1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.386 2008/07/18 17:03:53 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_SELECT ){ 39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 return pExpr->affinity; 47 } 48 49 /* 50 ** Set the collating sequence for expression pExpr to be the collating 51 ** sequence named by pToken. Return a pointer to the revised expression. 52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 53 ** flag. An explicit collating sequence will override implicit 54 ** collating sequences. 55 */ 56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ 57 char *zColl = 0; /* Dequoted name of collation sequence */ 58 CollSeq *pColl; 59 zColl = sqlite3NameFromToken(pParse->db, pName); 60 if( pExpr && zColl ){ 61 pColl = sqlite3LocateCollSeq(pParse, zColl, -1); 62 if( pColl ){ 63 pExpr->pColl = pColl; 64 pExpr->flags |= EP_ExpCollate; 65 } 66 } 67 sqlite3_free(zColl); 68 return pExpr; 69 } 70 71 /* 72 ** Return the default collation sequence for the expression pExpr. If 73 ** there is no default collation type, return 0. 74 */ 75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 76 CollSeq *pColl = 0; 77 if( pExpr ){ 78 int op; 79 pColl = pExpr->pColl; 80 op = pExpr->op; 81 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ 82 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 83 } 84 } 85 if( sqlite3CheckCollSeq(pParse, pColl) ){ 86 pColl = 0; 87 } 88 return pColl; 89 } 90 91 /* 92 ** pExpr is an operand of a comparison operator. aff2 is the 93 ** type affinity of the other operand. This routine returns the 94 ** type affinity that should be used for the comparison operator. 95 */ 96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 97 char aff1 = sqlite3ExprAffinity(pExpr); 98 if( aff1 && aff2 ){ 99 /* Both sides of the comparison are columns. If one has numeric 100 ** affinity, use that. Otherwise use no affinity. 101 */ 102 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 103 return SQLITE_AFF_NUMERIC; 104 }else{ 105 return SQLITE_AFF_NONE; 106 } 107 }else if( !aff1 && !aff2 ){ 108 /* Neither side of the comparison is a column. Compare the 109 ** results directly. 110 */ 111 return SQLITE_AFF_NONE; 112 }else{ 113 /* One side is a column, the other is not. Use the columns affinity. */ 114 assert( aff1==0 || aff2==0 ); 115 return (aff1 + aff2); 116 } 117 } 118 119 /* 120 ** pExpr is a comparison operator. Return the type affinity that should 121 ** be applied to both operands prior to doing the comparison. 122 */ 123 static char comparisonAffinity(Expr *pExpr){ 124 char aff; 125 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 126 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 127 pExpr->op==TK_NE ); 128 assert( pExpr->pLeft ); 129 aff = sqlite3ExprAffinity(pExpr->pLeft); 130 if( pExpr->pRight ){ 131 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 132 } 133 else if( pExpr->pSelect ){ 134 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 135 } 136 else if( !aff ){ 137 aff = SQLITE_AFF_NONE; 138 } 139 return aff; 140 } 141 142 /* 143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 144 ** idx_affinity is the affinity of an indexed column. Return true 145 ** if the index with affinity idx_affinity may be used to implement 146 ** the comparison in pExpr. 147 */ 148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 149 char aff = comparisonAffinity(pExpr); 150 switch( aff ){ 151 case SQLITE_AFF_NONE: 152 return 1; 153 case SQLITE_AFF_TEXT: 154 return idx_affinity==SQLITE_AFF_TEXT; 155 default: 156 return sqlite3IsNumericAffinity(idx_affinity); 157 } 158 } 159 160 /* 161 ** Return the P5 value that should be used for a binary comparison 162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 163 */ 164 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 165 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 166 aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull; 167 return aff; 168 } 169 170 /* 171 ** Return a pointer to the collation sequence that should be used by 172 ** a binary comparison operator comparing pLeft and pRight. 173 ** 174 ** If the left hand expression has a collating sequence type, then it is 175 ** used. Otherwise the collation sequence for the right hand expression 176 ** is used, or the default (BINARY) if neither expression has a collating 177 ** type. 178 ** 179 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 180 ** it is not considered. 181 */ 182 CollSeq *sqlite3BinaryCompareCollSeq( 183 Parse *pParse, 184 Expr *pLeft, 185 Expr *pRight 186 ){ 187 CollSeq *pColl; 188 assert( pLeft ); 189 if( pLeft->flags & EP_ExpCollate ){ 190 assert( pLeft->pColl ); 191 pColl = pLeft->pColl; 192 }else if( pRight && pRight->flags & EP_ExpCollate ){ 193 assert( pRight->pColl ); 194 pColl = pRight->pColl; 195 }else{ 196 pColl = sqlite3ExprCollSeq(pParse, pLeft); 197 if( !pColl ){ 198 pColl = sqlite3ExprCollSeq(pParse, pRight); 199 } 200 } 201 return pColl; 202 } 203 204 /* 205 ** Generate the operands for a comparison operation. Before 206 ** generating the code for each operand, set the EP_AnyAff 207 ** flag on the expression so that it will be able to used a 208 ** cached column value that has previously undergone an 209 ** affinity change. 210 */ 211 static void codeCompareOperands( 212 Parse *pParse, /* Parsing and code generating context */ 213 Expr *pLeft, /* The left operand */ 214 int *pRegLeft, /* Register where left operand is stored */ 215 int *pFreeLeft, /* Free this register when done */ 216 Expr *pRight, /* The right operand */ 217 int *pRegRight, /* Register where right operand is stored */ 218 int *pFreeRight /* Write temp register for right operand there */ 219 ){ 220 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 221 pLeft->flags |= EP_AnyAff; 222 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 223 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 224 pRight->flags |= EP_AnyAff; 225 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 226 } 227 228 /* 229 ** Generate code for a comparison operator. 230 */ 231 static int codeCompare( 232 Parse *pParse, /* The parsing (and code generating) context */ 233 Expr *pLeft, /* The left operand */ 234 Expr *pRight, /* The right operand */ 235 int opcode, /* The comparison opcode */ 236 int in1, int in2, /* Register holding operands */ 237 int dest, /* Jump here if true. */ 238 int jumpIfNull /* If true, jump if either operand is NULL */ 239 ){ 240 int p5; 241 int addr; 242 CollSeq *p4; 243 244 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 245 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 246 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 247 (void*)p4, P4_COLLSEQ); 248 sqlite3VdbeChangeP5(pParse->pVdbe, p5); 249 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ 250 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 251 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 252 } 253 return addr; 254 } 255 256 #if SQLITE_MAX_EXPR_DEPTH>0 257 /* 258 ** Check that argument nHeight is less than or equal to the maximum 259 ** expression depth allowed. If it is not, leave an error message in 260 ** pParse. 261 */ 262 static int checkExprHeight(Parse *pParse, int nHeight){ 263 int rc = SQLITE_OK; 264 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 265 if( nHeight>mxHeight ){ 266 sqlite3ErrorMsg(pParse, 267 "Expression tree is too large (maximum depth %d)", mxHeight 268 ); 269 rc = SQLITE_ERROR; 270 } 271 return rc; 272 } 273 274 /* The following three functions, heightOfExpr(), heightOfExprList() 275 ** and heightOfSelect(), are used to determine the maximum height 276 ** of any expression tree referenced by the structure passed as the 277 ** first argument. 278 ** 279 ** If this maximum height is greater than the current value pointed 280 ** to by pnHeight, the second parameter, then set *pnHeight to that 281 ** value. 282 */ 283 static void heightOfExpr(Expr *p, int *pnHeight){ 284 if( p ){ 285 if( p->nHeight>*pnHeight ){ 286 *pnHeight = p->nHeight; 287 } 288 } 289 } 290 static void heightOfExprList(ExprList *p, int *pnHeight){ 291 if( p ){ 292 int i; 293 for(i=0; i<p->nExpr; i++){ 294 heightOfExpr(p->a[i].pExpr, pnHeight); 295 } 296 } 297 } 298 static void heightOfSelect(Select *p, int *pnHeight){ 299 if( p ){ 300 heightOfExpr(p->pWhere, pnHeight); 301 heightOfExpr(p->pHaving, pnHeight); 302 heightOfExpr(p->pLimit, pnHeight); 303 heightOfExpr(p->pOffset, pnHeight); 304 heightOfExprList(p->pEList, pnHeight); 305 heightOfExprList(p->pGroupBy, pnHeight); 306 heightOfExprList(p->pOrderBy, pnHeight); 307 heightOfSelect(p->pPrior, pnHeight); 308 } 309 } 310 311 /* 312 ** Set the Expr.nHeight variable in the structure passed as an 313 ** argument. An expression with no children, Expr.pList or 314 ** Expr.pSelect member has a height of 1. Any other expression 315 ** has a height equal to the maximum height of any other 316 ** referenced Expr plus one. 317 */ 318 static void exprSetHeight(Expr *p){ 319 int nHeight = 0; 320 heightOfExpr(p->pLeft, &nHeight); 321 heightOfExpr(p->pRight, &nHeight); 322 heightOfExprList(p->pList, &nHeight); 323 heightOfSelect(p->pSelect, &nHeight); 324 p->nHeight = nHeight + 1; 325 } 326 327 /* 328 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 329 ** the height is greater than the maximum allowed expression depth, 330 ** leave an error in pParse. 331 */ 332 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 333 exprSetHeight(p); 334 checkExprHeight(pParse, p->nHeight); 335 } 336 337 /* 338 ** Return the maximum height of any expression tree referenced 339 ** by the select statement passed as an argument. 340 */ 341 int sqlite3SelectExprHeight(Select *p){ 342 int nHeight = 0; 343 heightOfSelect(p, &nHeight); 344 return nHeight; 345 } 346 #else 347 #define checkExprHeight(x,y) 348 #define exprSetHeight(y) 349 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 350 351 /* 352 ** Construct a new expression node and return a pointer to it. Memory 353 ** for this node is obtained from sqlite3_malloc(). The calling function 354 ** is responsible for making sure the node eventually gets freed. 355 */ 356 Expr *sqlite3Expr( 357 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 358 int op, /* Expression opcode */ 359 Expr *pLeft, /* Left operand */ 360 Expr *pRight, /* Right operand */ 361 const Token *pToken /* Argument token */ 362 ){ 363 Expr *pNew; 364 pNew = sqlite3DbMallocZero(db, sizeof(Expr)); 365 if( pNew==0 ){ 366 /* When malloc fails, delete pLeft and pRight. Expressions passed to 367 ** this function must always be allocated with sqlite3Expr() for this 368 ** reason. 369 */ 370 sqlite3ExprDelete(pLeft); 371 sqlite3ExprDelete(pRight); 372 return 0; 373 } 374 pNew->op = op; 375 pNew->pLeft = pLeft; 376 pNew->pRight = pRight; 377 pNew->iAgg = -1; 378 pNew->span.z = (u8*)""; 379 if( pToken ){ 380 assert( pToken->dyn==0 ); 381 pNew->span = pNew->token = *pToken; 382 }else if( pLeft ){ 383 if( pRight ){ 384 if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){ 385 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 386 } 387 if( pRight->flags & EP_ExpCollate ){ 388 pNew->flags |= EP_ExpCollate; 389 pNew->pColl = pRight->pColl; 390 } 391 } 392 if( pLeft->flags & EP_ExpCollate ){ 393 pNew->flags |= EP_ExpCollate; 394 pNew->pColl = pLeft->pColl; 395 } 396 } 397 398 exprSetHeight(pNew); 399 return pNew; 400 } 401 402 /* 403 ** Works like sqlite3Expr() except that it takes an extra Parse* 404 ** argument and notifies the associated connection object if malloc fails. 405 */ 406 Expr *sqlite3PExpr( 407 Parse *pParse, /* Parsing context */ 408 int op, /* Expression opcode */ 409 Expr *pLeft, /* Left operand */ 410 Expr *pRight, /* Right operand */ 411 const Token *pToken /* Argument token */ 412 ){ 413 Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 414 if( p ){ 415 checkExprHeight(pParse, p->nHeight); 416 } 417 return p; 418 } 419 420 /* 421 ** When doing a nested parse, you can include terms in an expression 422 ** that look like this: #1 #2 ... These terms refer to registers 423 ** in the virtual machine. #N is the N-th register. 424 ** 425 ** This routine is called by the parser to deal with on of those terms. 426 ** It immediately generates code to store the value in a memory location. 427 ** The returns an expression that will code to extract the value from 428 ** that memory location as needed. 429 */ 430 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 431 Vdbe *v = pParse->pVdbe; 432 Expr *p; 433 if( pParse->nested==0 ){ 434 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 435 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 436 } 437 if( v==0 ) return 0; 438 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 439 if( p==0 ){ 440 return 0; /* Malloc failed */ 441 } 442 p->iTable = atoi((char*)&pToken->z[1]); 443 return p; 444 } 445 446 /* 447 ** Join two expressions using an AND operator. If either expression is 448 ** NULL, then just return the other expression. 449 */ 450 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 451 if( pLeft==0 ){ 452 return pRight; 453 }else if( pRight==0 ){ 454 return pLeft; 455 }else{ 456 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 457 } 458 } 459 460 /* 461 ** Set the Expr.span field of the given expression to span all 462 ** text between the two given tokens. Both tokens must be pointing 463 ** at the same string. 464 */ 465 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 466 assert( pRight!=0 ); 467 assert( pLeft!=0 ); 468 if( pExpr ){ 469 pExpr->span.z = pLeft->z; 470 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 471 } 472 } 473 474 /* 475 ** Construct a new expression node for a function with multiple 476 ** arguments. 477 */ 478 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 479 Expr *pNew; 480 assert( pToken ); 481 pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); 482 if( pNew==0 ){ 483 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 484 return 0; 485 } 486 pNew->op = TK_FUNCTION; 487 pNew->pList = pList; 488 assert( pToken->dyn==0 ); 489 pNew->token = *pToken; 490 pNew->span = pNew->token; 491 492 sqlite3ExprSetHeight(pParse, pNew); 493 return pNew; 494 } 495 496 /* 497 ** Assign a variable number to an expression that encodes a wildcard 498 ** in the original SQL statement. 499 ** 500 ** Wildcards consisting of a single "?" are assigned the next sequential 501 ** variable number. 