xref: /sqlite-3.40.0/src/expr.c (revision 4249b3f5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.386 2008/07/18 17:03:53 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <ctype.h>
19 
20 /*
21 ** Return the 'affinity' of the expression pExpr if any.
22 **
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
27 **
28 ** i.e. the WHERE clause expresssions in the following statements all
29 ** have an affinity:
30 **
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
35 */
36 char sqlite3ExprAffinity(Expr *pExpr){
37   int op = pExpr->op;
38   if( op==TK_SELECT ){
39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     return sqlite3AffinityType(&pExpr->token);
44   }
45 #endif
46   return pExpr->affinity;
47 }
48 
49 /*
50 ** Set the collating sequence for expression pExpr to be the collating
51 ** sequence named by pToken.   Return a pointer to the revised expression.
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
53 ** flag.  An explicit collating sequence will override implicit
54 ** collating sequences.
55 */
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
57   char *zColl = 0;            /* Dequoted name of collation sequence */
58   CollSeq *pColl;
59   zColl = sqlite3NameFromToken(pParse->db, pName);
60   if( pExpr && zColl ){
61     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
62     if( pColl ){
63       pExpr->pColl = pColl;
64       pExpr->flags |= EP_ExpCollate;
65     }
66   }
67   sqlite3_free(zColl);
68   return pExpr;
69 }
70 
71 /*
72 ** Return the default collation sequence for the expression pExpr. If
73 ** there is no default collation type, return 0.
74 */
75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
76   CollSeq *pColl = 0;
77   if( pExpr ){
78     int op;
79     pColl = pExpr->pColl;
80     op = pExpr->op;
81     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
82       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
83     }
84   }
85   if( sqlite3CheckCollSeq(pParse, pColl) ){
86     pColl = 0;
87   }
88   return pColl;
89 }
90 
91 /*
92 ** pExpr is an operand of a comparison operator.  aff2 is the
93 ** type affinity of the other operand.  This routine returns the
94 ** type affinity that should be used for the comparison operator.
95 */
96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
97   char aff1 = sqlite3ExprAffinity(pExpr);
98   if( aff1 && aff2 ){
99     /* Both sides of the comparison are columns. If one has numeric
100     ** affinity, use that. Otherwise use no affinity.
101     */
102     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
103       return SQLITE_AFF_NUMERIC;
104     }else{
105       return SQLITE_AFF_NONE;
106     }
107   }else if( !aff1 && !aff2 ){
108     /* Neither side of the comparison is a column.  Compare the
109     ** results directly.
110     */
111     return SQLITE_AFF_NONE;
112   }else{
113     /* One side is a column, the other is not. Use the columns affinity. */
114     assert( aff1==0 || aff2==0 );
115     return (aff1 + aff2);
116   }
117 }
118 
119 /*
120 ** pExpr is a comparison operator.  Return the type affinity that should
121 ** be applied to both operands prior to doing the comparison.
122 */
123 static char comparisonAffinity(Expr *pExpr){
124   char aff;
125   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
126           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
127           pExpr->op==TK_NE );
128   assert( pExpr->pLeft );
129   aff = sqlite3ExprAffinity(pExpr->pLeft);
130   if( pExpr->pRight ){
131     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
132   }
133   else if( pExpr->pSelect ){
134     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
135   }
136   else if( !aff ){
137     aff = SQLITE_AFF_NONE;
138   }
139   return aff;
140 }
141 
142 /*
143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
144 ** idx_affinity is the affinity of an indexed column. Return true
145 ** if the index with affinity idx_affinity may be used to implement
146 ** the comparison in pExpr.
147 */
148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
149   char aff = comparisonAffinity(pExpr);
150   switch( aff ){
151     case SQLITE_AFF_NONE:
152       return 1;
153     case SQLITE_AFF_TEXT:
154       return idx_affinity==SQLITE_AFF_TEXT;
155     default:
156       return sqlite3IsNumericAffinity(idx_affinity);
157   }
158 }
159 
160 /*
161 ** Return the P5 value that should be used for a binary comparison
162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
163 */
164 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
165   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
166   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
167   return aff;
168 }
169 
170 /*
171 ** Return a pointer to the collation sequence that should be used by
172 ** a binary comparison operator comparing pLeft and pRight.
173 **
174 ** If the left hand expression has a collating sequence type, then it is
175 ** used. Otherwise the collation sequence for the right hand expression
176 ** is used, or the default (BINARY) if neither expression has a collating
177 ** type.
178 **
179 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
180 ** it is not considered.
181 */
182 CollSeq *sqlite3BinaryCompareCollSeq(
183   Parse *pParse,
184   Expr *pLeft,
185   Expr *pRight
186 ){
187   CollSeq *pColl;
188   assert( pLeft );
189   if( pLeft->flags & EP_ExpCollate ){
190     assert( pLeft->pColl );
191     pColl = pLeft->pColl;
192   }else if( pRight && pRight->flags & EP_ExpCollate ){
193     assert( pRight->pColl );
194     pColl = pRight->pColl;
195   }else{
196     pColl = sqlite3ExprCollSeq(pParse, pLeft);
197     if( !pColl ){
198       pColl = sqlite3ExprCollSeq(pParse, pRight);
199     }
200   }
201   return pColl;
202 }
203 
204 /*
205 ** Generate the operands for a comparison operation.  Before
206 ** generating the code for each operand, set the EP_AnyAff
207 ** flag on the expression so that it will be able to used a
208 ** cached column value that has previously undergone an
209 ** affinity change.
210 */
211 static void codeCompareOperands(
212   Parse *pParse,    /* Parsing and code generating context */
213   Expr *pLeft,      /* The left operand */
214   int *pRegLeft,    /* Register where left operand is stored */
215   int *pFreeLeft,   /* Free this register when done */
216   Expr *pRight,     /* The right operand */
217   int *pRegRight,   /* Register where right operand is stored */
218   int *pFreeRight   /* Write temp register for right operand there */
219 ){
220   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
221   pLeft->flags |= EP_AnyAff;
222   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
223   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
224   pRight->flags |= EP_AnyAff;
225   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
226 }
227 
228 /*
229 ** Generate code for a comparison operator.
230 */
231 static int codeCompare(
232   Parse *pParse,    /* The parsing (and code generating) context */
233   Expr *pLeft,      /* The left operand */
234   Expr *pRight,     /* The right operand */
235   int opcode,       /* The comparison opcode */
236   int in1, int in2, /* Register holding operands */
237   int dest,         /* Jump here if true.  */
238   int jumpIfNull    /* If true, jump if either operand is NULL */
239 ){
240   int p5;
241   int addr;
242   CollSeq *p4;
243 
244   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
245   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
246   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
247                            (void*)p4, P4_COLLSEQ);
248   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
249   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
250     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
251     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
252   }
253   return addr;
254 }
255 
256 #if SQLITE_MAX_EXPR_DEPTH>0
257 /*
258 ** Check that argument nHeight is less than or equal to the maximum
259 ** expression depth allowed. If it is not, leave an error message in
260 ** pParse.
261 */
262 static int checkExprHeight(Parse *pParse, int nHeight){
263   int rc = SQLITE_OK;
264   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
265   if( nHeight>mxHeight ){
266     sqlite3ErrorMsg(pParse,
267        "Expression tree is too large (maximum depth %d)", mxHeight
268     );
269     rc = SQLITE_ERROR;
270   }
271   return rc;
272 }
273 
274 /* The following three functions, heightOfExpr(), heightOfExprList()
275 ** and heightOfSelect(), are used to determine the maximum height
276 ** of any expression tree referenced by the structure passed as the
277 ** first argument.
278 **
279 ** If this maximum height is greater than the current value pointed
280 ** to by pnHeight, the second parameter, then set *pnHeight to that
281 ** value.
282 */
283 static void heightOfExpr(Expr *p, int *pnHeight){
284   if( p ){
285     if( p->nHeight>*pnHeight ){
286       *pnHeight = p->nHeight;
287     }
288   }
289 }
290 static void heightOfExprList(ExprList *p, int *pnHeight){
291   if( p ){
292     int i;
293     for(i=0; i<p->nExpr; i++){
294       heightOfExpr(p->a[i].pExpr, pnHeight);
295     }
296   }
297 }
298 static void heightOfSelect(Select *p, int *pnHeight){
299   if( p ){
300     heightOfExpr(p->pWhere, pnHeight);
301     heightOfExpr(p->pHaving, pnHeight);
302     heightOfExpr(p->pLimit, pnHeight);
303     heightOfExpr(p->pOffset, pnHeight);
304     heightOfExprList(p->pEList, pnHeight);
305     heightOfExprList(p->pGroupBy, pnHeight);
306     heightOfExprList(p->pOrderBy, pnHeight);
307     heightOfSelect(p->pPrior, pnHeight);
308   }
309 }
310 
311 /*
312 ** Set the Expr.nHeight variable in the structure passed as an
313 ** argument. An expression with no children, Expr.pList or
314 ** Expr.pSelect member has a height of 1. Any other expression
315 ** has a height equal to the maximum height of any other
316 ** referenced Expr plus one.
317 */
318 static void exprSetHeight(Expr *p){
319   int nHeight = 0;
320   heightOfExpr(p->pLeft, &nHeight);
321   heightOfExpr(p->pRight, &nHeight);
322   heightOfExprList(p->pList, &nHeight);
323   heightOfSelect(p->pSelect, &nHeight);
324   p->nHeight = nHeight + 1;
325 }
326 
327 /*
328 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
329 ** the height is greater than the maximum allowed expression depth,
330 ** leave an error in pParse.
331 */
332 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
333   exprSetHeight(p);
334   checkExprHeight(pParse, p->nHeight);
335 }
336 
337 /*
338 ** Return the maximum height of any expression tree referenced
339 ** by the select statement passed as an argument.
340 */
341 int sqlite3SelectExprHeight(Select *p){
342   int nHeight = 0;
343   heightOfSelect(p, &nHeight);
344   return nHeight;
345 }
346 #else
347   #define checkExprHeight(x,y)
348   #define exprSetHeight(y)
349 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
350 
351 /*
352 ** Construct a new expression node and return a pointer to it.  Memory
353 ** for this node is obtained from sqlite3_malloc().  The calling function
354 ** is responsible for making sure the node eventually gets freed.
355 */
356 Expr *sqlite3Expr(
357   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
358   int op,                 /* Expression opcode */
359   Expr *pLeft,            /* Left operand */
360   Expr *pRight,           /* Right operand */
361   const Token *pToken     /* Argument token */
362 ){
363   Expr *pNew;
364   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
365   if( pNew==0 ){
366     /* When malloc fails, delete pLeft and pRight. Expressions passed to
367     ** this function must always be allocated with sqlite3Expr() for this
368     ** reason.
369     */
370     sqlite3ExprDelete(pLeft);
371     sqlite3ExprDelete(pRight);
372     return 0;
373   }
374   pNew->op = op;
375   pNew->pLeft = pLeft;
376   pNew->pRight = pRight;
377   pNew->iAgg = -1;
378   pNew->span.z = (u8*)"";
379   if( pToken ){
380     assert( pToken->dyn==0 );
381     pNew->span = pNew->token = *pToken;
382   }else if( pLeft ){
383     if( pRight ){
384       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
385         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
386       }
387       if( pRight->flags & EP_ExpCollate ){
388         pNew->flags |= EP_ExpCollate;
389         pNew->pColl = pRight->pColl;
390       }
391     }
392     if( pLeft->flags & EP_ExpCollate ){
393       pNew->flags |= EP_ExpCollate;
394       pNew->pColl = pLeft->pColl;
395     }
396   }
397 
398   exprSetHeight(pNew);
399   return pNew;
400 }
401 
402 /*
403 ** Works like sqlite3Expr() except that it takes an extra Parse*
404 ** argument and notifies the associated connection object if malloc fails.
405 */
406 Expr *sqlite3PExpr(
407   Parse *pParse,          /* Parsing context */
408   int op,                 /* Expression opcode */
409   Expr *pLeft,            /* Left operand */
410   Expr *pRight,           /* Right operand */
411   const Token *pToken     /* Argument token */
412 ){
413   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
414   if( p ){
415     checkExprHeight(pParse, p->nHeight);
416   }
417   return p;
418 }
419 
420 /*
421 ** When doing a nested parse, you can include terms in an expression
422 ** that look like this:   #1 #2 ...  These terms refer to registers
423 ** in the virtual machine.  #N is the N-th register.
424 **
425 ** This routine is called by the parser to deal with on of those terms.
426 ** It immediately generates code to store the value in a memory location.
427 ** The returns an expression that will code to extract the value from
428 ** that memory location as needed.
429 */
430 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
431   Vdbe *v = pParse->pVdbe;
432   Expr *p;
433   if( pParse->nested==0 ){
434     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
435     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
436   }
437   if( v==0 ) return 0;
438   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
439   if( p==0 ){
440     return 0;  /* Malloc failed */
441   }
442   p->iTable = atoi((char*)&pToken->z[1]);
443   return p;
444 }
445 
446 /*
447 ** Join two expressions using an AND operator.  If either expression is
448 ** NULL, then just return the other expression.
449 */
450 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
451   if( pLeft==0 ){
452     return pRight;
453   }else if( pRight==0 ){
454     return pLeft;
455   }else{
456     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
457   }
458 }
459 
460 /*
461 ** Set the Expr.span field of the given expression to span all
462 ** text between the two given tokens.  Both tokens must be pointing
463 ** at the same string.
464 */
465 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
466   assert( pRight!=0 );
467   assert( pLeft!=0 );
468   if( pExpr ){
469     pExpr->span.z = pLeft->z;
470     pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
471   }
472 }
473 
474 /*
475 ** Construct a new expression node for a function with multiple
476 ** arguments.
477 */
478 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
479   Expr *pNew;
480   assert( pToken );
481   pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
482   if( pNew==0 ){
483     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
484     return 0;
485   }
486   pNew->op = TK_FUNCTION;
487   pNew->pList = pList;
488   assert( pToken->dyn==0 );
489   pNew->token = *pToken;
490   pNew->span = pNew->token;
491 
492   sqlite3ExprSetHeight(pParse, pNew);
493   return pNew;
494 }
495 
496 /*
497 ** Assign a variable number to an expression that encodes a wildcard
498 ** in the original SQL statement.
499 **
500 ** Wildcards consisting of a single "?" are assigned the next sequential
501 ** variable number.
502 **
503 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
504 ** sure "nnn" is not too be to avoid a denial of service attack when
505 ** the SQL statement comes from an external source.
