xref: /sqlite-3.40.0/src/expr.c (revision 44723ce0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   s.z = zC;
89   s.n = sqlite3Strlen30(s.z);
90   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92 
93 /*
94 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99     if( ExprHasProperty(pExpr, EP_Unlikely) ){
100       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101       assert( pExpr->x.pList->nExpr>0 );
102       assert( pExpr->op==TK_FUNCTION );
103       pExpr = pExpr->x.pList->a[0].pExpr;
104     }else{
105       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
106       pExpr = pExpr->pLeft;
107     }
108   }
109   return pExpr;
110 }
111 
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence.  Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122   sqlite3 *db = pParse->db;
123   CollSeq *pColl = 0;
124   Expr *p = pExpr;
125   while( p ){
126     int op = p->op;
127     if( p->flags & EP_Generic ) break;
128     if( op==TK_CAST || op==TK_UPLUS ){
129       p = p->pLeft;
130       continue;
131     }
132     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134       break;
135     }
136     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138      && p->pTab!=0
139     ){
140       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141       ** a TK_COLUMN but was previously evaluated and cached in a register */
142       int j = p->iColumn;
143       if( j>=0 ){
144         const char *zColl = p->pTab->aCol[j].zColl;
145         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146       }
147       break;
148     }
149     if( p->flags & EP_Collate ){
150       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151         p = p->pLeft;
152       }else{
153         Expr *pNext  = p->pRight;
154         /* The Expr.x union is never used at the same time as Expr.pRight */
155         assert( p->x.pList==0 || p->pRight==0 );
156         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
157         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
158         ** least one EP_Collate. Thus the following two ALWAYS. */
159         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160           int i;
161           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163               pNext = p->x.pList->a[i].pExpr;
164               break;
165             }
166           }
167         }
168         p = pNext;
169       }
170     }else{
171       break;
172     }
173   }
174   if( sqlite3CheckCollSeq(pParse, pColl) ){
175     pColl = 0;
176   }
177   return pColl;
178 }
179 
180 /*
181 ** pExpr is an operand of a comparison operator.  aff2 is the
182 ** type affinity of the other operand.  This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186   char aff1 = sqlite3ExprAffinity(pExpr);
187   if( aff1 && aff2 ){
188     /* Both sides of the comparison are columns. If one has numeric
189     ** affinity, use that. Otherwise use no affinity.
190     */
191     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192       return SQLITE_AFF_NUMERIC;
193     }else{
194       return SQLITE_AFF_NONE;
195     }
196   }else if( !aff1 && !aff2 ){
197     /* Neither side of the comparison is a column.  Compare the
198     ** results directly.
199     */
200     return SQLITE_AFF_NONE;
201   }else{
202     /* One side is a column, the other is not. Use the columns affinity. */
203     assert( aff1==0 || aff2==0 );
204     return (aff1 + aff2);
205   }
206 }
207 
208 /*
209 ** pExpr is a comparison operator.  Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213   char aff;
214   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217   assert( pExpr->pLeft );
218   aff = sqlite3ExprAffinity(pExpr->pLeft);
219   if( pExpr->pRight ){
220     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223   }else if( !aff ){
224     aff = SQLITE_AFF_NONE;
225   }
226   return aff;
227 }
228 
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236   char aff = comparisonAffinity(pExpr);
237   switch( aff ){
238     case SQLITE_AFF_NONE:
239       return 1;
240     case SQLITE_AFF_TEXT:
241       return idx_affinity==SQLITE_AFF_TEXT;
242     default:
243       return sqlite3IsNumericAffinity(idx_affinity);
244   }
245 }
246 
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254   return aff;
255 }
256 
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270   Parse *pParse,
271   Expr *pLeft,
272   Expr *pRight
273 ){
274   CollSeq *pColl;
275   assert( pLeft );
276   if( pLeft->flags & EP_Collate ){
277     pColl = sqlite3ExprCollSeq(pParse, pLeft);
278   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279     pColl = sqlite3ExprCollSeq(pParse, pRight);
280   }else{
281     pColl = sqlite3ExprCollSeq(pParse, pLeft);
282     if( !pColl ){
283       pColl = sqlite3ExprCollSeq(pParse, pRight);
284     }
285   }
286   return pColl;
287 }
288 
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293   Parse *pParse,    /* The parsing (and code generating) context */
294   Expr *pLeft,      /* The left operand */
295   Expr *pRight,     /* The right operand */
296   int opcode,       /* The comparison opcode */
297   int in1, int in2, /* Register holding operands */
298   int dest,         /* Jump here if true.  */
299   int jumpIfNull    /* If true, jump if either operand is NULL */
300 ){
301   int p5;
302   int addr;
303   CollSeq *p4;
304 
305   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308                            (void*)p4, P4_COLLSEQ);
309   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310   return addr;
311 }
312 
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320   int rc = SQLITE_OK;
321   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322   if( nHeight>mxHeight ){
323     sqlite3ErrorMsg(pParse,
324        "Expression tree is too large (maximum depth %d)", mxHeight
325     );
326     rc = SQLITE_ERROR;
327   }
328   return rc;
329 }
330 
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341   if( p ){
342     if( p->nHeight>*pnHeight ){
343       *pnHeight = p->nHeight;
344     }
345   }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348   if( p ){
349     int i;
350     for(i=0; i<p->nExpr; i++){
351       heightOfExpr(p->a[i].pExpr, pnHeight);
352     }
353   }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356   if( p ){
357     heightOfExpr(p->pWhere, pnHeight);
358     heightOfExpr(p->pHaving, pnHeight);
359     heightOfExpr(p->pLimit, pnHeight);
360     heightOfExpr(p->pOffset, pnHeight);
361     heightOfExprList(p->pEList, pnHeight);
362     heightOfExprList(p->pGroupBy, pnHeight);
363     heightOfExprList(p->pOrderBy, pnHeight);
364     heightOfSelect(p->pPrior, pnHeight);
365   }
366 }
367 
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379   int nHeight = 0;
380   heightOfExpr(p->pLeft, &nHeight);
381   heightOfExpr(p->pRight, &nHeight);
382   if( ExprHasProperty(p, EP_xIsSelect) ){
383     heightOfSelect(p->x.pSelect, &nHeight);
384   }else if( p->x.pList ){
385     heightOfExprList(p->x.pList, &nHeight);
386     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387   }
388   p->nHeight = nHeight + 1;
389 }
390 
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400   exprSetHeight(p);
401   sqlite3ExprCheckHeight(pParse, p->nHeight);
402 }
403 
404 /*
405 ** Return the maximum height of any expression tree referenced
406 ** by the select statement passed as an argument.
407 */
408 int sqlite3SelectExprHeight(Select *p){
409   int nHeight = 0;
410   heightOfSelect(p, &nHeight);
411   return nHeight;
412 }
413 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
414 /*
415 ** Propagate all EP_Propagate flags from the Expr.x.pList into
416 ** Expr.flags.
417 */
418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
419   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
420     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
421   }
422 }
423 #define exprSetHeight(y)
424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
425 
426 /*
427 ** This routine is the core allocator for Expr nodes.
428 **
429 ** Construct a new expression node and return a pointer to it.  Memory
430 ** for this node and for the pToken argument is a single allocation
431 ** obtained from sqlite3DbMalloc().  The calling function
432 ** is responsible for making sure the node eventually gets freed.
433 **
434 ** If dequote is true, then the token (if it exists) is dequoted.
435 ** If dequote is false, no dequoting is performance.  The deQuote
436 ** parameter is ignored if pToken is NULL or if the token does not
437 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
438 ** then the EP_DblQuoted flag is set on the expression node.
439 **
440 ** Special case:  If op==TK_INTEGER and pToken points to a string that
441 ** can be translated into a 32-bit integer, then the token is not
442 ** stored in u.zToken.  Instead, the integer values is written
443 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
444 ** is allocated to hold the integer text and the dequote flag is ignored.
445 */
446 Expr *sqlite3ExprAlloc(
447   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
448   int op,                 /* Expression opcode */
449   const Token *pToken,    /* Token argument.  Might be NULL */
450   int dequote             /* True to dequote */
451 ){
452   Expr *pNew;
453   int nExtra = 0;
454   int iValue = 0;
455 
456   if( pToken ){
457     if( op!=TK_INTEGER || pToken->z==0
458           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
459       nExtra = pToken->n+1;
460       assert( iValue>=0 );
461     }
462   }
463   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
464   if( pNew ){
465     pNew->op = (u8)op;
466     pNew->iAgg = -1;
467     if( pToken ){
468       if( nExtra==0 ){
469         pNew->flags |= EP_IntValue;
470         pNew->u.iValue = iValue;
471       }else{
472         int c;
473         pNew->u.zToken = (char*)&pNew[1];
474         assert( pToken->z!=0 || pToken->n==0 );
475         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
476         pNew->u.zToken[pToken->n] = 0;
477         if( dequote && nExtra>=3
478              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
479           sqlite3Dequote(pNew->u.zToken);
480           if( c=='"' ) pNew->flags |= EP_DblQuoted;
481         }
482       }
483     }
484 #if SQLITE_MAX_EXPR_DEPTH>0
485     pNew->nHeight = 1;
486 #endif
487   }
488   return pNew;
489 }
490 
491 /*
492 ** Allocate a new expression node from a zero-terminated token that has
493 ** already been dequoted.
494 */
495 Expr *sqlite3Expr(
496   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
497   int op,                 /* Expression opcode */
498   const char *zToken      /* Token argument.  Might be NULL */
499 ){
500   Token x;
501   x.z = zToken;
502   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
503   return sqlite3ExprAlloc(db, op, &x, 0);
504 }
505 
506 /*
507 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
508 **
509 ** If pRoot==NULL that means that a memory allocation error has occurred.
510 ** In that case, delete the subtrees pLeft and pRight.
511 */
512 void sqlite3ExprAttachSubtrees(
513   sqlite3 *db,
514   Expr *pRoot,
515   Expr *pLeft,
516   Expr *pRight
517 ){
518   if( pRoot==0 ){
519     assert( db->mallocFailed );
520     sqlite3ExprDelete(db, pLeft);
521     sqlite3ExprDelete(db, pRight);
522   }else{
523     if( pRight ){
524       pRoot->pRight = pRight;
525       pRoot->flags |= EP_Propagate & pRight->flags;
526     }
527     if( pLeft ){
528       pRoot->pLeft = pLeft;
529       pRoot->flags |= EP_Propagate & pLeft->flags;
530     }
531     exprSetHeight(pRoot);
532   }
533 }
534 
535 /*
536 ** Allocate an Expr node which joins as many as two subtrees.
537 **
538 ** One or both of the subtrees can be NULL.  Return a pointer to the new
539 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
540 ** free the subtrees and return NULL.
541 */
542 Expr *sqlite3PExpr(
543   Parse *pParse,          /* Parsing context */
544   int op,                 /* Expression opcode */
545   Expr *pLeft,            /* Left operand */
546   Expr *pRight,           /* Right operand */
547   const Token *pToken     /* Argument token */
548 ){
549   Expr *p;
550   if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){
551     /* Take advantage of short-circuit false optimization for AND */
552     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
553   }else{
554     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
555     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
556   }
557   if( p ) {
558     sqlite3ExprCheckHeight(pParse, p->nHeight);
559   }
560   return p;
561 }
562 
563 /*
564 ** If the expression is always either TRUE or FALSE (respectively),
565 ** then return 1.  If one cannot determine the truth value of the
566 ** expression at compile-time return 0.
567 **
568 ** This is an optimization.  If is OK to return 0 here even if
569 ** the expression really is always false or false (a false negative).
570 ** But it is a bug to return 1 if the expression might have different
571 ** boolean values in different circumstances (a false positive.)
572 **
573 ** Note that if the expression is part of conditional for a
574 ** LEFT JOIN, then we cannot determine at compile-time whether or not
575 ** is it true or false, so always return 0.
576 */
577 static int exprAlwaysTrue(Expr *p){
578   int v = 0;
579   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
580   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
581   return v!=0;
582 }
583 static int exprAlwaysFalse(Expr *p){
584   int v = 0;
585   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
586   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
587   return v==0;
588 }
589 
590 /*
591 ** Join two expressions using an AND operator.  If either expression is
592 ** NULL, then just return the other expression.
593 **
594 ** If one side or the other of the AND is known to be false, then instead
595 ** of returning an AND expression, just return a constant expression with
596 ** a value of false.
597 */
598 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
599   if( pLeft==0 ){
600     return pRight;
601   }else if( pRight==0 ){
602     return pLeft;
603   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
604     sqlite3ExprDelete(db, pLeft);
605     sqlite3ExprDelete(db, pRight);
606     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
607   }else{
608     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
609     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
610     return pNew;
611   }
612 }
613 
614 /*
615 ** Construct a new expression node for a function with multiple
616 ** arguments.
617 */
618 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
619   Expr *pNew;
620   sqlite3 *db = pParse->db;
621   assert( pToken );
622   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
623   if( pNew==0 ){
624     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
625     return 0;
626   }
627   pNew->x.pList = pList;
628   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
629   sqlite3ExprSetHeightAndFlags(pParse, pNew);
630   return pNew;
631 }
632 
633 /*
634 ** Assign a variable number to an expression that encodes a wildcard
635 ** in the original SQL statement.
636 **
637 ** Wildcards consisting of a single "?" are assigned the next sequential
638 ** variable number.
639 **
640 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
641 ** sure "nnn" is not too be to avoid a denial of service attack when
642 ** the SQL statement comes from an external source.
643 **
644 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
645 ** as the previous instance of the same wildcard.  Or if this is the first
646 ** instance of the wildcard, the next sequential variable number is
647 ** assigned.
648 */
649 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
650   sqlite3 *db = pParse->db;
651   const char *z;
652 
653   if( pExpr==0 ) return;
654   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
655   z = pExpr->u.zToken;
656   assert( z!=0 );
657   assert( z[0]!=0 );
658   if( z[1]==0 ){
659     /* Wildcard of the form "?".  Assign the next variable number */
660     assert( z[0]=='?' );
661     pExpr->iColumn = (ynVar)(++pParse->nVar);
662   }else{
663     ynVar x = 0;
664     u32 n = sqlite3Strlen30(z);
665     if( z[0]=='?' ){
666       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
667       ** use it as the variable number */
668       i64 i;
669       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
670       pExpr->iColumn = x = (ynVar)i;
671       testcase( i==0 );
672       testcase( i==1 );
673       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
674       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
675       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
676         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
677             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
678         x = 0;
679       }
680       if( i>pParse->nVar ){
681         pParse->nVar = (int)i;
682       }
683     }else{
684       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
685       ** number as the prior appearance of the same name, or if the name
686       ** has never appeared before, reuse the same variable number
687       */
688       ynVar i;
689       for(i=0; i<pParse->nzVar; i++){
690         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
691           pExpr->iColumn = x = (ynVar)i+1;
692           break;
693         }
694       }
695       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
696     }
697     if( x>0 ){
698       if( x>pParse->nzVar ){
699         char **a;
700         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
701         if( a==0 ) return;  /* Error reported through db->mallocFailed */
702         pParse->azVar = a;
703         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
704         pParse->nzVar = x;
705       }
706       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
707         sqlite3DbFree(db, pParse->azVar[x-1]);
708         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
709       }
710     }
711   }
712   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
713     sqlite3ErrorMsg(pParse, "too many SQL variables");
714   }
715 }
716 
717 /*
718 ** Recursively delete an expression tree.
719 */
720 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
721   if( p==0 ) return;
722   /* Sanity check: Assert that the IntValue is non-negative if it exists */
723   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
724   if( !ExprHasProperty(p, EP_TokenOnly) ){
725     /* The Expr.x union is never used at the same time as Expr.pRight */
726     assert( p->x.pList==0 || p->pRight==0 );
727     sqlite3ExprDelete(db, p->pLeft);
728     sqlite3ExprDelete(db, p->pRight);
729     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
730     if( ExprHasProperty(p, EP_xIsSelect) ){
731       sqlite3SelectDelete(db, p->x.pSelect);
732     }else{
733       sqlite3ExprListDelete(db, p->x.pList);
734     }
735   }
736   if( !ExprHasProperty(p, EP_Static) ){
737     sqlite3DbFree(db, p);
738   }
739 }
740 
741 /*
742 ** Return the number of bytes allocated for the expression structure
743 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
744 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
745 */
746 static int exprStructSize(Expr *p){
747   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
748   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
749   return EXPR_FULLSIZE;
750 }
751 
752 /*
753 ** The dupedExpr*Size() routines each return the number of bytes required
754 ** to store a copy of an expression or expression tree.  They differ in
755 ** how much of the tree is measured.
