xref: /sqlite-3.40.0/src/expr.c (revision 37f3ac8f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){
57     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
58   }
59   if( op==TK_SELECT ){
60     assert( pExpr->flags&EP_xIsSelect );
61     assert( pExpr->x.pSelect!=0 );
62     assert( pExpr->x.pSelect->pEList!=0 );
63     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
64     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
65   }
66 #ifndef SQLITE_OMIT_CAST
67   if( op==TK_CAST ){
68     assert( !ExprHasProperty(pExpr, EP_IntValue) );
69     return sqlite3AffinityType(pExpr->u.zToken, 0);
70   }
71 #endif
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     assert( pExpr->iColumn < pExpr->iTable );
75     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
76     return sqlite3ExprAffinity(
77         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
78     );
79   }
80   if( op==TK_VECTOR ){
81     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
82   }
83   return pExpr->affExpr;
84 }
85 
86 /*
87 ** Set the collating sequence for expression pExpr to be the collating
88 ** sequence named by pToken.   Return a pointer to a new Expr node that
89 ** implements the COLLATE operator.
90 **
91 ** If a memory allocation error occurs, that fact is recorded in pParse->db
92 ** and the pExpr parameter is returned unchanged.
93 */
94 Expr *sqlite3ExprAddCollateToken(
95   const Parse *pParse,     /* Parsing context */
96   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
97   const Token *pCollName,  /* Name of collating sequence */
98   int dequote              /* True to dequote pCollName */
99 ){
100   if( pCollName->n>0 ){
101     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
102     if( pNew ){
103       pNew->pLeft = pExpr;
104       pNew->flags |= EP_Collate|EP_Skip;
105       pExpr = pNew;
106     }
107   }
108   return pExpr;
109 }
110 Expr *sqlite3ExprAddCollateString(
111   const Parse *pParse,  /* Parsing context */
112   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
113   const char *zC        /* The collating sequence name */
114 ){
115   Token s;
116   assert( zC!=0 );
117   sqlite3TokenInit(&s, (char*)zC);
118   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
119 }
120 
121 /*
122 ** Skip over any TK_COLLATE operators.
123 */
124 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
125   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
126     assert( pExpr->op==TK_COLLATE );
127     pExpr = pExpr->pLeft;
128   }
129   return pExpr;
130 }
131 
132 /*
133 ** Skip over any TK_COLLATE operators and/or any unlikely()
134 ** or likelihood() or likely() functions at the root of an
135 ** expression.
136 */
137 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
138   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
139     if( ExprHasProperty(pExpr, EP_Unlikely) ){
140       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
141       assert( pExpr->x.pList->nExpr>0 );
142       assert( pExpr->op==TK_FUNCTION );
143       pExpr = pExpr->x.pList->a[0].pExpr;
144     }else{
145       assert( pExpr->op==TK_COLLATE );
146       pExpr = pExpr->pLeft;
147     }
148   }
149   return pExpr;
150 }
151 
152 /*
153 ** Return the collation sequence for the expression pExpr. If
154 ** there is no defined collating sequence, return NULL.
155 **
156 ** See also: sqlite3ExprNNCollSeq()
157 **
158 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
159 ** default collation if pExpr has no defined collation.
160 **
161 ** The collating sequence might be determined by a COLLATE operator
162 ** or by the presence of a column with a defined collating sequence.
163 ** COLLATE operators take first precedence.  Left operands take
164 ** precedence over right operands.
165 */
166 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
167   sqlite3 *db = pParse->db;
168   CollSeq *pColl = 0;
169   const Expr *p = pExpr;
170   while( p ){
171     int op = p->op;
172     if( op==TK_REGISTER ) op = p->op2;
173     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
174      && p->y.pTab!=0
175     ){
176       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
177       ** a TK_COLUMN but was previously evaluated and cached in a register */
178       int j = p->iColumn;
179       if( j>=0 ){
180         const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
181         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
182       }
183       break;
184     }
185     if( op==TK_CAST || op==TK_UPLUS ){
186       p = p->pLeft;
187       continue;
188     }
189     if( op==TK_VECTOR ){
190       p = p->x.pList->a[0].pExpr;
191       continue;
192     }
193     if( op==TK_COLLATE ){
194       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
195       break;
196     }
197     if( p->flags & EP_Collate ){
198       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
199         p = p->pLeft;
200       }else{
201         Expr *pNext  = p->pRight;
202         /* The Expr.x union is never used at the same time as Expr.pRight */
203         assert( p->x.pList==0 || p->pRight==0 );
204         if( p->x.pList!=0
205          && !db->mallocFailed
206          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
207         ){
208           int i;
209           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
210             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
211               pNext = p->x.pList->a[i].pExpr;
212               break;
213             }
214           }
215         }
216         p = pNext;
217       }
218     }else{
219       break;
220     }
221   }
222   if( sqlite3CheckCollSeq(pParse, pColl) ){
223     pColl = 0;
224   }
225   return pColl;
226 }
227 
228 /*
229 ** Return the collation sequence for the expression pExpr. If
230 ** there is no defined collating sequence, return a pointer to the
231 ** defautl collation sequence.
232 **
233 ** See also: sqlite3ExprCollSeq()
234 **
235 ** The sqlite3ExprCollSeq() routine works the same except that it
236 ** returns NULL if there is no defined collation.
237 */
238 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
239   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
240   if( p==0 ) p = pParse->db->pDfltColl;
241   assert( p!=0 );
242   return p;
243 }
244 
245 /*
246 ** Return TRUE if the two expressions have equivalent collating sequences.
247 */
248 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
249   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
250   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
251   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
252 }
253 
254 /*
255 ** pExpr is an operand of a comparison operator.  aff2 is the
256 ** type affinity of the other operand.  This routine returns the
257 ** type affinity that should be used for the comparison operator.
258 */
259 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
260   char aff1 = sqlite3ExprAffinity(pExpr);
261   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
262     /* Both sides of the comparison are columns. If one has numeric
263     ** affinity, use that. Otherwise use no affinity.
264     */
265     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
266       return SQLITE_AFF_NUMERIC;
267     }else{
268       return SQLITE_AFF_BLOB;
269     }
270   }else{
271     /* One side is a column, the other is not. Use the columns affinity. */
272     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
273     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
274   }
275 }
276 
277 /*
278 ** pExpr is a comparison operator.  Return the type affinity that should
279 ** be applied to both operands prior to doing the comparison.
280 */
281 static char comparisonAffinity(const Expr *pExpr){
282   char aff;
283   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
284           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
285           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
286   assert( pExpr->pLeft );
287   aff = sqlite3ExprAffinity(pExpr->pLeft);
288   if( pExpr->pRight ){
289     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
290   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
291     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
292   }else if( aff==0 ){
293     aff = SQLITE_AFF_BLOB;
294   }
295   return aff;
296 }
297 
298 /*
299 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
300 ** idx_affinity is the affinity of an indexed column. Return true
301 ** if the index with affinity idx_affinity may be used to implement
302 ** the comparison in pExpr.
303 */
304 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
305   char aff = comparisonAffinity(pExpr);
306   if( aff<SQLITE_AFF_TEXT ){
307     return 1;
308   }
309   if( aff==SQLITE_AFF_TEXT ){
310     return idx_affinity==SQLITE_AFF_TEXT;
311   }
312   return sqlite3IsNumericAffinity(idx_affinity);
313 }
314 
315 /*
316 ** Return the P5 value that should be used for a binary comparison
317 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
318 */
319 static u8 binaryCompareP5(
320   const Expr *pExpr1,   /* Left operand */
321   const Expr *pExpr2,   /* Right operand */
322   int jumpIfNull        /* Extra flags added to P5 */
323 ){
324   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
325   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
326   return aff;
327 }
328 
329 /*
330 ** Return a pointer to the collation sequence that should be used by
331 ** a binary comparison operator comparing pLeft and pRight.
332 **
333 ** If the left hand expression has a collating sequence type, then it is
334 ** used. Otherwise the collation sequence for the right hand expression
335 ** is used, or the default (BINARY) if neither expression has a collating
336 ** type.
337 **
338 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
339 ** it is not considered.
340 */
341 CollSeq *sqlite3BinaryCompareCollSeq(
342   Parse *pParse,
343   const Expr *pLeft,
344   const Expr *pRight
345 ){
346   CollSeq *pColl;
347   assert( pLeft );
348   if( pLeft->flags & EP_Collate ){
349     pColl = sqlite3ExprCollSeq(pParse, pLeft);
350   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
351     pColl = sqlite3ExprCollSeq(pParse, pRight);
352   }else{
353     pColl = sqlite3ExprCollSeq(pParse, pLeft);
354     if( !pColl ){
355       pColl = sqlite3ExprCollSeq(pParse, pRight);
356     }
357   }
358   return pColl;
359 }
360 
361 /* Expresssion p is a comparison operator.  Return a collation sequence
362 ** appropriate for the comparison operator.
363 **
364 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
365 ** However, if the OP_Commuted flag is set, then the order of the operands
366 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
367 ** correct collating sequence is found.
368 */
369 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
370   if( ExprHasProperty(p, EP_Commuted) ){
371     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
372   }else{
373     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
374   }
375 }
376 
377 /*
378 ** Generate code for a comparison operator.
379 */
380 static int codeCompare(
381   Parse *pParse,    /* The parsing (and code generating) context */
382   Expr *pLeft,      /* The left operand */
383   Expr *pRight,     /* The right operand */
384   int opcode,       /* The comparison opcode */
385   int in1, int in2, /* Register holding operands */
386   int dest,         /* Jump here if true.  */
387   int jumpIfNull,   /* If true, jump if either operand is NULL */
388   int isCommuted    /* The comparison has been commuted */
389 ){
390   int p5;
391   int addr;
392   CollSeq *p4;
393 
394   if( pParse->nErr ) return 0;
395   if( isCommuted ){
396     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
397   }else{
398     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
399   }
400   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
401   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
402                            (void*)p4, P4_COLLSEQ);
403   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
404   return addr;
405 }
406 
407 /*
408 ** Return true if expression pExpr is a vector, or false otherwise.
409 **
410 ** A vector is defined as any expression that results in two or more
411 ** columns of result.  Every TK_VECTOR node is an vector because the
412 ** parser will not generate a TK_VECTOR with fewer than two entries.
413 ** But a TK_SELECT might be either a vector or a scalar. It is only
414 ** considered a vector if it has two or more result columns.
415 */
416 int sqlite3ExprIsVector(const Expr *pExpr){
417   return sqlite3ExprVectorSize(pExpr)>1;
418 }
419 
420 /*
421 ** If the expression passed as the only argument is of type TK_VECTOR
422 ** return the number of expressions in the vector. Or, if the expression
423 ** is a sub-select, return the number of columns in the sub-select. For
424 ** any other type of expression, return 1.
425 */
426 int sqlite3ExprVectorSize(const Expr *pExpr){
427   u8 op = pExpr->op;
428   if( op==TK_REGISTER ) op = pExpr->op2;
429   if( op==TK_VECTOR ){
430     return pExpr->x.pList->nExpr;
431   }else if( op==TK_SELECT ){
432     return pExpr->x.pSelect->pEList->nExpr;
433   }else{
434     return 1;
435   }
436 }
437 
438 /*
439 ** Return a pointer to a subexpression of pVector that is the i-th
440 ** column of the vector (numbered starting with 0).  The caller must
441 ** ensure that i is within range.
442 **
443 ** If pVector is really a scalar (and "scalar" here includes subqueries
444 ** that return a single column!) then return pVector unmodified.
445 **
446 ** pVector retains ownership of the returned subexpression.
447 **
448 ** If the vector is a (SELECT ...) then the expression returned is
449 ** just the expression for the i-th term of the result set, and may
450 ** not be ready for evaluation because the table cursor has not yet
451 ** been positioned.
452 */
453 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
454   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
455   if( sqlite3ExprIsVector(pVector) ){
456     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
457     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
458       return pVector->x.pSelect->pEList->a[i].pExpr;
459     }else{
460       return pVector->x.pList->a[i].pExpr;
461     }
462   }
463   return pVector;
464 }
465 
466 /*
467 ** Compute and return a new Expr object which when passed to
468 ** sqlite3ExprCode() will generate all necessary code to compute
469 ** the iField-th column of the vector expression pVector.
470 **
471 ** It is ok for pVector to be a scalar (as long as iField==0).
472 ** In that case, this routine works like sqlite3ExprDup().
473 **
474 ** The caller owns the returned Expr object and is responsible for
475 ** ensuring that the returned value eventually gets freed.
476 **
477 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
478 ** then the returned object will reference pVector and so pVector must remain
479 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
480 ** or a scalar expression, then it can be deleted as soon as this routine
481 ** returns.
482 **
483 ** A trick to cause a TK_SELECT pVector to be deleted together with
484 ** the returned Expr object is to attach the pVector to the pRight field
485 ** of the returned TK_SELECT_COLUMN Expr object.
486 */
487 Expr *sqlite3ExprForVectorField(
488   Parse *pParse,       /* Parsing context */
489   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
490   int iField,          /* Which column of the vector to return */
491   int nField           /* Total number of columns in the vector */
492 ){
493   Expr *pRet;
494   if( pVector->op==TK_SELECT ){
495     assert( pVector->flags & EP_xIsSelect );
496     /* The TK_SELECT_COLUMN Expr node:
497     **
498     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
499     ** pRight:          not used.  But recursively deleted.
500     ** iColumn:         Index of a column in pVector
501     ** iTable:          0 or the number of columns on the LHS of an assignment
502     ** pLeft->iTable:   First in an array of register holding result, or 0
503     **                  if the result is not yet computed.
504     **
505     ** sqlite3ExprDelete() specifically skips the recursive delete of
506     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
507     ** can be attached to pRight to cause this node to take ownership of
508     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
509     ** with the same pLeft pointer to the pVector, but only one of them
510     ** will own the pVector.
511     */
512     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
513     if( pRet ){
514       pRet->iTable = nField;
515       pRet->iColumn = iField;
516       pRet->pLeft = pVector;
517     }
518   }else{
519     if( pVector->op==TK_VECTOR ){
520       Expr **ppVector = &pVector->x.pList->a[iField].pExpr;
521       pVector = *ppVector;
522       if( IN_RENAME_OBJECT ){
523         /* This must be a vector UPDATE inside a trigger */
524         *ppVector = 0;
525         return pVector;
526       }
527     }
528     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
529   }
530   return pRet;
531 }
532 
533 /*
534 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
535 ** it. Return the register in which the result is stored (or, if the
536 ** sub-select returns more than one column, the first in an array
537 ** of registers in which the result is stored).
538 **
539 ** If pExpr is not a TK_SELECT expression, return 0.
540 */
541 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
542   int reg = 0;
543 #ifndef SQLITE_OMIT_SUBQUERY
544   if( pExpr->op==TK_SELECT ){
545     reg = sqlite3CodeSubselect(pParse, pExpr);
546   }
547 #endif
548   return reg;
549 }
550 
551 /*
552 ** Argument pVector points to a vector expression - either a TK_VECTOR
553 ** or TK_SELECT that returns more than one column. This function returns
554 ** the register number of a register that contains the value of
555 ** element iField of the vector.
556 **
557 ** If pVector is a TK_SELECT expression, then code for it must have
558 ** already been generated using the exprCodeSubselect() routine. In this
559 ** case parameter regSelect should be the first in an array of registers
560 ** containing the results of the sub-select.
561 **
562 ** If pVector is of type TK_VECTOR, then code for the requested field
563 ** is generated. In this case (*pRegFree) may be set to the number of
564 ** a temporary register to be freed by the caller before returning.
565 **
566 ** Before returning, output parameter (*ppExpr) is set to point to the
567 ** Expr object corresponding to element iElem of the vector.
568 */
569 static int exprVectorRegister(
570   Parse *pParse,                  /* Parse context */
571   Expr *pVector,                  /* Vector to extract element from */
572   int iField,                     /* Field to extract from pVector */
573   int regSelect,                  /* First in array of registers */
574   Expr **ppExpr,                  /* OUT: Expression element */
575   int *pRegFree                   /* OUT: Temp register to free */
576 ){
577   u8 op = pVector->op;
578   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
579   if( op==TK_REGISTER ){
580     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
581     return pVector->iTable+iField;
582   }
583   if( op==TK_SELECT ){
584     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
585      return regSelect+iField;
586   }
587   if( op==TK_VECTOR ){
588     *ppExpr = pVector->x.pList->a[iField].pExpr;
589     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
590   }
591   return 0;
592 }
593 
594 /*
595 ** Expression pExpr is a comparison between two vector values. Compute
596 ** the result of the comparison (1, 0, or NULL) and write that
597 ** result into register dest.
598 **
599 ** The caller must satisfy the following preconditions:
600 **
601 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
602 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
603 **    otherwise:                op==pExpr->op and p5==0
604 */
605 static void codeVectorCompare(
606   Parse *pParse,        /* Code generator context */
607   Expr *pExpr,          /* The comparison operation */
608   int dest,             /* Write results into this register */
609   u8 op,                /* Comparison operator */
610   u8 p5                 /* SQLITE_NULLEQ or zero */
611 ){
612   Vdbe *v = pParse->pVdbe;
613   Expr *pLeft = pExpr->pLeft;
614   Expr *pRight = pExpr->pRight;
615   int nLeft = sqlite3ExprVectorSize(pLeft);
616   int i;
617   int regLeft = 0;
618   int regRight = 0;
619   u8 opx = op;
620   int addrCmp = 0;
621   int addrDone = sqlite3VdbeMakeLabel(pParse);
622   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
623 
624   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
625   if( pParse->nErr ) return;
626   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
627     sqlite3ErrorMsg(pParse, "row value misused");
628     return;
629   }
630   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
631        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
632        || pExpr->op==TK_LT || pExpr->op==TK_GT
633        || pExpr->op==TK_LE || pExpr->op==TK_GE
634   );
635   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
636             || (pExpr->op==TK_ISNOT && op==TK_NE) );
637   assert( p5==0 || pExpr->op!=op );
638   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
639 
640   if( op==TK_LE ) opx = TK_LT;
641   if( op==TK_GE ) opx = TK_GT;
642   if( op==TK_NE ) opx = TK_EQ;
643 
644   regLeft = exprCodeSubselect(pParse, pLeft);
645   regRight = exprCodeSubselect(pParse, pRight);
646 
647   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
648   for(i=0; 1 /*Loop exits by "break"*/; i++){
649     int regFree1 = 0, regFree2 = 0;
650     Expr *pL = 0, *pR = 0;
651     int r1, r2;
652     assert( i>=0 && i<nLeft );
653     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
654     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
655     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
656     addrCmp = sqlite3VdbeCurrentAddr(v);
657     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
658     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
659     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
660     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
661     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
662     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
663     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
664     sqlite3ReleaseTempReg(pParse, regFree1);
665     sqlite3ReleaseTempReg(pParse, regFree2);
666     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
667       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
668       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
669       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
670     }
671     if( p5==SQLITE_NULLEQ ){
672       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
673     }else{
674       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
675     }
676     if( i==nLeft-1 ){
677       break;
678     }
679     if( opx==TK_EQ ){
680       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
681     }else{
682       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
683       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
684       if( i==nLeft-2 ) opx = op;
685     }
686   }
687   sqlite3VdbeJumpHere(v, addrCmp);
688   sqlite3VdbeResolveLabel(v, addrDone);
689   if( op==TK_NE ){
690     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
691   }
692 }
693 
694 #if SQLITE_MAX_EXPR_DEPTH>0
695 /*
696 ** Check that argument nHeight is less than or equal to the maximum
697 ** expression depth allowed. If it is not, leave an error message in
698 ** pParse.
699 */
700 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
701   int rc = SQLITE_OK;
702   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
703   if( nHeight>mxHeight ){
704     sqlite3ErrorMsg(pParse,
705        "Expression tree is too large (maximum depth %d)", mxHeight
706     );
707     rc = SQLITE_ERROR;
708   }
709   return rc;
710 }
711 
712 /* The following three functions, heightOfExpr(), heightOfExprList()
713 ** and heightOfSelect(), are used to determine the maximum height
714 ** of any expression tree referenced by the structure passed as the
715 ** first argument.
716 **
717 ** If this maximum height is greater than the current value pointed
718 ** to by pnHeight, the second parameter, then set *pnHeight to that
719 ** value.
720 */
721 static void heightOfExpr(const Expr *p, int *pnHeight){
722   if( p ){
723     if( p->nHeight>*pnHeight ){
724       *pnHeight = p->nHeight;
725     }
726   }
727 }
728 static void heightOfExprList(const ExprList *p, int *pnHeight){
729   if( p ){
730     int i;
731     for(i=0; i<p->nExpr; i++){
732       heightOfExpr(p->a[i].pExpr, pnHeight);
733     }
734   }
735 }
736 static void heightOfSelect(const Select *pSelect, int *pnHeight){
737   const Select *p;
738   for(p=pSelect; p; p=p->pPrior){
739     heightOfExpr(p->pWhere, pnHeight);
740     heightOfExpr(p->pHaving, pnHeight);
741     heightOfExpr(p->pLimit, pnHeight);
742     heightOfExprList(p->pEList, pnHeight);
743     heightOfExprList(p->pGroupBy, pnHeight);
744     heightOfExprList(p->pOrderBy, pnHeight);
745   }
746 }
747 
748 /*
749 ** Set the Expr.nHeight variable in the structure passed as an
750 ** argument. An expression with no children, Expr.pList or
751 ** Expr.pSelect member has a height of 1. Any other expression
752 ** has a height equal to the maximum height of any other
753 ** referenced Expr plus one.
754 **
755 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
756 ** if appropriate.
757 */
758 static void exprSetHeight(Expr *p){
759   int nHeight = 0;
760   heightOfExpr(p->pLeft, &nHeight);
761   heightOfExpr(p->pRight, &nHeight);
762   if( ExprHasProperty(p, EP_xIsSelect) ){
763     heightOfSelect(p->x.pSelect, &nHeight);
764   }else if( p->x.pList ){
765     heightOfExprList(p->x.pList, &nHeight);
766     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
767   }
768   p->nHeight = nHeight + 1;
769 }
770 
771 /*
772 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
773 ** the height is greater than the maximum allowed expression depth,
774 ** leave an error in pParse.
775 **
776 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
777 ** Expr.flags.
778 */
779 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
780   if( pParse->nErr ) return;
781   exprSetHeight(p);
782   sqlite3ExprCheckHeight(pParse, p->nHeight);
783 }
784 
785 /*
786 ** Return the maximum height of any expression tree referenced
787 ** by the select statement passed as an argument.
788 */
789 int sqlite3SelectExprHeight(const Select *p){
790   int nHeight = 0;
791   heightOfSelect(p, &nHeight);
792   return nHeight;
793 }
794 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
795 /*
796 ** Propagate all EP_Propagate flags from the Expr.x.pList into
797 ** Expr.flags.
798 */
799 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
800   if( pParse->nErr ) return;
801   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
802     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
803   }
804 }
805 #define exprSetHeight(y)
806 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
807 
808 /*
809 ** This routine is the core allocator for Expr nodes.
810 **
811 ** Construct a new expression node and return a pointer to it.  Memory
812 ** for this node and for the pToken argument is a single allocation
813 ** obtained from sqlite3DbMalloc().  The calling function
814 ** is responsible for making sure the node eventually gets freed.
815 **
816 ** If dequote is true, then the token (if it exists) is dequoted.
817 ** If dequote is false, no dequoting is performed.  The deQuote
818 ** parameter is ignored if pToken is NULL or if the token does not
819 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
820 ** then the EP_DblQuoted flag is set on the expression node.
821 **
822 ** Special case:  If op==TK_INTEGER and pToken points to a string that
823 ** can be translated into a 32-bit integer, then the token is not
824 ** stored in u.zToken.  Instead, the integer values is written
825 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
826 ** is allocated to hold the integer text and the dequote flag is ignored.
