1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 if( pCollName->n>0 ){ 99 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 100 if( pNew ){ 101 pNew->pLeft = pExpr; 102 pNew->flags |= EP_Collate|EP_Skip; 103 pExpr = pNew; 104 } 105 } 106 return pExpr; 107 } 108 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 109 Token s; 110 assert( zC!=0 ); 111 sqlite3TokenInit(&s, (char*)zC); 112 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 113 } 114 115 /* 116 ** Skip over any TK_COLLATE operators. 117 */ 118 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 119 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 120 assert( pExpr->op==TK_COLLATE ); 121 pExpr = pExpr->pLeft; 122 } 123 return pExpr; 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators and/or any unlikely() 128 ** or likelihood() or likely() functions at the root of an 129 ** expression. 130 */ 131 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 132 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 133 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 134 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 135 assert( pExpr->x.pList->nExpr>0 ); 136 assert( pExpr->op==TK_FUNCTION ); 137 pExpr = pExpr->x.pList->a[0].pExpr; 138 }else{ 139 assert( pExpr->op==TK_COLLATE ); 140 pExpr = pExpr->pLeft; 141 } 142 } 143 return pExpr; 144 } 145 146 /* 147 ** Return the collation sequence for the expression pExpr. If 148 ** there is no defined collating sequence, return NULL. 149 ** 150 ** See also: sqlite3ExprNNCollSeq() 151 ** 152 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 153 ** default collation if pExpr has no defined collation. 154 ** 155 ** The collating sequence might be determined by a COLLATE operator 156 ** or by the presence of a column with a defined collating sequence. 157 ** COLLATE operators take first precedence. Left operands take 158 ** precedence over right operands. 159 */ 160 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 161 sqlite3 *db = pParse->db; 162 CollSeq *pColl = 0; 163 const Expr *p = pExpr; 164 while( p ){ 165 int op = p->op; 166 if( op==TK_REGISTER ) op = p->op2; 167 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 168 && p->y.pTab!=0 169 ){ 170 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 171 ** a TK_COLUMN but was previously evaluated and cached in a register */ 172 int j = p->iColumn; 173 if( j>=0 ){ 174 const char *zColl = p->y.pTab->aCol[j].zColl; 175 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 176 } 177 break; 178 } 179 if( op==TK_CAST || op==TK_UPLUS ){ 180 p = p->pLeft; 181 continue; 182 } 183 if( op==TK_VECTOR ){ 184 p = p->x.pList->a[0].pExpr; 185 continue; 186 } 187 if( op==TK_COLLATE ){ 188 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 189 break; 190 } 191 if( p->flags & EP_Collate ){ 192 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 193 p = p->pLeft; 194 }else{ 195 Expr *pNext = p->pRight; 196 /* The Expr.x union is never used at the same time as Expr.pRight */ 197 assert( p->x.pList==0 || p->pRight==0 ); 198 if( p->x.pList!=0 199 && !db->mallocFailed 200 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 201 ){ 202 int i; 203 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 204 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 205 pNext = p->x.pList->a[i].pExpr; 206 break; 207 } 208 } 209 } 210 p = pNext; 211 } 212 }else{ 213 break; 214 } 215 } 216 if( sqlite3CheckCollSeq(pParse, pColl) ){ 217 pColl = 0; 218 } 219 return pColl; 220 } 221 222 /* 223 ** Return the collation sequence for the expression pExpr. If 224 ** there is no defined collating sequence, return a pointer to the 225 ** defautl collation sequence. 226 ** 227 ** See also: sqlite3ExprCollSeq() 228 ** 229 ** The sqlite3ExprCollSeq() routine works the same except that it 230 ** returns NULL if there is no defined collation. 231 */ 232 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 233 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 234 if( p==0 ) p = pParse->db->pDfltColl; 235 assert( p!=0 ); 236 return p; 237 } 238 239 /* 240 ** Return TRUE if the two expressions have equivalent collating sequences. 241 */ 242 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 243 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 244 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 245 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 246 } 247 248 /* 249 ** pExpr is an operand of a comparison operator. aff2 is the 250 ** type affinity of the other operand. This routine returns the 251 ** type affinity that should be used for the comparison operator. 252 */ 253 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 254 char aff1 = sqlite3ExprAffinity(pExpr); 255 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 256 /* Both sides of the comparison are columns. If one has numeric 257 ** affinity, use that. Otherwise use no affinity. 258 */ 259 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 260 return SQLITE_AFF_NUMERIC; 261 }else{ 262 return SQLITE_AFF_BLOB; 263 } 264 }else{ 265 /* One side is a column, the other is not. Use the columns affinity. */ 266 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 267 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 268 } 269 } 270 271 /* 272 ** pExpr is a comparison operator. Return the type affinity that should 273 ** be applied to both operands prior to doing the comparison. 274 */ 275 static char comparisonAffinity(const Expr *pExpr){ 276 char aff; 277 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 278 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 279 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 280 assert( pExpr->pLeft ); 281 aff = sqlite3ExprAffinity(pExpr->pLeft); 282 if( pExpr->pRight ){ 283 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 284 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 285 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 286 }else if( aff==0 ){ 287 aff = SQLITE_AFF_BLOB; 288 } 289 return aff; 290 } 291 292 /* 293 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 294 ** idx_affinity is the affinity of an indexed column. Return true 295 ** if the index with affinity idx_affinity may be used to implement 296 ** the comparison in pExpr. 297 */ 298 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 299 char aff = comparisonAffinity(pExpr); 300 if( aff<SQLITE_AFF_TEXT ){ 301 return 1; 302 } 303 if( aff==SQLITE_AFF_TEXT ){ 304 return idx_affinity==SQLITE_AFF_TEXT; 305 } 306 return sqlite3IsNumericAffinity(idx_affinity); 307 } 308 309 /* 310 ** Return the P5 value that should be used for a binary comparison 311 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 312 */ 313 static u8 binaryCompareP5( 314 const Expr *pExpr1, /* Left operand */ 315 const Expr *pExpr2, /* Right operand */ 316 int jumpIfNull /* Extra flags added to P5 */ 317 ){ 318 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 319 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 320 return aff; 321 } 322 323 /* 324 ** Return a pointer to the collation sequence that should be used by 325 ** a binary comparison operator comparing pLeft and pRight. 326 ** 327 ** If the left hand expression has a collating sequence type, then it is 328 ** used. Otherwise the collation sequence for the right hand expression 329 ** is used, or the default (BINARY) if neither expression has a collating 330 ** type. 331 ** 332 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 333 ** it is not considered. 334 */ 335 CollSeq *sqlite3BinaryCompareCollSeq( 336 Parse *pParse, 337 const Expr *pLeft, 338 const Expr *pRight 339 ){ 340 CollSeq *pColl; 341 assert( pLeft ); 342 if( pLeft->flags & EP_Collate ){ 343 pColl = sqlite3ExprCollSeq(pParse, pLeft); 344 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 345 pColl = sqlite3ExprCollSeq(pParse, pRight); 346 }else{ 347 pColl = sqlite3ExprCollSeq(pParse, pLeft); 348 if( !pColl ){ 349 pColl = sqlite3ExprCollSeq(pParse, pRight); 350 } 351 } 352 return pColl; 353 } 354 355 /* Expresssion p is a comparison operator. Return a collation sequence 356 ** appropriate for the comparison operator. 357 ** 358 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 359 ** However, if the OP_Commuted flag is set, then the order of the operands 360 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 361 ** correct collating sequence is found. 362 */ 363 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 364 if( ExprHasProperty(p, EP_Commuted) ){ 365 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 366 }else{ 367 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 368 } 369 } 370 371 /* 372 ** Generate code for a comparison operator. 373 */ 374 static int codeCompare( 375 Parse *pParse, /* The parsing (and code generating) context */ 376 Expr *pLeft, /* The left operand */ 377 Expr *pRight, /* The right operand */ 378 int opcode, /* The comparison opcode */ 379 int in1, int in2, /* Register holding operands */ 380 int dest, /* Jump here if true. */ 381 int jumpIfNull, /* If true, jump if either operand is NULL */ 382 int isCommuted /* The comparison has been commuted */ 383 ){ 384 int p5; 385 int addr; 386 CollSeq *p4; 387 388 if( pParse->nErr ) return 0; 389 if( isCommuted ){ 390 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 391 }else{ 392 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 393 } 394 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 395 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 396 (void*)p4, P4_COLLSEQ); 397 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 398 return addr; 399 } 400 401 /* 402 ** Return true if expression pExpr is a vector, or false otherwise. 403 ** 404 ** A vector is defined as any expression that results in two or more 405 ** columns of result. Every TK_VECTOR node is an vector because the 406 ** parser will not generate a TK_VECTOR with fewer than two entries. 407 ** But a TK_SELECT might be either a vector or a scalar. It is only 408 ** considered a vector if it has two or more result columns. 409 */ 410 int sqlite3ExprIsVector(Expr *pExpr){ 411 return sqlite3ExprVectorSize(pExpr)>1; 412 } 413 414 /* 415 ** If the expression passed as the only argument is of type TK_VECTOR 416 ** return the number of expressions in the vector. Or, if the expression 417 ** is a sub-select, return the number of columns in the sub-select. For 418 ** any other type of expression, return 1. 419 */ 420 int sqlite3ExprVectorSize(Expr *pExpr){ 421 u8 op = pExpr->op; 422 if( op==TK_REGISTER ) op = pExpr->op2; 423 if( op==TK_VECTOR ){ 424 return pExpr->x.pList->nExpr; 425 }else if( op==TK_SELECT ){ 426 return pExpr->x.pSelect->pEList->nExpr; 427 }else{ 428 return 1; 429 } 430 } 431 432 /* 433 ** Return a pointer to a subexpression of pVector that is the i-th 434 ** column of the vector (numbered starting with 0). The caller must 435 ** ensure that i is within range. 436 ** 437 ** If pVector is really a scalar (and "scalar" here includes subqueries 438 ** that return a single column!) then return pVector unmodified. 439 ** 440 ** pVector retains ownership of the returned subexpression. 441 ** 442 ** If the vector is a (SELECT ...) then the expression returned is 443 ** just the expression for the i-th term of the result set, and may 444 ** not be ready for evaluation because the table cursor has not yet 445 ** been positioned. 446 */ 447 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 448 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 449 if( sqlite3ExprIsVector(pVector) ){ 450 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 451 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 452 return pVector->x.pSelect->pEList->a[i].pExpr; 453 }else{ 454 return pVector->x.pList->a[i].pExpr; 455 } 456 } 457 return pVector; 458 } 459 460 /* 461 ** Compute and return a new Expr object which when passed to 462 ** sqlite3ExprCode() will generate all necessary code to compute 463 ** the iField-th column of the vector expression pVector. 464 ** 465 ** It is ok for pVector to be a scalar (as long as iField==0). 466 ** In that case, this routine works like sqlite3ExprDup(). 467 ** 468 ** The caller owns the returned Expr object and is responsible for 469 ** ensuring that the returned value eventually gets freed. 470 ** 471 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 472 ** then the returned object will reference pVector and so pVector must remain 473 ** valid for the life of the returned object. If pVector is a TK_VECTOR 474 ** or a scalar expression, then it can be deleted as soon as this routine 475 ** returns. 476 ** 477 ** A trick to cause a TK_SELECT pVector to be deleted together with 478 ** the returned Expr object is to attach the pVector to the pRight field 479 ** of the returned TK_SELECT_COLUMN Expr object. 480 */ 481 Expr *sqlite3ExprForVectorField( 482 Parse *pParse, /* Parsing context */ 483 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 484 int iField /* Which column of the vector to return */ 485 ){ 486 Expr *pRet; 487 if( pVector->op==TK_SELECT ){ 488 assert( pVector->flags & EP_xIsSelect ); 489 /* The TK_SELECT_COLUMN Expr node: 490 ** 491 ** pLeft: pVector containing TK_SELECT. Not deleted. 492 ** pRight: not used. But recursively deleted. 493 ** iColumn: Index of a column in pVector 494 ** iTable: 0 or the number of columns on the LHS of an assignment 495 ** pLeft->iTable: First in an array of register holding result, or 0 496 ** if the result is not yet computed. 497 ** 498 ** sqlite3ExprDelete() specifically skips the recursive delete of 499 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 500 ** can be attached to pRight to cause this node to take ownership of 501 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 502 ** with the same pLeft pointer to the pVector, but only one of them 503 ** will own the pVector. 504 */ 505 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 506 if( pRet ){ 507 pRet->iColumn = iField; 508 pRet->pLeft = pVector; 509 } 510 assert( pRet==0 || pRet->iTable==0 ); 511 }else{ 512 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 513 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 514 sqlite3RenameTokenRemap(pParse, pRet, pVector); 515 } 516 return pRet; 517 } 518 519 /* 520 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 521 ** it. Return the register in which the result is stored (or, if the 522 ** sub-select returns more than one column, the first in an array 523 ** of registers in which the result is stored). 524 ** 525 ** If pExpr is not a TK_SELECT expression, return 0. 526 */ 527 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 528 int reg = 0; 529 #ifndef SQLITE_OMIT_SUBQUERY 530 if( pExpr->op==TK_SELECT ){ 531 reg = sqlite3CodeSubselect(pParse, pExpr); 532 } 533 #endif 534 return reg; 535 } 536 537 /* 538 ** Argument pVector points to a vector expression - either a TK_VECTOR 539 ** or TK_SELECT that returns more than one column. This function returns 540 ** the register number of a register that contains the value of 541 ** element iField of the vector. 542 ** 543 ** If pVector is a TK_SELECT expression, then code for it must have 544 ** already been generated using the exprCodeSubselect() routine. In this 545 ** case parameter regSelect should be the first in an array of registers 546 ** containing the results of the sub-select. 547 ** 548 ** If pVector is of type TK_VECTOR, then code for the requested field 549 ** is generated. In this case (*pRegFree) may be set to the number of 550 ** a temporary register to be freed by the caller before returning. 551 ** 552 ** Before returning, output parameter (*ppExpr) is set to point to the 553 ** Expr object corresponding to element iElem of the vector. 554 */ 555 static int exprVectorRegister( 556 Parse *pParse, /* Parse context */ 557 Expr *pVector, /* Vector to extract element from */ 558 int iField, /* Field to extract from pVector */ 559 int regSelect, /* First in array of registers */ 560 Expr **ppExpr, /* OUT: Expression element */ 561 int *pRegFree /* OUT: Temp register to free */ 562 ){ 563 u8 op = pVector->op; 564 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 565 if( op==TK_REGISTER ){ 566 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 567 return pVector->iTable+iField; 568 } 569 if( op==TK_SELECT ){ 570 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 571 return regSelect+iField; 572 } 573 if( op==TK_VECTOR ){ 574 *ppExpr = pVector->x.pList->a[iField].pExpr; 575 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 576 } 577 return 0; 578 } 579 580 /* 581 ** Expression pExpr is a comparison between two vector values. Compute 582 ** the result of the comparison (1, 0, or NULL) and write that 583 ** result into register dest. 584 ** 585 ** The caller must satisfy the following preconditions: 586 ** 587 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 588 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 589 ** otherwise: op==pExpr->op and p5==0 590 */ 591 static void codeVectorCompare( 592 Parse *pParse, /* Code generator context */ 593 Expr *pExpr, /* The comparison operation */ 594 int dest, /* Write results into this register */ 595 u8 op, /* Comparison operator */ 596 u8 p5 /* SQLITE_NULLEQ or zero */ 597 ){ 598 Vdbe *v = pParse->pVdbe; 599 Expr *pLeft = pExpr->pLeft; 600 Expr *pRight = pExpr->pRight; 601 int nLeft = sqlite3ExprVectorSize(pLeft); 602 int i; 603 int regLeft = 0; 604 int regRight = 0; 605 u8 opx = op; 606 int addrCmp = 0; 607 int addrDone = sqlite3VdbeMakeLabel(pParse); 608 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 609 610 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 611 if( pParse->nErr ) return; 612 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 613 sqlite3ErrorMsg(pParse, "row value misused"); 614 return; 615 } 616 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 617 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 618 || pExpr->op==TK_LT || pExpr->op==TK_GT 619 || pExpr->op==TK_LE || pExpr->op==TK_GE 620 ); 621 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 622 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 623 assert( p5==0 || pExpr->op!=op ); 624 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 625 626 if( op==TK_LE ) opx = TK_LT; 627 if( op==TK_GE ) opx = TK_GT; 628 if( op==TK_NE ) opx = TK_EQ; 629 630 regLeft = exprCodeSubselect(pParse, pLeft); 631 regRight = exprCodeSubselect(pParse, pRight); 632 633 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 634 for(i=0; 1 /*Loop exits by "break"*/; i++){ 635 int regFree1 = 0, regFree2 = 0; 636 Expr *pL = 0, *pR = 0; 637 int r1, r2; 638 assert( i>=0 && i<nLeft ); 639 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 640 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 641 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 642 addrCmp = sqlite3VdbeCurrentAddr(v); 643 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 644 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 645 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 646 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 647 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 648 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 649 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 650 sqlite3ReleaseTempReg(pParse, regFree1); 651 sqlite3ReleaseTempReg(pParse, regFree2); 652 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 653 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 654 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 655 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 656 } 657 if( p5==SQLITE_NULLEQ ){ 658 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 659 }else{ 660 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 661 } 662 if( i==nLeft-1 ){ 663 break; 664 } 665 if( opx==TK_EQ ){ 666 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 667 }else{ 668 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 669 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 670 if( i==nLeft-2 ) opx = op; 671 } 672 } 673 sqlite3VdbeJumpHere(v, addrCmp); 674 sqlite3VdbeResolveLabel(v, addrDone); 675 if( op==TK_NE ){ 676 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 677 } 678 } 679 680 #if SQLITE_MAX_EXPR_DEPTH>0 681 /* 682 ** Check that argument nHeight is less than or equal to the maximum 683 ** expression depth allowed. If it is not, leave an error message in 684 ** pParse. 685 */ 686 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 687 int rc = SQLITE_OK; 688 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 689 if( nHeight>mxHeight ){ 690 sqlite3ErrorMsg(pParse, 691 "Expression tree is too large (maximum depth %d)", mxHeight 692 ); 693 rc = SQLITE_ERROR; 694 } 695 return rc; 696 } 697 698 /* The following three functions, heightOfExpr(), heightOfExprList() 699 ** and heightOfSelect(), are used to determine the maximum height 700 ** of any expression tree referenced by the structure passed as the 701 ** first argument. 702 ** 703 ** If this maximum height is greater than the current value pointed 704 ** to by pnHeight, the second parameter, then set *pnHeight to that 705 ** value. 706 */ 707 static void heightOfExpr(Expr *p, int *pnHeight){ 708 if( p ){ 709 if( p->nHeight>*pnHeight ){ 710 *pnHeight = p->nHeight; 711 } 712 } 713 } 714 static void heightOfExprList(ExprList *p, int *pnHeight){ 715 if( p ){ 716 int i; 717 for(i=0; i<p->nExpr; i++){ 718 heightOfExpr(p->a[i].pExpr, pnHeight); 719 } 720 } 721 } 722 static void heightOfSelect(Select *pSelect, int *pnHeight){ 723 Select *p; 724 for(p=pSelect; p; p=p->pPrior){ 725 heightOfExpr(p->pWhere, pnHeight); 726 heightOfExpr(p->pHaving, pnHeight); 727 heightOfExpr(p->pLimit, pnHeight); 728 heightOfExprList(p->pEList, pnHeight); 729 heightOfExprList(p->pGroupBy, pnHeight); 730 heightOfExprList(p->pOrderBy, pnHeight); 731 } 732 } 733 734 /* 735 ** Set the Expr.nHeight variable in the structure passed as an 736 ** argument. An expression with no children, Expr.pList or 737 ** Expr.pSelect member has a height of 1. Any other expression 738 ** has a height equal to the maximum height of any other 739 ** referenced Expr plus one. 740 ** 741 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 742 ** if appropriate. 743 */ 744 static void exprSetHeight(Expr *p){ 745 int nHeight = 0; 746 heightOfExpr(p->pLeft, &nHeight); 747 heightOfExpr(p->pRight, &nHeight); 748 if( ExprHasProperty(p, EP_xIsSelect) ){ 749 heightOfSelect(p->x.pSelect, &nHeight); 750 }else if( p->x.pList ){ 751 heightOfExprList(p->x.pList, &nHeight); 752 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 753 } 754 p->nHeight = nHeight + 1; 755 } 756 757 /* 758 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 759 ** the height is greater than the maximum allowed expression depth, 760 ** leave an error in pParse. 761 ** 762 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 763 ** Expr.flags. 764 */ 765 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 766 if( pParse->nErr ) return; 767 exprSetHeight(p); 768 sqlite3ExprCheckHeight(pParse, p->nHeight); 769 } 770 771 /* 772 ** Return the maximum height of any expression tree referenced 773 ** by the select statement passed as an argument. 774 */ 775 int sqlite3SelectExprHeight(Select *p){ 776 int nHeight = 0; 777 heightOfSelect(p, &nHeight); 778 return nHeight; 779 } 780 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 781 /* 782 ** Propagate all EP_Propagate flags from the Expr.x.pList into 783 ** Expr.flags. 784 */ 785 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 786 if( pParse->nErr ) return; 787 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 788 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 789 } 790 } 791 #define exprSetHeight(y) 792 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 793 794 /* 795 ** This routine is the core allocator for Expr nodes. 796 ** 797 ** Construct a new expression node and return a pointer to it. Memory 798 ** for this node and for the pToken argument is a single allocation 799 ** obtained from sqlite3DbMalloc(). The calling function 800 ** is responsible for making sure the node eventually gets freed. 801 ** 802 ** If dequote is true, then the token (if it exists) is dequoted. 803 ** If dequote is false, no dequoting is performed. The deQuote 804 ** parameter is ignored if pToken is NULL or if the token does not 805 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 806 ** then the EP_DblQuoted flag is set on the expression node. 807 ** 808 ** Special case: If op==TK_INTEGER and pToken points to a string that 809 ** can be translated into a 32-bit integer, then the token is not 810 ** stored in u.zToken. Instead, the integer values is written 811 ** into u.iValue and the EP_IntValue flag is set. No extra storage 812 ** is allocated to hold the integer text and the dequote flag is ignored. 813 */ 814 Expr *sqlite3ExprAlloc( 815 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 816 int op, /* Expression opcode */ 817 const Token *pToken, /* Token argument. Might be NULL */ 818 int dequote /* True to dequote */ 819 ){ 820 Expr *pNew; 821 int nExtra = 0; 822 int iValue = 0; 823 824 assert( db!=0 ); 825 if( pToken ){ 826 if( op!=TK_INTEGER || pToken->z==0 827 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 828 nExtra = pToken->n+1; 829 assert( iValue>=0 ); 830 } 831 } 832 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 833 if( pNew ){ 834 memset(pNew, 0, sizeof(Expr)); 835 pNew->op = (u8)op; 836 pNew->iAgg = -1; 837 if( pToken ){ 838 if( nExtra==0 ){ 839 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 840 pNew->u.iValue = iValue; 841 }else{ 842 pNew->u.zToken = (char*)&pNew[1]; 843 assert( pToken->z!=0 || pToken->n==0 ); 844 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 845 pNew->u.zToken[pToken->n] = 0; 846 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 847 sqlite3DequoteExpr(pNew); 848 } 849 } 850 } 851 #if SQLITE_MAX_EXPR_DEPTH>0 852 pNew->nHeight = 1; 853 #endif 854 } 855 return pNew; 856 } 857 858 /* 859 ** Allocate a new expression node from a zero-terminated token that has 860 ** already been dequoted. 861 */ 862 Expr *sqlite3Expr( 863 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 864 int op, /* Expression opcode */ 865 const char *zToken /* Token argument. Might be NULL */ 866 ){ 867 Token x; 868 x.z = zToken; 869 x.n = sqlite3Strlen30(zToken); 870 return sqlite3ExprAlloc(db, op, &x, 0); 871 } 872 873 /* 874 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 875 ** 876 ** If pRoot==NULL that means that a memory allocation error has occurred. 