1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( p ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 assert( iValue>=0 ); 393 } 394 } 395 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 396 if( pNew ){ 397 pNew->op = (u8)op; 398 pNew->iAgg = -1; 399 if( pToken ){ 400 if( nExtra==0 ){ 401 pNew->flags |= EP_IntValue; 402 pNew->u.iValue = iValue; 403 }else{ 404 int c; 405 pNew->u.zToken = (char*)&pNew[1]; 406 assert( pToken->z!=0 || pToken->n==0 ); 407 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 408 pNew->u.zToken[pToken->n] = 0; 409 if( dequote && nExtra>=3 410 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 411 sqlite3Dequote(pNew->u.zToken); 412 if( c=='"' ) pNew->flags |= EP_DblQuoted; 413 } 414 } 415 } 416 #if SQLITE_MAX_EXPR_DEPTH>0 417 pNew->nHeight = 1; 418 #endif 419 } 420 return pNew; 421 } 422 423 /* 424 ** Allocate a new expression node from a zero-terminated token that has 425 ** already been dequoted. 426 */ 427 Expr *sqlite3Expr( 428 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 429 int op, /* Expression opcode */ 430 const char *zToken /* Token argument. Might be NULL */ 431 ){ 432 Token x; 433 x.z = zToken; 434 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 435 return sqlite3ExprAlloc(db, op, &x, 0); 436 } 437 438 /* 439 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 440 ** 441 ** If pRoot==NULL that means that a memory allocation error has occurred. 442 ** In that case, delete the subtrees pLeft and pRight. 443 */ 444 void sqlite3ExprAttachSubtrees( 445 sqlite3 *db, 446 Expr *pRoot, 447 Expr *pLeft, 448 Expr *pRight 449 ){ 450 if( pRoot==0 ){ 451 assert( db->mallocFailed ); 452 sqlite3ExprDelete(db, pLeft); 453 sqlite3ExprDelete(db, pRight); 454 }else{ 455 if( pRight ){ 456 pRoot->pRight = pRight; 457 if( pRight->flags & EP_ExpCollate ){ 458 pRoot->flags |= EP_ExpCollate; 459 pRoot->pColl = pRight->pColl; 460 } 461 } 462 if( pLeft ){ 463 pRoot->pLeft = pLeft; 464 if( pLeft->flags & EP_ExpCollate ){ 465 pRoot->flags |= EP_ExpCollate; 466 pRoot->pColl = pLeft->pColl; 467 } 468 } 469 exprSetHeight(pRoot); 470 } 471 } 472 473 /* 474 ** Allocate a Expr node which joins as many as two subtrees. 475 ** 476 ** One or both of the subtrees can be NULL. Return a pointer to the new 477 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 478 ** free the subtrees and return NULL. 479 */ 480 Expr *sqlite3PExpr( 481 Parse *pParse, /* Parsing context */ 482 int op, /* Expression opcode */ 483 Expr *pLeft, /* Left operand */ 484 Expr *pRight, /* Right operand */ 485 const Token *pToken /* Argument token */ 486 ){ 487 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 488 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 489 if( p ) { 490 sqlite3ExprCheckHeight(pParse, p->nHeight); 491 } 492 return p; 493 } 494 495 /* 496 ** Join two expressions using an AND operator. If either expression is 497 ** NULL, then just return the other expression. 498 */ 499 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 500 if( pLeft==0 ){ 501 return pRight; 502 }else if( pRight==0 ){ 503 return pLeft; 504 }else{ 505 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 506 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 507 return pNew; 508 } 509 } 510 511 /* 512 ** Construct a new expression node for a function with multiple 513 ** arguments. 514 */ 515 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 516 Expr *pNew; 517 sqlite3 *db = pParse->db; 518 assert( pToken ); 519 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 520 if( pNew==0 ){ 521 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 522 return 0; 523 } 524 pNew->x.pList = pList; 525 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 526 sqlite3ExprSetHeight(pParse, pNew); 527 return pNew; 528 } 529 530 /* 531 ** Assign a variable number to an expression that encodes a wildcard 532 ** in the original SQL statement. 533 ** 534 ** Wildcards consisting of a single "?" are assigned the next sequential 535 ** variable number. 536 ** 537 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 538 ** sure "nnn" is not too be to avoid a denial of service attack when 539 ** the SQL statement comes from an external source. 540 ** 541 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 542 ** as the previous instance of the same wildcard. Or if this is the first 543 ** instance of the wildcard, the next sequenial variable number is 544 ** assigned. 545 */ 546 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 547 sqlite3 *db = pParse->db; 548 const char *z; 549 550 if( pExpr==0 ) return; 551 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 552 z = pExpr->u.zToken; 553 assert( z!=0 ); 554 assert( z[0]!=0 ); 555 if( z[1]==0 ){ 556 /* Wildcard of the form "?". Assign the next variable number */ 557 assert( z[0]=='?' ); 558 pExpr->iColumn = (ynVar)(++pParse->nVar); 559 }else{ 560 ynVar x = 0; 561 u32 n = sqlite3Strlen30(z); 562 if( z[0]=='?' ){ 563 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 564 ** use it as the variable number */ 565 i64 i; 566 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 567 pExpr->iColumn = x = (ynVar)i; 568 testcase( i==0 ); 569 testcase( i==1 ); 570 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 571 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 572 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 573 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 574 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 575 x = 0; 576 } 577 if( i>pParse->nVar ){ 578 pParse->nVar = (int)i; 579 } 580 }else{ 581 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 582 ** number as the prior appearance of the same name, or if the name 583 ** has never appeared before, reuse the same variable number 584 */ 585 ynVar i; 586 for(i=0; i<pParse->nzVar; i++){ 587 if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){ 588 pExpr->iColumn = x = (ynVar)i+1; 589 break; 590 } 591 } 592 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 593 } 594 if( x>0 ){ 595 if( x>pParse->nzVar ){ 596 char **a; 597 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 598 if( a==0 ) return; /* Error reported through db->mallocFailed */ 599 pParse->azVar = a; 600 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 601 pParse->nzVar = x; 602 } 603 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 604 sqlite3DbFree(db, pParse->azVar[x-1]); 605 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 606 } 607 } 608 } 609 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 610 sqlite3ErrorMsg(pParse, "too many SQL variables"); 611 } 612 } 613 614 /* 615 ** Recursively delete an expression tree. 616 */ 617 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 618 if( p==0 ) return; 619 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 620 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 621 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 622 sqlite3ExprDelete(db, p->pLeft); 623 sqlite3ExprDelete(db, p->pRight); 624 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 625 sqlite3DbFree(db, p->u.zToken); 626 } 627 if( ExprHasProperty(p, EP_xIsSelect) ){ 628 sqlite3SelectDelete(db, p->x.pSelect); 629 }else{ 630 sqlite3ExprListDelete(db, p->x.pList); 631 } 632 } 633 if( !ExprHasProperty(p, EP_Static) ){ 634 sqlite3DbFree(db, p); 635 } 636 } 637 638 /* 639 ** Return the number of bytes allocated for the expression structure 640 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 641 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 642 */ 643 static int exprStructSize(Expr *p){ 644 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 645 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 646 return EXPR_FULLSIZE; 647 } 648 649 /* 650 ** The dupedExpr*Size() routines each return the number of bytes required 651 ** to store a copy of an expression or expression tree. They differ in 652 ** how much of the tree is measured. 653 ** 654 ** dupedExprStructSize() Size of only the Expr structure 655 ** dupedExprNodeSize() Size of Expr + space for token 656 ** dupedExprSize() Expr + token + subtree components 657 ** 658 *************************************************************************** 659 ** 660 ** The dupedExprStructSize() function returns two values OR-ed together: 661 ** (1) the space required for a copy of the Expr structure only and 662 ** (2) the EP_xxx flags that indicate what the structure size should be. 663 ** The return values is always one of: 664 ** 665 ** EXPR_FULLSIZE 666 ** EXPR_REDUCEDSIZE | EP_Reduced 667 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 668 ** 669 ** The size of the structure can be found by masking the return value 670 ** of this routine with 0xfff. The flags can be found by masking the 671 ** return value with EP_Reduced|EP_TokenOnly. 672 ** 673 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 674 ** (unreduced) Expr objects as they or originally constructed by the parser. 675 ** During expression analysis, extra information is computed and moved into 676 ** later parts of teh Expr object and that extra information might get chopped 677 ** off if the expression is reduced. Note also that it does not work to 678 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 679 ** to reduce a pristine expression tree from the parser. The implementation 680 ** of dupedExprStructSize() contain multiple assert() statements that attempt 681 ** to enforce this constraint. 682 */ 683 static int dupedExprStructSize(Expr *p, int flags){ 684 int nSize; 685 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 686 if( 0==(flags&EXPRDUP_REDUCE) ){ 687 nSize = EXPR_FULLSIZE; 688 }else{ 689 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 690 assert( !ExprHasProperty(p, EP_FromJoin) ); 691 assert( (p->flags2 & EP2_MallocedToken)==0 ); 692 assert( (p->flags2 & EP2_Irreducible)==0 ); 693 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 694 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 695 }else{ 696 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 697 } 698 } 699 return nSize; 700 } 701 702 /* 703 ** This function returns the space in bytes required to store the copy 704 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 705 ** string is defined.) 706 */ 707 static int dupedExprNodeSize(Expr *p, int flags){ 708 int nByte = dupedExprStructSize(p, flags) & 0xfff; 709 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 710 nByte += sqlite3Strlen30(p->u.zToken)+1; 711 } 712 return ROUND8(nByte); 713 } 714 715 /* 716 ** Return the number of bytes required to create a duplicate of the 717 ** expression passed as the first argument. The second argument is a 718 ** mask containing EXPRDUP_XXX flags. 719 ** 720 ** The value returned includes space to create a copy of the Expr struct 721 ** itself and the buffer referred to by Expr.u.zToken, if any. 722 ** 723 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 724 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 725 ** and Expr.pRight variables (but not for any structures pointed to or 726 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 727 */ 728 static int dupedExprSize(Expr *p, int flags){ 729 int nByte = 0; 730 if( p ){ 731 nByte = dupedExprNodeSize(p, flags); 732 if( flags&EXPRDUP_REDUCE ){ 733 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 734 } 735 } 736 return nByte; 737 } 738 739 /* 740 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 741 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 742 ** to store the copy of expression p, the copies of p->u.zToken 743 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 744 ** if any. Before returning, *pzBuffer is set to the first byte passed the 745 ** portion of the buffer copied into by this function. 746 */ 747 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 748 Expr *pNew = 0; /* Value to return */ 749 if( p ){ 750 const int isReduced = (flags&EXPRDUP_REDUCE); 751 u8 *zAlloc; 752 u32 staticFlag = 0; 753 754 assert( pzBuffer==0 || isReduced ); 755 756 /* Figure out where to write the new Expr structure. */ 757 if( pzBuffer ){ 758 zAlloc = *pzBuffer; 759 staticFlag = EP_Static; 760 }else{ 761 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 762 } 763 pNew = (Expr *)zAlloc; 764 765 if( pNew ){ 766 /* Set nNewSize to the size allocated for the structure pointed to 767 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 768 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 769 ** by the copy of the p->u.zToken string (if any). 770 */ 771 const unsigned nStructSize = dupedExprStructSize(p, flags); 772 const int nNewSize = nStructSize & 0xfff; 773 int nToken; 774 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 775 nToken = sqlite3Strlen30(p->u.zToken) + 1; 776 }else{ 777 nToken = 0; 778 } 779 if( isReduced ){ 780 assert( ExprHasProperty(p, EP_Reduced)==0 ); 781 memcpy(zAlloc, p, nNewSize); 782 }else{ 783 int nSize = exprStructSize(p); 784 memcpy(zAlloc, p, nSize); 785 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 786 } 787 788 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 789 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 790 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 791 pNew->flags |= staticFlag; 792 793 /* Copy the p->u.zToken string, if any. */ 794 if( nToken ){ 795 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 796 memcpy(zToken, p->u.zToken, nToken); 797 } 798 799 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 800 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 801 if( ExprHasProperty(p, EP_xIsSelect) ){ 802 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 803 }else{ 804 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 805 } 806 } 807 808 /* Fill in pNew->pLeft and pNew->pRight. */ 809 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 810 zAlloc += dupedExprNodeSize(p, flags); 811 if( ExprHasProperty(pNew, EP_Reduced) ){ 812 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 813 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 814 } 815 if( pzBuffer ){ 816 *pzBuffer = zAlloc; 817 } 818 }else{ 819 pNew->flags2 = 0; 820 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 821 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 822 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 823 } 824 } 825 826 } 827 } 828 return pNew; 829 } 830 831 /* 832 ** The following group of routines make deep copies of expressions, 833 ** expression lists, ID lists, and select statements. The copies can 834 ** be deleted (by being passed to their respective ...Delete() routines) 835 ** without effecting the originals. 836 ** 837 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 838 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 839 ** by subsequent calls to sqlite*ListAppend() routines. 840 ** 841 ** Any tables that the SrcList might point to are not duplicated. 842 ** 843 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 844 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 845 ** truncated version of the usual Expr structure that will be stored as 846 ** part of the in-memory representation of the database schema. 