506 **
507 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
508 ** as the previous instance of the same wildcard.  Or if this is the first
509 ** instance of the wildcard, the next sequenial variable number is
510 ** assigned.
511 */
512 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
513   Token *pToken;
514   sqlite3 *db = pParse->db;
515 
516   if( pExpr==0 ) return;
517   pToken = &pExpr->token;
518   assert( pToken->n>=1 );
519   assert( pToken->z!=0 );
520   assert( pToken->z[0]!=0 );
521   if( pToken->n==1 ){
522     /* Wildcard of the form "?".  Assign the next variable number */
523     pExpr->iTable = ++pParse->nVar;
524   }else if( pToken->z[0]=='?' ){
525     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
526     ** use it as the variable number */
527     int i;
528     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
529     testcase( i==0 );
530     testcase( i==1 );
531     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
532     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
533     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
534       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
535           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
536     }
537     if( i>pParse->nVar ){
538       pParse->nVar = i;
539     }
540   }else{
541     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
542     ** number as the prior appearance of the same name, or if the name
543     ** has never appeared before, reuse the same variable number
544     */
545     int i, n;
546     n = pToken->n;
547     for(i=0; i<pParse->nVarExpr; i++){
548       Expr *pE;
549       if( (pE = pParse->apVarExpr[i])!=0
550           && pE->token.n==n
551           && memcmp(pE->token.z, pToken->z, n)==0 ){
552         pExpr->iTable = pE->iTable;
553         break;
554       }
555     }
556     if( i>=pParse->nVarExpr ){
557       pExpr->iTable = ++pParse->nVar;
558       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
559         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
560         pParse->apVarExpr =
561             sqlite3DbReallocOrFree(
562               db,
563               pParse->apVarExpr,
564               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
565             );
566       }
567       if( !db->mallocFailed ){
568         assert( pParse->apVarExpr!=0 );
569         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
570       }
571     }
572   }
573   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
574     sqlite3ErrorMsg(pParse, "too many SQL variables");
575   }
576 }
577 
578 /*
579 ** Recursively delete an expression tree.
580 */
581 void sqlite3ExprDelete(Expr *p){
582   if( p==0 ) return;
583   if( p->span.dyn ) sqlite3_free((char*)p->span.z);
584   if( p->token.dyn ) sqlite3_free((char*)p->token.z);
585   sqlite3ExprDelete(p->pLeft);
586   sqlite3ExprDelete(p->pRight);
587   sqlite3ExprListDelete(p->pList);
588   sqlite3SelectDelete(p->pSelect);
589   sqlite3_free(p);
590 }
591 
592 /*
593 ** The Expr.token field might be a string literal that is quoted.
594 ** If so, remove the quotation marks.
595 */
596 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
597   if( ExprHasAnyProperty(p, EP_Dequoted) ){
598     return;
599   }
600   ExprSetProperty(p, EP_Dequoted);
601   if( p->token.dyn==0 ){
602     sqlite3TokenCopy(db, &p->token, &p->token);
603   }
604   sqlite3Dequote((char*)p->token.z);
605 }
606 
607 
608 /*
609 ** The following group of routines make deep copies of expressions,
610 ** expression lists, ID lists, and select statements.  The copies can
611 ** be deleted (by being passed to their respective ...Delete() routines)
612 ** without effecting the originals.
613 **
614 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
615 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
616 ** by subsequent calls to sqlite*ListAppend() routines.
617 **
618 ** Any tables that the SrcList might point to are not duplicated.
619 */
620 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
621   Expr *pNew;
622   if( p==0 ) return 0;
623   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
624   if( pNew==0 ) return 0;
625   memcpy(pNew, p, sizeof(*pNew));
626   if( p->token.z!=0 ){
627     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
628     pNew->token.dyn = 1;
629   }else{
630     assert( pNew->token.z==0 );
631   }
632   pNew->span.z = 0;
633   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
634   pNew->pRight = sqlite3ExprDup(db, p->pRight);
635   pNew->pList = sqlite3ExprListDup(db, p->pList);
636   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
637   return pNew;
638 }
639 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
640   if( pTo->dyn ) sqlite3_free((char*)pTo->z);
641   if( pFrom->z ){
642     pTo->n = pFrom->n;
643     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
644     pTo->dyn = 1;
645   }else{
646     pTo->z = 0;
647   }
648 }
649 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
650   ExprList *pNew;
651   struct ExprList_item *pItem, *pOldItem;
652   int i;
653   if( p==0 ) return 0;
654   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
655   if( pNew==0 ) return 0;
656   pNew->iECursor = 0;
657   pNew->nExpr = pNew->nAlloc = p->nExpr;
658   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
659   if( pItem==0 ){
660     sqlite3_free(pNew);
661     return 0;
662   }
663   pOldItem = p->a;
664   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
665     Expr *pNewExpr, *pOldExpr;
666     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
667     if( pOldExpr->span.z!=0 && pNewExpr ){
668       /* Always make a copy of the span for top-level expressions in the
669       ** expression list.  The logic in SELECT processing that determines
670       ** the names of columns in the result set needs this information */
671       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
672     }
673     assert( pNewExpr==0 || pNewExpr->span.z!=0
674             || pOldExpr->span.z==0
675             || db->mallocFailed );
676     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
677     pItem->sortOrder = pOldItem->sortOrder;
678     pItem->isAgg = pOldItem->isAgg;
679     pItem->done = 0;
680   }
681   return pNew;
682 }
683 
684 /*
685 ** If cursors, triggers, views and subqueries are all omitted from
686 ** the build, then none of the following routines, except for
687 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
688 ** called with a NULL argument.
689 */
690 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
691  || !defined(SQLITE_OMIT_SUBQUERY)
692 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
693   SrcList *pNew;
694   int i;
695   int nByte;
696   if( p==0 ) return 0;
697   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
698   pNew = sqlite3DbMallocRaw(db, nByte );
699   if( pNew==0 ) return 0;
700   pNew->nSrc = pNew->nAlloc = p->nSrc;
701   for(i=0; i<p->nSrc; i++){
702     struct SrcList_item *pNewItem = &pNew->a[i];
703     struct SrcList_item *pOldItem = &p->a[i];
704     Table *pTab;
705     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
706     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
707     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
708     pNewItem->jointype = pOldItem->jointype;
709     pNewItem->iCursor = pOldItem->iCursor;
710     pNewItem->isPopulated = pOldItem->isPopulated;
711     pTab = pNewItem->pTab = pOldItem->pTab;
712     if( pTab ){
713       pTab->nRef++;
714     }
715     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
716     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
717     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
718     pNewItem->colUsed = pOldItem->colUsed;
719   }
720   return pNew;
721 }
722 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
723   IdList *pNew;
724   int i;
725   if( p==0 ) return 0;
726   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
727   if( pNew==0 ) return 0;
728   pNew->nId = pNew->nAlloc = p->nId;
729   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
730   if( pNew->a==0 ){
731     sqlite3_free(pNew);
732     return 0;
733   }
734   for(i=0; i<p->nId; i++){
735     struct IdList_item *pNewItem = &pNew->a[i];
736     struct IdList_item *pOldItem = &p->a[i];
737     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
738     pNewItem->idx = pOldItem->idx;
739   }
740   return pNew;
741 }
742 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
743   Select *pNew;
744   if( p==0 ) return 0;
745   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
746   if( pNew==0 ) return 0;
747   pNew->isDistinct = p->isDistinct;
748   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
749   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
750   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
751   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
752   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
753   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
754   pNew->op = p->op;
755   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
756   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
757   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
758   pNew->iLimit = 0;
759   pNew->iOffset = 0;
760   pNew->isResolved = p->isResolved;
761   pNew->isAgg = p->isAgg;
762   pNew->usesEphm = 0;
763   pNew->disallowOrderBy = 0;
764   pNew->pRightmost = 0;
765   pNew->addrOpenEphm[0] = -1;
766   pNew->addrOpenEphm[1] = -1;
767   pNew->addrOpenEphm[2] = -1;
768   return pNew;
769 }
770 #else
771 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
772   assert( p==0 );
773   return 0;
774 }
775 #endif
776 
777 
778 /*
779 ** Add a new element to the end of an expression list.  If pList is
780 ** initially NULL, then create a new expression list.
781 */
782 ExprList *sqlite3ExprListAppend(
783   Parse *pParse,          /* Parsing context */
784   ExprList *pList,        /* List to which to append. Might be NULL */
785   Expr *pExpr,            /* Expression to be appended */
786   Token *pName            /* AS keyword for the expression */
787 ){
788   sqlite3 *db = pParse->db;
789   if( pList==0 ){
790     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
791     if( pList==0 ){
792       goto no_mem;
793     }
794     assert( pList->nAlloc==0 );
795   }
796   if( pList->nAlloc<=pList->nExpr ){
797     struct ExprList_item *a;
798     int n = pList->nAlloc*2 + 4;
799     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
800     if( a==0 ){
801       goto no_mem;
802     }
803     pList->a = a;
804     pList->nAlloc = n;
805   }
806   assert( pList->a!=0 );
807   if( pExpr || pName ){
808     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
809     memset(pItem, 0, sizeof(*pItem));
810     pItem->zName = sqlite3NameFromToken(db, pName);
811     pItem->pExpr = pExpr;
812   }
813   return pList;
814 
815 no_mem:
816   /* Avoid leaking memory if malloc has failed. */
817   sqlite3ExprDelete(pExpr);
818   sqlite3ExprListDelete(pList);
819   return 0;
820 }
821 
822 /*
823 ** If the expression list pEList contains more than iLimit elements,
824 ** leave an error message in pParse.
825 */
826 void sqlite3ExprListCheckLength(
827   Parse *pParse,
828   ExprList *pEList,
829   const char *zObject
830 ){
831   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
832   testcase( pEList && pEList->nExpr==mx );
833   testcase( pEList && pEList->nExpr==mx+1 );
834   if( pEList && pEList->nExpr>mx ){
835     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
836   }
837 }
838 
839 /*
840 ** Delete an entire expression list.
841 */
842 void sqlite3ExprListDelete(ExprList *pList){
843   int i;
844   struct ExprList_item *pItem;
845   if( pList==0 ) return;
846   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
847   assert( pList->nExpr<=pList->nAlloc );
848   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
849     sqlite3ExprDelete(pItem->pExpr);
850     sqlite3_free(pItem->zName);
851   }
852   sqlite3_free(pList->a);
853   sqlite3_free(pList);
854 }
855 
856 /*
857 ** Walk an expression tree.  Call xFunc for each node visited.  xFunc
858 ** is called on the node before xFunc is called on the nodes children.
859 **
860 ** The return value from xFunc determines whether the tree walk continues.
861 ** 0 means continue walking the tree.  1 means do not walk children
862 ** of the current node but continue with siblings.  2 means abandon
863 ** the tree walk completely.
864 **
865 ** The return value from this routine is 1 to abandon the tree walk
866 ** and 0 to continue.
867 **
868 ** NOTICE:  This routine does *not* descend into subqueries.
869 */
870 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
871 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
872   int rc;
873   if( pExpr==0 ) return 0;
874   rc = (*xFunc)(pArg, pExpr);
875   if( rc==0 ){
876     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
877     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
878     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
879   }
880   return rc>1;
881 }
882 
883 /*
884 ** Call walkExprTree() for every expression in list p.
885 */
886 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
887   int i;
888   struct ExprList_item *pItem;
889   if( !p ) return 0;
890   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
891     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
892   }
893   return 0;
894 }
895 
896 /*
897 ** Call walkExprTree() for every expression in Select p, not including
898 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
899 ** or OFFSET expressions..
900 */
901 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
902   walkExprList(p->pEList, xFunc, pArg);
903   walkExprTree(p->pWhere, xFunc, pArg);
904   walkExprList(p->pGroupBy, xFunc, pArg);
905   walkExprTree(p->pHaving, xFunc, pArg);
906   walkExprList(p->pOrderBy, xFunc, pArg);
907   if( p->pPrior ){
908     walkSelectExpr(p->pPrior, xFunc, pArg);
909   }
910   return 0;
911 }
912 
913 
914 /*
915 ** This routine is designed as an xFunc for walkExprTree().
916 **
917 ** pArg is really a pointer to an integer.  If we can tell by looking
918 ** at pExpr that the expression that contains pExpr is not a constant
919 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
920 ** If pExpr does does not disqualify the expression from being a constant
921 ** then do nothing.
922 **
923 ** After walking the whole tree, if no nodes are found that disqualify
924 ** the expression as constant, then we assume the whole expression
925 ** is constant.  See sqlite3ExprIsConstant() for additional information.
926 */
927 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
928   int *pN = (int*)pArg;
929 
930   /* If *pArg is 3 then any term of the expression that comes from
931   ** the ON or USING clauses of a join disqualifies the expression
932   ** from being considered constant. */
933   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
934     *pN = 0;
935     return 2;
936   }
937 
938   switch( pExpr->op ){
939     /* Consider functions to be constant if all their arguments are constant
940     ** and *pArg==2 */
941     case TK_FUNCTION:
942       if( (*pN)==2 ) return 0;
943       /* Fall through */
944     case TK_ID:
945     case TK_COLUMN:
946     case TK_DOT:
947     case TK_AGG_FUNCTION:
948     case TK_AGG_COLUMN:
949 #ifndef SQLITE_OMIT_SUBQUERY
950     case TK_SELECT:
951     case TK_EXISTS:
952       testcase( pExpr->op==TK_SELECT );
953       testcase( pExpr->op==TK_EXISTS );
954 #endif
955       testcase( pExpr->op==TK_ID );
956       testcase( pExpr->op==TK_COLUMN );
957       testcase( pExpr->op==TK_DOT );
958       testcase( pExpr->op==TK_AGG_FUNCTION );
959       testcase( pExpr->op==TK_AGG_COLUMN );
960       *pN = 0;
961       return 2;
962     case TK_IN:
963       if( pExpr->pSelect ){
964         *pN = 0;
965         return 2;
966       }
967     default:
968       return 0;
969   }
970 }
971 
972 /*
973 ** Walk an expression tree.  Return 1 if the expression is constant
974 ** and 0 if it involves variables or function calls.
975 **
976 ** For the purposes of this function, a double-quoted string (ex: "abc")
977 ** is considered a variable but a single-quoted string (ex: 'abc') is
978 ** a constant.
