xref: /sqlite-3.40.0/src/expr.c (revision 42829635)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op = pExpr->op;
35   if( op==TK_SELECT ){
36     assert( pExpr->flags&EP_xIsSelect );
37     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38   }
39 #ifndef SQLITE_OMIT_CAST
40   if( op==TK_CAST ){
41     assert( !ExprHasProperty(pExpr, EP_IntValue) );
42     return sqlite3AffinityType(pExpr->u.zToken);
43   }
44 #endif
45   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46    && pExpr->pTab!=0
47   ){
48     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49     ** a TK_COLUMN but was previously evaluated and cached in a register */
50     int j = pExpr->iColumn;
51     if( j<0 ) return SQLITE_AFF_INTEGER;
52     assert( pExpr->pTab && j<pExpr->pTab->nCol );
53     return pExpr->pTab->aCol[j].affinity;
54   }
55   return pExpr->affinity;
56 }
57 
58 /*
59 ** Set the explicit collating sequence for an expression to the
60 ** collating sequence supplied in the second argument.
61 */
62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63   if( pExpr && pColl ){
64     pExpr->pColl = pColl;
65     pExpr->flags |= EP_ExpCollate;
66   }
67   return pExpr;
68 }
69 
70 /*
71 ** Set the collating sequence for expression pExpr to be the collating
72 ** sequence named by pToken.   Return a pointer to the revised expression.
73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
74 ** flag.  An explicit collating sequence will override implicit
75 ** collating sequences.
76 */
77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78   char *zColl = 0;            /* Dequoted name of collation sequence */
79   CollSeq *pColl;
80   sqlite3 *db = pParse->db;
81   zColl = sqlite3NameFromToken(db, pCollName);
82   pColl = sqlite3LocateCollSeq(pParse, zColl);
83   sqlite3ExprSetColl(pExpr, pColl);
84   sqlite3DbFree(db, zColl);
85   return pExpr;
86 }
87 
88 /*
89 ** Return the default collation sequence for the expression pExpr. If
90 ** there is no default collation type, return 0.
91 */
92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93   CollSeq *pColl = 0;
94   Expr *p = pExpr;
95   while( p ){
96     int op;
97     pColl = p->pColl;
98     if( pColl ) break;
99     op = p->op;
100     if( p->pTab!=0 && (
101         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
102     )){
103       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104       ** a TK_COLUMN but was previously evaluated and cached in a register */
105       const char *zColl;
106       int j = p->iColumn;
107       if( j>=0 ){
108         sqlite3 *db = pParse->db;
109         zColl = p->pTab->aCol[j].zColl;
110         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111         pExpr->pColl = pColl;
112       }
113       break;
114     }
115     if( op!=TK_CAST && op!=TK_UPLUS ){
116       break;
117     }
118     p = p->pLeft;
119   }
120   if( sqlite3CheckCollSeq(pParse, pColl) ){
121     pColl = 0;
122   }
123   return pColl;
124 }
125 
126 /*
127 ** pExpr is an operand of a comparison operator.  aff2 is the
128 ** type affinity of the other operand.  This routine returns the
129 ** type affinity that should be used for the comparison operator.
130 */
131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
132   char aff1 = sqlite3ExprAffinity(pExpr);
133   if( aff1 && aff2 ){
134     /* Both sides of the comparison are columns. If one has numeric
135     ** affinity, use that. Otherwise use no affinity.
136     */
137     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138       return SQLITE_AFF_NUMERIC;
139     }else{
140       return SQLITE_AFF_NONE;
141     }
142   }else if( !aff1 && !aff2 ){
143     /* Neither side of the comparison is a column.  Compare the
144     ** results directly.
145     */
146     return SQLITE_AFF_NONE;
147   }else{
148     /* One side is a column, the other is not. Use the columns affinity. */
149     assert( aff1==0 || aff2==0 );
150     return (aff1 + aff2);
151   }
152 }
153 
154 /*
155 ** pExpr is a comparison operator.  Return the type affinity that should
156 ** be applied to both operands prior to doing the comparison.
157 */
158 static char comparisonAffinity(Expr *pExpr){
159   char aff;
160   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163   assert( pExpr->pLeft );
164   aff = sqlite3ExprAffinity(pExpr->pLeft);
165   if( pExpr->pRight ){
166     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169   }else if( !aff ){
170     aff = SQLITE_AFF_NONE;
171   }
172   return aff;
173 }
174 
175 /*
176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177 ** idx_affinity is the affinity of an indexed column. Return true
178 ** if the index with affinity idx_affinity may be used to implement
179 ** the comparison in pExpr.
180 */
181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182   char aff = comparisonAffinity(pExpr);
183   switch( aff ){
184     case SQLITE_AFF_NONE:
185       return 1;
186     case SQLITE_AFF_TEXT:
187       return idx_affinity==SQLITE_AFF_TEXT;
188     default:
189       return sqlite3IsNumericAffinity(idx_affinity);
190   }
191 }
192 
193 /*
194 ** Return the P5 value that should be used for a binary comparison
195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
196 */
197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200   return aff;
201 }
202 
203 /*
204 ** Return a pointer to the collation sequence that should be used by
205 ** a binary comparison operator comparing pLeft and pRight.
206 **
207 ** If the left hand expression has a collating sequence type, then it is
208 ** used. Otherwise the collation sequence for the right hand expression
209 ** is used, or the default (BINARY) if neither expression has a collating
210 ** type.
211 **
212 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
213 ** it is not considered.
214 */
215 CollSeq *sqlite3BinaryCompareCollSeq(
216   Parse *pParse,
217   Expr *pLeft,
218   Expr *pRight
219 ){
220   CollSeq *pColl;
221   assert( pLeft );
222   if( pLeft->flags & EP_ExpCollate ){
223     assert( pLeft->pColl );
224     pColl = pLeft->pColl;
225   }else if( pRight && pRight->flags & EP_ExpCollate ){
226     assert( pRight->pColl );
227     pColl = pRight->pColl;
228   }else{
229     pColl = sqlite3ExprCollSeq(pParse, pLeft);
230     if( !pColl ){
231       pColl = sqlite3ExprCollSeq(pParse, pRight);
232     }
233   }
234   return pColl;
235 }
236 
237 /*
238 ** Generate code for a comparison operator.
239 */
240 static int codeCompare(
241   Parse *pParse,    /* The parsing (and code generating) context */
242   Expr *pLeft,      /* The left operand */
243   Expr *pRight,     /* The right operand */
244   int opcode,       /* The comparison opcode */
245   int in1, int in2, /* Register holding operands */
246   int dest,         /* Jump here if true.  */
247   int jumpIfNull    /* If true, jump if either operand is NULL */
248 ){
249   int p5;
250   int addr;
251   CollSeq *p4;
252 
253   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256                            (void*)p4, P4_COLLSEQ);
257   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258   return addr;
259 }
260 
261 #if SQLITE_MAX_EXPR_DEPTH>0
262 /*
263 ** Check that argument nHeight is less than or equal to the maximum
264 ** expression depth allowed. If it is not, leave an error message in
265 ** pParse.
266 */
267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268   int rc = SQLITE_OK;
269   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270   if( nHeight>mxHeight ){
271     sqlite3ErrorMsg(pParse,
272        "Expression tree is too large (maximum depth %d)", mxHeight
273     );
274     rc = SQLITE_ERROR;
275   }
276   return rc;
277 }
278 
279 /* The following three functions, heightOfExpr(), heightOfExprList()
280 ** and heightOfSelect(), are used to determine the maximum height
281 ** of any expression tree referenced by the structure passed as the
282 ** first argument.
283 **
284 ** If this maximum height is greater than the current value pointed
285 ** to by pnHeight, the second parameter, then set *pnHeight to that
286 ** value.
287 */
288 static void heightOfExpr(Expr *p, int *pnHeight){
289   if( p ){
290     if( p->nHeight>*pnHeight ){
291       *pnHeight = p->nHeight;
292     }
293   }
294 }
295 static void heightOfExprList(ExprList *p, int *pnHeight){
296   if( p ){
297     int i;
298     for(i=0; i<p->nExpr; i++){
299       heightOfExpr(p->a[i].pExpr, pnHeight);
300     }
301   }
302 }
303 static void heightOfSelect(Select *p, int *pnHeight){
304   if( p ){
305     heightOfExpr(p->pWhere, pnHeight);
306     heightOfExpr(p->pHaving, pnHeight);
307     heightOfExpr(p->pLimit, pnHeight);
308     heightOfExpr(p->pOffset, pnHeight);
309     heightOfExprList(p->pEList, pnHeight);
310     heightOfExprList(p->pGroupBy, pnHeight);
311     heightOfExprList(p->pOrderBy, pnHeight);
312     heightOfSelect(p->pPrior, pnHeight);
313   }
314 }
315 
316 /*
317 ** Set the Expr.nHeight variable in the structure passed as an
318 ** argument. An expression with no children, Expr.pList or
319 ** Expr.pSelect member has a height of 1. Any other expression
320 ** has a height equal to the maximum height of any other
321 ** referenced Expr plus one.
322 */
323 static void exprSetHeight(Expr *p){
324   int nHeight = 0;
325   heightOfExpr(p->pLeft, &nHeight);
326   heightOfExpr(p->pRight, &nHeight);
327   if( ExprHasProperty(p, EP_xIsSelect) ){
328     heightOfSelect(p->x.pSelect, &nHeight);
329   }else{
330     heightOfExprList(p->x.pList, &nHeight);
331   }
332   p->nHeight = nHeight + 1;
333 }
334 
335 /*
336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
337 ** the height is greater than the maximum allowed expression depth,
338 ** leave an error in pParse.
339 */
340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341   exprSetHeight(p);
342   sqlite3ExprCheckHeight(pParse, p->nHeight);
343 }
344 
345 /*
346 ** Return the maximum height of any expression tree referenced
347 ** by the select statement passed as an argument.
348 */
349 int sqlite3SelectExprHeight(Select *p){
350   int nHeight = 0;
351   heightOfSelect(p, &nHeight);
352   return nHeight;
353 }
354 #else
355   #define exprSetHeight(y)
356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
357 
358 /*
359 ** This routine is the core allocator for Expr nodes.
360 **
361 ** Construct a new expression node and return a pointer to it.  Memory
362 ** for this node and for the pToken argument is a single allocation
363 ** obtained from sqlite3DbMalloc().  The calling function
364 ** is responsible for making sure the node eventually gets freed.
365 **
366 ** If dequote is true, then the token (if it exists) is dequoted.
367 ** If dequote is false, no dequoting is performance.  The deQuote
368 ** parameter is ignored if pToken is NULL or if the token does not
369 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
370 ** then the EP_DblQuoted flag is set on the expression node.
371 **
372 ** Special case:  If op==TK_INTEGER and pToken points to a string that
373 ** can be translated into a 32-bit integer, then the token is not
374 ** stored in u.zToken.  Instead, the integer values is written
375 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
376 ** is allocated to hold the integer text and the dequote flag is ignored.
377 */
378 Expr *sqlite3ExprAlloc(
379   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
380   int op,                 /* Expression opcode */
381   const Token *pToken,    /* Token argument.  Might be NULL */
382   int dequote             /* True to dequote */
383 ){
384   Expr *pNew;
385   int nExtra = 0;
386   int iValue = 0;
387 
388   if( pToken ){
389     if( op!=TK_INTEGER || pToken->z==0
390           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391       nExtra = pToken->n+1;
392       assert( iValue>=0 );
393     }
394   }
395   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
396   if( pNew ){
397     pNew->op = (u8)op;
398     pNew->iAgg = -1;
399     if( pToken ){
400       if( nExtra==0 ){
401         pNew->flags |= EP_IntValue;
402         pNew->u.iValue = iValue;
403       }else{
404         int c;
405         pNew->u.zToken = (char*)&pNew[1];
406         assert( pToken->z!=0 || pToken->n==0 );
407         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
408         pNew->u.zToken[pToken->n] = 0;
409         if( dequote && nExtra>=3
410              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
411           sqlite3Dequote(pNew->u.zToken);
412           if( c=='"' ) pNew->flags |= EP_DblQuoted;
413         }
414       }
415     }
416 #if SQLITE_MAX_EXPR_DEPTH>0
417     pNew->nHeight = 1;
418 #endif
419   }
420   return pNew;
421 }
422 
423 /*
424 ** Allocate a new expression node from a zero-terminated token that has
425 ** already been dequoted.
426 */
427 Expr *sqlite3Expr(
428   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
429   int op,                 /* Expression opcode */
430   const char *zToken      /* Token argument.  Might be NULL */
431 ){
432   Token x;
433   x.z = zToken;
434   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
435   return sqlite3ExprAlloc(db, op, &x, 0);
436 }
437 
438 /*
439 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
440 **
441 ** If pRoot==NULL that means that a memory allocation error has occurred.
442 ** In that case, delete the subtrees pLeft and pRight.
443 */
444 void sqlite3ExprAttachSubtrees(
445   sqlite3 *db,
446   Expr *pRoot,
447   Expr *pLeft,
448   Expr *pRight
449 ){
450   if( pRoot==0 ){
451     assert( db->mallocFailed );
452     sqlite3ExprDelete(db, pLeft);
453     sqlite3ExprDelete(db, pRight);
454   }else{
455     if( pRight ){
456       pRoot->pRight = pRight;
457       if( pRight->flags & EP_ExpCollate ){
458         pRoot->flags |= EP_ExpCollate;
459         pRoot->pColl = pRight->pColl;
460       }
461     }
462     if( pLeft ){
463       pRoot->pLeft = pLeft;
464       if( pLeft->flags & EP_ExpCollate ){
465         pRoot->flags |= EP_ExpCollate;
466         pRoot->pColl = pLeft->pColl;
467       }
468     }
469     exprSetHeight(pRoot);
470   }
471 }
472 
473 /*
474 ** Allocate a Expr node which joins as many as two subtrees.
475 **
476 ** One or both of the subtrees can be NULL.  Return a pointer to the new
477 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
478 ** free the subtrees and return NULL.
479 */
480 Expr *sqlite3PExpr(
481   Parse *pParse,          /* Parsing context */
482   int op,                 /* Expression opcode */
483   Expr *pLeft,            /* Left operand */
484   Expr *pRight,           /* Right operand */
485   const Token *pToken     /* Argument token */
486 ){
487   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
488   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
489   if( p ) {
490     sqlite3ExprCheckHeight(pParse, p->nHeight);
491   }
492   return p;
493 }
494 
495 /*
496 ** Join two expressions using an AND operator.  If either expression is
497 ** NULL, then just return the other expression.
498 */
499 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
500   if( pLeft==0 ){
501     return pRight;
502   }else if( pRight==0 ){
503     return pLeft;
504   }else{
505     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
506     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
507     return pNew;
508   }
509 }
510 
511 /*
512 ** Construct a new expression node for a function with multiple
513 ** arguments.
514 */
515 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
516   Expr *pNew;
517   sqlite3 *db = pParse->db;
518   assert( pToken );
519   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
520   if( pNew==0 ){
521     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
522     return 0;
523   }
524   pNew->x.pList = pList;
525   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
526   sqlite3ExprSetHeight(pParse, pNew);
527   return pNew;
528 }
529 
530 /*
531 ** Assign a variable number to an expression that encodes a wildcard
532 ** in the original SQL statement.
533 **
534 ** Wildcards consisting of a single "?" are assigned the next sequential
535 ** variable number.
536 **
537 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
538 ** sure "nnn" is not too be to avoid a denial of service attack when
539 ** the SQL statement comes from an external source.
540 **
541 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
542 ** as the previous instance of the same wildcard.  Or if this is the first
543 ** instance of the wildcard, the next sequenial variable number is
544 ** assigned.