756 **
757 **     dupedExprStructSize()     Size of only the Expr structure
758 **     dupedExprNodeSize()       Size of Expr + space for token
759 **     dupedExprSize()           Expr + token + subtree components
760 **
761 ***************************************************************************
762 **
763 ** The dupedExprStructSize() function returns two values OR-ed together:
764 ** (1) the space required for a copy of the Expr structure only and
765 ** (2) the EP_xxx flags that indicate what the structure size should be.
766 ** The return values is always one of:
767 **
768 **      EXPR_FULLSIZE
769 **      EXPR_REDUCEDSIZE   | EP_Reduced
770 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
771 **
772 ** The size of the structure can be found by masking the return value
773 ** of this routine with 0xfff.  The flags can be found by masking the
774 ** return value with EP_Reduced|EP_TokenOnly.
775 **
776 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
777 ** (unreduced) Expr objects as they or originally constructed by the parser.
778 ** During expression analysis, extra information is computed and moved into
779 ** later parts of teh Expr object and that extra information might get chopped
780 ** off if the expression is reduced.  Note also that it does not work to
781 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
782 ** to reduce a pristine expression tree from the parser.  The implementation
783 ** of dupedExprStructSize() contain multiple assert() statements that attempt
784 ** to enforce this constraint.
785 */
786 static int dupedExprStructSize(Expr *p, int flags){
787   int nSize;
788   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
789   assert( EXPR_FULLSIZE<=0xfff );
790   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
791   if( 0==(flags&EXPRDUP_REDUCE) ){
792     nSize = EXPR_FULLSIZE;
793   }else{
794     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
795     assert( !ExprHasProperty(p, EP_FromJoin) );
796     assert( !ExprHasProperty(p, EP_MemToken) );
797     assert( !ExprHasProperty(p, EP_NoReduce) );
798     if( p->pLeft || p->x.pList ){
799       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
800     }else{
801       assert( p->pRight==0 );
802       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
803     }
804   }
805   return nSize;
806 }
807 
808 /*
809 ** This function returns the space in bytes required to store the copy
810 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
811 ** string is defined.)
812 */
813 static int dupedExprNodeSize(Expr *p, int flags){
814   int nByte = dupedExprStructSize(p, flags) & 0xfff;
815   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
816     nByte += sqlite3Strlen30(p->u.zToken)+1;
817   }
818   return ROUND8(nByte);
819 }
820 
821 /*
822 ** Return the number of bytes required to create a duplicate of the
823 ** expression passed as the first argument. The second argument is a
824 ** mask containing EXPRDUP_XXX flags.
825 **
826 ** The value returned includes space to create a copy of the Expr struct
827 ** itself and the buffer referred to by Expr.u.zToken, if any.
828 **
829 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
830 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
831 ** and Expr.pRight variables (but not for any structures pointed to or
832 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
833 */
834 static int dupedExprSize(Expr *p, int flags){
835   int nByte = 0;
836   if( p ){
837     nByte = dupedExprNodeSize(p, flags);
838     if( flags&EXPRDUP_REDUCE ){
839       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
840     }
841   }
842   return nByte;
843 }
844 
845 /*
846 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
847 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
848 ** to store the copy of expression p, the copies of p->u.zToken
849 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
850 ** if any. Before returning, *pzBuffer is set to the first byte past the
851 ** portion of the buffer copied into by this function.
852 */
853 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
854   Expr *pNew = 0;                      /* Value to return */
855   if( p ){
856     const int isReduced = (flags&EXPRDUP_REDUCE);
857     u8 *zAlloc;
858     u32 staticFlag = 0;
859 
860     assert( pzBuffer==0 || isReduced );
861 
862     /* Figure out where to write the new Expr structure. */
863     if( pzBuffer ){
864       zAlloc = *pzBuffer;
865       staticFlag = EP_Static;
866     }else{
867       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
868     }
869     pNew = (Expr *)zAlloc;
870 
871     if( pNew ){
872       /* Set nNewSize to the size allocated for the structure pointed to
873       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
874       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
875       ** by the copy of the p->u.zToken string (if any).
876       */
877       const unsigned nStructSize = dupedExprStructSize(p, flags);
878       const int nNewSize = nStructSize & 0xfff;
879       int nToken;
880       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
881         nToken = sqlite3Strlen30(p->u.zToken) + 1;
882       }else{
883         nToken = 0;
884       }
885       if( isReduced ){
886         assert( ExprHasProperty(p, EP_Reduced)==0 );
887         memcpy(zAlloc, p, nNewSize);
888       }else{
889         int nSize = exprStructSize(p);
890         memcpy(zAlloc, p, nSize);
891         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
892       }
893 
894       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
895       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
896       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
897       pNew->flags |= staticFlag;
898 
899       /* Copy the p->u.zToken string, if any. */
900       if( nToken ){
901         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
902         memcpy(zToken, p->u.zToken, nToken);
903       }
904 
905       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
906         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
907         if( ExprHasProperty(p, EP_xIsSelect) ){
908           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
909         }else{
910           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
911         }
912       }
913 
914       /* Fill in pNew->pLeft and pNew->pRight. */
915       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
916         zAlloc += dupedExprNodeSize(p, flags);
917         if( ExprHasProperty(pNew, EP_Reduced) ){
918           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
919           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
920         }
921         if( pzBuffer ){
922           *pzBuffer = zAlloc;
923         }
924       }else{
925         if( !ExprHasProperty(p, EP_TokenOnly) ){
926           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
927           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
928         }
929       }
930 
931     }
932   }
933   return pNew;
934 }
935 
936 /*
937 ** Create and return a deep copy of the object passed as the second
938 ** argument. If an OOM condition is encountered, NULL is returned
939 ** and the db->mallocFailed flag set.
940 */
941 #ifndef SQLITE_OMIT_CTE
942 static With *withDup(sqlite3 *db, With *p){
943   With *pRet = 0;
944   if( p ){
945     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
946     pRet = sqlite3DbMallocZero(db, nByte);
947     if( pRet ){
948       int i;
949       pRet->nCte = p->nCte;
950       for(i=0; i<p->nCte; i++){
951         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
952         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
953         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
954       }
955     }
956   }
957   return pRet;
958 }
959 #else
960 # define withDup(x,y) 0
961 #endif
962 
963 /*
964 ** The following group of routines make deep copies of expressions,
965 ** expression lists, ID lists, and select statements.  The copies can
966 ** be deleted (by being passed to their respective ...Delete() routines)
967 ** without effecting the originals.
968 **
969 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
970 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
971 ** by subsequent calls to sqlite*ListAppend() routines.
972 **
973 ** Any tables that the SrcList might point to are not duplicated.
974 **
975 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
976 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
977 ** truncated version of the usual Expr structure that will be stored as
978 ** part of the in-memory representation of the database schema.
979 */
980 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
981   return exprDup(db, p, flags, 0);
982 }
983 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
984   ExprList *pNew;
985   struct ExprList_item *pItem, *pOldItem;
986   int i;
987   if( p==0 ) return 0;
988   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
989   if( pNew==0 ) return 0;
990   pNew->nExpr = i = p->nExpr;
991   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
992   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
993   if( pItem==0 ){
994     sqlite3DbFree(db, pNew);
995     return 0;
996   }
997   pOldItem = p->a;
998   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
999     Expr *pOldExpr = pOldItem->pExpr;
1000     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1001     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1002     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1003     pItem->sortOrder = pOldItem->sortOrder;
1004     pItem->done = 0;
1005     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1006     pItem->u = pOldItem->u;
1007   }
1008   return pNew;
1009 }
1010 
1011 /*
1012 ** If cursors, triggers, views and subqueries are all omitted from
1013 ** the build, then none of the following routines, except for
1014 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1015 ** called with a NULL argument.
1016 */
1017 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1018  || !defined(SQLITE_OMIT_SUBQUERY)
1019 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1020   SrcList *pNew;
1021   int i;
1022   int nByte;
1023   if( p==0 ) return 0;
1024   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1025   pNew = sqlite3DbMallocRaw(db, nByte );
1026   if( pNew==0 ) return 0;
1027   pNew->nSrc = pNew->nAlloc = p->nSrc;
1028   for(i=0; i<p->nSrc; i++){
1029     struct SrcList_item *pNewItem = &pNew->a[i];
1030     struct SrcList_item *pOldItem = &p->a[i];
1031     Table *pTab;
1032     pNewItem->pSchema = pOldItem->pSchema;
1033     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1034     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1035     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1036     pNewItem->jointype = pOldItem->jointype;
1037     pNewItem->iCursor = pOldItem->iCursor;
1038     pNewItem->addrFillSub = pOldItem->addrFillSub;
1039     pNewItem->regReturn = pOldItem->regReturn;
1040     pNewItem->isCorrelated = pOldItem->isCorrelated;
1041     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1042     pNewItem->isRecursive = pOldItem->isRecursive;
1043     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1044     pNewItem->notIndexed = pOldItem->notIndexed;
1045     pNewItem->pIndex = pOldItem->pIndex;
1046     pTab = pNewItem->pTab = pOldItem->pTab;
1047     if( pTab ){
1048       pTab->nRef++;
1049     }
1050     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1051     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1052     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1053     pNewItem->colUsed = pOldItem->colUsed;
1054   }
1055   return pNew;
1056 }
1057 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1058   IdList *pNew;
1059   int i;
1060   if( p==0 ) return 0;
1061   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1062   if( pNew==0 ) return 0;
1063   pNew->nId = p->nId;
1064   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1065   if( pNew->a==0 ){
1066     sqlite3DbFree(db, pNew);
1067     return 0;
1068   }
1069   /* Note that because the size of the allocation for p->a[] is not
1070   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1071   ** on the duplicate created by this function. */
1072   for(i=0; i<p->nId; i++){
1073     struct IdList_item *pNewItem = &pNew->a[i];
1074     struct IdList_item *pOldItem = &p->a[i];
1075     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1076     pNewItem->idx = pOldItem->idx;
1077   }
1078   return pNew;
1079 }
1080 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1081   Select *pNew, *pPrior;
1082   if( p==0 ) return 0;
1083   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1084   if( pNew==0 ) return 0;
1085   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1086   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1087   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1088   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1089   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1090   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1091   pNew->op = p->op;
1092   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1093   if( pPrior ) pPrior->pNext = pNew;
1094   pNew->pNext = 0;
1095   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1096   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1097   pNew->iLimit = 0;
1098   pNew->iOffset = 0;
1099   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1100   pNew->addrOpenEphm[0] = -1;
1101   pNew->addrOpenEphm[1] = -1;
1102   pNew->nSelectRow = p->nSelectRow;
1103   pNew->pWith = withDup(db, p->pWith);
1104   sqlite3SelectSetName(pNew, p->zSelName);
1105   return pNew;
1106 }
1107 #else
1108 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1109   assert( p==0 );
1110   return 0;
1111 }
1112 #endif
1113 
1114 
1115 /*
1116 ** Add a new element to the end of an expression list.  If pList is
1117 ** initially NULL, then create a new expression list.
1118 **
1119 ** If a memory allocation error occurs, the entire list is freed and
1120 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1121 ** that the new entry was successfully appended.
1122 */
1123 ExprList *sqlite3ExprListAppend(
1124   Parse *pParse,          /* Parsing context */
1125   ExprList *pList,        /* List to which to append. Might be NULL */
1126   Expr *pExpr             /* Expression to be appended. Might be NULL */
1127 ){
1128   sqlite3 *db = pParse->db;
1129   if( pList==0 ){
1130     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1131     if( pList==0 ){
1132       goto no_mem;
1133     }
1134     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1135     if( pList->a==0 ) goto no_mem;
1136   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1137     struct ExprList_item *a;
1138     assert( pList->nExpr>0 );
1139     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1140     if( a==0 ){
1141       goto no_mem;
1142     }
1143     pList->a = a;
1144   }
1145   assert( pList->a!=0 );
1146   if( 1 ){
1147     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1148     memset(pItem, 0, sizeof(*pItem));
1149     pItem->pExpr = pExpr;
1150   }
1151   return pList;
1152 
1153 no_mem:
1154   /* Avoid leaking memory if malloc has failed. */
1155   sqlite3ExprDelete(db, pExpr);
1156   sqlite3ExprListDelete(db, pList);
1157   return 0;
1158 }
1159 
1160 /*
1161 ** Set the ExprList.a[].zName element of the most recently added item
1162 ** on the expression list.
1163 **
1164 ** pList might be NULL following an OOM error.  But pName should never be
1165 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1166 ** is set.
1167 */
1168 void sqlite3ExprListSetName(
1169   Parse *pParse,          /* Parsing context */
1170   ExprList *pList,        /* List to which to add the span. */
1171   Token *pName,           /* Name to be added */
1172   int dequote             /* True to cause the name to be dequoted */
1173 ){
1174   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1175   if( pList ){
1176     struct ExprList_item *pItem;
1177     assert( pList->nExpr>0 );
1178     pItem = &pList->a[pList->nExpr-1];
1179     assert( pItem->zName==0 );
1180     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1181     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1182   }
1183 }
1184 
1185 /*
1186 ** Set the ExprList.a[].zSpan element of the most recently added item
1187 ** on the expression list.
1188 **
1189 ** pList might be NULL following an OOM error.  But pSpan should never be
1190 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1191 ** is set.
1192 */
1193 void sqlite3ExprListSetSpan(
1194   Parse *pParse,          /* Parsing context */
1195   ExprList *pList,        /* List to which to add the span. */
1196   ExprSpan *pSpan         /* The span to be added */
1197 ){
1198   sqlite3 *db = pParse->db;
1199   assert( pList!=0 || db->mallocFailed!=0 );
1200   if( pList ){
1201     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1202     assert( pList->nExpr>0 );
1203     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1204     sqlite3DbFree(db, pItem->zSpan);
1205     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1206                                     (int)(pSpan->zEnd - pSpan->zStart));
1207   }
1208 }
1209 
1210 /*
1211 ** If the expression list pEList contains more than iLimit elements,
1212 ** leave an error message in pParse.
1213 */
1214 void sqlite3ExprListCheckLength(
1215   Parse *pParse,
1216   ExprList *pEList,
1217   const char *zObject
1218 ){
1219   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1220   testcase( pEList && pEList->nExpr==mx );
1221   testcase( pEList && pEList->nExpr==mx+1 );
1222   if( pEList && pEList->nExpr>mx ){
1223     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1224   }
1225 }
1226 
1227 /*
1228 ** Delete an entire expression list.
1229 */
1230 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1231   int i;
1232   struct ExprList_item *pItem;
1233   if( pList==0 ) return;
1234   assert( pList->a!=0 || pList->nExpr==0 );
1235   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1236     sqlite3ExprDelete(db, pItem->pExpr);
1237     sqlite3DbFree(db, pItem->zName);
1238     sqlite3DbFree(db, pItem->zSpan);
1239   }
1240   sqlite3DbFree(db, pList->a);
1241   sqlite3DbFree(db, pList);
1242 }
1243 
1244 /*
1245 ** Return the bitwise-OR of all Expr.flags fields in the given
1246 ** ExprList.
1247 */
1248 u32 sqlite3ExprListFlags(const ExprList *pList){
1249   int i;
1250   u32 m = 0;
1251   if( pList ){
1252     for(i=0; i<pList->nExpr; i++){
1253        m |= pList->a[i].pExpr->flags;
1254     }
1255   }
1256   return m;
1257 }
1258 
1259 /*
1260 ** These routines are Walker callbacks used to check expressions to
1261 ** see if they are "constant" for some definition of constant.  The
1262 ** Walker.eCode value determines the type of "constant" we are looking
1263 ** for.
1264 **
1265 ** These callback routines are used to implement the following:
1266 **
1267 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1268 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1269 **     sqlite3ExprRefOneTableOnly()             pWalker->eCode==3
1270 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1271 **
1272 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1273 ** is found to not be a constant.
