1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 assert( pExpr->iColumn < pExpr->iTable ); 75 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 76 return sqlite3ExprAffinity( 77 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 78 ); 79 } 80 if( op==TK_VECTOR ){ 81 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 82 } 83 return pExpr->affExpr; 84 } 85 86 /* 87 ** Set the collating sequence for expression pExpr to be the collating 88 ** sequence named by pToken. Return a pointer to a new Expr node that 89 ** implements the COLLATE operator. 90 ** 91 ** If a memory allocation error occurs, that fact is recorded in pParse->db 92 ** and the pExpr parameter is returned unchanged. 93 */ 94 Expr *sqlite3ExprAddCollateToken( 95 const Parse *pParse, /* Parsing context */ 96 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 97 const Token *pCollName, /* Name of collating sequence */ 98 int dequote /* True to dequote pCollName */ 99 ){ 100 if( pCollName->n>0 ){ 101 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 102 if( pNew ){ 103 pNew->pLeft = pExpr; 104 pNew->flags |= EP_Collate|EP_Skip; 105 pExpr = pNew; 106 } 107 } 108 return pExpr; 109 } 110 Expr *sqlite3ExprAddCollateString( 111 const Parse *pParse, /* Parsing context */ 112 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 113 const char *zC /* The collating sequence name */ 114 ){ 115 Token s; 116 assert( zC!=0 ); 117 sqlite3TokenInit(&s, (char*)zC); 118 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators. 123 */ 124 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 125 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 126 assert( pExpr->op==TK_COLLATE ); 127 pExpr = pExpr->pLeft; 128 } 129 return pExpr; 130 } 131 132 /* 133 ** Skip over any TK_COLLATE operators and/or any unlikely() 134 ** or likelihood() or likely() functions at the root of an 135 ** expression. 136 */ 137 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 138 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 139 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 140 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 141 assert( pExpr->x.pList->nExpr>0 ); 142 assert( pExpr->op==TK_FUNCTION ); 143 pExpr = pExpr->x.pList->a[0].pExpr; 144 }else{ 145 assert( pExpr->op==TK_COLLATE ); 146 pExpr = pExpr->pLeft; 147 } 148 } 149 return pExpr; 150 } 151 152 /* 153 ** Return the collation sequence for the expression pExpr. If 154 ** there is no defined collating sequence, return NULL. 155 ** 156 ** See also: sqlite3ExprNNCollSeq() 157 ** 158 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 159 ** default collation if pExpr has no defined collation. 160 ** 161 ** The collating sequence might be determined by a COLLATE operator 162 ** or by the presence of a column with a defined collating sequence. 163 ** COLLATE operators take first precedence. Left operands take 164 ** precedence over right operands. 165 */ 166 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 167 sqlite3 *db = pParse->db; 168 CollSeq *pColl = 0; 169 const Expr *p = pExpr; 170 while( p ){ 171 int op = p->op; 172 if( op==TK_REGISTER ) op = p->op2; 173 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 174 && p->y.pTab!=0 175 ){ 176 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 177 ** a TK_COLUMN but was previously evaluated and cached in a register */ 178 int j = p->iColumn; 179 if( j>=0 ){ 180 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 181 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 182 } 183 break; 184 } 185 if( op==TK_CAST || op==TK_UPLUS ){ 186 p = p->pLeft; 187 continue; 188 } 189 if( op==TK_VECTOR ){ 190 p = p->x.pList->a[0].pExpr; 191 continue; 192 } 193 if( op==TK_COLLATE ){ 194 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 195 break; 196 } 197 if( p->flags & EP_Collate ){ 198 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 199 p = p->pLeft; 200 }else{ 201 Expr *pNext = p->pRight; 202 /* The Expr.x union is never used at the same time as Expr.pRight */ 203 assert( p->x.pList==0 || p->pRight==0 ); 204 if( p->x.pList!=0 205 && !db->mallocFailed 206 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 207 ){ 208 int i; 209 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 210 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 211 pNext = p->x.pList->a[i].pExpr; 212 break; 213 } 214 } 215 } 216 p = pNext; 217 } 218 }else{ 219 break; 220 } 221 } 222 if( sqlite3CheckCollSeq(pParse, pColl) ){ 223 pColl = 0; 224 } 225 return pColl; 226 } 227 228 /* 229 ** Return the collation sequence for the expression pExpr. If 230 ** there is no defined collating sequence, return a pointer to the 231 ** defautl collation sequence. 232 ** 233 ** See also: sqlite3ExprCollSeq() 234 ** 235 ** The sqlite3ExprCollSeq() routine works the same except that it 236 ** returns NULL if there is no defined collation. 237 */ 238 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 239 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 240 if( p==0 ) p = pParse->db->pDfltColl; 241 assert( p!=0 ); 242 return p; 243 } 244 245 /* 246 ** Return TRUE if the two expressions have equivalent collating sequences. 247 */ 248 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 249 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 250 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 251 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 252 } 253 254 /* 255 ** pExpr is an operand of a comparison operator. aff2 is the 256 ** type affinity of the other operand. This routine returns the 257 ** type affinity that should be used for the comparison operator. 258 */ 259 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 260 char aff1 = sqlite3ExprAffinity(pExpr); 261 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 262 /* Both sides of the comparison are columns. If one has numeric 263 ** affinity, use that. Otherwise use no affinity. 264 */ 265 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 266 return SQLITE_AFF_NUMERIC; 267 }else{ 268 return SQLITE_AFF_BLOB; 269 } 270 }else{ 271 /* One side is a column, the other is not. Use the columns affinity. */ 272 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 273 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 274 } 275 } 276 277 /* 278 ** pExpr is a comparison operator. Return the type affinity that should 279 ** be applied to both operands prior to doing the comparison. 280 */ 281 static char comparisonAffinity(const Expr *pExpr){ 282 char aff; 283 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 284 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 285 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 286 assert( pExpr->pLeft ); 287 aff = sqlite3ExprAffinity(pExpr->pLeft); 288 if( pExpr->pRight ){ 289 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 290 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 291 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 292 }else if( aff==0 ){ 293 aff = SQLITE_AFF_BLOB; 294 } 295 return aff; 296 } 297 298 /* 299 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 300 ** idx_affinity is the affinity of an indexed column. Return true 301 ** if the index with affinity idx_affinity may be used to implement 302 ** the comparison in pExpr. 303 */ 304 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 305 char aff = comparisonAffinity(pExpr); 306 if( aff<SQLITE_AFF_TEXT ){ 307 return 1; 308 } 309 if( aff==SQLITE_AFF_TEXT ){ 310 return idx_affinity==SQLITE_AFF_TEXT; 311 } 312 return sqlite3IsNumericAffinity(idx_affinity); 313 } 314 315 /* 316 ** Return the P5 value that should be used for a binary comparison 317 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 318 */ 319 static u8 binaryCompareP5( 320 const Expr *pExpr1, /* Left operand */ 321 const Expr *pExpr2, /* Right operand */ 322 int jumpIfNull /* Extra flags added to P5 */ 323 ){ 324 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 325 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 326 return aff; 327 } 328 329 /* 330 ** Return a pointer to the collation sequence that should be used by 331 ** a binary comparison operator comparing pLeft and pRight. 332 ** 333 ** If the left hand expression has a collating sequence type, then it is 334 ** used. Otherwise the collation sequence for the right hand expression 335 ** is used, or the default (BINARY) if neither expression has a collating 336 ** type. 337 ** 338 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 339 ** it is not considered. 340 */ 341 CollSeq *sqlite3BinaryCompareCollSeq( 342 Parse *pParse, 343 const Expr *pLeft, 344 const Expr *pRight 345 ){ 346 CollSeq *pColl; 347 assert( pLeft ); 348 if( pLeft->flags & EP_Collate ){ 349 pColl = sqlite3ExprCollSeq(pParse, pLeft); 350 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 351 pColl = sqlite3ExprCollSeq(pParse, pRight); 352 }else{ 353 pColl = sqlite3ExprCollSeq(pParse, pLeft); 354 if( !pColl ){ 355 pColl = sqlite3ExprCollSeq(pParse, pRight); 356 } 357 } 358 return pColl; 359 } 360 361 /* Expresssion p is a comparison operator. Return a collation sequence 362 ** appropriate for the comparison operator. 363 ** 364 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 365 ** However, if the OP_Commuted flag is set, then the order of the operands 366 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 367 ** correct collating sequence is found. 368 */ 369 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 370 if( ExprHasProperty(p, EP_Commuted) ){ 371 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 372 }else{ 373 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 374 } 375 } 376 377 /* 378 ** Generate code for a comparison operator. 379 */ 380 static int codeCompare( 381 Parse *pParse, /* The parsing (and code generating) context */ 382 Expr *pLeft, /* The left operand */ 383 Expr *pRight, /* The right operand */ 384 int opcode, /* The comparison opcode */ 385 int in1, int in2, /* Register holding operands */ 386 int dest, /* Jump here if true. */ 387 int jumpIfNull, /* If true, jump if either operand is NULL */ 388 int isCommuted /* The comparison has been commuted */ 389 ){ 390 int p5; 391 int addr; 392 CollSeq *p4; 393 394 if( pParse->nErr ) return 0; 395 if( isCommuted ){ 396 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 397 }else{ 398 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 399 } 400 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 401 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 402 (void*)p4, P4_COLLSEQ); 403 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 404 return addr; 405 } 406 407 /* 408 ** Return true if expression pExpr is a vector, or false otherwise. 409 ** 410 ** A vector is defined as any expression that results in two or more 411 ** columns of result. Every TK_VECTOR node is an vector because the 412 ** parser will not generate a TK_VECTOR with fewer than two entries. 413 ** But a TK_SELECT might be either a vector or a scalar. It is only 414 ** considered a vector if it has two or more result columns. 415 */ 416 int sqlite3ExprIsVector(const Expr *pExpr){ 417 return sqlite3ExprVectorSize(pExpr)>1; 418 } 419 420 /* 421 ** If the expression passed as the only argument is of type TK_VECTOR 422 ** return the number of expressions in the vector. Or, if the expression 423 ** is a sub-select, return the number of columns in the sub-select. For 424 ** any other type of expression, return 1. 425 */ 426 int sqlite3ExprVectorSize(const Expr *pExpr){ 427 u8 op = pExpr->op; 428 if( op==TK_REGISTER ) op = pExpr->op2; 429 if( op==TK_VECTOR ){ 430 return pExpr->x.pList->nExpr; 431 }else if( op==TK_SELECT ){ 432 return pExpr->x.pSelect->pEList->nExpr; 433 }else{ 434 return 1; 435 } 436 } 437 438 /* 439 ** Return a pointer to a subexpression of pVector that is the i-th 440 ** column of the vector (numbered starting with 0). The caller must 441 ** ensure that i is within range. 442 ** 443 ** If pVector is really a scalar (and "scalar" here includes subqueries 444 ** that return a single column!) then return pVector unmodified. 445 ** 446 ** pVector retains ownership of the returned subexpression. 447 ** 448 ** If the vector is a (SELECT ...) then the expression returned is 449 ** just the expression for the i-th term of the result set, and may 450 ** not be ready for evaluation because the table cursor has not yet 451 ** been positioned. 452 */ 453 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 454 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 455 if( sqlite3ExprIsVector(pVector) ){ 456 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 457 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 458 return pVector->x.pSelect->pEList->a[i].pExpr; 459 }else{ 460 return pVector->x.pList->a[i].pExpr; 461 } 462 } 463 return pVector; 464 } 465 466 /* 467 ** Compute and return a new Expr object which when passed to 468 ** sqlite3ExprCode() will generate all necessary code to compute 469 ** the iField-th column of the vector expression pVector. 470 ** 471 ** It is ok for pVector to be a scalar (as long as iField==0). 472 ** In that case, this routine works like sqlite3ExprDup(). 473 ** 474 ** The caller owns the returned Expr object and is responsible for 475 ** ensuring that the returned value eventually gets freed. 476 ** 477 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 478 ** then the returned object will reference pVector and so pVector must remain 479 ** valid for the life of the returned object. If pVector is a TK_VECTOR 480 ** or a scalar expression, then it can be deleted as soon as this routine 481 ** returns. 482 ** 483 ** A trick to cause a TK_SELECT pVector to be deleted together with 484 ** the returned Expr object is to attach the pVector to the pRight field 485 ** of the returned TK_SELECT_COLUMN Expr object. 486 */ 487 Expr *sqlite3ExprForVectorField( 488 Parse *pParse, /* Parsing context */ 489 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 490 int iField, /* Which column of the vector to return */ 491 int nField /* Total number of columns in the vector */ 492 ){ 493 Expr *pRet; 494 if( pVector->op==TK_SELECT ){ 495 assert( pVector->flags & EP_xIsSelect ); 496 /* The TK_SELECT_COLUMN Expr node: 497 ** 498 ** pLeft: pVector containing TK_SELECT. Not deleted. 499 ** pRight: not used. But recursively deleted. 500 ** iColumn: Index of a column in pVector 501 ** iTable: 0 or the number of columns on the LHS of an assignment 502 ** pLeft->iTable: First in an array of register holding result, or 0 503 ** if the result is not yet computed. 504 ** 505 ** sqlite3ExprDelete() specifically skips the recursive delete of 506 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 507 ** can be attached to pRight to cause this node to take ownership of 508 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 509 ** with the same pLeft pointer to the pVector, but only one of them 510 ** will own the pVector. 511 */ 512 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 513 if( pRet ){ 514 pRet->iTable = nField; 515 pRet->iColumn = iField; 516 pRet->pLeft = pVector; 517 } 518 }else{ 519 if( pVector->op==TK_VECTOR ){ 520 Expr **ppVector = &pVector->x.pList->a[iField].pExpr; 521 pVector = *ppVector; 522 if( IN_RENAME_OBJECT ){ 523 /* This must be a vector UPDATE inside a trigger */ 524 *ppVector = 0; 525 return pVector; 526 } 527 } 528 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 529 } 530 return pRet; 531 } 532 533 /* 534 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 535 ** it. Return the register in which the result is stored (or, if the 536 ** sub-select returns more than one column, the first in an array 537 ** of registers in which the result is stored). 538 ** 539 ** If pExpr is not a TK_SELECT expression, return 0. 540 */ 541 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 542 int reg = 0; 543 #ifndef SQLITE_OMIT_SUBQUERY 544 if( pExpr->op==TK_SELECT ){ 545 reg = sqlite3CodeSubselect(pParse, pExpr); 546 } 547 #endif 548 return reg; 549 } 550 551 /* 552 ** Argument pVector points to a vector expression - either a TK_VECTOR 553 ** or TK_SELECT that returns more than one column. This function returns 554 ** the register number of a register that contains the value of 555 ** element iField of the vector. 556 ** 557 ** If pVector is a TK_SELECT expression, then code for it must have 558 ** already been generated using the exprCodeSubselect() routine. In this 559 ** case parameter regSelect should be the first in an array of registers 560 ** containing the results of the sub-select. 561 ** 562 ** If pVector is of type TK_VECTOR, then code for the requested field 563 ** is generated. In this case (*pRegFree) may be set to the number of 564 ** a temporary register to be freed by the caller before returning. 565 ** 566 ** Before returning, output parameter (*ppExpr) is set to point to the 567 ** Expr object corresponding to element iElem of the vector. 568 */ 569 static int exprVectorRegister( 570 Parse *pParse, /* Parse context */ 571 Expr *pVector, /* Vector to extract element from */ 572 int iField, /* Field to extract from pVector */ 573 int regSelect, /* First in array of registers */ 574 Expr **ppExpr, /* OUT: Expression element */ 575 int *pRegFree /* OUT: Temp register to free */ 576 ){ 577 u8 op = pVector->op; 578 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 579 if( op==TK_REGISTER ){ 580 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 581 return pVector->iTable+iField; 582 } 583 if( op==TK_SELECT ){ 584 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 585 return regSelect+iField; 586 } 587 if( op==TK_VECTOR ){ 588 *ppExpr = pVector->x.pList->a[iField].pExpr; 589 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 590 } 591 return 0; 592 } 593 594 /* 595 ** Expression pExpr is a comparison between two vector values. Compute 596 ** the result of the comparison (1, 0, or NULL) and write that 597 ** result into register dest. 598 ** 599 ** The caller must satisfy the following preconditions: 600 ** 601 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 602 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 603 ** otherwise: op==pExpr->op and p5==0 604 */ 605 static void codeVectorCompare( 606 Parse *pParse, /* Code generator context */ 607 Expr *pExpr, /* The comparison operation */ 608 int dest, /* Write results into this register */ 609 u8 op, /* Comparison operator */ 610 u8 p5 /* SQLITE_NULLEQ or zero */ 611 ){ 612 Vdbe *v = pParse->pVdbe; 613 Expr *pLeft = pExpr->pLeft; 614 Expr *pRight = pExpr->pRight; 615 int nLeft = sqlite3ExprVectorSize(pLeft); 616 int i; 617 int regLeft = 0; 618 int regRight = 0; 619 u8 opx = op; 620 int addrCmp = 0; 621 int addrDone = sqlite3VdbeMakeLabel(pParse); 622 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 623 624 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 625 if( pParse->nErr ) return; 626 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 627 sqlite3ErrorMsg(pParse, "row value misused"); 628 return; 629 } 630 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 631 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 632 || pExpr->op==TK_LT || pExpr->op==TK_GT 633 || pExpr->op==TK_LE || pExpr->op==TK_GE 634 ); 635 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 636 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 637 assert( p5==0 || pExpr->op!=op ); 638 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 639 640 if( op==TK_LE ) opx = TK_LT; 641 if( op==TK_GE ) opx = TK_GT; 642 if( op==TK_NE ) opx = TK_EQ; 643 644 regLeft = exprCodeSubselect(pParse, pLeft); 645 regRight = exprCodeSubselect(pParse, pRight); 646 647 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 648 for(i=0; 1 /*Loop exits by "break"*/; i++){ 649 int regFree1 = 0, regFree2 = 0; 650 Expr *pL = 0, *pR = 0; 651 int r1, r2; 652 assert( i>=0 && i<nLeft ); 653 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 654 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 655 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 656 addrCmp = sqlite3VdbeCurrentAddr(v); 657 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 658 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 659 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 660 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 661 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 662 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 663 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 664 sqlite3ReleaseTempReg(pParse, regFree1); 665 sqlite3ReleaseTempReg(pParse, regFree2); 666 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 667 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 668 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 669 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 670 } 671 if( p5==SQLITE_NULLEQ ){ 672 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 673 }else{ 674 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 675 } 676 if( i==nLeft-1 ){ 677 break; 678 } 679 if( opx==TK_EQ ){ 680 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 681 }else{ 682 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 683 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 684 if( i==nLeft-2 ) opx = op; 685 } 686 } 687 sqlite3VdbeJumpHere(v, addrCmp); 688 sqlite3VdbeResolveLabel(v, addrDone); 689 if( op==TK_NE ){ 690 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 691 } 692 } 693 694 #if SQLITE_MAX_EXPR_DEPTH>0 695 /* 696 ** Check that argument nHeight is less than or equal to the maximum 697 ** expression depth allowed. If it is not, leave an error message in 698 ** pParse. 699 */ 700 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 701 int rc = SQLITE_OK; 702 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 703 if( nHeight>mxHeight ){ 704 sqlite3ErrorMsg(pParse, 705 "Expression tree is too large (maximum depth %d)", mxHeight 706 ); 707 rc = SQLITE_ERROR; 708 } 709 return rc; 710 } 711 712 /* The following three functions, heightOfExpr(), heightOfExprList() 713 ** and heightOfSelect(), are used to determine the maximum height 714 ** of any expression tree referenced by the structure passed as the 715 ** first argument. 716 ** 717 ** If this maximum height is greater than the current value pointed 718 ** to by pnHeight, the second parameter, then set *pnHeight to that 719 ** value. 720 */ 721 static void heightOfExpr(const Expr *p, int *pnHeight){ 722 if( p ){ 723 if( p->nHeight>*pnHeight ){ 724 *pnHeight = p->nHeight; 725 } 726 } 727 } 728 static void heightOfExprList(const ExprList *p, int *pnHeight){ 729 if( p ){ 730 int i; 731 for(i=0; i<p->nExpr; i++){ 732 heightOfExpr(p->a[i].pExpr, pnHeight); 733 } 734 } 735 } 736 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 737 const Select *p; 738 for(p=pSelect; p; p=p->pPrior){ 739 heightOfExpr(p->pWhere, pnHeight); 740 heightOfExpr(p->pHaving, pnHeight); 741 heightOfExpr(p->pLimit, pnHeight); 742 heightOfExprList(p->pEList, pnHeight); 743 heightOfExprList(p->pGroupBy, pnHeight); 744 heightOfExprList(p->pOrderBy, pnHeight); 745 } 746 } 747 748 /* 749 ** Set the Expr.nHeight variable in the structure passed as an 750 ** argument. An expression with no children, Expr.pList or 751 ** Expr.pSelect member has a height of 1. Any other expression 752 ** has a height equal to the maximum height of any other 753 ** referenced Expr plus one. 754 ** 755 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 756 ** if appropriate. 757 */ 758 static void exprSetHeight(Expr *p){ 759 int nHeight = 0; 760 heightOfExpr(p->pLeft, &nHeight); 761 heightOfExpr(p->pRight, &nHeight); 762 if( ExprHasProperty(p, EP_xIsSelect) ){ 763 heightOfSelect(p->x.pSelect, &nHeight); 764 }else if( p->x.pList ){ 765 heightOfExprList(p->x.pList, &nHeight); 766 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 767 } 768 p->nHeight = nHeight + 1; 769 } 770 771 /* 772 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 773 ** the height is greater than the maximum allowed expression depth, 774 ** leave an error in pParse. 775 ** 776 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 777 ** Expr.flags. 778 */ 779 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 780 if( pParse->nErr ) return; 781 exprSetHeight(p); 782 sqlite3ExprCheckHeight(pParse, p->nHeight); 783 } 784 785 /* 786 ** Return the maximum height of any expression tree referenced 787 ** by the select statement passed as an argument. 788 */ 789 int sqlite3SelectExprHeight(const Select *p){ 790 int nHeight = 0; 791 heightOfSelect(p, &nHeight); 792 return nHeight; 793 } 794 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 795 /* 796 ** Propagate all EP_Propagate flags from the Expr.x.pList into 797 ** Expr.flags. 798 */ 799 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 800 if( pParse->nErr ) return; 801 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 802 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 803 } 804 } 805 #define exprSetHeight(y) 806 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 807 808 /* 809 ** This routine is the core allocator for Expr nodes. 810 ** 811 ** Construct a new expression node and return a pointer to it. Memory 812 ** for this node and for the pToken argument is a single allocation 813 ** obtained from sqlite3DbMalloc(). The calling function 814 ** is responsible for making sure the node eventually gets freed. 815 ** 816 ** If dequote is true, then the token (if it exists) is dequoted. 817 ** If dequote is false, no dequoting is performed. The deQuote 818 ** parameter is ignored if pToken is NULL or if the token does not 819 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 820 ** then the EP_DblQuoted flag is set on the expression node. 821 ** 822 ** Special case: If op==TK_INTEGER and pToken points to a string that 823 ** can be translated into a 32-bit integer, then the token is not 824 ** stored in u.zToken. Instead, the integer values is written 825 ** into u.iValue and the EP_IntValue flag is set. No extra storage 826 ** is allocated to hold the integer text and the dequote flag is ignored. 827 */ 828 Expr *sqlite3ExprAlloc( 829 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 830 int op, /* Expression opcode */ 831 const Token *pToken, /* Token argument. Might be NULL */ 832 int dequote /* True to dequote */ 833 ){ 834 Expr *pNew; 835 int nExtra = 0; 836 int iValue = 0; 837 838 assert( db!=0 ); 839 if( pToken ){ 840 if( op!=TK_INTEGER || pToken->z==0 841 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 842 nExtra = pToken->n+1; 843 assert( iValue>=0 ); 844 } 845 } 846 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 847 if( pNew ){ 848 memset(pNew, 0, sizeof(Expr)); 849 pNew->op = (u8)op; 850 pNew->iAgg = -1; 851 if( pToken ){ 852 if( nExtra==0 ){ 853 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 854 pNew->u.iValue = iValue; 855 }else{ 856 pNew->u.zToken = (char*)&pNew[1]; 857 assert( pToken->z!