827 */
828 Expr *sqlite3ExprAlloc(
829   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
830   int op,                 /* Expression opcode */
831   const Token *pToken,    /* Token argument.  Might be NULL */
832   int dequote             /* True to dequote */
833 ){
834   Expr *pNew;
835   int nExtra = 0;
836   int iValue = 0;
837 
838   assert( db!=0 );
839   if( pToken ){
840     if( op!=TK_INTEGER || pToken->z==0
841           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
842       nExtra = pToken->n+1;
843       assert( iValue>=0 );
844     }
845   }
846   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
847   if( pNew ){
848     memset(pNew, 0, sizeof(Expr));
849     pNew->op = (u8)op;
850     pNew->iAgg = -1;
851     if( pToken ){
852       if( nExtra==0 ){
853         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
854         pNew->u.iValue = iValue;
855       }else{
856         pNew->u.zToken = (char*)&pNew[1];
857         assert( pToken->z!=0 || pToken->n==0 );
858         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
859         pNew->u.zToken[pToken->n] = 0;
860         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
861           sqlite3DequoteExpr(pNew);
862         }
863       }
864     }
865 #if SQLITE_MAX_EXPR_DEPTH>0
866     pNew->nHeight = 1;
867 #endif
868   }
869   return pNew;
870 }
871 
872 /*
873 ** Allocate a new expression node from a zero-terminated token that has
874 ** already been dequoted.
875 */
876 Expr *sqlite3Expr(
877   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
878   int op,                 /* Expression opcode */
879   const char *zToken      /* Token argument.  Might be NULL */
880 ){
881   Token x;
882   x.z = zToken;
883   x.n = sqlite3Strlen30(zToken);
884   return sqlite3ExprAlloc(db, op, &x, 0);
885 }
886 
887 /*
888 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
889 **
890 ** If pRoot==NULL that means that a memory allocation error has occurred.
891 ** In that case, delete the subtrees pLeft and pRight.
892 */
893 void sqlite3ExprAttachSubtrees(
894   sqlite3 *db,
895   Expr *pRoot,
896   Expr *pLeft,
897   Expr *pRight
898 ){
899   if( pRoot==0 ){
900     assert( db->mallocFailed );
901     sqlite3ExprDelete(db, pLeft);
902     sqlite3ExprDelete(db, pRight);
903   }else{
904     if( pRight ){
905       pRoot->pRight = pRight;
906       pRoot->flags |= EP_Propagate & pRight->flags;
907     }
908     if( pLeft ){
909       pRoot->pLeft = pLeft;
910       pRoot->flags |= EP_Propagate & pLeft->flags;
911     }
912     exprSetHeight(pRoot);
913   }
914 }
915 
916 /*
917 ** Allocate an Expr node which joins as many as two subtrees.
918 **
919 ** One or both of the subtrees can be NULL.  Return a pointer to the new
920 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
921 ** free the subtrees and return NULL.
922 */
923 Expr *sqlite3PExpr(
924   Parse *pParse,          /* Parsing context */
925   int op,                 /* Expression opcode */
926   Expr *pLeft,            /* Left operand */
927   Expr *pRight            /* Right operand */
928 ){
929   Expr *p;
930   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
931   if( p ){
932     memset(p, 0, sizeof(Expr));
933     p->op = op & 0xff;
934     p->iAgg = -1;
935     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
936     sqlite3ExprCheckHeight(pParse, p->nHeight);
937   }else{
938     sqlite3ExprDelete(pParse->db, pLeft);
939     sqlite3ExprDelete(pParse->db, pRight);
940   }
941   return p;
942 }
943 
944 /*
945 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
946 ** do a memory allocation failure) then delete the pSelect object.
947 */
948 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
949   if( pExpr ){
950     pExpr->x.pSelect = pSelect;
951     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
952     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
953   }else{
954     assert( pParse->db->mallocFailed );
955     sqlite3SelectDelete(pParse->db, pSelect);
956   }
957 }
958 
959 /*
960 ** Expression list pEList is a list of vector values. This function
961 ** converts the contents of pEList to a VALUES(...) Select statement
962 ** returning 1 row for each element of the list. For example, the
963 ** expression list:
964 **
965 **   ( (1,2), (3,4) (5,6) )
966 **
967 ** is translated to the equivalent of:
968 **
969 **   VALUES(1,2), (3,4), (5,6)
970 **
971 ** Each of the vector values in pEList must contain exactly nElem terms.
972 ** If a list element that is not a vector or does not contain nElem terms,
973 ** an error message is left in pParse.
974 **
975 ** This is used as part of processing IN(...) expressions with a list
976 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
977 */
978 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
979   int ii;
980   Select *pRet = 0;
981   assert( nElem>1 );
982   for(ii=0; ii<pEList->nExpr; ii++){
983     Select *pSel;
984     Expr *pExpr = pEList->a[ii].pExpr;
985     int nExprElem = (pExpr->op==TK_VECTOR ? pExpr->x.pList->nExpr : 1);
986     if( nExprElem!=nElem ){
987       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
988           nExprElem, nExprElem>1?"s":"", nElem
989       );
990       break;
991     }
992     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
993     pExpr->x.pList = 0;
994     if( pSel ){
995       if( pRet ){
996         pSel->op = TK_ALL;
997         pSel->pPrior = pRet;
998       }
999       pRet = pSel;
1000     }
1001   }
1002 
1003   if( pRet && pRet->pPrior ){
1004     pRet->selFlags |= SF_MultiValue;
1005   }
1006   sqlite3ExprListDelete(pParse->db, pEList);
1007   return pRet;
1008 }
1009 
1010 /*
1011 ** Join two expressions using an AND operator.  If either expression is
1012 ** NULL, then just return the other expression.
1013 **
1014 ** If one side or the other of the AND is known to be false, then instead
1015 ** of returning an AND expression, just return a constant expression with
1016 ** a value of false.
1017 */
1018 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1019   sqlite3 *db = pParse->db;
1020   if( pLeft==0  ){
1021     return pRight;
1022   }else if( pRight==0 ){
1023     return pLeft;
1024   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1025          && !IN_RENAME_OBJECT
1026   ){
1027     sqlite3ExprDeferredDelete(pParse, pLeft);
1028     sqlite3ExprDeferredDelete(pParse, pRight);
1029     return sqlite3Expr(db, TK_INTEGER, "0");
1030   }else{
1031     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1032   }
1033 }
1034 
1035 /*
1036 ** Construct a new expression node for a function with multiple
1037 ** arguments.
1038 */
1039 Expr *sqlite3ExprFunction(
1040   Parse *pParse,        /* Parsing context */
1041   ExprList *pList,      /* Argument list */
1042   const Token *pToken,  /* Name of the function */
1043   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1044 ){
1045   Expr *pNew;
1046   sqlite3 *db = pParse->db;
1047   assert( pToken );
1048   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1049   if( pNew==0 ){
1050     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1051     return 0;
1052   }
1053   if( pList
1054    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1055    && !pParse->nested
1056   ){
1057     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1058   }
1059   pNew->x.pList = pList;
1060   ExprSetProperty(pNew, EP_HasFunc);
1061   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1062   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1063   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1064   return pNew;
1065 }
1066 
1067 /*
1068 ** Check to see if a function is usable according to current access
1069 ** rules:
1070 **
1071 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1072 **
1073 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1074 **                                top-level SQL
1075 **
1076 ** If the function is not usable, create an error.
1077 */
1078 void sqlite3ExprFunctionUsable(
1079   Parse *pParse,         /* Parsing and code generating context */
1080   const Expr *pExpr,     /* The function invocation */
1081   const FuncDef *pDef    /* The function being invoked */
1082 ){
1083   assert( !IN_RENAME_OBJECT );
1084   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1085   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1086     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1087      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1088     ){
1089       /* Functions prohibited in triggers and views if:
1090       **     (1) tagged with SQLITE_DIRECTONLY
1091       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1092       **         is tagged with SQLITE_FUNC_UNSAFE) and
1093       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1094       **         that the schema is possibly tainted).
1095       */
1096       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1097     }
1098   }
1099 }
1100 
1101 /*
1102 ** Assign a variable number to an expression that encodes a wildcard
1103 ** in the original SQL statement.
1104 **
1105 ** Wildcards consisting of a single "?" are assigned the next sequential
1106 ** variable number.
1107 **
1108 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1109 ** sure "nnn" is not too big to avoid a denial of service attack when
1110 ** the SQL statement comes from an external source.
1111 **
1112 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1113 ** as the previous instance of the same wildcard.  Or if this is the first
1114 ** instance of the wildcard, the next sequential variable number is
1115 ** assigned.
1116 */
1117 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1118   sqlite3 *db = pParse->db;
1119   const char *z;
1120   ynVar x;
1121 
1122   if( pExpr==0 ) return;
1123   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1124   z = pExpr->u.zToken;
1125   assert( z!=0 );
1126   assert( z[0]!=0 );
1127   assert( n==(u32)sqlite3Strlen30(z) );
1128   if( z[1]==0 ){
1129     /* Wildcard of the form "?".  Assign the next variable number */
1130     assert( z[0]=='?' );
1131     x = (ynVar)(++pParse->nVar);
1132   }else{
1133     int doAdd = 0;
1134     if( z[0]=='?' ){
1135       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1136       ** use it as the variable number */
1137       i64 i;
1138       int bOk;
1139       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1140         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1141         bOk = 1;
1142       }else{
1143         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1144       }
1145       testcase( i==0 );
1146       testcase( i==1 );
1147       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1148       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1149       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1150         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1151             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1152         return;
1153       }
1154       x = (ynVar)i;
1155       if( x>pParse->nVar ){
1156         pParse->nVar = (int)x;
1157         doAdd = 1;
1158       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1159         doAdd = 1;
1160       }
1161     }else{
1162       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1163       ** number as the prior appearance of the same name, or if the name
1164       ** has never appeared before, reuse the same variable number
1165       */
1166       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1167       if( x==0 ){
1168         x = (ynVar)(++pParse->nVar);
1169         doAdd = 1;
1170       }
1171     }
1172     if( doAdd ){
1173       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1174     }
1175   }
1176   pExpr->iColumn = x;
1177   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1178     sqlite3ErrorMsg(pParse, "too many SQL variables");
1179   }
1180 }
1181 
1182 /*
1183 ** Recursively delete an expression tree.
1184 */
1185 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1186   assert( p!=0 );
1187   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1188   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1189 
1190   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1191   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1192           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1193 #ifdef SQLITE_DEBUG
1194   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1195     assert( p->pLeft==0 );
1196     assert( p->pRight==0 );
1197     assert( p->x.pSelect==0 );
1198   }
1199 #endif
1200   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1201     /* The Expr.x union is never used at the same time as Expr.pRight */
1202     assert( p->x.pList==0 || p->pRight==0 );
1203     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1204     if( p->pRight ){
1205       assert( !ExprHasProperty(p, EP_WinFunc) );
1206       sqlite3ExprDeleteNN(db, p->pRight);
1207     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1208       assert( !ExprHasProperty(p, EP_WinFunc) );
1209       sqlite3SelectDelete(db, p->x.pSelect);
1210     }else{
1211       sqlite3ExprListDelete(db, p->x.pList);
1212 #ifndef SQLITE_OMIT_WINDOWFUNC
1213       if( ExprHasProperty(p, EP_WinFunc) ){
1214         sqlite3WindowDelete(db, p->y.pWin);
1215       }
1216 #endif
1217     }
1218   }
1219   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1220   if( !ExprHasProperty(p, EP_Static) ){
1221     sqlite3DbFreeNN(db, p);
1222   }
1223 }
1224 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1225   if( p ) sqlite3ExprDeleteNN(db, p);
1226 }
1227 
1228 
1229 /*
1230 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1231 ** This is similar to sqlite3ExprDelete() except that the delete is
1232 ** deferred untilthe pParse is deleted.
1233 **
1234 ** The pExpr might be deleted immediately on an OOM error.
1235 **
1236 ** The deferred delete is (currently) implemented by adding the
1237 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1238 */
1239 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1240   pParse->pConstExpr =
1241       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1242 }
1243 
1244 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1245 ** expression.
1246 */
1247 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1248   if( p ){
1249     if( IN_RENAME_OBJECT ){
1250       sqlite3RenameExprUnmap(pParse, p);
1251     }
1252     sqlite3ExprDeleteNN(pParse->db, p);
1253   }
1254 }
1255 
1256 /*
1257 ** Return the number of bytes allocated for the expression structure
1258 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1259 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1260 */
1261 static int exprStructSize(const Expr *p){
1262   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1263   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1264   return EXPR_FULLSIZE;
1265 }
1266 
1267 /*
1268 ** The dupedExpr*Size() routines each return the number of bytes required
1269 ** to store a copy of an expression or expression tree.  They differ in
1270 ** how much of the tree is measured.
1271 **
1272 **     dupedExprStructSize()     Size of only the Expr structure
1273 **     dupedExprNodeSize()       Size of Expr + space for token
1274 **     dupedExprSize()           Expr + token + subtree components
1275 **
1276 ***************************************************************************
1277 **
1278 ** The dupedExprStructSize() function returns two values OR-ed together:
1279 ** (1) the space required for a copy of the Expr structure only and
1280 ** (2) the EP_xxx flags that indicate what the structure size should be.
1281 ** The return values is always one of:
1282 **
1283 **      EXPR_FULLSIZE
1284 **      EXPR_REDUCEDSIZE   | EP_Reduced
1285 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1286 **
1287 ** The size of the structure can be found by masking the return value
1288 ** of this routine with 0xfff.  The flags can be found by masking the
1289 ** return value with EP_Reduced|EP_TokenOnly.
1290 **
1291 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1292 ** (unreduced) Expr objects as they or originally constructed by the parser.
1293 ** During expression analysis, extra information is computed and moved into
1294 ** later parts of the Expr object and that extra information might get chopped
1295 ** off if the expression is reduced.  Note also that it does not work to
1296 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1297 ** to reduce a pristine expression tree from the parser.  The implementation
1298 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1299 ** to enforce this constraint.
1300 */
1301 static int dupedExprStructSize(const Expr *p, int flags){
1302   int nSize;
1303   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1304   assert( EXPR_FULLSIZE<=0xfff );
1305   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1306   if( 0==flags || p->op==TK_SELECT_COLUMN
1307 #ifndef SQLITE_OMIT_WINDOWFUNC
1308    || ExprHasProperty(p, EP_WinFunc)
1309 #endif
1310   ){
1311     nSize = EXPR_FULLSIZE;
1312   }else{
1313     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1314     assert( !ExprHasProperty(p, EP_FromJoin) );
1315     assert( !ExprHasProperty(p, EP_MemToken) );
1316     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1317     if( p->pLeft || p->x.pList ){
1318       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1319     }else{
1320       assert( p->pRight==0 );
1321       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1322     }
1323   }
1324   return nSize;
1325 }
1326 
1327 /*
1328 ** This function returns the space in bytes required to store the copy
1329 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1330 ** string is defined.)
1331 */
1332 static int dupedExprNodeSize(const Expr *p, int flags){
1333   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1334   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1335     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1336   }
1337   return ROUND8(nByte);
1338 }
1339 
1340 /*
1341 ** Return the number of bytes required to create a duplicate of the
1342 ** expression passed as the first argument. The second argument is a
1343 ** mask containing EXPRDUP_XXX flags.
1344 **
1345 ** The value returned includes space to create a copy of the Expr struct
1346 ** itself and the buffer referred to by Expr.u.zToken, if any.
1347 **
1348 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1349 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1350 ** and Expr.pRight variables (but not for any structures pointed to or
1351 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1352 */
1353 static int dupedExprSize(const Expr *p, int flags){
1354   int nByte = 0;
1355   if( p ){
1356     nByte = dupedExprNodeSize(p, flags);
1357     if( flags&EXPRDUP_REDUCE ){
1358       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1359     }
1360   }
1361   return nByte;
1362 }
1363 
1364 /*
1365 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1366 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1367 ** to store the copy of expression p, the copies of p->u.zToken
1368 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1369 ** if any. Before returning, *pzBuffer is set to the first byte past the
1370 ** portion of the buffer copied into by this function.
1371 */
1372 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1373   Expr *pNew;           /* Value to return */
1374   u8 *zAlloc;           /* Memory space from which to build Expr object */
1375   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1376 
1377   assert( db!=0 );
1378   assert( p );
1379   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1380   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1381 
1382   /* Figure out where to write the new Expr structure. */
1383   if( pzBuffer ){
1384     zAlloc = *pzBuffer;
1385     staticFlag = EP_Static;
1386     assert( zAlloc!=0 );
1387   }else{
1388     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1389     staticFlag = 0;
1390   }
1391   pNew = (Expr *)zAlloc;
1392 
1393   if( pNew ){
1394     /* Set nNewSize to the size allocated for the structure pointed to
1395     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1396     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1397     ** by the copy of the p->u.zToken string (if any).
1398     */
1399     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1400     const int nNewSize = nStructSize & 0xfff;
1401     int nToken;
1402     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1403       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1404     }else{
1405       nToken = 0;
1406     }
1407     if( dupFlags ){
1408       assert( ExprHasProperty(p, EP_Reduced)==0 );
1409       memcpy(zAlloc, p, nNewSize);
1410     }else{
1411       u32 nSize = (u32)exprStructSize(p);
1412       memcpy(zAlloc, p, nSize);
1413       if( nSize<EXPR_FULLSIZE ){
1414         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1415       }
1416     }
1417 
1418     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1419     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1420     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1421     pNew->flags |= staticFlag;
1422     ExprClearVVAProperties(pNew);
1423     if( dupFlags ){
1424       ExprSetVVAProperty(pNew, EP_Immutable);
1425     }
1426 
1427     /* Copy the p->u.zToken string, if any. */
1428     if( nToken ){
1429       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1430       memcpy(zToken, p->u.zToken, nToken);
1431     }
1432 
1433     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1434       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1435       if( ExprHasProperty(p, EP_xIsSelect) ){
1436         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1437       }else{
1438         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1439       }
1440     }
1441 
1442     /* Fill in pNew->pLeft and pNew->pRight. */
1443     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1444       zAlloc += dupedExprNodeSize(p, dupFlags);
1445       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1446         pNew->pLeft = p->pLeft ?
1447                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1448         pNew->pRight = p->pRight ?
1449                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1450       }
1451 #ifndef SQLITE_OMIT_WINDOWFUNC
1452       if( ExprHasProperty(p, EP_WinFunc) ){
1453         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1454         assert( ExprHasProperty(pNew, EP_WinFunc) );
1455       }
1456 #endif /* SQLITE_OMIT_WINDOWFUNC */
1457       if( pzBuffer ){
1458         *pzBuffer = zAlloc;
1459       }
1460     }else{
1461       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1462         if( pNew->op==TK_SELECT_COLUMN ){
1463           pNew->pLeft = p->pLeft;
1464           assert( p->pRight==0  || p->pRight==p->pLeft
1465                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1466         }else{
1467           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1468         }
1469         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1470       }
1471     }
1472   }
1473   return pNew;
1474 }
1475 
1476 /*
1477 ** Create and return a deep copy of the object passed as the second
1478 ** argument. If an OOM condition is encountered, NULL is returned
1479 ** and the db->mallocFailed flag set.
1480 */
1481 #ifndef SQLITE_OMIT_CTE
1482 With *sqlite3WithDup(sqlite3 *db, With *p){
1483   With *pRet = 0;
1484   if( p ){
1485     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1486     pRet = sqlite3DbMallocZero(db, nByte);
1487     if( pRet ){
1488       int i;
1489       pRet->nCte = p->nCte;
1490       for(i=0; i<p->nCte; i++){
1491         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1492         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1493         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1494       }
1495     }
1496   }
1497   return pRet;
1498 }
1499 #else
1500 # define sqlite3WithDup(x,y) 0
1501 #endif
1502 
1503 #ifndef SQLITE_OMIT_WINDOWFUNC
1504 /*
1505 ** The gatherSelectWindows() procedure and its helper routine
1506 ** gatherSelectWindowsCallback() are used to scan all the expressions
1507 ** an a newly duplicated SELECT statement and gather all of the Window
1508 ** objects found there, assembling them onto the linked list at Select->pWin.
1509 */
1510 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1511   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1512     Select *pSelect = pWalker->u.pSelect;
1513     Window *pWin = pExpr->y.pWin;
1514     assert( pWin );
1515     assert( IsWindowFunc(pExpr) );
1516     assert( pWin->ppThis==0 );
1517     sqlite3WindowLink(pSelect, pWin);
1518   }
1519   return WRC_Continue;
1520 }
1521 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1522   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1523 }
1524 static void gatherSelectWindows(Select *p){
1525   Walker w;
1526   w.xExprCallback = gatherSelectWindowsCallback;
1527   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1528   w.xSelectCallback2 = 0;
1529   w.pParse = 0;
1530   w.u.pSelect = p;
1531   sqlite3WalkSelect(&w, p);
1532 }
1533 #endif
1534 
1535 
1536 /*
1537 ** The following group of routines make deep copies of expressions,
1538 ** expression lists, ID lists, and select statements.  The copies can
1539 ** be deleted (by being passed to their respective ...Delete() routines)
1540 ** without effecting the originals.
1541 **
1542 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1543 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1544 ** by subsequent calls to sqlite*ListAppend() routines.
1545 **
1546 ** Any tables that the SrcList might point to are not duplicated.
1547 **
1548 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1549 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1550 ** truncated version of the usual Expr structure that will be stored as
1551 ** part of the in-memory representation of the database schema.
1552 */
1553 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1554   assert( flags==0 || flags==EXPRDUP_REDUCE );
1555   return p ? exprDup(db, p, flags, 0) : 0;
1556 }
1557 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1558   ExprList *pNew;
1559   struct ExprList_item *pItem;
1560   const struct ExprList_item *pOldItem;
1561   int i;
1562   Expr *pPriorSelectColOld = 0;
1563   Expr *pPriorSelectColNew = 0;
1564   assert( db!=0 );
1565   if( p==0 ) return 0;
1566   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1567   if( pNew==0 ) return 0;
1568   pNew->nExpr = p->nExpr;
1569   pNew->nAlloc = p->nAlloc;
1570   pItem = pNew->a;
1571   pOldItem = p->a;
1572   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1573     Expr *pOldExpr = pOldItem->pExpr;
1574     Expr *pNewExpr;
1575     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1576     if( pOldExpr
1577      && pOldExpr->op==TK_SELECT_COLUMN
1578      && (pNewExpr = pItem->pExpr)!=0
1579     ){
1580       if( pNewExpr->pRight ){
1581         pPriorSelectColOld = pOldExpr->pRight;
1582         pPriorSelectColNew = pNewExpr->pRight;
1583         pNewExpr->pLeft = pNewExpr->pRight;
1584       }else{
1585         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1586           pPriorSelectColOld = pOldExpr->pLeft;
1587           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1588           pNewExpr->pRight = pPriorSelectColNew;
1589         }
1590         pNewExpr->pLeft = pPriorSelectColNew;
1591       }
1592     }
1593     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1594     pItem->sortFlags = pOldItem->sortFlags;
1595     pItem->eEName = pOldItem->eEName;
1596     pItem->done = 0;
1597     pItem->bNulls = pOldItem->bNulls;
1598     pItem->bSorterRef = pOldItem->bSorterRef;
1599     pItem->u = pOldItem->u;
1600   }
1601   return pNew;
1602 }
1603 
1604 /*
1605 ** If cursors, triggers, views and subqueries are all omitted from
1606 ** the build, then none of the following routines, except for
1607 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1608 ** called with a NULL argument.