847 */ 848 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 849 return exprDup(db, p, flags, 0); 850 } 851 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 852 ExprList *pNew; 853 struct ExprList_item *pItem, *pOldItem; 854 int i; 855 if( p==0 ) return 0; 856 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 857 if( pNew==0 ) return 0; 858 pNew->iECursor = 0; 859 pNew->nExpr = pNew->nAlloc = p->nExpr; 860 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 861 if( pItem==0 ){ 862 sqlite3DbFree(db, pNew); 863 return 0; 864 } 865 pOldItem = p->a; 866 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 867 Expr *pOldExpr = pOldItem->pExpr; 868 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 869 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 870 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 871 pItem->sortOrder = pOldItem->sortOrder; 872 pItem->done = 0; 873 pItem->iOrderByCol = pOldItem->iOrderByCol; 874 pItem->iAlias = pOldItem->iAlias; 875 } 876 return pNew; 877 } 878 879 /* 880 ** If cursors, triggers, views and subqueries are all omitted from 881 ** the build, then none of the following routines, except for 882 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 883 ** called with a NULL argument. 884 */ 885 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 886 || !defined(SQLITE_OMIT_SUBQUERY) 887 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 888 SrcList *pNew; 889 int i; 890 int nByte; 891 if( p==0 ) return 0; 892 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 893 pNew = sqlite3DbMallocRaw(db, nByte ); 894 if( pNew==0 ) return 0; 895 pNew->nSrc = pNew->nAlloc = p->nSrc; 896 for(i=0; i<p->nSrc; i++){ 897 struct SrcList_item *pNewItem = &pNew->a[i]; 898 struct SrcList_item *pOldItem = &p->a[i]; 899 Table *pTab; 900 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 901 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 902 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 903 pNewItem->jointype = pOldItem->jointype; 904 pNewItem->iCursor = pOldItem->iCursor; 905 pNewItem->addrFillSub = pOldItem->addrFillSub; 906 pNewItem->regReturn = pOldItem->regReturn; 907 pNewItem->isCorrelated = pOldItem->isCorrelated; 908 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 909 pNewItem->notIndexed = pOldItem->notIndexed; 910 pNewItem->pIndex = pOldItem->pIndex; 911 pTab = pNewItem->pTab = pOldItem->pTab; 912 if( pTab ){ 913 pTab->nRef++; 914 } 915 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 916 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 917 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 918 pNewItem->colUsed = pOldItem->colUsed; 919 } 920 return pNew; 921 } 922 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 923 IdList *pNew; 924 int i; 925 if( p==0 ) return 0; 926 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 927 if( pNew==0 ) return 0; 928 pNew->nId = pNew->nAlloc = p->nId; 929 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 930 if( pNew->a==0 ){ 931 sqlite3DbFree(db, pNew); 932 return 0; 933 } 934 for(i=0; i<p->nId; i++){ 935 struct IdList_item *pNewItem = &pNew->a[i]; 936 struct IdList_item *pOldItem = &p->a[i]; 937 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 938 pNewItem->idx = pOldItem->idx; 939 } 940 return pNew; 941 } 942 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 943 Select *pNew, *pPrior; 944 if( p==0 ) return 0; 945 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 946 if( pNew==0 ) return 0; 947 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 948 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 949 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 950 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 951 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 952 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 953 pNew->op = p->op; 954 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 955 if( pPrior ) pPrior->pNext = pNew; 956 pNew->pNext = 0; 957 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 958 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 959 pNew->iLimit = 0; 960 pNew->iOffset = 0; 961 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 962 pNew->pRightmost = 0; 963 pNew->addrOpenEphm[0] = -1; 964 pNew->addrOpenEphm[1] = -1; 965 pNew->addrOpenEphm[2] = -1; 966 return pNew; 967 } 968 #else 969 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 970 assert( p==0 ); 971 return 0; 972 } 973 #endif 974 975 976 /* 977 ** Add a new element to the end of an expression list. If pList is 978 ** initially NULL, then create a new expression list. 979 ** 980 ** If a memory allocation error occurs, the entire list is freed and 981 ** NULL is returned. If non-NULL is returned, then it is guaranteed 982 ** that the new entry was successfully appended. 983 */ 984 ExprList *sqlite3ExprListAppend( 985 Parse *pParse, /* Parsing context */ 986 ExprList *pList, /* List to which to append. Might be NULL */ 987 Expr *pExpr /* Expression to be appended. Might be NULL */ 988 ){ 989 sqlite3 *db = pParse->db; 990 if( pList==0 ){ 991 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 992 if( pList==0 ){ 993 goto no_mem; 994 } 995 assert( pList->nAlloc==0 ); 996 } 997 if( pList->nAlloc<=pList->nExpr ){ 998 struct ExprList_item *a; 999 int n = pList->nAlloc*2 + 4; 1000 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1001 if( a==0 ){ 1002 goto no_mem; 1003 } 1004 pList->a = a; 1005 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 1006 } 1007 assert( pList->a!=0 ); 1008 if( 1 ){ 1009 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1010 memset(pItem, 0, sizeof(*pItem)); 1011 pItem->pExpr = pExpr; 1012 } 1013 return pList; 1014 1015 no_mem: 1016 /* Avoid leaking memory if malloc has failed. */ 1017 sqlite3ExprDelete(db, pExpr); 1018 sqlite3ExprListDelete(db, pList); 1019 return 0; 1020 } 1021 1022 /* 1023 ** Set the ExprList.a[].zName element of the most recently added item 1024 ** on the expression list. 1025 ** 1026 ** pList might be NULL following an OOM error. But pName should never be 1027 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1028 ** is set. 1029 */ 1030 void sqlite3ExprListSetName( 1031 Parse *pParse, /* Parsing context */ 1032 ExprList *pList, /* List to which to add the span. */ 1033 Token *pName, /* Name to be added */ 1034 int dequote /* True to cause the name to be dequoted */ 1035 ){ 1036 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1037 if( pList ){ 1038 struct ExprList_item *pItem; 1039 assert( pList->nExpr>0 ); 1040 pItem = &pList->a[pList->nExpr-1]; 1041 assert( pItem->zName==0 ); 1042 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1043 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1044 } 1045 } 1046 1047 /* 1048 ** Set the ExprList.a[].zSpan element of the most recently added item 1049 ** on the expression list. 1050 ** 1051 ** pList might be NULL following an OOM error. But pSpan should never be 1052 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1053 ** is set. 1054 */ 1055 void sqlite3ExprListSetSpan( 1056 Parse *pParse, /* Parsing context */ 1057 ExprList *pList, /* List to which to add the span. */ 1058 ExprSpan *pSpan /* The span to be added */ 1059 ){ 1060 sqlite3 *db = pParse->db; 1061 assert( pList!=0 || db->mallocFailed!=0 ); 1062 if( pList ){ 1063 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1064 assert( pList->nExpr>0 ); 1065 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1066 sqlite3DbFree(db, pItem->zSpan); 1067 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1068 (int)(pSpan->zEnd - pSpan->zStart)); 1069 } 1070 } 1071 1072 /* 1073 ** If the expression list pEList contains more than iLimit elements, 1074 ** leave an error message in pParse. 1075 */ 1076 void sqlite3ExprListCheckLength( 1077 Parse *pParse, 1078 ExprList *pEList, 1079 const char *zObject 1080 ){ 1081 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1082 testcase( pEList && pEList->nExpr==mx ); 1083 testcase( pEList && pEList->nExpr==mx+1 ); 1084 if( pEList && pEList->nExpr>mx ){ 1085 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1086 } 1087 } 1088 1089 /* 1090 ** Delete an entire expression list. 1091 */ 1092 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1093 int i; 1094 struct ExprList_item *pItem; 1095 if( pList==0 ) return; 1096 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1097 assert( pList->nExpr<=pList->nAlloc ); 1098 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1099 sqlite3ExprDelete(db, pItem->pExpr); 1100 sqlite3DbFree(db, pItem->zName); 1101 sqlite3DbFree(db, pItem->zSpan); 1102 } 1103 sqlite3DbFree(db, pList->a); 1104 sqlite3DbFree(db, pList); 1105 } 1106 1107 /* 1108 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1109 ** to an integer. These routines are checking an expression to see 1110 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1111 ** not constant. 1112 ** 1113 ** These callback routines are used to implement the following: 1114 ** 1115 ** sqlite3ExprIsConstant() 1116 ** sqlite3ExprIsConstantNotJoin() 1117 ** sqlite3ExprIsConstantOrFunction() 1118 ** 1119 */ 1120 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1121 1122 /* If pWalker->u.i is 3 then any term of the expression that comes from 1123 ** the ON or USING clauses of a join disqualifies the expression 1124 ** from being considered constant. */ 1125 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1126 pWalker->u.i = 0; 1127 return WRC_Abort; 1128 } 1129 1130 switch( pExpr->op ){ 1131 /* Consider functions to be constant if all their arguments are constant 1132 ** and pWalker->u.i==2 */ 1133 case TK_FUNCTION: 1134 if( pWalker->u.i==2 ) return 0; 1135 /* Fall through */ 1136 case TK_ID: 1137 case TK_COLUMN: 1138 case TK_AGG_FUNCTION: 1139 case TK_AGG_COLUMN: 1140 testcase( pExpr->op==TK_ID ); 1141 testcase( pExpr->op==TK_COLUMN ); 1142 testcase( pExpr->op==TK_AGG_FUNCTION ); 1143 testcase( pExpr->op==TK_AGG_COLUMN ); 1144 pWalker->u.i = 0; 1145 return WRC_Abort; 1146 default: 1147 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1148 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1149 return WRC_Continue; 1150 } 1151 } 1152 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1153 UNUSED_PARAMETER(NotUsed); 1154 pWalker->u.i = 0; 1155 return WRC_Abort; 1156 } 1157 static int exprIsConst(Expr *p, int initFlag){ 1158 Walker w; 1159 w.u.i = initFlag; 1160 w.xExprCallback = exprNodeIsConstant; 1161 w.xSelectCallback = selectNodeIsConstant; 1162 sqlite3WalkExpr(&w, p); 1163 return w.u.i; 1164 } 1165 1166 /* 1167 ** Walk an expression tree. Return 1 if the expression is constant 1168 ** and 0 if it involves variables or function calls. 1169 ** 1170 ** For the purposes of this function, a double-quoted string (ex: "abc") 1171 ** is considered a variable but a single-quoted string (ex: 'abc') is 1172 ** a constant. 1173 */ 1174 int sqlite3ExprIsConstant(Expr *p){ 1175 return exprIsConst(p, 1); 1176 } 1177 1178 /* 1179 ** Walk an expression tree. Return 1 if the expression is constant 1180 ** that does no originate from the ON or USING clauses of a join. 1181 ** Return 0 if it involves variables or function calls or terms from 1182 ** an ON or USING clause. 1183 */ 1184 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1185 return exprIsConst(p, 3); 1186 } 1187 1188 /* 1189 ** Walk an expression tree. Return 1 if the expression is constant 1190 ** or a function call with constant arguments. Return and 0 if there 1191 ** are any variables. 1192 ** 1193 ** For the purposes of this function, a double-quoted string (ex: "abc") 1194 ** is considered a variable but a single-quoted string (ex: 'abc') is 1195 ** a constant. 1196 */ 1197 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1198 return exprIsConst(p, 2); 1199 } 1200 1201 /* 1202 ** If the expression p codes a constant integer that is small enough 1203 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1204 ** in *pValue. If the expression is not an integer or if it is too big 1205 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1206 */ 1207 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1208 int rc = 0; 1209 1210 /* If an expression is an integer literal that fits in a signed 32-bit 1211 ** integer, then the EP_IntValue flag will have already been set */ 1212 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1213 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1214 1215 if( p->flags & EP_IntValue ){ 1216 *pValue = p->u.iValue; 1217 return 1; 1218 } 1219 switch( p->op ){ 1220 case TK_UPLUS: { 1221 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1222 break; 1223 } 1224 case TK_UMINUS: { 1225 int v; 1226 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1227 *pValue = -v; 1228 rc = 1; 1229 } 1230 break; 1231 } 1232 default: break; 1233 } 1234 return rc; 1235 } 1236 1237 /* 1238 ** Return FALSE if there is no chance that the expression can be NULL. 1239 ** 1240 ** If the expression might be NULL or if the expression is too complex 1241 ** to tell return TRUE. 1242 ** 1243 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1244 ** when we know that a value cannot be NULL. Hence, a false positive 1245 ** (returning TRUE when in fact the expression can never be NULL) might 1246 ** be a small performance hit but is otherwise harmless. On the other 1247 ** hand, a false negative (returning FALSE when the result could be NULL) 1248 ** will likely result in an incorrect answer. So when in doubt, return 1249 ** TRUE. 1250 */ 1251 int sqlite3ExprCanBeNull(const Expr *p){ 1252 u8 op; 1253 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1254 op = p->op; 1255 if( op==TK_REGISTER ) op = p->op2; 1256 switch( op ){ 1257 case TK_INTEGER: 1258 case TK_STRING: 1259 case TK_FLOAT: 1260 case TK_BLOB: 1261 return 0; 1262 default: 1263 return 1; 1264 } 1265 } 1266 1267 /* 1268 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1269 ** to location iDest if the value in iReg is NULL. The value in iReg 1270 ** was computed by pExpr. If we can look at pExpr at compile-time and 1271 ** determine that it can never generate a NULL, then the OP_IsNull operation 1272 ** can be omitted. 1273 */ 1274 void sqlite3ExprCodeIsNullJump( 1275 Vdbe *v, /* The VDBE under construction */ 1276 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1277 int iReg, /* Test the value in this register for NULL */ 1278 int iDest /* Jump here if the value is null */ 1279 ){ 1280 if( sqlite3ExprCanBeNull(pExpr) ){ 1281 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1282 } 1283 } 1284 1285 /* 1286 ** Return TRUE if the given expression is a constant which would be 1287 ** unchanged by OP_Affinity with the affinity given in the second 1288 ** argument. 1289 ** 1290 ** This routine is used to determine if the OP_Affinity operation 1291 ** can be omitted. When in doubt return FALSE. A false negative 1292 ** is harmless. A false positive, however, can result in the wrong 1293 ** answer. 1294 */ 1295 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1296 u8 op; 1297 if( aff==SQLITE_AFF_NONE ) return 1; 1298 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1299 op = p->op; 1300 if( op==TK_REGISTER ) op = p->op2; 1301 switch( op ){ 1302 case TK_INTEGER: { 1303 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1304 } 1305 case TK_FLOAT: { 1306 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1307 } 1308 case TK_STRING: { 1309 return aff==SQLITE_AFF_TEXT; 1310 } 1311 case TK_BLOB: { 1312 return 1; 1313 } 1314 case TK_COLUMN: { 1315 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1316 return p->iColumn<0 1317 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1318 } 1319 default: { 1320 return 0; 1321 } 1322 } 1323 } 1324 1325 /* 1326 ** Return TRUE if the given string is a row-id column name. 1327 */ 1328 int sqlite3IsRowid(const char *z){ 1329 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1330 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1331 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1332 return 0; 1333 } 1334 1335 /* 1336 ** Return true if we are able to the IN operator optimization on a 1337 ** query of the form 1338 ** 1339 ** x IN (SELECT ...) 