1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.271 2007/01/04 01:20:29 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_AS ){ 39 return sqlite3ExprAffinity(pExpr->pLeft); 40 } 41 if( op==TK_SELECT ){ 42 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 43 } 44 #ifndef SQLITE_OMIT_CAST 45 if( op==TK_CAST ){ 46 return sqlite3AffinityType(&pExpr->token); 47 } 48 #endif 49 return pExpr->affinity; 50 } 51 52 /* 53 ** Return the default collation sequence for the expression pExpr. If 54 ** there is no default collation type, return 0. 55 */ 56 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 57 CollSeq *pColl = 0; 58 if( pExpr ){ 59 pColl = pExpr->pColl; 60 if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){ 61 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 62 } 63 } 64 if( sqlite3CheckCollSeq(pParse, pColl) ){ 65 pColl = 0; 66 } 67 return pColl; 68 } 69 70 /* 71 ** pExpr is an operand of a comparison operator. aff2 is the 72 ** type affinity of the other operand. This routine returns the 73 ** type affinity that should be used for the comparison operator. 74 */ 75 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 76 char aff1 = sqlite3ExprAffinity(pExpr); 77 if( aff1 && aff2 ){ 78 /* Both sides of the comparison are columns. If one has numeric 79 ** affinity, use that. Otherwise use no affinity. 80 */ 81 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 82 return SQLITE_AFF_NUMERIC; 83 }else{ 84 return SQLITE_AFF_NONE; 85 } 86 }else if( !aff1 && !aff2 ){ 87 /* Neither side of the comparison is a column. Compare the 88 ** results directly. 89 */ 90 return SQLITE_AFF_NONE; 91 }else{ 92 /* One side is a column, the other is not. Use the columns affinity. */ 93 assert( aff1==0 || aff2==0 ); 94 return (aff1 + aff2); 95 } 96 } 97 98 /* 99 ** pExpr is a comparison operator. Return the type affinity that should 100 ** be applied to both operands prior to doing the comparison. 101 */ 102 static char comparisonAffinity(Expr *pExpr){ 103 char aff; 104 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 105 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 106 pExpr->op==TK_NE ); 107 assert( pExpr->pLeft ); 108 aff = sqlite3ExprAffinity(pExpr->pLeft); 109 if( pExpr->pRight ){ 110 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 111 } 112 else if( pExpr->pSelect ){ 113 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 114 } 115 else if( !aff ){ 116 aff = SQLITE_AFF_NUMERIC; 117 } 118 return aff; 119 } 120 121 /* 122 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 123 ** idx_affinity is the affinity of an indexed column. Return true 124 ** if the index with affinity idx_affinity may be used to implement 125 ** the comparison in pExpr. 126 */ 127 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 128 char aff = comparisonAffinity(pExpr); 129 switch( aff ){ 130 case SQLITE_AFF_NONE: 131 return 1; 132 case SQLITE_AFF_TEXT: 133 return idx_affinity==SQLITE_AFF_TEXT; 134 default: 135 return sqlite3IsNumericAffinity(idx_affinity); 136 } 137 } 138 139 /* 140 ** Return the P1 value that should be used for a binary comparison 141 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 142 ** If jumpIfNull is true, then set the low byte of the returned 143 ** P1 value to tell the opcode to jump if either expression 144 ** evaluates to NULL. 145 */ 146 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 147 char aff = sqlite3ExprAffinity(pExpr2); 148 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 149 } 150 151 /* 152 ** Return a pointer to the collation sequence that should be used by 153 ** a binary comparison operator comparing pLeft and pRight. 154 ** 155 ** If the left hand expression has a collating sequence type, then it is 156 ** used. Otherwise the collation sequence for the right hand expression 157 ** is used, or the default (BINARY) if neither expression has a collating 158 ** type. 159 */ 160 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ 161 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); 162 if( !pColl ){ 163 pColl = sqlite3ExprCollSeq(pParse, pRight); 164 } 165 return pColl; 166 } 167 168 /* 169 ** Generate code for a comparison operator. 170 */ 171 static int codeCompare( 172 Parse *pParse, /* The parsing (and code generating) context */ 173 Expr *pLeft, /* The left operand */ 174 Expr *pRight, /* The right operand */ 175 int opcode, /* The comparison opcode */ 176 int dest, /* Jump here if true. */ 177 int jumpIfNull /* If true, jump if either operand is NULL */ 178 ){ 179 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 180 CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight); 181 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 182 } 183 184 /* 185 ** Construct a new expression node and return a pointer to it. Memory 186 ** for this node is obtained from sqliteMalloc(). The calling function 187 ** is responsible for making sure the node eventually gets freed. 188 */ 189 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 190 Expr *pNew; 191 pNew = sqliteMalloc( sizeof(Expr) ); 192 if( pNew==0 ){ 193 /* When malloc fails, delete pLeft and pRight. Expressions passed to 194 ** this function must always be allocated with sqlite3Expr() for this 195 ** reason. 196 */ 197 sqlite3ExprDelete(pLeft); 198 sqlite3ExprDelete(pRight); 199 return 0; 200 } 201 pNew->op = op; 202 pNew->pLeft = pLeft; 203 pNew->pRight = pRight; 204 pNew->iAgg = -1; 205 if( pToken ){ 206 assert( pToken->dyn==0 ); 207 pNew->span = pNew->token = *pToken; 208 }else if( pLeft && pRight ){ 209 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 210 } 211 return pNew; 212 } 213 214 /* 215 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments 216 ** if it fails due to a malloc problem. 217 */ 218 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 219 Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken); 220 if( pNew==0 ){ 221 sqlite3ExprDelete(pLeft); 222 sqlite3ExprDelete(pRight); 223 } 224 return pNew; 225 } 226 227 /* 228 ** When doing a nested parse, you can include terms in an expression 229 ** that look like this: #0 #1 #2 ... These terms refer to elements 230 ** on the stack. "#0" means the top of the stack. 231 ** "#1" means the next down on the stack. And so forth. 232 ** 233 ** This routine is called by the parser to deal with on of those terms. 234 ** It immediately generates code to store the value in a memory location. 235 ** The returns an expression that will code to extract the value from 236 ** that memory location as needed. 237 */ 238 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 239 Vdbe *v = pParse->pVdbe; 240 Expr *p; 241 int depth; 242 if( pParse->nested==0 ){ 243 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 244 return 0; 245 } 246 if( v==0 ) return 0; 247 p = sqlite3Expr(TK_REGISTER, 0, 0, pToken); 248 if( p==0 ){ 249 return 0; /* Malloc failed */ 250 } 251 depth = atoi((char*)&pToken->z[1]); 252 p->iTable = pParse->nMem++; 253 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 254 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 255 return p; 256 } 257 258 /* 259 ** Join two expressions using an AND operator. If either expression is 260 ** NULL, then just return the other expression. 261 */ 262 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ 263 if( pLeft==0 ){ 264 return pRight; 265 }else if( pRight==0 ){ 266 return pLeft; 267 }else{ 268 return sqlite3Expr(TK_AND, pLeft, pRight, 0); 269 } 270 } 271 272 /* 273 ** Set the Expr.span field of the given expression to span all 274 ** text between the two given tokens. 275 */ 276 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 277 assert( pRight!=0 ); 278 assert( pLeft!=0 ); 279 if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){ 280 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 281 if( pLeft->dyn==0 && pRight->dyn==0 ){ 282 pExpr->span.z = pLeft->z; 283 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 284 }else{ 285 pExpr->span.z = 0; 286 } 287 } 288 } 289 290 /* 291 ** Construct a new expression node for a function with multiple 292 ** arguments. 293 */ 294 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ 295 Expr *pNew; 296 assert( pToken ); 297 pNew = sqliteMalloc( sizeof(Expr) ); 298 if( pNew==0 ){ 299 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 300 return 0; 301 } 302 pNew->op = TK_FUNCTION; 303 pNew->pList = pList; 304 assert( pToken->dyn==0 ); 305 pNew->token = *pToken; 306 pNew->span = pNew->token; 307 return pNew; 308 } 309 310 /* 311 ** Assign a variable number to an expression that encodes a wildcard 312 ** in the original SQL statement. 313 ** 314 ** Wildcards consisting of a single "?" are assigned the next sequential 315 ** variable number. 316 ** 317 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 318 ** sure "nnn" is not too be to avoid a denial of service attack when 319 ** the SQL statement comes from an external source. 320 ** 321 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 322 ** as the previous instance of the same wildcard. Or if this is the first 323 ** instance of the wildcard, the next sequenial variable number is 324 ** assigned. 325 */ 326 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 327 Token *pToken; 328 if( pExpr==0 ) return; 329 pToken = &pExpr->token; 330 assert( pToken->n>=1 ); 331 assert( pToken->z!