545 */
546 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
547   sqlite3 *db = pParse->db;
548   const char *z;
549 
550   if( pExpr==0 ) return;
551   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
552   z = pExpr->u.zToken;
553   assert( z!=0 );
554   assert( z[0]!=0 );
555   if( z[1]==0 ){
556     /* Wildcard of the form "?".  Assign the next variable number */
557     assert( z[0]=='?' );
558     pExpr->iColumn = (ynVar)(++pParse->nVar);
559   }else{
560     ynVar x = 0;
561     u32 n = sqlite3Strlen30(z);
562     if( z[0]=='?' ){
563       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
564       ** use it as the variable number */
565       i64 i;
566       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
567       pExpr->iColumn = x = (ynVar)i;
568       testcase( i==0 );
569       testcase( i==1 );
570       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
571       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
572       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
573         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
574             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
575         x = 0;
576       }
577       if( i>pParse->nVar ){
578         pParse->nVar = (int)i;
579       }
580     }else{
581       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
582       ** number as the prior appearance of the same name, or if the name
583       ** has never appeared before, reuse the same variable number
584       */
585       ynVar i;
586       for(i=0; i<pParse->nzVar; i++){
587         if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){
588           pExpr->iColumn = x = (ynVar)i+1;
589           break;
590         }
591       }
592       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
593     }
594     if( x>0 ){
595       if( x>pParse->nzVar ){
596         char **a;
597         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
598         if( a==0 ) return;  /* Error reported through db->mallocFailed */
599         pParse->azVar = a;
600         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
601         pParse->nzVar = x;
602       }
603       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
604         sqlite3DbFree(db, pParse->azVar[x-1]);
605         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
606       }
607     }
608   }
609   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
610     sqlite3ErrorMsg(pParse, "too many SQL variables");
611   }
612 }
613 
614 /*
615 ** Recursively delete an expression tree.
616 */
617 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
618   if( p==0 ) return;
619   /* Sanity check: Assert that the IntValue is non-negative if it exists */
620   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
621   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
622     sqlite3ExprDelete(db, p->pLeft);
623     sqlite3ExprDelete(db, p->pRight);
624     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
625       sqlite3DbFree(db, p->u.zToken);
626     }
627     if( ExprHasProperty(p, EP_xIsSelect) ){
628       sqlite3SelectDelete(db, p->x.pSelect);
629     }else{
630       sqlite3ExprListDelete(db, p->x.pList);
631     }
632   }
633   if( !ExprHasProperty(p, EP_Static) ){
634     sqlite3DbFree(db, p);
635   }
636 }
637 
638 /*
639 ** Return the number of bytes allocated for the expression structure
640 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
641 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
642 */
643 static int exprStructSize(Expr *p){
644   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
645   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
646   return EXPR_FULLSIZE;
647 }
648 
649 /*
650 ** The dupedExpr*Size() routines each return the number of bytes required
651 ** to store a copy of an expression or expression tree.  They differ in
652 ** how much of the tree is measured.
653 **
654 **     dupedExprStructSize()     Size of only the Expr structure
655 **     dupedExprNodeSize()       Size of Expr + space for token
656 **     dupedExprSize()           Expr + token + subtree components
657 **
658 ***************************************************************************
659 **
660 ** The dupedExprStructSize() function returns two values OR-ed together:
661 ** (1) the space required for a copy of the Expr structure only and
662 ** (2) the EP_xxx flags that indicate what the structure size should be.
663 ** The return values is always one of:
664 **
665 **      EXPR_FULLSIZE
666 **      EXPR_REDUCEDSIZE   | EP_Reduced
667 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
668 **
669 ** The size of the structure can be found by masking the return value
670 ** of this routine with 0xfff.  The flags can be found by masking the
671 ** return value with EP_Reduced|EP_TokenOnly.
672 **
673 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
674 ** (unreduced) Expr objects as they or originally constructed by the parser.
675 ** During expression analysis, extra information is computed and moved into
676 ** later parts of teh Expr object and that extra information might get chopped
677 ** off if the expression is reduced.  Note also that it does not work to
678 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
679 ** to reduce a pristine expression tree from the parser.  The implementation
680 ** of dupedExprStructSize() contain multiple assert() statements that attempt
681 ** to enforce this constraint.
682 */
683 static int dupedExprStructSize(Expr *p, int flags){
684   int nSize;
685   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
686   if( 0==(flags&EXPRDUP_REDUCE) ){
687     nSize = EXPR_FULLSIZE;
688   }else{
689     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
690     assert( !ExprHasProperty(p, EP_FromJoin) );
691     assert( (p->flags2 & EP2_MallocedToken)==0 );
692     assert( (p->flags2 & EP2_Irreducible)==0 );
693     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
694       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
695     }else{
696       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
697     }
698   }
699   return nSize;
700 }
701 
702 /*
703 ** This function returns the space in bytes required to store the copy
704 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
705 ** string is defined.)
706 */
707 static int dupedExprNodeSize(Expr *p, int flags){
708   int nByte = dupedExprStructSize(p, flags) & 0xfff;
709   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
710     nByte += sqlite3Strlen30(p->u.zToken)+1;
711   }
712   return ROUND8(nByte);
713 }
714 
715 /*
716 ** Return the number of bytes required to create a duplicate of the
717 ** expression passed as the first argument. The second argument is a
718 ** mask containing EXPRDUP_XXX flags.
719 **
720 ** The value returned includes space to create a copy of the Expr struct
721 ** itself and the buffer referred to by Expr.u.zToken, if any.
722 **
723 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
724 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
725 ** and Expr.pRight variables (but not for any structures pointed to or
726 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
727 */
728 static int dupedExprSize(Expr *p, int flags){
729   int nByte = 0;
730   if( p ){
731     nByte = dupedExprNodeSize(p, flags);
732     if( flags&EXPRDUP_REDUCE ){
733       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
734     }
735   }
736   return nByte;
737 }
738 
739 /*
740 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
741 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
742 ** to store the copy of expression p, the copies of p->u.zToken
743 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
744 ** if any. Before returning, *pzBuffer is set to the first byte passed the
745 ** portion of the buffer copied into by this function.
746 */
747 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
748   Expr *pNew = 0;                      /* Value to return */
749   if( p ){
750     const int isReduced = (flags&EXPRDUP_REDUCE);
751     u8 *zAlloc;
752     u32 staticFlag = 0;
753 
754     assert( pzBuffer==0 || isReduced );
755 
756     /* Figure out where to write the new Expr structure. */
757     if( pzBuffer ){
758       zAlloc = *pzBuffer;
759       staticFlag = EP_Static;
760     }else{
761       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
762     }
763     pNew = (Expr *)zAlloc;
764 
765     if( pNew ){
766       /* Set nNewSize to the size allocated for the structure pointed to
767       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
768       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
769       ** by the copy of the p->u.zToken string (if any).
770       */
771       const unsigned nStructSize = dupedExprStructSize(p, flags);
772       const int nNewSize = nStructSize & 0xfff;
773       int nToken;
774       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
775         nToken = sqlite3Strlen30(p->u.zToken) + 1;
776       }else{
777         nToken = 0;
778       }
779       if( isReduced ){
780         assert( ExprHasProperty(p, EP_Reduced)==0 );
781         memcpy(zAlloc, p, nNewSize);
782       }else{
783         int nSize = exprStructSize(p);
784         memcpy(zAlloc, p, nSize);
785         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
786       }
787 
788       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
789       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
790       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
791       pNew->flags |= staticFlag;
792 
793       /* Copy the p->u.zToken string, if any. */
794       if( nToken ){
795         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
796         memcpy(zToken, p->u.zToken, nToken);
797       }
798 
799       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
800         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
801         if( ExprHasProperty(p, EP_xIsSelect) ){
802           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
803         }else{
804           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
805         }
806       }
807 
808       /* Fill in pNew->pLeft and pNew->pRight. */
809       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
810         zAlloc += dupedExprNodeSize(p, flags);
811         if( ExprHasProperty(pNew, EP_Reduced) ){
812           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
813           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
814         }
815         if( pzBuffer ){
816           *pzBuffer = zAlloc;
817         }
818       }else{
819         pNew->flags2 = 0;
820         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
821           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
822           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
823         }
824       }
825 
826     }
827   }
828   return pNew;
829 }
830 
831 /*
832 ** The following group of routines make deep copies of expressions,
833 ** expression lists, ID lists, and select statements.  The copies can
834 ** be deleted (by being passed to their respective ...Delete() routines)
835 ** without effecting the originals.
836 **
837 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
838 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
839 ** by subsequent calls to sqlite*ListAppend() routines.
840 **
841 ** Any tables that the SrcList might point to are not duplicated.
842 **
843 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
844 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
845 ** truncated version of the usual Expr structure that will be stored as
846 ** part of the in-memory representation of the database schema.
847 */
848 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
849   return exprDup(db, p, flags, 0);
850 }
851 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
852   ExprList *pNew;
853   struct ExprList_item *pItem, *pOldItem;
854   int i;
855   if( p==0 ) return 0;
856   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
857   if( pNew==0 ) return 0;
858   pNew->iECursor = 0;
859   pNew->nExpr = pNew->nAlloc = p->nExpr;
860   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
861   if( pItem==0 ){
862     sqlite3DbFree(db, pNew);
863     return 0;
864   }
865   pOldItem = p->a;
866   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
867     Expr *pOldExpr = pOldItem->pExpr;
868     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
869     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
870     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
871     pItem->sortOrder = pOldItem->sortOrder;
872     pItem->done = 0;
873     pItem->iOrderByCol = pOldItem->iOrderByCol;
874     pItem->iAlias = pOldItem->iAlias;
875   }
876   return pNew;
877 }
878 
879 /*
880 ** If cursors, triggers, views and subqueries are all omitted from
881 ** the build, then none of the following routines, except for
882 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
883 ** called with a NULL argument.
884 */
885 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
886  || !defined(SQLITE_OMIT_SUBQUERY)
887 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
888   SrcList *pNew;
889   int i;
890   int nByte;
891   if( p==0 ) return 0;
892   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
893   pNew = sqlite3DbMallocRaw(db, nByte );
894   if( pNew==0 ) return 0;
895   pNew->nSrc = pNew->nAlloc = p->nSrc;
896   for(i=0; i<p->nSrc; i++){
897     struct SrcList_item *pNewItem = &pNew->a[i];
898     struct SrcList_item *pOldItem = &p->a[i];
899     Table *pTab;
900     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
901     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
902     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
903     pNewItem->jointype = pOldItem->jointype;
904     pNewItem->iCursor = pOldItem->iCursor;
905     pNewItem->addrFillSub = pOldItem->addrFillSub;
906     pNewItem->regReturn = pOldItem->regReturn;
907     pNewItem->isCorrelated = pOldItem->isCorrelated;
908     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
909     pNewItem->notIndexed = pOldItem->notIndexed;
910     pNewItem->pIndex = pOldItem->pIndex;
911     pTab = pNewItem->pTab = pOldItem->pTab;
912     if( pTab ){
913       pTab->nRef++;
914     }
915     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
916     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
917     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
918     pNewItem->colUsed = pOldItem->colUsed;
919   }
920   return pNew;
921 }
922 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
923   IdList *pNew;
924   int i;
925   if( p==0 ) return 0;
926   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
927   if( pNew==0 ) return 0;
928   pNew->nId = pNew->nAlloc = p->nId;
929   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
930   if( pNew->a==0 ){
931     sqlite3DbFree(db, pNew);
932     return 0;
933   }
934   for(i=0; i<p->nId; i++){
935     struct IdList_item *pNewItem = &pNew->a[i];
936     struct IdList_item *pOldItem = &p->a[i];
937     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
938     pNewItem->idx = pOldItem->idx;
939   }
940   return pNew;
941 }
942 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
943   Select *pNew, *pPrior;
944   if( p==0 ) return 0;
945   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
946   if( pNew==0 ) return 0;
947   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
948   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
949   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
950   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
951   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
952   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
953   pNew->op = p->op;
954   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
955   if( pPrior ) pPrior->pNext = pNew;
956   pNew->pNext = 0;
957   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
958   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
959   pNew->iLimit = 0;
960   pNew->iOffset = 0;
961   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
962   pNew->pRightmost = 0;
963   pNew->addrOpenEphm[0] = -1;
964   pNew->addrOpenEphm[1] = -1;
965   pNew->addrOpenEphm[2] = -1;
966   return pNew;
967 }
968 #else
969 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
970   assert( p==0 );
971   return 0;
972 }
973 #endif
974 
975 
976 /*
977 ** Add a new element to the end of an expression list.  If pList is
978 ** initially NULL, then create a new expression list.
979 **
980 ** If a memory allocation error occurs, the entire list is freed and
981 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
982 ** that the new entry was successfully appended.
983 */
984 ExprList *sqlite3ExprListAppend(
985   Parse *pParse,          /* Parsing context */
986   ExprList *pList,        /* List to which to append. Might be NULL */
987   Expr *pExpr             /* Expression to be appended. Might be NULL */
988 ){
989   sqlite3 *db = pParse->db;
990   if( pList==0 ){
991     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
992     if( pList==0 ){
993       goto no_mem;
994     }
995     assert( pList->nAlloc==0 );
996   }
997   if( pList->nAlloc<=pList->nExpr ){
998     struct ExprList_item *a;
999     int n = pList->nAlloc*2 + 4;
1000     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
1001     if( a==0 ){
1002       goto no_mem;
1003     }
1004     pList->a = a;
1005     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1006   }
1007   assert( pList->a!=0 );
1008   if( 1 ){
1009     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1010     memset(pItem, 0, sizeof(*pItem));
1011     pItem->pExpr = pExpr;
1012   }
1013   return pList;
1014 
1015 no_mem:
1016   /* Avoid leaking memory if malloc has failed. */
1017   sqlite3ExprDelete(db, pExpr);
1018   sqlite3ExprListDelete(db, pList);
1019   return 0;
1020 }
1021 
1022 /*
1023 ** Set the ExprList.a[].zName element of the most recently added item
1024 ** on the expression list.
1025 **
1026 ** pList might be NULL following an OOM error.  But pName should never be
1027 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1028 ** is set.
1029 */
1030 void sqlite3ExprListSetName(
1031   Parse *pParse,          /* Parsing context */
1032   ExprList *pList,        /* List to which to add the span. */
1033   Token *pName,           /* Name to be added */
1034   int dequote             /* True to cause the name to be dequoted */
1035 ){
1036   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1037   if( pList ){
1038     struct ExprList_item *pItem;
1039     assert( pList->nExpr>0 );
1040     pItem = &pList->a[pList->nExpr-1];
1041     assert( pItem->zName==0 );
1042     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1043     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1044   }
1045 }
1046 
1047 /*
1048 ** Set the ExprList.a[].zSpan element of the most recently added item
1049 ** on the expression list.
1050 **
1051 ** pList might be NULL following an OOM error.  But pSpan should never be
1052 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1053 ** is set.
1054 */
1055 void sqlite3ExprListSetSpan(
1056   Parse *pParse,          /* Parsing context */
1057   ExprList *pList,        /* List to which to add the span. */
1058   ExprSpan *pSpan         /* The span to be added */
1059 ){
1060   sqlite3 *db = pParse->db;
1061   assert( pList!=0 || db->mallocFailed!=0 );
1062   if( pList ){
1063     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1064     assert( pList->nExpr>0 );
1065     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1066     sqlite3DbFree(db, pItem->zSpan);
1067     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1068                                     (int)(pSpan->zEnd - pSpan->zStart));
1069   }
1070 }
1071 
1072 /*
1073 ** If the expression list pEList contains more than iLimit elements,
1074 ** leave an error message in pParse.