1340 ** 1341 ** Where the SELECT... clause is as specified by the parameter to this 1342 ** routine. 1343 ** 1344 ** The Select object passed in has already been preprocessed and no 1345 ** errors have been found. 1346 */ 1347 #ifndef SQLITE_OMIT_SUBQUERY 1348 static int isCandidateForInOpt(Select *p){ 1349 SrcList *pSrc; 1350 ExprList *pEList; 1351 Table *pTab; 1352 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1353 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1354 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1355 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1356 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1357 return 0; /* No DISTINCT keyword and no aggregate functions */ 1358 } 1359 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1360 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1361 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1362 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1363 pSrc = p->pSrc; 1364 assert( pSrc!=0 ); 1365 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1366 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1367 pTab = pSrc->a[0].pTab; 1368 if( NEVER(pTab==0) ) return 0; 1369 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1370 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1371 pEList = p->pEList; 1372 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1373 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1374 return 1; 1375 } 1376 #endif /* SQLITE_OMIT_SUBQUERY */ 1377 1378 /* 1379 ** Code an OP_Once instruction and allocate space for its flag. Return the 1380 ** address of the new instruction. 1381 */ 1382 int sqlite3CodeOnce(Parse *pParse){ 1383 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1384 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1385 } 1386 1387 /* 1388 ** This function is used by the implementation of the IN (...) operator. 1389 ** It's job is to find or create a b-tree structure that may be used 1390 ** either to test for membership of the (...) set or to iterate through 1391 ** its members, skipping duplicates. 1392 ** 1393 ** The index of the cursor opened on the b-tree (database table, database index 1394 ** or ephermal table) is stored in pX->iTable before this function returns. 1395 ** The returned value of this function indicates the b-tree type, as follows: 1396 ** 1397 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1398 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1399 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1400 ** populated epheremal table. 1401 ** 1402 ** An existing b-tree may only be used if the SELECT is of the simple 1403 ** form: 1404 ** 1405 ** SELECT <column> FROM <table> 1406 ** 1407 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1408 ** through the set members, skipping any duplicates. In this case an 1409 ** epheremal table must be used unless the selected <column> is guaranteed 1410 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1411 ** has a UNIQUE constraint or UNIQUE index. 1412 ** 1413 ** If the prNotFound parameter is not 0, then the b-tree will be used 1414 ** for fast set membership tests. In this case an epheremal table must 1415 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1416 ** be found with <column> as its left-most column. 1417 ** 1418 ** When the b-tree is being used for membership tests, the calling function 1419 ** needs to know whether or not the structure contains an SQL NULL 1420 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1421 ** If there is any chance that the (...) might contain a NULL value at 1422 ** runtime, then a register is allocated and the register number written 1423 ** to *prNotFound. If there is no chance that the (...) contains a 1424 ** NULL value, then *prNotFound is left unchanged. 1425 ** 1426 ** If a register is allocated and its location stored in *prNotFound, then 1427 ** its initial value is NULL. If the (...) does not remain constant 1428 ** for the duration of the query (i.e. the SELECT within the (...) 1429 ** is a correlated subquery) then the value of the allocated register is 1430 ** reset to NULL each time the subquery is rerun. This allows the 1431 ** caller to use vdbe code equivalent to the following: 1432 ** 1433 ** if( register==NULL ){ 1434 ** has_null = <test if data structure contains null> 1435 ** register = 1 1436 ** } 1437 ** 1438 ** in order to avoid running the <test if data structure contains null> 1439 ** test more often than is necessary. 1440 */ 1441 #ifndef SQLITE_OMIT_SUBQUERY 1442 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1443 Select *p; /* SELECT to the right of IN operator */ 1444 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1445 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1446 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1447 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1448 1449 assert( pX->op==TK_IN ); 1450 1451 /* Check to see if an existing table or index can be used to 1452 ** satisfy the query. This is preferable to generating a new 1453 ** ephemeral table. 1454 */ 1455 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1456 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1457 sqlite3 *db = pParse->db; /* Database connection */ 1458 Table *pTab; /* Table <table>. */ 1459 Expr *pExpr; /* Expression <column> */ 1460 int iCol; /* Index of column <column> */ 1461 int iDb; /* Database idx for pTab */ 1462 1463 assert( p ); /* Because of isCandidateForInOpt(p) */ 1464 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1465 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1466 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1467 pTab = p->pSrc->a[0].pTab; 1468 pExpr = p->pEList->a[0].pExpr; 1469 iCol = pExpr->iColumn; 1470 1471 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1472 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1473 sqlite3CodeVerifySchema(pParse, iDb); 1474 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1475 1476 /* This function is only called from two places. In both cases the vdbe 1477 ** has already been allocated. So assume sqlite3GetVdbe() is always 1478 ** successful here. 1479 */ 1480 assert(v); 1481 if( iCol<0 ){ 1482 int iAddr; 1483 1484 iAddr = sqlite3CodeOnce(pParse); 1485 1486 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1487 eType = IN_INDEX_ROWID; 1488 1489 sqlite3VdbeJumpHere(v, iAddr); 1490 }else{ 1491 Index *pIdx; /* Iterator variable */ 1492 1493 /* The collation sequence used by the comparison. If an index is to 1494 ** be used in place of a temp-table, it must be ordered according 1495 ** to this collation sequence. */ 1496 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1497 1498 /* Check that the affinity that will be used to perform the 1499 ** comparison is the same as the affinity of the column. If 1500 ** it is not, it is not possible to use any index. 1501 */ 1502 char aff = comparisonAffinity(pX); 1503 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1504 1505 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1506 if( (pIdx->aiColumn[0]==iCol) 1507 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1508 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1509 ){ 1510 int iAddr; 1511 char *pKey; 1512 1513 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1514 iAddr = sqlite3CodeOnce(pParse); 1515 1516 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1517 pKey,P4_KEYINFO_HANDOFF); 1518 VdbeComment((v, "%s", pIdx->zName)); 1519 eType = IN_INDEX_INDEX; 1520 1521 sqlite3VdbeJumpHere(v, iAddr); 1522 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1523 *prNotFound = ++pParse->nMem; 1524 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1525 } 1526 } 1527 } 1528 } 1529 } 1530 1531 if( eType==0 ){ 1532 /* Could not found an existing table or index to use as the RHS b-tree. 1533 ** We will have to generate an ephemeral table to do the job. 1534 */ 1535 double savedNQueryLoop = pParse->nQueryLoop; 1536 int rMayHaveNull = 0; 1537 eType = IN_INDEX_EPH; 1538 if( prNotFound ){ 1539 *prNotFound = rMayHaveNull = ++pParse->nMem; 1540 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1541 }else{ 1542 testcase( pParse->nQueryLoop>(double)1 ); 1543 pParse->nQueryLoop = (double)1; 1544 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1545 eType = IN_INDEX_ROWID; 1546 } 1547 } 1548 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1549 pParse->nQueryLoop = savedNQueryLoop; 1550 }else{ 1551 pX->iTable = iTab; 1552 } 1553 return eType; 1554 } 1555 #endif 1556 1557 /* 1558 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1559 ** or IN operators. Examples: 1560 ** 1561 ** (SELECT a FROM b) -- subquery 1562 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1563 ** x IN (4,5,11) -- IN operator with list on right-hand side 1564 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1565 ** 1566 ** The pExpr parameter describes the expression that contains the IN 1567 ** operator or subquery. 1568 ** 1569 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1570 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1571 ** to some integer key column of a table B-Tree. In this case, use an 1572 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1573 ** (slower) variable length keys B-Tree. 1574 ** 1575 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1576 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1577 ** Furthermore, the IN is in a WHERE clause and that we really want 1578 ** to iterate over the RHS of the IN operator in order to quickly locate 1579 ** all corresponding LHS elements. All this routine does is initialize 1580 ** the register given by rMayHaveNull to NULL. Calling routines will take 1581 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1582 ** 1583 ** If rMayHaveNull is zero, that means that the subquery is being used 1584 ** for membership testing only. There is no need to initialize any 1585 ** registers to indicate the presense or absence of NULLs on the RHS. 1586 ** 1587 ** For a SELECT or EXISTS operator, return the register that holds the 1588 ** result. For IN operators or if an error occurs, the return value is 0. 1589 */ 1590 #ifndef SQLITE_OMIT_SUBQUERY 1591 int sqlite3CodeSubselect( 1592 Parse *pParse, /* Parsing context */ 1593 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1594 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1595 int isRowid /* If true, LHS of IN operator is a rowid */ 1596 ){ 1597 int testAddr = -1; /* One-time test address */ 1598 int rReg = 0; /* Register storing resulting */ 1599 Vdbe *v = sqlite3GetVdbe(pParse); 1600 if( NEVER(v==0) ) return 0; 1601 sqlite3ExprCachePush(pParse); 1602 1603 /* This code must be run in its entirety every time it is encountered 1604 ** if any of the following is true: 1605 ** 1606 ** * The right-hand side is a correlated subquery 1607 ** * The right-hand side is an expression list containing variables 1608 ** * We are inside a trigger 1609 ** 1610 ** If all of the above are false, then we can run this code just once 1611 ** save the results, and reuse the same result on subsequent invocations. 1612 */ 1613 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1614 testAddr = sqlite3CodeOnce(pParse); 1615 } 1616 1617 #ifndef SQLITE_OMIT_EXPLAIN 1618 if( pParse->explain==2 ){ 1619 char *zMsg = sqlite3MPrintf( 1620 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1621 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1622 ); 1623 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1624 } 1625 #endif 1626 1627 switch( pExpr->op ){ 1628 case TK_IN: { 1629 char affinity; /* Affinity of the LHS of the IN */ 1630 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1631 int addr; /* Address of OP_OpenEphemeral instruction */ 1632 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1633 1634 if( rMayHaveNull ){ 1635 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1636 } 1637 1638 affinity = sqlite3ExprAffinity(pLeft); 1639 1640 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1641 ** expression it is handled the same way. An ephemeral table is 1642 ** filled with single-field index keys representing the results 1643 ** from the SELECT or the <exprlist>. 1644 ** 1645 ** If the 'x' expression is a column value, or the SELECT... 1646 ** statement returns a column value, then the affinity of that 1647 ** column is used to build the index keys. If both 'x' and the 1648 ** SELECT... statement are columns, then numeric affinity is used 1649 ** if either column has NUMERIC or INTEGER affinity. If neither 1650 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1651 ** is used. 1652 */ 1653 pExpr->iTable = pParse->nTab++; 1654 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1655 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1656 memset(&keyInfo, 0, sizeof(keyInfo)); 1657 keyInfo.nField = 1; 1658 1659 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1660 /* Case 1: expr IN (SELECT ...) 1661 ** 1662 ** Generate code to write the results of the select into the temporary 1663 ** table allocated and opened above. 1664 */ 1665 SelectDest dest; 1666 ExprList *pEList; 1667 1668 assert( !isRowid ); 1669 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1670 dest.affinity = (u8)affinity; 1671 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1672 pExpr->x.pSelect->iLimit = 0; 1673 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1674 return 0; 1675 } 1676 pEList = pExpr->x.pSelect->pEList; 1677 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1678 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1679 pEList->a[0].pExpr); 1680 } 1681 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1682 /* Case 2: expr IN (exprlist) 1683 ** 1684 ** For each expression, build an index key from the evaluation and 1685 ** store it in the temporary table. If <expr> is a column, then use 1686 ** that columns affinity when building index keys. If <expr> is not 1687 ** a column, use numeric affinity. 