xref: /sqlite-3.40.0/src/expr.c (revision 37874d7d)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   if( pExpr->flags & EP_Generic ) return 0;
48   while( ExprHasProperty(pExpr, EP_Skip) ){
49     assert( pExpr->op==TK_COLLATE );
50     pExpr = pExpr->pLeft;
51     assert( pExpr!=0 );
52   }
53   op = pExpr->op;
54   if( op==TK_SELECT ){
55     assert( pExpr->flags&EP_xIsSelect );
56     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
57   }
58   if( op==TK_REGISTER ) op = pExpr->op2;
59 #ifndef SQLITE_OMIT_CAST
60   if( op==TK_CAST ){
61     assert( !ExprHasProperty(pExpr, EP_IntValue) );
62     return sqlite3AffinityType(pExpr->u.zToken, 0);
63   }
64 #endif
65   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
66     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
67   }
68   if( op==TK_SELECT_COLUMN ){
69     assert( pExpr->pLeft->flags&EP_xIsSelect );
70     return sqlite3ExprAffinity(
71         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
72     );
73   }
74   return pExpr->affExpr;
75 }
76 
77 /*
78 ** Set the collating sequence for expression pExpr to be the collating
79 ** sequence named by pToken.   Return a pointer to a new Expr node that
80 ** implements the COLLATE operator.
81 **
82 ** If a memory allocation error occurs, that fact is recorded in pParse->db
83 ** and the pExpr parameter is returned unchanged.
84 */
85 Expr *sqlite3ExprAddCollateToken(
86   Parse *pParse,           /* Parsing context */
87   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
88   const Token *pCollName,  /* Name of collating sequence */
89   int dequote              /* True to dequote pCollName */
90 ){
91   if( pCollName->n>0 ){
92     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
93     if( pNew ){
94       pNew->pLeft = pExpr;
95       pNew->flags |= EP_Collate|EP_Skip;
96       pExpr = pNew;
97     }
98   }
99   return pExpr;
100 }
101 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
102   Token s;
103   assert( zC!=0 );
104   sqlite3TokenInit(&s, (char*)zC);
105   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
106 }
107 
108 /*
109 ** Skip over any TK_COLLATE operators and any unlikely()
110 ** or likelihood() function at the root of an expression.
111 */
112 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
113   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
114     if( ExprHasProperty(pExpr, EP_Unlikely) ){
115       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
116       assert( pExpr->x.pList->nExpr>0 );
117       assert( pExpr->op==TK_FUNCTION );
118       pExpr = pExpr->x.pList->a[0].pExpr;
119     }else{
120       assert( pExpr->op==TK_COLLATE );
121       pExpr = pExpr->pLeft;
122     }
123   }
124   return pExpr;
125 }
126 
127 /*
128 ** Return the collation sequence for the expression pExpr. If
129 ** there is no defined collating sequence, return NULL.
130 **
131 ** See also: sqlite3ExprNNCollSeq()
132 **
133 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
134 ** default collation if pExpr has no defined collation.
135 **
136 ** The collating sequence might be determined by a COLLATE operator
137 ** or by the presence of a column with a defined collating sequence.
138 ** COLLATE operators take first precedence.  Left operands take
139 ** precedence over right operands.
140 */
141 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
142   sqlite3 *db = pParse->db;
143   CollSeq *pColl = 0;
144   Expr *p = pExpr;
145   while( p ){
146     int op = p->op;
147     if( p->flags & EP_Generic ) break;
148     if( op==TK_REGISTER ) op = p->op2;
149     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
150      && p->y.pTab!=0
151     ){
152       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
153       ** a TK_COLUMN but was previously evaluated and cached in a register */
154       int j = p->iColumn;
155       if( j>=0 ){
156         const char *zColl = p->y.pTab->aCol[j].zColl;
157         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
158       }
159       break;
160     }
161     if( op==TK_CAST || op==TK_UPLUS ){
162       p = p->pLeft;
163       continue;
164     }
165     if( op==TK_COLLATE ){
166       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
167       break;
168     }
169     if( p->flags & EP_Collate ){
170       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
171         p = p->pLeft;
172       }else{
173         Expr *pNext  = p->pRight;
174         /* The Expr.x union is never used at the same time as Expr.pRight */
175         assert( p->x.pList==0 || p->pRight==0 );
176         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
177         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
178         ** least one EP_Collate. Thus the following two ALWAYS. */
179         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
180           int i;
181           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
182             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
183               pNext = p->x.pList->a[i].pExpr;
184               break;
185             }
186           }
187         }
188         p = pNext;
189       }
190     }else{
191       break;
192     }
193   }
194   if( sqlite3CheckCollSeq(pParse, pColl) ){
195     pColl = 0;
196   }
197   return pColl;
198 }
199 
200 /*
201 ** Return the collation sequence for the expression pExpr. If
202 ** there is no defined collating sequence, return a pointer to the
203 ** defautl collation sequence.
204 **
205 ** See also: sqlite3ExprCollSeq()
206 **
207 ** The sqlite3ExprCollSeq() routine works the same except that it
208 ** returns NULL if there is no defined collation.
209 */
210 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
211   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
212   if( p==0 ) p = pParse->db->pDfltColl;
213   assert( p!=0 );
214   return p;
215 }
216 
217 /*
218 ** Return TRUE if the two expressions have equivalent collating sequences.
219 */
220 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
221   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
222   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
223   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
224 }
225 
226 /*
227 ** pExpr is an operand of a comparison operator.  aff2 is the
228 ** type affinity of the other operand.  This routine returns the
229 ** type affinity that should be used for the comparison operator.
230 */
231 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
232   char aff1 = sqlite3ExprAffinity(pExpr);
233   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
234     /* Both sides of the comparison are columns. If one has numeric
235     ** affinity, use that. Otherwise use no affinity.
236     */
237     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
238       return SQLITE_AFF_NUMERIC;
239     }else{
240       return SQLITE_AFF_BLOB;
241     }
242   }else{
243     /* One side is a column, the other is not. Use the columns affinity. */
244     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
245     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
246   }
247 }
248 
249 /*
250 ** pExpr is a comparison operator.  Return the type affinity that should
251 ** be applied to both operands prior to doing the comparison.
252 */
253 static char comparisonAffinity(Expr *pExpr){
254   char aff;
255   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
256           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
257           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
258   assert( pExpr->pLeft );
259   aff = sqlite3ExprAffinity(pExpr->pLeft);
260   if( pExpr->pRight ){
261     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
262   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
263     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
264   }else if( aff==0 ){
265     aff = SQLITE_AFF_BLOB;
266   }
267   return aff;
268 }
269 
270 /*
271 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
272 ** idx_affinity is the affinity of an indexed column. Return true
273 ** if the index with affinity idx_affinity may be used to implement
274 ** the comparison in pExpr.