=0 || pToken->n==0 ); 858 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 859 pNew->u.zToken[pToken->n] = 0; 860 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 861 sqlite3DequoteExpr(pNew); 862 } 863 } 864 } 865 #if SQLITE_MAX_EXPR_DEPTH>0 866 pNew->nHeight = 1; 867 #endif 868 } 869 return pNew; 870 } 871 872 /* 873 ** Allocate a new expression node from a zero-terminated token that has 874 ** already been dequoted. 875 */ 876 Expr *sqlite3Expr( 877 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 878 int op, /* Expression opcode */ 879 const char *zToken /* Token argument. Might be NULL */ 880 ){ 881 Token x; 882 x.z = zToken; 883 x.n = sqlite3Strlen30(zToken); 884 return sqlite3ExprAlloc(db, op, &x, 0); 885 } 886 887 /* 888 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 889 ** 890 ** If pRoot==NULL that means that a memory allocation error has occurred. 891 ** In that case, delete the subtrees pLeft and pRight. 892 */ 893 void sqlite3ExprAttachSubtrees( 894 sqlite3 *db, 895 Expr *pRoot, 896 Expr *pLeft, 897 Expr *pRight 898 ){ 899 if( pRoot==0 ){ 900 assert( db->mallocFailed ); 901 sqlite3ExprDelete(db, pLeft); 902 sqlite3ExprDelete(db, pRight); 903 }else{ 904 if( pRight ){ 905 pRoot->pRight = pRight; 906 pRoot->flags |= EP_Propagate & pRight->flags; 907 } 908 if( pLeft ){ 909 pRoot->pLeft = pLeft; 910 pRoot->flags |= EP_Propagate & pLeft->flags; 911 } 912 exprSetHeight(pRoot); 913 } 914 } 915 916 /* 917 ** Allocate an Expr node which joins as many as two subtrees. 918 ** 919 ** One or both of the subtrees can be NULL. Return a pointer to the new 920 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 921 ** free the subtrees and return NULL. 922 */ 923 Expr *sqlite3PExpr( 924 Parse *pParse, /* Parsing context */ 925 int op, /* Expression opcode */ 926 Expr *pLeft, /* Left operand */ 927 Expr *pRight /* Right operand */ 928 ){ 929 Expr *p; 930 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 931 if( p ){ 932 memset(p, 0, sizeof(Expr)); 933 p->op = op & 0xff; 934 p->iAgg = -1; 935 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 936 sqlite3ExprCheckHeight(pParse, p->nHeight); 937 }else{ 938 sqlite3ExprDelete(pParse->db, pLeft); 939 sqlite3ExprDelete(pParse->db, pRight); 940 } 941 return p; 942 } 943 944 /* 945 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 946 ** do a memory allocation failure) then delete the pSelect object. 947 */ 948 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 949 if( pExpr ){ 950 pExpr->x.pSelect = pSelect; 951 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 952 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 953 }else{ 954 assert( pParse->db->mallocFailed ); 955 sqlite3SelectDelete(pParse->db, pSelect); 956 } 957 } 958 959 /* 960 ** Expression list pEList is a list of vector values. This function 961 ** converts the contents of pEList to a VALUES(...) Select statement 962 ** returning 1 row for each element of the list. For example, the 963 ** expression list: 964 ** 965 ** ( (1,2), (3,4) (5,6) ) 966 ** 967 ** is translated to the equivalent of: 968 ** 969 ** VALUES(1,2), (3,4), (5,6) 970 ** 971 ** Each of the vector values in pEList must contain exactly nElem terms. 972 ** If a list element that is not a vector or does not contain nElem terms, 973 ** an error message is left in pParse. 974 ** 975 ** This is used as part of processing IN(...) expressions with a list 976 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 977 */ 978 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 979 int ii; 980 Select *pRet = 0; 981 assert( nElem>1 ); 982 for(ii=0; ii<pEList->nExpr; ii++){ 983 Select *pSel; 984 Expr *pExpr = pEList->a[ii].pExpr; 985 int nExprElem = (pExpr->op==TK_VECTOR ? pExpr->x.pList->nExpr : 1); 986 if( nExprElem!=nElem ){ 987 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 988 nExprElem, nExprElem>1?"s":"", nElem 989 ); 990 break; 991 } 992 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 993 pExpr->x.pList = 0; 994 if( pSel ){ 995 if( pRet ){ 996 pSel->op = TK_ALL; 997 pSel->pPrior = pRet; 998 } 999 pRet = pSel; 1000 } 1001 } 1002 1003 if( pRet && pRet->pPrior ){ 1004 pRet->selFlags |= SF_MultiValue; 1005 } 1006 sqlite3ExprListDelete(pParse->db, pEList); 1007 return pRet; 1008 } 1009 1010 /* 1011 ** Join two expressions using an AND operator. If either expression is 1012 ** NULL, then just return the other expression. 1013 ** 1014 ** If one side or the other of the AND is known to be false, then instead 1015 ** of returning an AND expression, just return a constant expression with 1016 ** a value of false. 1017 */ 1018 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1019 sqlite3 *db = pParse->db; 1020 if( pLeft==0 ){ 1021 return pRight; 1022 }else if( pRight==0 ){ 1023 return pLeft; 1024 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1025 && !IN_RENAME_OBJECT 1026 ){ 1027 sqlite3ExprDeferredDelete(pParse, pLeft); 1028 sqlite3ExprDeferredDelete(pParse, pRight); 1029 return sqlite3Expr(db, TK_INTEGER, "0"); 1030 }else{ 1031 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1032 } 1033 } 1034 1035 /* 1036 ** Construct a new expression node for a function with multiple 1037 ** arguments. 1038 */ 1039 Expr *sqlite3ExprFunction( 1040 Parse *pParse, /* Parsing context */ 1041 ExprList *pList, /* Argument list */ 1042 const Token *pToken, /* Name of the function */ 1043 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1044 ){ 1045 Expr *pNew; 1046 sqlite3 *db = pParse->db; 1047 assert( pToken ); 1048 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1049 if( pNew==0 ){ 1050 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1051 return 0; 1052 } 1053 if( pList 1054 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1055 && !pParse->nested 1056 ){ 1057 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1058 } 1059 pNew->x.pList = pList; 1060 ExprSetProperty(pNew, EP_HasFunc); 1061 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1062 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1063 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1064 return pNew; 1065 } 1066 1067 /* 1068 ** Check to see if a function is usable according to current access 1069 ** rules: 1070 ** 1071 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1072 ** 1073 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1074 ** top-level SQL 1075 ** 1076 ** If the function is not usable, create an error. 1077 */ 1078 void sqlite3ExprFunctionUsable( 1079 Parse *pParse, /* Parsing and code generating context */ 1080 const Expr *pExpr, /* The function invocation */ 1081 const FuncDef *pDef /* The function being invoked */ 1082 ){ 1083 assert( !IN_RENAME_OBJECT ); 1084 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1085 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1086 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1087 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1088 ){ 1089 /* Functions prohibited in triggers and views if: 1090 ** (1) tagged with SQLITE_DIRECTONLY 1091 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1092 ** is tagged with SQLITE_FUNC_UNSAFE) and 1093 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1094 ** that the schema is possibly tainted). 1095 */ 1096 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1097 } 1098 } 1099 } 1100 1101 /* 1102 ** Assign a variable number to an expression that encodes a wildcard 1103 ** in the original SQL statement. 1104 ** 1105 ** Wildcards consisting of a single "?" are assigned the next sequential 1106 ** variable number. 1107 ** 1108 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1109 ** sure "nnn" is not too big to avoid a denial of service attack when 1110 ** the SQL statement comes from an external source. 1111 ** 1112 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1113 ** as the previous instance of the same wildcard. Or if this is the first 1114 ** instance of the wildcard, the next sequential variable number is 1115 ** assigned. 1116 */ 1117 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1118 sqlite3 *db = pParse->db; 1119 const char *z; 1120 ynVar x; 1121 1122 if( pExpr==0 ) return; 1123 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1124 z = pExpr->u.zToken; 1125 assert( z!=0 ); 1126 assert( z[0]!=0 ); 1127 assert( n==(u32)sqlite3Strlen30(z) ); 1128 if( z[1]==0 ){ 1129 /* Wildcard of the form "?". Assign the next variable number */ 1130 assert( z[0]=='?' ); 1131 x = (ynVar)(++pParse->nVar); 1132 }else{ 1133 int doAdd = 0; 1134 if( z[0]=='?' ){ 1135 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1136 ** use it as the variable number */ 1137 i64 i; 1138 int bOk; 1139 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1140 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1141 bOk = 1; 1142 }else{ 1143 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1144 } 1145 testcase( i==0 ); 1146 testcase( i==1 ); 1147 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1148 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1149 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1150 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1151 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1152 return; 1153 } 1154 x = (ynVar)i; 1155 if( x>pParse->nVar ){ 1156 pParse->nVar = (int)x; 1157 doAdd = 1; 1158 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1159 doAdd = 1; 1160 } 1161 }else{ 1162 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1163 ** number as the prior appearance of the same name, or if the name 1164 ** has never appeared before, reuse the same variable number 1165 */ 1166 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1167 if( x==0 ){ 1168 x = (ynVar)(++pParse->nVar); 1169 doAdd = 1; 1170 } 1171 } 1172 if( doAdd ){ 1173 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1174 } 1175 } 1176 pExpr->iColumn = x; 1177 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1178 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1179 } 1180 } 1181 1182 /* 1183 ** Recursively delete an expression tree. 1184 */ 1185 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1186 assert( p!=0 ); 1187 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1188 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1189 1190 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1191 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1192 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1193 #ifdef SQLITE_DEBUG 1194 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1195 assert( p->pLeft==0 ); 1196 assert( p->pRight==0 ); 1197 assert( p->x.pSelect==0 ); 1198 } 1199 #endif 1200 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1201 /* The Expr.x union is never used at the same time as Expr.pRight */ 1202 assert( p->x.pList==0 || p->pRight==0 ); 1203 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1204 if( p->pRight ){ 1205 assert( !ExprHasProperty(p, EP_WinFunc) ); 1206 sqlite3ExprDeleteNN(db, p->pRight); 1207 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1208 assert( !ExprHasProperty(p, EP_WinFunc) ); 1209 sqlite3SelectDelete(db, p->x.pSelect); 1210 }else{ 1211 sqlite3ExprListDelete(db, p->x.pList); 1212 #ifndef SQLITE_OMIT_WINDOWFUNC 1213 if( ExprHasProperty(p, EP_WinFunc) ){ 1214 sqlite3WindowDelete(db, p->y.pWin); 1215 } 1216 #endif 1217 } 1218 } 1219 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1220 if( !ExprHasProperty(p, EP_Static) ){ 1221 sqlite3DbFreeNN(db, p); 1222 } 1223 } 1224 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1225 if( p ) sqlite3ExprDeleteNN(db, p); 1226 } 1227 1228 1229 /* 1230 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1231 ** This is similar to sqlite3ExprDelete() except that the delete is 1232 ** deferred untilthe pParse is deleted. 1233 ** 1234 ** The pExpr might be deleted immediately on an OOM error. 1235 ** 1236 ** The deferred delete is (currently) implemented by adding the 1237 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1238 */ 1239 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1240 pParse->pConstExpr = 1241 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1242 } 1243 1244 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1245 ** expression. 1246 */ 1247 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1248 if( p ){ 1249 if( IN_RENAME_OBJECT ){ 1250 sqlite3RenameExprUnmap(pParse, p); 1251 } 1252 sqlite3ExprDeleteNN(pParse->db, p); 1253 } 1254 } 1255 1256 /* 1257 ** Return the number of bytes allocated for the expression structure 1258 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1259 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1260 */ 1261 static int exprStructSize(const Expr *p){ 1262 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1263 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1264 return EXPR_FULLSIZE; 1265 } 1266 1267 /* 1268 ** The dupedExpr*Size() routines each return the number of bytes required 1269 ** to store a copy of an expression or expression tree. They differ in 1270 ** how much of the tree is measured. 1271 ** 1272 ** dupedExprStructSize() Size of only the Expr structure 1273 ** dupedExprNodeSize() Size of Expr + space for token 1274 ** dupedExprSize() Expr + token + subtree components 1275 ** 1276 *************************************************************************** 1277 ** 1278 ** The dupedExprStructSize() function returns two values OR-ed together: 1279 ** (1) the space required for a copy of the Expr structure only and 1280 ** (2) the EP_xxx flags that indicate what the structure size should be. 1281 ** The return values is always one of: 1282 ** 1283 ** EXPR_FULLSIZE 1284 ** EXPR_REDUCEDSIZE | EP_Reduced 1285 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1286 ** 1287 ** The size of the structure can be found by masking the return value 1288 ** of this routine with 0xfff. The flags can be found by masking the 1289 ** return value with EP_Reduced|EP_TokenOnly. 1290 ** 1291 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1292 ** (unreduced) Expr objects as they or originally constructed by the parser. 1293 ** During expression analysis, extra information is computed and moved into 1294 ** later parts of the Expr object and that extra information might get chopped 1295 ** off if the expression is reduced. Note also that it does not work to 1296 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1297 ** to reduce a pristine expression tree from the parser. The implementation 1298 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1299 ** to enforce this constraint. 1300 */ 1301 static int dupedExprStructSize(const Expr *p, int flags){ 1302 int nSize; 1303 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1304 assert( EXPR_FULLSIZE<=0xfff ); 1305 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1306 if( 0==flags || p->op==TK_SELECT_COLUMN 1307 #ifndef SQLITE_OMIT_WINDOWFUNC 1308 || ExprHasProperty(p, EP_WinFunc) 1309 #endif 1310 ){ 1311 nSize = EXPR_FULLSIZE; 1312 }else{ 1313 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1314 assert( !ExprHasProperty(p, EP_FromJoin) ); 1315 assert( !ExprHasProperty(p, EP_MemToken) ); 1316 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1317 if( p->pLeft || p->x.pList ){ 1318 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1319 }else{ 1320 assert( p->pRight==0 ); 1321 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1322 } 1323 } 1324 return nSize; 1325 } 1326 1327 /* 1328 ** This function returns the space in bytes required to store the copy 1329 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1330 ** string is defined.) 1331 */ 1332 static int dupedExprNodeSize(const Expr *p, int flags){ 1333 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1334 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1335 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1336 } 1337 return ROUND8(nByte); 1338 } 1339 1340 /* 1341 ** Return the number of bytes required to create a duplicate of the 1342 ** expression passed as the first argument. The second argument is a 1343 ** mask containing EXPRDUP_XXX flags. 1344 ** 1345 ** The value returned includes space to create a copy of the Expr struct 1346 ** itself and the buffer referred to by Expr.u.zToken, if any. 1347 ** 1348 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1349 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1350 ** and Expr.pRight variables (but not for any structures pointed to or 1351 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1352 */ 1353 static int dupedExprSize(const Expr *p, int flags){ 1354 int nByte = 0; 1355 if( p ){ 1356 nByte = dupedExprNodeSize(p, flags); 1357 if( flags&EXPRDUP_REDUCE ){ 1358 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1359 } 1360 } 1361 return nByte; 1362 } 1363 1364 /* 1365 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1366 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1367 ** to store the copy of expression p, the copies of p->u.zToken 1368 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1369 ** if any. Before returning, *pzBuffer is set to the first byte past the 1370 ** portion of the buffer copied into by this function. 1371 */ 1372 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1373 Expr *pNew; /* Value to return */ 1374 u8 *zAlloc; /* Memory space from which to build Expr object */ 1375 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1376 1377 assert( db!=0 ); 1378 assert( p ); 1379 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1380 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1381 1382 /* Figure out where to write the new Expr structure. */ 1383 if( pzBuffer ){ 1384 zAlloc = *pzBuffer; 1385 staticFlag = EP_Static; 1386 assert( zAlloc!=0 ); 1387 }else{ 1388 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1389 staticFlag = 0; 1390 } 1391 pNew = (Expr *)zAlloc; 1392 1393 if( pNew ){ 1394 /* Set nNewSize to the size allocated for the structure pointed to 1395 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1396 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1397 ** by the copy of the p->u.zToken string (if any). 1398 */ 1399 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1400 const int nNewSize = nStructSize & 0xfff; 1401 int nToken; 1402 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1403 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1404 }else{ 1405 nToken = 0; 1406 } 1407 if( dupFlags ){ 1408 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1409 memcpy(zAlloc, p, nNewSize); 1410 }else{ 1411 u32 nSize = (u32)exprStructSize(p); 1412 memcpy(zAlloc, p, nSize); 1413 if( nSize<EXPR_FULLSIZE ){ 1414 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1415 } 1416 } 1417 1418 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1419 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1420 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1421 pNew->flags |= staticFlag; 1422 ExprClearVVAProperties(pNew); 1423 if( dupFlags ){ 1424 ExprSetVVAProperty(pNew, EP_Immutable); 1425 } 1426 1427 /* Copy the p->u.zToken string, if any. */ 1428 if( nToken ){ 1429 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1430 memcpy(zToken, p->u.zToken, nToken); 1431 } 1432 1433 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1434 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1435 if( ExprHasProperty(p, EP_xIsSelect) ){ 1436 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1437 }else{ 1438 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1439 } 1440 } 1441 1442 /* Fill in pNew->pLeft and pNew->pRight. */ 1443 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1444 zAlloc += dupedExprNodeSize(p, dupFlags); 1445 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1446 pNew->pLeft = p->pLeft ? 1447 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1448 pNew->pRight = p->pRight ? 1449 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1450 } 1451 #ifndef SQLITE_OMIT_WINDOWFUNC 1452 if( ExprHasProperty(p, EP_WinFunc) ){ 1453 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1454 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1455 } 1456 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1457 if( pzBuffer ){ 1458 *pzBuffer = zAlloc; 1459 } 1460 }else{ 1461 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1462 if( pNew->op==TK_SELECT_COLUMN ){ 1463 pNew->pLeft = p->pLeft; 1464 assert( p->pRight==0 || p->pRight==p->pLeft 1465 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1466 }else{ 1467 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1468 } 1469 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1470 } 1471 } 1472 } 1473 return pNew; 1474 } 1475 1476 /* 1477 ** Create and return a deep copy of the object passed as the second 1478 ** argument. If an OOM condition is encountered, NULL is returned 1479 ** and the db->mallocFailed flag set. 1480 */ 1481 #ifndef SQLITE_OMIT_CTE 1482 With *sqlite3WithDup(sqlite3 *db, With *p){ 1483 With *pRet = 0; 1484 if( p ){ 1485 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1486 pRet = sqlite3DbMallocZero(db, nByte); 1487 if( pRet ){ 1488 int i; 1489 pRet->nCte = p->nCte; 1490 for(i=0; i<p->nCte; i++){ 1491 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1492 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1493 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1494 } 1495 } 1496 } 1497 return pRet; 1498 } 1499 #else 1500 # define sqlite3WithDup(x,y) 0 1501 #endif 1502 1503 #ifndef SQLITE_OMIT_WINDOWFUNC 1504 /* 1505 ** The gatherSelectWindows() procedure and its helper routine 1506 ** gatherSelectWindowsCallback() are used to scan all the expressions 1507 ** an a newly duplicated SELECT statement and gather all of the Window 1508 ** objects found there, assembling them onto the linked list at Select->pWin. 1509 */ 1510 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1511 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1512 Select *pSelect = pWalker->u.pSelect; 1513 Window *pWin = pExpr->y.pWin; 1514 assert( pWin ); 1515 assert( IsWindowFunc(pExpr) ); 1516 assert( pWin->ppThis==0 ); 1517 sqlite3WindowLink(pSelect, pWin); 1518 } 1519 return WRC_Continue; 1520 } 1521 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1522 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1523 } 1524 static void gatherSelectWindows(Select *p){ 1525 Walker w; 1526 w.xExprCallback = gatherSelectWindowsCallback; 1527 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1528 w.xSelectCallback2 = 0; 1529 w.pParse = 0; 1530 w.u.pSelect = p; 1531 sqlite3WalkSelect(&w, p); 1532 } 1533 #endif 1534 1535 1536 /* 1537 ** The following group of routines make deep copies of expressions, 1538 ** expression lists, ID lists, and select statements. The copies can 1539 ** be deleted (by being passed to their respective ...Delete() routines) 1540 ** without effecting the originals. 1541 ** 1542 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1543 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1544 ** by subsequent calls to sqlite*ListAppend() routines. 1545 ** 1546 ** Any tables that the SrcList might point to are not duplicated. 1547 ** 1548 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1549 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1550 ** truncated version of the usual Expr structure that will be stored as 1551 ** part of the in-memory representation of the database schema. 1552 */ 1553 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1554 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1555 return p ? exprDup(db, p, flags, 0) : 0; 1556 } 1557 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1558 ExprList *pNew; 1559 struct ExprList_item *pItem; 1560 const struct ExprList_item *pOldItem; 1561 int i; 1562 Expr *pPriorSelectColOld = 0; 1563 Expr *pPriorSelectColNew = 0; 1564 assert( db!=0 ); 1565 if( p==0 ) return 0; 1566 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1567 if( pNew==0 ) return 0; 1568 pNew->nExpr = p->nExpr; 1569 pNew->nAlloc = p->nAlloc; 1570 pItem = pNew->a; 1571 pOldItem = p->a; 1572 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1573 Expr *pOldExpr = pOldItem->pExpr; 1574 Expr *pNewExpr; 1575 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1576 if( pOldExpr 1577 && pOldExpr->op==TK_SELECT_COLUMN 1578 && (pNewExpr = pItem->pExpr)!=0 1579 ){ 1580 if( pNewExpr->pRight ){ 1581 pPriorSelectColOld = pOldExpr->pRight; 1582 pPriorSelectColNew = pNewExpr->pRight; 1583 pNewExpr->pLeft = pNewExpr->pRight; 1584 }else{ 1585 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1586 pPriorSelectColOld = pOldExpr->pLeft; 1587 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1588 pNewExpr->pRight = pPriorSelectColNew; 1589 } 1590 pNewExpr->pLeft = pPriorSelectColNew; 1591 } 1592 } 1593 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1594 pItem->sortFlags = pOldItem->sortFlags; 1595 pItem->eEName = pOldItem->eEName; 1596 pItem->done = 0; 1597 pItem->bNulls = pOldItem->bNulls; 1598 pItem->bSorterRef = pOldItem->bSorterRef; 1599 pItem->u = pOldItem->u; 1600 } 1601 return pNew; 1602 } 1603 1604 /* 1605 ** If cursors, triggers, views and subqueries are all omitted from 1606 ** the build, then none of the following routines, except for 1607 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1608 ** called with a NULL argument. 1609 */ 1610 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1611 || !defined(SQLITE_OMIT_SUBQUERY) 1612 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1613 SrcList *pNew; 1614 int i; 1615 int nByte; 1616 assert( db!=0 ); 1617 if( p==0 ) return 0; 1618 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1619 pNew = sqlite3DbMallocRawNN(db, nByte ); 1620 if( pNew==0 ) return 0; 1621 pNew->nSrc = pNew->nAlloc = p->nSrc; 1622 for(i=0; i<p->nSrc; i++){ 1623 SrcItem *pNewItem = &pNew->a[i]; 1624 const SrcItem *pOldItem = &p->a[i]; 1625 Table *pTab; 1626 pNewItem->pSchema = pOldItem->pSchema; 1627 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1628 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1629 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1630 pNewItem->fg = pOldItem->fg; 1631 pNewItem->iCursor = pOldItem->iCursor; 1632 pNewItem->addrFillSub = pOldItem->addrFillSub; 1633 pNewItem->regReturn = pOldItem->regReturn; 1634 if( pNewItem->fg.isIndexedBy ){ 1635 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1636 } 1637 pNewItem->u2 = pOldItem->u2; 1638 if( pNewItem->fg.isCte ){ 1639 pNewItem->u2.pCteUse->nUse++; 1640 } 1641 if( pNewItem->fg.isTabFunc ){ 1642 pNewItem->u1.pFuncArg = 1643 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1644 } 1645 pTab = pNewItem->pTab = pOldItem->pTab; 1646 if( pTab ){ 1647 pTab->nTabRef++; 1648 } 1649 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1650 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1651 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1652 pNewItem->colUsed = pOldItem->colUsed; 1653 } 1654 return pNew; 1655 } 1656 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1657 IdList *pNew; 1658 int i; 1659 assert( db!