502 ** 503 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 504 ** sure "nnn" is not too be to avoid a denial of service attack when 505 ** the SQL statement comes from an external source. 506 ** 507 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 508 ** as the previous instance of the same wildcard. Or if this is the first 509 ** instance of the wildcard, the next sequenial variable number is 510 ** assigned. 511 */ 512 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 513 Token *pToken; 514 sqlite3 *db = pParse->db; 515 516 if( pExpr==0 ) return; 517 pToken = &pExpr->token; 518 assert( pToken->n>=1 ); 519 assert( pToken->z!=0 ); 520 assert( pToken->z[0]!=0 ); 521 if( pToken->n==1 ){ 522 /* Wildcard of the form "?". Assign the next variable number */ 523 pExpr->iTable = ++pParse->nVar; 524 }else if( pToken->z[0]=='?' ){ 525 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 526 ** use it as the variable number */ 527 int i; 528 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 529 testcase( i==0 ); 530 testcase( i==1 ); 531 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 532 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 533 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 534 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 535 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 536 } 537 if( i>pParse->nVar ){ 538 pParse->nVar = i; 539 } 540 }else{ 541 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 542 ** number as the prior appearance of the same name, or if the name 543 ** has never appeared before, reuse the same variable number 544 */ 545 int i, n; 546 n = pToken->n; 547 for(i=0; i<pParse->nVarExpr; i++){ 548 Expr *pE; 549 if( (pE = pParse->apVarExpr[i])!=0 550 && pE->token.n==n 551 && memcmp(pE->token.z, pToken->z, n)==0 ){ 552 pExpr->iTable = pE->iTable; 553 break; 554 } 555 } 556 if( i>=pParse->nVarExpr ){ 557 pExpr->iTable = ++pParse->nVar; 558 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 559 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 560 pParse->apVarExpr = 561 sqlite3DbReallocOrFree( 562 db, 563 pParse->apVarExpr, 564 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 565 ); 566 } 567 if( !db->mallocFailed ){ 568 assert( pParse->apVarExpr!=0 ); 569 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 570 } 571 } 572 } 573 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 574 sqlite3ErrorMsg(pParse, "too many SQL variables"); 575 } 576 } 577 578 /* 579 ** Recursively delete an expression tree. 580 */ 581 void sqlite3ExprDelete(Expr *p){ 582 if( p==0 ) return; 583 if( p->span.dyn ) sqlite3_free((char*)p->span.z); 584 if( p->token.dyn ) sqlite3_free((char*)p->token.z); 585 sqlite3ExprDelete(p->pLeft); 586 sqlite3ExprDelete(p->pRight); 587 sqlite3ExprListDelete(p->pList); 588 sqlite3SelectDelete(p->pSelect); 589 sqlite3_free(p); 590 } 591 592 /* 593 ** The Expr.token field might be a string literal that is quoted. 594 ** If so, remove the quotation marks. 595 */ 596 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ 597 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 598 return; 599 } 600 ExprSetProperty(p, EP_Dequoted); 601 if( p->token.dyn==0 ){ 602 sqlite3TokenCopy(db, &p->token, &p->token); 603 } 604 sqlite3Dequote((char*)p->token.z); 605 } 606 607 608 /* 609 ** The following group of routines make deep copies of expressions, 610 ** expression lists, ID lists, and select statements. The copies can 611 ** be deleted (by being passed to their respective ...Delete() routines) 612 ** without effecting the originals. 613 ** 614 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 615 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 616 ** by subsequent calls to sqlite*ListAppend() routines. 617 ** 618 ** Any tables that the SrcList might point to are not duplicated. 619 */ 620 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ 621 Expr *pNew; 622 if( p==0 ) return 0; 623 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 624 if( pNew==0 ) return 0; 625 memcpy(pNew, p, sizeof(*pNew)); 626 if( p->token.z!=0 ){ 627 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); 628 pNew->token.dyn = 1; 629 }else{ 630 assert( pNew->token.z==0 ); 631 } 632 pNew->span.z = 0; 633 pNew->pLeft = sqlite3ExprDup(db, p->pLeft); 634 pNew->pRight = sqlite3ExprDup(db, p->pRight); 635 pNew->pList = sqlite3ExprListDup(db, p->pList); 636 pNew->pSelect = sqlite3SelectDup(db, p->pSelect); 637 return pNew; 638 } 639 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ 640 if( pTo->dyn ) sqlite3_free((char*)pTo->z); 641 if( pFrom->z ){ 642 pTo->n = pFrom->n; 643 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 644 pTo->dyn = 1; 645 }else{ 646 pTo->z = 0; 647 } 648 } 649 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ 650 ExprList *pNew; 651 struct ExprList_item *pItem, *pOldItem; 652 int i; 653 if( p==0 ) return 0; 654 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 655 if( pNew==0 ) return 0; 656 pNew->iECursor = 0; 657 pNew->nExpr = pNew->nAlloc = p->nExpr; 658 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 659 if( pItem==0 ){ 660 sqlite3_free(pNew); 661 return 0; 662 } 663 pOldItem = p->a; 664 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 665 Expr *pNewExpr, *pOldExpr; 666 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); 667 if( pOldExpr->span.z!=0 && pNewExpr ){ 668 /* Always make a copy of the span for top-level expressions in the 669 ** expression list. The logic in SELECT processing that determines 670 ** the names of columns in the result set needs this information */ 671 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); 672 } 673 assert( pNewExpr==0 || pNewExpr->span.z!=0 674 || pOldExpr->span.z==0 675 || db->mallocFailed ); 676 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 677 pItem->sortOrder = pOldItem->sortOrder; 678 pItem->isAgg = pOldItem->isAgg; 679 pItem->done = 0; 680 } 681 return pNew; 682 } 683 684 /* 685 ** If cursors, triggers, views and subqueries are all omitted from 686 ** the build, then none of the following routines, except for 687 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 688 ** called with a NULL argument. 689 */ 690 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 691 || !defined(SQLITE_OMIT_SUBQUERY) 692 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ 693 SrcList *pNew; 694 int i; 695 int nByte; 696 if( p==0 ) return 0; 697 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 698 pNew = sqlite3DbMallocRaw(db, nByte ); 699 if( pNew==0 ) return 0; 700 pNew->nSrc = pNew->nAlloc = p->nSrc; 701 for(i=0; i<p->nSrc; i++){ 702 struct SrcList_item *pNewItem = &pNew->a[i]; 703 struct SrcList_item *pOldItem = &p->a[i]; 704 Table *pTab; 705 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 706 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 707 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 708 pNewItem->jointype = pOldItem->jointype; 709 pNewItem->iCursor = pOldItem->iCursor; 710 pNewItem->isPopulated = pOldItem->isPopulated; 711 pTab = pNewItem->pTab = pOldItem->pTab; 712 if( pTab ){ 713 pTab->nRef++; 714 } 715 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); 716 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); 717 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 718 pNewItem->colUsed = pOldItem->colUsed; 719 } 720 return pNew; 721 } 722 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 723 IdList *pNew; 724 int i; 725 if( p==0 ) return 0; 726 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 727 if( pNew==0 ) return 0; 728 pNew->nId = pNew->nAlloc = p->nId; 729 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 730 if( pNew->a==0 ){ 731 sqlite3_free(pNew); 732 return 0; 733 } 734 for(i=0; i<p->nId; i++){ 735 struct IdList_item *pNewItem = &pNew->a[i]; 736 struct IdList_item *pOldItem = &p->a[i]; 737 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 738 pNewItem->idx = pOldItem->idx; 739 } 740 return pNew; 741 } 742 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 743 Select *pNew; 744 if( p==0 ) return 0; 745 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 746 if( pNew==0 ) return 0; 747 pNew->isDistinct = p->isDistinct; 748 pNew->pEList = sqlite3ExprListDup(db, p->pEList); 749 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); 750 pNew->pWhere = sqlite3ExprDup(db, p->pWhere); 751 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); 752 pNew->pHaving = sqlite3ExprDup(db, p->pHaving); 753 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); 754 pNew->op = p->op; 755 pNew->pPrior = sqlite3SelectDup(db, p->pPrior); 756 pNew->pLimit = sqlite3ExprDup(db, p->pLimit); 757 pNew->pOffset = sqlite3ExprDup(db, p->pOffset); 758 pNew->iLimit = 0; 759 pNew->iOffset = 0; 760 pNew->isResolved = p->isResolved; 761 pNew->isAgg = p->isAgg; 762 pNew->usesEphm = 0; 763 pNew->disallowOrderBy = 0; 764 pNew->pRightmost = 0; 765 pNew->addrOpenEphm[0] = -1; 766 pNew->addrOpenEphm[1] = -1; 767 pNew->addrOpenEphm[2] = -1; 768 return pNew; 769 } 770 #else 771 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 772 assert( p==0 ); 773 return 0; 774 } 775 #endif 776 777 778 /* 779 ** Add a new element to the end of an expression list. If pList is 780 ** initially NULL, then create a new expression list. 781 */ 782 ExprList *sqlite3ExprListAppend( 783 Parse *pParse, /* Parsing context */ 784 ExprList *pList, /* List to which to append. Might be NULL */ 785 Expr *pExpr, /* Expression to be appended */ 786 Token *pName /* AS keyword for the expression */ 787 ){ 788 sqlite3 *db = pParse->db; 789 if( pList==0 ){ 790 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 791 if( pList==0 ){ 792 goto no_mem; 793 } 794 assert( pList->nAlloc==0 ); 795 } 796 if( pList->nAlloc<=pList->nExpr ){ 797 struct ExprList_item *a; 798 int n = pList->nAlloc*2 + 4; 799 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 800 if( a==0 ){ 801 goto no_mem; 802 } 803 pList->a = a; 804 pList->nAlloc = n; 805 } 806 assert( pList->a!=0 ); 807 if( pExpr || pName ){ 808 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 809 memset(pItem, 0, sizeof(*pItem)); 810 pItem->zName = sqlite3NameFromToken(db, pName); 811 pItem->pExpr = pExpr; 812 } 813 return pList; 814 815 no_mem: 816 /* Avoid leaking memory if malloc has failed. */ 817 sqlite3ExprDelete(pExpr); 818 sqlite3ExprListDelete(pList); 819 return 0; 820 } 821 822 /* 823 ** If the expression list pEList contains more than iLimit elements, 824 ** leave an error message in pParse. 825 */ 826 void sqlite3ExprListCheckLength( 827 Parse *pParse, 828 ExprList *pEList, 829 const char *zObject 830 ){ 831 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 832 testcase( pEList && pEList->nExpr==mx ); 833 testcase( pEList && pEList->nExpr==mx+1 ); 834 if( pEList && pEList->nExpr>mx ){ 835 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 836 } 837 } 838 839 /* 840 ** Delete an entire expression list. 841 */ 842 void sqlite3ExprListDelete(ExprList *pList){ 843 int i; 844 struct ExprList_item *pItem; 845 if( pList==0 ) return; 846 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 847 assert( pList->nExpr<=pList->nAlloc ); 848 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 849 sqlite3ExprDelete(pItem->pExpr); 850 sqlite3_free(pItem->zName); 851 } 852 sqlite3_free(pList->a); 853 sqlite3_free(pList); 854 } 855 856 /* 857 ** Walk an expression tree. Call xFunc for each node visited. xFunc 858 ** is called on the node before xFunc is called on the nodes children. 859 ** 860 ** The return value from xFunc determines whether the tree walk continues. 861 ** 0 means continue walking the tree. 1 means do not walk children 862 ** of the current node but continue with siblings. 2 means abandon 863 ** the tree walk completely. 864 ** 865 ** The return value from this routine is 1 to abandon the tree walk 866 ** and 0 to continue. 867 ** 868 ** NOTICE: This routine does *not* descend into subqueries. 869 */ 870 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 871 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 872 int rc; 873 if( pExpr==0 ) return 0; 874 rc = (*xFunc)(pArg, pExpr); 875 if( rc==0 ){ 876 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 877 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 878 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 879 } 880 return rc>1; 881 } 882 883 /* 884 ** Call walkExprTree() for every expression in list p. 885 */ 886 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 887 int i; 888 struct ExprList_item *pItem; 889 if( !p ) return 0; 890 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 891 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 892 } 893 return 0; 894 } 895 896 /* 897 ** Call walkExprTree() for every expression in Select p, not including 898 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 899 ** or OFFSET expressions.. 900 */ 901 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 902 walkExprList(p->pEList, xFunc, pArg); 903 walkExprTree(p->pWhere, xFunc, pArg); 904 walkExprList(p->pGroupBy, xFunc, pArg); 905 walkExprTree(p->pHaving, xFunc, pArg); 906 walkExprList(p->pOrderBy, xFunc, pArg); 907 if( p->pPrior ){ 908 walkSelectExpr(p->pPrior, xFunc, pArg); 909 } 910 return 0; 911 } 912 913 914 /* 915 ** This routine is designed as an xFunc for walkExprTree(). 916 ** 917 ** pArg is really a pointer to an integer. If we can tell by looking 918 ** at pExpr that the expression that contains pExpr is not a constant 919 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 920 ** If pExpr does does not disqualify the expression from being a constant 921 ** then do nothing. 922 ** 923 ** After walking the whole tree, if no nodes are found that disqualify 924 ** the expression as constant, then we assume the whole expression 925 ** is constant. See sqlite3ExprIsConstant() for additional information. 