1274 **
1275 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1276 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1277 ** an existing schema and 4 when processing a new statement.  A bound
1278 ** parameter raises an error for new statements, but is silently converted
1279 ** to NULL for existing schemas.  This allows sqlite_master tables that
1280 ** contain a bound parameter because they were generated by older versions
1281 ** of SQLite to be parsed by newer versions of SQLite without raising a
1282 ** malformed schema error.
1283 */
1284 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1285 
1286   /* If pWalker->eCode is 2 then any term of the expression that comes from
1287   ** the ON or USING clauses of a left join disqualifies the expression
1288   ** from being considered constant. */
1289   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1290     pWalker->eCode = 0;
1291     return WRC_Abort;
1292   }
1293 
1294   switch( pExpr->op ){
1295     /* Consider functions to be constant if all their arguments are constant
1296     ** and either pWalker->eCode==4 or 5 or the function has the
1297     ** SQLITE_FUNC_CONST flag. */
1298     case TK_FUNCTION:
1299       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1300         return WRC_Continue;
1301       }else{
1302         pWalker->eCode = 0;
1303         return WRC_Abort;
1304       }
1305     case TK_ID:
1306     case TK_COLUMN:
1307     case TK_AGG_FUNCTION:
1308     case TK_AGG_COLUMN:
1309       testcase( pExpr->op==TK_ID );
1310       testcase( pExpr->op==TK_COLUMN );
1311       testcase( pExpr->op==TK_AGG_FUNCTION );
1312       testcase( pExpr->op==TK_AGG_COLUMN );
1313       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1314         return WRC_Continue;
1315       }else{
1316         pWalker->eCode = 0;
1317         return WRC_Abort;
1318       }
1319     case TK_VARIABLE:
1320       if( pWalker->eCode==5 ){
1321         /* Silently convert bound parameters that appear inside of CREATE
1322         ** statements into a NULL when parsing the CREATE statement text out
1323         ** of the sqlite_master table */
1324         pExpr->op = TK_NULL;
1325       }else if( pWalker->eCode==4 ){
1326         /* A bound parameter in a CREATE statement that originates from
1327         ** sqlite3_prepare() causes an error */
1328         pWalker->eCode = 0;
1329         return WRC_Abort;
1330       }
1331       /* Fall through */
1332     default:
1333       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1334       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1335       return WRC_Continue;
1336   }
1337 }
1338 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1339   UNUSED_PARAMETER(NotUsed);
1340   pWalker->eCode = 0;
1341   return WRC_Abort;
1342 }
1343 static int exprIsConst(Expr *p, int initFlag, int iCur){
1344   Walker w;
1345   memset(&w, 0, sizeof(w));
1346   w.eCode = initFlag;
1347   w.xExprCallback = exprNodeIsConstant;
1348   w.xSelectCallback = selectNodeIsConstant;
1349   w.u.iCur = iCur;
1350   sqlite3WalkExpr(&w, p);
1351   return w.eCode;
1352 }
1353 
1354 /*
1355 ** Walk an expression tree.  Return non-zero if the expression is constant
1356 ** and 0 if it involves variables or function calls.
1357 **
1358 ** For the purposes of this function, a double-quoted string (ex: "abc")
1359 ** is considered a variable but a single-quoted string (ex: 'abc') is
1360 ** a constant.
1361 */
1362 int sqlite3ExprIsConstant(Expr *p){
1363   return exprIsConst(p, 1, 0);
1364 }
1365 
1366 /*
1367 ** Walk an expression tree.  Return non-zero if the expression is constant
1368 ** that does no originate from the ON or USING clauses of a join.
1369 ** Return 0 if it involves variables or function calls or terms from
1370 ** an ON or USING clause.
1371 */
1372 int sqlite3ExprIsConstantNotJoin(Expr *p){
1373   return exprIsConst(p, 2, 0);
1374 }
1375 
1376 /*
1377 ** Walk an expression tree.  Return non-zero if the expression constant
1378 ** for any single row of the table with cursor iCur.  In other words, the
1379 ** expression must not refer to any non-deterministic function nor any
1380 ** table other than iCur.
1381 */
1382 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1383   return exprIsConst(p, 3, iCur);
1384 }
1385 
1386 /*
1387 ** Walk an expression tree.  Return non-zero if the expression is constant
1388 ** or a function call with constant arguments.  Return and 0 if there
1389 ** are any variables.
1390 **
1391 ** For the purposes of this function, a double-quoted string (ex: "abc")
1392 ** is considered a variable but a single-quoted string (ex: 'abc') is
1393 ** a constant.
1394 */
1395 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1396   assert( isInit==0 || isInit==1 );
1397   return exprIsConst(p, 4+isInit, 0);
1398 }
1399 
1400 /*
1401 ** If the expression p codes a constant integer that is small enough
1402 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1403 ** in *pValue.  If the expression is not an integer or if it is too big
1404 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1405 */
1406 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1407   int rc = 0;
1408 
1409   /* If an expression is an integer literal that fits in a signed 32-bit
1410   ** integer, then the EP_IntValue flag will have already been set */
1411   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1412            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1413 
1414   if( p->flags & EP_IntValue ){
1415     *pValue = p->u.iValue;
1416     return 1;
1417   }
1418   switch( p->op ){
1419     case TK_UPLUS: {
1420       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1421       break;
1422     }
1423     case TK_UMINUS: {
1424       int v;
1425       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1426         assert( v!=(-2147483647-1) );
1427         *pValue = -v;
1428         rc = 1;
1429       }
1430       break;
1431     }
1432     default: break;
1433   }
1434   return rc;
1435 }
1436 
1437 /*
1438 ** Return FALSE if there is no chance that the expression can be NULL.
1439 **
1440 ** If the expression might be NULL or if the expression is too complex
1441 ** to tell return TRUE.
1442 **
1443 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1444 ** when we know that a value cannot be NULL.  Hence, a false positive
1445 ** (returning TRUE when in fact the expression can never be NULL) might
1446 ** be a small performance hit but is otherwise harmless.  On the other
1447 ** hand, a false negative (returning FALSE when the result could be NULL)
1448 ** will likely result in an incorrect answer.  So when in doubt, return
1449 ** TRUE.
1450 */
1451 int sqlite3ExprCanBeNull(const Expr *p){
1452   u8 op;
1453   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1454   op = p->op;
1455   if( op==TK_REGISTER ) op = p->op2;
1456   switch( op ){
1457     case TK_INTEGER:
1458     case TK_STRING:
1459     case TK_FLOAT:
1460     case TK_BLOB:
1461       return 0;
1462     case TK_COLUMN:
1463       assert( p->pTab!=0 );
1464       return ExprHasProperty(p, EP_CanBeNull) ||
1465              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1466     default:
1467       return 1;
1468   }
1469 }
1470 
1471 /*
1472 ** Return TRUE if the given expression is a constant which would be
1473 ** unchanged by OP_Affinity with the affinity given in the second
1474 ** argument.
1475 **
1476 ** This routine is used to determine if the OP_Affinity operation
1477 ** can be omitted.  When in doubt return FALSE.  A false negative
1478 ** is harmless.  A false positive, however, can result in the wrong
1479 ** answer.
1480 */
1481 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1482   u8 op;
1483   if( aff==SQLITE_AFF_NONE ) return 1;
1484   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1485   op = p->op;
1486   if( op==TK_REGISTER ) op = p->op2;
1487   switch( op ){
1488     case TK_INTEGER: {
1489       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1490     }
1491     case TK_FLOAT: {
1492       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1493     }
1494     case TK_STRING: {
1495       return aff==SQLITE_AFF_TEXT;
1496     }
1497     case TK_BLOB: {
1498       return 1;
1499     }
1500     case TK_COLUMN: {
1501       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1502       return p->iColumn<0
1503           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1504     }
1505     default: {
1506       return 0;
1507     }
1508   }
1509 }
1510 
1511 /*
1512 ** Return TRUE if the given string is a row-id column name.
1513 */
1514 int sqlite3IsRowid(const char *z){
1515   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1516   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1517   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1518   return 0;
1519 }
1520 
1521 /*
1522 ** Return true if we are able to the IN operator optimization on a
1523 ** query of the form
1524 **
1525 **       x IN (SELECT ...)
1526 **
1527 ** Where the SELECT... clause is as specified by the parameter to this
1528 ** routine.
1529 **
1530 ** The Select object passed in has already been preprocessed and no
1531 ** errors have been found.
1532 */
1533 #ifndef SQLITE_OMIT_SUBQUERY
1534 static int isCandidateForInOpt(Select *p){
1535   SrcList *pSrc;
1536   ExprList *pEList;
1537   Table *pTab;
1538   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1539   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1540   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1541     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1542     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1543     return 0; /* No DISTINCT keyword and no aggregate functions */
1544   }
1545   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1546   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1547   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1548   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1549   pSrc = p->pSrc;
1550   assert( pSrc!=0 );
1551   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1552   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1553   pTab = pSrc->a[0].pTab;
1554   if( NEVER(pTab==0) ) return 0;
1555   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1556   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1557   pEList = p->pEList;
1558   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1559   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1560   return 1;
1561 }
1562 #endif /* SQLITE_OMIT_SUBQUERY */
1563 
1564 /*
1565 ** Code an OP_Once instruction and allocate space for its flag. Return the
1566 ** address of the new instruction.
1567 */
1568 int sqlite3CodeOnce(Parse *pParse){
1569   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1570   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1571 }
1572 
1573 /*
1574 ** Generate code that checks the left-most column of index table iCur to see if
1575 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1576 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1577 ** to be set to NULL if iCur contains one or more NULL values.
1578 */
1579 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1580   int j1;
1581   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1582   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1583   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1584   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1585   VdbeComment((v, "first_entry_in(%d)", iCur));
1586   sqlite3VdbeJumpHere(v, j1);
1587 }
1588 
1589 
1590 #ifndef SQLITE_OMIT_SUBQUERY
1591 /*
1592 ** The argument is an IN operator with a list (not a subquery) on the
1593 ** right-hand side.  Return TRUE if that list is constant.
1594 */
1595 static int sqlite3InRhsIsConstant(Expr *pIn){
1596   Expr *pLHS;
1597   int res;
1598   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1599   pLHS = pIn->pLeft;
1600   pIn->pLeft = 0;
1601   res = sqlite3ExprIsConstant(pIn);
1602   pIn->pLeft = pLHS;
1603   return res;
1604 }
1605 #endif
1606 
1607 /*
1608 ** This function is used by the implementation of the IN (...) operator.
1609 ** The pX parameter is the expression on the RHS of the IN operator, which
1610 ** might be either a list of expressions or a subquery.
1611 **
1612 ** The job of this routine is to find or create a b-tree object that can
1613 ** be used either to test for membership in the RHS set or to iterate through
1614 ** all members of the RHS set, skipping duplicates.
1615 **
1616 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1617 ** and pX->iTable is set to the index of that cursor.
1618 **
1619 ** The returned value of this function indicates the b-tree type, as follows:
1620 **
1621 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1622 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1623 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1624 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1625 **                         populated epheremal table.
1626 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1627 **                         implemented as a sequence of comparisons.
1628 **
1629 ** An existing b-tree might be used if the RHS expression pX is a simple
1630 ** subquery such as:
1631 **
1632 **     SELECT <column> FROM <table>
1633 **
1634 ** If the RHS of the IN operator is a list or a more complex subquery, then
1635 ** an ephemeral table might need to be generated from the RHS and then
1636 ** pX->iTable made to point to the ephemeral table instead of an
1637 ** existing table.
1638 **
1639 ** The inFlags parameter must contain exactly one of the bits
1640 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1641 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1642 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1643 ** IN index will be used to loop over all values of the RHS of the
1644 ** IN operator.
1645 **
1646 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1647 ** through the set members) then the b-tree must not contain duplicates.
1648 ** An epheremal table must be used unless the selected <column> is guaranteed
1649 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1650 ** has a UNIQUE constraint or UNIQUE index.
1651 **
1652 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1653 ** for fast set membership tests) then an epheremal table must
1654 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1655 ** be found with <column> as its left-most column.
1656 **
1657 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1658 ** if the RHS of the IN operator is a list (not a subquery) then this
1659 ** routine might decide that creating an ephemeral b-tree for membership
1660 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1661 ** calling routine should implement the IN operator using a sequence
1662 ** of Eq or Ne comparison operations.
1663 **
1664 ** When the b-tree is being used for membership tests, the calling function
1665 ** might need to know whether or not the RHS side of the IN operator
1666 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1667 ** if there is any chance that the (...) might contain a NULL value at
1668 ** runtime, then a register is allocated and the register number written
1669 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1670 ** NULL value, then *prRhsHasNull is left unchanged.
1671 **
1672 ** If a register is allocated and its location stored in *prRhsHasNull, then
1673 ** the value in that register will be NULL if the b-tree contains one or more
1674 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1675 ** NULL values.
1676 */
1677 #ifndef SQLITE_OMIT_SUBQUERY
1678 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1679   Select *p;                            /* SELECT to the right of IN operator */
1680   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1681   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1682   int mustBeUnique;                     /* True if RHS must be unique */
1683   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1684 
1685   assert( pX->op==TK_IN );
1686   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1687 
1688   /* Check to see if an existing table or index can be used to
1689   ** satisfy the query.  This is preferable to generating a new
1690   ** ephemeral table.
1691   */
1692   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1693   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1694     sqlite3 *db = pParse->db;              /* Database connection */
1695     Table *pTab;                           /* Table <table>. */
1696     Expr *pExpr;                           /* Expression <column> */
1697     i16 iCol;                              /* Index of column <column> */
1698     i16 iDb;                               /* Database idx for pTab */
1699 
1700     assert( p );                        /* Because of isCandidateForInOpt(p) */
1701     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1702     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1703     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1704     pTab = p->pSrc->a[0].pTab;
1705     pExpr = p->pEList->a[0].pExpr;
1706     iCol = (i16)pExpr->iColumn;
1707 
1708     /* Code an OP_Transaction and OP_TableLock for <table>. */
1709     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1710     sqlite3CodeVerifySchema(pParse, iDb);
1711     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1712 
1713     /* This function is only called from two places. In both cases the vdbe
1714     ** has already been allocated. So assume sqlite3GetVdbe() is always
1715     ** successful here.
1716     */
1717     assert(v);
1718     if( iCol<0 ){
1719       int iAddr = sqlite3CodeOnce(pParse);
1720       VdbeCoverage(v);
1721 
1722       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1723       eType = IN_INDEX_ROWID;
1724 
1725       sqlite3VdbeJumpHere(v, iAddr);
1726     }else{
1727       Index *pIdx;                         /* Iterator variable */
1728 
1729       /* The collation sequence used by the comparison. If an index is to
1730       ** be used in place of a temp-table, it must be ordered according
1731       ** to this collation sequence.  */
1732       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1733 
1734       /* Check that the affinity that will be used to perform the
1735       ** comparison is the same as the affinity of the column. If
1736       ** it is not, it is not possible to use any index.
1737       */
1738       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1739 
1740       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1741         if( (pIdx->aiColumn[0]==iCol)
1742          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1743          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1744         ){
1745           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1746           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1747           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1748           VdbeComment((v, "%s", pIdx->zName));
1749           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1750           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1751 
1752           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1753             *prRhsHasNull = ++pParse->nMem;
1754             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1755           }
1756           sqlite3VdbeJumpHere(v, iAddr);
1757         }
1758       }
1759     }
1760   }
1761 
1762   /* If no preexisting index is available for the IN clause
1763   ** and IN_INDEX_NOOP is an allowed reply
1764   ** and the RHS of the IN operator is a list, not a subquery
1765   ** and the RHS is not contant or has two or fewer terms,
1766   ** then it is not worth creating an ephemeral table to evaluate
1767   ** the IN operator so return IN_INDEX_NOOP.
1768   */
1769   if( eType==0
1770    && (inFlags & IN_INDEX_NOOP_OK)
1771    && !ExprHasProperty(pX, EP_xIsSelect)
1772    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1773   ){
1774     eType = IN_INDEX_NOOP;
1775   }
1776 
1777 
1778   if( eType==0 ){
1779     /* Could not find an existing table or index to use as the RHS b-tree.
1780     ** We will have to generate an ephemeral table to do the job.