=0 ); 1660 if( p==0 ) return 0; 1661 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1662 if( pNew==0 ) return 0; 1663 pNew->nId = p->nId; 1664 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1665 if( pNew->a==0 ){ 1666 sqlite3DbFreeNN(db, pNew); 1667 return 0; 1668 } 1669 /* Note that because the size of the allocation for p->a[] is not 1670 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1671 ** on the duplicate created by this function. */ 1672 for(i=0; i<p->nId; i++){ 1673 struct IdList_item *pNewItem = &pNew->a[i]; 1674 struct IdList_item *pOldItem = &p->a[i]; 1675 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1676 pNewItem->idx = pOldItem->idx; 1677 } 1678 return pNew; 1679 } 1680 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1681 Select *pRet = 0; 1682 Select *pNext = 0; 1683 Select **pp = &pRet; 1684 const Select *p; 1685 1686 assert( db!=0 ); 1687 for(p=pDup; p; p=p->pPrior){ 1688 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1689 if( pNew==0 ) break; 1690 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1691 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1692 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1693 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1694 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1695 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1696 pNew->op = p->op; 1697 pNew->pNext = pNext; 1698 pNew->pPrior = 0; 1699 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1700 pNew->iLimit = 0; 1701 pNew->iOffset = 0; 1702 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1703 pNew->addrOpenEphm[0] = -1; 1704 pNew->addrOpenEphm[1] = -1; 1705 pNew->nSelectRow = p->nSelectRow; 1706 pNew->pWith = sqlite3WithDup(db, p->pWith); 1707 #ifndef SQLITE_OMIT_WINDOWFUNC 1708 pNew->pWin = 0; 1709 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1710 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1711 #endif 1712 pNew->selId = p->selId; 1713 if( db->mallocFailed ){ 1714 /* Any prior OOM might have left the Select object incomplete. 1715 ** Delete the whole thing rather than allow an incomplete Select 1716 ** to be used by the code generator. */ 1717 pNew->pNext = 0; 1718 sqlite3SelectDelete(db, pNew); 1719 break; 1720 } 1721 *pp = pNew; 1722 pp = &pNew->pPrior; 1723 pNext = pNew; 1724 } 1725 1726 return pRet; 1727 } 1728 #else 1729 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1730 assert( p==0 ); 1731 return 0; 1732 } 1733 #endif 1734 1735 1736 /* 1737 ** Add a new element to the end of an expression list. If pList is 1738 ** initially NULL, then create a new expression list. 1739 ** 1740 ** The pList argument must be either NULL or a pointer to an ExprList 1741 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1742 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1743 ** Reason: This routine assumes that the number of slots in pList->a[] 1744 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1745 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1746 ** 1747 ** If a memory allocation error occurs, the entire list is freed and 1748 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1749 ** that the new entry was successfully appended. 1750 */ 1751 static const struct ExprList_item zeroItem = {0}; 1752 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1753 sqlite3 *db, /* Database handle. Used for memory allocation */ 1754 Expr *pExpr /* Expression to be appended. Might be NULL */ 1755 ){ 1756 struct ExprList_item *pItem; 1757 ExprList *pList; 1758 1759 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1760 if( pList==0 ){ 1761 sqlite3ExprDelete(db, pExpr); 1762 return 0; 1763 } 1764 pList->nAlloc = 4; 1765 pList->nExpr = 1; 1766 pItem = &pList->a[0]; 1767 *pItem = zeroItem; 1768 pItem->pExpr = pExpr; 1769 return pList; 1770 } 1771 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1772 sqlite3 *db, /* Database handle. Used for memory allocation */ 1773 ExprList *pList, /* List to which to append. Might be NULL */ 1774 Expr *pExpr /* Expression to be appended. Might be NULL */ 1775 ){ 1776 struct ExprList_item *pItem; 1777 ExprList *pNew; 1778 pList->nAlloc *= 2; 1779 pNew = sqlite3DbRealloc(db, pList, 1780 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1781 if( pNew==0 ){ 1782 sqlite3ExprListDelete(db, pList); 1783 sqlite3ExprDelete(db, pExpr); 1784 return 0; 1785 }else{ 1786 pList = pNew; 1787 } 1788 pItem = &pList->a[pList->nExpr++]; 1789 *pItem = zeroItem; 1790 pItem->pExpr = pExpr; 1791 return pList; 1792 } 1793 ExprList *sqlite3ExprListAppend( 1794 Parse *pParse, /* Parsing context */ 1795 ExprList *pList, /* List to which to append. Might be NULL */ 1796 Expr *pExpr /* Expression to be appended. Might be NULL */ 1797 ){ 1798 struct ExprList_item *pItem; 1799 if( pList==0 ){ 1800 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1801 } 1802 if( pList->nAlloc<pList->nExpr+1 ){ 1803 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1804 } 1805 pItem = &pList->a[pList->nExpr++]; 1806 *pItem = zeroItem; 1807 pItem->pExpr = pExpr; 1808 return pList; 1809 } 1810 1811 /* 1812 ** pColumns and pExpr form a vector assignment which is part of the SET 1813 ** clause of an UPDATE statement. Like this: 1814 ** 1815 ** (a,b,c) = (expr1,expr2,expr3) 1816 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1817 ** 1818 ** For each term of the vector assignment, append new entries to the 1819 ** expression list pList. In the case of a subquery on the RHS, append 1820 ** TK_SELECT_COLUMN expressions. 1821 */ 1822 ExprList *sqlite3ExprListAppendVector( 1823 Parse *pParse, /* Parsing context */ 1824 ExprList *pList, /* List to which to append. Might be NULL */ 1825 IdList *pColumns, /* List of names of LHS of the assignment */ 1826 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1827 ){ 1828 sqlite3 *db = pParse->db; 1829 int n; 1830 int i; 1831 int iFirst = pList ? pList->nExpr : 0; 1832 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1833 ** exit prior to this routine being invoked */ 1834 if( NEVER(pColumns==0) ) goto vector_append_error; 1835 if( pExpr==0 ) goto vector_append_error; 1836 1837 /* If the RHS is a vector, then we can immediately check to see that 1838 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1839 ** wildcards ("*") in the result set of the SELECT must be expanded before 1840 ** we can do the size check, so defer the size check until code generation. 1841 */ 1842 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1843 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1844 pColumns->nId, n); 1845 goto vector_append_error; 1846 } 1847 1848 for(i=0; i<pColumns->nId; i++){ 1849 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1850 assert( pSubExpr!=0 || db->mallocFailed ); 1851 if( pSubExpr==0 ) continue; 1852 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1853 if( pList ){ 1854 assert( pList->nExpr==iFirst+i+1 ); 1855 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1856 pColumns->a[i].zName = 0; 1857 } 1858 } 1859 1860 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1861 Expr *pFirst = pList->a[iFirst].pExpr; 1862 assert( pFirst!=0 ); 1863 assert( pFirst->op==TK_SELECT_COLUMN ); 1864 1865 /* Store the SELECT statement in pRight so it will be deleted when 1866 ** sqlite3ExprListDelete() is called */ 1867 pFirst->pRight = pExpr; 1868 pExpr = 0; 1869 1870 /* Remember the size of the LHS in iTable so that we can check that 1871 ** the RHS and LHS sizes match during code generation. */ 1872 pFirst->iTable = pColumns->nId; 1873 } 1874 1875 vector_append_error: 1876 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1877 sqlite3IdListDelete(db, pColumns); 1878 return pList; 1879 } 1880 1881 /* 1882 ** Set the sort order for the last element on the given ExprList. 1883 */ 1884 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1885 struct ExprList_item *pItem; 1886 if( p==0 ) return; 1887 assert( p->nExpr>0 ); 1888 1889 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1890 assert( iSortOrder==SQLITE_SO_UNDEFINED 1891 || iSortOrder==SQLITE_SO_ASC 1892 || iSortOrder==SQLITE_SO_DESC 1893 ); 1894 assert( eNulls==SQLITE_SO_UNDEFINED 1895 || eNulls==SQLITE_SO_ASC 1896 || eNulls==SQLITE_SO_DESC 1897 ); 1898 1899 pItem = &p->a[p->nExpr-1]; 1900 assert( pItem->bNulls==0 ); 1901 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1902 iSortOrder = SQLITE_SO_ASC; 1903 } 1904 pItem->sortFlags = (u8)iSortOrder; 1905 1906 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1907 pItem->bNulls = 1; 1908 if( iSortOrder!=eNulls ){ 1909 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1910 } 1911 } 1912 } 1913 1914 /* 1915 ** Set the ExprList.a[].zEName element of the most recently added item 1916 ** on the expression list. 1917 ** 1918 ** pList might be NULL following an OOM error. But pName should never be 1919 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1920 ** is set. 1921 */ 1922 void sqlite3ExprListSetName( 1923 Parse *pParse, /* Parsing context */ 1924 ExprList *pList, /* List to which to add the span. */ 1925 const Token *pName, /* Name to be added */ 1926 int dequote /* True to cause the name to be dequoted */ 1927 ){ 1928 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1929 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1930 if( pList ){ 1931 struct ExprList_item *pItem; 1932 assert( pList->nExpr>0 ); 1933 pItem = &pList->a[pList->nExpr-1]; 1934 assert( pItem->zEName==0 ); 1935 assert( pItem->eEName==ENAME_NAME ); 1936 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1937 if( dequote ){ 1938 /* If dequote==0, then pName->z does not point to part of a DDL 1939 ** statement handled by the parser. And so no token need be added 1940 ** to the token-map. */ 1941 sqlite3Dequote(pItem->zEName); 1942 if( IN_RENAME_OBJECT ){ 1943 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1944 } 1945 } 1946 } 1947 } 1948 1949 /* 1950 ** Set the ExprList.a[].zSpan element of the most recently added item 1951 ** on the expression list. 1952 ** 1953 ** pList might be NULL following an OOM error. But pSpan should never be 1954 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1955 ** is set. 1956 */ 1957 void sqlite3ExprListSetSpan( 1958 Parse *pParse, /* Parsing context */ 1959 ExprList *pList, /* List to which to add the span. */ 1960 const char *zStart, /* Start of the span */ 1961 const char *zEnd /* End of the span */ 1962 ){ 1963 sqlite3 *db = pParse->db; 1964 assert( pList!=0 || db->mallocFailed!=0 ); 1965 if( pList ){ 1966 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1967 assert( pList->nExpr>0 ); 1968 if( pItem->zEName==0 ){ 1969 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1970 pItem->eEName = ENAME_SPAN; 1971 } 1972 } 1973 } 1974 1975 /* 1976 ** If the expression list pEList contains more than iLimit elements, 1977 ** leave an error message in pParse. 1978 */ 1979 void sqlite3ExprListCheckLength( 1980 Parse *pParse, 1981 ExprList *pEList, 1982 const char *zObject 1983 ){ 1984 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1985 testcase( pEList && pEList->nExpr==mx ); 1986 testcase( pEList && pEList->nExpr==mx+1 ); 1987 if( pEList && pEList->nExpr>mx ){ 1988 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1989 } 1990 } 1991 1992 /* 1993 ** Delete an entire expression list. 1994 */ 1995 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1996 int i = pList->nExpr; 1997 struct ExprList_item *pItem = pList->a; 1998 assert( pList->nExpr>0 ); 1999 do{ 2000 sqlite3ExprDelete(db, pItem->pExpr); 2001 sqlite3DbFree(db, pItem->zEName); 2002 pItem++; 2003 }while( --i>0 ); 2004 sqlite3DbFreeNN(db, pList); 2005 } 2006 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2007 if( pList ) exprListDeleteNN(db, pList); 2008 } 2009 2010 /* 2011 ** Return the bitwise-OR of all Expr.flags fields in the given 2012 ** ExprList. 2013 */ 2014 u32 sqlite3ExprListFlags(const ExprList *pList){ 2015 int i; 2016 u32 m = 0; 2017 assert( pList!=0 ); 2018 for(i=0; i<pList->nExpr; i++){ 2019 Expr *pExpr = pList->a[i].pExpr; 2020 assert( pExpr!=0 ); 2021 m |= pExpr->flags; 2022 } 2023 return m; 2024 } 2025 2026 /* 2027 ** This is a SELECT-node callback for the expression walker that 2028 ** always "fails". By "fail" in this case, we mean set 2029 ** pWalker->eCode to zero and abort. 2030 ** 2031 ** This callback is used by multiple expression walkers. 2032 */ 2033 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2034 UNUSED_PARAMETER(NotUsed); 2035 pWalker->eCode = 0; 2036 return WRC_Abort; 2037 } 2038 2039 /* 2040 ** Check the input string to see if it is "true" or "false" (in any case). 2041 ** 2042 ** If the string is.... Return 2043 ** "true" EP_IsTrue 2044 ** "false" EP_IsFalse 2045 ** anything else 0 2046 */ 2047 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2048 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2049 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2050 return 0; 2051 } 2052 2053 2054 /* 2055 ** If the input expression is an ID with the name "true" or "false" 2056 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2057 ** the conversion happened, and zero if the expression is unaltered. 2058 */ 2059 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2060 u32 v; 2061 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2062 if( !ExprHasProperty(pExpr, EP_Quoted) 2063 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2064 ){ 2065 pExpr->op = TK_TRUEFALSE; 2066 ExprSetProperty(pExpr, v); 2067 return 1; 2068 } 2069 return 0; 2070 } 2071 2072 /* 2073 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2074 ** and 0 if it is FALSE. 2075 */ 2076 int sqlite3ExprTruthValue(const Expr *pExpr){ 2077 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2078 assert( pExpr->op==TK_TRUEFALSE ); 2079 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2080 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2081 return pExpr->u.zToken[4]==0; 2082 } 2083 2084 /* 2085 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2086 ** terms that are always true or false. Return the simplified expression. 2087 ** Or return the original expression if no simplification is possible. 2088 ** 2089 ** Examples: 2090 ** 2091 ** (x<10) AND true => (x<10) 2092 ** (x<10) AND false => false 2093 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2094 ** (x<10) AND (y=22 OR true) => (x<10) 2095 ** (y=22) OR true => true 2096 */ 2097 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2098 assert( pExpr!=0 ); 2099 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2100 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2101 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2102 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2103 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2104 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2105 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2106 } 2107 } 2108 return pExpr; 2109 } 2110 2111 2112 /* 2113 ** These routines are Walker callbacks used to check expressions to 2114 ** see if they are "constant" for some definition of constant. The 2115 ** Walker.eCode value determines the type of "constant" we are looking 2116 ** for. 2117 ** 2118 ** These callback routines are used to implement the following: 2119 ** 2120 ** sqlite3ExprIsConstant() pWalker->eCode==1 2121 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2122 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2123 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2124 ** 2125 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2126 ** is found to not be a constant. 2127 ** 2128 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2129 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2130 ** when parsing an existing schema out of the sqlite_schema table and 4 2131 ** when processing a new CREATE TABLE statement. A bound parameter raises 2132 ** an error for new statements, but is silently converted 2133 ** to NULL for existing schemas. This allows sqlite_schema tables that 2134 ** contain a bound parameter because they were generated by older versions 2135 ** of SQLite to be parsed by newer versions of SQLite without raising a 2136 ** malformed schema error. 2137 */ 2138 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2139 2140 /* If pWalker->eCode is 2 then any term of the expression that comes from 2141 ** the ON or USING clauses of a left join disqualifies the expression 2142 ** from being considered constant. */ 2143 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2144 pWalker->eCode = 0; 2145 return WRC_Abort; 2146 } 2147 2148 switch( pExpr->op ){ 2149 /* Consider functions to be constant if all their arguments are constant 2150 ** and either pWalker->eCode==4 or 5 or the function has the 2151 ** SQLITE_FUNC_CONST flag. */ 2152 case TK_FUNCTION: 2153 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2154 && !ExprHasProperty(pExpr, EP_WinFunc) 2155 ){ 2156 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2157 return WRC_Continue; 2158 }else{ 2159 pWalker->eCode = 0; 2160 return WRC_Abort; 2161 } 2162 case TK_ID: 2163 /* Convert "true" or "false" in a DEFAULT clause into the 2164 ** appropriate TK_TRUEFALSE operator */ 2165 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2166 return WRC_Prune; 2167 } 2168 /* no break */ deliberate_fall_through 2169 case TK_COLUMN: 2170 case TK_AGG_FUNCTION: 2171 case TK_AGG_COLUMN: 2172 testcase( pExpr->op==TK_ID ); 2173 testcase( pExpr->op==TK_COLUMN ); 2174 testcase( pExpr->op==TK_AGG_FUNCTION ); 2175 testcase( pExpr->op==TK_AGG_COLUMN ); 2176 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2177 return WRC_Continue; 2178 } 2179 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2180 return WRC_Continue; 2181 } 2182 /* no break */ deliberate_fall_through 2183 case TK_IF_NULL_ROW: 2184 case TK_REGISTER: 2185 case TK_DOT: 2186 testcase( pExpr->op==TK_REGISTER ); 2187 testcase( pExpr->op==TK_IF_NULL_ROW ); 2188 testcase( pExpr->op==TK_DOT ); 2189 pWalker->eCode = 0; 2190 return WRC_Abort; 2191 case TK_VARIABLE: 2192 if( pWalker->eCode==5 ){ 2193 /* Silently convert bound parameters that appear inside of CREATE 2194 ** statements into a NULL when parsing the CREATE statement text out 2195 ** of the sqlite_schema table */ 2196 pExpr->op = TK_NULL; 2197 }else if( pWalker->eCode==4 ){ 2198 /* A bound parameter in a CREATE statement that originates from 2199 ** sqlite3_prepare() causes an error */ 2200 pWalker->eCode = 0; 2201 return WRC_Abort; 2202 } 2203 /* no break */ deliberate_fall_through 2204 default: 2205 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2206 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2207 return WRC_Continue; 2208 } 2209 } 2210 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2211 Walker w; 2212 w.eCode = initFlag; 2213 w.xExprCallback = exprNodeIsConstant; 2214 w.xSelectCallback = sqlite3SelectWalkFail; 2215 #ifdef SQLITE_DEBUG 2216 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2217 #endif 2218 w.u.iCur = iCur; 2219 sqlite3WalkExpr(&w, p); 2220 return w.eCode; 2221 } 2222 2223 /* 2224 ** Walk an expression tree. Return non-zero if the expression is constant 2225 ** and 0 if it involves variables or function calls. 2226 ** 2227 ** For the purposes of this function, a double-quoted string (ex: "abc") 2228 ** is considered a variable but a single-quoted string (ex: 'abc') is 2229 ** a constant. 2230 */ 2231 int sqlite3ExprIsConstant(Expr *p){ 2232 return exprIsConst(p, 1, 0); 2233 } 2234 2235 /* 2236 ** Walk an expression tree. Return non-zero if 2237 ** 2238 ** (1) the expression is constant, and 2239 ** (2) the expression does originate in the ON or USING clause 2240 ** of a LEFT JOIN, and 2241 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2242 ** operands created by the constant propagation optimization. 2243 ** 2244 ** When this routine returns true, it indicates that the expression 2245 ** can be added to the pParse->pConstExpr list and evaluated once when 2246 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2247 */ 2248 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2249 return exprIsConst(p, 2, 0); 2250 } 2251 2252 /* 2253 ** Walk an expression tree. Return non-zero if the expression is constant 2254 ** for any single row of the table with cursor iCur. In other words, the 2255 ** expression must not refer to any non-deterministic function nor any 2256 ** table other than iCur. 2257 */ 2258 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2259 return exprIsConst(p, 3, iCur); 2260 } 2261 2262 2263 /* 2264 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2265 */ 2266 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2267 ExprList *pGroupBy = pWalker->u.pGroupBy; 2268 int i; 2269 2270 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2271 ** it constant. */ 2272 for(i=0; i<pGroupBy->nExpr; i++){ 2273 Expr *p = pGroupBy->a[i].pExpr; 2274 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2275 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2276 if( sqlite3IsBinary(pColl) ){ 2277 return WRC_Prune; 2278 } 2279 } 2280 } 2281 2282 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2283 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2284 pWalker->eCode = 0; 2285 return WRC_Abort; 2286 } 2287 2288 return exprNodeIsConstant(pWalker, pExpr); 2289 } 2290 2291 /* 2292 ** Walk the expression tree passed as the first argument. Return non-zero 2293 ** if the expression consists entirely of constants or copies of terms 2294 ** in pGroupBy that sort with the BINARY collation sequence. 2295 ** 2296 ** This routine is used to determine if a term of the HAVING clause can 2297 ** be promoted into the WHERE clause. In order for such a promotion to work, 2298 ** the value of the HAVING clause term must be the same for all members of 2299 ** a "group". The requirement that the GROUP BY term must be BINARY 2300 ** assumes that no other collating sequence will have a finer-grained 2301 ** grouping than binary. In other words (A=B COLLATE binary) implies 2302 ** A=B in every other collating sequence. The requirement that the 2303 ** GROUP BY be BINARY is stricter than necessary. It would also work 2304 ** to promote HAVING clauses that use the same alternative collating 2305 ** sequence as the GROUP BY term, but that is much harder to check, 2306 ** alternative collating sequences are uncommon, and this is only an 2307 ** optimization, so we take the easy way out and simply require the 2308 ** GROUP BY to use the BINARY collating sequence. 2309 */ 2310 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2311 Walker w; 2312 w.eCode = 1; 2313 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2314 w.xSelectCallback = 0; 2315 w.u.pGroupBy = pGroupBy; 2316 w.pParse = pParse; 2317 sqlite3WalkExpr(&w, p); 2318 return w.eCode; 2319 } 2320 2321 /* 2322 ** Walk an expression tree for the DEFAULT field of a column definition 2323 ** in a CREATE TABLE statement. Return non-zero if the expression is 2324 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2325 ** the expression is constant or a function call with constant arguments. 2326 ** Return and 0 if there are any variables. 2327 ** 2328 ** isInit is true when parsing from sqlite_schema. isInit is false when 2329 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2330 ** (such as ? or $abc) in the expression are converted into NULL. When 2331 ** isInit is false, parameters raise an error. Parameters should not be 2332 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2333 ** allowed it, so we need to support it when reading sqlite_schema for 2334 ** backwards compatibility. 2335 ** 2336 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2337 ** 2338 ** For the purposes of this function, a double-quoted string (ex: "abc") 2339 ** is considered a variable but a single-quoted string (ex: 'abc') is 2340 ** a constant. 2341 */ 2342 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2343 assert( isInit==0 || isInit==1 ); 2344 return exprIsConst(p, 4+isInit, 0); 2345 } 2346 2347 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2348 /* 2349 ** Walk an expression tree. Return 1 if the expression contains a 2350 ** subquery of some kind. Return 0 if there are no subqueries. 2351 */ 2352 int sqlite3ExprContainsSubquery(Expr *p){ 2353 Walker w; 2354 w.eCode = 1; 2355 w.xExprCallback = sqlite3ExprWalkNoop; 2356 w.xSelectCallback = sqlite3SelectWalkFail; 2357 #ifdef SQLITE_DEBUG 2358 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2359 #endif 2360 sqlite3WalkExpr(&w, p); 2361 return w.eCode==0; 2362 } 2363 #endif 2364 2365 /* 2366 ** If the expression p codes a constant integer that is small enough 2367 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2368 ** in *pValue. If the expression is not an integer or if it is too big 2369 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2370 */ 2371 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2372 int rc = 0; 2373 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2374 2375 /* If an expression is an integer literal that fits in a signed 32-bit 2376 ** integer, then the EP_IntValue flag will have already been set */ 2377 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2378 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2379 2380 if( p->flags & EP_IntValue ){ 2381 *pValue = p->u.iValue; 2382 return 1; 2383 } 2384 switch( p->op ){ 2385 case TK_UPLUS: { 2386 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2387 break; 2388 } 2389 case TK_UMINUS: { 2390 int v; 2391 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2392 assert( v!=(-2147483647-1) ); 2393 *pValue = -v; 2394 rc = 1; 2395 } 2396 break; 2397 } 2398 default: break; 2399 } 2400 return rc; 2401 } 2402 2403 /* 2404 ** Return FALSE if there is no chance that the expression can be NULL. 2405 ** 2406 ** If the expression might be NULL or if the expression is too complex 2407 ** to tell return TRUE. 2408 ** 2409 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2410 ** when we know that a value cannot be NULL. Hence, a false positive 2411 ** (returning TRUE when in fact the expression can never be NULL) might 2412 ** be a small performance hit but is otherwise harmless. On the other 2413 ** hand, a false negative (returning FALSE when the result could be NULL) 2414 ** will likely result in an incorrect answer. So when in doubt, return 2415 ** TRUE. 2416 */ 2417 int sqlite3ExprCanBeNull(const Expr *p){ 2418 u8 op; 2419 assert( p!=0 ); 2420 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2421 p = p->pLeft; 2422 assert( p!=0 ); 2423 } 2424 op = p->op; 2425 if( op==TK_REGISTER ) op = p->op2; 2426 switch( op ){ 2427 case TK_INTEGER: 2428 case TK_STRING: 2429 case TK_FLOAT: 2430 case TK_BLOB: 2431 return 0; 2432 case TK_COLUMN: 2433 return ExprHasProperty(p, EP_CanBeNull) || 2434 p->y.pTab==0 || /* Reference to column of index on expression */ 2435 (p->iColumn>=0 2436 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2437 && p->y.pTab->aCol[p->iColumn].notNull==0); 2438 default: 2439 return 1; 2440 } 2441 } 2442 2443 /* 2444 ** Return TRUE if the given expression is a constant which would be 2445 ** unchanged by OP_Affinity with the affinity given in the second 2446 ** argument. 