=0 ); 332 assert( pToken->z[0]!=0 ); 333 if( pToken->n==1 ){ 334 /* Wildcard of the form "?". Assign the next variable number */ 335 pExpr->iTable = ++pParse->nVar; 336 }else if( pToken->z[0]=='?' ){ 337 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 338 ** use it as the variable number */ 339 int i; 340 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 341 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 342 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 343 SQLITE_MAX_VARIABLE_NUMBER); 344 } 345 if( i>pParse->nVar ){ 346 pParse->nVar = i; 347 } 348 }else{ 349 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 350 ** number as the prior appearance of the same name, or if the name 351 ** has never appeared before, reuse the same variable number 352 */ 353 int i, n; 354 n = pToken->n; 355 for(i=0; i<pParse->nVarExpr; i++){ 356 Expr *pE; 357 if( (pE = pParse->apVarExpr[i])!=0 358 && pE->token.n==n 359 && memcmp(pE->token.z, pToken->z, n)==0 ){ 360 pExpr->iTable = pE->iTable; 361 break; 362 } 363 } 364 if( i>=pParse->nVarExpr ){ 365 pExpr->iTable = ++pParse->nVar; 366 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 367 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 368 sqliteReallocOrFree((void**)&pParse->apVarExpr, 369 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); 370 } 371 if( !sqlite3MallocFailed() ){ 372 assert( pParse->apVarExpr!=0 ); 373 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 374 } 375 } 376 } 377 } 378 379 /* 380 ** Recursively delete an expression tree. 381 */ 382 void sqlite3ExprDelete(Expr *p){ 383 if( p==0 ) return; 384 if( p->span.dyn ) sqliteFree((char*)p->span.z); 385 if( p->token.dyn ) sqliteFree((char*)p->token.z); 386 sqlite3ExprDelete(p->pLeft); 387 sqlite3ExprDelete(p->pRight); 388 sqlite3ExprListDelete(p->pList); 389 sqlite3SelectDelete(p->pSelect); 390 sqliteFree(p); 391 } 392 393 /* 394 ** The Expr.token field might be a string literal that is quoted. 395 ** If so, remove the quotation marks. 396 */ 397 void sqlite3DequoteExpr(Expr *p){ 398 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 399 return; 400 } 401 ExprSetProperty(p, EP_Dequoted); 402 if( p->token.dyn==0 ){ 403 sqlite3TokenCopy(&p->token, &p->token); 404 } 405 sqlite3Dequote((char*)p->token.z); 406 } 407 408 409 /* 410 ** The following group of routines make deep copies of expressions, 411 ** expression lists, ID lists, and select statements. The copies can 412 ** be deleted (by being passed to their respective ...Delete() routines) 413 ** without effecting the originals. 414 ** 415 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 416 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 417 ** by subsequent calls to sqlite*ListAppend() routines. 418 ** 419 ** Any tables that the SrcList might point to are not duplicated. 420 */ 421 Expr *sqlite3ExprDup(Expr *p){ 422 Expr *pNew; 423 if( p==0 ) return 0; 424 pNew = sqliteMallocRaw( sizeof(*p) ); 425 if( pNew==0 ) return 0; 426 memcpy(pNew, p, sizeof(*pNew)); 427 if( p->token.z!=0 ){ 428 pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n); 429 pNew->token.dyn = 1; 430 }else{ 431 assert( pNew->token.z==0 ); 432 } 433 pNew->span.z = 0; 434 pNew->pLeft = sqlite3ExprDup(p->pLeft); 435 pNew->pRight = sqlite3ExprDup(p->pRight); 436 pNew->pList = sqlite3ExprListDup(p->pList); 437 pNew->pSelect = sqlite3SelectDup(p->pSelect); 438 pNew->pTab = p->pTab; 439 return pNew; 440 } 441 void sqlite3TokenCopy(Token *pTo, Token *pFrom){ 442 if( pTo->dyn ) sqliteFree((char*)pTo->z); 443 if( pFrom->z ){ 444 pTo->n = pFrom->n; 445 pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n); 446 pTo->dyn = 1; 447 }else{ 448 pTo->z = 0; 449 } 450 } 451 ExprList *sqlite3ExprListDup(ExprList *p){ 452 ExprList *pNew; 453 struct ExprList_item *pItem, *pOldItem; 454 int i; 455 if( p==0 ) return 0; 456 pNew = sqliteMalloc( sizeof(*pNew) ); 457 if( pNew==0 ) return 0; 458 pNew->nExpr = pNew->nAlloc = p->nExpr; 459 pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); 460 if( pItem==0 ){ 461 sqliteFree(pNew); 462 return 0; 463 } 464 pOldItem = p->a; 465 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 466 Expr *pNewExpr, *pOldExpr; 467 pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); 468 if( pOldExpr->span.z!=0 && pNewExpr ){ 469 /* Always make a copy of the span for top-level expressions in the 470 ** expression list. The logic in SELECT processing that determines 471 ** the names of columns in the result set needs this information */ 472 sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); 473 } 474 assert( pNewExpr==0 || pNewExpr->span.z!=0 475 || pOldExpr->span.z==0 476 || sqlite3MallocFailed() ); 477 pItem->zName = sqliteStrDup(pOldItem->zName); 478 pItem->sortOrder = pOldItem->sortOrder; 479 pItem->isAgg = pOldItem->isAgg; 480 pItem->done = 0; 481 } 482 return pNew; 483 } 484 485 /* 486 ** If cursors, triggers, views and subqueries are all omitted from 487 ** the build, then none of the following routines, except for 488 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 489 ** called with a NULL argument. 490 */ 491 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 492 || !defined(SQLITE_OMIT_SUBQUERY) 493 SrcList *sqlite3SrcListDup(SrcList *p){ 494 SrcList *pNew; 495 int i; 496 int nByte; 497 if( p==0 ) return 0; 498 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 499 pNew = sqliteMallocRaw( nByte ); 500 if( pNew==0 ) return 0; 501 pNew->nSrc = pNew->nAlloc = p->nSrc; 502 for(i=0; i<p->nSrc; i++){ 503 struct SrcList_item *pNewItem = &pNew->a[i]; 504 struct SrcList_item *pOldItem = &p->a[i]; 505 Table *pTab; 506 pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); 507 pNewItem->zName = sqliteStrDup(pOldItem->zName); 508 pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); 509 pNewItem->jointype = pOldItem->jointype; 510 pNewItem->iCursor = pOldItem->iCursor; 511 pNewItem->isPopulated = pOldItem->isPopulated; 512 pTab = pNewItem->pTab = pOldItem->pTab; 513 if( pTab ){ 514 pTab->nRef++; 515 } 516 pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); 517 pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); 518 pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); 519 pNewItem->colUsed = pOldItem->colUsed; 520 } 521 return pNew; 522 } 523 IdList *sqlite3IdListDup(IdList *p){ 524 IdList *pNew; 525 int i; 526 if( p==0 ) return 0; 527 pNew = sqliteMallocRaw( sizeof(*pNew) ); 528 if( pNew==0 ) return 0; 529 pNew->nId = pNew->nAlloc = p->nId; 530 pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); 531 if( pNew->a==0 ){ 532 sqliteFree(pNew); 533 return 0; 534 } 535 for(i=0; i<p->nId; i++){ 536 struct IdList_item *pNewItem = &pNew->a[i]; 537 struct IdList_item *pOldItem = &p->a[i]; 538 pNewItem->zName = sqliteStrDup(pOldItem->zName); 539 pNewItem->idx = pOldItem->idx; 540 } 541 return pNew; 542 } 543 Select *sqlite3SelectDup(Select *p){ 544 Select *pNew; 545 if( p==0 ) return 0; 546 pNew = sqliteMallocRaw( sizeof(*p) ); 547 if( pNew==0 ) return 0; 548 pNew->isDistinct = p->isDistinct; 549 pNew->pEList = sqlite3ExprListDup(p->pEList); 550 pNew->pSrc = sqlite3SrcListDup(p->pSrc); 551 pNew->pWhere = sqlite3ExprDup(p->pWhere); 552 pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); 553 pNew->pHaving = sqlite3ExprDup(p->pHaving); 554 pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); 555 pNew->op = p->op; 556 pNew->pPrior = sqlite3SelectDup(p->pPrior); 557 pNew->pLimit = sqlite3ExprDup(p->pLimit); 558 pNew->pOffset = sqlite3ExprDup(p->pOffset); 559 pNew->iLimit = -1; 560 pNew->iOffset = -1; 561 pNew->isResolved = p->isResolved; 562 pNew->isAgg = p->isAgg; 563 pNew->usesEphm = 0; 564 pNew->disallowOrderBy = 0; 565 pNew->pRightmost = 0; 566 pNew->addrOpenEphm[0] = -1; 567 pNew->addrOpenEphm[1] = -1; 568 pNew->addrOpenEphm[2] = -1; 569 return pNew; 570 } 571 #else 572 Select *sqlite3SelectDup(Select *p){ 573 assert( p==0 ); 574 return 0; 575 } 576 #endif 577 578 579 /* 580 ** Add a new element to the end of an expression list. If pList is 581 ** initially NULL, then create a new expression list. 582 */ 583 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ 584 if( pList==0 ){ 585 pList = sqliteMalloc( sizeof(ExprList) ); 586 if( pList==0 ){ 587 goto no_mem; 588 } 589 assert( pList->nAlloc==0 ); 590 } 591 if( pList->nAlloc<=pList->nExpr ){ 592 struct ExprList_item *a; 593 int n = pList->nAlloc*2 + 4; 594 a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); 595 if( a==0 ){ 596 goto no_mem; 597 } 598 pList->a = a; 599 pList->nAlloc = n; 600 } 601 assert( pList->a!=0 ); 602 if( pExpr || pName ){ 603 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 604 memset(pItem, 0, sizeof(*pItem)); 605 pItem->zName = sqlite3NameFromToken(pName); 606 pItem->pExpr = pExpr; 607 } 608 return pList; 609 610 no_mem: 611 /* Avoid leaking memory if malloc has failed. */ 612 sqlite3ExprDelete(pExpr); 613 sqlite3ExprListDelete(pList); 614 return 0; 615 } 616 617 /* 618 ** Delete an entire expression list. 619 */ 620 void sqlite3ExprListDelete(ExprList *pList){ 621 int i; 622 struct ExprList_item *pItem; 623 if( pList==0 ) return; 624 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 625 assert( pList->nExpr<=pList->nAlloc ); 626 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 627 sqlite3ExprDelete(pItem->pExpr); 628 sqliteFree(pItem->zName); 629 } 630 sqliteFree(pList->a); 631 sqliteFree(pList); 632 } 633 634 /* 635 ** Walk an expression tree. Call xFunc for each node visited. 