1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 44 return sqlite3AffinityType(pExpr->u.zToken); 45 } 46 #endif 47 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 48 && pExpr->pTab!=0 49 ){ 50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 51 ** a TK_COLUMN but was previously evaluated and cached in a register */ 52 int j = pExpr->iColumn; 53 if( j<0 ) return SQLITE_AFF_INTEGER; 54 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 55 return pExpr->pTab->aCol[j].affinity; 56 } 57 return pExpr->affinity; 58 } 59 60 /* 61 ** Set the collating sequence for expression pExpr to be the collating 62 ** sequence named by pToken. Return a pointer to a new Expr node that 63 ** implements the COLLATE operator. 64 ** 65 ** If a memory allocation error occurs, that fact is recorded in pParse->db 66 ** and the pExpr parameter is returned unchanged. 67 */ 68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 69 if( pCollName->n>0 ){ 70 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 71 if( pNew ){ 72 pNew->pLeft = pExpr; 73 pNew->flags |= EP_Collate; 74 pExpr = pNew; 75 } 76 } 77 return pExpr; 78 } 79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 80 Token s; 81 assert( zC!=0 ); 82 s.z = zC; 83 s.n = sqlite3Strlen30(s.z); 84 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 85 } 86 87 /* 88 ** Skip over any TK_COLLATE and/or TK_AS operators at the root of 89 ** an expression. 90 */ 91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 92 while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){ 93 pExpr = pExpr->pLeft; 94 } 95 return pExpr; 96 } 97 98 /* 99 ** Return the collation sequence for the expression pExpr. If 100 ** there is no defined collating sequence, return NULL. 101 ** 102 ** The collating sequence might be determined by a COLLATE operator 103 ** or by the presence of a column with a defined collating sequence. 104 ** COLLATE operators take first precedence. Left operands take 105 ** precedence over right operands. 106 */ 107 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 108 sqlite3 *db = pParse->db; 109 CollSeq *pColl = 0; 110 Expr *p = pExpr; 111 while( p ){ 112 int op = p->op; 113 if( op==TK_CAST || op==TK_UPLUS ){ 114 p = p->pLeft; 115 continue; 116 } 117 assert( op!=TK_REGISTER || p->op2!=TK_COLLATE ); 118 if( op==TK_COLLATE ){ 119 if( db->init.busy ){ 120 /* Do not report errors when parsing while the schema */ 121 pColl = sqlite3FindCollSeq(db, ENC(db), p->u.zToken, 0); 122 }else{ 123 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 124 } 125 break; 126 } 127 if( p->pTab!=0 128 && (op==TK_AGG_COLUMN || op==TK_COLUMN 129 || op==TK_REGISTER || op==TK_TRIGGER) 130 ){ 131 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 132 ** a TK_COLUMN but was previously evaluated and cached in a register */ 133 int j = p->iColumn; 134 if( j>=0 ){ 135 const char *zColl = p->pTab->aCol[j].zColl; 136 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 137 } 138 break; 139 } 140 if( p->flags & EP_Collate ){ 141 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 142 p = p->pLeft; 143 }else{ 144 p = p->pRight; 145 } 146 }else{ 147 break; 148 } 149 } 150 if( sqlite3CheckCollSeq(pParse, pColl) ){ 151 pColl = 0; 152 } 153 return pColl; 154 } 155 156 /* 157 ** pExpr is an operand of a comparison operator. aff2 is the 158 ** type affinity of the other operand. This routine returns the 159 ** type affinity that should be used for the comparison operator. 160 */ 161 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 162 char aff1 = sqlite3ExprAffinity(pExpr); 163 if( aff1 && aff2 ){ 164 /* Both sides of the comparison are columns. If one has numeric 165 ** affinity, use that. Otherwise use no affinity. 166 */ 167 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 168 return SQLITE_AFF_NUMERIC; 169 }else{ 170 return SQLITE_AFF_NONE; 171 } 172 }else if( !aff1 && !aff2 ){ 173 /* Neither side of the comparison is a column. Compare the 174 ** results directly. 175 */ 176 return SQLITE_AFF_NONE; 177 }else{ 178 /* One side is a column, the other is not. Use the columns affinity. */ 179 assert( aff1==0 || aff2==0 ); 180 return (aff1 + aff2); 181 } 182 } 183 184 /* 185 ** pExpr is a comparison operator. Return the type affinity that should 186 ** be applied to both operands prior to doing the comparison. 187 */ 188 static char comparisonAffinity(Expr *pExpr){ 189 char aff; 190 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 191 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 192 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 193 assert( pExpr->pLeft ); 194 aff = sqlite3ExprAffinity(pExpr->pLeft); 195 if( pExpr->pRight ){ 196 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 197 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 198 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 199 }else if( !aff ){ 200 aff = SQLITE_AFF_NONE; 201 } 202 return aff; 203 } 204 205 /* 206 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 207 ** idx_affinity is the affinity of an indexed column. Return true 208 ** if the index with affinity idx_affinity may be used to implement 209 ** the comparison in pExpr. 210 */ 211 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 212 char aff = comparisonAffinity(pExpr); 213 switch( aff ){ 214 case SQLITE_AFF_NONE: 215 return 1; 216 case SQLITE_AFF_TEXT: 217 return idx_affinity==SQLITE_AFF_TEXT; 218 default: 219 return sqlite3IsNumericAffinity(idx_affinity); 220 } 221 } 222 223 /* 224 ** Return the P5 value that should be used for a binary comparison 225 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 226 */ 227 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 228 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 229 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 230 return aff; 231 } 232 233 /* 234 ** Return a pointer to the collation sequence that should be used by 235 ** a binary comparison operator comparing pLeft and pRight. 236 ** 237 ** If the left hand expression has a collating sequence type, then it is 238 ** used. Otherwise the collation sequence for the right hand expression 239 ** is used, or the default (BINARY) if neither expression has a collating 240 ** type. 241 ** 242 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 243 ** it is not considered. 244 */ 245 CollSeq *sqlite3BinaryCompareCollSeq( 246 Parse *pParse, 247 Expr *pLeft, 248 Expr *pRight 249 ){ 250 CollSeq *pColl; 251 assert( pLeft ); 252 if( pLeft->flags & EP_Collate ){ 253 pColl = sqlite3ExprCollSeq(pParse, pLeft); 254 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 255 pColl = sqlite3ExprCollSeq(pParse, pRight); 256 }else{ 257 pColl = sqlite3ExprCollSeq(pParse, pLeft); 258 if( !pColl ){ 259 pColl = sqlite3ExprCollSeq(pParse, pRight); 260 } 261 } 262 return pColl; 263 } 264 265 /* 266 ** Generate code for a comparison operator. 267 */ 268 static int codeCompare( 269 Parse *pParse, /* The parsing (and code generating) context */ 270 Expr *pLeft, /* The left operand */ 271 Expr *pRight, /* The right operand */ 272 int opcode, /* The comparison opcode */ 273 int in1, int in2, /* Register holding operands */ 274 int dest, /* Jump here if true. */ 275 int jumpIfNull /* If true, jump if either operand is NULL */ 276 ){ 277 int p5; 278 int addr; 279 CollSeq *p4; 280 281 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 282 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 283 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 284 (void*)p4, P4_COLLSEQ); 285 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 286 return addr; 287 } 288 289 #if SQLITE_MAX_EXPR_DEPTH>0 290 /* 291 ** Check that argument nHeight is less than or equal to the maximum 292 ** expression depth allowed. If it is not, leave an error message in 293 ** pParse. 294 */ 295 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 296 int rc = SQLITE_OK; 297 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 298 if( nHeight>mxHeight ){ 299 sqlite3ErrorMsg(pParse, 300 "Expression tree is too large (maximum depth %d)", mxHeight 301 ); 302 rc = SQLITE_ERROR; 303 } 304 return rc; 305 } 306 307 /* The following three functions, heightOfExpr(), heightOfExprList() 308 ** and heightOfSelect(), are used to determine the maximum height 309 ** of any expression tree referenced by the structure passed as the 310 ** first argument. 311 ** 312 ** If this maximum height is greater than the current value pointed 313 ** to by pnHeight, the second parameter, then set *pnHeight to that 314 ** value. 315 */ 316 static void heightOfExpr(Expr *p, int *pnHeight){ 317 if( p ){ 318 if( p->nHeight>*pnHeight ){ 319 *pnHeight = p->nHeight; 320 } 321 } 322 } 323 static void heightOfExprList(ExprList *p, int *pnHeight){ 324 if( p ){ 325 int i; 326 for(i=0; i<p->nExpr; i++){ 327 heightOfExpr(p->a[i].pExpr, pnHeight); 328 } 329 } 330 } 331 static void heightOfSelect(Select *p, int *pnHeight){ 332 if( p ){ 333 heightOfExpr(p->pWhere, pnHeight); 334 heightOfExpr(p->pHaving, pnHeight); 335 heightOfExpr(p->pLimit, pnHeight); 336 heightOfExpr(p->pOffset, pnHeight); 337 heightOfExprList(p->pEList, pnHeight); 338 heightOfExprList(p->pGroupBy, pnHeight); 339 heightOfExprList(p->pOrderBy, pnHeight); 340 heightOfSelect(p->pPrior, pnHeight); 341 } 342 } 343 344 /* 345 ** Set the Expr.nHeight variable in the structure passed as an 346 ** argument. An expression with no children, Expr.pList or 347 ** Expr.pSelect member has a height of 1. Any other expression 348 ** has a height equal to the maximum height of any other 349 ** referenced Expr plus one. 350 */ 351 static void exprSetHeight(Expr *p){ 352 int nHeight = 0; 353 heightOfExpr(p->pLeft, &nHeight); 354 heightOfExpr(p->pRight, &nHeight); 355 if( ExprHasProperty(p, EP_xIsSelect) ){ 356 heightOfSelect(p->x.pSelect, &nHeight); 357 }else{ 358 heightOfExprList(p->x.pList, &nHeight); 359 } 360 p->nHeight = nHeight + 1; 361 } 362 363 /* 364 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 365 ** the height is greater than the maximum allowed expression depth, 366 ** leave an error in pParse. 367 */ 368 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 369 exprSetHeight(p); 370 sqlite3ExprCheckHeight(pParse, p->nHeight); 371 } 372 373 /* 374 ** Return the maximum height of any expression tree referenced 375 ** by the select statement passed as an argument. 376 */ 377 int sqlite3SelectExprHeight(Select *p){ 378 int nHeight = 0; 379 heightOfSelect(p, &nHeight); 380 return nHeight; 381 } 382 #else 383 #define exprSetHeight(y) 384 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 385 386 /* 387 ** This routine is the core allocator for Expr nodes. 388 ** 389 ** Construct a new expression node and return a pointer to it. Memory 390 ** for this node and for the pToken argument is a single allocation 391 ** obtained from sqlite3DbMalloc(). The calling function 392 ** is responsible for making sure the node eventually gets freed. 393 ** 394 ** If dequote is true, then the token (if it exists) is dequoted. 395 ** If dequote is false, no dequoting is performance. The deQuote 396 ** parameter is ignored if pToken is NULL or if the token does not 397 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 398 ** then the EP_DblQuoted flag is set on the expression node. 399 ** 400 ** Special case: If op==TK_INTEGER and pToken points to a string that 401 ** can be translated into a 32-bit integer, then the token is not 402 ** stored in u.zToken. Instead, the integer values is written 403 ** into u.iValue and the EP_IntValue flag is set. No extra storage 404 ** is allocated to hold the integer text and the dequote flag is ignored. 405 */ 406 Expr *sqlite3ExprAlloc( 407 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 408 int op, /* Expression opcode */ 409 const Token *pToken, /* Token argument. Might be NULL */ 410 int dequote /* True to dequote */ 411 ){ 412 Expr *pNew; 413 int nExtra = 0; 414 int iValue = 0; 415 416 if( pToken ){ 417 if( op!=TK_INTEGER || pToken->z==0 418 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 419 nExtra = pToken->n+1; 420 assert( iValue>=0 ); 421 } 422 } 423 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 424 if( pNew ){ 425 pNew->op = (u8)op; 426 pNew->iAgg = -1; 427 if( pToken ){ 428 if( nExtra==0 ){ 429 pNew->flags |= EP_IntValue; 430 pNew->u.iValue = iValue; 431 }else{ 432 int c; 433 pNew->u.zToken = (char*)&pNew[1]; 434 assert( pToken->z!=0 || pToken->n==0 ); 435 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 436 pNew->u.zToken[pToken->n] = 0; 437 if( dequote && nExtra>=3 438 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 439 sqlite3Dequote(pNew->u.zToken); 440 if( c=='"' ) pNew->flags |= EP_DblQuoted; 441 } 442 } 443 } 444 #if SQLITE_MAX_EXPR_DEPTH>0 445 pNew->nHeight = 1; 446 #endif 447 } 448 return pNew; 449 } 450 451 /* 452 ** Allocate a new expression node from a zero-terminated token that has 453 ** already been dequoted. 454 */ 455 Expr *sqlite3Expr( 456 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 457 int op, /* Expression opcode */ 458 const char *zToken /* Token argument. Might be NULL */ 459 ){ 460 Token x; 461 x.z = zToken; 462 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 463 return sqlite3ExprAlloc(db, op, &x, 0); 464 } 465 466 /* 467 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 468 ** 469 ** If pRoot==NULL that means that a memory allocation error has occurred. 470 ** In that case, delete the subtrees pLeft and pRight. 471 */ 472 void sqlite3ExprAttachSubtrees( 473 sqlite3 *db, 474 Expr *pRoot, 475 Expr *pLeft, 476 Expr *pRight 477 ){ 478 if( pRoot==0 ){ 479 assert( db->mallocFailed ); 480 sqlite3ExprDelete(db, pLeft); 481 sqlite3ExprDelete(db, pRight); 482 }else{ 483 if( pRight ){ 484 pRoot->pRight = pRight; 485 pRoot->flags |= EP_Collate & pRight->flags; 486 } 487 if( pLeft ){ 488 pRoot->pLeft = pLeft; 489 pRoot->flags |= EP_Collate & pLeft->flags; 490 } 491 exprSetHeight(pRoot); 492 } 493 } 494 495 /* 496 ** Allocate a Expr node which joins as many as two subtrees. 497 ** 498 ** One or both of the subtrees can be NULL. Return a pointer to the new 499 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 500 ** free the subtrees and return NULL. 501 */ 502 Expr *sqlite3PExpr( 503 Parse *pParse, /* Parsing context */ 504 int op, /* Expression opcode */ 505 Expr *pLeft, /* Left operand */ 506 Expr *pRight, /* Right operand */ 507 const Token *pToken /* Argument token */ 508 ){ 509 Expr *p; 510 if( op==TK_AND && pLeft && pRight ){ 511 /* Take advantage of short-circuit false optimization for AND */ 512 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 513 }else{ 514 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 515 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 516 } 517 if( p ) { 518 sqlite3ExprCheckHeight(pParse, p->nHeight); 519 } 520 return p; 521 } 522 523 /* 524 ** Return 1 if an expression must be FALSE in all cases and 0 if the 525 ** expression might be true. This is an optimization. If is OK to 526 ** return 0 here even if the expression really is always false (a 527 ** false negative). But it is a bug to return 1 if the expression 528 ** might be true in some rare circumstances (a false positive.) 529 ** 530 ** Note that if the expression is part of conditional for a 531 ** LEFT JOIN, then we cannot determine at compile-time whether or not 532 ** is it true or false, so always return 0. 533 */ 534 static int exprAlwaysFalse(Expr *p){ 535 int v = 0; 536 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 537 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 538 return v==0; 539 } 540 541 /* 542 ** Join two expressions using an AND operator. If either expression is 543 ** NULL, then just return the other expression. 544 ** 545 ** If one side or the other of the AND is known to be false, then instead 546 ** of returning an AND expression, just return a constant expression with 547 ** a value of false. 548 */ 549 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 550 if( pLeft==0 ){ 551 return pRight; 552 }else if( pRight==0 ){ 553 return pLeft; 554 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 555 sqlite3ExprDelete(db, pLeft); 556 sqlite3ExprDelete(db, pRight); 557 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 558 }else{ 559 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 560 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 561 return pNew; 562 } 563 } 564 565 /* 566 ** Construct a new expression node for a function with multiple 567 ** arguments. 568 */ 569 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 570 Expr *pNew; 571 sqlite3 *db = pParse->db; 572 assert( pToken ); 573 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 574 if( pNew==0 ){ 575 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 576 return 0; 577 } 578 pNew->x.pList = pList; 579 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 580 sqlite3ExprSetHeight(pParse, pNew); 581 return pNew; 582 } 583 584 /* 585 ** Assign a variable number to an expression that encodes a wildcard 586 ** in the original SQL statement. 587 ** 588 ** Wildcards consisting of a single "?" are assigned the next sequential 589 ** variable number. 590 ** 591 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 592 ** sure "nnn" is not too be to avoid a denial of service attack when 593 ** the SQL statement comes from an external source. 594 ** 595 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 596 ** as the previous instance of the same wildcard. Or if this is the first 597 ** instance of the wildcard, the next sequenial variable number is 598 ** assigned. 