1075 */
1076 void sqlite3ExprListCheckLength(
1077   Parse *pParse,
1078   ExprList *pEList,
1079   const char *zObject
1080 ){
1081   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1082   testcase( pEList && pEList->nExpr==mx );
1083   testcase( pEList && pEList->nExpr==mx+1 );
1084   if( pEList && pEList->nExpr>mx ){
1085     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1086   }
1087 }
1088 
1089 /*
1090 ** Delete an entire expression list.
1091 */
1092 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1093   int i;
1094   struct ExprList_item *pItem;
1095   if( pList==0 ) return;
1096   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1097   assert( pList->nExpr<=pList->nAlloc );
1098   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1099     sqlite3ExprDelete(db, pItem->pExpr);
1100     sqlite3DbFree(db, pItem->zName);
1101     sqlite3DbFree(db, pItem->zSpan);
1102   }
1103   sqlite3DbFree(db, pList->a);
1104   sqlite3DbFree(db, pList);
1105 }
1106 
1107 /*
1108 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1109 ** to an integer.  These routines are checking an expression to see
1110 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1111 ** not constant.
1112 **
1113 ** These callback routines are used to implement the following:
1114 **
1115 **     sqlite3ExprIsConstant()
1116 **     sqlite3ExprIsConstantNotJoin()
1117 **     sqlite3ExprIsConstantOrFunction()
1118 **
1119 */
1120 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1121 
1122   /* If pWalker->u.i is 3 then any term of the expression that comes from
1123   ** the ON or USING clauses of a join disqualifies the expression
1124   ** from being considered constant. */
1125   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1126     pWalker->u.i = 0;
1127     return WRC_Abort;
1128   }
1129 
1130   switch( pExpr->op ){
1131     /* Consider functions to be constant if all their arguments are constant
1132     ** and pWalker->u.i==2 */
1133     case TK_FUNCTION:
1134       if( pWalker->u.i==2 ) return 0;
1135       /* Fall through */
1136     case TK_ID:
1137     case TK_COLUMN:
1138     case TK_AGG_FUNCTION:
1139     case TK_AGG_COLUMN:
1140       testcase( pExpr->op==TK_ID );
1141       testcase( pExpr->op==TK_COLUMN );
1142       testcase( pExpr->op==TK_AGG_FUNCTION );
1143       testcase( pExpr->op==TK_AGG_COLUMN );
1144       pWalker->u.i = 0;
1145       return WRC_Abort;
1146     default:
1147       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1148       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1149       return WRC_Continue;
1150   }
1151 }
1152 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1153   UNUSED_PARAMETER(NotUsed);
1154   pWalker->u.i = 0;
1155   return WRC_Abort;
1156 }
1157 static int exprIsConst(Expr *p, int initFlag){
1158   Walker w;
1159   w.u.i = initFlag;
1160   w.xExprCallback = exprNodeIsConstant;
1161   w.xSelectCallback = selectNodeIsConstant;
1162   sqlite3WalkExpr(&w, p);
1163   return w.u.i;
1164 }
1165 
1166 /*
1167 ** Walk an expression tree.  Return 1 if the expression is constant
1168 ** and 0 if it involves variables or function calls.
1169 **
1170 ** For the purposes of this function, a double-quoted string (ex: "abc")
1171 ** is considered a variable but a single-quoted string (ex: 'abc') is
1172 ** a constant.
1173 */
1174 int sqlite3ExprIsConstant(Expr *p){
1175   return exprIsConst(p, 1);
1176 }
1177 
1178 /*
1179 ** Walk an expression tree.  Return 1 if the expression is constant
1180 ** that does no originate from the ON or USING clauses of a join.
1181 ** Return 0 if it involves variables or function calls or terms from
1182 ** an ON or USING clause.
1183 */
1184 int sqlite3ExprIsConstantNotJoin(Expr *p){
1185   return exprIsConst(p, 3);
1186 }
1187 
1188 /*
1189 ** Walk an expression tree.  Return 1 if the expression is constant
1190 ** or a function call with constant arguments.  Return and 0 if there
1191 ** are any variables.
1192 **
1193 ** For the purposes of this function, a double-quoted string (ex: "abc")
1194 ** is considered a variable but a single-quoted string (ex: 'abc') is
1195 ** a constant.
1196 */
1197 int sqlite3ExprIsConstantOrFunction(Expr *p){
1198   return exprIsConst(p, 2);
1199 }
1200 
1201 /*
1202 ** If the expression p codes a constant integer that is small enough
1203 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1204 ** in *pValue.  If the expression is not an integer or if it is too big
1205 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1206 */
1207 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1208   int rc = 0;
1209 
1210   /* If an expression is an integer literal that fits in a signed 32-bit
1211   ** integer, then the EP_IntValue flag will have already been set */
1212   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1213            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1214 
1215   if( p->flags & EP_IntValue ){
1216     *pValue = p->u.iValue;
1217     return 1;
1218   }
1219   switch( p->op ){
1220     case TK_UPLUS: {
1221       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1222       break;
1223     }
1224     case TK_UMINUS: {
1225       int v;
1226       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1227         *pValue = -v;
1228         rc = 1;
1229       }
1230       break;
1231     }
1232     default: break;
1233   }
1234   return rc;
1235 }
1236 
1237 /*
1238 ** Return FALSE if there is no chance that the expression can be NULL.
1239 **
1240 ** If the expression might be NULL or if the expression is too complex
1241 ** to tell return TRUE.
1242 **
1243 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1244 ** when we know that a value cannot be NULL.  Hence, a false positive
1245 ** (returning TRUE when in fact the expression can never be NULL) might
1246 ** be a small performance hit but is otherwise harmless.  On the other
1247 ** hand, a false negative (returning FALSE when the result could be NULL)
1248 ** will likely result in an incorrect answer.  So when in doubt, return
1249 ** TRUE.
1250 */
1251 int sqlite3ExprCanBeNull(const Expr *p){
1252   u8 op;
1253   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1254   op = p->op;
1255   if( op==TK_REGISTER ) op = p->op2;
1256   switch( op ){
1257     case TK_INTEGER:
1258     case TK_STRING:
1259     case TK_FLOAT:
1260     case TK_BLOB:
1261       return 0;
1262     default:
1263       return 1;
1264   }
1265 }
1266 
1267 /*
1268 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1269 ** to location iDest if the value in iReg is NULL.  The value in iReg
1270 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1271 ** determine that it can never generate a NULL, then the OP_IsNull operation
1272 ** can be omitted.
1273 */
1274 void sqlite3ExprCodeIsNullJump(
1275   Vdbe *v,            /* The VDBE under construction */
1276   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1277   int iReg,           /* Test the value in this register for NULL */
1278   int iDest           /* Jump here if the value is null */
1279 ){
1280   if( sqlite3ExprCanBeNull(pExpr) ){
1281     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1282   }
1283 }
1284 
1285 /*
1286 ** Return TRUE if the given expression is a constant which would be
1287 ** unchanged by OP_Affinity with the affinity given in the second
1288 ** argument.
1289 **
1290 ** This routine is used to determine if the OP_Affinity operation
1291 ** can be omitted.  When in doubt return FALSE.  A false negative
1292 ** is harmless.  A false positive, however, can result in the wrong
1293 ** answer.
1294 */
1295 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1296   u8 op;
1297   if( aff==SQLITE_AFF_NONE ) return 1;
1298   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1299   op = p->op;
1300   if( op==TK_REGISTER ) op = p->op2;
1301   switch( op ){
1302     case TK_INTEGER: {
1303       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1304     }
1305     case TK_FLOAT: {
1306       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1307     }
1308     case TK_STRING: {
1309       return aff==SQLITE_AFF_TEXT;
1310     }
1311     case TK_BLOB: {
1312       return 1;
1313     }
1314     case TK_COLUMN: {
1315       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1316       return p->iColumn<0
1317           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1318     }
1319     default: {
1320       return 0;
1321     }
1322   }
1323 }
1324 
1325 /*
1326 ** Return TRUE if the given string is a row-id column name.
1327 */
1328 int sqlite3IsRowid(const char *z){
1329   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1330   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1331   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1332   return 0;
1333 }
1334 
1335 /*
1336 ** Return true if we are able to the IN operator optimization on a
1337 ** query of the form
1338 **
1339 **       x IN (SELECT ...)
1340 **
1341 ** Where the SELECT... clause is as specified by the parameter to this
1342 ** routine.
1343 **
1344 ** The Select object passed in has already been preprocessed and no
1345 ** errors have been found.
1346 */
1347 #ifndef SQLITE_OMIT_SUBQUERY
1348 static int isCandidateForInOpt(Select *p){
1349   SrcList *pSrc;
1350   ExprList *pEList;
1351   Table *pTab;
1352   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1353   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1354   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1355     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1356     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1357     return 0; /* No DISTINCT keyword and no aggregate functions */
1358   }
1359   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1360   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1361   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1362   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1363   pSrc = p->pSrc;
1364   assert( pSrc!=0 );
1365   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1366   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1367   pTab = pSrc->a[0].pTab;
1368   if( NEVER(pTab==0) ) return 0;
1369   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1370   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1371   pEList = p->pEList;
1372   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1373   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1374   return 1;
1375 }
1376 #endif /* SQLITE_OMIT_SUBQUERY */
1377 
1378 /*
1379 ** Code an OP_Once instruction and allocate space for its flag. Return the
1380 ** address of the new instruction.
1381 */
1382 int sqlite3CodeOnce(Parse *pParse){
1383   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1384   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1385 }
1386 
1387 /*
1388 ** This function is used by the implementation of the IN (...) operator.
1389 ** It's job is to find or create a b-tree structure that may be used
1390 ** either to test for membership of the (...) set or to iterate through
1391 ** its members, skipping duplicates.
1392 **
1393 ** The index of the cursor opened on the b-tree (database table, database index
1394 ** or ephermal table) is stored in pX->iTable before this function returns.
1395 ** The returned value of this function indicates the b-tree type, as follows:
1396 **
1397 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1398 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1399 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1400 **                    populated epheremal table.
1401 **
1402 ** An existing b-tree may only be used if the SELECT is of the simple
1403 ** form:
1404 **
1405 **     SELECT <column> FROM <table>
1406 **
1407 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1408 ** through the set members, skipping any duplicates. In this case an
1409 ** epheremal table must be used unless the selected <column> is guaranteed
1410 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1411 ** has a UNIQUE constraint or UNIQUE index.
1412 **
1413 ** If the prNotFound parameter is not 0, then the b-tree will be used
1414 ** for fast set membership tests. In this case an epheremal table must
1415 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1416 ** be found with <column> as its left-most column.
1417 **
1418 ** When the b-tree is being used for membership tests, the calling function
1419 ** needs to know whether or not the structure contains an SQL NULL
1420 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1421 ** If there is any chance that the (...) might contain a NULL value at
1422 ** runtime, then a register is allocated and the register number written
1423 ** to *prNotFound. If there is no chance that the (...) contains a
1424 ** NULL value, then *prNotFound is left unchanged.
1425 **
1426 ** If a register is allocated and its location stored in *prNotFound, then
1427 ** its initial value is NULL.  If the (...) does not remain constant
1428 ** for the duration of the query (i.e. the SELECT within the (...)
1429 ** is a correlated subquery) then the value of the allocated register is
1430 ** reset to NULL each time the subquery is rerun. This allows the
1431 ** caller to use vdbe code equivalent to the following:
1432 **
1433 **   if( register==NULL ){
1434 **     has_null = <test if data structure contains null>
1435 **     register = 1
1436 **   }
1437 **
1438 ** in order to avoid running the <test if data structure contains null>
1439 ** test more often than is necessary.
1440 */
1441 #ifndef SQLITE_OMIT_SUBQUERY
1442 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1443   Select *p;                            /* SELECT to the right of IN operator */
1444   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1445   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1446   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1447   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1448 
1449   assert( pX->op==TK_IN );
1450 
1451   /* Check to see if an existing table or index can be used to
1452   ** satisfy the query.  This is preferable to generating a new
1453   ** ephemeral table.
1454   */
1455   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1456   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1457     sqlite3 *db = pParse->db;              /* Database connection */
1458     Table *pTab;                           /* Table <table>. */
1459     Expr *pExpr;                           /* Expression <column> */
1460     int iCol;                              /* Index of column <column> */
1461     int iDb;                               /* Database idx for pTab */
1462 
1463     assert( p );                        /* Because of isCandidateForInOpt(p) */
1464     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1465     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1466     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1467     pTab = p->pSrc->a[0].pTab;
1468     pExpr = p->pEList->a[0].pExpr;
1469     iCol = pExpr->iColumn;
1470 
1471     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1472     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1473     sqlite3CodeVerifySchema(pParse, iDb);
1474     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1475 
1476     /* This function is only called from two places. In both cases the vdbe
1477     ** has already been allocated. So assume sqlite3GetVdbe() is always
1478     ** successful here.
1479     */
1480     assert(v);
1481     if( iCol<0 ){
1482       int iAddr;
1483 
1484       iAddr = sqlite3CodeOnce(pParse);
1485 
1486       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1487       eType = IN_INDEX_ROWID;
1488 
1489       sqlite3VdbeJumpHere(v, iAddr);
1490     }else{
1491       Index *pIdx;                         /* Iterator variable */
1492 
1493       /* The collation sequence used by the comparison. If an index is to
1494       ** be used in place of a temp-table, it must be ordered according
1495       ** to this collation sequence.  */
1496       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1497 
1498       /* Check that the affinity that will be used to perform the
1499       ** comparison is the same as the affinity of the column. If
1500       ** it is not, it is not possible to use any index.
1501       */
1502       char aff = comparisonAffinity(pX);
1503       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1504 
1505       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1506         if( (pIdx->aiColumn[0]==iCol)
1507          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1508          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1509         ){
1510           int iAddr;
1511           char *pKey;
1512 
1513           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1514           iAddr = sqlite3CodeOnce(pParse);
1515 
1516           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1517                                pKey,P4_KEYINFO_HANDOFF);
1518           VdbeComment((v, "%s", pIdx->zName));
1519           eType = IN_INDEX_INDEX;
1520 
1521           sqlite3VdbeJumpHere(v, iAddr);
1522           if( prNotFound && !pTab->aCol[iCol].notNull ){
1523             *prNotFound = ++pParse->nMem;
1524             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1525           }
1526         }
1527       }
1528     }
1529   }
1530 
1531   if( eType==0 ){
1532     /* Could not found an existing table or index to use as the RHS b-tree.
1533     ** We will have to generate an ephemeral table to do the job.
1534     */
1535     double savedNQueryLoop = pParse->nQueryLoop;
1536     int rMayHaveNull = 0;
1537     eType = IN_INDEX_EPH;
1538     if( prNotFound ){
1539       *prNotFound = rMayHaveNull = ++pParse->nMem;
1540       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1541     }else{
1542       testcase( pParse->nQueryLoop>(double)1 );
1543       pParse->nQueryLoop = (double)1;
1544       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1545         eType = IN_INDEX_ROWID;
1546       }
1547     }
1548     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1549     pParse->nQueryLoop = savedNQueryLoop;
1550   }else{
1551     pX->iTable = iTab;
1552   }
1553   return eType;
1554 }
1555 #endif
1556 
1557 /*
1558 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1559 ** or IN operators.  Examples:
1560 **
1561 **     (SELECT a FROM b)          -- subquery
1562 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1563 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1564 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1565 **
1566 ** The pExpr parameter describes the expression that contains the IN
1567 ** operator or subquery.
1568 **
1569 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1570 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1571 ** to some integer key column of a table B-Tree. In this case, use an
1572 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1573 ** (slower) variable length keys B-Tree.