1609 */
1610 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1611  || !defined(SQLITE_OMIT_SUBQUERY)
1612 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1613   SrcList *pNew;
1614   int i;
1615   int nByte;
1616   assert( db!=0 );
1617   if( p==0 ) return 0;
1618   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1619   pNew = sqlite3DbMallocRawNN(db, nByte );
1620   if( pNew==0 ) return 0;
1621   pNew->nSrc = pNew->nAlloc = p->nSrc;
1622   for(i=0; i<p->nSrc; i++){
1623     SrcItem *pNewItem = &pNew->a[i];
1624     const SrcItem *pOldItem = &p->a[i];
1625     Table *pTab;
1626     pNewItem->pSchema = pOldItem->pSchema;
1627     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1628     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1629     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1630     pNewItem->fg = pOldItem->fg;
1631     pNewItem->iCursor = pOldItem->iCursor;
1632     pNewItem->addrFillSub = pOldItem->addrFillSub;
1633     pNewItem->regReturn = pOldItem->regReturn;
1634     if( pNewItem->fg.isIndexedBy ){
1635       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1636     }
1637     pNewItem->u2 = pOldItem->u2;
1638     if( pNewItem->fg.isCte ){
1639       pNewItem->u2.pCteUse->nUse++;
1640     }
1641     if( pNewItem->fg.isTabFunc ){
1642       pNewItem->u1.pFuncArg =
1643           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1644     }
1645     pTab = pNewItem->pTab = pOldItem->pTab;
1646     if( pTab ){
1647       pTab->nTabRef++;
1648     }
1649     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1650     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1651     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1652     pNewItem->colUsed = pOldItem->colUsed;
1653   }
1654   return pNew;
1655 }
1656 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1657   IdList *pNew;
1658   int i;
1659   assert( db!=0 );
1660   if( p==0 ) return 0;
1661   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1662   if( pNew==0 ) return 0;
1663   pNew->nId = p->nId;
1664   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1665   if( pNew->a==0 ){
1666     sqlite3DbFreeNN(db, pNew);
1667     return 0;
1668   }
1669   /* Note that because the size of the allocation for p->a[] is not
1670   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1671   ** on the duplicate created by this function. */
1672   for(i=0; i<p->nId; i++){
1673     struct IdList_item *pNewItem = &pNew->a[i];
1674     struct IdList_item *pOldItem = &p->a[i];
1675     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1676     pNewItem->idx = pOldItem->idx;
1677   }
1678   return pNew;
1679 }
1680 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1681   Select *pRet = 0;
1682   Select *pNext = 0;
1683   Select **pp = &pRet;
1684   const Select *p;
1685 
1686   assert( db!=0 );
1687   for(p=pDup; p; p=p->pPrior){
1688     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1689     if( pNew==0 ) break;
1690     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1691     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1692     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1693     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1694     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1695     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1696     pNew->op = p->op;
1697     pNew->pNext = pNext;
1698     pNew->pPrior = 0;
1699     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1700     pNew->iLimit = 0;
1701     pNew->iOffset = 0;
1702     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1703     pNew->addrOpenEphm[0] = -1;
1704     pNew->addrOpenEphm[1] = -1;
1705     pNew->nSelectRow = p->nSelectRow;
1706     pNew->pWith = sqlite3WithDup(db, p->pWith);
1707 #ifndef SQLITE_OMIT_WINDOWFUNC
1708     pNew->pWin = 0;
1709     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1710     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1711 #endif
1712     pNew->selId = p->selId;
1713     if( db->mallocFailed ){
1714       /* Any prior OOM might have left the Select object incomplete.
1715       ** Delete the whole thing rather than allow an incomplete Select
1716       ** to be used by the code generator. */
1717       pNew->pNext = 0;
1718       sqlite3SelectDelete(db, pNew);
1719       break;
1720     }
1721     *pp = pNew;
1722     pp = &pNew->pPrior;
1723     pNext = pNew;
1724   }
1725 
1726   return pRet;
1727 }
1728 #else
1729 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1730   assert( p==0 );
1731   return 0;
1732 }
1733 #endif
1734 
1735 
1736 /*
1737 ** Add a new element to the end of an expression list.  If pList is
1738 ** initially NULL, then create a new expression list.
1739 **
1740 ** The pList argument must be either NULL or a pointer to an ExprList
1741 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1742 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1743 ** Reason:  This routine assumes that the number of slots in pList->a[]
1744 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1745 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1746 **
1747 ** If a memory allocation error occurs, the entire list is freed and
1748 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1749 ** that the new entry was successfully appended.
1750 */
1751 static const struct ExprList_item zeroItem = {0};
1752 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1753   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1754   Expr *pExpr             /* Expression to be appended. Might be NULL */
1755 ){
1756   struct ExprList_item *pItem;
1757   ExprList *pList;
1758 
1759   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1760   if( pList==0 ){
1761     sqlite3ExprDelete(db, pExpr);
1762     return 0;
1763   }
1764   pList->nAlloc = 4;
1765   pList->nExpr = 1;
1766   pItem = &pList->a[0];
1767   *pItem = zeroItem;
1768   pItem->pExpr = pExpr;
1769   return pList;
1770 }
1771 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1772   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1773   ExprList *pList,        /* List to which to append. Might be NULL */
1774   Expr *pExpr             /* Expression to be appended. Might be NULL */
1775 ){
1776   struct ExprList_item *pItem;
1777   ExprList *pNew;
1778   pList->nAlloc *= 2;
1779   pNew = sqlite3DbRealloc(db, pList,
1780        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1781   if( pNew==0 ){
1782     sqlite3ExprListDelete(db, pList);
1783     sqlite3ExprDelete(db, pExpr);
1784     return 0;
1785   }else{
1786     pList = pNew;
1787   }
1788   pItem = &pList->a[pList->nExpr++];
1789   *pItem = zeroItem;
1790   pItem->pExpr = pExpr;
1791   return pList;
1792 }
1793 ExprList *sqlite3ExprListAppend(
1794   Parse *pParse,          /* Parsing context */
1795   ExprList *pList,        /* List to which to append. Might be NULL */
1796   Expr *pExpr             /* Expression to be appended. Might be NULL */
1797 ){
1798   struct ExprList_item *pItem;
1799   if( pList==0 ){
1800     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1801   }
1802   if( pList->nAlloc<pList->nExpr+1 ){
1803     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1804   }
1805   pItem = &pList->a[pList->nExpr++];
1806   *pItem = zeroItem;
1807   pItem->pExpr = pExpr;
1808   return pList;
1809 }
1810 
1811 /*
1812 ** pColumns and pExpr form a vector assignment which is part of the SET
1813 ** clause of an UPDATE statement.  Like this:
1814 **
1815 **        (a,b,c) = (expr1,expr2,expr3)
1816 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1817 **
1818 ** For each term of the vector assignment, append new entries to the
1819 ** expression list pList.  In the case of a subquery on the RHS, append
1820 ** TK_SELECT_COLUMN expressions.
1821 */
1822 ExprList *sqlite3ExprListAppendVector(
1823   Parse *pParse,         /* Parsing context */
1824   ExprList *pList,       /* List to which to append. Might be NULL */
1825   IdList *pColumns,      /* List of names of LHS of the assignment */
1826   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1827 ){
1828   sqlite3 *db = pParse->db;
1829   int n;
1830   int i;
1831   int iFirst = pList ? pList->nExpr : 0;
1832   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1833   ** exit prior to this routine being invoked */
1834   if( NEVER(pColumns==0) ) goto vector_append_error;
1835   if( pExpr==0 ) goto vector_append_error;
1836 
1837   /* If the RHS is a vector, then we can immediately check to see that
1838   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1839   ** wildcards ("*") in the result set of the SELECT must be expanded before
1840   ** we can do the size check, so defer the size check until code generation.
1841   */
1842   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1843     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1844                     pColumns->nId, n);
1845     goto vector_append_error;
1846   }
1847 
1848   for(i=0; i<pColumns->nId; i++){
1849     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1850     assert( pSubExpr!=0 || db->mallocFailed );
1851     if( pSubExpr==0 ) continue;
1852     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1853     if( pList ){
1854       assert( pList->nExpr==iFirst+i+1 );
1855       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1856       pColumns->a[i].zName = 0;
1857     }
1858   }
1859 
1860   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1861     Expr *pFirst = pList->a[iFirst].pExpr;
1862     assert( pFirst!=0 );
1863     assert( pFirst->op==TK_SELECT_COLUMN );
1864 
1865     /* Store the SELECT statement in pRight so it will be deleted when
1866     ** sqlite3ExprListDelete() is called */
1867     pFirst->pRight = pExpr;
1868     pExpr = 0;
1869 
1870     /* Remember the size of the LHS in iTable so that we can check that
1871     ** the RHS and LHS sizes match during code generation. */
1872     pFirst->iTable = pColumns->nId;
1873   }
1874 
1875 vector_append_error:
1876   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1877   sqlite3IdListDelete(db, pColumns);
1878   return pList;
1879 }
1880 
1881 /*
1882 ** Set the sort order for the last element on the given ExprList.
1883 */
1884 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1885   struct ExprList_item *pItem;
1886   if( p==0 ) return;
1887   assert( p->nExpr>0 );
1888 
1889   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1890   assert( iSortOrder==SQLITE_SO_UNDEFINED
1891        || iSortOrder==SQLITE_SO_ASC
1892        || iSortOrder==SQLITE_SO_DESC
1893   );
1894   assert( eNulls==SQLITE_SO_UNDEFINED
1895        || eNulls==SQLITE_SO_ASC
1896        || eNulls==SQLITE_SO_DESC
1897   );
1898 
1899   pItem = &p->a[p->nExpr-1];
1900   assert( pItem->bNulls==0 );
1901   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1902     iSortOrder = SQLITE_SO_ASC;
1903   }
1904   pItem->sortFlags = (u8)iSortOrder;
1905 
1906   if( eNulls!=SQLITE_SO_UNDEFINED ){
1907     pItem->bNulls = 1;
1908     if( iSortOrder!=eNulls ){
1909       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1910     }
1911   }
1912 }
1913 
1914 /*
1915 ** Set the ExprList.a[].zEName element of the most recently added item
1916 ** on the expression list.
1917 **
1918 ** pList might be NULL following an OOM error.  But pName should never be
1919 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1920 ** is set.
1921 */
1922 void sqlite3ExprListSetName(
1923   Parse *pParse,          /* Parsing context */
1924   ExprList *pList,        /* List to which to add the span. */
1925   const Token *pName,     /* Name to be added */
1926   int dequote             /* True to cause the name to be dequoted */
1927 ){
1928   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1929   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1930   if( pList ){
1931     struct ExprList_item *pItem;
1932     assert( pList->nExpr>0 );
1933     pItem = &pList->a[pList->nExpr-1];
1934     assert( pItem->zEName==0 );
1935     assert( pItem->eEName==ENAME_NAME );
1936     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1937     if( dequote ){
1938       /* If dequote==0, then pName->z does not point to part of a DDL
1939       ** statement handled by the parser. And so no token need be added
1940       ** to the token-map.  */
1941       sqlite3Dequote(pItem->zEName);
1942       if( IN_RENAME_OBJECT ){
1943         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1944       }
1945     }
1946   }
1947 }
1948 
1949 /*
1950 ** Set the ExprList.a[].zSpan element of the most recently added item
1951 ** on the expression list.
1952 **
1953 ** pList might be NULL following an OOM error.  But pSpan should never be
1954 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1955 ** is set.
1956 */
1957 void sqlite3ExprListSetSpan(
1958   Parse *pParse,          /* Parsing context */
1959   ExprList *pList,        /* List to which to add the span. */
1960   const char *zStart,     /* Start of the span */
1961   const char *zEnd        /* End of the span */
1962 ){
1963   sqlite3 *db = pParse->db;
1964   assert( pList!=0 || db->mallocFailed!=0 );
1965   if( pList ){
1966     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1967     assert( pList->nExpr>0 );
1968     if( pItem->zEName==0 ){
1969       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1970       pItem->eEName = ENAME_SPAN;
1971     }
1972   }
1973 }
1974 
1975 /*
1976 ** If the expression list pEList contains more than iLimit elements,
1977 ** leave an error message in pParse.
1978 */
1979 void sqlite3ExprListCheckLength(
1980   Parse *pParse,
1981   ExprList *pEList,
1982   const char *zObject
1983 ){
1984   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1985   testcase( pEList && pEList->nExpr==mx );
1986   testcase( pEList && pEList->nExpr==mx+1 );
1987   if( pEList && pEList->nExpr>mx ){
1988     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1989   }
1990 }
1991 
1992 /*
1993 ** Delete an entire expression list.
1994 */
1995 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1996   int i = pList->nExpr;
1997   struct ExprList_item *pItem =  pList->a;
1998   assert( pList->nExpr>0 );
1999   do{
2000     sqlite3ExprDelete(db, pItem->pExpr);
2001     sqlite3DbFree(db, pItem->zEName);
2002     pItem++;
2003   }while( --i>0 );
2004   sqlite3DbFreeNN(db, pList);
2005 }
2006 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2007   if( pList ) exprListDeleteNN(db, pList);
2008 }
2009 
2010 /*
2011 ** Return the bitwise-OR of all Expr.flags fields in the given
2012 ** ExprList.
2013 */
2014 u32 sqlite3ExprListFlags(const ExprList *pList){
2015   int i;
2016   u32 m = 0;
2017   assert( pList!=0 );
2018   for(i=0; i<pList->nExpr; i++){
2019      Expr *pExpr = pList->a[i].pExpr;
2020      assert( pExpr!=0 );
2021      m |= pExpr->flags;
2022   }
2023   return m;
2024 }
2025 
2026 /*
2027 ** This is a SELECT-node callback for the expression walker that
2028 ** always "fails".  By "fail" in this case, we mean set
2029 ** pWalker->eCode to zero and abort.
2030 **
2031 ** This callback is used by multiple expression walkers.
2032 */
2033 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2034   UNUSED_PARAMETER(NotUsed);
2035   pWalker->eCode = 0;
2036   return WRC_Abort;
2037 }
2038 
2039 /*
2040 ** Check the input string to see if it is "true" or "false" (in any case).
2041 **
2042 **       If the string is....           Return
2043 **         "true"                         EP_IsTrue
2044 **         "false"                        EP_IsFalse
2045 **         anything else                  0
2046 */
2047 u32 sqlite3IsTrueOrFalse(const char *zIn){
2048   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2049   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2050   return 0;
2051 }
2052 
2053 
2054 /*
2055 ** If the input expression is an ID with the name "true" or "false"
2056 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2057 ** the conversion happened, and zero if the expression is unaltered.
2058 */
2059 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2060   u32 v;
2061   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2062   if( !ExprHasProperty(pExpr, EP_Quoted)
2063    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2064   ){
2065     pExpr->op = TK_TRUEFALSE;
2066     ExprSetProperty(pExpr, v);
2067     return 1;
2068   }
2069   return 0;
2070 }
2071 
2072 /*
2073 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2074 ** and 0 if it is FALSE.
2075 */
2076 int sqlite3ExprTruthValue(const Expr *pExpr){
2077   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2078   assert( pExpr->op==TK_TRUEFALSE );
2079   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2080        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2081   return pExpr->u.zToken[4]==0;
2082 }
2083 
2084 /*
2085 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2086 ** terms that are always true or false.  Return the simplified expression.
2087 ** Or return the original expression if no simplification is possible.
2088 **
2089 ** Examples:
2090 **
2091 **     (x<10) AND true                =>   (x<10)
2092 **     (x<10) AND false               =>   false
2093 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2094 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2095 **     (y=22) OR true                 =>   true
2096 */
2097 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2098   assert( pExpr!=0 );
2099   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2100     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2101     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2102     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2103       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2104     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2105       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2106     }
2107   }
2108   return pExpr;
2109 }
2110 
2111 
2112 /*
2113 ** These routines are Walker callbacks used to check expressions to
2114 ** see if they are "constant" for some definition of constant.  The
2115 ** Walker.eCode value determines the type of "constant" we are looking
2116 ** for.
2117 **
2118 ** These callback routines are used to implement the following:
2119 **
2120 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2121 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2122 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2123 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2124 **
2125 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2126 ** is found to not be a constant.
2127 **
2128 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2129 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2130 ** when parsing an existing schema out of the sqlite_schema table and 4
2131 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2132 ** an error for new statements, but is silently converted
2133 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2134 ** contain a bound parameter because they were generated by older versions
2135 ** of SQLite to be parsed by newer versions of SQLite without raising a
2136 ** malformed schema error.
2137 */
2138 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2139 
2140   /* If pWalker->eCode is 2 then any term of the expression that comes from
2141   ** the ON or USING clauses of a left join disqualifies the expression
2142   ** from being considered constant. */
2143   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2144     pWalker->eCode = 0;
2145     return WRC_Abort;
2146   }
2147 
2148   switch( pExpr->op ){
2149     /* Consider functions to be constant if all their arguments are constant
2150     ** and either pWalker->eCode==4 or 5 or the function has the
2151     ** SQLITE_FUNC_CONST flag. */
2152     case TK_FUNCTION:
2153       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2154        && !ExprHasProperty(pExpr, EP_WinFunc)
2155       ){
2156         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2157         return WRC_Continue;
2158       }else{
2159         pWalker->eCode = 0;
2160         return WRC_Abort;
2161       }
2162     case TK_ID:
2163       /* Convert "true" or "false" in a DEFAULT clause into the
2164       ** appropriate TK_TRUEFALSE operator */
2165       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2166         return WRC_Prune;
2167       }
2168       /* no break */ deliberate_fall_through
2169     case TK_COLUMN:
2170     case TK_AGG_FUNCTION:
2171     case TK_AGG_COLUMN:
2172       testcase( pExpr->op==TK_ID );
2173       testcase( pExpr->op==TK_COLUMN );
2174       testcase( pExpr->op==TK_AGG_FUNCTION );
2175       testcase( pExpr->op==TK_AGG_COLUMN );
2176       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2177         return WRC_Continue;
2178       }
2179       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2180         return WRC_Continue;
2181       }
2182       /* no break */ deliberate_fall_through
2183     case TK_IF_NULL_ROW:
2184     case TK_REGISTER:
2185     case TK_DOT:
2186       testcase( pExpr->op==TK_REGISTER );
2187       testcase( pExpr->op==TK_IF_NULL_ROW );
2188       testcase( pExpr->op==TK_DOT );
2189       pWalker->eCode = 0;
2190       return WRC_Abort;
2191     case TK_VARIABLE:
2192       if( pWalker->eCode==5 ){
2193         /* Silently convert bound parameters that appear inside of CREATE
2194         ** statements into a NULL when parsing the CREATE statement text out
2195         ** of the sqlite_schema table */
2196         pExpr->op = TK_NULL;
2197       }else if( pWalker->eCode==4 ){
2198         /* A bound parameter in a CREATE statement that originates from
2199         ** sqlite3_prepare() causes an error */
2200         pWalker->eCode = 0;
2201         return WRC_Abort;
2202       }
2203       /* no break */ deliberate_fall_through
2204     default:
2205       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2206       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2207       return WRC_Continue;
2208   }
2209 }
2210 static int exprIsConst(Expr *p, int initFlag, int iCur){
2211   Walker w;
2212   w.eCode = initFlag;
2213   w.xExprCallback = exprNodeIsConstant;
2214   w.xSelectCallback = sqlite3SelectWalkFail;
2215 #ifdef SQLITE_DEBUG
2216   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2217 #endif
2218   w.u.iCur = iCur;
2219   sqlite3WalkExpr(&w, p);
2220   return w.eCode;
2221 }
2222 
2223 /*
2224 ** Walk an expression tree.  Return non-zero if the expression is constant
2225 ** and 0 if it involves variables or function calls.
2226 **
2227 ** For the purposes of this function, a double-quoted string (ex: "abc")
2228 ** is considered a variable but a single-quoted string (ex: 'abc') is
2229 ** a constant.
2230 */
2231 int sqlite3ExprIsConstant(Expr *p){
2232   return exprIsConst(p, 1, 0);
2233 }
2234 
2235 /*
2236 ** Walk an expression tree.  Return non-zero if
2237 **
2238 **   (1) the expression is constant, and
2239 **   (2) the expression does originate in the ON or USING clause
2240 **       of a LEFT JOIN, and
2241 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2242 **       operands created by the constant propagation optimization.
2243 **
2244 ** When this routine returns true, it indicates that the expression
2245 ** can be added to the pParse->pConstExpr list and evaluated once when
2246 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2247 */
2248 int sqlite3ExprIsConstantNotJoin(Expr *p){
2249   return exprIsConst(p, 2, 0);
2250 }
2251 
2252 /*
2253 ** Walk an expression tree.  Return non-zero if the expression is constant
2254 ** for any single row of the table with cursor iCur.  In other words, the
2255 ** expression must not refer to any non-deterministic function nor any
2256 ** table other than iCur.
2257 */
2258 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2259   return exprIsConst(p, 3, iCur);
2260 }
2261 
2262 
2263 /*
2264 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2265 */
2266 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2267   ExprList *pGroupBy = pWalker->u.pGroupBy;
2268   int i;
2269 
2270   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2271   ** it constant.  */
2272   for(i=0; i<pGroupBy->nExpr; i++){
2273     Expr *p = pGroupBy->a[i].pExpr;
2274     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2275       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2276       if( sqlite3IsBinary(pColl) ){
2277         return WRC_Prune;
2278       }
2279     }
2280   }
2281 
2282   /* Check if pExpr is a sub-select. If so, consider it variable. */
2283   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2284     pWalker->eCode = 0;
2285     return WRC_Abort;
2286   }
2287 
2288   return exprNodeIsConstant(pWalker, pExpr);
2289 }
2290 
2291 /*
2292 ** Walk the expression tree passed as the first argument. Return non-zero
2293 ** if the expression consists entirely of constants or copies of terms
2294 ** in pGroupBy that sort with the BINARY collation sequence.
2295 **
2296 ** This routine is used to determine if a term of the HAVING clause can
2297 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2298 ** the value of the HAVING clause term must be the same for all members of
2299 ** a "group".  The requirement that the GROUP BY term must be BINARY
2300 ** assumes that no other collating sequence will have a finer-grained
2301 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2302 ** A=B in every other collating sequence.  The requirement that the
2303 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2304 ** to promote HAVING clauses that use the same alternative collating
2305 ** sequence as the GROUP BY term, but that is much harder to check,
2306 ** alternative collating sequences are uncommon, and this is only an
2307 ** optimization, so we take the easy way out and simply require the
2308 ** GROUP BY to use the BINARY collating sequence.
2309 */
2310 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2311   Walker w;
2312   w.eCode = 1;
2313   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2314   w.xSelectCallback = 0;
2315   w.u.pGroupBy = pGroupBy;
2316   w.pParse = pParse;
2317   sqlite3WalkExpr(&w, p);
2318   return w.eCode;
2319 }
2320 
2321 /*
2322 ** Walk an expression tree for the DEFAULT field of a column definition
2323 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2324 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2325 ** the expression is constant or a function call with constant arguments.
2326 ** Return and 0 if there are any variables.
2327 **
2328 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2329 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2330 ** (such as ? or $abc) in the expression are converted into NULL.  When
2331 ** isInit is false, parameters raise an error.  Parameters should not be
2332 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2333 ** allowed it, so we need to support it when reading sqlite_schema for
2334 ** backwards compatibility.
2335 **
2336 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2337 **
2338 ** For the purposes of this function, a double-quoted string (ex: "abc")
2339 ** is considered a variable but a single-quoted string (ex: 'abc') is
2340 ** a constant.
2341 */
2342 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2343   assert( isInit==0 || isInit==1 );
2344   return exprIsConst(p, 4+isInit, 0);
2345 }
2346 
2347 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2348 /*
2349 ** Walk an expression tree.  Return 1 if the expression contains a
2350 ** subquery of some kind.  Return 0 if there are no subqueries.
2351 */
2352 int sqlite3ExprContainsSubquery(Expr *p){
2353   Walker w;
2354   w.eCode = 1;
2355   w.xExprCallback = sqlite3ExprWalkNoop;
2356   w.xSelectCallback = sqlite3SelectWalkFail;
2357 #ifdef SQLITE_DEBUG
2358   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2359 #endif
2360   sqlite3WalkExpr(&w, p);
2361   return w.eCode==0;
2362 }
2363 #endif
2364 
2365 /*
2366 ** If the expression p codes a constant integer that is small enough
2367 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2368 ** in *pValue.  If the expression is not an integer or if it is too big
2369 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2370 */
2371 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2372   int rc = 0;
2373   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2374 
2375   /* If an expression is an integer literal that fits in a signed 32-bit
2376   ** integer, then the EP_IntValue flag will have already been set */
2377   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2378            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2379 
2380   if( p->flags & EP_IntValue ){
2381     *pValue = p->u.iValue;
2382     return 1;
2383   }
2384   switch( p->op ){
2385     case TK_UPLUS: {
2386       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2387       break;
2388     }
2389     case TK_UMINUS: {
2390       int v;
2391       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2392         assert( v!=(-2147483647-1) );
2393         *pValue = -v;
2394         rc = 1;
2395       }
2396       break;
2397     }
2398     default: break;
2399   }
2400   return rc;
2401 }
2402 
2403 /*
2404 ** Return FALSE if there is no chance that the expression can be NULL.