599 */ 600 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 601 sqlite3 *db = pParse->db; 602 const char *z; 603 604 if( pExpr==0 ) return; 605 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 606 z = pExpr->u.zToken; 607 assert( z!=0 ); 608 assert( z[0]!=0 ); 609 if( z[1]==0 ){ 610 /* Wildcard of the form "?". Assign the next variable number */ 611 assert( z[0]=='?' ); 612 pExpr->iColumn = (ynVar)(++pParse->nVar); 613 }else{ 614 ynVar x = 0; 615 u32 n = sqlite3Strlen30(z); 616 if( z[0]=='?' ){ 617 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 618 ** use it as the variable number */ 619 i64 i; 620 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 621 pExpr->iColumn = x = (ynVar)i; 622 testcase( i==0 ); 623 testcase( i==1 ); 624 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 625 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 626 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 627 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 628 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 629 x = 0; 630 } 631 if( i>pParse->nVar ){ 632 pParse->nVar = (int)i; 633 } 634 }else{ 635 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 636 ** number as the prior appearance of the same name, or if the name 637 ** has never appeared before, reuse the same variable number 638 */ 639 ynVar i; 640 for(i=0; i<pParse->nzVar; i++){ 641 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 642 pExpr->iColumn = x = (ynVar)i+1; 643 break; 644 } 645 } 646 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 647 } 648 if( x>0 ){ 649 if( x>pParse->nzVar ){ 650 char **a; 651 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 652 if( a==0 ) return; /* Error reported through db->mallocFailed */ 653 pParse->azVar = a; 654 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 655 pParse->nzVar = x; 656 } 657 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 658 sqlite3DbFree(db, pParse->azVar[x-1]); 659 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 660 } 661 } 662 } 663 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 664 sqlite3ErrorMsg(pParse, "too many SQL variables"); 665 } 666 } 667 668 /* 669 ** Recursively delete an expression tree. 670 */ 671 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 672 if( p==0 ) return; 673 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 674 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 675 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 676 sqlite3ExprDelete(db, p->pLeft); 677 sqlite3ExprDelete(db, p->pRight); 678 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 679 sqlite3DbFree(db, p->u.zToken); 680 } 681 if( ExprHasProperty(p, EP_xIsSelect) ){ 682 sqlite3SelectDelete(db, p->x.pSelect); 683 }else{ 684 sqlite3ExprListDelete(db, p->x.pList); 685 } 686 } 687 if( !ExprHasProperty(p, EP_Static) ){ 688 sqlite3DbFree(db, p); 689 } 690 } 691 692 /* 693 ** Return the number of bytes allocated for the expression structure 694 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 695 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 696 */ 697 static int exprStructSize(Expr *p){ 698 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 699 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 700 return EXPR_FULLSIZE; 701 } 702 703 /* 704 ** The dupedExpr*Size() routines each return the number of bytes required 705 ** to store a copy of an expression or expression tree. They differ in 706 ** how much of the tree is measured. 707 ** 708 ** dupedExprStructSize() Size of only the Expr structure 709 ** dupedExprNodeSize() Size of Expr + space for token 710 ** dupedExprSize() Expr + token + subtree components 711 ** 712 *************************************************************************** 713 ** 714 ** The dupedExprStructSize() function returns two values OR-ed together: 715 ** (1) the space required for a copy of the Expr structure only and 716 ** (2) the EP_xxx flags that indicate what the structure size should be. 717 ** The return values is always one of: 718 ** 719 ** EXPR_FULLSIZE 720 ** EXPR_REDUCEDSIZE | EP_Reduced 721 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 722 ** 723 ** The size of the structure can be found by masking the return value 724 ** of this routine with 0xfff. The flags can be found by masking the 725 ** return value with EP_Reduced|EP_TokenOnly. 726 ** 727 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 728 ** (unreduced) Expr objects as they or originally constructed by the parser. 729 ** During expression analysis, extra information is computed and moved into 730 ** later parts of teh Expr object and that extra information might get chopped 731 ** off if the expression is reduced. Note also that it does not work to 732 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 733 ** to reduce a pristine expression tree from the parser. The implementation 734 ** of dupedExprStructSize() contain multiple assert() statements that attempt 735 ** to enforce this constraint. 736 */ 737 static int dupedExprStructSize(Expr *p, int flags){ 738 int nSize; 739 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 740 if( 0==(flags&EXPRDUP_REDUCE) ){ 741 nSize = EXPR_FULLSIZE; 742 }else{ 743 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 744 assert( !ExprHasProperty(p, EP_FromJoin) ); 745 assert( (p->flags2 & EP2_MallocedToken)==0 ); 746 assert( (p->flags2 & EP2_Irreducible)==0 ); 747 if( p->pLeft || p->pRight || p->x.pList ){ 748 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 749 }else{ 750 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 751 } 752 } 753 return nSize; 754 } 755 756 /* 757 ** This function returns the space in bytes required to store the copy 758 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 759 ** string is defined.) 760 */ 761 static int dupedExprNodeSize(Expr *p, int flags){ 762 int nByte = dupedExprStructSize(p, flags) & 0xfff; 763 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 764 nByte += sqlite3Strlen30(p->u.zToken)+1; 765 } 766 return ROUND8(nByte); 767 } 768 769 /* 770 ** Return the number of bytes required to create a duplicate of the 771 ** expression passed as the first argument. The second argument is a 772 ** mask containing EXPRDUP_XXX flags. 773 ** 774 ** The value returned includes space to create a copy of the Expr struct 775 ** itself and the buffer referred to by Expr.u.zToken, if any. 776 ** 777 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 778 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 779 ** and Expr.pRight variables (but not for any structures pointed to or 780 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 781 */ 782 static int dupedExprSize(Expr *p, int flags){ 783 int nByte = 0; 784 if( p ){ 785 nByte = dupedExprNodeSize(p, flags); 786 if( flags&EXPRDUP_REDUCE ){ 787 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 788 } 789 } 790 return nByte; 791 } 792 793 /* 794 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 795 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 796 ** to store the copy of expression p, the copies of p->u.zToken 797 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 798 ** if any. Before returning, *pzBuffer is set to the first byte passed the 799 ** portion of the buffer copied into by this function. 800 */ 801 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 802 Expr *pNew = 0; /* Value to return */ 803 if( p ){ 804 const int isReduced = (flags&EXPRDUP_REDUCE); 805 u8 *zAlloc; 806 u32 staticFlag = 0; 807 808 assert( pzBuffer==0 || isReduced ); 809 810 /* Figure out where to write the new Expr structure. */ 811 if( pzBuffer ){ 812 zAlloc = *pzBuffer; 813 staticFlag = EP_Static; 814 }else{ 815 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 816 } 817 pNew = (Expr *)zAlloc; 818 819 if( pNew ){ 820 /* Set nNewSize to the size allocated for the structure pointed to 821 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 822 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 823 ** by the copy of the p->u.zToken string (if any). 824 */ 825 const unsigned nStructSize = dupedExprStructSize(p, flags); 826 const int nNewSize = nStructSize & 0xfff; 827 int nToken; 828 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 829 nToken = sqlite3Strlen30(p->u.zToken) + 1; 830 }else{ 831 nToken = 0; 832 } 833 if( isReduced ){ 834 assert( ExprHasProperty(p, EP_Reduced)==0 ); 835 memcpy(zAlloc, p, nNewSize); 836 }else{ 837 int nSize = exprStructSize(p); 838 memcpy(zAlloc, p, nSize); 839 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 840 } 841 842 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 843 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 844 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 845 pNew->flags |= staticFlag; 846 847 /* Copy the p->u.zToken string, if any. */ 848 if( nToken ){ 849 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 850 memcpy(zToken, p->u.zToken, nToken); 851 } 852 853 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 854 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 855 if( ExprHasProperty(p, EP_xIsSelect) ){ 856 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 857 }else{ 858 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 859 } 860 } 861 862 /* Fill in pNew->pLeft and pNew->pRight. */ 863 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 864 zAlloc += dupedExprNodeSize(p, flags); 865 if( ExprHasProperty(pNew, EP_Reduced) ){ 866 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 867 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 868 } 869 if( pzBuffer ){ 870 *pzBuffer = zAlloc; 871 } 872 }else{ 873 pNew->flags2 = 0; 874 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 875 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 876 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 877 } 878 } 879 880 } 881 } 882 return pNew; 883 } 884 885 /* 886 ** The following group of routines make deep copies of expressions, 887 ** expression lists, ID lists, and select statements. The copies can 888 ** be deleted (by being passed to their respective ...Delete() routines) 889 ** without effecting the originals. 890 ** 891 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 892 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 893 ** by subsequent calls to sqlite*ListAppend() routines. 894 ** 895 ** Any tables that the SrcList might point to are not duplicated. 896 ** 897 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 898 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 899 ** truncated version of the usual Expr structure that will be stored as 900 ** part of the in-memory representation of the database schema. 901 */ 902 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 903 return exprDup(db, p, flags, 0); 904 } 905 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 906 ExprList *pNew; 907 struct ExprList_item *pItem, *pOldItem; 908 int i; 909 if( p==0 ) return 0; 910 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 911 if( pNew==0 ) return 0; 912 pNew->iECursor = 0; 913 pNew->nExpr = i = p->nExpr; 914 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 915 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 916 if( pItem==0 ){ 917 sqlite3DbFree(db, pNew); 918 return 0; 919 } 920 pOldItem = p->a; 921 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 922 Expr *pOldExpr = pOldItem->pExpr; 923 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 924 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 925 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 926 pItem->sortOrder = pOldItem->sortOrder; 927 pItem->done = 0; 928 pItem->iOrderByCol = pOldItem->iOrderByCol; 929 pItem->iAlias = pOldItem->iAlias; 930 } 931 return pNew; 932 } 933 934 /* 935 ** If cursors, triggers, views and subqueries are all omitted from 936 ** the build, then none of the following routines, except for 937 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 938 ** called with a NULL argument. 939 */ 940 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 941 || !defined(SQLITE_OMIT_SUBQUERY) 942 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 943 SrcList *pNew; 944 int i; 945 int nByte; 946 if( p==0 ) return 0; 947 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 948 pNew = sqlite3DbMallocRaw(db, nByte ); 949 if( pNew==0 ) return 0; 950 pNew->nSrc = pNew->nAlloc = p->nSrc; 951 for(i=0; i<p->nSrc; i++){ 952 struct SrcList_item *pNewItem = &pNew->a[i]; 953 struct SrcList_item *pOldItem = &p->a[i]; 954 Table *pTab; 955 pNewItem->pSchema = pOldItem->pSchema; 956 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 957 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 958 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 959 pNewItem->jointype = pOldItem->jointype; 960 pNewItem->iCursor = pOldItem->iCursor; 961 pNewItem->addrFillSub = pOldItem->addrFillSub; 962 pNewItem->regReturn = pOldItem->regReturn; 963 pNewItem->isCorrelated = pOldItem->isCorrelated; 964 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 965 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 966 pNewItem->notIndexed = pOldItem->notIndexed; 967 pNewItem->pIndex = pOldItem->pIndex; 968 pTab = pNewItem->pTab = pOldItem->pTab; 969 if( pTab ){ 970 pTab->nRef++; 971 } 972 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 973 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 974 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 975 pNewItem->colUsed = pOldItem->colUsed; 976 } 977 return pNew; 978 } 979 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 980 IdList *pNew; 981 int i; 982 if( p==0 ) return 0; 983 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 984 if( pNew==0 ) return 0; 985 pNew->nId = p->nId; 986 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 987 if( pNew->a==0 ){ 988 sqlite3DbFree(db, pNew); 989 return 0; 990 } 991 /* Note that because the size of the allocation for p->a[] is not 992 ** necessarily a power of two, sqlite3IdListAppend() may not be called 993 ** on the duplicate created by this function. */ 994 for(i=0; i<p->nId; i++){ 995 struct IdList_item *pNewItem = &pNew->a[i]; 996 struct IdList_item *pOldItem = &p->a[i]; 997 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 998 pNewItem->idx = pOldItem->idx; 999 } 1000 return pNew; 1001 } 1002 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1003 Select *pNew, *pPrior; 1004 if( p==0 ) return 0; 1005 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1006 if( pNew==0 ) return 0; 1007 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1008 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1009 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1010 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1011 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1012 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1013 pNew->op = p->op; 1014 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1015 if( pPrior ) pPrior->pNext = pNew; 1016 pNew->pNext = 0; 1017 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1018 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1019 pNew->iLimit = 0; 1020 pNew->iOffset = 0; 1021 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1022 pNew->pRightmost = 0; 1023 pNew->addrOpenEphm[0] = -1; 1024 pNew->addrOpenEphm[1] = -1; 1025 pNew->addrOpenEphm[2] = -1; 1026 return pNew; 1027 } 1028 #else 1029 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1030 assert( p==0 ); 1031 return 0; 1032 } 1033 #endif 1034 1035 1036 /* 1037 ** Add a new element to the end of an expression list. If pList is 1038 ** initially NULL, then create a new expression list. 1039 ** 1040 ** If a memory allocation error occurs, the entire list is freed and 1041 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1042 ** that the new entry was successfully appended. 1043 */ 1044 ExprList *sqlite3ExprListAppend( 1045 Parse *pParse, /* Parsing context */ 1046 ExprList *pList, /* List to which to append. Might be NULL */ 1047 Expr *pExpr /* Expression to be appended. Might be NULL */ 1048 ){ 1049 sqlite3 *db = pParse->db; 1050 if( pList==0 ){ 1051 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1052 if( pList==0 ){ 1053 goto no_mem; 1054 } 1055 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1056 if( pList->a==0 ) goto no_mem; 1057 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1058 struct ExprList_item *a; 1059 assert( pList->nExpr>0 ); 1060 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1061 if( a==0 ){ 1062 goto no_mem; 1063 } 1064 pList->a = a; 1065 } 1066 assert( pList->a!=0 ); 1067 if( 1 ){ 1068 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1069 memset(pItem, 0, sizeof(*pItem)); 1070 pItem->pExpr = pExpr; 1071 } 1072 return pList; 1073 1074 no_mem: 1075 /* Avoid leaking memory if malloc has failed. */ 1076 sqlite3ExprDelete(db, pExpr); 1077 sqlite3ExprListDelete(db, pList); 1078 return 0; 1079 } 1080 1081 /* 1082 ** Set the ExprList.a[].zName element of the most recently added item 1083 ** on the expression list. 1084 ** 1085 ** pList might be NULL following an OOM error. But pName should never be 1086 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1087 ** is set. 1088 */ 1089 void sqlite3ExprListSetName( 1090 Parse *pParse, /* Parsing context */ 1091 ExprList *pList, /* List to which to add the span. */ 1092 Token *pName, /* Name to be added */ 1093 int dequote /* True to cause the name to be dequoted */ 1094 ){ 1095 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1096 if( pList ){ 1097 struct ExprList_item *pItem; 1098 assert( pList->nExpr>0 ); 1099 pItem = &pList->a[pList->nExpr-1]; 1100 assert( pItem->zName==0 ); 1101 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1102 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1103 } 1104 } 1105 1106 /* 1107 ** Set the ExprList.a[].zSpan element of the most recently added item 1108 ** on the expression list. 1109 ** 1110 ** pList might be NULL following an OOM error. But pSpan should never be 1111 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1112 ** is set. 1113 */ 1114 void sqlite3ExprListSetSpan( 1115 Parse *pParse, /* Parsing context */ 1116 ExprList *pList, /* List to which to add the span. */ 1117 ExprSpan *pSpan /* The span to be added */ 1118 ){ 1119 sqlite3 *db = pParse->db; 1120 assert( pList!