926 */ 927 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 928 int *pN = (int*)pArg; 929 930 /* If *pArg is 3 then any term of the expression that comes from 931 ** the ON or USING clauses of a join disqualifies the expression 932 ** from being considered constant. */ 933 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 934 *pN = 0; 935 return 2; 936 } 937 938 switch( pExpr->op ){ 939 /* Consider functions to be constant if all their arguments are constant 940 ** and *pArg==2 */ 941 case TK_FUNCTION: 942 if( (*pN)==2 ) return 0; 943 /* Fall through */ 944 case TK_ID: 945 case TK_COLUMN: 946 case TK_DOT: 947 case TK_AGG_FUNCTION: 948 case TK_AGG_COLUMN: 949 #ifndef SQLITE_OMIT_SUBQUERY 950 case TK_SELECT: 951 case TK_EXISTS: 952 testcase( pExpr->op==TK_SELECT ); 953 testcase( pExpr->op==TK_EXISTS ); 954 #endif 955 testcase( pExpr->op==TK_ID ); 956 testcase( pExpr->op==TK_COLUMN ); 957 testcase( pExpr->op==TK_DOT ); 958 testcase( pExpr->op==TK_AGG_FUNCTION ); 959 testcase( pExpr->op==TK_AGG_COLUMN ); 960 *pN = 0; 961 return 2; 962 case TK_IN: 963 if( pExpr->pSelect ){ 964 *pN = 0; 965 return 2; 966 } 967 default: 968 return 0; 969 } 970 } 971 972 /* 973 ** Walk an expression tree. Return 1 if the expression is constant 974 ** and 0 if it involves variables or function calls. 975 ** 976 ** For the purposes of this function, a double-quoted string (ex: "abc") 977 ** is considered a variable but a single-quoted string (ex: 'abc') is 978 ** a constant. 979 */ 980 int sqlite3ExprIsConstant(Expr *p){ 981 int isConst = 1; 982 walkExprTree(p, exprNodeIsConstant, &isConst); 983 return isConst; 984 } 985 986 /* 987 ** Walk an expression tree. Return 1 if the expression is constant 988 ** that does no originate from the ON or USING clauses of a join. 989 ** Return 0 if it involves variables or function calls or terms from 990 ** an ON or USING clause. 991 */ 992 int sqlite3ExprIsConstantNotJoin(Expr *p){ 993 int isConst = 3; 994 walkExprTree(p, exprNodeIsConstant, &isConst); 995 return isConst!=0; 996 } 997 998 /* 999 ** Walk an expression tree. Return 1 if the expression is constant 1000 ** or a function call with constant arguments. Return and 0 if there 1001 ** are any variables. 1002 ** 1003 ** For the purposes of this function, a double-quoted string (ex: "abc") 1004 ** is considered a variable but a single-quoted string (ex: 'abc') is 1005 ** a constant. 1006 */ 1007 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1008 int isConst = 2; 1009 walkExprTree(p, exprNodeIsConstant, &isConst); 1010 return isConst!=0; 1011 } 1012 1013 /* 1014 ** If the expression p codes a constant integer that is small enough 1015 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1016 ** in *pValue. If the expression is not an integer or if it is too big 1017 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1018 */ 1019 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1020 int rc = 0; 1021 if( p->flags & EP_IntValue ){ 1022 *pValue = p->iTable; 1023 return 1; 1024 } 1025 switch( p->op ){ 1026 case TK_INTEGER: { 1027 rc = sqlite3GetInt32((char*)p->token.z, pValue); 1028 break; 1029 } 1030 case TK_UPLUS: { 1031 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1032 break; 1033 } 1034 case TK_UMINUS: { 1035 int v; 1036 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1037 *pValue = -v; 1038 rc = 1; 1039 } 1040 break; 1041 } 1042 default: break; 1043 } 1044 if( rc ){ 1045 p->op = TK_INTEGER; 1046 p->flags |= EP_IntValue; 1047 p->iTable = *pValue; 1048 } 1049 return rc; 1050 } 1051 1052 /* 1053 ** Return TRUE if the given string is a row-id column name. 1054 */ 1055 int sqlite3IsRowid(const char *z){ 1056 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1057 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1058 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1059 return 0; 1060 } 1061 1062 /* 1063 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 1064 ** that name in the set of source tables in pSrcList and make the pExpr 1065 ** expression node refer back to that source column. The following changes 1066 ** are made to pExpr: 1067 ** 1068 ** pExpr->iDb Set the index in db->aDb[] of the database holding 1069 ** the table. 1070 ** pExpr->iTable Set to the cursor number for the table obtained 1071 ** from pSrcList. 1072 ** pExpr->iColumn Set to the column number within the table. 1073 ** pExpr->op Set to TK_COLUMN. 1074 ** pExpr->pLeft Any expression this points to is deleted 1075 ** pExpr->pRight Any expression this points to is deleted. 1076 ** 1077 ** The pDbToken is the name of the database (the "X"). This value may be 1078 ** NULL meaning that name is of the form Y.Z or Z. Any available database 1079 ** can be used. The pTableToken is the name of the table (the "Y"). This 1080 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 1081 ** means that the form of the name is Z and that columns from any table 1082 ** can be used. 1083 ** 1084 ** If the name cannot be resolved unambiguously, leave an error message 1085 ** in pParse and return non-zero. Return zero on success. 1086 */ 1087 static int lookupName( 1088 Parse *pParse, /* The parsing context */ 1089 Token *pDbToken, /* Name of the database containing table, or NULL */ 1090 Token *pTableToken, /* Name of table containing column, or NULL */ 1091 Token *pColumnToken, /* Name of the column. */ 1092 NameContext *pNC, /* The name context used to resolve the name */ 1093 Expr *pExpr /* Make this EXPR node point to the selected column */ 1094 ){ 1095 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 1096 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 1097 char *zCol = 0; /* Name of the column. The "Z" */ 1098 int i, j; /* Loop counters */ 1099 int cnt = 0; /* Number of matching column names */ 1100 int cntTab = 0; /* Number of matching table names */ 1101 sqlite3 *db = pParse->db; /* The database */ 1102 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 1103 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 1104 NameContext *pTopNC = pNC; /* First namecontext in the list */ 1105 Schema *pSchema = 0; /* Schema of the expression */ 1106 1107 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 1108 zDb = sqlite3NameFromToken(db, pDbToken); 1109 zTab = sqlite3NameFromToken(db, pTableToken); 1110 zCol = sqlite3NameFromToken(db, pColumnToken); 1111 if( db->mallocFailed ){ 1112 goto lookupname_end; 1113 } 1114 1115 pExpr->iTable = -1; 1116 while( pNC && cnt==0 ){ 1117 ExprList *pEList; 1118 SrcList *pSrcList = pNC->pSrcList; 1119 1120 if( pSrcList ){ 1121 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 1122 Table *pTab; 1123 int iDb; 1124 Column *pCol; 1125 1126 pTab = pItem->pTab; 1127 assert( pTab!=0 ); 1128 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1129 assert( pTab->nCol>0 ); 1130 if( zTab ){ 1131 if( pItem->zAlias ){ 1132 char *zTabName = pItem->zAlias; 1133 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1134 }else{ 1135 char *zTabName = pTab->zName; 1136 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1137 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 1138 continue; 1139 } 1140 } 1141 } 1142 if( 0==(cntTab++) ){ 1143 pExpr->iTable = pItem->iCursor; 1144 pSchema = pTab->pSchema; 1145 pMatch = pItem; 1146 } 1147 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 1148 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1149 const char *zColl = pTab->aCol[j].zColl; 1150 IdList *pUsing; 1151 cnt++; 1152 pExpr->iTable = pItem->iCursor; 1153 pMatch = pItem; 1154 pSchema = pTab->pSchema; 1155 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 1156 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 1157 pExpr->affinity = pTab->aCol[j].affinity; 1158 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1159 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1160 } 1161 if( i<pSrcList->nSrc-1 ){ 1162 if( pItem[1].jointype & JT_NATURAL ){ 1163 /* If this match occurred in the left table of a natural join, 1164 ** then skip the right table to avoid a duplicate match */ 1165 pItem++; 1166 i++; 1167 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 1168 /* If this match occurs on a column that is in the USING clause 1169 ** of a join, skip the search of the right table of the join 1170 ** to avoid a duplicate match there. */ 1171 int k; 1172 for(k=0; k<pUsing->nId; k++){ 1173 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 1174 pItem++; 1175 i++; 1176 break; 1177 } 1178 } 1179 } 1180 } 1181 break; 1182 } 1183 } 1184 } 1185 } 1186 1187 #ifndef SQLITE_OMIT_TRIGGER 1188 /* If we have not already resolved the name, then maybe 1189 ** it is a new.* or old.* trigger argument reference 1190 */ 1191 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 1192 TriggerStack *pTriggerStack = pParse->trigStack; 1193 Table *pTab = 0; 1194 u32 *piColMask; 1195 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 1196 pExpr->iTable = pTriggerStack->newIdx; 1197 assert( pTriggerStack->pTab ); 1198 pTab = pTriggerStack->pTab; 1199 piColMask = &(pTriggerStack->newColMask); 1200 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 1201 pExpr->iTable = pTriggerStack->oldIdx; 1202 assert( pTriggerStack->pTab ); 1203 pTab = pTriggerStack->pTab; 1204 piColMask = &(pTriggerStack->oldColMask); 1205 } 1206 1207 if( pTab ){ 1208 int iCol; 1209 Column *pCol = pTab->aCol; 1210 1211 pSchema = pTab->pSchema; 1212 cntTab++; 1213 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 1214 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1215 const char *zColl = pTab->aCol[iCol].zColl; 1216 cnt++; 1217 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 1218 pExpr->affinity = pTab->aCol[iCol].affinity; 1219 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1220 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1221 } 1222 pExpr->pTab = pTab; 1223 if( iCol>=0 ){ 1224 testcase( iCol==31 ); 1225 testcase( iCol==32 ); 1226 *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0); 1227 } 1228 break; 1229 } 1230 } 1231 } 1232 } 1233 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1234 1235 /* 1236 ** Perhaps the name is a reference to the ROWID 1237 */ 1238 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 1239 cnt = 1; 1240 pExpr->iColumn = -1; 1241 pExpr->affinity = SQLITE_AFF_INTEGER; 1242 } 1243 1244 /* 1245 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 1246 ** might refer to an result-set alias. This happens, for example, when 1247 ** we are resolving names in the WHERE clause of the following command: 1248 ** 1249 ** SELECT a+b AS x FROM table WHERE x<10; 1250 ** 1251 ** In cases like this, replace pExpr with a copy of the expression that 1252 ** forms the result set entry ("a+b" in the example) and return immediately. 1253 ** Note that the expression in the result set should have already been 1254 ** resolved by the time the WHERE clause is resolved. 1255 */ 1256 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 1257 for(j=0; j<pEList->nExpr; j++){ 1258 char *zAs = pEList->a[j].zName; 1259 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1260 Expr *pDup, *pOrig; 1261 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 1262 assert( pExpr->pList==0 ); 1263 assert( pExpr->pSelect==0 ); 1264 pOrig = pEList->a[j].pExpr; 1265 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ 1266 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); 1267 sqlite3_free(zCol); 1268 return 2; 1269 } 1270 pDup = sqlite3ExprDup(db, pOrig); 1271 if( pExpr->flags & EP_ExpCollate ){ 1272 pDup->pColl = pExpr->pColl; 1273 pDup->flags |= EP_ExpCollate; 1274 } 1275 if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); 1276 if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); 1277 memcpy(pExpr, pDup, sizeof(*pExpr)); 1278 sqlite3_free(pDup); 1279 cnt = 1; 1280 pMatch = 0; 1281 assert( zTab==0 && zDb==0 ); 1282 goto lookupname_end_2; 1283 } 1284 } 1285 } 1286 1287 /* Advance to the next name context. The loop will exit when either 1288 ** we have a match (cnt>0) or when we run out of name contexts. 1289 */ 1290 if( cnt==0 ){ 1291 pNC = pNC->pNext; 1292 } 1293 } 1294 1295 /* 1296 ** If X and Y are NULL (in other words if only the column name Z is 1297 ** supplied) and the value of Z is enclosed in double-quotes, then 1298 ** Z is a string literal if it doesn't match any column names. In that 1299 ** case, we need to return right away and not make any changes to 1300 ** pExpr. 1301 ** 1302 ** Because no reference was made to outer contexts, the pNC->nRef 1303 ** fields are not changed in any context. 1304 */ 1305 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1306 sqlite3_free(zCol); 1307 return 0; 1308 } 1309 1310 /* 1311 ** cnt==0 means there was not match. cnt>1 means there were two or 1312 ** more matches. Either way, we have an error. 1313 */ 1314 if( cnt!=1 ){ 1315 const char *zErr; 1316 zErr = cnt==0 ? "no such column" : "ambiguous column name"; 1317 if( zDb ){ 1318 sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); 1319 }else if( zTab ){ 1320 sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); 1321 }else{ 1322 sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); 1323 } 1324 pTopNC->nErr++; 1325 } 1326 1327 /* If a column from a table in pSrcList is referenced, then record 1328 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1329 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1330 ** column number is greater than the number of bits in the bitmask 1331 ** then set the high-order bit of the bitmask. 1332 */ 1333 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1334 int n = pExpr->iColumn; 1335 testcase( n==sizeof(Bitmask)*8-1 ); 1336 if( n>=sizeof(Bitmask)*8 ){ 1337 n = sizeof(Bitmask)*8-1; 1338 } 1339 assert( pMatch->iCursor==pExpr->iTable ); 1340 pMatch->colUsed |= ((Bitmask)1)<<n; 1341 } 1342 1343 lookupname_end: 1344 /* Clean up and return 1345 */ 1346 sqlite3_free(zDb); 1347 sqlite3_free(zTab); 1348 sqlite3ExprDelete(pExpr->pLeft); 1349 pExpr->pLeft = 0; 1350 sqlite3ExprDelete(pExpr->pRight); 1351 pExpr->pRight = 0; 1352 pExpr->op = TK_COLUMN; 1353 lookupname_end_2: 1354 sqlite3_free(zCol); 1355 if( cnt==1 ){ 1356 assert( pNC!=0 ); 1357 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); 1358 if( pMatch && !pMatch->pSelect ){ 1359 pExpr->pTab = pMatch->pTab; 1360 } 1361 /* Increment the nRef value on all name contexts from TopNC up to 1362 ** the point where the name matched. */ 1363 for(;;){ 1364 assert( pTopNC!=0 ); 1365 pTopNC->nRef++; 1366 if( pTopNC==pNC ) break; 1367 pTopNC = pTopNC->pNext; 1368 } 1369 return 0; 1370 } else { 1371 return 1; 1372 } 1373 } 1374 1375 /* 1376 ** This routine is designed as an xFunc for walkExprTree(). 1377 ** 1378 ** Resolve symbolic names into TK_COLUMN operators for the current 1379 ** node in the expression tree. Return 0 to continue the search down 1380 ** the tree or 2 to abort the tree walk. 1381 ** 1382 ** This routine also does error checking and name resolution for 1383 ** function names. The operator for aggregate functions is changed 1384 ** to TK_AGG_FUNCTION. 