2447 ** 2448 ** This routine is used to determine if the OP_Affinity operation 2449 ** can be omitted. When in doubt return FALSE. A false negative 2450 ** is harmless. A false positive, however, can result in the wrong 2451 ** answer. 2452 */ 2453 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2454 u8 op; 2455 int unaryMinus = 0; 2456 if( aff==SQLITE_AFF_BLOB ) return 1; 2457 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2458 if( p->op==TK_UMINUS ) unaryMinus = 1; 2459 p = p->pLeft; 2460 } 2461 op = p->op; 2462 if( op==TK_REGISTER ) op = p->op2; 2463 switch( op ){ 2464 case TK_INTEGER: { 2465 return aff>=SQLITE_AFF_NUMERIC; 2466 } 2467 case TK_FLOAT: { 2468 return aff>=SQLITE_AFF_NUMERIC; 2469 } 2470 case TK_STRING: { 2471 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2472 } 2473 case TK_BLOB: { 2474 return !unaryMinus; 2475 } 2476 case TK_COLUMN: { 2477 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2478 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2479 } 2480 default: { 2481 return 0; 2482 } 2483 } 2484 } 2485 2486 /* 2487 ** Return TRUE if the given string is a row-id column name. 2488 */ 2489 int sqlite3IsRowid(const char *z){ 2490 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2491 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2492 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2493 return 0; 2494 } 2495 2496 /* 2497 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2498 ** that can be simplified to a direct table access, then return 2499 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2500 ** or if the SELECT statement needs to be manifested into a transient 2501 ** table, then return NULL. 2502 */ 2503 #ifndef SQLITE_OMIT_SUBQUERY 2504 static Select *isCandidateForInOpt(const Expr *pX){ 2505 Select *p; 2506 SrcList *pSrc; 2507 ExprList *pEList; 2508 Table *pTab; 2509 int i; 2510 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2511 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2512 p = pX->x.pSelect; 2513 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2514 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2515 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2516 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2517 return 0; /* No DISTINCT keyword and no aggregate functions */ 2518 } 2519 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2520 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2521 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2522 pSrc = p->pSrc; 2523 assert( pSrc!=0 ); 2524 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2525 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2526 pTab = pSrc->a[0].pTab; 2527 assert( pTab!=0 ); 2528 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2529 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2530 pEList = p->pEList; 2531 assert( pEList!=0 ); 2532 /* All SELECT results must be columns. */ 2533 for(i=0; i<pEList->nExpr; i++){ 2534 Expr *pRes = pEList->a[i].pExpr; 2535 if( pRes->op!=TK_COLUMN ) return 0; 2536 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2537 } 2538 return p; 2539 } 2540 #endif /* SQLITE_OMIT_SUBQUERY */ 2541 2542 #ifndef SQLITE_OMIT_SUBQUERY 2543 /* 2544 ** Generate code that checks the left-most column of index table iCur to see if 2545 ** it contains any NULL entries. Cause the register at regHasNull to be set 2546 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2547 ** to be set to NULL if iCur contains one or more NULL values. 2548 */ 2549 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2550 int addr1; 2551 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2552 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2553 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2554 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2555 VdbeComment((v, "first_entry_in(%d)", iCur)); 2556 sqlite3VdbeJumpHere(v, addr1); 2557 } 2558 #endif 2559 2560 2561 #ifndef SQLITE_OMIT_SUBQUERY 2562 /* 2563 ** The argument is an IN operator with a list (not a subquery) on the 2564 ** right-hand side. Return TRUE if that list is constant. 2565 */ 2566 static int sqlite3InRhsIsConstant(Expr *pIn){ 2567 Expr *pLHS; 2568 int res; 2569 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2570 pLHS = pIn->pLeft; 2571 pIn->pLeft = 0; 2572 res = sqlite3ExprIsConstant(pIn); 2573 pIn->pLeft = pLHS; 2574 return res; 2575 } 2576 #endif 2577 2578 /* 2579 ** This function is used by the implementation of the IN (...) operator. 2580 ** The pX parameter is the expression on the RHS of the IN operator, which 2581 ** might be either a list of expressions or a subquery. 2582 ** 2583 ** The job of this routine is to find or create a b-tree object that can 2584 ** be used either to test for membership in the RHS set or to iterate through 2585 ** all members of the RHS set, skipping duplicates. 2586 ** 2587 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2588 ** and pX->iTable is set to the index of that cursor. 2589 ** 2590 ** The returned value of this function indicates the b-tree type, as follows: 2591 ** 2592 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2593 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2594 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2595 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2596 ** populated epheremal table. 2597 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2598 ** implemented as a sequence of comparisons. 2599 ** 2600 ** An existing b-tree might be used if the RHS expression pX is a simple 2601 ** subquery such as: 2602 ** 2603 ** SELECT <column1>, <column2>... FROM <table> 2604 ** 2605 ** If the RHS of the IN operator is a list or a more complex subquery, then 2606 ** an ephemeral table might need to be generated from the RHS and then 2607 ** pX->iTable made to point to the ephemeral table instead of an 2608 ** existing table. 2609 ** 2610 ** The inFlags parameter must contain, at a minimum, one of the bits 2611 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2612 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2613 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2614 ** be used to loop over all values of the RHS of the IN operator. 2615 ** 2616 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2617 ** through the set members) then the b-tree must not contain duplicates. 2618 ** An epheremal table will be created unless the selected columns are guaranteed 2619 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2620 ** a UNIQUE constraint or index. 2621 ** 2622 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2623 ** for fast set membership tests) then an epheremal table must 2624 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2625 ** index can be found with the specified <columns> as its left-most. 2626 ** 2627 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2628 ** if the RHS of the IN operator is a list (not a subquery) then this 2629 ** routine might decide that creating an ephemeral b-tree for membership 2630 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2631 ** calling routine should implement the IN operator using a sequence 2632 ** of Eq or Ne comparison operations. 2633 ** 2634 ** When the b-tree is being used for membership tests, the calling function 2635 ** might need to know whether or not the RHS side of the IN operator 2636 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2637 ** if there is any chance that the (...) might contain a NULL value at 2638 ** runtime, then a register is allocated and the register number written 2639 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2640 ** NULL value, then *prRhsHasNull is left unchanged. 2641 ** 2642 ** If a register is allocated and its location stored in *prRhsHasNull, then 2643 ** the value in that register will be NULL if the b-tree contains one or more 2644 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2645 ** NULL values. 2646 ** 2647 ** If the aiMap parameter is not NULL, it must point to an array containing 2648 ** one element for each column returned by the SELECT statement on the RHS 2649 ** of the IN(...) operator. The i'th entry of the array is populated with the 2650 ** offset of the index column that matches the i'th column returned by the 2651 ** SELECT. For example, if the expression and selected index are: 2652 ** 2653 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2654 ** CREATE INDEX i1 ON t1(b, c, a); 2655 ** 2656 ** then aiMap[] is populated with {2, 0, 1}. 2657 */ 2658 #ifndef SQLITE_OMIT_SUBQUERY 2659 int sqlite3FindInIndex( 2660 Parse *pParse, /* Parsing context */ 2661 Expr *pX, /* The IN expression */ 2662 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2663 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2664 int *aiMap, /* Mapping from Index fields to RHS fields */ 2665 int *piTab /* OUT: index to use */ 2666 ){ 2667 Select *p; /* SELECT to the right of IN operator */ 2668 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2669 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2670 int mustBeUnique; /* True if RHS must be unique */ 2671 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2672 2673 assert( pX->op==TK_IN ); 2674 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2675 2676 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2677 ** whether or not the SELECT result contains NULL values, check whether 2678 ** or not NULL is actually possible (it may not be, for example, due 2679 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2680 ** set prRhsHasNull to 0 before continuing. */ 2681 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2682 int i; 2683 ExprList *pEList = pX->x.pSelect->pEList; 2684 for(i=0; i<pEList->nExpr; i++){ 2685 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2686 } 2687 if( i==pEList->nExpr ){ 2688 prRhsHasNull = 0; 2689 } 2690 } 2691 2692 /* Check to see if an existing table or index can be used to 2693 ** satisfy the query. This is preferable to generating a new 2694 ** ephemeral table. */ 2695 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2696 sqlite3 *db = pParse->db; /* Database connection */ 2697 Table *pTab; /* Table <table>. */ 2698 int iDb; /* Database idx for pTab */ 2699 ExprList *pEList = p->pEList; 2700 int nExpr = pEList->nExpr; 2701 2702 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2703 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2704 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2705 pTab = p->pSrc->a[0].pTab; 2706 2707 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2708 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2709 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2710 sqlite3CodeVerifySchema(pParse, iDb); 2711 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2712 2713 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2714 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2715 /* The "x IN (SELECT rowid FROM table)" case */ 2716 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2717 VdbeCoverage(v); 2718 2719 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2720 eType = IN_INDEX_ROWID; 2721 ExplainQueryPlan((pParse, 0, 2722 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2723 sqlite3VdbeJumpHere(v, iAddr); 2724 }else{ 2725 Index *pIdx; /* Iterator variable */ 2726 int affinity_ok = 1; 2727 int i; 2728 2729 /* Check that the affinity that will be used to perform each 2730 ** comparison is the same as the affinity of each column in table 2731 ** on the RHS of the IN operator. If it not, it is not possible to 2732 ** use any index of the RHS table. */ 2733 for(i=0; i<nExpr && affinity_ok; i++){ 2734 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2735 int iCol = pEList->a[i].pExpr->iColumn; 2736 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2737 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2738 testcase( cmpaff==SQLITE_AFF_BLOB ); 2739 testcase( cmpaff==SQLITE_AFF_TEXT ); 2740 switch( cmpaff ){ 2741 case SQLITE_AFF_BLOB: 2742 break; 2743 case SQLITE_AFF_TEXT: 2744 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2745 ** other has no affinity and the other side is TEXT. Hence, 2746 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2747 ** and for the term on the LHS of the IN to have no affinity. */ 2748 assert( idxaff==SQLITE_AFF_TEXT ); 2749 break; 2750 default: 2751 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2752 } 2753 } 2754 2755 if( affinity_ok ){ 2756 /* Search for an existing index that will work for this IN operator */ 2757 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2758 Bitmask colUsed; /* Columns of the index used */ 2759 Bitmask mCol; /* Mask for the current column */ 2760 if( pIdx->nColumn<nExpr ) continue; 2761 if( pIdx->pPartIdxWhere!=0 ) continue; 2762 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2763 ** BITMASK(nExpr) without overflowing */ 2764 testcase( pIdx->nColumn==BMS-2 ); 2765 testcase( pIdx->nColumn==BMS-1 ); 2766 if( pIdx->nColumn>=BMS-1 ) continue; 2767 if( mustBeUnique ){ 2768 if( pIdx->nKeyCol>nExpr 2769 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2770 ){ 2771 continue; /* This index is not unique over the IN RHS columns */ 2772 } 2773 } 2774 2775 colUsed = 0; /* Columns of index used so far */ 2776 for(i=0; i<nExpr; i++){ 2777 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2778 Expr *pRhs = pEList->a[i].pExpr; 2779 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2780 int j; 2781 2782 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2783 for(j=0; j<nExpr; j++){ 2784 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2785 assert( pIdx->azColl[j] ); 2786 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2787 continue; 2788 } 2789 break; 2790 } 2791 if( j==nExpr ) break; 2792 mCol = MASKBIT(j); 2793 if( mCol & colUsed ) break; /* Each column used only once */ 2794 colUsed |= mCol; 2795 if( aiMap ) aiMap[i] = j; 2796 } 2797 2798 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2799 if( colUsed==(MASKBIT(nExpr)-1) ){ 2800 /* If we reach this point, that means the index pIdx is usable */ 2801 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2802 ExplainQueryPlan((pParse, 0, 2803 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2804 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2805 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2806 VdbeComment((v, "%s", pIdx->zName)); 2807 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2808 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2809 2810 if( prRhsHasNull ){ 2811 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2812 i64 mask = (1<<nExpr)-1; 2813 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2814 iTab, 0, 0, (u8*)&mask, P4_INT64); 2815 #endif 2816 *prRhsHasNull = ++pParse->nMem; 2817 if( nExpr==1 ){ 2818 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2819 } 2820 } 2821 sqlite3VdbeJumpHere(v, iAddr); 2822 } 2823 } /* End loop over indexes */ 2824 } /* End if( affinity_ok ) */ 2825 } /* End if not an rowid index */ 2826 } /* End attempt to optimize using an index */ 2827 2828 /* If no preexisting index is available for the IN clause 2829 ** and IN_INDEX_NOOP is an allowed reply 2830 ** and the RHS of the IN operator is a list, not a subquery 2831 ** and the RHS is not constant or has two or fewer terms, 2832 ** then it is not worth creating an ephemeral table to evaluate 2833 ** the IN operator so return IN_INDEX_NOOP. 2834 */ 2835 if( eType==0 2836 && (inFlags & IN_INDEX_NOOP_OK) 2837 && !ExprHasProperty(pX, EP_xIsSelect) 2838 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2839 ){ 2840 eType = IN_INDEX_NOOP; 2841 } 2842 2843 if( eType==0 ){ 2844 /* Could not find an existing table or index to use as the RHS b-tree. 2845 ** We will have to generate an ephemeral table to do the job. 2846 */ 2847 u32 savedNQueryLoop = pParse->nQueryLoop; 2848 int rMayHaveNull = 0; 2849 eType = IN_INDEX_EPH; 2850 if( inFlags & IN_INDEX_LOOP ){ 2851 pParse->nQueryLoop = 0; 2852 }else if( prRhsHasNull ){ 2853 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2854 } 2855 assert( pX->op==TK_IN ); 2856 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2857 if( rMayHaveNull ){ 2858 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2859 } 2860 pParse->nQueryLoop = savedNQueryLoop; 2861 } 2862 2863 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2864 int i, n; 2865 n = sqlite3ExprVectorSize(pX->pLeft); 2866 for(i=0; i<n; i++) aiMap[i] = i; 2867 } 2868 *piTab = iTab; 2869 return eType; 2870 } 2871 #endif 2872 2873 #ifndef SQLITE_OMIT_SUBQUERY 2874 /* 2875 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2876 ** function allocates and returns a nul-terminated string containing 2877 ** the affinities to be used for each column of the comparison. 2878 ** 2879 ** It is the responsibility of the caller to ensure that the returned 2880 ** string is eventually freed using sqlite3DbFree(). 2881 */ 2882 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2883 Expr *pLeft = pExpr->pLeft; 2884 int nVal = sqlite3ExprVectorSize(pLeft); 2885 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2886 char *zRet; 2887 2888 assert( pExpr->op==TK_IN ); 2889 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2890 if( zRet ){ 2891 int i; 2892 for(i=0; i<nVal; i++){ 2893 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2894 char a = sqlite3ExprAffinity(pA); 2895 if( pSelect ){ 2896 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2897 }else{ 2898 zRet[i] = a; 2899 } 2900 } 2901 zRet[nVal] = '\0'; 2902 } 2903 return zRet; 2904 } 2905 #endif 2906 2907 #ifndef SQLITE_OMIT_SUBQUERY 2908 /* 2909 ** Load the Parse object passed as the first argument with an error 2910 ** message of the form: 2911 ** 2912 ** "sub-select returns N columns - expected M" 2913 */ 2914 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2915 if( pParse->nErr==0 ){ 2916 const char *zFmt = "sub-select returns %d columns - expected %d"; 2917 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2918 } 2919 } 2920 #endif 2921 2922 /* 2923 ** Expression pExpr is a vector that has been used in a context where 2924 ** it is not permitted. If pExpr is a sub-select vector, this routine 2925 ** loads the Parse object with a message of the form: 2926 ** 2927 ** "sub-select returns N columns - expected 1" 2928 ** 2929 ** Or, if it is a regular scalar vector: 2930 ** 2931 ** "row value misused" 2932 */ 2933 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2934 #ifndef SQLITE_OMIT_SUBQUERY 2935 if( pExpr->flags & EP_xIsSelect ){ 2936 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2937 }else 2938 #endif 2939 { 2940 sqlite3ErrorMsg(pParse, "row value misused"); 2941 } 2942 } 2943 2944 #ifndef SQLITE_OMIT_SUBQUERY 2945 /* 2946 ** Generate code that will construct an ephemeral table containing all terms 2947 ** in the RHS of an IN operator. The IN operator can be in either of two 2948 ** forms: 2949 ** 2950 ** x IN (4,5,11) -- IN operator with list on right-hand side 2951 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2952 ** 2953 ** The pExpr parameter is the IN operator. The cursor number for the 2954 ** constructed ephermeral table is returned. The first time the ephemeral 2955 ** table is computed, the cursor number is also stored in pExpr->iTable, 2956 ** however the cursor number returned might not be the same, as it might 2957 ** have been duplicated using OP_OpenDup. 2958 ** 2959 ** If the LHS expression ("x" in the examples) is a column value, or 2960 ** the SELECT statement returns a column value, then the affinity of that 2961 ** column is used to build the index keys. If both 'x' and the 2962 ** SELECT... statement are columns, then numeric affinity is used 2963 ** if either column has NUMERIC or INTEGER affinity. If neither 2964 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2965 ** is used. 2966 */ 2967 void sqlite3CodeRhsOfIN( 2968 Parse *pParse, /* Parsing context */ 2969 Expr *pExpr, /* The IN operator */ 2970 int iTab /* Use this cursor number */ 2971 ){ 2972 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2973 int addr; /* Address of OP_OpenEphemeral instruction */ 2974 Expr *pLeft; /* the LHS of the IN operator */ 2975 KeyInfo *pKeyInfo = 0; /* Key information */ 2976 int nVal; /* Size of vector pLeft */ 2977 Vdbe *v; /* The prepared statement under construction */ 2978 2979 v = pParse->pVdbe; 2980 assert( v!=0 ); 2981 2982 /* The evaluation of the IN must be repeated every time it 2983 ** is encountered if any of the following is true: 2984 ** 2985 ** * The right-hand side is a correlated subquery 2986 ** * The right-hand side is an expression list containing variables 2987 ** * We are inside a trigger 2988 ** 2989 ** If all of the above are false, then we can compute the RHS just once 2990 ** and reuse it many names. 2991 */ 2992 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2993 /* Reuse of the RHS is allowed */ 2994 /* If this routine has already been coded, but the previous code 2995 ** might not have been invoked yet, so invoke it now as a subroutine. 2996 */ 2997 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2998 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2999 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3000 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3001 pExpr->x.pSelect->selId)); 3002 } 3003 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3004 pExpr->y.sub.iAddr); 3005 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3006 sqlite3VdbeJumpHere(v, addrOnce); 3007 return; 3008 } 3009 3010 /* Begin coding the subroutine */ 3011 ExprSetProperty(pExpr, EP_Subrtn); 3012 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3013 pExpr->y.sub.regReturn = ++pParse->nMem; 3014 pExpr->y.sub.iAddr = 3015 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3016 VdbeComment((v, "return address")); 3017 3018 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3019 } 3020 3021 /* Check to see if this is a vector IN operator */ 3022 pLeft = pExpr->pLeft; 3023 nVal = sqlite3ExprVectorSize(pLeft); 3024 3025 /* Construct the ephemeral table that will contain the content of 3026 ** RHS of the IN operator. 3027 */ 3028 pExpr->iTable = iTab; 3029 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3030 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3031 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3032 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3033 }else{ 3034 VdbeComment((v, "RHS of IN operator")); 3035 } 3036 #endif 3037 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3038 3039 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3040 /* Case 1: expr IN (SELECT ...) 3041 ** 3042 ** Generate code to write the results of the select into the temporary 3043 ** table allocated and opened above. 3044 */ 3045 Select *pSelect = pExpr->x.pSelect; 3046 ExprList *pEList = pSelect->pEList; 3047 3048 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3049 addrOnce?"":"CORRELATED ", pSelect->selId 3050 )); 3051 /* If the LHS and RHS of the IN operator do not match, that 3052 ** error will have been caught long before we reach this point. */ 3053 if( ALWAYS(pEList->nExpr==nVal) ){ 3054 Select *pCopy; 3055 SelectDest dest; 3056 int i; 3057 int rc; 3058 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3059 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3060 pSelect->iLimit = 0; 3061 testcase( pSelect->selFlags & SF_Distinct ); 3062 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3063 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3064 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3065 sqlite3SelectDelete(pParse->db, pCopy); 3066 sqlite3DbFree(pParse->db, dest.zAffSdst); 3067 if( rc ){ 3068 sqlite3KeyInfoUnref(pKeyInfo); 3069 return; 3070 } 3071 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3072 assert( pEList!=0 ); 3073 assert( pEList->nExpr>0 ); 3074 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3075 for(i=0; i<nVal; i++){ 3076 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3077 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3078 pParse, p, pEList->a[i].pExpr 3079 ); 3080 } 3081 } 3082 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3083 /* Case 2: expr IN (exprlist) 3084 ** 3085 ** For each expression, build an index key from the evaluation and 3086 ** store it in the temporary table. If <expr> is a column, then use 3087 ** that columns affinity when building index keys. If <expr> is not 3088 ** a column, use numeric affinity. 3089 */ 3090 char affinity; /* Affinity of the LHS of the IN */ 3091 int i; 3092 ExprList *pList = pExpr->x.pList; 3093 struct ExprList_item *pItem; 3094 int r1, r2; 3095 affinity = sqlite3ExprAffinity(pLeft); 3096 if( affinity<=SQLITE_AFF_NONE ){ 3097 affinity = SQLITE_AFF_BLOB; 3098 }else if( affinity==SQLITE_AFF_REAL ){ 3099 affinity = SQLITE_AFF_NUMERIC; 3100 } 3101 if( pKeyInfo ){ 3102 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3103 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3104 } 3105 3106 /* Loop through each expression in <exprlist>. */ 3107 r1 = sqlite3GetTempReg(pParse); 3108 r2 = sqlite3GetTempReg(pParse); 3109 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3110 Expr *pE2 = pItem->pExpr; 3111 3112 /* If the expression is not constant then we will need to 3113 ** disable the test that was generated above that makes sure 3114 ** this code only executes once. Because for a non-constant 3115 ** expression we need to rerun this code each time. 3116 */ 3117 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3118 sqlite3VdbeChangeToNoop(v, addrOnce); 3119 ExprClearProperty(pExpr, EP_Subrtn); 3120 addrOnce = 0; 3121 } 3122 3123 /* Evaluate the expression and insert it into the temp table */ 3124 sqlite3ExprCode(pParse, pE2, r1); 3125 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3126 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3127 } 3128 sqlite3ReleaseTempReg(pParse, r1); 3129 sqlite3ReleaseTempReg(pParse, r2); 3130 } 3131 if( pKeyInfo ){ 3132 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3133 } 3134 if( addrOnce ){ 3135 sqlite3VdbeJumpHere(v, addrOnce); 3136 /* Subroutine return */ 3137 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3138 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3139 sqlite3ClearTempRegCache(pParse); 3140 } 3141 } 3142 #endif /* SQLITE_OMIT_SUBQUERY */ 3143 3144 /* 3145 ** Generate code for scalar subqueries used as a subquery expression 3146 ** or EXISTS operator: 3147 ** 3148 ** (SELECT a FROM b) -- subquery 3149 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3150 ** 3151 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3152 ** 3153 ** Return the register that holds the result. For a multi-column SELECT, 3154 ** the result is stored in a contiguous array of registers and the 3155 ** return value is the register of the left-most result column. 