3518   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3519   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3520   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3521 }
3522 
3523 /*
3524 ** Generate code for a boolean expression such that a jump is made
3525 ** to the label "dest" if the expression is true but execution
3526 ** continues straight thru if the expression is false.
3527 **
3528 ** If the expression evaluates to NULL (neither true nor false), then
3529 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3530 **
3531 ** This code depends on the fact that certain token values (ex: TK_EQ)
3532 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3533 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3534 ** the make process cause these values to align.  Assert()s in the code
3535 ** below verify that the numbers are aligned correctly.
3536 */
3537 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3538   Vdbe *v = pParse->pVdbe;
3539   int op = 0;
3540   int regFree1 = 0;
3541   int regFree2 = 0;
3542   int r1, r2;
3543 
3544   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3545   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3546   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3547   op = pExpr->op;
3548   switch( op ){
3549     case TK_AND: {
3550       int d2 = sqlite3VdbeMakeLabel(v);
3551       testcase( jumpIfNull==0 );
3552       sqlite3ExprCachePush(pParse);
3553       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3554       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3555       sqlite3VdbeResolveLabel(v, d2);
3556       sqlite3ExprCachePop(pParse, 1);
3557       break;
3558     }
3559     case TK_OR: {
3560       testcase( jumpIfNull==0 );
3561       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3562       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3563       break;
3564     }
3565     case TK_NOT: {
3566       testcase( jumpIfNull==0 );
3567       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3568       break;
3569     }
3570     case TK_LT:
3571     case TK_LE:
3572     case TK_GT:
3573     case TK_GE:
3574     case TK_NE:
3575     case TK_EQ: {
3576       assert( TK_LT==OP_Lt );
3577       assert( TK_LE==OP_Le );
3578       assert( TK_GT==OP_Gt );
3579       assert( TK_GE==OP_Ge );
3580       assert( TK_EQ==OP_Eq );
3581       assert( TK_NE==OP_Ne );
3582       testcase( op==TK_LT );
3583       testcase( op==TK_LE );
3584       testcase( op==TK_GT );
3585       testcase( op==TK_GE );
3586       testcase( op==TK_EQ );
3587       testcase( op==TK_NE );
3588       testcase( jumpIfNull==0 );
3589       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3590       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3591       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3592                   r1, r2, dest, jumpIfNull);
3593       testcase( regFree1==0 );
3594       testcase( regFree2==0 );
3595       break;
3596     }
3597     case TK_IS:
3598     case TK_ISNOT: {
3599       testcase( op==TK_IS );
3600       testcase( op==TK_ISNOT );
3601       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3602       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3603       op = (op==TK_IS) ? TK_EQ : TK_NE;
3604       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3605                   r1, r2, dest, SQLITE_NULLEQ);
3606       testcase( regFree1==0 );
3607       testcase( regFree2==0 );
3608       break;
3609     }
3610     case TK_ISNULL:
3611     case TK_NOTNULL: {
3612       assert( TK_ISNULL==OP_IsNull );
3613       assert( TK_NOTNULL==OP_NotNull );
3614       testcase( op==TK_ISNULL );
3615       testcase( op==TK_NOTNULL );
3616       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3617       sqlite3VdbeAddOp2(v, op, r1, dest);
3618       testcase( regFree1==0 );
3619       break;
3620     }
3621     case TK_BETWEEN: {
3622       testcase( jumpIfNull==0 );
3623       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3624       break;
3625     }
3626 #ifndef SQLITE_OMIT_SUBQUERY
3627     case TK_IN: {
3628       int destIfFalse = sqlite3VdbeMakeLabel(v);
3629       int destIfNull = jumpIfNull ? dest : destIfFalse;
3630       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3631       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3632       sqlite3VdbeResolveLabel(v, destIfFalse);
3633       break;
3634     }
3635 #endif
3636     default: {
3637       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3638       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3639       testcase( regFree1==0 );
3640       testcase( jumpIfNull==0 );
3641       break;
3642     }
3643   }
3644   sqlite3ReleaseTempReg(pParse, regFree1);
3645   sqlite3ReleaseTempReg(pParse, regFree2);
3646 }
3647 
3648 /*
3649 ** Generate code for a boolean expression such that a jump is made
3650 ** to the label "dest" if the expression is false but execution
3651 ** continues straight thru if the expression is true.