979 */
980 int sqlite3ExprIsConstant(Expr *p){
981   int isConst = 1;
982   walkExprTree(p, exprNodeIsConstant, &isConst);
983   return isConst;
984 }
985 
986 /*
987 ** Walk an expression tree.  Return 1 if the expression is constant
988 ** that does no originate from the ON or USING clauses of a join.
989 ** Return 0 if it involves variables or function calls or terms from
990 ** an ON or USING clause.
991 */
992 int sqlite3ExprIsConstantNotJoin(Expr *p){
993   int isConst = 3;
994   walkExprTree(p, exprNodeIsConstant, &isConst);
995   return isConst!=0;
996 }
997 
998 /*
999 ** Walk an expression tree.  Return 1 if the expression is constant
1000 ** or a function call with constant arguments.  Return and 0 if there
1001 ** are any variables.
1002 **
1003 ** For the purposes of this function, a double-quoted string (ex: "abc")
1004 ** is considered a variable but a single-quoted string (ex: 'abc') is
1005 ** a constant.
1006 */
1007 int sqlite3ExprIsConstantOrFunction(Expr *p){
1008   int isConst = 2;
1009   walkExprTree(p, exprNodeIsConstant, &isConst);
1010   return isConst!=0;
1011 }
1012 
1013 /*
1014 ** If the expression p codes a constant integer that is small enough
1015 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1016 ** in *pValue.  If the expression is not an integer or if it is too big
1017 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1018 */
1019 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1020   int rc = 0;
1021   if( p->flags & EP_IntValue ){
1022     *pValue = p->iTable;
1023     return 1;
1024   }
1025   switch( p->op ){
1026     case TK_INTEGER: {
1027       rc = sqlite3GetInt32((char*)p->token.z, pValue);
1028       break;
1029     }
1030     case TK_UPLUS: {
1031       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1032       break;
1033     }
1034     case TK_UMINUS: {
1035       int v;
1036       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1037         *pValue = -v;
1038         rc = 1;
1039       }
1040       break;
1041     }
1042     default: break;
1043   }
1044   if( rc ){
1045     p->op = TK_INTEGER;
1046     p->flags |= EP_IntValue;
1047     p->iTable = *pValue;
1048   }
1049   return rc;
1050 }
1051 
1052 /*
1053 ** Return TRUE if the given string is a row-id column name.
1054 */
1055 int sqlite3IsRowid(const char *z){
1056   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1057   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1058   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1059   return 0;
1060 }
1061 
1062 /*
1063 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
1064 ** that name in the set of source tables in pSrcList and make the pExpr
1065 ** expression node refer back to that source column.  The following changes
1066 ** are made to pExpr:
1067 **
1068 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
1069 **                         the table.
1070 **    pExpr->iTable        Set to the cursor number for the table obtained
1071 **                         from pSrcList.
1072 **    pExpr->iColumn       Set to the column number within the table.
1073 **    pExpr->op            Set to TK_COLUMN.
1074 **    pExpr->pLeft         Any expression this points to is deleted
1075 **    pExpr->pRight        Any expression this points to is deleted.
1076 **
1077 ** The pDbToken is the name of the database (the "X").  This value may be
1078 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
1079 ** can be used.  The pTableToken is the name of the table (the "Y").  This
1080 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
1081 ** means that the form of the name is Z and that columns from any table
1082 ** can be used.
1083 **
1084 ** If the name cannot be resolved unambiguously, leave an error message
1085 ** in pParse and return non-zero.  Return zero on success.
1086 */
1087 static int lookupName(
1088   Parse *pParse,       /* The parsing context */
1089   Token *pDbToken,     /* Name of the database containing table, or NULL */
1090   Token *pTableToken,  /* Name of table containing column, or NULL */
1091   Token *pColumnToken, /* Name of the column. */
1092   NameContext *pNC,    /* The name context used to resolve the name */
1093   Expr *pExpr          /* Make this EXPR node point to the selected column */
1094 ){
1095   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
1096   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
1097   char *zCol = 0;      /* Name of the column.  The "Z" */
1098   int i, j;            /* Loop counters */
1099   int cnt = 0;         /* Number of matching column names */
1100   int cntTab = 0;      /* Number of matching table names */
1101   sqlite3 *db = pParse->db;  /* The database */
1102   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
1103   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
1104   NameContext *pTopNC = pNC;        /* First namecontext in the list */
1105   Schema *pSchema = 0;              /* Schema of the expression */
1106 
1107   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
1108   zDb = sqlite3NameFromToken(db, pDbToken);
1109   zTab = sqlite3NameFromToken(db, pTableToken);
1110   zCol = sqlite3NameFromToken(db, pColumnToken);
1111   if( db->mallocFailed ){
1112     goto lookupname_end;
1113   }
1114 
1115   pExpr->iTable = -1;
1116   while( pNC && cnt==0 ){
1117     ExprList *pEList;
1118     SrcList *pSrcList = pNC->pSrcList;
1119 
1120     if( pSrcList ){
1121       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
1122         Table *pTab;
1123         int iDb;
1124         Column *pCol;
1125 
1126         pTab = pItem->pTab;
1127         assert( pTab!=0 );
1128         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1129         assert( pTab->nCol>0 );
1130         if( zTab ){
1131           if( pItem->zAlias ){
1132             char *zTabName = pItem->zAlias;
1133             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1134           }else{
1135             char *zTabName = pTab->zName;
1136             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1137             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
1138               continue;
1139             }
1140           }
1141         }
1142         if( 0==(cntTab++) ){
1143           pExpr->iTable = pItem->iCursor;
1144           pSchema = pTab->pSchema;
1145           pMatch = pItem;
1146         }
1147         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
1148           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1149             const char *zColl = pTab->aCol[j].zColl;
1150             IdList *pUsing;
1151             cnt++;
1152             pExpr->iTable = pItem->iCursor;
1153             pMatch = pItem;
1154             pSchema = pTab->pSchema;
1155             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
1156             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
1157             pExpr->affinity = pTab->aCol[j].affinity;
1158             if( (pExpr->flags & EP_ExpCollate)==0 ){
1159               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1160             }
1161             if( i<pSrcList->nSrc-1 ){
1162               if( pItem[1].jointype & JT_NATURAL ){
1163                 /* If this match occurred in the left table of a natural join,
1164                 ** then skip the right table to avoid a duplicate match */
1165                 pItem++;
1166                 i++;
1167               }else if( (pUsing = pItem[1].pUsing)!=0 ){
1168                 /* If this match occurs on a column that is in the USING clause
1169                 ** of a join, skip the search of the right table of the join
1170                 ** to avoid a duplicate match there. */
1171                 int k;
1172                 for(k=0; k<pUsing->nId; k++){
1173                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
1174                     pItem++;
1175                     i++;
1176                     break;
1177                   }
1178                 }
1179               }
1180             }
1181             break;
1182           }
1183         }
1184       }
1185     }
1186 
1187 #ifndef SQLITE_OMIT_TRIGGER
1188     /* If we have not already resolved the name, then maybe
1189     ** it is a new.* or old.* trigger argument reference
1190     */
1191     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
1192       TriggerStack *pTriggerStack = pParse->trigStack;
1193       Table *pTab = 0;
1194       u32 *piColMask;
1195       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
1196         pExpr->iTable = pTriggerStack->newIdx;
1197         assert( pTriggerStack->pTab );
1198         pTab = pTriggerStack->pTab;
1199         piColMask = &(pTriggerStack->newColMask);
1200       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
1201         pExpr->iTable = pTriggerStack->oldIdx;
1202         assert( pTriggerStack->pTab );
1203         pTab = pTriggerStack->pTab;
1204         piColMask = &(pTriggerStack->oldColMask);
1205       }
1206 
1207       if( pTab ){
1208         int iCol;
1209         Column *pCol = pTab->aCol;
1210 
1211         pSchema = pTab->pSchema;
1212         cntTab++;
1213         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
1214           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1215             const char *zColl = pTab->aCol[iCol].zColl;
1216             cnt++;
1217             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
1218             pExpr->affinity = pTab->aCol[iCol].affinity;
1219             if( (pExpr->flags & EP_ExpCollate)==0 ){
1220               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1221             }
1222             pExpr->pTab = pTab;
1223             if( iCol>=0 ){
1224               testcase( iCol==31 );
1225               testcase( iCol==32 );
1226               *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
1227             }
1228             break;
1229           }
1230         }
1231       }
1232     }
1233 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1234 
1235     /*
1236     ** Perhaps the name is a reference to the ROWID
1237     */
1238     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
1239       cnt = 1;
1240       pExpr->iColumn = -1;
1241       pExpr->affinity = SQLITE_AFF_INTEGER;
1242     }
1243 
1244     /*
1245     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
1246     ** might refer to an result-set alias.  This happens, for example, when
1247     ** we are resolving names in the WHERE clause of the following command:
1248     **
1249     **     SELECT a+b AS x FROM table WHERE x<10;
1250     **
1251     ** In cases like this, replace pExpr with a copy of the expression that
1252     ** forms the result set entry ("a+b" in the example) and return immediately.
1253     ** Note that the expression in the result set should have already been
1254     ** resolved by the time the WHERE clause is resolved.
1255     */
1256     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
1257       for(j=0; j<pEList->nExpr; j++){
1258         char *zAs = pEList->a[j].zName;
1259         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1260           Expr *pDup, *pOrig;
1261           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
1262           assert( pExpr->pList==0 );
1263           assert( pExpr->pSelect==0 );
1264           pOrig = pEList->a[j].pExpr;
1265           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
1266             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
1267             sqlite3_free(zCol);
1268             return 2;
1269           }
1270           pDup = sqlite3ExprDup(db, pOrig);
1271           if( pExpr->flags & EP_ExpCollate ){
1272             pDup->pColl = pExpr->pColl;
1273             pDup->flags |= EP_ExpCollate;
1274           }
1275           if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
1276           if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
1277           memcpy(pExpr, pDup, sizeof(*pExpr));
1278           sqlite3_free(pDup);
1279           cnt = 1;
1280           pMatch = 0;
1281           assert( zTab==0 && zDb==0 );
1282           goto lookupname_end_2;
1283         }
1284       }
1285     }
1286 
1287     /* Advance to the next name context.  The loop will exit when either
1288     ** we have a match (cnt>0) or when we run out of name contexts.
1289     */
1290     if( cnt==0 ){
1291       pNC = pNC->pNext;
1292     }
1293   }
1294 
1295   /*
1296   ** If X and Y are NULL (in other words if only the column name Z is
1297   ** supplied) and the value of Z is enclosed in double-quotes, then
1298   ** Z is a string literal if it doesn't match any column names.  In that
1299   ** case, we need to return right away and not make any changes to
1300   ** pExpr.
1301   **
1302   ** Because no reference was made to outer contexts, the pNC->nRef
1303   ** fields are not changed in any context.
1304   */
1305   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1306     sqlite3_free(zCol);
1307     return 0;
1308   }
1309 
1310   /*
1311   ** cnt==0 means there was not match.  cnt>1 means there were two or
1312   ** more matches.  Either way, we have an error.
1313   */
1314   if( cnt!=1 ){
1315     const char *zErr;
1316     zErr = cnt==0 ? "no such column" : "ambiguous column name";
1317     if( zDb ){
1318       sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
1319     }else if( zTab ){
1320       sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
1321     }else{
1322       sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
1323     }
1324     pTopNC->nErr++;
1325   }
1326 
1327   /* If a column from a table in pSrcList is referenced, then record
1328   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
1329   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
1330   ** column number is greater than the number of bits in the bitmask
1331   ** then set the high-order bit of the bitmask.
1332   */
1333   if( pExpr->iColumn>=0 && pMatch!=0 ){
1334     int n = pExpr->iColumn;
1335     testcase( n==sizeof(Bitmask)*8-1 );
1336     if( n>=sizeof(Bitmask)*8 ){
1337       n = sizeof(Bitmask)*8-1;
1338     }
1339     assert( pMatch->iCursor==pExpr->iTable );
1340     pMatch->colUsed |= ((Bitmask)1)<<n;
1341   }
1342 
1343 lookupname_end:
1344   /* Clean up and return
1345   */
1346   sqlite3_free(zDb);
1347   sqlite3_free(zTab);
1348   sqlite3ExprDelete(pExpr->pLeft);
1349   pExpr->pLeft = 0;
1350   sqlite3ExprDelete(pExpr->pRight);
1351   pExpr->pRight = 0;
1352   pExpr->op = TK_COLUMN;
1353 lookupname_end_2:
1354   sqlite3_free(zCol);
1355   if( cnt==1 ){
1356     assert( pNC!=0 );
1357     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
1358     if( pMatch && !pMatch->pSelect ){
1359       pExpr->pTab = pMatch->pTab;
1360     }
1361     /* Increment the nRef value on all name contexts from TopNC up to
1362     ** the point where the name matched. */
1363     for(;;){
1364       assert( pTopNC!=0 );
1365       pTopNC->nRef++;
1366       if( pTopNC==pNC ) break;
1367       pTopNC = pTopNC->pNext;
1368     }
1369     return 0;
1370   } else {
1371     return 1;
1372   }
1373 }
1374 
1375 /*
1376 ** This routine is designed as an xFunc for walkExprTree().
1377 **
1378 ** Resolve symbolic names into TK_COLUMN operators for the current
1379 ** node in the expression tree.  Return 0 to continue the search down
1380 ** the tree or 2 to abort the tree walk.
1381 **
1382 ** This routine also does error checking and name resolution for
1383 ** function names.  The operator for aggregate functions is changed
1384 ** to TK_AGG_FUNCTION.
1385 */
1386 static int nameResolverStep(void *pArg, Expr *pExpr){
1387   NameContext *pNC = (NameContext*)pArg;
1388   Parse *pParse;
1389 
1390   if( pExpr==0 ) return 1;
1391   assert( pNC!=0 );
1392   pParse = pNC->pParse;
1393 
1394   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1395   ExprSetProperty(pExpr, EP_Resolved);
1396 #ifndef NDEBUG
1397   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1398     SrcList *pSrcList = pNC->pSrcList;
1399     int i;
1400     for(i=0; i<pNC->pSrcList->nSrc; i++){
1401       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1402     }
1403   }
1404 #endif
1405   switch( pExpr->op ){
1406     /* Double-quoted strings (ex: "abc") are used as identifiers if
1407     ** possible.  Otherwise they remain as strings.  Single-quoted
1408     ** strings (ex: 'abc') are always string literals.