1574 **
1575 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1576 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1577 ** Furthermore, the IN is in a WHERE clause and that we really want
1578 ** to iterate over the RHS of the IN operator in order to quickly locate
1579 ** all corresponding LHS elements.  All this routine does is initialize
1580 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1581 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1582 **
1583 ** If rMayHaveNull is zero, that means that the subquery is being used
1584 ** for membership testing only.  There is no need to initialize any
1585 ** registers to indicate the presense or absence of NULLs on the RHS.
1586 **
1587 ** For a SELECT or EXISTS operator, return the register that holds the
1588 ** result.  For IN operators or if an error occurs, the return value is 0.
1589 */
1590 #ifndef SQLITE_OMIT_SUBQUERY
1591 int sqlite3CodeSubselect(
1592   Parse *pParse,          /* Parsing context */
1593   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1594   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1595   int isRowid             /* If true, LHS of IN operator is a rowid */
1596 ){
1597   int testAddr = -1;                      /* One-time test address */
1598   int rReg = 0;                           /* Register storing resulting */
1599   Vdbe *v = sqlite3GetVdbe(pParse);
1600   if( NEVER(v==0) ) return 0;
1601   sqlite3ExprCachePush(pParse);
1602 
1603   /* This code must be run in its entirety every time it is encountered
1604   ** if any of the following is true:
1605   **
1606   **    *  The right-hand side is a correlated subquery
1607   **    *  The right-hand side is an expression list containing variables
1608   **    *  We are inside a trigger
1609   **
1610   ** If all of the above are false, then we can run this code just once
1611   ** save the results, and reuse the same result on subsequent invocations.
1612   */
1613   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){
1614     testAddr = sqlite3CodeOnce(pParse);
1615   }
1616 
1617 #ifndef SQLITE_OMIT_EXPLAIN
1618   if( pParse->explain==2 ){
1619     char *zMsg = sqlite3MPrintf(
1620         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1621         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1622     );
1623     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1624   }
1625 #endif
1626 
1627   switch( pExpr->op ){
1628     case TK_IN: {
1629       char affinity;              /* Affinity of the LHS of the IN */
1630       KeyInfo keyInfo;            /* Keyinfo for the generated table */
1631       int addr;                   /* Address of OP_OpenEphemeral instruction */
1632       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1633 
1634       if( rMayHaveNull ){
1635         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1636       }
1637 
1638       affinity = sqlite3ExprAffinity(pLeft);
1639 
1640       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1641       ** expression it is handled the same way.  An ephemeral table is
1642       ** filled with single-field index keys representing the results
1643       ** from the SELECT or the <exprlist>.
1644       **
1645       ** If the 'x' expression is a column value, or the SELECT...
1646       ** statement returns a column value, then the affinity of that
1647       ** column is used to build the index keys. If both 'x' and the
1648       ** SELECT... statement are columns, then numeric affinity is used
1649       ** if either column has NUMERIC or INTEGER affinity. If neither
1650       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1651       ** is used.
1652       */
1653       pExpr->iTable = pParse->nTab++;
1654       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1655       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1656       memset(&keyInfo, 0, sizeof(keyInfo));
1657       keyInfo.nField = 1;
1658 
1659       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1660         /* Case 1:     expr IN (SELECT ...)
1661         **
1662         ** Generate code to write the results of the select into the temporary
1663         ** table allocated and opened above.
1664         */
1665         SelectDest dest;
1666         ExprList *pEList;
1667 
1668         assert( !isRowid );
1669         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1670         dest.affinity = (u8)affinity;
1671         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1672         pExpr->x.pSelect->iLimit = 0;
1673         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1674           return 0;
1675         }
1676         pEList = pExpr->x.pSelect->pEList;
1677         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1678           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1679               pEList->a[0].pExpr);
1680         }
1681       }else if( ALWAYS(pExpr->x.pList!=0) ){
1682         /* Case 2:     expr IN (exprlist)
1683         **
1684         ** For each expression, build an index key from the evaluation and
1685         ** store it in the temporary table. If <expr> is a column, then use
1686         ** that columns affinity when building index keys. If <expr> is not
1687         ** a column, use numeric affinity.
1688         */
1689         int i;
1690         ExprList *pList = pExpr->x.pList;
1691         struct ExprList_item *pItem;
1692         int r1, r2, r3;
1693 
1694         if( !affinity ){
1695           affinity = SQLITE_AFF_NONE;
1696         }
1697         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1698 
1699         /* Loop through each expression in <exprlist>. */
1700         r1 = sqlite3GetTempReg(pParse);
1701         r2 = sqlite3GetTempReg(pParse);
1702         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1703         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1704           Expr *pE2 = pItem->pExpr;
1705           int iValToIns;
1706 
1707           /* If the expression is not constant then we will need to
1708           ** disable the test that was generated above that makes sure
1709           ** this code only executes once.  Because for a non-constant
1710           ** expression we need to rerun this code each time.
1711           */
1712           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1713             sqlite3VdbeChangeToNoop(v, testAddr);
1714             testAddr = -1;
1715           }
1716 
1717           /* Evaluate the expression and insert it into the temp table */
1718           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1719             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1720           }else{
1721             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1722             if( isRowid ){
1723               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1724                                 sqlite3VdbeCurrentAddr(v)+2);
1725               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1726             }else{
1727               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1728               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1729               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1730             }
1731           }
1732         }
1733         sqlite3ReleaseTempReg(pParse, r1);
1734         sqlite3ReleaseTempReg(pParse, r2);
1735       }
1736       if( !isRowid ){
1737         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1738       }
1739       break;
1740     }
1741 
1742     case TK_EXISTS:
1743     case TK_SELECT:
1744     default: {
1745       /* If this has to be a scalar SELECT.  Generate code to put the
1746       ** value of this select in a memory cell and record the number
1747       ** of the memory cell in iColumn.  If this is an EXISTS, write
1748       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1749       ** and record that memory cell in iColumn.
1750       */
1751       Select *pSel;                         /* SELECT statement to encode */
1752       SelectDest dest;                      /* How to deal with SELECt result */
1753 
1754       testcase( pExpr->op==TK_EXISTS );
1755       testcase( pExpr->op==TK_SELECT );
1756       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1757 
1758       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1759       pSel = pExpr->x.pSelect;
1760       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1761       if( pExpr->op==TK_SELECT ){
1762         dest.eDest = SRT_Mem;
1763         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1764         VdbeComment((v, "Init subquery result"));
1765       }else{
1766         dest.eDest = SRT_Exists;
1767         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1768         VdbeComment((v, "Init EXISTS result"));
1769       }
1770       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1771       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1772                                   &sqlite3IntTokens[1]);
1773       pSel->iLimit = 0;
1774       if( sqlite3Select(pParse, pSel, &dest) ){
1775         return 0;
1776       }
1777       rReg = dest.iParm;
1778       ExprSetIrreducible(pExpr);
1779       break;
1780     }
1781   }
1782 
1783   if( testAddr>=0 ){
1784     sqlite3VdbeJumpHere(v, testAddr);
1785   }
1786   sqlite3ExprCachePop(pParse, 1);
1787 
1788   return rReg;
1789 }
1790 #endif /* SQLITE_OMIT_SUBQUERY */
1791 
1792 #ifndef SQLITE_OMIT_SUBQUERY
1793 /*
1794 ** Generate code for an IN expression.
1795 **
1796 **      x IN (SELECT ...)
1797 **      x IN (value, value, ...)
1798 **
1799 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1800 ** is an array of zero or more values.  The expression is true if the LHS is
1801 ** contained within the RHS.  The value of the expression is unknown (NULL)
1802 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1803 ** RHS contains one or more NULL values.
1804 **
1805 ** This routine generates code will jump to destIfFalse if the LHS is not
1806 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1807 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1808 ** within the RHS then fall through.
1809 */
1810 static void sqlite3ExprCodeIN(
1811   Parse *pParse,        /* Parsing and code generating context */
1812   Expr *pExpr,          /* The IN expression */
1813   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1814   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1815 ){
1816   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1817   char affinity;        /* Comparison affinity to use */
1818   int eType;            /* Type of the RHS */
1819   int r1;               /* Temporary use register */
1820   Vdbe *v;              /* Statement under construction */
1821 
1822   /* Compute the RHS.   After this step, the table with cursor
1823   ** pExpr->iTable will contains the values that make up the RHS.
1824   */
1825   v = pParse->pVdbe;
1826   assert( v!=0 );       /* OOM detected prior to this routine */
1827   VdbeNoopComment((v, "begin IN expr"));
1828   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1829 
1830   /* Figure out the affinity to use to create a key from the results
1831   ** of the expression. affinityStr stores a static string suitable for
1832   ** P4 of OP_MakeRecord.
1833   */
1834   affinity = comparisonAffinity(pExpr);
1835 
1836   /* Code the LHS, the <expr> from "<expr> IN (...)".
1837   */
1838   sqlite3ExprCachePush(pParse);
1839   r1 = sqlite3GetTempReg(pParse);
1840   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1841 
1842   /* If the LHS is NULL, then the result is either false or NULL depending
1843   ** on whether the RHS is empty or not, respectively.
1844   */
1845   if( destIfNull==destIfFalse ){
1846     /* Shortcut for the common case where the false and NULL outcomes are
1847     ** the same. */
1848     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1849   }else{
1850     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1851     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1852     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1853     sqlite3VdbeJumpHere(v, addr1);
1854   }
1855 
1856   if( eType==IN_INDEX_ROWID ){
1857     /* In this case, the RHS is the ROWID of table b-tree
1858     */
1859     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1860     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1861   }else{
1862     /* In this case, the RHS is an index b-tree.
1863     */
1864     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1865 
1866     /* If the set membership test fails, then the result of the
1867     ** "x IN (...)" expression must be either 0 or NULL. If the set
1868     ** contains no NULL values, then the result is 0. If the set
1869     ** contains one or more NULL values, then the result of the
1870     ** expression is also NULL.
1871     */
1872     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1873       /* This branch runs if it is known at compile time that the RHS
1874       ** cannot contain NULL values. This happens as the result
1875       ** of a "NOT NULL" constraint in the database schema.
1876       **
1877       ** Also run this branch if NULL is equivalent to FALSE
1878       ** for this particular IN operator.
1879       */
1880       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1881 
1882     }else{
1883       /* In this branch, the RHS of the IN might contain a NULL and
1884       ** the presence of a NULL on the RHS makes a difference in the
1885       ** outcome.
1886       */
1887       int j1, j2, j3;
1888 
1889       /* First check to see if the LHS is contained in the RHS.  If so,
1890       ** then the presence of NULLs in the RHS does not matter, so jump
1891       ** over all of the code that follows.
1892       */
1893       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1894 
1895       /* Here we begin generating code that runs if the LHS is not
1896       ** contained within the RHS.  Generate additional code that
1897       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1898       ** jump to destIfNull.  If there are no NULLs in the RHS then
1899       ** jump to destIfFalse.
1900       */
1901       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1902       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1903       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1904       sqlite3VdbeJumpHere(v, j3);
1905       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1906       sqlite3VdbeJumpHere(v, j2);
1907 
1908       /* Jump to the appropriate target depending on whether or not
1909       ** the RHS contains a NULL
1910       */
1911       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1912       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1913 
1914       /* The OP_Found at the top of this branch jumps here when true,
1915       ** causing the overall IN expression evaluation to fall through.
1916       */
1917       sqlite3VdbeJumpHere(v, j1);
1918     }
1919   }
1920   sqlite3ReleaseTempReg(pParse, r1);
1921   sqlite3ExprCachePop(pParse, 1);
1922   VdbeComment((v, "end IN expr"));
1923 }
1924 #endif /* SQLITE_OMIT_SUBQUERY */
1925 
1926 /*
1927 ** Duplicate an 8-byte value
1928 */
1929 static char *dup8bytes(Vdbe *v, const char *in){
1930   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1931   if( out ){
1932     memcpy(out, in, 8);
1933   }
1934   return out;
1935 }
1936 
1937 #ifndef SQLITE_OMIT_FLOATING_POINT
1938 /*
1939 ** Generate an instruction that will put the floating point
1940 ** value described by z[0..n-1] into register iMem.
1941 **
1942 ** The z[] string will probably not be zero-terminated.  But the
1943 ** z[n] character is guaranteed to be something that does not look
1944 ** like the continuation of the number.
1945 */
1946 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1947   if( ALWAYS(z!=0) ){
1948     double value;
1949     char *zV;
1950     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1951     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1952     if( negateFlag ) value = -value;
1953     zV = dup8bytes(v, (char*)&value);
1954     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1955   }
1956 }
1957 #endif
1958 
1959 
1960 /*
1961 ** Generate an instruction that will put the integer describe by
1962 ** text z[0..n-1] into register iMem.
1963 **
1964 ** Expr.u.zToken is always UTF8 and zero-terminated.
1965 */
1966 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1967   Vdbe *v = pParse->pVdbe;
1968   if( pExpr->flags & EP_IntValue ){
1969     int i = pExpr->u.iValue;
1970     assert( i>=0 );
1971     if( negFlag ) i = -i;
1972     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1973   }else{
1974     int c;
1975     i64 value;
1976     const char *z = pExpr->u.zToken;
1977     assert( z!=0 );
1978     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1979     if( c==0 || (c==2 && negFlag) ){
1980       char *zV;
1981       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
1982       zV = dup8bytes(v, (char*)&value);
1983       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1984     }else{
1985 #ifdef SQLITE_OMIT_FLOATING_POINT
1986       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1987 #else
1988       codeReal(v, z, negFlag, iMem);
1989 #endif
1990     }
1991   }
1992 }
1993 
1994 /*
1995 ** Clear a cache entry.
1996 */
1997 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1998   if( p->tempReg ){
1999     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2000       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2001     }
2002     p->tempReg = 0;
2003   }
2004 }
2005 
2006 
2007 /*
2008 ** Record in the column cache that a particular column from a
2009 ** particular table is stored in a particular register.
2010 */
2011 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2012   int i;
2013   int minLru;
2014   int idxLru;
2015   struct yColCache *p;
2016 
2017   assert( iReg>0 );  /* Register numbers are always positive */
2018   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2019 
2020   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2021   ** for testing only - to verify that SQLite always gets the same answer
2022   ** with and without the column cache.
2023   */
2024   if( pParse->db->flags & SQLITE_ColumnCache ) return;
2025 
2026   /* First replace any existing entry.
2027   **
2028   ** Actually, the way the column cache is currently used, we are guaranteed
2029   ** that the object will never already be in cache.  Verify this guarantee.
2030   */
2031 #ifndef NDEBUG
2032   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2033 #if 0 /* This code wold remove the entry from the cache if it existed */
2034     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2035       cacheEntryClear(pParse, p);
2036       p->iLevel = pParse->iCacheLevel;
2037       p->iReg = iReg;
2038       p->lru = pParse->iCacheCnt++;
2039       return;
2040     }
2041 #endif
2042     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2043   }
2044 #endif
2045 
2046   /* Find an empty slot and replace it */
2047   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2048     if( p->iReg==0 ){
2049       p->iLevel = pParse->iCacheLevel;
2050       p->iTable = iTab;
2051       p->iColumn = iCol;
2052       p->iReg = iReg;
2053       p->tempReg = 0;
2054       p->lru = pParse->iCacheCnt++;
2055       return;
2056     }
2057   }
2058 
2059   /* Replace the last recently used */
2060   minLru = 0x7fffffff;
2061   idxLru = -1;
2062   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2063     if( p->lru<minLru ){
2064       idxLru = i;
2065       minLru = p->lru;
2066     }
2067   }
2068   if( ALWAYS(idxLru>=0) ){
2069     p = &pParse->aColCache[idxLru];
2070     p->iLevel = pParse->iCacheLevel;
2071     p->iTable = iTab;
2072     p->iColumn = iCol;
2073     p->iReg = iReg;
2074     p->tempReg = 0;
2075     p->lru = pParse->iCacheCnt++;
2076     return;
2077   }
2078 }
2079 
2080 /*
2081 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2082 ** Purge the range of registers from the column cache.