1385 */ 1386 static int nameResolverStep(void *pArg, Expr *pExpr){ 1387 NameContext *pNC = (NameContext*)pArg; 1388 Parse *pParse; 1389 1390 if( pExpr==0 ) return 1; 1391 assert( pNC!=0 ); 1392 pParse = pNC->pParse; 1393 1394 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1395 ExprSetProperty(pExpr, EP_Resolved); 1396 #ifndef NDEBUG 1397 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1398 SrcList *pSrcList = pNC->pSrcList; 1399 int i; 1400 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1401 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1402 } 1403 } 1404 #endif 1405 switch( pExpr->op ){ 1406 /* Double-quoted strings (ex: "abc") are used as identifiers if 1407 ** possible. Otherwise they remain as strings. Single-quoted 1408 ** strings (ex: 'abc') are always string literals. 1409 */ 1410 case TK_STRING: { 1411 if( pExpr->token.z[0]=='\'' ) break; 1412 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1413 } 1414 /* A lone identifier is the name of a column. 1415 */ 1416 case TK_ID: { 1417 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1418 return 1; 1419 } 1420 1421 /* A table name and column name: ID.ID 1422 ** Or a database, table and column: ID.ID.ID 1423 */ 1424 case TK_DOT: { 1425 Token *pColumn; 1426 Token *pTable; 1427 Token *pDb; 1428 Expr *pRight; 1429 1430 /* if( pSrcList==0 ) break; */ 1431 pRight = pExpr->pRight; 1432 if( pRight->op==TK_ID ){ 1433 pDb = 0; 1434 pTable = &pExpr->pLeft->token; 1435 pColumn = &pRight->token; 1436 }else{ 1437 assert( pRight->op==TK_DOT ); 1438 pDb = &pExpr->pLeft->token; 1439 pTable = &pRight->pLeft->token; 1440 pColumn = &pRight->pRight->token; 1441 } 1442 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1443 return 1; 1444 } 1445 1446 /* Resolve function names 1447 */ 1448 case TK_CONST_FUNC: 1449 case TK_FUNCTION: { 1450 ExprList *pList = pExpr->pList; /* The argument list */ 1451 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1452 int no_such_func = 0; /* True if no such function exists */ 1453 int wrong_num_args = 0; /* True if wrong number of arguments */ 1454 int is_agg = 0; /* True if is an aggregate function */ 1455 int i; 1456 int auth; /* Authorization to use the function */ 1457 int nId; /* Number of characters in function name */ 1458 const char *zId; /* The function name. */ 1459 FuncDef *pDef; /* Information about the function */ 1460 int enc = ENC(pParse->db); /* The database encoding */ 1461 1462 zId = (char*)pExpr->token.z; 1463 nId = pExpr->token.n; 1464 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1465 if( pDef==0 ){ 1466 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1467 if( pDef==0 ){ 1468 no_such_func = 1; 1469 }else{ 1470 wrong_num_args = 1; 1471 } 1472 }else{ 1473 is_agg = pDef->xFunc==0; 1474 } 1475 #ifndef SQLITE_OMIT_AUTHORIZATION 1476 if( pDef ){ 1477 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1478 if( auth!=SQLITE_OK ){ 1479 if( auth==SQLITE_DENY ){ 1480 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1481 pDef->zName); 1482 pNC->nErr++; 1483 } 1484 pExpr->op = TK_NULL; 1485 return 1; 1486 } 1487 } 1488 #endif 1489 if( is_agg && !pNC->allowAgg ){ 1490 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1491 pNC->nErr++; 1492 is_agg = 0; 1493 }else if( no_such_func ){ 1494 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1495 pNC->nErr++; 1496 }else if( wrong_num_args ){ 1497 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1498 nId, zId); 1499 pNC->nErr++; 1500 } 1501 if( is_agg ){ 1502 pExpr->op = TK_AGG_FUNCTION; 1503 pNC->hasAgg = 1; 1504 } 1505 if( is_agg ) pNC->allowAgg = 0; 1506 for(i=0; pNC->nErr==0 && i<n; i++){ 1507 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1508 } 1509 if( is_agg ) pNC->allowAgg = 1; 1510 /* FIX ME: Compute pExpr->affinity based on the expected return 1511 ** type of the function 1512 */ 1513 return is_agg; 1514 } 1515 #ifndef SQLITE_OMIT_SUBQUERY 1516 case TK_SELECT: 1517 case TK_EXISTS: 1518 #endif 1519 case TK_IN: { 1520 if( pExpr->pSelect ){ 1521 int nRef = pNC->nRef; 1522 #ifndef SQLITE_OMIT_CHECK 1523 if( pNC->isCheck ){ 1524 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1525 } 1526 #endif 1527 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1528 assert( pNC->nRef>=nRef ); 1529 if( nRef!=pNC->nRef ){ 1530 ExprSetProperty(pExpr, EP_VarSelect); 1531 } 1532 } 1533 break; 1534 } 1535 #ifndef SQLITE_OMIT_CHECK 1536 case TK_VARIABLE: { 1537 if( pNC->isCheck ){ 1538 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1539 } 1540 break; 1541 } 1542 #endif 1543 } 1544 return 0; 1545 } 1546 1547 /* 1548 ** This routine walks an expression tree and resolves references to 1549 ** table columns. Nodes of the form ID.ID or ID resolve into an 1550 ** index to the table in the table list and a column offset. The 1551 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1552 ** value is changed to the index of the referenced table in pTabList 1553 ** plus the "base" value. The base value will ultimately become the 1554 ** VDBE cursor number for a cursor that is pointing into the referenced 1555 ** table. The Expr.iColumn value is changed to the index of the column 1556 ** of the referenced table. The Expr.iColumn value for the special 1557 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1558 ** alias for ROWID. 1559 ** 1560 ** Also resolve function names and check the functions for proper 1561 ** usage. Make sure all function names are recognized and all functions 1562 ** have the correct number of arguments. Leave an error message 1563 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1564 ** 1565 ** If the expression contains aggregate functions then set the EP_Agg 1566 ** property on the expression. 1567 */ 1568 int sqlite3ExprResolveNames( 1569 NameContext *pNC, /* Namespace to resolve expressions in. */ 1570 Expr *pExpr /* The expression to be analyzed. */ 1571 ){ 1572 int savedHasAgg; 1573 1574 if( pExpr==0 ) return 0; 1575 #if SQLITE_MAX_EXPR_DEPTH>0 1576 { 1577 if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){ 1578 return 1; 1579 } 1580 pNC->pParse->nHeight += pExpr->nHeight; 1581 } 1582 #endif 1583 savedHasAgg = pNC->hasAgg; 1584 pNC->hasAgg = 0; 1585 walkExprTree(pExpr, nameResolverStep, pNC); 1586 #if SQLITE_MAX_EXPR_DEPTH>0 1587 pNC->pParse->nHeight -= pExpr->nHeight; 1588 #endif 1589 if( pNC->nErr>0 ){ 1590 ExprSetProperty(pExpr, EP_Error); 1591 } 1592 if( pNC->hasAgg ){ 1593 ExprSetProperty(pExpr, EP_Agg); 1594 }else if( savedHasAgg ){ 1595 pNC->hasAgg = 1; 1596 } 1597 return ExprHasProperty(pExpr, EP_Error); 1598 } 1599 1600 /* 1601 ** A pointer instance of this structure is used to pass information 1602 ** through walkExprTree into codeSubqueryStep(). 1603 */ 1604 typedef struct QueryCoder QueryCoder; 1605 struct QueryCoder { 1606 Parse *pParse; /* The parsing context */ 1607 NameContext *pNC; /* Namespace of first enclosing query */ 1608 }; 1609 1610 #ifdef SQLITE_TEST 1611 int sqlite3_enable_in_opt = 1; 1612 #else 1613 #define sqlite3_enable_in_opt 1 1614 #endif 1615 1616 /* 1617 ** Return true if the IN operator optimization is enabled and 1618 ** the SELECT statement p exists and is of the 1619 ** simple form: 1620 ** 1621 ** SELECT <column> FROM <table> 1622 ** 1623 ** If this is the case, it may be possible to use an existing table 1624 ** or index instead of generating an epheremal table. 1625 */ 1626 #ifndef SQLITE_OMIT_SUBQUERY 1627 static int isCandidateForInOpt(Select *p){ 1628 SrcList *pSrc; 1629 ExprList *pEList; 1630 Table *pTab; 1631 if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */ 1632 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1633 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1634 if( p->isDistinct ) return 0; /* No DISTINCT keyword */ 1635 if( p->isAgg ) return 0; /* Contains no aggregate functions */ 1636 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ 1637 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1638 if( p->pOffset ) return 0; 1639 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1640 pSrc = p->pSrc; 1641 if( pSrc==0 ) return 0; /* A single table in the FROM clause */ 1642 if( pSrc->nSrc!=1 ) return 0; 1643 if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */ 1644 pTab = pSrc->a[0].pTab; 1645 if( pTab==0 ) return 0; 1646 if( pTab->pSelect ) return 0; /* FROM clause is not a view */ 1647 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1648 pEList = p->pEList; 1649 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1650 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1651 return 1; 1652 } 1653 #endif /* SQLITE_OMIT_SUBQUERY */ 1654 1655 /* 1656 ** This function is used by the implementation of the IN (...) operator. 1657 ** It's job is to find or create a b-tree structure that may be used 1658 ** either to test for membership of the (...) set or to iterate through 1659 ** its members, skipping duplicates. 1660 ** 1661 ** The cursor opened on the structure (database table, database index 1662 ** or ephermal table) is stored in pX->iTable before this function returns. 1663 ** The returned value indicates the structure type, as follows: 1664 ** 1665 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1666 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1667 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1668 ** populated epheremal table. 1669 ** 1670 ** An existing structure may only be used if the SELECT is of the simple 1671 ** form: 1672 ** 1673 ** SELECT <column> FROM <table> 1674 ** 1675 ** If prNotFound parameter is 0, then the structure will be used to iterate 1676 ** through the set members, skipping any duplicates. In this case an 1677 ** epheremal table must be used unless the selected <column> is guaranteed 1678 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1679 ** is unique by virtue of a constraint or implicit index. 1680 ** 1681 ** If the prNotFound parameter is not 0, then the structure will be used 1682 ** for fast set membership tests. In this case an epheremal table must 1683 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1684 ** be found with <column> as its left-most column. 1685 ** 1686 ** When the structure is being used for set membership tests, the user 1687 ** needs to know whether or not the structure contains an SQL NULL 1688 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1689 ** If there is a chance that the structure may contain a NULL value at 1690 ** runtime, then a register is allocated and the register number written 1691 ** to *prNotFound. If there is no chance that the structure contains a 1692 ** NULL value, then *prNotFound is left unchanged. 1693 ** 1694 ** If a register is allocated and its location stored in *prNotFound, then 1695 ** its initial value is NULL. If the structure does not remain constant 1696 ** for the duration of the query (i.e. the set is a correlated sub-select), 1697 ** the value of the allocated register is reset to NULL each time the 1698 ** structure is repopulated. This allows the caller to use vdbe code 1699 ** equivalent to the following: 1700 ** 1701 ** if( register==NULL ){ 1702 ** has_null = <test if data structure contains null> 1703 ** register = 1 1704 ** } 1705 ** 1706 ** in order to avoid running the <test if data structure contains null> 1707 ** test more often than is necessary. 1708 */ 1709 #ifndef SQLITE_OMIT_SUBQUERY 1710 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1711 Select *p; 1712 int eType = 0; 1713 int iTab = pParse->nTab++; 1714 int mustBeUnique = !prNotFound; 1715 1716 /* The follwing if(...) expression is true if the SELECT is of the 1717 ** simple form: 1718 ** 1719 ** SELECT <column> FROM <table> 1720 ** 1721 ** If this is the case, it may be possible to use an existing table 1722 ** or index instead of generating an epheremal table. 1723 */ 1724 p = pX->pSelect; 1725 if( isCandidateForInOpt(p) ){ 1726 sqlite3 *db = pParse->db; 1727 Index *pIdx; 1728 Expr *pExpr = p->pEList->a[0].pExpr; 1729 int iCol = pExpr->iColumn; 1730 Vdbe *v = sqlite3GetVdbe(pParse); 1731 1732 /* This function is only called from two places. In both cases the vdbe 1733 ** has already been allocated. So assume sqlite3GetVdbe() is always 1734 ** successful here. 1735 */ 1736 assert(v); 1737 if( iCol<0 ){ 1738 int iMem = ++pParse->nMem; 1739 int iAddr; 1740 Table *pTab = p->pSrc->a[0].pTab; 1741 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1742 sqlite3VdbeUsesBtree(v, iDb); 1743 1744 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1745 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1746 1747 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1748 eType = IN_INDEX_ROWID; 1749 1750 sqlite3VdbeJumpHere(v, iAddr); 1751 }else{ 1752 /* The collation sequence used by the comparison. If an index is to 1753 ** be used in place of a temp-table, it must be ordered according 1754 ** to this collation sequence. 1755 */ 1756 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1757 1758 /* Check that the affinity that will be used to perform the 1759 ** comparison is the same as the affinity of the column. If 1760 ** it is not, it is not possible to use any index. 1761 */ 1762 Table *pTab = p->pSrc->a[0].pTab; 1763 char aff = comparisonAffinity(pX); 1764 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1765 1766 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1767 if( (pIdx->aiColumn[0]==iCol) 1768 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) 1769 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1770 ){ 1771 int iDb; 1772 int iMem = ++pParse->nMem; 1773 int iAddr; 1774 char *pKey; 1775 1776 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1777 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1778 sqlite3VdbeUsesBtree(v, iDb); 1779 1780 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1781 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1782 1783 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn); 1784 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1785 pKey,P4_KEYINFO_HANDOFF); 1786 VdbeComment((v, "%s", pIdx->zName)); 1787 eType = IN_INDEX_INDEX; 1788 1789 sqlite3VdbeJumpHere(v, iAddr); 1790 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1791 *prNotFound = ++pParse->nMem; 1792 } 1793 } 1794 } 1795 } 1796 } 1797 1798 if( eType==0 ){ 1799 int rMayHaveNull = 0; 1800 if( prNotFound ){ 1801 *prNotFound = rMayHaveNull = ++pParse->nMem; 1802 } 1803 sqlite3CodeSubselect(pParse, pX, rMayHaveNull); 1804 eType = IN_INDEX_EPH; 1805 }else{ 1806 pX->iTable = iTab; 1807 } 1808 return eType; 1809 } 1810 #endif 1811 1812 /* 1813 ** Generate code for scalar subqueries used as an expression 1814 ** and IN operators. Examples: 1815 ** 1816 ** (SELECT a FROM b) -- subquery 1817 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1818 ** x IN (4,5,11) -- IN operator with list on right-hand side 1819 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1820 ** 1821 ** The pExpr parameter describes the expression that contains the IN 1822 ** operator or subquery. 