1409     */
1410     case TK_STRING: {
1411       if( pExpr->token.z[0]=='\'' ) break;
1412       /* Fall thru into the TK_ID case if this is a double-quoted string */
1413     }
1414     /* A lone identifier is the name of a column.
1415     */
1416     case TK_ID: {
1417       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1418       return 1;
1419     }
1420 
1421     /* A table name and column name:     ID.ID
1422     ** Or a database, table and column:  ID.ID.ID
1423     */
1424     case TK_DOT: {
1425       Token *pColumn;
1426       Token *pTable;
1427       Token *pDb;
1428       Expr *pRight;
1429 
1430       /* if( pSrcList==0 ) break; */
1431       pRight = pExpr->pRight;
1432       if( pRight->op==TK_ID ){
1433         pDb = 0;
1434         pTable = &pExpr->pLeft->token;
1435         pColumn = &pRight->token;
1436       }else{
1437         assert( pRight->op==TK_DOT );
1438         pDb = &pExpr->pLeft->token;
1439         pTable = &pRight->pLeft->token;
1440         pColumn = &pRight->pRight->token;
1441       }
1442       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1443       return 1;
1444     }
1445 
1446     /* Resolve function names
1447     */
1448     case TK_CONST_FUNC:
1449     case TK_FUNCTION: {
1450       ExprList *pList = pExpr->pList;    /* The argument list */
1451       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
1452       int no_such_func = 0;       /* True if no such function exists */
1453       int wrong_num_args = 0;     /* True if wrong number of arguments */
1454       int is_agg = 0;             /* True if is an aggregate function */
1455       int i;
1456       int auth;                   /* Authorization to use the function */
1457       int nId;                    /* Number of characters in function name */
1458       const char *zId;            /* The function name. */
1459       FuncDef *pDef;              /* Information about the function */
1460       int enc = ENC(pParse->db);  /* The database encoding */
1461 
1462       zId = (char*)pExpr->token.z;
1463       nId = pExpr->token.n;
1464       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1465       if( pDef==0 ){
1466         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1467         if( pDef==0 ){
1468           no_such_func = 1;
1469         }else{
1470           wrong_num_args = 1;
1471         }
1472       }else{
1473         is_agg = pDef->xFunc==0;
1474       }
1475 #ifndef SQLITE_OMIT_AUTHORIZATION
1476       if( pDef ){
1477         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1478         if( auth!=SQLITE_OK ){
1479           if( auth==SQLITE_DENY ){
1480             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1481                                     pDef->zName);
1482             pNC->nErr++;
1483           }
1484           pExpr->op = TK_NULL;
1485           return 1;
1486         }
1487       }
1488 #endif
1489       if( is_agg && !pNC->allowAgg ){
1490         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1491         pNC->nErr++;
1492         is_agg = 0;
1493       }else if( no_such_func ){
1494         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1495         pNC->nErr++;
1496       }else if( wrong_num_args ){
1497         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1498              nId, zId);
1499         pNC->nErr++;
1500       }
1501       if( is_agg ){
1502         pExpr->op = TK_AGG_FUNCTION;
1503         pNC->hasAgg = 1;
1504       }
1505       if( is_agg ) pNC->allowAgg = 0;
1506       for(i=0; pNC->nErr==0 && i<n; i++){
1507         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1508       }
1509       if( is_agg ) pNC->allowAgg = 1;
1510       /* FIX ME:  Compute pExpr->affinity based on the expected return
1511       ** type of the function
1512       */
1513       return is_agg;
1514     }
1515 #ifndef SQLITE_OMIT_SUBQUERY
1516     case TK_SELECT:
1517     case TK_EXISTS:
1518 #endif
1519     case TK_IN: {
1520       if( pExpr->pSelect ){
1521         int nRef = pNC->nRef;
1522 #ifndef SQLITE_OMIT_CHECK
1523         if( pNC->isCheck ){
1524           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1525         }
1526 #endif
1527         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1528         assert( pNC->nRef>=nRef );
1529         if( nRef!=pNC->nRef ){
1530           ExprSetProperty(pExpr, EP_VarSelect);
1531         }
1532       }
1533       break;
1534     }
1535 #ifndef SQLITE_OMIT_CHECK
1536     case TK_VARIABLE: {
1537       if( pNC->isCheck ){
1538         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1539       }
1540       break;
1541     }
1542 #endif
1543   }
1544   return 0;
1545 }
1546 
1547 /*
1548 ** This routine walks an expression tree and resolves references to
1549 ** table columns.  Nodes of the form ID.ID or ID resolve into an
1550 ** index to the table in the table list and a column offset.  The
1551 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
1552 ** value is changed to the index of the referenced table in pTabList
1553 ** plus the "base" value.  The base value will ultimately become the
1554 ** VDBE cursor number for a cursor that is pointing into the referenced
1555 ** table.  The Expr.iColumn value is changed to the index of the column
1556 ** of the referenced table.  The Expr.iColumn value for the special
1557 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
1558 ** alias for ROWID.
1559 **
1560 ** Also resolve function names and check the functions for proper
1561 ** usage.  Make sure all function names are recognized and all functions
1562 ** have the correct number of arguments.  Leave an error message
1563 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
1564 **
1565 ** If the expression contains aggregate functions then set the EP_Agg
1566 ** property on the expression.
1567 */
1568 int sqlite3ExprResolveNames(
1569   NameContext *pNC,       /* Namespace to resolve expressions in. */
1570   Expr *pExpr             /* The expression to be analyzed. */
1571 ){
1572   int savedHasAgg;
1573 
1574   if( pExpr==0 ) return 0;
1575 #if SQLITE_MAX_EXPR_DEPTH>0
1576   {
1577     if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
1578       return 1;
1579     }
1580     pNC->pParse->nHeight += pExpr->nHeight;
1581   }
1582 #endif
1583   savedHasAgg = pNC->hasAgg;
1584   pNC->hasAgg = 0;
1585   walkExprTree(pExpr, nameResolverStep, pNC);
1586 #if SQLITE_MAX_EXPR_DEPTH>0
1587   pNC->pParse->nHeight -= pExpr->nHeight;
1588 #endif
1589   if( pNC->nErr>0 ){
1590     ExprSetProperty(pExpr, EP_Error);
1591   }
1592   if( pNC->hasAgg ){
1593     ExprSetProperty(pExpr, EP_Agg);
1594   }else if( savedHasAgg ){
1595     pNC->hasAgg = 1;
1596   }
1597   return ExprHasProperty(pExpr, EP_Error);
1598 }
1599 
1600 /*
1601 ** A pointer instance of this structure is used to pass information
1602 ** through walkExprTree into codeSubqueryStep().
1603 */
1604 typedef struct QueryCoder QueryCoder;
1605 struct QueryCoder {
1606   Parse *pParse;       /* The parsing context */
1607   NameContext *pNC;    /* Namespace of first enclosing query */
1608 };
1609 
1610 #ifdef SQLITE_TEST
1611   int sqlite3_enable_in_opt = 1;
1612 #else
1613   #define sqlite3_enable_in_opt 1
1614 #endif
1615 
1616 /*
1617 ** Return true if the IN operator optimization is enabled and
1618 ** the SELECT statement p exists and is of the
1619 ** simple form:
1620 **
1621 **     SELECT <column> FROM <table>
1622 **
1623 ** If this is the case, it may be possible to use an existing table
1624 ** or index instead of generating an epheremal table.
1625 */
1626 #ifndef SQLITE_OMIT_SUBQUERY
1627 static int isCandidateForInOpt(Select *p){
1628   SrcList *pSrc;
1629   ExprList *pEList;
1630   Table *pTab;
1631   if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
1632   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1633   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1634   if( p->isDistinct ) return 0;          /* No DISTINCT keyword */
1635   if( p->isAgg ) return 0;               /* Contains no aggregate functions */
1636   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
1637   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1638   if( p->pOffset ) return 0;
1639   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1640   pSrc = p->pSrc;
1641   if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
1642   if( pSrc->nSrc!=1 ) return 0;
1643   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
1644   pTab = pSrc->a[0].pTab;
1645   if( pTab==0 ) return 0;
1646   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
1647   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1648   pEList = p->pEList;
1649   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1650   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1651   return 1;
1652 }
1653 #endif /* SQLITE_OMIT_SUBQUERY */
1654 
1655 /*
1656 ** This function is used by the implementation of the IN (...) operator.
1657 ** It's job is to find or create a b-tree structure that may be used
1658 ** either to test for membership of the (...) set or to iterate through
1659 ** its members, skipping duplicates.
1660 **
1661 ** The cursor opened on the structure (database table, database index
1662 ** or ephermal table) is stored in pX->iTable before this function returns.
1663 ** The returned value indicates the structure type, as follows:
1664 **
1665 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1666 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1667 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1668 **                    populated epheremal table.
1669 **
1670 ** An existing structure may only be used if the SELECT is of the simple
1671 ** form:
1672 **
1673 **     SELECT <column> FROM <table>
1674 **
1675 ** If prNotFound parameter is 0, then the structure will be used to iterate
1676 ** through the set members, skipping any duplicates. In this case an
1677 ** epheremal table must be used unless the selected <column> is guaranteed
1678 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1679 ** is unique by virtue of a constraint or implicit index.
1680 **
1681 ** If the prNotFound parameter is not 0, then the structure will be used
1682 ** for fast set membership tests. In this case an epheremal table must
1683 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1684 ** be found with <column> as its left-most column.
1685 **
1686 ** When the structure is being used for set membership tests, the user
1687 ** needs to know whether or not the structure contains an SQL NULL
1688 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1689 ** If there is a chance that the structure may contain a NULL value at
1690 ** runtime, then a register is allocated and the register number written
1691 ** to *prNotFound. If there is no chance that the structure contains a
1692 ** NULL value, then *prNotFound is left unchanged.
1693 **
1694 ** If a register is allocated and its location stored in *prNotFound, then
1695 ** its initial value is NULL. If the structure does not remain constant
1696 ** for the duration of the query (i.e. the set is a correlated sub-select),
1697 ** the value of the allocated register is reset to NULL each time the
1698 ** structure is repopulated. This allows the caller to use vdbe code
1699 ** equivalent to the following:
1700 **
1701 **   if( register==NULL ){
1702 **     has_null = <test if data structure contains null>
1703 **     register = 1
1704 **   }
1705 **
1706 ** in order to avoid running the <test if data structure contains null>
1707 ** test more often than is necessary.
1708 */
1709 #ifndef SQLITE_OMIT_SUBQUERY
1710 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1711   Select *p;
1712   int eType = 0;
1713   int iTab = pParse->nTab++;
1714   int mustBeUnique = !prNotFound;
1715 
1716   /* The follwing if(...) expression is true if the SELECT is of the
1717   ** simple form:
1718   **
1719   **     SELECT <column> FROM <table>
1720   **
1721   ** If this is the case, it may be possible to use an existing table
1722   ** or index instead of generating an epheremal table.
1723   */
1724   p = pX->pSelect;
1725   if( isCandidateForInOpt(p) ){
1726     sqlite3 *db = pParse->db;
1727     Index *pIdx;
1728     Expr *pExpr = p->pEList->a[0].pExpr;
1729     int iCol = pExpr->iColumn;
1730     Vdbe *v = sqlite3GetVdbe(pParse);
1731 
1732     /* This function is only called from two places. In both cases the vdbe
1733     ** has already been allocated. So assume sqlite3GetVdbe() is always
1734     ** successful here.
1735     */
1736     assert(v);
1737     if( iCol<0 ){
1738       int iMem = ++pParse->nMem;
1739       int iAddr;
1740       Table *pTab = p->pSrc->a[0].pTab;
1741       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1742       sqlite3VdbeUsesBtree(v, iDb);
1743 
1744       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1745       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1746 
1747       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1748       eType = IN_INDEX_ROWID;
1749 
1750       sqlite3VdbeJumpHere(v, iAddr);
1751     }else{
1752       /* The collation sequence used by the comparison. If an index is to
1753       ** be used in place of a temp-table, it must be ordered according
1754       ** to this collation sequence.
1755       */
1756       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1757 
1758       /* Check that the affinity that will be used to perform the
1759       ** comparison is the same as the affinity of the column. If
1760       ** it is not, it is not possible to use any index.
1761       */
1762       Table *pTab = p->pSrc->a[0].pTab;
1763       char aff = comparisonAffinity(pX);
1764       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1765 
1766       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1767         if( (pIdx->aiColumn[0]==iCol)
1768          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
1769          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1770         ){
1771           int iDb;
1772           int iMem = ++pParse->nMem;
1773           int iAddr;
1774           char *pKey;
1775 
1776           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1777           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1778           sqlite3VdbeUsesBtree(v, iDb);
1779 
1780           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1781           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1782 
1783           sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
1784           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1785                                pKey,P4_KEYINFO_HANDOFF);
1786           VdbeComment((v, "%s", pIdx->zName));
1787           eType = IN_INDEX_INDEX;
1788 
1789           sqlite3VdbeJumpHere(v, iAddr);
1790           if( prNotFound && !pTab->aCol[iCol].notNull ){
1791             *prNotFound = ++pParse->nMem;
1792           }
1793         }
1794       }
1795     }
1796   }
1797 
1798   if( eType==0 ){
1799     int rMayHaveNull = 0;
1800     if( prNotFound ){
1801       *prNotFound = rMayHaveNull = ++pParse->nMem;
1802     }
1803     sqlite3CodeSubselect(pParse, pX, rMayHaveNull);
1804     eType = IN_INDEX_EPH;
1805   }else{
1806     pX->iTable = iTab;
1807   }
1808   return eType;
1809 }
1810 #endif
1811 
1812 /*
1813 ** Generate code for scalar subqueries used as an expression
1814 ** and IN operators.  Examples:
1815 **
1816 **     (SELECT a FROM b)          -- subquery
1817 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1818 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1819 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1820 **
1821 ** The pExpr parameter describes the expression that contains the IN
1822 ** operator or subquery.
1823 */
1824 #ifndef SQLITE_OMIT_SUBQUERY
1825 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){
1826   int testAddr = 0;                       /* One-time test address */
1827   Vdbe *v = sqlite3GetVdbe(pParse);
1828   if( v==0 ) return;
1829 
1830 
1831   /* This code must be run in its entirety every time it is encountered
1832   ** if any of the following is true:
1833   **
1834   **    *  The right-hand side is a correlated subquery
1835   **    *  The right-hand side is an expression list containing variables
1836   **    *  We are inside a trigger
1837   **
1838   ** If all of the above are false, then we can run this code just once
1839   ** save the results, and reuse the same result on subsequent invocations.