275 */
276 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
277   char aff = comparisonAffinity(pExpr);
278   if( aff<SQLITE_AFF_TEXT ){
279     return 1;
280   }
281   if( aff==SQLITE_AFF_TEXT ){
282     return idx_affinity==SQLITE_AFF_TEXT;
283   }
284   return sqlite3IsNumericAffinity(idx_affinity);
285 }
286 
287 /*
288 ** Return the P5 value that should be used for a binary comparison
289 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
290 */
291 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
292   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
293   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
294   return aff;
295 }
296 
297 /*
298 ** Return a pointer to the collation sequence that should be used by
299 ** a binary comparison operator comparing pLeft and pRight.
300 **
301 ** If the left hand expression has a collating sequence type, then it is
302 ** used. Otherwise the collation sequence for the right hand expression
303 ** is used, or the default (BINARY) if neither expression has a collating
304 ** type.
305 **
306 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
307 ** it is not considered.
308 */
309 CollSeq *sqlite3BinaryCompareCollSeq(
310   Parse *pParse,
311   Expr *pLeft,
312   Expr *pRight
313 ){
314   CollSeq *pColl;
315   assert( pLeft );
316   if( pLeft->flags & EP_Collate ){
317     pColl = sqlite3ExprCollSeq(pParse, pLeft);
318   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
319     pColl = sqlite3ExprCollSeq(pParse, pRight);
320   }else{
321     pColl = sqlite3ExprCollSeq(pParse, pLeft);
322     if( !pColl ){
323       pColl = sqlite3ExprCollSeq(pParse, pRight);
324     }
325   }
326   return pColl;
327 }
328 
329 /*
330 ** Generate code for a comparison operator.
331 */
332 static int codeCompare(
333   Parse *pParse,    /* The parsing (and code generating) context */
334   Expr *pLeft,      /* The left operand */
335   Expr *pRight,     /* The right operand */
336   int opcode,       /* The comparison opcode */
337   int in1, int in2, /* Register holding operands */
338   int dest,         /* Jump here if true.  */
339   int jumpIfNull    /* If true, jump if either operand is NULL */
340 ){
341   int p5;
342   int addr;
343   CollSeq *p4;
344 
345   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
346   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
347   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
348                            (void*)p4, P4_COLLSEQ);
349   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
350   return addr;
351 }
352 
353 /*
354 ** Return true if expression pExpr is a vector, or false otherwise.
355 **
356 ** A vector is defined as any expression that results in two or more
357 ** columns of result.  Every TK_VECTOR node is an vector because the
358 ** parser will not generate a TK_VECTOR with fewer than two entries.
359 ** But a TK_SELECT might be either a vector or a scalar. It is only
360 ** considered a vector if it has two or more result columns.
361 */
362 int sqlite3ExprIsVector(Expr *pExpr){
363   return sqlite3ExprVectorSize(pExpr)>1;
364 }
365 
366 /*
367 ** If the expression passed as the only argument is of type TK_VECTOR
368 ** return the number of expressions in the vector. Or, if the expression
369 ** is a sub-select, return the number of columns in the sub-select. For
370 ** any other type of expression, return 1.
371 */
372 int sqlite3ExprVectorSize(Expr *pExpr){
373   u8 op = pExpr->op;
374   if( op==TK_REGISTER ) op = pExpr->op2;
375   if( op==TK_VECTOR ){
376     return pExpr->x.pList->nExpr;
377   }else if( op==TK_SELECT ){
378     return pExpr->x.pSelect->pEList->nExpr;
379   }else{
380     return 1;
381   }
382 }
383 
384 /*
385 ** Return a pointer to a subexpression of pVector that is the i-th
386 ** column of the vector (numbered starting with 0).  The caller must
387 ** ensure that i is within range.
388 **
389 ** If pVector is really a scalar (and "scalar" here includes subqueries
390 ** that return a single column!) then return pVector unmodified.
391 **
392 ** pVector retains ownership of the returned subexpression.
393 **
394 ** If the vector is a (SELECT ...) then the expression returned is
395 ** just the expression for the i-th term of the result set, and may
396 ** not be ready for evaluation because the table cursor has not yet
397 ** been positioned.
398 */
399 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
400   assert( i<sqlite3ExprVectorSize(pVector) );
401   if( sqlite3ExprIsVector(pVector) ){
402     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
403     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
404       return pVector->x.pSelect->pEList->a[i].pExpr;
405     }else{
406       return pVector->x.pList->a[i].pExpr;
407     }
408   }
409   return pVector;
410 }
411 
412 /*
413 ** Compute and return a new Expr object which when passed to
414 ** sqlite3ExprCode() will generate all necessary code to compute
415 ** the iField-th column of the vector expression pVector.
416 **
417 ** It is ok for pVector to be a scalar (as long as iField==0).
418 ** In that case, this routine works like sqlite3ExprDup().
419 **
420 ** The caller owns the returned Expr object and is responsible for
421 ** ensuring that the returned value eventually gets freed.
422 **
423 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
424 ** then the returned object will reference pVector and so pVector must remain
425 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
426 ** or a scalar expression, then it can be deleted as soon as this routine
427 ** returns.
428 **
429 ** A trick to cause a TK_SELECT pVector to be deleted together with
430 ** the returned Expr object is to attach the pVector to the pRight field
431 ** of the returned TK_SELECT_COLUMN Expr object.
432 */
433 Expr *sqlite3ExprForVectorField(
434   Parse *pParse,       /* Parsing context */
435   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
436   int iField           /* Which column of the vector to return */
437 ){
438   Expr *pRet;
439   if( pVector->op==TK_SELECT ){
440     assert( pVector->flags & EP_xIsSelect );
441     /* The TK_SELECT_COLUMN Expr node:
442     **
443     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
444     ** pRight:          not used.  But recursively deleted.
445     ** iColumn:         Index of a column in pVector
446     ** iTable:          0 or the number of columns on the LHS of an assignment
447     ** pLeft->iTable:   First in an array of register holding result, or 0
448     **                  if the result is not yet computed.
449     **
450     ** sqlite3ExprDelete() specifically skips the recursive delete of
451     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
452     ** can be attached to pRight to cause this node to take ownership of
453     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
454     ** with the same pLeft pointer to the pVector, but only one of them
455     ** will own the pVector.
456     */
457     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
458     if( pRet ){
459       pRet->iColumn = iField;
460       pRet->pLeft = pVector;
461     }
462     assert( pRet==0 || pRet->iTable==0 );
463   }else{
464     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
465     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
466     sqlite3RenameTokenRemap(pParse, pRet, pVector);
467   }
468   return pRet;
469 }
470 
471 /*
472 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
473 ** it. Return the register in which the result is stored (or, if the
474 ** sub-select returns more than one column, the first in an array
475 ** of registers in which the result is stored).
476 **
477 ** If pExpr is not a TK_SELECT expression, return 0.
478 */
479 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
480   int reg = 0;
481 #ifndef SQLITE_OMIT_SUBQUERY
482   if( pExpr->op==TK_SELECT ){
483     reg = sqlite3CodeSubselect(pParse, pExpr);
484   }
485 #endif
486   return reg;
487 }
488 
489 /*
490 ** Argument pVector points to a vector expression - either a TK_VECTOR
491 ** or TK_SELECT that returns more than one column. This function returns
492 ** the register number of a register that contains the value of
493 ** element iField of the vector.