636 ** 637 ** The return value from xFunc determines whether the tree walk continues. 638 ** 0 means continue walking the tree. 1 means do not walk children 639 ** of the current node but continue with siblings. 2 means abandon 640 ** the tree walk completely. 641 ** 642 ** The return value from this routine is 1 to abandon the tree walk 643 ** and 0 to continue. 644 ** 645 ** NOTICE: This routine does *not* descend into subqueries. 646 */ 647 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 648 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 649 int rc; 650 if( pExpr==0 ) return 0; 651 rc = (*xFunc)(pArg, pExpr); 652 if( rc==0 ){ 653 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 654 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 655 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 656 } 657 return rc>1; 658 } 659 660 /* 661 ** Call walkExprTree() for every expression in list p. 662 */ 663 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 664 int i; 665 struct ExprList_item *pItem; 666 if( !p ) return 0; 667 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 668 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 669 } 670 return 0; 671 } 672 673 /* 674 ** Call walkExprTree() for every expression in Select p, not including 675 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 676 ** or OFFSET expressions.. 677 */ 678 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 679 walkExprList(p->pEList, xFunc, pArg); 680 walkExprTree(p->pWhere, xFunc, pArg); 681 walkExprList(p->pGroupBy, xFunc, pArg); 682 walkExprTree(p->pHaving, xFunc, pArg); 683 walkExprList(p->pOrderBy, xFunc, pArg); 684 return 0; 685 } 686 687 688 /* 689 ** This routine is designed as an xFunc for walkExprTree(). 690 ** 691 ** pArg is really a pointer to an integer. If we can tell by looking 692 ** at pExpr that the expression that contains pExpr is not a constant 693 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 694 ** If pExpr does does not disqualify the expression from being a constant 695 ** then do nothing. 696 ** 697 ** After walking the whole tree, if no nodes are found that disqualify 698 ** the expression as constant, then we assume the whole expression 699 ** is constant. See sqlite3ExprIsConstant() for additional information. 700 */ 701 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 702 switch( pExpr->op ){ 703 /* Consider functions to be constant if all their arguments are constant 704 ** and *pArg==2 */ 705 case TK_FUNCTION: 706 if( *((int*)pArg)==2 ) return 0; 707 /* Fall through */ 708 case TK_ID: 709 case TK_COLUMN: 710 case TK_DOT: 711 case TK_AGG_FUNCTION: 712 case TK_AGG_COLUMN: 713 #ifndef SQLITE_OMIT_SUBQUERY 714 case TK_SELECT: 715 case TK_EXISTS: 716 #endif 717 *((int*)pArg) = 0; 718 return 2; 719 case TK_IN: 720 if( pExpr->pSelect ){ 721 *((int*)pArg) = 0; 722 return 2; 723 } 724 default: 725 return 0; 726 } 727 } 728 729 /* 730 ** Walk an expression tree. Return 1 if the expression is constant 731 ** and 0 if it involves variables or function calls. 732 ** 733 ** For the purposes of this function, a double-quoted string (ex: "abc") 734 ** is considered a variable but a single-quoted string (ex: 'abc') is 735 ** a constant. 736 */ 737 int sqlite3ExprIsConstant(Expr *p){ 738 int isConst = 1; 739 walkExprTree(p, exprNodeIsConstant, &isConst); 740 return isConst; 741 } 742 743 /* 744 ** Walk an expression tree. Return 1 if the expression is constant 745 ** or a function call with constant arguments. Return and 0 if there 746 ** are any variables. 747 ** 748 ** For the purposes of this function, a double-quoted string (ex: "abc") 749 ** is considered a variable but a single-quoted string (ex: 'abc') is 750 ** a constant. 751 */ 752 int sqlite3ExprIsConstantOrFunction(Expr *p){ 753 int isConst = 2; 754 walkExprTree(p, exprNodeIsConstant, &isConst); 755 return isConst!=0; 756 } 757 758 /* 759 ** If the expression p codes a constant integer that is small enough 760 ** to fit in a 32-bit integer, return 1 and put the value of the integer 761 ** in *pValue. If the expression is not an integer or if it is too big 762 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 763 */ 764 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 765 switch( p->op ){ 766 case TK_INTEGER: { 767 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 768 return 1; 769 } 770 break; 771 } 772 case TK_UPLUS: { 773 return sqlite3ExprIsInteger(p->pLeft, pValue); 774 } 775 case TK_UMINUS: { 776 int v; 777 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 778 *pValue = -v; 779 return 1; 780 } 781 break; 782 } 783 default: break; 784 } 785 return 0; 786 } 787 788 /* 789 ** Return TRUE if the given string is a row-id column name. 790 */ 791 int sqlite3IsRowid(const char *z){ 792 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 793 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 794 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 795 return 0; 796 } 797 798 /* 799 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 800 ** that name in the set of source tables in pSrcList and make the pExpr 801 ** expression node refer back to that source column. The following changes 802 ** are made to pExpr: 803 ** 804 ** pExpr->iDb Set the index in db->aDb[] of the database holding 805 ** the table. 806 ** pExpr->iTable Set to the cursor number for the table obtained 807 ** from pSrcList. 808 ** pExpr->iColumn Set to the column number within the table. 809 ** pExpr->op Set to TK_COLUMN. 810 ** pExpr->pLeft Any expression this points to is deleted 811 ** pExpr->pRight Any expression this points to is deleted. 812 ** 813 ** The pDbToken is the name of the database (the "X"). This value may be 814 ** NULL meaning that name is of the form Y.Z or Z. Any available database 815 ** can be used. The pTableToken is the name of the table (the "Y"). This 816 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 817 ** means that the form of the name is Z and that columns from any table 818 ** can be used. 819 ** 820 ** If the name cannot be resolved unambiguously, leave an error message 821 ** in pParse and return non-zero. Return zero on success. 822 */ 823 static int lookupName( 824 Parse *pParse, /* The parsing context */ 825 Token *pDbToken, /* Name of the database containing table, or NULL */ 826 Token *pTableToken, /* Name of table containing column, or NULL */ 827 Token *pColumnToken, /* Name of the column. */ 828 NameContext *pNC, /* The name context used to resolve the name */ 829 Expr *pExpr /* Make this EXPR node point to the selected column */ 830 ){ 831 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 832 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 833 char *zCol = 0; /* Name of the column. The "Z" */ 834 int i, j; /* Loop counters */ 835 int cnt = 0; /* Number of matching column names */ 836 int cntTab = 0; /* Number of matching table names */ 837 sqlite3 *db = pParse->db; /* The database */ 838 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 839 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 840 NameContext *pTopNC = pNC; /* First namecontext in the list */ 841 842 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 843 zDb = sqlite3NameFromToken(pDbToken); 844 zTab = sqlite3NameFromToken(pTableToken); 845 zCol = sqlite3NameFromToken(pColumnToken); 846 if( sqlite3MallocFailed() ){ 847 goto lookupname_end; 848 } 849 850 pExpr->iTable = -1; 851 while( pNC && cnt==0 ){ 852 ExprList *pEList; 853 SrcList *pSrcList = pNC->pSrcList; 854 855 if( pSrcList ){ 856 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 857 Table *pTab; 858 int iDb; 859 Column *pCol; 860 861 pTab = pItem->pTab; 862 assert( pTab!=0 ); 863 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 864 assert( pTab->nCol>0 ); 865 if( zTab ){ 866 if( pItem->zAlias ){ 867 char *zTabName = pItem->zAlias; 868 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 869 }else{ 870 char *zTabName = pTab->zName; 871 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 872 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 873 continue; 874 } 875 } 876 } 877 if( 0==(cntTab++) ){ 878 pExpr->iTable = pItem->iCursor; 879 pExpr->pSchema = pTab->pSchema; 880 pMatch = pItem; 881 } 882 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 883 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 884 const char *zColl = pTab->aCol[j].zColl; 885 IdList *pUsing; 886 cnt++; 887 pExpr->iTable = pItem->iCursor; 888 pMatch = pItem; 889 pExpr->pSchema = pTab->pSchema; 890 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 891 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 892 pExpr->affinity = pTab->aCol[j].affinity; 893 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 894 if( i<pSrcList->nSrc-1 ){ 895 if( pItem[1].jointype & JT_NATURAL ){ 896 /* If this match occurred in the left table of a natural join, 897 ** then skip the right table to avoid a duplicate match */ 898 pItem++; 899 i++; 900 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 901 /* If this match occurs on a column that is in the USING clause 902 ** of a join, skip the search of the right table of the join 903 ** to avoid a duplicate match there. */ 904 int k; 905 for(k=0; k<pUsing->nId; k++){ 906 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 907 pItem++; 908 i++; 909 break; 910 } 911 } 912 } 913 } 914 break; 915 } 916 } 917 } 918 } 919 920 #ifndef SQLITE_OMIT_TRIGGER 921 /* If we have not already resolved the name, then maybe 922 ** it is a new.