2405 **
2406 ** If the expression might be NULL or if the expression is too complex
2407 ** to tell return TRUE.
2408 **
2409 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2410 ** when we know that a value cannot be NULL.  Hence, a false positive
2411 ** (returning TRUE when in fact the expression can never be NULL) might
2412 ** be a small performance hit but is otherwise harmless.  On the other
2413 ** hand, a false negative (returning FALSE when the result could be NULL)
2414 ** will likely result in an incorrect answer.  So when in doubt, return
2415 ** TRUE.
2416 */
2417 int sqlite3ExprCanBeNull(const Expr *p){
2418   u8 op;
2419   assert( p!=0 );
2420   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2421     p = p->pLeft;
2422     assert( p!=0 );
2423   }
2424   op = p->op;
2425   if( op==TK_REGISTER ) op = p->op2;
2426   switch( op ){
2427     case TK_INTEGER:
2428     case TK_STRING:
2429     case TK_FLOAT:
2430     case TK_BLOB:
2431       return 0;
2432     case TK_COLUMN:
2433       return ExprHasProperty(p, EP_CanBeNull) ||
2434              p->y.pTab==0 ||  /* Reference to column of index on expression */
2435              (p->iColumn>=0
2436               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2437               && p->y.pTab->aCol[p->iColumn].notNull==0);
2438     default:
2439       return 1;
2440   }
2441 }
2442 
2443 /*
2444 ** Return TRUE if the given expression is a constant which would be
2445 ** unchanged by OP_Affinity with the affinity given in the second
2446 ** argument.
2447 **
2448 ** This routine is used to determine if the OP_Affinity operation
2449 ** can be omitted.  When in doubt return FALSE.  A false negative
2450 ** is harmless.  A false positive, however, can result in the wrong
2451 ** answer.
2452 */
2453 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2454   u8 op;
2455   int unaryMinus = 0;
2456   if( aff==SQLITE_AFF_BLOB ) return 1;
2457   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2458     if( p->op==TK_UMINUS ) unaryMinus = 1;
2459     p = p->pLeft;
2460   }
2461   op = p->op;
2462   if( op==TK_REGISTER ) op = p->op2;
2463   switch( op ){
2464     case TK_INTEGER: {
2465       return aff>=SQLITE_AFF_NUMERIC;
2466     }
2467     case TK_FLOAT: {
2468       return aff>=SQLITE_AFF_NUMERIC;
2469     }
2470     case TK_STRING: {
2471       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2472     }
2473     case TK_BLOB: {
2474       return !unaryMinus;
2475     }
2476     case TK_COLUMN: {
2477       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2478       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2479     }
2480     default: {
2481       return 0;
2482     }
2483   }
2484 }
2485 
2486 /*
2487 ** Return TRUE if the given string is a row-id column name.
2488 */
2489 int sqlite3IsRowid(const char *z){
2490   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2491   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2492   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2493   return 0;
2494 }
2495 
2496 /*
2497 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2498 ** that can be simplified to a direct table access, then return
2499 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2500 ** or if the SELECT statement needs to be manifested into a transient
2501 ** table, then return NULL.
2502 */
2503 #ifndef SQLITE_OMIT_SUBQUERY
2504 static Select *isCandidateForInOpt(const Expr *pX){
2505   Select *p;
2506   SrcList *pSrc;
2507   ExprList *pEList;
2508   Table *pTab;
2509   int i;
2510   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2511   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2512   p = pX->x.pSelect;
2513   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2514   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2515     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2516     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2517     return 0; /* No DISTINCT keyword and no aggregate functions */
2518   }
2519   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2520   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2521   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2522   pSrc = p->pSrc;
2523   assert( pSrc!=0 );
2524   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2525   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2526   pTab = pSrc->a[0].pTab;
2527   assert( pTab!=0 );
2528   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2529   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2530   pEList = p->pEList;
2531   assert( pEList!=0 );
2532   /* All SELECT results must be columns. */
2533   for(i=0; i<pEList->nExpr; i++){
2534     Expr *pRes = pEList->a[i].pExpr;
2535     if( pRes->op!=TK_COLUMN ) return 0;
2536     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2537   }
2538   return p;
2539 }
2540 #endif /* SQLITE_OMIT_SUBQUERY */
2541 
2542 #ifndef SQLITE_OMIT_SUBQUERY
2543 /*
2544 ** Generate code that checks the left-most column of index table iCur to see if
2545 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2546 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2547 ** to be set to NULL if iCur contains one or more NULL values.
2548 */
2549 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2550   int addr1;
2551   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2552   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2553   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2554   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2555   VdbeComment((v, "first_entry_in(%d)", iCur));
2556   sqlite3VdbeJumpHere(v, addr1);
2557 }
2558 #endif
2559 
2560 
2561 #ifndef SQLITE_OMIT_SUBQUERY
2562 /*
2563 ** The argument is an IN operator with a list (not a subquery) on the
2564 ** right-hand side.  Return TRUE if that list is constant.
2565 */
2566 static int sqlite3InRhsIsConstant(Expr *pIn){
2567   Expr *pLHS;
2568   int res;
2569   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2570   pLHS = pIn->pLeft;
2571   pIn->pLeft = 0;
2572   res = sqlite3ExprIsConstant(pIn);
2573   pIn->pLeft = pLHS;
2574   return res;
2575 }
2576 #endif
2577 
2578 /*
2579 ** This function is used by the implementation of the IN (...) operator.
2580 ** The pX parameter is the expression on the RHS of the IN operator, which
2581 ** might be either a list of expressions or a subquery.
2582 **
2583 ** The job of this routine is to find or create a b-tree object that can
2584 ** be used either to test for membership in the RHS set or to iterate through
2585 ** all members of the RHS set, skipping duplicates.
2586 **
2587 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2588 ** and pX->iTable is set to the index of that cursor.
2589 **
2590 ** The returned value of this function indicates the b-tree type, as follows:
2591 **
2592 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2593 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2594 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2595 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2596 **                         populated epheremal table.
2597 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2598 **                         implemented as a sequence of comparisons.
2599 **
2600 ** An existing b-tree might be used if the RHS expression pX is a simple
2601 ** subquery such as:
2602 **
2603 **     SELECT <column1>, <column2>... FROM <table>
2604 **
2605 ** If the RHS of the IN operator is a list or a more complex subquery, then
2606 ** an ephemeral table might need to be generated from the RHS and then
2607 ** pX->iTable made to point to the ephemeral table instead of an
2608 ** existing table.
2609 **
2610 ** The inFlags parameter must contain, at a minimum, one of the bits
2611 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2612 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2613 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2614 ** be used to loop over all values of the RHS of the IN operator.
2615 **
2616 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2617 ** through the set members) then the b-tree must not contain duplicates.
2618 ** An epheremal table will be created unless the selected columns are guaranteed
2619 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2620 ** a UNIQUE constraint or index.
2621 **
2622 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2623 ** for fast set membership tests) then an epheremal table must
2624 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2625 ** index can be found with the specified <columns> as its left-most.
2626 **
2627 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2628 ** if the RHS of the IN operator is a list (not a subquery) then this
2629 ** routine might decide that creating an ephemeral b-tree for membership
2630 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2631 ** calling routine should implement the IN operator using a sequence
2632 ** of Eq or Ne comparison operations.
2633 **
2634 ** When the b-tree is being used for membership tests, the calling function
2635 ** might need to know whether or not the RHS side of the IN operator
2636 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2637 ** if there is any chance that the (...) might contain a NULL value at
2638 ** runtime, then a register is allocated and the register number written
2639 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2640 ** NULL value, then *prRhsHasNull is left unchanged.
2641 **
2642 ** If a register is allocated and its location stored in *prRhsHasNull, then
2643 ** the value in that register will be NULL if the b-tree contains one or more
2644 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2645 ** NULL values.
2646 **
2647 ** If the aiMap parameter is not NULL, it must point to an array containing
2648 ** one element for each column returned by the SELECT statement on the RHS
2649 ** of the IN(...) operator. The i'th entry of the array is populated with the
2650 ** offset of the index column that matches the i'th column returned by the
2651 ** SELECT. For example, if the expression and selected index are:
2652 **
2653 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2654 **   CREATE INDEX i1 ON t1(b, c, a);
2655 **
2656 ** then aiMap[] is populated with {2, 0, 1}.
2657 */
2658 #ifndef SQLITE_OMIT_SUBQUERY
2659 int sqlite3FindInIndex(
2660   Parse *pParse,             /* Parsing context */
2661   Expr *pX,                  /* The IN expression */
2662   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2663   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2664   int *aiMap,                /* Mapping from Index fields to RHS fields */
2665   int *piTab                 /* OUT: index to use */
2666 ){
2667   Select *p;                            /* SELECT to the right of IN operator */
2668   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2669   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2670   int mustBeUnique;                     /* True if RHS must be unique */
2671   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2672 
2673   assert( pX->op==TK_IN );
2674   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2675 
2676   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2677   ** whether or not the SELECT result contains NULL values, check whether
2678   ** or not NULL is actually possible (it may not be, for example, due
2679   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2680   ** set prRhsHasNull to 0 before continuing.  */
2681   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2682     int i;
2683     ExprList *pEList = pX->x.pSelect->pEList;
2684     for(i=0; i<pEList->nExpr; i++){
2685       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2686     }
2687     if( i==pEList->nExpr ){
2688       prRhsHasNull = 0;
2689     }
2690   }
2691 
2692   /* Check to see if an existing table or index can be used to
2693   ** satisfy the query.  This is preferable to generating a new
2694   ** ephemeral table.  */
2695   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2696     sqlite3 *db = pParse->db;              /* Database connection */
2697     Table *pTab;                           /* Table <table>. */
2698     int iDb;                               /* Database idx for pTab */
2699     ExprList *pEList = p->pEList;
2700     int nExpr = pEList->nExpr;
2701 
2702     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2703     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2704     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2705     pTab = p->pSrc->a[0].pTab;
2706 
2707     /* Code an OP_Transaction and OP_TableLock for <table>. */
2708     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2709     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2710     sqlite3CodeVerifySchema(pParse, iDb);
2711     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2712 
2713     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2714     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2715       /* The "x IN (SELECT rowid FROM table)" case */
2716       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2717       VdbeCoverage(v);
2718 
2719       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2720       eType = IN_INDEX_ROWID;
2721       ExplainQueryPlan((pParse, 0,
2722             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2723       sqlite3VdbeJumpHere(v, iAddr);
2724     }else{
2725       Index *pIdx;                         /* Iterator variable */
2726       int affinity_ok = 1;
2727       int i;
2728 
2729       /* Check that the affinity that will be used to perform each
2730       ** comparison is the same as the affinity of each column in table
2731       ** on the RHS of the IN operator.  If it not, it is not possible to
2732       ** use any index of the RHS table.  */
2733       for(i=0; i<nExpr && affinity_ok; i++){
2734         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2735         int iCol = pEList->a[i].pExpr->iColumn;
2736         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2737         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2738         testcase( cmpaff==SQLITE_AFF_BLOB );
2739         testcase( cmpaff==SQLITE_AFF_TEXT );
2740         switch( cmpaff ){
2741           case SQLITE_AFF_BLOB:
2742             break;
2743           case SQLITE_AFF_TEXT:
2744             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2745             ** other has no affinity and the other side is TEXT.  Hence,
2746             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2747             ** and for the term on the LHS of the IN to have no affinity. */
2748             assert( idxaff==SQLITE_AFF_TEXT );
2749             break;
2750           default:
2751             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2752         }
2753       }
2754 
2755       if( affinity_ok ){
2756         /* Search for an existing index that will work for this IN operator */
2757         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2758           Bitmask colUsed;      /* Columns of the index used */
2759           Bitmask mCol;         /* Mask for the current column */
2760           if( pIdx->nColumn<nExpr ) continue;
2761           if( pIdx->pPartIdxWhere!=0 ) continue;
2762           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2763           ** BITMASK(nExpr) without overflowing */
2764           testcase( pIdx->nColumn==BMS-2 );
2765           testcase( pIdx->nColumn==BMS-1 );
2766           if( pIdx->nColumn>=BMS-1 ) continue;
2767           if( mustBeUnique ){
2768             if( pIdx->nKeyCol>nExpr
2769              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2770             ){
2771               continue;  /* This index is not unique over the IN RHS columns */
2772             }
2773           }
2774 
2775           colUsed = 0;   /* Columns of index used so far */
2776           for(i=0; i<nExpr; i++){
2777             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2778             Expr *pRhs = pEList->a[i].pExpr;
2779             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2780             int j;
2781 
2782             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2783             for(j=0; j<nExpr; j++){
2784               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2785               assert( pIdx->azColl[j] );
2786               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2787                 continue;
2788               }
2789               break;
2790             }
2791             if( j==nExpr ) break;
2792             mCol = MASKBIT(j);
2793             if( mCol & colUsed ) break; /* Each column used only once */
2794             colUsed |= mCol;
2795             if( aiMap ) aiMap[i] = j;
2796           }
2797 
2798           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2799           if( colUsed==(MASKBIT(nExpr)-1) ){
2800             /* If we reach this point, that means the index pIdx is usable */
2801             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2802             ExplainQueryPlan((pParse, 0,
2803                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2804             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2805             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2806             VdbeComment((v, "%s", pIdx->zName));
2807             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2808             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2809 
2810             if( prRhsHasNull ){
2811 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2812               i64 mask = (1<<nExpr)-1;
2813               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2814                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2815 #endif
2816               *prRhsHasNull = ++pParse->nMem;
2817               if( nExpr==1 ){
2818                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2819               }
2820             }
2821             sqlite3VdbeJumpHere(v, iAddr);
2822           }
2823         } /* End loop over indexes */
2824       } /* End if( affinity_ok ) */
2825     } /* End if not an rowid index */
2826   } /* End attempt to optimize using an index */
2827 
2828   /* If no preexisting index is available for the IN clause
2829   ** and IN_INDEX_NOOP is an allowed reply
2830   ** and the RHS of the IN operator is a list, not a subquery
2831   ** and the RHS is not constant or has two or fewer terms,
2832   ** then it is not worth creating an ephemeral table to evaluate
2833   ** the IN operator so return IN_INDEX_NOOP.
2834   */
2835   if( eType==0
2836    && (inFlags & IN_INDEX_NOOP_OK)
2837    && !ExprHasProperty(pX, EP_xIsSelect)
2838    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2839   ){
2840     eType = IN_INDEX_NOOP;
2841   }
2842 
2843   if( eType==0 ){
2844     /* Could not find an existing table or index to use as the RHS b-tree.
2845     ** We will have to generate an ephemeral table to do the job.
2846     */
2847     u32 savedNQueryLoop = pParse->nQueryLoop;
2848     int rMayHaveNull = 0;
2849     eType = IN_INDEX_EPH;
2850     if( inFlags & IN_INDEX_LOOP ){
2851       pParse->nQueryLoop = 0;
2852     }else if( prRhsHasNull ){
2853       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2854     }
2855     assert( pX->op==TK_IN );
2856     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2857     if( rMayHaveNull ){
2858       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2859     }
2860     pParse->nQueryLoop = savedNQueryLoop;
2861   }
2862 
2863   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2864     int i, n;
2865     n = sqlite3ExprVectorSize(pX->pLeft);
2866     for(i=0; i<n; i++) aiMap[i] = i;
2867   }
2868   *piTab = iTab;
2869   return eType;
2870 }
2871 #endif
2872 
2873 #ifndef SQLITE_OMIT_SUBQUERY
2874 /*
2875 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2876 ** function allocates and returns a nul-terminated string containing
2877 ** the affinities to be used for each column of the comparison.
2878 **
2879 ** It is the responsibility of the caller to ensure that the returned
2880 ** string is eventually freed using sqlite3DbFree().
2881 */
2882 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2883   Expr *pLeft = pExpr->pLeft;
2884   int nVal = sqlite3ExprVectorSize(pLeft);
2885   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2886   char *zRet;
2887 
2888   assert( pExpr->op==TK_IN );
2889   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2890   if( zRet ){
2891     int i;
2892     for(i=0; i<nVal; i++){
2893       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2894       char a = sqlite3ExprAffinity(pA);
2895       if( pSelect ){
2896         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2897       }else{
2898         zRet[i] = a;
2899       }
2900     }
2901     zRet[nVal] = '\0';
2902   }
2903   return zRet;
2904 }
2905 #endif
2906 
2907 #ifndef SQLITE_OMIT_SUBQUERY
2908 /*
2909 ** Load the Parse object passed as the first argument with an error
2910 ** message of the form:
2911 **
2912 **   "sub-select returns N columns - expected M"
2913 */
2914 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2915   if( pParse->nErr==0 ){
2916     const char *zFmt = "sub-select returns %d columns - expected %d";
2917     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2918   }
2919 }
2920 #endif
2921 
2922 /*
2923 ** Expression pExpr is a vector that has been used in a context where
2924 ** it is not permitted. If pExpr is a sub-select vector, this routine
2925 ** loads the Parse object with a message of the form:
2926 **
2927 **   "sub-select returns N columns - expected 1"
2928 **
2929 ** Or, if it is a regular scalar vector:
2930 **
2931 **   "row value misused"
2932 */
2933 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2934 #ifndef SQLITE_OMIT_SUBQUERY
2935   if( pExpr->flags & EP_xIsSelect ){
2936     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2937   }else
2938 #endif
2939   {
2940     sqlite3ErrorMsg(pParse, "row value misused");
2941   }
2942 }
2943 
2944 #ifndef SQLITE_OMIT_SUBQUERY
2945 /*
2946 ** Generate code that will construct an ephemeral table containing all terms
2947 ** in the RHS of an IN operator.  The IN operator can be in either of two
2948 ** forms:
2949 **
2950 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2951 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2952 **
2953 ** The pExpr parameter is the IN operator.  The cursor number for the
2954 ** constructed ephermeral table is returned.  The first time the ephemeral
2955 ** table is computed, the cursor number is also stored in pExpr->iTable,
2956 ** however the cursor number returned might not be the same, as it might
2957 ** have been duplicated using OP_OpenDup.
2958 **
2959 ** If the LHS expression ("x" in the examples) is a column value, or
2960 ** the SELECT statement returns a column value, then the affinity of that
2961 ** column is used to build the index keys. If both 'x' and the
2962 ** SELECT... statement are columns, then numeric affinity is used
2963 ** if either column has NUMERIC or INTEGER affinity. If neither
2964 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2965 ** is used.
2966 */
2967 void sqlite3CodeRhsOfIN(
2968   Parse *pParse,          /* Parsing context */
2969   Expr *pExpr,            /* The IN operator */
2970   int iTab                /* Use this cursor number */
2971 ){
2972   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2973   int addr;                   /* Address of OP_OpenEphemeral instruction */
2974   Expr *pLeft;                /* the LHS of the IN operator */
2975   KeyInfo *pKeyInfo = 0;      /* Key information */
2976   int nVal;                   /* Size of vector pLeft */
2977   Vdbe *v;                    /* The prepared statement under construction */
2978 
2979   v = pParse->pVdbe;
2980   assert( v!=0 );
2981 
2982   /* The evaluation of the IN must be repeated every time it
2983   ** is encountered if any of the following is true:
2984   **
2985   **    *  The right-hand side is a correlated subquery
2986   **    *  The right-hand side is an expression list containing variables
2987   **    *  We are inside a trigger
2988   **
2989   ** If all of the above are false, then we can compute the RHS just once
2990   ** and reuse it many names.
2991   */
2992   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2993     /* Reuse of the RHS is allowed */
2994     /* If this routine has already been coded, but the previous code
2995     ** might not have been invoked yet, so invoke it now as a subroutine.
2996     */
2997     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2998       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2999       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3000         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3001               pExpr->x.pSelect->selId));
3002       }
3003       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3004                         pExpr->y.sub.iAddr);
3005       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3006       sqlite3VdbeJumpHere(v, addrOnce);
3007       return;
3008     }
3009 
3010     /* Begin coding the subroutine */
3011     ExprSetProperty(pExpr, EP_Subrtn);
3012     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3013     pExpr->y.sub.regReturn = ++pParse->nMem;
3014     pExpr->y.sub.iAddr =
3015       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3016     VdbeComment((v, "return address"));
3017 
3018     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3019   }
3020 
3021   /* Check to see if this is a vector IN operator */
3022   pLeft = pExpr->pLeft;
3023   nVal = sqlite3ExprVectorSize(pLeft);
3024 
3025   /* Construct the ephemeral table that will contain the content of
3026   ** RHS of the IN operator.
3027   */
3028   pExpr->iTable = iTab;
3029   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3030 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3031   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3032     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3033   }else{
3034     VdbeComment((v, "RHS of IN operator"));
3035   }
3036 #endif
3037   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3038 
3039   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3040     /* Case 1:     expr IN (SELECT ...)
3041     **
3042     ** Generate code to write the results of the select into the temporary
3043     ** table allocated and opened above.
3044     */
3045     Select *pSelect = pExpr->x.pSelect;
3046     ExprList *pEList = pSelect->pEList;
3047 
3048     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3049         addrOnce?"":"CORRELATED ", pSelect->selId
3050     ));
3051     /* If the LHS and RHS of the IN operator do not match, that
3052     ** error will have been caught long before we reach this point. */
3053     if( ALWAYS(pEList->nExpr==nVal) ){
3054       Select *pCopy;
3055       SelectDest dest;
3056       int i;
3057       int rc;
3058       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3059       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3060       pSelect->iLimit = 0;
3061       testcase( pSelect->selFlags & SF_Distinct );
3062       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3063       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3064       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3065       sqlite3SelectDelete(pParse->db, pCopy);
3066       sqlite3DbFree(pParse->db, dest.zAffSdst);
3067       if( rc ){
3068         sqlite3KeyInfoUnref(pKeyInfo);
3069         return;
3070       }
3071       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3072       assert( pEList!=0 );
3073       assert( pEList->nExpr>0 );
3074       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3075       for(i=0; i<nVal; i++){
3076         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3077         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3078             pParse, p, pEList->a[i].pExpr
3079         );
3080       }
3081     }
3082   }else if( ALWAYS(pExpr->x.pList!=0) ){
3083     /* Case 2:     expr IN (exprlist)
3084     **
3085     ** For each expression, build an index key from the evaluation and
3086     ** store it in the temporary table. If <expr> is a column, then use
3087     ** that columns affinity when building index keys. If <expr> is not
3088     ** a column, use numeric affinity.
3089     */
3090     char affinity;            /* Affinity of the LHS of the IN */
3091     int i;
3092     ExprList *pList = pExpr->x.pList;
3093     struct ExprList_item *pItem;
3094     int r1, r2;
3095     affinity = sqlite3ExprAffinity(pLeft);
3096     if( affinity<=SQLITE_AFF_NONE ){
3097       affinity = SQLITE_AFF_BLOB;
3098     }else if( affinity==SQLITE_AFF_REAL ){
3099       affinity = SQLITE_AFF_NUMERIC;
3100     }
3101     if( pKeyInfo ){
3102       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3103       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3104     }
3105 
3106     /* Loop through each expression in <exprlist>. */
3107     r1 = sqlite3GetTempReg(pParse);
3108     r2 = sqlite3GetTempReg(pParse);
3109     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3110       Expr *pE2 = pItem->pExpr;
3111 
3112       /* If the expression is not constant then we will need to
3113       ** disable the test that was generated above that makes sure
3114       ** this code only executes once.  Because for a non-constant
3115       ** expression we need to rerun this code each time.
3116       */
3117       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3118         sqlite3VdbeChangeToNoop(v, addrOnce);
3119         ExprClearProperty(pExpr, EP_Subrtn);
3120         addrOnce = 0;
3121       }
3122 
3123       /* Evaluate the expression and insert it into the temp table */
3124       sqlite3ExprCode(pParse, pE2, r1);
3125       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3126       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3127     }
3128     sqlite3ReleaseTempReg(pParse, r1);
3129     sqlite3ReleaseTempReg(pParse, r2);
3130   }
3131   if( pKeyInfo ){
3132     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3133   }
3134   if( addrOnce ){
3135     sqlite3VdbeJumpHere(v, addrOnce);
3136     /* Subroutine return */
3137     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3138     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3139     sqlite3ClearTempRegCache(pParse);
3140   }
3141 }
3142 #endif /* SQLITE_OMIT_SUBQUERY */
3143 
3144 /*
3145 ** Generate code for scalar subqueries used as a subquery expression
3146 ** or EXISTS operator:
3147 **
3148 **     (SELECT a FROM b)          -- subquery
3149 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3150 **
3151 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3152 **
3153 ** Return the register that holds the result.  For a multi-column SELECT,
3154 ** the result is stored in a contiguous array of registers and the
3155 ** return value is the register of the left-most result column.