494 **
495 ** If pVector is a TK_SELECT expression, then code for it must have
496 ** already been generated using the exprCodeSubselect() routine. In this
497 ** case parameter regSelect should be the first in an array of registers
498 ** containing the results of the sub-select.
499 **
500 ** If pVector is of type TK_VECTOR, then code for the requested field
501 ** is generated. In this case (*pRegFree) may be set to the number of
502 ** a temporary register to be freed by the caller before returning.
503 **
504 ** Before returning, output parameter (*ppExpr) is set to point to the
505 ** Expr object corresponding to element iElem of the vector.
506 */
507 static int exprVectorRegister(
508   Parse *pParse,                  /* Parse context */
509   Expr *pVector,                  /* Vector to extract element from */
510   int iField,                     /* Field to extract from pVector */
511   int regSelect,                  /* First in array of registers */
512   Expr **ppExpr,                  /* OUT: Expression element */
513   int *pRegFree                   /* OUT: Temp register to free */
514 ){
515   u8 op = pVector->op;
516   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
517   if( op==TK_REGISTER ){
518     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
519     return pVector->iTable+iField;
520   }
521   if( op==TK_SELECT ){
522     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
523      return regSelect+iField;
524   }
525   *ppExpr = pVector->x.pList->a[iField].pExpr;
526   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
527 }
528 
529 /*
530 ** Expression pExpr is a comparison between two vector values. Compute
531 ** the result of the comparison (1, 0, or NULL) and write that
532 ** result into register dest.
533 **
534 ** The caller must satisfy the following preconditions:
535 **
536 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
537 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
538 **    otherwise:                op==pExpr->op and p5==0
539 */
540 static void codeVectorCompare(
541   Parse *pParse,        /* Code generator context */
542   Expr *pExpr,          /* The comparison operation */
543   int dest,             /* Write results into this register */
544   u8 op,                /* Comparison operator */
545   u8 p5                 /* SQLITE_NULLEQ or zero */
546 ){
547   Vdbe *v = pParse->pVdbe;
548   Expr *pLeft = pExpr->pLeft;
549   Expr *pRight = pExpr->pRight;
550   int nLeft = sqlite3ExprVectorSize(pLeft);
551   int i;
552   int regLeft = 0;
553   int regRight = 0;
554   u8 opx = op;
555   int addrDone = sqlite3VdbeMakeLabel(pParse);
556 
557   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
558     sqlite3ErrorMsg(pParse, "row value misused");
559     return;
560   }
561   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
562        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
563        || pExpr->op==TK_LT || pExpr->op==TK_GT
564        || pExpr->op==TK_LE || pExpr->op==TK_GE
565   );
566   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
567             || (pExpr->op==TK_ISNOT && op==TK_NE) );
568   assert( p5==0 || pExpr->op!=op );
569   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
570 
571   p5 |= SQLITE_STOREP2;
572   if( opx==TK_LE ) opx = TK_LT;
573   if( opx==TK_GE ) opx = TK_GT;
574 
575   regLeft = exprCodeSubselect(pParse, pLeft);
576   regRight = exprCodeSubselect(pParse, pRight);
577 
578   for(i=0; 1 /*Loop exits by "break"*/; i++){
579     int regFree1 = 0, regFree2 = 0;
580     Expr *pL, *pR;
581     int r1, r2;
582     assert( i>=0 && i<nLeft );
583     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
584     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
585     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
586     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
587     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
588     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
589     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
590     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
591     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
592     sqlite3ReleaseTempReg(pParse, regFree1);
593     sqlite3ReleaseTempReg(pParse, regFree2);
594     if( i==nLeft-1 ){
595       break;
596     }
597     if( opx==TK_EQ ){
598       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
599       p5 |= SQLITE_KEEPNULL;
600     }else if( opx==TK_NE ){
601       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
602       p5 |= SQLITE_KEEPNULL;
603     }else{
604       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
605       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
606       VdbeCoverageIf(v, op==TK_LT);
607       VdbeCoverageIf(v, op==TK_GT);
608       VdbeCoverageIf(v, op==TK_LE);
609       VdbeCoverageIf(v, op==TK_GE);
610       if( i==nLeft-2 ) opx = op;
611     }
612   }
613   sqlite3VdbeResolveLabel(v, addrDone);
614 }
615 
616 #if SQLITE_MAX_EXPR_DEPTH>0
617 /*
618 ** Check that argument nHeight is less than or equal to the maximum
619 ** expression depth allowed. If it is not, leave an error message in
620 ** pParse.
621 */
622 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
623   int rc = SQLITE_OK;
624   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
625   if( nHeight>mxHeight ){
626     sqlite3ErrorMsg(pParse,
627        "Expression tree is too large (maximum depth %d)", mxHeight
628     );
629     rc = SQLITE_ERROR;
630   }
631   return rc;
632 }
633 
634 /* The following three functions, heightOfExpr(), heightOfExprList()
635 ** and heightOfSelect(), are used to determine the maximum height
636 ** of any expression tree referenced by the structure passed as the
637 ** first argument.
638 **
639 ** If this maximum height is greater than the current value pointed
640 ** to by pnHeight, the second parameter, then set *pnHeight to that
641 ** value.
642 */
643 static void heightOfExpr(Expr *p, int *pnHeight){
644   if( p ){
645     if( p->nHeight>*pnHeight ){
646       *pnHeight = p->nHeight;
647     }
648   }
649 }
650 static void heightOfExprList(ExprList *p, int *pnHeight){
651   if( p ){
652     int i;
653     for(i=0; i<p->nExpr; i++){
654       heightOfExpr(p->a[i].pExpr, pnHeight);
655     }
656   }
657 }
658 static void heightOfSelect(Select *pSelect, int *pnHeight){
659   Select *p;
660   for(p=pSelect; p; p=p->pPrior){
661     heightOfExpr(p->pWhere, pnHeight);
662     heightOfExpr(p->pHaving, pnHeight);
663     heightOfExpr(p->pLimit, pnHeight);
664     heightOfExprList(p->pEList, pnHeight);
665     heightOfExprList(p->pGroupBy, pnHeight);
666     heightOfExprList(p->pOrderBy, pnHeight);
667   }
668 }
669 
670 /*
671 ** Set the Expr.nHeight variable in the structure passed as an
672 ** argument. An expression with no children, Expr.pList or
673 ** Expr.pSelect member has a height of 1. Any other expression
674 ** has a height equal to the maximum height of any other
675 ** referenced Expr plus one.
676 **
677 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
678 ** if appropriate.
679 */
680 static void exprSetHeight(Expr *p){
681   int nHeight = 0;
682   heightOfExpr(p->pLeft, &nHeight);
683   heightOfExpr(p->pRight, &nHeight);
684   if( ExprHasProperty(p, EP_xIsSelect) ){
685     heightOfSelect(p->x.pSelect, &nHeight);
686   }else if( p->x.pList ){
687     heightOfExprList(p->x.pList, &nHeight);
688     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
689   }
690   p->nHeight = nHeight + 1;
691 }
692 
693 /*
694 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
695 ** the height is greater than the maximum allowed expression depth,
696 ** leave an error in pParse.
697 **
698 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
699 ** Expr.flags.