=0 || db->mallocFailed!=0 ); 1121 if( pList ){ 1122 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1123 assert( pList->nExpr>0 ); 1124 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1125 sqlite3DbFree(db, pItem->zSpan); 1126 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1127 (int)(pSpan->zEnd - pSpan->zStart)); 1128 } 1129 } 1130 1131 /* 1132 ** If the expression list pEList contains more than iLimit elements, 1133 ** leave an error message in pParse. 1134 */ 1135 void sqlite3ExprListCheckLength( 1136 Parse *pParse, 1137 ExprList *pEList, 1138 const char *zObject 1139 ){ 1140 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1141 testcase( pEList && pEList->nExpr==mx ); 1142 testcase( pEList && pEList->nExpr==mx+1 ); 1143 if( pEList && pEList->nExpr>mx ){ 1144 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1145 } 1146 } 1147 1148 /* 1149 ** Delete an entire expression list. 1150 */ 1151 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1152 int i; 1153 struct ExprList_item *pItem; 1154 if( pList==0 ) return; 1155 assert( pList->a!=0 || pList->nExpr==0 ); 1156 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1157 sqlite3ExprDelete(db, pItem->pExpr); 1158 sqlite3DbFree(db, pItem->zName); 1159 sqlite3DbFree(db, pItem->zSpan); 1160 } 1161 sqlite3DbFree(db, pList->a); 1162 sqlite3DbFree(db, pList); 1163 } 1164 1165 /* 1166 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1167 ** to an integer. These routines are checking an expression to see 1168 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1169 ** not constant. 1170 ** 1171 ** These callback routines are used to implement the following: 1172 ** 1173 ** sqlite3ExprIsConstant() 1174 ** sqlite3ExprIsConstantNotJoin() 1175 ** sqlite3ExprIsConstantOrFunction() 1176 ** 1177 */ 1178 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1179 1180 /* If pWalker->u.i is 3 then any term of the expression that comes from 1181 ** the ON or USING clauses of a join disqualifies the expression 1182 ** from being considered constant. */ 1183 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1184 pWalker->u.i = 0; 1185 return WRC_Abort; 1186 } 1187 1188 switch( pExpr->op ){ 1189 /* Consider functions to be constant if all their arguments are constant 1190 ** and pWalker->u.i==2 */ 1191 case TK_FUNCTION: 1192 if( pWalker->u.i==2 ) return 0; 1193 /* Fall through */ 1194 case TK_ID: 1195 case TK_COLUMN: 1196 case TK_AGG_FUNCTION: 1197 case TK_AGG_COLUMN: 1198 testcase( pExpr->op==TK_ID ); 1199 testcase( pExpr->op==TK_COLUMN ); 1200 testcase( pExpr->op==TK_AGG_FUNCTION ); 1201 testcase( pExpr->op==TK_AGG_COLUMN ); 1202 pWalker->u.i = 0; 1203 return WRC_Abort; 1204 default: 1205 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1206 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1207 return WRC_Continue; 1208 } 1209 } 1210 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1211 UNUSED_PARAMETER(NotUsed); 1212 pWalker->u.i = 0; 1213 return WRC_Abort; 1214 } 1215 static int exprIsConst(Expr *p, int initFlag){ 1216 Walker w; 1217 w.u.i = initFlag; 1218 w.xExprCallback = exprNodeIsConstant; 1219 w.xSelectCallback = selectNodeIsConstant; 1220 sqlite3WalkExpr(&w, p); 1221 return w.u.i; 1222 } 1223 1224 /* 1225 ** Walk an expression tree. Return 1 if the expression is constant 1226 ** and 0 if it involves variables or function calls. 1227 ** 1228 ** For the purposes of this function, a double-quoted string (ex: "abc") 1229 ** is considered a variable but a single-quoted string (ex: 'abc') is 1230 ** a constant. 1231 */ 1232 int sqlite3ExprIsConstant(Expr *p){ 1233 return exprIsConst(p, 1); 1234 } 1235 1236 /* 1237 ** Walk an expression tree. Return 1 if the expression is constant 1238 ** that does no originate from the ON or USING clauses of a join. 1239 ** Return 0 if it involves variables or function calls or terms from 1240 ** an ON or USING clause. 1241 */ 1242 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1243 return exprIsConst(p, 3); 1244 } 1245 1246 /* 1247 ** Walk an expression tree. Return 1 if the expression is constant 1248 ** or a function call with constant arguments. Return and 0 if there 1249 ** are any variables. 1250 ** 1251 ** For the purposes of this function, a double-quoted string (ex: "abc") 1252 ** is considered a variable but a single-quoted string (ex: 'abc') is 1253 ** a constant. 1254 */ 1255 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1256 return exprIsConst(p, 2); 1257 } 1258 1259 /* 1260 ** If the expression p codes a constant integer that is small enough 1261 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1262 ** in *pValue. If the expression is not an integer or if it is too big 1263 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1264 */ 1265 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1266 int rc = 0; 1267 1268 /* If an expression is an integer literal that fits in a signed 32-bit 1269 ** integer, then the EP_IntValue flag will have already been set */ 1270 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1271 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1272 1273 if( p->flags & EP_IntValue ){ 1274 *pValue = p->u.iValue; 1275 return 1; 1276 } 1277 switch( p->op ){ 1278 case TK_UPLUS: { 1279 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1280 break; 1281 } 1282 case TK_UMINUS: { 1283 int v; 1284 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1285 *pValue = -v; 1286 rc = 1; 1287 } 1288 break; 1289 } 1290 default: break; 1291 } 1292 return rc; 1293 } 1294 1295 /* 1296 ** Return FALSE if there is no chance that the expression can be NULL. 1297 ** 1298 ** If the expression might be NULL or if the expression is too complex 1299 ** to tell return TRUE. 1300 ** 1301 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1302 ** when we know that a value cannot be NULL. Hence, a false positive 1303 ** (returning TRUE when in fact the expression can never be NULL) might 1304 ** be a small performance hit but is otherwise harmless. On the other 1305 ** hand, a false negative (returning FALSE when the result could be NULL) 1306 ** will likely result in an incorrect answer. So when in doubt, return 1307 ** TRUE. 1308 */ 1309 int sqlite3ExprCanBeNull(const Expr *p){ 1310 u8 op; 1311 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1312 op = p->op; 1313 if( op==TK_REGISTER ) op = p->op2; 1314 switch( op ){ 1315 case TK_INTEGER: 1316 case TK_STRING: 1317 case TK_FLOAT: 1318 case TK_BLOB: 1319 return 0; 1320 default: 1321 return 1; 1322 } 1323 } 1324 1325 /* 1326 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1327 ** to location iDest if the value in iReg is NULL. The value in iReg 1328 ** was computed by pExpr. If we can look at pExpr at compile-time and 1329 ** determine that it can never generate a NULL, then the OP_IsNull operation 1330 ** can be omitted. 1331 */ 1332 void sqlite3ExprCodeIsNullJump( 1333 Vdbe *v, /* The VDBE under construction */ 1334 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1335 int iReg, /* Test the value in this register for NULL */ 1336 int iDest /* Jump here if the value is null */ 1337 ){ 1338 if( sqlite3ExprCanBeNull(pExpr) ){ 1339 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1340 } 1341 } 1342 1343 /* 1344 ** Return TRUE if the given expression is a constant which would be 1345 ** unchanged by OP_Affinity with the affinity given in the second 1346 ** argument. 1347 ** 1348 ** This routine is used to determine if the OP_Affinity operation 1349 ** can be omitted. When in doubt return FALSE. A false negative 1350 ** is harmless. A false positive, however, can result in the wrong 1351 ** answer. 1352 */ 1353 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1354 u8 op; 1355 if( aff==SQLITE_AFF_NONE ) return 1; 1356 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1357 op = p->op; 1358 if( op==TK_REGISTER ) op = p->op2; 1359 switch( op ){ 1360 case TK_INTEGER: { 1361 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1362 } 1363 case TK_FLOAT: { 1364 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1365 } 1366 case TK_STRING: { 1367 return aff==SQLITE_AFF_TEXT; 1368 } 1369 case TK_BLOB: { 1370 return 1; 1371 } 1372 case TK_COLUMN: { 1373 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1374 return p->iColumn<0 1375 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1376 } 1377 default: { 1378 return 0; 1379 } 1380 } 1381 } 1382 1383 /* 1384 ** Return TRUE if the given string is a row-id column name. 1385 */ 1386 int sqlite3IsRowid(const char *z){ 1387 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1388 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1389 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1390 return 0; 1391 } 1392 1393 /* 1394 ** Return true if we are able to the IN operator optimization on a 1395 ** query of the form 1396 ** 1397 ** x IN (SELECT ...) 1398 ** 1399 ** Where the SELECT... clause is as specified by the parameter to this 1400 ** routine. 1401 ** 1402 ** The Select object passed in has already been preprocessed and no 1403 ** errors have been found. 1404 */ 1405 #ifndef SQLITE_OMIT_SUBQUERY 1406 static int isCandidateForInOpt(Select *p){ 1407 SrcList *pSrc; 1408 ExprList *pEList; 1409 Table *pTab; 1410 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1411 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1412 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1413 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1414 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1415 return 0; /* No DISTINCT keyword and no aggregate functions */ 1416 } 1417 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1418 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1419 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1420 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1421 pSrc = p->pSrc; 1422 assert( pSrc!=0 ); 1423 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1424 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1425 pTab = pSrc->a[0].pTab; 1426 if( NEVER(pTab==0) ) return 0; 1427 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1428 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1429 pEList = p->pEList; 1430 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1431 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1432 return 1; 1433 } 1434 #endif /* SQLITE_OMIT_SUBQUERY */ 1435 1436 /* 1437 ** Code an OP_Once instruction and allocate space for its flag. Return the 1438 ** address of the new instruction. 1439 */ 1440 int sqlite3CodeOnce(Parse *pParse){ 1441 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1442 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1443 } 1444 1445 /* 1446 ** This function is used by the implementation of the IN (...) operator. 1447 ** The pX parameter is the expression on the RHS of the IN operator, which 1448 ** might be either a list of expressions or a subquery. 1449 ** 1450 ** The job of this routine is to find or create a b-tree object that can 1451 ** be used either to test for membership in the RHS set or to iterate through 1452 ** all members of the RHS set, skipping duplicates. 1453 ** 1454 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1455 ** and pX->iTable is set to the index of that cursor. 1456 ** 1457 ** The returned value of this function indicates the b-tree type, as follows: 1458 ** 1459 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1460 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1461 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1462 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1463 ** populated epheremal table. 1464 ** 1465 ** An existing b-tree might be used if the RHS expression pX is a simple 1466 ** subquery such as: 1467 ** 1468 ** SELECT <column> FROM <table> 1469 ** 1470 ** If the RHS of the IN operator is a list or a more complex subquery, then 1471 ** an ephemeral table might need to be generated from the RHS and then 1472 ** pX->iTable made to point to the ephermeral table instead of an 1473 ** existing table. 1474 ** 1475 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1476 ** through the set members, skipping any duplicates. In this case an 1477 ** epheremal table must be used unless the selected <column> is guaranteed 1478 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1479 ** has a UNIQUE constraint or UNIQUE index. 1480 ** 1481 ** If the prNotFound parameter is not 0, then the b-tree will be used 1482 ** for fast set membership tests. In this case an epheremal table must 1483 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1484 ** be found with <column> as its left-most column. 1485 ** 1486 ** When the b-tree is being used for membership tests, the calling function 1487 ** needs to know whether or not the structure contains an SQL NULL 1488 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1489 ** If there is any chance that the (...) might contain a NULL value at 1490 ** runtime, then a register is allocated and the register number written 1491 ** to *prNotFound. If there is no chance that the (...) contains a 1492 ** NULL value, then *prNotFound is left unchanged. 1493 ** 1494 ** If a register is allocated and its location stored in *prNotFound, then 1495 ** its initial value is NULL. If the (...) does not remain constant 1496 ** for the duration of the query (i.e. the SELECT within the (...) 1497 ** is a correlated subquery) then the value of the allocated register is 1498 ** reset to NULL each time the subquery is rerun. This allows the 1499 ** caller to use vdbe code equivalent to the following: 1500 ** 1501 ** if( register==NULL ){ 1502 ** has_null = <test if data structure contains null> 1503 ** register = 1 1504 ** } 1505 ** 1506 ** in order to avoid running the <test if data structure contains null> 1507 ** test more often than is necessary. 1508 */ 1509 #ifndef SQLITE_OMIT_SUBQUERY 1510 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1511 Select *p; /* SELECT to the right of IN operator */ 1512 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1513 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1514 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1515 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1516 1517 assert( pX->op==TK_IN ); 1518 1519 /* Check to see if an existing table or index can be used to 1520 ** satisfy the query. This is preferable to generating a new 1521 ** ephemeral table. 1522 */ 1523 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1524 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1525 sqlite3 *db = pParse->db; /* Database connection */ 1526 Table *pTab; /* Table <table>. */ 1527 Expr *pExpr; /* Expression <column> */ 1528 int iCol; /* Index of column <column> */ 1529 int iDb; /* Database idx for pTab */ 1530 1531 assert( p ); /* Because of isCandidateForInOpt(p) */ 1532 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1533 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1534 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1535 pTab = p->pSrc->a[0].pTab; 1536 pExpr = p->pEList->a[0].pExpr; 1537 iCol = pExpr->iColumn; 1538 1539 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1540 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1541 sqlite3CodeVerifySchema(pParse, iDb); 1542 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1543 1544 /* This function is only called from two places. In both cases the vdbe 1545 ** has already been allocated. So assume sqlite3GetVdbe() is always 1546 ** successful here. 1547 */ 1548 assert(v); 1549 if( iCol<0 ){ 1550 int iAddr; 1551 1552 iAddr = sqlite3CodeOnce(pParse); 1553 1554 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1555 eType = IN_INDEX_ROWID; 1556 1557 sqlite3VdbeJumpHere(v, iAddr); 1558 }else{ 1559 Index *pIdx; /* Iterator variable */ 1560 1561 /* The collation sequence used by the comparison. If an index is to 1562 ** be used in place of a temp-table, it must be ordered according 1563 ** to this collation sequence. */ 1564 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1565 1566 /* Check that the affinity that will be used to perform the 1567 ** comparison is the same as the affinity of the column. If 1568 ** it is not, it is not possible to use any index. 