3652 **
3653 ** If the expression evaluates to NULL (neither true nor false) then
3654 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3655 ** is 0.
3656 */
3657 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3658   Vdbe *v = pParse->pVdbe;
3659   int op = 0;
3660   int regFree1 = 0;
3661   int regFree2 = 0;
3662   int r1, r2;
3663 
3664   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3665   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3666   if( pExpr==0 )    return;
3667 
3668   /* The value of pExpr->op and op are related as follows:
3669   **
3670   **       pExpr->op            op
3671   **       ---------          ----------
3672   **       TK_ISNULL          OP_NotNull
3673   **       TK_NOTNULL         OP_IsNull
3674   **       TK_NE              OP_Eq
3675   **       TK_EQ              OP_Ne
3676   **       TK_GT              OP_Le
3677   **       TK_LE              OP_Gt
3678   **       TK_GE              OP_Lt
3679   **       TK_LT              OP_Ge
3680   **
3681   ** For other values of pExpr->op, op is undefined and unused.
3682   ** The value of TK_ and OP_ constants are arranged such that we
3683   ** can compute the mapping above using the following expression.
3684   ** Assert()s verify that the computation is correct.
3685   */
3686   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3687 
3688   /* Verify correct alignment of TK_ and OP_ constants
3689   */
3690   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3691   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3692   assert( pExpr->op!=TK_NE || op==OP_Eq );
3693   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3694   assert( pExpr->op!=TK_LT || op==OP_Ge );
3695   assert( pExpr->op!=TK_LE || op==OP_Gt );
3696   assert( pExpr->op!=TK_GT || op==OP_Le );
3697   assert( pExpr->op!=TK_GE || op==OP_Lt );
3698 
3699   switch( pExpr->op ){
3700     case TK_AND: {
3701       testcase( jumpIfNull==0 );
3702       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3703       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3704       break;
3705     }
3706     case TK_OR: {
3707       int d2 = sqlite3VdbeMakeLabel(v);
3708       testcase( jumpIfNull==0 );
3709       sqlite3ExprCachePush(pParse);
3710       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3711       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3712       sqlite3VdbeResolveLabel(v, d2);
3713       sqlite3ExprCachePop(pParse, 1);
3714       break;
3715     }
3716     case TK_NOT: {
3717       testcase( jumpIfNull==0 );
3718       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3719       break;
3720     }
3721     case TK_LT:
3722     case TK_LE:
3723     case TK_GT:
3724     case TK_GE:
3725     case TK_NE:
3726     case TK_EQ: {
3727       testcase( op==TK_LT );
3728       testcase( op==TK_LE );
3729       testcase( op==TK_GT );
3730       testcase( op==TK_GE );
3731       testcase( op==TK_EQ );
3732       testcase( op==TK_NE );
3733       testcase( jumpIfNull==0 );
3734       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3735       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3736       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3737                   r1, r2, dest, jumpIfNull);
3738       testcase( regFree1==0 );
3739       testcase( regFree2==0 );
3740       break;
3741     }
3742     case TK_IS:
3743     case TK_ISNOT: {
3744       testcase( pExpr->op==TK_IS );
3745       testcase( pExpr->op==TK_ISNOT );
3746       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3747       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3748       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3749       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3750                   r1, r2, dest, SQLITE_NULLEQ);
3751       testcase( regFree1==0 );
3752       testcase( regFree2==0 );
3753       break;
3754     }
3755     case TK_ISNULL:
3756     case TK_NOTNULL: {
3757       testcase( op==TK_ISNULL );
3758       testcase( op==TK_NOTNULL );
3759       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3760       sqlite3VdbeAddOp2(v, op, r1, dest);
3761       testcase( regFree1==0 );
3762       break;
3763     }
3764     case TK_BETWEEN: {
3765       testcase( jumpIfNull==0 );
3766       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3767       break;
3768     }
3769 #ifndef SQLITE_OMIT_SUBQUERY
3770     case TK_IN: {
3771       if( jumpIfNull ){
3772         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3773       }else{
3774         int destIfNull = sqlite3VdbeMakeLabel(v);
3775         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3776         sqlite3VdbeResolveLabel(v, destIfNull);
3777       }
3778       break;
3779     }
3780 #endif
3781     default: {
3782       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3783       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3784       testcase( regFree1==0 );
3785       testcase( jumpIfNull==0 );
3786       break;
3787     }
3788   }
3789   sqlite3ReleaseTempReg(pParse, regFree1);
3790   sqlite3ReleaseTempReg(pParse, regFree2);
3791 }
3792 
3793 /*
3794 ** Do a deep comparison of two expression trees.  Return 0 if the two
3795 ** expressions are completely identical.  Return 1 if they differ only
3796 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3797 ** other than the top-level COLLATE operator.