700 */
701 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
702   if( pParse->nErr ) return;
703   exprSetHeight(p);
704   sqlite3ExprCheckHeight(pParse, p->nHeight);
705 }
706 
707 /*
708 ** Return the maximum height of any expression tree referenced
709 ** by the select statement passed as an argument.
710 */
711 int sqlite3SelectExprHeight(Select *p){
712   int nHeight = 0;
713   heightOfSelect(p, &nHeight);
714   return nHeight;
715 }
716 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
717 /*
718 ** Propagate all EP_Propagate flags from the Expr.x.pList into
719 ** Expr.flags.
720 */
721 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
722   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
723     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
724   }
725 }
726 #define exprSetHeight(y)
727 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
728 
729 /*
730 ** This routine is the core allocator for Expr nodes.
731 **
732 ** Construct a new expression node and return a pointer to it.  Memory
733 ** for this node and for the pToken argument is a single allocation
734 ** obtained from sqlite3DbMalloc().  The calling function
735 ** is responsible for making sure the node eventually gets freed.
736 **
737 ** If dequote is true, then the token (if it exists) is dequoted.
738 ** If dequote is false, no dequoting is performed.  The deQuote
739 ** parameter is ignored if pToken is NULL or if the token does not
740 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
741 ** then the EP_DblQuoted flag is set on the expression node.
742 **
743 ** Special case:  If op==TK_INTEGER and pToken points to a string that
744 ** can be translated into a 32-bit integer, then the token is not
745 ** stored in u.zToken.  Instead, the integer values is written
746 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
747 ** is allocated to hold the integer text and the dequote flag is ignored.
748 */
749 Expr *sqlite3ExprAlloc(
750   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
751   int op,                 /* Expression opcode */
752   const Token *pToken,    /* Token argument.  Might be NULL */
753   int dequote             /* True to dequote */
754 ){
755   Expr *pNew;
756   int nExtra = 0;
757   int iValue = 0;
758 
759   assert( db!=0 );
760   if( pToken ){
761     if( op!=TK_INTEGER || pToken->z==0
762           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
763       nExtra = pToken->n+1;
764       assert( iValue>=0 );
765     }
766   }
767   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
768   if( pNew ){
769     memset(pNew, 0, sizeof(Expr));
770     pNew->op = (u8)op;
771     pNew->iAgg = -1;
772     if( pToken ){
773       if( nExtra==0 ){
774         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
775         pNew->u.iValue = iValue;
776       }else{
777         pNew->u.zToken = (char*)&pNew[1];
778         assert( pToken->z!=0 || pToken->n==0 );
779         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
780         pNew->u.zToken[pToken->n] = 0;
781         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
782           sqlite3DequoteExpr(pNew);
783         }
784       }
785     }
786 #if SQLITE_MAX_EXPR_DEPTH>0
787     pNew->nHeight = 1;
788 #endif
789   }
790   return pNew;
791 }
792 
793 /*
794 ** Allocate a new expression node from a zero-terminated token that has
795 ** already been dequoted.
796 */
797 Expr *sqlite3Expr(
798   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
799   int op,                 /* Expression opcode */
800   const char *zToken      /* Token argument.  Might be NULL */
801 ){
802   Token x;
803   x.z = zToken;
804   x.n = sqlite3Strlen30(zToken);
805   return sqlite3ExprAlloc(db, op, &x, 0);
806 }
807 
808 /*
809 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
810 **
811 ** If pRoot==NULL that means that a memory allocation error has occurred.
812 ** In that case, delete the subtrees pLeft and pRight.
813 */
814 void sqlite3ExprAttachSubtrees(
815   sqlite3 *db,
816   Expr *pRoot,
817   Expr *pLeft,
818   Expr *pRight
819 ){
820   if( pRoot==0 ){
821     assert( db->mallocFailed );
822     sqlite3ExprDelete(db, pLeft);
823     sqlite3ExprDelete(db, pRight);
824   }else{
825     if( pRight ){
826       pRoot->pRight = pRight;
827       pRoot->flags |= EP_Propagate & pRight->flags;
828     }
829     if( pLeft ){
830       pRoot->pLeft = pLeft;
831       pRoot->flags |= EP_Propagate & pLeft->flags;
832     }
833     exprSetHeight(pRoot);
834   }
835 }
836 
837 /*
838 ** Allocate an Expr node which joins as many as two subtrees.
839 **
840 ** One or both of the subtrees can be NULL.  Return a pointer to the new
841 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
842 ** free the subtrees and return NULL.
843 */
844 Expr *sqlite3PExpr(
845   Parse *pParse,          /* Parsing context */
846   int op,                 /* Expression opcode */
847   Expr *pLeft,            /* Left operand */
848   Expr *pRight            /* Right operand */
849 ){
850   Expr *p;
851   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
852   if( p ){
853     memset(p, 0, sizeof(Expr));
854     p->op = op & 0xff;
855     p->iAgg = -1;
856     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
857     sqlite3ExprCheckHeight(pParse, p->nHeight);
858   }else{
859     sqlite3ExprDelete(pParse->db, pLeft);
860     sqlite3ExprDelete(pParse->db, pRight);
861   }
862   return p;
863 }
864 
865 /*
866 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
867 ** do a memory allocation failure) then delete the pSelect object.
868 */
869 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
870   if( pExpr ){
871     pExpr->x.pSelect = pSelect;
872     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
873     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
874   }else{
875     assert( pParse->db->mallocFailed );
876     sqlite3SelectDelete(pParse->db, pSelect);
877   }
878 }
879 
880 
881 /*
882 ** Join two expressions using an AND operator.  If either expression is
883 ** NULL, then just return the other expression.
884 **
885 ** If one side or the other of the AND is known to be false, then instead
886 ** of returning an AND expression, just return a constant expression with
887 ** a value of false.
888 */
889 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
890   sqlite3 *db = pParse->db;
891   if( pLeft==0  ){
892     return pRight;
893   }else if( pRight==0 ){
894     return pLeft;
895   }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){
896     sqlite3ExprUnmapAndDelete(pParse, pLeft);
897     sqlite3ExprUnmapAndDelete(pParse, pRight);
898     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
899   }else{
900     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
901   }
902 }
903 
904 /*
905 ** Construct a new expression node for a function with multiple
906 ** arguments.
907 */
908 Expr *sqlite3ExprFunction(
909   Parse *pParse,        /* Parsing context */
910   ExprList *pList,      /* Argument list */
911   Token *pToken,        /* Name of the function */
912   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
913 ){
914   Expr *pNew;
915   sqlite3 *db = pParse->db;
916   assert( pToken );
917   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
918   if( pNew==0 ){
919     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
920     return 0;
921   }
922   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
923     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
924   }
925   pNew->x.pList = pList;
926   ExprSetProperty(pNew, EP_HasFunc);
927   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
928   sqlite3ExprSetHeightAndFlags(pParse, pNew);
929   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
930   return pNew;
931 }
932 
933 /*
934 ** Assign a variable number to an expression that encodes a wildcard
935 ** in the original SQL statement.
936 **
937 ** Wildcards consisting of a single "?" are assigned the next sequential
938 ** variable number.