877 ** In that case, delete the subtrees pLeft and pRight. 878 */ 879 void sqlite3ExprAttachSubtrees( 880 sqlite3 *db, 881 Expr *pRoot, 882 Expr *pLeft, 883 Expr *pRight 884 ){ 885 if( pRoot==0 ){ 886 assert( db->mallocFailed ); 887 sqlite3ExprDelete(db, pLeft); 888 sqlite3ExprDelete(db, pRight); 889 }else{ 890 if( pRight ){ 891 pRoot->pRight = pRight; 892 pRoot->flags |= EP_Propagate & pRight->flags; 893 } 894 if( pLeft ){ 895 pRoot->pLeft = pLeft; 896 pRoot->flags |= EP_Propagate & pLeft->flags; 897 } 898 exprSetHeight(pRoot); 899 } 900 } 901 902 /* 903 ** Allocate an Expr node which joins as many as two subtrees. 904 ** 905 ** One or both of the subtrees can be NULL. Return a pointer to the new 906 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 907 ** free the subtrees and return NULL. 908 */ 909 Expr *sqlite3PExpr( 910 Parse *pParse, /* Parsing context */ 911 int op, /* Expression opcode */ 912 Expr *pLeft, /* Left operand */ 913 Expr *pRight /* Right operand */ 914 ){ 915 Expr *p; 916 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 917 if( p ){ 918 memset(p, 0, sizeof(Expr)); 919 p->op = op & 0xff; 920 p->iAgg = -1; 921 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 922 sqlite3ExprCheckHeight(pParse, p->nHeight); 923 }else{ 924 sqlite3ExprDelete(pParse->db, pLeft); 925 sqlite3ExprDelete(pParse->db, pRight); 926 } 927 return p; 928 } 929 930 /* 931 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 932 ** do a memory allocation failure) then delete the pSelect object. 933 */ 934 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 935 if( pExpr ){ 936 pExpr->x.pSelect = pSelect; 937 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 938 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 939 }else{ 940 assert( pParse->db->mallocFailed ); 941 sqlite3SelectDelete(pParse->db, pSelect); 942 } 943 } 944 945 946 /* 947 ** Join two expressions using an AND operator. If either expression is 948 ** NULL, then just return the other expression. 949 ** 950 ** If one side or the other of the AND is known to be false, then instead 951 ** of returning an AND expression, just return a constant expression with 952 ** a value of false. 953 */ 954 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 955 sqlite3 *db = pParse->db; 956 if( pLeft==0 ){ 957 return pRight; 958 }else if( pRight==0 ){ 959 return pLeft; 960 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 961 && !IN_RENAME_OBJECT 962 ){ 963 sqlite3ExprDeferredDelete(pParse, pLeft); 964 sqlite3ExprDeferredDelete(pParse, pRight); 965 return sqlite3Expr(db, TK_INTEGER, "0"); 966 }else{ 967 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 968 } 969 } 970 971 /* 972 ** Construct a new expression node for a function with multiple 973 ** arguments. 974 */ 975 Expr *sqlite3ExprFunction( 976 Parse *pParse, /* Parsing context */ 977 ExprList *pList, /* Argument list */ 978 Token *pToken, /* Name of the function */ 979 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 980 ){ 981 Expr *pNew; 982 sqlite3 *db = pParse->db; 983 assert( pToken ); 984 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 985 if( pNew==0 ){ 986 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 987 return 0; 988 } 989 if( pList 990 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 991 && !pParse->nested 992 ){ 993 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 994 } 995 pNew->x.pList = pList; 996 ExprSetProperty(pNew, EP_HasFunc); 997 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 998 sqlite3ExprSetHeightAndFlags(pParse, pNew); 999 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1000 return pNew; 1001 } 1002 1003 /* 1004 ** Check to see if a function is usable according to current access 1005 ** rules: 1006 ** 1007 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1008 ** 1009 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1010 ** top-level SQL 1011 ** 1012 ** If the function is not usable, create an error. 1013 */ 1014 void sqlite3ExprFunctionUsable( 1015 Parse *pParse, /* Parsing and code generating context */ 1016 Expr *pExpr, /* The function invocation */ 1017 FuncDef *pDef /* The function being invoked */ 1018 ){ 1019 assert( !IN_RENAME_OBJECT ); 1020 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1021 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1022 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1023 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1024 ){ 1025 /* Functions prohibited in triggers and views if: 1026 ** (1) tagged with SQLITE_DIRECTONLY 1027 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1028 ** is tagged with SQLITE_FUNC_UNSAFE) and 1029 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1030 ** that the schema is possibly tainted). 1031 */ 1032 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1033 } 1034 } 1035 } 1036 1037 /* 1038 ** Assign a variable number to an expression that encodes a wildcard 1039 ** in the original SQL statement. 1040 ** 1041 ** Wildcards consisting of a single "?" are assigned the next sequential 1042 ** variable number. 1043 ** 1044 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1045 ** sure "nnn" is not too big to avoid a denial of service attack when 1046 ** the SQL statement comes from an external source. 1047 ** 1048 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1049 ** as the previous instance of the same wildcard. Or if this is the first 1050 ** instance of the wildcard, the next sequential variable number is 1051 ** assigned. 1052 */ 1053 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1054 sqlite3 *db = pParse->db; 1055 const char *z; 1056 ynVar x; 1057 1058 if( pExpr==0 ) return; 1059 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1060 z = pExpr->u.zToken; 1061 assert( z!=0 ); 1062 assert( z[0]!=0 ); 1063 assert( n==(u32)sqlite3Strlen30(z) ); 1064 if( z[1]==0 ){ 1065 /* Wildcard of the form "?". Assign the next variable number */ 1066 assert( z[0]=='?' ); 1067 x = (ynVar)(++pParse->nVar); 1068 }else{ 1069 int doAdd = 0; 1070 if( z[0]=='?' ){ 1071 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1072 ** use it as the variable number */ 1073 i64 i; 1074 int bOk; 1075 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1076 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1077 bOk = 1; 1078 }else{ 1079 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1080 } 1081 testcase( i==0 ); 1082 testcase( i==1 ); 1083 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1084 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1085 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1086 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1087 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1088 return; 1089 } 1090 x = (ynVar)i; 1091 if( x>pParse->nVar ){ 1092 pParse->nVar = (int)x; 1093 doAdd = 1; 1094 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1095 doAdd = 1; 1096 } 1097 }else{ 1098 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1099 ** number as the prior appearance of the same name, or if the name 1100 ** has never appeared before, reuse the same variable number 1101 */ 1102 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1103 if( x==0 ){ 1104 x = (ynVar)(++pParse->nVar); 1105 doAdd = 1; 1106 } 1107 } 1108 if( doAdd ){ 1109 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1110 } 1111 } 1112 pExpr->iColumn = x; 1113 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1114 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1115 } 1116 } 1117 1118 /* 1119 ** Recursively delete an expression tree. 1120 */ 1121 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1122 assert( p!=0 ); 1123 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1124 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1125 1126 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1127 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1128 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1129 #ifdef SQLITE_DEBUG 1130 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1131 assert( p->pLeft==0 ); 1132 assert( p->pRight==0 ); 1133 assert( p->x.pSelect==0 ); 1134 } 1135 #endif 1136 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1137 /* The Expr.x union is never used at the same time as Expr.pRight */ 1138 assert( p->x.pList==0 || p->pRight==0 ); 1139 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1140 if( p->pRight ){ 1141 assert( !ExprHasProperty(p, EP_WinFunc) ); 1142 sqlite3ExprDeleteNN(db, p->pRight); 1143 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1144 assert( !ExprHasProperty(p, EP_WinFunc) ); 1145 sqlite3SelectDelete(db, p->x.pSelect); 1146 }else{ 1147 sqlite3ExprListDelete(db, p->x.pList); 1148 #ifndef SQLITE_OMIT_WINDOWFUNC 1149 if( ExprHasProperty(p, EP_WinFunc) ){ 1150 sqlite3WindowDelete(db, p->y.pWin); 1151 } 1152 #endif 1153 } 1154 } 1155 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1156 if( !ExprHasProperty(p, EP_Static) ){ 1157 sqlite3DbFreeNN(db, p); 1158 } 1159 } 1160 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1161 if( p ) sqlite3ExprDeleteNN(db, p); 1162 } 1163 1164 1165 /* 1166 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1167 ** This is similar to sqlite3ExprDelete() except that the delete is 1168 ** deferred untilthe pParse is deleted. 1169 ** 1170 ** The pExpr might be deleted immediately on an OOM error. 1171 ** 1172 ** The deferred delete is (currently) implemented by adding the 1173 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1174 */ 1175 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1176 pParse->pConstExpr = 1177 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1178 } 1179 1180 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1181 ** expression. 1182 */ 1183 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1184 if( p ){ 1185 if( IN_RENAME_OBJECT ){ 1186 sqlite3RenameExprUnmap(pParse, p); 1187 } 1188 sqlite3ExprDeleteNN(pParse->db, p); 1189 } 1190 } 1191 1192 /* 1193 ** Return the number of bytes allocated for the expression structure 1194 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1195 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1196 */ 1197 static int exprStructSize(Expr *p){ 1198 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1199 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1200 return EXPR_FULLSIZE; 1201 } 1202 1203 /* 1204 ** The dupedExpr*Size() routines each return the number of bytes required 1205 ** to store a copy of an expression or expression tree. They differ in 1206 ** how much of the tree is measured. 1207 ** 1208 ** dupedExprStructSize() Size of only the Expr structure 1209 ** dupedExprNodeSize() Size of Expr + space for token 1210 ** dupedExprSize() Expr + token + subtree components 1211 ** 1212 *************************************************************************** 1213 ** 1214 ** The dupedExprStructSize() function returns two values OR-ed together: 1215 ** (1) the space required for a copy of the Expr structure only and 1216 ** (2) the EP_xxx flags that indicate what the structure size should be. 1217 ** The return values is always one of: 1218 ** 1219 ** EXPR_FULLSIZE 1220 ** EXPR_REDUCEDSIZE | EP_Reduced 1221 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1222 ** 1223 ** The size of the structure can be found by masking the return value 1224 ** of this routine with 0xfff. The flags can be found by masking the 1225 ** return value with EP_Reduced|EP_TokenOnly. 1226 ** 1227 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1228 ** (unreduced) Expr objects as they or originally constructed by the parser. 1229 ** During expression analysis, extra information is computed and moved into 1230 ** later parts of the Expr object and that extra information might get chopped 1231 ** off if the expression is reduced. Note also that it does not work to 1232 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1233 ** to reduce a pristine expression tree from the parser. The implementation 1234 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1235 ** to enforce this constraint. 1236 */ 1237 static int dupedExprStructSize(Expr *p, int flags){ 1238 int nSize; 1239 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1240 assert( EXPR_FULLSIZE<=0xfff ); 1241 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1242 if( 0==flags || p->op==TK_SELECT_COLUMN 1243 #ifndef SQLITE_OMIT_WINDOWFUNC 1244 || ExprHasProperty(p, EP_WinFunc) 1245 #endif 1246 ){ 1247 nSize = EXPR_FULLSIZE; 1248 }else{ 1249 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1250 assert( !ExprHasProperty(p, EP_FromJoin) ); 1251 assert( !ExprHasProperty(p, EP_MemToken) ); 1252 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1253 if( p->pLeft || p->x.pList ){ 1254 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1255 }else{ 1256 assert( p->pRight==0 ); 1257 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1258 } 1259 } 1260 return nSize; 1261 } 1262 1263 /* 1264 ** This function returns the space in bytes required to store the copy 1265 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1266 ** string is defined.) 1267 */ 1268 static int dupedExprNodeSize(Expr *p, int flags){ 1269 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1270 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1271 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1272 } 1273 return ROUND8(nByte); 1274 } 1275 1276 /* 1277 ** Return the number of bytes required to create a duplicate of the 1278 ** expression passed as the first argument. The second argument is a 1279 ** mask containing EXPRDUP_XXX flags. 1280 ** 1281 ** The value returned includes space to create a copy of the Expr struct 1282 ** itself and the buffer referred to by Expr.u.zToken, if any. 1283 ** 1284 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1285 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1286 ** and Expr.pRight variables (but not for any structures pointed to or 1287 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1288 */ 1289 static int dupedExprSize(Expr *p, int flags){ 1290 int nByte = 0; 1291 if( p ){ 1292 nByte = dupedExprNodeSize(p, flags); 1293 if( flags&EXPRDUP_REDUCE ){ 1294 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1295 } 1296 } 1297 return nByte; 1298 } 1299 1300 /* 1301 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1302 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1303 ** to store the copy of expression p, the copies of p->u.zToken 1304 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1305 ** if any. Before returning, *pzBuffer is set to the first byte past the 1306 ** portion of the buffer copied into by this function. 1307 */ 1308 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1309 Expr *pNew; /* Value to return */ 1310 u8 *zAlloc; /* Memory space from which to build Expr object */ 1311 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1312 1313 assert( db!=0 ); 1314 assert( p ); 1315 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1316 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1317 1318 /* Figure out where to write the new Expr structure. */ 1319 if( pzBuffer ){ 1320 zAlloc = *pzBuffer; 1321 staticFlag = EP_Static; 1322 assert( zAlloc!=0 ); 1323 }else{ 1324 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1325 staticFlag = 0; 1326 } 1327 pNew = (Expr *)zAlloc; 1328 1329 if( pNew ){ 1330 /* Set nNewSize to the size allocated for the structure pointed to 1331 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1332 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1333 ** by the copy of the p->u.zToken string (if any). 1334 */ 1335 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1336 const int nNewSize = nStructSize & 0xfff; 1337 int nToken; 1338 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1339 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1340 }else{ 1341 nToken = 0; 1342 } 1343 if( dupFlags ){ 1344 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1345 memcpy(zAlloc, p, nNewSize); 1346 }else{ 1347 u32 nSize = (u32)exprStructSize(p); 1348 memcpy(zAlloc, p, nSize); 1349 if( nSize<EXPR_FULLSIZE ){ 1350 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1351 } 1352 } 1353 1354 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1355 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1356 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1357 pNew->flags |= staticFlag; 1358 ExprClearVVAProperties(pNew); 1359 if( dupFlags ){ 1360 ExprSetVVAProperty(pNew, EP_Immutable); 1361 } 1362 1363 /* Copy the p->u.zToken string, if any. */ 1364 if( nToken ){ 1365 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1366 memcpy(zToken, p->u.zToken, nToken); 1367 } 1368 1369 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1370 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1371 if( ExprHasProperty(p, EP_xIsSelect) ){ 1372 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1373 }else{ 1374 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1375 } 1376 } 1377 1378 /* Fill in pNew->pLeft and pNew->pRight. */ 1379 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1380 zAlloc += dupedExprNodeSize(p, dupFlags); 1381 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1382 pNew->pLeft = p->pLeft ? 1383 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1384 pNew->pRight = p->pRight ? 1385 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1386 } 1387 #ifndef SQLITE_OMIT_WINDOWFUNC 1388 if( ExprHasProperty(p, EP_WinFunc) ){ 1389 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1390 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1391 } 1392 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1393 if( pzBuffer ){ 1394 *pzBuffer = zAlloc; 1395 } 1396 }else{ 1397 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1398 if( pNew->op==TK_SELECT_COLUMN ){ 1399 pNew->pLeft = p->pLeft; 1400 assert( p->iColumn==0 || p->pRight==0 ); 1401 assert( p->pRight==0 || p->pRight==p->pLeft 1402 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1403 }else{ 1404 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1405 } 1406 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1407 } 1408 } 1409 } 1410 return pNew; 1411 } 1412 1413 /* 1414 ** Create and return a deep copy of the object passed as the second 1415 ** argument. If an OOM condition is encountered, NULL is returned 1416 ** and the db->mallocFailed flag set. 1417 */ 1418 #ifndef SQLITE_OMIT_CTE 1419 With *sqlite3WithDup(sqlite3 *db, With *p){ 1420 With *pRet = 0; 1421 if( p ){ 1422 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1423 pRet = sqlite3DbMallocZero(db, nByte); 1424 if( pRet ){ 1425 int i; 1426 pRet->nCte = p->nCte; 1427 for(i=0; i<p->nCte; i++){ 1428 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1429 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1430 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1431 } 1432 } 1433 } 1434 return pRet; 1435 } 1436 #else 1437 # define sqlite3WithDup(x,y) 0 1438 #endif 1439 1440 #ifndef SQLITE_OMIT_WINDOWFUNC 1441 /* 1442 ** The gatherSelectWindows() procedure and its helper routine 1443 ** gatherSelectWindowsCallback() are used to scan all the expressions 1444 ** an a newly duplicated SELECT statement and gather all of the Window 1445 ** objects found there, assembling them onto the linked list at Select->pWin. 1446 */ 1447 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1448 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1449 Select *pSelect = pWalker->u.pSelect; 1450 Window *pWin = pExpr->y.pWin; 1451 assert( pWin ); 1452 assert( IsWindowFunc(pExpr) ); 1453 assert( pWin->ppThis==0 ); 1454 sqlite3WindowLink(pSelect, pWin); 1455 } 1456 return WRC_Continue; 1457 } 1458 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1459 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1460 } 1461 static void gatherSelectWindows(Select *p){ 1462 Walker w; 1463 w.xExprCallback = gatherSelectWindowsCallback; 1464 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1465 w.xSelectCallback2 = 0; 1466 w.pParse = 0; 1467 w.u.pSelect = p; 1468 sqlite3WalkSelect(&w, p); 1469 } 1470 #endif 1471 1472 1473 /* 1474 ** The following group of routines make deep copies of expressions, 1475 ** expression lists, ID lists, and select statements. The copies can 1476 ** be deleted (by being passed to their respective ...Delete() routines) 1477 ** without effecting the originals. 1478 ** 1479 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1480 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1481 ** by subsequent calls to sqlite*ListAppend() routines. 1482 ** 1483 ** Any tables that the SrcList might point to are not duplicated. 1484 ** 1485 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1486 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1487 ** truncated version of the usual Expr structure that will be stored as 1488 ** part of the in-memory representation of the database schema. 1489 */ 1490 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1491 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1492 return p ? exprDup(db, p, flags, 0) : 0; 1493 } 1494 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1495 ExprList *pNew; 1496 struct ExprList_item *pItem, *pOldItem; 1497 int i; 1498 Expr *pPriorSelectCol = 0; 1499 assert( db!=0 ); 1500 if( p==0 ) return 0; 1501 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1502 if( pNew==0 ) return 0; 1503 pNew->nExpr = p->nExpr; 1504 pNew->nAlloc = p->nAlloc; 1505 pItem = pNew->a; 1506 pOldItem = p->a; 1507 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1508 Expr *pOldExpr = pOldItem->pExpr; 1509 Expr *pNewExpr; 1510 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1511 if( pOldExpr 1512 && pOldExpr->op==TK_SELECT_COLUMN 1513 && (pNewExpr = pItem->pExpr)!=0 1514 ){ 1515 assert( pNewExpr->iColumn==0 || i>0 ); 1516 if( pNewExpr->iColumn==0 ){ 1517 assert( pOldExpr->pLeft==pOldExpr->pRight 1518 || ExprHasProperty(pOldExpr->pLeft, EP_Subquery) ); 1519 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1520 }else{ 1521 assert( i>0 ); 1522 assert( pItem[-1].pExpr!=0 ); 1523 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1524 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1525 pNewExpr->pLeft = pPriorSelectCol; 1526 } 1527 } 1528 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1529 pItem->sortFlags = pOldItem->sortFlags; 1530 pItem->eEName = pOldItem->eEName; 1531 pItem->done = 0; 1532 pItem->bNulls = pOldItem->bNulls; 1533 pItem->bSorterRef = pOldItem->bSorterRef; 1534 pItem->u = pOldItem->u; 1535 } 1536 return pNew; 1537 } 1538 1539 /* 1540 ** If cursors, triggers, views and subqueries are all omitted from 1541 ** the build, then none of the following routines, except for 1542 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1543 ** called with a NULL argument. 1544 */ 1545 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1546 || !defined(SQLITE_OMIT_SUBQUERY) 1547 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1548 SrcList *pNew; 1549 int i; 1550 int nByte; 1551 assert( db!=0 ); 1552 if( p==0 ) return 0; 1553 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1554 pNew = sqlite3DbMallocRawNN(db, nByte ); 1555 if( pNew==0 ) return 0; 1556 pNew->nSrc = pNew->nAlloc = p->nSrc; 1557 for(i=0; i<p->nSrc; i++){ 1558 SrcItem *pNewItem = &pNew->a[i]; 1559 SrcItem *pOldItem = &p->a[i]; 1560 Table *pTab; 1561 pNewItem->pSchema = pOldItem->pSchema; 1562 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1563 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1564 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1565 pNewItem->fg = pOldItem->fg; 1566 pNewItem->iCursor = pOldItem->iCursor; 1567 pNewItem->addrFillSub = pOldItem->addrFillSub; 1568 pNewItem->regReturn = pOldItem->regReturn; 1569 if( pNewItem->fg.isIndexedBy ){ 1570 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1571 } 1572 pNewItem->u2 = pOldItem->u2; 1573 if( pNewItem->fg.isCte ){ 1574 pNewItem->u2.pCteUse->nUse++; 1575 } 1576 if( pNewItem->fg.isTabFunc ){ 1577 pNewItem->u1.pFuncArg = 1578 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1579 } 1580 pTab = pNewItem->pTab = pOldItem->pTab; 1581 if( pTab ){ 1582 pTab->nTabRef++; 1583 } 1584 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1585 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1586 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1587 pNewItem->colUsed = pOldItem->colUsed; 1588 } 1589 return pNew; 1590 } 1591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1592 IdList *pNew; 1593 int i; 1594 assert( db!=0 ); 1595 if( p==0 ) return 0; 1596 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1597 if( pNew==0 ) return 0; 1598 pNew->nId = p->nId; 1599 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1600 if( pNew->a==0 ){ 1601 sqlite3DbFreeNN(db, pNew); 1602 return 0; 1603 } 1604 /* Note that because the size of the allocation for p->a[] is not 1605 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1606 ** on the duplicate created by this function. */ 1607 for(i=0; i<p->nId; i++){ 1608 struct IdList_item *pNewItem = &pNew->a[i]; 1609 struct IdList_item *pOldItem = &p->a[i]; 1610 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1611 pNewItem->idx = pOldItem->idx; 1612 } 1613 return pNew; 1614 } 1615 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1616 Select *pRet = 0; 1617 Select *pNext = 0; 1618 Select **pp = &pRet; 1619 Select *p; 1620 1621 assert( db!=0 ); 1622 for(p=pDup; p; p=p->pPrior){ 1623 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1624 if( pNew==0 ) break; 1625 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1626 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1627 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1628 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1629 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1630 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1631 pNew->op = p->op; 1632 pNew->pNext = pNext; 1633 pNew->pPrior = 0; 1634 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1635 pNew->iLimit = 0; 1636 pNew->iOffset = 0; 1637 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1638 pNew->addrOpenEphm[0] = -1; 1639 pNew->addrOpenEphm[1] = -1; 1640 pNew->nSelectRow = p->nSelectRow; 1641 pNew->pWith = sqlite3WithDup(db, p->pWith); 1642 #ifndef SQLITE_OMIT_WINDOWFUNC 1643 pNew->pWin = 0; 1644 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1645 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1646 #endif 1647 pNew->selId = p->selId; 1648 if( db->mallocFailed ){ 1649 /* Any prior OOM might have left the Select object incomplete. 