3798 **
3799 ** Sometimes this routine will return 2 even if the two expressions
3800 ** really are equivalent.  If we cannot prove that the expressions are
3801 ** identical, we return 2 just to be safe.  So if this routine
3802 ** returns 2, then you do not really know for certain if the two
3803 ** expressions are the same.  But if you get a 0 or 1 return, then you
3804 ** can be sure the expressions are the same.  In the places where
3805 ** this routine is used, it does not hurt to get an extra 2 - that
3806 ** just might result in some slightly slower code.  But returning
3807 ** an incorrect 0 or 1 could lead to a malfunction.
3808 */
3809 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3810   if( pA==0||pB==0 ){
3811     return pB==pA ? 0 : 2;
3812   }
3813   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3814   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3815   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3816     return 2;
3817   }
3818   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3819   if( pA->op!=pB->op ){
3820     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){
3821       return 1;
3822     }
3823     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){
3824       return 1;
3825     }
3826     return 2;
3827   }
3828   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3829   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3830   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3831   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3832   if( ExprHasProperty(pA, EP_IntValue) ){
3833     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3834       return 2;
3835     }
3836   }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){
3837     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3838     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3839       return pA->op==TK_COLLATE ? 1 : 2;
3840     }
3841   }
3842   return 0;
3843 }
3844 
3845 /*
3846 ** Compare two ExprList objects.  Return 0 if they are identical and
3847 ** non-zero if they differ in any way.
3848 **
3849 ** This routine might return non-zero for equivalent ExprLists.  The
3850 ** only consequence will be disabled optimizations.  But this routine
3851 ** must never return 0 if the two ExprList objects are different, or
3852 ** a malfunction will result.
3853 **
3854 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3855 ** always differs from a non-NULL pointer.
3856 */
3857 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3858   int i;
3859   if( pA==0 && pB==0 ) return 0;
3860   if( pA==0 || pB==0 ) return 1;
3861   if( pA->nExpr!=pB->nExpr ) return 1;
3862   for(i=0; i<pA->nExpr; i++){
3863     Expr *pExprA = pA->a[i].pExpr;
3864     Expr *pExprB = pB->a[i].pExpr;
3865     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3866     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3867   }
3868   return 0;
3869 }
3870 
3871 /*
3872 ** An instance of the following structure is used by the tree walker
3873 ** to count references to table columns in the arguments of an
3874 ** aggregate function, in order to implement the
3875 ** sqlite3FunctionThisSrc() routine.
3876 */
3877 struct SrcCount {
3878   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3879   int nThis;       /* Number of references to columns in pSrcList */
3880   int nOther;      /* Number of references to columns in other FROM clauses */
3881 };
3882 
3883 /*
3884 ** Count the number of references to columns.
3885 */
3886 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3887   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3888   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3889   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3890   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3891   ** NEVER() will need to be removed. */
3892   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3893     int i;
3894     struct SrcCount *p = pWalker->u.pSrcCount;
3895     SrcList *pSrc = p->pSrc;
3896     for(i=0; i<pSrc->nSrc; i++){
3897       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3898     }
3899     if( i<pSrc->nSrc ){
3900       p->nThis++;
3901     }else{
3902       p->nOther++;
3903     }
3904   }
3905   return WRC_Continue;
3906 }
3907 
3908 /*
3909 ** Determine if any of the arguments to the pExpr Function reference
3910 ** pSrcList.  Return true if they do.  Also return true if the function
3911 ** has no arguments or has only constant arguments.  Return false if pExpr
3912 ** references columns but not columns of tables found in pSrcList.
3913 */
3914 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3915   Walker w;
3916   struct SrcCount cnt;
3917   assert( pExpr->op==TK_AGG_FUNCTION );
3918   memset(&w, 0, sizeof(w));
3919   w.xExprCallback = exprSrcCount;
3920   w.u.pSrcCount = &cnt;
3921   cnt.pSrc = pSrcList;
3922   cnt.nThis = 0;
3923   cnt.nOther = 0;
3924   sqlite3WalkExprList(&w, pExpr->x.pList);
3925   return cnt.nThis>0 || cnt.nOther==0;
3926 }
3927 
3928 /*
3929 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3930 ** the new element.  Return a negative number if malloc fails.