* or old.* trigger argument reference 923 */ 924 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 925 TriggerStack *pTriggerStack = pParse->trigStack; 926 Table *pTab = 0; 927 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 928 pExpr->iTable = pTriggerStack->newIdx; 929 assert( pTriggerStack->pTab ); 930 pTab = pTriggerStack->pTab; 931 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 932 pExpr->iTable = pTriggerStack->oldIdx; 933 assert( pTriggerStack->pTab ); 934 pTab = pTriggerStack->pTab; 935 } 936 937 if( pTab ){ 938 int iCol; 939 Column *pCol = pTab->aCol; 940 941 pExpr->pSchema = pTab->pSchema; 942 cntTab++; 943 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 944 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 945 const char *zColl = pTab->aCol[iCol].zColl; 946 cnt++; 947 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 948 pExpr->affinity = pTab->aCol[iCol].affinity; 949 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 950 pExpr->pTab = pTab; 951 break; 952 } 953 } 954 } 955 } 956 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 957 958 /* 959 ** Perhaps the name is a reference to the ROWID 960 */ 961 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 962 cnt = 1; 963 pExpr->iColumn = -1; 964 pExpr->affinity = SQLITE_AFF_INTEGER; 965 } 966 967 /* 968 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 969 ** might refer to an result-set alias. This happens, for example, when 970 ** we are resolving names in the WHERE clause of the following command: 971 ** 972 ** SELECT a+b AS x FROM table WHERE x<10; 973 ** 974 ** In cases like this, replace pExpr with a copy of the expression that 975 ** forms the result set entry ("a+b" in the example) and return immediately. 976 ** Note that the expression in the result set should have already been 977 ** resolved by the time the WHERE clause is resolved. 978 */ 979 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 980 for(j=0; j<pEList->nExpr; j++){ 981 char *zAs = pEList->a[j].zName; 982 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 983 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 984 pExpr->op = TK_AS; 985 pExpr->iColumn = j; 986 pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); 987 cnt = 1; 988 assert( zTab==0 && zDb==0 ); 989 goto lookupname_end_2; 990 } 991 } 992 } 993 994 /* Advance to the next name context. The loop will exit when either 995 ** we have a match (cnt>0) or when we run out of name contexts. 996 */ 997 if( cnt==0 ){ 998 pNC = pNC->pNext; 999 } 1000 } 1001 1002 /* 1003 ** If X and Y are NULL (in other words if only the column name Z is 1004 ** supplied) and the value of Z is enclosed in double-quotes, then 1005 ** Z is a string literal if it doesn't match any column names. In that 1006 ** case, we need to return right away and not make any changes to 1007 ** pExpr. 1008 ** 1009 ** Because no reference was made to outer contexts, the pNC->nRef 1010 ** fields are not changed in any context. 1011 */ 1012 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1013 sqliteFree(zCol); 1014 return 0; 1015 } 1016 1017 /* 1018 ** cnt==0 means there was not match. cnt>1 means there were two or 1019 ** more matches. Either way, we have an error. 1020 */ 1021 if( cnt!=1 ){ 1022 char *z = 0; 1023 char *zErr; 1024 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1025 if( zDb ){ 1026 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); 1027 }else if( zTab ){ 1028 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); 1029 }else{ 1030 z = sqliteStrDup(zCol); 1031 } 1032 sqlite3ErrorMsg(pParse, zErr, z); 1033 sqliteFree(z); 1034 pTopNC->nErr++; 1035 } 1036 1037 /* If a column from a table in pSrcList is referenced, then record 1038 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1039 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1040 ** column number is greater than the number of bits in the bitmask 1041 ** then set the high-order bit of the bitmask. 1042 */ 1043 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1044 int n = pExpr->iColumn; 1045 if( n>=sizeof(Bitmask)*8 ){ 1046 n = sizeof(Bitmask)*8-1; 1047 } 1048 assert( pMatch->iCursor==pExpr->iTable ); 1049 pMatch->colUsed |= 1<<n; 1050 } 1051 1052 lookupname_end: 1053 /* Clean up and return 1054 */ 1055 sqliteFree(zDb); 1056 sqliteFree(zTab); 1057 sqlite3ExprDelete(pExpr->pLeft); 1058 pExpr->pLeft = 0; 1059 sqlite3ExprDelete(pExpr->pRight); 1060 pExpr->pRight = 0; 1061 pExpr->op = TK_COLUMN; 1062 lookupname_end_2: 1063 sqliteFree(zCol); 1064 if( cnt==1 ){ 1065 assert( pNC!=0 ); 1066 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); 1067 if( pMatch && !pMatch->pSelect ){ 1068 pExpr->pTab = pMatch->pTab; 1069 } 1070 /* Increment the nRef value on all name contexts from TopNC up to 1071 ** the point where the name matched. */ 1072 for(;;){ 1073 assert( pTopNC!=0 ); 1074 pTopNC->nRef++; 1075 if( pTopNC==pNC ) break; 1076 pTopNC = pTopNC->pNext; 1077 } 1078 return 0; 1079 } else { 1080 return 1; 1081 } 1082 } 1083 1084 /* 1085 ** This routine is designed as an xFunc for walkExprTree(). 1086 ** 1087 ** Resolve symbolic names into TK_COLUMN operators for the current 1088 ** node in the expression tree. Return 0 to continue the search down 1089 ** the tree or 2 to abort the tree walk. 1090 ** 1091 ** This routine also does error checking and name resolution for 1092 ** function names. The operator for aggregate functions is changed 1093 ** to TK_AGG_FUNCTION. 1094 */ 1095 static int nameResolverStep(void *pArg, Expr *pExpr){ 1096 NameContext *pNC = (NameContext*)pArg; 1097 Parse *pParse; 1098 1099 if( pExpr==0 ) return 1; 1100 assert( pNC!=0 ); 1101 pParse = pNC->pParse; 1102 1103 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1104 ExprSetProperty(pExpr, EP_Resolved); 1105 #ifndef NDEBUG 1106 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1107 SrcList *pSrcList = pNC->pSrcList; 1108 int i; 1109 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1110 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1111 } 1112 } 1113 #endif 1114 switch( pExpr->op ){ 1115 /* Double-quoted strings (ex: "abc") are used as identifiers if 1116 ** possible. Otherwise they remain as strings. Single-quoted 1117 ** strings (ex: 'abc') are always string literals. 1118 */ 1119 case TK_STRING: { 1120 if( pExpr->token.z[0]=='\'' ) break; 1121 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1122 } 1123 /* A lone identifier is the name of a column. 1124 */ 1125 case TK_ID: { 1126 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1127 return 1; 1128 } 1129 1130 /* A table name and column name: ID.ID 1131 ** Or a database, table and column: ID.ID.ID 1132 */ 1133 case TK_DOT: { 1134 Token *pColumn; 1135 Token *pTable; 1136 Token *pDb; 1137 Expr *pRight; 1138 1139 /* if( pSrcList==0 ) break; */ 1140 pRight = pExpr->pRight; 1141 if( pRight->op==TK_ID ){ 1142 pDb = 0; 1143 pTable = &pExpr->pLeft->token; 1144 pColumn = &pRight->token; 1145 }else{ 1146 assert( pRight->op==TK_DOT ); 1147 pDb = &pExpr->pLeft->token; 1148 pTable = &pRight->pLeft->token; 1149 pColumn = &pRight->pRight->token; 1150 } 1151 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1152 return 1; 1153 } 1154 1155 /* Resolve function names 1156 */ 1157 case TK_CONST_FUNC: 1158 case TK_FUNCTION: { 1159 ExprList *pList = pExpr->pList; /* The argument list */ 1160 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1161 int no_such_func = 0; /* True if no such function exists */ 1162 int wrong_num_args = 0; /* True if wrong number of arguments */ 1163 int is_agg = 0; /* True if is an aggregate function */ 1164 int i; 1165 int auth; /* Authorization to use the function */ 1166 int nId; /* Number of characters in function name */ 1167 const char *zId; /* The function name. */ 1168 FuncDef *pDef; /* Information about the function */ 1169 int enc = ENC(pParse->db); /* The database encoding */ 1170 1171 zId = (char*)pExpr->token.z; 1172 nId = pExpr->token.n; 1173 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1174 if( pDef==0 ){ 1175 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1176 if( pDef==0 ){ 1177 no_such_func = 1; 1178 }else{ 1179 wrong_num_args = 1; 1180 } 1181 }else{ 1182 is_agg = pDef->xFunc==0; 1183 } 1184 #ifndef SQLITE_OMIT_AUTHORIZATION 1185 if( pDef ){ 1186 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1187 if( auth!