1781     */
1782     u32 savedNQueryLoop = pParse->nQueryLoop;
1783     int rMayHaveNull = 0;
1784     eType = IN_INDEX_EPH;
1785     if( inFlags & IN_INDEX_LOOP ){
1786       pParse->nQueryLoop = 0;
1787       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1788         eType = IN_INDEX_ROWID;
1789       }
1790     }else if( prRhsHasNull ){
1791       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1792     }
1793     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1794     pParse->nQueryLoop = savedNQueryLoop;
1795   }else{
1796     pX->iTable = iTab;
1797   }
1798   return eType;
1799 }
1800 #endif
1801 
1802 /*
1803 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1804 ** or IN operators.  Examples:
1805 **
1806 **     (SELECT a FROM b)          -- subquery
1807 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1808 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1809 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1810 **
1811 ** The pExpr parameter describes the expression that contains the IN
1812 ** operator or subquery.
1813 **
1814 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1815 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1816 ** to some integer key column of a table B-Tree. In this case, use an
1817 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1818 ** (slower) variable length keys B-Tree.
1819 **
1820 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1821 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1822 ** All this routine does is initialize the register given by rMayHaveNull
1823 ** to NULL.  Calling routines will take care of changing this register
1824 ** value to non-NULL if the RHS is NULL-free.
1825 **
1826 ** For a SELECT or EXISTS operator, return the register that holds the
1827 ** result.  For IN operators or if an error occurs, the return value is 0.
1828 */
1829 #ifndef SQLITE_OMIT_SUBQUERY
1830 int sqlite3CodeSubselect(
1831   Parse *pParse,          /* Parsing context */
1832   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1833   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1834   int isRowid             /* If true, LHS of IN operator is a rowid */
1835 ){
1836   int jmpIfDynamic = -1;                      /* One-time test address */
1837   int rReg = 0;                           /* Register storing resulting */
1838   Vdbe *v = sqlite3GetVdbe(pParse);
1839   if( NEVER(v==0) ) return 0;
1840   sqlite3ExprCachePush(pParse);
1841 
1842   /* This code must be run in its entirety every time it is encountered
1843   ** if any of the following is true:
1844   **
1845   **    *  The right-hand side is a correlated subquery
1846   **    *  The right-hand side is an expression list containing variables
1847   **    *  We are inside a trigger
1848   **
1849   ** If all of the above are false, then we can run this code just once
1850   ** save the results, and reuse the same result on subsequent invocations.
1851   */
1852   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1853     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1854   }
1855 
1856 #ifndef SQLITE_OMIT_EXPLAIN
1857   if( pParse->explain==2 ){
1858     char *zMsg = sqlite3MPrintf(
1859         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1860         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1861     );
1862     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1863   }
1864 #endif
1865 
1866   switch( pExpr->op ){
1867     case TK_IN: {
1868       char affinity;              /* Affinity of the LHS of the IN */
1869       int addr;                   /* Address of OP_OpenEphemeral instruction */
1870       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1871       KeyInfo *pKeyInfo = 0;      /* Key information */
1872 
1873       affinity = sqlite3ExprAffinity(pLeft);
1874 
1875       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1876       ** expression it is handled the same way.  An ephemeral table is
1877       ** filled with single-field index keys representing the results
1878       ** from the SELECT or the <exprlist>.
1879       **
1880       ** If the 'x' expression is a column value, or the SELECT...
1881       ** statement returns a column value, then the affinity of that
1882       ** column is used to build the index keys. If both 'x' and the
1883       ** SELECT... statement are columns, then numeric affinity is used
1884       ** if either column has NUMERIC or INTEGER affinity. If neither
1885       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1886       ** is used.
1887       */
1888       pExpr->iTable = pParse->nTab++;
1889       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1890       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1891 
1892       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1893         /* Case 1:     expr IN (SELECT ...)
1894         **
1895         ** Generate code to write the results of the select into the temporary
1896         ** table allocated and opened above.
1897         */
1898         Select *pSelect = pExpr->x.pSelect;
1899         SelectDest dest;
1900         ExprList *pEList;
1901 
1902         assert( !isRowid );
1903         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1904         dest.affSdst = (u8)affinity;
1905         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1906         pSelect->iLimit = 0;
1907         testcase( pSelect->selFlags & SF_Distinct );
1908         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1909         if( sqlite3Select(pParse, pSelect, &dest) ){
1910           sqlite3KeyInfoUnref(pKeyInfo);
1911           return 0;
1912         }
1913         pEList = pSelect->pEList;
1914         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1915         assert( pEList!=0 );
1916         assert( pEList->nExpr>0 );
1917         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1918         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1919                                                          pEList->a[0].pExpr);
1920       }else if( ALWAYS(pExpr->x.pList!=0) ){
1921         /* Case 2:     expr IN (exprlist)
1922         **
1923         ** For each expression, build an index key from the evaluation and
1924         ** store it in the temporary table. If <expr> is a column, then use
1925         ** that columns affinity when building index keys. If <expr> is not
1926         ** a column, use numeric affinity.
1927         */
1928         int i;
1929         ExprList *pList = pExpr->x.pList;
1930         struct ExprList_item *pItem;
1931         int r1, r2, r3;
1932 
1933         if( !affinity ){
1934           affinity = SQLITE_AFF_NONE;
1935         }
1936         if( pKeyInfo ){
1937           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1938           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1939         }
1940 
1941         /* Loop through each expression in <exprlist>. */
1942         r1 = sqlite3GetTempReg(pParse);
1943         r2 = sqlite3GetTempReg(pParse);
1944         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1945         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1946           Expr *pE2 = pItem->pExpr;
1947           int iValToIns;
1948 
1949           /* If the expression is not constant then we will need to
1950           ** disable the test that was generated above that makes sure
1951           ** this code only executes once.  Because for a non-constant
1952           ** expression we need to rerun this code each time.
1953           */
1954           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1955             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1956             jmpIfDynamic = -1;
1957           }
1958 
1959           /* Evaluate the expression and insert it into the temp table */
1960           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1961             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1962           }else{
1963             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1964             if( isRowid ){
1965               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1966                                 sqlite3VdbeCurrentAddr(v)+2);
1967               VdbeCoverage(v);
1968               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1969             }else{
1970               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1971               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1972               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1973             }
1974           }
1975         }
1976         sqlite3ReleaseTempReg(pParse, r1);
1977         sqlite3ReleaseTempReg(pParse, r2);
1978       }
1979       if( pKeyInfo ){
1980         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1981       }
1982       break;
1983     }
1984 
1985     case TK_EXISTS:
1986     case TK_SELECT:
1987     default: {
1988       /* If this has to be a scalar SELECT.  Generate code to put the
1989       ** value of this select in a memory cell and record the number
1990       ** of the memory cell in iColumn.  If this is an EXISTS, write
1991       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1992       ** and record that memory cell in iColumn.
1993       */
1994       Select *pSel;                         /* SELECT statement to encode */
1995       SelectDest dest;                      /* How to deal with SELECt result */
1996 
1997       testcase( pExpr->op==TK_EXISTS );
1998       testcase( pExpr->op==TK_SELECT );
1999       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2000 
2001       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2002       pSel = pExpr->x.pSelect;
2003       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2004       if( pExpr->op==TK_SELECT ){
2005         dest.eDest = SRT_Mem;
2006         dest.iSdst = dest.iSDParm;
2007         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2008         VdbeComment((v, "Init subquery result"));
2009       }else{
2010         dest.eDest = SRT_Exists;
2011         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2012         VdbeComment((v, "Init EXISTS result"));
2013       }
2014       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2015       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2016                                   &sqlite3IntTokens[1]);
2017       pSel->iLimit = 0;
2018       if( sqlite3Select(pParse, pSel, &dest) ){
2019         return 0;
2020       }
2021       rReg = dest.iSDParm;
2022       ExprSetVVAProperty(pExpr, EP_NoReduce);
2023       break;
2024     }
2025   }
2026 
2027   if( rHasNullFlag ){
2028     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2029   }
2030 
2031   if( jmpIfDynamic>=0 ){
2032     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2033   }
2034   sqlite3ExprCachePop(pParse);
2035 
2036   return rReg;
2037 }
2038 #endif /* SQLITE_OMIT_SUBQUERY */
2039 
2040 #ifndef SQLITE_OMIT_SUBQUERY
2041 /*
2042 ** Generate code for an IN expression.
2043 **
2044 **      x IN (SELECT ...)
2045 **      x IN (value, value, ...)
2046 **
2047 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2048 ** is an array of zero or more values.  The expression is true if the LHS is
2049 ** contained within the RHS.  The value of the expression is unknown (NULL)
2050 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2051 ** RHS contains one or more NULL values.
2052 **
2053 ** This routine generates code that jumps to destIfFalse if the LHS is not
2054 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2055 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2056 ** within the RHS then fall through.
2057 */
2058 static void sqlite3ExprCodeIN(
2059   Parse *pParse,        /* Parsing and code generating context */
2060   Expr *pExpr,          /* The IN expression */
2061   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2062   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2063 ){
2064   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2065   char affinity;        /* Comparison affinity to use */
2066   int eType;            /* Type of the RHS */
2067   int r1;               /* Temporary use register */
2068   Vdbe *v;              /* Statement under construction */
2069 
2070   /* Compute the RHS.   After this step, the table with cursor
2071   ** pExpr->iTable will contains the values that make up the RHS.
2072   */
2073   v = pParse->pVdbe;
2074   assert( v!=0 );       /* OOM detected prior to this routine */
2075   VdbeNoopComment((v, "begin IN expr"));
2076   eType = sqlite3FindInIndex(pParse, pExpr,
2077                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2078                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2079 
2080   /* Figure out the affinity to use to create a key from the results
2081   ** of the expression. affinityStr stores a static string suitable for
2082   ** P4 of OP_MakeRecord.
2083   */
2084   affinity = comparisonAffinity(pExpr);
2085 
2086   /* Code the LHS, the <expr> from "<expr> IN (...)".
2087   */
2088   sqlite3ExprCachePush(pParse);
2089   r1 = sqlite3GetTempReg(pParse);
2090   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2091 
2092   /* If sqlite3FindInIndex() did not find or create an index that is
2093   ** suitable for evaluating the IN operator, then evaluate using a
2094   ** sequence of comparisons.
2095   */
2096   if( eType==IN_INDEX_NOOP ){
2097     ExprList *pList = pExpr->x.pList;
2098     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2099     int labelOk = sqlite3VdbeMakeLabel(v);
2100     int r2, regToFree;
2101     int regCkNull = 0;
2102     int ii;
2103     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2104     if( destIfNull!=destIfFalse ){
2105       regCkNull = sqlite3GetTempReg(pParse);
2106       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2107     }
2108     for(ii=0; ii<pList->nExpr; ii++){
2109       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2110       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2111         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2112       }
2113       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2114         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2115                           (void*)pColl, P4_COLLSEQ);
2116         VdbeCoverageIf(v, ii<pList->nExpr-1);
2117         VdbeCoverageIf(v, ii==pList->nExpr-1);
2118         sqlite3VdbeChangeP5(v, affinity);
2119       }else{
2120         assert( destIfNull==destIfFalse );
2121         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2122                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2123         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2124       }
2125       sqlite3ReleaseTempReg(pParse, regToFree);
2126     }
2127     if( regCkNull ){
2128       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2129       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2130     }
2131     sqlite3VdbeResolveLabel(v, labelOk);
2132     sqlite3ReleaseTempReg(pParse, regCkNull);
2133   }else{
2134 
2135     /* If the LHS is NULL, then the result is either false or NULL depending
2136     ** on whether the RHS is empty or not, respectively.
2137     */
2138     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2139       if( destIfNull==destIfFalse ){
2140         /* Shortcut for the common case where the false and NULL outcomes are
2141         ** the same. */
2142         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2143       }else{
2144         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2145         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2146         VdbeCoverage(v);
2147         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2148         sqlite3VdbeJumpHere(v, addr1);
2149       }
2150     }
2151 
2152     if( eType==IN_INDEX_ROWID ){
2153       /* In this case, the RHS is the ROWID of table b-tree
2154       */
2155       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2156       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2157       VdbeCoverage(v);
2158     }else{
2159       /* In this case, the RHS is an index b-tree.
2160       */
2161       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2162 
2163       /* If the set membership test fails, then the result of the
2164       ** "x IN (...)" expression must be either 0 or NULL. If the set
2165       ** contains no NULL values, then the result is 0. If the set
2166       ** contains one or more NULL values, then the result of the
2167       ** expression is also NULL.
2168       */
2169       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2170       if( rRhsHasNull==0 ){
2171         /* This branch runs if it is known at compile time that the RHS
2172         ** cannot contain NULL values. This happens as the result
2173         ** of a "NOT NULL" constraint in the database schema.
2174         **
2175         ** Also run this branch if NULL is equivalent to FALSE
2176         ** for this particular IN operator.
2177         */
2178         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2179         VdbeCoverage(v);
2180       }else{
2181         /* In this branch, the RHS of the IN might contain a NULL and
2182         ** the presence of a NULL on the RHS makes a difference in the
2183         ** outcome.
2184         */
2185         int j1;
2186 
2187         /* First check to see if the LHS is contained in the RHS.  If so,
2188         ** then the answer is TRUE the presence of NULLs in the RHS does
2189         ** not matter.  If the LHS is not contained in the RHS, then the
2190         ** answer is NULL if the RHS contains NULLs and the answer is
2191         ** FALSE if the RHS is NULL-free.
2192         */
2193         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2194         VdbeCoverage(v);
2195         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2196         VdbeCoverage(v);
2197         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2198         sqlite3VdbeJumpHere(v, j1);
2199       }
2200     }
2201   }
2202   sqlite3ReleaseTempReg(pParse, r1);
2203   sqlite3ExprCachePop(pParse);
2204   VdbeComment((v, "end IN expr"));
2205 }
2206 #endif /* SQLITE_OMIT_SUBQUERY */
2207 
2208 /*
2209 ** Duplicate an 8-byte value
2210 */
2211 static char *dup8bytes(Vdbe *v, const char *in){
2212   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2213   if( out ){
2214     memcpy(out, in, 8);
2215   }
2216   return out;
2217 }
2218 
2219 #ifndef SQLITE_OMIT_FLOATING_POINT
2220 /*
2221 ** Generate an instruction that will put the floating point
2222 ** value described by z[0..n-1] into register iMem.
2223 **
2224 ** The z[] string will probably not be zero-terminated.  But the
2225 ** z[n] character is guaranteed to be something that does not look
2226 ** like the continuation of the number.
2227 */
2228 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2229   if( ALWAYS(z!=0) ){
2230     double value;
2231     char *zV;
2232     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2233     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2234     if( negateFlag ) value = -value;
2235     zV = dup8bytes(v, (char*)&value);
2236     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2237   }
2238 }
2239 #endif
2240 
2241 
2242 /*
2243 ** Generate an instruction that will put the integer describe by
2244 ** text z[0..n-1] into register iMem.
2245 **
2246 ** Expr.u.zToken is always UTF8 and zero-terminated.
2247 */
2248 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2249   Vdbe *v = pParse->pVdbe;
2250   if( pExpr->flags & EP_IntValue ){
2251     int i = pExpr->u.iValue;
2252     assert( i>=0 );
2253     if( negFlag ) i = -i;
2254     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2255   }else{
2256     int c;
2257     i64 value;
2258     const char *z = pExpr->u.zToken;
2259     assert( z!=0 );
2260     c = sqlite3DecOrHexToI64(z, &value);
2261     if( c==0 || (c==2 && negFlag) ){
2262       char *zV;
2263       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2264       zV = dup8bytes(v, (char*)&value);
2265       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2266     }else{
2267 #ifdef SQLITE_OMIT_FLOATING_POINT
2268       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2269 #else
2270 #ifndef SQLITE_OMIT_HEX_INTEGER
2271       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2272         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2273       }else
2274 #endif
2275       {
2276         codeReal(v, z, negFlag, iMem);
2277       }
2278 #endif
2279     }
2280   }
2281 }
2282 
2283 /*
2284 ** Clear a cache entry.