3931 */
3932 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3933   int i;
3934   pInfo->aCol = sqlite3ArrayAllocate(
3935        db,
3936        pInfo->aCol,
3937        sizeof(pInfo->aCol[0]),
3938        &pInfo->nColumn,
3939        &i
3940   );
3941   return i;
3942 }
3943 
3944 /*
3945 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3946 ** the new element.  Return a negative number if malloc fails.
3947 */
3948 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3949   int i;
3950   pInfo->aFunc = sqlite3ArrayAllocate(
3951        db,
3952        pInfo->aFunc,
3953        sizeof(pInfo->aFunc[0]),
3954        &pInfo->nFunc,
3955        &i
3956   );
3957   return i;
3958 }
3959 
3960 /*
3961 ** This is the xExprCallback for a tree walker.  It is used to
3962 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3963 ** for additional information.
3964 */
3965 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3966   int i;
3967   NameContext *pNC = pWalker->u.pNC;
3968   Parse *pParse = pNC->pParse;
3969   SrcList *pSrcList = pNC->pSrcList;
3970   AggInfo *pAggInfo = pNC->pAggInfo;
3971 
3972   switch( pExpr->op ){
3973     case TK_AGG_COLUMN:
3974     case TK_COLUMN: {
3975       testcase( pExpr->op==TK_AGG_COLUMN );
3976       testcase( pExpr->op==TK_COLUMN );
3977       /* Check to see if the column is in one of the tables in the FROM
3978       ** clause of the aggregate query */
3979       if( ALWAYS(pSrcList!=0) ){
3980         struct SrcList_item *pItem = pSrcList->a;
3981         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3982           struct AggInfo_col *pCol;
3983           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3984           if( pExpr->iTable==pItem->iCursor ){
3985             /* If we reach this point, it means that pExpr refers to a table
3986             ** that is in the FROM clause of the aggregate query.
3987             **
3988             ** Make an entry for the column in pAggInfo->aCol[] if there
3989             ** is not an entry there already.
3990             */
3991             int k;
3992             pCol = pAggInfo->aCol;
3993             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3994               if( pCol->iTable==pExpr->iTable &&
3995                   pCol->iColumn==pExpr->iColumn ){
3996                 break;
3997               }
3998             }
3999             if( (k>=pAggInfo->nColumn)
4000              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4001             ){
4002               pCol = &pAggInfo->aCol[k];
4003               pCol->pTab = pExpr->pTab;
4004               pCol->iTable = pExpr->iTable;
4005               pCol->iColumn = pExpr->iColumn;
4006               pCol->iMem = ++pParse->nMem;
4007               pCol->iSorterColumn = -1;
4008               pCol->pExpr = pExpr;
4009               if( pAggInfo->pGroupBy ){
4010                 int j, n;
4011                 ExprList *pGB = pAggInfo->pGroupBy;
4012                 struct ExprList_item *pTerm = pGB->a;
4013                 n = pGB->nExpr;
4014                 for(j=0; j<n; j++, pTerm++){
4015                   Expr *pE = pTerm->pExpr;
4016                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4017                       pE->iColumn==pExpr->iColumn ){
4018                     pCol->iSorterColumn = j;
4019                     break;
4020                   }
4021                 }
4022               }
4023               if( pCol->iSorterColumn<0 ){
4024                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4025               }
4026             }
4027             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4028             ** because it was there before or because we just created it).
4029             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4030             ** pAggInfo->aCol[] entry.