=SQLITE_OK ){ 1188 if( auth==SQLITE_DENY ){ 1189 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1190 pDef->zName); 1191 pNC->nErr++; 1192 } 1193 pExpr->op = TK_NULL; 1194 return 1; 1195 } 1196 } 1197 #endif 1198 if( is_agg && !pNC->allowAgg ){ 1199 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1200 pNC->nErr++; 1201 is_agg = 0; 1202 }else if( no_such_func ){ 1203 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1204 pNC->nErr++; 1205 }else if( wrong_num_args ){ 1206 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1207 nId, zId); 1208 pNC->nErr++; 1209 } 1210 if( is_agg ){ 1211 pExpr->op = TK_AGG_FUNCTION; 1212 pNC->hasAgg = 1; 1213 } 1214 if( is_agg ) pNC->allowAgg = 0; 1215 for(i=0; pNC->nErr==0 && i<n; i++){ 1216 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1217 } 1218 if( is_agg ) pNC->allowAgg = 1; 1219 /* FIX ME: Compute pExpr->affinity based on the expected return 1220 ** type of the function 1221 */ 1222 return is_agg; 1223 } 1224 #ifndef SQLITE_OMIT_SUBQUERY 1225 case TK_SELECT: 1226 case TK_EXISTS: 1227 #endif 1228 case TK_IN: { 1229 if( pExpr->pSelect ){ 1230 int nRef = pNC->nRef; 1231 #ifndef SQLITE_OMIT_CHECK 1232 if( pNC->isCheck ){ 1233 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1234 } 1235 #endif 1236 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1237 assert( pNC->nRef>=nRef ); 1238 if( nRef!=pNC->nRef ){ 1239 ExprSetProperty(pExpr, EP_VarSelect); 1240 } 1241 } 1242 break; 1243 } 1244 #ifndef SQLITE_OMIT_CHECK 1245 case TK_VARIABLE: { 1246 if( pNC->isCheck ){ 1247 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1248 } 1249 break; 1250 } 1251 #endif 1252 } 1253 return 0; 1254 } 1255 1256 /* 1257 ** This routine walks an expression tree and resolves references to 1258 ** table columns. Nodes of the form ID.ID or ID resolve into an 1259 ** index to the table in the table list and a column offset. The 1260 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1261 ** value is changed to the index of the referenced table in pTabList 1262 ** plus the "base" value. The base value will ultimately become the 1263 ** VDBE cursor number for a cursor that is pointing into the referenced 1264 ** table. The Expr.iColumn value is changed to the index of the column 1265 ** of the referenced table. The Expr.iColumn value for the special 1266 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1267 ** alias for ROWID. 1268 ** 1269 ** Also resolve function names and check the functions for proper 1270 ** usage. Make sure all function names are recognized and all functions 1271 ** have the correct number of arguments. Leave an error message 1272 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1273 ** 1274 ** If the expression contains aggregate functions then set the EP_Agg 1275 ** property on the expression. 1276 */ 1277 int sqlite3ExprResolveNames( 1278 NameContext *pNC, /* Namespace to resolve expressions in. */ 1279 Expr *pExpr /* The expression to be analyzed. */ 1280 ){ 1281 int savedHasAgg; 1282 if( pExpr==0 ) return 0; 1283 savedHasAgg = pNC->hasAgg; 1284 pNC->hasAgg = 0; 1285 walkExprTree(pExpr, nameResolverStep, pNC); 1286 if( pNC->nErr>0 ){ 1287 ExprSetProperty(pExpr, EP_Error); 1288 } 1289 if( pNC->hasAgg ){ 1290 ExprSetProperty(pExpr, EP_Agg); 1291 }else if( savedHasAgg ){ 1292 pNC->hasAgg = 1; 1293 } 1294 return ExprHasProperty(pExpr, EP_Error); 1295 } 1296 1297 /* 1298 ** A pointer instance of this structure is used to pass information 1299 ** through walkExprTree into codeSubqueryStep(). 1300 */ 1301 typedef struct QueryCoder QueryCoder; 1302 struct QueryCoder { 1303 Parse *pParse; /* The parsing context */ 1304 NameContext *pNC; /* Namespace of first enclosing query */ 1305 }; 1306 1307 1308 /* 1309 ** Generate code for scalar subqueries used as an expression 1310 ** and IN operators. Examples: 1311 ** 1312 ** (SELECT a FROM b) -- subquery 1313 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1314 ** x IN (4,5,11) -- IN operator with list on right-hand side 1315 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1316 ** 1317 ** The pExpr parameter describes the expression that contains the IN 1318 ** operator or subquery. 1319 */ 1320 #ifndef SQLITE_OMIT_SUBQUERY 1321 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1322 int testAddr = 0; /* One-time test address */ 1323 Vdbe *v = sqlite3GetVdbe(pParse); 1324 if( v==0 ) return; 1325 1326 /* This code must be run in its entirety every time it is encountered 1327 ** if any of the following is true: 1328 ** 1329 ** * The right-hand side is a correlated subquery 1330 ** * The right-hand side is an expression list containing variables 1331 ** * We are inside a trigger 1332 ** 1333 ** If all of the above are false, then we can run this code just once 1334 ** save the results, and reuse the same result on subsequent invocations. 1335 */ 1336 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1337 int mem = pParse->nMem++; 1338 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1339 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1340 assert( testAddr>0 || sqlite3MallocFailed() ); 1341 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1342 } 1343 1344 switch( pExpr->op ){ 1345 case TK_IN: { 1346 char affinity; 1347 KeyInfo keyInfo; 1348 int addr; /* Address of OP_OpenEphemeral instruction */ 1349 1350 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1351 1352 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1353 ** expression it is handled the same way. A virtual table is 1354 ** filled with single-field index keys representing the results 1355 ** from the SELECT or the <exprlist>. 1356 ** 1357 ** If the 'x' expression is a column value, or the SELECT... 1358 ** statement returns a column value, then the affinity of that 1359 ** column is used to build the index keys. If both 'x' and the 1360 ** SELECT... statement are columns, then numeric affinity is used 1361 ** if either column has NUMERIC or INTEGER affinity. If neither 1362 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1363 ** is used. 1364 */ 1365 pExpr->iTable = pParse->nTab++; 1366 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); 1367 memset(&keyInfo, 0, sizeof(keyInfo)); 1368 keyInfo.nField = 1; 1369 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1370 1371 if( pExpr->pSelect ){ 1372 /* Case 1: expr IN (SELECT ...) 1373 ** 1374 ** Generate code to write the results of the select into the temporary 1375 ** table allocated and opened above. 1376 */ 1377 int iParm = pExpr->iTable + (((int)affinity)<<16); 1378 ExprList *pEList; 1379 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1380 sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); 1381 pEList = pExpr->pSelect->pEList; 1382 if( pEList && pEList->nExpr>0 ){ 1383 keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, 1384 pEList->a[0].pExpr); 1385 } 1386 }else if( pExpr->pList ){ 1387 /* Case 2: expr IN (exprlist) 1388 ** 1389 ** For each expression, build an index key from the evaluation and 1390 ** store it in the temporary table. If <expr> is a column, then use 1391 ** that columns affinity when building index keys. If <expr> is not 1392 ** a column, use numeric affinity. 1393 */ 1394 int i; 1395 ExprList *pList = pExpr->pList; 1396 struct ExprList_item *pItem; 1397 1398 if( !affinity ){ 1399 affinity = SQLITE_AFF_NONE; 1400 } 1401 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1402 1403 /* Loop through each expression in <exprlist>. */ 1404 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1405 Expr *pE2 = pItem->pExpr; 1406 1407 /* If the expression is not constant then we will need to 1408 ** disable the test that was generated above that makes sure 1409 ** this code only executes once. Because for a non-constant 1410 ** expression we need to rerun this code each time. 1411 */ 1412 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1413 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); 1414 testAddr = 0; 1415 } 1416 1417 /* Evaluate the expression and insert it into the temp table */ 1418 sqlite3ExprCode(pParse, pE2); 1419 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1420 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1421 } 1422 } 1423 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1424 break; 1425 } 1426 1427 case TK_EXISTS: 1428 case TK_SELECT: { 1429 /* This has to be a scalar SELECT. Generate code to put the 1430 ** value of this select in a memory cell and record the number 1431 ** of the memory cell in iColumn. 1432 */ 1433 static const Token one = { (u8*)"1", 0, 1 }; 1434 Select *pSel; 1435 int iMem; 1436 int sop; 1437 1438 pExpr->iColumn = iMem = pParse->nMem++; 1439 pSel = pExpr->pSelect; 1440 if( pExpr->op==TK_SELECT ){ 1441 sop = SRT_Mem; 1442 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); 1443 VdbeComment((v, "# Init subquery result")); 1444 }else{ 1445 sop = SRT_Exists; 1446 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); 1447 VdbeComment((v, "# Init EXISTS result")); 1448 } 1449 sqlite3ExprDelete(pSel->pLimit); 1450 pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one); 1451 sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0); 1452 break; 1453 } 1454 } 1455 1456 if( testAddr ){ 1457 sqlite3VdbeJumpHere(v, testAddr); 1458 } 1459 return; 1460 } 1461 #endif /* SQLITE_OMIT_SUBQUERY */ 1462 1463 /* 1464 ** Generate an instruction that will put the integer describe by 1465 ** text z[0..n-1] on the stack. 1466 */ 1467 static void codeInteger(Vdbe *v, const char *z, int n){ 1468 int i; 1469 if( sqlite3GetInt32(z, &i) ){ 1470 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1471 }else if( sqlite3FitsIn64Bits(z) ){ 1472 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); 1473 }else{ 1474 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); 1475 } 1476 } 1477 1478 /* 1479 ** Generate code into the current Vdbe to evaluate the given 1480 ** expression and leave the result on the top of stack. 