1650 ** Delete the whole thing rather than allow an incomplete Select 1651 ** to be used by the code generator. */ 1652 pNew->pNext = 0; 1653 sqlite3SelectDelete(db, pNew); 1654 break; 1655 } 1656 *pp = pNew; 1657 pp = &pNew->pPrior; 1658 pNext = pNew; 1659 } 1660 1661 return pRet; 1662 } 1663 #else 1664 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1665 assert( p==0 ); 1666 return 0; 1667 } 1668 #endif 1669 1670 1671 /* 1672 ** Add a new element to the end of an expression list. If pList is 1673 ** initially NULL, then create a new expression list. 1674 ** 1675 ** The pList argument must be either NULL or a pointer to an ExprList 1676 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1677 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1678 ** Reason: This routine assumes that the number of slots in pList->a[] 1679 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1680 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1681 ** 1682 ** If a memory allocation error occurs, the entire list is freed and 1683 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1684 ** that the new entry was successfully appended. 1685 */ 1686 static const struct ExprList_item zeroItem = {0}; 1687 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1688 sqlite3 *db, /* Database handle. Used for memory allocation */ 1689 Expr *pExpr /* Expression to be appended. Might be NULL */ 1690 ){ 1691 struct ExprList_item *pItem; 1692 ExprList *pList; 1693 1694 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1695 if( pList==0 ){ 1696 sqlite3ExprDelete(db, pExpr); 1697 return 0; 1698 } 1699 pList->nAlloc = 4; 1700 pList->nExpr = 1; 1701 pItem = &pList->a[0]; 1702 *pItem = zeroItem; 1703 pItem->pExpr = pExpr; 1704 return pList; 1705 } 1706 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1707 sqlite3 *db, /* Database handle. Used for memory allocation */ 1708 ExprList *pList, /* List to which to append. Might be NULL */ 1709 Expr *pExpr /* Expression to be appended. Might be NULL */ 1710 ){ 1711 struct ExprList_item *pItem; 1712 ExprList *pNew; 1713 pList->nAlloc *= 2; 1714 pNew = sqlite3DbRealloc(db, pList, 1715 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1716 if( pNew==0 ){ 1717 sqlite3ExprListDelete(db, pList); 1718 sqlite3ExprDelete(db, pExpr); 1719 return 0; 1720 }else{ 1721 pList = pNew; 1722 } 1723 pItem = &pList->a[pList->nExpr++]; 1724 *pItem = zeroItem; 1725 pItem->pExpr = pExpr; 1726 return pList; 1727 } 1728 ExprList *sqlite3ExprListAppend( 1729 Parse *pParse, /* Parsing context */ 1730 ExprList *pList, /* List to which to append. Might be NULL */ 1731 Expr *pExpr /* Expression to be appended. Might be NULL */ 1732 ){ 1733 struct ExprList_item *pItem; 1734 if( pList==0 ){ 1735 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1736 } 1737 if( pList->nAlloc<pList->nExpr+1 ){ 1738 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1739 } 1740 pItem = &pList->a[pList->nExpr++]; 1741 *pItem = zeroItem; 1742 pItem->pExpr = pExpr; 1743 return pList; 1744 } 1745 1746 /* 1747 ** pColumns and pExpr form a vector assignment which is part of the SET 1748 ** clause of an UPDATE statement. Like this: 1749 ** 1750 ** (a,b,c) = (expr1,expr2,expr3) 1751 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1752 ** 1753 ** For each term of the vector assignment, append new entries to the 1754 ** expression list pList. In the case of a subquery on the RHS, append 1755 ** TK_SELECT_COLUMN expressions. 1756 */ 1757 ExprList *sqlite3ExprListAppendVector( 1758 Parse *pParse, /* Parsing context */ 1759 ExprList *pList, /* List to which to append. Might be NULL */ 1760 IdList *pColumns, /* List of names of LHS of the assignment */ 1761 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1762 ){ 1763 sqlite3 *db = pParse->db; 1764 int n; 1765 int i; 1766 int iFirst = pList ? pList->nExpr : 0; 1767 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1768 ** exit prior to this routine being invoked */ 1769 if( NEVER(pColumns==0) ) goto vector_append_error; 1770 if( pExpr==0 ) goto vector_append_error; 1771 1772 /* If the RHS is a vector, then we can immediately check to see that 1773 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1774 ** wildcards ("*") in the result set of the SELECT must be expanded before 1775 ** we can do the size check, so defer the size check until code generation. 1776 */ 1777 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1778 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1779 pColumns->nId, n); 1780 goto vector_append_error; 1781 } 1782 1783 for(i=0; i<pColumns->nId; i++){ 1784 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1785 assert( pSubExpr!=0 || db->mallocFailed ); 1786 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1787 if( pSubExpr==0 ) continue; 1788 pSubExpr->iTable = pColumns->nId; 1789 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1790 if( pList ){ 1791 assert( pList->nExpr==iFirst+i+1 ); 1792 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1793 pColumns->a[i].zName = 0; 1794 } 1795 } 1796 1797 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1798 Expr *pFirst = pList->a[iFirst].pExpr; 1799 assert( pFirst!=0 ); 1800 assert( pFirst->op==TK_SELECT_COLUMN ); 1801 1802 /* Store the SELECT statement in pRight so it will be deleted when 1803 ** sqlite3ExprListDelete() is called */ 1804 pFirst->pRight = pExpr; 1805 pExpr = 0; 1806 1807 /* Remember the size of the LHS in iTable so that we can check that 1808 ** the RHS and LHS sizes match during code generation. */ 1809 pFirst->iTable = pColumns->nId; 1810 } 1811 1812 vector_append_error: 1813 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1814 sqlite3IdListDelete(db, pColumns); 1815 return pList; 1816 } 1817 1818 /* 1819 ** Set the sort order for the last element on the given ExprList. 1820 */ 1821 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1822 struct ExprList_item *pItem; 1823 if( p==0 ) return; 1824 assert( p->nExpr>0 ); 1825 1826 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1827 assert( iSortOrder==SQLITE_SO_UNDEFINED 1828 || iSortOrder==SQLITE_SO_ASC 1829 || iSortOrder==SQLITE_SO_DESC 1830 ); 1831 assert( eNulls==SQLITE_SO_UNDEFINED 1832 || eNulls==SQLITE_SO_ASC 1833 || eNulls==SQLITE_SO_DESC 1834 ); 1835 1836 pItem = &p->a[p->nExpr-1]; 1837 assert( pItem->bNulls==0 ); 1838 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1839 iSortOrder = SQLITE_SO_ASC; 1840 } 1841 pItem->sortFlags = (u8)iSortOrder; 1842 1843 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1844 pItem->bNulls = 1; 1845 if( iSortOrder!=eNulls ){ 1846 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1847 } 1848 } 1849 } 1850 1851 /* 1852 ** Set the ExprList.a[].zEName element of the most recently added item 1853 ** on the expression list. 1854 ** 1855 ** pList might be NULL following an OOM error. But pName should never be 1856 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1857 ** is set. 1858 */ 1859 void sqlite3ExprListSetName( 1860 Parse *pParse, /* Parsing context */ 1861 ExprList *pList, /* List to which to add the span. */ 1862 Token *pName, /* Name to be added */ 1863 int dequote /* True to cause the name to be dequoted */ 1864 ){ 1865 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1866 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1867 if( pList ){ 1868 struct ExprList_item *pItem; 1869 assert( pList->nExpr>0 ); 1870 pItem = &pList->a[pList->nExpr-1]; 1871 assert( pItem->zEName==0 ); 1872 assert( pItem->eEName==ENAME_NAME ); 1873 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1874 if( dequote ){ 1875 /* If dequote==0, then pName->z does not point to part of a DDL 1876 ** statement handled by the parser. And so no token need be added 1877 ** to the token-map. */ 1878 sqlite3Dequote(pItem->zEName); 1879 if( IN_RENAME_OBJECT ){ 1880 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1881 } 1882 } 1883 } 1884 } 1885 1886 /* 1887 ** Set the ExprList.a[].zSpan element of the most recently added item 1888 ** on the expression list. 1889 ** 1890 ** pList might be NULL following an OOM error. But pSpan should never be 1891 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1892 ** is set. 1893 */ 1894 void sqlite3ExprListSetSpan( 1895 Parse *pParse, /* Parsing context */ 1896 ExprList *pList, /* List to which to add the span. */ 1897 const char *zStart, /* Start of the span */ 1898 const char *zEnd /* End of the span */ 1899 ){ 1900 sqlite3 *db = pParse->db; 1901 assert( pList!=0 || db->mallocFailed!=0 ); 1902 if( pList ){ 1903 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1904 assert( pList->nExpr>0 ); 1905 if( pItem->zEName==0 ){ 1906 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1907 pItem->eEName = ENAME_SPAN; 1908 } 1909 } 1910 } 1911 1912 /* 1913 ** If the expression list pEList contains more than iLimit elements, 1914 ** leave an error message in pParse. 1915 */ 1916 void sqlite3ExprListCheckLength( 1917 Parse *pParse, 1918 ExprList *pEList, 1919 const char *zObject 1920 ){ 1921 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1922 testcase( pEList && pEList->nExpr==mx ); 1923 testcase( pEList && pEList->nExpr==mx+1 ); 1924 if( pEList && pEList->nExpr>mx ){ 1925 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1926 } 1927 } 1928 1929 /* 1930 ** Delete an entire expression list. 1931 */ 1932 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1933 int i = pList->nExpr; 1934 struct ExprList_item *pItem = pList->a; 1935 assert( pList->nExpr>0 ); 1936 do{ 1937 sqlite3ExprDelete(db, pItem->pExpr); 1938 sqlite3DbFree(db, pItem->zEName); 1939 pItem++; 1940 }while( --i>0 ); 1941 sqlite3DbFreeNN(db, pList); 1942 } 1943 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1944 if( pList ) exprListDeleteNN(db, pList); 1945 } 1946 1947 /* 1948 ** Return the bitwise-OR of all Expr.flags fields in the given 1949 ** ExprList. 1950 */ 1951 u32 sqlite3ExprListFlags(const ExprList *pList){ 1952 int i; 1953 u32 m = 0; 1954 assert( pList!=0 ); 1955 for(i=0; i<pList->nExpr; i++){ 1956 Expr *pExpr = pList->a[i].pExpr; 1957 assert( pExpr!=0 ); 1958 m |= pExpr->flags; 1959 } 1960 return m; 1961 } 1962 1963 /* 1964 ** This is a SELECT-node callback for the expression walker that 1965 ** always "fails". By "fail" in this case, we mean set 1966 ** pWalker->eCode to zero and abort. 1967 ** 1968 ** This callback is used by multiple expression walkers. 1969 */ 1970 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1971 UNUSED_PARAMETER(NotUsed); 1972 pWalker->eCode = 0; 1973 return WRC_Abort; 1974 } 1975 1976 /* 1977 ** Check the input string to see if it is "true" or "false" (in any case). 1978 ** 1979 ** If the string is.... Return 1980 ** "true" EP_IsTrue 1981 ** "false" EP_IsFalse 1982 ** anything else 0 1983 */ 1984 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1985 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1986 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1987 return 0; 1988 } 1989 1990 1991 /* 1992 ** If the input expression is an ID with the name "true" or "false" 1993 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1994 ** the conversion happened, and zero if the expression is unaltered. 1995 */ 1996 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1997 u32 v; 1998 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1999 if( !ExprHasProperty(pExpr, EP_Quoted) 2000 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2001 ){ 2002 pExpr->op = TK_TRUEFALSE; 2003 ExprSetProperty(pExpr, v); 2004 return 1; 2005 } 2006 return 0; 2007 } 2008 2009 /* 2010 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2011 ** and 0 if it is FALSE. 2012 */ 2013 int sqlite3ExprTruthValue(const Expr *pExpr){ 2014 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2015 assert( pExpr->op==TK_TRUEFALSE ); 2016 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2017 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2018 return pExpr->u.zToken[4]==0; 2019 } 2020 2021 /* 2022 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2023 ** terms that are always true or false. Return the simplified expression. 2024 ** Or return the original expression if no simplification is possible. 2025 ** 2026 ** Examples: 2027 ** 2028 ** (x<10) AND true => (x<10) 2029 ** (x<10) AND false => false 2030 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2031 ** (x<10) AND (y=22 OR true) => (x<10) 2032 ** (y=22) OR true => true 2033 */ 2034 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2035 assert( pExpr!=0 ); 2036 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2037 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2038 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2039 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2040 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2041 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2042 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2043 } 2044 } 2045 return pExpr; 2046 } 2047 2048 2049 /* 2050 ** These routines are Walker callbacks used to check expressions to 2051 ** see if they are "constant" for some definition of constant. The 2052 ** Walker.eCode value determines the type of "constant" we are looking 2053 ** for. 2054 ** 2055 ** These callback routines are used to implement the following: 2056 ** 2057 ** sqlite3ExprIsConstant() pWalker->eCode==1 2058 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2059 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2060 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2061 ** 2062 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2063 ** is found to not be a constant. 2064 ** 2065 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2066 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2067 ** when parsing an existing schema out of the sqlite_schema table and 4 2068 ** when processing a new CREATE TABLE statement. A bound parameter raises 2069 ** an error for new statements, but is silently converted 2070 ** to NULL for existing schemas. This allows sqlite_schema tables that 2071 ** contain a bound parameter because they were generated by older versions 2072 ** of SQLite to be parsed by newer versions of SQLite without raising a 2073 ** malformed schema error. 2074 */ 2075 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2076 2077 /* If pWalker->eCode is 2 then any term of the expression that comes from 2078 ** the ON or USING clauses of a left join disqualifies the expression 2079 ** from being considered constant. */ 2080 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2081 pWalker->eCode = 0; 2082 return WRC_Abort; 2083 } 2084 2085 switch( pExpr->op ){ 2086 /* Consider functions to be constant if all their arguments are constant 2087 ** and either pWalker->eCode==4 or 5 or the function has the 2088 ** SQLITE_FUNC_CONST flag. */ 2089 case TK_FUNCTION: 2090 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2091 && !ExprHasProperty(pExpr, EP_WinFunc) 2092 ){ 2093 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2094 return WRC_Continue; 2095 }else{ 2096 pWalker->eCode = 0; 2097 return WRC_Abort; 2098 } 2099 case TK_ID: 2100 /* Convert "true" or "false" in a DEFAULT clause into the 2101 ** appropriate TK_TRUEFALSE operator */ 2102 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2103 return WRC_Prune; 2104 } 2105 /* no break */ deliberate_fall_through 2106 case TK_COLUMN: 2107 case TK_AGG_FUNCTION: 2108 case TK_AGG_COLUMN: 2109 testcase( pExpr->op==TK_ID ); 2110 testcase( pExpr->op==TK_COLUMN ); 2111 testcase( pExpr->op==TK_AGG_FUNCTION ); 2112 testcase( pExpr->op==TK_AGG_COLUMN ); 2113 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2114 return WRC_Continue; 2115 } 2116 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2117 return WRC_Continue; 2118 } 2119 /* no break */ deliberate_fall_through 2120 case TK_IF_NULL_ROW: 2121 case TK_REGISTER: 2122 case TK_DOT: 2123 testcase( pExpr->op==TK_REGISTER ); 2124 testcase( pExpr->op==TK_IF_NULL_ROW ); 2125 testcase( pExpr->op==TK_DOT ); 2126 pWalker->eCode = 0; 2127 return WRC_Abort; 2128 case TK_VARIABLE: 2129 if( pWalker->eCode==5 ){ 2130 /* Silently convert bound parameters that appear inside of CREATE 2131 ** statements into a NULL when parsing the CREATE statement text out 2132 ** of the sqlite_schema table */ 2133 pExpr->op = TK_NULL; 2134 }else if( pWalker->eCode==4 ){ 2135 /* A bound parameter in a CREATE statement that originates from 2136 ** sqlite3_prepare() causes an error */ 2137 pWalker->eCode = 0; 2138 return WRC_Abort; 2139 } 2140 /* no break */ deliberate_fall_through 2141 default: 2142 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2143 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2144 return WRC_Continue; 2145 } 2146 } 2147 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2148 Walker w; 2149 w.eCode = initFlag; 2150 w.xExprCallback = exprNodeIsConstant; 2151 w.xSelectCallback = sqlite3SelectWalkFail; 2152 #ifdef SQLITE_DEBUG 2153 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2154 #endif 2155 w.u.iCur = iCur; 2156 sqlite3WalkExpr(&w, p); 2157 return w.eCode; 2158 } 2159 2160 /* 2161 ** Walk an expression tree. Return non-zero if the expression is constant 2162 ** and 0 if it involves variables or function calls. 2163 ** 2164 ** For the purposes of this function, a double-quoted string (ex: "abc") 2165 ** is considered a variable but a single-quoted string (ex: 'abc') is 2166 ** a constant. 2167 */ 2168 int sqlite3ExprIsConstant(Expr *p){ 2169 return exprIsConst(p, 1, 0); 2170 } 2171 2172 /* 2173 ** Walk an expression tree. Return non-zero if 2174 ** 2175 ** (1) the expression is constant, and 2176 ** (2) the expression does originate in the ON or USING clause 2177 ** of a LEFT JOIN, and 2178 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2179 ** operands created by the constant propagation optimization. 2180 ** 2181 ** When this routine returns true, it indicates that the expression 2182 ** can be added to the pParse->pConstExpr list and evaluated once when 2183 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2184 */ 2185 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2186 return exprIsConst(p, 2, 0); 2187 } 2188 2189 /* 2190 ** Walk an expression tree. Return non-zero if the expression is constant 2191 ** for any single row of the table with cursor iCur. In other words, the 2192 ** expression must not refer to any non-deterministic function nor any 2193 ** table other than iCur. 2194 */ 2195 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2196 return exprIsConst(p, 3, iCur); 2197 } 2198 2199 2200 /* 2201 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2202 */ 2203 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2204 ExprList *pGroupBy = pWalker->u.pGroupBy; 2205 int i; 2206 2207 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2208 ** it constant. */ 2209 for(i=0; i<pGroupBy->nExpr; i++){ 2210 Expr *p = pGroupBy->a[i].pExpr; 2211 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2212 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2213 if( sqlite3IsBinary(pColl) ){ 2214 return WRC_Prune; 2215 } 2216 } 2217 } 2218 2219 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2220 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2221 pWalker->eCode = 0; 2222 return WRC_Abort; 2223 } 2224 2225 return exprNodeIsConstant(pWalker, pExpr); 2226 } 2227 2228 /* 2229 ** Walk the expression tree passed as the first argument. Return non-zero 2230 ** if the expression consists entirely of constants or copies of terms 2231 ** in pGroupBy that sort with the BINARY collation sequence. 2232 ** 2233 ** This routine is used to determine if a term of the HAVING clause can 2234 ** be promoted into the WHERE clause. In order for such a promotion to work, 2235 ** the value of the HAVING clause term must be the same for all members of 2236 ** a "group". The requirement that the GROUP BY term must be BINARY 2237 ** assumes that no other collating sequence will have a finer-grained 2238 ** grouping than binary. In other words (A=B COLLATE binary) implies 2239 ** A=B in every other collating sequence. The requirement that the 2240 ** GROUP BY be BINARY is stricter than necessary. It would also work 2241 ** to promote HAVING clauses that use the same alternative collating 2242 ** sequence as the GROUP BY term, but that is much harder to check, 2243 ** alternative collating sequences are uncommon, and this is only an 2244 ** optimization, so we take the easy way out and simply require the 2245 ** GROUP BY to use the BINARY collating sequence. 2246 */ 2247 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2248 Walker w; 2249 w.eCode = 1; 2250 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2251 w.xSelectCallback = 0; 2252 w.u.pGroupBy = pGroupBy; 2253 w.pParse = pParse; 2254 sqlite3WalkExpr(&w, p); 2255 return w.eCode; 2256 } 2257 2258 /* 2259 ** Walk an expression tree for the DEFAULT field of a column definition 2260 ** in a CREATE TABLE statement. Return non-zero if the expression is 2261 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2262 ** the expression is constant or a function call with constant arguments. 2263 ** Return and 0 if there are any variables. 2264 ** 2265 ** isInit is true when parsing from sqlite_schema. isInit is false when 2266 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2267 ** (such as ? or $abc) in the expression are converted into NULL. When 2268 ** isInit is false, parameters raise an error. Parameters should not be 2269 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2270 ** allowed it, so we need to support it when reading sqlite_schema for 2271 ** backwards compatibility. 2272 ** 2273 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2274 ** 2275 ** For the purposes of this function, a double-quoted string (ex: "abc") 2276 ** is considered a variable but a single-quoted string (ex: 'abc') is 2277 ** a constant. 2278 */ 2279 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2280 assert( isInit==0 || isInit==1 ); 2281 return exprIsConst(p, 4+isInit, 0); 2282 } 2283 2284 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2285 /* 2286 ** Walk an expression tree. Return 1 if the expression contains a 2287 ** subquery of some kind. Return 0 if there are no subqueries. 2288 */ 2289 int sqlite3ExprContainsSubquery(Expr *p){ 2290 Walker w; 2291 w.eCode = 1; 2292 w.xExprCallback = sqlite3ExprWalkNoop; 2293 w.xSelectCallback = sqlite3SelectWalkFail; 2294 #ifdef SQLITE_DEBUG 2295 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2296 #endif 2297 sqlite3WalkExpr(&w, p); 2298 return w.eCode==0; 2299 } 2300 #endif 2301 2302 /* 2303 ** If the expression p codes a constant integer that is small enough 2304 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2305 ** in *pValue. If the expression is not an integer or if it is too big 2306 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2307 */ 2308 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2309 int rc = 0; 2310 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2311 2312 /* If an expression is an integer literal that fits in a signed 32-bit 2313 ** integer, then the EP_IntValue flag will have already been set */ 2314 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2315 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2316 2317 if( p->flags & EP_IntValue ){ 2318 *pValue = p->u.iValue; 2319 return 1; 2320 } 2321 switch( p->op ){ 2322 case TK_UPLUS: { 2323 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2324 break; 2325 } 2326 case TK_UMINUS: { 2327 int v; 2328 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2329 assert( v!=(-2147483647-1) ); 2330 *pValue = -v; 2331 rc = 1; 2332 } 2333 break; 2334 } 2335 default: break; 2336 } 2337 return rc; 2338 } 2339 2340 /* 2341 ** Return FALSE if there is no chance that the expression can be NULL. 2342 ** 2343 ** If the expression might be NULL or if the expression is too complex 2344 ** to tell return TRUE. 2345 ** 2346 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2347 ** when we know that a value cannot be NULL. Hence, a false positive 2348 ** (returning TRUE when in fact the expression can never be NULL) might 2349 ** be a small performance hit but is otherwise harmless. On the other 2350 ** hand, a false negative (returning FALSE when the result could be NULL) 2351 ** will likely result in an incorrect answer. So when in doubt, return 2352 ** TRUE. 2353 */ 2354 int sqlite3ExprCanBeNull(const Expr *p){ 2355 u8 op; 2356 assert( p!=0 ); 2357 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2358 p = p->pLeft; 2359 assert( p!=0 ); 2360 } 2361 op = p->op; 2362 if( op==TK_REGISTER ) op = p->op2; 2363 switch( op ){ 2364 case TK_INTEGER: 2365 case TK_STRING: 2366 case TK_FLOAT: 2367 case TK_BLOB: 2368 return 0; 2369 case TK_COLUMN: 2370 return ExprHasProperty(p, EP_CanBeNull) || 2371 p->y.pTab==0 || /* Reference to column of index on expression */ 2372 (p->iColumn>=0 2373 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2374 && p->y.pTab->aCol[p->iColumn].notNull==0); 2375 default: 2376 return 1; 2377 } 2378 } 2379 2380 /* 2381 ** Return TRUE if the given expression is a constant which would be 2382 ** unchanged by OP_Affinity with the affinity given in the second 2383 ** argument. 2384 ** 2385 ** This routine is used to determine if the OP_Affinity operation 2386 ** can be omitted. When in doubt return FALSE. A false negative 2387 ** is harmless. A false positive, however, can result in the wrong 2388 ** answer. 