1688 */ 1689 int i; 1690 ExprList *pList = pExpr->x.pList; 1691 struct ExprList_item *pItem; 1692 int r1, r2, r3; 1693 1694 if( !affinity ){ 1695 affinity = SQLITE_AFF_NONE; 1696 } 1697 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1698 1699 /* Loop through each expression in <exprlist>. */ 1700 r1 = sqlite3GetTempReg(pParse); 1701 r2 = sqlite3GetTempReg(pParse); 1702 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1703 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1704 Expr *pE2 = pItem->pExpr; 1705 int iValToIns; 1706 1707 /* If the expression is not constant then we will need to 1708 ** disable the test that was generated above that makes sure 1709 ** this code only executes once. Because for a non-constant 1710 ** expression we need to rerun this code each time. 1711 */ 1712 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1713 sqlite3VdbeChangeToNoop(v, testAddr); 1714 testAddr = -1; 1715 } 1716 1717 /* Evaluate the expression and insert it into the temp table */ 1718 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1719 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1720 }else{ 1721 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1722 if( isRowid ){ 1723 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1724 sqlite3VdbeCurrentAddr(v)+2); 1725 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1726 }else{ 1727 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1728 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1729 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1730 } 1731 } 1732 } 1733 sqlite3ReleaseTempReg(pParse, r1); 1734 sqlite3ReleaseTempReg(pParse, r2); 1735 } 1736 if( !isRowid ){ 1737 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1738 } 1739 break; 1740 } 1741 1742 case TK_EXISTS: 1743 case TK_SELECT: 1744 default: { 1745 /* If this has to be a scalar SELECT. Generate code to put the 1746 ** value of this select in a memory cell and record the number 1747 ** of the memory cell in iColumn. If this is an EXISTS, write 1748 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1749 ** and record that memory cell in iColumn. 1750 */ 1751 Select *pSel; /* SELECT statement to encode */ 1752 SelectDest dest; /* How to deal with SELECt result */ 1753 1754 testcase( pExpr->op==TK_EXISTS ); 1755 testcase( pExpr->op==TK_SELECT ); 1756 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1757 1758 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1759 pSel = pExpr->x.pSelect; 1760 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1761 if( pExpr->op==TK_SELECT ){ 1762 dest.eDest = SRT_Mem; 1763 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1764 VdbeComment((v, "Init subquery result")); 1765 }else{ 1766 dest.eDest = SRT_Exists; 1767 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1768 VdbeComment((v, "Init EXISTS result")); 1769 } 1770 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1771 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1772 &sqlite3IntTokens[1]); 1773 pSel->iLimit = 0; 1774 if( sqlite3Select(pParse, pSel, &dest) ){ 1775 return 0; 1776 } 1777 rReg = dest.iParm; 1778 ExprSetIrreducible(pExpr); 1779 break; 1780 } 1781 } 1782 1783 if( testAddr>=0 ){ 1784 sqlite3VdbeJumpHere(v, testAddr); 1785 } 1786 sqlite3ExprCachePop(pParse, 1); 1787 1788 return rReg; 1789 } 1790 #endif /* SQLITE_OMIT_SUBQUERY */ 1791 1792 #ifndef SQLITE_OMIT_SUBQUERY 1793 /* 1794 ** Generate code for an IN expression. 1795 ** 1796 ** x IN (SELECT ...) 1797 ** x IN (value, value, ...) 1798 ** 1799 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1800 ** is an array of zero or more values. The expression is true if the LHS is 1801 ** contained within the RHS. The value of the expression is unknown (NULL) 1802 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1803 ** RHS contains one or more NULL values. 1804 ** 1805 ** This routine generates code will jump to destIfFalse if the LHS is not 1806 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1807 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1808 ** within the RHS then fall through. 1809 */ 1810 static void sqlite3ExprCodeIN( 1811 Parse *pParse, /* Parsing and code generating context */ 1812 Expr *pExpr, /* The IN expression */ 1813 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1814 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1815 ){ 1816 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1817 char affinity; /* Comparison affinity to use */ 1818 int eType; /* Type of the RHS */ 1819 int r1; /* Temporary use register */ 1820 Vdbe *v; /* Statement under construction */ 1821 1822 /* Compute the RHS. After this step, the table with cursor 1823 ** pExpr->iTable will contains the values that make up the RHS. 1824 */ 1825 v = pParse->pVdbe; 1826 assert( v!=0 ); /* OOM detected prior to this routine */ 1827 VdbeNoopComment((v, "begin IN expr")); 1828 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1829 1830 /* Figure out the affinity to use to create a key from the results 1831 ** of the expression. affinityStr stores a static string suitable for 1832 ** P4 of OP_MakeRecord. 1833 */ 1834 affinity = comparisonAffinity(pExpr); 1835 1836 /* Code the LHS, the <expr> from "<expr> IN (...)". 1837 */ 1838 sqlite3ExprCachePush(pParse); 1839 r1 = sqlite3GetTempReg(pParse); 1840 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1841 1842 /* If the LHS is NULL, then the result is either false or NULL depending 1843 ** on whether the RHS is empty or not, respectively. 1844 */ 1845 if( destIfNull==destIfFalse ){ 1846 /* Shortcut for the common case where the false and NULL outcomes are 1847 ** the same. */ 1848 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1849 }else{ 1850 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1851 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1852 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1853 sqlite3VdbeJumpHere(v, addr1); 1854 } 1855 1856 if( eType==IN_INDEX_ROWID ){ 1857 /* In this case, the RHS is the ROWID of table b-tree 1858 */ 1859 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1860 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1861 }else{ 1862 /* In this case, the RHS is an index b-tree. 1863 */ 1864 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1865 1866 /* If the set membership test fails, then the result of the 1867 ** "x IN (...)" expression must be either 0 or NULL. If the set 1868 ** contains no NULL values, then the result is 0. If the set 1869 ** contains one or more NULL values, then the result of the 1870 ** expression is also NULL. 1871 */ 1872 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1873 /* This branch runs if it is known at compile time that the RHS 1874 ** cannot contain NULL values. This happens as the result 1875 ** of a "NOT NULL" constraint in the database schema. 1876 ** 1877 ** Also run this branch if NULL is equivalent to FALSE 1878 ** for this particular IN operator. 1879 */ 1880 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1881 1882 }else{ 1883 /* In this branch, the RHS of the IN might contain a NULL and 1884 ** the presence of a NULL on the RHS makes a difference in the 1885 ** outcome. 1886 */ 1887 int j1, j2, j3; 1888 1889 /* First check to see if the LHS is contained in the RHS. If so, 1890 ** then the presence of NULLs in the RHS does not matter, so jump 1891 ** over all of the code that follows. 1892 */ 1893 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1894 1895 /* Here we begin generating code that runs if the LHS is not 1896 ** contained within the RHS. Generate additional code that 1897 ** tests the RHS for NULLs. If the RHS contains a NULL then 1898 ** jump to destIfNull. If there are no NULLs in the RHS then 1899 ** jump to destIfFalse. 1900 */ 1901 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1902 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1903 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1904 sqlite3VdbeJumpHere(v, j3); 1905 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1906 sqlite3VdbeJumpHere(v, j2); 1907 1908 /* Jump to the appropriate target depending on whether or not 1909 ** the RHS contains a NULL 1910 */ 1911 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1912 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1913 1914 /* The OP_Found at the top of this branch jumps here when true, 1915 ** causing the overall IN expression evaluation to fall through. 1916 */ 1917 sqlite3VdbeJumpHere(v, j1); 1918 } 1919 } 1920 sqlite3ReleaseTempReg(pParse, r1); 1921 sqlite3ExprCachePop(pParse, 1); 1922 VdbeComment((v, "end IN expr")); 1923 } 1924 #endif /* SQLITE_OMIT_SUBQUERY */ 1925 1926 /* 1927 ** Duplicate an 8-byte value 1928 */ 1929 static char *dup8bytes(Vdbe *v, const char *in){ 1930 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1931 if( out ){ 1932 memcpy(out, in, 8); 1933 } 1934 return out; 1935 } 1936 1937 #ifndef SQLITE_OMIT_FLOATING_POINT 1938 /* 1939 ** Generate an instruction that will put the floating point 1940 ** value described by z[0..n-1] into register iMem. 1941 ** 1942 ** The z[] string will probably not be zero-terminated. But the 1943 ** z[n] character is guaranteed to be something that does not look 1944 ** like the continuation of the number. 1945 */ 1946 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1947 if( ALWAYS(z!=0) ){ 1948 double value; 1949 char *zV; 1950 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1951 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1952 if( negateFlag ) value = -value; 1953 zV = dup8bytes(v, (char*)&value); 1954 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1955 } 1956 } 1957 #endif 1958 1959 1960 /* 1961 ** Generate an instruction that will put the integer describe by 1962 ** text z[0..n-1] into register iMem. 1963 ** 1964 ** Expr.u.zToken is always UTF8 and zero-terminated. 1965 */ 1966 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 1967 Vdbe *v = pParse->pVdbe; 1968 if( pExpr->flags & EP_IntValue ){ 1969 int i = pExpr->u.iValue; 1970 assert( i>=0 ); 1971 if( negFlag ) i = -i; 1972 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1973 }else{ 1974 int c; 1975 i64 value; 1976 const char *z = pExpr->u.zToken; 1977 assert( z!=0 ); 1978 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1979 if( c==0 || (c==2 && negFlag) ){ 1980 char *zV; 1981 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 1982 zV = dup8bytes(v, (char*)&value); 1983 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1984 }else{ 1985 #ifdef SQLITE_OMIT_FLOATING_POINT 1986 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 1987 #else 1988 codeReal(v, z, negFlag, iMem); 1989 #endif 1990 } 1991 } 1992 } 1993 1994 /* 1995 ** Clear a cache entry. 1996 */ 1997 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1998 if( p->tempReg ){ 1999 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2000 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2001 } 2002 p->tempReg = 0; 2003 } 2004 } 2005 2006 2007 /* 2008 ** Record in the column cache that a particular column from a 2009 ** particular table is stored in a particular register. 2010 */ 2011 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2012 int i; 2013 int minLru; 2014 int idxLru; 2015 struct yColCache *p; 2016 2017 assert( iReg>0 ); /* Register numbers are always positive */ 2018 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2019 2020 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2021 ** for testing only - to verify that SQLite always gets the same answer 2022 ** with and without the column cache. 2023 */ 2024 if( pParse->db->flags & SQLITE_ColumnCache ) return; 2025 2026 /* First replace any existing entry. 2027 ** 2028 ** Actually, the way the column cache is currently used, we are guaranteed 2029 ** that the object will never already be in cache. Verify this guarantee. 2030 */ 2031 #ifndef NDEBUG 2032 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2033 #if 0 /* This code wold remove the entry from the cache if it existed */ 2034 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 2035 cacheEntryClear(pParse, p); 2036 p->iLevel = pParse->iCacheLevel; 2037 p->iReg = iReg; 2038 p->lru = pParse->iCacheCnt++; 2039 return; 2040 } 2041 #endif 2042 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2043 } 2044 #endif 2045 2046 /* Find an empty slot and replace it */ 2047 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2048 if( p->iReg==0 ){ 2049 p->iLevel = pParse->iCacheLevel; 2050 p->iTable = iTab; 2051 p->iColumn = iCol; 2052 p->iReg = iReg; 2053 p->tempReg = 0; 2054 p->lru = pParse->iCacheCnt++; 2055 return; 2056 } 2057 } 2058 2059 /* Replace the last recently used */ 2060 minLru = 0x7fffffff; 2061 idxLru = -1; 2062 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2063 if( p->lru<minLru ){ 2064 idxLru = i; 2065 minLru = p->lru; 2066 } 2067 } 2068 if( ALWAYS(idxLru>=0) ){ 2069 p = &pParse->aColCache[idxLru]; 2070 p->iLevel = pParse->iCacheLevel; 2071 p->iTable = iTab; 2072 p->iColumn = iCol; 2073 p->iReg = iReg; 2074 p->tempReg = 0; 2075 p->lru = pParse->iCacheCnt++; 2076 return; 2077 } 2078 } 2079 2080 /* 2081 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2082 ** Purge the range of registers from the column cache. 2083 */ 2084 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2085 int i; 2086 int iLast = iReg + nReg - 1; 2087 struct yColCache *p; 2088 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2089 int r = p->iReg; 2090 if( r>=iReg && r<=iLast ){ 2091 cacheEntryClear(pParse, p); 2092 p->iReg = 0; 2093 } 2094 } 2095 } 2096 2097 /* 2098 ** Remember the current column cache context. Any new entries added 2099 ** added to the column cache after this call are removed when the 2100 ** corresponding pop occurs. 2101 */ 2102 void sqlite3ExprCachePush(Parse *pParse){ 2103 pParse->iCacheLevel++; 2104 } 2105 2106 /* 2107 ** Remove from the column cache any entries that were added since the 2108 ** the previous N Push operations. In other words, restore the cache 2109 ** to the state it was in N Pushes ago. 2110 */ 2111 void sqlite3ExprCachePop(Parse *pParse, int N){ 2112 int i; 2113 struct yColCache *p; 2114 assert( N>0 ); 2115 assert( pParse->iCacheLevel>=N ); 2116 pParse->iCacheLevel -= N; 2117 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2118 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2119 cacheEntryClear(pParse, p); 2120 p->iReg = 0; 2121 } 2122 } 2123 } 2124 2125 /* 2126 ** When a cached column is reused, make sure that its register is 2127 ** no longer available as a temp register. ticket #3879: that same 2128 ** register might be in the cache in multiple places, so be sure to 2129 ** get them all. 2130 */ 2131 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2132 int i; 2133 struct yColCache *p; 2134 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2135 if( p->iReg==iReg ){ 2136 p->tempReg = 0; 2137 } 2138 } 2139 } 2140 2141 /* 2142 ** Generate code to extract the value of the iCol-th column of a table. 2143 */ 2144 void sqlite3ExprCodeGetColumnOfTable( 2145 Vdbe *v, /* The VDBE under construction */ 2146 Table *pTab, /* The table containing the value */ 2147 int iTabCur, /* The cursor for this table */ 2148 int iCol, /* Index of the column to extract */ 2149 int regOut /* Extract the valud into this register */ 2150 ){ 2151 if( iCol<0 || iCol==pTab->iPKey ){ 2152 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2153 }else{ 2154 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2155 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2156 } 2157 if( iCol>=0 ){ 2158 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2159 } 2160 } 2161 2162 /* 2163 ** Generate code that will extract the iColumn-th column from 2164 ** table pTab and store the column value in a register. An effort 2165 ** is made to store the column value in register iReg, but this is 2166 ** not guaranteed. The location of the column value is returned. 2167 ** 2168 ** There must be an open cursor to pTab in iTable when this routine 2169 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2170 */ 2171 int sqlite3ExprCodeGetColumn( 2172 Parse *pParse, /* Parsing and code generating context */ 2173 Table *pTab, /* Description of the table we are reading from */ 2174 int iColumn, /* Index of the table column */ 2175 int iTable, /* The cursor pointing to the table */ 2176 int iReg /* Store results here */ 2177 ){ 2178 Vdbe *v = pParse->pVdbe; 2179 int i; 2180 struct yColCache *p; 2181 2182 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2183 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2184 p->lru = pParse->iCacheCnt++; 2185 sqlite3ExprCachePinRegister(pParse, p->iReg); 2186 return p->iReg; 2187 } 2188 } 2189 assert( v!