1481 ** 1482 ** This code depends on the fact that certain token values (ex: TK_EQ) 1483 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1484 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1485 ** the make process cause these values to align. Assert()s in the code 1486 ** below verify that the numbers are aligned correctly. 1487 */ 1488 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1489 Vdbe *v = pParse->pVdbe; 1490 int op; 1491 int stackChng = 1; /* Amount of change to stack depth */ 1492 1493 if( v==0 ) return; 1494 if( pExpr==0 ){ 1495 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1496 return; 1497 } 1498 op = pExpr->op; 1499 switch( op ){ 1500 case TK_AGG_COLUMN: { 1501 AggInfo *pAggInfo = pExpr->pAggInfo; 1502 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1503 if( !pAggInfo->directMode ){ 1504 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1505 break; 1506 }else if( pAggInfo->useSortingIdx ){ 1507 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1508 pCol->iSorterColumn); 1509 break; 1510 } 1511 /* Otherwise, fall thru into the TK_COLUMN case */ 1512 } 1513 case TK_COLUMN: { 1514 if( pExpr->iTable<0 ){ 1515 /* This only happens when coding check constraints */ 1516 assert( pParse->ckOffset>0 ); 1517 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); 1518 }else if( pExpr->iColumn>=0 ){ 1519 Table *pTab = pExpr->pTab; 1520 int iCol = pExpr->iColumn; 1521 int op = (pTab && IsVirtual(pTab)) ? OP_VColumn : OP_Column; 1522 sqlite3VdbeAddOp(v, op, pExpr->iTable, iCol); 1523 sqlite3ColumnDefault(v, pTab, iCol); 1524 #ifndef SQLITE_OMIT_FLOATING_POINT 1525 if( pTab && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 1526 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); 1527 } 1528 #endif 1529 }else{ 1530 Table *pTab = pExpr->pTab; 1531 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1532 sqlite3VdbeAddOp(v, op, pExpr->iTable, 0); 1533 } 1534 break; 1535 } 1536 case TK_INTEGER: { 1537 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); 1538 break; 1539 } 1540 case TK_FLOAT: 1541 case TK_STRING: { 1542 assert( TK_FLOAT==OP_Real ); 1543 assert( TK_STRING==OP_String8 ); 1544 sqlite3DequoteExpr(pExpr); 1545 sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); 1546 break; 1547 } 1548 case TK_NULL: { 1549 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1550 break; 1551 } 1552 #ifndef SQLITE_OMIT_BLOB_LITERAL 1553 case TK_BLOB: { 1554 int n; 1555 const char *z; 1556 assert( TK_BLOB==OP_HexBlob ); 1557 n = pExpr->token.n - 3; 1558 z = (char*)pExpr->token.z + 2; 1559 assert( n>=0 ); 1560 if( n==0 ){ 1561 z = ""; 1562 } 1563 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1564 break; 1565 } 1566 #endif 1567 case TK_VARIABLE: { 1568 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1569 if( pExpr->token.n>1 ){ 1570 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); 1571 } 1572 break; 1573 } 1574 case TK_REGISTER: { 1575 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1576 break; 1577 } 1578 #ifndef SQLITE_OMIT_CAST 1579 case TK_CAST: { 1580 /* Expressions of the form: CAST(pLeft AS token) */ 1581 int aff, to_op; 1582 sqlite3ExprCode(pParse, pExpr->pLeft); 1583 aff = sqlite3AffinityType(&pExpr->token); 1584 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 1585 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 1586 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 1587 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 1588 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 1589 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 1590 sqlite3VdbeAddOp(v, to_op, 0, 0); 1591 stackChng = 0; 1592 break; 1593 } 1594 #endif /* SQLITE_OMIT_CAST */ 1595 case TK_LT: 1596 case TK_LE: 1597 case TK_GT: 1598 case TK_GE: 1599 case TK_NE: 1600 case TK_EQ: { 1601 assert( TK_LT==OP_Lt ); 1602 assert( TK_LE==OP_Le ); 1603 assert( TK_GT==OP_Gt ); 1604 assert( TK_GE==OP_Ge ); 1605 assert( TK_EQ==OP_Eq ); 1606 assert( TK_NE==OP_Ne ); 1607 sqlite3ExprCode(pParse, pExpr->pLeft); 1608 sqlite3ExprCode(pParse, pExpr->pRight); 1609 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1610 stackChng = -1; 1611 break; 1612 } 1613 case TK_AND: 1614 case TK_OR: 1615 case TK_PLUS: 1616 case TK_STAR: 1617 case TK_MINUS: 1618 case TK_REM: 1619 case TK_BITAND: 1620 case TK_BITOR: 1621 case TK_SLASH: 1622 case TK_LSHIFT: 1623 case TK_RSHIFT: 1624 case TK_CONCAT: { 1625 assert( TK_AND==OP_And ); 1626 assert( TK_OR==OP_Or ); 1627 assert( TK_PLUS==OP_Add ); 1628 assert( TK_MINUS==OP_Subtract ); 1629 assert( TK_REM==OP_Remainder ); 1630 assert( TK_BITAND==OP_BitAnd ); 1631 assert( TK_BITOR==OP_BitOr ); 1632 assert( TK_SLASH==OP_Divide ); 1633 assert( TK_LSHIFT==OP_ShiftLeft ); 1634 assert( TK_RSHIFT==OP_ShiftRight ); 1635 assert( TK_CONCAT==OP_Concat ); 1636 sqlite3ExprCode(pParse, pExpr->pLeft); 1637 sqlite3ExprCode(pParse, pExpr->pRight); 1638 sqlite3VdbeAddOp(v, op, 0, 0); 1639 stackChng = -1; 1640 break; 1641 } 1642 case TK_UMINUS: { 1643 Expr *pLeft = pExpr->pLeft; 1644 assert( pLeft ); 1645 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1646 Token *p = &pLeft->token; 1647 char *z = sqlite3MPrintf("-%.*s", p->n, p->z); 1648 if( pLeft->op==TK_FLOAT ){ 1649 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); 1650 }else{ 1651 codeInteger(v, z, p->n+1); 1652 } 1653 sqliteFree(z); 1654 break; 1655 } 1656 /* Fall through into TK_NOT */ 1657 } 1658 case TK_BITNOT: 1659 case TK_NOT: { 1660 assert( TK_BITNOT==OP_BitNot ); 1661 assert( TK_NOT==OP_Not ); 1662 sqlite3ExprCode(pParse, pExpr->pLeft); 1663 sqlite3VdbeAddOp(v, op, 0, 0); 1664 stackChng = 0; 1665 break; 1666 } 1667 case TK_ISNULL: 1668 case TK_NOTNULL: { 1669 int dest; 1670 assert( TK_ISNULL==OP_IsNull ); 1671 assert( TK_NOTNULL==OP_NotNull ); 1672 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1673 sqlite3ExprCode(pParse, pExpr->pLeft); 1674 dest = sqlite3VdbeCurrentAddr(v) + 2; 1675 sqlite3VdbeAddOp(v, op, 1, dest); 1676 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1677 stackChng = 0; 1678 break; 1679 } 1680 case TK_AGG_FUNCTION: { 1681 AggInfo *pInfo = pExpr->pAggInfo; 1682 if( pInfo==0 ){ 1683 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 1684 &pExpr->span); 1685 }else{ 1686 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 1687 } 1688 break; 1689 } 1690 case TK_CONST_FUNC: 1691 case TK_FUNCTION: { 1692 ExprList *pList = pExpr->pList; 1693 int nExpr = pList ? pList->nExpr : 0; 1694 FuncDef *pDef; 1695 int nId; 1696 const char *zId; 1697 int constMask = 0; 1698 int i; 1699 u8 enc = ENC(pParse->db); 1700 CollSeq *pColl = 0; 1701 zId = (char*)pExpr->token.z; 1702 nId = pExpr->token.n; 1703 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1704 assert( pDef!=0 ); 1705 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1706 #ifndef SQLITE_OMIT_VIRTUALTABLE 1707 /* Possibly overload the function if the first argument is 1708 ** a virtual table column. 1709 ** 1710 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 1711 ** second argument, not the first, as the argument to test to 1712 ** see if it is a column in a virtual table. This is done because 1713 ** the left operand of infix functions (the operand we want to 1714 ** control overloading) ends up as the second argument to the 1715 ** function. The expression "A glob B" is equivalent to 1716 ** "glob(B,A). We want to use the A in "A glob B" to test 1717 ** for function overloading. But we use the B term in "glob(B,A)". 1718 */ 1719 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 1720 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr); 1721 }else if( nExpr>0 ){ 1722 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr); 1723 } 1724 #endif 1725 for(i=0; i<nExpr && i<32; i++){ 1726 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 1727 constMask |= (1<<i); 1728 } 1729 if( pDef->needCollSeq && !pColl ){ 1730 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1731 } 1732 } 1733 if( pDef->needCollSeq ){ 1734 if( !pColl ) pColl = pParse->db->pDfltColl; 1735 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 1736 } 1737 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 1738 stackChng = 1-nExpr; 1739 break; 1740 } 1741 #ifndef SQLITE_OMIT_SUBQUERY 1742 case TK_EXISTS: 1743 case TK_SELECT: { 1744 if( pExpr->iColumn==0 ){ 1745 sqlite3CodeSubselect(pParse, pExpr); 1746 } 1747 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 1748 VdbeComment((v, "# load subquery result")); 1749 break; 1750 } 1751 case TK_IN: { 1752 int addr; 1753 char affinity; 1754 int ckOffset = pParse->ckOffset; 1755 sqlite3CodeSubselect(pParse, pExpr); 1756 1757 /* Figure out the affinity to use to create a key from the results 1758 ** of the expression. affinityStr stores a static string suitable for 1759 ** P3 of OP_MakeRecord. 