1569 */ 1570 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1571 1572 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1573 if( (pIdx->aiColumn[0]==iCol) 1574 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1575 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1576 ){ 1577 int iAddr; 1578 char *pKey; 1579 1580 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1581 iAddr = sqlite3CodeOnce(pParse); 1582 1583 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1584 pKey,P4_KEYINFO_HANDOFF); 1585 VdbeComment((v, "%s", pIdx->zName)); 1586 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1587 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1588 1589 sqlite3VdbeJumpHere(v, iAddr); 1590 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1591 *prNotFound = ++pParse->nMem; 1592 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1593 } 1594 } 1595 } 1596 } 1597 } 1598 1599 if( eType==0 ){ 1600 /* Could not found an existing table or index to use as the RHS b-tree. 1601 ** We will have to generate an ephemeral table to do the job. 1602 */ 1603 double savedNQueryLoop = pParse->nQueryLoop; 1604 int rMayHaveNull = 0; 1605 eType = IN_INDEX_EPH; 1606 if( prNotFound ){ 1607 *prNotFound = rMayHaveNull = ++pParse->nMem; 1608 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1609 }else{ 1610 testcase( pParse->nQueryLoop>(double)1 ); 1611 pParse->nQueryLoop = (double)1; 1612 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1613 eType = IN_INDEX_ROWID; 1614 } 1615 } 1616 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1617 pParse->nQueryLoop = savedNQueryLoop; 1618 }else{ 1619 pX->iTable = iTab; 1620 } 1621 return eType; 1622 } 1623 #endif 1624 1625 /* 1626 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1627 ** or IN operators. Examples: 1628 ** 1629 ** (SELECT a FROM b) -- subquery 1630 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1631 ** x IN (4,5,11) -- IN operator with list on right-hand side 1632 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1633 ** 1634 ** The pExpr parameter describes the expression that contains the IN 1635 ** operator or subquery. 1636 ** 1637 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1638 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1639 ** to some integer key column of a table B-Tree. In this case, use an 1640 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1641 ** (slower) variable length keys B-Tree. 1642 ** 1643 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1644 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1645 ** Furthermore, the IN is in a WHERE clause and that we really want 1646 ** to iterate over the RHS of the IN operator in order to quickly locate 1647 ** all corresponding LHS elements. All this routine does is initialize 1648 ** the register given by rMayHaveNull to NULL. Calling routines will take 1649 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1650 ** 1651 ** If rMayHaveNull is zero, that means that the subquery is being used 1652 ** for membership testing only. There is no need to initialize any 1653 ** registers to indicate the presense or absence of NULLs on the RHS. 1654 ** 1655 ** For a SELECT or EXISTS operator, return the register that holds the 1656 ** result. For IN operators or if an error occurs, the return value is 0. 1657 */ 1658 #ifndef SQLITE_OMIT_SUBQUERY 1659 int sqlite3CodeSubselect( 1660 Parse *pParse, /* Parsing context */ 1661 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1662 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1663 int isRowid /* If true, LHS of IN operator is a rowid */ 1664 ){ 1665 int testAddr = -1; /* One-time test address */ 1666 int rReg = 0; /* Register storing resulting */ 1667 Vdbe *v = sqlite3GetVdbe(pParse); 1668 if( NEVER(v==0) ) return 0; 1669 sqlite3ExprCachePush(pParse); 1670 1671 /* This code must be run in its entirety every time it is encountered 1672 ** if any of the following is true: 1673 ** 1674 ** * The right-hand side is a correlated subquery 1675 ** * The right-hand side is an expression list containing variables 1676 ** * We are inside a trigger 1677 ** 1678 ** If all of the above are false, then we can run this code just once 1679 ** save the results, and reuse the same result on subsequent invocations. 1680 */ 1681 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1682 testAddr = sqlite3CodeOnce(pParse); 1683 } 1684 1685 #ifndef SQLITE_OMIT_EXPLAIN 1686 if( pParse->explain==2 ){ 1687 char *zMsg = sqlite3MPrintf( 1688 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1689 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1690 ); 1691 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1692 } 1693 #endif 1694 1695 switch( pExpr->op ){ 1696 case TK_IN: { 1697 char affinity; /* Affinity of the LHS of the IN */ 1698 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1699 static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ 1700 int addr; /* Address of OP_OpenEphemeral instruction */ 1701 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1702 1703 if( rMayHaveNull ){ 1704 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1705 } 1706 1707 affinity = sqlite3ExprAffinity(pLeft); 1708 1709 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1710 ** expression it is handled the same way. An ephemeral table is 1711 ** filled with single-field index keys representing the results 1712 ** from the SELECT or the <exprlist>. 1713 ** 1714 ** If the 'x' expression is a column value, or the SELECT... 1715 ** statement returns a column value, then the affinity of that 1716 ** column is used to build the index keys. If both 'x' and the 1717 ** SELECT... statement are columns, then numeric affinity is used 1718 ** if either column has NUMERIC or INTEGER affinity. If neither 1719 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1720 ** is used. 1721 */ 1722 pExpr->iTable = pParse->nTab++; 1723 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1724 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1725 memset(&keyInfo, 0, sizeof(keyInfo)); 1726 keyInfo.nField = 1; 1727 keyInfo.aSortOrder = &sortOrder; 1728 1729 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1730 /* Case 1: expr IN (SELECT ...) 1731 ** 1732 ** Generate code to write the results of the select into the temporary 1733 ** table allocated and opened above. 1734 */ 1735 SelectDest dest; 1736 ExprList *pEList; 1737 1738 assert( !isRowid ); 1739 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1740 dest.affSdst = (u8)affinity; 1741 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1742 pExpr->x.pSelect->iLimit = 0; 1743 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1744 return 0; 1745 } 1746 pEList = pExpr->x.pSelect->pEList; 1747 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1748 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1749 pEList->a[0].pExpr); 1750 } 1751 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1752 /* Case 2: expr IN (exprlist) 1753 ** 1754 ** For each expression, build an index key from the evaluation and 1755 ** store it in the temporary table. If <expr> is a column, then use 1756 ** that columns affinity when building index keys. If <expr> is not 1757 ** a column, use numeric affinity. 1758 */ 1759 int i; 1760 ExprList *pList = pExpr->x.pList; 1761 struct ExprList_item *pItem; 1762 int r1, r2, r3; 1763 1764 if( !affinity ){ 1765 affinity = SQLITE_AFF_NONE; 1766 } 1767 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1768 keyInfo.aSortOrder = &sortOrder; 1769 1770 /* Loop through each expression in <exprlist>. */ 1771 r1 = sqlite3GetTempReg(pParse); 1772 r2 = sqlite3GetTempReg(pParse); 1773 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1774 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1775 Expr *pE2 = pItem->pExpr; 1776 int iValToIns; 1777 1778 /* If the expression is not constant then we will need to 1779 ** disable the test that was generated above that makes sure 1780 ** this code only executes once. Because for a non-constant 1781 ** expression we need to rerun this code each time. 1782 */ 1783 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1784 sqlite3VdbeChangeToNoop(v, testAddr); 1785 testAddr = -1; 1786 } 1787 1788 /* Evaluate the expression and insert it into the temp table */ 1789 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1790 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1791 }else{ 1792 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1793 if( isRowid ){ 1794 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1795 sqlite3VdbeCurrentAddr(v)+2); 1796 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1797 }else{ 1798 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1799 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1800 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1801 } 1802 } 1803 } 1804 sqlite3ReleaseTempReg(pParse, r1); 1805 sqlite3ReleaseTempReg(pParse, r2); 1806 } 1807 if( !isRowid ){ 1808 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1809 } 1810 break; 1811 } 1812 1813 case TK_EXISTS: 1814 case TK_SELECT: 1815 default: { 1816 /* If this has to be a scalar SELECT. Generate code to put the 1817 ** value of this select in a memory cell and record the number 1818 ** of the memory cell in iColumn. If this is an EXISTS, write 1819 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1820 ** and record that memory cell in iColumn. 1821 */ 1822 Select *pSel; /* SELECT statement to encode */ 1823 SelectDest dest; /* How to deal with SELECt result */ 1824 1825 testcase( pExpr->op==TK_EXISTS ); 1826 testcase( pExpr->op==TK_SELECT ); 1827 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1828 1829 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1830 pSel = pExpr->x.pSelect; 1831 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1832 if( pExpr->op==TK_SELECT ){ 1833 dest.eDest = SRT_Mem; 1834 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1835 VdbeComment((v, "Init subquery result")); 1836 }else{ 1837 dest.eDest = SRT_Exists; 1838 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1839 VdbeComment((v, "Init EXISTS result")); 1840 } 1841 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1842 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1843 &sqlite3IntTokens[1]); 1844 pSel->iLimit = 0; 1845 if( sqlite3Select(pParse, pSel, &dest) ){ 1846 return 0; 1847 } 1848 rReg = dest.iSDParm; 1849 ExprSetIrreducible(pExpr); 1850 break; 1851 } 1852 } 1853 1854 if( testAddr>=0 ){ 1855 sqlite3VdbeJumpHere(v, testAddr); 1856 } 1857 sqlite3ExprCachePop(pParse, 1); 1858 1859 return rReg; 1860 } 1861 #endif /* SQLITE_OMIT_SUBQUERY */ 1862 1863 #ifndef SQLITE_OMIT_SUBQUERY 1864 /* 1865 ** Generate code for an IN expression. 1866 ** 1867 ** x IN (SELECT ...) 1868 ** x IN (value, value, ...) 1869 ** 1870 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1871 ** is an array of zero or more values. The expression is true if the LHS is 1872 ** contained within the RHS. The value of the expression is unknown (NULL) 1873 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1874 ** RHS contains one or more NULL values. 1875 ** 1876 ** This routine generates code will jump to destIfFalse if the LHS is not 1877 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1878 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1879 ** within the RHS then fall through. 1880 */ 1881 static void sqlite3ExprCodeIN( 1882 Parse *pParse, /* Parsing and code generating context */ 1883 Expr *pExpr, /* The IN expression */ 1884 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1885 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1886 ){ 1887 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1888 char affinity; /* Comparison affinity to use */ 1889 int eType; /* Type of the RHS */ 1890 int r1; /* Temporary use register */ 1891 Vdbe *v; /* Statement under construction */ 1892 1893 /* Compute the RHS. After this step, the table with cursor 1894 ** pExpr->iTable will contains the values that make up the RHS. 1895 */ 1896 v = pParse->pVdbe; 1897 assert( v!=0 ); /* OOM detected prior to this routine */ 1898 VdbeNoopComment((v, "begin IN expr")); 1899 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1900 1901 /* Figure out the affinity to use to create a key from the results 1902 ** of the expression. affinityStr stores a static string suitable for 1903 ** P4 of OP_MakeRecord. 1904 */ 1905 affinity = comparisonAffinity(pExpr); 1906 1907 /* Code the LHS, the <expr> from "<expr> IN (...)". 1908 */ 1909 sqlite3ExprCachePush(pParse); 1910 r1 = sqlite3GetTempReg(pParse); 1911 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1912 1913 /* If the LHS is NULL, then the result is either false or NULL depending 1914 ** on whether the RHS is empty or not, respectively. 1915 */ 1916 if( destIfNull==destIfFalse ){ 1917 /* Shortcut for the common case where the false and NULL outcomes are 1918 ** the same. */ 1919 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1920 }else{ 1921 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1922 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1923 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1924 sqlite3VdbeJumpHere(v, addr1); 1925 } 1926 1927 if( eType==IN_INDEX_ROWID ){ 1928 /* In this case, the RHS is the ROWID of table b-tree 1929 */ 1930 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1931 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1932 }else{ 1933 /* In this case, the RHS is an index b-tree. 1934 */ 1935 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1936 1937 /* If the set membership test fails, then the result of the 1938 ** "x IN (...)" expression must be either 0 or NULL. If the set 1939 ** contains no NULL values, then the result is 0. If the set 1940 ** contains one or more NULL values, then the result of the 1941 ** expression is also NULL. 1942 */ 1943 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1944 /* This branch runs if it is known at compile time that the RHS 1945 ** cannot contain NULL values. This happens as the result 1946 ** of a "NOT NULL" constraint in the database schema. 1947 ** 1948 ** Also run this branch if NULL is equivalent to FALSE 1949 ** for this particular IN operator. 1950 */ 1951 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1952 1953 }else{ 1954 /* In this branch, the RHS of the IN might contain a NULL and 1955 ** the presence of a NULL on the RHS makes a difference in the 1956 ** outcome. 1957 */ 1958 int j1, j2, j3; 1959 1960 /* First check to see if the LHS is contained in the RHS. If so, 1961 ** then the presence of NULLs in the RHS does not matter, so jump 1962 ** over all of the code that follows. 1963 */ 1964 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1965 1966 /* Here we begin generating code that runs if the LHS is not 1967 ** contained within the RHS. Generate additional code that 1968 ** tests the RHS for NULLs. If the RHS contains a NULL then 1969 ** jump to destIfNull. If there are no NULLs in the RHS then 1970 ** jump to destIfFalse. 1971 */ 1972 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1973 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1974 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1975 sqlite3VdbeJumpHere(v, j3); 1976 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1977 sqlite3VdbeJumpHere(v, j2); 1978 1979 /* Jump to the appropriate target depending on whether or not 1980 ** the RHS contains a NULL 1981 */ 1982 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1983 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1984 1985 /* The OP_Found at the top of this branch jumps here when true, 1986 ** causing the overall IN expression evaluation to fall through. 1987 */ 1988 sqlite3VdbeJumpHere(v, j1); 1989 } 1990 } 1991 sqlite3ReleaseTempReg(pParse, r1); 1992 sqlite3ExprCachePop(pParse, 1); 1993 VdbeComment((v, "end IN expr")); 1994 } 1995 #endif /* SQLITE_OMIT_SUBQUERY */ 1996 1997 /* 1998 ** Duplicate an 8-byte value 1999 */ 2000 static char *dup8bytes(Vdbe *v, const char *in){ 2001 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2002 if( out ){ 2003 memcpy(out, in, 8); 2004 } 2005 return out; 2006 } 2007 2008 #ifndef SQLITE_OMIT_FLOATING_POINT 2009 /* 2010 ** Generate an instruction that will put the floating point 2011 ** value described by z[0..n-1] into register iMem. 2012 ** 2013 ** The z[] string will probably not be zero-terminated. But the 2014 ** z[n] character is guaranteed to be something that does not look 2015 ** like the continuation of the number. 2016 */ 2017 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2018 if( ALWAYS(z!=0) ){ 2019 double value; 2020 char *zV; 2021 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2022 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2023 if( negateFlag ) value = -value; 2024 zV = dup8bytes(v, (char*)&value); 2025 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2026 } 2027 } 2028 #endif 2029 2030 2031 /* 2032 ** Generate an instruction that will put the integer describe by 2033 ** text z[0..n-1] into register iMem. 2034 ** 2035 ** Expr.u.zToken is always UTF8 and zero-terminated. 2036 */ 2037 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2038 Vdbe *v = pParse->pVdbe; 2039 if( pExpr->flags & EP_IntValue ){ 2040 int i = pExpr->u.iValue; 2041 assert( i>=0 ); 2042 if( negFlag ) i = -i; 2043 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2044 }else{ 2045 int c; 2046 i64 value; 2047 const char *z = pExpr->u.zToken; 2048 assert( z!=0 ); 2049 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2050 if( c==0 || (c==2 && negFlag) ){ 2051 char *zV; 2052 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2053 zV = dup8bytes(v, (char*)&value); 2054 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2055 }else{ 2056 #ifdef SQLITE_OMIT_FLOATING_POINT 2057 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2058 #else 2059 codeReal(v, z, negFlag, iMem); 2060 #endif 2061 } 2062 } 2063 } 2064 2065 /* 2066 ** Clear a cache entry. 