2285 */
2286 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2287   if( p->tempReg ){
2288     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2289       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2290     }
2291     p->tempReg = 0;
2292   }
2293 }
2294 
2295 
2296 /*
2297 ** Record in the column cache that a particular column from a
2298 ** particular table is stored in a particular register.
2299 */
2300 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2301   int i;
2302   int minLru;
2303   int idxLru;
2304   struct yColCache *p;
2305 
2306   /* Unless an error has occurred, register numbers are always positive. */
2307   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2308   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2309 
2310   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2311   ** for testing only - to verify that SQLite always gets the same answer
2312   ** with and without the column cache.
2313   */
2314   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2315 
2316   /* First replace any existing entry.
2317   **
2318   ** Actually, the way the column cache is currently used, we are guaranteed
2319   ** that the object will never already be in cache.  Verify this guarantee.
2320   */
2321 #ifndef NDEBUG
2322   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2323     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2324   }
2325 #endif
2326 
2327   /* Find an empty slot and replace it */
2328   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2329     if( p->iReg==0 ){
2330       p->iLevel = pParse->iCacheLevel;
2331       p->iTable = iTab;
2332       p->iColumn = iCol;
2333       p->iReg = iReg;
2334       p->tempReg = 0;
2335       p->lru = pParse->iCacheCnt++;
2336       return;
2337     }
2338   }
2339 
2340   /* Replace the last recently used */
2341   minLru = 0x7fffffff;
2342   idxLru = -1;
2343   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2344     if( p->lru<minLru ){
2345       idxLru = i;
2346       minLru = p->lru;
2347     }
2348   }
2349   if( ALWAYS(idxLru>=0) ){
2350     p = &pParse->aColCache[idxLru];
2351     p->iLevel = pParse->iCacheLevel;
2352     p->iTable = iTab;
2353     p->iColumn = iCol;
2354     p->iReg = iReg;
2355     p->tempReg = 0;
2356     p->lru = pParse->iCacheCnt++;
2357     return;
2358   }
2359 }
2360 
2361 /*
2362 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2363 ** Purge the range of registers from the column cache.
2364 */
2365 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2366   int i;
2367   int iLast = iReg + nReg - 1;
2368   struct yColCache *p;
2369   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2370     int r = p->iReg;
2371     if( r>=iReg && r<=iLast ){
2372       cacheEntryClear(pParse, p);
2373       p->iReg = 0;
2374     }
2375   }
2376 }
2377 
2378 /*
2379 ** Remember the current column cache context.  Any new entries added
2380 ** added to the column cache after this call are removed when the
2381 ** corresponding pop occurs.
2382 */
2383 void sqlite3ExprCachePush(Parse *pParse){
2384   pParse->iCacheLevel++;
2385 #ifdef SQLITE_DEBUG
2386   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2387     printf("PUSH to %d\n", pParse->iCacheLevel);
2388   }
2389 #endif
2390 }
2391 
2392 /*
2393 ** Remove from the column cache any entries that were added since the
2394 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2395 ** the cache to the state it was in prior the most recent Push.
2396 */
2397 void sqlite3ExprCachePop(Parse *pParse){
2398   int i;
2399   struct yColCache *p;
2400   assert( pParse->iCacheLevel>=1 );
2401   pParse->iCacheLevel--;
2402 #ifdef SQLITE_DEBUG
2403   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2404     printf("POP  to %d\n", pParse->iCacheLevel);
2405   }
2406 #endif
2407   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2408     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2409       cacheEntryClear(pParse, p);
2410       p->iReg = 0;
2411     }
2412   }
2413 }
2414 
2415 /*
2416 ** When a cached column is reused, make sure that its register is
2417 ** no longer available as a temp register.  ticket #3879:  that same
2418 ** register might be in the cache in multiple places, so be sure to
2419 ** get them all.
2420 */
2421 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2422   int i;
2423   struct yColCache *p;
2424   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2425     if( p->iReg==iReg ){
2426       p->tempReg = 0;
2427     }
2428   }
2429 }
2430 
2431 /*
2432 ** Generate code to extract the value of the iCol-th column of a table.
2433 */
2434 void sqlite3ExprCodeGetColumnOfTable(
2435   Vdbe *v,        /* The VDBE under construction */
2436   Table *pTab,    /* The table containing the value */
2437   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2438   int iCol,       /* Index of the column to extract */
2439   int regOut      /* Extract the value into this register */
2440 ){
2441   if( iCol<0 || iCol==pTab->iPKey ){
2442     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2443   }else{
2444     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2445     int x = iCol;
2446     if( !HasRowid(pTab) ){
2447       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2448     }
2449     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2450   }
2451   if( iCol>=0 ){
2452     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2453   }
2454 }
2455 
2456 /*
2457 ** Generate code that will extract the iColumn-th column from
2458 ** table pTab and store the column value in a register.  An effort
2459 ** is made to store the column value in register iReg, but this is
2460 ** not guaranteed.  The location of the column value is returned.
2461 **
2462 ** There must be an open cursor to pTab in iTable when this routine
2463 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2464 */
2465 int sqlite3ExprCodeGetColumn(
2466   Parse *pParse,   /* Parsing and code generating context */
2467   Table *pTab,     /* Description of the table we are reading from */
2468   int iColumn,     /* Index of the table column */
2469   int iTable,      /* The cursor pointing to the table */
2470   int iReg,        /* Store results here */
2471   u8 p5            /* P5 value for OP_Column */
2472 ){
2473   Vdbe *v = pParse->pVdbe;
2474   int i;
2475   struct yColCache *p;
2476 
2477   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2478     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2479       p->lru = pParse->iCacheCnt++;
2480       sqlite3ExprCachePinRegister(pParse, p->iReg);
2481       return p->iReg;
2482     }
2483   }
2484   assert( v!=0 );
2485   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2486   if( p5 ){
2487     sqlite3VdbeChangeP5(v, p5);
2488   }else{
2489     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2490   }
2491   return iReg;
2492 }
2493 
2494 /*
2495 ** Clear all column cache entries.
2496 */
2497 void sqlite3ExprCacheClear(Parse *pParse){
2498   int i;
2499   struct yColCache *p;
2500 
2501 #if SQLITE_DEBUG
2502   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2503     printf("CLEAR\n");
2504   }
2505 #endif
2506   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2507     if( p->iReg ){
2508       cacheEntryClear(pParse, p);
2509       p->iReg = 0;
2510     }
2511   }
2512 }
2513 
2514 /*
2515 ** Record the fact that an affinity change has occurred on iCount
2516 ** registers starting with iStart.
2517 */
2518 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2519   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2520 }
2521 
2522 /*
2523 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2524 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2525 */
2526 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2527   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2528   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2529   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2530 }
2531 
2532 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2533 /*
2534 ** Return true if any register in the range iFrom..iTo (inclusive)
2535 ** is used as part of the column cache.
2536 **
2537 ** This routine is used within assert() and testcase() macros only
2538 ** and does not appear in a normal build.
2539 */
2540 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2541   int i;
2542   struct yColCache *p;
2543   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2544     int r = p->iReg;
2545     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2546   }
2547   return 0;
2548 }
2549 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2550 
2551 /*
2552 ** Convert an expression node to a TK_REGISTER
2553 */
2554 static void exprToRegister(Expr *p, int iReg){
2555   p->op2 = p->op;
2556   p->op = TK_REGISTER;
2557   p->iTable = iReg;
2558   ExprClearProperty(p, EP_Skip);
2559 }
2560 
2561 /*
2562 ** Generate code into the current Vdbe to evaluate the given
2563 ** expression.  Attempt to store the results in register "target".
2564 ** Return the register where results are stored.
2565 **
2566 ** With this routine, there is no guarantee that results will
2567 ** be stored in target.  The result might be stored in some other
2568 ** register if it is convenient to do so.  The calling function
2569 ** must check the return code and move the results to the desired
2570 ** register.
2571 */
2572 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2573   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2574   int op;                   /* The opcode being coded */
2575   int inReg = target;       /* Results stored in register inReg */
2576   int regFree1 = 0;         /* If non-zero free this temporary register */
2577   int regFree2 = 0;         /* If non-zero free this temporary register */
2578   int r1, r2, r3, r4;       /* Various register numbers */
2579   sqlite3 *db = pParse->db; /* The database connection */
2580   Expr tempX;               /* Temporary expression node */
2581 
2582   assert( target>0 && target<=pParse->nMem );
2583   if( v==0 ){
2584     assert( pParse->db->mallocFailed );
2585     return 0;
2586   }
2587 
2588   if( pExpr==0 ){
2589     op = TK_NULL;
2590   }else{
2591     op = pExpr->op;
2592   }
2593   switch( op ){
2594     case TK_AGG_COLUMN: {
2595       AggInfo *pAggInfo = pExpr->pAggInfo;
2596       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2597       if( !pAggInfo->directMode ){
2598         assert( pCol->iMem>0 );
2599         inReg = pCol->iMem;
2600         break;
2601       }else if( pAggInfo->useSortingIdx ){
2602         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2603                               pCol->iSorterColumn, target);
2604         break;
2605       }
2606       /* Otherwise, fall thru into the TK_COLUMN case */
2607     }
2608     case TK_COLUMN: {
2609       int iTab = pExpr->iTable;
2610       if( iTab<0 ){
2611         if( pParse->ckBase>0 ){
2612           /* Generating CHECK constraints or inserting into partial index */
2613           inReg = pExpr->iColumn + pParse->ckBase;
2614           break;
2615         }else{
2616           /* Deleting from a partial index */
2617           iTab = pParse->iPartIdxTab;
2618         }
2619       }
2620       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2621                                pExpr->iColumn, iTab, target,
2622                                pExpr->op2);
2623       break;
2624     }
2625     case TK_INTEGER: {
2626       codeInteger(pParse, pExpr, 0, target);
2627       break;
2628     }
2629 #ifndef SQLITE_OMIT_FLOATING_POINT
2630     case TK_FLOAT: {
2631       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2632       codeReal(v, pExpr->u.zToken, 0, target);
2633       break;
2634     }
2635 #endif
2636     case TK_STRING: {
2637       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2638       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2639       break;
2640     }
2641     case TK_NULL: {
2642       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2643       break;
2644     }
2645 #ifndef SQLITE_OMIT_BLOB_LITERAL
2646     case TK_BLOB: {
2647       int n;
2648       const char *z;
2649       char *zBlob;
2650       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2651       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2652       assert( pExpr->u.zToken[1]=='\'' );
2653       z = &pExpr->u.zToken[2];
2654       n = sqlite3Strlen30(z) - 1;
2655       assert( z[n]=='\'' );
2656       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2657       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2658       break;
2659     }
2660 #endif
2661     case TK_VARIABLE: {
2662       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2663       assert( pExpr->u.zToken!=0 );
2664       assert( pExpr->u.zToken[0]!=0 );
2665       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2666       if( pExpr->u.zToken[1]!=0 ){
2667         assert( pExpr->u.zToken[0]=='?'
2668              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2669         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2670       }
2671       break;
2672     }
2673     case TK_REGISTER: {
2674       inReg = pExpr->iTable;
2675       break;
2676     }
2677     case TK_AS: {
2678       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2679       break;
2680     }
2681 #ifndef SQLITE_OMIT_CAST
2682     case TK_CAST: {
2683       /* Expressions of the form:   CAST(pLeft AS token) */
2684       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2685       if( inReg!=target ){
2686         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2687         inReg = target;
2688       }
2689       sqlite3VdbeAddOp2(v, OP_Cast, target,
2690                         sqlite3AffinityType(pExpr->u.zToken, 0));
2691       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2692       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2693       break;
2694     }
2695 #endif /* SQLITE_OMIT_CAST */
2696     case TK_LT:
2697     case TK_LE:
2698     case TK_GT:
2699     case TK_GE:
2700     case TK_NE:
2701     case TK_EQ: {
2702       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2703       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2704       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2705                   r1, r2, inReg, SQLITE_STOREP2);
2706       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2707       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2708       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2709       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2710       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2711       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2712       testcase( regFree1==0 );
2713       testcase( regFree2==0 );
2714       break;
2715     }
2716     case TK_IS:
2717     case TK_ISNOT: {
2718       testcase( op==TK_IS );
2719       testcase( op==TK_ISNOT );
2720       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2721       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2722       op = (op==TK_IS) ? TK_EQ : TK_NE;
2723       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2724                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2725       VdbeCoverageIf(v, op==TK_EQ);
2726       VdbeCoverageIf(v, op==TK_NE);
2727       testcase( regFree1==0 );
2728       testcase( regFree2==0 );
2729       break;
2730     }
2731     case TK_AND:
2732     case TK_OR:
2733     case TK_PLUS:
2734     case TK_STAR:
2735     case TK_MINUS:
2736     case TK_REM:
2737     case TK_BITAND:
2738     case TK_BITOR:
2739     case TK_SLASH:
2740     case TK_LSHIFT:
2741     case TK_RSHIFT:
2742     case TK_CONCAT: {
2743       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2744       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2745       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2746       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2747       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2748       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2749       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2750       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2751       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2752       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2753       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2754       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2755       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2756       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2757       testcase( regFree1==0 );
2758       testcase( regFree2==0 );
2759       break;
2760     }
2761     case TK_UMINUS: {
2762       Expr *pLeft = pExpr->pLeft;
2763       assert( pLeft );
2764       if( pLeft->op==TK_INTEGER ){
2765         codeInteger(pParse, pLeft, 1, target);
2766 #ifndef SQLITE_OMIT_FLOATING_POINT
2767       }else if( pLeft->op==TK_FLOAT ){
2768         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2769         codeReal(v, pLeft->u.zToken, 1, target);
2770 #endif
2771       }else{
2772         tempX.op = TK_INTEGER;
2773         tempX.flags = EP_IntValue|EP_TokenOnly;
2774         tempX.u.iValue = 0;
2775         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2776         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2777         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2778         testcase( regFree2==0 );
2779       }
2780       inReg = target;
2781       break;
2782     }
2783     case TK_BITNOT:
2784     case TK_NOT: {
2785       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2786       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2787       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2788       testcase( regFree1==0 );
2789       inReg = target;
2790       sqlite3VdbeAddOp2(v, op, r1, inReg);
2791       break;
2792     }
2793     case TK_ISNULL:
2794     case TK_NOTNULL: {
2795       int addr;
2796       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2797       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2798       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2799       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2800       testcase( regFree1==0 );
2801       addr = sqlite3VdbeAddOp1(v, op, r1);
2802       VdbeCoverageIf(v, op==TK_ISNULL);
2803       VdbeCoverageIf(v, op==TK_NOTNULL);
2804       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2805       sqlite3VdbeJumpHere(v, addr);
2806       break;
2807     }
2808     case TK_AGG_FUNCTION: {
2809       AggInfo *pInfo = pExpr->pAggInfo;
2810       if( pInfo==0 ){
2811         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2812         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2813       }else{
2814         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2815       }
2816       break;
2817     }
2818     case TK_FUNCTION: {
2819       ExprList *pFarg;       /* List of function arguments */
2820       int nFarg;             /* Number of function arguments */
2821       FuncDef *pDef;         /* The function definition object */
2822       int nId;               /* Length of the function name in bytes */
2823       const char *zId;       /* The function name */
2824       u32 constMask = 0;     /* Mask of function arguments that are constant */
2825       int i;                 /* Loop counter */
2826       u8 enc = ENC(db);      /* The text encoding used by this database */
2827       CollSeq *pColl = 0;    /* A collating sequence */
2828 
2829       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2830       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2831         pFarg = 0;
2832       }else{
2833         pFarg = pExpr->x.pList;
2834       }
2835       nFarg = pFarg ? pFarg->nExpr : 0;
2836       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2837       zId = pExpr->u.zToken;
2838       nId = sqlite3Strlen30(zId);
2839       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2840       if( pDef==0 || pDef->xFunc==0 ){
2841         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2842         break;
2843       }
2844 
2845       /* Attempt a direct implementation of the built-in COALESCE() and
2846       ** IFNULL() functions.  This avoids unnecessary evaluation of
2847       ** arguments past the first non-NULL argument.