=0 ); 2190 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2191 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2192 return iReg; 2193 } 2194 2195 /* 2196 ** Clear all column cache entries. 2197 */ 2198 void sqlite3ExprCacheClear(Parse *pParse){ 2199 int i; 2200 struct yColCache *p; 2201 2202 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2203 if( p->iReg ){ 2204 cacheEntryClear(pParse, p); 2205 p->iReg = 0; 2206 } 2207 } 2208 } 2209 2210 /* 2211 ** Record the fact that an affinity change has occurred on iCount 2212 ** registers starting with iStart. 2213 */ 2214 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2215 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2216 } 2217 2218 /* 2219 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2220 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2221 */ 2222 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2223 int i; 2224 struct yColCache *p; 2225 if( NEVER(iFrom==iTo) ) return; 2226 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2227 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2228 int x = p->iReg; 2229 if( x>=iFrom && x<iFrom+nReg ){ 2230 p->iReg += iTo-iFrom; 2231 } 2232 } 2233 } 2234 2235 /* 2236 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2237 ** over to iTo..iTo+nReg-1. 2238 */ 2239 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2240 int i; 2241 if( NEVER(iFrom==iTo) ) return; 2242 for(i=0; i<nReg; i++){ 2243 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2244 } 2245 } 2246 2247 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2248 /* 2249 ** Return true if any register in the range iFrom..iTo (inclusive) 2250 ** is used as part of the column cache. 2251 ** 2252 ** This routine is used within assert() and testcase() macros only 2253 ** and does not appear in a normal build. 2254 */ 2255 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2256 int i; 2257 struct yColCache *p; 2258 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2259 int r = p->iReg; 2260 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2261 } 2262 return 0; 2263 } 2264 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2265 2266 /* 2267 ** Generate code into the current Vdbe to evaluate the given 2268 ** expression. Attempt to store the results in register "target". 2269 ** Return the register where results are stored. 2270 ** 2271 ** With this routine, there is no guarantee that results will 2272 ** be stored in target. The result might be stored in some other 2273 ** register if it is convenient to do so. The calling function 2274 ** must check the return code and move the results to the desired 2275 ** register. 2276 */ 2277 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2278 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2279 int op; /* The opcode being coded */ 2280 int inReg = target; /* Results stored in register inReg */ 2281 int regFree1 = 0; /* If non-zero free this temporary register */ 2282 int regFree2 = 0; /* If non-zero free this temporary register */ 2283 int r1, r2, r3, r4; /* Various register numbers */ 2284 sqlite3 *db = pParse->db; /* The database connection */ 2285 2286 assert( target>0 && target<=pParse->nMem ); 2287 if( v==0 ){ 2288 assert( pParse->db->mallocFailed ); 2289 return 0; 2290 } 2291 2292 if( pExpr==0 ){ 2293 op = TK_NULL; 2294 }else{ 2295 op = pExpr->op; 2296 } 2297 switch( op ){ 2298 case TK_AGG_COLUMN: { 2299 AggInfo *pAggInfo = pExpr->pAggInfo; 2300 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2301 if( !pAggInfo->directMode ){ 2302 assert( pCol->iMem>0 ); 2303 inReg = pCol->iMem; 2304 break; 2305 }else if( pAggInfo->useSortingIdx ){ 2306 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2307 pCol->iSorterColumn, target); 2308 break; 2309 } 2310 /* Otherwise, fall thru into the TK_COLUMN case */ 2311 } 2312 case TK_COLUMN: { 2313 if( pExpr->iTable<0 ){ 2314 /* This only happens when coding check constraints */ 2315 assert( pParse->ckBase>0 ); 2316 inReg = pExpr->iColumn + pParse->ckBase; 2317 }else{ 2318 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2319 pExpr->iColumn, pExpr->iTable, target); 2320 } 2321 break; 2322 } 2323 case TK_INTEGER: { 2324 codeInteger(pParse, pExpr, 0, target); 2325 break; 2326 } 2327 #ifndef SQLITE_OMIT_FLOATING_POINT 2328 case TK_FLOAT: { 2329 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2330 codeReal(v, pExpr->u.zToken, 0, target); 2331 break; 2332 } 2333 #endif 2334 case TK_STRING: { 2335 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2336 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2337 break; 2338 } 2339 case TK_NULL: { 2340 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2341 break; 2342 } 2343 #ifndef SQLITE_OMIT_BLOB_LITERAL 2344 case TK_BLOB: { 2345 int n; 2346 const char *z; 2347 char *zBlob; 2348 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2349 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2350 assert( pExpr->u.zToken[1]=='\'' ); 2351 z = &pExpr->u.zToken[2]; 2352 n = sqlite3Strlen30(z) - 1; 2353 assert( z[n]=='\'' ); 2354 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2355 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2356 break; 2357 } 2358 #endif 2359 case TK_VARIABLE: { 2360 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2361 assert( pExpr->u.zToken!=0 ); 2362 assert( pExpr->u.zToken[0]!=0 ); 2363 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2364 if( pExpr->u.zToken[1]!=0 ){ 2365 assert( pExpr->u.zToken[0]=='?' 2366 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2367 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2368 } 2369 break; 2370 } 2371 case TK_REGISTER: { 2372 inReg = pExpr->iTable; 2373 break; 2374 } 2375 case TK_AS: { 2376 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2377 break; 2378 } 2379 #ifndef SQLITE_OMIT_CAST 2380 case TK_CAST: { 2381 /* Expressions of the form: CAST(pLeft AS token) */ 2382 int aff, to_op; 2383 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2384 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2385 aff = sqlite3AffinityType(pExpr->u.zToken); 2386 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2387 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2388 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2389 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2390 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2391 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2392 testcase( to_op==OP_ToText ); 2393 testcase( to_op==OP_ToBlob ); 2394 testcase( to_op==OP_ToNumeric ); 2395 testcase( to_op==OP_ToInt ); 2396 testcase( to_op==OP_ToReal ); 2397 if( inReg!=target ){ 2398 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2399 inReg = target; 2400 } 2401 sqlite3VdbeAddOp1(v, to_op, inReg); 2402 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2403 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2404 break; 2405 } 2406 #endif /* SQLITE_OMIT_CAST */ 2407 case TK_LT: 2408 case TK_LE: 2409 case TK_GT: 2410 case TK_GE: 2411 case TK_NE: 2412 case TK_EQ: { 2413 assert( TK_LT==OP_Lt ); 2414 assert( TK_LE==OP_Le ); 2415 assert( TK_GT==OP_Gt ); 2416 assert( TK_GE==OP_Ge ); 2417 assert( TK_EQ==OP_Eq ); 2418 assert( TK_NE==OP_Ne ); 2419 testcase( op==TK_LT ); 2420 testcase( op==TK_LE ); 2421 testcase( op==TK_GT ); 2422 testcase( op==TK_GE ); 2423 testcase( op==TK_EQ ); 2424 testcase( op==TK_NE ); 2425 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2426 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2427 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2428 r1, r2, inReg, SQLITE_STOREP2); 2429 testcase( regFree1==0 ); 2430 testcase( regFree2==0 ); 2431 break; 2432 } 2433 case TK_IS: 2434 case TK_ISNOT: { 2435 testcase( op==TK_IS ); 2436 testcase( op==TK_ISNOT ); 2437 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2438 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2439 op = (op==TK_IS) ? TK_EQ : TK_NE; 2440 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2441 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2442 testcase( regFree1==0 ); 2443 testcase( regFree2==0 ); 2444 break; 2445 } 2446 case TK_AND: 2447 case TK_OR: 2448 case TK_PLUS: 2449 case TK_STAR: 2450 case TK_MINUS: 2451 case TK_REM: 2452 case TK_BITAND: 2453 case TK_BITOR: 2454 case TK_SLASH: 2455 case TK_LSHIFT: 2456 case TK_RSHIFT: 2457 case TK_CONCAT: { 2458 assert( TK_AND==OP_And ); 2459 assert( TK_OR==OP_Or ); 2460 assert( TK_PLUS==OP_Add ); 2461 assert( TK_MINUS==OP_Subtract ); 2462 assert( TK_REM==OP_Remainder ); 2463 assert( TK_BITAND==OP_BitAnd ); 2464 assert( TK_BITOR==OP_BitOr ); 2465 assert( TK_SLASH==OP_Divide ); 2466 assert( TK_LSHIFT==OP_ShiftLeft ); 2467 assert( TK_RSHIFT==OP_ShiftRight ); 2468 assert( TK_CONCAT==OP_Concat ); 2469 testcase( op==TK_AND ); 2470 testcase( op==TK_OR ); 2471 testcase( op==TK_PLUS ); 2472 testcase( op==TK_MINUS ); 2473 testcase( op==TK_REM ); 2474 testcase( op==TK_BITAND ); 2475 testcase( op==TK_BITOR ); 2476 testcase( op==TK_SLASH ); 2477 testcase( op==TK_LSHIFT ); 2478 testcase( op==TK_RSHIFT ); 2479 testcase( op==TK_CONCAT ); 2480 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2481 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2482 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2483 testcase( regFree1==0 ); 2484 testcase( regFree2==0 ); 2485 break; 2486 } 2487 case TK_UMINUS: { 2488 Expr *pLeft = pExpr->pLeft; 2489 assert( pLeft ); 2490 if( pLeft->op==TK_INTEGER ){ 2491 codeInteger(pParse, pLeft, 1, target); 2492 #ifndef SQLITE_OMIT_FLOATING_POINT 2493 }else if( pLeft->op==TK_FLOAT ){ 2494 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2495 codeReal(v, pLeft->u.zToken, 1, target); 2496 #endif 2497 }else{ 2498 regFree1 = r1 = sqlite3GetTempReg(pParse); 2499 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2500 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2501 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2502 testcase( regFree2==0 ); 2503 } 2504 inReg = target; 2505 break; 2506 } 2507 case TK_BITNOT: 2508 case TK_NOT: { 2509 assert( TK_BITNOT==OP_BitNot ); 2510 assert( TK_NOT==OP_Not ); 2511 testcase( op==TK_BITNOT ); 2512 testcase( op==TK_NOT ); 2513 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2514 testcase( regFree1==0 ); 2515 inReg = target; 2516 sqlite3VdbeAddOp2(v, op, r1, inReg); 2517 break; 2518 } 2519 case TK_ISNULL: 2520 case TK_NOTNULL: { 2521 int addr; 2522 assert( TK_ISNULL==OP_IsNull ); 2523 assert( TK_NOTNULL==OP_NotNull ); 2524 testcase( op==TK_ISNULL ); 2525 testcase( op==TK_NOTNULL ); 2526 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2527 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2528 testcase( regFree1==0 ); 2529 addr = sqlite3VdbeAddOp1(v, op, r1); 2530 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2531 sqlite3VdbeJumpHere(v, addr); 2532 break; 2533 } 2534 case TK_AGG_FUNCTION: { 2535 AggInfo *pInfo = pExpr->pAggInfo; 2536 if( pInfo==0 ){ 2537 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2538 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2539 }else{ 2540 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2541 } 2542 break; 2543 } 2544 case TK_CONST_FUNC: 2545 case TK_FUNCTION: { 2546 ExprList *pFarg; /* List of function arguments */ 2547 int nFarg; /* Number of function arguments */ 2548 FuncDef *pDef; /* The function definition object */ 2549 int nId; /* Length of the function name in bytes */ 2550 const char *zId; /* The function name */ 2551 int constMask = 0; /* Mask of function arguments that are constant */ 2552 int i; /* Loop counter */ 2553 u8 enc = ENC(db); /* The text encoding used by this database */ 2554 CollSeq *pColl = 0; /* A collating sequence */ 2555 2556 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2557 testcase( op==TK_CONST_FUNC ); 2558 testcase( op==TK_FUNCTION ); 2559 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2560 pFarg = 0; 2561 }else{ 2562 pFarg = pExpr->x.pList; 2563 } 2564 nFarg = pFarg ? pFarg->nExpr : 0; 2565 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2566 zId = pExpr->u.zToken; 2567 nId = sqlite3Strlen30(zId); 2568 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2569 if( pDef==0 ){ 2570 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2571 break; 2572 } 2573 2574 /* Attempt a direct implementation of the built-in COALESCE() and 2575 ** IFNULL() functions. This avoids unnecessary evalation of 2576 ** arguments past the first non-NULL argument. 2577 */ 2578 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2579 int endCoalesce = sqlite3VdbeMakeLabel(v); 2580 assert( nFarg>=2 ); 2581 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2582 for(i=1; i<nFarg; i++){ 2583 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2584 sqlite3ExprCacheRemove(pParse, target, 1); 2585 sqlite3ExprCachePush(pParse); 2586 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2587 sqlite3ExprCachePop(pParse, 1); 2588 } 2589 sqlite3VdbeResolveLabel(v, endCoalesce); 2590 break; 2591 } 2592 2593 2594 if( pFarg ){ 2595 r1 = sqlite3GetTempRange(pParse, nFarg); 2596 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2597 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2598 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2599 }else{ 2600 r1 = 0; 2601 } 2602 #ifndef SQLITE_OMIT_VIRTUALTABLE 2603 /* Possibly overload the function if the first argument is 2604 ** a virtual table column. 2605 ** 2606 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2607 ** second argument, not the first, as the argument to test to 2608 ** see if it is a column in a virtual table. This is done because 2609 ** the left operand of infix functions (the operand we want to 2610 ** control overloading) ends up as the second argument to the 2611 ** function. The expression "A glob B" is equivalent to 2612 ** "glob(B,A). We want to use the A in "A glob B" to test 2613 ** for function overloading. But we use the B term in "glob(B,A)". 2614 */ 2615 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2616 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2617 }else if( nFarg>0 ){ 2618 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2619 } 2620 #endif 2621 for(i=0; i<nFarg; i++){ 2622 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2623 constMask |= (1<<i); 2624 } 2625 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2626 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2627 } 2628 } 2629 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2630 if( !pColl ) pColl = db->pDfltColl; 2631 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2632 } 2633 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2634 (char*)pDef, P4_FUNCDEF); 2635 sqlite3VdbeChangeP5(v, (u8)nFarg); 2636 if( nFarg ){ 2637 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2638 } 2639 break; 2640 } 2641 #ifndef SQLITE_OMIT_SUBQUERY 2642 case TK_EXISTS: 2643 case TK_SELECT: { 2644 testcase( op==TK_EXISTS ); 2645 testcase( op==TK_SELECT ); 2646 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2647 break; 2648 } 2649 case TK_IN: { 2650 int destIfFalse = sqlite3VdbeMakeLabel(v); 2651 int destIfNull = sqlite3VdbeMakeLabel(v); 2652 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2653 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2654 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2655 sqlite3VdbeResolveLabel(v, destIfFalse); 2656 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2657 sqlite3VdbeResolveLabel(v, destIfNull); 2658 break; 2659 } 2660 #endif /* SQLITE_OMIT_SUBQUERY */ 2661 2662 2663 /* 2664 ** x BETWEEN y AND z 2665 ** 2666 ** This is equivalent to 2667 ** 2668 ** x>=y AND x<=z 2669 ** 2670 ** X is stored in pExpr->pLeft. 