2067 */ 2068 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2069 if( p->tempReg ){ 2070 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2071 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2072 } 2073 p->tempReg = 0; 2074 } 2075 } 2076 2077 2078 /* 2079 ** Record in the column cache that a particular column from a 2080 ** particular table is stored in a particular register. 2081 */ 2082 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2083 int i; 2084 int minLru; 2085 int idxLru; 2086 struct yColCache *p; 2087 2088 assert( iReg>0 ); /* Register numbers are always positive */ 2089 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2090 2091 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2092 ** for testing only - to verify that SQLite always gets the same answer 2093 ** with and without the column cache. 2094 */ 2095 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2096 2097 /* First replace any existing entry. 2098 ** 2099 ** Actually, the way the column cache is currently used, we are guaranteed 2100 ** that the object will never already be in cache. Verify this guarantee. 2101 */ 2102 #ifndef NDEBUG 2103 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2104 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2105 } 2106 #endif 2107 2108 /* Find an empty slot and replace it */ 2109 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2110 if( p->iReg==0 ){ 2111 p->iLevel = pParse->iCacheLevel; 2112 p->iTable = iTab; 2113 p->iColumn = iCol; 2114 p->iReg = iReg; 2115 p->tempReg = 0; 2116 p->lru = pParse->iCacheCnt++; 2117 return; 2118 } 2119 } 2120 2121 /* Replace the last recently used */ 2122 minLru = 0x7fffffff; 2123 idxLru = -1; 2124 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2125 if( p->lru<minLru ){ 2126 idxLru = i; 2127 minLru = p->lru; 2128 } 2129 } 2130 if( ALWAYS(idxLru>=0) ){ 2131 p = &pParse->aColCache[idxLru]; 2132 p->iLevel = pParse->iCacheLevel; 2133 p->iTable = iTab; 2134 p->iColumn = iCol; 2135 p->iReg = iReg; 2136 p->tempReg = 0; 2137 p->lru = pParse->iCacheCnt++; 2138 return; 2139 } 2140 } 2141 2142 /* 2143 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2144 ** Purge the range of registers from the column cache. 2145 */ 2146 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2147 int i; 2148 int iLast = iReg + nReg - 1; 2149 struct yColCache *p; 2150 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2151 int r = p->iReg; 2152 if( r>=iReg && r<=iLast ){ 2153 cacheEntryClear(pParse, p); 2154 p->iReg = 0; 2155 } 2156 } 2157 } 2158 2159 /* 2160 ** Remember the current column cache context. Any new entries added 2161 ** added to the column cache after this call are removed when the 2162 ** corresponding pop occurs. 2163 */ 2164 void sqlite3ExprCachePush(Parse *pParse){ 2165 pParse->iCacheLevel++; 2166 } 2167 2168 /* 2169 ** Remove from the column cache any entries that were added since the 2170 ** the previous N Push operations. In other words, restore the cache 2171 ** to the state it was in N Pushes ago. 2172 */ 2173 void sqlite3ExprCachePop(Parse *pParse, int N){ 2174 int i; 2175 struct yColCache *p; 2176 assert( N>0 ); 2177 assert( pParse->iCacheLevel>=N ); 2178 pParse->iCacheLevel -= N; 2179 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2180 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2181 cacheEntryClear(pParse, p); 2182 p->iReg = 0; 2183 } 2184 } 2185 } 2186 2187 /* 2188 ** When a cached column is reused, make sure that its register is 2189 ** no longer available as a temp register. ticket #3879: that same 2190 ** register might be in the cache in multiple places, so be sure to 2191 ** get them all. 2192 */ 2193 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2194 int i; 2195 struct yColCache *p; 2196 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2197 if( p->iReg==iReg ){ 2198 p->tempReg = 0; 2199 } 2200 } 2201 } 2202 2203 /* 2204 ** Generate code to extract the value of the iCol-th column of a table. 2205 */ 2206 void sqlite3ExprCodeGetColumnOfTable( 2207 Vdbe *v, /* The VDBE under construction */ 2208 Table *pTab, /* The table containing the value */ 2209 int iTabCur, /* The cursor for this table */ 2210 int iCol, /* Index of the column to extract */ 2211 int regOut /* Extract the valud into this register */ 2212 ){ 2213 if( iCol<0 || iCol==pTab->iPKey ){ 2214 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2215 }else{ 2216 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2217 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2218 } 2219 if( iCol>=0 ){ 2220 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2221 } 2222 } 2223 2224 /* 2225 ** Generate code that will extract the iColumn-th column from 2226 ** table pTab and store the column value in a register. An effort 2227 ** is made to store the column value in register iReg, but this is 2228 ** not guaranteed. The location of the column value is returned. 2229 ** 2230 ** There must be an open cursor to pTab in iTable when this routine 2231 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2232 */ 2233 int sqlite3ExprCodeGetColumn( 2234 Parse *pParse, /* Parsing and code generating context */ 2235 Table *pTab, /* Description of the table we are reading from */ 2236 int iColumn, /* Index of the table column */ 2237 int iTable, /* The cursor pointing to the table */ 2238 int iReg, /* Store results here */ 2239 u8 p5 /* P5 value for OP_Column */ 2240 ){ 2241 Vdbe *v = pParse->pVdbe; 2242 int i; 2243 struct yColCache *p; 2244 2245 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2246 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2247 p->lru = pParse->iCacheCnt++; 2248 sqlite3ExprCachePinRegister(pParse, p->iReg); 2249 return p->iReg; 2250 } 2251 } 2252 assert( v!=0 ); 2253 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2254 if( p5 ){ 2255 sqlite3VdbeChangeP5(v, p5); 2256 }else{ 2257 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2258 } 2259 return iReg; 2260 } 2261 2262 /* 2263 ** Clear all column cache entries. 2264 */ 2265 void sqlite3ExprCacheClear(Parse *pParse){ 2266 int i; 2267 struct yColCache *p; 2268 2269 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2270 if( p->iReg ){ 2271 cacheEntryClear(pParse, p); 2272 p->iReg = 0; 2273 } 2274 } 2275 } 2276 2277 /* 2278 ** Record the fact that an affinity change has occurred on iCount 2279 ** registers starting with iStart. 2280 */ 2281 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2282 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2283 } 2284 2285 /* 2286 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2287 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2288 */ 2289 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2290 int i; 2291 struct yColCache *p; 2292 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2293 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); 2294 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2295 int x = p->iReg; 2296 if( x>=iFrom && x<iFrom+nReg ){ 2297 p->iReg += iTo-iFrom; 2298 } 2299 } 2300 } 2301 2302 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2303 /* 2304 ** Return true if any register in the range iFrom..iTo (inclusive) 2305 ** is used as part of the column cache. 2306 ** 2307 ** This routine is used within assert() and testcase() macros only 2308 ** and does not appear in a normal build. 2309 */ 2310 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2311 int i; 2312 struct yColCache *p; 2313 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2314 int r = p->iReg; 2315 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2316 } 2317 return 0; 2318 } 2319 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2320 2321 /* 2322 ** Generate code into the current Vdbe to evaluate the given 2323 ** expression. Attempt to store the results in register "target". 2324 ** Return the register where results are stored. 2325 ** 2326 ** With this routine, there is no guarantee that results will 2327 ** be stored in target. The result might be stored in some other 2328 ** register if it is convenient to do so. The calling function 2329 ** must check the return code and move the results to the desired 2330 ** register. 2331 */ 2332 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2333 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2334 int op; /* The opcode being coded */ 2335 int inReg = target; /* Results stored in register inReg */ 2336 int regFree1 = 0; /* If non-zero free this temporary register */ 2337 int regFree2 = 0; /* If non-zero free this temporary register */ 2338 int r1, r2, r3, r4; /* Various register numbers */ 2339 sqlite3 *db = pParse->db; /* The database connection */ 2340 2341 assert( target>0 && target<=pParse->nMem ); 2342 if( v==0 ){ 2343 assert( pParse->db->mallocFailed ); 2344 return 0; 2345 } 2346 2347 if( pExpr==0 ){ 2348 op = TK_NULL; 2349 }else{ 2350 op = pExpr->op; 2351 } 2352 switch( op ){ 2353 case TK_AGG_COLUMN: { 2354 AggInfo *pAggInfo = pExpr->pAggInfo; 2355 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2356 if( !pAggInfo->directMode ){ 2357 assert( pCol->iMem>0 ); 2358 inReg = pCol->iMem; 2359 break; 2360 }else if( pAggInfo->useSortingIdx ){ 2361 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2362 pCol->iSorterColumn, target); 2363 break; 2364 } 2365 /* Otherwise, fall thru into the TK_COLUMN case */ 2366 } 2367 case TK_COLUMN: { 2368 if( pExpr->iTable<0 ){ 2369 /* This only happens when coding check constraints */ 2370 assert( pParse->ckBase>0 ); 2371 inReg = pExpr->iColumn + pParse->ckBase; 2372 }else{ 2373 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2374 pExpr->iColumn, pExpr->iTable, target, 2375 pExpr->op2); 2376 } 2377 break; 2378 } 2379 case TK_INTEGER: { 2380 codeInteger(pParse, pExpr, 0, target); 2381 break; 2382 } 2383 #ifndef SQLITE_OMIT_FLOATING_POINT 2384 case TK_FLOAT: { 2385 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2386 codeReal(v, pExpr->u.zToken, 0, target); 2387 break; 2388 } 2389 #endif 2390 case TK_STRING: { 2391 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2392 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2393 break; 2394 } 2395 case TK_NULL: { 2396 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2397 break; 2398 } 2399 #ifndef SQLITE_OMIT_BLOB_LITERAL 2400 case TK_BLOB: { 2401 int n; 2402 const char *z; 2403 char *zBlob; 2404 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2405 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2406 assert( pExpr->u.zToken[1]=='\'' ); 2407 z = &pExpr->u.zToken[2]; 2408 n = sqlite3Strlen30(z) - 1; 2409 assert( z[n]=='\'' ); 2410 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2411 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2412 break; 2413 } 2414 #endif 2415 case TK_VARIABLE: { 2416 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2417 assert( pExpr->u.zToken!=0 ); 2418 assert( pExpr->u.zToken[0]!=0 ); 2419 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2420 if( pExpr->u.zToken[1]!=0 ){ 2421 assert( pExpr->u.zToken[0]=='?' 2422 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2423 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2424 } 2425 break; 2426 } 2427 case TK_REGISTER: { 2428 inReg = pExpr->iTable; 2429 break; 2430 } 2431 case TK_AS: { 2432 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2433 break; 2434 } 2435 #ifndef SQLITE_OMIT_CAST 2436 case TK_CAST: { 2437 /* Expressions of the form: CAST(pLeft AS token) */ 2438 int aff, to_op; 2439 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2440 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2441 aff = sqlite3AffinityType(pExpr->u.zToken); 2442 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2443 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2444 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2445 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2446 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2447 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2448 testcase( to_op==OP_ToText ); 2449 testcase( to_op==OP_ToBlob ); 2450 testcase( to_op==OP_ToNumeric ); 2451 testcase( to_op==OP_ToInt ); 2452 testcase( to_op==OP_ToReal ); 2453 if( inReg!=target ){ 2454 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2455 inReg = target; 2456 } 2457 sqlite3VdbeAddOp1(v, to_op, inReg); 2458 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2459 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2460 break; 2461 } 2462 #endif /* SQLITE_OMIT_CAST */ 2463 case TK_LT: 2464 case TK_LE: 2465 case TK_GT: 2466 case TK_GE: 2467 case TK_NE: 2468 case TK_EQ: { 2469 assert( TK_LT==OP_Lt ); 2470 assert( TK_LE==OP_Le ); 2471 assert( TK_GT==OP_Gt ); 2472 assert( TK_GE==OP_Ge ); 2473 assert( TK_EQ==OP_Eq ); 2474 assert( TK_NE==OP_Ne ); 2475 testcase( op==TK_LT ); 2476 testcase( op==TK_LE ); 2477 testcase( op==TK_GT ); 2478 testcase( op==TK_GE ); 2479 testcase( op==TK_EQ ); 2480 testcase( op==TK_NE ); 2481 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2482 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2483 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2484 r1, r2, inReg, SQLITE_STOREP2); 2485 testcase( regFree1==0 ); 2486 testcase( regFree2==0 ); 2487 break; 2488 } 2489 case TK_IS: 2490 case TK_ISNOT: { 2491 testcase( op==TK_IS ); 2492 testcase( op==TK_ISNOT ); 2493 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2494 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2495 op = (op==TK_IS) ? TK_EQ : TK_NE; 2496 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2497 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2498 testcase( regFree1==0 ); 2499 testcase( regFree2==0 ); 2500 break; 2501 } 2502 case TK_AND: 2503 case TK_OR: 2504 case TK_PLUS: 2505 case TK_STAR: 2506 case TK_MINUS: 2507 case TK_REM: 2508 case TK_BITAND: 2509 case TK_BITOR: 2510 case TK_SLASH: 2511 case TK_LSHIFT: 2512 case TK_RSHIFT: 2513 case TK_CONCAT: { 2514 assert( TK_AND==OP_And ); 2515 assert( TK_OR==OP_Or ); 2516 assert( TK_PLUS==OP_Add ); 2517 assert( TK_MINUS==OP_Subtract ); 2518 assert( TK_REM==OP_Remainder ); 2519 assert( TK_BITAND==OP_BitAnd ); 2520 assert( TK_BITOR==OP_BitOr ); 2521 assert( TK_SLASH==OP_Divide ); 2522 assert( TK_LSHIFT==OP_ShiftLeft ); 2523 assert( TK_RSHIFT==OP_ShiftRight ); 2524 assert( TK_CONCAT==OP_Concat ); 2525 testcase( op==TK_AND ); 2526 testcase( op==TK_OR ); 2527 testcase( op==TK_PLUS ); 2528 testcase( op==TK_MINUS ); 2529 testcase( op==TK_REM ); 2530 testcase( op==TK_BITAND ); 2531 testcase( op==TK_BITOR ); 2532 testcase( op==TK_SLASH ); 2533 testcase( op==TK_LSHIFT ); 2534 testcase( op==TK_RSHIFT ); 2535 testcase( op==TK_CONCAT ); 2536 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2537 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2538 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2539 testcase( regFree1==0 ); 2540 testcase( regFree2==0 ); 2541 break; 2542 } 2543 case TK_UMINUS: { 2544 Expr *pLeft = pExpr->pLeft; 2545 assert( pLeft ); 2546 if( pLeft->op==TK_INTEGER ){ 2547 codeInteger(pParse, pLeft, 1, target); 2548 #ifndef SQLITE_OMIT_FLOATING_POINT 2549 }else if( pLeft->op==TK_FLOAT ){ 2550 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2551 codeReal(v, pLeft->u.zToken, 1, target); 2552 #endif 2553 }else{ 2554 regFree1 = r1 = sqlite3GetTempReg(pParse); 2555 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2556 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2557 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2558 testcase( regFree2==0 ); 2559 } 2560 inReg = target; 2561 break; 2562 } 2563 case TK_BITNOT: 2564 case TK_NOT: { 2565 assert( TK_BITNOT==OP_BitNot ); 2566 assert( TK_NOT==OP_Not ); 2567 testcase( op==TK_BITNOT ); 2568 testcase( op==TK_NOT ); 2569 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2570 testcase( regFree1==0 ); 2571 inReg = target; 2572 sqlite3VdbeAddOp2(v, op, r1, inReg); 2573 break; 2574 } 2575 case TK_ISNULL: 2576 case TK_NOTNULL: { 2577 int addr; 2578 assert( TK_ISNULL==OP_IsNull ); 2579 assert( TK_NOTNULL==OP_NotNull ); 2580 testcase( op==TK_ISNULL ); 2581 testcase( op==TK_NOTNULL ); 2582 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2583 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2584 testcase( regFree1==0 ); 2585 addr = sqlite3VdbeAddOp1(v, op, r1); 2586 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2587 sqlite3VdbeJumpHere(v, addr); 2588 break; 2589 } 2590 case TK_AGG_FUNCTION: { 2591 AggInfo *pInfo = pExpr->pAggInfo; 2592 if( pInfo==0 ){ 2593 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2594 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2595 }else{ 2596 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2597 } 2598 break; 2599 } 2600 case TK_CONST_FUNC: 2601 case TK_FUNCTION: { 2602 ExprList *pFarg; /* List of function arguments */ 2603 int nFarg; /* Number of function arguments */ 2604 FuncDef *pDef; /* The function definition object */ 2605 int nId; /* Length of the function name in bytes */ 2606 const char *zId; /* The function name */ 2607 int constMask = 0; /* Mask of function arguments that are constant */ 2608 int i; /* Loop counter */ 2609 u8 enc = ENC(db); /* The text encoding used by this database */ 2610 CollSeq *pColl = 0; /* A collating sequence */ 2611 2612 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2613 testcase( op==TK_CONST_FUNC ); 2614 testcase( op==TK_FUNCTION ); 2615 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2616 pFarg = 0; 2617 }else{ 2618 pFarg = pExpr->x.pList; 2619 } 2620 nFarg = pFarg ? pFarg->nExpr : 0; 2621 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2622 zId = pExpr->u.zToken; 2623 nId = sqlite3Strlen30(zId); 2624 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2625 if( pDef==0 ){ 2626 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2627 break; 2628 } 2629 2630 /* Attempt a direct implementation of the built-in COALESCE() and 2631 ** IFNULL() functions. This avoids unnecessary evalation of 2632 ** arguments past the first non-NULL argument. 