2389 */ 2390 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2391 u8 op; 2392 int unaryMinus = 0; 2393 if( aff==SQLITE_AFF_BLOB ) return 1; 2394 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2395 if( p->op==TK_UMINUS ) unaryMinus = 1; 2396 p = p->pLeft; 2397 } 2398 op = p->op; 2399 if( op==TK_REGISTER ) op = p->op2; 2400 switch( op ){ 2401 case TK_INTEGER: { 2402 return aff>=SQLITE_AFF_NUMERIC; 2403 } 2404 case TK_FLOAT: { 2405 return aff>=SQLITE_AFF_NUMERIC; 2406 } 2407 case TK_STRING: { 2408 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2409 } 2410 case TK_BLOB: { 2411 return !unaryMinus; 2412 } 2413 case TK_COLUMN: { 2414 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2415 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2416 } 2417 default: { 2418 return 0; 2419 } 2420 } 2421 } 2422 2423 /* 2424 ** Return TRUE if the given string is a row-id column name. 2425 */ 2426 int sqlite3IsRowid(const char *z){ 2427 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2428 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2429 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2430 return 0; 2431 } 2432 2433 /* 2434 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2435 ** that can be simplified to a direct table access, then return 2436 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2437 ** or if the SELECT statement needs to be manifested into a transient 2438 ** table, then return NULL. 2439 */ 2440 #ifndef SQLITE_OMIT_SUBQUERY 2441 static Select *isCandidateForInOpt(Expr *pX){ 2442 Select *p; 2443 SrcList *pSrc; 2444 ExprList *pEList; 2445 Table *pTab; 2446 int i; 2447 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2448 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2449 p = pX->x.pSelect; 2450 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2451 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2452 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2453 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2454 return 0; /* No DISTINCT keyword and no aggregate functions */ 2455 } 2456 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2457 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2458 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2459 pSrc = p->pSrc; 2460 assert( pSrc!=0 ); 2461 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2462 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2463 pTab = pSrc->a[0].pTab; 2464 assert( pTab!=0 ); 2465 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2466 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2467 pEList = p->pEList; 2468 assert( pEList!=0 ); 2469 /* All SELECT results must be columns. */ 2470 for(i=0; i<pEList->nExpr; i++){ 2471 Expr *pRes = pEList->a[i].pExpr; 2472 if( pRes->op!=TK_COLUMN ) return 0; 2473 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2474 } 2475 return p; 2476 } 2477 #endif /* SQLITE_OMIT_SUBQUERY */ 2478 2479 #ifndef SQLITE_OMIT_SUBQUERY 2480 /* 2481 ** Generate code that checks the left-most column of index table iCur to see if 2482 ** it contains any NULL entries. Cause the register at regHasNull to be set 2483 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2484 ** to be set to NULL if iCur contains one or more NULL values. 2485 */ 2486 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2487 int addr1; 2488 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2489 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2490 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2491 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2492 VdbeComment((v, "first_entry_in(%d)", iCur)); 2493 sqlite3VdbeJumpHere(v, addr1); 2494 } 2495 #endif 2496 2497 2498 #ifndef SQLITE_OMIT_SUBQUERY 2499 /* 2500 ** The argument is an IN operator with a list (not a subquery) on the 2501 ** right-hand side. Return TRUE if that list is constant. 2502 */ 2503 static int sqlite3InRhsIsConstant(Expr *pIn){ 2504 Expr *pLHS; 2505 int res; 2506 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2507 pLHS = pIn->pLeft; 2508 pIn->pLeft = 0; 2509 res = sqlite3ExprIsConstant(pIn); 2510 pIn->pLeft = pLHS; 2511 return res; 2512 } 2513 #endif 2514 2515 /* 2516 ** This function is used by the implementation of the IN (...) operator. 2517 ** The pX parameter is the expression on the RHS of the IN operator, which 2518 ** might be either a list of expressions or a subquery. 2519 ** 2520 ** The job of this routine is to find or create a b-tree object that can 2521 ** be used either to test for membership in the RHS set or to iterate through 2522 ** all members of the RHS set, skipping duplicates. 2523 ** 2524 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2525 ** and pX->iTable is set to the index of that cursor. 2526 ** 2527 ** The returned value of this function indicates the b-tree type, as follows: 2528 ** 2529 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2530 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2531 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2532 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2533 ** populated epheremal table. 2534 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2535 ** implemented as a sequence of comparisons. 2536 ** 2537 ** An existing b-tree might be used if the RHS expression pX is a simple 2538 ** subquery such as: 2539 ** 2540 ** SELECT <column1>, <column2>... FROM <table> 2541 ** 2542 ** If the RHS of the IN operator is a list or a more complex subquery, then 2543 ** an ephemeral table might need to be generated from the RHS and then 2544 ** pX->iTable made to point to the ephemeral table instead of an 2545 ** existing table. 2546 ** 2547 ** The inFlags parameter must contain, at a minimum, one of the bits 2548 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2549 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2550 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2551 ** be used to loop over all values of the RHS of the IN operator. 2552 ** 2553 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2554 ** through the set members) then the b-tree must not contain duplicates. 2555 ** An epheremal table will be created unless the selected columns are guaranteed 2556 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2557 ** a UNIQUE constraint or index. 2558 ** 2559 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2560 ** for fast set membership tests) then an epheremal table must 2561 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2562 ** index can be found with the specified <columns> as its left-most. 2563 ** 2564 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2565 ** if the RHS of the IN operator is a list (not a subquery) then this 2566 ** routine might decide that creating an ephemeral b-tree for membership 2567 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2568 ** calling routine should implement the IN operator using a sequence 2569 ** of Eq or Ne comparison operations. 2570 ** 2571 ** When the b-tree is being used for membership tests, the calling function 2572 ** might need to know whether or not the RHS side of the IN operator 2573 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2574 ** if there is any chance that the (...) might contain a NULL value at 2575 ** runtime, then a register is allocated and the register number written 2576 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2577 ** NULL value, then *prRhsHasNull is left unchanged. 2578 ** 2579 ** If a register is allocated and its location stored in *prRhsHasNull, then 2580 ** the value in that register will be NULL if the b-tree contains one or more 2581 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2582 ** NULL values. 2583 ** 2584 ** If the aiMap parameter is not NULL, it must point to an array containing 2585 ** one element for each column returned by the SELECT statement on the RHS 2586 ** of the IN(...) operator. The i'th entry of the array is populated with the 2587 ** offset of the index column that matches the i'th column returned by the 2588 ** SELECT. For example, if the expression and selected index are: 2589 ** 2590 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2591 ** CREATE INDEX i1 ON t1(b, c, a); 2592 ** 2593 ** then aiMap[] is populated with {2, 0, 1}. 2594 */ 2595 #ifndef SQLITE_OMIT_SUBQUERY 2596 int sqlite3FindInIndex( 2597 Parse *pParse, /* Parsing context */ 2598 Expr *pX, /* The IN expression */ 2599 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2600 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2601 int *aiMap, /* Mapping from Index fields to RHS fields */ 2602 int *piTab /* OUT: index to use */ 2603 ){ 2604 Select *p; /* SELECT to the right of IN operator */ 2605 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2606 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2607 int mustBeUnique; /* True if RHS must be unique */ 2608 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2609 2610 assert( pX->op==TK_IN ); 2611 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2612 2613 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2614 ** whether or not the SELECT result contains NULL values, check whether 2615 ** or not NULL is actually possible (it may not be, for example, due 2616 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2617 ** set prRhsHasNull to 0 before continuing. */ 2618 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2619 int i; 2620 ExprList *pEList = pX->x.pSelect->pEList; 2621 for(i=0; i<pEList->nExpr; i++){ 2622 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2623 } 2624 if( i==pEList->nExpr ){ 2625 prRhsHasNull = 0; 2626 } 2627 } 2628 2629 /* Check to see if an existing table or index can be used to 2630 ** satisfy the query. This is preferable to generating a new 2631 ** ephemeral table. */ 2632 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2633 sqlite3 *db = pParse->db; /* Database connection */ 2634 Table *pTab; /* Table <table>. */ 2635 int iDb; /* Database idx for pTab */ 2636 ExprList *pEList = p->pEList; 2637 int nExpr = pEList->nExpr; 2638 2639 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2640 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2641 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2642 pTab = p->pSrc->a[0].pTab; 2643 2644 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2645 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2646 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2647 sqlite3CodeVerifySchema(pParse, iDb); 2648 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2649 2650 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2651 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2652 /* The "x IN (SELECT rowid FROM table)" case */ 2653 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2654 VdbeCoverage(v); 2655 2656 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2657 eType = IN_INDEX_ROWID; 2658 ExplainQueryPlan((pParse, 0, 2659 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2660 sqlite3VdbeJumpHere(v, iAddr); 2661 }else{ 2662 Index *pIdx; /* Iterator variable */ 2663 int affinity_ok = 1; 2664 int i; 2665 2666 /* Check that the affinity that will be used to perform each 2667 ** comparison is the same as the affinity of each column in table 2668 ** on the RHS of the IN operator. If it not, it is not possible to 2669 ** use any index of the RHS table. */ 2670 for(i=0; i<nExpr && affinity_ok; i++){ 2671 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2672 int iCol = pEList->a[i].pExpr->iColumn; 2673 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2674 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2675 testcase( cmpaff==SQLITE_AFF_BLOB ); 2676 testcase( cmpaff==SQLITE_AFF_TEXT ); 2677 switch( cmpaff ){ 2678 case SQLITE_AFF_BLOB: 2679 break; 2680 case SQLITE_AFF_TEXT: 2681 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2682 ** other has no affinity and the other side is TEXT. Hence, 2683 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2684 ** and for the term on the LHS of the IN to have no affinity. */ 2685 assert( idxaff==SQLITE_AFF_TEXT ); 2686 break; 2687 default: 2688 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2689 } 2690 } 2691 2692 if( affinity_ok ){ 2693 /* Search for an existing index that will work for this IN operator */ 2694 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2695 Bitmask colUsed; /* Columns of the index used */ 2696 Bitmask mCol; /* Mask for the current column */ 2697 if( pIdx->nColumn<nExpr ) continue; 2698 if( pIdx->pPartIdxWhere!=0 ) continue; 2699 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2700 ** BITMASK(nExpr) without overflowing */ 2701 testcase( pIdx->nColumn==BMS-2 ); 2702 testcase( pIdx->nColumn==BMS-1 ); 2703 if( pIdx->nColumn>=BMS-1 ) continue; 2704 if( mustBeUnique ){ 2705 if( pIdx->nKeyCol>nExpr 2706 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2707 ){ 2708 continue; /* This index is not unique over the IN RHS columns */ 2709 } 2710 } 2711 2712 colUsed = 0; /* Columns of index used so far */ 2713 for(i=0; i<nExpr; i++){ 2714 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2715 Expr *pRhs = pEList->a[i].pExpr; 2716 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2717 int j; 2718 2719 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2720 for(j=0; j<nExpr; j++){ 2721 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2722 assert( pIdx->azColl[j] ); 2723 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2724 continue; 2725 } 2726 break; 2727 } 2728 if( j==nExpr ) break; 2729 mCol = MASKBIT(j); 2730 if( mCol & colUsed ) break; /* Each column used only once */ 2731 colUsed |= mCol; 2732 if( aiMap ) aiMap[i] = j; 2733 } 2734 2735 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2736 if( colUsed==(MASKBIT(nExpr)-1) ){ 2737 /* If we reach this point, that means the index pIdx is usable */ 2738 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2739 ExplainQueryPlan((pParse, 0, 2740 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2741 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2742 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2743 VdbeComment((v, "%s", pIdx->zName)); 2744 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2745 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2746 2747 if( prRhsHasNull ){ 2748 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2749 i64 mask = (1<<nExpr)-1; 2750 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2751 iTab, 0, 0, (u8*)&mask, P4_INT64); 2752 #endif 2753 *prRhsHasNull = ++pParse->nMem; 2754 if( nExpr==1 ){ 2755 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2756 } 2757 } 2758 sqlite3VdbeJumpHere(v, iAddr); 2759 } 2760 } /* End loop over indexes */ 2761 } /* End if( affinity_ok ) */ 2762 } /* End if not an rowid index */ 2763 } /* End attempt to optimize using an index */ 2764 2765 /* If no preexisting index is available for the IN clause 2766 ** and IN_INDEX_NOOP is an allowed reply 2767 ** and the RHS of the IN operator is a list, not a subquery 2768 ** and the RHS is not constant or has two or fewer terms, 2769 ** then it is not worth creating an ephemeral table to evaluate 2770 ** the IN operator so return IN_INDEX_NOOP. 2771 */ 2772 if( eType==0 2773 && (inFlags & IN_INDEX_NOOP_OK) 2774 && !ExprHasProperty(pX, EP_xIsSelect) 2775 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2776 ){ 2777 eType = IN_INDEX_NOOP; 2778 } 2779 2780 if( eType==0 ){ 2781 /* Could not find an existing table or index to use as the RHS b-tree. 2782 ** We will have to generate an ephemeral table to do the job. 2783 */ 2784 u32 savedNQueryLoop = pParse->nQueryLoop; 2785 int rMayHaveNull = 0; 2786 eType = IN_INDEX_EPH; 2787 if( inFlags & IN_INDEX_LOOP ){ 2788 pParse->nQueryLoop = 0; 2789 }else if( prRhsHasNull ){ 2790 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2791 } 2792 assert( pX->op==TK_IN ); 2793 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2794 if( rMayHaveNull ){ 2795 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2796 } 2797 pParse->nQueryLoop = savedNQueryLoop; 2798 } 2799 2800 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2801 int i, n; 2802 n = sqlite3ExprVectorSize(pX->pLeft); 2803 for(i=0; i<n; i++) aiMap[i] = i; 2804 } 2805 *piTab = iTab; 2806 return eType; 2807 } 2808 #endif 2809 2810 #ifndef SQLITE_OMIT_SUBQUERY 2811 /* 2812 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2813 ** function allocates and returns a nul-terminated string containing 2814 ** the affinities to be used for each column of the comparison. 2815 ** 2816 ** It is the responsibility of the caller to ensure that the returned 2817 ** string is eventually freed using sqlite3DbFree(). 2818 */ 2819 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2820 Expr *pLeft = pExpr->pLeft; 2821 int nVal = sqlite3ExprVectorSize(pLeft); 2822 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2823 char *zRet; 2824 2825 assert( pExpr->op==TK_IN ); 2826 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2827 if( zRet ){ 2828 int i; 2829 for(i=0; i<nVal; i++){ 2830 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2831 char a = sqlite3ExprAffinity(pA); 2832 if( pSelect ){ 2833 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2834 }else{ 2835 zRet[i] = a; 2836 } 2837 } 2838 zRet[nVal] = '\0'; 2839 } 2840 return zRet; 2841 } 2842 #endif 2843 2844 #ifndef SQLITE_OMIT_SUBQUERY 2845 /* 2846 ** Load the Parse object passed as the first argument with an error 2847 ** message of the form: 2848 ** 2849 ** "sub-select returns N columns - expected M" 2850 */ 2851 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2852 if( pParse->nErr==0 ){ 2853 const char *zFmt = "sub-select returns %d columns - expected %d"; 2854 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2855 } 2856 } 2857 #endif 2858 2859 /* 2860 ** Expression pExpr is a vector that has been used in a context where 2861 ** it is not permitted. If pExpr is a sub-select vector, this routine 2862 ** loads the Parse object with a message of the form: 2863 ** 2864 ** "sub-select returns N columns - expected 1" 2865 ** 2866 ** Or, if it is a regular scalar vector: 2867 ** 2868 ** "row value misused" 2869 */ 2870 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2871 #ifndef SQLITE_OMIT_SUBQUERY 2872 if( pExpr->flags & EP_xIsSelect ){ 2873 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2874 }else 2875 #endif 2876 { 2877 sqlite3ErrorMsg(pParse, "row value misused"); 2878 } 2879 } 2880 2881 #ifndef SQLITE_OMIT_SUBQUERY 2882 /* 2883 ** Generate code that will construct an ephemeral table containing all terms 2884 ** in the RHS of an IN operator. The IN operator can be in either of two 2885 ** forms: 2886 ** 2887 ** x IN (4,5,11) -- IN operator with list on right-hand side 2888 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2889 ** 2890 ** The pExpr parameter is the IN operator. The cursor number for the 2891 ** constructed ephermeral table is returned. The first time the ephemeral 2892 ** table is computed, the cursor number is also stored in pExpr->iTable, 2893 ** however the cursor number returned might not be the same, as it might 2894 ** have been duplicated using OP_OpenDup. 2895 ** 2896 ** If the LHS expression ("x" in the examples) is a column value, or 2897 ** the SELECT statement returns a column value, then the affinity of that 2898 ** column is used to build the index keys. If both 'x' and the 2899 ** SELECT... statement are columns, then numeric affinity is used 2900 ** if either column has NUMERIC or INTEGER affinity. If neither 2901 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2902 ** is used. 2903 */ 2904 void sqlite3CodeRhsOfIN( 2905 Parse *pParse, /* Parsing context */ 2906 Expr *pExpr, /* The IN operator */ 2907 int iTab /* Use this cursor number */ 2908 ){ 2909 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2910 int addr; /* Address of OP_OpenEphemeral instruction */ 2911 Expr *pLeft; /* the LHS of the IN operator */ 2912 KeyInfo *pKeyInfo = 0; /* Key information */ 2913 int nVal; /* Size of vector pLeft */ 2914 Vdbe *v; /* The prepared statement under construction */ 2915 2916 v = pParse->pVdbe; 2917 assert( v!=0 ); 2918 2919 /* The evaluation of the IN must be repeated every time it 2920 ** is encountered if any of the following is true: 2921 ** 2922 ** * The right-hand side is a correlated subquery 2923 ** * The right-hand side is an expression list containing variables 2924 ** * We are inside a trigger 2925 ** 2926 ** If all of the above are false, then we can compute the RHS just once 2927 ** and reuse it many names. 2928 */ 2929 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2930 /* Reuse of the RHS is allowed */ 2931 /* If this routine has already been coded, but the previous code 2932 ** might not have been invoked yet, so invoke it now as a subroutine. 2933 */ 2934 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2935 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2936 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2937 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2938 pExpr->x.pSelect->selId)); 2939 } 2940 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2941 pExpr->y.sub.iAddr); 2942 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2943 sqlite3VdbeJumpHere(v, addrOnce); 2944 return; 2945 } 2946 2947 /* Begin coding the subroutine */ 2948 ExprSetProperty(pExpr, EP_Subrtn); 2949 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2950 pExpr->y.sub.regReturn = ++pParse->nMem; 2951 pExpr->y.sub.iAddr = 2952 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2953 VdbeComment((v, "return address")); 2954 2955 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2956 } 2957 2958 /* Check to see if this is a vector IN operator */ 2959 pLeft = pExpr->pLeft; 2960 nVal = sqlite3ExprVectorSize(pLeft); 2961 2962 /* Construct the ephemeral table that will contain the content of 2963 ** RHS of the IN operator. 2964 */ 2965 pExpr->iTable = iTab; 2966 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2967 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2968 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2969 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2970 }else{ 2971 VdbeComment((v, "RHS of IN operator")); 2972 } 2973 #endif 2974 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2975 2976 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2977 /* Case 1: expr IN (SELECT ...) 2978 ** 2979 ** Generate code to write the results of the select into the temporary 2980 ** table allocated and opened above. 2981 */ 2982 Select *pSelect = pExpr->x.pSelect; 2983 ExprList *pEList = pSelect->pEList; 2984 2985 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2986 addrOnce?"":"CORRELATED ", pSelect->selId 2987 )); 2988 /* If the LHS and RHS of the IN operator do not match, that 2989 ** error will have been caught long before we reach this point. */ 2990 if( ALWAYS(pEList->nExpr==nVal) ){ 2991 Select *pCopy; 2992 SelectDest dest; 2993 int i; 2994 int rc; 2995 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2996 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2997 pSelect->iLimit = 0; 2998 testcase( pSelect->selFlags & SF_Distinct ); 2999 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3000 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3001 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3002 sqlite3SelectDelete(pParse->db, pCopy); 3003 sqlite3DbFree(pParse->db, dest.zAffSdst); 3004 if( rc ){ 3005 sqlite3KeyInfoUnref(pKeyInfo); 3006 return; 3007 } 3008 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3009 assert( pEList!=0 ); 3010 assert( pEList->nExpr>0 ); 3011 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3012 for(i=0; i<nVal; i++){ 3013 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3014 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3015 pParse, p, pEList->a[i].pExpr 3016 ); 3017 } 3018 } 3019 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3020 /* Case 2: expr IN (exprlist) 3021 ** 3022 ** For each expression, build an index key from the evaluation and 3023 ** store it in the temporary table. If <expr> is a column, then use 3024 ** that columns affinity when building index keys. If <expr> is not 3025 ** a column, use numeric affinity. 3026 */ 3027 char affinity; /* Affinity of the LHS of the IN */ 3028 int i; 3029 ExprList *pList = pExpr->x.pList; 3030 struct ExprList_item *pItem; 3031 int r1, r2; 3032 affinity = sqlite3ExprAffinity(pLeft); 3033 if( affinity<=SQLITE_AFF_NONE ){ 3034 affinity = SQLITE_AFF_BLOB; 3035 }else if( affinity==SQLITE_AFF_REAL ){ 3036 affinity = SQLITE_AFF_NUMERIC; 3037 } 3038 if( pKeyInfo ){ 3039 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3040 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3041 } 3042 3043 /* Loop through each expression in <exprlist>. */ 3044 r1 = sqlite3GetTempReg(pParse); 3045 r2 = sqlite3GetTempReg(pParse); 3046 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3047 Expr *pE2 = pItem->pExpr; 3048 3049 /* If the expression is not constant then we will need to 3050 ** disable the test that was generated above that makes sure 3051 ** this code only executes once. Because for a non-constant 3052 ** expression we need to rerun this code each time. 3053 */ 3054 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3055 sqlite3VdbeChangeToNoop(v, addrOnce); 3056 ExprClearProperty(pExpr, EP_Subrtn); 3057 addrOnce = 0; 3058 } 3059 3060 /* Evaluate the expression and insert it into the temp table */ 3061 sqlite3ExprCode(pParse, pE2, r1); 3062 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3063 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3064 } 3065 sqlite3ReleaseTempReg(pParse, r1); 3066 sqlite3ReleaseTempReg(pParse, r2); 3067 } 3068 if( pKeyInfo ){ 3069 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3070 } 3071 if( addrOnce ){ 3072 sqlite3VdbeJumpHere(v, addrOnce); 3073 /* Subroutine return */ 3074 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3075 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3076 sqlite3ClearTempRegCache(pParse); 3077 } 3078 } 3079 #endif /* SQLITE_OMIT_SUBQUERY */ 3080 3081 /* 3082 ** Generate code for scalar subqueries used as a subquery expression 3083 ** or EXISTS operator: 3084 ** 3085 ** (SELECT a FROM b) -- subquery 3086 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3087 ** 3088 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3089 ** 3090 ** Return the register that holds the result. For a multi-column SELECT, 3091 ** the result is stored in a contiguous array of registers and the 3092 ** return value is the register of the left-most result column. 3093 ** Return 0 if an error occurs. 3094 */ 3095 #ifndef SQLITE_OMIT_SUBQUERY 3096 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3097 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3098 int rReg = 0; /* Register storing resulting */ 3099 Select *pSel; /* SELECT statement to encode */ 3100 SelectDest dest; /* How to deal with SELECT result */ 3101 int nReg; /* Registers to allocate */ 3102 Expr *pLimit; /* New limit expression */ 3103 3104 Vdbe *v = pParse->pVdbe; 3105 assert( v!