3156 ** Return 0 if an error occurs. 3157 */ 3158 #ifndef SQLITE_OMIT_SUBQUERY 3159 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3160 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3161 int rReg = 0; /* Register storing resulting */ 3162 Select *pSel; /* SELECT statement to encode */ 3163 SelectDest dest; /* How to deal with SELECT result */ 3164 int nReg; /* Registers to allocate */ 3165 Expr *pLimit; /* New limit expression */ 3166 3167 Vdbe *v = pParse->pVdbe; 3168 assert( v!=0 ); 3169 if( pParse->nErr ) return 0; 3170 testcase( pExpr->op==TK_EXISTS ); 3171 testcase( pExpr->op==TK_SELECT ); 3172 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3173 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3174 pSel = pExpr->x.pSelect; 3175 3176 /* If this routine has already been coded, then invoke it as a 3177 ** subroutine. */ 3178 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3179 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3180 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3181 pExpr->y.sub.iAddr); 3182 return pExpr->iTable; 3183 } 3184 3185 /* Begin coding the subroutine */ 3186 ExprSetProperty(pExpr, EP_Subrtn); 3187 pExpr->y.sub.regReturn = ++pParse->nMem; 3188 pExpr->y.sub.iAddr = 3189 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3190 VdbeComment((v, "return address")); 3191 3192 3193 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3194 ** is encountered if any of the following is true: 3195 ** 3196 ** * The right-hand side is a correlated subquery 3197 ** * The right-hand side is an expression list containing variables 3198 ** * We are inside a trigger 3199 ** 3200 ** If all of the above are false, then we can run this code just once 3201 ** save the results, and reuse the same result on subsequent invocations. 3202 */ 3203 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3204 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3205 } 3206 3207 /* For a SELECT, generate code to put the values for all columns of 3208 ** the first row into an array of registers and return the index of 3209 ** the first register. 3210 ** 3211 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3212 ** into a register and return that register number. 3213 ** 3214 ** In both cases, the query is augmented with "LIMIT 1". Any 3215 ** preexisting limit is discarded in place of the new LIMIT 1. 3216 */ 3217 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3218 addrOnce?"":"CORRELATED ", pSel->selId)); 3219 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3220 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3221 pParse->nMem += nReg; 3222 if( pExpr->op==TK_SELECT ){ 3223 dest.eDest = SRT_Mem; 3224 dest.iSdst = dest.iSDParm; 3225 dest.nSdst = nReg; 3226 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3227 VdbeComment((v, "Init subquery result")); 3228 }else{ 3229 dest.eDest = SRT_Exists; 3230 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3231 VdbeComment((v, "Init EXISTS result")); 3232 } 3233 if( pSel->pLimit ){ 3234 /* The subquery already has a limit. If the pre-existing limit is X 3235 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3236 sqlite3 *db = pParse->db; 3237 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3238 if( pLimit ){ 3239 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3240 pLimit = sqlite3PExpr(pParse, TK_NE, 3241 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3242 } 3243 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3244 pSel->pLimit->pLeft = pLimit; 3245 }else{ 3246 /* If there is no pre-existing limit add a limit of 1 */ 3247 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3248 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3249 } 3250 pSel->iLimit = 0; 3251 if( sqlite3Select(pParse, pSel, &dest) ){ 3252 if( pParse->nErr ){ 3253 pExpr->op2 = pExpr->op; 3254 pExpr->op = TK_ERROR; 3255 } 3256 return 0; 3257 } 3258 pExpr->iTable = rReg = dest.iSDParm; 3259 ExprSetVVAProperty(pExpr, EP_NoReduce); 3260 if( addrOnce ){ 3261 sqlite3VdbeJumpHere(v, addrOnce); 3262 } 3263 3264 /* Subroutine return */ 3265 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3266 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3267 sqlite3ClearTempRegCache(pParse); 3268 return rReg; 3269 } 3270 #endif /* SQLITE_OMIT_SUBQUERY */ 3271 3272 #ifndef SQLITE_OMIT_SUBQUERY 3273 /* 3274 ** Expr pIn is an IN(...) expression. This function checks that the 3275 ** sub-select on the RHS of the IN() operator has the same number of 3276 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3277 ** a sub-query, that the LHS is a vector of size 1. 3278 */ 3279 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3280 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3281 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3282 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3283 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3284 return 1; 3285 } 3286 }else if( nVector!=1 ){ 3287 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3288 return 1; 3289 } 3290 return 0; 3291 } 3292 #endif 3293 3294 #ifndef SQLITE_OMIT_SUBQUERY 3295 /* 3296 ** Generate code for an IN expression. 3297 ** 3298 ** x IN (SELECT ...) 3299 ** x IN (value, value, ...) 3300 ** 3301 ** The left-hand side (LHS) is a scalar or vector expression. The 3302 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3303 ** subquery. If the RHS is a subquery, the number of result columns must 3304 ** match the number of columns in the vector on the LHS. If the RHS is 3305 ** a list of values, the LHS must be a scalar. 3306 ** 3307 ** The IN operator is true if the LHS value is contained within the RHS. 3308 ** The result is false if the LHS is definitely not in the RHS. The 3309 ** result is NULL if the presence of the LHS in the RHS cannot be 3310 ** determined due to NULLs. 3311 ** 3312 ** This routine generates code that jumps to destIfFalse if the LHS is not 3313 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3314 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3315 ** within the RHS then fall through. 3316 ** 3317 ** See the separate in-operator.md documentation file in the canonical 3318 ** SQLite source tree for additional information. 3319 */ 3320 static void sqlite3ExprCodeIN( 3321 Parse *pParse, /* Parsing and code generating context */ 3322 Expr *pExpr, /* The IN expression */ 3323 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3324 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3325 ){ 3326 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3327 int eType; /* Type of the RHS */ 3328 int rLhs; /* Register(s) holding the LHS values */ 3329 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3330 Vdbe *v; /* Statement under construction */ 3331 int *aiMap = 0; /* Map from vector field to index column */ 3332 char *zAff = 0; /* Affinity string for comparisons */ 3333 int nVector; /* Size of vectors for this IN operator */ 3334 int iDummy; /* Dummy parameter to exprCodeVector() */ 3335 Expr *pLeft; /* The LHS of the IN operator */ 3336 int i; /* loop counter */ 3337 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3338 int destStep6 = 0; /* Start of code for Step 6 */ 3339 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3340 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3341 int addrTop; /* Top of the step-6 loop */ 3342 int iTab = 0; /* Index to use */ 3343 u8 okConstFactor = pParse->okConstFactor; 3344 3345 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3346 pLeft = pExpr->pLeft; 3347 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3348 zAff = exprINAffinity(pParse, pExpr); 3349 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3350 aiMap = (int*)sqlite3DbMallocZero( 3351 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3352 ); 3353 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3354 3355 /* Attempt to compute the RHS. After this step, if anything other than 3356 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3357 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3358 ** the RHS has not yet been coded. */ 3359 v = pParse->pVdbe; 3360 assert( v!=0 ); /* OOM detected prior to this routine */ 3361 VdbeNoopComment((v, "begin IN expr")); 3362 eType = sqlite3FindInIndex(pParse, pExpr, 3363 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3364 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3365 aiMap, &iTab); 3366 3367 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3368 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3369 ); 3370 #ifdef SQLITE_DEBUG 3371 /* Confirm that aiMap[] contains nVector integer values between 0 and 3372 ** nVector-1. */ 3373 for(i=0; i<nVector; i++){ 3374 int j, cnt; 3375 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3376 assert( cnt==1 ); 3377 } 3378 #endif 3379 3380 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3381 ** vector, then it is stored in an array of nVector registers starting 3382 ** at r1. 3383 ** 3384 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3385 ** so that the fields are in the same order as an existing index. The 3386 ** aiMap[] array contains a mapping from the original LHS field order to 3387 ** the field order that matches the RHS index. 3388 ** 3389 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3390 ** even if it is constant, as OP_Affinity may be used on the register 3391 ** by code generated below. */ 3392 assert( pParse->okConstFactor==okConstFactor ); 3393 pParse->okConstFactor = 0; 3394 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3395 pParse->okConstFactor = okConstFactor; 3396 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3397 if( i==nVector ){ 3398 /* LHS fields are not reordered */ 3399 rLhs = rLhsOrig; 3400 }else{ 3401 /* Need to reorder the LHS fields according to aiMap */ 3402 rLhs = sqlite3GetTempRange(pParse, nVector); 3403 for(i=0; i<nVector; i++){ 3404 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3405 } 3406 } 3407 3408 /* If sqlite3FindInIndex() did not find or create an index that is 3409 ** suitable for evaluating the IN operator, then evaluate using a 3410 ** sequence of comparisons. 3411 ** 3412 ** This is step (1) in the in-operator.md optimized algorithm. 3413 */ 3414 if( eType==IN_INDEX_NOOP ){ 3415 ExprList *pList = pExpr->x.pList; 3416 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3417 int labelOk = sqlite3VdbeMakeLabel(pParse); 3418 int r2, regToFree; 3419 int regCkNull = 0; 3420 int ii; 3421 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3422 if( destIfNull!=destIfFalse ){ 3423 regCkNull = sqlite3GetTempReg(pParse); 3424 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3425 } 3426 for(ii=0; ii<pList->nExpr; ii++){ 3427 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3428 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3429 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3430 } 3431 sqlite3ReleaseTempReg(pParse, regToFree); 3432 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3433 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3434 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3435 (void*)pColl, P4_COLLSEQ); 3436 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3437 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3438 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3439 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3440 sqlite3VdbeChangeP5(v, zAff[0]); 3441 }else{ 3442 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3443 assert( destIfNull==destIfFalse ); 3444 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3445 (void*)pColl, P4_COLLSEQ); 3446 VdbeCoverageIf(v, op==OP_Ne); 3447 VdbeCoverageIf(v, op==OP_IsNull); 3448 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3449 } 3450 } 3451 if( regCkNull ){ 3452 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3453 sqlite3VdbeGoto(v, destIfFalse); 3454 } 3455 sqlite3VdbeResolveLabel(v, labelOk); 3456 sqlite3ReleaseTempReg(pParse, regCkNull); 3457 goto sqlite3ExprCodeIN_finished; 3458 } 3459 3460 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3461 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3462 ** We will then skip the binary search of the RHS. 3463 */ 3464 if( destIfNull==destIfFalse ){ 3465 destStep2 = destIfFalse; 3466 }else{ 3467 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3468 } 3469 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3470 for(i=0; i<nVector; i++){ 3471 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3472 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3473 if( sqlite3ExprCanBeNull(p) ){ 3474 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3475 VdbeCoverage(v); 3476 } 3477 } 3478 3479 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3480 ** of the RHS using the LHS as a probe. If found, the result is 3481 ** true. 3482 */ 3483 if( eType==IN_INDEX_ROWID ){ 3484 /* In this case, the RHS is the ROWID of table b-tree and so we also 3485 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3486 ** into a single opcode. */ 3487 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3488 VdbeCoverage(v); 3489 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3490 }else{ 3491 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3492 if( destIfFalse==destIfNull ){ 3493 /* Combine Step 3 and Step 5 into a single opcode */ 3494 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3495 rLhs, nVector); VdbeCoverage(v); 3496 goto sqlite3ExprCodeIN_finished; 3497 } 3498 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3499 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3500 rLhs, nVector); VdbeCoverage(v); 3501 } 3502 3503 /* Step 4. If the RHS is known to be non-NULL and we did not find 3504 ** an match on the search above, then the result must be FALSE. 3505 */ 3506 if( rRhsHasNull && nVector==1 ){ 3507 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3508 VdbeCoverage(v); 3509 } 3510 3511 /* Step 5. If we do not care about the difference between NULL and 3512 ** FALSE, then just return false. 3513 */ 3514 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3515 3516 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3517 ** If any comparison is NULL, then the result is NULL. If all 3518 ** comparisons are FALSE then the final result is FALSE. 3519 ** 3520 ** For a scalar LHS, it is sufficient to check just the first row 3521 ** of the RHS. 3522 */ 3523 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3524 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3525 VdbeCoverage(v); 3526 if( nVector>1 ){ 3527 destNotNull = sqlite3VdbeMakeLabel(pParse); 3528 }else{ 3529 /* For nVector==1, combine steps 6 and 7 by immediately returning 3530 ** FALSE if the first comparison is not NULL */ 3531 destNotNull = destIfFalse; 3532 } 3533 for(i=0; i<nVector; i++){ 3534 Expr *p; 3535 CollSeq *pColl; 3536 int r3 = sqlite3GetTempReg(pParse); 3537 p = sqlite3VectorFieldSubexpr(pLeft, i); 3538 pColl = sqlite3ExprCollSeq(pParse, p); 3539 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3540 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3541 (void*)pColl, P4_COLLSEQ); 3542 VdbeCoverage(v); 3543 sqlite3ReleaseTempReg(pParse, r3); 3544 } 3545 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3546 if( nVector>1 ){ 3547 sqlite3VdbeResolveLabel(v, destNotNull); 3548 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3549 VdbeCoverage(v); 3550 3551 /* Step 7: If we reach this point, we know that the result must 3552 ** be false. */ 3553 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3554 } 3555 3556 /* Jumps here in order to return true. */ 3557 sqlite3VdbeJumpHere(v, addrTruthOp); 3558 3559 sqlite3ExprCodeIN_finished: 3560 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3561 VdbeComment((v, "end IN expr")); 3562 sqlite3ExprCodeIN_oom_error: 3563 sqlite3DbFree(pParse->db, aiMap); 3564 sqlite3DbFree(pParse->db, zAff); 3565 } 3566 #endif /* SQLITE_OMIT_SUBQUERY */ 3567 3568 #ifndef SQLITE_OMIT_FLOATING_POINT 3569 /* 3570 ** Generate an instruction that will put the floating point 3571 ** value described by z[0..n-1] into register iMem. 3572 ** 3573 ** The z[] string will probably not be zero-terminated. But the 3574 ** z[n] character is guaranteed to be something that does not look 3575 ** like the continuation of the number. 3576 */ 3577 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3578 if( ALWAYS(z!=0) ){ 3579 double value; 3580 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3581 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3582 if( negateFlag ) value = -value; 3583 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3584 } 3585 } 3586 #endif 3587 3588 3589 /* 3590 ** Generate an instruction that will put the integer describe by 3591 ** text z[0..n-1] into register iMem. 3592 ** 3593 ** Expr.u.zToken is always UTF8 and zero-terminated. 3594 */ 3595 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3596 Vdbe *v = pParse->pVdbe; 3597 if( pExpr->flags & EP_IntValue ){ 3598 int i = pExpr->u.iValue; 3599 assert( i>=0 ); 3600 if( negFlag ) i = -i; 3601 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3602 }else{ 3603 int c; 3604 i64 value; 3605 const char *z = pExpr->u.zToken; 3606 assert( z!=0 ); 3607 c = sqlite3DecOrHexToI64(z, &value); 3608 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3609 #ifdef SQLITE_OMIT_FLOATING_POINT 3610 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3611 #else 3612 #ifndef SQLITE_OMIT_HEX_INTEGER 3613 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3614 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3615 }else 3616 #endif 3617 { 3618 codeReal(v, z, negFlag, iMem); 3619 } 3620 #endif 3621 }else{ 3622 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3623 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3624 } 3625 } 3626 } 3627 3628 3629 /* Generate code that will load into register regOut a value that is 3630 ** appropriate for the iIdxCol-th column of index pIdx. 3631 */ 3632 void sqlite3ExprCodeLoadIndexColumn( 3633 Parse *pParse, /* The parsing context */ 3634 Index *pIdx, /* The index whose column is to be loaded */ 3635 int iTabCur, /* Cursor pointing to a table row */ 3636 int iIdxCol, /* The column of the index to be loaded */ 3637 int regOut /* Store the index column value in this register */ 3638 ){ 3639 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3640 if( iTabCol==XN_EXPR ){ 3641 assert( pIdx->aColExpr ); 3642 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3643 pParse->iSelfTab = iTabCur + 1; 3644 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3645 pParse->iSelfTab = 0; 3646 }else{ 3647 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3648 iTabCol, regOut); 3649 } 3650 } 3651 3652 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3653 /* 3654 ** Generate code that will compute the value of generated column pCol 3655 ** and store the result in register regOut 3656 */ 3657 void sqlite3ExprCodeGeneratedColumn( 3658 Parse *pParse, /* Parsing context */ 3659 Table *pTab, /* Table containing the generated column */ 3660 Column *pCol, /* The generated column */ 3661 int regOut /* Put the result in this register */ 3662 ){ 3663 int iAddr; 3664 Vdbe *v = pParse->pVdbe; 3665 assert( v!=0 ); 3666 assert( pParse->iSelfTab!=0 ); 3667 if( pParse->iSelfTab>0 ){ 3668 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3669 }else{ 3670 iAddr = 0; 3671 } 3672 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3673 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3674 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3675 } 3676 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3677 } 3678 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3679 3680 /* 3681 ** Generate code to extract the value of the iCol-th column of a table. 3682 */ 3683 void sqlite3ExprCodeGetColumnOfTable( 3684 Vdbe *v, /* Parsing context */ 3685 Table *pTab, /* The table containing the value */ 3686 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3687 int iCol, /* Index of the column to extract */ 3688 int regOut /* Extract the value into this register */ 3689 ){ 3690 Column *pCol; 3691 assert( v!=0 ); 3692 if( pTab==0 ){ 3693 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3694 return; 3695 } 3696 if( iCol<0 || iCol==pTab->iPKey ){ 3697 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3698 }else{ 3699 int op; 3700 int x; 3701 if( IsVirtual(pTab) ){ 3702 op = OP_VColumn; 3703 x = iCol; 3704 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3705 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3706 Parse *pParse = sqlite3VdbeParser(v); 3707 if( pCol->colFlags & COLFLAG_BUSY ){ 3708 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3709 pCol->zCnName); 3710 }else{ 3711 int savedSelfTab = pParse->iSelfTab; 3712 pCol->colFlags |= COLFLAG_BUSY; 3713 pParse->iSelfTab = iTabCur+1; 3714 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3715 pParse->iSelfTab = savedSelfTab; 3716 pCol->colFlags &= ~COLFLAG_BUSY; 3717 } 3718 return; 3719 #endif 3720 }else if( !HasRowid(pTab) ){ 3721 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3722 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3723 op = OP_Column; 3724 }else{ 3725 x = sqlite3TableColumnToStorage(pTab,iCol); 3726 testcase( x!=iCol ); 3727 op = OP_Column; 3728 } 3729 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3730 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3731 } 3732 } 3733 3734 /* 3735 ** Generate code that will extract the iColumn-th column from 3736 ** table pTab and store the column value in register iReg. 3737 ** 3738 ** There must be an open cursor to pTab in iTable when this routine 3739 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3740 */ 3741 int sqlite3ExprCodeGetColumn( 3742 Parse *pParse, /* Parsing and code generating context */ 3743 Table *pTab, /* Description of the table we are reading from */ 3744 int iColumn, /* Index of the table column */ 3745 int iTable, /* The cursor pointing to the table */ 3746 int iReg, /* Store results here */ 3747 u8 p5 /* P5 value for OP_Column + FLAGS */ 3748 ){ 3749 assert( pParse->pVdbe!=0 ); 3750 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3751 if( p5 ){ 3752 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3753 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3754 } 3755 return iReg; 3756 } 3757 3758 /* 3759 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3760 ** over to iTo..iTo+nReg-1. 3761 */ 3762 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3763 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3764 } 3765 3766 /* 3767 ** Convert a scalar expression node to a TK_REGISTER referencing 3768 ** register iReg. The caller must ensure that iReg already contains 3769 ** the correct value for the expression. 3770 */ 3771 static void exprToRegister(Expr *pExpr, int iReg){ 3772 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3773 if( NEVER(p==0) ) return; 3774 p->op2 = p->op; 3775 p->op = TK_REGISTER; 3776 p->iTable = iReg; 3777 ExprClearProperty(p, EP_Skip); 3778 } 3779 3780 /* 3781 ** Evaluate an expression (either a vector or a scalar expression) and store 3782 ** the result in continguous temporary registers. Return the index of 3783 ** the first register used to store the result. 3784 ** 3785 ** If the returned result register is a temporary scalar, then also write 3786 ** that register number into *piFreeable. If the returned result register 3787 ** is not a temporary or if the expression is a vector set *piFreeable 3788 ** to 0. 3789 */ 3790 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3791 int iResult; 3792 int nResult = sqlite3ExprVectorSize(p); 3793 if( nResult==1 ){ 3794 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3795 }else{ 3796 *piFreeable = 0; 3797 if( p->op==TK_SELECT ){ 3798 #if SQLITE_OMIT_SUBQUERY 3799 iResult = 0; 3800 #else 3801 iResult = sqlite3CodeSubselect(pParse, p); 3802 #endif 3803 }else{ 3804 int i; 3805 iResult = pParse->nMem+1; 3806 pParse->nMem += nResult; 3807 for(i=0; i<nResult; i++){ 3808 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3809 } 3810 } 3811 } 3812 return iResult; 3813 } 3814 3815 /* 3816 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3817 ** so that a subsequent copy will not be merged into this one. 3818 */ 3819 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3820 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3821 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3822 } 3823 } 3824 3825 /* 3826 ** Generate code to implement special SQL functions that are implemented 3827 ** in-line rather than by using the usual callbacks. 3828 */ 3829 static int exprCodeInlineFunction( 3830 Parse *pParse, /* Parsing context */ 3831 ExprList *pFarg, /* List of function arguments */ 3832 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3833 int target /* Store function result in this register */ 3834 ){ 3835 int nFarg; 3836 Vdbe *v = pParse->pVdbe; 3837 assert( v!=0 ); 3838 assert( pFarg!=0 ); 3839 nFarg = pFarg->nExpr; 3840 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3841 switch( iFuncId ){ 3842 case INLINEFUNC_coalesce: { 3843 /* Attempt a direct implementation of the built-in COALESCE() and 3844 ** IFNULL() functions. This avoids unnecessary evaluation of 3845 ** arguments past the first non-NULL argument. 3846 */ 3847 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3848 int i; 3849 assert( nFarg>=2 ); 3850 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3851 for(i=1; i<nFarg; i++){ 3852 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3853 VdbeCoverage(v); 3854 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3855 } 3856 setDoNotMergeFlagOnCopy(v); 3857 sqlite3VdbeResolveLabel(v, endCoalesce); 3858 break; 3859 } 3860 case INLINEFUNC_iif: { 3861 Expr caseExpr; 3862 memset(&caseExpr, 0, sizeof(caseExpr)); 3863 caseExpr.op = TK_CASE; 3864 caseExpr.x.pList = pFarg; 3865 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3866 } 3867 3868 default: { 3869 /* The UNLIKELY() function is a no-op. The result is the value 3870 ** of the first argument. 