2671 ** Y is stored in pExpr->pList->a[0].pExpr. 2672 ** Z is stored in pExpr->pList->a[1].pExpr. 2673 */ 2674 case TK_BETWEEN: { 2675 Expr *pLeft = pExpr->pLeft; 2676 struct ExprList_item *pLItem = pExpr->x.pList->a; 2677 Expr *pRight = pLItem->pExpr; 2678 2679 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2680 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2681 testcase( regFree1==0 ); 2682 testcase( regFree2==0 ); 2683 r3 = sqlite3GetTempReg(pParse); 2684 r4 = sqlite3GetTempReg(pParse); 2685 codeCompare(pParse, pLeft, pRight, OP_Ge, 2686 r1, r2, r3, SQLITE_STOREP2); 2687 pLItem++; 2688 pRight = pLItem->pExpr; 2689 sqlite3ReleaseTempReg(pParse, regFree2); 2690 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2691 testcase( regFree2==0 ); 2692 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2693 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2694 sqlite3ReleaseTempReg(pParse, r3); 2695 sqlite3ReleaseTempReg(pParse, r4); 2696 break; 2697 } 2698 case TK_UPLUS: { 2699 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2700 break; 2701 } 2702 2703 case TK_TRIGGER: { 2704 /* If the opcode is TK_TRIGGER, then the expression is a reference 2705 ** to a column in the new.* or old.* pseudo-tables available to 2706 ** trigger programs. In this case Expr.iTable is set to 1 for the 2707 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2708 ** is set to the column of the pseudo-table to read, or to -1 to 2709 ** read the rowid field. 2710 ** 2711 ** The expression is implemented using an OP_Param opcode. The p1 2712 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2713 ** to reference another column of the old.* pseudo-table, where 2714 ** i is the index of the column. For a new.rowid reference, p1 is 2715 ** set to (n+1), where n is the number of columns in each pseudo-table. 2716 ** For a reference to any other column in the new.* pseudo-table, p1 2717 ** is set to (n+2+i), where n and i are as defined previously. For 2718 ** example, if the table on which triggers are being fired is 2719 ** declared as: 2720 ** 2721 ** CREATE TABLE t1(a, b); 2722 ** 2723 ** Then p1 is interpreted as follows: 2724 ** 2725 ** p1==0 -> old.rowid p1==3 -> new.rowid 2726 ** p1==1 -> old.a p1==4 -> new.a 2727 ** p1==2 -> old.b p1==5 -> new.b 2728 */ 2729 Table *pTab = pExpr->pTab; 2730 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2731 2732 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2733 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2734 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2735 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2736 2737 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2738 VdbeComment((v, "%s.%s -> $%d", 2739 (pExpr->iTable ? "new" : "old"), 2740 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2741 target 2742 )); 2743 2744 #ifndef SQLITE_OMIT_FLOATING_POINT 2745 /* If the column has REAL affinity, it may currently be stored as an 2746 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2747 if( pExpr->iColumn>=0 2748 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2749 ){ 2750 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2751 } 2752 #endif 2753 break; 2754 } 2755 2756 2757 /* 2758 ** Form A: 2759 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2760 ** 2761 ** Form B: 2762 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2763 ** 2764 ** Form A is can be transformed into the equivalent form B as follows: 2765 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2766 ** WHEN x=eN THEN rN ELSE y END 2767 ** 2768 ** X (if it exists) is in pExpr->pLeft. 2769 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2770 ** ELSE clause and no other term matches, then the result of the 2771 ** exprssion is NULL. 2772 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2773 ** 2774 ** The result of the expression is the Ri for the first matching Ei, 2775 ** or if there is no matching Ei, the ELSE term Y, or if there is 2776 ** no ELSE term, NULL. 2777 */ 2778 default: assert( op==TK_CASE ); { 2779 int endLabel; /* GOTO label for end of CASE stmt */ 2780 int nextCase; /* GOTO label for next WHEN clause */ 2781 int nExpr; /* 2x number of WHEN terms */ 2782 int i; /* Loop counter */ 2783 ExprList *pEList; /* List of WHEN terms */ 2784 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2785 Expr opCompare; /* The X==Ei expression */ 2786 Expr cacheX; /* Cached expression X */ 2787 Expr *pX; /* The X expression */ 2788 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2789 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2790 2791 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2792 assert((pExpr->x.pList->nExpr % 2) == 0); 2793 assert(pExpr->x.pList->nExpr > 0); 2794 pEList = pExpr->x.pList; 2795 aListelem = pEList->a; 2796 nExpr = pEList->nExpr; 2797 endLabel = sqlite3VdbeMakeLabel(v); 2798 if( (pX = pExpr->pLeft)!=0 ){ 2799 cacheX = *pX; 2800 testcase( pX->op==TK_COLUMN ); 2801 testcase( pX->op==TK_REGISTER ); 2802 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2803 testcase( regFree1==0 ); 2804 cacheX.op = TK_REGISTER; 2805 opCompare.op = TK_EQ; 2806 opCompare.pLeft = &cacheX; 2807 pTest = &opCompare; 2808 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2809 ** The value in regFree1 might get SCopy-ed into the file result. 2810 ** So make sure that the regFree1 register is not reused for other 2811 ** purposes and possibly overwritten. */ 2812 regFree1 = 0; 2813 } 2814 for(i=0; i<nExpr; i=i+2){ 2815 sqlite3ExprCachePush(pParse); 2816 if( pX ){ 2817 assert( pTest!=0 ); 2818 opCompare.pRight = aListelem[i].pExpr; 2819 }else{ 2820 pTest = aListelem[i].pExpr; 2821 } 2822 nextCase = sqlite3VdbeMakeLabel(v); 2823 testcase( pTest->op==TK_COLUMN ); 2824 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2825 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2826 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2827 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2828 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2829 sqlite3ExprCachePop(pParse, 1); 2830 sqlite3VdbeResolveLabel(v, nextCase); 2831 } 2832 if( pExpr->pRight ){ 2833 sqlite3ExprCachePush(pParse); 2834 sqlite3ExprCode(pParse, pExpr->pRight, target); 2835 sqlite3ExprCachePop(pParse, 1); 2836 }else{ 2837 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2838 } 2839 assert( db->mallocFailed || pParse->nErr>0 2840 || pParse->iCacheLevel==iCacheLevel ); 2841 sqlite3VdbeResolveLabel(v, endLabel); 2842 break; 2843 } 2844 #ifndef SQLITE_OMIT_TRIGGER 2845 case TK_RAISE: { 2846 assert( pExpr->affinity==OE_Rollback 2847 || pExpr->affinity==OE_Abort 2848 || pExpr->affinity==OE_Fail 2849 || pExpr->affinity==OE_Ignore 2850 ); 2851 if( !pParse->pTriggerTab ){ 2852 sqlite3ErrorMsg(pParse, 2853 "RAISE() may only be used within a trigger-program"); 2854 return 0; 2855 } 2856 if( pExpr->affinity==OE_Abort ){ 2857 sqlite3MayAbort(pParse); 2858 } 2859 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2860 if( pExpr->affinity==OE_Ignore ){ 2861 sqlite3VdbeAddOp4( 2862 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2863 }else{ 2864 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2865 } 2866 2867 break; 2868 } 2869 #endif 2870 } 2871 sqlite3ReleaseTempReg(pParse, regFree1); 2872 sqlite3ReleaseTempReg(pParse, regFree2); 2873 return inReg; 2874 } 2875 2876 /* 2877 ** Generate code to evaluate an expression and store the results 2878 ** into a register. Return the register number where the results 2879 ** are stored. 2880 ** 2881 ** If the register is a temporary register that can be deallocated, 2882 ** then write its number into *pReg. If the result register is not 2883 ** a temporary, then set *pReg to zero. 2884 */ 2885 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2886 int r1 = sqlite3GetTempReg(pParse); 2887 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2888 if( r2==r1 ){ 2889 *pReg = r1; 2890 }else{ 2891 sqlite3ReleaseTempReg(pParse, r1); 2892 *pReg = 0; 2893 } 2894 return r2; 2895 } 2896 2897 /* 2898 ** Generate code that will evaluate expression pExpr and store the 2899 ** results in register target. The results are guaranteed to appear 2900 ** in register target. 2901 */ 2902 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2903 int inReg; 2904 2905 assert( target>0 && target<=pParse->nMem ); 2906 if( pExpr && pExpr->op==TK_REGISTER ){ 2907 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2908 }else{ 2909 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2910 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2911 if( inReg!=target && pParse->pVdbe ){ 2912 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2913 } 2914 } 2915 return target; 2916 } 2917 2918 /* 2919 ** Generate code that evalutes the given expression and puts the result 2920 ** in register target. 2921 ** 2922 ** Also make a copy of the expression results into another "cache" register 2923 ** and modify the expression so that the next time it is evaluated, 2924 ** the result is a copy of the cache register. 2925 ** 2926 ** This routine is used for expressions that are used multiple 2927 ** times. They are evaluated once and the results of the expression 2928 ** are reused. 2929 */ 2930 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2931 Vdbe *v = pParse->pVdbe; 2932 int inReg; 2933 inReg = sqlite3ExprCode(pParse, pExpr, target); 2934 assert( target>0 ); 2935 /* This routine is called for terms to INSERT or UPDATE. And the only 2936 ** other place where expressions can be converted into TK_REGISTER is 2937 ** in WHERE clause processing. So as currently implemented, there is 2938 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2939 ** keep the ALWAYS() in case the conditions above change with future 2940 ** modifications or enhancements. */ 2941 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2942 int iMem; 2943 iMem = ++pParse->nMem; 2944 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2945 pExpr->iTable = iMem; 2946 pExpr->op2 = pExpr->op; 2947 pExpr->op = TK_REGISTER; 2948 } 2949 return inReg; 2950 } 2951 2952 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2953 /* 2954 ** Generate a human-readable explanation of an expression tree. 2955 */ 2956 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 2957 int op; /* The opcode being coded */ 2958 const char *zBinOp = 0; /* Binary operator */ 2959 const char *zUniOp = 0; /* Unary operator */ 2960 if( pExpr==0 ){ 2961 op = TK_NULL; 2962 }else{ 2963 op = pExpr->op; 2964 } 2965 switch( op ){ 2966 case TK_AGG_COLUMN: { 2967 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 2968 pExpr->iTable, pExpr->iColumn); 2969 break; 2970 } 2971 case TK_COLUMN: { 2972 if( pExpr->iTable<0 ){ 2973 /* This only happens when coding check constraints */ 2974 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 2975 }else{ 2976 sqlite3ExplainPrintf(pOut, "{%d:%d}", 2977 pExpr->iTable, pExpr->iColumn); 2978 } 2979 break; 2980 } 2981 case TK_INTEGER: { 2982 if( pExpr->flags & EP_IntValue ){ 2983 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 2984 }else{ 2985 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 2986 } 2987 break; 2988 } 2989 #ifndef SQLITE_OMIT_FLOATING_POINT 2990 case TK_FLOAT: { 2991 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 2992 break; 2993 } 2994 #endif 2995 case TK_STRING: { 2996 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 2997 break; 2998 } 2999 case TK_NULL: { 3000 sqlite3ExplainPrintf(pOut,"NULL"); 3001 break; 3002 } 3003 #ifndef SQLITE_OMIT_BLOB_LITERAL 3004 case TK_BLOB: { 3005 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3006 break; 3007 } 3008 #endif 3009 case TK_VARIABLE: { 3010 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3011 pExpr->u.zToken, pExpr->iColumn); 3012 break; 3013 } 3014 case TK_REGISTER: { 3015 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3016 break; 3017 } 3018 case TK_AS: { 3019 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3020 break; 3021 } 3022 #ifndef SQLITE_OMIT_CAST 3023 case TK_CAST: { 3024 /* Expressions of the form: CAST(pLeft AS token) */ 3025 const char *zAff = "unk"; 3026 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3027 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3028 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3029 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3030 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3031 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3032 } 3033 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3034 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3035 sqlite3ExplainPrintf(pOut, ")"); 3036 break; 3037 } 3038 #endif /* SQLITE_OMIT_CAST */ 3039 case TK_LT: zBinOp = "LT"; break; 3040 case TK_LE: zBinOp = "LE"; break; 3041 case TK_GT: zBinOp = "GT"; break; 3042 case TK_GE: zBinOp = "GE"; break; 3043 case TK_NE: zBinOp = "NE"; break; 3044 case TK_EQ: zBinOp = "EQ"; break; 3045 case TK_IS: zBinOp = "IS"; break; 3046 case TK_ISNOT: zBinOp = "ISNOT"; break; 3047 case TK_AND: zBinOp = "AND"; break; 3048 case TK_OR: zBinOp = "OR"; break; 3049 case TK_PLUS: zBinOp = "ADD"; break; 3050 case TK_STAR: zBinOp = "MUL"; break; 3051 case TK_MINUS: zBinOp = "SUB"; break; 3052 case TK_REM: zBinOp = "REM"; break; 3053 case TK_BITAND: zBinOp = "BITAND"; break; 3054 case TK_BITOR: zBinOp = "BITOR"; break; 3055 case TK_SLASH: zBinOp = "DIV"; break; 3056 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3057 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3058 case TK_CONCAT: zBinOp = "CONCAT"; break; 3059 3060 case TK_UMINUS: zUniOp = "UMINUS"; break; 3061 case TK_UPLUS: zUniOp = "UPLUS"; break; 3062 case TK_BITNOT: zUniOp = "BITNOT"; break; 3063 case TK_NOT: zUniOp = "NOT"; break; 3064 case TK_ISNULL: zUniOp = "ISNULL"; break; 3065 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3066 3067 case TK_AGG_FUNCTION: 3068 case TK_CONST_FUNC: 3069 case TK_FUNCTION: { 3070 ExprList *pFarg; /* List of function arguments */ 3071 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3072 pFarg = 0; 3073 }else{ 3074 pFarg = pExpr->x.pList; 3075 } 3076 sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(", 3077 op==TK_AGG_FUNCTION ? "AGG_" : "", 3078 pExpr->u.zToken); 3079 if( pFarg ){ 3080 sqlite3ExplainExprList(pOut, pFarg); 3081 } 3082 sqlite3ExplainPrintf(pOut, ")"); 3083 break; 3084 } 3085 #ifndef SQLITE_OMIT_SUBQUERY 3086 case TK_EXISTS: { 3087 sqlite3ExplainPrintf(pOut, "EXISTS("); 3088 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3089 sqlite3ExplainPrintf(pOut,")"); 3090 break; 3091 } 3092 case TK_SELECT: { 3093 sqlite3ExplainPrintf(pOut, "("); 3094 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3095 sqlite3ExplainPrintf(pOut, ")"); 3096 break; 3097 } 3098 case TK_IN: { 3099 sqlite3ExplainPrintf(pOut, "IN("); 3100 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3101 sqlite3ExplainPrintf(pOut, ","); 3102 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3103 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3104 }else{ 3105 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3106 } 3107 sqlite3ExplainPrintf(pOut, ")"); 3108 break; 3109 } 3110 #endif /* SQLITE_OMIT_SUBQUERY */ 3111 3112 /* 3113 ** x BETWEEN y AND z 3114 ** 3115 ** This is equivalent to 3116 ** 3117 ** x>=y AND x<=z 3118 ** 3119 ** X is stored in pExpr->pLeft. 