2633 */ 2634 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2635 int endCoalesce = sqlite3VdbeMakeLabel(v); 2636 assert( nFarg>=2 ); 2637 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2638 for(i=1; i<nFarg; i++){ 2639 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2640 sqlite3ExprCacheRemove(pParse, target, 1); 2641 sqlite3ExprCachePush(pParse); 2642 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2643 sqlite3ExprCachePop(pParse, 1); 2644 } 2645 sqlite3VdbeResolveLabel(v, endCoalesce); 2646 break; 2647 } 2648 2649 2650 if( pFarg ){ 2651 r1 = sqlite3GetTempRange(pParse, nFarg); 2652 2653 /* For length() and typeof() functions with a column argument, 2654 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2655 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2656 ** loading. 2657 */ 2658 if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2659 u8 exprOp; 2660 assert( nFarg==1 ); 2661 assert( pFarg->a[0].pExpr!=0 ); 2662 exprOp = pFarg->a[0].pExpr->op; 2663 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2664 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2665 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2666 testcase( pDef->flags==SQLITE_FUNC_LENGTH ); 2667 pFarg->a[0].pExpr->op2 = pDef->flags; 2668 } 2669 } 2670 2671 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2672 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2673 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2674 }else{ 2675 r1 = 0; 2676 } 2677 #ifndef SQLITE_OMIT_VIRTUALTABLE 2678 /* Possibly overload the function if the first argument is 2679 ** a virtual table column. 2680 ** 2681 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2682 ** second argument, not the first, as the argument to test to 2683 ** see if it is a column in a virtual table. This is done because 2684 ** the left operand of infix functions (the operand we want to 2685 ** control overloading) ends up as the second argument to the 2686 ** function. The expression "A glob B" is equivalent to 2687 ** "glob(B,A). We want to use the A in "A glob B" to test 2688 ** for function overloading. But we use the B term in "glob(B,A)". 2689 */ 2690 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2691 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2692 }else if( nFarg>0 ){ 2693 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2694 } 2695 #endif 2696 for(i=0; i<nFarg; i++){ 2697 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2698 constMask |= (1<<i); 2699 } 2700 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2701 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2702 } 2703 } 2704 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2705 if( !pColl ) pColl = db->pDfltColl; 2706 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2707 } 2708 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2709 (char*)pDef, P4_FUNCDEF); 2710 sqlite3VdbeChangeP5(v, (u8)nFarg); 2711 if( nFarg ){ 2712 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2713 } 2714 break; 2715 } 2716 #ifndef SQLITE_OMIT_SUBQUERY 2717 case TK_EXISTS: 2718 case TK_SELECT: { 2719 testcase( op==TK_EXISTS ); 2720 testcase( op==TK_SELECT ); 2721 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2722 break; 2723 } 2724 case TK_IN: { 2725 int destIfFalse = sqlite3VdbeMakeLabel(v); 2726 int destIfNull = sqlite3VdbeMakeLabel(v); 2727 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2728 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2729 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2730 sqlite3VdbeResolveLabel(v, destIfFalse); 2731 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2732 sqlite3VdbeResolveLabel(v, destIfNull); 2733 break; 2734 } 2735 #endif /* SQLITE_OMIT_SUBQUERY */ 2736 2737 2738 /* 2739 ** x BETWEEN y AND z 2740 ** 2741 ** This is equivalent to 2742 ** 2743 ** x>=y AND x<=z 2744 ** 2745 ** X is stored in pExpr->pLeft. 2746 ** Y is stored in pExpr->pList->a[0].pExpr. 2747 ** Z is stored in pExpr->pList->a[1].pExpr. 2748 */ 2749 case TK_BETWEEN: { 2750 Expr *pLeft = pExpr->pLeft; 2751 struct ExprList_item *pLItem = pExpr->x.pList->a; 2752 Expr *pRight = pLItem->pExpr; 2753 2754 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2755 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2756 testcase( regFree1==0 ); 2757 testcase( regFree2==0 ); 2758 r3 = sqlite3GetTempReg(pParse); 2759 r4 = sqlite3GetTempReg(pParse); 2760 codeCompare(pParse, pLeft, pRight, OP_Ge, 2761 r1, r2, r3, SQLITE_STOREP2); 2762 pLItem++; 2763 pRight = pLItem->pExpr; 2764 sqlite3ReleaseTempReg(pParse, regFree2); 2765 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2766 testcase( regFree2==0 ); 2767 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2768 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2769 sqlite3ReleaseTempReg(pParse, r3); 2770 sqlite3ReleaseTempReg(pParse, r4); 2771 break; 2772 } 2773 case TK_COLLATE: 2774 case TK_UPLUS: { 2775 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2776 break; 2777 } 2778 2779 case TK_TRIGGER: { 2780 /* If the opcode is TK_TRIGGER, then the expression is a reference 2781 ** to a column in the new.* or old.* pseudo-tables available to 2782 ** trigger programs. In this case Expr.iTable is set to 1 for the 2783 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2784 ** is set to the column of the pseudo-table to read, or to -1 to 2785 ** read the rowid field. 2786 ** 2787 ** The expression is implemented using an OP_Param opcode. The p1 2788 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2789 ** to reference another column of the old.* pseudo-table, where 2790 ** i is the index of the column. For a new.rowid reference, p1 is 2791 ** set to (n+1), where n is the number of columns in each pseudo-table. 2792 ** For a reference to any other column in the new.* pseudo-table, p1 2793 ** is set to (n+2+i), where n and i are as defined previously. For 2794 ** example, if the table on which triggers are being fired is 2795 ** declared as: 2796 ** 2797 ** CREATE TABLE t1(a, b); 2798 ** 2799 ** Then p1 is interpreted as follows: 2800 ** 2801 ** p1==0 -> old.rowid p1==3 -> new.rowid 2802 ** p1==1 -> old.a p1==4 -> new.a 2803 ** p1==2 -> old.b p1==5 -> new.b 2804 */ 2805 Table *pTab = pExpr->pTab; 2806 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2807 2808 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2809 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2810 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2811 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2812 2813 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2814 VdbeComment((v, "%s.%s -> $%d", 2815 (pExpr->iTable ? "new" : "old"), 2816 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2817 target 2818 )); 2819 2820 #ifndef SQLITE_OMIT_FLOATING_POINT 2821 /* If the column has REAL affinity, it may currently be stored as an 2822 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2823 if( pExpr->iColumn>=0 2824 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2825 ){ 2826 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2827 } 2828 #endif 2829 break; 2830 } 2831 2832 2833 /* 2834 ** Form A: 2835 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2836 ** 2837 ** Form B: 2838 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2839 ** 2840 ** Form A is can be transformed into the equivalent form B as follows: 2841 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2842 ** WHEN x=eN THEN rN ELSE y END 2843 ** 2844 ** X (if it exists) is in pExpr->pLeft. 2845 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2846 ** ELSE clause and no other term matches, then the result of the 2847 ** exprssion is NULL. 2848 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2849 ** 2850 ** The result of the expression is the Ri for the first matching Ei, 2851 ** or if there is no matching Ei, the ELSE term Y, or if there is 2852 ** no ELSE term, NULL. 2853 */ 2854 default: assert( op==TK_CASE ); { 2855 int endLabel; /* GOTO label for end of CASE stmt */ 2856 int nextCase; /* GOTO label for next WHEN clause */ 2857 int nExpr; /* 2x number of WHEN terms */ 2858 int i; /* Loop counter */ 2859 ExprList *pEList; /* List of WHEN terms */ 2860 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2861 Expr opCompare; /* The X==Ei expression */ 2862 Expr cacheX; /* Cached expression X */ 2863 Expr *pX; /* The X expression */ 2864 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2865 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2866 2867 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2868 assert((pExpr->x.pList->nExpr % 2) == 0); 2869 assert(pExpr->x.pList->nExpr > 0); 2870 pEList = pExpr->x.pList; 2871 aListelem = pEList->a; 2872 nExpr = pEList->nExpr; 2873 endLabel = sqlite3VdbeMakeLabel(v); 2874 if( (pX = pExpr->pLeft)!=0 ){ 2875 cacheX = *pX; 2876 testcase( pX->op==TK_COLUMN ); 2877 testcase( pX->op==TK_REGISTER ); 2878 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2879 testcase( regFree1==0 ); 2880 cacheX.op = TK_REGISTER; 2881 opCompare.op = TK_EQ; 2882 opCompare.pLeft = &cacheX; 2883 pTest = &opCompare; 2884 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2885 ** The value in regFree1 might get SCopy-ed into the file result. 2886 ** So make sure that the regFree1 register is not reused for other 2887 ** purposes and possibly overwritten. */ 2888 regFree1 = 0; 2889 } 2890 for(i=0; i<nExpr; i=i+2){ 2891 sqlite3ExprCachePush(pParse); 2892 if( pX ){ 2893 assert( pTest!=0 ); 2894 opCompare.pRight = aListelem[i].pExpr; 2895 }else{ 2896 pTest = aListelem[i].pExpr; 2897 } 2898 nextCase = sqlite3VdbeMakeLabel(v); 2899 testcase( pTest->op==TK_COLUMN ); 2900 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2901 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2902 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2903 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2904 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2905 sqlite3ExprCachePop(pParse, 1); 2906 sqlite3VdbeResolveLabel(v, nextCase); 2907 } 2908 if( pExpr->pRight ){ 2909 sqlite3ExprCachePush(pParse); 2910 sqlite3ExprCode(pParse, pExpr->pRight, target); 2911 sqlite3ExprCachePop(pParse, 1); 2912 }else{ 2913 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2914 } 2915 assert( db->mallocFailed || pParse->nErr>0 2916 || pParse->iCacheLevel==iCacheLevel ); 2917 sqlite3VdbeResolveLabel(v, endLabel); 2918 break; 2919 } 2920 #ifndef SQLITE_OMIT_TRIGGER 2921 case TK_RAISE: { 2922 assert( pExpr->affinity==OE_Rollback 2923 || pExpr->affinity==OE_Abort 2924 || pExpr->affinity==OE_Fail 2925 || pExpr->affinity==OE_Ignore 2926 ); 2927 if( !pParse->pTriggerTab ){ 2928 sqlite3ErrorMsg(pParse, 2929 "RAISE() may only be used within a trigger-program"); 2930 return 0; 2931 } 2932 if( pExpr->affinity==OE_Abort ){ 2933 sqlite3MayAbort(pParse); 2934 } 2935 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2936 if( pExpr->affinity==OE_Ignore ){ 2937 sqlite3VdbeAddOp4( 2938 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2939 }else{ 2940 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 2941 pExpr->affinity, pExpr->u.zToken, 0); 2942 } 2943 2944 break; 2945 } 2946 #endif 2947 } 2948 sqlite3ReleaseTempReg(pParse, regFree1); 2949 sqlite3ReleaseTempReg(pParse, regFree2); 2950 return inReg; 2951 } 2952 2953 /* 2954 ** Generate code to evaluate an expression and store the results 2955 ** into a register. Return the register number where the results 2956 ** are stored. 2957 ** 2958 ** If the register is a temporary register that can be deallocated, 2959 ** then write its number into *pReg. If the result register is not 2960 ** a temporary, then set *pReg to zero. 2961 */ 2962 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2963 int r1 = sqlite3GetTempReg(pParse); 2964 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2965 if( r2==r1 ){ 2966 *pReg = r1; 2967 }else{ 2968 sqlite3ReleaseTempReg(pParse, r1); 2969 *pReg = 0; 2970 } 2971 return r2; 2972 } 2973 2974 /* 2975 ** Generate code that will evaluate expression pExpr and store the 2976 ** results in register target. The results are guaranteed to appear 2977 ** in register target. 2978 */ 2979 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2980 int inReg; 2981 2982 assert( target>0 && target<=pParse->nMem ); 2983 if( pExpr && pExpr->op==TK_REGISTER ){ 2984 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2985 }else{ 2986 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2987 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2988 if( inReg!=target && pParse->pVdbe ){ 2989 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2990 } 2991 } 2992 return target; 2993 } 2994 2995 /* 2996 ** Generate code that evalutes the given expression and puts the result 2997 ** in register target. 2998 ** 2999 ** Also make a copy of the expression results into another "cache" register 3000 ** and modify the expression so that the next time it is evaluated, 3001 ** the result is a copy of the cache register. 3002 ** 3003 ** This routine is used for expressions that are used multiple 3004 ** times. They are evaluated once and the results of the expression 3005 ** are reused. 3006 */ 3007 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3008 Vdbe *v = pParse->pVdbe; 3009 int inReg; 3010 inReg = sqlite3ExprCode(pParse, pExpr, target); 3011 assert( target>0 ); 3012 /* This routine is called for terms to INSERT or UPDATE. And the only 3013 ** other place where expressions can be converted into TK_REGISTER is 3014 ** in WHERE clause processing. So as currently implemented, there is 3015 ** no way for a TK_REGISTER to exist here. But it seems prudent to 3016 ** keep the ALWAYS() in case the conditions above change with future 3017 ** modifications or enhancements. */ 3018 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 3019 int iMem; 3020 iMem = ++pParse->nMem; 3021 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 3022 pExpr->iTable = iMem; 3023 pExpr->op2 = pExpr->op; 3024 pExpr->op = TK_REGISTER; 3025 } 3026 return inReg; 3027 } 3028 3029 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3030 /* 3031 ** Generate a human-readable explanation of an expression tree. 3032 */ 3033 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3034 int op; /* The opcode being coded */ 3035 const char *zBinOp = 0; /* Binary operator */ 3036 const char *zUniOp = 0; /* Unary operator */ 3037 if( pExpr==0 ){ 3038 op = TK_NULL; 3039 }else{ 3040 op = pExpr->op; 3041 } 3042 switch( op ){ 3043 case TK_AGG_COLUMN: { 3044 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3045 pExpr->iTable, pExpr->iColumn); 3046 break; 3047 } 3048 case TK_COLUMN: { 3049 if( pExpr->iTable<0 ){ 3050 /* This only happens when coding check constraints */ 3051 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3052 }else{ 3053 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3054 pExpr->iTable, pExpr->iColumn); 3055 } 3056 break; 3057 } 3058 case TK_INTEGER: { 3059 if( pExpr->flags & EP_IntValue ){ 3060 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3061 }else{ 3062 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3063 } 3064 break; 3065 } 3066 #ifndef SQLITE_OMIT_FLOATING_POINT 3067 case TK_FLOAT: { 3068 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3069 break; 3070 } 3071 #endif 3072 case TK_STRING: { 3073 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3074 break; 3075 } 3076 case TK_NULL: { 3077 sqlite3ExplainPrintf(pOut,"NULL"); 3078 break; 3079 } 3080 #ifndef SQLITE_OMIT_BLOB_LITERAL 3081 case TK_BLOB: { 3082 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3083 break; 3084 } 3085 #endif 3086 case TK_VARIABLE: { 3087 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3088 pExpr->u.zToken, pExpr->iColumn); 3089 break; 3090 } 3091 case TK_REGISTER: { 3092 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3093 break; 3094 } 3095 case TK_AS: { 3096 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3097 break; 3098 } 3099 #ifndef SQLITE_OMIT_CAST 3100 case TK_CAST: { 3101 /* Expressions of the form: CAST(pLeft AS token) */ 3102 const char *zAff = "unk"; 3103 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3104 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3105 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3106 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3107 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3108 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3109 } 3110 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3111 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3112 sqlite3ExplainPrintf(pOut, ")"); 3113 break; 3114 } 3115 #endif /* SQLITE_OMIT_CAST */ 3116 case TK_LT: zBinOp = "LT"; break; 3117 case TK_LE: zBinOp = "LE"; break; 3118 case TK_GT: zBinOp = "GT"; break; 3119 case TK_GE: zBinOp = "GE"; break; 3120 case TK_NE: zBinOp = "NE"; break; 3121 case TK_EQ: zBinOp = "EQ"; break; 3122 case TK_IS: zBinOp = "IS"; break; 3123 case TK_ISNOT: zBinOp = "ISNOT"; break; 3124 case TK_AND: zBinOp = "AND"; break; 3125 case TK_OR: zBinOp = "OR"; break; 3126 case TK_PLUS: zBinOp = "ADD"; break; 3127 case TK_STAR: zBinOp = "MUL"; break; 3128 case TK_MINUS: zBinOp = "SUB"; break; 3129 case TK_REM: zBinOp = "REM"; break; 3130 case TK_BITAND: zBinOp = "BITAND"; break; 3131 case TK_BITOR: zBinOp = "BITOR"; break; 3132 case TK_SLASH: zBinOp = "DIV"; break; 3133 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3134 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3135 case TK_CONCAT: zBinOp = "CONCAT"; break; 3136 3137 case TK_UMINUS: zUniOp = "UMINUS"; break; 3138 case TK_UPLUS: zUniOp = "UPLUS"; break; 3139 case TK_BITNOT: zUniOp = "BITNOT"; break; 3140 case TK_NOT: zUniOp = "NOT"; break; 3141 case TK_ISNULL: zUniOp = "ISNULL"; break; 3142 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3143 3144 case TK_COLLATE: { 3145 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3146 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3147 break; 3148 } 3149 3150 case TK_AGG_FUNCTION: 3151 case TK_CONST_FUNC: 3152 case TK_FUNCTION: { 3153 ExprList *pFarg; /* List of function arguments */ 3154 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3155 pFarg = 0; 3156 }else{ 3157 pFarg = pExpr->x.pList; 3158 } 3159 if( op==TK_AGG_FUNCTION ){ 3160 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3161 pExpr->op2, pExpr->u.zToken); 3162 }else{ 3163 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3164 } 3165 if( pFarg ){ 3166 sqlite3ExplainExprList(pOut, pFarg); 3167 } 3168 sqlite3ExplainPrintf(pOut, ")"); 3169 break; 3170 } 3171 #ifndef SQLITE_OMIT_SUBQUERY 3172 case TK_EXISTS: { 3173 sqlite3ExplainPrintf(pOut, "EXISTS("); 3174 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3175 sqlite3ExplainPrintf(pOut,")"); 3176 break; 3177 } 3178 case TK_SELECT: { 3179 sqlite3ExplainPrintf(pOut, "("); 3180 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3181 sqlite3ExplainPrintf(pOut, ")"); 3182 break; 3183 } 3184 case TK_IN: { 3185 sqlite3ExplainPrintf(pOut, "IN("); 3186 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3187 sqlite3ExplainPrintf(pOut, ","); 3188 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3189 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3190 }else{ 3191 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3192 } 3193 sqlite3ExplainPrintf(pOut, ")"); 3194 break; 3195 } 3196 #endif /* SQLITE_OMIT_SUBQUERY */ 3197 3198 /* 3199 ** x BETWEEN y AND z 3200 ** 3201 ** This is equivalent to 3202 ** 3203 ** x>=y AND x<=z 3204 ** 3205 ** X is stored in pExpr->pLeft. 