3871 */ 3872 assert( nFarg==1 || nFarg==2 ); 3873 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3874 break; 3875 } 3876 3877 /*********************************************************************** 3878 ** Test-only SQL functions that are only usable if enabled 3879 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3880 */ 3881 #if !defined(SQLITE_UNTESTABLE) 3882 case INLINEFUNC_expr_compare: { 3883 /* Compare two expressions using sqlite3ExprCompare() */ 3884 assert( nFarg==2 ); 3885 sqlite3VdbeAddOp2(v, OP_Integer, 3886 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3887 target); 3888 break; 3889 } 3890 3891 case INLINEFUNC_expr_implies_expr: { 3892 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3893 assert( nFarg==2 ); 3894 sqlite3VdbeAddOp2(v, OP_Integer, 3895 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3896 target); 3897 break; 3898 } 3899 3900 case INLINEFUNC_implies_nonnull_row: { 3901 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3902 Expr *pA1; 3903 assert( nFarg==2 ); 3904 pA1 = pFarg->a[1].pExpr; 3905 if( pA1->op==TK_COLUMN ){ 3906 sqlite3VdbeAddOp2(v, OP_Integer, 3907 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3908 target); 3909 }else{ 3910 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3911 } 3912 break; 3913 } 3914 3915 case INLINEFUNC_affinity: { 3916 /* The AFFINITY() function evaluates to a string that describes 3917 ** the type affinity of the argument. This is used for testing of 3918 ** the SQLite type logic. 3919 */ 3920 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3921 char aff; 3922 assert( nFarg==1 ); 3923 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3924 sqlite3VdbeLoadString(v, target, 3925 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3926 break; 3927 } 3928 #endif /* !defined(SQLITE_UNTESTABLE) */ 3929 } 3930 return target; 3931 } 3932 3933 3934 /* 3935 ** Generate code into the current Vdbe to evaluate the given 3936 ** expression. Attempt to store the results in register "target". 3937 ** Return the register where results are stored. 3938 ** 3939 ** With this routine, there is no guarantee that results will 3940 ** be stored in target. The result might be stored in some other 3941 ** register if it is convenient to do so. The calling function 3942 ** must check the return code and move the results to the desired 3943 ** register. 3944 */ 3945 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3946 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3947 int op; /* The opcode being coded */ 3948 int inReg = target; /* Results stored in register inReg */ 3949 int regFree1 = 0; /* If non-zero free this temporary register */ 3950 int regFree2 = 0; /* If non-zero free this temporary register */ 3951 int r1, r2; /* Various register numbers */ 3952 Expr tempX; /* Temporary expression node */ 3953 int p5 = 0; 3954 3955 assert( target>0 && target<=pParse->nMem ); 3956 assert( v!=0 ); 3957 3958 expr_code_doover: 3959 if( pExpr==0 ){ 3960 op = TK_NULL; 3961 }else{ 3962 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3963 op = pExpr->op; 3964 } 3965 switch( op ){ 3966 case TK_AGG_COLUMN: { 3967 AggInfo *pAggInfo = pExpr->pAggInfo; 3968 struct AggInfo_col *pCol; 3969 assert( pAggInfo!=0 ); 3970 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3971 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3972 if( !pAggInfo->directMode ){ 3973 assert( pCol->iMem>0 ); 3974 return pCol->iMem; 3975 }else if( pAggInfo->useSortingIdx ){ 3976 Table *pTab = pCol->pTab; 3977 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3978 pCol->iSorterColumn, target); 3979 if( pCol->iColumn<0 ){ 3980 VdbeComment((v,"%s.rowid",pTab->zName)); 3981 }else{ 3982 VdbeComment((v,"%s.%s", 3983 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 3984 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3985 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3986 } 3987 } 3988 return target; 3989 } 3990 /* Otherwise, fall thru into the TK_COLUMN case */ 3991 /* no break */ deliberate_fall_through 3992 } 3993 case TK_COLUMN: { 3994 int iTab = pExpr->iTable; 3995 int iReg; 3996 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3997 /* This COLUMN expression is really a constant due to WHERE clause 3998 ** constraints, and that constant is coded by the pExpr->pLeft 3999 ** expresssion. However, make sure the constant has the correct 4000 ** datatype by applying the Affinity of the table column to the 4001 ** constant. 4002 */ 4003 int aff; 4004 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4005 if( pExpr->y.pTab ){ 4006 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4007 }else{ 4008 aff = pExpr->affExpr; 4009 } 4010 if( aff>SQLITE_AFF_BLOB ){ 4011 static const char zAff[] = "B\000C\000D\000E"; 4012 assert( SQLITE_AFF_BLOB=='A' ); 4013 assert( SQLITE_AFF_TEXT=='B' ); 4014 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4015 &zAff[(aff-'B')*2], P4_STATIC); 4016 } 4017 return iReg; 4018 } 4019 if( iTab<0 ){ 4020 if( pParse->iSelfTab<0 ){ 4021 /* Other columns in the same row for CHECK constraints or 4022 ** generated columns or for inserting into partial index. 4023 ** The row is unpacked into registers beginning at 4024 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4025 ** immediately prior to the first column. 4026 */ 4027 Column *pCol; 4028 Table *pTab = pExpr->y.pTab; 4029 int iSrc; 4030 int iCol = pExpr->iColumn; 4031 assert( pTab!=0 ); 4032 assert( iCol>=XN_ROWID ); 4033 assert( iCol<pTab->nCol ); 4034 if( iCol<0 ){ 4035 return -1-pParse->iSelfTab; 4036 } 4037 pCol = pTab->aCol + iCol; 4038 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4039 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4040 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4041 if( pCol->colFlags & COLFLAG_GENERATED ){ 4042 if( pCol->colFlags & COLFLAG_BUSY ){ 4043 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4044 pCol->zCnName); 4045 return 0; 4046 } 4047 pCol->colFlags |= COLFLAG_BUSY; 4048 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4049 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4050 } 4051 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4052 return iSrc; 4053 }else 4054 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4055 if( pCol->affinity==SQLITE_AFF_REAL ){ 4056 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4057 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4058 return target; 4059 }else{ 4060 return iSrc; 4061 } 4062 }else{ 4063 /* Coding an expression that is part of an index where column names 4064 ** in the index refer to the table to which the index belongs */ 4065 iTab = pParse->iSelfTab - 1; 4066 } 4067 } 4068 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4069 pExpr->iColumn, iTab, target, 4070 pExpr->op2); 4071 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4072 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4073 } 4074 return iReg; 4075 } 4076 case TK_INTEGER: { 4077 codeInteger(pParse, pExpr, 0, target); 4078 return target; 4079 } 4080 case TK_TRUEFALSE: { 4081 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4082 return target; 4083 } 4084 #ifndef SQLITE_OMIT_FLOATING_POINT 4085 case TK_FLOAT: { 4086 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4087 codeReal(v, pExpr->u.zToken, 0, target); 4088 return target; 4089 } 4090 #endif 4091 case TK_STRING: { 4092 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4093 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4094 return target; 4095 } 4096 default: { 4097 /* Make NULL the default case so that if a bug causes an illegal 4098 ** Expr node to be passed into this function, it will be handled 4099 ** sanely and not crash. But keep the assert() to bring the problem 4100 ** to the attention of the developers. */ 4101 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4102 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4103 return target; 4104 } 4105 #ifndef SQLITE_OMIT_BLOB_LITERAL 4106 case TK_BLOB: { 4107 int n; 4108 const char *z; 4109 char *zBlob; 4110 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4111 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4112 assert( pExpr->u.zToken[1]=='\'' ); 4113 z = &pExpr->u.zToken[2]; 4114 n = sqlite3Strlen30(z) - 1; 4115 assert( z[n]=='\'' ); 4116 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4117 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4118 return target; 4119 } 4120 #endif 4121 case TK_VARIABLE: { 4122 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4123 assert( pExpr->u.zToken!=0 ); 4124 assert( pExpr->u.zToken[0]!=0 ); 4125 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4126 if( pExpr->u.zToken[1]!=0 ){ 4127 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4128 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4129 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4130 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4131 } 4132 return target; 4133 } 4134 case TK_REGISTER: { 4135 return pExpr->iTable; 4136 } 4137 #ifndef SQLITE_OMIT_CAST 4138 case TK_CAST: { 4139 /* Expressions of the form: CAST(pLeft AS token) */ 4140 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4141 if( inReg!=target ){ 4142 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4143 inReg = target; 4144 } 4145 sqlite3VdbeAddOp2(v, OP_Cast, target, 4146 sqlite3AffinityType(pExpr->u.zToken, 0)); 4147 return inReg; 4148 } 4149 #endif /* SQLITE_OMIT_CAST */ 4150 case TK_IS: 4151 case TK_ISNOT: 4152 op = (op==TK_IS) ? TK_EQ : TK_NE; 4153 p5 = SQLITE_NULLEQ; 4154 /* fall-through */ 4155 case TK_LT: 4156 case TK_LE: 4157 case TK_GT: 4158 case TK_GE: 4159 case TK_NE: 4160 case TK_EQ: { 4161 Expr *pLeft = pExpr->pLeft; 4162 if( sqlite3ExprIsVector(pLeft) ){ 4163 codeVectorCompare(pParse, pExpr, target, op, p5); 4164 }else{ 4165 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4166 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4167 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4168 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4169 sqlite3VdbeCurrentAddr(v)+2, p5, 4170 ExprHasProperty(pExpr,EP_Commuted)); 4171 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4172 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4173 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4174 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4175 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4176 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4177 if( p5==SQLITE_NULLEQ ){ 4178 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4179 }else{ 4180 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4181 } 4182 testcase( regFree1==0 ); 4183 testcase( regFree2==0 ); 4184 } 4185 break; 4186 } 4187 case TK_AND: 4188 case TK_OR: 4189 case TK_PLUS: 4190 case TK_STAR: 4191 case TK_MINUS: 4192 case TK_REM: 4193 case TK_BITAND: 4194 case TK_BITOR: 4195 case TK_SLASH: 4196 case TK_LSHIFT: 4197 case TK_RSHIFT: 4198 case TK_CONCAT: { 4199 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4200 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4201 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4202 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4203 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4204 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4205 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4206 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4207 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4208 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4209 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4210 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4211 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4212 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4213 testcase( regFree1==0 ); 4214 testcase( regFree2==0 ); 4215 break; 4216 } 4217 case TK_UMINUS: { 4218 Expr *pLeft = pExpr->pLeft; 4219 assert( pLeft ); 4220 if( pLeft->op==TK_INTEGER ){ 4221 codeInteger(pParse, pLeft, 1, target); 4222 return target; 4223 #ifndef SQLITE_OMIT_FLOATING_POINT 4224 }else if( pLeft->op==TK_FLOAT ){ 4225 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4226 codeReal(v, pLeft->u.zToken, 1, target); 4227 return target; 4228 #endif 4229 }else{ 4230 tempX.op = TK_INTEGER; 4231 tempX.flags = EP_IntValue|EP_TokenOnly; 4232 tempX.u.iValue = 0; 4233 ExprClearVVAProperties(&tempX); 4234 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4235 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4236 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4237 testcase( regFree2==0 ); 4238 } 4239 break; 4240 } 4241 case TK_BITNOT: 4242 case TK_NOT: { 4243 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4244 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4245 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4246 testcase( regFree1==0 ); 4247 sqlite3VdbeAddOp2(v, op, r1, inReg); 4248 break; 4249 } 4250 case TK_TRUTH: { 4251 int isTrue; /* IS TRUE or IS NOT TRUE */ 4252 int bNormal; /* IS TRUE or IS FALSE */ 4253 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4254 testcase( regFree1==0 ); 4255 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4256 bNormal = pExpr->op2==TK_IS; 4257 testcase( isTrue && bNormal); 4258 testcase( !isTrue && bNormal); 4259 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4260 break; 4261 } 4262 case TK_ISNULL: 4263 case TK_NOTNULL: { 4264 int addr; 4265 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4266 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4267 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4268 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4269 testcase( regFree1==0 ); 4270 addr = sqlite3VdbeAddOp1(v, op, r1); 4271 VdbeCoverageIf(v, op==TK_ISNULL); 4272 VdbeCoverageIf(v, op==TK_NOTNULL); 4273 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4274 sqlite3VdbeJumpHere(v, addr); 4275 break; 4276 } 4277 case TK_AGG_FUNCTION: { 4278 AggInfo *pInfo = pExpr->pAggInfo; 4279 if( pInfo==0 4280 || NEVER(pExpr->iAgg<0) 4281 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4282 ){ 4283 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4284 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4285 }else{ 4286 return pInfo->aFunc[pExpr->iAgg].iMem; 4287 } 4288 break; 4289 } 4290 case TK_FUNCTION: { 4291 ExprList *pFarg; /* List of function arguments */ 4292 int nFarg; /* Number of function arguments */ 4293 FuncDef *pDef; /* The function definition object */ 4294 const char *zId; /* The function name */ 4295 u32 constMask = 0; /* Mask of function arguments that are constant */ 4296 int i; /* Loop counter */ 4297 sqlite3 *db = pParse->db; /* The database connection */ 4298 u8 enc = ENC(db); /* The text encoding used by this database */ 4299 CollSeq *pColl = 0; /* A collating sequence */ 4300 4301 #ifndef SQLITE_OMIT_WINDOWFUNC 4302 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4303 return pExpr->y.pWin->regResult; 4304 } 4305 #endif 4306 4307 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4308 /* SQL functions can be expensive. So try to avoid running them 4309 ** multiple times if we know they always give the same result */ 4310 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4311 } 4312 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4313 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4314 pFarg = pExpr->x.pList; 4315 nFarg = pFarg ? pFarg->nExpr : 0; 4316 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4317 zId = pExpr->u.zToken; 4318 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4319 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4320 if( pDef==0 && pParse->explain ){ 4321 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4322 } 4323 #endif 4324 if( pDef==0 || pDef->xFinalize!=0 ){ 4325 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4326 break; 4327 } 4328 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4329 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4330 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4331 return exprCodeInlineFunction(pParse, pFarg, 4332 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4333 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4334 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4335 } 4336 4337 for(i=0; i<nFarg; i++){ 4338 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4339 testcase( i==31 ); 4340 constMask |= MASKBIT32(i); 4341 } 4342 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4343 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4344 } 4345 } 4346 if( pFarg ){ 4347 if( constMask ){ 4348 r1 = pParse->nMem+1; 4349 pParse->nMem += nFarg; 4350 }else{ 4351 r1 = sqlite3GetTempRange(pParse, nFarg); 4352 } 4353 4354 /* For length() and typeof() functions with a column argument, 4355 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4356 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4357 ** loading. 4358 */ 4359 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4360 u8 exprOp; 4361 assert( nFarg==1 ); 4362 assert( pFarg->a[0].pExpr!=0 ); 4363 exprOp = pFarg->a[0].pExpr->op; 4364 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4365 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4366 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4367 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4368 pFarg->a[0].pExpr->op2 = 4369 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4370 } 4371 } 4372 4373 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4374 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4375 }else{ 4376 r1 = 0; 4377 } 4378 #ifndef SQLITE_OMIT_VIRTUALTABLE 4379 /* Possibly overload the function if the first argument is 4380 ** a virtual table column. 4381 ** 4382 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4383 ** second argument, not the first, as the argument to test to 4384 ** see if it is a column in a virtual table. This is done because 4385 ** the left operand of infix functions (the operand we want to 4386 ** control overloading) ends up as the second argument to the 4387 ** function. The expression "A glob B" is equivalent to 4388 ** "glob(B,A). We want to use the A in "A glob B" to test 4389 ** for function overloading. But we use the B term in "glob(B,A)". 4390 */ 4391 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4392 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4393 }else if( nFarg>0 ){ 4394 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4395 } 4396 #endif 4397 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4398 if( !pColl ) pColl = db->pDfltColl; 4399 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4400 } 4401 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4402 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4403 Expr *pArg = pFarg->a[0].pExpr; 4404 if( pArg->op==TK_COLUMN ){ 4405 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4406 }else{ 4407 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4408 } 4409 }else 4410 #endif 4411 { 4412 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4413 pDef, pExpr->op2); 4414 } 4415 if( nFarg ){ 4416 if( constMask==0 ){ 4417 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4418 }else{ 4419 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4420 } 4421 } 4422 return target; 4423 } 4424 #ifndef SQLITE_OMIT_SUBQUERY 4425 case TK_EXISTS: 4426 case TK_SELECT: { 4427 int nCol; 4428 testcase( op==TK_EXISTS ); 4429 testcase( op==TK_SELECT ); 4430 if( pParse->db->mallocFailed ){ 4431 return 0; 4432 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4433 sqlite3SubselectError(pParse, nCol, 1); 4434 }else{ 4435 return sqlite3CodeSubselect(pParse, pExpr); 4436 } 4437 break; 4438 } 4439 case TK_SELECT_COLUMN: { 4440 int n; 4441 if( pExpr->pLeft->iTable==0 ){ 4442 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4443 } 4444 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR ); 4445 n = sqlite3ExprVectorSize(pExpr->pLeft); 4446 if( pExpr->iTable!=n ){ 4447 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4448 pExpr->iTable, n); 4449 } 4450 return pExpr->pLeft->iTable + pExpr->iColumn; 4451 } 4452 case TK_IN: { 4453 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4454 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4455 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4456 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4457 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4458 sqlite3VdbeResolveLabel(v, destIfFalse); 4459 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4460 sqlite3VdbeResolveLabel(v, destIfNull); 4461 return target; 4462 } 4463 #endif /* SQLITE_OMIT_SUBQUERY */ 4464 4465 4466 /* 4467 ** x BETWEEN y AND z 4468 ** 4469 ** This is equivalent to 4470 ** 4471 ** x>=y AND x<=z 4472 ** 4473 ** X is stored in pExpr->pLeft. 4474 ** Y is stored in pExpr->pList->a[0].pExpr. 4475 ** Z is stored in pExpr->pList->a[1].pExpr. 4476 */ 4477 case TK_BETWEEN: { 4478 exprCodeBetween(pParse, pExpr, target, 0, 0); 4479 return target; 4480 } 4481 case TK_SPAN: 4482 case TK_COLLATE: 4483 case TK_UPLUS: { 4484 pExpr = pExpr->pLeft; 4485 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4486 } 4487 4488 case TK_TRIGGER: { 4489 /* If the opcode is TK_TRIGGER, then the expression is a reference 4490 ** to a column in the new.* or old.* pseudo-tables available to 4491 ** trigger programs. In this case Expr.iTable is set to 1 for the 4492 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4493 ** is set to the column of the pseudo-table to read, or to -1 to 4494 ** read the rowid field. 4495 ** 4496 ** The expression is implemented using an OP_Param opcode. The p1 4497 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4498 ** to reference another column of the old.* pseudo-table, where 4499 ** i is the index of the column. For a new.rowid reference, p1 is 4500 ** set to (n+1), where n is the number of columns in each pseudo-table. 4501 ** For a reference to any other column in the new.* pseudo-table, p1 4502 ** is set to (n+2+i), where n and i are as defined previously. For 4503 ** example, if the table on which triggers are being fired is 4504 ** declared as: 4505 ** 4506 ** CREATE TABLE t1(a, b); 4507 ** 4508 ** Then p1 is interpreted as follows: 4509 ** 4510 ** p1==0 -> old.rowid p1==3 -> new.rowid 4511 ** p1==1 -> old.a p1==4 -> new.a 4512 ** p1==2 -> old.b p1==5 -> new.b 4513 */ 4514 Table *pTab = pExpr->y.pTab; 4515 int iCol = pExpr->iColumn; 4516 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4517 + sqlite3TableColumnToStorage(pTab, iCol); 4518 4519 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4520 assert( iCol>=-1 && iCol<pTab->nCol ); 4521 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4522 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4523 4524 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4525 VdbeComment((v, "r[%d]=%s.%s", target, 4526 (pExpr->iTable ? "new" : "old"), 4527 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4528 )); 4529 4530 #ifndef SQLITE_OMIT_FLOATING_POINT 4531 /* If the column has REAL affinity, it may currently be stored as an 4532 ** integer. Use OP_RealAffinity to make sure it is really real. 4533 ** 4534 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4535 ** floating point when extracting it from the record. */ 4536 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4537 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4538 } 4539 #endif 4540 break; 4541 } 4542 4543 case TK_VECTOR: { 4544 sqlite3ErrorMsg(pParse, "row value misused"); 4545 break; 4546 } 4547 4548 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4549 ** that derive from the right-hand table of a LEFT JOIN. The 4550 ** Expr.iTable value is the table number for the right-hand table. 4551 ** The expression is only evaluated if that table is not currently 4552 ** on a LEFT JOIN NULL row. 4553 */ 4554 case TK_IF_NULL_ROW: { 4555 int addrINR; 4556 u8 okConstFactor = pParse->okConstFactor; 4557 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4558 /* Temporarily disable factoring of constant expressions, since 4559 ** even though expressions may appear to be constant, they are not 4560 ** really constant because they originate from the right-hand side 4561 ** of a LEFT JOIN. */ 4562 pParse->okConstFactor = 0; 4563 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4564 pParse->okConstFactor = okConstFactor; 4565 sqlite3VdbeJumpHere(v, addrINR); 4566 sqlite3VdbeChangeP3(v, addrINR, inReg); 4567 break; 4568 } 4569 4570 /* 4571 ** Form A: 4572 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4573 ** 4574 ** Form B: 4575 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4576 ** 4577 ** Form A is can be transformed into the equivalent form B as follows: 4578 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4579 ** WHEN x=eN THEN rN ELSE y END 4580 ** 4581 ** X (if it exists) is in pExpr->pLeft. 4582 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4583 ** odd. The Y is also optional. If the number of elements in x.pList 4584 ** is even, then Y is omitted and the "otherwise" result is NULL. 4585 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4586 ** 4587 ** The result of the expression is the Ri for the first matching Ei, 4588 ** or if there is no matching Ei, the ELSE term Y, or if there is 4589 ** no ELSE term, NULL. 4590 */ 4591 case TK_CASE: { 4592 int endLabel; /* GOTO label for end of CASE stmt */ 4593 int nextCase; /* GOTO label for next WHEN clause */ 4594 int nExpr; /* 2x number of WHEN terms */ 4595 int i; /* Loop counter */ 4596 ExprList *pEList; /* List of WHEN terms */ 4597 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4598 Expr opCompare; /* The X==Ei expression */ 4599 Expr *pX; /* The X expression */ 4600 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4601 Expr *pDel = 0; 4602 sqlite3 *db = pParse->db; 4603 4604 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4605 assert(pExpr->x.pList->nExpr > 0); 4606 pEList = pExpr->x.pList; 4607 aListelem = pEList->a; 4608 nExpr = pEList->nExpr; 4609 endLabel = sqlite3VdbeMakeLabel(pParse); 4610 if( (pX = pExpr->pLeft)!=0 ){ 4611 pDel = sqlite3ExprDup(db, pX, 0); 4612 if( db->mallocFailed ){ 4613 sqlite3ExprDelete(db, pDel); 4614 break; 4615 } 4616 testcase( pX->op==TK_COLUMN ); 4617 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4618 testcase( regFree1==0 ); 4619 memset(&opCompare, 0, sizeof(opCompare)); 4620 opCompare.op = TK_EQ; 4621 opCompare.pLeft = pDel; 4622 pTest = &opCompare; 4623 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4624 ** The value in regFree1 might get SCopy-ed into the file result. 4625 ** So make sure that the regFree1 register is not reused for other 4626 ** purposes and possibly overwritten. */ 4627 regFree1 = 0; 4628 } 4629 for(i=0; i<nExpr-1; i=i+2){ 4630 if( pX ){ 4631 assert( pTest!=0 ); 4632 opCompare.pRight = aListelem[i].pExpr; 4633 }else{ 4634 pTest = aListelem[i].pExpr; 4635 } 4636 nextCase = sqlite3VdbeMakeLabel(pParse); 4637 testcase( pTest->op==TK_COLUMN ); 4638 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4639 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4640 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4641 sqlite3VdbeGoto(v, endLabel); 4642 sqlite3VdbeResolveLabel(v, nextCase); 4643 } 4644 if( (nExpr&1)!