2083 */
2084 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2085   int i;
2086   int iLast = iReg + nReg - 1;
2087   struct yColCache *p;
2088   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2089     int r = p->iReg;
2090     if( r>=iReg && r<=iLast ){
2091       cacheEntryClear(pParse, p);
2092       p->iReg = 0;
2093     }
2094   }
2095 }
2096 
2097 /*
2098 ** Remember the current column cache context.  Any new entries added
2099 ** added to the column cache after this call are removed when the
2100 ** corresponding pop occurs.
2101 */
2102 void sqlite3ExprCachePush(Parse *pParse){
2103   pParse->iCacheLevel++;
2104 }
2105 
2106 /*
2107 ** Remove from the column cache any entries that were added since the
2108 ** the previous N Push operations.  In other words, restore the cache
2109 ** to the state it was in N Pushes ago.
2110 */
2111 void sqlite3ExprCachePop(Parse *pParse, int N){
2112   int i;
2113   struct yColCache *p;
2114   assert( N>0 );
2115   assert( pParse->iCacheLevel>=N );
2116   pParse->iCacheLevel -= N;
2117   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2118     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2119       cacheEntryClear(pParse, p);
2120       p->iReg = 0;
2121     }
2122   }
2123 }
2124 
2125 /*
2126 ** When a cached column is reused, make sure that its register is
2127 ** no longer available as a temp register.  ticket #3879:  that same
2128 ** register might be in the cache in multiple places, so be sure to
2129 ** get them all.
2130 */
2131 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2132   int i;
2133   struct yColCache *p;
2134   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2135     if( p->iReg==iReg ){
2136       p->tempReg = 0;
2137     }
2138   }
2139 }
2140 
2141 /*
2142 ** Generate code to extract the value of the iCol-th column of a table.
2143 */
2144 void sqlite3ExprCodeGetColumnOfTable(
2145   Vdbe *v,        /* The VDBE under construction */
2146   Table *pTab,    /* The table containing the value */
2147   int iTabCur,    /* The cursor for this table */
2148   int iCol,       /* Index of the column to extract */
2149   int regOut      /* Extract the valud into this register */
2150 ){
2151   if( iCol<0 || iCol==pTab->iPKey ){
2152     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2153   }else{
2154     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2155     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2156   }
2157   if( iCol>=0 ){
2158     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2159   }
2160 }
2161 
2162 /*
2163 ** Generate code that will extract the iColumn-th column from
2164 ** table pTab and store the column value in a register.  An effort
2165 ** is made to store the column value in register iReg, but this is
2166 ** not guaranteed.  The location of the column value is returned.
2167 **
2168 ** There must be an open cursor to pTab in iTable when this routine
2169 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2170 */
2171 int sqlite3ExprCodeGetColumn(
2172   Parse *pParse,   /* Parsing and code generating context */
2173   Table *pTab,     /* Description of the table we are reading from */
2174   int iColumn,     /* Index of the table column */
2175   int iTable,      /* The cursor pointing to the table */
2176   int iReg         /* Store results here */
2177 ){
2178   Vdbe *v = pParse->pVdbe;
2179   int i;
2180   struct yColCache *p;
2181 
2182   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2183     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2184       p->lru = pParse->iCacheCnt++;
2185       sqlite3ExprCachePinRegister(pParse, p->iReg);
2186       return p->iReg;
2187     }
2188   }
2189   assert( v!=0 );
2190   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2191   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2192   return iReg;
2193 }
2194 
2195 /*
2196 ** Clear all column cache entries.
2197 */
2198 void sqlite3ExprCacheClear(Parse *pParse){
2199   int i;
2200   struct yColCache *p;
2201 
2202   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2203     if( p->iReg ){
2204       cacheEntryClear(pParse, p);
2205       p->iReg = 0;
2206     }
2207   }
2208 }
2209 
2210 /*
2211 ** Record the fact that an affinity change has occurred on iCount
2212 ** registers starting with iStart.
2213 */
2214 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2215   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2216 }
2217 
2218 /*
2219 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2220 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2221 */
2222 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2223   int i;
2224   struct yColCache *p;
2225   if( NEVER(iFrom==iTo) ) return;
2226   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2227   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2228     int x = p->iReg;
2229     if( x>=iFrom && x<iFrom+nReg ){
2230       p->iReg += iTo-iFrom;
2231     }
2232   }
2233 }
2234 
2235 /*
2236 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2237 ** over to iTo..iTo+nReg-1.
2238 */
2239 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2240   int i;
2241   if( NEVER(iFrom==iTo) ) return;
2242   for(i=0; i<nReg; i++){
2243     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2244   }
2245 }
2246 
2247 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2248 /*
2249 ** Return true if any register in the range iFrom..iTo (inclusive)
2250 ** is used as part of the column cache.
2251 **
2252 ** This routine is used within assert() and testcase() macros only
2253 ** and does not appear in a normal build.
2254 */
2255 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2256   int i;
2257   struct yColCache *p;
2258   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2259     int r = p->iReg;
2260     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2261   }
2262   return 0;
2263 }
2264 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2265 
2266 /*
2267 ** Generate code into the current Vdbe to evaluate the given
2268 ** expression.  Attempt to store the results in register "target".
2269 ** Return the register where results are stored.
2270 **
2271 ** With this routine, there is no guarantee that results will
2272 ** be stored in target.  The result might be stored in some other
2273 ** register if it is convenient to do so.  The calling function
2274 ** must check the return code and move the results to the desired
2275 ** register.
2276 */
2277 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2278   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2279   int op;                   /* The opcode being coded */
2280   int inReg = target;       /* Results stored in register inReg */
2281   int regFree1 = 0;         /* If non-zero free this temporary register */
2282   int regFree2 = 0;         /* If non-zero free this temporary register */
2283   int r1, r2, r3, r4;       /* Various register numbers */
2284   sqlite3 *db = pParse->db; /* The database connection */
2285 
2286   assert( target>0 && target<=pParse->nMem );
2287   if( v==0 ){
2288     assert( pParse->db->mallocFailed );
2289     return 0;
2290   }
2291 
2292   if( pExpr==0 ){
2293     op = TK_NULL;
2294   }else{
2295     op = pExpr->op;
2296   }
2297   switch( op ){
2298     case TK_AGG_COLUMN: {
2299       AggInfo *pAggInfo = pExpr->pAggInfo;
2300       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2301       if( !pAggInfo->directMode ){
2302         assert( pCol->iMem>0 );
2303         inReg = pCol->iMem;
2304         break;
2305       }else if( pAggInfo->useSortingIdx ){
2306         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2307                               pCol->iSorterColumn, target);
2308         break;
2309       }
2310       /* Otherwise, fall thru into the TK_COLUMN case */
2311     }
2312     case TK_COLUMN: {
2313       if( pExpr->iTable<0 ){
2314         /* This only happens when coding check constraints */
2315         assert( pParse->ckBase>0 );
2316         inReg = pExpr->iColumn + pParse->ckBase;
2317       }else{
2318         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2319                                  pExpr->iColumn, pExpr->iTable, target);
2320       }
2321       break;
2322     }
2323     case TK_INTEGER: {
2324       codeInteger(pParse, pExpr, 0, target);
2325       break;
2326     }
2327 #ifndef SQLITE_OMIT_FLOATING_POINT
2328     case TK_FLOAT: {
2329       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2330       codeReal(v, pExpr->u.zToken, 0, target);
2331       break;
2332     }
2333 #endif
2334     case TK_STRING: {
2335       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2336       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2337       break;
2338     }
2339     case TK_NULL: {
2340       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2341       break;
2342     }
2343 #ifndef SQLITE_OMIT_BLOB_LITERAL
2344     case TK_BLOB: {
2345       int n;
2346       const char *z;
2347       char *zBlob;
2348       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2349       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2350       assert( pExpr->u.zToken[1]=='\'' );
2351       z = &pExpr->u.zToken[2];
2352       n = sqlite3Strlen30(z) - 1;
2353       assert( z[n]=='\'' );
2354       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2355       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2356       break;
2357     }
2358 #endif
2359     case TK_VARIABLE: {
2360       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2361       assert( pExpr->u.zToken!=0 );
2362       assert( pExpr->u.zToken[0]!=0 );
2363       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2364       if( pExpr->u.zToken[1]!=0 ){
2365         assert( pExpr->u.zToken[0]=='?'
2366              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2367         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2368       }
2369       break;
2370     }
2371     case TK_REGISTER: {
2372       inReg = pExpr->iTable;
2373       break;
2374     }
2375     case TK_AS: {
2376       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2377       break;
2378     }
2379 #ifndef SQLITE_OMIT_CAST
2380     case TK_CAST: {
2381       /* Expressions of the form:   CAST(pLeft AS token) */
2382       int aff, to_op;
2383       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2384       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2385       aff = sqlite3AffinityType(pExpr->u.zToken);
2386       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2387       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2388       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2389       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2390       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2391       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2392       testcase( to_op==OP_ToText );
2393       testcase( to_op==OP_ToBlob );
2394       testcase( to_op==OP_ToNumeric );
2395       testcase( to_op==OP_ToInt );
2396       testcase( to_op==OP_ToReal );
2397       if( inReg!=target ){
2398         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2399         inReg = target;
2400       }
2401       sqlite3VdbeAddOp1(v, to_op, inReg);
2402       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2403       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2404       break;
2405     }
2406 #endif /* SQLITE_OMIT_CAST */
2407     case TK_LT:
2408     case TK_LE:
2409     case TK_GT:
2410     case TK_GE:
2411     case TK_NE:
2412     case TK_EQ: {
2413       assert( TK_LT==OP_Lt );
2414       assert( TK_LE==OP_Le );
2415       assert( TK_GT==OP_Gt );
2416       assert( TK_GE==OP_Ge );
2417       assert( TK_EQ==OP_Eq );
2418       assert( TK_NE==OP_Ne );
2419       testcase( op==TK_LT );
2420       testcase( op==TK_LE );
2421       testcase( op==TK_GT );
2422       testcase( op==TK_GE );
2423       testcase( op==TK_EQ );
2424       testcase( op==TK_NE );
2425       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2426       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2427       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2428                   r1, r2, inReg, SQLITE_STOREP2);
2429       testcase( regFree1==0 );
2430       testcase( regFree2==0 );
2431       break;
2432     }
2433     case TK_IS:
2434     case TK_ISNOT: {
2435       testcase( op==TK_IS );
2436       testcase( op==TK_ISNOT );
2437       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2438       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2439       op = (op==TK_IS) ? TK_EQ : TK_NE;
2440       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2441                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2442       testcase( regFree1==0 );
2443       testcase( regFree2==0 );
2444       break;
2445     }
2446     case TK_AND:
2447     case TK_OR:
2448     case TK_PLUS:
2449     case TK_STAR:
2450     case TK_MINUS:
2451     case TK_REM:
2452     case TK_BITAND:
2453     case TK_BITOR:
2454     case TK_SLASH:
2455     case TK_LSHIFT:
2456     case TK_RSHIFT:
2457     case TK_CONCAT: {
2458       assert( TK_AND==OP_And );
2459       assert( TK_OR==OP_Or );
2460       assert( TK_PLUS==OP_Add );
2461       assert( TK_MINUS==OP_Subtract );
2462       assert( TK_REM==OP_Remainder );
2463       assert( TK_BITAND==OP_BitAnd );
2464       assert( TK_BITOR==OP_BitOr );
2465       assert( TK_SLASH==OP_Divide );
2466       assert( TK_LSHIFT==OP_ShiftLeft );
2467       assert( TK_RSHIFT==OP_ShiftRight );
2468       assert( TK_CONCAT==OP_Concat );
2469       testcase( op==TK_AND );
2470       testcase( op==TK_OR );
2471       testcase( op==TK_PLUS );
2472       testcase( op==TK_MINUS );
2473       testcase( op==TK_REM );
2474       testcase( op==TK_BITAND );
2475       testcase( op==TK_BITOR );
2476       testcase( op==TK_SLASH );
2477       testcase( op==TK_LSHIFT );
2478       testcase( op==TK_RSHIFT );
2479       testcase( op==TK_CONCAT );
2480       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2481       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2482       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2483       testcase( regFree1==0 );
2484       testcase( regFree2==0 );
2485       break;
2486     }
2487     case TK_UMINUS: {
2488       Expr *pLeft = pExpr->pLeft;
2489       assert( pLeft );
2490       if( pLeft->op==TK_INTEGER ){
2491         codeInteger(pParse, pLeft, 1, target);
2492 #ifndef SQLITE_OMIT_FLOATING_POINT
2493       }else if( pLeft->op==TK_FLOAT ){
2494         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2495         codeReal(v, pLeft->u.zToken, 1, target);
2496 #endif
2497       }else{
2498         regFree1 = r1 = sqlite3GetTempReg(pParse);
2499         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2500         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2501         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2502         testcase( regFree2==0 );
2503       }
2504       inReg = target;
2505       break;
2506     }
2507     case TK_BITNOT:
2508     case TK_NOT: {
2509       assert( TK_BITNOT==OP_BitNot );
2510       assert( TK_NOT==OP_Not );
2511       testcase( op==TK_BITNOT );
2512       testcase( op==TK_NOT );
2513       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2514       testcase( regFree1==0 );
2515       inReg = target;
2516       sqlite3VdbeAddOp2(v, op, r1, inReg);
2517       break;
2518     }
2519     case TK_ISNULL:
2520     case TK_NOTNULL: {
2521       int addr;
2522       assert( TK_ISNULL==OP_IsNull );
2523       assert( TK_NOTNULL==OP_NotNull );
2524       testcase( op==TK_ISNULL );
2525       testcase( op==TK_NOTNULL );
2526       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2527       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2528       testcase( regFree1==0 );
2529       addr = sqlite3VdbeAddOp1(v, op, r1);
2530       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2531       sqlite3VdbeJumpHere(v, addr);
2532       break;
2533     }
2534     case TK_AGG_FUNCTION: {
2535       AggInfo *pInfo = pExpr->pAggInfo;
2536       if( pInfo==0 ){
2537         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2538         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2539       }else{
2540         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2541       }
2542       break;
2543     }
2544     case TK_CONST_FUNC:
2545     case TK_FUNCTION: {
2546       ExprList *pFarg;       /* List of function arguments */
2547       int nFarg;             /* Number of function arguments */
2548       FuncDef *pDef;         /* The function definition object */
2549       int nId;               /* Length of the function name in bytes */
2550       const char *zId;       /* The function name */
2551       int constMask = 0;     /* Mask of function arguments that are constant */
2552       int i;                 /* Loop counter */
2553       u8 enc = ENC(db);      /* The text encoding used by this database */
2554       CollSeq *pColl = 0;    /* A collating sequence */
2555 
2556       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2557       testcase( op==TK_CONST_FUNC );
2558       testcase( op==TK_FUNCTION );
2559       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2560         pFarg = 0;
2561       }else{
2562         pFarg = pExpr->x.pList;
2563       }
2564       nFarg = pFarg ? pFarg->nExpr : 0;
2565       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2566       zId = pExpr->u.zToken;
2567       nId = sqlite3Strlen30(zId);
2568       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2569       if( pDef==0 ){
2570         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2571         break;
2572       }
2573 
2574       /* Attempt a direct implementation of the built-in COALESCE() and
2575       ** IFNULL() functions.  This avoids unnecessary evalation of
2576       ** arguments past the first non-NULL argument.