3120 ** Y is stored in pExpr->pList->a[0].pExpr. 3121 ** Z is stored in pExpr->pList->a[1].pExpr. 3122 */ 3123 case TK_BETWEEN: { 3124 Expr *pX = pExpr->pLeft; 3125 Expr *pY = pExpr->x.pList->a[0].pExpr; 3126 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3127 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3128 sqlite3ExplainExpr(pOut, pX); 3129 sqlite3ExplainPrintf(pOut, ","); 3130 sqlite3ExplainExpr(pOut, pY); 3131 sqlite3ExplainPrintf(pOut, ","); 3132 sqlite3ExplainExpr(pOut, pZ); 3133 sqlite3ExplainPrintf(pOut, ")"); 3134 break; 3135 } 3136 case TK_TRIGGER: { 3137 /* If the opcode is TK_TRIGGER, then the expression is a reference 3138 ** to a column in the new.* or old.* pseudo-tables available to 3139 ** trigger programs. In this case Expr.iTable is set to 1 for the 3140 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3141 ** is set to the column of the pseudo-table to read, or to -1 to 3142 ** read the rowid field. 3143 */ 3144 sqlite3ExplainPrintf(pOut, "%s(%d)", 3145 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3146 break; 3147 } 3148 case TK_CASE: { 3149 sqlite3ExplainPrintf(pOut, "CASE("); 3150 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3151 sqlite3ExplainPrintf(pOut, ","); 3152 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3153 break; 3154 } 3155 #ifndef SQLITE_OMIT_TRIGGER 3156 case TK_RAISE: { 3157 const char *zType = "unk"; 3158 switch( pExpr->affinity ){ 3159 case OE_Rollback: zType = "rollback"; break; 3160 case OE_Abort: zType = "abort"; break; 3161 case OE_Fail: zType = "fail"; break; 3162 case OE_Ignore: zType = "ignore"; break; 3163 } 3164 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3165 break; 3166 } 3167 #endif 3168 } 3169 if( zBinOp ){ 3170 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3171 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3172 sqlite3ExplainPrintf(pOut,","); 3173 sqlite3ExplainExpr(pOut, pExpr->pRight); 3174 sqlite3ExplainPrintf(pOut,")"); 3175 }else if( zUniOp ){ 3176 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3177 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3178 sqlite3ExplainPrintf(pOut,")"); 3179 } 3180 } 3181 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3182 3183 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3184 /* 3185 ** Generate a human-readable explanation of an expression list. 3186 */ 3187 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3188 int i; 3189 if( pList==0 || pList->nExpr==0 ){ 3190 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3191 return; 3192 }else if( pList->nExpr==1 ){ 3193 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3194 }else{ 3195 sqlite3ExplainPush(pOut); 3196 for(i=0; i<pList->nExpr; i++){ 3197 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3198 sqlite3ExplainPush(pOut); 3199 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3200 sqlite3ExplainPop(pOut); 3201 if( i<pList->nExpr-1 ){ 3202 sqlite3ExplainNL(pOut); 3203 } 3204 } 3205 sqlite3ExplainPop(pOut); 3206 } 3207 } 3208 #endif /* SQLITE_DEBUG */ 3209 3210 /* 3211 ** Return TRUE if pExpr is an constant expression that is appropriate 3212 ** for factoring out of a loop. Appropriate expressions are: 3213 ** 3214 ** * Any expression that evaluates to two or more opcodes. 3215 ** 3216 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3217 ** or OP_Variable that does not need to be placed in a 3218 ** specific register. 3219 ** 3220 ** There is no point in factoring out single-instruction constant 3221 ** expressions that need to be placed in a particular register. 3222 ** We could factor them out, but then we would end up adding an 3223 ** OP_SCopy instruction to move the value into the correct register 3224 ** later. We might as well just use the original instruction and 3225 ** avoid the OP_SCopy. 3226 */ 3227 static int isAppropriateForFactoring(Expr *p){ 3228 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3229 return 0; /* Only constant expressions are appropriate for factoring */ 3230 } 3231 if( (p->flags & EP_FixedDest)==0 ){ 3232 return 1; /* Any constant without a fixed destination is appropriate */ 3233 } 3234 while( p->op==TK_UPLUS ) p = p->pLeft; 3235 switch( p->op ){ 3236 #ifndef SQLITE_OMIT_BLOB_LITERAL 3237 case TK_BLOB: 3238 #endif 3239 case TK_VARIABLE: 3240 case TK_INTEGER: 3241 case TK_FLOAT: 3242 case TK_NULL: 3243 case TK_STRING: { 3244 testcase( p->op==TK_BLOB ); 3245 testcase( p->op==TK_VARIABLE ); 3246 testcase( p->op==TK_INTEGER ); 3247 testcase( p->op==TK_FLOAT ); 3248 testcase( p->op==TK_NULL ); 3249 testcase( p->op==TK_STRING ); 3250 /* Single-instruction constants with a fixed destination are 3251 ** better done in-line. If we factor them, they will just end 3252 ** up generating an OP_SCopy to move the value to the destination 3253 ** register. */ 3254 return 0; 3255 } 3256 case TK_UMINUS: { 3257 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3258 return 0; 3259 } 3260 break; 3261 } 3262 default: { 3263 break; 3264 } 3265 } 3266 return 1; 3267 } 3268 3269 /* 3270 ** If pExpr is a constant expression that is appropriate for 3271 ** factoring out of a loop, then evaluate the expression 3272 ** into a register and convert the expression into a TK_REGISTER 3273 ** expression. 3274 */ 3275 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3276 Parse *pParse = pWalker->pParse; 3277 switch( pExpr->op ){ 3278 case TK_IN: 3279 case TK_REGISTER: { 3280 return WRC_Prune; 3281 } 3282 case TK_FUNCTION: 3283 case TK_AGG_FUNCTION: 3284 case TK_CONST_FUNC: { 3285 /* The arguments to a function have a fixed destination. 3286 ** Mark them this way to avoid generated unneeded OP_SCopy 3287 ** instructions. 3288 */ 3289 ExprList *pList = pExpr->x.pList; 3290 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3291 if( pList ){ 3292 int i = pList->nExpr; 3293 struct ExprList_item *pItem = pList->a; 3294 for(; i>0; i--, pItem++){ 3295 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3296 } 3297 } 3298 break; 3299 } 3300 } 3301 if( isAppropriateForFactoring(pExpr) ){ 3302 int r1 = ++pParse->nMem; 3303 int r2; 3304 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3305 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3306 pExpr->op2 = pExpr->op; 3307 pExpr->op = TK_REGISTER; 3308 pExpr->iTable = r2; 3309 return WRC_Prune; 3310 } 3311 return WRC_Continue; 3312 } 3313 3314 /* 3315 ** Preevaluate constant subexpressions within pExpr and store the 3316 ** results in registers. Modify pExpr so that the constant subexpresions 3317 ** are TK_REGISTER opcodes that refer to the precomputed values. 3318 ** 3319 ** This routine is a no-op if the jump to the cookie-check code has 3320 ** already occur. Since the cookie-check jump is generated prior to 3321 ** any other serious processing, this check ensures that there is no 3322 ** way to accidently bypass the constant initializations. 3323 ** 3324 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3325 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3326 ** interface. This allows test logic to verify that the same answer is 3327 ** obtained for queries regardless of whether or not constants are 3328 ** precomputed into registers or if they are inserted in-line. 3329 */ 3330 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3331 Walker w; 3332 if( pParse->cookieGoto ) return; 3333 if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return; 3334 w.xExprCallback = evalConstExpr; 3335 w.xSelectCallback = 0; 3336 w.pParse = pParse; 3337 sqlite3WalkExpr(&w, pExpr); 3338 } 3339 3340 3341 /* 3342 ** Generate code that pushes the value of every element of the given 3343 ** expression list into a sequence of registers beginning at target. 3344 ** 3345 ** Return the number of elements evaluated. 3346 */ 3347 int sqlite3ExprCodeExprList( 3348 Parse *pParse, /* Parsing context */ 3349 ExprList *pList, /* The expression list to be coded */ 3350 int target, /* Where to write results */ 3351 int doHardCopy /* Make a hard copy of every element */ 3352 ){ 3353 struct ExprList_item *pItem; 3354 int i, n; 3355 assert( pList!=0 ); 3356 assert( target>0 ); 3357 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3358 n = pList->nExpr; 3359 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3360 Expr *pExpr = pItem->pExpr; 3361 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3362 if( inReg!=target+i ){ 3363 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3364 inReg, target+i); 3365 } 3366 } 3367 return n; 3368 } 3369 3370 /* 3371 ** Generate code for a BETWEEN operator. 3372 ** 3373 ** x BETWEEN y AND z 3374 ** 3375 ** The above is equivalent to 3376 ** 3377 ** x>=y AND x<=z 3378 ** 3379 ** Code it as such, taking care to do the common subexpression 3380 ** elementation of x. 3381 */ 3382 static void exprCodeBetween( 3383 Parse *pParse, /* Parsing and code generating context */ 3384 Expr *pExpr, /* The BETWEEN expression */ 3385 int dest, /* Jump here if the jump is taken */ 3386 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3387 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3388 ){ 3389 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3390 Expr compLeft; /* The x>=y term */ 3391 Expr compRight; /* The x<=z term */ 3392 Expr exprX; /* The x subexpression */ 3393 int regFree1 = 0; /* Temporary use register */ 3394 3395 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3396 exprX = *pExpr->pLeft; 3397 exprAnd.op = TK_AND; 3398 exprAnd.pLeft = &compLeft; 3399 exprAnd.pRight = &compRight; 3400 compLeft.op = TK_GE; 3401 compLeft.pLeft = &exprX; 3402 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3403 compRight.op = TK_LE; 3404 compRight.pLeft = &exprX; 3405 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3406 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3407 exprX.op = TK_REGISTER; 3408 if( jumpIfTrue ){ 3409 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3410 }else{ 3411 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3412 } 3413 sqlite3ReleaseTempReg(pParse, regFree1); 3414 3415 /* Ensure adequate test coverage */ 3416 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3417 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3418 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3419 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3420 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3421 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3422 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3423 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3424 } 3425 3426 /* 3427 ** Generate code for a boolean expression such that a jump is made 3428 ** to the label "dest" if the expression is true but execution 3429 ** continues straight thru if the expression is false. 3430 ** 3431 ** If the expression evaluates to NULL (neither true nor false), then 3432 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3433 ** 3434 ** This code depends on the fact that certain token values (ex: TK_EQ) 3435 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3436 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3437 ** the make process cause these values to align. Assert()s in the code 3438 ** below verify that the numbers are aligned correctly. 3439 */ 3440 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3441 Vdbe *v = pParse->pVdbe; 3442 int op = 0; 3443 int regFree1 = 0; 3444 int regFree2 = 0; 3445 int r1, r2; 3446 3447 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3448 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3449 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3450 op = pExpr->op; 3451 switch( op ){ 3452 case TK_AND: { 3453 int d2 = sqlite3VdbeMakeLabel(v); 3454 testcase( jumpIfNull==0 ); 3455 sqlite3ExprCachePush(pParse); 3456 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3457 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3458 sqlite3VdbeResolveLabel(v, d2); 3459 sqlite3ExprCachePop(pParse, 1); 3460 break; 3461 } 3462 case TK_OR: { 3463 testcase( jumpIfNull==0 ); 3464 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3465 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3466 break; 3467 } 3468 case TK_NOT: { 3469 testcase( jumpIfNull==0 ); 3470 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3471 break; 3472 } 3473 case TK_LT: 3474 case TK_LE: 3475 case TK_GT: 3476 case TK_GE: 3477 case TK_NE: 3478 case TK_EQ: { 3479 assert( TK_LT==OP_Lt ); 3480 assert( TK_LE==OP_Le ); 3481 assert( TK_GT==OP_Gt ); 3482 assert( TK_GE==OP_Ge ); 3483 assert( TK_EQ==OP_Eq ); 3484 assert( TK_NE==OP_Ne ); 3485 testcase( op==TK_LT ); 3486 testcase( op==TK_LE ); 3487 testcase( op==TK_GT ); 3488 testcase( op==TK_GE ); 3489 testcase( op==TK_EQ ); 3490 testcase( op==TK_NE ); 3491 testcase( jumpIfNull==0 ); 3492 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3493 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3494 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3495 r1, r2, dest, jumpIfNull); 3496 testcase( regFree1==0 ); 3497 testcase( regFree2==0 ); 3498 break; 3499 } 3500 case TK_IS: 3501 case TK_ISNOT: { 3502 testcase( op==TK_IS ); 3503 testcase( op==TK_ISNOT ); 3504 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3505 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3506 op = (op==TK_IS) ? TK_EQ : TK_NE; 3507 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3508 r1, r2, dest, SQLITE_NULLEQ); 3509 testcase( regFree1==0 ); 3510 testcase( regFree2==0 ); 3511 break; 3512 } 3513 case TK_ISNULL: 3514 case TK_NOTNULL: { 3515 assert( TK_ISNULL==OP_IsNull ); 3516 assert( TK_NOTNULL==OP_NotNull ); 3517 testcase( op==TK_ISNULL ); 3518 testcase( op==TK_NOTNULL ); 3519 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3520 sqlite3VdbeAddOp2(v, op, r1, dest); 3521 testcase( regFree1==0 ); 3522 break; 3523 } 3524 case TK_BETWEEN: { 3525 testcase( jumpIfNull==0 ); 3526 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3527 break; 3528 } 3529 #ifndef SQLITE_OMIT_SUBQUERY 3530 case TK_IN: { 3531 int destIfFalse = sqlite3VdbeMakeLabel(v); 3532 int destIfNull = jumpIfNull ? dest : destIfFalse; 3533 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3534 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3535 sqlite3VdbeResolveLabel(v, destIfFalse); 3536 break; 3537 } 3538 #endif 3539 default: { 3540 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3541 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3542 testcase( regFree1==0 ); 3543 testcase( jumpIfNull==0 ); 3544 break; 3545 } 3546 } 3547 sqlite3ReleaseTempReg(pParse, regFree1); 3548 sqlite3ReleaseTempReg(pParse, regFree2); 3549 } 3550 3551 /* 3552 ** Generate code for a boolean expression such that a jump is made 3553 ** to the label "dest" if the expression is false but execution 3554 ** continues straight thru if the expression is true. 3555 ** 3556 ** If the expression evaluates to NULL (neither true nor false) then 3557 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3558 ** is 0. 