=0 ){ 4645 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4646 }else{ 4647 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4648 } 4649 sqlite3ExprDelete(db, pDel); 4650 setDoNotMergeFlagOnCopy(v); 4651 sqlite3VdbeResolveLabel(v, endLabel); 4652 break; 4653 } 4654 #ifndef SQLITE_OMIT_TRIGGER 4655 case TK_RAISE: { 4656 assert( pExpr->affExpr==OE_Rollback 4657 || pExpr->affExpr==OE_Abort 4658 || pExpr->affExpr==OE_Fail 4659 || pExpr->affExpr==OE_Ignore 4660 ); 4661 if( !pParse->pTriggerTab && !pParse->nested ){ 4662 sqlite3ErrorMsg(pParse, 4663 "RAISE() may only be used within a trigger-program"); 4664 return 0; 4665 } 4666 if( pExpr->affExpr==OE_Abort ){ 4667 sqlite3MayAbort(pParse); 4668 } 4669 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4670 if( pExpr->affExpr==OE_Ignore ){ 4671 sqlite3VdbeAddOp4( 4672 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4673 VdbeCoverage(v); 4674 }else{ 4675 sqlite3HaltConstraint(pParse, 4676 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4677 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4678 } 4679 4680 break; 4681 } 4682 #endif 4683 } 4684 sqlite3ReleaseTempReg(pParse, regFree1); 4685 sqlite3ReleaseTempReg(pParse, regFree2); 4686 return inReg; 4687 } 4688 4689 /* 4690 ** Generate code that will evaluate expression pExpr just one time 4691 ** per prepared statement execution. 4692 ** 4693 ** If the expression uses functions (that might throw an exception) then 4694 ** guard them with an OP_Once opcode to ensure that the code is only executed 4695 ** once. If no functions are involved, then factor the code out and put it at 4696 ** the end of the prepared statement in the initialization section. 4697 ** 4698 ** If regDest>=0 then the result is always stored in that register and the 4699 ** result is not reusable. If regDest<0 then this routine is free to 4700 ** store the value whereever it wants. The register where the expression 4701 ** is stored is returned. When regDest<0, two identical expressions might 4702 ** code to the same register, if they do not contain function calls and hence 4703 ** are factored out into the initialization section at the end of the 4704 ** prepared statement. 4705 */ 4706 int sqlite3ExprCodeRunJustOnce( 4707 Parse *pParse, /* Parsing context */ 4708 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4709 int regDest /* Store the value in this register */ 4710 ){ 4711 ExprList *p; 4712 assert( ConstFactorOk(pParse) ); 4713 p = pParse->pConstExpr; 4714 if( regDest<0 && p ){ 4715 struct ExprList_item *pItem; 4716 int i; 4717 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4718 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4719 return pItem->u.iConstExprReg; 4720 } 4721 } 4722 } 4723 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4724 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4725 Vdbe *v = pParse->pVdbe; 4726 int addr; 4727 assert( v ); 4728 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4729 pParse->okConstFactor = 0; 4730 if( !pParse->db->mallocFailed ){ 4731 if( regDest<0 ) regDest = ++pParse->nMem; 4732 sqlite3ExprCode(pParse, pExpr, regDest); 4733 } 4734 pParse->okConstFactor = 1; 4735 sqlite3ExprDelete(pParse->db, pExpr); 4736 sqlite3VdbeJumpHere(v, addr); 4737 }else{ 4738 p = sqlite3ExprListAppend(pParse, p, pExpr); 4739 if( p ){ 4740 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4741 pItem->reusable = regDest<0; 4742 if( regDest<0 ) regDest = ++pParse->nMem; 4743 pItem->u.iConstExprReg = regDest; 4744 } 4745 pParse->pConstExpr = p; 4746 } 4747 return regDest; 4748 } 4749 4750 /* 4751 ** Generate code to evaluate an expression and store the results 4752 ** into a register. Return the register number where the results 4753 ** are stored. 4754 ** 4755 ** If the register is a temporary register that can be deallocated, 4756 ** then write its number into *pReg. If the result register is not 4757 ** a temporary, then set *pReg to zero. 4758 ** 4759 ** If pExpr is a constant, then this routine might generate this 4760 ** code to fill the register in the initialization section of the 4761 ** VDBE program, in order to factor it out of the evaluation loop. 4762 */ 4763 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4764 int r2; 4765 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4766 if( ConstFactorOk(pParse) 4767 && ALWAYS(pExpr!=0) 4768 && pExpr->op!=TK_REGISTER 4769 && sqlite3ExprIsConstantNotJoin(pExpr) 4770 ){ 4771 *pReg = 0; 4772 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4773 }else{ 4774 int r1 = sqlite3GetTempReg(pParse); 4775 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4776 if( r2==r1 ){ 4777 *pReg = r1; 4778 }else{ 4779 sqlite3ReleaseTempReg(pParse, r1); 4780 *pReg = 0; 4781 } 4782 } 4783 return r2; 4784 } 4785 4786 /* 4787 ** Generate code that will evaluate expression pExpr and store the 4788 ** results in register target. The results are guaranteed to appear 4789 ** in register target. 4790 */ 4791 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4792 int inReg; 4793 4794 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4795 assert( target>0 && target<=pParse->nMem ); 4796 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4797 if( pParse->pVdbe==0 ) return; 4798 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4799 if( inReg!=target ){ 4800 u8 op; 4801 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4802 op = OP_Copy; 4803 }else{ 4804 op = OP_SCopy; 4805 } 4806 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4807 } 4808 } 4809 4810 /* 4811 ** Make a transient copy of expression pExpr and then code it using 4812 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4813 ** except that the input expression is guaranteed to be unchanged. 4814 */ 4815 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4816 sqlite3 *db = pParse->db; 4817 pExpr = sqlite3ExprDup(db, pExpr, 0); 4818 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4819 sqlite3ExprDelete(db, pExpr); 4820 } 4821 4822 /* 4823 ** Generate code that will evaluate expression pExpr and store the 4824 ** results in register target. The results are guaranteed to appear 4825 ** in register target. If the expression is constant, then this routine 4826 ** might choose to code the expression at initialization time. 4827 */ 4828 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4829 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4830 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4831 }else{ 4832 sqlite3ExprCodeCopy(pParse, pExpr, target); 4833 } 4834 } 4835 4836 /* 4837 ** Generate code that pushes the value of every element of the given 4838 ** expression list into a sequence of registers beginning at target. 4839 ** 4840 ** Return the number of elements evaluated. The number returned will 4841 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4842 ** is defined. 4843 ** 4844 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4845 ** filled using OP_SCopy. OP_Copy must be used instead. 4846 ** 4847 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4848 ** factored out into initialization code. 4849 ** 4850 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4851 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4852 ** in registers at srcReg, and so the value can be copied from there. 4853 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4854 ** are simply omitted rather than being copied from srcReg. 4855 */ 4856 int sqlite3ExprCodeExprList( 4857 Parse *pParse, /* Parsing context */ 4858 ExprList *pList, /* The expression list to be coded */ 4859 int target, /* Where to write results */ 4860 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4861 u8 flags /* SQLITE_ECEL_* flags */ 4862 ){ 4863 struct ExprList_item *pItem; 4864 int i, j, n; 4865 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4866 Vdbe *v = pParse->pVdbe; 4867 assert( pList!=0 ); 4868 assert( target>0 ); 4869 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4870 n = pList->nExpr; 4871 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4872 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4873 Expr *pExpr = pItem->pExpr; 4874 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4875 if( pItem->bSorterRef ){ 4876 i--; 4877 n--; 4878 }else 4879 #endif 4880 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4881 if( flags & SQLITE_ECEL_OMITREF ){ 4882 i--; 4883 n--; 4884 }else{ 4885 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4886 } 4887 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4888 && sqlite3ExprIsConstantNotJoin(pExpr) 4889 ){ 4890 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4891 }else{ 4892 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4893 if( inReg!=target+i ){ 4894 VdbeOp *pOp; 4895 if( copyOp==OP_Copy 4896 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4897 && pOp->p1+pOp->p3+1==inReg 4898 && pOp->p2+pOp->p3+1==target+i 4899 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4900 ){ 4901 pOp->p3++; 4902 }else{ 4903 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4904 } 4905 } 4906 } 4907 } 4908 return n; 4909 } 4910 4911 /* 4912 ** Generate code for a BETWEEN operator. 4913 ** 4914 ** x BETWEEN y AND z 4915 ** 4916 ** The above is equivalent to 4917 ** 4918 ** x>=y AND x<=z 4919 ** 4920 ** Code it as such, taking care to do the common subexpression 4921 ** elimination of x. 4922 ** 4923 ** The xJumpIf parameter determines details: 4924 ** 4925 ** NULL: Store the boolean result in reg[dest] 4926 ** sqlite3ExprIfTrue: Jump to dest if true 4927 ** sqlite3ExprIfFalse: Jump to dest if false 4928 ** 4929 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4930 */ 4931 static void exprCodeBetween( 4932 Parse *pParse, /* Parsing and code generating context */ 4933 Expr *pExpr, /* The BETWEEN expression */ 4934 int dest, /* Jump destination or storage location */ 4935 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4936 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4937 ){ 4938 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4939 Expr compLeft; /* The x>=y term */ 4940 Expr compRight; /* The x<=z term */ 4941 int regFree1 = 0; /* Temporary use register */ 4942 Expr *pDel = 0; 4943 sqlite3 *db = pParse->db; 4944 4945 memset(&compLeft, 0, sizeof(Expr)); 4946 memset(&compRight, 0, sizeof(Expr)); 4947 memset(&exprAnd, 0, sizeof(Expr)); 4948 4949 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4950 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4951 if( db->mallocFailed==0 ){ 4952 exprAnd.op = TK_AND; 4953 exprAnd.pLeft = &compLeft; 4954 exprAnd.pRight = &compRight; 4955 compLeft.op = TK_GE; 4956 compLeft.pLeft = pDel; 4957 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4958 compRight.op = TK_LE; 4959 compRight.pLeft = pDel; 4960 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4961 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4962 if( xJump ){ 4963 xJump(pParse, &exprAnd, dest, jumpIfNull); 4964 }else{ 4965 /* Mark the expression is being from the ON or USING clause of a join 4966 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4967 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4968 ** for clarity, but we are out of bits in the Expr.flags field so we 4969 ** have to reuse the EP_FromJoin bit. Bummer. */ 4970 pDel->flags |= EP_FromJoin; 4971 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4972 } 4973 sqlite3ReleaseTempReg(pParse, regFree1); 4974 } 4975 sqlite3ExprDelete(db, pDel); 4976 4977 /* Ensure adequate test coverage */ 4978 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4979 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4980 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4981 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4982 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4983 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4984 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4985 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4986 testcase( xJump==0 ); 4987 } 4988 4989 /* 4990 ** Generate code for a boolean expression such that a jump is made 4991 ** to the label "dest" if the expression is true but execution 4992 ** continues straight thru if the expression is false. 4993 ** 4994 ** If the expression evaluates to NULL (neither true nor false), then 4995 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4996 ** 4997 ** This code depends on the fact that certain token values (ex: TK_EQ) 4998 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4999 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5000 ** the make process cause these values to align. Assert()s in the code 5001 ** below verify that the numbers are aligned correctly. 5002 */ 5003 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5004 Vdbe *v = pParse->pVdbe; 5005 int op = 0; 5006 int regFree1 = 0; 5007 int regFree2 = 0; 5008 int r1, r2; 5009 5010 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5011 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5012 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5013 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5014 op = pExpr->op; 5015 switch( op ){ 5016 case TK_AND: 5017 case TK_OR: { 5018 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5019 if( pAlt!=pExpr ){ 5020 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5021 }else if( op==TK_AND ){ 5022 int d2 = sqlite3VdbeMakeLabel(pParse); 5023 testcase( jumpIfNull==0 ); 5024 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5025 jumpIfNull^SQLITE_JUMPIFNULL); 5026 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5027 sqlite3VdbeResolveLabel(v, d2); 5028 }else{ 5029 testcase( jumpIfNull==0 ); 5030 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5031 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5032 } 5033 break; 5034 } 5035 case TK_NOT: { 5036 testcase( jumpIfNull==0 ); 5037 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5038 break; 5039 } 5040 case TK_TRUTH: { 5041 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5042 int isTrue; /* IS TRUE or IS NOT TRUE */ 5043 testcase( jumpIfNull==0 ); 5044 isNot = pExpr->op2==TK_ISNOT; 5045 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5046 testcase( isTrue && isNot ); 5047 testcase( !isTrue && isNot ); 5048 if( isTrue ^ isNot ){ 5049 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5050 isNot ? SQLITE_JUMPIFNULL : 0); 5051 }else{ 5052 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5053 isNot ? SQLITE_JUMPIFNULL : 0); 5054 } 5055 break; 5056 } 5057 case TK_IS: 5058 case TK_ISNOT: 5059 testcase( op==TK_IS ); 5060 testcase( op==TK_ISNOT ); 5061 op = (op==TK_IS) ? TK_EQ : TK_NE; 5062 jumpIfNull = SQLITE_NULLEQ; 5063 /* no break */ deliberate_fall_through 5064 case TK_LT: 5065 case TK_LE: 5066 case TK_GT: 5067 case TK_GE: 5068 case TK_NE: 5069 case TK_EQ: { 5070 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5071 testcase( jumpIfNull==0 ); 5072 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5073 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5074 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5075 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5076 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5077 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5078 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5079 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5080 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5081 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5082 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5083 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5084 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5085 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5086 testcase( regFree1==0 ); 5087 testcase( regFree2==0 ); 5088 break; 5089 } 5090 case TK_ISNULL: 5091 case TK_NOTNULL: { 5092 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5093 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5094 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5095 sqlite3VdbeAddOp2(v, op, r1, dest); 5096 VdbeCoverageIf(v, op==TK_ISNULL); 5097 VdbeCoverageIf(v, op==TK_NOTNULL); 5098 testcase( regFree1==0 ); 5099 break; 5100 } 5101 case TK_BETWEEN: { 5102 testcase( jumpIfNull==0 ); 5103 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5104 break; 5105 } 5106 #ifndef SQLITE_OMIT_SUBQUERY 5107 case TK_IN: { 5108 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5109 int destIfNull = jumpIfNull ? dest : destIfFalse; 5110 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5111 sqlite3VdbeGoto(v, dest); 5112 sqlite3VdbeResolveLabel(v, destIfFalse); 5113 break; 5114 } 5115 #endif 5116 default: { 5117 default_expr: 5118 if( ExprAlwaysTrue(pExpr) ){ 5119 sqlite3VdbeGoto(v, dest); 5120 }else if( ExprAlwaysFalse(pExpr) ){ 5121 /* No-op */ 5122 }else{ 5123 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5124 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5125 VdbeCoverage(v); 5126 testcase( regFree1==0 ); 5127 testcase( jumpIfNull==0 ); 5128 } 5129 break; 5130 } 5131 } 5132 sqlite3ReleaseTempReg(pParse, regFree1); 5133 sqlite3ReleaseTempReg(pParse, regFree2); 5134 } 5135 5136 /* 5137 ** Generate code for a boolean expression such that a jump is made 5138 ** to the label "dest" if the expression is false but execution 5139 ** continues straight thru if the expression is true. 5140 ** 5141 ** If the expression evaluates to NULL (neither true nor false) then 5142 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5143 ** is 0. 5144 */ 5145 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5146 Vdbe *v = pParse->pVdbe; 5147 int op = 0; 5148 int regFree1 = 0; 5149 int regFree2 = 0; 5150 int r1, r2; 5151 5152 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5153 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5154 if( pExpr==0 ) return; 5155 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5156 5157 /* The value of pExpr->op and op are related as follows: 5158 ** 5159 ** pExpr->op op 5160 ** --------- ---------- 5161 ** TK_ISNULL OP_NotNull 5162 ** TK_NOTNULL OP_IsNull 5163 ** TK_NE OP_Eq 5164 ** TK_EQ OP_Ne 5165 ** TK_GT OP_Le 5166 ** TK_LE OP_Gt 5167 ** TK_GE OP_Lt 5168 ** TK_LT OP_Ge 5169 ** 5170 ** For other values of pExpr->op, op is undefined and unused. 5171 ** The value of TK_ and OP_ constants are arranged such that we 5172 ** can compute the mapping above using the following expression. 5173 ** Assert()s verify that the computation is correct. 5174 */ 5175 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5176 5177 /* Verify correct alignment of TK_ and OP_ constants 5178 */ 5179 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5180 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5181 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5182 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5183 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5184 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5185 assert( pExpr->op!=TK_GT || op==OP_Le ); 5186 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5187 5188 switch( pExpr->op ){ 5189 case TK_AND: 5190 case TK_OR: { 5191 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5192 if( pAlt!=pExpr ){ 5193 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5194 }else if( pExpr->op==TK_AND ){ 5195 testcase( jumpIfNull==0 ); 5196 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5197 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5198 }else{ 5199 int d2 = sqlite3VdbeMakeLabel(pParse); 5200 testcase( jumpIfNull==0 ); 5201 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5202 jumpIfNull^SQLITE_JUMPIFNULL); 5203 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5204 sqlite3VdbeResolveLabel(v, d2); 5205 } 5206 break; 5207 } 5208 case TK_NOT: { 5209 testcase( jumpIfNull==0 ); 5210 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5211 break; 5212 } 5213 case TK_TRUTH: { 5214 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5215 int isTrue; /* IS TRUE or IS NOT TRUE */ 5216 testcase( jumpIfNull==0 ); 5217 isNot = pExpr->op2==TK_ISNOT; 5218 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5219 testcase( isTrue && isNot ); 5220 testcase( !isTrue && isNot ); 5221 if( isTrue ^ isNot ){ 5222 /* IS TRUE and IS NOT FALSE */ 5223 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5224 isNot ? 0 : SQLITE_JUMPIFNULL); 5225 5226 }else{ 5227 /* IS FALSE and IS NOT TRUE */ 5228 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5229 isNot ? 0 : SQLITE_JUMPIFNULL); 5230 } 5231 break; 5232 } 5233 case TK_IS: 5234 case TK_ISNOT: 5235 testcase( pExpr->op==TK_IS ); 5236 testcase( pExpr->op==TK_ISNOT ); 5237 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5238 jumpIfNull = SQLITE_NULLEQ; 5239 /* no break */ deliberate_fall_through 5240 case TK_LT: 5241 case TK_LE: 5242 case TK_GT: 5243 case TK_GE: 5244 case TK_NE: 5245 case TK_EQ: { 5246 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5247 testcase( jumpIfNull==0 ); 5248 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5249 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5250 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5251 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5252 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5253 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5254 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5255 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5256 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5257 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5258 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5259 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5260 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5261 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5262 testcase( regFree1==0 ); 5263 testcase( regFree2==0 ); 5264 break; 5265 } 5266 case TK_ISNULL: 5267 case TK_NOTNULL: { 5268 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5269 sqlite3VdbeAddOp2(v, op, r1, dest); 5270 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5271 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5272 testcase( regFree1==0 ); 5273 break; 5274 } 5275 case TK_BETWEEN: { 5276 testcase( jumpIfNull==0 ); 5277 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5278 break; 5279 } 5280 #ifndef SQLITE_OMIT_SUBQUERY 5281 case TK_IN: { 5282 if( jumpIfNull ){ 5283 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5284 }else{ 5285 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5286 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5287 sqlite3VdbeResolveLabel(v, destIfNull); 5288 } 5289 break; 5290 } 5291 #endif 5292 default: { 5293 default_expr: 5294 if( ExprAlwaysFalse(pExpr) ){ 5295 sqlite3VdbeGoto(v, dest); 5296 }else if( ExprAlwaysTrue(pExpr) ){ 5297 /* no-op */ 5298 }else{ 5299 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5300 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5301 VdbeCoverage(v); 5302 testcase( regFree1==0 ); 5303 testcase( jumpIfNull==0 ); 5304 } 5305 break; 5306 } 5307 } 5308 sqlite3ReleaseTempReg(pParse, regFree1); 5309 sqlite3ReleaseTempReg(pParse, regFree2); 5310 } 5311 5312 /* 5313 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5314 ** code generation, and that copy is deleted after code generation. This 5315 ** ensures that the original pExpr is unchanged. 5316 */ 5317 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5318 sqlite3 *db = pParse->db; 5319 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5320 if( db->mallocFailed==0 ){ 5321 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5322 } 5323 sqlite3ExprDelete(db, pCopy); 5324 } 5325 5326 /* 5327 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5328 ** type of expression. 5329 ** 5330 ** If pExpr is a simple SQL value - an integer, real, string, blob 5331 ** or NULL value - then the VDBE currently being prepared is configured 5332 ** to re-prepare each time a new value is bound to variable pVar. 5333 ** 5334 ** Additionally, if pExpr is a simple SQL value and the value is the 5335 ** same as that currently bound to variable pVar, non-zero is returned. 5336 ** Otherwise, if the values are not the same or if pExpr is not a simple 5337 ** SQL value, zero is returned. 5338 */ 5339 static int exprCompareVariable( 5340 const Parse *pParse, 5341 const Expr *pVar, 5342 const Expr *pExpr 5343 ){ 5344 int res = 0; 5345 int iVar; 5346 sqlite3_value *pL, *pR = 0; 5347 5348 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5349 if( pR ){ 5350 iVar = pVar->iColumn; 5351 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5352 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5353 if( pL ){ 5354 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5355 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5356 } 5357 res = 0==sqlite3MemCompare(pL, pR, 0); 5358 } 5359 sqlite3ValueFree(pR); 5360 sqlite3ValueFree(pL); 5361 } 5362 5363 return res; 5364 } 5365 5366 /* 5367 ** Do a deep comparison of two expression trees. Return 0 if the two 5368 ** expressions are completely identical. Return 1 if they differ only 5369 ** by a COLLATE operator at the top level. Return 2 if there are differences 5370 ** other than the top-level COLLATE operator. 5371 ** 5372 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5373 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5374 ** 5375 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5376 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5377 ** 5378 ** Sometimes this routine will return 2 even if the two expressions 5379 ** really are equivalent. If we cannot prove that the expressions are 5380 ** identical, we return 2 just to be safe. So if this routine 5381 ** returns 2, then you do not really know for certain if the two 5382 ** expressions are the same. But if you get a 0 or 1 return, then you 5383 ** can be sure the expressions are the same. In the places where 5384 ** this routine is used, it does not hurt to get an extra 2 - that 5385 ** just might result in some slightly slower code. But returning 5386 ** an incorrect 0 or 1 could lead to a malfunction. 5387 ** 5388 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5389 ** pParse->pReprepare can be matched against literals in pB. The 5390 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5391 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5392 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5393 ** pB causes a return value of 2. 5394 */ 5395 int sqlite3ExprCompare( 5396 const Parse *pParse, 5397 const Expr *pA, 5398 const Expr *pB, 5399 int iTab 5400 ){ 5401 u32 combinedFlags; 5402 if( pA==0 || pB==0 ){ 5403 return pB==pA ? 