1760 */ 1761 affinity = comparisonAffinity(pExpr); 1762 1763 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1764 pParse->ckOffset = ckOffset+1; 1765 1766 /* Code the <expr> from "<expr> IN (...)". The temporary table 1767 ** pExpr->iTable contains the values that make up the (...) set. 1768 */ 1769 sqlite3ExprCode(pParse, pExpr->pLeft); 1770 addr = sqlite3VdbeCurrentAddr(v); 1771 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 1772 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 1773 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1774 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 1775 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 1776 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 1777 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 1778 1779 break; 1780 } 1781 #endif 1782 case TK_BETWEEN: { 1783 Expr *pLeft = pExpr->pLeft; 1784 struct ExprList_item *pLItem = pExpr->pList->a; 1785 Expr *pRight = pLItem->pExpr; 1786 sqlite3ExprCode(pParse, pLeft); 1787 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1788 sqlite3ExprCode(pParse, pRight); 1789 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 1790 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 1791 pLItem++; 1792 pRight = pLItem->pExpr; 1793 sqlite3ExprCode(pParse, pRight); 1794 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 1795 sqlite3VdbeAddOp(v, OP_And, 0, 0); 1796 break; 1797 } 1798 case TK_UPLUS: 1799 case TK_AS: { 1800 sqlite3ExprCode(pParse, pExpr->pLeft); 1801 stackChng = 0; 1802 break; 1803 } 1804 case TK_CASE: { 1805 int expr_end_label; 1806 int jumpInst; 1807 int nExpr; 1808 int i; 1809 ExprList *pEList; 1810 struct ExprList_item *aListelem; 1811 1812 assert(pExpr->pList); 1813 assert((pExpr->pList->nExpr % 2) == 0); 1814 assert(pExpr->pList->nExpr > 0); 1815 pEList = pExpr->pList; 1816 aListelem = pEList->a; 1817 nExpr = pEList->nExpr; 1818 expr_end_label = sqlite3VdbeMakeLabel(v); 1819 if( pExpr->pLeft ){ 1820 sqlite3ExprCode(pParse, pExpr->pLeft); 1821 } 1822 for(i=0; i<nExpr; i=i+2){ 1823 sqlite3ExprCode(pParse, aListelem[i].pExpr); 1824 if( pExpr->pLeft ){ 1825 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 1826 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 1827 OP_Ne, 0, 1); 1828 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1829 }else{ 1830 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 1831 } 1832 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 1833 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 1834 sqlite3VdbeJumpHere(v, jumpInst); 1835 } 1836 if( pExpr->pLeft ){ 1837 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1838 } 1839 if( pExpr->pRight ){ 1840 sqlite3ExprCode(pParse, pExpr->pRight); 1841 }else{ 1842 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1843 } 1844 sqlite3VdbeResolveLabel(v, expr_end_label); 1845 break; 1846 } 1847 #ifndef SQLITE_OMIT_TRIGGER 1848 case TK_RAISE: { 1849 if( !pParse->trigStack ){ 1850 sqlite3ErrorMsg(pParse, 1851 "RAISE() may only be used within a trigger-program"); 1852 return; 1853 } 1854 if( pExpr->iColumn!=OE_Ignore ){ 1855 assert( pExpr->iColumn==OE_Rollback || 1856 pExpr->iColumn == OE_Abort || 1857 pExpr->iColumn == OE_Fail ); 1858 sqlite3DequoteExpr(pExpr); 1859 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 1860 (char*)pExpr->token.z, pExpr->token.n); 1861 } else { 1862 assert( pExpr->iColumn == OE_Ignore ); 1863 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 1864 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 1865 VdbeComment((v, "# raise(IGNORE)")); 1866 } 1867 stackChng = 0; 1868 break; 1869 } 1870 #endif 1871 } 1872 1873 if( pParse->ckOffset ){ 1874 pParse->ckOffset += stackChng; 1875 assert( pParse->ckOffset ); 1876 } 1877 } 1878 1879 #ifndef SQLITE_OMIT_TRIGGER 1880 /* 1881 ** Generate code that evalutes the given expression and leaves the result 1882 ** on the stack. See also sqlite3ExprCode(). 1883 ** 1884 ** This routine might also cache the result and modify the pExpr tree 1885 ** so that it will make use of the cached result on subsequent evaluations 1886 ** rather than evaluate the whole expression again. Trivial expressions are 1887 ** not cached. If the expression is cached, its result is stored in a 1888 ** memory location. 1889 */ 1890 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 1891 Vdbe *v = pParse->pVdbe; 1892 int iMem; 1893 int addr1, addr2; 1894 if( v==0 ) return; 1895 addr1 = sqlite3VdbeCurrentAddr(v); 1896 sqlite3ExprCode(pParse, pExpr); 1897 addr2 = sqlite3VdbeCurrentAddr(v); 1898 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 1899 iMem = pExpr->iTable = pParse->nMem++; 1900 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 1901 pExpr->op = TK_REGISTER; 1902 } 1903 } 1904 #endif 1905 1906 /* 1907 ** Generate code that pushes the value of every element of the given 1908 ** expression list onto the stack. 1909 ** 1910 ** Return the number of elements pushed onto the stack. 1911 */ 1912 int sqlite3ExprCodeExprList( 1913 Parse *pParse, /* Parsing context */ 1914 ExprList *pList /* The expression list to be coded */ 1915 ){ 1916 struct ExprList_item *pItem; 1917 int i, n; 1918 if( pList==0 ) return 0; 1919 n = pList->nExpr; 1920 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 1921 sqlite3ExprCode(pParse, pItem->pExpr); 1922 } 1923 return n; 1924 } 1925 1926 /* 1927 ** Generate code for a boolean expression such that a jump is made 1928 ** to the label "dest" if the expression is true but execution 1929 ** continues straight thru if the expression is false. 1930 ** 1931 ** If the expression evaluates to NULL (neither true nor false), then 1932 ** take the jump if the jumpIfNull flag is true. 1933 ** 1934 ** This code depends on the fact that certain token values (ex: TK_EQ) 1935 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1936 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1937 ** the make process cause these values to align. Assert()s in the code 1938 ** below verify that the numbers are aligned correctly. 1939 */ 1940 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 1941 Vdbe *v = pParse->pVdbe; 1942 int op = 0; 1943 int ckOffset = pParse->ckOffset; 1944 if( v==0 || pExpr==0 ) return; 1945 op = pExpr->op; 1946 switch( op ){ 1947 case TK_AND: { 1948 int d2 = sqlite3VdbeMakeLabel(v); 1949 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 1950 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1951 sqlite3VdbeResolveLabel(v, d2); 1952 break; 1953 } 1954 case TK_OR: { 1955 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 1956 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1957 break; 1958 } 1959 case TK_NOT: { 1960 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 1961 break; 1962 } 1963 case TK_LT: 1964 case TK_LE: 1965 case TK_GT: 1966 case TK_GE: 1967 case TK_NE: 1968 case TK_EQ: { 1969 assert( TK_LT==OP_Lt ); 1970 assert( TK_LE==OP_Le ); 1971 assert( TK_GT==OP_Gt ); 1972 assert( TK_GE==OP_Ge ); 1973 assert( TK_EQ==OP_Eq ); 1974 assert( TK_NE==OP_Ne ); 1975 sqlite3ExprCode(pParse, pExpr->pLeft); 1976 sqlite3ExprCode(pParse, pExpr->pRight); 1977 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 1978 break; 1979 } 1980 case TK_ISNULL: 1981 case TK_NOTNULL: { 1982 assert( TK_ISNULL==OP_IsNull ); 1983 assert( TK_NOTNULL==OP_NotNull ); 1984 sqlite3ExprCode(pParse, pExpr->pLeft); 1985 sqlite3VdbeAddOp(v, op, 1, dest); 1986 break; 1987 } 1988 case TK_BETWEEN: { 1989 /* The expression "x BETWEEN y AND z" is implemented as: 1990 ** 1991 ** 1 IF (x < y) GOTO 3 1992 ** 2 IF (x <= z) GOTO <dest> 1993 ** 3 ... 1994 */ 1995 int addr; 1996 Expr *pLeft = pExpr->pLeft; 1997 Expr *pRight = pExpr->pList->a[0].pExpr; 1998 sqlite3ExprCode(pParse, pLeft); 1999 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2000 sqlite3ExprCode(pParse, pRight); 2001 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 2002 2003 pRight = pExpr->pList->a[1].pExpr; 2004 sqlite3ExprCode(pParse, pRight); 2005 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 2006 2007 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 2008 sqlite3VdbeJumpHere(v, addr); 2009 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2010 break; 2011 } 2012 default: { 2013 sqlite3ExprCode(pParse, pExpr); 2014 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 2015 break; 2016 } 2017 } 2018 pParse->ckOffset = ckOffset; 2019 } 2020 2021 /* 2022 ** Generate code for a boolean expression such that a jump is made 2023 ** to the label "dest" if the expression is false but execution 2024 ** continues straight thru if the expression is true. 2025 ** 2026 ** If the expression evaluates to NULL (neither true nor false) then 2027 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 2028 */ 2029 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2030 Vdbe *v = pParse->pVdbe; 2031 int op = 0; 2032 int ckOffset = pParse->ckOffset; 2033 if( v==0 || pExpr==0 ) return; 2034 2035 /* The value of pExpr->op and op are related as follows: 2036 ** 2037 ** pExpr->op op 2038 ** --------- ---------- 2039 ** TK_ISNULL OP_NotNull 2040 ** TK_NOTNULL OP_IsNull 2041 ** TK_NE OP_Eq 2042 ** TK_EQ OP_Ne 2043 ** TK_GT OP_Le 2044 ** TK_LE OP_Gt 2045 ** TK_GE OP_Lt 2046 ** TK_LT OP_Ge 2047 ** 2048 ** For other values of pExpr->op, op is undefined and unused. 2049 ** The value of TK_ and OP_ constants are arranged such that we 2050 ** can compute the mapping above using the following expression. 2051 ** Assert()s verify that the computation is correct. 