1840   */
1841   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1842     int mem = ++pParse->nMem;
1843     sqlite3VdbeAddOp1(v, OP_If, mem);
1844     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1845     assert( testAddr>0 || pParse->db->mallocFailed );
1846   }
1847 
1848   switch( pExpr->op ){
1849     case TK_IN: {
1850       char affinity;
1851       KeyInfo keyInfo;
1852       int addr;        /* Address of OP_OpenEphemeral instruction */
1853 
1854       if( rMayHaveNull ){
1855         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1856       }
1857 
1858       affinity = sqlite3ExprAffinity(pExpr->pLeft);
1859 
1860       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1861       ** expression it is handled the same way. A virtual table is
1862       ** filled with single-field index keys representing the results
1863       ** from the SELECT or the <exprlist>.
1864       **
1865       ** If the 'x' expression is a column value, or the SELECT...
1866       ** statement returns a column value, then the affinity of that
1867       ** column is used to build the index keys. If both 'x' and the
1868       ** SELECT... statement are columns, then numeric affinity is used
1869       ** if either column has NUMERIC or INTEGER affinity. If neither
1870       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1871       ** is used.
1872       */
1873       pExpr->iTable = pParse->nTab++;
1874       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
1875       memset(&keyInfo, 0, sizeof(keyInfo));
1876       keyInfo.nField = 1;
1877 
1878       if( pExpr->pSelect ){
1879         /* Case 1:     expr IN (SELECT ...)
1880         **
1881         ** Generate code to write the results of the select into the temporary
1882         ** table allocated and opened above.
1883         */
1884         SelectDest dest;
1885         ExprList *pEList;
1886 
1887         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1888         dest.affinity = (int)affinity;
1889         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1890         if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
1891           return;
1892         }
1893         pEList = pExpr->pSelect->pEList;
1894         if( pEList && pEList->nExpr>0 ){
1895           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1896               pEList->a[0].pExpr);
1897         }
1898       }else if( pExpr->pList ){
1899         /* Case 2:     expr IN (exprlist)
1900         **
1901         ** For each expression, build an index key from the evaluation and
1902         ** store it in the temporary table. If <expr> is a column, then use
1903         ** that columns affinity when building index keys. If <expr> is not
1904         ** a column, use numeric affinity.
1905         */
1906         int i;
1907         ExprList *pList = pExpr->pList;
1908         struct ExprList_item *pItem;
1909         int r1, r2, r3;
1910 
1911         if( !affinity ){
1912           affinity = SQLITE_AFF_NONE;
1913         }
1914         keyInfo.aColl[0] = pExpr->pLeft->pColl;
1915 
1916         /* Loop through each expression in <exprlist>. */
1917         r1 = sqlite3GetTempReg(pParse);
1918         r2 = sqlite3GetTempReg(pParse);
1919         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1920           Expr *pE2 = pItem->pExpr;
1921 
1922           /* If the expression is not constant then we will need to
1923           ** disable the test that was generated above that makes sure
1924           ** this code only executes once.  Because for a non-constant
1925           ** expression we need to rerun this code each time.
1926           */
1927           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1928             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1929             testAddr = 0;
1930           }
1931 
1932           /* Evaluate the expression and insert it into the temp table */
1933           pParse->disableColCache++;
1934           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1935           assert( pParse->disableColCache>0 );
1936           pParse->disableColCache--;
1937           sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1938           sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1939           sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1940         }
1941         sqlite3ReleaseTempReg(pParse, r1);
1942         sqlite3ReleaseTempReg(pParse, r2);
1943       }
1944       sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1945       break;
1946     }
1947 
1948     case TK_EXISTS:
1949     case TK_SELECT: {
1950       /* This has to be a scalar SELECT.  Generate code to put the
1951       ** value of this select in a memory cell and record the number
1952       ** of the memory cell in iColumn.
1953       */
1954       static const Token one = { (u8*)"1", 0, 1 };
1955       Select *pSel;
1956       SelectDest dest;
1957 
1958       pSel = pExpr->pSelect;
1959       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1960       if( pExpr->op==TK_SELECT ){
1961         dest.eDest = SRT_Mem;
1962         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1963         VdbeComment((v, "Init subquery result"));
1964       }else{
1965         dest.eDest = SRT_Exists;
1966         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1967         VdbeComment((v, "Init EXISTS result"));
1968       }
1969       sqlite3ExprDelete(pSel->pLimit);
1970       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1971       if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
1972         return;
1973       }
1974       pExpr->iColumn = dest.iParm;
1975       break;
1976     }
1977   }
1978 
1979   if( testAddr ){
1980     sqlite3VdbeJumpHere(v, testAddr-1);
1981   }
1982 
1983   return;
1984 }
1985 #endif /* SQLITE_OMIT_SUBQUERY */
1986 
1987 /*
1988 ** Duplicate an 8-byte value
1989 */
1990 static char *dup8bytes(Vdbe *v, const char *in){
1991   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1992   if( out ){
1993     memcpy(out, in, 8);
1994   }
1995   return out;
1996 }
1997 
1998 /*
1999 ** Generate an instruction that will put the floating point
2000 ** value described by z[0..n-1] into register iMem.
2001 **
2002 ** The z[] string will probably not be zero-terminated.  But the
2003 ** z[n] character is guaranteed to be something that does not look
2004 ** like the continuation of the number.
2005 */
2006 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
2007   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
2008   if( z ){
2009     double value;
2010     char *zV;
2011     assert( !isdigit(z[n]) );
2012     sqlite3AtoF(z, &value);
2013     if( sqlite3IsNaN(value) ){
2014       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
2015     }else{
2016       if( negateFlag ) value = -value;
2017       zV = dup8bytes(v, (char*)&value);
2018       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2019     }
2020   }
2021 }
2022 
2023 
2024 /*
2025 ** Generate an instruction that will put the integer describe by
2026 ** text z[0..n-1] into register iMem.
2027 **
2028 ** The z[] string will probably not be zero-terminated.  But the
2029 ** z[n] character is guaranteed to be something that does not look
2030 ** like the continuation of the number.
2031 */
2032 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
2033   const char *z;
2034   if( pExpr->flags & EP_IntValue ){
2035     int i = pExpr->iTable;
2036     if( negFlag ) i = -i;
2037     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2038   }else if( (z = (char*)pExpr->token.z)!=0 ){
2039     int i;
2040     int n = pExpr->token.n;
2041     assert( !isdigit(z[n]) );
2042     if( sqlite3GetInt32(z, &i) ){
2043       if( negFlag ) i = -i;
2044       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2045     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
2046       i64 value;
2047       char *zV;
2048       sqlite3Atoi64(z, &value);
2049       if( negFlag ) value = -value;
2050       zV = dup8bytes(v, (char*)&value);
2051       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2052     }else{
2053       codeReal(v, z, n, negFlag, iMem);
2054     }
2055   }
2056 }
2057 
2058 
2059 /*
2060 ** Generate code that will extract the iColumn-th column from
2061 ** table pTab and store the column value in a register.  An effort
2062 ** is made to store the column value in register iReg, but this is
2063 ** not guaranteed.  The location of the column value is returned.
2064 **
2065 ** There must be an open cursor to pTab in iTable when this routine
2066 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2067 **
2068 ** This routine might attempt to reuse the value of the column that
2069 ** has already been loaded into a register.  The value will always
2070 ** be used if it has not undergone any affinity changes.  But if
2071 ** an affinity change has occurred, then the cached value will only be
2072 ** used if allowAffChng is true.
2073 */
2074 int sqlite3ExprCodeGetColumn(
2075   Parse *pParse,   /* Parsing and code generating context */
2076   Table *pTab,     /* Description of the table we are reading from */
2077   int iColumn,     /* Index of the table column */
2078   int iTable,      /* The cursor pointing to the table */
2079   int iReg,        /* Store results here */
2080   int allowAffChng /* True if prior affinity changes are OK */
2081 ){
2082   Vdbe *v = pParse->pVdbe;
2083   int i;
2084   struct yColCache *p;
2085 
2086   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
2087     if( p->iTable==iTable && p->iColumn==iColumn
2088            && (!p->affChange || allowAffChng) ){
2089 #if 0
2090       sqlite3VdbeAddOp0(v, OP_Noop);
2091       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
2092 #endif
2093       return p->iReg;
2094     }
2095   }
2096   assert( v!=0 );
2097   if( iColumn<0 ){
2098     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
2099     sqlite3VdbeAddOp2(v, op, iTable, iReg);
2100   }else if( pTab==0 ){
2101     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
2102   }else{
2103     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2104     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
2105     sqlite3ColumnDefault(v, pTab, iColumn);
2106 #ifndef SQLITE_OMIT_FLOATING_POINT
2107     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
2108       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
2109     }
2110 #endif
2111   }
2112   if( pParse->disableColCache==0 ){
2113     i = pParse->iColCache;
2114     p = &pParse->aColCache[i];
2115     p->iTable = iTable;
2116     p->iColumn = iColumn;
2117     p->iReg = iReg;
2118     p->affChange = 0;
2119     i++;
2120     if( i>=ArraySize(pParse->aColCache) ) i = 0;
2121     if( i>pParse->nColCache ) pParse->nColCache = i;
2122     pParse->iColCache = i;
2123   }
2124   return iReg;
2125 }
2126 
2127 /*
2128 ** Clear all column cache entries associated with the vdbe
2129 ** cursor with cursor number iTable.
2130 */
2131 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
2132   if( iTable<0 ){
2133     pParse->nColCache = 0;
2134     pParse->iColCache = 0;
2135   }else{
2136     int i;
2137     for(i=0; i<pParse->nColCache; i++){
2138       if( pParse->aColCache[i].iTable==iTable ){
2139         testcase( i==pParse->nColCache-1 );
2140         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
2141         pParse->iColCache = pParse->nColCache;
2142       }
2143     }
2144   }
2145 }
2146 
2147 /*
2148 ** Record the fact that an affinity change has occurred on iCount
2149 ** registers starting with iStart.
2150 */
2151 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2152   int iEnd = iStart + iCount - 1;
2153   int i;
2154   for(i=0; i<pParse->nColCache; i++){
2155     int r = pParse->aColCache[i].iReg;
2156     if( r>=iStart && r<=iEnd ){
2157       pParse->aColCache[i].affChange = 1;
2158     }
2159   }
2160 }
2161 
2162 /*
2163 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2164 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2165 */
2166 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2167   int i;
2168   if( iFrom==iTo ) return;
2169   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2170   for(i=0; i<pParse->nColCache; i++){
2171     int x = pParse->aColCache[i].iReg;
2172     if( x>=iFrom && x<iFrom+nReg ){
2173       pParse->aColCache[i].iReg += iTo-iFrom;
2174     }
2175   }
2176 }
2177 
2178 /*
2179 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2180 ** over to iTo..iTo+nReg-1.
2181 */
2182 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2183   int i;
2184   if( iFrom==iTo ) return;
2185   for(i=0; i<nReg; i++){
2186     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2187   }
2188 }
2189 
2190 /*
2191 ** Return true if any register in the range iFrom..iTo (inclusive)
2192 ** is used as part of the column cache.
2193 */
2194 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2195   int i;
2196   for(i=0; i<pParse->nColCache; i++){
2197     int r = pParse->aColCache[i].iReg;
2198     if( r>=iFrom && r<=iTo ) return 1;
2199   }
2200   return 0;
2201 }
2202 
2203 /*
2204 ** Theres is a value in register iCurrent.  We ultimately want
2205 ** the value to be in register iTarget.  It might be that
2206 ** iCurrent and iTarget are the same register.
2207 **
2208 ** We are going to modify the value, so we need to make sure it
2209 ** is not a cached register.  If iCurrent is a cached register,
2210 ** then try to move the value over to iTarget.  If iTarget is a
2211 ** cached register, then clear the corresponding cache line.
2212 **
2213 ** Return the register that the value ends up in.
2214 */
2215 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
2216   int i;
2217   assert( pParse->pVdbe!=0 );
2218   if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
2219     return iCurrent;
2220   }
2221   if( iCurrent!=iTarget ){
2222     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
2223   }
2224   for(i=0; i<pParse->nColCache; i++){
2225     if( pParse->aColCache[i].iReg==iTarget ){
2226       pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
2227       pParse->iColCache = pParse->nColCache;
2228     }
2229   }
2230   return iTarget;
2231 }
2232 
2233 /*
2234 ** If the last instruction coded is an ephemeral copy of any of
2235 ** the registers in the nReg registers beginning with iReg, then
2236 ** convert the last instruction from OP_SCopy to OP_Copy.
2237 */
2238 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2239   int addr;
2240   VdbeOp *pOp;
2241   Vdbe *v;
2242 
2243   v = pParse->pVdbe;
2244   addr = sqlite3VdbeCurrentAddr(v);
2245   pOp = sqlite3VdbeGetOp(v, addr-1);
2246   assert( pOp || pParse->db->mallocFailed );
2247   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2248     pOp->opcode = OP_Copy;
2249   }
2250 }
2251 
2252 /*
2253 ** Generate code into the current Vdbe to evaluate the given
2254 ** expression.  Attempt to store the results in register "target".
2255 ** Return the register where results are stored.
2256 **
2257 ** With this routine, there is no guaranteed that results will
2258 ** be stored in target.  The result might be stored in some other
2259 ** register if it is convenient to do so.  The calling function
2260 ** must check the return code and move the results to the desired
2261 ** register.