0 : 2; 5404 } 5405 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5406 return 0; 5407 } 5408 combinedFlags = pA->flags | pB->flags; 5409 if( combinedFlags & EP_IntValue ){ 5410 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5411 return 0; 5412 } 5413 return 2; 5414 } 5415 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5416 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5417 return 1; 5418 } 5419 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5420 return 1; 5421 } 5422 return 2; 5423 } 5424 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5425 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5426 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5427 #ifndef SQLITE_OMIT_WINDOWFUNC 5428 assert( pA->op==pB->op ); 5429 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5430 return 2; 5431 } 5432 if( ExprHasProperty(pA,EP_WinFunc) ){ 5433 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5434 return 2; 5435 } 5436 } 5437 #endif 5438 }else if( pA->op==TK_NULL ){ 5439 return 0; 5440 }else if( pA->op==TK_COLLATE ){ 5441 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5442 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5443 return 2; 5444 } 5445 } 5446 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5447 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5448 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5449 if( combinedFlags & EP_xIsSelect ) return 2; 5450 if( (combinedFlags & EP_FixedCol)==0 5451 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5452 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5453 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5454 if( pA->op!=TK_STRING 5455 && pA->op!=TK_TRUEFALSE 5456 && ALWAYS((combinedFlags & EP_Reduced)==0) 5457 ){ 5458 if( pA->iColumn!=pB->iColumn ) return 2; 5459 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5460 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5461 return 2; 5462 } 5463 } 5464 } 5465 return 0; 5466 } 5467 5468 /* 5469 ** Compare two ExprList objects. Return 0 if they are identical, 1 5470 ** if they are certainly different, or 2 if it is not possible to 5471 ** determine if they are identical or not. 5472 ** 5473 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5474 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5475 ** 5476 ** This routine might return non-zero for equivalent ExprLists. The 5477 ** only consequence will be disabled optimizations. But this routine 5478 ** must never return 0 if the two ExprList objects are different, or 5479 ** a malfunction will result. 5480 ** 5481 ** Two NULL pointers are considered to be the same. But a NULL pointer 5482 ** always differs from a non-NULL pointer. 5483 */ 5484 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5485 int i; 5486 if( pA==0 && pB==0 ) return 0; 5487 if( pA==0 || pB==0 ) return 1; 5488 if( pA->nExpr!=pB->nExpr ) return 1; 5489 for(i=0; i<pA->nExpr; i++){ 5490 int res; 5491 Expr *pExprA = pA->a[i].pExpr; 5492 Expr *pExprB = pB->a[i].pExpr; 5493 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5494 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5495 } 5496 return 0; 5497 } 5498 5499 /* 5500 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5501 ** are ignored. 5502 */ 5503 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5504 return sqlite3ExprCompare(0, 5505 sqlite3ExprSkipCollateAndLikely(pA), 5506 sqlite3ExprSkipCollateAndLikely(pB), 5507 iTab); 5508 } 5509 5510 /* 5511 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5512 ** 5513 ** Or if seenNot is true, return non-zero if Expr p can only be 5514 ** non-NULL if pNN is not NULL 5515 */ 5516 static int exprImpliesNotNull( 5517 const Parse *pParse,/* Parsing context */ 5518 const Expr *p, /* The expression to be checked */ 5519 const Expr *pNN, /* The expression that is NOT NULL */ 5520 int iTab, /* Table being evaluated */ 5521 int seenNot /* Return true only if p can be any non-NULL value */ 5522 ){ 5523 assert( p ); 5524 assert( pNN ); 5525 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5526 return pNN->op!=TK_NULL; 5527 } 5528 switch( p->op ){ 5529 case TK_IN: { 5530 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5531 assert( ExprHasProperty(p,EP_xIsSelect) 5532 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5533 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5534 } 5535 case TK_BETWEEN: { 5536 ExprList *pList = p->x.pList; 5537 assert( pList!=0 ); 5538 assert( pList->nExpr==2 ); 5539 if( seenNot ) return 0; 5540 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5541 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5542 ){ 5543 return 1; 5544 } 5545 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5546 } 5547 case TK_EQ: 5548 case TK_NE: 5549 case TK_LT: 5550 case TK_LE: 5551 case TK_GT: 5552 case TK_GE: 5553 case TK_PLUS: 5554 case TK_MINUS: 5555 case TK_BITOR: 5556 case TK_LSHIFT: 5557 case TK_RSHIFT: 5558 case TK_CONCAT: 5559 seenNot = 1; 5560 /* no break */ deliberate_fall_through 5561 case TK_STAR: 5562 case TK_REM: 5563 case TK_BITAND: 5564 case TK_SLASH: { 5565 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5566 /* no break */ deliberate_fall_through 5567 } 5568 case TK_SPAN: 5569 case TK_COLLATE: 5570 case TK_UPLUS: 5571 case TK_UMINUS: { 5572 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5573 } 5574 case TK_TRUTH: { 5575 if( seenNot ) return 0; 5576 if( p->op2!=TK_IS ) return 0; 5577 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5578 } 5579 case TK_BITNOT: 5580 case TK_NOT: { 5581 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5582 } 5583 } 5584 return 0; 5585 } 5586 5587 /* 5588 ** Return true if we can prove the pE2 will always be true if pE1 is 5589 ** true. Return false if we cannot complete the proof or if pE2 might 5590 ** be false. Examples: 5591 ** 5592 ** pE1: x==5 pE2: x==5 Result: true 5593 ** pE1: x>0 pE2: x==5 Result: false 5594 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5595 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5596 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5597 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5598 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5599 ** 5600 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5601 ** Expr.iTable<0 then assume a table number given by iTab. 5602 ** 5603 ** If pParse is not NULL, then the values of bound variables in pE1 are 5604 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5605 ** modified to record which bound variables are referenced. If pParse 5606 ** is NULL, then false will be returned if pE1 contains any bound variables. 5607 ** 5608 ** When in doubt, return false. Returning true might give a performance 5609 ** improvement. Returning false might cause a performance reduction, but 5610 ** it will always give the correct answer and is hence always safe. 5611 */ 5612 int sqlite3ExprImpliesExpr( 5613 const Parse *pParse, 5614 const Expr *pE1, 5615 const Expr *pE2, 5616 int iTab 5617 ){ 5618 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5619 return 1; 5620 } 5621 if( pE2->op==TK_OR 5622 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5623 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5624 ){ 5625 return 1; 5626 } 5627 if( pE2->op==TK_NOTNULL 5628 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5629 ){ 5630 return 1; 5631 } 5632 return 0; 5633 } 5634 5635 /* 5636 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5637 ** If the expression node requires that the table at pWalker->iCur 5638 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5639 ** 5640 ** This routine controls an optimization. False positives (setting 5641 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5642 ** (never setting pWalker->eCode) is a harmless missed optimization. 5643 */ 5644 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5645 testcase( pExpr->op==TK_AGG_COLUMN ); 5646 testcase( pExpr->op==TK_AGG_FUNCTION ); 5647 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5648 switch( pExpr->op ){ 5649 case TK_ISNOT: 5650 case TK_ISNULL: 5651 case TK_NOTNULL: 5652 case TK_IS: 5653 case TK_OR: 5654 case TK_VECTOR: 5655 case TK_CASE: 5656 case TK_IN: 5657 case TK_FUNCTION: 5658 case TK_TRUTH: 5659 testcase( pExpr->op==TK_ISNOT ); 5660 testcase( pExpr->op==TK_ISNULL ); 5661 testcase( pExpr->op==TK_NOTNULL ); 5662 testcase( pExpr->op==TK_IS ); 5663 testcase( pExpr->op==TK_OR ); 5664 testcase( pExpr->op==TK_VECTOR ); 5665 testcase( pExpr->op==TK_CASE ); 5666 testcase( pExpr->op==TK_IN ); 5667 testcase( pExpr->op==TK_FUNCTION ); 5668 testcase( pExpr->op==TK_TRUTH ); 5669 return WRC_Prune; 5670 case TK_COLUMN: 5671 if( pWalker->u.iCur==pExpr->iTable ){ 5672 pWalker->eCode = 1; 5673 return WRC_Abort; 5674 } 5675 return WRC_Prune; 5676 5677 case TK_AND: 5678 if( pWalker->eCode==0 ){ 5679 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5680 if( pWalker->eCode ){ 5681 pWalker->eCode = 0; 5682 sqlite3WalkExpr(pWalker, pExpr->pRight); 5683 } 5684 } 5685 return WRC_Prune; 5686 5687 case TK_BETWEEN: 5688 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5689 assert( pWalker->eCode ); 5690 return WRC_Abort; 5691 } 5692 return WRC_Prune; 5693 5694 /* Virtual tables are allowed to use constraints like x=NULL. So 5695 ** a term of the form x=y does not prove that y is not null if x 5696 ** is the column of a virtual table */ 5697 case TK_EQ: 5698 case TK_NE: 5699 case TK_LT: 5700 case TK_LE: 5701 case TK_GT: 5702 case TK_GE: { 5703 Expr *pLeft = pExpr->pLeft; 5704 Expr *pRight = pExpr->pRight; 5705 testcase( pExpr->op==TK_EQ ); 5706 testcase( pExpr->op==TK_NE ); 5707 testcase( pExpr->op==TK_LT ); 5708 testcase( pExpr->op==TK_LE ); 5709 testcase( pExpr->op==TK_GT ); 5710 testcase( pExpr->op==TK_GE ); 5711 /* The y.pTab=0 assignment in wherecode.c always happens after the 5712 ** impliesNotNullRow() test */ 5713 if( (pLeft->op==TK_COLUMN && pLeft->y.pTab!=0 5714 && IsVirtual(pLeft->y.pTab)) 5715 || (pRight->op==TK_COLUMN && pRight->y.pTab!=0 5716 && IsVirtual(pRight->y.pTab)) 5717 ){ 5718 return WRC_Prune; 5719 } 5720 /* no break */ deliberate_fall_through 5721 } 5722 default: 5723 return WRC_Continue; 5724 } 5725 } 5726 5727 /* 5728 ** Return true (non-zero) if expression p can only be true if at least 5729 ** one column of table iTab is non-null. In other words, return true 5730 ** if expression p will always be NULL or false if every column of iTab 5731 ** is NULL. 5732 ** 5733 ** False negatives are acceptable. In other words, it is ok to return 5734 ** zero even if expression p will never be true of every column of iTab 5735 ** is NULL. A false negative is merely a missed optimization opportunity. 5736 ** 5737 ** False positives are not allowed, however. A false positive may result 5738 ** in an incorrect answer. 5739 ** 5740 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5741 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5742 ** 5743 ** This routine is used to check if a LEFT JOIN can be converted into 5744 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5745 ** clause requires that some column of the right table of the LEFT JOIN 5746 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5747 ** ordinary join. 5748 */ 5749 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5750 Walker w; 5751 p = sqlite3ExprSkipCollateAndLikely(p); 5752 if( p==0 ) return 0; 5753 if( p->op==TK_NOTNULL ){ 5754 p = p->pLeft; 5755 }else{ 5756 while( p->op==TK_AND ){ 5757 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5758 p = p->pRight; 5759 } 5760 } 5761 w.xExprCallback = impliesNotNullRow; 5762 w.xSelectCallback = 0; 5763 w.xSelectCallback2 = 0; 5764 w.eCode = 0; 5765 w.u.iCur = iTab; 5766 sqlite3WalkExpr(&w, p); 5767 return w.eCode; 5768 } 5769 5770 /* 5771 ** An instance of the following structure is used by the tree walker 5772 ** to determine if an expression can be evaluated by reference to the 5773 ** index only, without having to do a search for the corresponding 5774 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5775 ** is the cursor for the table. 5776 */ 5777 struct IdxCover { 5778 Index *pIdx; /* The index to be tested for coverage */ 5779 int iCur; /* Cursor number for the table corresponding to the index */ 5780 }; 5781 5782 /* 5783 ** Check to see if there are references to columns in table 5784 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5785 ** pWalker->u.pIdxCover->pIdx. 5786 */ 5787 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5788 if( pExpr->op==TK_COLUMN 5789 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5790 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5791 ){ 5792 pWalker->eCode = 1; 5793 return WRC_Abort; 5794 } 5795 return WRC_Continue; 5796 } 5797 5798 /* 5799 ** Determine if an index pIdx on table with cursor iCur contains will 5800 ** the expression pExpr. Return true if the index does cover the 5801 ** expression and false if the pExpr expression references table columns 5802 ** that are not found in the index pIdx. 5803 ** 5804 ** An index covering an expression means that the expression can be 5805 ** evaluated using only the index and without having to lookup the 5806 ** corresponding table entry. 5807 */ 5808 int sqlite3ExprCoveredByIndex( 5809 Expr *pExpr, /* The index to be tested */ 5810 int iCur, /* The cursor number for the corresponding table */ 5811 Index *pIdx /* The index that might be used for coverage */ 5812 ){ 5813 Walker w; 5814 struct IdxCover xcov; 5815 memset(&w, 0, sizeof(w)); 5816 xcov.iCur = iCur; 5817 xcov.pIdx = pIdx; 5818 w.xExprCallback = exprIdxCover; 5819 w.u.pIdxCover = &xcov; 5820 sqlite3WalkExpr(&w, pExpr); 5821 return !w.eCode; 5822 } 5823 5824 5825 /* 5826 ** An instance of the following structure is used by the tree walker 5827 ** to count references to table columns in the arguments of an 5828 ** aggregate function, in order to implement the 5829 ** sqlite3FunctionThisSrc() routine. 5830 */ 5831 struct SrcCount { 5832 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5833 int iSrcInner; /* Smallest cursor number in this context */ 5834 int nThis; /* Number of references to columns in pSrcList */ 5835 int nOther; /* Number of references to columns in other FROM clauses */ 5836 }; 5837 5838 /* 5839 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5840 ** SELECT with a FROM clause encountered during this iteration, set 5841 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5842 ** the FROM cause. 5843 */ 5844 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5845 struct SrcCount *p = pWalker->u.pSrcCount; 5846 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5847 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5848 } 5849 return WRC_Continue; 5850 } 5851 5852 /* 5853 ** Count the number of references to columns. 5854 */ 5855 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5856 /* There was once a NEVER() on the second term on the grounds that 5857 ** sqlite3FunctionUsesThisSrc() was always called before 5858 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5859 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5860 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5861 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5862 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5863 int i; 5864 struct SrcCount *p = pWalker->u.pSrcCount; 5865 SrcList *pSrc = p->pSrc; 5866 int nSrc = pSrc ? pSrc->nSrc : 0; 5867 for(i=0; i<nSrc; i++){ 5868 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5869 } 5870 if( i<nSrc ){ 5871 p->nThis++; 5872 }else if( pExpr->iTable<p->iSrcInner ){ 5873 /* In a well-formed parse tree (no name resolution errors), 5874 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5875 ** outer context. Those are the only ones to count as "other" */ 5876 p->nOther++; 5877 } 5878 } 5879 return WRC_Continue; 5880 } 5881 5882 /* 5883 ** Determine if any of the arguments to the pExpr Function reference 5884 ** pSrcList. Return true if they do. Also return true if the function 5885 ** has no arguments or has only constant arguments. Return false if pExpr 5886 ** references columns but not columns of tables found in pSrcList. 5887 */ 5888 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5889 Walker w; 5890 struct SrcCount cnt; 5891 assert( pExpr->op==TK_AGG_FUNCTION ); 5892 memset(&w, 0, sizeof(w)); 5893 w.xExprCallback = exprSrcCount; 5894 w.xSelectCallback = selectSrcCount; 5895 w.u.pSrcCount = &cnt; 5896 cnt.pSrc = pSrcList; 5897 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5898 cnt.nThis = 0; 5899 cnt.nOther = 0; 5900 sqlite3WalkExprList(&w, pExpr->x.pList); 5901 #ifndef SQLITE_OMIT_WINDOWFUNC 5902 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5903 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5904 } 5905 #endif 5906 return cnt.nThis>0 || cnt.nOther==0; 5907 } 5908 5909 /* 5910 ** This is a Walker expression node callback. 5911 ** 5912 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5913 ** object that is referenced does not refer directly to the Expr. If 5914 ** it does, make a copy. This is done because the pExpr argument is 5915 ** subject to change. 5916 ** 5917 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5918 ** This will cause the expression to be deleted automatically when the 5919 ** Parse object is destroyed, but the zero register number means that it 5920 ** will not generate any code in the preamble. 5921 */ 5922 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5923 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5924 && pExpr->pAggInfo!=0 5925 ){ 5926 AggInfo *pAggInfo = pExpr->pAggInfo; 5927 int iAgg = pExpr->iAgg; 5928 Parse *pParse = pWalker->pParse; 5929 sqlite3 *db = pParse->db; 5930 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5931 if( pExpr->op==TK_AGG_COLUMN ){ 5932 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5933 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5934 pExpr = sqlite3ExprDup(db, pExpr, 0); 5935 if( pExpr ){ 5936 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5937 sqlite3ExprDeferredDelete(pParse, pExpr); 5938 } 5939 } 5940 }else{ 5941 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5942 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5943 pExpr = sqlite3ExprDup(db, pExpr, 0); 5944 if( pExpr ){ 5945 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5946 sqlite3ExprDeferredDelete(pParse, pExpr); 5947 } 5948 } 5949 } 5950 } 5951 return WRC_Continue; 5952 } 5953 5954 /* 5955 ** Initialize a Walker object so that will persist AggInfo entries referenced 5956 ** by the tree that is walked. 5957 */ 5958 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5959 memset(pWalker, 0, sizeof(*pWalker)); 5960 pWalker->pParse = pParse; 5961 pWalker->xExprCallback = agginfoPersistExprCb; 5962 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5963 } 5964 5965 /* 5966 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5967 ** the new element. Return a negative number if malloc fails. 5968 */ 5969 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5970 int i; 5971 pInfo->aCol = sqlite3ArrayAllocate( 5972 db, 5973 pInfo->aCol, 5974 sizeof(pInfo->aCol[0]), 5975 &pInfo->nColumn, 5976 &i 5977 ); 5978 return i; 5979 } 5980 5981 /* 5982 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5983 ** the new element. Return a negative number if malloc fails. 5984 */ 5985 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5986 int i; 5987 pInfo->aFunc = sqlite3ArrayAllocate( 5988 db, 5989 pInfo->aFunc, 5990 sizeof(pInfo->aFunc[0]), 5991 &pInfo->nFunc, 5992 &i 5993 ); 5994 return i; 5995 } 5996 5997 /* 5998 ** This is the xExprCallback for a tree walker. It is used to 5999 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6000 ** for additional information. 6001 */ 6002 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6003 int i; 6004 NameContext *pNC = pWalker->u.pNC; 6005 Parse *pParse = pNC->pParse; 6006 SrcList *pSrcList = pNC->pSrcList; 6007 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6008 6009 assert( pNC->ncFlags & NC_UAggInfo ); 6010 switch( pExpr->op ){ 6011 case TK_AGG_COLUMN: 6012 case TK_COLUMN: { 6013 testcase( pExpr->op==TK_AGG_COLUMN ); 6014 testcase( pExpr->op==TK_COLUMN ); 6015 /* Check to see if the column is in one of the tables in the FROM 6016 ** clause of the aggregate query */ 6017 if( ALWAYS(pSrcList!=0) ){ 6018 SrcItem *pItem = pSrcList->a; 6019 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6020 struct AggInfo_col *pCol; 6021 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6022 if( pExpr->iTable==pItem->iCursor ){ 6023 /* If we reach this point, it means that pExpr refers to a table 6024 ** that is in the FROM clause of the aggregate query. 6025 ** 6026 ** Make an entry for the column in pAggInfo->aCol[] if there 6027 ** is not an entry there already. 6028 */ 6029 int k; 6030 pCol = pAggInfo->aCol; 6031 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6032 if( pCol->iTable==pExpr->iTable && 6033 pCol->iColumn==pExpr->iColumn ){ 6034 break; 6035 } 6036 } 6037 if( (k>=pAggInfo->nColumn) 6038 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6039 ){ 6040 pCol = &pAggInfo->aCol[k]; 6041 pCol->pTab = pExpr->y.pTab; 6042 pCol->iTable = pExpr->iTable; 6043 pCol->iColumn = pExpr->iColumn; 6044 pCol->iMem = ++pParse->nMem; 6045 pCol->iSorterColumn = -1; 6046 pCol->pCExpr = pExpr; 6047 if( pAggInfo->pGroupBy ){ 6048 int j, n; 6049 ExprList *pGB = pAggInfo->pGroupBy; 6050 struct ExprList_item *pTerm = pGB->a; 6051 n = pGB->nExpr; 6052 for(j=0; j<n; j++, pTerm++){ 6053 Expr *pE = pTerm->pExpr; 6054 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6055 pE->iColumn==pExpr->iColumn ){ 6056 pCol->iSorterColumn = j; 6057 break; 6058 } 6059 } 6060 } 6061 if( pCol->iSorterColumn<0 ){ 6062 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6063 } 6064 } 6065 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6066 ** because it was there before or because we just created it). 6067 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6068 ** pAggInfo->aCol[] entry. 6069 */ 6070 ExprSetVVAProperty(pExpr, EP_NoReduce); 6071 pExpr->pAggInfo = pAggInfo; 6072 pExpr->op = TK_AGG_COLUMN; 6073 pExpr->iAgg = (i16)k; 6074 break; 6075 } /* endif pExpr->iTable==pItem->iCursor */ 6076 } /* end loop over pSrcList */ 6077 } 6078 return WRC_Prune; 6079 } 6080 case TK_AGG_FUNCTION: { 6081 if( (pNC->ncFlags & NC_InAggFunc)==0 6082 && pWalker->walkerDepth==pExpr->op2 6083 ){ 6084 /* Check to see if pExpr is a duplicate of another aggregate 6085 ** function that is already in the pAggInfo structure 6086 */ 6087 struct AggInfo_func *pItem = pAggInfo->aFunc; 6088 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6089 if( pItem->pFExpr==pExpr ) break; 6090 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6091 break; 6092 } 6093 } 6094 if( i>=pAggInfo->nFunc ){ 6095 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6096 */ 6097 u8 enc = ENC(pParse->db); 6098 i = addAggInfoFunc(pParse->db, pAggInfo); 6099 if( i>=0 ){ 6100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6101 pItem = &pAggInfo->aFunc[i]; 6102 pItem->pFExpr = pExpr; 6103 pItem->iMem = ++pParse->nMem; 6104 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6105 pItem->pFunc = sqlite3FindFunction(pParse->db, 6106 pExpr->u.zToken, 6107 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6108 if( pExpr->flags & EP_Distinct ){ 6109 pItem->iDistinct = pParse->nTab++; 6110 }else{ 6111 pItem->iDistinct = -1; 6112 } 6113 } 6114 } 6115 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6116 */ 6117 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6118 ExprSetVVAProperty(pExpr, EP_NoReduce); 6119 pExpr->iAgg = (i16)i; 6120 pExpr->pAggInfo = pAggInfo; 6121 return WRC_Prune; 6122 }else{ 6123 return WRC_Continue; 6124 } 6125 } 6126 } 6127 return WRC_Continue; 6128 } 6129 6130 /* 6131 ** Analyze the pExpr expression looking for aggregate functions and 6132 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6133 ** points to. Additional entries are made on the AggInfo object as 6134 ** necessary. 6135 ** 6136 ** This routine should only be called after the expression has been 6137 ** analyzed by sqlite3ResolveExprNames(). 6138 */ 6139 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6140 Walker w; 6141 w.xExprCallback = analyzeAggregate; 6142 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6143 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6144 w.walkerDepth = 0; 6145 w.u.pNC = pNC; 6146 w.pParse = 0; 6147 assert( pNC->pSrcList!=0 ); 6148 sqlite3WalkExpr(&w, pExpr); 6149 } 6150 6151 /* 6152 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6153 ** expression list. Return the number of errors. 6154 ** 6155 ** If an error is found, the analysis is cut short. 6156 */ 6157 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6158 struct ExprList_item *pItem; 6159 int i; 6160 if( pList ){ 6161 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6162 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6163 } 6164 } 6165 } 6166 6167 /* 6168 ** Allocate a single new register for use to hold some intermediate result. 6169 */ 6170 int sqlite3GetTempReg(Parse *pParse){ 6171 if( pParse->nTempReg==0 ){ 6172 return ++pParse->nMem; 6173 } 6174 return pParse->aTempReg[--pParse->nTempReg]; 6175 } 6176 6177 /* 6178 ** Deallocate a register, making available for reuse for some other 6179 ** purpose. 6180 */ 6181 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6182 if( iReg ){ 6183 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6184 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6185 pParse->aTempReg[pParse->nTempReg++] = iReg; 6186 } 6187 } 6188 } 6189 6190 /* 6191 ** Allocate or deallocate a block of nReg consecutive registers. 6192 */ 6193 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6194 int i, n; 6195 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6196 i = pParse->iRangeReg; 6197 n = pParse->nRangeReg; 6198 if( nReg<=n ){ 6199 pParse->iRangeReg += nReg; 6200 pParse->nRangeReg -= nReg; 6201 }else{ 6202 i = pParse->nMem+1; 6203 pParse->nMem += nReg; 6204 } 6205 return i; 6206 } 6207 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6208 if( nReg==1 ){ 6209 sqlite3ReleaseTempReg(pParse, iReg); 6210 return; 6211 } 6212 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6213 if( nReg>pParse->nRangeReg ){ 6214 pParse->nRangeReg = nReg; 6215 pParse->iRangeReg = iReg; 6216 } 6217 } 6218 6219 /* 6220 ** Mark all temporary registers as being unavailable for reuse. 6221 ** 6222 ** Always invoke this procedure after coding a subroutine or co-routine 6223 ** that might be invoked from other parts of the code, to ensure that 6224 ** the sub/co-routine does not use registers in common with the code that 6225 ** invokes the sub/co-routine. 6226 */ 6227 void sqlite3ClearTempRegCache(Parse *pParse){ 6228 pParse->nTempReg = 0; 6229 pParse->nRangeReg = 0; 6230 } 6231 6232 /* 6233 ** Validate that no temporary register falls within the range of 6234 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6235 ** statements. 6236 */ 6237 #ifdef SQLITE_DEBUG 6238 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6239 int i; 6240 if( pParse->nRangeReg>0 6241 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6242 && pParse->iRangeReg <= iLast 6243 ){ 6244 return 0; 6245 } 6246 for(i=0; i<pParse->nTempReg; i++){ 6247 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6248 return 0; 6249 } 6250 } 6251 return 1; 6252 } 6253 #endif /* SQLITE_DEBUG */ 6254