939 **
940 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
941 ** sure "nnn" is not too big to avoid a denial of service attack when
942 ** the SQL statement comes from an external source.
943 **
944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
945 ** as the previous instance of the same wildcard.  Or if this is the first
946 ** instance of the wildcard, the next sequential variable number is
947 ** assigned.
948 */
949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
950   sqlite3 *db = pParse->db;
951   const char *z;
952   ynVar x;
953 
954   if( pExpr==0 ) return;
955   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
956   z = pExpr->u.zToken;
957   assert( z!=0 );
958   assert( z[0]!=0 );
959   assert( n==(u32)sqlite3Strlen30(z) );
960   if( z[1]==0 ){
961     /* Wildcard of the form "?".  Assign the next variable number */
962     assert( z[0]=='?' );
963     x = (ynVar)(++pParse->nVar);
964   }else{
965     int doAdd = 0;
966     if( z[0]=='?' ){
967       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
968       ** use it as the variable number */
969       i64 i;
970       int bOk;
971       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
972         i = z[1]-'0';  /* The common case of ?N for a single digit N */
973         bOk = 1;
974       }else{
975         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
976       }
977       testcase( i==0 );
978       testcase( i==1 );
979       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
980       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
981       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
982         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
983             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
984         return;
985       }
986       x = (ynVar)i;
987       if( x>pParse->nVar ){
988         pParse->nVar = (int)x;
989         doAdd = 1;
990       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
991         doAdd = 1;
992       }
993     }else{
994       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
995       ** number as the prior appearance of the same name, or if the name
996       ** has never appeared before, reuse the same variable number
997       */
998       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
999       if( x==0 ){
1000         x = (ynVar)(++pParse->nVar);
1001         doAdd = 1;
1002       }
1003     }
1004     if( doAdd ){
1005       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1006     }
1007   }
1008   pExpr->iColumn = x;
1009   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1010     sqlite3ErrorMsg(pParse, "too many SQL variables");
1011   }
1012 }
1013 
1014 /*
1015 ** Recursively delete an expression tree.
1016 */
1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1018   assert( p!=0 );
1019   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1020   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1021 
1022   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1023   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1024           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1025 #ifdef SQLITE_DEBUG
1026   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1027     assert( p->pLeft==0 );
1028     assert( p->pRight==0 );
1029     assert( p->x.pSelect==0 );
1030   }
1031 #endif
1032   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1033     /* The Expr.x union is never used at the same time as Expr.pRight */
1034     assert( p->x.pList==0 || p->pRight==0 );
1035     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1036     if( p->pRight ){
1037       assert( !ExprHasProperty(p, EP_WinFunc) );
1038       sqlite3ExprDeleteNN(db, p->pRight);
1039     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1040       assert( !ExprHasProperty(p, EP_WinFunc) );
1041       sqlite3SelectDelete(db, p->x.pSelect);
1042     }else{
1043       sqlite3ExprListDelete(db, p->x.pList);
1044 #ifndef SQLITE_OMIT_WINDOWFUNC
1045       if( ExprHasProperty(p, EP_WinFunc) ){
1046         sqlite3WindowDelete(db, p->y.pWin);
1047       }
1048 #endif
1049     }
1050   }
1051   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1052   if( !ExprHasProperty(p, EP_Static) ){
1053     sqlite3DbFreeNN(db, p);
1054   }
1055 }
1056 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1057   if( p ) sqlite3ExprDeleteNN(db, p);
1058 }
1059 
1060 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1061 ** expression.
1062 */
1063 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1064   if( p ){
1065     if( IN_RENAME_OBJECT ){
1066       sqlite3RenameExprUnmap(pParse, p);
1067     }
1068     sqlite3ExprDeleteNN(pParse->db, p);
1069   }
1070 }
1071 
1072 /*
1073 ** Return the number of bytes allocated for the expression structure
1074 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1075 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1076 */
1077 static int exprStructSize(Expr *p){
1078   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1079   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1080   return EXPR_FULLSIZE;
1081 }
1082 
1083 /*
1084 ** The dupedExpr*Size() routines each return the number of bytes required
1085 ** to store a copy of an expression or expression tree.  They differ in
1086 ** how much of the tree is measured.
1087 **
1088 **     dupedExprStructSize()     Size of only the Expr structure
1089 **     dupedExprNodeSize()       Size of Expr + space for token
1090 **     dupedExprSize()           Expr + token + subtree components
1091 **
1092 ***************************************************************************
1093 **
1094 ** The dupedExprStructSize() function returns two values OR-ed together:
1095 ** (1) the space required for a copy of the Expr structure only and
1096 ** (2) the EP_xxx flags that indicate what the structure size should be.
1097 ** The return values is always one of:
1098 **
1099 **      EXPR_FULLSIZE
1100 **      EXPR_REDUCEDSIZE   | EP_Reduced
1101 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1102 **
1103 ** The size of the structure can be found by masking the return value
1104 ** of this routine with 0xfff.  The flags can be found by masking the
1105 ** return value with EP_Reduced|EP_TokenOnly.
1106 **
1107 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1108 ** (unreduced) Expr objects as they or originally constructed by the parser.
1109 ** During expression analysis, extra information is computed and moved into
1110 ** later parts of the Expr object and that extra information might get chopped
1111 ** off if the expression is reduced.  Note also that it does not work to
1112 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1113 ** to reduce a pristine expression tree from the parser.  The implementation
1114 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1115 ** to enforce this constraint.
1116 */
1117 static int dupedExprStructSize(Expr *p, int flags){
1118   int nSize;
1119   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1120   assert( EXPR_FULLSIZE<=0xfff );
1121   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1122   if( 0==flags || p->op==TK_SELECT_COLUMN
1123 #ifndef SQLITE_OMIT_WINDOWFUNC
1124    || ExprHasProperty(p, EP_WinFunc)
1125 #endif
1126   ){
1127     nSize = EXPR_FULLSIZE;
1128   }else{
1129     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1130     assert( !ExprHasProperty(p, EP_FromJoin) );
1131     assert( !ExprHasProperty(p, EP_MemToken) );
1132     assert( !ExprHasProperty(p, EP_NoReduce) );
1133     if( p->pLeft || p->x.pList ){
1134       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1135     }else{
1136       assert( p->pRight==0 );
1137       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1138     }
1139   }
1140   return nSize;
1141 }
1142 
1143 /*
1144 ** This function returns the space in bytes required to store the copy
1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1146 ** string is defined.)
1147 */
1148 static int dupedExprNodeSize(Expr *p, int flags){
1149   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1150   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1151     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1152   }
1153   return ROUND8(nByte);
1154 }
1155 
1156 /*
1157 ** Return the number of bytes required to create a duplicate of the
1158 ** expression passed as the first argument. The second argument is a
1159 ** mask containing EXPRDUP_XXX flags.
1160 **
1161 ** The value returned includes space to create a copy of the Expr struct
1162 ** itself and the buffer referred to by Expr.u.zToken, if any.