1823 */ 1824 #ifndef SQLITE_OMIT_SUBQUERY 1825 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){ 1826 int testAddr = 0; /* One-time test address */ 1827 Vdbe *v = sqlite3GetVdbe(pParse); 1828 if( v==0 ) return; 1829 1830 1831 /* This code must be run in its entirety every time it is encountered 1832 ** if any of the following is true: 1833 ** 1834 ** * The right-hand side is a correlated subquery 1835 ** * The right-hand side is an expression list containing variables 1836 ** * We are inside a trigger 1837 ** 1838 ** If all of the above are false, then we can run this code just once 1839 ** save the results, and reuse the same result on subsequent invocations. 1840 */ 1841 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1842 int mem = ++pParse->nMem; 1843 sqlite3VdbeAddOp1(v, OP_If, mem); 1844 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1845 assert( testAddr>0 || pParse->db->mallocFailed ); 1846 } 1847 1848 switch( pExpr->op ){ 1849 case TK_IN: { 1850 char affinity; 1851 KeyInfo keyInfo; 1852 int addr; /* Address of OP_OpenEphemeral instruction */ 1853 1854 if( rMayHaveNull ){ 1855 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1856 } 1857 1858 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1859 1860 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1861 ** expression it is handled the same way. A virtual table is 1862 ** filled with single-field index keys representing the results 1863 ** from the SELECT or the <exprlist>. 1864 ** 1865 ** If the 'x' expression is a column value, or the SELECT... 1866 ** statement returns a column value, then the affinity of that 1867 ** column is used to build the index keys. If both 'x' and the 1868 ** SELECT... statement are columns, then numeric affinity is used 1869 ** if either column has NUMERIC or INTEGER affinity. If neither 1870 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1871 ** is used. 1872 */ 1873 pExpr->iTable = pParse->nTab++; 1874 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1); 1875 memset(&keyInfo, 0, sizeof(keyInfo)); 1876 keyInfo.nField = 1; 1877 1878 if( pExpr->pSelect ){ 1879 /* Case 1: expr IN (SELECT ...) 1880 ** 1881 ** Generate code to write the results of the select into the temporary 1882 ** table allocated and opened above. 1883 */ 1884 SelectDest dest; 1885 ExprList *pEList; 1886 1887 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1888 dest.affinity = (int)affinity; 1889 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1890 if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){ 1891 return; 1892 } 1893 pEList = pExpr->pSelect->pEList; 1894 if( pEList && pEList->nExpr>0 ){ 1895 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1896 pEList->a[0].pExpr); 1897 } 1898 }else if( pExpr->pList ){ 1899 /* Case 2: expr IN (exprlist) 1900 ** 1901 ** For each expression, build an index key from the evaluation and 1902 ** store it in the temporary table. If <expr> is a column, then use 1903 ** that columns affinity when building index keys. If <expr> is not 1904 ** a column, use numeric affinity. 1905 */ 1906 int i; 1907 ExprList *pList = pExpr->pList; 1908 struct ExprList_item *pItem; 1909 int r1, r2, r3; 1910 1911 if( !affinity ){ 1912 affinity = SQLITE_AFF_NONE; 1913 } 1914 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1915 1916 /* Loop through each expression in <exprlist>. */ 1917 r1 = sqlite3GetTempReg(pParse); 1918 r2 = sqlite3GetTempReg(pParse); 1919 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1920 Expr *pE2 = pItem->pExpr; 1921 1922 /* If the expression is not constant then we will need to 1923 ** disable the test that was generated above that makes sure 1924 ** this code only executes once. Because for a non-constant 1925 ** expression we need to rerun this code each time. 1926 */ 1927 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1928 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1929 testAddr = 0; 1930 } 1931 1932 /* Evaluate the expression and insert it into the temp table */ 1933 pParse->disableColCache++; 1934 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1935 assert( pParse->disableColCache>0 ); 1936 pParse->disableColCache--; 1937 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1938 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1939 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1940 } 1941 sqlite3ReleaseTempReg(pParse, r1); 1942 sqlite3ReleaseTempReg(pParse, r2); 1943 } 1944 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1945 break; 1946 } 1947 1948 case TK_EXISTS: 1949 case TK_SELECT: { 1950 /* This has to be a scalar SELECT. Generate code to put the 1951 ** value of this select in a memory cell and record the number 1952 ** of the memory cell in iColumn. 1953 */ 1954 static const Token one = { (u8*)"1", 0, 1 }; 1955 Select *pSel; 1956 SelectDest dest; 1957 1958 pSel = pExpr->pSelect; 1959 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1960 if( pExpr->op==TK_SELECT ){ 1961 dest.eDest = SRT_Mem; 1962 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1963 VdbeComment((v, "Init subquery result")); 1964 }else{ 1965 dest.eDest = SRT_Exists; 1966 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1967 VdbeComment((v, "Init EXISTS result")); 1968 } 1969 sqlite3ExprDelete(pSel->pLimit); 1970 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1971 if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){ 1972 return; 1973 } 1974 pExpr->iColumn = dest.iParm; 1975 break; 1976 } 1977 } 1978 1979 if( testAddr ){ 1980 sqlite3VdbeJumpHere(v, testAddr-1); 1981 } 1982 1983 return; 1984 } 1985 #endif /* SQLITE_OMIT_SUBQUERY */ 1986 1987 /* 1988 ** Duplicate an 8-byte value 1989 */ 1990 static char *dup8bytes(Vdbe *v, const char *in){ 1991 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1992 if( out ){ 1993 memcpy(out, in, 8); 1994 } 1995 return out; 1996 } 1997 1998 /* 1999 ** Generate an instruction that will put the floating point 2000 ** value described by z[0..n-1] into register iMem. 2001 ** 2002 ** The z[] string will probably not be zero-terminated. But the 2003 ** z[n] character is guaranteed to be something that does not look 2004 ** like the continuation of the number. 2005 */ 2006 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ 2007 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 2008 if( z ){ 2009 double value; 2010 char *zV; 2011 assert( !isdigit(z[n]) ); 2012 sqlite3AtoF(z, &value); 2013 if( sqlite3IsNaN(value) ){ 2014 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem); 2015 }else{ 2016 if( negateFlag ) value = -value; 2017 zV = dup8bytes(v, (char*)&value); 2018 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2019 } 2020 } 2021 } 2022 2023 2024 /* 2025 ** Generate an instruction that will put the integer describe by 2026 ** text z[0..n-1] into register iMem. 2027 ** 2028 ** The z[] string will probably not be zero-terminated. But the 2029 ** z[n] character is guaranteed to be something that does not look 2030 ** like the continuation of the number. 2031 */ 2032 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ 2033 const char *z; 2034 if( pExpr->flags & EP_IntValue ){ 2035 int i = pExpr->iTable; 2036 if( negFlag ) i = -i; 2037 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2038 }else if( (z = (char*)pExpr->token.z)!=0 ){ 2039 int i; 2040 int n = pExpr->token.n; 2041 assert( !isdigit(z[n]) ); 2042 if( sqlite3GetInt32(z, &i) ){ 2043 if( negFlag ) i = -i; 2044 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2045 }else if( sqlite3FitsIn64Bits(z, negFlag) ){ 2046 i64 value; 2047 char *zV; 2048 sqlite3Atoi64(z, &value); 2049 if( negFlag ) value = -value; 2050 zV = dup8bytes(v, (char*)&value); 2051 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2052 }else{ 2053 codeReal(v, z, n, negFlag, iMem); 2054 } 2055 } 2056 } 2057 2058 2059 /* 2060 ** Generate code that will extract the iColumn-th column from 2061 ** table pTab and store the column value in a register. An effort 2062 ** is made to store the column value in register iReg, but this is 2063 ** not guaranteed. The location of the column value is returned. 2064 ** 2065 ** There must be an open cursor to pTab in iTable when this routine 2066 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2067 ** 2068 ** This routine might attempt to reuse the value of the column that 2069 ** has already been loaded into a register. The value will always 2070 ** be used if it has not undergone any affinity changes. But if 2071 ** an affinity change has occurred, then the cached value will only be 2072 ** used if allowAffChng is true. 2073 */ 2074 int sqlite3ExprCodeGetColumn( 2075 Parse *pParse, /* Parsing and code generating context */ 2076 Table *pTab, /* Description of the table we are reading from */ 2077 int iColumn, /* Index of the table column */ 2078 int iTable, /* The cursor pointing to the table */ 2079 int iReg, /* Store results here */ 2080 int allowAffChng /* True if prior affinity changes are OK */ 2081 ){ 2082 Vdbe *v = pParse->pVdbe; 2083 int i; 2084 struct yColCache *p; 2085 2086 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 2087 if( p->iTable==iTable && p->iColumn==iColumn 2088 && (!p->affChange || allowAffChng) ){ 2089 #if 0 2090 sqlite3VdbeAddOp0(v, OP_Noop); 2091 VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); 2092 #endif 2093 return p->iReg; 2094 } 2095 } 2096 assert( v!=0 ); 2097 if( iColumn<0 ){ 2098 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 2099 sqlite3VdbeAddOp2(v, op, iTable, iReg); 2100 }else if( pTab==0 ){ 2101 sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); 2102 }else{ 2103 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2104 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 2105 sqlite3ColumnDefault(v, pTab, iColumn); 2106 #ifndef SQLITE_OMIT_FLOATING_POINT 2107 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 2108 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 2109 } 2110 #endif 2111 } 2112 if( pParse->disableColCache==0 ){ 2113 i = pParse->iColCache; 2114 p = &pParse->aColCache[i]; 2115 p->iTable = iTable; 2116 p->iColumn = iColumn; 2117 p->iReg = iReg; 2118 p->affChange = 0; 2119 i++; 2120 if( i>=ArraySize(pParse->aColCache) ) i = 0; 2121 if( i>pParse->nColCache ) pParse->nColCache = i; 2122 pParse->iColCache = i; 2123 } 2124 return iReg; 2125 } 2126 2127 /* 2128 ** Clear all column cache entries associated with the vdbe 2129 ** cursor with cursor number iTable. 2130 */ 2131 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){ 2132 if( iTable<0 ){ 2133 pParse->nColCache = 0; 2134 pParse->iColCache = 0; 2135 }else{ 2136 int i; 2137 for(i=0; i<pParse->nColCache; i++){ 2138 if( pParse->aColCache[i].iTable==iTable ){ 2139 testcase( i==pParse->nColCache-1 ); 2140 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; 2141 pParse->iColCache = pParse->nColCache; 2142 } 2143 } 2144 } 2145 } 2146 2147 /* 2148 ** Record the fact that an affinity change has occurred on iCount 2149 ** registers starting with iStart. 2150 */ 2151 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2152 int iEnd = iStart + iCount - 1; 2153 int i; 2154 for(i=0; i<pParse->nColCache; i++){ 2155 int r = pParse->aColCache[i].iReg; 2156 if( r>=iStart && r<=iEnd ){ 2157 pParse->aColCache[i].affChange = 1; 2158 } 2159 } 2160 } 2161 2162 /* 2163 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2164 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2165 */ 2166 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2167 int i; 2168 if( iFrom==iTo ) return; 2169 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2170 for(i=0; i<pParse->nColCache; i++){ 2171 int x = pParse->aColCache[i].iReg; 2172 if( x>=iFrom && x<iFrom+nReg ){ 2173 pParse->aColCache[i].iReg += iTo-iFrom; 2174 } 2175 } 2176 } 2177 2178 /* 2179 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2180 ** over to iTo..iTo+nReg-1. 2181 */ 2182 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2183 int i; 2184 if( iFrom==iTo ) return; 2185 for(i=0; i<nReg; i++){ 2186 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2187 } 2188 } 2189 2190 /* 2191 ** Return true if any register in the range iFrom..iTo (inclusive) 2192 ** is used as part of the column cache. 2193 */ 2194 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2195 int i; 2196 for(i=0; i<pParse->nColCache; i++){ 2197 int r = pParse->aColCache[i].iReg; 2198 if( r>=iFrom && r<=iTo ) return 1; 2199 } 2200 return 0; 2201 } 2202 2203 /* 2204 ** Theres is a value in register iCurrent. We ultimately want 2205 ** the value to be in register iTarget. It might be that 2206 ** iCurrent and iTarget are the same register. 2207 ** 2208 ** We are going to modify the value, so we need to make sure it 2209 ** is not a cached register. If iCurrent is a cached register, 2210 ** then try to move the value over to iTarget. If iTarget is a 2211 ** cached register, then clear the corresponding cache line. 2212 ** 2213 ** Return the register that the value ends up in. 2214 */ 2215 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){ 2216 int i; 2217 assert( pParse->pVdbe!=0 ); 2218 if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){ 2219 return iCurrent; 2220 } 2221 if( iCurrent!=iTarget ){ 2222 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget); 2223 } 2224 for(i=0; i<pParse->nColCache; i++){ 2225 if( pParse->aColCache[i].iReg==iTarget ){ 2226 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; 2227 pParse->iColCache = pParse->nColCache; 2228 } 2229 } 2230 return iTarget; 2231 } 2232 2233 /* 2234 ** If the last instruction coded is an ephemeral copy of any of 2235 ** the registers in the nReg registers beginning with iReg, then 2236 ** convert the last instruction from OP_SCopy to OP_Copy. 2237 */ 2238 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 2239 int addr; 2240 VdbeOp *pOp; 2241 Vdbe *v; 2242 2243 v = pParse->pVdbe; 2244 addr = sqlite3VdbeCurrentAddr(v); 2245 pOp = sqlite3VdbeGetOp(v, addr-1); 2246 assert( pOp || pParse->db->mallocFailed ); 2247 if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 2248 pOp->opcode = OP_Copy; 2249 } 2250 } 2251 2252 /* 2253 ** Generate code into the current Vdbe to evaluate the given 2254 ** expression. Attempt to store the results in register "target". 