4031             */
4032             ExprSetIrreducible(pExpr);
4033             pExpr->pAggInfo = pAggInfo;
4034             pExpr->op = TK_AGG_COLUMN;
4035             pExpr->iAgg = (i16)k;
4036             break;
4037           } /* endif pExpr->iTable==pItem->iCursor */
4038         } /* end loop over pSrcList */
4039       }
4040       return WRC_Prune;
4041     }
4042     case TK_AGG_FUNCTION: {
4043       if( (pNC->ncFlags & NC_InAggFunc)==0
4044        && pWalker->walkerDepth==pExpr->op2
4045       ){
4046         /* Check to see if pExpr is a duplicate of another aggregate
4047         ** function that is already in the pAggInfo structure
4048         */
4049         struct AggInfo_func *pItem = pAggInfo->aFunc;
4050         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4051           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
4052             break;
4053           }
4054         }
4055         if( i>=pAggInfo->nFunc ){
4056           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4057           */
4058           u8 enc = ENC(pParse->db);
4059           i = addAggInfoFunc(pParse->db, pAggInfo);
4060           if( i>=0 ){
4061             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4062             pItem = &pAggInfo->aFunc[i];
4063             pItem->pExpr = pExpr;
4064             pItem->iMem = ++pParse->nMem;
4065             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4066             pItem->pFunc = sqlite3FindFunction(pParse->db,
4067                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4068                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4069             if( pExpr->flags & EP_Distinct ){
4070               pItem->iDistinct = pParse->nTab++;
4071             }else{
4072               pItem->iDistinct = -1;
4073             }
4074           }
4075         }
4076         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4077         */
4078         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4079         ExprSetIrreducible(pExpr);
4080         pExpr->iAgg = (i16)i;
4081         pExpr->pAggInfo = pAggInfo;
4082         return WRC_Prune;
4083       }else{
4084         return WRC_Continue;
4085       }
4086     }
4087   }
4088   return WRC_Continue;
4089 }
4090 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4091   UNUSED_PARAMETER(pWalker);
4092   UNUSED_PARAMETER(pSelect);
4093   return WRC_Continue;
4094 }
4095 
4096 /*
4097 ** Analyze the pExpr expression looking for aggregate functions and
4098 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4099 ** points to.  Additional entries are made on the AggInfo object as
4100 ** necessary.
4101 **
4102 ** This routine should only be called after the expression has been
4103 ** analyzed by sqlite3ResolveExprNames().
4104 */
4105 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4106   Walker w;
4107   memset(&w, 0, sizeof(w));
4108   w.xExprCallback = analyzeAggregate;
4109   w.xSelectCallback = analyzeAggregatesInSelect;
4110   w.u.pNC = pNC;
4111   assert( pNC->pSrcList!=0 );
4112   sqlite3WalkExpr(&w, pExpr);
4113 }
4114 
4115 /*
4116 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4117 ** expression list.  Return the number of errors.
4118 **
4119 ** If an error is found, the analysis is cut short.
4120 */
4121 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4122   struct ExprList_item *pItem;
4123   int i;
4124   if( pList ){
4125     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4126       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4127     }
4128   }
4129 }
4130 
4131 /*
4132 ** Allocate a single new register for use to hold some intermediate result.
4133 */
4134 int sqlite3GetTempReg(Parse *pParse){
4135   if( pParse->nTempReg==0 ){
4136     return ++pParse->nMem;
4137   }
4138   return pParse->aTempReg[--pParse->nTempReg];
4139 }
4140 
4141 /*
4142 ** Deallocate a register, making available for reuse for some other
4143 ** purpose.
4144 **
4145 ** If a register is currently being used by the column cache, then
4146 ** the dallocation is deferred until the column cache line that uses
4147 ** the register becomes stale.
4148 */
4149 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4150   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4151     int i;
4152     struct yColCache *p;
4153     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4154       if( p->iReg==iReg ){
4155         p->tempReg = 1;
4156         return;
4157       }
4158     }
4159     pParse->aTempReg[pParse->nTempReg++] = iReg;
4160   }
4161 }
4162 
4163 /*
4164 ** Allocate or deallocate a block of nReg consecutive registers
4165 */
4166 int sqlite3GetTempRange(Parse *pParse, int nReg){
4167   int i, n;
4168   i = pParse->iRangeReg;
4169   n = pParse->nRangeReg;
4170   if( nReg<=n ){
4171     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4172     pParse->iRangeReg += nReg;
4173     pParse->nRangeReg -= nReg;
4174   }else{
4175     i = pParse->nMem+1;
4176     pParse->nMem += nReg;
4177   }
4178   return i;
4179 }
4180 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4181   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4182   if( nReg>pParse->nRangeReg ){
4183     pParse->nRangeReg = nReg;
4184     pParse->iRangeReg = iReg;
4185   }
4186 }
4187 
4188 /*
4189 ** Mark all temporary registers as being unavailable for reuse.
4190 */
4191 void sqlite3ClearTempRegCache(Parse *pParse){
4192   pParse->nTempReg = 0;
4193   pParse->nRangeReg = 0;
4194 }
4195