3559 */ 3560 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3561 Vdbe *v = pParse->pVdbe; 3562 int op = 0; 3563 int regFree1 = 0; 3564 int regFree2 = 0; 3565 int r1, r2; 3566 3567 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3568 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3569 if( pExpr==0 ) return; 3570 3571 /* The value of pExpr->op and op are related as follows: 3572 ** 3573 ** pExpr->op op 3574 ** --------- ---------- 3575 ** TK_ISNULL OP_NotNull 3576 ** TK_NOTNULL OP_IsNull 3577 ** TK_NE OP_Eq 3578 ** TK_EQ OP_Ne 3579 ** TK_GT OP_Le 3580 ** TK_LE OP_Gt 3581 ** TK_GE OP_Lt 3582 ** TK_LT OP_Ge 3583 ** 3584 ** For other values of pExpr->op, op is undefined and unused. 3585 ** The value of TK_ and OP_ constants are arranged such that we 3586 ** can compute the mapping above using the following expression. 3587 ** Assert()s verify that the computation is correct. 3588 */ 3589 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3590 3591 /* Verify correct alignment of TK_ and OP_ constants 3592 */ 3593 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3594 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3595 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3596 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3597 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3598 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3599 assert( pExpr->op!=TK_GT || op==OP_Le ); 3600 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3601 3602 switch( pExpr->op ){ 3603 case TK_AND: { 3604 testcase( jumpIfNull==0 ); 3605 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3606 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3607 break; 3608 } 3609 case TK_OR: { 3610 int d2 = sqlite3VdbeMakeLabel(v); 3611 testcase( jumpIfNull==0 ); 3612 sqlite3ExprCachePush(pParse); 3613 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3614 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3615 sqlite3VdbeResolveLabel(v, d2); 3616 sqlite3ExprCachePop(pParse, 1); 3617 break; 3618 } 3619 case TK_NOT: { 3620 testcase( jumpIfNull==0 ); 3621 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3622 break; 3623 } 3624 case TK_LT: 3625 case TK_LE: 3626 case TK_GT: 3627 case TK_GE: 3628 case TK_NE: 3629 case TK_EQ: { 3630 testcase( op==TK_LT ); 3631 testcase( op==TK_LE ); 3632 testcase( op==TK_GT ); 3633 testcase( op==TK_GE ); 3634 testcase( op==TK_EQ ); 3635 testcase( op==TK_NE ); 3636 testcase( jumpIfNull==0 ); 3637 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3638 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3639 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3640 r1, r2, dest, jumpIfNull); 3641 testcase( regFree1==0 ); 3642 testcase( regFree2==0 ); 3643 break; 3644 } 3645 case TK_IS: 3646 case TK_ISNOT: { 3647 testcase( pExpr->op==TK_IS ); 3648 testcase( pExpr->op==TK_ISNOT ); 3649 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3650 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3651 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3652 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3653 r1, r2, dest, SQLITE_NULLEQ); 3654 testcase( regFree1==0 ); 3655 testcase( regFree2==0 ); 3656 break; 3657 } 3658 case TK_ISNULL: 3659 case TK_NOTNULL: { 3660 testcase( op==TK_ISNULL ); 3661 testcase( op==TK_NOTNULL ); 3662 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3663 sqlite3VdbeAddOp2(v, op, r1, dest); 3664 testcase( regFree1==0 ); 3665 break; 3666 } 3667 case TK_BETWEEN: { 3668 testcase( jumpIfNull==0 ); 3669 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3670 break; 3671 } 3672 #ifndef SQLITE_OMIT_SUBQUERY 3673 case TK_IN: { 3674 if( jumpIfNull ){ 3675 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3676 }else{ 3677 int destIfNull = sqlite3VdbeMakeLabel(v); 3678 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3679 sqlite3VdbeResolveLabel(v, destIfNull); 3680 } 3681 break; 3682 } 3683 #endif 3684 default: { 3685 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3686 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3687 testcase( regFree1==0 ); 3688 testcase( jumpIfNull==0 ); 3689 break; 3690 } 3691 } 3692 sqlite3ReleaseTempReg(pParse, regFree1); 3693 sqlite3ReleaseTempReg(pParse, regFree2); 3694 } 3695 3696 /* 3697 ** Do a deep comparison of two expression trees. Return 0 if the two 3698 ** expressions are completely identical. Return 1 if they differ only 3699 ** by a COLLATE operator at the top level. Return 2 if there are differences 3700 ** other than the top-level COLLATE operator. 3701 ** 3702 ** Sometimes this routine will return 2 even if the two expressions 3703 ** really are equivalent. If we cannot prove that the expressions are 3704 ** identical, we return 2 just to be safe. So if this routine 3705 ** returns 2, then you do not really know for certain if the two 3706 ** expressions are the same. But if you get a 0 or 1 return, then you 3707 ** can be sure the expressions are the same. In the places where 3708 ** this routine is used, it does not hurt to get an extra 2 - that 3709 ** just might result in some slightly slower code. But returning 3710 ** an incorrect 0 or 1 could lead to a malfunction. 3711 */ 3712 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3713 if( pA==0||pB==0 ){ 3714 return pB==pA ? 0 : 2; 3715 } 3716 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3717 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3718 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3719 return 2; 3720 } 3721 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3722 if( pA->op!=pB->op ) return 2; 3723 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3724 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3725 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3726 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3727 if( ExprHasProperty(pA, EP_IntValue) ){ 3728 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3729 return 2; 3730 } 3731 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3732 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3733 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3734 return 2; 3735 } 3736 } 3737 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3738 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3739 return 0; 3740 } 3741 3742 /* 3743 ** Compare two ExprList objects. Return 0 if they are identical and 3744 ** non-zero if they differ in any way. 3745 ** 3746 ** This routine might return non-zero for equivalent ExprLists. The 3747 ** only consequence will be disabled optimizations. But this routine 3748 ** must never return 0 if the two ExprList objects are different, or 3749 ** a malfunction will result. 3750 ** 3751 ** Two NULL pointers are considered to be the same. But a NULL pointer 3752 ** always differs from a non-NULL pointer. 3753 */ 3754 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3755 int i; 3756 if( pA==0 && pB==0 ) return 0; 3757 if( pA==0 || pB==0 ) return 1; 3758 if( pA->nExpr!=pB->nExpr ) return 1; 3759 for(i=0; i<pA->nExpr; i++){ 3760 Expr *pExprA = pA->a[i].pExpr; 3761 Expr *pExprB = pB->a[i].pExpr; 3762 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3763 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3764 } 3765 return 0; 3766 } 3767 3768 /* 3769 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3770 ** the new element. Return a negative number if malloc fails. 3771 */ 3772 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3773 int i; 3774 pInfo->aCol = sqlite3ArrayAllocate( 3775 db, 3776 pInfo->aCol, 3777 sizeof(pInfo->aCol[0]), 3778 3, 3779 &pInfo->nColumn, 3780 &pInfo->nColumnAlloc, 3781 &i 3782 ); 3783 return i; 3784 } 3785 3786 /* 3787 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3788 ** the new element. Return a negative number if malloc fails. 3789 */ 3790 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3791 int i; 3792 pInfo->aFunc = sqlite3ArrayAllocate( 3793 db, 3794 pInfo->aFunc, 3795 sizeof(pInfo->aFunc[0]), 3796 3, 3797 &pInfo->nFunc, 3798 &pInfo->nFuncAlloc, 3799 &i 3800 ); 3801 return i; 3802 } 3803 3804 /* 3805 ** This is the xExprCallback for a tree walker. It is used to 3806 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3807 ** for additional information. 3808 */ 3809 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3810 int i; 3811 NameContext *pNC = pWalker->u.pNC; 3812 Parse *pParse = pNC->pParse; 3813 SrcList *pSrcList = pNC->pSrcList; 3814 AggInfo *pAggInfo = pNC->pAggInfo; 3815 3816 switch( pExpr->op ){ 3817 case TK_AGG_COLUMN: 3818 case TK_COLUMN: { 3819 testcase( pExpr->op==TK_AGG_COLUMN ); 3820 testcase( pExpr->op==TK_COLUMN ); 3821 /* Check to see if the column is in one of the tables in the FROM 3822 ** clause of the aggregate query */ 3823 if( ALWAYS(pSrcList!=0) ){ 3824 struct SrcList_item *pItem = pSrcList->a; 3825 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3826 struct AggInfo_col *pCol; 3827 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3828 if( pExpr->iTable==pItem->iCursor ){ 3829 /* If we reach this point, it means that pExpr refers to a table 3830 ** that is in the FROM clause of the aggregate query. 3831 ** 3832 ** Make an entry for the column in pAggInfo->aCol[] if there 3833 ** is not an entry there already. 3834 */ 3835 int k; 3836 pCol = pAggInfo->aCol; 3837 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3838 if( pCol->iTable==pExpr->iTable && 3839 pCol->iColumn==pExpr->iColumn ){ 3840 break; 3841 } 3842 } 3843 if( (k>=pAggInfo->nColumn) 3844 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3845 ){ 3846 pCol = &pAggInfo->aCol[k]; 3847 pCol->pTab = pExpr->pTab; 3848 pCol->iTable = pExpr->iTable; 3849 pCol->iColumn = pExpr->iColumn; 3850 pCol->iMem = ++pParse->nMem; 3851 pCol->iSorterColumn = -1; 3852 pCol->pExpr = pExpr; 3853 if( pAggInfo->pGroupBy ){ 3854 int j, n; 3855 ExprList *pGB = pAggInfo->pGroupBy; 3856 struct ExprList_item *pTerm = pGB->a; 3857 n = pGB->nExpr; 3858 for(j=0; j<n; j++, pTerm++){ 3859 Expr *pE = pTerm->pExpr; 3860 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3861 pE->iColumn==pExpr->iColumn ){ 3862 pCol->iSorterColumn = j; 3863 break; 3864 } 3865 } 3866 } 3867 if( pCol->iSorterColumn<0 ){ 3868 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3869 } 3870 } 3871 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3872 ** because it was there before or because we just created it). 3873 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3874 ** pAggInfo->aCol[] entry. 3875 */ 3876 ExprSetIrreducible(pExpr); 3877 pExpr->pAggInfo = pAggInfo; 3878 pExpr->op = TK_AGG_COLUMN; 3879 pExpr->iAgg = (i16)k; 3880 break; 3881 } /* endif pExpr->iTable==pItem->iCursor */ 3882 } /* end loop over pSrcList */ 3883 } 3884 return WRC_Prune; 3885 } 3886 case TK_AGG_FUNCTION: { 3887 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3888 ** to be ignored */ 3889 if( pNC->nDepth==0 ){ 3890 /* Check to see if pExpr is a duplicate of another aggregate 3891 ** function that is already in the pAggInfo structure 3892 */ 3893 struct AggInfo_func *pItem = pAggInfo->aFunc; 3894 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3895 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 3896 break; 3897 } 3898 } 3899 if( i>=pAggInfo->nFunc ){ 3900 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3901 */ 3902 u8 enc = ENC(pParse->db); 3903 i = addAggInfoFunc(pParse->db, pAggInfo); 3904 if( i>=0 ){ 3905 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3906 pItem = &pAggInfo->aFunc[i]; 3907 pItem->pExpr = pExpr; 3908 pItem->iMem = ++pParse->nMem; 3909 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3910 pItem->pFunc = sqlite3FindFunction(pParse->db, 3911 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3912 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3913 if( pExpr->flags & EP_Distinct ){ 3914 pItem->iDistinct = pParse->nTab++; 3915 }else{ 3916 pItem->iDistinct = -1; 3917 } 3918 } 3919 } 3920 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3921 */ 3922 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3923 ExprSetIrreducible(pExpr); 3924 pExpr->iAgg = (i16)i; 3925 pExpr->pAggInfo = pAggInfo; 3926 return WRC_Prune; 3927 } 3928 } 3929 } 3930 return WRC_Continue; 3931 } 3932 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3933 NameContext *pNC = pWalker->u.pNC; 3934 if( pNC->nDepth==0 ){ 3935 pNC->nDepth++; 3936 sqlite3WalkSelect(pWalker, pSelect); 3937 pNC->nDepth--; 3938 return WRC_Prune; 3939 }else{ 3940 return WRC_Continue; 3941 } 3942 } 3943 3944 /* 3945 ** Analyze the given expression looking for aggregate functions and 3946 ** for variables that need to be added to the pParse->aAgg[] array. 3947 ** Make additional entries to the pParse->aAgg[] array as necessary. 3948 ** 3949 ** This routine should only be called after the expression has been 3950 ** analyzed by sqlite3ResolveExprNames(). 3951 */ 3952 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3953 Walker w; 3954 w.xExprCallback = analyzeAggregate; 3955 w.xSelectCallback = analyzeAggregatesInSelect; 3956 w.u.pNC = pNC; 3957 assert( pNC->pSrcList!=0 ); 3958 sqlite3WalkExpr(&w, pExpr); 3959 } 3960 3961 /* 3962 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3963 ** expression list. Return the number of errors. 3964 ** 3965 ** If an error is found, the analysis is cut short. 3966 */ 3967 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3968 struct ExprList_item *pItem; 3969 int i; 3970 if( pList ){ 3971 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3972 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3973 } 3974 } 3975 } 3976 3977 /* 3978 ** Allocate a single new register for use to hold some intermediate result. 3979 */ 3980 int sqlite3GetTempReg(Parse *pParse){ 3981 if( pParse->nTempReg==0 ){ 3982 return ++pParse->nMem; 3983 } 3984 return pParse->aTempReg[--pParse->nTempReg]; 3985 } 3986 3987 /* 3988 ** Deallocate a register, making available for reuse for some other 3989 ** purpose. 3990 ** 3991 ** If a register is currently being used by the column cache, then 3992 ** the dallocation is deferred until the column cache line that uses 3993 ** the register becomes stale. 3994 */ 3995 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3996 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3997 int i; 3998 struct yColCache *p; 3999 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4000 if( p->iReg==iReg ){ 4001 p->tempReg = 1; 4002 return; 4003 } 4004 } 4005 pParse->aTempReg[pParse->nTempReg++] = iReg; 4006 } 4007 } 4008 4009 /* 4010 ** Allocate or deallocate a block of nReg consecutive registers 4011 */ 4012 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4013 int i, n; 4014 i = pParse->iRangeReg; 4015 n = pParse->nRangeReg; 4016 if( nReg<=n ){ 4017 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4018 pParse->iRangeReg += nReg; 4019 pParse->nRangeReg -= nReg; 4020 }else{ 4021 i = pParse->nMem+1; 4022 pParse->nMem += nReg; 4023 } 4024 return i; 4025 } 4026 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4027 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4028 if( nReg>pParse->nRangeReg ){ 4029 pParse->nRangeReg = nReg; 4030 pParse->iRangeReg = iReg; 4031 } 4032 } 4033 4034 /* 4035 ** Mark all temporary registers as being unavailable for reuse. 4036 */ 4037 void sqlite3ClearTempRegCache(Parse *pParse){ 4038 pParse->nTempReg = 0; 4039 pParse->nRangeReg = 0; 4040 } 4041