3156 ** Return 0 if an error occurs.
3157 */
3158 #ifndef SQLITE_OMIT_SUBQUERY
3159 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3160   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3161   int rReg = 0;               /* Register storing resulting */
3162   Select *pSel;               /* SELECT statement to encode */
3163   SelectDest dest;            /* How to deal with SELECT result */
3164   int nReg;                   /* Registers to allocate */
3165   Expr *pLimit;               /* New limit expression */
3166 
3167   Vdbe *v = pParse->pVdbe;
3168   assert( v!=0 );
3169   if( pParse->nErr ) return 0;
3170   testcase( pExpr->op==TK_EXISTS );
3171   testcase( pExpr->op==TK_SELECT );
3172   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3173   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3174   pSel = pExpr->x.pSelect;
3175 
3176   /* If this routine has already been coded, then invoke it as a
3177   ** subroutine. */
3178   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3179     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3180     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3181                       pExpr->y.sub.iAddr);
3182     return pExpr->iTable;
3183   }
3184 
3185   /* Begin coding the subroutine */
3186   ExprSetProperty(pExpr, EP_Subrtn);
3187   pExpr->y.sub.regReturn = ++pParse->nMem;
3188   pExpr->y.sub.iAddr =
3189     sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3190   VdbeComment((v, "return address"));
3191 
3192 
3193   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3194   ** is encountered if any of the following is true:
3195   **
3196   **    *  The right-hand side is a correlated subquery
3197   **    *  The right-hand side is an expression list containing variables
3198   **    *  We are inside a trigger
3199   **
3200   ** If all of the above are false, then we can run this code just once
3201   ** save the results, and reuse the same result on subsequent invocations.
3202   */
3203   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3204     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3205   }
3206 
3207   /* For a SELECT, generate code to put the values for all columns of
3208   ** the first row into an array of registers and return the index of
3209   ** the first register.
3210   **
3211   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3212   ** into a register and return that register number.
3213   **
3214   ** In both cases, the query is augmented with "LIMIT 1".  Any
3215   ** preexisting limit is discarded in place of the new LIMIT 1.
3216   */
3217   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3218         addrOnce?"":"CORRELATED ", pSel->selId));
3219   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3220   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3221   pParse->nMem += nReg;
3222   if( pExpr->op==TK_SELECT ){
3223     dest.eDest = SRT_Mem;
3224     dest.iSdst = dest.iSDParm;
3225     dest.nSdst = nReg;
3226     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3227     VdbeComment((v, "Init subquery result"));
3228   }else{
3229     dest.eDest = SRT_Exists;
3230     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3231     VdbeComment((v, "Init EXISTS result"));
3232   }
3233   if( pSel->pLimit ){
3234     /* The subquery already has a limit.  If the pre-existing limit is X
3235     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3236     sqlite3 *db = pParse->db;
3237     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3238     if( pLimit ){
3239       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3240       pLimit = sqlite3PExpr(pParse, TK_NE,
3241                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3242     }
3243     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3244     pSel->pLimit->pLeft = pLimit;
3245   }else{
3246     /* If there is no pre-existing limit add a limit of 1 */
3247     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3248     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3249   }
3250   pSel->iLimit = 0;
3251   if( sqlite3Select(pParse, pSel, &dest) ){
3252     if( pParse->nErr ){
3253       pExpr->op2 = pExpr->op;
3254       pExpr->op = TK_ERROR;
3255     }
3256     return 0;
3257   }
3258   pExpr->iTable = rReg = dest.iSDParm;
3259   ExprSetVVAProperty(pExpr, EP_NoReduce);
3260   if( addrOnce ){
3261     sqlite3VdbeJumpHere(v, addrOnce);
3262   }
3263 
3264   /* Subroutine return */
3265   sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3266   sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3267   sqlite3ClearTempRegCache(pParse);
3268   return rReg;
3269 }
3270 #endif /* SQLITE_OMIT_SUBQUERY */
3271 
3272 #ifndef SQLITE_OMIT_SUBQUERY
3273 /*
3274 ** Expr pIn is an IN(...) expression. This function checks that the
3275 ** sub-select on the RHS of the IN() operator has the same number of
3276 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3277 ** a sub-query, that the LHS is a vector of size 1.
3278 */
3279 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3280   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3281   if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){
3282     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3283       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3284       return 1;
3285     }
3286   }else if( nVector!=1 ){
3287     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3288     return 1;
3289   }
3290   return 0;
3291 }
3292 #endif
3293 
3294 #ifndef SQLITE_OMIT_SUBQUERY
3295 /*
3296 ** Generate code for an IN expression.
3297 **
3298 **      x IN (SELECT ...)
3299 **      x IN (value, value, ...)
3300 **
3301 ** The left-hand side (LHS) is a scalar or vector expression.  The
3302 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3303 ** subquery.  If the RHS is a subquery, the number of result columns must
3304 ** match the number of columns in the vector on the LHS.  If the RHS is
3305 ** a list of values, the LHS must be a scalar.
3306 **
3307 ** The IN operator is true if the LHS value is contained within the RHS.
3308 ** The result is false if the LHS is definitely not in the RHS.  The
3309 ** result is NULL if the presence of the LHS in the RHS cannot be
3310 ** determined due to NULLs.
3311 **
3312 ** This routine generates code that jumps to destIfFalse if the LHS is not
3313 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3314 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3315 ** within the RHS then fall through.
3316 **
3317 ** See the separate in-operator.md documentation file in the canonical
3318 ** SQLite source tree for additional information.
3319 */
3320 static void sqlite3ExprCodeIN(
3321   Parse *pParse,        /* Parsing and code generating context */
3322   Expr *pExpr,          /* The IN expression */
3323   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3324   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3325 ){
3326   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3327   int eType;            /* Type of the RHS */
3328   int rLhs;             /* Register(s) holding the LHS values */
3329   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3330   Vdbe *v;              /* Statement under construction */
3331   int *aiMap = 0;       /* Map from vector field to index column */
3332   char *zAff = 0;       /* Affinity string for comparisons */
3333   int nVector;          /* Size of vectors for this IN operator */
3334   int iDummy;           /* Dummy parameter to exprCodeVector() */
3335   Expr *pLeft;          /* The LHS of the IN operator */
3336   int i;                /* loop counter */
3337   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3338   int destStep6 = 0;    /* Start of code for Step 6 */
3339   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3340   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3341   int addrTop;          /* Top of the step-6 loop */
3342   int iTab = 0;         /* Index to use */
3343   u8 okConstFactor = pParse->okConstFactor;
3344 
3345   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3346   pLeft = pExpr->pLeft;
3347   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3348   zAff = exprINAffinity(pParse, pExpr);
3349   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3350   aiMap = (int*)sqlite3DbMallocZero(
3351       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3352   );
3353   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3354 
3355   /* Attempt to compute the RHS. After this step, if anything other than
3356   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3357   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3358   ** the RHS has not yet been coded.  */
3359   v = pParse->pVdbe;
3360   assert( v!=0 );       /* OOM detected prior to this routine */
3361   VdbeNoopComment((v, "begin IN expr"));
3362   eType = sqlite3FindInIndex(pParse, pExpr,
3363                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3364                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3365                              aiMap, &iTab);
3366 
3367   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3368        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3369   );
3370 #ifdef SQLITE_DEBUG
3371   /* Confirm that aiMap[] contains nVector integer values between 0 and
3372   ** nVector-1. */
3373   for(i=0; i<nVector; i++){
3374     int j, cnt;
3375     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3376     assert( cnt==1 );
3377   }
3378 #endif
3379 
3380   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3381   ** vector, then it is stored in an array of nVector registers starting
3382   ** at r1.
3383   **
3384   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3385   ** so that the fields are in the same order as an existing index.   The
3386   ** aiMap[] array contains a mapping from the original LHS field order to
3387   ** the field order that matches the RHS index.
3388   **
3389   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3390   ** even if it is constant, as OP_Affinity may be used on the register
3391   ** by code generated below.  */
3392   assert( pParse->okConstFactor==okConstFactor );
3393   pParse->okConstFactor = 0;
3394   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3395   pParse->okConstFactor = okConstFactor;
3396   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3397   if( i==nVector ){
3398     /* LHS fields are not reordered */
3399     rLhs = rLhsOrig;
3400   }else{
3401     /* Need to reorder the LHS fields according to aiMap */
3402     rLhs = sqlite3GetTempRange(pParse, nVector);
3403     for(i=0; i<nVector; i++){
3404       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3405     }
3406   }
3407 
3408   /* If sqlite3FindInIndex() did not find or create an index that is
3409   ** suitable for evaluating the IN operator, then evaluate using a
3410   ** sequence of comparisons.
3411   **
3412   ** This is step (1) in the in-operator.md optimized algorithm.
3413   */
3414   if( eType==IN_INDEX_NOOP ){
3415     ExprList *pList = pExpr->x.pList;
3416     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3417     int labelOk = sqlite3VdbeMakeLabel(pParse);
3418     int r2, regToFree;
3419     int regCkNull = 0;
3420     int ii;
3421     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3422     if( destIfNull!=destIfFalse ){
3423       regCkNull = sqlite3GetTempReg(pParse);
3424       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3425     }
3426     for(ii=0; ii<pList->nExpr; ii++){
3427       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3428       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3429         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3430       }
3431       sqlite3ReleaseTempReg(pParse, regToFree);
3432       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3433         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3434         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3435                           (void*)pColl, P4_COLLSEQ);
3436         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3437         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3438         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3439         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3440         sqlite3VdbeChangeP5(v, zAff[0]);
3441       }else{
3442         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3443         assert( destIfNull==destIfFalse );
3444         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3445                           (void*)pColl, P4_COLLSEQ);
3446         VdbeCoverageIf(v, op==OP_Ne);
3447         VdbeCoverageIf(v, op==OP_IsNull);
3448         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3449       }
3450     }
3451     if( regCkNull ){
3452       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3453       sqlite3VdbeGoto(v, destIfFalse);
3454     }
3455     sqlite3VdbeResolveLabel(v, labelOk);
3456     sqlite3ReleaseTempReg(pParse, regCkNull);
3457     goto sqlite3ExprCodeIN_finished;
3458   }
3459 
3460   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3461   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3462   ** We will then skip the binary search of the RHS.
3463   */
3464   if( destIfNull==destIfFalse ){
3465     destStep2 = destIfFalse;
3466   }else{
3467     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3468   }
3469   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3470   for(i=0; i<nVector; i++){
3471     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3472     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3473     if( sqlite3ExprCanBeNull(p) ){
3474       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3475       VdbeCoverage(v);
3476     }
3477   }
3478 
3479   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3480   ** of the RHS using the LHS as a probe.  If found, the result is
3481   ** true.
3482   */
3483   if( eType==IN_INDEX_ROWID ){
3484     /* In this case, the RHS is the ROWID of table b-tree and so we also
3485     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3486     ** into a single opcode. */
3487     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3488     VdbeCoverage(v);
3489     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3490   }else{
3491     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3492     if( destIfFalse==destIfNull ){
3493       /* Combine Step 3 and Step 5 into a single opcode */
3494       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3495                            rLhs, nVector); VdbeCoverage(v);
3496       goto sqlite3ExprCodeIN_finished;
3497     }
3498     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3499     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3500                                       rLhs, nVector); VdbeCoverage(v);
3501   }
3502 
3503   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3504   ** an match on the search above, then the result must be FALSE.
3505   */
3506   if( rRhsHasNull && nVector==1 ){
3507     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3508     VdbeCoverage(v);
3509   }
3510 
3511   /* Step 5.  If we do not care about the difference between NULL and
3512   ** FALSE, then just return false.
3513   */
3514   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3515 
3516   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3517   ** If any comparison is NULL, then the result is NULL.  If all
3518   ** comparisons are FALSE then the final result is FALSE.
3519   **
3520   ** For a scalar LHS, it is sufficient to check just the first row
3521   ** of the RHS.
3522   */
3523   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3524   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3525   VdbeCoverage(v);
3526   if( nVector>1 ){
3527     destNotNull = sqlite3VdbeMakeLabel(pParse);
3528   }else{
3529     /* For nVector==1, combine steps 6 and 7 by immediately returning
3530     ** FALSE if the first comparison is not NULL */
3531     destNotNull = destIfFalse;
3532   }
3533   for(i=0; i<nVector; i++){
3534     Expr *p;
3535     CollSeq *pColl;
3536     int r3 = sqlite3GetTempReg(pParse);
3537     p = sqlite3VectorFieldSubexpr(pLeft, i);
3538     pColl = sqlite3ExprCollSeq(pParse, p);
3539     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3540     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3541                       (void*)pColl, P4_COLLSEQ);
3542     VdbeCoverage(v);
3543     sqlite3ReleaseTempReg(pParse, r3);
3544   }
3545   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3546   if( nVector>1 ){
3547     sqlite3VdbeResolveLabel(v, destNotNull);
3548     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3549     VdbeCoverage(v);
3550 
3551     /* Step 7:  If we reach this point, we know that the result must
3552     ** be false. */
3553     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3554   }
3555 
3556   /* Jumps here in order to return true. */
3557   sqlite3VdbeJumpHere(v, addrTruthOp);
3558 
3559 sqlite3ExprCodeIN_finished:
3560   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3561   VdbeComment((v, "end IN expr"));
3562 sqlite3ExprCodeIN_oom_error:
3563   sqlite3DbFree(pParse->db, aiMap);
3564   sqlite3DbFree(pParse->db, zAff);
3565 }
3566 #endif /* SQLITE_OMIT_SUBQUERY */
3567 
3568 #ifndef SQLITE_OMIT_FLOATING_POINT
3569 /*
3570 ** Generate an instruction that will put the floating point
3571 ** value described by z[0..n-1] into register iMem.
3572 **
3573 ** The z[] string will probably not be zero-terminated.  But the
3574 ** z[n] character is guaranteed to be something that does not look
3575 ** like the continuation of the number.
3576 */
3577 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3578   if( ALWAYS(z!=0) ){
3579     double value;
3580     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3581     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3582     if( negateFlag ) value = -value;
3583     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3584   }
3585 }
3586 #endif
3587 
3588 
3589 /*
3590 ** Generate an instruction that will put the integer describe by
3591 ** text z[0..n-1] into register iMem.
3592 **
3593 ** Expr.u.zToken is always UTF8 and zero-terminated.
3594 */
3595 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3596   Vdbe *v = pParse->pVdbe;
3597   if( pExpr->flags & EP_IntValue ){
3598     int i = pExpr->u.iValue;
3599     assert( i>=0 );
3600     if( negFlag ) i = -i;
3601     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3602   }else{
3603     int c;
3604     i64 value;
3605     const char *z = pExpr->u.zToken;
3606     assert( z!=0 );
3607     c = sqlite3DecOrHexToI64(z, &value);
3608     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3609 #ifdef SQLITE_OMIT_FLOATING_POINT
3610       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3611 #else
3612 #ifndef SQLITE_OMIT_HEX_INTEGER
3613       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3614         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3615       }else
3616 #endif
3617       {
3618         codeReal(v, z, negFlag, iMem);
3619       }
3620 #endif
3621     }else{
3622       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3623       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3624     }
3625   }
3626 }
3627 
3628 
3629 /* Generate code that will load into register regOut a value that is
3630 ** appropriate for the iIdxCol-th column of index pIdx.
3631 */
3632 void sqlite3ExprCodeLoadIndexColumn(
3633   Parse *pParse,  /* The parsing context */
3634   Index *pIdx,    /* The index whose column is to be loaded */
3635   int iTabCur,    /* Cursor pointing to a table row */
3636   int iIdxCol,    /* The column of the index to be loaded */
3637   int regOut      /* Store the index column value in this register */
3638 ){
3639   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3640   if( iTabCol==XN_EXPR ){
3641     assert( pIdx->aColExpr );
3642     assert( pIdx->aColExpr->nExpr>iIdxCol );
3643     pParse->iSelfTab = iTabCur + 1;
3644     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3645     pParse->iSelfTab = 0;
3646   }else{
3647     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3648                                     iTabCol, regOut);
3649   }
3650 }
3651 
3652 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3653 /*
3654 ** Generate code that will compute the value of generated column pCol
3655 ** and store the result in register regOut
3656 */
3657 void sqlite3ExprCodeGeneratedColumn(
3658   Parse *pParse,     /* Parsing context */
3659   Table *pTab,       /* Table containing the generated column */
3660   Column *pCol,      /* The generated column */
3661   int regOut         /* Put the result in this register */
3662 ){
3663   int iAddr;
3664   Vdbe *v = pParse->pVdbe;
3665   assert( v!=0 );
3666   assert( pParse->iSelfTab!=0 );
3667   if( pParse->iSelfTab>0 ){
3668     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3669   }else{
3670     iAddr = 0;
3671   }
3672   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3673   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3674     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3675   }
3676   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3677 }
3678 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3679 
3680 /*
3681 ** Generate code to extract the value of the iCol-th column of a table.
3682 */
3683 void sqlite3ExprCodeGetColumnOfTable(
3684   Vdbe *v,        /* Parsing context */
3685   Table *pTab,    /* The table containing the value */
3686   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3687   int iCol,       /* Index of the column to extract */
3688   int regOut      /* Extract the value into this register */
3689 ){
3690   Column *pCol;
3691   assert( v!=0 );
3692   if( pTab==0 ){
3693     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3694     return;
3695   }
3696   if( iCol<0 || iCol==pTab->iPKey ){
3697     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3698   }else{
3699     int op;
3700     int x;
3701     if( IsVirtual(pTab) ){
3702       op = OP_VColumn;
3703       x = iCol;
3704 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3705     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3706       Parse *pParse = sqlite3VdbeParser(v);
3707       if( pCol->colFlags & COLFLAG_BUSY ){
3708         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3709                         pCol->zCnName);
3710       }else{
3711         int savedSelfTab = pParse->iSelfTab;
3712         pCol->colFlags |= COLFLAG_BUSY;
3713         pParse->iSelfTab = iTabCur+1;
3714         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3715         pParse->iSelfTab = savedSelfTab;
3716         pCol->colFlags &= ~COLFLAG_BUSY;
3717       }
3718       return;
3719 #endif
3720     }else if( !HasRowid(pTab) ){
3721       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3722       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3723       op = OP_Column;
3724     }else{
3725       x = sqlite3TableColumnToStorage(pTab,iCol);
3726       testcase( x!=iCol );
3727       op = OP_Column;
3728     }
3729     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3730     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3731   }
3732 }
3733 
3734 /*
3735 ** Generate code that will extract the iColumn-th column from
3736 ** table pTab and store the column value in register iReg.
3737 **
3738 ** There must be an open cursor to pTab in iTable when this routine
3739 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3740 */
3741 int sqlite3ExprCodeGetColumn(
3742   Parse *pParse,   /* Parsing and code generating context */
3743   Table *pTab,     /* Description of the table we are reading from */
3744   int iColumn,     /* Index of the table column */
3745   int iTable,      /* The cursor pointing to the table */
3746   int iReg,        /* Store results here */
3747   u8 p5            /* P5 value for OP_Column + FLAGS */
3748 ){
3749   assert( pParse->pVdbe!=0 );
3750   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3751   if( p5 ){
3752     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3753     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3754   }
3755   return iReg;
3756 }
3757 
3758 /*
3759 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3760 ** over to iTo..iTo+nReg-1.
3761 */
3762 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3763   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3764 }
3765 
3766 /*
3767 ** Convert a scalar expression node to a TK_REGISTER referencing
3768 ** register iReg.  The caller must ensure that iReg already contains
3769 ** the correct value for the expression.
3770 */
3771 static void exprToRegister(Expr *pExpr, int iReg){
3772   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3773   if( NEVER(p==0) ) return;
3774   p->op2 = p->op;
3775   p->op = TK_REGISTER;
3776   p->iTable = iReg;
3777   ExprClearProperty(p, EP_Skip);
3778 }
3779 
3780 /*
3781 ** Evaluate an expression (either a vector or a scalar expression) and store
3782 ** the result in continguous temporary registers.  Return the index of
3783 ** the first register used to store the result.
3784 **
3785 ** If the returned result register is a temporary scalar, then also write
3786 ** that register number into *piFreeable.  If the returned result register
3787 ** is not a temporary or if the expression is a vector set *piFreeable
3788 ** to 0.
3789 */
3790 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3791   int iResult;
3792   int nResult = sqlite3ExprVectorSize(p);
3793   if( nResult==1 ){
3794     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3795   }else{
3796     *piFreeable = 0;
3797     if( p->op==TK_SELECT ){
3798 #if SQLITE_OMIT_SUBQUERY
3799       iResult = 0;
3800 #else
3801       iResult = sqlite3CodeSubselect(pParse, p);
3802 #endif
3803     }else{
3804       int i;
3805       iResult = pParse->nMem+1;
3806       pParse->nMem += nResult;
3807       for(i=0; i<nResult; i++){
3808         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3809       }
3810     }
3811   }
3812   return iResult;
3813 }
3814 
3815 /*
3816 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3817 ** so that a subsequent copy will not be merged into this one.
3818 */
3819 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3820   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3821     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3822   }
3823 }
3824 
3825 /*
3826 ** Generate code to implement special SQL functions that are implemented
3827 ** in-line rather than by using the usual callbacks.
3828 */
3829 static int exprCodeInlineFunction(
3830   Parse *pParse,        /* Parsing context */
3831   ExprList *pFarg,      /* List of function arguments */
3832   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3833   int target            /* Store function result in this register */
3834 ){
3835   int nFarg;
3836   Vdbe *v = pParse->pVdbe;
3837   assert( v!=0 );
3838   assert( pFarg!=0 );
3839   nFarg = pFarg->nExpr;
3840   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3841   switch( iFuncId ){
3842     case INLINEFUNC_coalesce: {
3843       /* Attempt a direct implementation of the built-in COALESCE() and
3844       ** IFNULL() functions.  This avoids unnecessary evaluation of
3845       ** arguments past the first non-NULL argument.
3846       */
3847       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3848       int i;
3849       assert( nFarg>=2 );
3850       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3851       for(i=1; i<nFarg; i++){
3852         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3853         VdbeCoverage(v);
3854         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3855       }
3856       setDoNotMergeFlagOnCopy(v);
3857       sqlite3VdbeResolveLabel(v, endCoalesce);
3858       break;
3859     }
3860     case INLINEFUNC_iif: {
3861       Expr caseExpr;
3862       memset(&caseExpr, 0, sizeof(caseExpr));
3863       caseExpr.op = TK_CASE;
3864       caseExpr.x.pList = pFarg;
3865       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3866     }
3867 
3868     default: {
3869       /* The UNLIKELY() function is a no-op.  The result is the value
3870       ** of the first argument.
3871       */
3872       assert( nFarg==1 || nFarg==2 );
3873       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3874       break;
3875     }
3876 
3877   /***********************************************************************
3878   ** Test-only SQL functions that are only usable if enabled
3879   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3880   */
3881 #if !defined(SQLITE_UNTESTABLE)
3882     case INLINEFUNC_expr_compare: {
3883       /* Compare two expressions using sqlite3ExprCompare() */
3884       assert( nFarg==2 );
3885       sqlite3VdbeAddOp2(v, OP_Integer,
3886          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3887          target);
3888       break;
3889     }
3890 
3891     case INLINEFUNC_expr_implies_expr: {
3892       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3893       assert( nFarg==2 );
3894       sqlite3VdbeAddOp2(v, OP_Integer,
3895          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3896          target);
3897       break;
3898     }
3899 
3900     case INLINEFUNC_implies_nonnull_row: {
3901       /* REsult of sqlite3ExprImpliesNonNullRow() */
3902       Expr *pA1;
3903       assert( nFarg==2 );
3904       pA1 = pFarg->a[1].pExpr;
3905       if( pA1->op==TK_COLUMN ){
3906         sqlite3VdbeAddOp2(v, OP_Integer,
3907            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3908            target);
3909       }else{
3910         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3911       }
3912       break;
3913     }
3914 
3915     case INLINEFUNC_affinity: {
3916       /* The AFFINITY() function evaluates to a string that describes
3917       ** the type affinity of the argument.  This is used for testing of
3918       ** the SQLite type logic.