1163 **
1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1166 ** and Expr.pRight variables (but not for any structures pointed to or
1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1168 */
1169 static int dupedExprSize(Expr *p, int flags){
1170   int nByte = 0;
1171   if( p ){
1172     nByte = dupedExprNodeSize(p, flags);
1173     if( flags&EXPRDUP_REDUCE ){
1174       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1175     }
1176   }
1177   return nByte;
1178 }
1179 
1180 /*
1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1183 ** to store the copy of expression p, the copies of p->u.zToken
1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1185 ** if any. Before returning, *pzBuffer is set to the first byte past the
1186 ** portion of the buffer copied into by this function.
1187 */
1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1189   Expr *pNew;           /* Value to return */
1190   u8 *zAlloc;           /* Memory space from which to build Expr object */
1191   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1192 
1193   assert( db!=0 );
1194   assert( p );
1195   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1196   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1197 
1198   /* Figure out where to write the new Expr structure. */
1199   if( pzBuffer ){
1200     zAlloc = *pzBuffer;
1201     staticFlag = EP_Static;
1202   }else{
1203     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1204     staticFlag = 0;
1205   }
1206   pNew = (Expr *)zAlloc;
1207 
1208   if( pNew ){
1209     /* Set nNewSize to the size allocated for the structure pointed to
1210     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1211     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1212     ** by the copy of the p->u.zToken string (if any).
1213     */
1214     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1215     const int nNewSize = nStructSize & 0xfff;
1216     int nToken;
1217     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1218       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1219     }else{
1220       nToken = 0;
1221     }
1222     if( dupFlags ){
1223       assert( ExprHasProperty(p, EP_Reduced)==0 );
1224       memcpy(zAlloc, p, nNewSize);
1225     }else{
1226       u32 nSize = (u32)exprStructSize(p);
1227       memcpy(zAlloc, p, nSize);
1228       if( nSize<EXPR_FULLSIZE ){
1229         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1230       }
1231     }
1232 
1233     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1234     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1235     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1236     pNew->flags |= staticFlag;
1237 
1238     /* Copy the p->u.zToken string, if any. */
1239     if( nToken ){
1240       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1241       memcpy(zToken, p->u.zToken, nToken);
1242     }
1243 
1244     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1245       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1246       if( ExprHasProperty(p, EP_xIsSelect) ){
1247         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1248       }else{
1249         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1250       }
1251     }
1252 
1253     /* Fill in pNew->pLeft and pNew->pRight. */
1254     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1255       zAlloc += dupedExprNodeSize(p, dupFlags);
1256       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1257         pNew->pLeft = p->pLeft ?
1258                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1259         pNew->pRight = p->pRight ?
1260                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1261       }
1262 #ifndef SQLITE_OMIT_WINDOWFUNC
1263       if( ExprHasProperty(p, EP_WinFunc) ){
1264         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1265         assert( ExprHasProperty(pNew, EP_WinFunc) );
1266       }
1267 #endif /* SQLITE_OMIT_WINDOWFUNC */
1268       if( pzBuffer ){
1269         *pzBuffer = zAlloc;
1270       }
1271     }else{
1272       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1273         if( pNew->op==TK_SELECT_COLUMN ){
1274           pNew->pLeft = p->pLeft;
1275           assert( p->iColumn==0 || p->pRight==0 );
1276           assert( p->pRight==0  || p->pRight==p->pLeft );
1277         }else{
1278           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1279         }
1280         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1281       }
1282     }
1283   }
1284   return pNew;
1285 }
1286 
1287 /*
1288 ** Create and return a deep copy of the object passed as the second
1289 ** argument. If an OOM condition is encountered, NULL is returned
1290 ** and the db->mallocFailed flag set.
1291 */
1292 #ifndef SQLITE_OMIT_CTE
1293 static With *withDup(sqlite3 *db, With *p){
1294   With *pRet = 0;
1295   if( p ){
1296     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1297     pRet = sqlite3DbMallocZero(db, nByte);
1298     if( pRet ){
1299       int i;
1300       pRet->nCte = p->nCte;
1301       for(i=0; i<p->nCte; i++){
1302         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1303         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1304         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1305       }
1306     }
1307   }
1308   return pRet;
1309 }
1310 #else
1311 # define withDup(x,y) 0
1312 #endif
1313 
1314 #ifndef SQLITE_OMIT_WINDOWFUNC
1315 /*
1316 ** The gatherSelectWindows() procedure and its helper routine
1317 ** gatherSelectWindowsCallback() are used to scan all the expressions
1318 ** an a newly duplicated SELECT statement and gather all of the Window
1319 ** objects found there, assembling them onto the linked list at Select->pWin.
1320 */
1321 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1322   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1323     Select *pSelect = pWalker->u.pSelect;
1324     Window *pWin = pExpr->y.pWin;
1325     assert( pWin );
1326     assert( IsWindowFunc(pExpr) );
1327     assert( pWin->ppThis==0 );
1328     sqlite3WindowLink(pSelect, pWin);
1329   }
1330   return WRC_Continue;
1331 }
1332 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1333   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1334 }
1335 static void gatherSelectWindows(Select *p){
1336   Walker w;
1337   w.xExprCallback = gatherSelectWindowsCallback;
1338   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1339   w.xSelectCallback2 = 0;
1340   w.pParse = 0;
1341   w.u.pSelect = p;
1342   sqlite3WalkSelect(&w, p);
1343 }
1344 #endif
1345 
1346 
1347 /*
1348 ** The following group of routines make deep copies of expressions,
1349 ** expression lists, ID lists, and select statements.  The copies can
1350 ** be deleted (by being passed to their respective ...Delete() routines)
1351 ** without effecting the originals.
1352 **
1353 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1354 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1355 ** by subsequent calls to sqlite*ListAppend() routines.
1356 **
1357 ** Any tables that the SrcList might point to are not duplicated.
1358 **
1359 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1360 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1361 ** truncated version of the usual Expr structure that will be stored as
1362 ** part of the in-memory representation of the database schema.
1363 */
1364 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1365   assert( flags==0 || flags==EXPRDUP_REDUCE );
1366   return p ? exprDup(db, p, flags, 0) : 0;
1367 }
1368 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1369   ExprList *pNew;
1370   struct ExprList_item *pItem, *pOldItem;
1371   int i;
1372   Expr *pPriorSelectCol = 0;
1373   assert( db!=0 );
1374   if( p==0 ) return 0;
1375   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1376   if( pNew==0 ) return 0;
1377   pNew->nExpr = p->nExpr;
1378   pItem = pNew->a;
1379   pOldItem = p->a;
1380   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1381     Expr *pOldExpr = pOldItem->pExpr;
1382     Expr *pNewExpr;
1383     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1384     if( pOldExpr
1385      && pOldExpr->op==TK_SELECT_COLUMN
1386      && (pNewExpr = pItem->pExpr)!=0
1387     ){
1388       assert( pNewExpr->iColumn==0 || i>0 );
1389       if( pNewExpr->iColumn==0 ){
1390         assert( pOldExpr->pLeft==pOldExpr->pRight );
1391         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1392       }else{
1393         assert( i>0 );
1394         assert( pItem[-1].pExpr!=0 );
1395         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1396         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1397         pNewExpr->pLeft = pPriorSelectCol;
1398       }
1399     }
1400     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1401     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1402     pItem->sortFlags = pOldItem->sortFlags;
1403     pItem->done = 0;
1404     pItem->bNulls = pOldItem->bNulls;
1405     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1406     pItem->bSorterRef = pOldItem->bSorterRef;
1407     pItem->u = pOldItem->u;
1408   }
1409   return pNew;
1410 }
1411 
1412 /*
1413 ** If cursors, triggers, views and subqueries are all omitted from
1414 ** the build, then none of the following routines, except for
1415 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1416 ** called with a NULL argument.