=0 ); 3106 if( pParse->nErr ) return 0; 3107 testcase( pExpr->op==TK_EXISTS ); 3108 testcase( pExpr->op==TK_SELECT ); 3109 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3110 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3111 pSel = pExpr->x.pSelect; 3112 3113 /* If this routine has already been coded, then invoke it as a 3114 ** subroutine. */ 3115 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3116 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3117 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3118 pExpr->y.sub.iAddr); 3119 return pExpr->iTable; 3120 } 3121 3122 /* Begin coding the subroutine */ 3123 ExprSetProperty(pExpr, EP_Subrtn); 3124 pExpr->y.sub.regReturn = ++pParse->nMem; 3125 pExpr->y.sub.iAddr = 3126 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3127 VdbeComment((v, "return address")); 3128 3129 3130 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3131 ** is encountered if any of the following is true: 3132 ** 3133 ** * The right-hand side is a correlated subquery 3134 ** * The right-hand side is an expression list containing variables 3135 ** * We are inside a trigger 3136 ** 3137 ** If all of the above are false, then we can run this code just once 3138 ** save the results, and reuse the same result on subsequent invocations. 3139 */ 3140 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3141 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3142 } 3143 3144 /* For a SELECT, generate code to put the values for all columns of 3145 ** the first row into an array of registers and return the index of 3146 ** the first register. 3147 ** 3148 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3149 ** into a register and return that register number. 3150 ** 3151 ** In both cases, the query is augmented with "LIMIT 1". Any 3152 ** preexisting limit is discarded in place of the new LIMIT 1. 3153 */ 3154 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3155 addrOnce?"":"CORRELATED ", pSel->selId)); 3156 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3157 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3158 pParse->nMem += nReg; 3159 if( pExpr->op==TK_SELECT ){ 3160 dest.eDest = SRT_Mem; 3161 dest.iSdst = dest.iSDParm; 3162 dest.nSdst = nReg; 3163 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3164 VdbeComment((v, "Init subquery result")); 3165 }else{ 3166 dest.eDest = SRT_Exists; 3167 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3168 VdbeComment((v, "Init EXISTS result")); 3169 } 3170 if( pSel->pLimit ){ 3171 /* The subquery already has a limit. If the pre-existing limit is X 3172 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3173 sqlite3 *db = pParse->db; 3174 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3175 if( pLimit ){ 3176 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3177 pLimit = sqlite3PExpr(pParse, TK_NE, 3178 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3179 } 3180 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3181 pSel->pLimit->pLeft = pLimit; 3182 }else{ 3183 /* If there is no pre-existing limit add a limit of 1 */ 3184 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3185 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3186 } 3187 pSel->iLimit = 0; 3188 if( sqlite3Select(pParse, pSel, &dest) ){ 3189 if( pParse->nErr ){ 3190 pExpr->op2 = pExpr->op; 3191 pExpr->op = TK_ERROR; 3192 } 3193 return 0; 3194 } 3195 pExpr->iTable = rReg = dest.iSDParm; 3196 ExprSetVVAProperty(pExpr, EP_NoReduce); 3197 if( addrOnce ){ 3198 sqlite3VdbeJumpHere(v, addrOnce); 3199 } 3200 3201 /* Subroutine return */ 3202 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3203 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3204 sqlite3ClearTempRegCache(pParse); 3205 return rReg; 3206 } 3207 #endif /* SQLITE_OMIT_SUBQUERY */ 3208 3209 #ifndef SQLITE_OMIT_SUBQUERY 3210 /* 3211 ** Expr pIn is an IN(...) expression. This function checks that the 3212 ** sub-select on the RHS of the IN() operator has the same number of 3213 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3214 ** a sub-query, that the LHS is a vector of size 1. 3215 */ 3216 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3217 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3218 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3219 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3220 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3221 return 1; 3222 } 3223 }else if( nVector!=1 ){ 3224 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3225 return 1; 3226 } 3227 return 0; 3228 } 3229 #endif 3230 3231 #ifndef SQLITE_OMIT_SUBQUERY 3232 /* 3233 ** Generate code for an IN expression. 3234 ** 3235 ** x IN (SELECT ...) 3236 ** x IN (value, value, ...) 3237 ** 3238 ** The left-hand side (LHS) is a scalar or vector expression. The 3239 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3240 ** subquery. If the RHS is a subquery, the number of result columns must 3241 ** match the number of columns in the vector on the LHS. If the RHS is 3242 ** a list of values, the LHS must be a scalar. 3243 ** 3244 ** The IN operator is true if the LHS value is contained within the RHS. 3245 ** The result is false if the LHS is definitely not in the RHS. The 3246 ** result is NULL if the presence of the LHS in the RHS cannot be 3247 ** determined due to NULLs. 3248 ** 3249 ** This routine generates code that jumps to destIfFalse if the LHS is not 3250 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3251 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3252 ** within the RHS then fall through. 3253 ** 3254 ** See the separate in-operator.md documentation file in the canonical 3255 ** SQLite source tree for additional information. 3256 */ 3257 static void sqlite3ExprCodeIN( 3258 Parse *pParse, /* Parsing and code generating context */ 3259 Expr *pExpr, /* The IN expression */ 3260 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3261 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3262 ){ 3263 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3264 int eType; /* Type of the RHS */ 3265 int rLhs; /* Register(s) holding the LHS values */ 3266 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3267 Vdbe *v; /* Statement under construction */ 3268 int *aiMap = 0; /* Map from vector field to index column */ 3269 char *zAff = 0; /* Affinity string for comparisons */ 3270 int nVector; /* Size of vectors for this IN operator */ 3271 int iDummy; /* Dummy parameter to exprCodeVector() */ 3272 Expr *pLeft; /* The LHS of the IN operator */ 3273 int i; /* loop counter */ 3274 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3275 int destStep6 = 0; /* Start of code for Step 6 */ 3276 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3277 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3278 int addrTop; /* Top of the step-6 loop */ 3279 int iTab = 0; /* Index to use */ 3280 u8 okConstFactor = pParse->okConstFactor; 3281 3282 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3283 pLeft = pExpr->pLeft; 3284 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3285 zAff = exprINAffinity(pParse, pExpr); 3286 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3287 aiMap = (int*)sqlite3DbMallocZero( 3288 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3289 ); 3290 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3291 3292 /* Attempt to compute the RHS. After this step, if anything other than 3293 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3294 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3295 ** the RHS has not yet been coded. */ 3296 v = pParse->pVdbe; 3297 assert( v!=0 ); /* OOM detected prior to this routine */ 3298 VdbeNoopComment((v, "begin IN expr")); 3299 eType = sqlite3FindInIndex(pParse, pExpr, 3300 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3301 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3302 aiMap, &iTab); 3303 3304 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3305 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3306 ); 3307 #ifdef SQLITE_DEBUG 3308 /* Confirm that aiMap[] contains nVector integer values between 0 and 3309 ** nVector-1. */ 3310 for(i=0; i<nVector; i++){ 3311 int j, cnt; 3312 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3313 assert( cnt==1 ); 3314 } 3315 #endif 3316 3317 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3318 ** vector, then it is stored in an array of nVector registers starting 3319 ** at r1. 3320 ** 3321 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3322 ** so that the fields are in the same order as an existing index. The 3323 ** aiMap[] array contains a mapping from the original LHS field order to 3324 ** the field order that matches the RHS index. 3325 ** 3326 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3327 ** even if it is constant, as OP_Affinity may be used on the register 3328 ** by code generated below. */ 3329 assert( pParse->okConstFactor==okConstFactor ); 3330 pParse->okConstFactor = 0; 3331 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3332 pParse->okConstFactor = okConstFactor; 3333 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3334 if( i==nVector ){ 3335 /* LHS fields are not reordered */ 3336 rLhs = rLhsOrig; 3337 }else{ 3338 /* Need to reorder the LHS fields according to aiMap */ 3339 rLhs = sqlite3GetTempRange(pParse, nVector); 3340 for(i=0; i<nVector; i++){ 3341 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3342 } 3343 } 3344 3345 /* If sqlite3FindInIndex() did not find or create an index that is 3346 ** suitable for evaluating the IN operator, then evaluate using a 3347 ** sequence of comparisons. 3348 ** 3349 ** This is step (1) in the in-operator.md optimized algorithm. 3350 */ 3351 if( eType==IN_INDEX_NOOP ){ 3352 ExprList *pList = pExpr->x.pList; 3353 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3354 int labelOk = sqlite3VdbeMakeLabel(pParse); 3355 int r2, regToFree; 3356 int regCkNull = 0; 3357 int ii; 3358 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3359 if( destIfNull!=destIfFalse ){ 3360 regCkNull = sqlite3GetTempReg(pParse); 3361 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3362 } 3363 for(ii=0; ii<pList->nExpr; ii++){ 3364 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3365 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3366 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3367 } 3368 sqlite3ReleaseTempReg(pParse, regToFree); 3369 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3370 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3371 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3372 (void*)pColl, P4_COLLSEQ); 3373 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3374 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3375 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3376 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3377 sqlite3VdbeChangeP5(v, zAff[0]); 3378 }else{ 3379 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3380 assert( destIfNull==destIfFalse ); 3381 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3382 (void*)pColl, P4_COLLSEQ); 3383 VdbeCoverageIf(v, op==OP_Ne); 3384 VdbeCoverageIf(v, op==OP_IsNull); 3385 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3386 } 3387 } 3388 if( regCkNull ){ 3389 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3390 sqlite3VdbeGoto(v, destIfFalse); 3391 } 3392 sqlite3VdbeResolveLabel(v, labelOk); 3393 sqlite3ReleaseTempReg(pParse, regCkNull); 3394 goto sqlite3ExprCodeIN_finished; 3395 } 3396 3397 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3398 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3399 ** We will then skip the binary search of the RHS. 3400 */ 3401 if( destIfNull==destIfFalse ){ 3402 destStep2 = destIfFalse; 3403 }else{ 3404 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3405 } 3406 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3407 for(i=0; i<nVector; i++){ 3408 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3409 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3410 if( sqlite3ExprCanBeNull(p) ){ 3411 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3412 VdbeCoverage(v); 3413 } 3414 } 3415 3416 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3417 ** of the RHS using the LHS as a probe. If found, the result is 3418 ** true. 3419 */ 3420 if( eType==IN_INDEX_ROWID ){ 3421 /* In this case, the RHS is the ROWID of table b-tree and so we also 3422 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3423 ** into a single opcode. */ 3424 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3425 VdbeCoverage(v); 3426 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3427 }else{ 3428 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3429 if( destIfFalse==destIfNull ){ 3430 /* Combine Step 3 and Step 5 into a single opcode */ 3431 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3432 rLhs, nVector); VdbeCoverage(v); 3433 goto sqlite3ExprCodeIN_finished; 3434 } 3435 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3436 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3437 rLhs, nVector); VdbeCoverage(v); 3438 } 3439 3440 /* Step 4. If the RHS is known to be non-NULL and we did not find 3441 ** an match on the search above, then the result must be FALSE. 3442 */ 3443 if( rRhsHasNull && nVector==1 ){ 3444 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3445 VdbeCoverage(v); 3446 } 3447 3448 /* Step 5. If we do not care about the difference between NULL and 3449 ** FALSE, then just return false. 3450 */ 3451 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3452 3453 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3454 ** If any comparison is NULL, then the result is NULL. If all 3455 ** comparisons are FALSE then the final result is FALSE. 3456 ** 3457 ** For a scalar LHS, it is sufficient to check just the first row 3458 ** of the RHS. 3459 */ 3460 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3461 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3462 VdbeCoverage(v); 3463 if( nVector>1 ){ 3464 destNotNull = sqlite3VdbeMakeLabel(pParse); 3465 }else{ 3466 /* For nVector==1, combine steps 6 and 7 by immediately returning 3467 ** FALSE if the first comparison is not NULL */ 3468 destNotNull = destIfFalse; 3469 } 3470 for(i=0; i<nVector; i++){ 3471 Expr *p; 3472 CollSeq *pColl; 3473 int r3 = sqlite3GetTempReg(pParse); 3474 p = sqlite3VectorFieldSubexpr(pLeft, i); 3475 pColl = sqlite3ExprCollSeq(pParse, p); 3476 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3477 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3478 (void*)pColl, P4_COLLSEQ); 3479 VdbeCoverage(v); 3480 sqlite3ReleaseTempReg(pParse, r3); 3481 } 3482 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3483 if( nVector>1 ){ 3484 sqlite3VdbeResolveLabel(v, destNotNull); 3485 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3486 VdbeCoverage(v); 3487 3488 /* Step 7: If we reach this point, we know that the result must 3489 ** be false. */ 3490 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3491 } 3492 3493 /* Jumps here in order to return true. */ 3494 sqlite3VdbeJumpHere(v, addrTruthOp); 3495 3496 sqlite3ExprCodeIN_finished: 3497 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3498 VdbeComment((v, "end IN expr")); 3499 sqlite3ExprCodeIN_oom_error: 3500 sqlite3DbFree(pParse->db, aiMap); 3501 sqlite3DbFree(pParse->db, zAff); 3502 } 3503 #endif /* SQLITE_OMIT_SUBQUERY */ 3504 3505 #ifndef SQLITE_OMIT_FLOATING_POINT 3506 /* 3507 ** Generate an instruction that will put the floating point 3508 ** value described by z[0..n-1] into register iMem. 3509 ** 3510 ** The z[] string will probably not be zero-terminated. But the 3511 ** z[n] character is guaranteed to be something that does not look 3512 ** like the continuation of the number. 3513 */ 3514 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3515 if( ALWAYS(z!=0) ){ 3516 double value; 3517 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3518 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3519 if( negateFlag ) value = -value; 3520 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3521 } 3522 } 3523 #endif 3524 3525 3526 /* 3527 ** Generate an instruction that will put the integer describe by 3528 ** text z[0..n-1] into register iMem. 3529 ** 3530 ** Expr.u.zToken is always UTF8 and zero-terminated. 3531 */ 3532 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3533 Vdbe *v = pParse->pVdbe; 3534 if( pExpr->flags & EP_IntValue ){ 3535 int i = pExpr->u.iValue; 3536 assert( i>=0 ); 3537 if( negFlag ) i = -i; 3538 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3539 }else{ 3540 int c; 3541 i64 value; 3542 const char *z = pExpr->u.zToken; 3543 assert( z!=0 ); 3544 c = sqlite3DecOrHexToI64(z, &value); 3545 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3546 #ifdef SQLITE_OMIT_FLOATING_POINT 3547 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3548 #else 3549 #ifndef SQLITE_OMIT_HEX_INTEGER 3550 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3551 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3552 }else 3553 #endif 3554 { 3555 codeReal(v, z, negFlag, iMem); 3556 } 3557 #endif 3558 }else{ 3559 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3560 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3561 } 3562 } 3563 } 3564 3565 3566 /* Generate code that will load into register regOut a value that is 3567 ** appropriate for the iIdxCol-th column of index pIdx. 3568 */ 3569 void sqlite3ExprCodeLoadIndexColumn( 3570 Parse *pParse, /* The parsing context */ 3571 Index *pIdx, /* The index whose column is to be loaded */ 3572 int iTabCur, /* Cursor pointing to a table row */ 3573 int iIdxCol, /* The column of the index to be loaded */ 3574 int regOut /* Store the index column value in this register */ 3575 ){ 3576 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3577 if( iTabCol==XN_EXPR ){ 3578 assert( pIdx->aColExpr ); 3579 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3580 pParse->iSelfTab = iTabCur + 1; 3581 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3582 pParse->iSelfTab = 0; 3583 }else{ 3584 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3585 iTabCol, regOut); 3586 } 3587 } 3588 3589 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3590 /* 3591 ** Generate code that will compute the value of generated column pCol 3592 ** and store the result in register regOut 3593 */ 3594 void sqlite3ExprCodeGeneratedColumn( 3595 Parse *pParse, 3596 Column *pCol, 3597 int regOut 3598 ){ 3599 int iAddr; 3600 Vdbe *v = pParse->pVdbe; 3601 assert( v!=0 ); 3602 assert( pParse->iSelfTab!=0 ); 3603 if( pParse->iSelfTab>0 ){ 3604 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3605 }else{ 3606 iAddr = 0; 3607 } 3608 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3609 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3610 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3611 } 3612 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3613 } 3614 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3615 3616 /* 3617 ** Generate code to extract the value of the iCol-th column of a table. 3618 */ 3619 void sqlite3ExprCodeGetColumnOfTable( 3620 Vdbe *v, /* Parsing context */ 3621 Table *pTab, /* The table containing the value */ 3622 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3623 int iCol, /* Index of the column to extract */ 3624 int regOut /* Extract the value into this register */ 3625 ){ 3626 Column *pCol; 3627 assert( v!=0 ); 3628 if( pTab==0 ){ 3629 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3630 return; 3631 } 3632 if( iCol<0 || iCol==pTab->iPKey ){ 3633 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3634 }else{ 3635 int op; 3636 int x; 3637 if( IsVirtual(pTab) ){ 3638 op = OP_VColumn; 3639 x = iCol; 3640 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3641 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3642 Parse *pParse = sqlite3VdbeParser(v); 3643 if( pCol->colFlags & COLFLAG_BUSY ){ 3644 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3645 }else{ 3646 int savedSelfTab = pParse->iSelfTab; 3647 pCol->colFlags |= COLFLAG_BUSY; 3648 pParse->iSelfTab = iTabCur+1; 3649 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3650 pParse->iSelfTab = savedSelfTab; 3651 pCol->colFlags &= ~COLFLAG_BUSY; 3652 } 3653 return; 3654 #endif 3655 }else if( !HasRowid(pTab) ){ 3656 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3657 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3658 op = OP_Column; 3659 }else{ 3660 x = sqlite3TableColumnToStorage(pTab,iCol); 3661 testcase( x!=iCol ); 3662 op = OP_Column; 3663 } 3664 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3665 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3666 } 3667 } 3668 3669 /* 3670 ** Generate code that will extract the iColumn-th column from 3671 ** table pTab and store the column value in register iReg. 3672 ** 3673 ** There must be an open cursor to pTab in iTable when this routine 3674 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3675 */ 3676 int sqlite3ExprCodeGetColumn( 3677 Parse *pParse, /* Parsing and code generating context */ 3678 Table *pTab, /* Description of the table we are reading from */ 3679 int iColumn, /* Index of the table column */ 3680 int iTable, /* The cursor pointing to the table */ 3681 int iReg, /* Store results here */ 3682 u8 p5 /* P5 value for OP_Column + FLAGS */ 3683 ){ 3684 assert( pParse->pVdbe!=0 ); 3685 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3686 if( p5 ){ 3687 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3688 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3689 } 3690 return iReg; 3691 } 3692 3693 /* 3694 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3695 ** over to iTo..iTo+nReg-1. 3696 */ 3697 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3698 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3699 } 3700 3701 /* 3702 ** Convert a scalar expression node to a TK_REGISTER referencing 3703 ** register iReg. The caller must ensure that iReg already contains 3704 ** the correct value for the expression. 3705 */ 3706 static void exprToRegister(Expr *pExpr, int iReg){ 3707 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3708 if( NEVER(p==0) ) return; 3709 p->op2 = p->op; 3710 p->op = TK_REGISTER; 3711 p->iTable = iReg; 3712 ExprClearProperty(p, EP_Skip); 3713 } 3714 3715 /* 3716 ** Evaluate an expression (either a vector or a scalar expression) and store 3717 ** the result in continguous temporary registers. Return the index of 3718 ** the first register used to store the result. 3719 ** 3720 ** If the returned result register is a temporary scalar, then also write 3721 ** that register number into *piFreeable. If the returned result register 3722 ** is not a temporary or if the expression is a vector set *piFreeable 3723 ** to 0. 3724 */ 3725 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3726 int iResult; 3727 int nResult = sqlite3ExprVectorSize(p); 3728 if( nResult==1 ){ 3729 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3730 }else{ 3731 *piFreeable = 0; 3732 if( p->op==TK_SELECT ){ 3733 #if SQLITE_OMIT_SUBQUERY 3734 iResult = 0; 3735 #else 3736 iResult = sqlite3CodeSubselect(pParse, p); 3737 #endif 3738 }else{ 3739 int i; 3740 iResult = pParse->nMem+1; 3741 pParse->nMem += nResult; 3742 for(i=0; i<nResult; i++){ 3743 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3744 } 3745 } 3746 } 3747 return iResult; 3748 } 3749 3750 /* 3751 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3752 ** so that a subsequent copy will not be merged into this one. 3753 */ 3754 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3755 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3756 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3757 } 3758 } 3759 3760 /* 3761 ** Generate code to implement special SQL functions that are implemented 3762 ** in-line rather than by using the usual callbacks. 3763 */ 3764 static int exprCodeInlineFunction( 3765 Parse *pParse, /* Parsing context */ 3766 ExprList *pFarg, /* List of function arguments */ 3767 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3768 int target /* Store function result in this register */ 3769 ){ 3770 int nFarg; 3771 Vdbe *v = pParse->pVdbe; 3772 assert( v!=0 ); 3773 assert( pFarg!=0 ); 3774 nFarg = pFarg->nExpr; 3775 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3776 switch( iFuncId ){ 3777 case INLINEFUNC_coalesce: { 3778 /* Attempt a direct implementation of the built-in COALESCE() and 3779 ** IFNULL() functions. This avoids unnecessary evaluation of 3780 ** arguments past the first non-NULL argument. 3781 */ 3782 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3783 int i; 3784 assert( nFarg>=2 ); 3785 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3786 for(i=1; i<nFarg; i++){ 3787 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3788 VdbeCoverage(v); 3789 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3790 } 3791 setDoNotMergeFlagOnCopy(v); 3792 sqlite3VdbeResolveLabel(v, endCoalesce); 3793 break; 3794 } 3795 case INLINEFUNC_iif: { 3796 Expr caseExpr; 3797 memset(&caseExpr, 0, sizeof(caseExpr)); 3798 caseExpr.op = TK_CASE; 3799 caseExpr.x.pList = pFarg; 3800 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3801 } 3802 3803 default: { 3804 /* The UNLIKELY() function is a no-op. The result is the value 3805 ** of the first argument. 3806 */ 3807 assert( nFarg==1 || nFarg==2 ); 3808 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3809 break; 3810 } 3811 3812 /*********************************************************************** 3813 ** Test-only SQL functions that are only usable if enabled 3814 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3815 */ 3816 case INLINEFUNC_expr_compare: { 3817 /* Compare two expressions using sqlite3ExprCompare() */ 3818 assert( nFarg==2 ); 3819 sqlite3VdbeAddOp2(v, OP_Integer, 3820 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3821 target); 3822 break; 3823 } 3824 3825 case INLINEFUNC_expr_implies_expr: { 3826 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3827 assert( nFarg==2 ); 3828 sqlite3VdbeAddOp2(v, OP_Integer, 3829 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3830 target); 3831 break; 3832 } 3833 3834 case INLINEFUNC_implies_nonnull_row: { 3835 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3836 Expr *pA1; 3837 assert( nFarg==2 ); 3838 pA1 = pFarg->a[1].pExpr; 3839 if( pA1->op==TK_COLUMN ){ 3840 sqlite3VdbeAddOp2(v, OP_Integer, 3841 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3842 target); 3843 }else{ 3844 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3845 } 3846 break; 3847 } 3848 3849 #ifdef SQLITE_DEBUG 3850 case INLINEFUNC_affinity: { 3851 /* The AFFINITY() function evaluates to a string that describes 3852 ** the type affinity of the argument. This is used for testing of 3853 ** the SQLite type logic. 