2848       */
2849       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2850         int endCoalesce = sqlite3VdbeMakeLabel(v);
2851         assert( nFarg>=2 );
2852         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2853         for(i=1; i<nFarg; i++){
2854           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2855           VdbeCoverage(v);
2856           sqlite3ExprCacheRemove(pParse, target, 1);
2857           sqlite3ExprCachePush(pParse);
2858           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2859           sqlite3ExprCachePop(pParse);
2860         }
2861         sqlite3VdbeResolveLabel(v, endCoalesce);
2862         break;
2863       }
2864 
2865       /* The UNLIKELY() function is a no-op.  The result is the value
2866       ** of the first argument.
2867       */
2868       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2869         assert( nFarg>=1 );
2870         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2871         break;
2872       }
2873 
2874       for(i=0; i<nFarg; i++){
2875         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2876           testcase( i==31 );
2877           constMask |= MASKBIT32(i);
2878         }
2879         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2880           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2881         }
2882       }
2883       if( pFarg ){
2884         if( constMask ){
2885           r1 = pParse->nMem+1;
2886           pParse->nMem += nFarg;
2887         }else{
2888           r1 = sqlite3GetTempRange(pParse, nFarg);
2889         }
2890 
2891         /* For length() and typeof() functions with a column argument,
2892         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2893         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2894         ** loading.
2895         */
2896         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2897           u8 exprOp;
2898           assert( nFarg==1 );
2899           assert( pFarg->a[0].pExpr!=0 );
2900           exprOp = pFarg->a[0].pExpr->op;
2901           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2902             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2903             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2904             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2905             pFarg->a[0].pExpr->op2 =
2906                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2907           }
2908         }
2909 
2910         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2911         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2912                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2913         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2914       }else{
2915         r1 = 0;
2916       }
2917 #ifndef SQLITE_OMIT_VIRTUALTABLE
2918       /* Possibly overload the function if the first argument is
2919       ** a virtual table column.
2920       **
2921       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2922       ** second argument, not the first, as the argument to test to
2923       ** see if it is a column in a virtual table.  This is done because
2924       ** the left operand of infix functions (the operand we want to
2925       ** control overloading) ends up as the second argument to the
2926       ** function.  The expression "A glob B" is equivalent to
2927       ** "glob(B,A).  We want to use the A in "A glob B" to test
2928       ** for function overloading.  But we use the B term in "glob(B,A)".
2929       */
2930       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2931         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2932       }else if( nFarg>0 ){
2933         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2934       }
2935 #endif
2936       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2937         if( !pColl ) pColl = db->pDfltColl;
2938         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2939       }
2940       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2941                         (char*)pDef, P4_FUNCDEF);
2942       sqlite3VdbeChangeP5(v, (u8)nFarg);
2943       if( nFarg && constMask==0 ){
2944         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2945       }
2946       break;
2947     }
2948 #ifndef SQLITE_OMIT_SUBQUERY
2949     case TK_EXISTS:
2950     case TK_SELECT: {
2951       testcase( op==TK_EXISTS );
2952       testcase( op==TK_SELECT );
2953       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2954       break;
2955     }
2956     case TK_IN: {
2957       int destIfFalse = sqlite3VdbeMakeLabel(v);
2958       int destIfNull = sqlite3VdbeMakeLabel(v);
2959       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2960       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2961       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2962       sqlite3VdbeResolveLabel(v, destIfFalse);
2963       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2964       sqlite3VdbeResolveLabel(v, destIfNull);
2965       break;
2966     }
2967 #endif /* SQLITE_OMIT_SUBQUERY */
2968 
2969 
2970     /*
2971     **    x BETWEEN y AND z
2972     **
2973     ** This is equivalent to
2974     **
2975     **    x>=y AND x<=z
2976     **
2977     ** X is stored in pExpr->pLeft.
2978     ** Y is stored in pExpr->pList->a[0].pExpr.
2979     ** Z is stored in pExpr->pList->a[1].pExpr.
2980     */
2981     case TK_BETWEEN: {
2982       Expr *pLeft = pExpr->pLeft;
2983       struct ExprList_item *pLItem = pExpr->x.pList->a;
2984       Expr *pRight = pLItem->pExpr;
2985 
2986       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2987       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2988       testcase( regFree1==0 );
2989       testcase( regFree2==0 );
2990       r3 = sqlite3GetTempReg(pParse);
2991       r4 = sqlite3GetTempReg(pParse);
2992       codeCompare(pParse, pLeft, pRight, OP_Ge,
2993                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2994       pLItem++;
2995       pRight = pLItem->pExpr;
2996       sqlite3ReleaseTempReg(pParse, regFree2);
2997       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2998       testcase( regFree2==0 );
2999       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3000       VdbeCoverage(v);
3001       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3002       sqlite3ReleaseTempReg(pParse, r3);
3003       sqlite3ReleaseTempReg(pParse, r4);
3004       break;
3005     }
3006     case TK_COLLATE:
3007     case TK_UPLUS: {
3008       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3009       break;
3010     }
3011 
3012     case TK_TRIGGER: {
3013       /* If the opcode is TK_TRIGGER, then the expression is a reference
3014       ** to a column in the new.* or old.* pseudo-tables available to
3015       ** trigger programs. In this case Expr.iTable is set to 1 for the
3016       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3017       ** is set to the column of the pseudo-table to read, or to -1 to
3018       ** read the rowid field.
3019       **
3020       ** The expression is implemented using an OP_Param opcode. The p1
3021       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3022       ** to reference another column of the old.* pseudo-table, where
3023       ** i is the index of the column. For a new.rowid reference, p1 is
3024       ** set to (n+1), where n is the number of columns in each pseudo-table.
3025       ** For a reference to any other column in the new.* pseudo-table, p1
3026       ** is set to (n+2+i), where n and i are as defined previously. For
3027       ** example, if the table on which triggers are being fired is
3028       ** declared as:
3029       **
3030       **   CREATE TABLE t1(a, b);
3031       **
3032       ** Then p1 is interpreted as follows:
3033       **
3034       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3035       **   p1==1   ->    old.a         p1==4   ->    new.a
3036       **   p1==2   ->    old.b         p1==5   ->    new.b
3037       */
3038       Table *pTab = pExpr->pTab;
3039       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3040 
3041       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3042       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3043       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3044       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3045 
3046       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3047       VdbeComment((v, "%s.%s -> $%d",
3048         (pExpr->iTable ? "new" : "old"),
3049         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3050         target
3051       ));
3052 
3053 #ifndef SQLITE_OMIT_FLOATING_POINT
3054       /* If the column has REAL affinity, it may currently be stored as an
3055       ** integer. Use OP_RealAffinity to make sure it is really real.
3056       **
3057       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3058       ** floating point when extracting it from the record.  */
3059       if( pExpr->iColumn>=0
3060        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3061       ){
3062         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3063       }
3064 #endif
3065       break;
3066     }
3067 
3068 
3069     /*
3070     ** Form A:
3071     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3072     **
3073     ** Form B:
3074     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3075     **
3076     ** Form A is can be transformed into the equivalent form B as follows:
3077     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3078     **        WHEN x=eN THEN rN ELSE y END
3079     **
3080     ** X (if it exists) is in pExpr->pLeft.
3081     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3082     ** odd.  The Y is also optional.  If the number of elements in x.pList
3083     ** is even, then Y is omitted and the "otherwise" result is NULL.
3084     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3085     **
3086     ** The result of the expression is the Ri for the first matching Ei,
3087     ** or if there is no matching Ei, the ELSE term Y, or if there is
3088     ** no ELSE term, NULL.
3089     */
3090     default: assert( op==TK_CASE ); {
3091       int endLabel;                     /* GOTO label for end of CASE stmt */
3092       int nextCase;                     /* GOTO label for next WHEN clause */
3093       int nExpr;                        /* 2x number of WHEN terms */
3094       int i;                            /* Loop counter */
3095       ExprList *pEList;                 /* List of WHEN terms */
3096       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3097       Expr opCompare;                   /* The X==Ei expression */
3098       Expr *pX;                         /* The X expression */
3099       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3100       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3101 
3102       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3103       assert(pExpr->x.pList->nExpr > 0);
3104       pEList = pExpr->x.pList;
3105       aListelem = pEList->a;
3106       nExpr = pEList->nExpr;
3107       endLabel = sqlite3VdbeMakeLabel(v);
3108       if( (pX = pExpr->pLeft)!=0 ){
3109         tempX = *pX;
3110         testcase( pX->op==TK_COLUMN );
3111         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3112         testcase( regFree1==0 );
3113         opCompare.op = TK_EQ;
3114         opCompare.pLeft = &tempX;
3115         pTest = &opCompare;
3116         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3117         ** The value in regFree1 might get SCopy-ed into the file result.
3118         ** So make sure that the regFree1 register is not reused for other
3119         ** purposes and possibly overwritten.  */
3120         regFree1 = 0;
3121       }
3122       for(i=0; i<nExpr-1; i=i+2){
3123         sqlite3ExprCachePush(pParse);
3124         if( pX ){
3125           assert( pTest!=0 );
3126           opCompare.pRight = aListelem[i].pExpr;
3127         }else{
3128           pTest = aListelem[i].pExpr;
3129         }
3130         nextCase = sqlite3VdbeMakeLabel(v);
3131         testcase( pTest->op==TK_COLUMN );
3132         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3133         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3134         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3135         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3136         sqlite3ExprCachePop(pParse);
3137         sqlite3VdbeResolveLabel(v, nextCase);
3138       }
3139       if( (nExpr&1)!=0 ){
3140         sqlite3ExprCachePush(pParse);
3141         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3142         sqlite3ExprCachePop(pParse);
3143       }else{
3144         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3145       }
3146       assert( db->mallocFailed || pParse->nErr>0
3147            || pParse->iCacheLevel==iCacheLevel );
3148       sqlite3VdbeResolveLabel(v, endLabel);
3149       break;
3150     }
3151 #ifndef SQLITE_OMIT_TRIGGER
3152     case TK_RAISE: {
3153       assert( pExpr->affinity==OE_Rollback
3154            || pExpr->affinity==OE_Abort
3155            || pExpr->affinity==OE_Fail
3156            || pExpr->affinity==OE_Ignore
3157       );
3158       if( !pParse->pTriggerTab ){
3159         sqlite3ErrorMsg(pParse,
3160                        "RAISE() may only be used within a trigger-program");
3161         return 0;
3162       }
3163       if( pExpr->affinity==OE_Abort ){
3164         sqlite3MayAbort(pParse);
3165       }
3166       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3167       if( pExpr->affinity==OE_Ignore ){
3168         sqlite3VdbeAddOp4(
3169             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3170         VdbeCoverage(v);
3171       }else{
3172         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3173                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3174       }
3175 
3176       break;
3177     }
3178 #endif
3179   }
3180   sqlite3ReleaseTempReg(pParse, regFree1);
3181   sqlite3ReleaseTempReg(pParse, regFree2);
3182   return inReg;
3183 }
3184 
3185 /*
3186 ** Factor out the code of the given expression to initialization time.
3187 */
3188 void sqlite3ExprCodeAtInit(
3189   Parse *pParse,    /* Parsing context */
3190   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3191   int regDest,      /* Store the value in this register */
3192   u8 reusable       /* True if this expression is reusable */
3193 ){
3194   ExprList *p;
3195   assert( ConstFactorOk(pParse) );
3196   p = pParse->pConstExpr;
3197   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3198   p = sqlite3ExprListAppend(pParse, p, pExpr);
3199   if( p ){
3200      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3201      pItem->u.iConstExprReg = regDest;
3202      pItem->reusable = reusable;
3203   }
3204   pParse->pConstExpr = p;
3205 }
3206 
3207 /*
3208 ** Generate code to evaluate an expression and store the results
3209 ** into a register.  Return the register number where the results
3210 ** are stored.
3211 **
3212 ** If the register is a temporary register that can be deallocated,
3213 ** then write its number into *pReg.  If the result register is not
3214 ** a temporary, then set *pReg to zero.
3215 **
3216 ** If pExpr is a constant, then this routine might generate this
3217 ** code to fill the register in the initialization section of the
3218 ** VDBE program, in order to factor it out of the evaluation loop.
3219 */
3220 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3221   int r2;
3222   pExpr = sqlite3ExprSkipCollate(pExpr);
3223   if( ConstFactorOk(pParse)
3224    && pExpr->op!=TK_REGISTER
3225    && sqlite3ExprIsConstantNotJoin(pExpr)
3226   ){
3227     ExprList *p = pParse->pConstExpr;
3228     int i;
3229     *pReg  = 0;
3230     if( p ){
3231       struct ExprList_item *pItem;
3232       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3233         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3234           return pItem->u.iConstExprReg;
3235         }
3236       }
3237     }
3238     r2 = ++pParse->nMem;
3239     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3240   }else{
3241     int r1 = sqlite3GetTempReg(pParse);
3242     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3243     if( r2==r1 ){
3244       *pReg = r1;
3245     }else{
3246       sqlite3ReleaseTempReg(pParse, r1);
3247       *pReg = 0;
3248     }
3249   }
3250   return r2;
3251 }
3252 
3253 /*
3254 ** Generate code that will evaluate expression pExpr and store the
3255 ** results in register target.  The results are guaranteed to appear
3256 ** in register target.
3257 */
3258 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3259   int inReg;
3260 
3261   assert( target>0 && target<=pParse->nMem );
3262   if( pExpr && pExpr->op==TK_REGISTER ){
3263     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3264   }else{
3265     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3266     assert( pParse->pVdbe || pParse->db->mallocFailed );
3267     if( inReg!=target && pParse->pVdbe ){
3268       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3269     }
3270   }
3271 }
3272 
3273 /*
3274 ** Generate code that will evaluate expression pExpr and store the
3275 ** results in register target.  The results are guaranteed to appear
3276 ** in register target.  If the expression is constant, then this routine
3277 ** might choose to code the expression at initialization time.
3278 */
3279 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3280   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3281     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3282   }else{
3283     sqlite3ExprCode(pParse, pExpr, target);
3284   }
3285 }
3286 
3287 /*
3288 ** Generate code that evaluates the given expression and puts the result
3289 ** in register target.
3290 **
3291 ** Also make a copy of the expression results into another "cache" register
3292 ** and modify the expression so that the next time it is evaluated,
3293 ** the result is a copy of the cache register.
3294 **
3295 ** This routine is used for expressions that are used multiple
3296 ** times.  They are evaluated once and the results of the expression
3297 ** are reused.
3298 */
3299 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3300   Vdbe *v = pParse->pVdbe;
3301   int iMem;
3302 
3303   assert( target>0 );
3304   assert( pExpr->op!=TK_REGISTER );
3305   sqlite3ExprCode(pParse, pExpr, target);
3306   iMem = ++pParse->nMem;
3307   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3308   exprToRegister(pExpr, iMem);
3309 }
3310 
3311 #ifdef SQLITE_DEBUG
3312 /*
3313 ** Generate a human-readable explanation of an expression tree.