2577       */
2578       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2579         int endCoalesce = sqlite3VdbeMakeLabel(v);
2580         assert( nFarg>=2 );
2581         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2582         for(i=1; i<nFarg; i++){
2583           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2584           sqlite3ExprCacheRemove(pParse, target, 1);
2585           sqlite3ExprCachePush(pParse);
2586           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2587           sqlite3ExprCachePop(pParse, 1);
2588         }
2589         sqlite3VdbeResolveLabel(v, endCoalesce);
2590         break;
2591       }
2592 
2593 
2594       if( pFarg ){
2595         r1 = sqlite3GetTempRange(pParse, nFarg);
2596         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2597         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2598         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2599       }else{
2600         r1 = 0;
2601       }
2602 #ifndef SQLITE_OMIT_VIRTUALTABLE
2603       /* Possibly overload the function if the first argument is
2604       ** a virtual table column.
2605       **
2606       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2607       ** second argument, not the first, as the argument to test to
2608       ** see if it is a column in a virtual table.  This is done because
2609       ** the left operand of infix functions (the operand we want to
2610       ** control overloading) ends up as the second argument to the
2611       ** function.  The expression "A glob B" is equivalent to
2612       ** "glob(B,A).  We want to use the A in "A glob B" to test
2613       ** for function overloading.  But we use the B term in "glob(B,A)".
2614       */
2615       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2616         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2617       }else if( nFarg>0 ){
2618         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2619       }
2620 #endif
2621       for(i=0; i<nFarg; i++){
2622         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2623           constMask |= (1<<i);
2624         }
2625         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2626           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2627         }
2628       }
2629       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2630         if( !pColl ) pColl = db->pDfltColl;
2631         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2632       }
2633       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2634                         (char*)pDef, P4_FUNCDEF);
2635       sqlite3VdbeChangeP5(v, (u8)nFarg);
2636       if( nFarg ){
2637         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2638       }
2639       break;
2640     }
2641 #ifndef SQLITE_OMIT_SUBQUERY
2642     case TK_EXISTS:
2643     case TK_SELECT: {
2644       testcase( op==TK_EXISTS );
2645       testcase( op==TK_SELECT );
2646       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2647       break;
2648     }
2649     case TK_IN: {
2650       int destIfFalse = sqlite3VdbeMakeLabel(v);
2651       int destIfNull = sqlite3VdbeMakeLabel(v);
2652       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2653       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2654       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2655       sqlite3VdbeResolveLabel(v, destIfFalse);
2656       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2657       sqlite3VdbeResolveLabel(v, destIfNull);
2658       break;
2659     }
2660 #endif /* SQLITE_OMIT_SUBQUERY */
2661 
2662 
2663     /*
2664     **    x BETWEEN y AND z
2665     **
2666     ** This is equivalent to
2667     **
2668     **    x>=y AND x<=z
2669     **
2670     ** X is stored in pExpr->pLeft.
2671     ** Y is stored in pExpr->pList->a[0].pExpr.
2672     ** Z is stored in pExpr->pList->a[1].pExpr.
2673     */
2674     case TK_BETWEEN: {
2675       Expr *pLeft = pExpr->pLeft;
2676       struct ExprList_item *pLItem = pExpr->x.pList->a;
2677       Expr *pRight = pLItem->pExpr;
2678 
2679       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2680       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2681       testcase( regFree1==0 );
2682       testcase( regFree2==0 );
2683       r3 = sqlite3GetTempReg(pParse);
2684       r4 = sqlite3GetTempReg(pParse);
2685       codeCompare(pParse, pLeft, pRight, OP_Ge,
2686                   r1, r2, r3, SQLITE_STOREP2);
2687       pLItem++;
2688       pRight = pLItem->pExpr;
2689       sqlite3ReleaseTempReg(pParse, regFree2);
2690       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2691       testcase( regFree2==0 );
2692       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2693       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2694       sqlite3ReleaseTempReg(pParse, r3);
2695       sqlite3ReleaseTempReg(pParse, r4);
2696       break;
2697     }
2698     case TK_UPLUS: {
2699       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2700       break;
2701     }
2702 
2703     case TK_TRIGGER: {
2704       /* If the opcode is TK_TRIGGER, then the expression is a reference
2705       ** to a column in the new.* or old.* pseudo-tables available to
2706       ** trigger programs. In this case Expr.iTable is set to 1 for the
2707       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2708       ** is set to the column of the pseudo-table to read, or to -1 to
2709       ** read the rowid field.
2710       **
2711       ** The expression is implemented using an OP_Param opcode. The p1
2712       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2713       ** to reference another column of the old.* pseudo-table, where
2714       ** i is the index of the column. For a new.rowid reference, p1 is
2715       ** set to (n+1), where n is the number of columns in each pseudo-table.
2716       ** For a reference to any other column in the new.* pseudo-table, p1
2717       ** is set to (n+2+i), where n and i are as defined previously. For
2718       ** example, if the table on which triggers are being fired is
2719       ** declared as:
2720       **
2721       **   CREATE TABLE t1(a, b);
2722       **
2723       ** Then p1 is interpreted as follows:
2724       **
2725       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2726       **   p1==1   ->    old.a         p1==4   ->    new.a
2727       **   p1==2   ->    old.b         p1==5   ->    new.b
2728       */
2729       Table *pTab = pExpr->pTab;
2730       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2731 
2732       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2733       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2734       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2735       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2736 
2737       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2738       VdbeComment((v, "%s.%s -> $%d",
2739         (pExpr->iTable ? "new" : "old"),
2740         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2741         target
2742       ));
2743 
2744 #ifndef SQLITE_OMIT_FLOATING_POINT
2745       /* If the column has REAL affinity, it may currently be stored as an
2746       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2747       if( pExpr->iColumn>=0
2748        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2749       ){
2750         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2751       }
2752 #endif
2753       break;
2754     }
2755 
2756 
2757     /*
2758     ** Form A:
2759     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2760     **
2761     ** Form B:
2762     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2763     **
2764     ** Form A is can be transformed into the equivalent form B as follows:
2765     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2766     **        WHEN x=eN THEN rN ELSE y END
2767     **
2768     ** X (if it exists) is in pExpr->pLeft.
2769     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2770     ** ELSE clause and no other term matches, then the result of the
2771     ** exprssion is NULL.
2772     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2773     **
2774     ** The result of the expression is the Ri for the first matching Ei,
2775     ** or if there is no matching Ei, the ELSE term Y, or if there is
2776     ** no ELSE term, NULL.
2777     */
2778     default: assert( op==TK_CASE ); {
2779       int endLabel;                     /* GOTO label for end of CASE stmt */
2780       int nextCase;                     /* GOTO label for next WHEN clause */
2781       int nExpr;                        /* 2x number of WHEN terms */
2782       int i;                            /* Loop counter */
2783       ExprList *pEList;                 /* List of WHEN terms */
2784       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2785       Expr opCompare;                   /* The X==Ei expression */
2786       Expr cacheX;                      /* Cached expression X */
2787       Expr *pX;                         /* The X expression */
2788       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2789       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2790 
2791       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2792       assert((pExpr->x.pList->nExpr % 2) == 0);
2793       assert(pExpr->x.pList->nExpr > 0);
2794       pEList = pExpr->x.pList;
2795       aListelem = pEList->a;
2796       nExpr = pEList->nExpr;
2797       endLabel = sqlite3VdbeMakeLabel(v);
2798       if( (pX = pExpr->pLeft)!=0 ){
2799         cacheX = *pX;
2800         testcase( pX->op==TK_COLUMN );
2801         testcase( pX->op==TK_REGISTER );
2802         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2803         testcase( regFree1==0 );
2804         cacheX.op = TK_REGISTER;
2805         opCompare.op = TK_EQ;
2806         opCompare.pLeft = &cacheX;
2807         pTest = &opCompare;
2808         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2809         ** The value in regFree1 might get SCopy-ed into the file result.
2810         ** So make sure that the regFree1 register is not reused for other
2811         ** purposes and possibly overwritten.  */
2812         regFree1 = 0;
2813       }
2814       for(i=0; i<nExpr; i=i+2){
2815         sqlite3ExprCachePush(pParse);
2816         if( pX ){
2817           assert( pTest!=0 );
2818           opCompare.pRight = aListelem[i].pExpr;
2819         }else{
2820           pTest = aListelem[i].pExpr;
2821         }
2822         nextCase = sqlite3VdbeMakeLabel(v);
2823         testcase( pTest->op==TK_COLUMN );
2824         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2825         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2826         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2827         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2828         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2829         sqlite3ExprCachePop(pParse, 1);
2830         sqlite3VdbeResolveLabel(v, nextCase);
2831       }
2832       if( pExpr->pRight ){
2833         sqlite3ExprCachePush(pParse);
2834         sqlite3ExprCode(pParse, pExpr->pRight, target);
2835         sqlite3ExprCachePop(pParse, 1);
2836       }else{
2837         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2838       }
2839       assert( db->mallocFailed || pParse->nErr>0
2840            || pParse->iCacheLevel==iCacheLevel );
2841       sqlite3VdbeResolveLabel(v, endLabel);
2842       break;
2843     }
2844 #ifndef SQLITE_OMIT_TRIGGER
2845     case TK_RAISE: {
2846       assert( pExpr->affinity==OE_Rollback
2847            || pExpr->affinity==OE_Abort
2848            || pExpr->affinity==OE_Fail
2849            || pExpr->affinity==OE_Ignore
2850       );
2851       if( !pParse->pTriggerTab ){
2852         sqlite3ErrorMsg(pParse,
2853                        "RAISE() may only be used within a trigger-program");
2854         return 0;
2855       }
2856       if( pExpr->affinity==OE_Abort ){
2857         sqlite3MayAbort(pParse);
2858       }
2859       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2860       if( pExpr->affinity==OE_Ignore ){
2861         sqlite3VdbeAddOp4(
2862             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2863       }else{
2864         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2865       }
2866 
2867       break;
2868     }
2869 #endif
2870   }
2871   sqlite3ReleaseTempReg(pParse, regFree1);
2872   sqlite3ReleaseTempReg(pParse, regFree2);
2873   return inReg;
2874 }
2875 
2876 /*
2877 ** Generate code to evaluate an expression and store the results
2878 ** into a register.  Return the register number where the results
2879 ** are stored.
2880 **
2881 ** If the register is a temporary register that can be deallocated,
2882 ** then write its number into *pReg.  If the result register is not
2883 ** a temporary, then set *pReg to zero.
2884 */
2885 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2886   int r1 = sqlite3GetTempReg(pParse);
2887   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2888   if( r2==r1 ){
2889     *pReg = r1;
2890   }else{
2891     sqlite3ReleaseTempReg(pParse, r1);
2892     *pReg = 0;
2893   }
2894   return r2;
2895 }
2896 
2897 /*
2898 ** Generate code that will evaluate expression pExpr and store the
2899 ** results in register target.  The results are guaranteed to appear
2900 ** in register target.
2901 */
2902 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2903   int inReg;
2904 
2905   assert( target>0 && target<=pParse->nMem );
2906   if( pExpr && pExpr->op==TK_REGISTER ){
2907     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2908   }else{
2909     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2910     assert( pParse->pVdbe || pParse->db->mallocFailed );
2911     if( inReg!=target && pParse->pVdbe ){
2912       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2913     }
2914   }
2915   return target;
2916 }
2917 
2918 /*
2919 ** Generate code that evalutes the given expression and puts the result
2920 ** in register target.
2921 **
2922 ** Also make a copy of the expression results into another "cache" register
2923 ** and modify the expression so that the next time it is evaluated,
2924 ** the result is a copy of the cache register.
2925 **
2926 ** This routine is used for expressions that are used multiple
2927 ** times.  They are evaluated once and the results of the expression
2928 ** are reused.
2929 */
2930 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2931   Vdbe *v = pParse->pVdbe;
2932   int inReg;
2933   inReg = sqlite3ExprCode(pParse, pExpr, target);
2934   assert( target>0 );
2935   /* This routine is called for terms to INSERT or UPDATE.  And the only
2936   ** other place where expressions can be converted into TK_REGISTER is
2937   ** in WHERE clause processing.  So as currently implemented, there is
2938   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2939   ** keep the ALWAYS() in case the conditions above change with future
2940   ** modifications or enhancements. */
2941   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2942     int iMem;
2943     iMem = ++pParse->nMem;
2944     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2945     pExpr->iTable = iMem;
2946     pExpr->op2 = pExpr->op;
2947     pExpr->op = TK_REGISTER;
2948   }
2949   return inReg;
2950 }
2951 
2952 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
2953 /*
2954 ** Generate a human-readable explanation of an expression tree.
2955 */
2956 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
2957   int op;                   /* The opcode being coded */
2958   const char *zBinOp = 0;   /* Binary operator */
2959   const char *zUniOp = 0;   /* Unary operator */
2960   if( pExpr==0 ){
2961     op = TK_NULL;
2962   }else{
2963     op = pExpr->op;
2964   }
2965   switch( op ){
2966     case TK_AGG_COLUMN: {
2967       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
2968             pExpr->iTable, pExpr->iColumn);
2969       break;
2970     }
2971     case TK_COLUMN: {
2972       if( pExpr->iTable<0 ){
2973         /* This only happens when coding check constraints */
2974         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
2975       }else{
2976         sqlite3ExplainPrintf(pOut, "{%d:%d}",
2977                              pExpr->iTable, pExpr->iColumn);
2978       }
2979       break;
2980     }
2981     case TK_INTEGER: {
2982       if( pExpr->flags & EP_IntValue ){
2983         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
2984       }else{
2985         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
2986       }
2987       break;
2988     }
2989 #ifndef SQLITE_OMIT_FLOATING_POINT
2990     case TK_FLOAT: {
2991       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
2992       break;
2993     }
2994 #endif
2995     case TK_STRING: {
2996       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
2997       break;
2998     }
2999     case TK_NULL: {
3000       sqlite3ExplainPrintf(pOut,"NULL");
3001       break;
3002     }
3003 #ifndef SQLITE_OMIT_BLOB_LITERAL
3004     case TK_BLOB: {
3005       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3006       break;
3007     }
3008 #endif
3009     case TK_VARIABLE: {
3010       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3011                            pExpr->u.zToken, pExpr->iColumn);
3012       break;
3013     }
3014     case TK_REGISTER: {
3015       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3016       break;
3017     }
3018     case TK_AS: {
3019       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3020       break;
3021     }
3022 #ifndef SQLITE_OMIT_CAST
3023     case TK_CAST: {
3024       /* Expressions of the form:   CAST(pLeft AS token) */
3025       const char *zAff = "unk";
3026       switch( sqlite3AffinityType(pExpr->u.zToken) ){
3027         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3028         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3029         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3030         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3031         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3032       }
3033       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3034       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3035       sqlite3ExplainPrintf(pOut, ")");
3036       break;
3037     }
3038 #endif /* SQLITE_OMIT_CAST */
3039     case TK_LT:      zBinOp = "LT";     break;
3040     case TK_LE:      zBinOp = "LE";     break;
3041     case TK_GT:      zBinOp = "GT";     break;
3042     case TK_GE:      zBinOp = "GE";     break;
3043     case TK_NE:      zBinOp = "NE";     break;
3044     case TK_EQ:      zBinOp = "EQ";     break;
3045     case TK_IS:      zBinOp = "IS";     break;
3046     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3047     case TK_AND:     zBinOp = "AND";    break;
3048     case TK_OR:      zBinOp = "OR";     break;
3049     case TK_PLUS:    zBinOp = "ADD";    break;
3050     case TK_STAR:    zBinOp = "MUL";    break;
3051     case TK_MINUS:   zBinOp = "SUB";    break;
3052     case TK_REM:     zBinOp = "REM";    break;
3053     case TK_BITAND:  zBinOp = "BITAND"; break;
3054     case TK_BITOR:   zBinOp = "BITOR";  break;
3055     case TK_SLASH:   zBinOp = "DIV";    break;
3056     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3057     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3058     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3059 
3060     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3061     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3062     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3063     case TK_NOT:     zUniOp = "NOT";    break;
3064     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3065     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3066 
3067     case TK_AGG_FUNCTION:
3068     case TK_CONST_FUNC:
3069     case TK_FUNCTION: {
3070       ExprList *pFarg;       /* List of function arguments */
3071       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
3072         pFarg = 0;
3073       }else{
3074         pFarg = pExpr->x.pList;
3075       }
3076       sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(",
3077                            op==TK_AGG_FUNCTION ? "AGG_" : "",
3078                            pExpr->u.zToken);
3079       if( pFarg ){
3080         sqlite3ExplainExprList(pOut, pFarg);
3081       }
3082       sqlite3ExplainPrintf(pOut, ")");
3083       break;
3084     }
3085 #ifndef SQLITE_OMIT_SUBQUERY
3086     case TK_EXISTS: {
3087       sqlite3ExplainPrintf(pOut, "EXISTS(");
3088       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3089       sqlite3ExplainPrintf(pOut,")");
3090       break;
3091     }
3092     case TK_SELECT: {
3093       sqlite3ExplainPrintf(pOut, "(");
3094       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3095       sqlite3ExplainPrintf(pOut, ")");
3096       break;
3097     }
3098     case TK_IN: {
3099       sqlite3ExplainPrintf(pOut, "IN(");
3100       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3101       sqlite3ExplainPrintf(pOut, ",");
3102       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3103         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3104       }else{
3105         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3106       }
3107       sqlite3ExplainPrintf(pOut, ")");
3108       break;
3109     }
3110 #endif /* SQLITE_OMIT_SUBQUERY */
3111 
3112     /*
3113     **    x BETWEEN y AND z
3114     **
3115     ** This is equivalent to
3116     **
3117     **    x>=y AND x<=z
3118     **
3119     ** X is stored in pExpr->pLeft.