3206 ** Y is stored in pExpr->pList->a[0].pExpr. 3207 ** Z is stored in pExpr->pList->a[1].pExpr. 3208 */ 3209 case TK_BETWEEN: { 3210 Expr *pX = pExpr->pLeft; 3211 Expr *pY = pExpr->x.pList->a[0].pExpr; 3212 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3213 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3214 sqlite3ExplainExpr(pOut, pX); 3215 sqlite3ExplainPrintf(pOut, ","); 3216 sqlite3ExplainExpr(pOut, pY); 3217 sqlite3ExplainPrintf(pOut, ","); 3218 sqlite3ExplainExpr(pOut, pZ); 3219 sqlite3ExplainPrintf(pOut, ")"); 3220 break; 3221 } 3222 case TK_TRIGGER: { 3223 /* If the opcode is TK_TRIGGER, then the expression is a reference 3224 ** to a column in the new.* or old.* pseudo-tables available to 3225 ** trigger programs. In this case Expr.iTable is set to 1 for the 3226 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3227 ** is set to the column of the pseudo-table to read, or to -1 to 3228 ** read the rowid field. 3229 */ 3230 sqlite3ExplainPrintf(pOut, "%s(%d)", 3231 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3232 break; 3233 } 3234 case TK_CASE: { 3235 sqlite3ExplainPrintf(pOut, "CASE("); 3236 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3237 sqlite3ExplainPrintf(pOut, ","); 3238 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3239 break; 3240 } 3241 #ifndef SQLITE_OMIT_TRIGGER 3242 case TK_RAISE: { 3243 const char *zType = "unk"; 3244 switch( pExpr->affinity ){ 3245 case OE_Rollback: zType = "rollback"; break; 3246 case OE_Abort: zType = "abort"; break; 3247 case OE_Fail: zType = "fail"; break; 3248 case OE_Ignore: zType = "ignore"; break; 3249 } 3250 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3251 break; 3252 } 3253 #endif 3254 } 3255 if( zBinOp ){ 3256 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3257 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3258 sqlite3ExplainPrintf(pOut,","); 3259 sqlite3ExplainExpr(pOut, pExpr->pRight); 3260 sqlite3ExplainPrintf(pOut,")"); 3261 }else if( zUniOp ){ 3262 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3263 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3264 sqlite3ExplainPrintf(pOut,")"); 3265 } 3266 } 3267 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3268 3269 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3270 /* 3271 ** Generate a human-readable explanation of an expression list. 3272 */ 3273 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3274 int i; 3275 if( pList==0 || pList->nExpr==0 ){ 3276 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3277 return; 3278 }else if( pList->nExpr==1 ){ 3279 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3280 }else{ 3281 sqlite3ExplainPush(pOut); 3282 for(i=0; i<pList->nExpr; i++){ 3283 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3284 sqlite3ExplainPush(pOut); 3285 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3286 sqlite3ExplainPop(pOut); 3287 if( pList->a[i].zName ){ 3288 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3289 } 3290 if( pList->a[i].bSpanIsTab ){ 3291 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3292 } 3293 if( i<pList->nExpr-1 ){ 3294 sqlite3ExplainNL(pOut); 3295 } 3296 } 3297 sqlite3ExplainPop(pOut); 3298 } 3299 } 3300 #endif /* SQLITE_DEBUG */ 3301 3302 /* 3303 ** Return TRUE if pExpr is an constant expression that is appropriate 3304 ** for factoring out of a loop. Appropriate expressions are: 3305 ** 3306 ** * Any expression that evaluates to two or more opcodes. 3307 ** 3308 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3309 ** or OP_Variable that does not need to be placed in a 3310 ** specific register. 3311 ** 3312 ** There is no point in factoring out single-instruction constant 3313 ** expressions that need to be placed in a particular register. 3314 ** We could factor them out, but then we would end up adding an 3315 ** OP_SCopy instruction to move the value into the correct register 3316 ** later. We might as well just use the original instruction and 3317 ** avoid the OP_SCopy. 3318 */ 3319 static int isAppropriateForFactoring(Expr *p){ 3320 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3321 return 0; /* Only constant expressions are appropriate for factoring */ 3322 } 3323 if( (p->flags & EP_FixedDest)==0 ){ 3324 return 1; /* Any constant without a fixed destination is appropriate */ 3325 } 3326 while( p->op==TK_UPLUS ) p = p->pLeft; 3327 switch( p->op ){ 3328 #ifndef SQLITE_OMIT_BLOB_LITERAL 3329 case TK_BLOB: 3330 #endif 3331 case TK_VARIABLE: 3332 case TK_INTEGER: 3333 case TK_FLOAT: 3334 case TK_NULL: 3335 case TK_STRING: { 3336 testcase( p->op==TK_BLOB ); 3337 testcase( p->op==TK_VARIABLE ); 3338 testcase( p->op==TK_INTEGER ); 3339 testcase( p->op==TK_FLOAT ); 3340 testcase( p->op==TK_NULL ); 3341 testcase( p->op==TK_STRING ); 3342 /* Single-instruction constants with a fixed destination are 3343 ** better done in-line. If we factor them, they will just end 3344 ** up generating an OP_SCopy to move the value to the destination 3345 ** register. */ 3346 return 0; 3347 } 3348 case TK_UMINUS: { 3349 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3350 return 0; 3351 } 3352 break; 3353 } 3354 default: { 3355 break; 3356 } 3357 } 3358 return 1; 3359 } 3360 3361 /* 3362 ** If pExpr is a constant expression that is appropriate for 3363 ** factoring out of a loop, then evaluate the expression 3364 ** into a register and convert the expression into a TK_REGISTER 3365 ** expression. 3366 */ 3367 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3368 Parse *pParse = pWalker->pParse; 3369 switch( pExpr->op ){ 3370 case TK_IN: 3371 case TK_REGISTER: { 3372 return WRC_Prune; 3373 } 3374 case TK_COLLATE: { 3375 return WRC_Continue; 3376 } 3377 case TK_FUNCTION: 3378 case TK_AGG_FUNCTION: 3379 case TK_CONST_FUNC: { 3380 /* The arguments to a function have a fixed destination. 3381 ** Mark them this way to avoid generated unneeded OP_SCopy 3382 ** instructions. 3383 */ 3384 ExprList *pList = pExpr->x.pList; 3385 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3386 if( pList ){ 3387 int i = pList->nExpr; 3388 struct ExprList_item *pItem = pList->a; 3389 for(; i>0; i--, pItem++){ 3390 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3391 } 3392 } 3393 break; 3394 } 3395 } 3396 if( isAppropriateForFactoring(pExpr) ){ 3397 int r1 = ++pParse->nMem; 3398 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3399 /* If r2!=r1, it means that register r1 is never used. That is harmless 3400 ** but suboptimal, so we want to know about the situation to fix it. 3401 ** Hence the following assert: */ 3402 assert( r2==r1 ); 3403 pExpr->op2 = pExpr->op; 3404 pExpr->op = TK_REGISTER; 3405 pExpr->iTable = r2; 3406 return WRC_Prune; 3407 } 3408 return WRC_Continue; 3409 } 3410 3411 /* 3412 ** Preevaluate constant subexpressions within pExpr and store the 3413 ** results in registers. Modify pExpr so that the constant subexpresions 3414 ** are TK_REGISTER opcodes that refer to the precomputed values. 3415 ** 3416 ** This routine is a no-op if the jump to the cookie-check code has 3417 ** already occur. Since the cookie-check jump is generated prior to 3418 ** any other serious processing, this check ensures that there is no 3419 ** way to accidently bypass the constant initializations. 3420 ** 3421 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3422 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3423 ** interface. This allows test logic to verify that the same answer is 3424 ** obtained for queries regardless of whether or not constants are 3425 ** precomputed into registers or if they are inserted in-line. 3426 */ 3427 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3428 Walker w; 3429 if( pParse->cookieGoto ) return; 3430 if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return; 3431 w.xExprCallback = evalConstExpr; 3432 w.xSelectCallback = 0; 3433 w.pParse = pParse; 3434 sqlite3WalkExpr(&w, pExpr); 3435 } 3436 3437 3438 /* 3439 ** Generate code that pushes the value of every element of the given 3440 ** expression list into a sequence of registers beginning at target. 3441 ** 3442 ** Return the number of elements evaluated. 3443 */ 3444 int sqlite3ExprCodeExprList( 3445 Parse *pParse, /* Parsing context */ 3446 ExprList *pList, /* The expression list to be coded */ 3447 int target, /* Where to write results */ 3448 int doHardCopy /* Make a hard copy of every element */ 3449 ){ 3450 struct ExprList_item *pItem; 3451 int i, n; 3452 assert( pList!=0 ); 3453 assert( target>0 ); 3454 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3455 n = pList->nExpr; 3456 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3457 Expr *pExpr = pItem->pExpr; 3458 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3459 if( inReg!=target+i ){ 3460 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3461 inReg, target+i); 3462 } 3463 } 3464 return n; 3465 } 3466 3467 /* 3468 ** Generate code for a BETWEEN operator. 3469 ** 3470 ** x BETWEEN y AND z 3471 ** 3472 ** The above is equivalent to 3473 ** 3474 ** x>=y AND x<=z 3475 ** 3476 ** Code it as such, taking care to do the common subexpression 3477 ** elementation of x. 3478 */ 3479 static void exprCodeBetween( 3480 Parse *pParse, /* Parsing and code generating context */ 3481 Expr *pExpr, /* The BETWEEN expression */ 3482 int dest, /* Jump here if the jump is taken */ 3483 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3484 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3485 ){ 3486 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3487 Expr compLeft; /* The x>=y term */ 3488 Expr compRight; /* The x<=z term */ 3489 Expr exprX; /* The x subexpression */ 3490 int regFree1 = 0; /* Temporary use register */ 3491 3492 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3493 exprX = *pExpr->pLeft; 3494 exprAnd.op = TK_AND; 3495 exprAnd.pLeft = &compLeft; 3496 exprAnd.pRight = &compRight; 3497 compLeft.op = TK_GE; 3498 compLeft.pLeft = &exprX; 3499 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3500 compRight.op = TK_LE; 3501 compRight.pLeft = &exprX; 3502 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3503 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3504 exprX.op = TK_REGISTER; 3505 if( jumpIfTrue ){ 3506 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3507 }else{ 3508 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3509 } 3510 sqlite3ReleaseTempReg(pParse, regFree1); 3511 3512 /* Ensure adequate test coverage */ 3513 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3514 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3515 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3516 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3517 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3518 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3519 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3520 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3521 } 3522 3523 /* 3524 ** Generate code for a boolean expression such that a jump is made 3525 ** to the label "dest" if the expression is true but execution 3526 ** continues straight thru if the expression is false. 3527 ** 3528 ** If the expression evaluates to NULL (neither true nor false), then 3529 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3530 ** 3531 ** This code depends on the fact that certain token values (ex: TK_EQ) 3532 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3533 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3534 ** the make process cause these values to align. Assert()s in the code 3535 ** below verify that the numbers are aligned correctly. 3536 */ 3537 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3538 Vdbe *v = pParse->pVdbe; 3539 int op = 0; 3540 int regFree1 = 0; 3541 int regFree2 = 0; 3542 int r1, r2; 3543 3544 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3545 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3546 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3547 op = pExpr->op; 3548 switch( op ){ 3549 case TK_AND: { 3550 int d2 = sqlite3VdbeMakeLabel(v); 3551 testcase( jumpIfNull==0 ); 3552 sqlite3ExprCachePush(pParse); 3553 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3554 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3555 sqlite3VdbeResolveLabel(v, d2); 3556 sqlite3ExprCachePop(pParse, 1); 3557 break; 3558 } 3559 case TK_OR: { 3560 testcase( jumpIfNull==0 ); 3561 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3562 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3563 break; 3564 } 3565 case TK_NOT: { 3566 testcase( jumpIfNull==0 ); 3567 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3568 break; 3569 } 3570 case TK_LT: 3571 case TK_LE: 3572 case TK_GT: 3573 case TK_GE: 3574 case TK_NE: 3575 case TK_EQ: { 3576 assert( TK_LT==OP_Lt ); 3577 assert( TK_LE==OP_Le ); 3578 assert( TK_GT==OP_Gt ); 3579 assert( TK_GE==OP_Ge ); 3580 assert( TK_EQ==OP_Eq ); 3581 assert( TK_NE==OP_Ne ); 3582 testcase( op==TK_LT ); 3583 testcase( op==TK_LE ); 3584 testcase( op==TK_GT ); 3585 testcase( op==TK_GE ); 3586 testcase( op==TK_EQ ); 3587 testcase( op==TK_NE ); 3588 testcase( jumpIfNull==0 ); 3589 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3590 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3591 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3592 r1, r2, dest, jumpIfNull); 3593 testcase( regFree1==0 ); 3594 testcase( regFree2==0 ); 3595 break; 3596 } 3597 case TK_IS: 3598 case TK_ISNOT: { 3599 testcase( op==TK_IS ); 3600 testcase( op==TK_ISNOT ); 3601 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3602 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3603 op = (op==TK_IS) ? TK_EQ : TK_NE; 3604 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3605 r1, r2, dest, SQLITE_NULLEQ); 3606 testcase( regFree1==0 ); 3607 testcase( regFree2==0 ); 3608 break; 3609 } 3610 case TK_ISNULL: 3611 case TK_NOTNULL: { 3612 assert( TK_ISNULL==OP_IsNull ); 3613 assert( TK_NOTNULL==OP_NotNull ); 3614 testcase( op==TK_ISNULL ); 3615 testcase( op==TK_NOTNULL ); 3616 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3617 sqlite3VdbeAddOp2(v, op, r1, dest); 3618 testcase( regFree1==0 ); 3619 break; 3620 } 3621 case TK_BETWEEN: { 3622 testcase( jumpIfNull==0 ); 3623 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3624 break; 3625 } 3626 #ifndef SQLITE_OMIT_SUBQUERY 3627 case TK_IN: { 3628 int destIfFalse = sqlite3VdbeMakeLabel(v); 3629 int destIfNull = jumpIfNull ? dest : destIfFalse; 3630 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3631 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3632 sqlite3VdbeResolveLabel(v, destIfFalse); 3633 break; 3634 } 3635 #endif 3636 default: { 3637 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3638 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3639 testcase( regFree1==0 ); 3640 testcase( jumpIfNull==0 ); 3641 break; 3642 } 3643 } 3644 sqlite3ReleaseTempReg(pParse, regFree1); 3645 sqlite3ReleaseTempReg(pParse, regFree2); 3646 } 3647 3648 /* 3649 ** Generate code for a boolean expression such that a jump is made 3650 ** to the label "dest" if the expression is false but execution 3651 ** continues straight thru if the expression is true. 3652 ** 3653 ** If the expression evaluates to NULL (neither true nor false) then 3654 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3655 ** is 0. 