3854 */ 3855 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3856 char aff; 3857 assert( nFarg==1 ); 3858 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3859 sqlite3VdbeLoadString(v, target, 3860 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3861 break; 3862 } 3863 #endif 3864 } 3865 return target; 3866 } 3867 3868 3869 /* 3870 ** Generate code into the current Vdbe to evaluate the given 3871 ** expression. Attempt to store the results in register "target". 3872 ** Return the register where results are stored. 3873 ** 3874 ** With this routine, there is no guarantee that results will 3875 ** be stored in target. The result might be stored in some other 3876 ** register if it is convenient to do so. The calling function 3877 ** must check the return code and move the results to the desired 3878 ** register. 3879 */ 3880 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3881 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3882 int op; /* The opcode being coded */ 3883 int inReg = target; /* Results stored in register inReg */ 3884 int regFree1 = 0; /* If non-zero free this temporary register */ 3885 int regFree2 = 0; /* If non-zero free this temporary register */ 3886 int r1, r2; /* Various register numbers */ 3887 Expr tempX; /* Temporary expression node */ 3888 int p5 = 0; 3889 3890 assert( target>0 && target<=pParse->nMem ); 3891 assert( v!=0 ); 3892 3893 expr_code_doover: 3894 if( pExpr==0 ){ 3895 op = TK_NULL; 3896 }else{ 3897 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3898 op = pExpr->op; 3899 } 3900 switch( op ){ 3901 case TK_AGG_COLUMN: { 3902 AggInfo *pAggInfo = pExpr->pAggInfo; 3903 struct AggInfo_col *pCol; 3904 assert( pAggInfo!=0 ); 3905 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3906 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3907 if( !pAggInfo->directMode ){ 3908 assert( pCol->iMem>0 ); 3909 return pCol->iMem; 3910 }else if( pAggInfo->useSortingIdx ){ 3911 Table *pTab = pCol->pTab; 3912 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3913 pCol->iSorterColumn, target); 3914 if( pCol->iColumn<0 ){ 3915 VdbeComment((v,"%s.rowid",pTab->zName)); 3916 }else{ 3917 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3918 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3919 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3920 } 3921 } 3922 return target; 3923 } 3924 /* Otherwise, fall thru into the TK_COLUMN case */ 3925 /* no break */ deliberate_fall_through 3926 } 3927 case TK_COLUMN: { 3928 int iTab = pExpr->iTable; 3929 int iReg; 3930 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3931 /* This COLUMN expression is really a constant due to WHERE clause 3932 ** constraints, and that constant is coded by the pExpr->pLeft 3933 ** expresssion. However, make sure the constant has the correct 3934 ** datatype by applying the Affinity of the table column to the 3935 ** constant. 3936 */ 3937 int aff; 3938 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3939 if( pExpr->y.pTab ){ 3940 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3941 }else{ 3942 aff = pExpr->affExpr; 3943 } 3944 if( aff>SQLITE_AFF_BLOB ){ 3945 static const char zAff[] = "B\000C\000D\000E"; 3946 assert( SQLITE_AFF_BLOB=='A' ); 3947 assert( SQLITE_AFF_TEXT=='B' ); 3948 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3949 &zAff[(aff-'B')*2], P4_STATIC); 3950 } 3951 return iReg; 3952 } 3953 if( iTab<0 ){ 3954 if( pParse->iSelfTab<0 ){ 3955 /* Other columns in the same row for CHECK constraints or 3956 ** generated columns or for inserting into partial index. 3957 ** The row is unpacked into registers beginning at 3958 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3959 ** immediately prior to the first column. 3960 */ 3961 Column *pCol; 3962 Table *pTab = pExpr->y.pTab; 3963 int iSrc; 3964 int iCol = pExpr->iColumn; 3965 assert( pTab!=0 ); 3966 assert( iCol>=XN_ROWID ); 3967 assert( iCol<pTab->nCol ); 3968 if( iCol<0 ){ 3969 return -1-pParse->iSelfTab; 3970 } 3971 pCol = pTab->aCol + iCol; 3972 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3973 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3974 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3975 if( pCol->colFlags & COLFLAG_GENERATED ){ 3976 if( pCol->colFlags & COLFLAG_BUSY ){ 3977 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3978 pCol->zName); 3979 return 0; 3980 } 3981 pCol->colFlags |= COLFLAG_BUSY; 3982 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3983 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3984 } 3985 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3986 return iSrc; 3987 }else 3988 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3989 if( pCol->affinity==SQLITE_AFF_REAL ){ 3990 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3991 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3992 return target; 3993 }else{ 3994 return iSrc; 3995 } 3996 }else{ 3997 /* Coding an expression that is part of an index where column names 3998 ** in the index refer to the table to which the index belongs */ 3999 iTab = pParse->iSelfTab - 1; 4000 } 4001 } 4002 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4003 pExpr->iColumn, iTab, target, 4004 pExpr->op2); 4005 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4006 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4007 } 4008 return iReg; 4009 } 4010 case TK_INTEGER: { 4011 codeInteger(pParse, pExpr, 0, target); 4012 return target; 4013 } 4014 case TK_TRUEFALSE: { 4015 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4016 return target; 4017 } 4018 #ifndef SQLITE_OMIT_FLOATING_POINT 4019 case TK_FLOAT: { 4020 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4021 codeReal(v, pExpr->u.zToken, 0, target); 4022 return target; 4023 } 4024 #endif 4025 case TK_STRING: { 4026 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4027 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4028 return target; 4029 } 4030 default: { 4031 /* Make NULL the default case so that if a bug causes an illegal 4032 ** Expr node to be passed into this function, it will be handled 4033 ** sanely and not crash. But keep the assert() to bring the problem 4034 ** to the attention of the developers. */ 4035 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4036 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4037 return target; 4038 } 4039 #ifndef SQLITE_OMIT_BLOB_LITERAL 4040 case TK_BLOB: { 4041 int n; 4042 const char *z; 4043 char *zBlob; 4044 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4045 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4046 assert( pExpr->u.zToken[1]=='\'' ); 4047 z = &pExpr->u.zToken[2]; 4048 n = sqlite3Strlen30(z) - 1; 4049 assert( z[n]=='\'' ); 4050 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4051 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4052 return target; 4053 } 4054 #endif 4055 case TK_VARIABLE: { 4056 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4057 assert( pExpr->u.zToken!=0 ); 4058 assert( pExpr->u.zToken[0]!=0 ); 4059 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4060 if( pExpr->u.zToken[1]!=0 ){ 4061 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4062 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4063 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4064 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4065 } 4066 return target; 4067 } 4068 case TK_REGISTER: { 4069 return pExpr->iTable; 4070 } 4071 #ifndef SQLITE_OMIT_CAST 4072 case TK_CAST: { 4073 /* Expressions of the form: CAST(pLeft AS token) */ 4074 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4075 if( inReg!=target ){ 4076 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4077 inReg = target; 4078 } 4079 sqlite3VdbeAddOp2(v, OP_Cast, target, 4080 sqlite3AffinityType(pExpr->u.zToken, 0)); 4081 return inReg; 4082 } 4083 #endif /* SQLITE_OMIT_CAST */ 4084 case TK_IS: 4085 case TK_ISNOT: 4086 op = (op==TK_IS) ? TK_EQ : TK_NE; 4087 p5 = SQLITE_NULLEQ; 4088 /* fall-through */ 4089 case TK_LT: 4090 case TK_LE: 4091 case TK_GT: 4092 case TK_GE: 4093 case TK_NE: 4094 case TK_EQ: { 4095 Expr *pLeft = pExpr->pLeft; 4096 if( sqlite3ExprIsVector(pLeft) ){ 4097 codeVectorCompare(pParse, pExpr, target, op, p5); 4098 }else{ 4099 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4100 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4101 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4102 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4103 sqlite3VdbeCurrentAddr(v)+2, p5, 4104 ExprHasProperty(pExpr,EP_Commuted)); 4105 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4106 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4107 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4108 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4109 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4110 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4111 if( p5==SQLITE_NULLEQ ){ 4112 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4113 }else{ 4114 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4115 } 4116 testcase( regFree1==0 ); 4117 testcase( regFree2==0 ); 4118 } 4119 break; 4120 } 4121 case TK_AND: 4122 case TK_OR: 4123 case TK_PLUS: 4124 case TK_STAR: 4125 case TK_MINUS: 4126 case TK_REM: 4127 case TK_BITAND: 4128 case TK_BITOR: 4129 case TK_SLASH: 4130 case TK_LSHIFT: 4131 case TK_RSHIFT: 4132 case TK_CONCAT: { 4133 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4134 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4135 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4136 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4137 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4138 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4139 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4140 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4141 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4142 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4143 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4144 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4145 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4146 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4147 testcase( regFree1==0 ); 4148 testcase( regFree2==0 ); 4149 break; 4150 } 4151 case TK_UMINUS: { 4152 Expr *pLeft = pExpr->pLeft; 4153 assert( pLeft ); 4154 if( pLeft->op==TK_INTEGER ){ 4155 codeInteger(pParse, pLeft, 1, target); 4156 return target; 4157 #ifndef SQLITE_OMIT_FLOATING_POINT 4158 }else if( pLeft->op==TK_FLOAT ){ 4159 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4160 codeReal(v, pLeft->u.zToken, 1, target); 4161 return target; 4162 #endif 4163 }else{ 4164 tempX.op = TK_INTEGER; 4165 tempX.flags = EP_IntValue|EP_TokenOnly; 4166 tempX.u.iValue = 0; 4167 ExprClearVVAProperties(&tempX); 4168 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4169 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4170 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4171 testcase( regFree2==0 ); 4172 } 4173 break; 4174 } 4175 case TK_BITNOT: 4176 case TK_NOT: { 4177 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4178 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4179 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4180 testcase( regFree1==0 ); 4181 sqlite3VdbeAddOp2(v, op, r1, inReg); 4182 break; 4183 } 4184 case TK_TRUTH: { 4185 int isTrue; /* IS TRUE or IS NOT TRUE */ 4186 int bNormal; /* IS TRUE or IS FALSE */ 4187 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4188 testcase( regFree1==0 ); 4189 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4190 bNormal = pExpr->op2==TK_IS; 4191 testcase( isTrue && bNormal); 4192 testcase( !isTrue && bNormal); 4193 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4194 break; 4195 } 4196 case TK_ISNULL: 4197 case TK_NOTNULL: { 4198 int addr; 4199 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4200 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4201 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4202 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4203 testcase( regFree1==0 ); 4204 addr = sqlite3VdbeAddOp1(v, op, r1); 4205 VdbeCoverageIf(v, op==TK_ISNULL); 4206 VdbeCoverageIf(v, op==TK_NOTNULL); 4207 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4208 sqlite3VdbeJumpHere(v, addr); 4209 break; 4210 } 4211 case TK_AGG_FUNCTION: { 4212 AggInfo *pInfo = pExpr->pAggInfo; 4213 if( pInfo==0 4214 || NEVER(pExpr->iAgg<0) 4215 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4216 ){ 4217 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4218 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4219 }else{ 4220 return pInfo->aFunc[pExpr->iAgg].iMem; 4221 } 4222 break; 4223 } 4224 case TK_FUNCTION: { 4225 ExprList *pFarg; /* List of function arguments */ 4226 int nFarg; /* Number of function arguments */ 4227 FuncDef *pDef; /* The function definition object */ 4228 const char *zId; /* The function name */ 4229 u32 constMask = 0; /* Mask of function arguments that are constant */ 4230 int i; /* Loop counter */ 4231 sqlite3 *db = pParse->db; /* The database connection */ 4232 u8 enc = ENC(db); /* The text encoding used by this database */ 4233 CollSeq *pColl = 0; /* A collating sequence */ 4234 4235 #ifndef SQLITE_OMIT_WINDOWFUNC 4236 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4237 return pExpr->y.pWin->regResult; 4238 } 4239 #endif 4240 4241 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4242 /* SQL functions can be expensive. So try to avoid running them 4243 ** multiple times if we know they always give the same result */ 4244 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4245 } 4246 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4247 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4248 pFarg = pExpr->x.pList; 4249 nFarg = pFarg ? pFarg->nExpr : 0; 4250 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4251 zId = pExpr->u.zToken; 4252 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4253 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4254 if( pDef==0 && pParse->explain ){ 4255 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4256 } 4257 #endif 4258 if( pDef==0 || pDef->xFinalize!=0 ){ 4259 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4260 break; 4261 } 4262 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4263 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4264 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4265 return exprCodeInlineFunction(pParse, pFarg, 4266 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4267 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4268 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4269 } 4270 4271 for(i=0; i<nFarg; i++){ 4272 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4273 testcase( i==31 ); 4274 constMask |= MASKBIT32(i); 4275 } 4276 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4277 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4278 } 4279 } 4280 if( pFarg ){ 4281 if( constMask ){ 4282 r1 = pParse->nMem+1; 4283 pParse->nMem += nFarg; 4284 }else{ 4285 r1 = sqlite3GetTempRange(pParse, nFarg); 4286 } 4287 4288 /* For length() and typeof() functions with a column argument, 4289 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4290 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4291 ** loading. 4292 */ 4293 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4294 u8 exprOp; 4295 assert( nFarg==1 ); 4296 assert( pFarg->a[0].pExpr!=0 ); 4297 exprOp = pFarg->a[0].pExpr->op; 4298 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4299 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4300 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4301 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4302 pFarg->a[0].pExpr->op2 = 4303 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4304 } 4305 } 4306 4307 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4308 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4309 }else{ 4310 r1 = 0; 4311 } 4312 #ifndef SQLITE_OMIT_VIRTUALTABLE 4313 /* Possibly overload the function if the first argument is 4314 ** a virtual table column. 4315 ** 4316 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4317 ** second argument, not the first, as the argument to test to 4318 ** see if it is a column in a virtual table. This is done because 4319 ** the left operand of infix functions (the operand we want to 4320 ** control overloading) ends up as the second argument to the 4321 ** function. The expression "A glob B" is equivalent to 4322 ** "glob(B,A). We want to use the A in "A glob B" to test 4323 ** for function overloading. But we use the B term in "glob(B,A)". 4324 */ 4325 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4326 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4327 }else if( nFarg>0 ){ 4328 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4329 } 4330 #endif 4331 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4332 if( !pColl ) pColl = db->pDfltColl; 4333 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4334 } 4335 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4336 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4337 Expr *pArg = pFarg->a[0].pExpr; 4338 if( pArg->op==TK_COLUMN ){ 4339 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4340 }else{ 4341 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4342 } 4343 }else 4344 #endif 4345 { 4346 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4347 pDef, pExpr->op2); 4348 } 4349 if( nFarg ){ 4350 if( constMask==0 ){ 4351 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4352 }else{ 4353 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4354 } 4355 } 4356 return target; 4357 } 4358 #ifndef SQLITE_OMIT_SUBQUERY 4359 case TK_EXISTS: 4360 case TK_SELECT: { 4361 int nCol; 4362 testcase( op==TK_EXISTS ); 4363 testcase( op==TK_SELECT ); 4364 if( pParse->db->mallocFailed ){ 4365 return 0; 4366 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4367 sqlite3SubselectError(pParse, nCol, 1); 4368 }else{ 4369 return sqlite3CodeSubselect(pParse, pExpr); 4370 } 4371 break; 4372 } 4373 case TK_SELECT_COLUMN: { 4374 int n; 4375 if( pExpr->pLeft->iTable==0 ){ 4376 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4377 } 4378 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT 4379 || pExpr->pLeft->op==TK_ERROR ); 4380 if( pExpr->iTable!=0 4381 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4382 ){ 4383 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4384 pExpr->iTable, n); 4385 } 4386 return pExpr->pLeft->iTable + pExpr->iColumn; 4387 } 4388 case TK_IN: { 4389 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4390 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4391 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4392 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4393 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4394 sqlite3VdbeResolveLabel(v, destIfFalse); 4395 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4396 sqlite3VdbeResolveLabel(v, destIfNull); 4397 return target; 4398 } 4399 #endif /* SQLITE_OMIT_SUBQUERY */ 4400 4401 4402 /* 4403 ** x BETWEEN y AND z 4404 ** 4405 ** This is equivalent to 4406 ** 4407 ** x>=y AND x<=z 4408 ** 4409 ** X is stored in pExpr->pLeft. 4410 ** Y is stored in pExpr->pList->a[0].pExpr. 4411 ** Z is stored in pExpr->pList->a[1].pExpr. 4412 */ 4413 case TK_BETWEEN: { 4414 exprCodeBetween(pParse, pExpr, target, 0, 0); 4415 return target; 4416 } 4417 case TK_SPAN: 4418 case TK_COLLATE: 4419 case TK_UPLUS: { 4420 pExpr = pExpr->pLeft; 4421 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4422 } 4423 4424 case TK_TRIGGER: { 4425 /* If the opcode is TK_TRIGGER, then the expression is a reference 4426 ** to a column in the new.* or old.* pseudo-tables available to 4427 ** trigger programs. In this case Expr.iTable is set to 1 for the 4428 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4429 ** is set to the column of the pseudo-table to read, or to -1 to 4430 ** read the rowid field. 4431 ** 4432 ** The expression is implemented using an OP_Param opcode. The p1 4433 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4434 ** to reference another column of the old.* pseudo-table, where 4435 ** i is the index of the column. For a new.rowid reference, p1 is 4436 ** set to (n+1), where n is the number of columns in each pseudo-table. 4437 ** For a reference to any other column in the new.* pseudo-table, p1 4438 ** is set to (n+2+i), where n and i are as defined previously. For 4439 ** example, if the table on which triggers are being fired is 4440 ** declared as: 4441 ** 4442 ** CREATE TABLE t1(a, b); 4443 ** 4444 ** Then p1 is interpreted as follows: 4445 ** 4446 ** p1==0 -> old.rowid p1==3 -> new.rowid 4447 ** p1==1 -> old.a p1==4 -> new.a 4448 ** p1==2 -> old.b p1==5 -> new.b 4449 */ 4450 Table *pTab = pExpr->y.pTab; 4451 int iCol = pExpr->iColumn; 4452 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4453 + sqlite3TableColumnToStorage(pTab, iCol); 4454 4455 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4456 assert( iCol>=-1 && iCol<pTab->nCol ); 4457 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4458 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4459 4460 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4461 VdbeComment((v, "r[%d]=%s.%s", target, 4462 (pExpr->iTable ? "new" : "old"), 4463 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4464 )); 4465 4466 #ifndef SQLITE_OMIT_FLOATING_POINT 4467 /* If the column has REAL affinity, it may currently be stored as an 4468 ** integer. Use OP_RealAffinity to make sure it is really real. 4469 ** 4470 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4471 ** floating point when extracting it from the record. */ 4472 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4473 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4474 } 4475 #endif 4476 break; 4477 } 4478 4479 case TK_VECTOR: { 4480 sqlite3ErrorMsg(pParse, "row value misused"); 4481 break; 4482 } 4483 4484 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4485 ** that derive from the right-hand table of a LEFT JOIN. The 4486 ** Expr.iTable value is the table number for the right-hand table. 4487 ** The expression is only evaluated if that table is not currently 4488 ** on a LEFT JOIN NULL row. 4489 */ 4490 case TK_IF_NULL_ROW: { 4491 int addrINR; 4492 u8 okConstFactor = pParse->okConstFactor; 4493 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4494 /* Temporarily disable factoring of constant expressions, since 4495 ** even though expressions may appear to be constant, they are not 4496 ** really constant because they originate from the right-hand side 4497 ** of a LEFT JOIN. */ 4498 pParse->okConstFactor = 0; 4499 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4500 pParse->okConstFactor = okConstFactor; 4501 sqlite3VdbeJumpHere(v, addrINR); 4502 sqlite3VdbeChangeP3(v, addrINR, inReg); 4503 break; 4504 } 4505 4506 /* 4507 ** Form A: 4508 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4509 ** 4510 ** Form B: 4511 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4512 ** 4513 ** Form A is can be transformed into the equivalent form B as follows: 4514 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4515 ** WHEN x=eN THEN rN ELSE y END 4516 ** 4517 ** X (if it exists) is in pExpr->pLeft. 4518 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4519 ** odd. The Y is also optional. If the number of elements in x.pList 4520 ** is even, then Y is omitted and the "otherwise" result is NULL. 4521 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4522 ** 4523 ** The result of the expression is the Ri for the first matching Ei, 4524 ** or if there is no matching Ei, the ELSE term Y, or if there is 4525 ** no ELSE term, NULL. 4526 */ 4527 case TK_CASE: { 4528 int endLabel; /* GOTO label for end of CASE stmt */ 4529 int nextCase; /* GOTO label for next WHEN clause */ 4530 int nExpr; /* 2x number of WHEN terms */ 4531 int i; /* Loop counter */ 4532 ExprList *pEList; /* List of WHEN terms */ 4533 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4534 Expr opCompare; /* The X==Ei expression */ 4535 Expr *pX; /* The X expression */ 4536 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4537 Expr *pDel = 0; 4538 sqlite3 *db = pParse->db; 4539 4540 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4541 assert(pExpr->x.pList->nExpr > 0); 4542 pEList = pExpr->x.pList; 4543 aListelem = pEList->a; 4544 nExpr = pEList->nExpr; 4545 endLabel = sqlite3VdbeMakeLabel(pParse); 4546 if( (pX = pExpr->pLeft)!=0 ){ 4547 pDel = sqlite3ExprDup(db, pX, 0); 4548 if( db->mallocFailed ){ 4549 sqlite3ExprDelete(db, pDel); 4550 break; 4551 } 4552 testcase( pX->op==TK_COLUMN ); 4553 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4554 testcase( regFree1==0 ); 4555 memset(&opCompare, 0, sizeof(opCompare)); 4556 opCompare.op = TK_EQ; 4557 opCompare.pLeft = pDel; 4558 pTest = &opCompare; 4559 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4560 ** The value in regFree1 might get SCopy-ed into the file result. 4561 ** So make sure that the regFree1 register is not reused for other 4562 ** purposes and possibly overwritten. */ 4563 regFree1 = 0; 4564 } 4565 for(i=0; i<nExpr-1; i=i+2){ 4566 if( pX ){ 4567 assert( pTest!=0 ); 4568 opCompare.pRight = aListelem[i].pExpr; 4569 }else{ 4570 pTest = aListelem[i].pExpr; 4571 } 4572 nextCase = sqlite3VdbeMakeLabel(pParse); 4573 testcase( pTest->op==TK_COLUMN ); 4574 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4575 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4576 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4577 sqlite3VdbeGoto(v, endLabel); 4578 sqlite3VdbeResolveLabel(v, nextCase); 4579 } 4580 if( (nExpr&1)!=0 ){ 4581 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4582 }else{ 4583 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4584 } 4585 sqlite3ExprDelete(db, pDel); 4586 setDoNotMergeFlagOnCopy(v); 4587 sqlite3VdbeResolveLabel(v, endLabel); 4588 break; 4589 } 4590 #ifndef SQLITE_OMIT_TRIGGER 4591 case TK_RAISE: { 4592 assert( pExpr->affExpr==OE_Rollback 4593 || pExpr->affExpr==OE_Abort 4594 || pExpr->affExpr==OE_Fail 4595 || pExpr->affExpr==OE_Ignore 4596 ); 4597 if( !pParse->pTriggerTab && !pParse->nested ){ 4598 sqlite3ErrorMsg(pParse, 4599 "RAISE() may only be used within a trigger-program"); 4600 return 0; 4601 } 4602 if( pExpr->affExpr==OE_Abort ){ 4603 sqlite3MayAbort(pParse); 4604 } 4605 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4606 if( pExpr->affExpr==OE_Ignore ){ 4607 sqlite3VdbeAddOp4( 4608 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4609 VdbeCoverage(v); 4610 }else{ 4611 sqlite3HaltConstraint(pParse, 4612 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4613 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4614 } 4615 4616 break; 4617 } 4618 #endif 4619 } 4620 sqlite3ReleaseTempReg(pParse, regFree1); 4621 sqlite3ReleaseTempReg(pParse, regFree2); 4622 return inReg; 4623 } 4624 4625 /* 4626 ** Generate code that will evaluate expression pExpr just one time 4627 ** per prepared statement execution. 