2262 */
2263 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2264   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2265   int op;                   /* The opcode being coded */
2266   int inReg = target;       /* Results stored in register inReg */
2267   int regFree1 = 0;         /* If non-zero free this temporary register */
2268   int regFree2 = 0;         /* If non-zero free this temporary register */
2269   int r1, r2, r3, r4;       /* Various register numbers */
2270 
2271   assert( v!=0 || pParse->db->mallocFailed );
2272   assert( target>0 && target<=pParse->nMem );
2273   if( v==0 ) return 0;
2274 
2275   if( pExpr==0 ){
2276     op = TK_NULL;
2277   }else{
2278     op = pExpr->op;
2279   }
2280   switch( op ){
2281     case TK_AGG_COLUMN: {
2282       AggInfo *pAggInfo = pExpr->pAggInfo;
2283       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2284       if( !pAggInfo->directMode ){
2285         assert( pCol->iMem>0 );
2286         inReg = pCol->iMem;
2287         break;
2288       }else if( pAggInfo->useSortingIdx ){
2289         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2290                               pCol->iSorterColumn, target);
2291         break;
2292       }
2293       /* Otherwise, fall thru into the TK_COLUMN case */
2294     }
2295     case TK_COLUMN: {
2296       if( pExpr->iTable<0 ){
2297         /* This only happens when coding check constraints */
2298         assert( pParse->ckBase>0 );
2299         inReg = pExpr->iColumn + pParse->ckBase;
2300       }else{
2301         testcase( (pExpr->flags & EP_AnyAff)!=0 );
2302         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2303                                  pExpr->iColumn, pExpr->iTable, target,
2304                                  pExpr->flags & EP_AnyAff);
2305       }
2306       break;
2307     }
2308     case TK_INTEGER: {
2309       codeInteger(v, pExpr, 0, target);
2310       break;
2311     }
2312     case TK_FLOAT: {
2313       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
2314       break;
2315     }
2316     case TK_STRING: {
2317       sqlite3DequoteExpr(pParse->db, pExpr);
2318       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
2319                         (char*)pExpr->token.z, pExpr->token.n);
2320       break;
2321     }
2322     case TK_NULL: {
2323       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2324       break;
2325     }
2326 #ifndef SQLITE_OMIT_BLOB_LITERAL
2327     case TK_BLOB: {
2328       int n;
2329       const char *z;
2330       char *zBlob;
2331       assert( pExpr->token.n>=3 );
2332       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
2333       assert( pExpr->token.z[1]=='\'' );
2334       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
2335       n = pExpr->token.n - 3;
2336       z = (char*)pExpr->token.z + 2;
2337       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2338       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2339       break;
2340     }
2341 #endif
2342     case TK_VARIABLE: {
2343       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
2344       if( pExpr->token.n>1 ){
2345         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
2346       }
2347       break;
2348     }
2349     case TK_REGISTER: {
2350       inReg = pExpr->iTable;
2351       break;
2352     }
2353 #ifndef SQLITE_OMIT_CAST
2354     case TK_CAST: {
2355       /* Expressions of the form:   CAST(pLeft AS token) */
2356       int aff, to_op;
2357       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2358       aff = sqlite3AffinityType(&pExpr->token);
2359       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2360       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2361       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2362       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2363       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2364       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2365       testcase( to_op==OP_ToText );
2366       testcase( to_op==OP_ToBlob );
2367       testcase( to_op==OP_ToNumeric );
2368       testcase( to_op==OP_ToInt );
2369       testcase( to_op==OP_ToReal );
2370       sqlite3VdbeAddOp1(v, to_op, inReg);
2371       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2372       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2373       break;
2374     }
2375 #endif /* SQLITE_OMIT_CAST */
2376     case TK_LT:
2377     case TK_LE:
2378     case TK_GT:
2379     case TK_GE:
2380     case TK_NE:
2381     case TK_EQ: {
2382       assert( TK_LT==OP_Lt );
2383       assert( TK_LE==OP_Le );
2384       assert( TK_GT==OP_Gt );
2385       assert( TK_GE==OP_Ge );
2386       assert( TK_EQ==OP_Eq );
2387       assert( TK_NE==OP_Ne );
2388       testcase( op==TK_LT );
2389       testcase( op==TK_LE );
2390       testcase( op==TK_GT );
2391       testcase( op==TK_GE );
2392       testcase( op==TK_EQ );
2393       testcase( op==TK_NE );
2394       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2395                                   pExpr->pRight, &r2, &regFree2);
2396       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2397                   r1, r2, inReg, SQLITE_STOREP2);
2398       testcase( regFree1==0 );
2399       testcase( regFree2==0 );
2400       break;
2401     }
2402     case TK_AND:
2403     case TK_OR:
2404     case TK_PLUS:
2405     case TK_STAR:
2406     case TK_MINUS:
2407     case TK_REM:
2408     case TK_BITAND:
2409     case TK_BITOR:
2410     case TK_SLASH:
2411     case TK_LSHIFT:
2412     case TK_RSHIFT:
2413     case TK_CONCAT: {
2414       assert( TK_AND==OP_And );
2415       assert( TK_OR==OP_Or );
2416       assert( TK_PLUS==OP_Add );
2417       assert( TK_MINUS==OP_Subtract );
2418       assert( TK_REM==OP_Remainder );
2419       assert( TK_BITAND==OP_BitAnd );
2420       assert( TK_BITOR==OP_BitOr );
2421       assert( TK_SLASH==OP_Divide );
2422       assert( TK_LSHIFT==OP_ShiftLeft );
2423       assert( TK_RSHIFT==OP_ShiftRight );
2424       assert( TK_CONCAT==OP_Concat );
2425       testcase( op==TK_AND );
2426       testcase( op==TK_OR );
2427       testcase( op==TK_PLUS );
2428       testcase( op==TK_MINUS );
2429       testcase( op==TK_REM );
2430       testcase( op==TK_BITAND );
2431       testcase( op==TK_BITOR );
2432       testcase( op==TK_SLASH );
2433       testcase( op==TK_LSHIFT );
2434       testcase( op==TK_RSHIFT );
2435       testcase( op==TK_CONCAT );
2436       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2437       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2438       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2439       testcase( regFree1==0 );
2440       testcase( regFree2==0 );
2441       break;
2442     }
2443     case TK_UMINUS: {
2444       Expr *pLeft = pExpr->pLeft;
2445       assert( pLeft );
2446       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
2447         if( pLeft->op==TK_FLOAT ){
2448           codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
2449         }else{
2450           codeInteger(v, pLeft, 1, target);
2451         }
2452       }else{
2453         regFree1 = r1 = sqlite3GetTempReg(pParse);
2454         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2455         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2456         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2457         testcase( regFree2==0 );
2458       }
2459       inReg = target;
2460       break;
2461     }
2462     case TK_BITNOT:
2463     case TK_NOT: {
2464       assert( TK_BITNOT==OP_BitNot );
2465       assert( TK_NOT==OP_Not );
2466       testcase( op==TK_BITNOT );
2467       testcase( op==TK_NOT );
2468       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2469       testcase( inReg==target );
2470       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2471       inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
2472       sqlite3VdbeAddOp1(v, op, inReg);
2473       break;
2474     }
2475     case TK_ISNULL:
2476     case TK_NOTNULL: {
2477       int addr;
2478       assert( TK_ISNULL==OP_IsNull );
2479       assert( TK_NOTNULL==OP_NotNull );
2480       testcase( op==TK_ISNULL );
2481       testcase( op==TK_NOTNULL );
2482       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2483       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2484       testcase( regFree1==0 );
2485       addr = sqlite3VdbeAddOp1(v, op, r1);
2486       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2487       sqlite3VdbeJumpHere(v, addr);
2488       break;
2489     }
2490     case TK_AGG_FUNCTION: {
2491       AggInfo *pInfo = pExpr->pAggInfo;
2492       if( pInfo==0 ){
2493         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
2494             &pExpr->span);
2495       }else{
2496         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2497       }
2498       break;
2499     }
2500     case TK_CONST_FUNC:
2501     case TK_FUNCTION: {
2502       ExprList *pList = pExpr->pList;
2503       int nExpr = pList ? pList->nExpr : 0;
2504       FuncDef *pDef;
2505       int nId;
2506       const char *zId;
2507       int constMask = 0;
2508       int i;
2509       sqlite3 *db = pParse->db;
2510       u8 enc = ENC(db);
2511       CollSeq *pColl = 0;
2512 
2513       testcase( op==TK_CONST_FUNC );
2514       testcase( op==TK_FUNCTION );
2515       zId = (char*)pExpr->token.z;
2516       nId = pExpr->token.n;
2517       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
2518       assert( pDef!=0 );
2519       if( pList ){
2520         nExpr = pList->nExpr;
2521         r1 = sqlite3GetTempRange(pParse, nExpr);
2522         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
2523       }else{
2524         nExpr = r1 = 0;
2525       }
2526 #ifndef SQLITE_OMIT_VIRTUALTABLE
2527       /* Possibly overload the function if the first argument is
2528       ** a virtual table column.
2529       **
2530       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2531       ** second argument, not the first, as the argument to test to
2532       ** see if it is a column in a virtual table.  This is done because
2533       ** the left operand of infix functions (the operand we want to
2534       ** control overloading) ends up as the second argument to the
2535       ** function.  The expression "A glob B" is equivalent to
2536       ** "glob(B,A).  We want to use the A in "A glob B" to test
2537       ** for function overloading.  But we use the B term in "glob(B,A)".
2538       */
2539       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
2540         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
2541       }else if( nExpr>0 ){
2542         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
2543       }
2544 #endif
2545       for(i=0; i<nExpr && i<32; i++){
2546         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
2547           constMask |= (1<<i);
2548         }
2549         if( pDef->needCollSeq && !pColl ){
2550           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
2551         }
2552       }
2553       if( pDef->needCollSeq ){
2554         if( !pColl ) pColl = pParse->db->pDfltColl;
2555         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2556       }
2557       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2558                         (char*)pDef, P4_FUNCDEF);
2559       sqlite3VdbeChangeP5(v, nExpr);
2560       if( nExpr ){
2561         sqlite3ReleaseTempRange(pParse, r1, nExpr);
2562       }
2563       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
2564       break;
2565     }
2566 #ifndef SQLITE_OMIT_SUBQUERY
2567     case TK_EXISTS:
2568     case TK_SELECT: {
2569       testcase( op==TK_EXISTS );
2570       testcase( op==TK_SELECT );
2571       if( pExpr->iColumn==0 ){
2572         sqlite3CodeSubselect(pParse, pExpr, 0);
2573       }
2574       inReg = pExpr->iColumn;
2575       break;
2576     }
2577     case TK_IN: {
2578       int rNotFound = 0;
2579       int rMayHaveNull = 0;
2580       int j2, j3, j4, j5;
2581       char affinity;
2582       int eType;
2583 
2584       VdbeNoopComment((v, "begin IN expr r%d", target));
2585       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2586       if( rMayHaveNull ){
2587         rNotFound = ++pParse->nMem;
2588       }
2589 
2590       /* Figure out the affinity to use to create a key from the results
2591       ** of the expression. affinityStr stores a static string suitable for
2592       ** P4 of OP_MakeRecord.
2593       */
2594       affinity = comparisonAffinity(pExpr);
2595 
2596 
2597       /* Code the <expr> from "<expr> IN (...)". The temporary table
2598       ** pExpr->iTable contains the values that make up the (...) set.
2599       */
2600       pParse->disableColCache++;
2601       sqlite3ExprCode(pParse, pExpr->pLeft, target);
2602       pParse->disableColCache--;
2603       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2604       if( eType==IN_INDEX_ROWID ){
2605         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2606         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2607         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2608         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2609         sqlite3VdbeJumpHere(v, j3);
2610         sqlite3VdbeJumpHere(v, j4);
2611         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2612       }else{
2613         r2 = regFree2 = sqlite3GetTempReg(pParse);
2614 
2615         /* Create a record and test for set membership. If the set contains
2616         ** the value, then jump to the end of the test code. The target
2617         ** register still contains the true (1) value written to it earlier.
2618         */
2619         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2620         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2621         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2622 
2623         /* If the set membership test fails, then the result of the
2624         ** "x IN (...)" expression must be either 0 or NULL. If the set
2625         ** contains no NULL values, then the result is 0. If the set
2626         ** contains one or more NULL values, then the result of the
2627         ** expression is also NULL.
2628         */
2629         if( rNotFound==0 ){
2630           /* This branch runs if it is known at compile time (now) that
2631           ** the set contains no NULL values. This happens as the result
2632           ** of a "NOT NULL" constraint in the database schema. No need
2633           ** to test the data structure at runtime in this case.
2634           */
2635           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2636         }else{
2637           /* This block populates the rNotFound register with either NULL
2638           ** or 0 (an integer value). If the data structure contains one
2639           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2640           ** to 0. If register rMayHaveNull is already set to some value
2641           ** other than NULL, then the test has already been run and
2642           ** rNotFound is already populated.
2643           */
2644           static const char nullRecord[] = { 0x02, 0x00 };
2645           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2646           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2647           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2648                              nullRecord, P4_STATIC);
2649           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2650           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2651           sqlite3VdbeJumpHere(v, j4);
2652           sqlite3VdbeJumpHere(v, j3);
2653 
2654           /* Copy the value of register rNotFound (which is either NULL or 0)
2655 	  ** into the target register. This will be the result of the
2656           ** expression.
2657           */
2658           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2659         }
2660       }
2661       sqlite3VdbeJumpHere(v, j2);
2662       sqlite3VdbeJumpHere(v, j5);
2663       VdbeComment((v, "end IN expr r%d", target));
2664       break;
2665     }
2666 #endif
2667     /*
2668     **    x BETWEEN y AND z
2669     **
2670     ** This is equivalent to
2671     **
2672     **    x>=y AND x<=z
2673     **
2674     ** X is stored in pExpr->pLeft.
2675     ** Y is stored in pExpr->pList->a[0].pExpr.
2676     ** Z is stored in pExpr->pList->a[1].pExpr.
2677     */
2678     case TK_BETWEEN: {
2679       Expr *pLeft = pExpr->pLeft;
2680       struct ExprList_item *pLItem = pExpr->pList->a;
2681       Expr *pRight = pLItem->pExpr;
2682 
2683       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
2684                                   pRight, &r2, &regFree2);
2685       testcase( regFree1==0 );
2686       testcase( regFree2==0 );
2687       r3 = sqlite3GetTempReg(pParse);
2688       r4 = sqlite3GetTempReg(pParse);
2689       codeCompare(pParse, pLeft, pRight, OP_Ge,
2690                   r1, r2, r3, SQLITE_STOREP2);
2691       pLItem++;
2692       pRight = pLItem->pExpr;
2693       sqlite3ReleaseTempReg(pParse, regFree2);
2694       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2695       testcase( regFree2==0 );
2696       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2697       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2698       sqlite3ReleaseTempReg(pParse, r3);
2699       sqlite3ReleaseTempReg(pParse, r4);
2700       break;
2701     }
2702     case TK_UPLUS: {
2703       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2704       break;
2705     }
2706 
2707     /*
2708     ** Form A:
2709     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2710     **
2711     ** Form B:
2712     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2713     **
2714     ** Form A is can be transformed into the equivalent form B as follows:
2715     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2716     **        WHEN x=eN THEN rN ELSE y END
2717     **
2718     ** X (if it exists) is in pExpr->pLeft.