3120     ** Y is stored in pExpr->pList->a[0].pExpr.
3121     ** Z is stored in pExpr->pList->a[1].pExpr.
3122     */
3123     case TK_BETWEEN: {
3124       Expr *pX = pExpr->pLeft;
3125       Expr *pY = pExpr->x.pList->a[0].pExpr;
3126       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3127       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3128       sqlite3ExplainExpr(pOut, pX);
3129       sqlite3ExplainPrintf(pOut, ",");
3130       sqlite3ExplainExpr(pOut, pY);
3131       sqlite3ExplainPrintf(pOut, ",");
3132       sqlite3ExplainExpr(pOut, pZ);
3133       sqlite3ExplainPrintf(pOut, ")");
3134       break;
3135     }
3136     case TK_TRIGGER: {
3137       /* If the opcode is TK_TRIGGER, then the expression is a reference
3138       ** to a column in the new.* or old.* pseudo-tables available to
3139       ** trigger programs. In this case Expr.iTable is set to 1 for the
3140       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3141       ** is set to the column of the pseudo-table to read, or to -1 to
3142       ** read the rowid field.
3143       */
3144       sqlite3ExplainPrintf(pOut, "%s(%d)",
3145           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3146       break;
3147     }
3148     case TK_CASE: {
3149       sqlite3ExplainPrintf(pOut, "CASE(");
3150       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3151       sqlite3ExplainPrintf(pOut, ",");
3152       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3153       break;
3154     }
3155 #ifndef SQLITE_OMIT_TRIGGER
3156     case TK_RAISE: {
3157       const char *zType = "unk";
3158       switch( pExpr->affinity ){
3159         case OE_Rollback:   zType = "rollback";  break;
3160         case OE_Abort:      zType = "abort";     break;
3161         case OE_Fail:       zType = "fail";      break;
3162         case OE_Ignore:     zType = "ignore";    break;
3163       }
3164       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3165       break;
3166     }
3167 #endif
3168   }
3169   if( zBinOp ){
3170     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3171     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3172     sqlite3ExplainPrintf(pOut,",");
3173     sqlite3ExplainExpr(pOut, pExpr->pRight);
3174     sqlite3ExplainPrintf(pOut,")");
3175   }else if( zUniOp ){
3176     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3177     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3178     sqlite3ExplainPrintf(pOut,")");
3179   }
3180 }
3181 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3182 
3183 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3184 /*
3185 ** Generate a human-readable explanation of an expression list.
3186 */
3187 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3188   int i;
3189   if( pList==0 || pList->nExpr==0 ){
3190     sqlite3ExplainPrintf(pOut, "(empty-list)");
3191     return;
3192   }else if( pList->nExpr==1 ){
3193     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3194   }else{
3195     sqlite3ExplainPush(pOut);
3196     for(i=0; i<pList->nExpr; i++){
3197       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3198       sqlite3ExplainPush(pOut);
3199       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3200       sqlite3ExplainPop(pOut);
3201       if( i<pList->nExpr-1 ){
3202         sqlite3ExplainNL(pOut);
3203       }
3204     }
3205     sqlite3ExplainPop(pOut);
3206   }
3207 }
3208 #endif /* SQLITE_DEBUG */
3209 
3210 /*
3211 ** Return TRUE if pExpr is an constant expression that is appropriate
3212 ** for factoring out of a loop.  Appropriate expressions are:
3213 **
3214 **    *  Any expression that evaluates to two or more opcodes.
3215 **
3216 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
3217 **       or OP_Variable that does not need to be placed in a
3218 **       specific register.
3219 **
3220 ** There is no point in factoring out single-instruction constant
3221 ** expressions that need to be placed in a particular register.
3222 ** We could factor them out, but then we would end up adding an
3223 ** OP_SCopy instruction to move the value into the correct register
3224 ** later.  We might as well just use the original instruction and
3225 ** avoid the OP_SCopy.
3226 */
3227 static int isAppropriateForFactoring(Expr *p){
3228   if( !sqlite3ExprIsConstantNotJoin(p) ){
3229     return 0;  /* Only constant expressions are appropriate for factoring */
3230   }
3231   if( (p->flags & EP_FixedDest)==0 ){
3232     return 1;  /* Any constant without a fixed destination is appropriate */
3233   }
3234   while( p->op==TK_UPLUS ) p = p->pLeft;
3235   switch( p->op ){
3236 #ifndef SQLITE_OMIT_BLOB_LITERAL
3237     case TK_BLOB:
3238 #endif
3239     case TK_VARIABLE:
3240     case TK_INTEGER:
3241     case TK_FLOAT:
3242     case TK_NULL:
3243     case TK_STRING: {
3244       testcase( p->op==TK_BLOB );
3245       testcase( p->op==TK_VARIABLE );
3246       testcase( p->op==TK_INTEGER );
3247       testcase( p->op==TK_FLOAT );
3248       testcase( p->op==TK_NULL );
3249       testcase( p->op==TK_STRING );
3250       /* Single-instruction constants with a fixed destination are
3251       ** better done in-line.  If we factor them, they will just end
3252       ** up generating an OP_SCopy to move the value to the destination
3253       ** register. */
3254       return 0;
3255     }
3256     case TK_UMINUS: {
3257       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3258         return 0;
3259       }
3260       break;
3261     }
3262     default: {
3263       break;
3264     }
3265   }
3266   return 1;
3267 }
3268 
3269 /*
3270 ** If pExpr is a constant expression that is appropriate for
3271 ** factoring out of a loop, then evaluate the expression
3272 ** into a register and convert the expression into a TK_REGISTER
3273 ** expression.
3274 */
3275 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3276   Parse *pParse = pWalker->pParse;
3277   switch( pExpr->op ){
3278     case TK_IN:
3279     case TK_REGISTER: {
3280       return WRC_Prune;
3281     }
3282     case TK_FUNCTION:
3283     case TK_AGG_FUNCTION:
3284     case TK_CONST_FUNC: {
3285       /* The arguments to a function have a fixed destination.
3286       ** Mark them this way to avoid generated unneeded OP_SCopy
3287       ** instructions.
3288       */
3289       ExprList *pList = pExpr->x.pList;
3290       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3291       if( pList ){
3292         int i = pList->nExpr;
3293         struct ExprList_item *pItem = pList->a;
3294         for(; i>0; i--, pItem++){
3295           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3296         }
3297       }
3298       break;
3299     }
3300   }
3301   if( isAppropriateForFactoring(pExpr) ){
3302     int r1 = ++pParse->nMem;
3303     int r2;
3304     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3305     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3306     pExpr->op2 = pExpr->op;
3307     pExpr->op = TK_REGISTER;
3308     pExpr->iTable = r2;
3309     return WRC_Prune;
3310   }
3311   return WRC_Continue;
3312 }
3313 
3314 /*
3315 ** Preevaluate constant subexpressions within pExpr and store the
3316 ** results in registers.  Modify pExpr so that the constant subexpresions
3317 ** are TK_REGISTER opcodes that refer to the precomputed values.
3318 **
3319 ** This routine is a no-op if the jump to the cookie-check code has
3320 ** already occur.  Since the cookie-check jump is generated prior to
3321 ** any other serious processing, this check ensures that there is no
3322 ** way to accidently bypass the constant initializations.
3323 **
3324 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3325 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3326 ** interface.  This allows test logic to verify that the same answer is
3327 ** obtained for queries regardless of whether or not constants are
3328 ** precomputed into registers or if they are inserted in-line.
3329 */
3330 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3331   Walker w;
3332   if( pParse->cookieGoto ) return;
3333   if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
3334   w.xExprCallback = evalConstExpr;
3335   w.xSelectCallback = 0;
3336   w.pParse = pParse;
3337   sqlite3WalkExpr(&w, pExpr);
3338 }
3339 
3340 
3341 /*
3342 ** Generate code that pushes the value of every element of the given
3343 ** expression list into a sequence of registers beginning at target.
3344 **
3345 ** Return the number of elements evaluated.
3346 */
3347 int sqlite3ExprCodeExprList(
3348   Parse *pParse,     /* Parsing context */
3349   ExprList *pList,   /* The expression list to be coded */
3350   int target,        /* Where to write results */
3351   int doHardCopy     /* Make a hard copy of every element */
3352 ){
3353   struct ExprList_item *pItem;
3354   int i, n;
3355   assert( pList!=0 );
3356   assert( target>0 );
3357   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3358   n = pList->nExpr;
3359   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3360     Expr *pExpr = pItem->pExpr;
3361     int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3362     if( inReg!=target+i ){
3363       sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3364                         inReg, target+i);
3365     }
3366   }
3367   return n;
3368 }
3369 
3370 /*
3371 ** Generate code for a BETWEEN operator.
3372 **
3373 **    x BETWEEN y AND z
3374 **
3375 ** The above is equivalent to
3376 **
3377 **    x>=y AND x<=z
3378 **
3379 ** Code it as such, taking care to do the common subexpression
3380 ** elementation of x.
3381 */
3382 static void exprCodeBetween(
3383   Parse *pParse,    /* Parsing and code generating context */
3384   Expr *pExpr,      /* The BETWEEN expression */
3385   int dest,         /* Jump here if the jump is taken */
3386   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3387   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3388 ){
3389   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3390   Expr compLeft;    /* The  x>=y  term */
3391   Expr compRight;   /* The  x<=z  term */
3392   Expr exprX;       /* The  x  subexpression */
3393   int regFree1 = 0; /* Temporary use register */
3394 
3395   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3396   exprX = *pExpr->pLeft;
3397   exprAnd.op = TK_AND;
3398   exprAnd.pLeft = &compLeft;
3399   exprAnd.pRight = &compRight;
3400   compLeft.op = TK_GE;
3401   compLeft.pLeft = &exprX;
3402   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3403   compRight.op = TK_LE;
3404   compRight.pLeft = &exprX;
3405   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3406   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3407   exprX.op = TK_REGISTER;
3408   if( jumpIfTrue ){
3409     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3410   }else{
3411     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3412   }
3413   sqlite3ReleaseTempReg(pParse, regFree1);
3414 
3415   /* Ensure adequate test coverage */
3416   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3417   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3418   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3419   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3420   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3421   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3422   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3423   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3424 }
3425 
3426 /*
3427 ** Generate code for a boolean expression such that a jump is made
3428 ** to the label "dest" if the expression is true but execution
3429 ** continues straight thru if the expression is false.
3430 **
3431 ** If the expression evaluates to NULL (neither true nor false), then
3432 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3433 **
3434 ** This code depends on the fact that certain token values (ex: TK_EQ)
3435 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3436 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3437 ** the make process cause these values to align.  Assert()s in the code
3438 ** below verify that the numbers are aligned correctly.
3439 */
3440 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3441   Vdbe *v = pParse->pVdbe;
3442   int op = 0;
3443   int regFree1 = 0;
3444   int regFree2 = 0;
3445   int r1, r2;
3446 
3447   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3448   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3449   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3450   op = pExpr->op;
3451   switch( op ){
3452     case TK_AND: {
3453       int d2 = sqlite3VdbeMakeLabel(v);
3454       testcase( jumpIfNull==0 );
3455       sqlite3ExprCachePush(pParse);
3456       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3457       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3458       sqlite3VdbeResolveLabel(v, d2);
3459       sqlite3ExprCachePop(pParse, 1);
3460       break;
3461     }
3462     case TK_OR: {
3463       testcase( jumpIfNull==0 );
3464       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3465       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3466       break;
3467     }
3468     case TK_NOT: {
3469       testcase( jumpIfNull==0 );
3470       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3471       break;
3472     }
3473     case TK_LT:
3474     case TK_LE:
3475     case TK_GT:
3476     case TK_GE:
3477     case TK_NE:
3478     case TK_EQ: {
3479       assert( TK_LT==OP_Lt );
3480       assert( TK_LE==OP_Le );
3481       assert( TK_GT==OP_Gt );
3482       assert( TK_GE==OP_Ge );
3483       assert( TK_EQ==OP_Eq );
3484       assert( TK_NE==OP_Ne );
3485       testcase( op==TK_LT );
3486       testcase( op==TK_LE );
3487       testcase( op==TK_GT );
3488       testcase( op==TK_GE );
3489       testcase( op==TK_EQ );
3490       testcase( op==TK_NE );
3491       testcase( jumpIfNull==0 );
3492       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3493       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3494       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3495                   r1, r2, dest, jumpIfNull);
3496       testcase( regFree1==0 );
3497       testcase( regFree2==0 );
3498       break;
3499     }
3500     case TK_IS:
3501     case TK_ISNOT: {
3502       testcase( op==TK_IS );
3503       testcase( op==TK_ISNOT );
3504       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3505       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3506       op = (op==TK_IS) ? TK_EQ : TK_NE;
3507       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3508                   r1, r2, dest, SQLITE_NULLEQ);
3509       testcase( regFree1==0 );
3510       testcase( regFree2==0 );
3511       break;
3512     }
3513     case TK_ISNULL:
3514     case TK_NOTNULL: {
3515       assert( TK_ISNULL==OP_IsNull );
3516       assert( TK_NOTNULL==OP_NotNull );
3517       testcase( op==TK_ISNULL );
3518       testcase( op==TK_NOTNULL );
3519       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3520       sqlite3VdbeAddOp2(v, op, r1, dest);
3521       testcase( regFree1==0 );
3522       break;
3523     }
3524     case TK_BETWEEN: {
3525       testcase( jumpIfNull==0 );
3526       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3527       break;
3528     }
3529 #ifndef SQLITE_OMIT_SUBQUERY
3530     case TK_IN: {
3531       int destIfFalse = sqlite3VdbeMakeLabel(v);
3532       int destIfNull = jumpIfNull ? dest : destIfFalse;
3533       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3534       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3535       sqlite3VdbeResolveLabel(v, destIfFalse);
3536       break;
3537     }
3538 #endif
3539     default: {
3540       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3541       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3542       testcase( regFree1==0 );
3543       testcase( jumpIfNull==0 );
3544       break;
3545     }
3546   }
3547   sqlite3ReleaseTempReg(pParse, regFree1);
3548   sqlite3ReleaseTempReg(pParse, regFree2);
3549 }
3550 
3551 /*
3552 ** Generate code for a boolean expression such that a jump is made
3553 ** to the label "dest" if the expression is false but execution
3554 ** continues straight thru if the expression is true.