4628 ** 4629 ** If the expression uses functions (that might throw an exception) then 4630 ** guard them with an OP_Once opcode to ensure that the code is only executed 4631 ** once. If no functions are involved, then factor the code out and put it at 4632 ** the end of the prepared statement in the initialization section. 4633 ** 4634 ** If regDest>=0 then the result is always stored in that register and the 4635 ** result is not reusable. If regDest<0 then this routine is free to 4636 ** store the value whereever it wants. The register where the expression 4637 ** is stored is returned. When regDest<0, two identical expressions might 4638 ** code to the same register, if they do not contain function calls and hence 4639 ** are factored out into the initialization section at the end of the 4640 ** prepared statement. 4641 */ 4642 int sqlite3ExprCodeRunJustOnce( 4643 Parse *pParse, /* Parsing context */ 4644 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4645 int regDest /* Store the value in this register */ 4646 ){ 4647 ExprList *p; 4648 assert( ConstFactorOk(pParse) ); 4649 p = pParse->pConstExpr; 4650 if( regDest<0 && p ){ 4651 struct ExprList_item *pItem; 4652 int i; 4653 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4654 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4655 return pItem->u.iConstExprReg; 4656 } 4657 } 4658 } 4659 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4660 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4661 Vdbe *v = pParse->pVdbe; 4662 int addr; 4663 assert( v ); 4664 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4665 pParse->okConstFactor = 0; 4666 if( !pParse->db->mallocFailed ){ 4667 if( regDest<0 ) regDest = ++pParse->nMem; 4668 sqlite3ExprCode(pParse, pExpr, regDest); 4669 } 4670 pParse->okConstFactor = 1; 4671 sqlite3ExprDelete(pParse->db, pExpr); 4672 sqlite3VdbeJumpHere(v, addr); 4673 }else{ 4674 p = sqlite3ExprListAppend(pParse, p, pExpr); 4675 if( p ){ 4676 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4677 pItem->reusable = regDest<0; 4678 if( regDest<0 ) regDest = ++pParse->nMem; 4679 pItem->u.iConstExprReg = regDest; 4680 } 4681 pParse->pConstExpr = p; 4682 } 4683 return regDest; 4684 } 4685 4686 /* 4687 ** Generate code to evaluate an expression and store the results 4688 ** into a register. Return the register number where the results 4689 ** are stored. 4690 ** 4691 ** If the register is a temporary register that can be deallocated, 4692 ** then write its number into *pReg. If the result register is not 4693 ** a temporary, then set *pReg to zero. 4694 ** 4695 ** If pExpr is a constant, then this routine might generate this 4696 ** code to fill the register in the initialization section of the 4697 ** VDBE program, in order to factor it out of the evaluation loop. 4698 */ 4699 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4700 int r2; 4701 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4702 if( ConstFactorOk(pParse) 4703 && ALWAYS(pExpr!=0) 4704 && pExpr->op!=TK_REGISTER 4705 && sqlite3ExprIsConstantNotJoin(pExpr) 4706 ){ 4707 *pReg = 0; 4708 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4709 }else{ 4710 int r1 = sqlite3GetTempReg(pParse); 4711 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4712 if( r2==r1 ){ 4713 *pReg = r1; 4714 }else{ 4715 sqlite3ReleaseTempReg(pParse, r1); 4716 *pReg = 0; 4717 } 4718 } 4719 return r2; 4720 } 4721 4722 /* 4723 ** Generate code that will evaluate expression pExpr and store the 4724 ** results in register target. The results are guaranteed to appear 4725 ** in register target. 4726 */ 4727 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4728 int inReg; 4729 4730 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4731 assert( target>0 && target<=pParse->nMem ); 4732 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4733 if( pParse->pVdbe==0 ) return; 4734 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4735 if( inReg!=target ){ 4736 u8 op; 4737 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4738 op = OP_Copy; 4739 }else{ 4740 op = OP_SCopy; 4741 } 4742 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4743 } 4744 } 4745 4746 /* 4747 ** Make a transient copy of expression pExpr and then code it using 4748 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4749 ** except that the input expression is guaranteed to be unchanged. 4750 */ 4751 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4752 sqlite3 *db = pParse->db; 4753 pExpr = sqlite3ExprDup(db, pExpr, 0); 4754 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4755 sqlite3ExprDelete(db, pExpr); 4756 } 4757 4758 /* 4759 ** Generate code that will evaluate expression pExpr and store the 4760 ** results in register target. The results are guaranteed to appear 4761 ** in register target. If the expression is constant, then this routine 4762 ** might choose to code the expression at initialization time. 4763 */ 4764 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4765 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4766 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4767 }else{ 4768 sqlite3ExprCodeCopy(pParse, pExpr, target); 4769 } 4770 } 4771 4772 /* 4773 ** Generate code that pushes the value of every element of the given 4774 ** expression list into a sequence of registers beginning at target. 4775 ** 4776 ** Return the number of elements evaluated. The number returned will 4777 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4778 ** is defined. 4779 ** 4780 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4781 ** filled using OP_SCopy. OP_Copy must be used instead. 4782 ** 4783 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4784 ** factored out into initialization code. 4785 ** 4786 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4787 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4788 ** in registers at srcReg, and so the value can be copied from there. 4789 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4790 ** are simply omitted rather than being copied from srcReg. 4791 */ 4792 int sqlite3ExprCodeExprList( 4793 Parse *pParse, /* Parsing context */ 4794 ExprList *pList, /* The expression list to be coded */ 4795 int target, /* Where to write results */ 4796 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4797 u8 flags /* SQLITE_ECEL_* flags */ 4798 ){ 4799 struct ExprList_item *pItem; 4800 int i, j, n; 4801 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4802 Vdbe *v = pParse->pVdbe; 4803 assert( pList!=0 ); 4804 assert( target>0 ); 4805 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4806 n = pList->nExpr; 4807 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4808 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4809 Expr *pExpr = pItem->pExpr; 4810 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4811 if( pItem->bSorterRef ){ 4812 i--; 4813 n--; 4814 }else 4815 #endif 4816 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4817 if( flags & SQLITE_ECEL_OMITREF ){ 4818 i--; 4819 n--; 4820 }else{ 4821 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4822 } 4823 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4824 && sqlite3ExprIsConstantNotJoin(pExpr) 4825 ){ 4826 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4827 }else{ 4828 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4829 if( inReg!=target+i ){ 4830 VdbeOp *pOp; 4831 if( copyOp==OP_Copy 4832 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4833 && pOp->p1+pOp->p3+1==inReg 4834 && pOp->p2+pOp->p3+1==target+i 4835 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4836 ){ 4837 pOp->p3++; 4838 }else{ 4839 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4840 } 4841 } 4842 } 4843 } 4844 return n; 4845 } 4846 4847 /* 4848 ** Generate code for a BETWEEN operator. 4849 ** 4850 ** x BETWEEN y AND z 4851 ** 4852 ** The above is equivalent to 4853 ** 4854 ** x>=y AND x<=z 4855 ** 4856 ** Code it as such, taking care to do the common subexpression 4857 ** elimination of x. 4858 ** 4859 ** The xJumpIf parameter determines details: 4860 ** 4861 ** NULL: Store the boolean result in reg[dest] 4862 ** sqlite3ExprIfTrue: Jump to dest if true 4863 ** sqlite3ExprIfFalse: Jump to dest if false 4864 ** 4865 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4866 */ 4867 static void exprCodeBetween( 4868 Parse *pParse, /* Parsing and code generating context */ 4869 Expr *pExpr, /* The BETWEEN expression */ 4870 int dest, /* Jump destination or storage location */ 4871 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4872 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4873 ){ 4874 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4875 Expr compLeft; /* The x>=y term */ 4876 Expr compRight; /* The x<=z term */ 4877 int regFree1 = 0; /* Temporary use register */ 4878 Expr *pDel = 0; 4879 sqlite3 *db = pParse->db; 4880 4881 memset(&compLeft, 0, sizeof(Expr)); 4882 memset(&compRight, 0, sizeof(Expr)); 4883 memset(&exprAnd, 0, sizeof(Expr)); 4884 4885 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4886 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4887 if( db->mallocFailed==0 ){ 4888 exprAnd.op = TK_AND; 4889 exprAnd.pLeft = &compLeft; 4890 exprAnd.pRight = &compRight; 4891 compLeft.op = TK_GE; 4892 compLeft.pLeft = pDel; 4893 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4894 compRight.op = TK_LE; 4895 compRight.pLeft = pDel; 4896 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4897 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4898 if( xJump ){ 4899 xJump(pParse, &exprAnd, dest, jumpIfNull); 4900 }else{ 4901 /* Mark the expression is being from the ON or USING clause of a join 4902 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4903 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4904 ** for clarity, but we are out of bits in the Expr.flags field so we 4905 ** have to reuse the EP_FromJoin bit. Bummer. */ 4906 pDel->flags |= EP_FromJoin; 4907 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4908 } 4909 sqlite3ReleaseTempReg(pParse, regFree1); 4910 } 4911 sqlite3ExprDelete(db, pDel); 4912 4913 /* Ensure adequate test coverage */ 4914 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4915 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4916 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4917 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4918 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4919 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4920 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4921 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4922 testcase( xJump==0 ); 4923 } 4924 4925 /* 4926 ** Generate code for a boolean expression such that a jump is made 4927 ** to the label "dest" if the expression is true but execution 4928 ** continues straight thru if the expression is false. 4929 ** 4930 ** If the expression evaluates to NULL (neither true nor false), then 4931 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4932 ** 4933 ** This code depends on the fact that certain token values (ex: TK_EQ) 4934 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4935 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4936 ** the make process cause these values to align. Assert()s in the code 4937 ** below verify that the numbers are aligned correctly. 4938 */ 4939 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4940 Vdbe *v = pParse->pVdbe; 4941 int op = 0; 4942 int regFree1 = 0; 4943 int regFree2 = 0; 4944 int r1, r2; 4945 4946 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4947 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4948 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4949 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4950 op = pExpr->op; 4951 switch( op ){ 4952 case TK_AND: 4953 case TK_OR: { 4954 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4955 if( pAlt!=pExpr ){ 4956 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4957 }else if( op==TK_AND ){ 4958 int d2 = sqlite3VdbeMakeLabel(pParse); 4959 testcase( jumpIfNull==0 ); 4960 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4961 jumpIfNull^SQLITE_JUMPIFNULL); 4962 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4963 sqlite3VdbeResolveLabel(v, d2); 4964 }else{ 4965 testcase( jumpIfNull==0 ); 4966 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4967 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4968 } 4969 break; 4970 } 4971 case TK_NOT: { 4972 testcase( jumpIfNull==0 ); 4973 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4974 break; 4975 } 4976 case TK_TRUTH: { 4977 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4978 int isTrue; /* IS TRUE or IS NOT TRUE */ 4979 testcase( jumpIfNull==0 ); 4980 isNot = pExpr->op2==TK_ISNOT; 4981 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4982 testcase( isTrue && isNot ); 4983 testcase( !isTrue && isNot ); 4984 if( isTrue ^ isNot ){ 4985 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4986 isNot ? SQLITE_JUMPIFNULL : 0); 4987 }else{ 4988 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4989 isNot ? SQLITE_JUMPIFNULL : 0); 4990 } 4991 break; 4992 } 4993 case TK_IS: 4994 case TK_ISNOT: 4995 testcase( op==TK_IS ); 4996 testcase( op==TK_ISNOT ); 4997 op = (op==TK_IS) ? TK_EQ : TK_NE; 4998 jumpIfNull = SQLITE_NULLEQ; 4999 /* no break */ deliberate_fall_through 5000 case TK_LT: 5001 case TK_LE: 5002 case TK_GT: 5003 case TK_GE: 5004 case TK_NE: 5005 case TK_EQ: { 5006 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5007 testcase( jumpIfNull==0 ); 5008 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5009 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5010 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5011 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5012 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5013 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5014 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5015 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5016 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5017 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5018 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5019 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5020 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5021 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5022 testcase( regFree1==0 ); 5023 testcase( regFree2==0 ); 5024 break; 5025 } 5026 case TK_ISNULL: 5027 case TK_NOTNULL: { 5028 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5029 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5030 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5031 sqlite3VdbeAddOp2(v, op, r1, dest); 5032 VdbeCoverageIf(v, op==TK_ISNULL); 5033 VdbeCoverageIf(v, op==TK_NOTNULL); 5034 testcase( regFree1==0 ); 5035 break; 5036 } 5037 case TK_BETWEEN: { 5038 testcase( jumpIfNull==0 ); 5039 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5040 break; 5041 } 5042 #ifndef SQLITE_OMIT_SUBQUERY 5043 case TK_IN: { 5044 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5045 int destIfNull = jumpIfNull ? dest : destIfFalse; 5046 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5047 sqlite3VdbeGoto(v, dest); 5048 sqlite3VdbeResolveLabel(v, destIfFalse); 5049 break; 5050 } 5051 #endif 5052 default: { 5053 default_expr: 5054 if( ExprAlwaysTrue(pExpr) ){ 5055 sqlite3VdbeGoto(v, dest); 5056 }else if( ExprAlwaysFalse(pExpr) ){ 5057 /* No-op */ 5058 }else{ 5059 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5060 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5061 VdbeCoverage(v); 5062 testcase( regFree1==0 ); 5063 testcase( jumpIfNull==0 ); 5064 } 5065 break; 5066 } 5067 } 5068 sqlite3ReleaseTempReg(pParse, regFree1); 5069 sqlite3ReleaseTempReg(pParse, regFree2); 5070 } 5071 5072 /* 5073 ** Generate code for a boolean expression such that a jump is made 5074 ** to the label "dest" if the expression is false but execution 5075 ** continues straight thru if the expression is true. 5076 ** 5077 ** If the expression evaluates to NULL (neither true nor false) then 5078 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5079 ** is 0. 5080 */ 5081 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5082 Vdbe *v = pParse->pVdbe; 5083 int op = 0; 5084 int regFree1 = 0; 5085 int regFree2 = 0; 5086 int r1, r2; 5087 5088 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5089 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5090 if( pExpr==0 ) return; 5091 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5092 5093 /* The value of pExpr->op and op are related as follows: 5094 ** 5095 ** pExpr->op op 5096 ** --------- ---------- 5097 ** TK_ISNULL OP_NotNull 5098 ** TK_NOTNULL OP_IsNull 5099 ** TK_NE OP_Eq 5100 ** TK_EQ OP_Ne 5101 ** TK_GT OP_Le 5102 ** TK_LE OP_Gt 5103 ** TK_GE OP_Lt 5104 ** TK_LT OP_Ge 5105 ** 5106 ** For other values of pExpr->op, op is undefined and unused. 5107 ** The value of TK_ and OP_ constants are arranged such that we 5108 ** can compute the mapping above using the following expression. 5109 ** Assert()s verify that the computation is correct. 5110 */ 5111 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5112 5113 /* Verify correct alignment of TK_ and OP_ constants 5114 */ 5115 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5116 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5117 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5118 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5119 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5120 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5121 assert( pExpr->op!=TK_GT || op==OP_Le ); 5122 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5123 5124 switch( pExpr->op ){ 5125 case TK_AND: 5126 case TK_OR: { 5127 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5128 if( pAlt!=pExpr ){ 5129 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5130 }else if( pExpr->op==TK_AND ){ 5131 testcase( jumpIfNull==0 ); 5132 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5133 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5134 }else{ 5135 int d2 = sqlite3VdbeMakeLabel(pParse); 5136 testcase( jumpIfNull==0 ); 5137 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5138 jumpIfNull^SQLITE_JUMPIFNULL); 5139 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5140 sqlite3VdbeResolveLabel(v, d2); 5141 } 5142 break; 5143 } 5144 case TK_NOT: { 5145 testcase( jumpIfNull==0 ); 5146 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5147 break; 5148 } 5149 case TK_TRUTH: { 5150 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5151 int isTrue; /* IS TRUE or IS NOT TRUE */ 5152 testcase( jumpIfNull==0 ); 5153 isNot = pExpr->op2==TK_ISNOT; 5154 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5155 testcase( isTrue && isNot ); 5156 testcase( !isTrue && isNot ); 5157 if( isTrue ^ isNot ){ 5158 /* IS TRUE and IS NOT FALSE */ 5159 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5160 isNot ? 0 : SQLITE_JUMPIFNULL); 5161 5162 }else{ 5163 /* IS FALSE and IS NOT TRUE */ 5164 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5165 isNot ? 0 : SQLITE_JUMPIFNULL); 5166 } 5167 break; 5168 } 5169 case TK_IS: 5170 case TK_ISNOT: 5171 testcase( pExpr->op==TK_IS ); 5172 testcase( pExpr->op==TK_ISNOT ); 5173 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5174 jumpIfNull = SQLITE_NULLEQ; 5175 /* no break */ deliberate_fall_through 5176 case TK_LT: 5177 case TK_LE: 5178 case TK_GT: 5179 case TK_GE: 5180 case TK_NE: 5181 case TK_EQ: { 5182 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5183 testcase( jumpIfNull==0 ); 5184 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5185 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5186 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5187 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5188 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5189 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5190 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5191 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5192 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5193 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5194 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5195 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5196 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5197 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5198 testcase( regFree1==0 ); 5199 testcase( regFree2==0 ); 5200 break; 5201 } 5202 case TK_ISNULL: 5203 case TK_NOTNULL: { 5204 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5205 sqlite3VdbeAddOp2(v, op, r1, dest); 5206 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5207 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5208 testcase( regFree1==0 ); 5209 break; 5210 } 5211 case TK_BETWEEN: { 5212 testcase( jumpIfNull==0 ); 5213 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5214 break; 5215 } 5216 #ifndef SQLITE_OMIT_SUBQUERY 5217 case TK_IN: { 5218 if( jumpIfNull ){ 5219 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5220 }else{ 5221 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5222 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5223 sqlite3VdbeResolveLabel(v, destIfNull); 5224 } 5225 break; 5226 } 5227 #endif 5228 default: { 5229 default_expr: 5230 if( ExprAlwaysFalse(pExpr) ){ 5231 sqlite3VdbeGoto(v, dest); 5232 }else if( ExprAlwaysTrue(pExpr) ){ 5233 /* no-op */ 5234 }else{ 5235 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5236 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5237 VdbeCoverage(v); 5238 testcase( regFree1==0 ); 5239 testcase( jumpIfNull==0 ); 5240 } 5241 break; 5242 } 5243 } 5244 sqlite3ReleaseTempReg(pParse, regFree1); 5245 sqlite3ReleaseTempReg(pParse, regFree2); 5246 } 5247 5248 /* 5249 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5250 ** code generation, and that copy is deleted after code generation. This 5251 ** ensures that the original pExpr is unchanged. 5252 */ 5253 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5254 sqlite3 *db = pParse->db; 5255 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5256 if( db->mallocFailed==0 ){ 5257 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5258 } 5259 sqlite3ExprDelete(db, pCopy); 5260 } 5261 5262 /* 5263 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5264 ** type of expression. 5265 ** 5266 ** If pExpr is a simple SQL value - an integer, real, string, blob 5267 ** or NULL value - then the VDBE currently being prepared is configured 5268 ** to re-prepare each time a new value is bound to variable pVar. 5269 ** 5270 ** Additionally, if pExpr is a simple SQL value and the value is the 5271 ** same as that currently bound to variable pVar, non-zero is returned. 5272 ** Otherwise, if the values are not the same or if pExpr is not a simple 5273 ** SQL value, zero is returned. 5274 */ 5275 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5276 int res = 0; 5277 int iVar; 5278 sqlite3_value *pL, *pR = 0; 5279 5280 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5281 if( pR ){ 5282 iVar = pVar->iColumn; 5283 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5284 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5285 if( pL ){ 5286 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5287 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5288 } 5289 res = 0==sqlite3MemCompare(pL, pR, 0); 5290 } 5291 sqlite3ValueFree(pR); 5292 sqlite3ValueFree(pL); 5293 } 5294 5295 return res; 5296 } 5297 5298 /* 5299 ** Do a deep comparison of two expression trees. Return 0 if the two 5300 ** expressions are completely identical. Return 1 if they differ only 5301 ** by a COLLATE operator at the top level. Return 2 if there are differences 5302 ** other than the top-level COLLATE operator. 5303 ** 5304 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5305 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5306 ** 5307 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5308 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5309 ** 5310 ** Sometimes this routine will return 2 even if the two expressions 5311 ** really are equivalent. If we cannot prove that the expressions are 5312 ** identical, we return 2 just to be safe. So if this routine 5313 ** returns 2, then you do not really know for certain if the two 5314 ** expressions are the same. But if you get a 0 or 1 return, then you 5315 ** can be sure the expressions are the same. In the places where 5316 ** this routine is used, it does not hurt to get an extra 2 - that 5317 ** just might result in some slightly slower code. But returning 5318 ** an incorrect 0 or 1 could lead to a malfunction. 5319 ** 5320 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5321 ** pParse->pReprepare can be matched against literals in pB. The 5322 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5323 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5324 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5325 ** pB causes a return value of 2. 5326 */ 5327 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5328 u32 combinedFlags; 5329 if( pA==0 || pB==0 ){ 5330 return pB==pA ? 0 : 2; 5331 } 5332 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5333 return 0; 5334 } 5335 combinedFlags = pA->flags | pB->flags; 5336 if( combinedFlags & EP_IntValue ){ 5337 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5338 return 0; 5339 } 5340 return 2; 5341 } 5342 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5343 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5344 return 1; 5345 } 5346 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5347 return 1; 5348 } 5349 return 2; 5350 } 5351 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5352 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5353 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5354 #ifndef SQLITE_OMIT_WINDOWFUNC 5355 assert( pA->op==pB->op ); 5356 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5357 return 2; 5358 } 5359 if( ExprHasProperty(pA,EP_WinFunc) ){ 5360 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5361 return 2; 5362 } 5363 } 5364 #endif 5365 }else if( pA->op==TK_NULL ){ 5366 return 0; 5367 }else if( pA->op==TK_COLLATE ){ 5368 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5369 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5370 return 2; 5371 } 5372 } 5373 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5374 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5375 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5376 if( combinedFlags & EP_xIsSelect ) return 2; 5377 if( (combinedFlags & EP_FixedCol)==0 5378 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5379 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5380 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5381 if( pA->op!