3919       */
3920       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3921       char aff;
3922       assert( nFarg==1 );
3923       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3924       sqlite3VdbeLoadString(v, target,
3925               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3926       break;
3927     }
3928 #endif /* !defined(SQLITE_UNTESTABLE) */
3929   }
3930   return target;
3931 }
3932 
3933 
3934 /*
3935 ** Generate code into the current Vdbe to evaluate the given
3936 ** expression.  Attempt to store the results in register "target".
3937 ** Return the register where results are stored.
3938 **
3939 ** With this routine, there is no guarantee that results will
3940 ** be stored in target.  The result might be stored in some other
3941 ** register if it is convenient to do so.  The calling function
3942 ** must check the return code and move the results to the desired
3943 ** register.
3944 */
3945 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3946   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3947   int op;                   /* The opcode being coded */
3948   int inReg = target;       /* Results stored in register inReg */
3949   int regFree1 = 0;         /* If non-zero free this temporary register */
3950   int regFree2 = 0;         /* If non-zero free this temporary register */
3951   int r1, r2;               /* Various register numbers */
3952   Expr tempX;               /* Temporary expression node */
3953   int p5 = 0;
3954 
3955   assert( target>0 && target<=pParse->nMem );
3956   assert( v!=0 );
3957 
3958 expr_code_doover:
3959   if( pExpr==0 ){
3960     op = TK_NULL;
3961   }else{
3962     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3963     op = pExpr->op;
3964   }
3965   switch( op ){
3966     case TK_AGG_COLUMN: {
3967       AggInfo *pAggInfo = pExpr->pAggInfo;
3968       struct AggInfo_col *pCol;
3969       assert( pAggInfo!=0 );
3970       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3971       pCol = &pAggInfo->aCol[pExpr->iAgg];
3972       if( !pAggInfo->directMode ){
3973         assert( pCol->iMem>0 );
3974         return pCol->iMem;
3975       }else if( pAggInfo->useSortingIdx ){
3976         Table *pTab = pCol->pTab;
3977         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3978                               pCol->iSorterColumn, target);
3979         if( pCol->iColumn<0 ){
3980           VdbeComment((v,"%s.rowid",pTab->zName));
3981         }else{
3982           VdbeComment((v,"%s.%s",
3983               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
3984           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3985             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3986           }
3987         }
3988         return target;
3989       }
3990       /* Otherwise, fall thru into the TK_COLUMN case */
3991       /* no break */ deliberate_fall_through
3992     }
3993     case TK_COLUMN: {
3994       int iTab = pExpr->iTable;
3995       int iReg;
3996       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3997         /* This COLUMN expression is really a constant due to WHERE clause
3998         ** constraints, and that constant is coded by the pExpr->pLeft
3999         ** expresssion.  However, make sure the constant has the correct
4000         ** datatype by applying the Affinity of the table column to the
4001         ** constant.
4002         */
4003         int aff;
4004         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4005         if( pExpr->y.pTab ){
4006           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4007         }else{
4008           aff = pExpr->affExpr;
4009         }
4010         if( aff>SQLITE_AFF_BLOB ){
4011           static const char zAff[] = "B\000C\000D\000E";
4012           assert( SQLITE_AFF_BLOB=='A' );
4013           assert( SQLITE_AFF_TEXT=='B' );
4014           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4015                             &zAff[(aff-'B')*2], P4_STATIC);
4016         }
4017         return iReg;
4018       }
4019       if( iTab<0 ){
4020         if( pParse->iSelfTab<0 ){
4021           /* Other columns in the same row for CHECK constraints or
4022           ** generated columns or for inserting into partial index.
4023           ** The row is unpacked into registers beginning at
4024           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4025           ** immediately prior to the first column.
4026           */
4027           Column *pCol;
4028           Table *pTab = pExpr->y.pTab;
4029           int iSrc;
4030           int iCol = pExpr->iColumn;
4031           assert( pTab!=0 );
4032           assert( iCol>=XN_ROWID );
4033           assert( iCol<pTab->nCol );
4034           if( iCol<0 ){
4035             return -1-pParse->iSelfTab;
4036           }
4037           pCol = pTab->aCol + iCol;
4038           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4039           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4040 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4041           if( pCol->colFlags & COLFLAG_GENERATED ){
4042             if( pCol->colFlags & COLFLAG_BUSY ){
4043               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4044                               pCol->zCnName);
4045               return 0;
4046             }
4047             pCol->colFlags |= COLFLAG_BUSY;
4048             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4049               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4050             }
4051             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4052             return iSrc;
4053           }else
4054 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4055           if( pCol->affinity==SQLITE_AFF_REAL ){
4056             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4057             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4058             return target;
4059           }else{
4060             return iSrc;
4061           }
4062         }else{
4063           /* Coding an expression that is part of an index where column names
4064           ** in the index refer to the table to which the index belongs */
4065           iTab = pParse->iSelfTab - 1;
4066         }
4067       }
4068       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4069                                pExpr->iColumn, iTab, target,
4070                                pExpr->op2);
4071       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4072         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4073       }
4074       return iReg;
4075     }
4076     case TK_INTEGER: {
4077       codeInteger(pParse, pExpr, 0, target);
4078       return target;
4079     }
4080     case TK_TRUEFALSE: {
4081       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4082       return target;
4083     }
4084 #ifndef SQLITE_OMIT_FLOATING_POINT
4085     case TK_FLOAT: {
4086       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4087       codeReal(v, pExpr->u.zToken, 0, target);
4088       return target;
4089     }
4090 #endif
4091     case TK_STRING: {
4092       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4093       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4094       return target;
4095     }
4096     default: {
4097       /* Make NULL the default case so that if a bug causes an illegal
4098       ** Expr node to be passed into this function, it will be handled
4099       ** sanely and not crash.  But keep the assert() to bring the problem
4100       ** to the attention of the developers. */
4101       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4102       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4103       return target;
4104     }
4105 #ifndef SQLITE_OMIT_BLOB_LITERAL
4106     case TK_BLOB: {
4107       int n;
4108       const char *z;
4109       char *zBlob;
4110       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4111       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4112       assert( pExpr->u.zToken[1]=='\'' );
4113       z = &pExpr->u.zToken[2];
4114       n = sqlite3Strlen30(z) - 1;
4115       assert( z[n]=='\'' );
4116       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4117       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4118       return target;
4119     }
4120 #endif
4121     case TK_VARIABLE: {
4122       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4123       assert( pExpr->u.zToken!=0 );
4124       assert( pExpr->u.zToken[0]!=0 );
4125       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4126       if( pExpr->u.zToken[1]!=0 ){
4127         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4128         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4129         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4130         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4131       }
4132       return target;
4133     }
4134     case TK_REGISTER: {
4135       return pExpr->iTable;
4136     }
4137 #ifndef SQLITE_OMIT_CAST
4138     case TK_CAST: {
4139       /* Expressions of the form:   CAST(pLeft AS token) */
4140       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4141       if( inReg!=target ){
4142         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4143         inReg = target;
4144       }
4145       sqlite3VdbeAddOp2(v, OP_Cast, target,
4146                         sqlite3AffinityType(pExpr->u.zToken, 0));
4147       return inReg;
4148     }
4149 #endif /* SQLITE_OMIT_CAST */
4150     case TK_IS:
4151     case TK_ISNOT:
4152       op = (op==TK_IS) ? TK_EQ : TK_NE;
4153       p5 = SQLITE_NULLEQ;
4154       /* fall-through */
4155     case TK_LT:
4156     case TK_LE:
4157     case TK_GT:
4158     case TK_GE:
4159     case TK_NE:
4160     case TK_EQ: {
4161       Expr *pLeft = pExpr->pLeft;
4162       if( sqlite3ExprIsVector(pLeft) ){
4163         codeVectorCompare(pParse, pExpr, target, op, p5);
4164       }else{
4165         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4166         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4167         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4168         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4169             sqlite3VdbeCurrentAddr(v)+2, p5,
4170             ExprHasProperty(pExpr,EP_Commuted));
4171         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4172         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4173         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4174         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4175         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4176         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4177         if( p5==SQLITE_NULLEQ ){
4178           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4179         }else{
4180           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4181         }
4182         testcase( regFree1==0 );
4183         testcase( regFree2==0 );
4184       }
4185       break;
4186     }
4187     case TK_AND:
4188     case TK_OR:
4189     case TK_PLUS:
4190     case TK_STAR:
4191     case TK_MINUS:
4192     case TK_REM:
4193     case TK_BITAND:
4194     case TK_BITOR:
4195     case TK_SLASH:
4196     case TK_LSHIFT:
4197     case TK_RSHIFT:
4198     case TK_CONCAT: {
4199       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4200       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4201       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4202       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4203       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4204       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4205       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4206       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4207       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4208       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4209       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4210       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4211       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4212       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4213       testcase( regFree1==0 );
4214       testcase( regFree2==0 );
4215       break;
4216     }
4217     case TK_UMINUS: {
4218       Expr *pLeft = pExpr->pLeft;
4219       assert( pLeft );
4220       if( pLeft->op==TK_INTEGER ){
4221         codeInteger(pParse, pLeft, 1, target);
4222         return target;
4223 #ifndef SQLITE_OMIT_FLOATING_POINT
4224       }else if( pLeft->op==TK_FLOAT ){
4225         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4226         codeReal(v, pLeft->u.zToken, 1, target);
4227         return target;
4228 #endif
4229       }else{
4230         tempX.op = TK_INTEGER;
4231         tempX.flags = EP_IntValue|EP_TokenOnly;
4232         tempX.u.iValue = 0;
4233         ExprClearVVAProperties(&tempX);
4234         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4235         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4236         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4237         testcase( regFree2==0 );
4238       }
4239       break;
4240     }
4241     case TK_BITNOT:
4242     case TK_NOT: {
4243       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4244       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4245       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4246       testcase( regFree1==0 );
4247       sqlite3VdbeAddOp2(v, op, r1, inReg);
4248       break;
4249     }
4250     case TK_TRUTH: {
4251       int isTrue;    /* IS TRUE or IS NOT TRUE */
4252       int bNormal;   /* IS TRUE or IS FALSE */
4253       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4254       testcase( regFree1==0 );
4255       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4256       bNormal = pExpr->op2==TK_IS;
4257       testcase( isTrue && bNormal);
4258       testcase( !isTrue && bNormal);
4259       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4260       break;
4261     }
4262     case TK_ISNULL:
4263     case TK_NOTNULL: {
4264       int addr;
4265       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4266       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4267       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4268       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4269       testcase( regFree1==0 );
4270       addr = sqlite3VdbeAddOp1(v, op, r1);
4271       VdbeCoverageIf(v, op==TK_ISNULL);
4272       VdbeCoverageIf(v, op==TK_NOTNULL);
4273       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4274       sqlite3VdbeJumpHere(v, addr);
4275       break;
4276     }
4277     case TK_AGG_FUNCTION: {
4278       AggInfo *pInfo = pExpr->pAggInfo;
4279       if( pInfo==0
4280        || NEVER(pExpr->iAgg<0)
4281        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4282       ){
4283         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4284         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4285       }else{
4286         return pInfo->aFunc[pExpr->iAgg].iMem;
4287       }
4288       break;
4289     }
4290     case TK_FUNCTION: {
4291       ExprList *pFarg;       /* List of function arguments */
4292       int nFarg;             /* Number of function arguments */
4293       FuncDef *pDef;         /* The function definition object */
4294       const char *zId;       /* The function name */
4295       u32 constMask = 0;     /* Mask of function arguments that are constant */
4296       int i;                 /* Loop counter */
4297       sqlite3 *db = pParse->db;  /* The database connection */
4298       u8 enc = ENC(db);      /* The text encoding used by this database */
4299       CollSeq *pColl = 0;    /* A collating sequence */
4300 
4301 #ifndef SQLITE_OMIT_WINDOWFUNC
4302       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4303         return pExpr->y.pWin->regResult;
4304       }
4305 #endif
4306 
4307       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4308         /* SQL functions can be expensive. So try to avoid running them
4309         ** multiple times if we know they always give the same result */
4310         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4311       }
4312       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4313       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4314       pFarg = pExpr->x.pList;
4315       nFarg = pFarg ? pFarg->nExpr : 0;
4316       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4317       zId = pExpr->u.zToken;
4318       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4319 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4320       if( pDef==0 && pParse->explain ){
4321         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4322       }
4323 #endif
4324       if( pDef==0 || pDef->xFinalize!=0 ){
4325         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4326         break;
4327       }
4328       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4329         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4330         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4331         return exprCodeInlineFunction(pParse, pFarg,
4332              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4333       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4334         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4335       }
4336 
4337       for(i=0; i<nFarg; i++){
4338         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4339           testcase( i==31 );
4340           constMask |= MASKBIT32(i);
4341         }
4342         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4343           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4344         }
4345       }
4346       if( pFarg ){
4347         if( constMask ){
4348           r1 = pParse->nMem+1;
4349           pParse->nMem += nFarg;
4350         }else{
4351           r1 = sqlite3GetTempRange(pParse, nFarg);
4352         }
4353 
4354         /* For length() and typeof() functions with a column argument,
4355         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4356         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4357         ** loading.
4358         */
4359         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4360           u8 exprOp;
4361           assert( nFarg==1 );
4362           assert( pFarg->a[0].pExpr!=0 );
4363           exprOp = pFarg->a[0].pExpr->op;
4364           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4365             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4366             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4367             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4368             pFarg->a[0].pExpr->op2 =
4369                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4370           }
4371         }
4372 
4373         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4374                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4375       }else{
4376         r1 = 0;
4377       }
4378 #ifndef SQLITE_OMIT_VIRTUALTABLE
4379       /* Possibly overload the function if the first argument is
4380       ** a virtual table column.
4381       **
4382       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4383       ** second argument, not the first, as the argument to test to
4384       ** see if it is a column in a virtual table.  This is done because
4385       ** the left operand of infix functions (the operand we want to
4386       ** control overloading) ends up as the second argument to the
4387       ** function.  The expression "A glob B" is equivalent to
4388       ** "glob(B,A).  We want to use the A in "A glob B" to test
4389       ** for function overloading.  But we use the B term in "glob(B,A)".
4390       */
4391       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4392         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4393       }else if( nFarg>0 ){
4394         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4395       }
4396 #endif
4397       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4398         if( !pColl ) pColl = db->pDfltColl;
4399         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4400       }
4401 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4402       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4403         Expr *pArg = pFarg->a[0].pExpr;
4404         if( pArg->op==TK_COLUMN ){
4405           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4406         }else{
4407           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4408         }
4409       }else
4410 #endif
4411       {
4412         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4413                                    pDef, pExpr->op2);
4414       }
4415       if( nFarg ){
4416         if( constMask==0 ){
4417           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4418         }else{
4419           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4420         }
4421       }
4422       return target;
4423     }
4424 #ifndef SQLITE_OMIT_SUBQUERY
4425     case TK_EXISTS:
4426     case TK_SELECT: {
4427       int nCol;
4428       testcase( op==TK_EXISTS );
4429       testcase( op==TK_SELECT );
4430       if( pParse->db->mallocFailed ){
4431         return 0;
4432       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4433         sqlite3SubselectError(pParse, nCol, 1);
4434       }else{
4435         return sqlite3CodeSubselect(pParse, pExpr);
4436       }
4437       break;
4438     }
4439     case TK_SELECT_COLUMN: {
4440       int n;
4441       if( pExpr->pLeft->iTable==0 ){
4442         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4443       }
4444       assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR );
4445       n = sqlite3ExprVectorSize(pExpr->pLeft);
4446       if( pExpr->iTable!=n ){
4447         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4448                                 pExpr->iTable, n);
4449       }
4450       return pExpr->pLeft->iTable + pExpr->iColumn;
4451     }
4452     case TK_IN: {
4453       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4454       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4455       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4456       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4457       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4458       sqlite3VdbeResolveLabel(v, destIfFalse);
4459       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4460       sqlite3VdbeResolveLabel(v, destIfNull);
4461       return target;
4462     }
4463 #endif /* SQLITE_OMIT_SUBQUERY */
4464 
4465 
4466     /*
4467     **    x BETWEEN y AND z
4468     **
4469     ** This is equivalent to
4470     **
4471     **    x>=y AND x<=z
4472     **
4473     ** X is stored in pExpr->pLeft.
4474     ** Y is stored in pExpr->pList->a[0].pExpr.
4475     ** Z is stored in pExpr->pList->a[1].pExpr.
4476     */
4477     case TK_BETWEEN: {
4478       exprCodeBetween(pParse, pExpr, target, 0, 0);
4479       return target;
4480     }
4481     case TK_SPAN:
4482     case TK_COLLATE:
4483     case TK_UPLUS: {
4484       pExpr = pExpr->pLeft;
4485       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4486     }
4487 
4488     case TK_TRIGGER: {
4489       /* If the opcode is TK_TRIGGER, then the expression is a reference
4490       ** to a column in the new.* or old.* pseudo-tables available to
4491       ** trigger programs. In this case Expr.iTable is set to 1 for the
4492       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4493       ** is set to the column of the pseudo-table to read, or to -1 to
4494       ** read the rowid field.
4495       **
4496       ** The expression is implemented using an OP_Param opcode. The p1
4497       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4498       ** to reference another column of the old.* pseudo-table, where
4499       ** i is the index of the column. For a new.rowid reference, p1 is
4500       ** set to (n+1), where n is the number of columns in each pseudo-table.
4501       ** For a reference to any other column in the new.* pseudo-table, p1
4502       ** is set to (n+2+i), where n and i are as defined previously. For
4503       ** example, if the table on which triggers are being fired is
4504       ** declared as:
4505       **
4506       **   CREATE TABLE t1(a, b);
4507       **
4508       ** Then p1 is interpreted as follows:
4509       **
4510       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4511       **   p1==1   ->    old.a         p1==4   ->    new.a
4512       **   p1==2   ->    old.b         p1==5   ->    new.b
4513       */
4514       Table *pTab = pExpr->y.pTab;
4515       int iCol = pExpr->iColumn;
4516       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4517                      + sqlite3TableColumnToStorage(pTab, iCol);
4518 
4519       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4520       assert( iCol>=-1 && iCol<pTab->nCol );
4521       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4522       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4523 
4524       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4525       VdbeComment((v, "r[%d]=%s.%s", target,
4526         (pExpr->iTable ? "new" : "old"),
4527         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4528       ));
4529 
4530 #ifndef SQLITE_OMIT_FLOATING_POINT
4531       /* If the column has REAL affinity, it may currently be stored as an
4532       ** integer. Use OP_RealAffinity to make sure it is really real.
4533       **
4534       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4535       ** floating point when extracting it from the record.  */
4536       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4537         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4538       }
4539 #endif
4540       break;
4541     }
4542 
4543     case TK_VECTOR: {
4544       sqlite3ErrorMsg(pParse, "row value misused");
4545       break;
4546     }
4547 
4548     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4549     ** that derive from the right-hand table of a LEFT JOIN.  The
4550     ** Expr.iTable value is the table number for the right-hand table.
4551     ** The expression is only evaluated if that table is not currently
4552     ** on a LEFT JOIN NULL row.
4553     */
4554     case TK_IF_NULL_ROW: {
4555       int addrINR;
4556       u8 okConstFactor = pParse->okConstFactor;
4557       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4558       /* Temporarily disable factoring of constant expressions, since
4559       ** even though expressions may appear to be constant, they are not
4560       ** really constant because they originate from the right-hand side
4561       ** of a LEFT JOIN. */
4562       pParse->okConstFactor = 0;
4563       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4564       pParse->okConstFactor = okConstFactor;
4565       sqlite3VdbeJumpHere(v, addrINR);
4566       sqlite3VdbeChangeP3(v, addrINR, inReg);
4567       break;
4568     }
4569 
4570     /*
4571     ** Form A:
4572     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4573     **
4574     ** Form B:
4575     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4576     **
4577     ** Form A is can be transformed into the equivalent form B as follows:
4578     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4579     **        WHEN x=eN THEN rN ELSE y END
4580     **
4581     ** X (if it exists) is in pExpr->pLeft.
4582     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4583     ** odd.  The Y is also optional.  If the number of elements in x.pList
4584     ** is even, then Y is omitted and the "otherwise" result is NULL.
4585     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4586     **
4587     ** The result of the expression is the Ri for the first matching Ei,
4588     ** or if there is no matching Ei, the ELSE term Y, or if there is
4589     ** no ELSE term, NULL.
4590     */
4591     case TK_CASE: {
4592       int endLabel;                     /* GOTO label for end of CASE stmt */
4593       int nextCase;                     /* GOTO label for next WHEN clause */
4594       int nExpr;                        /* 2x number of WHEN terms */
4595       int i;                            /* Loop counter */
4596       ExprList *pEList;                 /* List of WHEN terms */
4597       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4598       Expr opCompare;                   /* The X==Ei expression */
4599       Expr *pX;                         /* The X expression */
4600       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4601       Expr *pDel = 0;
4602       sqlite3 *db = pParse->db;
4603 
4604       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4605       assert(pExpr->x.pList->nExpr > 0);
4606       pEList = pExpr->x.pList;
4607       aListelem = pEList->a;
4608       nExpr = pEList->nExpr;
4609       endLabel = sqlite3VdbeMakeLabel(pParse);
4610       if( (pX = pExpr->pLeft)!=0 ){
4611         pDel = sqlite3ExprDup(db, pX, 0);
4612         if( db->mallocFailed ){
4613           sqlite3ExprDelete(db, pDel);
4614           break;
4615         }
4616         testcase( pX->op==TK_COLUMN );
4617         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4618         testcase( regFree1==0 );
4619         memset(&opCompare, 0, sizeof(opCompare));
4620         opCompare.op = TK_EQ;
4621         opCompare.pLeft = pDel;
4622         pTest = &opCompare;
4623         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4624         ** The value in regFree1 might get SCopy-ed into the file result.
4625         ** So make sure that the regFree1 register is not reused for other
4626         ** purposes and possibly overwritten.  */
4627         regFree1 = 0;
4628       }
4629       for(i=0; i<nExpr-1; i=i+2){
4630         if( pX ){
4631           assert( pTest!=0 );
4632           opCompare.pRight = aListelem[i].pExpr;
4633         }else{
4634           pTest = aListelem[i].pExpr;
4635         }
4636         nextCase = sqlite3VdbeMakeLabel(pParse);
4637         testcase( pTest->op==TK_COLUMN );
4638         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4639         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4640         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4641         sqlite3VdbeGoto(v, endLabel);
4642         sqlite3VdbeResolveLabel(v, nextCase);
4643       }
4644       if( (nExpr&1)!=0 ){
4645         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4646       }else{
4647         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4648       }
4649       sqlite3ExprDelete(db, pDel);
4650       setDoNotMergeFlagOnCopy(v);
4651       sqlite3VdbeResolveLabel(v, endLabel);
4652       break;
4653     }
4654 #ifndef SQLITE_OMIT_TRIGGER
4655     case TK_RAISE: {
4656       assert( pExpr->affExpr==OE_Rollback
4657            || pExpr->affExpr==OE_Abort
4658            || pExpr->affExpr==OE_Fail
4659            || pExpr->affExpr==OE_Ignore
4660       );
4661       if( !pParse->pTriggerTab && !pParse->nested ){
4662         sqlite3ErrorMsg(pParse,
4663                        "RAISE() may only be used within a trigger-program");
4664         return 0;
4665       }
4666       if( pExpr->affExpr==OE_Abort ){
4667         sqlite3MayAbort(pParse);
4668       }
4669       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4670       if( pExpr->affExpr==OE_Ignore ){
4671         sqlite3VdbeAddOp4(
4672             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4673         VdbeCoverage(v);
4674       }else{
4675         sqlite3HaltConstraint(pParse,
4676              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4677              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4678       }
4679 
4680       break;
4681     }
4682 #endif
4683   }
4684   sqlite3ReleaseTempReg(pParse, regFree1);
4685   sqlite3ReleaseTempReg(pParse, regFree2);
4686   return inReg;
4687 }
4688 
4689 /*
4690 ** Generate code that will evaluate expression pExpr just one time
4691 ** per prepared statement execution.