3314 */
3315 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
3316   const char *zBinOp = 0;   /* Binary operator */
3317   const char *zUniOp = 0;   /* Unary operator */
3318   pView = sqlite3TreeViewPush(pView, moreToFollow);
3319   if( pExpr==0 ){
3320     sqlite3TreeViewLine(pView, "nil");
3321     sqlite3TreeViewPop(pView);
3322     return;
3323   }
3324   switch( pExpr->op ){
3325     case TK_AGG_COLUMN: {
3326       sqlite3TreeViewLine(pView, "AGG{%d:%d}",
3327             pExpr->iTable, pExpr->iColumn);
3328       break;
3329     }
3330     case TK_COLUMN: {
3331       if( pExpr->iTable<0 ){
3332         /* This only happens when coding check constraints */
3333         sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
3334       }else{
3335         sqlite3TreeViewLine(pView, "{%d:%d}",
3336                              pExpr->iTable, pExpr->iColumn);
3337       }
3338       break;
3339     }
3340     case TK_INTEGER: {
3341       if( pExpr->flags & EP_IntValue ){
3342         sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
3343       }else{
3344         sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
3345       }
3346       break;
3347     }
3348 #ifndef SQLITE_OMIT_FLOATING_POINT
3349     case TK_FLOAT: {
3350       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3351       break;
3352     }
3353 #endif
3354     case TK_STRING: {
3355       sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
3356       break;
3357     }
3358     case TK_NULL: {
3359       sqlite3TreeViewLine(pView,"NULL");
3360       break;
3361     }
3362 #ifndef SQLITE_OMIT_BLOB_LITERAL
3363     case TK_BLOB: {
3364       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3365       break;
3366     }
3367 #endif
3368     case TK_VARIABLE: {
3369       sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
3370                           pExpr->u.zToken, pExpr->iColumn);
3371       break;
3372     }
3373     case TK_REGISTER: {
3374       sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
3375       break;
3376     }
3377     case TK_AS: {
3378       sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
3379       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3380       break;
3381     }
3382     case TK_ID: {
3383       sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
3384       break;
3385     }
3386 #ifndef SQLITE_OMIT_CAST
3387     case TK_CAST: {
3388       /* Expressions of the form:   CAST(pLeft AS token) */
3389       sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
3390       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3391       break;
3392     }
3393 #endif /* SQLITE_OMIT_CAST */
3394     case TK_LT:      zBinOp = "LT";     break;
3395     case TK_LE:      zBinOp = "LE";     break;
3396     case TK_GT:      zBinOp = "GT";     break;
3397     case TK_GE:      zBinOp = "GE";     break;
3398     case TK_NE:      zBinOp = "NE";     break;
3399     case TK_EQ:      zBinOp = "EQ";     break;
3400     case TK_IS:      zBinOp = "IS";     break;
3401     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3402     case TK_AND:     zBinOp = "AND";    break;
3403     case TK_OR:      zBinOp = "OR";     break;
3404     case TK_PLUS:    zBinOp = "ADD";    break;
3405     case TK_STAR:    zBinOp = "MUL";    break;
3406     case TK_MINUS:   zBinOp = "SUB";    break;
3407     case TK_REM:     zBinOp = "REM";    break;
3408     case TK_BITAND:  zBinOp = "BITAND"; break;
3409     case TK_BITOR:   zBinOp = "BITOR";  break;
3410     case TK_SLASH:   zBinOp = "DIV";    break;
3411     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3412     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3413     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3414     case TK_DOT:     zBinOp = "DOT";    break;
3415 
3416     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3417     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3418     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3419     case TK_NOT:     zUniOp = "NOT";    break;
3420     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3421     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3422 
3423     case TK_COLLATE: {
3424       sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
3425       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3426       break;
3427     }
3428 
3429     case TK_AGG_FUNCTION:
3430     case TK_FUNCTION: {
3431       ExprList *pFarg;       /* List of function arguments */
3432       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3433         pFarg = 0;
3434       }else{
3435         pFarg = pExpr->x.pList;
3436       }
3437       if( pExpr->op==TK_AGG_FUNCTION ){
3438         sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
3439                              pExpr->op2, pExpr->u.zToken);
3440       }else{
3441         sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
3442       }
3443       if( pFarg ){
3444         sqlite3TreeViewExprList(pView, pFarg, 0, 0);
3445       }
3446       break;
3447     }
3448 #ifndef SQLITE_OMIT_SUBQUERY
3449     case TK_EXISTS: {
3450       sqlite3TreeViewLine(pView, "EXISTS-expr");
3451       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3452       break;
3453     }
3454     case TK_SELECT: {
3455       sqlite3TreeViewLine(pView, "SELECT-expr");
3456       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3457       break;
3458     }
3459     case TK_IN: {
3460       sqlite3TreeViewLine(pView, "IN");
3461       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3462       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3463         sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3464       }else{
3465         sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3466       }
3467       break;
3468     }
3469 #endif /* SQLITE_OMIT_SUBQUERY */
3470 
3471     /*
3472     **    x BETWEEN y AND z
3473     **
3474     ** This is equivalent to
3475     **
3476     **    x>=y AND x<=z
3477     **
3478     ** X is stored in pExpr->pLeft.
3479     ** Y is stored in pExpr->pList->a[0].pExpr.
3480     ** Z is stored in pExpr->pList->a[1].pExpr.
3481     */
3482     case TK_BETWEEN: {
3483       Expr *pX = pExpr->pLeft;
3484       Expr *pY = pExpr->x.pList->a[0].pExpr;
3485       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3486       sqlite3TreeViewLine(pView, "BETWEEN");
3487       sqlite3TreeViewExpr(pView, pX, 1);
3488       sqlite3TreeViewExpr(pView, pY, 1);
3489       sqlite3TreeViewExpr(pView, pZ, 0);
3490       break;
3491     }
3492     case TK_TRIGGER: {
3493       /* If the opcode is TK_TRIGGER, then the expression is a reference
3494       ** to a column in the new.* or old.* pseudo-tables available to
3495       ** trigger programs. In this case Expr.iTable is set to 1 for the
3496       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3497       ** is set to the column of the pseudo-table to read, or to -1 to
3498       ** read the rowid field.
3499       */
3500       sqlite3TreeViewLine(pView, "%s(%d)",
3501           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3502       break;
3503     }
3504     case TK_CASE: {
3505       sqlite3TreeViewLine(pView, "CASE");
3506       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3507       sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3508       break;
3509     }
3510 #ifndef SQLITE_OMIT_TRIGGER
3511     case TK_RAISE: {
3512       const char *zType = "unk";
3513       switch( pExpr->affinity ){
3514         case OE_Rollback:   zType = "rollback";  break;
3515         case OE_Abort:      zType = "abort";     break;
3516         case OE_Fail:       zType = "fail";      break;
3517         case OE_Ignore:     zType = "ignore";    break;
3518       }
3519       sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
3520       break;
3521     }
3522 #endif
3523     default: {
3524       sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
3525       break;
3526     }
3527   }
3528   if( zBinOp ){
3529     sqlite3TreeViewLine(pView, "%s", zBinOp);
3530     sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3531     sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
3532   }else if( zUniOp ){
3533     sqlite3TreeViewLine(pView, "%s", zUniOp);
3534     sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3535   }
3536   sqlite3TreeViewPop(pView);
3537 }
3538 #endif /* SQLITE_DEBUG */
3539 
3540 #ifdef SQLITE_DEBUG
3541 /*
3542 ** Generate a human-readable explanation of an expression list.
3543 */
3544 void sqlite3TreeViewExprList(
3545   TreeView *pView,
3546   const ExprList *pList,
3547   u8 moreToFollow,
3548   const char *zLabel
3549 ){
3550   int i;
3551   pView = sqlite3TreeViewPush(pView, moreToFollow);
3552   if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
3553   if( pList==0 ){
3554     sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
3555   }else{
3556     sqlite3TreeViewLine(pView, "%s", zLabel);
3557     for(i=0; i<pList->nExpr; i++){
3558       sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
3559 #if 0
3560      if( pList->a[i].zName ){
3561         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3562       }
3563       if( pList->a[i].bSpanIsTab ){
3564         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3565       }
3566 #endif
3567     }
3568   }
3569   sqlite3TreeViewPop(pView);
3570 }
3571 #endif /* SQLITE_DEBUG */
3572 
3573 /*
3574 ** Generate code that pushes the value of every element of the given
3575 ** expression list into a sequence of registers beginning at target.
3576 **
3577 ** Return the number of elements evaluated.
3578 **
3579 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3580 ** filled using OP_SCopy.  OP_Copy must be used instead.
3581 **
3582 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3583 ** factored out into initialization code.
3584 */
3585 int sqlite3ExprCodeExprList(
3586   Parse *pParse,     /* Parsing context */
3587   ExprList *pList,   /* The expression list to be coded */
3588   int target,        /* Where to write results */
3589   u8 flags           /* SQLITE_ECEL_* flags */
3590 ){
3591   struct ExprList_item *pItem;
3592   int i, n;
3593   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3594   assert( pList!=0 );
3595   assert( target>0 );
3596   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3597   n = pList->nExpr;
3598   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3599   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3600     Expr *pExpr = pItem->pExpr;
3601     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3602       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3603     }else{
3604       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3605       if( inReg!=target+i ){
3606         VdbeOp *pOp;
3607         Vdbe *v = pParse->pVdbe;
3608         if( copyOp==OP_Copy
3609          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3610          && pOp->p1+pOp->p3+1==inReg
3611          && pOp->p2+pOp->p3+1==target+i
3612         ){
3613           pOp->p3++;
3614         }else{
3615           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3616         }
3617       }
3618     }
3619   }
3620   return n;
3621 }
3622 
3623 /*
3624 ** Generate code for a BETWEEN operator.
3625 **
3626 **    x BETWEEN y AND z
3627 **
3628 ** The above is equivalent to
3629 **
3630 **    x>=y AND x<=z
3631 **
3632 ** Code it as such, taking care to do the common subexpression
3633 ** elimination of x.
3634 */
3635 static void exprCodeBetween(
3636   Parse *pParse,    /* Parsing and code generating context */
3637   Expr *pExpr,      /* The BETWEEN expression */
3638   int dest,         /* Jump here if the jump is taken */
3639   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3640   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3641 ){
3642   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3643   Expr compLeft;    /* The  x>=y  term */
3644   Expr compRight;   /* The  x<=z  term */
3645   Expr exprX;       /* The  x  subexpression */
3646   int regFree1 = 0; /* Temporary use register */
3647 
3648   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3649   exprX = *pExpr->pLeft;
3650   exprAnd.op = TK_AND;
3651   exprAnd.pLeft = &compLeft;
3652   exprAnd.pRight = &compRight;
3653   compLeft.op = TK_GE;
3654   compLeft.pLeft = &exprX;
3655   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3656   compRight.op = TK_LE;
3657   compRight.pLeft = &exprX;
3658   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3659   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3660   if( jumpIfTrue ){
3661     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3662   }else{
3663     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3664   }
3665   sqlite3ReleaseTempReg(pParse, regFree1);
3666 
3667   /* Ensure adequate test coverage */
3668   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3669   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3670   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3671   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3672   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3673   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3674   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3675   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3676 }
3677 
3678 /*
3679 ** Generate code for a boolean expression such that a jump is made
3680 ** to the label "dest" if the expression is true but execution
3681 ** continues straight thru if the expression is false.
3682 **
3683 ** If the expression evaluates to NULL (neither true nor false), then
3684 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3685 **
3686 ** This code depends on the fact that certain token values (ex: TK_EQ)
3687 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3688 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3689 ** the make process cause these values to align.  Assert()s in the code
3690 ** below verify that the numbers are aligned correctly.
3691 */
3692 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3693   Vdbe *v = pParse->pVdbe;
3694   int op = 0;
3695   int regFree1 = 0;
3696   int regFree2 = 0;
3697   int r1, r2;
3698 
3699   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3700   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3701   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3702   op = pExpr->op;
3703   switch( op ){
3704     case TK_AND: {
3705       int d2 = sqlite3VdbeMakeLabel(v);
3706       testcase( jumpIfNull==0 );
3707       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3708       sqlite3ExprCachePush(pParse);
3709       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3710       sqlite3VdbeResolveLabel(v, d2);
3711       sqlite3ExprCachePop(pParse);
3712       break;
3713     }
3714     case TK_OR: {
3715       testcase( jumpIfNull==0 );
3716       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3717       sqlite3ExprCachePush(pParse);
3718       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3719       sqlite3ExprCachePop(pParse);
3720       break;
3721     }
3722     case TK_NOT: {
3723       testcase( jumpIfNull==0 );
3724       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3725       break;
3726     }
3727     case TK_LT:
3728     case TK_LE:
3729     case TK_GT:
3730     case TK_GE:
3731     case TK_NE:
3732     case TK_EQ: {
3733       testcase( jumpIfNull==0 );
3734       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3735       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3736       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3737                   r1, r2, dest, jumpIfNull);
3738       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3739       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3740       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3741       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3742       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3743       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3744       testcase( regFree1==0 );
3745       testcase( regFree2==0 );
3746       break;
3747     }
3748     case TK_IS:
3749     case TK_ISNOT: {
3750       testcase( op==TK_IS );
3751       testcase( op==TK_ISNOT );
3752       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3753       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3754       op = (op==TK_IS) ? TK_EQ : TK_NE;
3755       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3756                   r1, r2, dest, SQLITE_NULLEQ);
3757       VdbeCoverageIf(v, op==TK_EQ);
3758       VdbeCoverageIf(v, op==TK_NE);
3759       testcase( regFree1==0 );
3760       testcase( regFree2==0 );
3761       break;
3762     }
3763     case TK_ISNULL:
3764     case TK_NOTNULL: {
3765       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3766       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3767       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3768       sqlite3VdbeAddOp2(v, op, r1, dest);
3769       VdbeCoverageIf(v, op==TK_ISNULL);
3770       VdbeCoverageIf(v, op==TK_NOTNULL);
3771       testcase( regFree1==0 );
3772       break;
3773     }
3774     case TK_BETWEEN: {
3775       testcase( jumpIfNull==0 );
3776       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3777       break;
3778     }
3779 #ifndef SQLITE_OMIT_SUBQUERY
3780     case TK_IN: {
3781       int destIfFalse = sqlite3VdbeMakeLabel(v);
3782       int destIfNull = jumpIfNull ? dest : destIfFalse;
3783       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3784       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3785       sqlite3VdbeResolveLabel(v, destIfFalse);
3786       break;
3787     }
3788 #endif
3789     default: {
3790       if( exprAlwaysTrue(pExpr) ){
3791         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3792       }else if( exprAlwaysFalse(pExpr) ){
3793         /* No-op */
3794       }else{
3795         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3796         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3797         VdbeCoverage(v);
3798         testcase( regFree1==0 );
3799         testcase( jumpIfNull==0 );
3800       }
3801       break;
3802     }
3803   }
3804   sqlite3ReleaseTempReg(pParse, regFree1);
3805   sqlite3ReleaseTempReg(pParse, regFree2);
3806 }
3807 
3808 /*
3809 ** Generate code for a boolean expression such that a jump is made
3810 ** to the label "dest" if the expression is false but execution
3811 ** continues straight thru if the expression is true.
3812 **
3813 ** If the expression evaluates to NULL (neither true nor false) then
3814 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3815 ** is 0.
3816 */
3817 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3818   Vdbe *v = pParse->pVdbe;
3819   int op = 0;
3820   int regFree1 = 0;
3821   int regFree2 = 0;
3822   int r1, r2;
3823 
3824   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3825   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3826   if( pExpr==0 )    return;
3827 
3828   /* The value of pExpr->op and op are related as follows:
3829   **
3830   **       pExpr->op            op
3831   **       ---------          ----------
3832   **       TK_ISNULL          OP_NotNull
3833   **       TK_NOTNULL         OP_IsNull
3834   **       TK_NE              OP_Eq
3835   **       TK_EQ              OP_Ne
3836   **       TK_GT              OP_Le
3837   **       TK_LE              OP_Gt
3838   **       TK_GE              OP_Lt
3839   **       TK_LT              OP_Ge
3840   **
3841   ** For other values of pExpr->op, op is undefined and unused.
3842   ** The value of TK_ and OP_ constants are arranged such that we
3843   ** can compute the mapping above using the following expression.
3844   ** Assert()s verify that the computation is correct.