=TK_STRING 5382 && pA->op!=TK_TRUEFALSE 5383 && ALWAYS((combinedFlags & EP_Reduced)==0) 5384 ){ 5385 if( pA->iColumn!=pB->iColumn ) return 2; 5386 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5387 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5388 return 2; 5389 } 5390 } 5391 } 5392 return 0; 5393 } 5394 5395 /* 5396 ** Compare two ExprList objects. Return 0 if they are identical, 1 5397 ** if they are certainly different, or 2 if it is not possible to 5398 ** determine if they are identical or not. 5399 ** 5400 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5401 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5402 ** 5403 ** This routine might return non-zero for equivalent ExprLists. The 5404 ** only consequence will be disabled optimizations. But this routine 5405 ** must never return 0 if the two ExprList objects are different, or 5406 ** a malfunction will result. 5407 ** 5408 ** Two NULL pointers are considered to be the same. But a NULL pointer 5409 ** always differs from a non-NULL pointer. 5410 */ 5411 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5412 int i; 5413 if( pA==0 && pB==0 ) return 0; 5414 if( pA==0 || pB==0 ) return 1; 5415 if( pA->nExpr!=pB->nExpr ) return 1; 5416 for(i=0; i<pA->nExpr; i++){ 5417 int res; 5418 Expr *pExprA = pA->a[i].pExpr; 5419 Expr *pExprB = pB->a[i].pExpr; 5420 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5421 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5422 } 5423 return 0; 5424 } 5425 5426 /* 5427 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5428 ** are ignored. 5429 */ 5430 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5431 return sqlite3ExprCompare(0, 5432 sqlite3ExprSkipCollateAndLikely(pA), 5433 sqlite3ExprSkipCollateAndLikely(pB), 5434 iTab); 5435 } 5436 5437 /* 5438 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5439 ** 5440 ** Or if seenNot is true, return non-zero if Expr p can only be 5441 ** non-NULL if pNN is not NULL 5442 */ 5443 static int exprImpliesNotNull( 5444 Parse *pParse, /* Parsing context */ 5445 Expr *p, /* The expression to be checked */ 5446 Expr *pNN, /* The expression that is NOT NULL */ 5447 int iTab, /* Table being evaluated */ 5448 int seenNot /* Return true only if p can be any non-NULL value */ 5449 ){ 5450 assert( p ); 5451 assert( pNN ); 5452 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5453 return pNN->op!=TK_NULL; 5454 } 5455 switch( p->op ){ 5456 case TK_IN: { 5457 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5458 assert( ExprHasProperty(p,EP_xIsSelect) 5459 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5460 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5461 } 5462 case TK_BETWEEN: { 5463 ExprList *pList = p->x.pList; 5464 assert( pList!=0 ); 5465 assert( pList->nExpr==2 ); 5466 if( seenNot ) return 0; 5467 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5468 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5469 ){ 5470 return 1; 5471 } 5472 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5473 } 5474 case TK_EQ: 5475 case TK_NE: 5476 case TK_LT: 5477 case TK_LE: 5478 case TK_GT: 5479 case TK_GE: 5480 case TK_PLUS: 5481 case TK_MINUS: 5482 case TK_BITOR: 5483 case TK_LSHIFT: 5484 case TK_RSHIFT: 5485 case TK_CONCAT: 5486 seenNot = 1; 5487 /* no break */ deliberate_fall_through 5488 case TK_STAR: 5489 case TK_REM: 5490 case TK_BITAND: 5491 case TK_SLASH: { 5492 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5493 /* no break */ deliberate_fall_through 5494 } 5495 case TK_SPAN: 5496 case TK_COLLATE: 5497 case TK_UPLUS: 5498 case TK_UMINUS: { 5499 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5500 } 5501 case TK_TRUTH: { 5502 if( seenNot ) return 0; 5503 if( p->op2!=TK_IS ) return 0; 5504 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5505 } 5506 case TK_BITNOT: 5507 case TK_NOT: { 5508 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5509 } 5510 } 5511 return 0; 5512 } 5513 5514 /* 5515 ** Return true if we can prove the pE2 will always be true if pE1 is 5516 ** true. Return false if we cannot complete the proof or if pE2 might 5517 ** be false. Examples: 5518 ** 5519 ** pE1: x==5 pE2: x==5 Result: true 5520 ** pE1: x>0 pE2: x==5 Result: false 5521 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5522 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5523 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5524 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5525 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5526 ** 5527 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5528 ** Expr.iTable<0 then assume a table number given by iTab. 5529 ** 5530 ** If pParse is not NULL, then the values of bound variables in pE1 are 5531 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5532 ** modified to record which bound variables are referenced. If pParse 5533 ** is NULL, then false will be returned if pE1 contains any bound variables. 5534 ** 5535 ** When in doubt, return false. Returning true might give a performance 5536 ** improvement. Returning false might cause a performance reduction, but 5537 ** it will always give the correct answer and is hence always safe. 5538 */ 5539 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5540 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5541 return 1; 5542 } 5543 if( pE2->op==TK_OR 5544 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5545 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5546 ){ 5547 return 1; 5548 } 5549 if( pE2->op==TK_NOTNULL 5550 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5551 ){ 5552 return 1; 5553 } 5554 return 0; 5555 } 5556 5557 /* 5558 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5559 ** If the expression node requires that the table at pWalker->iCur 5560 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5561 ** 5562 ** This routine controls an optimization. False positives (setting 5563 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5564 ** (never setting pWalker->eCode) is a harmless missed optimization. 5565 */ 5566 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5567 testcase( pExpr->op==TK_AGG_COLUMN ); 5568 testcase( pExpr->op==TK_AGG_FUNCTION ); 5569 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5570 switch( pExpr->op ){ 5571 case TK_ISNOT: 5572 case TK_ISNULL: 5573 case TK_NOTNULL: 5574 case TK_IS: 5575 case TK_OR: 5576 case TK_VECTOR: 5577 case TK_CASE: 5578 case TK_IN: 5579 case TK_FUNCTION: 5580 case TK_TRUTH: 5581 testcase( pExpr->op==TK_ISNOT ); 5582 testcase( pExpr->op==TK_ISNULL ); 5583 testcase( pExpr->op==TK_NOTNULL ); 5584 testcase( pExpr->op==TK_IS ); 5585 testcase( pExpr->op==TK_OR ); 5586 testcase( pExpr->op==TK_VECTOR ); 5587 testcase( pExpr->op==TK_CASE ); 5588 testcase( pExpr->op==TK_IN ); 5589 testcase( pExpr->op==TK_FUNCTION ); 5590 testcase( pExpr->op==TK_TRUTH ); 5591 return WRC_Prune; 5592 case TK_COLUMN: 5593 if( pWalker->u.iCur==pExpr->iTable ){ 5594 pWalker->eCode = 1; 5595 return WRC_Abort; 5596 } 5597 return WRC_Prune; 5598 5599 case TK_AND: 5600 if( pWalker->eCode==0 ){ 5601 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5602 if( pWalker->eCode ){ 5603 pWalker->eCode = 0; 5604 sqlite3WalkExpr(pWalker, pExpr->pRight); 5605 } 5606 } 5607 return WRC_Prune; 5608 5609 case TK_BETWEEN: 5610 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5611 assert( pWalker->eCode ); 5612 return WRC_Abort; 5613 } 5614 return WRC_Prune; 5615 5616 /* Virtual tables are allowed to use constraints like x=NULL. So 5617 ** a term of the form x=y does not prove that y is not null if x 5618 ** is the column of a virtual table */ 5619 case TK_EQ: 5620 case TK_NE: 5621 case TK_LT: 5622 case TK_LE: 5623 case TK_GT: 5624 case TK_GE: { 5625 Expr *pLeft = pExpr->pLeft; 5626 Expr *pRight = pExpr->pRight; 5627 testcase( pExpr->op==TK_EQ ); 5628 testcase( pExpr->op==TK_NE ); 5629 testcase( pExpr->op==TK_LT ); 5630 testcase( pExpr->op==TK_LE ); 5631 testcase( pExpr->op==TK_GT ); 5632 testcase( pExpr->op==TK_GE ); 5633 /* The y.pTab=0 assignment in wherecode.c always happens after the 5634 ** impliesNotNullRow() test */ 5635 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5636 && IsVirtual(pLeft->y.pTab)) 5637 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5638 && IsVirtual(pRight->y.pTab)) 5639 ){ 5640 return WRC_Prune; 5641 } 5642 /* no break */ deliberate_fall_through 5643 } 5644 default: 5645 return WRC_Continue; 5646 } 5647 } 5648 5649 /* 5650 ** Return true (non-zero) if expression p can only be true if at least 5651 ** one column of table iTab is non-null. In other words, return true 5652 ** if expression p will always be NULL or false if every column of iTab 5653 ** is NULL. 5654 ** 5655 ** False negatives are acceptable. In other words, it is ok to return 5656 ** zero even if expression p will never be true of every column of iTab 5657 ** is NULL. A false negative is merely a missed optimization opportunity. 5658 ** 5659 ** False positives are not allowed, however. A false positive may result 5660 ** in an incorrect answer. 5661 ** 5662 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5663 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5664 ** 5665 ** This routine is used to check if a LEFT JOIN can be converted into 5666 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5667 ** clause requires that some column of the right table of the LEFT JOIN 5668 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5669 ** ordinary join. 5670 */ 5671 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5672 Walker w; 5673 p = sqlite3ExprSkipCollateAndLikely(p); 5674 if( p==0 ) return 0; 5675 if( p->op==TK_NOTNULL ){ 5676 p = p->pLeft; 5677 }else{ 5678 while( p->op==TK_AND ){ 5679 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5680 p = p->pRight; 5681 } 5682 } 5683 w.xExprCallback = impliesNotNullRow; 5684 w.xSelectCallback = 0; 5685 w.xSelectCallback2 = 0; 5686 w.eCode = 0; 5687 w.u.iCur = iTab; 5688 sqlite3WalkExpr(&w, p); 5689 return w.eCode; 5690 } 5691 5692 /* 5693 ** An instance of the following structure is used by the tree walker 5694 ** to determine if an expression can be evaluated by reference to the 5695 ** index only, without having to do a search for the corresponding 5696 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5697 ** is the cursor for the table. 5698 */ 5699 struct IdxCover { 5700 Index *pIdx; /* The index to be tested for coverage */ 5701 int iCur; /* Cursor number for the table corresponding to the index */ 5702 }; 5703 5704 /* 5705 ** Check to see if there are references to columns in table 5706 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5707 ** pWalker->u.pIdxCover->pIdx. 5708 */ 5709 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5710 if( pExpr->op==TK_COLUMN 5711 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5712 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5713 ){ 5714 pWalker->eCode = 1; 5715 return WRC_Abort; 5716 } 5717 return WRC_Continue; 5718 } 5719 5720 /* 5721 ** Determine if an index pIdx on table with cursor iCur contains will 5722 ** the expression pExpr. Return true if the index does cover the 5723 ** expression and false if the pExpr expression references table columns 5724 ** that are not found in the index pIdx. 5725 ** 5726 ** An index covering an expression means that the expression can be 5727 ** evaluated using only the index and without having to lookup the 5728 ** corresponding table entry. 5729 */ 5730 int sqlite3ExprCoveredByIndex( 5731 Expr *pExpr, /* The index to be tested */ 5732 int iCur, /* The cursor number for the corresponding table */ 5733 Index *pIdx /* The index that might be used for coverage */ 5734 ){ 5735 Walker w; 5736 struct IdxCover xcov; 5737 memset(&w, 0, sizeof(w)); 5738 xcov.iCur = iCur; 5739 xcov.pIdx = pIdx; 5740 w.xExprCallback = exprIdxCover; 5741 w.u.pIdxCover = &xcov; 5742 sqlite3WalkExpr(&w, pExpr); 5743 return !w.eCode; 5744 } 5745 5746 5747 /* 5748 ** An instance of the following structure is used by the tree walker 5749 ** to count references to table columns in the arguments of an 5750 ** aggregate function, in order to implement the 5751 ** sqlite3FunctionThisSrc() routine. 5752 */ 5753 struct SrcCount { 5754 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5755 int iSrcInner; /* Smallest cursor number in this context */ 5756 int nThis; /* Number of references to columns in pSrcList */ 5757 int nOther; /* Number of references to columns in other FROM clauses */ 5758 }; 5759 5760 /* 5761 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5762 ** SELECT with a FROM clause encountered during this iteration, set 5763 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5764 ** the FROM cause. 5765 */ 5766 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5767 struct SrcCount *p = pWalker->u.pSrcCount; 5768 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5769 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5770 } 5771 return WRC_Continue; 5772 } 5773 5774 /* 5775 ** Count the number of references to columns. 5776 */ 5777 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5778 /* There was once a NEVER() on the second term on the grounds that 5779 ** sqlite3FunctionUsesThisSrc() was always called before 5780 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5781 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5782 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5783 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5784 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5785 int i; 5786 struct SrcCount *p = pWalker->u.pSrcCount; 5787 SrcList *pSrc = p->pSrc; 5788 int nSrc = pSrc ? pSrc->nSrc : 0; 5789 for(i=0; i<nSrc; i++){ 5790 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5791 } 5792 if( i<nSrc ){ 5793 p->nThis++; 5794 }else if( pExpr->iTable<p->iSrcInner ){ 5795 /* In a well-formed parse tree (no name resolution errors), 5796 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5797 ** outer context. Those are the only ones to count as "other" */ 5798 p->nOther++; 5799 } 5800 } 5801 return WRC_Continue; 5802 } 5803 5804 /* 5805 ** Determine if any of the arguments to the pExpr Function reference 5806 ** pSrcList. Return true if they do. Also return true if the function 5807 ** has no arguments or has only constant arguments. Return false if pExpr 5808 ** references columns but not columns of tables found in pSrcList. 5809 */ 5810 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5811 Walker w; 5812 struct SrcCount cnt; 5813 assert( pExpr->op==TK_AGG_FUNCTION ); 5814 memset(&w, 0, sizeof(w)); 5815 w.xExprCallback = exprSrcCount; 5816 w.xSelectCallback = selectSrcCount; 5817 w.u.pSrcCount = &cnt; 5818 cnt.pSrc = pSrcList; 5819 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5820 cnt.nThis = 0; 5821 cnt.nOther = 0; 5822 sqlite3WalkExprList(&w, pExpr->x.pList); 5823 #ifndef SQLITE_OMIT_WINDOWFUNC 5824 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5825 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5826 } 5827 #endif 5828 return cnt.nThis>0 || cnt.nOther==0; 5829 } 5830 5831 /* 5832 ** This is a Walker expression node callback. 5833 ** 5834 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5835 ** object that is referenced does not refer directly to the Expr. If 5836 ** it does, make a copy. This is done because the pExpr argument is 5837 ** subject to change. 5838 ** 5839 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5840 ** This will cause the expression to be deleted automatically when the 5841 ** Parse object is destroyed, but the zero register number means that it 5842 ** will not generate any code in the preamble. 5843 */ 5844 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5845 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5846 && pExpr->pAggInfo!=0 5847 ){ 5848 AggInfo *pAggInfo = pExpr->pAggInfo; 5849 int iAgg = pExpr->iAgg; 5850 Parse *pParse = pWalker->pParse; 5851 sqlite3 *db = pParse->db; 5852 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5853 if( pExpr->op==TK_AGG_COLUMN ){ 5854 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5855 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5856 pExpr = sqlite3ExprDup(db, pExpr, 0); 5857 if( pExpr ){ 5858 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5859 sqlite3ExprDeferredDelete(pParse, pExpr); 5860 } 5861 } 5862 }else{ 5863 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5864 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5865 pExpr = sqlite3ExprDup(db, pExpr, 0); 5866 if( pExpr ){ 5867 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5868 sqlite3ExprDeferredDelete(pParse, pExpr); 5869 } 5870 } 5871 } 5872 } 5873 return WRC_Continue; 5874 } 5875 5876 /* 5877 ** Initialize a Walker object so that will persist AggInfo entries referenced 5878 ** by the tree that is walked. 5879 */ 5880 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5881 memset(pWalker, 0, sizeof(*pWalker)); 5882 pWalker->pParse = pParse; 5883 pWalker->xExprCallback = agginfoPersistExprCb; 5884 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5885 } 5886 5887 /* 5888 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5889 ** the new element. Return a negative number if malloc fails. 5890 */ 5891 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5892 int i; 5893 pInfo->aCol = sqlite3ArrayAllocate( 5894 db, 5895 pInfo->aCol, 5896 sizeof(pInfo->aCol[0]), 5897 &pInfo->nColumn, 5898 &i 5899 ); 5900 return i; 5901 } 5902 5903 /* 5904 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5905 ** the new element. Return a negative number if malloc fails. 5906 */ 5907 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5908 int i; 5909 pInfo->aFunc = sqlite3ArrayAllocate( 5910 db, 5911 pInfo->aFunc, 5912 sizeof(pInfo->aFunc[0]), 5913 &pInfo->nFunc, 5914 &i 5915 ); 5916 return i; 5917 } 5918 5919 /* 5920 ** This is the xExprCallback for a tree walker. It is used to 5921 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5922 ** for additional information. 5923 */ 5924 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5925 int i; 5926 NameContext *pNC = pWalker->u.pNC; 5927 Parse *pParse = pNC->pParse; 5928 SrcList *pSrcList = pNC->pSrcList; 5929 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5930 5931 assert( pNC->ncFlags & NC_UAggInfo ); 5932 switch( pExpr->op ){ 5933 case TK_AGG_COLUMN: 5934 case TK_COLUMN: { 5935 testcase( pExpr->op==TK_AGG_COLUMN ); 5936 testcase( pExpr->op==TK_COLUMN ); 5937 /* Check to see if the column is in one of the tables in the FROM 5938 ** clause of the aggregate query */ 5939 if( ALWAYS(pSrcList!=0) ){ 5940 SrcItem *pItem = pSrcList->a; 5941 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5942 struct AggInfo_col *pCol; 5943 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5944 if( pExpr->iTable==pItem->iCursor ){ 5945 /* If we reach this point, it means that pExpr refers to a table 5946 ** that is in the FROM clause of the aggregate query. 5947 ** 5948 ** Make an entry for the column in pAggInfo->aCol[] if there 5949 ** is not an entry there already. 5950 */ 5951 int k; 5952 pCol = pAggInfo->aCol; 5953 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5954 if( pCol->iTable==pExpr->iTable && 5955 pCol->iColumn==pExpr->iColumn ){ 5956 break; 5957 } 5958 } 5959 if( (k>=pAggInfo->nColumn) 5960 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5961 ){ 5962 pCol = &pAggInfo->aCol[k]; 5963 pCol->pTab = pExpr->y.pTab; 5964 pCol->iTable = pExpr->iTable; 5965 pCol->iColumn = pExpr->iColumn; 5966 pCol->iMem = ++pParse->nMem; 5967 pCol->iSorterColumn = -1; 5968 pCol->pCExpr = pExpr; 5969 if( pAggInfo->pGroupBy ){ 5970 int j, n; 5971 ExprList *pGB = pAggInfo->pGroupBy; 5972 struct ExprList_item *pTerm = pGB->a; 5973 n = pGB->nExpr; 5974 for(j=0; j<n; j++, pTerm++){ 5975 Expr *pE = pTerm->pExpr; 5976 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5977 pE->iColumn==pExpr->iColumn ){ 5978 pCol->iSorterColumn = j; 5979 break; 5980 } 5981 } 5982 } 5983 if( pCol->iSorterColumn<0 ){ 5984 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5985 } 5986 } 5987 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5988 ** because it was there before or because we just created it). 5989 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5990 ** pAggInfo->aCol[] entry. 5991 */ 5992 ExprSetVVAProperty(pExpr, EP_NoReduce); 5993 pExpr->pAggInfo = pAggInfo; 5994 pExpr->op = TK_AGG_COLUMN; 5995 pExpr->iAgg = (i16)k; 5996 break; 5997 } /* endif pExpr->iTable==pItem->iCursor */ 5998 } /* end loop over pSrcList */ 5999 } 6000 return WRC_Prune; 6001 } 6002 case TK_AGG_FUNCTION: { 6003 if( (pNC->ncFlags & NC_InAggFunc)==0 6004 && pWalker->walkerDepth==pExpr->op2 6005 ){ 6006 /* Check to see if pExpr is a duplicate of another aggregate 6007 ** function that is already in the pAggInfo structure 6008 */ 6009 struct AggInfo_func *pItem = pAggInfo->aFunc; 6010 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6011 if( pItem->pFExpr==pExpr ) break; 6012 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6013 break; 6014 } 6015 } 6016 if( i>=pAggInfo->nFunc ){ 6017 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6018 */ 6019 u8 enc = ENC(pParse->db); 6020 i = addAggInfoFunc(pParse->db, pAggInfo); 6021 if( i>=0 ){ 6022 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6023 pItem = &pAggInfo->aFunc[i]; 6024 pItem->pFExpr = pExpr; 6025 pItem->iMem = ++pParse->nMem; 6026 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6027 pItem->pFunc = sqlite3FindFunction(pParse->db, 6028 pExpr->u.zToken, 6029 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6030 if( pExpr->flags & EP_Distinct ){ 6031 pItem->iDistinct = pParse->nTab++; 6032 }else{ 6033 pItem->iDistinct = -1; 6034 } 6035 } 6036 } 6037 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6038 */ 6039 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6040 ExprSetVVAProperty(pExpr, EP_NoReduce); 6041 pExpr->iAgg = (i16)i; 6042 pExpr->pAggInfo = pAggInfo; 6043 return WRC_Prune; 6044 }else{ 6045 return WRC_Continue; 6046 } 6047 } 6048 } 6049 return WRC_Continue; 6050 } 6051 6052 /* 6053 ** Analyze the pExpr expression looking for aggregate functions and 6054 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6055 ** points to. Additional entries are made on the AggInfo object as 6056 ** necessary. 6057 ** 6058 ** This routine should only be called after the expression has been 6059 ** analyzed by sqlite3ResolveExprNames(). 6060 */ 6061 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6062 Walker w; 6063 w.xExprCallback = analyzeAggregate; 6064 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6065 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6066 w.walkerDepth = 0; 6067 w.u.pNC = pNC; 6068 w.pParse = 0; 6069 assert( pNC->pSrcList!=0 ); 6070 sqlite3WalkExpr(&w, pExpr); 6071 } 6072 6073 /* 6074 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6075 ** expression list. Return the number of errors. 6076 ** 6077 ** If an error is found, the analysis is cut short. 6078 */ 6079 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6080 struct ExprList_item *pItem; 6081 int i; 6082 if( pList ){ 6083 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6084 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6085 } 6086 } 6087 } 6088 6089 /* 6090 ** Allocate a single new register for use to hold some intermediate result. 6091 */ 6092 int sqlite3GetTempReg(Parse *pParse){ 6093 if( pParse->nTempReg==0 ){ 6094 return ++pParse->nMem; 6095 } 6096 return pParse->aTempReg[--pParse->nTempReg]; 6097 } 6098 6099 /* 6100 ** Deallocate a register, making available for reuse for some other 6101 ** purpose. 6102 */ 6103 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6104 if( iReg ){ 6105 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6106 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6107 pParse->aTempReg[pParse->nTempReg++] = iReg; 6108 } 6109 } 6110 } 6111 6112 /* 6113 ** Allocate or deallocate a block of nReg consecutive registers. 6114 */ 6115 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6116 int i, n; 6117 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6118 i = pParse->iRangeReg; 6119 n = pParse->nRangeReg; 6120 if( nReg<=n ){ 6121 pParse->iRangeReg += nReg; 6122 pParse->nRangeReg -= nReg; 6123 }else{ 6124 i = pParse->nMem+1; 6125 pParse->nMem += nReg; 6126 } 6127 return i; 6128 } 6129 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6130 if( nReg==1 ){ 6131 sqlite3ReleaseTempReg(pParse, iReg); 6132 return; 6133 } 6134 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6135 if( nReg>pParse->nRangeReg ){ 6136 pParse->nRangeReg = nReg; 6137 pParse->iRangeReg = iReg; 6138 } 6139 } 6140 6141 /* 6142 ** Mark all temporary registers as being unavailable for reuse. 6143 ** 6144 ** Always invoke this procedure after coding a subroutine or co-routine 6145 ** that might be invoked from other parts of the code, to ensure that 6146 ** the sub/co-routine does not use registers in common with the code that 6147 ** invokes the sub/co-routine. 6148 */ 6149 void sqlite3ClearTempRegCache(Parse *pParse){ 6150 pParse->nTempReg = 0; 6151 pParse->nRangeReg = 0; 6152 } 6153 6154 /* 6155 ** Validate that no temporary register falls within the range of 6156 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6157 ** statements. 6158 */ 6159 #ifdef SQLITE_DEBUG 6160 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6161 int i; 6162 if( pParse->nRangeReg>0 6163 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6164 && pParse->iRangeReg <= iLast 6165 ){ 6166 return 0; 6167 } 6168 for(i=0; i<pParse->nTempReg; i++){ 6169 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6170 return 0; 6171 } 6172 } 6173 return 1; 6174 } 6175 #endif /* SQLITE_DEBUG */ 6176