2255 ** Return the register where results are stored. 2256 ** 2257 ** With this routine, there is no guaranteed that results will 2258 ** be stored in target. The result might be stored in some other 2259 ** register if it is convenient to do so. The calling function 2260 ** must check the return code and move the results to the desired 2261 ** register. 2262 */ 2263 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2264 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2265 int op; /* The opcode being coded */ 2266 int inReg = target; /* Results stored in register inReg */ 2267 int regFree1 = 0; /* If non-zero free this temporary register */ 2268 int regFree2 = 0; /* If non-zero free this temporary register */ 2269 int r1, r2, r3, r4; /* Various register numbers */ 2270 2271 assert( v!=0 || pParse->db->mallocFailed ); 2272 assert( target>0 && target<=pParse->nMem ); 2273 if( v==0 ) return 0; 2274 2275 if( pExpr==0 ){ 2276 op = TK_NULL; 2277 }else{ 2278 op = pExpr->op; 2279 } 2280 switch( op ){ 2281 case TK_AGG_COLUMN: { 2282 AggInfo *pAggInfo = pExpr->pAggInfo; 2283 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2284 if( !pAggInfo->directMode ){ 2285 assert( pCol->iMem>0 ); 2286 inReg = pCol->iMem; 2287 break; 2288 }else if( pAggInfo->useSortingIdx ){ 2289 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2290 pCol->iSorterColumn, target); 2291 break; 2292 } 2293 /* Otherwise, fall thru into the TK_COLUMN case */ 2294 } 2295 case TK_COLUMN: { 2296 if( pExpr->iTable<0 ){ 2297 /* This only happens when coding check constraints */ 2298 assert( pParse->ckBase>0 ); 2299 inReg = pExpr->iColumn + pParse->ckBase; 2300 }else{ 2301 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 2302 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2303 pExpr->iColumn, pExpr->iTable, target, 2304 pExpr->flags & EP_AnyAff); 2305 } 2306 break; 2307 } 2308 case TK_INTEGER: { 2309 codeInteger(v, pExpr, 0, target); 2310 break; 2311 } 2312 case TK_FLOAT: { 2313 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); 2314 break; 2315 } 2316 case TK_STRING: { 2317 sqlite3DequoteExpr(pParse->db, pExpr); 2318 sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0, 2319 (char*)pExpr->token.z, pExpr->token.n); 2320 break; 2321 } 2322 case TK_NULL: { 2323 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2324 break; 2325 } 2326 #ifndef SQLITE_OMIT_BLOB_LITERAL 2327 case TK_BLOB: { 2328 int n; 2329 const char *z; 2330 char *zBlob; 2331 assert( pExpr->token.n>=3 ); 2332 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); 2333 assert( pExpr->token.z[1]=='\'' ); 2334 assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); 2335 n = pExpr->token.n - 3; 2336 z = (char*)pExpr->token.z + 2; 2337 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2338 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2339 break; 2340 } 2341 #endif 2342 case TK_VARIABLE: { 2343 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target); 2344 if( pExpr->token.n>1 ){ 2345 sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); 2346 } 2347 break; 2348 } 2349 case TK_REGISTER: { 2350 inReg = pExpr->iTable; 2351 break; 2352 } 2353 #ifndef SQLITE_OMIT_CAST 2354 case TK_CAST: { 2355 /* Expressions of the form: CAST(pLeft AS token) */ 2356 int aff, to_op; 2357 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2358 aff = sqlite3AffinityType(&pExpr->token); 2359 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2360 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2361 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2362 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2363 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2364 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2365 testcase( to_op==OP_ToText ); 2366 testcase( to_op==OP_ToBlob ); 2367 testcase( to_op==OP_ToNumeric ); 2368 testcase( to_op==OP_ToInt ); 2369 testcase( to_op==OP_ToReal ); 2370 sqlite3VdbeAddOp1(v, to_op, inReg); 2371 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2372 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2373 break; 2374 } 2375 #endif /* SQLITE_OMIT_CAST */ 2376 case TK_LT: 2377 case TK_LE: 2378 case TK_GT: 2379 case TK_GE: 2380 case TK_NE: 2381 case TK_EQ: { 2382 assert( TK_LT==OP_Lt ); 2383 assert( TK_LE==OP_Le ); 2384 assert( TK_GT==OP_Gt ); 2385 assert( TK_GE==OP_Ge ); 2386 assert( TK_EQ==OP_Eq ); 2387 assert( TK_NE==OP_Ne ); 2388 testcase( op==TK_LT ); 2389 testcase( op==TK_LE ); 2390 testcase( op==TK_GT ); 2391 testcase( op==TK_GE ); 2392 testcase( op==TK_EQ ); 2393 testcase( op==TK_NE ); 2394 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2395 pExpr->pRight, &r2, ®Free2); 2396 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2397 r1, r2, inReg, SQLITE_STOREP2); 2398 testcase( regFree1==0 ); 2399 testcase( regFree2==0 ); 2400 break; 2401 } 2402 case TK_AND: 2403 case TK_OR: 2404 case TK_PLUS: 2405 case TK_STAR: 2406 case TK_MINUS: 2407 case TK_REM: 2408 case TK_BITAND: 2409 case TK_BITOR: 2410 case TK_SLASH: 2411 case TK_LSHIFT: 2412 case TK_RSHIFT: 2413 case TK_CONCAT: { 2414 assert( TK_AND==OP_And ); 2415 assert( TK_OR==OP_Or ); 2416 assert( TK_PLUS==OP_Add ); 2417 assert( TK_MINUS==OP_Subtract ); 2418 assert( TK_REM==OP_Remainder ); 2419 assert( TK_BITAND==OP_BitAnd ); 2420 assert( TK_BITOR==OP_BitOr ); 2421 assert( TK_SLASH==OP_Divide ); 2422 assert( TK_LSHIFT==OP_ShiftLeft ); 2423 assert( TK_RSHIFT==OP_ShiftRight ); 2424 assert( TK_CONCAT==OP_Concat ); 2425 testcase( op==TK_AND ); 2426 testcase( op==TK_OR ); 2427 testcase( op==TK_PLUS ); 2428 testcase( op==TK_MINUS ); 2429 testcase( op==TK_REM ); 2430 testcase( op==TK_BITAND ); 2431 testcase( op==TK_BITOR ); 2432 testcase( op==TK_SLASH ); 2433 testcase( op==TK_LSHIFT ); 2434 testcase( op==TK_RSHIFT ); 2435 testcase( op==TK_CONCAT ); 2436 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2437 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2438 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2439 testcase( regFree1==0 ); 2440 testcase( regFree2==0 ); 2441 break; 2442 } 2443 case TK_UMINUS: { 2444 Expr *pLeft = pExpr->pLeft; 2445 assert( pLeft ); 2446 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 2447 if( pLeft->op==TK_FLOAT ){ 2448 codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target); 2449 }else{ 2450 codeInteger(v, pLeft, 1, target); 2451 } 2452 }else{ 2453 regFree1 = r1 = sqlite3GetTempReg(pParse); 2454 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2455 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2456 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2457 testcase( regFree2==0 ); 2458 } 2459 inReg = target; 2460 break; 2461 } 2462 case TK_BITNOT: 2463 case TK_NOT: { 2464 assert( TK_BITNOT==OP_BitNot ); 2465 assert( TK_NOT==OP_Not ); 2466 testcase( op==TK_BITNOT ); 2467 testcase( op==TK_NOT ); 2468 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2469 testcase( inReg==target ); 2470 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2471 inReg = sqlite3ExprWritableRegister(pParse, inReg, target); 2472 sqlite3VdbeAddOp1(v, op, inReg); 2473 break; 2474 } 2475 case TK_ISNULL: 2476 case TK_NOTNULL: { 2477 int addr; 2478 assert( TK_ISNULL==OP_IsNull ); 2479 assert( TK_NOTNULL==OP_NotNull ); 2480 testcase( op==TK_ISNULL ); 2481 testcase( op==TK_NOTNULL ); 2482 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2483 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2484 testcase( regFree1==0 ); 2485 addr = sqlite3VdbeAddOp1(v, op, r1); 2486 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2487 sqlite3VdbeJumpHere(v, addr); 2488 break; 2489 } 2490 case TK_AGG_FUNCTION: { 2491 AggInfo *pInfo = pExpr->pAggInfo; 2492 if( pInfo==0 ){ 2493 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 2494 &pExpr->span); 2495 }else{ 2496 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2497 } 2498 break; 2499 } 2500 case TK_CONST_FUNC: 2501 case TK_FUNCTION: { 2502 ExprList *pList = pExpr->pList; 2503 int nExpr = pList ? pList->nExpr : 0; 2504 FuncDef *pDef; 2505 int nId; 2506 const char *zId; 2507 int constMask = 0; 2508 int i; 2509 sqlite3 *db = pParse->db; 2510 u8 enc = ENC(db); 2511 CollSeq *pColl = 0; 2512 2513 testcase( op==TK_CONST_FUNC ); 2514 testcase( op==TK_FUNCTION ); 2515 zId = (char*)pExpr->token.z; 2516 nId = pExpr->token.n; 2517 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 2518 assert( pDef!=0 ); 2519 if( pList ){ 2520 nExpr = pList->nExpr; 2521 r1 = sqlite3GetTempRange(pParse, nExpr); 2522 sqlite3ExprCodeExprList(pParse, pList, r1, 1); 2523 }else{ 2524 nExpr = r1 = 0; 2525 } 2526 #ifndef SQLITE_OMIT_VIRTUALTABLE 2527 /* Possibly overload the function if the first argument is 2528 ** a virtual table column. 2529 ** 2530 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2531 ** second argument, not the first, as the argument to test to 2532 ** see if it is a column in a virtual table. This is done because 2533 ** the left operand of infix functions (the operand we want to 2534 ** control overloading) ends up as the second argument to the 2535 ** function. The expression "A glob B" is equivalent to 2536 ** "glob(B,A). We want to use the A in "A glob B" to test 2537 ** for function overloading. But we use the B term in "glob(B,A)". 2538 */ 2539 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 2540 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); 2541 }else if( nExpr>0 ){ 2542 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); 2543 } 2544 #endif 2545 for(i=0; i<nExpr && i<32; i++){ 2546 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 2547 constMask |= (1<<i); 2548 } 2549 if( pDef->needCollSeq && !pColl ){ 2550 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 2551 } 2552 } 2553 if( pDef->needCollSeq ){ 2554 if( !pColl ) pColl = pParse->db->pDfltColl; 2555 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2556 } 2557 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2558 (char*)pDef, P4_FUNCDEF); 2559 sqlite3VdbeChangeP5(v, nExpr); 2560 if( nExpr ){ 2561 sqlite3ReleaseTempRange(pParse, r1, nExpr); 2562 } 2563 sqlite3ExprCacheAffinityChange(pParse, r1, nExpr); 2564 break; 2565 } 2566 #ifndef SQLITE_OMIT_SUBQUERY 2567 case TK_EXISTS: 2568 case TK_SELECT: { 2569 testcase( op==TK_EXISTS ); 2570 testcase( op==TK_SELECT ); 2571 if( pExpr->iColumn==0 ){ 2572 sqlite3CodeSubselect(pParse, pExpr, 0); 2573 } 2574 inReg = pExpr->iColumn; 2575 break; 2576 } 2577 case TK_IN: { 2578 int rNotFound = 0; 2579 int rMayHaveNull = 0; 2580 int j2, j3, j4, j5; 2581 char affinity; 2582 int eType; 2583 2584 VdbeNoopComment((v, "begin IN expr r%d", target)); 2585 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); 2586 if( rMayHaveNull ){ 2587 rNotFound = ++pParse->nMem; 2588 } 2589 2590 /* Figure out the affinity to use to create a key from the results 2591 ** of the expression. affinityStr stores a static string suitable for 2592 ** P4 of OP_MakeRecord. 2593 */ 2594 affinity = comparisonAffinity(pExpr); 2595 2596 2597 /* Code the <expr> from "<expr> IN (...)". The temporary table 2598 ** pExpr->iTable contains the values that make up the (...) set. 2599 */ 2600 pParse->disableColCache++; 2601 sqlite3ExprCode(pParse, pExpr->pLeft, target); 2602 pParse->disableColCache--; 2603 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); 2604 if( eType==IN_INDEX_ROWID ){ 2605 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); 2606 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); 2607 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2608 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 2609 sqlite3VdbeJumpHere(v, j3); 2610 sqlite3VdbeJumpHere(v, j4); 2611 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2612 }else{ 2613 r2 = regFree2 = sqlite3GetTempReg(pParse); 2614 2615 /* Create a record and test for set membership. If the set contains 2616 ** the value, then jump to the end of the test code. The target 2617 ** register still contains the true (1) value written to it earlier. 2618 */ 2619 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); 2620 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2621 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); 2622 2623 /* If the set membership test fails, then the result of the 2624 ** "x IN (...)" expression must be either 0 or NULL. If the set 2625 ** contains no NULL values, then the result is 0. If the set 2626 ** contains one or more NULL values, then the result of the 2627 ** expression is also NULL. 2628 */ 2629 if( rNotFound==0 ){ 2630 /* This branch runs if it is known at compile time (now) that 2631 ** the set contains no NULL values. This happens as the result 2632 ** of a "NOT NULL" constraint in the database schema. No need 2633 ** to test the data structure at runtime in this case. 2634 */ 2635 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2636 }else{ 2637 /* This block populates the rNotFound register with either NULL 2638 ** or 0 (an integer value). If the data structure contains one 2639 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it 2640 ** to 0. If register rMayHaveNull is already set to some value 2641 ** other than NULL, then the test has already been run and 2642 ** rNotFound is already populated. 2643 */ 2644 static const char nullRecord[] = { 0x02, 0x00 }; 2645 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); 2646 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); 2647 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 2648 nullRecord, P4_STATIC); 2649 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); 2650 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); 2651 sqlite3VdbeJumpHere(v, j4); 2652 sqlite3VdbeJumpHere(v, j3); 2653 2654 /* Copy the value of register rNotFound (which is either NULL or 0) 2655 ** into the target register. This will be the result of the 2656 ** expression. 2657 */ 2658 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); 2659 } 2660 } 2661 sqlite3VdbeJumpHere(v, j2); 2662 sqlite3VdbeJumpHere(v, j5); 2663 VdbeComment((v, "end IN expr r%d", target)); 2664 break; 2665 } 2666 #endif 2667 /* 2668 ** x BETWEEN y AND z 2669 ** 2670 ** This is equivalent to 2671 ** 2672 ** x>=y AND x<=z 2673 ** 2674 ** X is stored in pExpr->pLeft. 2675 ** Y is stored in pExpr->pList->a[0].pExpr. 