1417 */
1418 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1419  || !defined(SQLITE_OMIT_SUBQUERY)
1420 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1421   SrcList *pNew;
1422   int i;
1423   int nByte;
1424   assert( db!=0 );
1425   if( p==0 ) return 0;
1426   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1427   pNew = sqlite3DbMallocRawNN(db, nByte );
1428   if( pNew==0 ) return 0;
1429   pNew->nSrc = pNew->nAlloc = p->nSrc;
1430   for(i=0; i<p->nSrc; i++){
1431     struct SrcList_item *pNewItem = &pNew->a[i];
1432     struct SrcList_item *pOldItem = &p->a[i];
1433     Table *pTab;
1434     pNewItem->pSchema = pOldItem->pSchema;
1435     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1436     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1437     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1438     pNewItem->fg = pOldItem->fg;
1439     pNewItem->iCursor = pOldItem->iCursor;
1440     pNewItem->addrFillSub = pOldItem->addrFillSub;
1441     pNewItem->regReturn = pOldItem->regReturn;
1442     if( pNewItem->fg.isIndexedBy ){
1443       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1444     }
1445     pNewItem->pIBIndex = pOldItem->pIBIndex;
1446     if( pNewItem->fg.isTabFunc ){
1447       pNewItem->u1.pFuncArg =
1448           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1449     }
1450     pTab = pNewItem->pTab = pOldItem->pTab;
1451     if( pTab ){
1452       pTab->nTabRef++;
1453     }
1454     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1455     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1456     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1457     pNewItem->colUsed = pOldItem->colUsed;
1458   }
1459   return pNew;
1460 }
1461 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1462   IdList *pNew;
1463   int i;
1464   assert( db!=0 );
1465   if( p==0 ) return 0;
1466   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1467   if( pNew==0 ) return 0;
1468   pNew->nId = p->nId;
1469   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1470   if( pNew->a==0 ){
1471     sqlite3DbFreeNN(db, pNew);
1472     return 0;
1473   }
1474   /* Note that because the size of the allocation for p->a[] is not
1475   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1476   ** on the duplicate created by this function. */
1477   for(i=0; i<p->nId; i++){
1478     struct IdList_item *pNewItem = &pNew->a[i];
1479     struct IdList_item *pOldItem = &p->a[i];
1480     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1481     pNewItem->idx = pOldItem->idx;
1482   }
1483   return pNew;
1484 }
1485 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1486   Select *pRet = 0;
1487   Select *pNext = 0;
1488   Select **pp = &pRet;
1489   Select *p;
1490 
1491   assert( db!=0 );
1492   for(p=pDup; p; p=p->pPrior){
1493     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1494     if( pNew==0 ) break;
1495     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1496     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1497     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1498     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1499     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1500     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1501     pNew->op = p->op;
1502     pNew->pNext = pNext;
1503     pNew->pPrior = 0;
1504     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1505     pNew->iLimit = 0;
1506     pNew->iOffset = 0;
1507     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1508     pNew->addrOpenEphm[0] = -1;
1509     pNew->addrOpenEphm[1] = -1;
1510     pNew->nSelectRow = p->nSelectRow;
1511     pNew->pWith = withDup(db, p->pWith);
1512 #ifndef SQLITE_OMIT_WINDOWFUNC
1513     pNew->pWin = 0;
1514     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1515     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1516 #endif
1517     pNew->selId = p->selId;
1518     *pp = pNew;
1519     pp = &pNew->pPrior;
1520     pNext = pNew;
1521   }
1522 
1523   return pRet;
1524 }
1525 #else
1526 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1527   assert( p==0 );
1528   return 0;
1529 }
1530 #endif
1531 
1532 
1533 /*
1534 ** Add a new element to the end of an expression list.  If pList is
1535 ** initially NULL, then create a new expression list.
1536 **
1537 ** The pList argument must be either NULL or a pointer to an ExprList
1538 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1539 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1540 ** Reason:  This routine assumes that the number of slots in pList->a[]
1541 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1542 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1543 **
1544 ** If a memory allocation error occurs, the entire list is freed and
1545 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1546 ** that the new entry was successfully appended.
1547 */
1548 ExprList *sqlite3ExprListAppend(
1549   Parse *pParse,          /* Parsing context */
1550   ExprList *pList,        /* List to which to append. Might be NULL */
1551   Expr *pExpr             /* Expression to be appended. Might be NULL */
1552 ){
1553   struct ExprList_item *pItem;
1554   sqlite3 *db = pParse->db;
1555   assert( db!=0 );
1556   if( pList==0 ){
1557     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1558     if( pList==0 ){
1559       goto no_mem;
1560     }
1561     pList->nExpr = 0;
1562   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1563     ExprList *pNew;
1564     pNew = sqlite3DbRealloc(db, pList,
1565          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1566     if( pNew==0 ){
1567       goto no_mem;
1568     }
1569     pList = pNew;
1570   }
1571   pItem = &pList->a[pList->nExpr++];
1572   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1573   assert( offsetof(struct ExprList_item,pExpr)==0 );
1574   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1575   pItem->pExpr = pExpr;
1576   return pList;
1577 
1578 no_mem:
1579   /* Avoid leaking memory if malloc has failed. */
1580   sqlite3ExprDelete(db, pExpr);
1581   sqlite3ExprListDelete(db, pList);
1582   return 0;
1583 }
1584 
1585 /*
1586 ** pColumns and pExpr form a vector assignment which is part of the SET
1587 ** clause of an UPDATE statement.  Like this:
1588 **
1589 **        (a,b,c) = (expr1,expr2,expr3)
1590 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1591 **
1592 ** For each term of the vector assignment, append new entries to the
1593 ** expression list pList.  In the case of a subquery on the RHS, append
1594 ** TK_SELECT_COLUMN expressions.
1595 */
1596 ExprList *sqlite3ExprListAppendVector(
1597   Parse *pParse,         /* Parsing context */
1598   ExprList *pList,       /* List to which to append. Might be NULL */
1599   IdList *pColumns,      /* List of names of LHS of the assignment */
1600   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1601 ){
1602   sqlite3 *db = pParse->db;
1603   int n;
1604   int i;
1605   int iFirst = pList ? pList->nExpr : 0;
1606   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1607   ** exit prior to this routine being invoked */
1608   if( NEVER(pColumns==0) ) goto vector_append_error;
1609   if( pExpr==0 ) goto vector_append_error;
1610 
1611   /* If the RHS is a vector, then we can immediately check to see that
1612   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1613   ** wildcards ("*") in the result set of the SELECT must be expanded before
1614   ** we can do the size check, so defer the size check until code generation.