2719     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2720     ** ELSE clause and no other term matches, then the result of the
2721     ** exprssion is NULL.
2722     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2723     **
2724     ** The result of the expression is the Ri for the first matching Ei,
2725     ** or if there is no matching Ei, the ELSE term Y, or if there is
2726     ** no ELSE term, NULL.
2727     */
2728     case TK_CASE: {
2729       int endLabel;                     /* GOTO label for end of CASE stmt */
2730       int nextCase;                     /* GOTO label for next WHEN clause */
2731       int nExpr;                        /* 2x number of WHEN terms */
2732       int i;                            /* Loop counter */
2733       ExprList *pEList;                 /* List of WHEN terms */
2734       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2735       Expr opCompare;                   /* The X==Ei expression */
2736       Expr cacheX;                      /* Cached expression X */
2737       Expr *pX;                         /* The X expression */
2738       Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
2739 
2740       assert(pExpr->pList);
2741       assert((pExpr->pList->nExpr % 2) == 0);
2742       assert(pExpr->pList->nExpr > 0);
2743       pEList = pExpr->pList;
2744       aListelem = pEList->a;
2745       nExpr = pEList->nExpr;
2746       endLabel = sqlite3VdbeMakeLabel(v);
2747       if( (pX = pExpr->pLeft)!=0 ){
2748         cacheX = *pX;
2749         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
2750         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2751         testcase( regFree1==0 );
2752         cacheX.op = TK_REGISTER;
2753         cacheX.iColumn = 0;
2754         opCompare.op = TK_EQ;
2755         opCompare.pLeft = &cacheX;
2756         pTest = &opCompare;
2757       }
2758       pParse->disableColCache++;
2759       for(i=0; i<nExpr; i=i+2){
2760         if( pX ){
2761           opCompare.pRight = aListelem[i].pExpr;
2762         }else{
2763           pTest = aListelem[i].pExpr;
2764         }
2765         nextCase = sqlite3VdbeMakeLabel(v);
2766         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
2767         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2768         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2769         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2770         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2771         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2772         sqlite3VdbeResolveLabel(v, nextCase);
2773       }
2774       if( pExpr->pRight ){
2775         sqlite3ExprCode(pParse, pExpr->pRight, target);
2776       }else{
2777         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2778       }
2779       sqlite3VdbeResolveLabel(v, endLabel);
2780       assert( pParse->disableColCache>0 );
2781       pParse->disableColCache--;
2782       break;
2783     }
2784 #ifndef SQLITE_OMIT_TRIGGER
2785     case TK_RAISE: {
2786       if( !pParse->trigStack ){
2787         sqlite3ErrorMsg(pParse,
2788                        "RAISE() may only be used within a trigger-program");
2789         return 0;
2790       }
2791       if( pExpr->iColumn!=OE_Ignore ){
2792          assert( pExpr->iColumn==OE_Rollback ||
2793                  pExpr->iColumn == OE_Abort ||
2794                  pExpr->iColumn == OE_Fail );
2795          sqlite3DequoteExpr(pParse->db, pExpr);
2796          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
2797                         (char*)pExpr->token.z, pExpr->token.n);
2798       } else {
2799          assert( pExpr->iColumn == OE_Ignore );
2800          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
2801          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2802          VdbeComment((v, "raise(IGNORE)"));
2803       }
2804       break;
2805     }
2806 #endif
2807   }
2808   sqlite3ReleaseTempReg(pParse, regFree1);
2809   sqlite3ReleaseTempReg(pParse, regFree2);
2810   return inReg;
2811 }
2812 
2813 /*
2814 ** Generate code to evaluate an expression and store the results
2815 ** into a register.  Return the register number where the results
2816 ** are stored.
2817 **
2818 ** If the register is a temporary register that can be deallocated,
2819 ** then write its number into *pReg.  If the result register is not
2820 ** a temporary, then set *pReg to zero.
2821 */
2822 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2823   int r1 = sqlite3GetTempReg(pParse);
2824   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2825   if( r2==r1 ){
2826     *pReg = r1;
2827   }else{
2828     sqlite3ReleaseTempReg(pParse, r1);
2829     *pReg = 0;
2830   }
2831   return r2;
2832 }
2833 
2834 /*
2835 ** Generate code that will evaluate expression pExpr and store the
2836 ** results in register target.  The results are guaranteed to appear
2837 ** in register target.
2838 */
2839 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2840   int inReg;
2841 
2842   assert( target>0 && target<=pParse->nMem );
2843   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2844   assert( pParse->pVdbe || pParse->db->mallocFailed );
2845   if( inReg!=target && pParse->pVdbe ){
2846     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2847   }
2848   return target;
2849 }
2850 
2851 /*
2852 ** Generate code that evalutes the given expression and puts the result
2853 ** in register target.
2854 **
2855 ** Also make a copy of the expression results into another "cache" register
2856 ** and modify the expression so that the next time it is evaluated,
2857 ** the result is a copy of the cache register.
2858 **
2859 ** This routine is used for expressions that are used multiple
2860 ** times.  They are evaluated once and the results of the expression
2861 ** are reused.
2862 */
2863 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2864   Vdbe *v = pParse->pVdbe;
2865   int inReg;
2866   inReg = sqlite3ExprCode(pParse, pExpr, target);
2867   assert( target>0 );
2868   if( pExpr->op!=TK_REGISTER ){
2869     int iMem;
2870     iMem = ++pParse->nMem;
2871     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2872     pExpr->iTable = iMem;
2873     pExpr->iColumn = pExpr->op;
2874     pExpr->op = TK_REGISTER;
2875   }
2876   return inReg;
2877 }
2878 
2879 /*
2880 ** Return TRUE if pExpr is an constant expression that is appropriate
2881 ** for factoring out of a loop.  Appropriate expressions are:
2882 **
2883 **    *  Any expression that evaluates to two or more opcodes.
2884 **
2885 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2886 **       or OP_Variable that does not need to be placed in a
2887 **       specific register.
2888 **
2889 ** There is no point in factoring out single-instruction constant
2890 ** expressions that need to be placed in a particular register.
2891 ** We could factor them out, but then we would end up adding an
2892 ** OP_SCopy instruction to move the value into the correct register
2893 ** later.  We might as well just use the original instruction and
2894 ** avoid the OP_SCopy.
2895 */
2896 static int isAppropriateForFactoring(Expr *p){
2897   if( !sqlite3ExprIsConstantNotJoin(p) ){
2898     return 0;  /* Only constant expressions are appropriate for factoring */
2899   }
2900   if( (p->flags & EP_FixedDest)==0 ){
2901     return 1;  /* Any constant without a fixed destination is appropriate */
2902   }
2903   while( p->op==TK_UPLUS ) p = p->pLeft;
2904   switch( p->op ){
2905 #ifndef SQLITE_OMIT_BLOB_LITERAL
2906     case TK_BLOB:
2907 #endif
2908     case TK_VARIABLE:
2909     case TK_INTEGER:
2910     case TK_FLOAT:
2911     case TK_NULL:
2912     case TK_STRING: {
2913       testcase( p->op==TK_BLOB );
2914       testcase( p->op==TK_VARIABLE );
2915       testcase( p->op==TK_INTEGER );
2916       testcase( p->op==TK_FLOAT );
2917       testcase( p->op==TK_NULL );
2918       testcase( p->op==TK_STRING );
2919       /* Single-instruction constants with a fixed destination are
2920       ** better done in-line.  If we factor them, they will just end
2921       ** up generating an OP_SCopy to move the value to the destination
2922       ** register. */
2923       return 0;
2924     }
2925     case TK_UMINUS: {
2926        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2927          return 0;
2928        }
2929        break;
2930     }
2931     default: {
2932       break;
2933     }
2934   }
2935   return 1;
2936 }
2937 
2938 /*
2939 ** If pExpr is a constant expression that is appropriate for
2940 ** factoring out of a loop, then evaluate the expression
2941 ** into a register and convert the expression into a TK_REGISTER
2942 ** expression.
2943 */
2944 static int evalConstExpr(void *pArg, Expr *pExpr){
2945   Parse *pParse = (Parse*)pArg;
2946   switch( pExpr->op ){
2947     case TK_REGISTER: {
2948       return 1;
2949     }
2950     case TK_FUNCTION:
2951     case TK_AGG_FUNCTION:
2952     case TK_CONST_FUNC: {
2953       /* The arguments to a function have a fixed destination.
2954       ** Mark them this way to avoid generated unneeded OP_SCopy
2955       ** instructions.
2956       */
2957       ExprList *pList = pExpr->pList;
2958       if( pList ){
2959         int i = pList->nExpr;
2960         struct ExprList_item *pItem = pList->a;
2961         for(; i>0; i--, pItem++){
2962           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
2963         }
2964       }
2965       break;
2966     }
2967   }
2968   if( isAppropriateForFactoring(pExpr) ){
2969     int r1 = ++pParse->nMem;
2970     int r2;
2971     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2972     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
2973     pExpr->iColumn = pExpr->op;
2974     pExpr->op = TK_REGISTER;
2975     pExpr->iTable = r2;
2976     return 1;
2977   }
2978   return 0;
2979 }
2980 
2981 /*
2982 ** Preevaluate constant subexpressions within pExpr and store the
2983 ** results in registers.  Modify pExpr so that the constant subexpresions
2984 ** are TK_REGISTER opcodes that refer to the precomputed values.
2985 */
2986 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2987    walkExprTree(pExpr, evalConstExpr, pParse);
2988 }
2989 
2990 
2991 /*
2992 ** Generate code that pushes the value of every element of the given
2993 ** expression list into a sequence of registers beginning at target.
2994 **
2995 ** Return the number of elements evaluated.
2996 */
2997 int sqlite3ExprCodeExprList(
2998   Parse *pParse,     /* Parsing context */
2999   ExprList *pList,   /* The expression list to be coded */
3000   int target,        /* Where to write results */
3001   int doHardCopy     /* Call sqlite3ExprHardCopy on each element if true */
3002 ){
3003   struct ExprList_item *pItem;
3004   int i, n;
3005   assert( pList!=0 || pParse->db->mallocFailed );
3006   if( pList==0 ){
3007     return 0;
3008   }
3009   assert( target>0 );
3010   n = pList->nExpr;
3011   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3012     sqlite3ExprCode(pParse, pItem->pExpr, target+i);
3013     if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
3014   }
3015   return n;
3016 }
3017 
3018 /*
3019 ** Generate code for a boolean expression such that a jump is made
3020 ** to the label "dest" if the expression is true but execution
3021 ** continues straight thru if the expression is false.
3022 **
3023 ** If the expression evaluates to NULL (neither true nor false), then
3024 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3025 **
3026 ** This code depends on the fact that certain token values (ex: TK_EQ)
3027 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3028 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3029 ** the make process cause these values to align.  Assert()s in the code
3030 ** below verify that the numbers are aligned correctly.
3031 */
3032 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3033   Vdbe *v = pParse->pVdbe;
3034   int op = 0;
3035   int regFree1 = 0;
3036   int regFree2 = 0;
3037   int r1, r2;
3038 
3039   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3040   if( v==0 || pExpr==0 ) return;
3041   op = pExpr->op;
3042   switch( op ){
3043     case TK_AND: {
3044       int d2 = sqlite3VdbeMakeLabel(v);
3045       testcase( jumpIfNull==0 );
3046       testcase( pParse->disableColCache==0 );
3047       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3048       pParse->disableColCache++;
3049       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3050       assert( pParse->disableColCache>0 );
3051       pParse->disableColCache--;
3052       sqlite3VdbeResolveLabel(v, d2);
3053       break;
3054     }
3055     case TK_OR: {
3056       testcase( jumpIfNull==0 );
3057       testcase( pParse->disableColCache==0 );
3058       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3059       pParse->disableColCache++;
3060       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3061       assert( pParse->disableColCache>0 );
3062       pParse->disableColCache--;
3063       break;
3064     }
3065     case TK_NOT: {
3066       testcase( jumpIfNull==0 );
3067       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3068       break;
3069     }
3070     case TK_LT:
3071     case TK_LE:
3072     case TK_GT:
3073     case TK_GE:
3074     case TK_NE:
3075     case TK_EQ: {
3076       assert( TK_LT==OP_Lt );
3077       assert( TK_LE==OP_Le );
3078       assert( TK_GT==OP_Gt );
3079       assert( TK_GE==OP_Ge );
3080       assert( TK_EQ==OP_Eq );
3081       assert( TK_NE==OP_Ne );
3082       testcase( op==TK_LT );
3083       testcase( op==TK_LE );
3084       testcase( op==TK_GT );
3085       testcase( op==TK_GE );
3086       testcase( op==TK_EQ );
3087       testcase( op==TK_NE );
3088       testcase( jumpIfNull==0 );
3089       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3090                                   pExpr->pRight, &r2, &regFree2);
3091       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3092                   r1, r2, dest, jumpIfNull);
3093       testcase( regFree1==0 );
3094       testcase( regFree2==0 );
3095       break;
3096     }
3097     case TK_ISNULL:
3098     case TK_NOTNULL: {
3099       assert( TK_ISNULL==OP_IsNull );
3100       assert( TK_NOTNULL==OP_NotNull );
3101       testcase( op==TK_ISNULL );
3102       testcase( op==TK_NOTNULL );
3103       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3104       sqlite3VdbeAddOp2(v, op, r1, dest);
3105       testcase( regFree1==0 );
3106       break;
3107     }
3108     case TK_BETWEEN: {
3109       /*    x BETWEEN y AND z
3110       **
3111       ** Is equivalent to
3112       **
3113       **    x>=y AND x<=z
3114       **
3115       ** Code it as such, taking care to do the common subexpression
3116       ** elementation of x.
3117       */
3118       Expr exprAnd;
3119       Expr compLeft;
3120       Expr compRight;
3121       Expr exprX;
3122 
3123       exprX = *pExpr->pLeft;
3124       exprAnd.op = TK_AND;
3125       exprAnd.pLeft = &compLeft;
3126       exprAnd.pRight = &compRight;
3127       compLeft.op = TK_GE;
3128       compLeft.pLeft = &exprX;
3129       compLeft.pRight = pExpr->pList->a[0].pExpr;
3130       compRight.op = TK_LE;
3131       compRight.pLeft = &exprX;
3132       compRight.pRight = pExpr->pList->a[1].pExpr;
3133       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3134       testcase( regFree1==0 );
3135       exprX.op = TK_REGISTER;
3136       testcase( jumpIfNull==0 );
3137       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3138       break;
3139     }
3140     default: {
3141       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3142       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3143       testcase( regFree1==0 );
3144       testcase( jumpIfNull==0 );
3145       break;
3146     }
3147   }
3148   sqlite3ReleaseTempReg(pParse, regFree1);
3149   sqlite3ReleaseTempReg(pParse, regFree2);
3150 }
3151 
3152 /*
3153 ** Generate code for a boolean expression such that a jump is made
3154 ** to the label "dest" if the expression is false but execution
3155 ** continues straight thru if the expression is true.