2676 ** Z is stored in pExpr->pList->a[1].pExpr. 2677 */ 2678 case TK_BETWEEN: { 2679 Expr *pLeft = pExpr->pLeft; 2680 struct ExprList_item *pLItem = pExpr->pList->a; 2681 Expr *pRight = pLItem->pExpr; 2682 2683 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2684 pRight, &r2, ®Free2); 2685 testcase( regFree1==0 ); 2686 testcase( regFree2==0 ); 2687 r3 = sqlite3GetTempReg(pParse); 2688 r4 = sqlite3GetTempReg(pParse); 2689 codeCompare(pParse, pLeft, pRight, OP_Ge, 2690 r1, r2, r3, SQLITE_STOREP2); 2691 pLItem++; 2692 pRight = pLItem->pExpr; 2693 sqlite3ReleaseTempReg(pParse, regFree2); 2694 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2695 testcase( regFree2==0 ); 2696 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2697 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2698 sqlite3ReleaseTempReg(pParse, r3); 2699 sqlite3ReleaseTempReg(pParse, r4); 2700 break; 2701 } 2702 case TK_UPLUS: { 2703 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2704 break; 2705 } 2706 2707 /* 2708 ** Form A: 2709 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2710 ** 2711 ** Form B: 2712 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2713 ** 2714 ** Form A is can be transformed into the equivalent form B as follows: 2715 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2716 ** WHEN x=eN THEN rN ELSE y END 2717 ** 2718 ** X (if it exists) is in pExpr->pLeft. 2719 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2720 ** ELSE clause and no other term matches, then the result of the 2721 ** exprssion is NULL. 2722 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2723 ** 2724 ** The result of the expression is the Ri for the first matching Ei, 2725 ** or if there is no matching Ei, the ELSE term Y, or if there is 2726 ** no ELSE term, NULL. 2727 */ 2728 case TK_CASE: { 2729 int endLabel; /* GOTO label for end of CASE stmt */ 2730 int nextCase; /* GOTO label for next WHEN clause */ 2731 int nExpr; /* 2x number of WHEN terms */ 2732 int i; /* Loop counter */ 2733 ExprList *pEList; /* List of WHEN terms */ 2734 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2735 Expr opCompare; /* The X==Ei expression */ 2736 Expr cacheX; /* Cached expression X */ 2737 Expr *pX; /* The X expression */ 2738 Expr *pTest; /* X==Ei (form A) or just Ei (form B) */ 2739 2740 assert(pExpr->pList); 2741 assert((pExpr->pList->nExpr % 2) == 0); 2742 assert(pExpr->pList->nExpr > 0); 2743 pEList = pExpr->pList; 2744 aListelem = pEList->a; 2745 nExpr = pEList->nExpr; 2746 endLabel = sqlite3VdbeMakeLabel(v); 2747 if( (pX = pExpr->pLeft)!=0 ){ 2748 cacheX = *pX; 2749 testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); 2750 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2751 testcase( regFree1==0 ); 2752 cacheX.op = TK_REGISTER; 2753 cacheX.iColumn = 0; 2754 opCompare.op = TK_EQ; 2755 opCompare.pLeft = &cacheX; 2756 pTest = &opCompare; 2757 } 2758 pParse->disableColCache++; 2759 for(i=0; i<nExpr; i=i+2){ 2760 if( pX ){ 2761 opCompare.pRight = aListelem[i].pExpr; 2762 }else{ 2763 pTest = aListelem[i].pExpr; 2764 } 2765 nextCase = sqlite3VdbeMakeLabel(v); 2766 testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER ); 2767 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2768 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2769 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2770 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2771 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2772 sqlite3VdbeResolveLabel(v, nextCase); 2773 } 2774 if( pExpr->pRight ){ 2775 sqlite3ExprCode(pParse, pExpr->pRight, target); 2776 }else{ 2777 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2778 } 2779 sqlite3VdbeResolveLabel(v, endLabel); 2780 assert( pParse->disableColCache>0 ); 2781 pParse->disableColCache--; 2782 break; 2783 } 2784 #ifndef SQLITE_OMIT_TRIGGER 2785 case TK_RAISE: { 2786 if( !pParse->trigStack ){ 2787 sqlite3ErrorMsg(pParse, 2788 "RAISE() may only be used within a trigger-program"); 2789 return 0; 2790 } 2791 if( pExpr->iColumn!=OE_Ignore ){ 2792 assert( pExpr->iColumn==OE_Rollback || 2793 pExpr->iColumn == OE_Abort || 2794 pExpr->iColumn == OE_Fail ); 2795 sqlite3DequoteExpr(pParse->db, pExpr); 2796 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0, 2797 (char*)pExpr->token.z, pExpr->token.n); 2798 } else { 2799 assert( pExpr->iColumn == OE_Ignore ); 2800 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); 2801 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2802 VdbeComment((v, "raise(IGNORE)")); 2803 } 2804 break; 2805 } 2806 #endif 2807 } 2808 sqlite3ReleaseTempReg(pParse, regFree1); 2809 sqlite3ReleaseTempReg(pParse, regFree2); 2810 return inReg; 2811 } 2812 2813 /* 2814 ** Generate code to evaluate an expression and store the results 2815 ** into a register. Return the register number where the results 2816 ** are stored. 2817 ** 2818 ** If the register is a temporary register that can be deallocated, 2819 ** then write its number into *pReg. If the result register is not 2820 ** a temporary, then set *pReg to zero. 2821 */ 2822 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2823 int r1 = sqlite3GetTempReg(pParse); 2824 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2825 if( r2==r1 ){ 2826 *pReg = r1; 2827 }else{ 2828 sqlite3ReleaseTempReg(pParse, r1); 2829 *pReg = 0; 2830 } 2831 return r2; 2832 } 2833 2834 /* 2835 ** Generate code that will evaluate expression pExpr and store the 2836 ** results in register target. The results are guaranteed to appear 2837 ** in register target. 2838 */ 2839 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2840 int inReg; 2841 2842 assert( target>0 && target<=pParse->nMem ); 2843 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2844 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2845 if( inReg!=target && pParse->pVdbe ){ 2846 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2847 } 2848 return target; 2849 } 2850 2851 /* 2852 ** Generate code that evalutes the given expression and puts the result 2853 ** in register target. 2854 ** 2855 ** Also make a copy of the expression results into another "cache" register 2856 ** and modify the expression so that the next time it is evaluated, 2857 ** the result is a copy of the cache register. 2858 ** 2859 ** This routine is used for expressions that are used multiple 2860 ** times. They are evaluated once and the results of the expression 2861 ** are reused. 2862 */ 2863 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2864 Vdbe *v = pParse->pVdbe; 2865 int inReg; 2866 inReg = sqlite3ExprCode(pParse, pExpr, target); 2867 assert( target>0 ); 2868 if( pExpr->op!=TK_REGISTER ){ 2869 int iMem; 2870 iMem = ++pParse->nMem; 2871 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2872 pExpr->iTable = iMem; 2873 pExpr->iColumn = pExpr->op; 2874 pExpr->op = TK_REGISTER; 2875 } 2876 return inReg; 2877 } 2878 2879 /* 2880 ** Return TRUE if pExpr is an constant expression that is appropriate 2881 ** for factoring out of a loop. Appropriate expressions are: 2882 ** 2883 ** * Any expression that evaluates to two or more opcodes. 2884 ** 2885 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2886 ** or OP_Variable that does not need to be placed in a 2887 ** specific register. 2888 ** 2889 ** There is no point in factoring out single-instruction constant 2890 ** expressions that need to be placed in a particular register. 2891 ** We could factor them out, but then we would end up adding an 2892 ** OP_SCopy instruction to move the value into the correct register 2893 ** later. We might as well just use the original instruction and 2894 ** avoid the OP_SCopy. 2895 */ 2896 static int isAppropriateForFactoring(Expr *p){ 2897 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2898 return 0; /* Only constant expressions are appropriate for factoring */ 2899 } 2900 if( (p->flags & EP_FixedDest)==0 ){ 2901 return 1; /* Any constant without a fixed destination is appropriate */ 2902 } 2903 while( p->op==TK_UPLUS ) p = p->pLeft; 2904 switch( p->op ){ 2905 #ifndef SQLITE_OMIT_BLOB_LITERAL 2906 case TK_BLOB: 2907 #endif 2908 case TK_VARIABLE: 2909 case TK_INTEGER: 2910 case TK_FLOAT: 2911 case TK_NULL: 2912 case TK_STRING: { 2913 testcase( p->op==TK_BLOB ); 2914 testcase( p->op==TK_VARIABLE ); 2915 testcase( p->op==TK_INTEGER ); 2916 testcase( p->op==TK_FLOAT ); 2917 testcase( p->op==TK_NULL ); 2918 testcase( p->op==TK_STRING ); 2919 /* Single-instruction constants with a fixed destination are 2920 ** better done in-line. If we factor them, they will just end 2921 ** up generating an OP_SCopy to move the value to the destination 2922 ** register. */ 2923 return 0; 2924 } 2925 case TK_UMINUS: { 2926 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2927 return 0; 2928 } 2929 break; 2930 } 2931 default: { 2932 break; 2933 } 2934 } 2935 return 1; 2936 } 2937 2938 /* 2939 ** If pExpr is a constant expression that is appropriate for 2940 ** factoring out of a loop, then evaluate the expression 2941 ** into a register and convert the expression into a TK_REGISTER 2942 ** expression. 2943 */ 2944 static int evalConstExpr(void *pArg, Expr *pExpr){ 2945 Parse *pParse = (Parse*)pArg; 2946 switch( pExpr->op ){ 2947 case TK_REGISTER: { 2948 return 1; 2949 } 2950 case TK_FUNCTION: 2951 case TK_AGG_FUNCTION: 2952 case TK_CONST_FUNC: { 2953 /* The arguments to a function have a fixed destination. 2954 ** Mark them this way to avoid generated unneeded OP_SCopy 2955 ** instructions. 2956 */ 2957 ExprList *pList = pExpr->pList; 2958 if( pList ){ 2959 int i = pList->nExpr; 2960 struct ExprList_item *pItem = pList->a; 2961 for(; i>0; i--, pItem++){ 2962 if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; 2963 } 2964 } 2965 break; 2966 } 2967 } 2968 if( isAppropriateForFactoring(pExpr) ){ 2969 int r1 = ++pParse->nMem; 2970 int r2; 2971 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2972 if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); 2973 pExpr->iColumn = pExpr->op; 2974 pExpr->op = TK_REGISTER; 2975 pExpr->iTable = r2; 2976 return 1; 2977 } 2978 return 0; 2979 } 2980 2981 /* 2982 ** Preevaluate constant subexpressions within pExpr and store the 2983 ** results in registers. Modify pExpr so that the constant subexpresions 2984 ** are TK_REGISTER opcodes that refer to the precomputed values. 2985 */ 2986 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 2987 walkExprTree(pExpr, evalConstExpr, pParse); 2988 } 2989 2990 2991 /* 2992 ** Generate code that pushes the value of every element of the given 2993 ** expression list into a sequence of registers beginning at target. 2994 ** 2995 ** Return the number of elements evaluated. 2996 */ 2997 int sqlite3ExprCodeExprList( 2998 Parse *pParse, /* Parsing context */ 2999 ExprList *pList, /* The expression list to be coded */ 3000 int target, /* Where to write results */ 3001 int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */ 3002 ){ 3003 struct ExprList_item *pItem; 3004 int i, n; 3005 assert( pList!=0 || pParse->db->mallocFailed ); 3006 if( pList==0 ){ 3007 return 0; 3008 } 3009 assert( target>0 ); 3010 n = pList->nExpr; 3011 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3012 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 3013 if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n); 3014 } 3015 return n; 3016 } 3017 3018 /* 3019 ** Generate code for a boolean expression such that a jump is made 3020 ** to the label "dest" if the expression is true but execution 3021 ** continues straight thru if the expression is false. 3022 ** 3023 ** If the expression evaluates to NULL (neither true nor false), then 3024 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3025 ** 3026 ** This code depends on the fact that certain token values (ex: TK_EQ) 3027 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3028 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3029 ** the make process cause these values to align. Assert()s in the code 3030 ** below verify that the numbers are aligned correctly. 3031 */ 3032 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3033 Vdbe *v = pParse->pVdbe; 3034 int op = 0; 3035 int regFree1 = 0; 3036 int regFree2 = 0; 3037 int r1, r2; 3038 3039 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3040 if( v==0 || pExpr==0 ) return; 3041 op = pExpr->op; 3042 switch( op ){ 3043 case TK_AND: { 3044 int d2 = sqlite3VdbeMakeLabel(v); 3045 testcase( jumpIfNull==0 ); 3046 testcase( pParse->disableColCache==0 ); 3047 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3048 pParse->disableColCache++; 3049 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3050 assert( pParse->disableColCache>0 ); 3051 pParse->disableColCache--; 3052 sqlite3VdbeResolveLabel(v, d2); 3053 break; 3054 } 3055 case TK_OR: { 3056 testcase( jumpIfNull==0 ); 3057 testcase( pParse->disableColCache==0 ); 3058 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3059 pParse->disableColCache++; 3060 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3061 assert( pParse->disableColCache>0 ); 3062 pParse->disableColCache--; 3063 break; 3064 } 3065 case TK_NOT: { 3066 testcase( jumpIfNull==0 ); 3067 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3068 break; 3069 } 3070 case TK_LT: 3071 case TK_LE: 3072 case TK_GT: 3073 case TK_GE: 3074 case TK_NE: 3075 case TK_EQ: { 3076 assert( TK_LT==OP_Lt ); 3077 assert( TK_LE==OP_Le ); 3078 assert( TK_GT==OP_Gt ); 3079 assert( TK_GE==OP_Ge ); 3080 assert( TK_EQ==OP_Eq ); 3081 assert( TK_NE==OP_Ne ); 3082 testcase( op==TK_LT ); 3083 testcase( op==TK_LE ); 3084 testcase( op==TK_GT ); 3085 testcase( op==TK_GE ); 3086 testcase( op==TK_EQ ); 3087 testcase( op==TK_NE ); 3088 testcase( jumpIfNull==0 ); 3089 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3090 pExpr->pRight, &r2, ®Free2); 3091 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3092 r1, r2, dest, jumpIfNull); 3093 testcase( regFree1==0 ); 3094 testcase( regFree2==0 ); 3095 break; 3096 } 3097 case TK_ISNULL: 3098 case TK_NOTNULL: { 3099 assert( TK_ISNULL==OP_IsNull ); 3100 assert( TK_NOTNULL==OP_NotNull ); 3101 testcase( op==TK_ISNULL ); 3102 testcase( op==TK_NOTNULL ); 3103 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3104 sqlite3VdbeAddOp2(v, op, r1, dest); 3105 testcase( regFree1==0 ); 3106 break; 3107 } 3108 case TK_BETWEEN: { 3109 /* x BETWEEN y AND z 3110 ** 3111 ** Is equivalent to 3112 ** 3113 ** x>=y AND x<=z 3114 ** 3115 ** Code it as such, taking care to do the common subexpression 3116 ** elementation of x. 3117 */ 3118 Expr exprAnd; 3119 Expr compLeft; 3120 Expr compRight; 3121 Expr exprX; 3122 3123 exprX = *pExpr->pLeft; 3124 exprAnd.op = TK_AND; 3125 exprAnd.pLeft = &compLeft; 3126 exprAnd.pRight = &compRight; 3127 compLeft.op = TK_GE; 3128 compLeft.pLeft = &exprX; 3129 compLeft.pRight = pExpr->pList->a[0].pExpr; 3130 compRight.op = TK_LE; 3131 compRight.pLeft = &exprX; 3132 compRight.pRight = pExpr->pList->a[1].pExpr; 3133 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3134 testcase( regFree1==0 ); 3135 exprX.op = TK_REGISTER; 3136 testcase( jumpIfNull==0 ); 3137 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3138 break; 3139 } 3140 default: { 3141 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3142 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3143 testcase( regFree1==0 ); 3144 testcase( jumpIfNull==0 ); 3145 break; 3146 } 3147 } 3148 sqlite3ReleaseTempReg(pParse, regFree1); 3149 sqlite3ReleaseTempReg(pParse, regFree2); 3150 } 3151 3152 /* 3153 ** Generate code for a boolean expression such that a jump is made 3154 ** to the label "dest" if the expression is false but execution 3155 ** continues straight thru if the expression is true. 3156 ** 3157 ** If the expression evaluates to NULL (neither true nor false) then 3158 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3159 ** is 0. 