3845   */
3846   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3847 
3848   /* Verify correct alignment of TK_ and OP_ constants
3849   */
3850   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3851   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3852   assert( pExpr->op!=TK_NE || op==OP_Eq );
3853   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3854   assert( pExpr->op!=TK_LT || op==OP_Ge );
3855   assert( pExpr->op!=TK_LE || op==OP_Gt );
3856   assert( pExpr->op!=TK_GT || op==OP_Le );
3857   assert( pExpr->op!=TK_GE || op==OP_Lt );
3858 
3859   switch( pExpr->op ){
3860     case TK_AND: {
3861       testcase( jumpIfNull==0 );
3862       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3863       sqlite3ExprCachePush(pParse);
3864       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3865       sqlite3ExprCachePop(pParse);
3866       break;
3867     }
3868     case TK_OR: {
3869       int d2 = sqlite3VdbeMakeLabel(v);
3870       testcase( jumpIfNull==0 );
3871       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3872       sqlite3ExprCachePush(pParse);
3873       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3874       sqlite3VdbeResolveLabel(v, d2);
3875       sqlite3ExprCachePop(pParse);
3876       break;
3877     }
3878     case TK_NOT: {
3879       testcase( jumpIfNull==0 );
3880       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3881       break;
3882     }
3883     case TK_LT:
3884     case TK_LE:
3885     case TK_GT:
3886     case TK_GE:
3887     case TK_NE:
3888     case TK_EQ: {
3889       testcase( jumpIfNull==0 );
3890       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3891       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3892       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3893                   r1, r2, dest, jumpIfNull);
3894       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3895       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3896       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3897       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3898       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3899       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3900       testcase( regFree1==0 );
3901       testcase( regFree2==0 );
3902       break;
3903     }
3904     case TK_IS:
3905     case TK_ISNOT: {
3906       testcase( pExpr->op==TK_IS );
3907       testcase( pExpr->op==TK_ISNOT );
3908       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3909       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3910       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3911       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3912                   r1, r2, dest, SQLITE_NULLEQ);
3913       VdbeCoverageIf(v, op==TK_EQ);
3914       VdbeCoverageIf(v, op==TK_NE);
3915       testcase( regFree1==0 );
3916       testcase( regFree2==0 );
3917       break;
3918     }
3919     case TK_ISNULL:
3920     case TK_NOTNULL: {
3921       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3922       sqlite3VdbeAddOp2(v, op, r1, dest);
3923       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3924       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3925       testcase( regFree1==0 );
3926       break;
3927     }
3928     case TK_BETWEEN: {
3929       testcase( jumpIfNull==0 );
3930       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3931       break;
3932     }
3933 #ifndef SQLITE_OMIT_SUBQUERY
3934     case TK_IN: {
3935       if( jumpIfNull ){
3936         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3937       }else{
3938         int destIfNull = sqlite3VdbeMakeLabel(v);
3939         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3940         sqlite3VdbeResolveLabel(v, destIfNull);
3941       }
3942       break;
3943     }
3944 #endif
3945     default: {
3946       if( exprAlwaysFalse(pExpr) ){
3947         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3948       }else if( exprAlwaysTrue(pExpr) ){
3949         /* no-op */
3950       }else{
3951         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3952         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3953         VdbeCoverage(v);
3954         testcase( regFree1==0 );
3955         testcase( jumpIfNull==0 );
3956       }
3957       break;
3958     }
3959   }
3960   sqlite3ReleaseTempReg(pParse, regFree1);
3961   sqlite3ReleaseTempReg(pParse, regFree2);
3962 }
3963 
3964 /*
3965 ** Do a deep comparison of two expression trees.  Return 0 if the two
3966 ** expressions are completely identical.  Return 1 if they differ only
3967 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3968 ** other than the top-level COLLATE operator.
3969 **
3970 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3971 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3972 **
3973 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3974 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3975 **
3976 ** Sometimes this routine will return 2 even if the two expressions
3977 ** really are equivalent.  If we cannot prove that the expressions are
3978 ** identical, we return 2 just to be safe.  So if this routine
3979 ** returns 2, then you do not really know for certain if the two
3980 ** expressions are the same.  But if you get a 0 or 1 return, then you
3981 ** can be sure the expressions are the same.  In the places where
3982 ** this routine is used, it does not hurt to get an extra 2 - that
3983 ** just might result in some slightly slower code.  But returning
3984 ** an incorrect 0 or 1 could lead to a malfunction.
3985 */
3986 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3987   u32 combinedFlags;
3988   if( pA==0 || pB==0 ){
3989     return pB==pA ? 0 : 2;
3990   }
3991   combinedFlags = pA->flags | pB->flags;
3992   if( combinedFlags & EP_IntValue ){
3993     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3994       return 0;
3995     }
3996     return 2;
3997   }
3998   if( pA->op!=pB->op ){
3999     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
4000       return 1;
4001     }
4002     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
4003       return 1;
4004     }
4005     return 2;
4006   }
4007   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
4008     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4009       return pA->op==TK_COLLATE ? 1 : 2;
4010     }
4011   }
4012   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4013   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4014     if( combinedFlags & EP_xIsSelect ) return 2;
4015     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
4016     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
4017     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4018     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
4019       if( pA->iColumn!=pB->iColumn ) return 2;
4020       if( pA->iTable!=pB->iTable
4021        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4022     }
4023   }
4024   return 0;
4025 }
4026 
4027 /*
4028 ** Compare two ExprList objects.  Return 0 if they are identical and
4029 ** non-zero if they differ in any way.
4030 **
4031 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4032 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4033 **
4034 ** This routine might return non-zero for equivalent ExprLists.  The
4035 ** only consequence will be disabled optimizations.  But this routine
4036 ** must never return 0 if the two ExprList objects are different, or
4037 ** a malfunction will result.
4038 **
4039 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4040 ** always differs from a non-NULL pointer.
4041 */
4042 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4043   int i;
4044   if( pA==0 && pB==0 ) return 0;
4045   if( pA==0 || pB==0 ) return 1;
4046   if( pA->nExpr!=pB->nExpr ) return 1;
4047   for(i=0; i<pA->nExpr; i++){
4048     Expr *pExprA = pA->a[i].pExpr;
4049     Expr *pExprB = pB->a[i].pExpr;
4050     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4051     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4052   }
4053   return 0;
4054 }
4055 
4056 /*
4057 ** Return true if we can prove the pE2 will always be true if pE1 is
4058 ** true.  Return false if we cannot complete the proof or if pE2 might
4059 ** be false.  Examples:
4060 **
4061 **     pE1: x==5       pE2: x==5             Result: true
4062 **     pE1: x>0        pE2: x==5             Result: false
4063 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4064 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4065 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4066 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4067 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4068 **
4069 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4070 ** Expr.iTable<0 then assume a table number given by iTab.
4071 **
4072 ** When in doubt, return false.  Returning true might give a performance
4073 ** improvement.  Returning false might cause a performance reduction, but
4074 ** it will always give the correct answer and is hence always safe.
4075 */
4076 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4077   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4078     return 1;
4079   }
4080   if( pE2->op==TK_OR
4081    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4082              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4083   ){
4084     return 1;
4085   }
4086   if( pE2->op==TK_NOTNULL
4087    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4088    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4089   ){
4090     return 1;
4091   }
4092   return 0;
4093 }
4094 
4095 /*
4096 ** An instance of the following structure is used by the tree walker
4097 ** to count references to table columns in the arguments of an
4098 ** aggregate function, in order to implement the
4099 ** sqlite3FunctionThisSrc() routine.
4100 */
4101 struct SrcCount {
4102   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4103   int nThis;       /* Number of references to columns in pSrcList */
4104   int nOther;      /* Number of references to columns in other FROM clauses */
4105 };
4106 
4107 /*
4108 ** Count the number of references to columns.
4109 */
4110 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4111   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4112   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4113   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4114   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4115   ** NEVER() will need to be removed. */
4116   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4117     int i;
4118     struct SrcCount *p = pWalker->u.pSrcCount;
4119     SrcList *pSrc = p->pSrc;
4120     int nSrc = pSrc ? pSrc->nSrc : 0;
4121     for(i=0; i<nSrc; i++){
4122       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4123     }
4124     if( i<nSrc ){
4125       p->nThis++;
4126     }else{
4127       p->nOther++;
4128     }
4129   }
4130   return WRC_Continue;
4131 }
4132 
4133 /*
4134 ** Determine if any of the arguments to the pExpr Function reference
4135 ** pSrcList.  Return true if they do.  Also return true if the function
4136 ** has no arguments or has only constant arguments.  Return false if pExpr
4137 ** references columns but not columns of tables found in pSrcList.
4138 */
4139 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4140   Walker w;
4141   struct SrcCount cnt;
4142   assert( pExpr->op==TK_AGG_FUNCTION );
4143   memset(&w, 0, sizeof(w));
4144   w.xExprCallback = exprSrcCount;
4145   w.u.pSrcCount = &cnt;
4146   cnt.pSrc = pSrcList;
4147   cnt.nThis = 0;
4148   cnt.nOther = 0;
4149   sqlite3WalkExprList(&w, pExpr->x.pList);
4150   return cnt.nThis>0 || cnt.nOther==0;
4151 }
4152 
4153 /*
4154 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4155 ** the new element.  Return a negative number if malloc fails.
4156 */
4157 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4158   int i;
4159   pInfo->aCol = sqlite3ArrayAllocate(
4160        db,
4161        pInfo->aCol,
4162        sizeof(pInfo->aCol[0]),
4163        &pInfo->nColumn,
4164        &i
4165   );
4166   return i;
4167 }
4168 
4169 /*
4170 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4171 ** the new element.  Return a negative number if malloc fails.
4172 */
4173 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4174   int i;
4175   pInfo->aFunc = sqlite3ArrayAllocate(
4176        db,
4177        pInfo->aFunc,
4178        sizeof(pInfo->aFunc[0]),
4179        &pInfo->nFunc,
4180        &i
4181   );
4182   return i;
4183 }
4184 
4185 /*
4186 ** This is the xExprCallback for a tree walker.  It is used to
4187 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4188 ** for additional information.
4189 */
4190 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4191   int i;
4192   NameContext *pNC = pWalker->u.pNC;
4193   Parse *pParse = pNC->pParse;
4194   SrcList *pSrcList = pNC->pSrcList;
4195   AggInfo *pAggInfo = pNC->pAggInfo;
4196 
4197   switch( pExpr->op ){
4198     case TK_AGG_COLUMN:
4199     case TK_COLUMN: {
4200       testcase( pExpr->op==TK_AGG_COLUMN );
4201       testcase( pExpr->op==TK_COLUMN );
4202       /* Check to see if the column is in one of the tables in the FROM
4203       ** clause of the aggregate query */
4204       if( ALWAYS(pSrcList!=0) ){
4205         struct SrcList_item *pItem = pSrcList->a;
4206         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4207           struct AggInfo_col *pCol;
4208           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4209           if( pExpr->iTable==pItem->iCursor ){
4210             /* If we reach this point, it means that pExpr refers to a table
4211             ** that is in the FROM clause of the aggregate query.
4212             **
4213             ** Make an entry for the column in pAggInfo->aCol[] if there
4214             ** is not an entry there already.
4215             */
4216             int k;
4217             pCol = pAggInfo->aCol;
4218             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4219               if( pCol->iTable==pExpr->iTable &&
4220                   pCol->iColumn==pExpr->iColumn ){
4221                 break;
4222               }
4223             }
4224             if( (k>=pAggInfo->nColumn)
4225              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4226             ){
4227               pCol = &pAggInfo->aCol[k];
4228               pCol->pTab = pExpr->pTab;
4229               pCol->iTable = pExpr->iTable;
4230               pCol->iColumn = pExpr->iColumn;
4231               pCol->iMem = ++pParse->nMem;
4232               pCol->iSorterColumn = -1;
4233               pCol->pExpr = pExpr;
4234               if( pAggInfo->pGroupBy ){
4235                 int j, n;
4236                 ExprList *pGB = pAggInfo->pGroupBy;
4237                 struct ExprList_item *pTerm = pGB->a;
4238                 n = pGB->nExpr;
4239                 for(j=0; j<n; j++, pTerm++){
4240                   Expr *pE = pTerm->pExpr;
4241                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4242                       pE->iColumn==pExpr->iColumn ){
4243                     pCol->iSorterColumn = j;
4244                     break;
4245                   }
4246                 }
4247               }
4248               if( pCol->iSorterColumn<0 ){
4249                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4250               }
4251             }
4252             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4253             ** because it was there before or because we just created it).
4254             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4255             ** pAggInfo->aCol[] entry.
4256             */
4257             ExprSetVVAProperty(pExpr, EP_NoReduce);
4258             pExpr->pAggInfo = pAggInfo;
4259             pExpr->op = TK_AGG_COLUMN;
4260             pExpr->iAgg = (i16)k;
4261             break;
4262           } /* endif pExpr->iTable==pItem->iCursor */
4263         } /* end loop over pSrcList */
4264       }
4265       return WRC_Prune;
4266     }
4267     case TK_AGG_FUNCTION: {
4268       if( (pNC->ncFlags & NC_InAggFunc)==0
4269        && pWalker->walkerDepth==pExpr->op2
4270       ){
4271         /* Check to see if pExpr is a duplicate of another aggregate
4272         ** function that is already in the pAggInfo structure
4273         */
4274         struct AggInfo_func *pItem = pAggInfo->aFunc;
4275         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4276           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4277             break;
4278           }
4279         }
4280         if( i>=pAggInfo->nFunc ){
4281           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4282           */
4283           u8 enc = ENC(pParse->db);
4284           i = addAggInfoFunc(pParse->db, pAggInfo);
4285           if( i>=0 ){
4286             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4287             pItem = &pAggInfo->aFunc[i];
4288             pItem->pExpr = pExpr;
4289             pItem->iMem = ++pParse->nMem;
4290             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4291             pItem->pFunc = sqlite3FindFunction(pParse->db,
4292                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4293                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4294             if( pExpr->flags & EP_Distinct ){
4295               pItem->iDistinct = pParse->nTab++;
4296             }else{
4297               pItem->iDistinct = -1;
4298             }
4299           }
4300         }
4301         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4302         */
4303         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4304         ExprSetVVAProperty(pExpr, EP_NoReduce);
4305         pExpr->iAgg = (i16)i;
4306         pExpr->pAggInfo = pAggInfo;
4307         return WRC_Prune;
4308       }else{
4309         return WRC_Continue;
4310       }
4311     }
4312   }
4313   return WRC_Continue;
4314 }
4315 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4316   UNUSED_PARAMETER(pWalker);
4317   UNUSED_PARAMETER(pSelect);
4318   return WRC_Continue;
4319 }
4320 
4321 /*
4322 ** Analyze the pExpr expression looking for aggregate functions and
4323 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4324 ** points to.  Additional entries are made on the AggInfo object as
4325 ** necessary.
4326 **
4327 ** This routine should only be called after the expression has been
4328 ** analyzed by sqlite3ResolveExprNames().
4329 */
4330 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4331   Walker w;
4332   memset(&w, 0, sizeof(w));
4333   w.xExprCallback = analyzeAggregate;
4334   w.xSelectCallback = analyzeAggregatesInSelect;
4335   w.u.pNC = pNC;
4336   assert( pNC->pSrcList!=0 );
4337   sqlite3WalkExpr(&w, pExpr);
4338 }
4339 
4340 /*
4341 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4342 ** expression list.  Return the number of errors.
4343 **
4344 ** If an error is found, the analysis is cut short.
4345 */
4346 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4347   struct ExprList_item *pItem;
4348   int i;
4349   if( pList ){
4350     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4351       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4352     }
4353   }
4354 }
4355 
4356 /*
4357 ** Allocate a single new register for use to hold some intermediate result.
4358 */
4359 int sqlite3GetTempReg(Parse *pParse){
4360   if( pParse->nTempReg==0 ){
4361     return ++pParse->nMem;
4362   }
4363   return pParse->aTempReg[--pParse->nTempReg];
4364 }
4365 
4366 /*
4367 ** Deallocate a register, making available for reuse for some other
4368 ** purpose.
4369 **
4370 ** If a register is currently being used by the column cache, then
4371 ** the deallocation is deferred until the column cache line that uses
4372 ** the register becomes stale.
4373 */
4374 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4375   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4376     int i;
4377     struct yColCache *p;
4378     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4379       if( p->iReg==iReg ){
4380         p->tempReg = 1;
4381         return;
4382       }
4383     }
4384     pParse->aTempReg[pParse->nTempReg++] = iReg;
4385   }
4386 }
4387 
4388 /*
4389 ** Allocate or deallocate a block of nReg consecutive registers
4390 */
4391 int sqlite3GetTempRange(Parse *pParse, int nReg){
4392   int i, n;
4393   i = pParse->iRangeReg;
4394   n = pParse->nRangeReg;
4395   if( nReg<=n ){
4396     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4397     pParse->iRangeReg += nReg;
4398     pParse->nRangeReg -= nReg;
4399   }else{
4400     i = pParse->nMem+1;
4401     pParse->nMem += nReg;
4402   }
4403   return i;
4404 }
4405 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4406   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4407   if( nReg>pParse->nRangeReg ){
4408     pParse->nRangeReg = nReg;
4409     pParse->iRangeReg = iReg;
4410   }
4411 }
4412 
4413 /*
4414 ** Mark all temporary registers as being unavailable for reuse.
4415 */
4416 void sqlite3ClearTempRegCache(Parse *pParse){
4417   pParse->nTempReg = 0;
4418   pParse->nRangeReg = 0;
4419 }
4420