3156 **
3157 ** If the expression evaluates to NULL (neither true nor false) then
3158 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3159 ** is 0.
3160 */
3161 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3162   Vdbe *v = pParse->pVdbe;
3163   int op = 0;
3164   int regFree1 = 0;
3165   int regFree2 = 0;
3166   int r1, r2;
3167 
3168   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3169   if( v==0 || pExpr==0 ) return;
3170 
3171   /* The value of pExpr->op and op are related as follows:
3172   **
3173   **       pExpr->op            op
3174   **       ---------          ----------
3175   **       TK_ISNULL          OP_NotNull
3176   **       TK_NOTNULL         OP_IsNull
3177   **       TK_NE              OP_Eq
3178   **       TK_EQ              OP_Ne
3179   **       TK_GT              OP_Le
3180   **       TK_LE              OP_Gt
3181   **       TK_GE              OP_Lt
3182   **       TK_LT              OP_Ge
3183   **
3184   ** For other values of pExpr->op, op is undefined and unused.
3185   ** The value of TK_ and OP_ constants are arranged such that we
3186   ** can compute the mapping above using the following expression.
3187   ** Assert()s verify that the computation is correct.
3188   */
3189   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3190 
3191   /* Verify correct alignment of TK_ and OP_ constants
3192   */
3193   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3194   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3195   assert( pExpr->op!=TK_NE || op==OP_Eq );
3196   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3197   assert( pExpr->op!=TK_LT || op==OP_Ge );
3198   assert( pExpr->op!=TK_LE || op==OP_Gt );
3199   assert( pExpr->op!=TK_GT || op==OP_Le );
3200   assert( pExpr->op!=TK_GE || op==OP_Lt );
3201 
3202   switch( pExpr->op ){
3203     case TK_AND: {
3204       testcase( jumpIfNull==0 );
3205       testcase( pParse->disableColCache==0 );
3206       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3207       pParse->disableColCache++;
3208       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3209       assert( pParse->disableColCache>0 );
3210       pParse->disableColCache--;
3211       break;
3212     }
3213     case TK_OR: {
3214       int d2 = sqlite3VdbeMakeLabel(v);
3215       testcase( jumpIfNull==0 );
3216       testcase( pParse->disableColCache==0 );
3217       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3218       pParse->disableColCache++;
3219       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3220       assert( pParse->disableColCache>0 );
3221       pParse->disableColCache--;
3222       sqlite3VdbeResolveLabel(v, d2);
3223       break;
3224     }
3225     case TK_NOT: {
3226       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3227       break;
3228     }
3229     case TK_LT:
3230     case TK_LE:
3231     case TK_GT:
3232     case TK_GE:
3233     case TK_NE:
3234     case TK_EQ: {
3235       testcase( op==TK_LT );
3236       testcase( op==TK_LE );
3237       testcase( op==TK_GT );
3238       testcase( op==TK_GE );
3239       testcase( op==TK_EQ );
3240       testcase( op==TK_NE );
3241       testcase( jumpIfNull==0 );
3242       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3243                                   pExpr->pRight, &r2, &regFree2);
3244       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3245                   r1, r2, dest, jumpIfNull);
3246       testcase( regFree1==0 );
3247       testcase( regFree2==0 );
3248       break;
3249     }
3250     case TK_ISNULL:
3251     case TK_NOTNULL: {
3252       testcase( op==TK_ISNULL );
3253       testcase( op==TK_NOTNULL );
3254       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3255       sqlite3VdbeAddOp2(v, op, r1, dest);
3256       testcase( regFree1==0 );
3257       break;
3258     }
3259     case TK_BETWEEN: {
3260       /*    x BETWEEN y AND z
3261       **
3262       ** Is equivalent to
3263       **
3264       **    x>=y AND x<=z
3265       **
3266       ** Code it as such, taking care to do the common subexpression
3267       ** elementation of x.
3268       */
3269       Expr exprAnd;
3270       Expr compLeft;
3271       Expr compRight;
3272       Expr exprX;
3273 
3274       exprX = *pExpr->pLeft;
3275       exprAnd.op = TK_AND;
3276       exprAnd.pLeft = &compLeft;
3277       exprAnd.pRight = &compRight;
3278       compLeft.op = TK_GE;
3279       compLeft.pLeft = &exprX;
3280       compLeft.pRight = pExpr->pList->a[0].pExpr;
3281       compRight.op = TK_LE;
3282       compRight.pLeft = &exprX;
3283       compRight.pRight = pExpr->pList->a[1].pExpr;
3284       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3285       testcase( regFree1==0 );
3286       exprX.op = TK_REGISTER;
3287       testcase( jumpIfNull==0 );
3288       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3289       break;
3290     }
3291     default: {
3292       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3293       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3294       testcase( regFree1==0 );
3295       testcase( jumpIfNull==0 );
3296       break;
3297     }
3298   }
3299   sqlite3ReleaseTempReg(pParse, regFree1);
3300   sqlite3ReleaseTempReg(pParse, regFree2);
3301 }
3302 
3303 /*
3304 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
3305 ** if they are identical and return FALSE if they differ in any way.
3306 **
3307 ** Sometimes this routine will return FALSE even if the two expressions
3308 ** really are equivalent.  If we cannot prove that the expressions are
3309 ** identical, we return FALSE just to be safe.  So if this routine
3310 ** returns false, then you do not really know for certain if the two
3311 ** expressions are the same.  But if you get a TRUE return, then you
3312 ** can be sure the expressions are the same.  In the places where
3313 ** this routine is used, it does not hurt to get an extra FALSE - that
3314 ** just might result in some slightly slower code.  But returning
3315 ** an incorrect TRUE could lead to a malfunction.
3316 */
3317 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3318   int i;
3319   if( pA==0||pB==0 ){
3320     return pB==pA;
3321   }
3322   if( pA->op!=pB->op ) return 0;
3323   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
3324   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
3325   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
3326   if( pA->pList ){
3327     if( pB->pList==0 ) return 0;
3328     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
3329     for(i=0; i<pA->pList->nExpr; i++){
3330       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
3331         return 0;
3332       }
3333     }
3334   }else if( pB->pList ){
3335     return 0;
3336   }
3337   if( pA->pSelect || pB->pSelect ) return 0;
3338   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
3339   if( pA->op!=TK_COLUMN && pA->token.z ){
3340     if( pB->token.z==0 ) return 0;
3341     if( pB->token.n!=pA->token.n ) return 0;
3342     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
3343       return 0;
3344     }
3345   }
3346   return 1;
3347 }
3348 
3349 
3350 /*
3351 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3352 ** the new element.  Return a negative number if malloc fails.
3353 */
3354 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3355   int i;
3356   pInfo->aCol = sqlite3ArrayAllocate(
3357        db,
3358        pInfo->aCol,
3359        sizeof(pInfo->aCol[0]),
3360        3,
3361        &pInfo->nColumn,
3362        &pInfo->nColumnAlloc,
3363        &i
3364   );
3365   return i;
3366 }
3367 
3368 /*
3369 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3370 ** the new element.  Return a negative number if malloc fails.
3371 */
3372 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3373   int i;
3374   pInfo->aFunc = sqlite3ArrayAllocate(
3375        db,
3376        pInfo->aFunc,
3377        sizeof(pInfo->aFunc[0]),
3378        3,
3379        &pInfo->nFunc,
3380        &pInfo->nFuncAlloc,
3381        &i
3382   );
3383   return i;
3384 }
3385 
3386 /*
3387 ** This is an xFunc for walkExprTree() used to implement
3388 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3389 ** for additional information.
3390 **
3391 ** This routine analyzes the aggregate function at pExpr.
3392 */
3393 static int analyzeAggregate(void *pArg, Expr *pExpr){
3394   int i;
3395   NameContext *pNC = (NameContext *)pArg;
3396   Parse *pParse = pNC->pParse;
3397   SrcList *pSrcList = pNC->pSrcList;
3398   AggInfo *pAggInfo = pNC->pAggInfo;
3399 
3400   switch( pExpr->op ){
3401     case TK_AGG_COLUMN:
3402     case TK_COLUMN: {
3403       /* Check to see if the column is in one of the tables in the FROM
3404       ** clause of the aggregate query */
3405       if( pSrcList ){
3406         struct SrcList_item *pItem = pSrcList->a;
3407         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3408           struct AggInfo_col *pCol;
3409           if( pExpr->iTable==pItem->iCursor ){
3410             /* If we reach this point, it means that pExpr refers to a table
3411             ** that is in the FROM clause of the aggregate query.
3412             **
3413             ** Make an entry for the column in pAggInfo->aCol[] if there
3414             ** is not an entry there already.
3415             */
3416             int k;
3417             pCol = pAggInfo->aCol;
3418             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3419               if( pCol->iTable==pExpr->iTable &&
3420                   pCol->iColumn==pExpr->iColumn ){
3421                 break;
3422               }
3423             }
3424             if( (k>=pAggInfo->nColumn)
3425              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3426             ){
3427               pCol = &pAggInfo->aCol[k];
3428               pCol->pTab = pExpr->pTab;
3429               pCol->iTable = pExpr->iTable;
3430               pCol->iColumn = pExpr->iColumn;
3431               pCol->iMem = ++pParse->nMem;
3432               pCol->iSorterColumn = -1;
3433               pCol->pExpr = pExpr;
3434               if( pAggInfo->pGroupBy ){
3435                 int j, n;
3436                 ExprList *pGB = pAggInfo->pGroupBy;
3437                 struct ExprList_item *pTerm = pGB->a;
3438                 n = pGB->nExpr;
3439                 for(j=0; j<n; j++, pTerm++){
3440                   Expr *pE = pTerm->pExpr;
3441                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3442                       pE->iColumn==pExpr->iColumn ){
3443                     pCol->iSorterColumn = j;
3444                     break;
3445                   }
3446                 }
3447               }
3448               if( pCol->iSorterColumn<0 ){
3449                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3450               }
3451             }
3452             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3453             ** because it was there before or because we just created it).
3454             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3455             ** pAggInfo->aCol[] entry.
3456             */
3457             pExpr->pAggInfo = pAggInfo;
3458             pExpr->op = TK_AGG_COLUMN;
3459             pExpr->iAgg = k;
3460             break;
3461           } /* endif pExpr->iTable==pItem->iCursor */
3462         } /* end loop over pSrcList */
3463       }
3464       return 1;
3465     }
3466     case TK_AGG_FUNCTION: {
3467       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3468       ** to be ignored */
3469       if( pNC->nDepth==0 ){
3470         /* Check to see if pExpr is a duplicate of another aggregate
3471         ** function that is already in the pAggInfo structure
3472         */
3473         struct AggInfo_func *pItem = pAggInfo->aFunc;
3474         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3475           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
3476             break;
3477           }
3478         }
3479         if( i>=pAggInfo->nFunc ){
3480           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3481           */
3482           u8 enc = ENC(pParse->db);
3483           i = addAggInfoFunc(pParse->db, pAggInfo);
3484           if( i>=0 ){
3485             pItem = &pAggInfo->aFunc[i];
3486             pItem->pExpr = pExpr;
3487             pItem->iMem = ++pParse->nMem;
3488             pItem->pFunc = sqlite3FindFunction(pParse->db,
3489                    (char*)pExpr->token.z, pExpr->token.n,
3490                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
3491             if( pExpr->flags & EP_Distinct ){
3492               pItem->iDistinct = pParse->nTab++;
3493             }else{
3494               pItem->iDistinct = -1;
3495             }
3496           }
3497         }
3498         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3499         */
3500         pExpr->iAgg = i;
3501         pExpr->pAggInfo = pAggInfo;
3502         return 1;
3503       }
3504     }
3505   }
3506 
3507   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
3508   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
3509   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
3510   */
3511   if( pExpr->pSelect ){
3512     pNC->nDepth++;
3513     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
3514     pNC->nDepth--;
3515   }
3516   return 0;
3517 }
3518 
3519 /*
3520 ** Analyze the given expression looking for aggregate functions and
3521 ** for variables that need to be added to the pParse->aAgg[] array.
3522 ** Make additional entries to the pParse->aAgg[] array as necessary.
3523 **
3524 ** This routine should only be called after the expression has been
3525 ** analyzed by sqlite3ExprResolveNames().
3526 */
3527 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3528   walkExprTree(pExpr, analyzeAggregate, pNC);
3529 }
3530 
3531 /*
3532 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3533 ** expression list.  Return the number of errors.
3534 **
3535 ** If an error is found, the analysis is cut short.
3536 */
3537 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3538   struct ExprList_item *pItem;
3539   int i;
3540   if( pList ){
3541     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3542       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3543     }
3544   }
3545 }
3546 
3547 /*
3548 ** Allocate or deallocate temporary use registers during code generation.
3549 */
3550 int sqlite3GetTempReg(Parse *pParse){
3551   if( pParse->nTempReg==0 ){
3552     return ++pParse->nMem;
3553   }
3554   return pParse->aTempReg[--pParse->nTempReg];
3555 }
3556 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3557   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3558     sqlite3ExprWritableRegister(pParse, iReg, iReg);
3559     pParse->aTempReg[pParse->nTempReg++] = iReg;
3560   }
3561 }
3562 
3563 /*
3564 ** Allocate or deallocate a block of nReg consecutive registers
3565 */
3566 int sqlite3GetTempRange(Parse *pParse, int nReg){
3567   int i, n;
3568   i = pParse->iRangeReg;
3569   n = pParse->nRangeReg;
3570   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3571     pParse->iRangeReg += nReg;
3572     pParse->nRangeReg -= nReg;
3573   }else{
3574     i = pParse->nMem+1;
3575     pParse->nMem += nReg;
3576   }
3577   return i;
3578 }
3579 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3580   if( nReg>pParse->nRangeReg ){
3581     pParse->nRangeReg = nReg;
3582     pParse->iRangeReg = iReg;
3583   }
3584 }
3585