3160 */ 3161 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3162 Vdbe *v = pParse->pVdbe; 3163 int op = 0; 3164 int regFree1 = 0; 3165 int regFree2 = 0; 3166 int r1, r2; 3167 3168 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3169 if( v==0 || pExpr==0 ) return; 3170 3171 /* The value of pExpr->op and op are related as follows: 3172 ** 3173 ** pExpr->op op 3174 ** --------- ---------- 3175 ** TK_ISNULL OP_NotNull 3176 ** TK_NOTNULL OP_IsNull 3177 ** TK_NE OP_Eq 3178 ** TK_EQ OP_Ne 3179 ** TK_GT OP_Le 3180 ** TK_LE OP_Gt 3181 ** TK_GE OP_Lt 3182 ** TK_LT OP_Ge 3183 ** 3184 ** For other values of pExpr->op, op is undefined and unused. 3185 ** The value of TK_ and OP_ constants are arranged such that we 3186 ** can compute the mapping above using the following expression. 3187 ** Assert()s verify that the computation is correct. 3188 */ 3189 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3190 3191 /* Verify correct alignment of TK_ and OP_ constants 3192 */ 3193 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3194 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3195 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3196 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3197 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3198 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3199 assert( pExpr->op!=TK_GT || op==OP_Le ); 3200 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3201 3202 switch( pExpr->op ){ 3203 case TK_AND: { 3204 testcase( jumpIfNull==0 ); 3205 testcase( pParse->disableColCache==0 ); 3206 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3207 pParse->disableColCache++; 3208 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3209 assert( pParse->disableColCache>0 ); 3210 pParse->disableColCache--; 3211 break; 3212 } 3213 case TK_OR: { 3214 int d2 = sqlite3VdbeMakeLabel(v); 3215 testcase( jumpIfNull==0 ); 3216 testcase( pParse->disableColCache==0 ); 3217 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3218 pParse->disableColCache++; 3219 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3220 assert( pParse->disableColCache>0 ); 3221 pParse->disableColCache--; 3222 sqlite3VdbeResolveLabel(v, d2); 3223 break; 3224 } 3225 case TK_NOT: { 3226 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3227 break; 3228 } 3229 case TK_LT: 3230 case TK_LE: 3231 case TK_GT: 3232 case TK_GE: 3233 case TK_NE: 3234 case TK_EQ: { 3235 testcase( op==TK_LT ); 3236 testcase( op==TK_LE ); 3237 testcase( op==TK_GT ); 3238 testcase( op==TK_GE ); 3239 testcase( op==TK_EQ ); 3240 testcase( op==TK_NE ); 3241 testcase( jumpIfNull==0 ); 3242 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3243 pExpr->pRight, &r2, ®Free2); 3244 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3245 r1, r2, dest, jumpIfNull); 3246 testcase( regFree1==0 ); 3247 testcase( regFree2==0 ); 3248 break; 3249 } 3250 case TK_ISNULL: 3251 case TK_NOTNULL: { 3252 testcase( op==TK_ISNULL ); 3253 testcase( op==TK_NOTNULL ); 3254 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3255 sqlite3VdbeAddOp2(v, op, r1, dest); 3256 testcase( regFree1==0 ); 3257 break; 3258 } 3259 case TK_BETWEEN: { 3260 /* x BETWEEN y AND z 3261 ** 3262 ** Is equivalent to 3263 ** 3264 ** x>=y AND x<=z 3265 ** 3266 ** Code it as such, taking care to do the common subexpression 3267 ** elementation of x. 3268 */ 3269 Expr exprAnd; 3270 Expr compLeft; 3271 Expr compRight; 3272 Expr exprX; 3273 3274 exprX = *pExpr->pLeft; 3275 exprAnd.op = TK_AND; 3276 exprAnd.pLeft = &compLeft; 3277 exprAnd.pRight = &compRight; 3278 compLeft.op = TK_GE; 3279 compLeft.pLeft = &exprX; 3280 compLeft.pRight = pExpr->pList->a[0].pExpr; 3281 compRight.op = TK_LE; 3282 compRight.pLeft = &exprX; 3283 compRight.pRight = pExpr->pList->a[1].pExpr; 3284 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3285 testcase( regFree1==0 ); 3286 exprX.op = TK_REGISTER; 3287 testcase( jumpIfNull==0 ); 3288 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3289 break; 3290 } 3291 default: { 3292 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3293 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3294 testcase( regFree1==0 ); 3295 testcase( jumpIfNull==0 ); 3296 break; 3297 } 3298 } 3299 sqlite3ReleaseTempReg(pParse, regFree1); 3300 sqlite3ReleaseTempReg(pParse, regFree2); 3301 } 3302 3303 /* 3304 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3305 ** if they are identical and return FALSE if they differ in any way. 3306 ** 3307 ** Sometimes this routine will return FALSE even if the two expressions 3308 ** really are equivalent. If we cannot prove that the expressions are 3309 ** identical, we return FALSE just to be safe. So if this routine 3310 ** returns false, then you do not really know for certain if the two 3311 ** expressions are the same. But if you get a TRUE return, then you 3312 ** can be sure the expressions are the same. In the places where 3313 ** this routine is used, it does not hurt to get an extra FALSE - that 3314 ** just might result in some slightly slower code. But returning 3315 ** an incorrect TRUE could lead to a malfunction. 3316 */ 3317 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3318 int i; 3319 if( pA==0||pB==0 ){ 3320 return pB==pA; 3321 } 3322 if( pA->op!=pB->op ) return 0; 3323 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3324 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3325 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3326 if( pA->pList ){ 3327 if( pB->pList==0 ) return 0; 3328 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 3329 for(i=0; i<pA->pList->nExpr; i++){ 3330 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 3331 return 0; 3332 } 3333 } 3334 }else if( pB->pList ){ 3335 return 0; 3336 } 3337 if( pA->pSelect || pB->pSelect ) return 0; 3338 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3339 if( pA->op!=TK_COLUMN && pA->token.z ){ 3340 if( pB->token.z==0 ) return 0; 3341 if( pB->token.n!=pA->token.n ) return 0; 3342 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 3343 return 0; 3344 } 3345 } 3346 return 1; 3347 } 3348 3349 3350 /* 3351 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3352 ** the new element. Return a negative number if malloc fails. 3353 */ 3354 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3355 int i; 3356 pInfo->aCol = sqlite3ArrayAllocate( 3357 db, 3358 pInfo->aCol, 3359 sizeof(pInfo->aCol[0]), 3360 3, 3361 &pInfo->nColumn, 3362 &pInfo->nColumnAlloc, 3363 &i 3364 ); 3365 return i; 3366 } 3367 3368 /* 3369 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3370 ** the new element. Return a negative number if malloc fails. 3371 */ 3372 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3373 int i; 3374 pInfo->aFunc = sqlite3ArrayAllocate( 3375 db, 3376 pInfo->aFunc, 3377 sizeof(pInfo->aFunc[0]), 3378 3, 3379 &pInfo->nFunc, 3380 &pInfo->nFuncAlloc, 3381 &i 3382 ); 3383 return i; 3384 } 3385 3386 /* 3387 ** This is an xFunc for walkExprTree() used to implement 3388 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3389 ** for additional information. 3390 ** 3391 ** This routine analyzes the aggregate function at pExpr. 3392 */ 3393 static int analyzeAggregate(void *pArg, Expr *pExpr){ 3394 int i; 3395 NameContext *pNC = (NameContext *)pArg; 3396 Parse *pParse = pNC->pParse; 3397 SrcList *pSrcList = pNC->pSrcList; 3398 AggInfo *pAggInfo = pNC->pAggInfo; 3399 3400 switch( pExpr->op ){ 3401 case TK_AGG_COLUMN: 3402 case TK_COLUMN: { 3403 /* Check to see if the column is in one of the tables in the FROM 3404 ** clause of the aggregate query */ 3405 if( pSrcList ){ 3406 struct SrcList_item *pItem = pSrcList->a; 3407 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3408 struct AggInfo_col *pCol; 3409 if( pExpr->iTable==pItem->iCursor ){ 3410 /* If we reach this point, it means that pExpr refers to a table 3411 ** that is in the FROM clause of the aggregate query. 3412 ** 3413 ** Make an entry for the column in pAggInfo->aCol[] if there 3414 ** is not an entry there already. 3415 */ 3416 int k; 3417 pCol = pAggInfo->aCol; 3418 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3419 if( pCol->iTable==pExpr->iTable && 3420 pCol->iColumn==pExpr->iColumn ){ 3421 break; 3422 } 3423 } 3424 if( (k>=pAggInfo->nColumn) 3425 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3426 ){ 3427 pCol = &pAggInfo->aCol[k]; 3428 pCol->pTab = pExpr->pTab; 3429 pCol->iTable = pExpr->iTable; 3430 pCol->iColumn = pExpr->iColumn; 3431 pCol->iMem = ++pParse->nMem; 3432 pCol->iSorterColumn = -1; 3433 pCol->pExpr = pExpr; 3434 if( pAggInfo->pGroupBy ){ 3435 int j, n; 3436 ExprList *pGB = pAggInfo->pGroupBy; 3437 struct ExprList_item *pTerm = pGB->a; 3438 n = pGB->nExpr; 3439 for(j=0; j<n; j++, pTerm++){ 3440 Expr *pE = pTerm->pExpr; 3441 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3442 pE->iColumn==pExpr->iColumn ){ 3443 pCol->iSorterColumn = j; 3444 break; 3445 } 3446 } 3447 } 3448 if( pCol->iSorterColumn<0 ){ 3449 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3450 } 3451 } 3452 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3453 ** because it was there before or because we just created it). 3454 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3455 ** pAggInfo->aCol[] entry. 3456 */ 3457 pExpr->pAggInfo = pAggInfo; 3458 pExpr->op = TK_AGG_COLUMN; 3459 pExpr->iAgg = k; 3460 break; 3461 } /* endif pExpr->iTable==pItem->iCursor */ 3462 } /* end loop over pSrcList */ 3463 } 3464 return 1; 3465 } 3466 case TK_AGG_FUNCTION: { 3467 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3468 ** to be ignored */ 3469 if( pNC->nDepth==0 ){ 3470 /* Check to see if pExpr is a duplicate of another aggregate 3471 ** function that is already in the pAggInfo structure 3472 */ 3473 struct AggInfo_func *pItem = pAggInfo->aFunc; 3474 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3475 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3476 break; 3477 } 3478 } 3479 if( i>=pAggInfo->nFunc ){ 3480 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3481 */ 3482 u8 enc = ENC(pParse->db); 3483 i = addAggInfoFunc(pParse->db, pAggInfo); 3484 if( i>=0 ){ 3485 pItem = &pAggInfo->aFunc[i]; 3486 pItem->pExpr = pExpr; 3487 pItem->iMem = ++pParse->nMem; 3488 pItem->pFunc = sqlite3FindFunction(pParse->db, 3489 (char*)pExpr->token.z, pExpr->token.n, 3490 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 3491 if( pExpr->flags & EP_Distinct ){ 3492 pItem->iDistinct = pParse->nTab++; 3493 }else{ 3494 pItem->iDistinct = -1; 3495 } 3496 } 3497 } 3498 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3499 */ 3500 pExpr->iAgg = i; 3501 pExpr->pAggInfo = pAggInfo; 3502 return 1; 3503 } 3504 } 3505 } 3506 3507 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 3508 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 3509 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 3510 */ 3511 if( pExpr->pSelect ){ 3512 pNC->nDepth++; 3513 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 3514 pNC->nDepth--; 3515 } 3516 return 0; 3517 } 3518 3519 /* 3520 ** Analyze the given expression looking for aggregate functions and 3521 ** for variables that need to be added to the pParse->aAgg[] array. 3522 ** Make additional entries to the pParse->aAgg[] array as necessary. 3523 ** 3524 ** This routine should only be called after the expression has been 3525 ** analyzed by sqlite3ExprResolveNames(). 3526 */ 3527 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3528 walkExprTree(pExpr, analyzeAggregate, pNC); 3529 } 3530 3531 /* 3532 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3533 ** expression list. Return the number of errors. 3534 ** 3535 ** If an error is found, the analysis is cut short. 3536 */ 3537 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3538 struct ExprList_item *pItem; 3539 int i; 3540 if( pList ){ 3541 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3542 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3543 } 3544 } 3545 } 3546 3547 /* 3548 ** Allocate or deallocate temporary use registers during code generation. 3549 */ 3550 int sqlite3GetTempReg(Parse *pParse){ 3551 if( pParse->nTempReg==0 ){ 3552 return ++pParse->nMem; 3553 } 3554 return pParse->aTempReg[--pParse->nTempReg]; 3555 } 3556 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3557 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3558 sqlite3ExprWritableRegister(pParse, iReg, iReg); 3559 pParse->aTempReg[pParse->nTempReg++] = iReg; 3560 } 3561 } 3562 3563 /* 3564 ** Allocate or deallocate a block of nReg consecutive registers 3565 */ 3566 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3567 int i, n; 3568 i = pParse->iRangeReg; 3569 n = pParse->nRangeReg; 3570 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3571 pParse->iRangeReg += nReg; 3572 pParse->nRangeReg -= nReg; 3573 }else{ 3574 i = pParse->nMem+1; 3575 pParse->nMem += nReg; 3576 } 3577 return i; 3578 } 3579 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3580 if( nReg>pParse->nRangeReg ){ 3581 pParse->nRangeReg = nReg; 3582 pParse->iRangeReg = iReg; 3583 } 3584 } 3585