3656 */ 3657 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3658 Vdbe *v = pParse->pVdbe; 3659 int op = 0; 3660 int regFree1 = 0; 3661 int regFree2 = 0; 3662 int r1, r2; 3663 3664 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3665 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3666 if( pExpr==0 ) return; 3667 3668 /* The value of pExpr->op and op are related as follows: 3669 ** 3670 ** pExpr->op op 3671 ** --------- ---------- 3672 ** TK_ISNULL OP_NotNull 3673 ** TK_NOTNULL OP_IsNull 3674 ** TK_NE OP_Eq 3675 ** TK_EQ OP_Ne 3676 ** TK_GT OP_Le 3677 ** TK_LE OP_Gt 3678 ** TK_GE OP_Lt 3679 ** TK_LT OP_Ge 3680 ** 3681 ** For other values of pExpr->op, op is undefined and unused. 3682 ** The value of TK_ and OP_ constants are arranged such that we 3683 ** can compute the mapping above using the following expression. 3684 ** Assert()s verify that the computation is correct. 3685 */ 3686 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3687 3688 /* Verify correct alignment of TK_ and OP_ constants 3689 */ 3690 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3691 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3692 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3693 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3694 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3695 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3696 assert( pExpr->op!=TK_GT || op==OP_Le ); 3697 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3698 3699 switch( pExpr->op ){ 3700 case TK_AND: { 3701 testcase( jumpIfNull==0 ); 3702 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3703 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3704 break; 3705 } 3706 case TK_OR: { 3707 int d2 = sqlite3VdbeMakeLabel(v); 3708 testcase( jumpIfNull==0 ); 3709 sqlite3ExprCachePush(pParse); 3710 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3711 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3712 sqlite3VdbeResolveLabel(v, d2); 3713 sqlite3ExprCachePop(pParse, 1); 3714 break; 3715 } 3716 case TK_NOT: { 3717 testcase( jumpIfNull==0 ); 3718 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3719 break; 3720 } 3721 case TK_LT: 3722 case TK_LE: 3723 case TK_GT: 3724 case TK_GE: 3725 case TK_NE: 3726 case TK_EQ: { 3727 testcase( op==TK_LT ); 3728 testcase( op==TK_LE ); 3729 testcase( op==TK_GT ); 3730 testcase( op==TK_GE ); 3731 testcase( op==TK_EQ ); 3732 testcase( op==TK_NE ); 3733 testcase( jumpIfNull==0 ); 3734 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3735 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3736 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3737 r1, r2, dest, jumpIfNull); 3738 testcase( regFree1==0 ); 3739 testcase( regFree2==0 ); 3740 break; 3741 } 3742 case TK_IS: 3743 case TK_ISNOT: { 3744 testcase( pExpr->op==TK_IS ); 3745 testcase( pExpr->op==TK_ISNOT ); 3746 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3747 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3748 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3749 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3750 r1, r2, dest, SQLITE_NULLEQ); 3751 testcase( regFree1==0 ); 3752 testcase( regFree2==0 ); 3753 break; 3754 } 3755 case TK_ISNULL: 3756 case TK_NOTNULL: { 3757 testcase( op==TK_ISNULL ); 3758 testcase( op==TK_NOTNULL ); 3759 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3760 sqlite3VdbeAddOp2(v, op, r1, dest); 3761 testcase( regFree1==0 ); 3762 break; 3763 } 3764 case TK_BETWEEN: { 3765 testcase( jumpIfNull==0 ); 3766 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3767 break; 3768 } 3769 #ifndef SQLITE_OMIT_SUBQUERY 3770 case TK_IN: { 3771 if( jumpIfNull ){ 3772 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3773 }else{ 3774 int destIfNull = sqlite3VdbeMakeLabel(v); 3775 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3776 sqlite3VdbeResolveLabel(v, destIfNull); 3777 } 3778 break; 3779 } 3780 #endif 3781 default: { 3782 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3783 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3784 testcase( regFree1==0 ); 3785 testcase( jumpIfNull==0 ); 3786 break; 3787 } 3788 } 3789 sqlite3ReleaseTempReg(pParse, regFree1); 3790 sqlite3ReleaseTempReg(pParse, regFree2); 3791 } 3792 3793 /* 3794 ** Do a deep comparison of two expression trees. Return 0 if the two 3795 ** expressions are completely identical. Return 1 if they differ only 3796 ** by a COLLATE operator at the top level. Return 2 if there are differences 3797 ** other than the top-level COLLATE operator. 3798 ** 3799 ** Sometimes this routine will return 2 even if the two expressions 3800 ** really are equivalent. If we cannot prove that the expressions are 3801 ** identical, we return 2 just to be safe. So if this routine 3802 ** returns 2, then you do not really know for certain if the two 3803 ** expressions are the same. But if you get a 0 or 1 return, then you 3804 ** can be sure the expressions are the same. In the places where 3805 ** this routine is used, it does not hurt to get an extra 2 - that 3806 ** just might result in some slightly slower code. But returning 3807 ** an incorrect 0 or 1 could lead to a malfunction. 3808 */ 3809 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3810 if( pA==0||pB==0 ){ 3811 return pB==pA ? 0 : 2; 3812 } 3813 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3814 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3815 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3816 return 2; 3817 } 3818 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3819 if( pA->op!=pB->op ){ 3820 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){ 3821 return 1; 3822 } 3823 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){ 3824 return 1; 3825 } 3826 return 2; 3827 } 3828 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3829 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3830 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3831 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3832 if( ExprHasProperty(pA, EP_IntValue) ){ 3833 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3834 return 2; 3835 } 3836 }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ 3837 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3838 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3839 return pA->op==TK_COLLATE ? 1 : 2; 3840 } 3841 } 3842 return 0; 3843 } 3844 3845 /* 3846 ** Compare two ExprList objects. Return 0 if they are identical and 3847 ** non-zero if they differ in any way. 3848 ** 3849 ** This routine might return non-zero for equivalent ExprLists. The 3850 ** only consequence will be disabled optimizations. But this routine 3851 ** must never return 0 if the two ExprList objects are different, or 3852 ** a malfunction will result. 3853 ** 3854 ** Two NULL pointers are considered to be the same. But a NULL pointer 3855 ** always differs from a non-NULL pointer. 3856 */ 3857 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3858 int i; 3859 if( pA==0 && pB==0 ) return 0; 3860 if( pA==0 || pB==0 ) return 1; 3861 if( pA->nExpr!=pB->nExpr ) return 1; 3862 for(i=0; i<pA->nExpr; i++){ 3863 Expr *pExprA = pA->a[i].pExpr; 3864 Expr *pExprB = pB->a[i].pExpr; 3865 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3866 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3867 } 3868 return 0; 3869 } 3870 3871 /* 3872 ** An instance of the following structure is used by the tree walker 3873 ** to count references to table columns in the arguments of an 3874 ** aggregate function, in order to implement the 3875 ** sqlite3FunctionThisSrc() routine. 3876 */ 3877 struct SrcCount { 3878 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3879 int nThis; /* Number of references to columns in pSrcList */ 3880 int nOther; /* Number of references to columns in other FROM clauses */ 3881 }; 3882 3883 /* 3884 ** Count the number of references to columns. 3885 */ 3886 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3887 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3888 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3889 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3890 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3891 ** NEVER() will need to be removed. */ 3892 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3893 int i; 3894 struct SrcCount *p = pWalker->u.pSrcCount; 3895 SrcList *pSrc = p->pSrc; 3896 for(i=0; i<pSrc->nSrc; i++){ 3897 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3898 } 3899 if( i<pSrc->nSrc ){ 3900 p->nThis++; 3901 }else{ 3902 p->nOther++; 3903 } 3904 } 3905 return WRC_Continue; 3906 } 3907 3908 /* 3909 ** Determine if any of the arguments to the pExpr Function reference 3910 ** pSrcList. Return true if they do. Also return true if the function 3911 ** has no arguments or has only constant arguments. Return false if pExpr 3912 ** references columns but not columns of tables found in pSrcList. 3913 */ 3914 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3915 Walker w; 3916 struct SrcCount cnt; 3917 assert( pExpr->op==TK_AGG_FUNCTION ); 3918 memset(&w, 0, sizeof(w)); 3919 w.xExprCallback = exprSrcCount; 3920 w.u.pSrcCount = &cnt; 3921 cnt.pSrc = pSrcList; 3922 cnt.nThis = 0; 3923 cnt.nOther = 0; 3924 sqlite3WalkExprList(&w, pExpr->x.pList); 3925 return cnt.nThis>0 || cnt.nOther==0; 3926 } 3927 3928 /* 3929 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3930 ** the new element. Return a negative number if malloc fails. 3931 */ 3932 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3933 int i; 3934 pInfo->aCol = sqlite3ArrayAllocate( 3935 db, 3936 pInfo->aCol, 3937 sizeof(pInfo->aCol[0]), 3938 &pInfo->nColumn, 3939 &i 3940 ); 3941 return i; 3942 } 3943 3944 /* 3945 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3946 ** the new element. Return a negative number if malloc fails. 3947 */ 3948 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3949 int i; 3950 pInfo->aFunc = sqlite3ArrayAllocate( 3951 db, 3952 pInfo->aFunc, 3953 sizeof(pInfo->aFunc[0]), 3954 &pInfo->nFunc, 3955 &i 3956 ); 3957 return i; 3958 } 3959 3960 /* 3961 ** This is the xExprCallback for a tree walker. It is used to 3962 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3963 ** for additional information. 3964 */ 3965 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3966 int i; 3967 NameContext *pNC = pWalker->u.pNC; 3968 Parse *pParse = pNC->pParse; 3969 SrcList *pSrcList = pNC->pSrcList; 3970 AggInfo *pAggInfo = pNC->pAggInfo; 3971 3972 switch( pExpr->op ){ 3973 case TK_AGG_COLUMN: 3974 case TK_COLUMN: { 3975 testcase( pExpr->op==TK_AGG_COLUMN ); 3976 testcase( pExpr->op==TK_COLUMN ); 3977 /* Check to see if the column is in one of the tables in the FROM 3978 ** clause of the aggregate query */ 3979 if( ALWAYS(pSrcList!=0) ){ 3980 struct SrcList_item *pItem = pSrcList->a; 3981 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3982 struct AggInfo_col *pCol; 3983 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3984 if( pExpr->iTable==pItem->iCursor ){ 3985 /* If we reach this point, it means that pExpr refers to a table 3986 ** that is in the FROM clause of the aggregate query. 3987 ** 3988 ** Make an entry for the column in pAggInfo->aCol[] if there 3989 ** is not an entry there already. 3990 */ 3991 int k; 3992 pCol = pAggInfo->aCol; 3993 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3994 if( pCol->iTable==pExpr->iTable && 3995 pCol->iColumn==pExpr->iColumn ){ 3996 break; 3997 } 3998 } 3999 if( (k>=pAggInfo->nColumn) 4000 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4001 ){ 4002 pCol = &pAggInfo->aCol[k]; 4003 pCol->pTab = pExpr->pTab; 4004 pCol->iTable = pExpr->iTable; 4005 pCol->iColumn = pExpr->iColumn; 4006 pCol->iMem = ++pParse->nMem; 4007 pCol->iSorterColumn = -1; 4008 pCol->pExpr = pExpr; 4009 if( pAggInfo->pGroupBy ){ 4010 int j, n; 4011 ExprList *pGB = pAggInfo->pGroupBy; 4012 struct ExprList_item *pTerm = pGB->a; 4013 n = pGB->nExpr; 4014 for(j=0; j<n; j++, pTerm++){ 4015 Expr *pE = pTerm->pExpr; 4016 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4017 pE->iColumn==pExpr->iColumn ){ 4018 pCol->iSorterColumn = j; 4019 break; 4020 } 4021 } 4022 } 4023 if( pCol->iSorterColumn<0 ){ 4024 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4025 } 4026 } 4027 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4028 ** because it was there before or because we just created it). 4029 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4030 ** pAggInfo->aCol[] entry. 4031 */ 4032 ExprSetIrreducible(pExpr); 4033 pExpr->pAggInfo = pAggInfo; 4034 pExpr->op = TK_AGG_COLUMN; 4035 pExpr->iAgg = (i16)k; 4036 break; 4037 } /* endif pExpr->iTable==pItem->iCursor */ 4038 } /* end loop over pSrcList */ 4039 } 4040 return WRC_Prune; 4041 } 4042 case TK_AGG_FUNCTION: { 4043 if( (pNC->ncFlags & NC_InAggFunc)==0 4044 && pWalker->walkerDepth==pExpr->op2 4045 ){ 4046 /* Check to see if pExpr is a duplicate of another aggregate 4047 ** function that is already in the pAggInfo structure 4048 */ 4049 struct AggInfo_func *pItem = pAggInfo->aFunc; 4050 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4051 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 4052 break; 4053 } 4054 } 4055 if( i>=pAggInfo->nFunc ){ 4056 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4057 */ 4058 u8 enc = ENC(pParse->db); 4059 i = addAggInfoFunc(pParse->db, pAggInfo); 4060 if( i>=0 ){ 4061 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4062 pItem = &pAggInfo->aFunc[i]; 4063 pItem->pExpr = pExpr; 4064 pItem->iMem = ++pParse->nMem; 4065 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4066 pItem->pFunc = sqlite3FindFunction(pParse->db, 4067 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4068 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4069 if( pExpr->flags & EP_Distinct ){ 4070 pItem->iDistinct = pParse->nTab++; 4071 }else{ 4072 pItem->iDistinct = -1; 4073 } 4074 } 4075 } 4076 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4077 */ 4078 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4079 ExprSetIrreducible(pExpr); 4080 pExpr->iAgg = (i16)i; 4081 pExpr->pAggInfo = pAggInfo; 4082 return WRC_Prune; 4083 }else{ 4084 return WRC_Continue; 4085 } 4086 } 4087 } 4088 return WRC_Continue; 4089 } 4090 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4091 UNUSED_PARAMETER(pWalker); 4092 UNUSED_PARAMETER(pSelect); 4093 return WRC_Continue; 4094 } 4095 4096 /* 4097 ** Analyze the pExpr expression looking for aggregate functions and 4098 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4099 ** points to. Additional entries are made on the AggInfo object as 4100 ** necessary. 4101 ** 4102 ** This routine should only be called after the expression has been 4103 ** analyzed by sqlite3ResolveExprNames(). 4104 */ 4105 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4106 Walker w; 4107 memset(&w, 0, sizeof(w)); 4108 w.xExprCallback = analyzeAggregate; 4109 w.xSelectCallback = analyzeAggregatesInSelect; 4110 w.u.pNC = pNC; 4111 assert( pNC->pSrcList!=0 ); 4112 sqlite3WalkExpr(&w, pExpr); 4113 } 4114 4115 /* 4116 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4117 ** expression list. Return the number of errors. 4118 ** 4119 ** If an error is found, the analysis is cut short. 4120 */ 4121 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4122 struct ExprList_item *pItem; 4123 int i; 4124 if( pList ){ 4125 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4126 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4127 } 4128 } 4129 } 4130 4131 /* 4132 ** Allocate a single new register for use to hold some intermediate result. 4133 */ 4134 int sqlite3GetTempReg(Parse *pParse){ 4135 if( pParse->nTempReg==0 ){ 4136 return ++pParse->nMem; 4137 } 4138 return pParse->aTempReg[--pParse->nTempReg]; 4139 } 4140 4141 /* 4142 ** Deallocate a register, making available for reuse for some other 4143 ** purpose. 4144 ** 4145 ** If a register is currently being used by the column cache, then 4146 ** the dallocation is deferred until the column cache line that uses 4147 ** the register becomes stale. 4148 */ 4149 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4150 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4151 int i; 4152 struct yColCache *p; 4153 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4154 if( p->iReg==iReg ){ 4155 p->tempReg = 1; 4156 return; 4157 } 4158 } 4159 pParse->aTempReg[pParse->nTempReg++] = iReg; 4160 } 4161 } 4162 4163 /* 4164 ** Allocate or deallocate a block of nReg consecutive registers 4165 */ 4166 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4167 int i, n; 4168 i = pParse->iRangeReg; 4169 n = pParse->nRangeReg; 4170 if( nReg<=n ){ 4171 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4172 pParse->iRangeReg += nReg; 4173 pParse->nRangeReg -= nReg; 4174 }else{ 4175 i = pParse->nMem+1; 4176 pParse->nMem += nReg; 4177 } 4178 return i; 4179 } 4180 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4181 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4182 if( nReg>pParse->nRangeReg ){ 4183 pParse->nRangeReg = nReg; 4184 pParse->iRangeReg = iReg; 4185 } 4186 } 4187 4188 /* 4189 ** Mark all temporary registers as being unavailable for reuse. 4190 */ 4191 void sqlite3ClearTempRegCache(Parse *pParse){ 4192 pParse->nTempReg = 0; 4193 pParse->nRangeReg = 0; 4194 } 4195