2052 */ 2053 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2054 2055 /* Verify correct alignment of TK_ and OP_ constants 2056 */ 2057 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2058 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2059 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2060 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2061 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2062 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2063 assert( pExpr->op!=TK_GT || op==OP_Le ); 2064 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2065 2066 switch( pExpr->op ){ 2067 case TK_AND: { 2068 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2069 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2070 break; 2071 } 2072 case TK_OR: { 2073 int d2 = sqlite3VdbeMakeLabel(v); 2074 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 2075 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2076 sqlite3VdbeResolveLabel(v, d2); 2077 break; 2078 } 2079 case TK_NOT: { 2080 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2081 break; 2082 } 2083 case TK_LT: 2084 case TK_LE: 2085 case TK_GT: 2086 case TK_GE: 2087 case TK_NE: 2088 case TK_EQ: { 2089 sqlite3ExprCode(pParse, pExpr->pLeft); 2090 sqlite3ExprCode(pParse, pExpr->pRight); 2091 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2092 break; 2093 } 2094 case TK_ISNULL: 2095 case TK_NOTNULL: { 2096 sqlite3ExprCode(pParse, pExpr->pLeft); 2097 sqlite3VdbeAddOp(v, op, 1, dest); 2098 break; 2099 } 2100 case TK_BETWEEN: { 2101 /* The expression is "x BETWEEN y AND z". It is implemented as: 2102 ** 2103 ** 1 IF (x >= y) GOTO 3 2104 ** 2 GOTO <dest> 2105 ** 3 IF (x > z) GOTO <dest> 2106 */ 2107 int addr; 2108 Expr *pLeft = pExpr->pLeft; 2109 Expr *pRight = pExpr->pList->a[0].pExpr; 2110 sqlite3ExprCode(pParse, pLeft); 2111 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2112 sqlite3ExprCode(pParse, pRight); 2113 addr = sqlite3VdbeCurrentAddr(v); 2114 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2115 2116 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2117 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2118 pRight = pExpr->pList->a[1].pExpr; 2119 sqlite3ExprCode(pParse, pRight); 2120 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2121 break; 2122 } 2123 default: { 2124 sqlite3ExprCode(pParse, pExpr); 2125 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2126 break; 2127 } 2128 } 2129 pParse->ckOffset = ckOffset; 2130 } 2131 2132 /* 2133 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2134 ** if they are identical and return FALSE if they differ in any way. 2135 */ 2136 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2137 int i; 2138 if( pA==0||pB==0 ){ 2139 return pB==pA; 2140 } 2141 if( pA->op!=pB->op ) return 0; 2142 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2143 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2144 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2145 if( pA->pList ){ 2146 if( pB->pList==0 ) return 0; 2147 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2148 for(i=0; i<pA->pList->nExpr; i++){ 2149 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2150 return 0; 2151 } 2152 } 2153 }else if( pB->pList ){ 2154 return 0; 2155 } 2156 if( pA->pSelect || pB->pSelect ) return 0; 2157 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2158 if( pA->token.z ){ 2159 if( pB->token.z==0 ) return 0; 2160 if( pB->token.n!=pA->token.n ) return 0; 2161 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 2162 return 0; 2163 } 2164 } 2165 return 1; 2166 } 2167 2168 2169 /* 2170 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2171 ** the new element. Return a negative number if malloc fails. 2172 */ 2173 static int addAggInfoColumn(AggInfo *pInfo){ 2174 int i; 2175 i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3); 2176 if( i<0 ){ 2177 return -1; 2178 } 2179 return i; 2180 } 2181 2182 /* 2183 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2184 ** the new element. Return a negative number if malloc fails. 2185 */ 2186 static int addAggInfoFunc(AggInfo *pInfo){ 2187 int i; 2188 i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2); 2189 if( i<0 ){ 2190 return -1; 2191 } 2192 return i; 2193 } 2194 2195 /* 2196 ** This is an xFunc for walkExprTree() used to implement 2197 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2198 ** for additional information. 2199 ** 2200 ** This routine analyzes the aggregate function at pExpr. 2201 */ 2202 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2203 int i; 2204 NameContext *pNC = (NameContext *)pArg; 2205 Parse *pParse = pNC->pParse; 2206 SrcList *pSrcList = pNC->pSrcList; 2207 AggInfo *pAggInfo = pNC->pAggInfo; 2208 2209 2210 switch( pExpr->op ){ 2211 case TK_AGG_COLUMN: 2212 case TK_COLUMN: { 2213 /* Check to see if the column is in one of the tables in the FROM 2214 ** clause of the aggregate query */ 2215 if( pSrcList ){ 2216 struct SrcList_item *pItem = pSrcList->a; 2217 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2218 struct AggInfo_col *pCol; 2219 if( pExpr->iTable==pItem->iCursor ){ 2220 /* If we reach this point, it means that pExpr refers to a table 2221 ** that is in the FROM clause of the aggregate query. 2222 ** 2223 ** Make an entry for the column in pAggInfo->aCol[] if there 2224 ** is not an entry there already. 2225 */ 2226 pCol = pAggInfo->aCol; 2227 for(i=0; i<pAggInfo->nColumn; i++, pCol++){ 2228 if( pCol->iTable==pExpr->iTable && 2229 pCol->iColumn==pExpr->iColumn ){ 2230 break; 2231 } 2232 } 2233 if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){ 2234 pCol = &pAggInfo->aCol[i]; 2235 pCol->iTable = pExpr->iTable; 2236 pCol->iColumn = pExpr->iColumn; 2237 pCol->iMem = pParse->nMem++; 2238 pCol->iSorterColumn = -1; 2239 pCol->pExpr = pExpr; 2240 if( pAggInfo->pGroupBy ){ 2241 int j, n; 2242 ExprList *pGB = pAggInfo->pGroupBy; 2243 struct ExprList_item *pTerm = pGB->a; 2244 n = pGB->nExpr; 2245 for(j=0; j<n; j++, pTerm++){ 2246 Expr *pE = pTerm->pExpr; 2247 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2248 pE->iColumn==pExpr->iColumn ){ 2249 pCol->iSorterColumn = j; 2250 break; 2251 } 2252 } 2253 } 2254 if( pCol->iSorterColumn<0 ){ 2255 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2256 } 2257 } 2258 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2259 ** because it was there before or because we just created it). 2260 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2261 ** pAggInfo->aCol[] entry. 2262 */ 2263 pExpr->pAggInfo = pAggInfo; 2264 pExpr->op = TK_AGG_COLUMN; 2265 pExpr->iAgg = i; 2266 break; 2267 } /* endif pExpr->iTable==pItem->iCursor */ 2268 } /* end loop over pSrcList */ 2269 } 2270 return 1; 2271 } 2272 case TK_AGG_FUNCTION: { 2273 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2274 ** to be ignored */ 2275 if( pNC->nDepth==0 ){ 2276 /* Check to see if pExpr is a duplicate of another aggregate 2277 ** function that is already in the pAggInfo structure 2278 */ 2279 struct AggInfo_func *pItem = pAggInfo->aFunc; 2280 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2281 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2282 break; 2283 } 2284 } 2285 if( i>=pAggInfo->nFunc ){ 2286 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2287 */ 2288 u8 enc = ENC(pParse->db); 2289 i = addAggInfoFunc(pAggInfo); 2290 if( i>=0 ){ 2291 pItem = &pAggInfo->aFunc[i]; 2292 pItem->pExpr = pExpr; 2293 pItem->iMem = pParse->nMem++; 2294 pItem->pFunc = sqlite3FindFunction(pParse->db, 2295 (char*)pExpr->token.z, pExpr->token.n, 2296 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2297 if( pExpr->flags & EP_Distinct ){ 2298 pItem->iDistinct = pParse->nTab++; 2299 }else{ 2300 pItem->iDistinct = -1; 2301 } 2302 } 2303 } 2304 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2305 */ 2306 pExpr->iAgg = i; 2307 pExpr->pAggInfo = pAggInfo; 2308 return 1; 2309 } 2310 } 2311 } 2312 2313 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2314 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2315 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2316 */ 2317 if( pExpr->pSelect ){ 2318 pNC->nDepth++; 2319 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2320 pNC->nDepth--; 2321 } 2322 return 0; 2323 } 2324 2325 /* 2326 ** Analyze the given expression looking for aggregate functions and 2327 ** for variables that need to be added to the pParse->aAgg[] array. 2328 ** Make additional entries to the pParse->aAgg[] array as necessary. 2329 ** 2330 ** This routine should only be called after the expression has been 2331 ** analyzed by sqlite3ExprResolveNames(). 2332 ** 2333 ** If errors are seen, leave an error message in zErrMsg and return 2334 ** the number of errors. 2335 */ 2336 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2337 int nErr = pNC->pParse->nErr; 2338 walkExprTree(pExpr, analyzeAggregate, pNC); 2339 return pNC->pParse->nErr - nErr; 2340 } 2341 2342 /* 2343 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2344 ** expression list. Return the number of errors. 2345 ** 2346 ** If an error is found, the analysis is cut short. 2347 */ 2348 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2349 struct ExprList_item *pItem; 2350 int i; 2351 int nErr = 0; 2352 if( pList ){ 2353 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2354 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2355 } 2356 } 2357 return nErr; 2358 } 2359