3555 **
3556 ** If the expression evaluates to NULL (neither true nor false) then
3557 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3558 ** is 0.
3559 */
3560 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3561   Vdbe *v = pParse->pVdbe;
3562   int op = 0;
3563   int regFree1 = 0;
3564   int regFree2 = 0;
3565   int r1, r2;
3566 
3567   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3568   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3569   if( pExpr==0 )    return;
3570 
3571   /* The value of pExpr->op and op are related as follows:
3572   **
3573   **       pExpr->op            op
3574   **       ---------          ----------
3575   **       TK_ISNULL          OP_NotNull
3576   **       TK_NOTNULL         OP_IsNull
3577   **       TK_NE              OP_Eq
3578   **       TK_EQ              OP_Ne
3579   **       TK_GT              OP_Le
3580   **       TK_LE              OP_Gt
3581   **       TK_GE              OP_Lt
3582   **       TK_LT              OP_Ge
3583   **
3584   ** For other values of pExpr->op, op is undefined and unused.
3585   ** The value of TK_ and OP_ constants are arranged such that we
3586   ** can compute the mapping above using the following expression.
3587   ** Assert()s verify that the computation is correct.
3588   */
3589   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3590 
3591   /* Verify correct alignment of TK_ and OP_ constants
3592   */
3593   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3594   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3595   assert( pExpr->op!=TK_NE || op==OP_Eq );
3596   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3597   assert( pExpr->op!=TK_LT || op==OP_Ge );
3598   assert( pExpr->op!=TK_LE || op==OP_Gt );
3599   assert( pExpr->op!=TK_GT || op==OP_Le );
3600   assert( pExpr->op!=TK_GE || op==OP_Lt );
3601 
3602   switch( pExpr->op ){
3603     case TK_AND: {
3604       testcase( jumpIfNull==0 );
3605       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3606       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3607       break;
3608     }
3609     case TK_OR: {
3610       int d2 = sqlite3VdbeMakeLabel(v);
3611       testcase( jumpIfNull==0 );
3612       sqlite3ExprCachePush(pParse);
3613       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3614       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3615       sqlite3VdbeResolveLabel(v, d2);
3616       sqlite3ExprCachePop(pParse, 1);
3617       break;
3618     }
3619     case TK_NOT: {
3620       testcase( jumpIfNull==0 );
3621       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3622       break;
3623     }
3624     case TK_LT:
3625     case TK_LE:
3626     case TK_GT:
3627     case TK_GE:
3628     case TK_NE:
3629     case TK_EQ: {
3630       testcase( op==TK_LT );
3631       testcase( op==TK_LE );
3632       testcase( op==TK_GT );
3633       testcase( op==TK_GE );
3634       testcase( op==TK_EQ );
3635       testcase( op==TK_NE );
3636       testcase( jumpIfNull==0 );
3637       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3638       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3639       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3640                   r1, r2, dest, jumpIfNull);
3641       testcase( regFree1==0 );
3642       testcase( regFree2==0 );
3643       break;
3644     }
3645     case TK_IS:
3646     case TK_ISNOT: {
3647       testcase( pExpr->op==TK_IS );
3648       testcase( pExpr->op==TK_ISNOT );
3649       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3650       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3651       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3652       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3653                   r1, r2, dest, SQLITE_NULLEQ);
3654       testcase( regFree1==0 );
3655       testcase( regFree2==0 );
3656       break;
3657     }
3658     case TK_ISNULL:
3659     case TK_NOTNULL: {
3660       testcase( op==TK_ISNULL );
3661       testcase( op==TK_NOTNULL );
3662       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3663       sqlite3VdbeAddOp2(v, op, r1, dest);
3664       testcase( regFree1==0 );
3665       break;
3666     }
3667     case TK_BETWEEN: {
3668       testcase( jumpIfNull==0 );
3669       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3670       break;
3671     }
3672 #ifndef SQLITE_OMIT_SUBQUERY
3673     case TK_IN: {
3674       if( jumpIfNull ){
3675         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3676       }else{
3677         int destIfNull = sqlite3VdbeMakeLabel(v);
3678         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3679         sqlite3VdbeResolveLabel(v, destIfNull);
3680       }
3681       break;
3682     }
3683 #endif
3684     default: {
3685       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3686       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3687       testcase( regFree1==0 );
3688       testcase( jumpIfNull==0 );
3689       break;
3690     }
3691   }
3692   sqlite3ReleaseTempReg(pParse, regFree1);
3693   sqlite3ReleaseTempReg(pParse, regFree2);
3694 }
3695 
3696 /*
3697 ** Do a deep comparison of two expression trees.  Return 0 if the two
3698 ** expressions are completely identical.  Return 1 if they differ only
3699 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3700 ** other than the top-level COLLATE operator.
3701 **
3702 ** Sometimes this routine will return 2 even if the two expressions
3703 ** really are equivalent.  If we cannot prove that the expressions are
3704 ** identical, we return 2 just to be safe.  So if this routine
3705 ** returns 2, then you do not really know for certain if the two
3706 ** expressions are the same.  But if you get a 0 or 1 return, then you
3707 ** can be sure the expressions are the same.  In the places where
3708 ** this routine is used, it does not hurt to get an extra 2 - that
3709 ** just might result in some slightly slower code.  But returning
3710 ** an incorrect 0 or 1 could lead to a malfunction.
3711 */
3712 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3713   if( pA==0||pB==0 ){
3714     return pB==pA ? 0 : 2;
3715   }
3716   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3717   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3718   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3719     return 2;
3720   }
3721   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3722   if( pA->op!=pB->op ) return 2;
3723   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3724   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3725   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3726   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3727   if( ExprHasProperty(pA, EP_IntValue) ){
3728     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3729       return 2;
3730     }
3731   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3732     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3733     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3734       return 2;
3735     }
3736   }
3737   if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3738   if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3739   return 0;
3740 }
3741 
3742 /*
3743 ** Compare two ExprList objects.  Return 0 if they are identical and
3744 ** non-zero if they differ in any way.
3745 **
3746 ** This routine might return non-zero for equivalent ExprLists.  The
3747 ** only consequence will be disabled optimizations.  But this routine
3748 ** must never return 0 if the two ExprList objects are different, or
3749 ** a malfunction will result.
3750 **
3751 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3752 ** always differs from a non-NULL pointer.
3753 */
3754 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3755   int i;
3756   if( pA==0 && pB==0 ) return 0;
3757   if( pA==0 || pB==0 ) return 1;
3758   if( pA->nExpr!=pB->nExpr ) return 1;
3759   for(i=0; i<pA->nExpr; i++){
3760     Expr *pExprA = pA->a[i].pExpr;
3761     Expr *pExprB = pB->a[i].pExpr;
3762     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3763     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3764   }
3765   return 0;
3766 }
3767 
3768 /*
3769 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3770 ** the new element.  Return a negative number if malloc fails.
3771 */
3772 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3773   int i;
3774   pInfo->aCol = sqlite3ArrayAllocate(
3775        db,
3776        pInfo->aCol,
3777        sizeof(pInfo->aCol[0]),
3778        3,
3779        &pInfo->nColumn,
3780        &pInfo->nColumnAlloc,
3781        &i
3782   );
3783   return i;
3784 }
3785 
3786 /*
3787 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3788 ** the new element.  Return a negative number if malloc fails.
3789 */
3790 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3791   int i;
3792   pInfo->aFunc = sqlite3ArrayAllocate(
3793        db,
3794        pInfo->aFunc,
3795        sizeof(pInfo->aFunc[0]),
3796        3,
3797        &pInfo->nFunc,
3798        &pInfo->nFuncAlloc,
3799        &i
3800   );
3801   return i;
3802 }
3803 
3804 /*
3805 ** This is the xExprCallback for a tree walker.  It is used to
3806 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3807 ** for additional information.
3808 */
3809 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3810   int i;
3811   NameContext *pNC = pWalker->u.pNC;
3812   Parse *pParse = pNC->pParse;
3813   SrcList *pSrcList = pNC->pSrcList;
3814   AggInfo *pAggInfo = pNC->pAggInfo;
3815 
3816   switch( pExpr->op ){
3817     case TK_AGG_COLUMN:
3818     case TK_COLUMN: {
3819       testcase( pExpr->op==TK_AGG_COLUMN );
3820       testcase( pExpr->op==TK_COLUMN );
3821       /* Check to see if the column is in one of the tables in the FROM
3822       ** clause of the aggregate query */
3823       if( ALWAYS(pSrcList!=0) ){
3824         struct SrcList_item *pItem = pSrcList->a;
3825         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3826           struct AggInfo_col *pCol;
3827           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3828           if( pExpr->iTable==pItem->iCursor ){
3829             /* If we reach this point, it means that pExpr refers to a table
3830             ** that is in the FROM clause of the aggregate query.
3831             **
3832             ** Make an entry for the column in pAggInfo->aCol[] if there
3833             ** is not an entry there already.
3834             */
3835             int k;
3836             pCol = pAggInfo->aCol;
3837             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3838               if( pCol->iTable==pExpr->iTable &&
3839                   pCol->iColumn==pExpr->iColumn ){
3840                 break;
3841               }
3842             }
3843             if( (k>=pAggInfo->nColumn)
3844              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3845             ){
3846               pCol = &pAggInfo->aCol[k];
3847               pCol->pTab = pExpr->pTab;
3848               pCol->iTable = pExpr->iTable;
3849               pCol->iColumn = pExpr->iColumn;
3850               pCol->iMem = ++pParse->nMem;
3851               pCol->iSorterColumn = -1;
3852               pCol->pExpr = pExpr;
3853               if( pAggInfo->pGroupBy ){
3854                 int j, n;
3855                 ExprList *pGB = pAggInfo->pGroupBy;
3856                 struct ExprList_item *pTerm = pGB->a;
3857                 n = pGB->nExpr;
3858                 for(j=0; j<n; j++, pTerm++){
3859                   Expr *pE = pTerm->pExpr;
3860                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3861                       pE->iColumn==pExpr->iColumn ){
3862                     pCol->iSorterColumn = j;
3863                     break;
3864                   }
3865                 }
3866               }
3867               if( pCol->iSorterColumn<0 ){
3868                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3869               }
3870             }
3871             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3872             ** because it was there before or because we just created it).
3873             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3874             ** pAggInfo->aCol[] entry.
3875             */
3876             ExprSetIrreducible(pExpr);
3877             pExpr->pAggInfo = pAggInfo;
3878             pExpr->op = TK_AGG_COLUMN;
3879             pExpr->iAgg = (i16)k;
3880             break;
3881           } /* endif pExpr->iTable==pItem->iCursor */
3882         } /* end loop over pSrcList */
3883       }
3884       return WRC_Prune;
3885     }
3886     case TK_AGG_FUNCTION: {
3887       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3888       ** to be ignored */
3889       if( pNC->nDepth==0 ){
3890         /* Check to see if pExpr is a duplicate of another aggregate
3891         ** function that is already in the pAggInfo structure
3892         */
3893         struct AggInfo_func *pItem = pAggInfo->aFunc;
3894         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3895           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3896             break;
3897           }
3898         }
3899         if( i>=pAggInfo->nFunc ){
3900           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3901           */
3902           u8 enc = ENC(pParse->db);
3903           i = addAggInfoFunc(pParse->db, pAggInfo);
3904           if( i>=0 ){
3905             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3906             pItem = &pAggInfo->aFunc[i];
3907             pItem->pExpr = pExpr;
3908             pItem->iMem = ++pParse->nMem;
3909             assert( !ExprHasProperty(pExpr, EP_IntValue) );
3910             pItem->pFunc = sqlite3FindFunction(pParse->db,
3911                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3912                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3913             if( pExpr->flags & EP_Distinct ){
3914               pItem->iDistinct = pParse->nTab++;
3915             }else{
3916               pItem->iDistinct = -1;
3917             }
3918           }
3919         }
3920         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3921         */
3922         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3923         ExprSetIrreducible(pExpr);
3924         pExpr->iAgg = (i16)i;
3925         pExpr->pAggInfo = pAggInfo;
3926         return WRC_Prune;
3927       }
3928     }
3929   }
3930   return WRC_Continue;
3931 }
3932 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3933   NameContext *pNC = pWalker->u.pNC;
3934   if( pNC->nDepth==0 ){
3935     pNC->nDepth++;
3936     sqlite3WalkSelect(pWalker, pSelect);
3937     pNC->nDepth--;
3938     return WRC_Prune;
3939   }else{
3940     return WRC_Continue;
3941   }
3942 }
3943 
3944 /*
3945 ** Analyze the given expression looking for aggregate functions and
3946 ** for variables that need to be added to the pParse->aAgg[] array.
3947 ** Make additional entries to the pParse->aAgg[] array as necessary.
3948 **
3949 ** This routine should only be called after the expression has been
3950 ** analyzed by sqlite3ResolveExprNames().
3951 */
3952 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3953   Walker w;
3954   w.xExprCallback = analyzeAggregate;
3955   w.xSelectCallback = analyzeAggregatesInSelect;
3956   w.u.pNC = pNC;
3957   assert( pNC->pSrcList!=0 );
3958   sqlite3WalkExpr(&w, pExpr);
3959 }
3960 
3961 /*
3962 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3963 ** expression list.  Return the number of errors.
3964 **
3965 ** If an error is found, the analysis is cut short.
3966 */
3967 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3968   struct ExprList_item *pItem;
3969   int i;
3970   if( pList ){
3971     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3972       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3973     }
3974   }
3975 }
3976 
3977 /*
3978 ** Allocate a single new register for use to hold some intermediate result.
3979 */
3980 int sqlite3GetTempReg(Parse *pParse){
3981   if( pParse->nTempReg==0 ){
3982     return ++pParse->nMem;
3983   }
3984   return pParse->aTempReg[--pParse->nTempReg];
3985 }
3986 
3987 /*
3988 ** Deallocate a register, making available for reuse for some other
3989 ** purpose.
3990 **
3991 ** If a register is currently being used by the column cache, then
3992 ** the dallocation is deferred until the column cache line that uses
3993 ** the register becomes stale.
3994 */
3995 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3996   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3997     int i;
3998     struct yColCache *p;
3999     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4000       if( p->iReg==iReg ){
4001         p->tempReg = 1;
4002         return;
4003       }
4004     }
4005     pParse->aTempReg[pParse->nTempReg++] = iReg;
4006   }
4007 }
4008 
4009 /*
4010 ** Allocate or deallocate a block of nReg consecutive registers
4011 */
4012 int sqlite3GetTempRange(Parse *pParse, int nReg){
4013   int i, n;
4014   i = pParse->iRangeReg;
4015   n = pParse->nRangeReg;
4016   if( nReg<=n ){
4017     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4018     pParse->iRangeReg += nReg;
4019     pParse->nRangeReg -= nReg;
4020   }else{
4021     i = pParse->nMem+1;
4022     pParse->nMem += nReg;
4023   }
4024   return i;
4025 }
4026 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4027   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4028   if( nReg>pParse->nRangeReg ){
4029     pParse->nRangeReg = nReg;
4030     pParse->iRangeReg = iReg;
4031   }
4032 }
4033 
4034 /*
4035 ** Mark all temporary registers as being unavailable for reuse.
4036 */
4037 void sqlite3ClearTempRegCache(Parse *pParse){
4038   pParse->nTempReg = 0;
4039   pParse->nRangeReg = 0;
4040 }
4041