4692 **
4693 ** If the expression uses functions (that might throw an exception) then
4694 ** guard them with an OP_Once opcode to ensure that the code is only executed
4695 ** once. If no functions are involved, then factor the code out and put it at
4696 ** the end of the prepared statement in the initialization section.
4697 **
4698 ** If regDest>=0 then the result is always stored in that register and the
4699 ** result is not reusable.  If regDest<0 then this routine is free to
4700 ** store the value whereever it wants.  The register where the expression
4701 ** is stored is returned.  When regDest<0, two identical expressions might
4702 ** code to the same register, if they do not contain function calls and hence
4703 ** are factored out into the initialization section at the end of the
4704 ** prepared statement.
4705 */
4706 int sqlite3ExprCodeRunJustOnce(
4707   Parse *pParse,    /* Parsing context */
4708   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4709   int regDest       /* Store the value in this register */
4710 ){
4711   ExprList *p;
4712   assert( ConstFactorOk(pParse) );
4713   p = pParse->pConstExpr;
4714   if( regDest<0 && p ){
4715     struct ExprList_item *pItem;
4716     int i;
4717     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4718       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4719         return pItem->u.iConstExprReg;
4720       }
4721     }
4722   }
4723   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4724   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4725     Vdbe *v = pParse->pVdbe;
4726     int addr;
4727     assert( v );
4728     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4729     pParse->okConstFactor = 0;
4730     if( !pParse->db->mallocFailed ){
4731       if( regDest<0 ) regDest = ++pParse->nMem;
4732       sqlite3ExprCode(pParse, pExpr, regDest);
4733     }
4734     pParse->okConstFactor = 1;
4735     sqlite3ExprDelete(pParse->db, pExpr);
4736     sqlite3VdbeJumpHere(v, addr);
4737   }else{
4738     p = sqlite3ExprListAppend(pParse, p, pExpr);
4739     if( p ){
4740        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4741        pItem->reusable = regDest<0;
4742        if( regDest<0 ) regDest = ++pParse->nMem;
4743        pItem->u.iConstExprReg = regDest;
4744     }
4745     pParse->pConstExpr = p;
4746   }
4747   return regDest;
4748 }
4749 
4750 /*
4751 ** Generate code to evaluate an expression and store the results
4752 ** into a register.  Return the register number where the results
4753 ** are stored.
4754 **
4755 ** If the register is a temporary register that can be deallocated,
4756 ** then write its number into *pReg.  If the result register is not
4757 ** a temporary, then set *pReg to zero.
4758 **
4759 ** If pExpr is a constant, then this routine might generate this
4760 ** code to fill the register in the initialization section of the
4761 ** VDBE program, in order to factor it out of the evaluation loop.
4762 */
4763 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4764   int r2;
4765   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4766   if( ConstFactorOk(pParse)
4767    && ALWAYS(pExpr!=0)
4768    && pExpr->op!=TK_REGISTER
4769    && sqlite3ExprIsConstantNotJoin(pExpr)
4770   ){
4771     *pReg  = 0;
4772     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4773   }else{
4774     int r1 = sqlite3GetTempReg(pParse);
4775     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4776     if( r2==r1 ){
4777       *pReg = r1;
4778     }else{
4779       sqlite3ReleaseTempReg(pParse, r1);
4780       *pReg = 0;
4781     }
4782   }
4783   return r2;
4784 }
4785 
4786 /*
4787 ** Generate code that will evaluate expression pExpr and store the
4788 ** results in register target.  The results are guaranteed to appear
4789 ** in register target.
4790 */
4791 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4792   int inReg;
4793 
4794   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4795   assert( target>0 && target<=pParse->nMem );
4796   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4797   if( pParse->pVdbe==0 ) return;
4798   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4799   if( inReg!=target ){
4800     u8 op;
4801     if( ExprHasProperty(pExpr,EP_Subquery) ){
4802       op = OP_Copy;
4803     }else{
4804       op = OP_SCopy;
4805     }
4806     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4807   }
4808 }
4809 
4810 /*
4811 ** Make a transient copy of expression pExpr and then code it using
4812 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4813 ** except that the input expression is guaranteed to be unchanged.
4814 */
4815 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4816   sqlite3 *db = pParse->db;
4817   pExpr = sqlite3ExprDup(db, pExpr, 0);
4818   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4819   sqlite3ExprDelete(db, pExpr);
4820 }
4821 
4822 /*
4823 ** Generate code that will evaluate expression pExpr and store the
4824 ** results in register target.  The results are guaranteed to appear
4825 ** in register target.  If the expression is constant, then this routine
4826 ** might choose to code the expression at initialization time.
4827 */
4828 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4829   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4830     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4831   }else{
4832     sqlite3ExprCodeCopy(pParse, pExpr, target);
4833   }
4834 }
4835 
4836 /*
4837 ** Generate code that pushes the value of every element of the given
4838 ** expression list into a sequence of registers beginning at target.
4839 **
4840 ** Return the number of elements evaluated.  The number returned will
4841 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4842 ** is defined.
4843 **
4844 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4845 ** filled using OP_SCopy.  OP_Copy must be used instead.
4846 **
4847 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4848 ** factored out into initialization code.
4849 **
4850 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4851 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4852 ** in registers at srcReg, and so the value can be copied from there.
4853 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4854 ** are simply omitted rather than being copied from srcReg.
4855 */
4856 int sqlite3ExprCodeExprList(
4857   Parse *pParse,     /* Parsing context */
4858   ExprList *pList,   /* The expression list to be coded */
4859   int target,        /* Where to write results */
4860   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4861   u8 flags           /* SQLITE_ECEL_* flags */
4862 ){
4863   struct ExprList_item *pItem;
4864   int i, j, n;
4865   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4866   Vdbe *v = pParse->pVdbe;
4867   assert( pList!=0 );
4868   assert( target>0 );
4869   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4870   n = pList->nExpr;
4871   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4872   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4873     Expr *pExpr = pItem->pExpr;
4874 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4875     if( pItem->bSorterRef ){
4876       i--;
4877       n--;
4878     }else
4879 #endif
4880     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4881       if( flags & SQLITE_ECEL_OMITREF ){
4882         i--;
4883         n--;
4884       }else{
4885         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4886       }
4887     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4888            && sqlite3ExprIsConstantNotJoin(pExpr)
4889     ){
4890       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4891     }else{
4892       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4893       if( inReg!=target+i ){
4894         VdbeOp *pOp;
4895         if( copyOp==OP_Copy
4896          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4897          && pOp->p1+pOp->p3+1==inReg
4898          && pOp->p2+pOp->p3+1==target+i
4899          && pOp->p5==0  /* The do-not-merge flag must be clear */
4900         ){
4901           pOp->p3++;
4902         }else{
4903           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4904         }
4905       }
4906     }
4907   }
4908   return n;
4909 }
4910 
4911 /*
4912 ** Generate code for a BETWEEN operator.
4913 **
4914 **    x BETWEEN y AND z
4915 **
4916 ** The above is equivalent to
4917 **
4918 **    x>=y AND x<=z
4919 **
4920 ** Code it as such, taking care to do the common subexpression
4921 ** elimination of x.
4922 **
4923 ** The xJumpIf parameter determines details:
4924 **
4925 **    NULL:                   Store the boolean result in reg[dest]
4926 **    sqlite3ExprIfTrue:      Jump to dest if true
4927 **    sqlite3ExprIfFalse:     Jump to dest if false
4928 **
4929 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4930 */
4931 static void exprCodeBetween(
4932   Parse *pParse,    /* Parsing and code generating context */
4933   Expr *pExpr,      /* The BETWEEN expression */
4934   int dest,         /* Jump destination or storage location */
4935   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4936   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4937 ){
4938   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4939   Expr compLeft;    /* The  x>=y  term */
4940   Expr compRight;   /* The  x<=z  term */
4941   int regFree1 = 0; /* Temporary use register */
4942   Expr *pDel = 0;
4943   sqlite3 *db = pParse->db;
4944 
4945   memset(&compLeft, 0, sizeof(Expr));
4946   memset(&compRight, 0, sizeof(Expr));
4947   memset(&exprAnd, 0, sizeof(Expr));
4948 
4949   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4950   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4951   if( db->mallocFailed==0 ){
4952     exprAnd.op = TK_AND;
4953     exprAnd.pLeft = &compLeft;
4954     exprAnd.pRight = &compRight;
4955     compLeft.op = TK_GE;
4956     compLeft.pLeft = pDel;
4957     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4958     compRight.op = TK_LE;
4959     compRight.pLeft = pDel;
4960     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4961     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4962     if( xJump ){
4963       xJump(pParse, &exprAnd, dest, jumpIfNull);
4964     }else{
4965       /* Mark the expression is being from the ON or USING clause of a join
4966       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4967       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4968       ** for clarity, but we are out of bits in the Expr.flags field so we
4969       ** have to reuse the EP_FromJoin bit.  Bummer. */
4970       pDel->flags |= EP_FromJoin;
4971       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4972     }
4973     sqlite3ReleaseTempReg(pParse, regFree1);
4974   }
4975   sqlite3ExprDelete(db, pDel);
4976 
4977   /* Ensure adequate test coverage */
4978   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4979   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4980   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4981   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4982   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4983   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4984   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4985   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4986   testcase( xJump==0 );
4987 }
4988 
4989 /*
4990 ** Generate code for a boolean expression such that a jump is made
4991 ** to the label "dest" if the expression is true but execution
4992 ** continues straight thru if the expression is false.
4993 **
4994 ** If the expression evaluates to NULL (neither true nor false), then
4995 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4996 **
4997 ** This code depends on the fact that certain token values (ex: TK_EQ)
4998 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4999 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5000 ** the make process cause these values to align.  Assert()s in the code
5001 ** below verify that the numbers are aligned correctly.
5002 */
5003 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5004   Vdbe *v = pParse->pVdbe;
5005   int op = 0;
5006   int regFree1 = 0;
5007   int regFree2 = 0;
5008   int r1, r2;
5009 
5010   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5011   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5012   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5013   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5014   op = pExpr->op;
5015   switch( op ){
5016     case TK_AND:
5017     case TK_OR: {
5018       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5019       if( pAlt!=pExpr ){
5020         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5021       }else if( op==TK_AND ){
5022         int d2 = sqlite3VdbeMakeLabel(pParse);
5023         testcase( jumpIfNull==0 );
5024         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5025                            jumpIfNull^SQLITE_JUMPIFNULL);
5026         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5027         sqlite3VdbeResolveLabel(v, d2);
5028       }else{
5029         testcase( jumpIfNull==0 );
5030         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5031         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5032       }
5033       break;
5034     }
5035     case TK_NOT: {
5036       testcase( jumpIfNull==0 );
5037       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5038       break;
5039     }
5040     case TK_TRUTH: {
5041       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5042       int isTrue;     /* IS TRUE or IS NOT TRUE */
5043       testcase( jumpIfNull==0 );
5044       isNot = pExpr->op2==TK_ISNOT;
5045       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5046       testcase( isTrue && isNot );
5047       testcase( !isTrue && isNot );
5048       if( isTrue ^ isNot ){
5049         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5050                           isNot ? SQLITE_JUMPIFNULL : 0);
5051       }else{
5052         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5053                            isNot ? SQLITE_JUMPIFNULL : 0);
5054       }
5055       break;
5056     }
5057     case TK_IS:
5058     case TK_ISNOT:
5059       testcase( op==TK_IS );
5060       testcase( op==TK_ISNOT );
5061       op = (op==TK_IS) ? TK_EQ : TK_NE;
5062       jumpIfNull = SQLITE_NULLEQ;
5063       /* no break */ deliberate_fall_through
5064     case TK_LT:
5065     case TK_LE:
5066     case TK_GT:
5067     case TK_GE:
5068     case TK_NE:
5069     case TK_EQ: {
5070       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5071       testcase( jumpIfNull==0 );
5072       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5073       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5074       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5075                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5076       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5077       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5078       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5079       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5080       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5081       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5082       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5083       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5084       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5085       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5086       testcase( regFree1==0 );
5087       testcase( regFree2==0 );
5088       break;
5089     }
5090     case TK_ISNULL:
5091     case TK_NOTNULL: {
5092       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5093       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5094       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5095       sqlite3VdbeAddOp2(v, op, r1, dest);
5096       VdbeCoverageIf(v, op==TK_ISNULL);
5097       VdbeCoverageIf(v, op==TK_NOTNULL);
5098       testcase( regFree1==0 );
5099       break;
5100     }
5101     case TK_BETWEEN: {
5102       testcase( jumpIfNull==0 );
5103       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5104       break;
5105     }
5106 #ifndef SQLITE_OMIT_SUBQUERY
5107     case TK_IN: {
5108       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5109       int destIfNull = jumpIfNull ? dest : destIfFalse;
5110       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5111       sqlite3VdbeGoto(v, dest);
5112       sqlite3VdbeResolveLabel(v, destIfFalse);
5113       break;
5114     }
5115 #endif
5116     default: {
5117     default_expr:
5118       if( ExprAlwaysTrue(pExpr) ){
5119         sqlite3VdbeGoto(v, dest);
5120       }else if( ExprAlwaysFalse(pExpr) ){
5121         /* No-op */
5122       }else{
5123         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5124         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5125         VdbeCoverage(v);
5126         testcase( regFree1==0 );
5127         testcase( jumpIfNull==0 );
5128       }
5129       break;
5130     }
5131   }
5132   sqlite3ReleaseTempReg(pParse, regFree1);
5133   sqlite3ReleaseTempReg(pParse, regFree2);
5134 }
5135 
5136 /*
5137 ** Generate code for a boolean expression such that a jump is made
5138 ** to the label "dest" if the expression is false but execution
5139 ** continues straight thru if the expression is true.
5140 **
5141 ** If the expression evaluates to NULL (neither true nor false) then
5142 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5143 ** is 0.
5144 */
5145 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5146   Vdbe *v = pParse->pVdbe;
5147   int op = 0;
5148   int regFree1 = 0;
5149   int regFree2 = 0;
5150   int r1, r2;
5151 
5152   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5153   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5154   if( pExpr==0 )    return;
5155   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5156 
5157   /* The value of pExpr->op and op are related as follows:
5158   **
5159   **       pExpr->op            op
5160   **       ---------          ----------
5161   **       TK_ISNULL          OP_NotNull
5162   **       TK_NOTNULL         OP_IsNull
5163   **       TK_NE              OP_Eq
5164   **       TK_EQ              OP_Ne
5165   **       TK_GT              OP_Le
5166   **       TK_LE              OP_Gt
5167   **       TK_GE              OP_Lt
5168   **       TK_LT              OP_Ge
5169   **
5170   ** For other values of pExpr->op, op is undefined and unused.
5171   ** The value of TK_ and OP_ constants are arranged such that we
5172   ** can compute the mapping above using the following expression.
5173   ** Assert()s verify that the computation is correct.
5174   */
5175   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5176 
5177   /* Verify correct alignment of TK_ and OP_ constants
5178   */
5179   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5180   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5181   assert( pExpr->op!=TK_NE || op==OP_Eq );
5182   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5183   assert( pExpr->op!=TK_LT || op==OP_Ge );
5184   assert( pExpr->op!=TK_LE || op==OP_Gt );
5185   assert( pExpr->op!=TK_GT || op==OP_Le );
5186   assert( pExpr->op!=TK_GE || op==OP_Lt );
5187 
5188   switch( pExpr->op ){
5189     case TK_AND:
5190     case TK_OR: {
5191       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5192       if( pAlt!=pExpr ){
5193         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5194       }else if( pExpr->op==TK_AND ){
5195         testcase( jumpIfNull==0 );
5196         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5197         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5198       }else{
5199         int d2 = sqlite3VdbeMakeLabel(pParse);
5200         testcase( jumpIfNull==0 );
5201         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5202                           jumpIfNull^SQLITE_JUMPIFNULL);
5203         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5204         sqlite3VdbeResolveLabel(v, d2);
5205       }
5206       break;
5207     }
5208     case TK_NOT: {
5209       testcase( jumpIfNull==0 );
5210       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5211       break;
5212     }
5213     case TK_TRUTH: {
5214       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5215       int isTrue;  /* IS TRUE or IS NOT TRUE */
5216       testcase( jumpIfNull==0 );
5217       isNot = pExpr->op2==TK_ISNOT;
5218       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5219       testcase( isTrue && isNot );
5220       testcase( !isTrue && isNot );
5221       if( isTrue ^ isNot ){
5222         /* IS TRUE and IS NOT FALSE */
5223         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5224                            isNot ? 0 : SQLITE_JUMPIFNULL);
5225 
5226       }else{
5227         /* IS FALSE and IS NOT TRUE */
5228         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5229                           isNot ? 0 : SQLITE_JUMPIFNULL);
5230       }
5231       break;
5232     }
5233     case TK_IS:
5234     case TK_ISNOT:
5235       testcase( pExpr->op==TK_IS );
5236       testcase( pExpr->op==TK_ISNOT );
5237       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5238       jumpIfNull = SQLITE_NULLEQ;
5239       /* no break */ deliberate_fall_through
5240     case TK_LT:
5241     case TK_LE:
5242     case TK_GT:
5243     case TK_GE:
5244     case TK_NE:
5245     case TK_EQ: {
5246       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5247       testcase( jumpIfNull==0 );
5248       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5249       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5250       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5251                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5252       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5253       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5254       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5255       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5256       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5257       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5258       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5259       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5260       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5261       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5262       testcase( regFree1==0 );
5263       testcase( regFree2==0 );
5264       break;
5265     }
5266     case TK_ISNULL:
5267     case TK_NOTNULL: {
5268       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5269       sqlite3VdbeAddOp2(v, op, r1, dest);
5270       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5271       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5272       testcase( regFree1==0 );
5273       break;
5274     }
5275     case TK_BETWEEN: {
5276       testcase( jumpIfNull==0 );
5277       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5278       break;
5279     }
5280 #ifndef SQLITE_OMIT_SUBQUERY
5281     case TK_IN: {
5282       if( jumpIfNull ){
5283         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5284       }else{
5285         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5286         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5287         sqlite3VdbeResolveLabel(v, destIfNull);
5288       }
5289       break;
5290     }
5291 #endif
5292     default: {
5293     default_expr:
5294       if( ExprAlwaysFalse(pExpr) ){
5295         sqlite3VdbeGoto(v, dest);
5296       }else if( ExprAlwaysTrue(pExpr) ){
5297         /* no-op */
5298       }else{
5299         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5300         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5301         VdbeCoverage(v);
5302         testcase( regFree1==0 );
5303         testcase( jumpIfNull==0 );
5304       }
5305       break;
5306     }
5307   }
5308   sqlite3ReleaseTempReg(pParse, regFree1);
5309   sqlite3ReleaseTempReg(pParse, regFree2);
5310 }
5311 
5312 /*
5313 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5314 ** code generation, and that copy is deleted after code generation. This
5315 ** ensures that the original pExpr is unchanged.
5316 */
5317 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5318   sqlite3 *db = pParse->db;
5319   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5320   if( db->mallocFailed==0 ){
5321     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5322   }
5323   sqlite3ExprDelete(db, pCopy);
5324 }
5325 
5326 /*
5327 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5328 ** type of expression.
5329 **
5330 ** If pExpr is a simple SQL value - an integer, real, string, blob
5331 ** or NULL value - then the VDBE currently being prepared is configured
5332 ** to re-prepare each time a new value is bound to variable pVar.
5333 **
5334 ** Additionally, if pExpr is a simple SQL value and the value is the
5335 ** same as that currently bound to variable pVar, non-zero is returned.
5336 ** Otherwise, if the values are not the same or if pExpr is not a simple
5337 ** SQL value, zero is returned.
5338 */
5339 static int exprCompareVariable(
5340   const Parse *pParse,
5341   const Expr *pVar,
5342   const Expr *pExpr
5343 ){
5344   int res = 0;
5345   int iVar;
5346   sqlite3_value *pL, *pR = 0;
5347 
5348   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5349   if( pR ){
5350     iVar = pVar->iColumn;
5351     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5352     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5353     if( pL ){
5354       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5355         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5356       }
5357       res =  0==sqlite3MemCompare(pL, pR, 0);
5358     }
5359     sqlite3ValueFree(pR);
5360     sqlite3ValueFree(pL);
5361   }
5362 
5363   return res;
5364 }
5365 
5366 /*
5367 ** Do a deep comparison of two expression trees.  Return 0 if the two
5368 ** expressions are completely identical.  Return 1 if they differ only
5369 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5370 ** other than the top-level COLLATE operator.
5371 **
5372 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5373 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5374 **
5375 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5376 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5377 **
5378 ** Sometimes this routine will return 2 even if the two expressions
5379 ** really are equivalent.  If we cannot prove that the expressions are
5380 ** identical, we return 2 just to be safe.  So if this routine
5381 ** returns 2, then you do not really know for certain if the two
5382 ** expressions are the same.  But if you get a 0 or 1 return, then you
5383 ** can be sure the expressions are the same.  In the places where
5384 ** this routine is used, it does not hurt to get an extra 2 - that
5385 ** just might result in some slightly slower code.  But returning
5386 ** an incorrect 0 or 1 could lead to a malfunction.
5387 **
5388 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5389 ** pParse->pReprepare can be matched against literals in pB.  The
5390 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5391 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5392 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5393 ** pB causes a return value of 2.
5394 */
5395 int sqlite3ExprCompare(
5396   const Parse *pParse,
5397   const Expr *pA,
5398   const Expr *pB,
5399   int iTab
5400 ){
5401   u32 combinedFlags;
5402   if( pA==0 || pB==0 ){
5403     return pB==pA ? 0 : 2;
5404   }
5405   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5406     return 0;
5407   }
5408   combinedFlags = pA->flags | pB->flags;
5409   if( combinedFlags & EP_IntValue ){
5410     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5411       return 0;
5412     }
5413     return 2;
5414   }
5415   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5416     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5417       return 1;
5418     }
5419     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5420       return 1;
5421     }
5422     return 2;
5423   }
5424   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5425     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5426       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5427 #ifndef SQLITE_OMIT_WINDOWFUNC
5428       assert( pA->op==pB->op );
5429       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5430         return 2;
5431       }
5432       if( ExprHasProperty(pA,EP_WinFunc) ){
5433         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5434           return 2;
5435         }
5436       }
5437 #endif
5438     }else if( pA->op==TK_NULL ){
5439       return 0;
5440     }else if( pA->op==TK_COLLATE ){
5441       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5442     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5443       return 2;
5444     }
5445   }
5446   if( (pA->flags & (EP_Distinct|EP_Commuted))
5447      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5448   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5449     if( combinedFlags & EP_xIsSelect ) return 2;
5450     if( (combinedFlags & EP_FixedCol)==0
5451      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5452     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5453     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5454     if( pA->op!=TK_STRING
5455      && pA->op!=TK_TRUEFALSE
5456      && ALWAYS((combinedFlags & EP_Reduced)==0)
5457     ){
5458       if( pA->iColumn!=pB->iColumn ) return 2;
5459       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5460       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5461         return 2;
5462       }
5463     }
5464   }
5465   return 0;
5466 }
5467 
5468 /*
5469 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5470 ** if they are certainly different, or 2 if it is not possible to
5471 ** determine if they are identical or not.
5472 **
5473 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5474 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5475 **
5476 ** This routine might return non-zero for equivalent ExprLists.  The
5477 ** only consequence will be disabled optimizations.  But this routine
5478 ** must never return 0 if the two ExprList objects are different, or
5479 ** a malfunction will result.
5480 **
5481 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5482 ** always differs from a non-NULL pointer.
5483 */
5484 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5485   int i;
5486   if( pA==0 && pB==0 ) return 0;
5487   if( pA==0 || pB==0 ) return 1;
5488   if( pA->nExpr!=pB->nExpr ) return 1;
5489   for(i=0; i<pA->nExpr; i++){
5490     int res;
5491     Expr *pExprA = pA->a[i].pExpr;
5492     Expr *pExprB = pB->a[i].pExpr;
5493     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5494     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5495   }
5496   return 0;
5497 }
5498 
5499 /*
5500 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5501 ** are ignored.
5502 */
5503 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5504   return sqlite3ExprCompare(0,
5505              sqlite3ExprSkipCollateAndLikely(pA),
5506              sqlite3ExprSkipCollateAndLikely(pB),
5507              iTab);
5508 }
5509 
5510 /*
5511 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5512 **
5513 ** Or if seenNot is true, return non-zero if Expr p can only be
5514 ** non-NULL if pNN is not NULL
5515 */
5516 static int exprImpliesNotNull(
5517   const Parse *pParse,/* Parsing context */
5518   const Expr *p,      /* The expression to be checked */
5519   const Expr *pNN,    /* The expression that is NOT NULL */
5520   int iTab,           /* Table being evaluated */
5521   int seenNot         /* Return true only if p can be any non-NULL value */
5522 ){
5523   assert( p );
5524   assert( pNN );
5525   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5526     return pNN->op!=TK_NULL;
5527   }
5528   switch( p->op ){
5529     case TK_IN: {
5530       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5531       assert( ExprHasProperty(p,EP_xIsSelect)
5532            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5533       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5534     }
5535     case TK_BETWEEN: {
5536       ExprList *pList = p->x.pList;
5537       assert( pList!=0 );
5538       assert( pList->nExpr==2 );
5539       if( seenNot ) return 0;
5540       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5541        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5542       ){
5543         return 1;
5544       }
5545       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5546     }
5547     case TK_EQ:
5548     case TK_NE:
5549     case TK_LT:
5550     case TK_LE:
5551     case TK_GT:
5552     case TK_GE:
5553     case TK_PLUS:
5554     case TK_MINUS:
5555     case TK_BITOR:
5556     case TK_LSHIFT:
5557     case TK_RSHIFT:
5558     case TK_CONCAT:
5559       seenNot = 1;
5560       /* no break */ deliberate_fall_through
5561     case TK_STAR:
5562     case TK_REM:
5563     case TK_BITAND:
5564     case TK_SLASH: {
5565       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5566       /* no break */ deliberate_fall_through
5567     }
5568     case TK_SPAN:
5569     case TK_COLLATE:
5570     case TK_UPLUS:
5571     case TK_UMINUS: {
5572       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5573     }
5574     case TK_TRUTH: {
5575       if( seenNot ) return 0;
5576       if( p->op2!=TK_IS ) return 0;
5577       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5578     }
5579     case TK_BITNOT:
5580     case TK_NOT: {
5581       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5582     }
5583   }
5584   return 0;
5585 }
5586 
5587 /*
5588 ** Return true if we can prove the pE2 will always be true if pE1 is
5589 ** true.  Return false if we cannot complete the proof or if pE2 might
5590 ** be false.  Examples:
5591 **
5592 **     pE1: x==5       pE2: x==5             Result: true
5593 **     pE1: x>0        pE2: x==5             Result: false
5594 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5595 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5596 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5597 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5598 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5599 **
5600 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5601 ** Expr.iTable<0 then assume a table number given by iTab.
5602 **
5603 ** If pParse is not NULL, then the values of bound variables in pE1 are
5604 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5605 ** modified to record which bound variables are referenced.  If pParse
5606 ** is NULL, then false will be returned if pE1 contains any bound variables.
5607 **
5608 ** When in doubt, return false.  Returning true might give a performance
5609 ** improvement.  Returning false might cause a performance reduction, but
5610 ** it will always give the correct answer and is hence always safe.
5611 */
5612 int sqlite3ExprImpliesExpr(
5613   const Parse *pParse,
5614   const Expr *pE1,
5615   const Expr *pE2,
5616   int iTab
5617 ){
5618   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5619     return 1;
5620   }
5621   if( pE2->op==TK_OR
5622    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5623              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5624   ){
5625     return 1;
5626   }
5627   if( pE2->op==TK_NOTNULL
5628    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5629   ){
5630     return 1;
5631   }
5632   return 0;
5633 }
5634 
5635 /*
5636 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5637 ** If the expression node requires that the table at pWalker->iCur
5638 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5639 **
5640 ** This routine controls an optimization.  False positives (setting
5641 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5642 ** (never setting pWalker->eCode) is a harmless missed optimization.
5643 */
5644 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5645   testcase( pExpr->op==TK_AGG_COLUMN );
5646   testcase( pExpr->op==TK_AGG_FUNCTION );
5647   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5648   switch( pExpr->op ){
5649     case TK_ISNOT:
5650     case TK_ISNULL:
5651     case TK_NOTNULL:
5652     case TK_IS:
5653     case TK_OR:
5654     case TK_VECTOR:
5655     case TK_CASE:
5656     case TK_IN:
5657     case TK_FUNCTION:
5658     case TK_TRUTH:
5659       testcase( pExpr->op==TK_ISNOT );
5660       testcase( pExpr->op==TK_ISNULL );
5661       testcase( pExpr->op==TK_NOTNULL );
5662       testcase( pExpr->op==TK_IS );
5663       testcase( pExpr->op==TK_OR );
5664       testcase( pExpr->op==TK_VECTOR );
5665       testcase( pExpr->op==TK_CASE );
5666       testcase( pExpr->op==TK_IN );
5667       testcase( pExpr->op==TK_FUNCTION );
5668       testcase( pExpr->op==TK_TRUTH );
5669       return WRC_Prune;
5670     case TK_COLUMN:
5671       if( pWalker->u.iCur==pExpr->iTable ){
5672         pWalker->eCode = 1;
5673         return WRC_Abort;
5674       }
5675       return WRC_Prune;
5676 
5677     case TK_AND:
5678       if( pWalker->eCode==0 ){
5679         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5680         if( pWalker->eCode ){
5681           pWalker->eCode = 0;
5682           sqlite3WalkExpr(pWalker, pExpr->pRight);
5683         }
5684       }
5685       return WRC_Prune;
5686 
5687     case TK_BETWEEN:
5688       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5689         assert( pWalker->eCode );
5690         return WRC_Abort;
5691       }
5692       return WRC_Prune;
5693 
5694     /* Virtual tables are allowed to use constraints like x=NULL.  So
5695     ** a term of the form x=y does not prove that y is not null if x
5696     ** is the column of a virtual table */
5697     case TK_EQ:
5698     case TK_NE:
5699     case TK_LT:
5700     case TK_LE:
5701     case TK_GT:
5702     case TK_GE: {
5703       Expr *pLeft = pExpr->pLeft;
5704       Expr *pRight = pExpr->pRight;
5705       testcase( pExpr->op==TK_EQ );
5706       testcase( pExpr->op==TK_NE );
5707       testcase( pExpr->op==TK_LT );
5708       testcase( pExpr->op==TK_LE );
5709       testcase( pExpr->op==TK_GT );
5710       testcase( pExpr->op==TK_GE );
5711       /* The y.pTab=0 assignment in wherecode.c always happens after the
5712       ** impliesNotNullRow() test */
5713       if( (pLeft->op==TK_COLUMN && pLeft->y.pTab!=0
5714                                && IsVirtual(pLeft->y.pTab))
5715        || (pRight->op==TK_COLUMN && pRight->y.pTab!=0
5716                                && IsVirtual(pRight->y.pTab))
5717       ){
5718         return WRC_Prune;
5719       }
5720       /* no break */ deliberate_fall_through
5721     }
5722     default:
5723       return WRC_Continue;
5724   }
5725 }
5726 
5727 /*
5728 ** Return true (non-zero) if expression p can only be true if at least
5729 ** one column of table iTab is non-null.  In other words, return true
5730 ** if expression p will always be NULL or false if every column of iTab
5731 ** is NULL.
5732 **
5733 ** False negatives are acceptable.  In other words, it is ok to return
5734 ** zero even if expression p will never be true of every column of iTab
5735 ** is NULL.  A false negative is merely a missed optimization opportunity.
5736 **
5737 ** False positives are not allowed, however.  A false positive may result
5738 ** in an incorrect answer.
5739 **
5740 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5741 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5742 **
5743 ** This routine is used to check if a LEFT JOIN can be converted into
5744 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5745 ** clause requires that some column of the right table of the LEFT JOIN
5746 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5747 ** ordinary join.
5748 */
5749 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5750   Walker w;
5751   p = sqlite3ExprSkipCollateAndLikely(p);
5752   if( p==0 ) return 0;
5753   if( p->op==TK_NOTNULL ){
5754     p = p->pLeft;
5755   }else{
5756     while( p->op==TK_AND ){
5757       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5758       p = p->pRight;
5759     }
5760   }
5761   w.xExprCallback = impliesNotNullRow;
5762   w.xSelectCallback = 0;
5763   w.xSelectCallback2 = 0;
5764   w.eCode = 0;
5765   w.u.iCur = iTab;
5766   sqlite3WalkExpr(&w, p);
5767   return w.eCode;
5768 }
5769 
5770 /*
5771 ** An instance of the following structure is used by the tree walker
5772 ** to determine if an expression can be evaluated by reference to the
5773 ** index only, without having to do a search for the corresponding
5774 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5775 ** is the cursor for the table.
5776 */
5777 struct IdxCover {
5778   Index *pIdx;     /* The index to be tested for coverage */
5779   int iCur;        /* Cursor number for the table corresponding to the index */
5780 };
5781 
5782 /*
5783 ** Check to see if there are references to columns in table
5784 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5785 ** pWalker->u.pIdxCover->pIdx.
5786 */
5787 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5788   if( pExpr->op==TK_COLUMN
5789    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5790    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5791   ){
5792     pWalker->eCode = 1;
5793     return WRC_Abort;
5794   }
5795   return WRC_Continue;
5796 }
5797 
5798 /*
5799 ** Determine if an index pIdx on table with cursor iCur contains will
5800 ** the expression pExpr.  Return true if the index does cover the
5801 ** expression and false if the pExpr expression references table columns
5802 ** that are not found in the index pIdx.
5803 **
5804 ** An index covering an expression means that the expression can be
5805 ** evaluated using only the index and without having to lookup the
5806 ** corresponding table entry.
5807 */
5808 int sqlite3ExprCoveredByIndex(
5809   Expr *pExpr,        /* The index to be tested */
5810   int iCur,           /* The cursor number for the corresponding table */
5811   Index *pIdx         /* The index that might be used for coverage */
5812 ){
5813   Walker w;
5814   struct IdxCover xcov;
5815   memset(&w, 0, sizeof(w));
5816   xcov.iCur = iCur;
5817   xcov.pIdx = pIdx;
5818   w.xExprCallback = exprIdxCover;
5819   w.u.pIdxCover = &xcov;
5820   sqlite3WalkExpr(&w, pExpr);
5821   return !w.eCode;
5822 }
5823 
5824 
5825 /*
5826 ** An instance of the following structure is used by the tree walker
5827 ** to count references to table columns in the arguments of an
5828 ** aggregate function, in order to implement the
5829 ** sqlite3FunctionThisSrc() routine.
5830 */
5831 struct SrcCount {
5832   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5833   int iSrcInner;   /* Smallest cursor number in this context */
5834   int nThis;       /* Number of references to columns in pSrcList */
5835   int nOther;      /* Number of references to columns in other FROM clauses */
5836 };
5837 
5838 /*
5839 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5840 ** SELECT with a FROM clause encountered during this iteration, set
5841 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5842 ** the FROM cause.
5843 */
5844 static int selectSrcCount(Walker *pWalker, Select *pSel){
5845   struct SrcCount *p = pWalker->u.pSrcCount;
5846   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5847     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5848   }
5849   return WRC_Continue;
5850 }
5851 
5852 /*
5853 ** Count the number of references to columns.
5854 */
5855 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5856   /* There was once a NEVER() on the second term on the grounds that
5857   ** sqlite3FunctionUsesThisSrc() was always called before
5858   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5859   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5860   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5861   ** FunctionUsesThisSrc() when creating a new sub-select. */
5862   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5863     int i;
5864     struct SrcCount *p = pWalker->u.pSrcCount;
5865     SrcList *pSrc = p->pSrc;
5866     int nSrc = pSrc ? pSrc->nSrc : 0;
5867     for(i=0; i<nSrc; i++){
5868       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5869     }
5870     if( i<nSrc ){
5871       p->nThis++;
5872     }else if( pExpr->iTable<p->iSrcInner ){
5873       /* In a well-formed parse tree (no name resolution errors),
5874       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5875       ** outer context.  Those are the only ones to count as "other" */
5876       p->nOther++;
5877     }
5878   }
5879   return WRC_Continue;
5880 }
5881 
5882 /*
5883 ** Determine if any of the arguments to the pExpr Function reference
5884 ** pSrcList.  Return true if they do.  Also return true if the function
5885 ** has no arguments or has only constant arguments.  Return false if pExpr
5886 ** references columns but not columns of tables found in pSrcList.
5887 */
5888 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5889   Walker w;
5890   struct SrcCount cnt;
5891   assert( pExpr->op==TK_AGG_FUNCTION );
5892   memset(&w, 0, sizeof(w));
5893   w.xExprCallback = exprSrcCount;
5894   w.xSelectCallback = selectSrcCount;
5895   w.u.pSrcCount = &cnt;
5896   cnt.pSrc = pSrcList;
5897   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5898   cnt.nThis = 0;
5899   cnt.nOther = 0;
5900   sqlite3WalkExprList(&w, pExpr->x.pList);
5901 #ifndef SQLITE_OMIT_WINDOWFUNC
5902   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5903     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5904   }
5905 #endif
5906   return cnt.nThis>0 || cnt.nOther==0;
5907 }
5908 
5909 /*
5910 ** This is a Walker expression node callback.
5911 **
5912 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5913 ** object that is referenced does not refer directly to the Expr.  If
5914 ** it does, make a copy.  This is done because the pExpr argument is
5915 ** subject to change.
5916 **
5917 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5918 ** This will cause the expression to be deleted automatically when the
5919 ** Parse object is destroyed, but the zero register number means that it
5920 ** will not generate any code in the preamble.
5921 */
5922 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5923   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5924    && pExpr->pAggInfo!=0
5925   ){
5926     AggInfo *pAggInfo = pExpr->pAggInfo;
5927     int iAgg = pExpr->iAgg;
5928     Parse *pParse = pWalker->pParse;
5929     sqlite3 *db = pParse->db;
5930     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5931     if( pExpr->op==TK_AGG_COLUMN ){
5932       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5933       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5934         pExpr = sqlite3ExprDup(db, pExpr, 0);
5935         if( pExpr ){
5936           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5937           sqlite3ExprDeferredDelete(pParse, pExpr);
5938         }
5939       }
5940     }else{
5941       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5942       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5943         pExpr = sqlite3ExprDup(db, pExpr, 0);
5944         if( pExpr ){
5945           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5946           sqlite3ExprDeferredDelete(pParse, pExpr);
5947         }
5948       }
5949     }
5950   }
5951   return WRC_Continue;
5952 }
5953 
5954 /*
5955 ** Initialize a Walker object so that will persist AggInfo entries referenced
5956 ** by the tree that is walked.
5957 */
5958 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5959   memset(pWalker, 0, sizeof(*pWalker));
5960   pWalker->pParse = pParse;
5961   pWalker->xExprCallback = agginfoPersistExprCb;
5962   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5963 }
5964 
5965 /*
5966 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5967 ** the new element.  Return a negative number if malloc fails.
5968 */
5969 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5970   int i;
5971   pInfo->aCol = sqlite3ArrayAllocate(
5972        db,
5973        pInfo->aCol,
5974        sizeof(pInfo->aCol[0]),
5975        &pInfo->nColumn,
5976        &i
5977   );
5978   return i;
5979 }
5980 
5981 /*
5982 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5983 ** the new element.  Return a negative number if malloc fails.
5984 */
5985 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5986   int i;
5987   pInfo->aFunc = sqlite3ArrayAllocate(
5988        db,
5989        pInfo->aFunc,
5990        sizeof(pInfo->aFunc[0]),
5991        &pInfo->nFunc,
5992        &i
5993   );
5994   return i;
5995 }
5996 
5997 /*
5998 ** This is the xExprCallback for a tree walker.  It is used to
5999 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6000 ** for additional information.
6001 */
6002 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6003   int i;
6004   NameContext *pNC = pWalker->u.pNC;
6005   Parse *pParse = pNC->pParse;
6006   SrcList *pSrcList = pNC->pSrcList;
6007   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6008 
6009   assert( pNC->ncFlags & NC_UAggInfo );
6010   switch( pExpr->op ){
6011     case TK_AGG_COLUMN:
6012     case TK_COLUMN: {
6013       testcase( pExpr->op==TK_AGG_COLUMN );
6014       testcase( pExpr->op==TK_COLUMN );
6015       /* Check to see if the column is in one of the tables in the FROM
6016       ** clause of the aggregate query */
6017       if( ALWAYS(pSrcList!=0) ){
6018         SrcItem *pItem = pSrcList->a;
6019         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6020           struct AggInfo_col *pCol;
6021           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6022           if( pExpr->iTable==pItem->iCursor ){
6023             /* If we reach this point, it means that pExpr refers to a table
6024             ** that is in the FROM clause of the aggregate query.
6025             **
6026             ** Make an entry for the column in pAggInfo->aCol[] if there
6027             ** is not an entry there already.
6028             */
6029             int k;
6030             pCol = pAggInfo->aCol;
6031             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6032               if( pCol->iTable==pExpr->iTable &&
6033                   pCol->iColumn==pExpr->iColumn ){
6034                 break;
6035               }
6036             }
6037             if( (k>=pAggInfo->nColumn)
6038              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6039             ){
6040               pCol = &pAggInfo->aCol[k];
6041               pCol->pTab = pExpr->y.pTab;
6042               pCol->iTable = pExpr->iTable;
6043               pCol->iColumn = pExpr->iColumn;
6044               pCol->iMem = ++pParse->nMem;
6045               pCol->iSorterColumn = -1;
6046               pCol->pCExpr = pExpr;
6047               if( pAggInfo->pGroupBy ){
6048                 int j, n;
6049                 ExprList *pGB = pAggInfo->pGroupBy;
6050                 struct ExprList_item *pTerm = pGB->a;
6051                 n = pGB->nExpr;
6052                 for(j=0; j<n; j++, pTerm++){
6053                   Expr *pE = pTerm->pExpr;
6054                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6055                       pE->iColumn==pExpr->iColumn ){
6056                     pCol->iSorterColumn = j;
6057                     break;
6058                   }
6059                 }
6060               }
6061               if( pCol->iSorterColumn<0 ){
6062                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6063               }
6064             }
6065             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6066             ** because it was there before or because we just created it).
6067             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6068             ** pAggInfo->aCol[] entry.
6069             */
6070             ExprSetVVAProperty(pExpr, EP_NoReduce);
6071             pExpr->pAggInfo = pAggInfo;
6072             pExpr->op = TK_AGG_COLUMN;
6073             pExpr->iAgg = (i16)k;
6074             break;
6075           } /* endif pExpr->iTable==pItem->iCursor */
6076         } /* end loop over pSrcList */
6077       }
6078       return WRC_Prune;
6079     }
6080     case TK_AGG_FUNCTION: {
6081       if( (pNC->ncFlags & NC_InAggFunc)==0
6082        && pWalker->walkerDepth==pExpr->op2
6083       ){
6084         /* Check to see if pExpr is a duplicate of another aggregate
6085         ** function that is already in the pAggInfo structure
6086         */
6087         struct AggInfo_func *pItem = pAggInfo->aFunc;
6088         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6089           if( pItem->pFExpr==pExpr ) break;
6090           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6091             break;
6092           }
6093         }
6094         if( i>=pAggInfo->nFunc ){
6095           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6096           */
6097           u8 enc = ENC(pParse->db);
6098           i = addAggInfoFunc(pParse->db, pAggInfo);
6099           if( i>=0 ){
6100             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6101             pItem = &pAggInfo->aFunc[i];
6102             pItem->pFExpr = pExpr;
6103             pItem->iMem = ++pParse->nMem;
6104             assert( !ExprHasProperty(pExpr, EP_IntValue) );
6105             pItem->pFunc = sqlite3FindFunction(pParse->db,
6106                    pExpr->u.zToken,
6107                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6108             if( pExpr->flags & EP_Distinct ){
6109               pItem->iDistinct = pParse->nTab++;
6110             }else{
6111               pItem->iDistinct = -1;
6112             }
6113           }
6114         }
6115         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6116         */
6117         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6118         ExprSetVVAProperty(pExpr, EP_NoReduce);
6119         pExpr->iAgg = (i16)i;
6120         pExpr->pAggInfo = pAggInfo;
6121         return WRC_Prune;
6122       }else{
6123         return WRC_Continue;
6124       }
6125     }
6126   }
6127   return WRC_Continue;
6128 }
6129 
6130 /*
6131 ** Analyze the pExpr expression looking for aggregate functions and
6132 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6133 ** points to.  Additional entries are made on the AggInfo object as
6134 ** necessary.
6135 **
6136 ** This routine should only be called after the expression has been
6137 ** analyzed by sqlite3ResolveExprNames().
6138 */
6139 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6140   Walker w;
6141   w.xExprCallback = analyzeAggregate;
6142   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6143   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6144   w.walkerDepth = 0;
6145   w.u.pNC = pNC;
6146   w.pParse = 0;
6147   assert( pNC->pSrcList!=0 );
6148   sqlite3WalkExpr(&w, pExpr);
6149 }
6150 
6151 /*
6152 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6153 ** expression list.  Return the number of errors.
6154 **
6155 ** If an error is found, the analysis is cut short.
6156 */
6157 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6158   struct ExprList_item *pItem;
6159   int i;
6160   if( pList ){
6161     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6162       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6163     }
6164   }
6165 }
6166 
6167 /*
6168 ** Allocate a single new register for use to hold some intermediate result.
6169 */
6170 int sqlite3GetTempReg(Parse *pParse){
6171   if( pParse->nTempReg==0 ){
6172     return ++pParse->nMem;
6173   }
6174   return pParse->aTempReg[--pParse->nTempReg];
6175 }
6176 
6177 /*
6178 ** Deallocate a register, making available for reuse for some other
6179 ** purpose.
6180 */
6181 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6182   if( iReg ){
6183     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6184     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6185       pParse->aTempReg[pParse->nTempReg++] = iReg;
6186     }
6187   }
6188 }
6189 
6190 /*
6191 ** Allocate or deallocate a block of nReg consecutive registers.
6192 */
6193 int sqlite3GetTempRange(Parse *pParse, int nReg){
6194   int i, n;
6195   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6196   i = pParse->iRangeReg;
6197   n = pParse->nRangeReg;
6198   if( nReg<=n ){
6199     pParse->iRangeReg += nReg;
6200     pParse->nRangeReg -= nReg;
6201   }else{
6202     i = pParse->nMem+1;
6203     pParse->nMem += nReg;
6204   }
6205   return i;
6206 }
6207 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6208   if( nReg==1 ){
6209     sqlite3ReleaseTempReg(pParse, iReg);
6210     return;
6211   }
6212   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6213   if( nReg>pParse->nRangeReg ){
6214     pParse->nRangeReg = nReg;
6215     pParse->iRangeReg = iReg;
6216   }
6217 }
6218 
6219 /*
6220 ** Mark all temporary registers as being unavailable for reuse.
6221 **
6222 ** Always invoke this procedure after coding a subroutine or co-routine
6223 ** that might be invoked from other parts of the code, to ensure that
6224 ** the sub/co-routine does not use registers in common with the code that
6225 ** invokes the sub/co-routine.
6226 */
6227 void sqlite3ClearTempRegCache(Parse *pParse){
6228   pParse->nTempReg = 0;
6229   pParse->nRangeReg = 0;
6230 }
6231 
6232 /*
6233 ** Validate that no temporary register falls within the range of
6234 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6235 ** statements.
6236 */
6237 #ifdef SQLITE_DEBUG
6238 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6239   int i;
6240   if( pParse->nRangeReg>0
6241    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6242    && pParse->iRangeReg <= iLast
6243   ){
6244      return 0;
6245   }
6246   for(i=0; i<pParse->nTempReg; i++){
6247     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6248       return 0;
6249     }
6250   }
6251   return 1;
6252 }
6253 #endif /* SQLITE_DEBUG */
6254