1615   */
1616   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1617     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1618                     pColumns->nId, n);
1619     goto vector_append_error;
1620   }
1621 
1622   for(i=0; i<pColumns->nId; i++){
1623     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1624     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1625     if( pList ){
1626       assert( pList->nExpr==iFirst+i+1 );
1627       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1628       pColumns->a[i].zName = 0;
1629     }
1630   }
1631 
1632   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1633     Expr *pFirst = pList->a[iFirst].pExpr;
1634     assert( pFirst!=0 );
1635     assert( pFirst->op==TK_SELECT_COLUMN );
1636 
1637     /* Store the SELECT statement in pRight so it will be deleted when
1638     ** sqlite3ExprListDelete() is called */
1639     pFirst->pRight = pExpr;
1640     pExpr = 0;
1641 
1642     /* Remember the size of the LHS in iTable so that we can check that
1643     ** the RHS and LHS sizes match during code generation. */
1644     pFirst->iTable = pColumns->nId;
1645   }
1646 
1647 vector_append_error:
1648   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1649   sqlite3IdListDelete(db, pColumns);
1650   return pList;
1651 }
1652 
1653 /*
1654 ** Set the sort order for the last element on the given ExprList.
1655 */
1656 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1657   struct ExprList_item *pItem;
1658   if( p==0 ) return;
1659   assert( p->nExpr>0 );
1660 
1661   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1662   assert( iSortOrder==SQLITE_SO_UNDEFINED
1663        || iSortOrder==SQLITE_SO_ASC
1664        || iSortOrder==SQLITE_SO_DESC
1665   );
1666   assert( eNulls==SQLITE_SO_UNDEFINED
1667        || eNulls==SQLITE_SO_ASC
1668        || eNulls==SQLITE_SO_DESC
1669   );
1670 
1671   pItem = &p->a[p->nExpr-1];
1672   assert( pItem->bNulls==0 );
1673   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1674     iSortOrder = SQLITE_SO_ASC;
1675   }
1676   pItem->sortFlags = (u8)iSortOrder;
1677 
1678   if( eNulls!=SQLITE_SO_UNDEFINED ){
1679     pItem->bNulls = 1;
1680     if( iSortOrder!=eNulls ){
1681       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1682     }
1683   }
1684 }
1685 
1686 /*
1687 ** Set the ExprList.a[].zName element of the most recently added item
1688 ** on the expression list.
1689 **
1690 ** pList might be NULL following an OOM error.  But pName should never be
1691 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1692 ** is set.
1693 */
1694 void sqlite3ExprListSetName(
1695   Parse *pParse,          /* Parsing context */
1696   ExprList *pList,        /* List to which to add the span. */
1697   Token *pName,           /* Name to be added */
1698   int dequote             /* True to cause the name to be dequoted */
1699 ){
1700   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1701   if( pList ){
1702     struct ExprList_item *pItem;
1703     assert( pList->nExpr>0 );
1704     pItem = &pList->a[pList->nExpr-1];
1705     assert( pItem->zName==0 );
1706     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1707     if( dequote ) sqlite3Dequote(pItem->zName);
1708     if( IN_RENAME_OBJECT ){
1709       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1710     }
1711   }
1712 }
1713 
1714 /*
1715 ** Set the ExprList.a[].zSpan element of the most recently added item
1716 ** on the expression list.
1717 **
1718 ** pList might be NULL following an OOM error.  But pSpan should never be
1719 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1720 ** is set.
1721 */
1722 void sqlite3ExprListSetSpan(
1723   Parse *pParse,          /* Parsing context */
1724   ExprList *pList,        /* List to which to add the span. */
1725   const char *zStart,     /* Start of the span */
1726   const char *zEnd        /* End of the span */
1727 ){
1728   sqlite3 *db = pParse->db;
1729   assert( pList!=0 || db->mallocFailed!=0 );
1730   if( pList ){
1731     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1732     assert( pList->nExpr>0 );
1733     sqlite3DbFree(db, pItem->zSpan);
1734     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1735   }
1736 }
1737 
1738 /*
1739 ** If the expression list pEList contains more than iLimit elements,
1740 ** leave an error message in pParse.
1741 */
1742 void sqlite3ExprListCheckLength(
1743   Parse *pParse,
1744   ExprList *pEList,
1745   const char *zObject
1746 ){
1747   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1748   testcase( pEList && pEList->nExpr==mx );
1749   testcase( pEList && pEList->nExpr==mx+1 );
1750   if( pEList && pEList->nExpr>mx ){
1751     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1752   }
1753 }
1754 
1755 /*
1756 ** Delete an entire expression list.
1757 */
1758 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1759   int i = pList->nExpr;
1760   struct ExprList_item *pItem =  pList->a;
1761   assert( pList->nExpr>0 );
1762   do{
1763     sqlite3ExprDelete(db, pItem->pExpr);
1764     sqlite3DbFree(db, pItem->zName);
1765     sqlite3DbFree(db, pItem->zSpan);
1766     pItem++;
1767   }while( --i>0 );
1768   sqlite3DbFreeNN(db, pList);
1769 }
1770 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1771   if( pList ) exprListDeleteNN(db, pList);
1772 }
1773 
1774 /*
1775 ** Return the bitwise-OR of all Expr.flags fields in the given
1776 ** ExprList.
1777 */
1778 u32 sqlite3ExprListFlags(const ExprList *pList){
1779   int i;
1780   u32 m = 0;
1781   assert( pList!=0 );
1782   for(i=0; i<pList->nExpr; i++){
1783      Expr *pExpr = pList->a[i].pExpr;
1784      assert( pExpr!=0 );
1785      m |= pExpr->flags;
1786   }
1787   return m;
1788 }
1789 
1790 /*
1791 ** This is a SELECT-node callback for the expression walker that
1792 ** always "fails".  By "fail" in this case, we mean set
1793 ** pWalker->eCode to zero and abort.
1794 **
1795 ** This callback is used by multiple expression walkers.
1796 */
1797 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1798   UNUSED_PARAMETER(NotUsed);
1799   pWalker->eCode = 0;
1800   return WRC_Abort;
1801 }
1802 
1803 /*
1804 ** If the input expression is an ID with the name "true" or "false"
1805 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1806 ** the conversion happened, and zero if the expression is unaltered.
1807 */
1808 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1809   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1810   if( !ExprHasProperty(pExpr, EP_Quoted)
1811    && (sqlite3StrICmp(pExpr->u.zToken, "true")==0
1812        || sqlite3StrICmp(pExpr->u.zToken, "false")==0)
1813   ){
1814     pExpr->op = TK_TRUEFALSE;
1815     ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse);
1816     return 1;
1817   }
1818   return 0;
1819 }
1820 
1821 /*
1822 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1823 ** and 0 if it is FALSE.
1824 */
1825 int sqlite3ExprTruthValue(const Expr *pExpr){
1826   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1827   assert( pExpr->op==TK_TRUEFALSE );
1828   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1829        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1830   return pExpr->u.zToken[4]==0;
1831 }
1832 
1833 /*
1834 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1835 ** terms that are always true or false.  Return the simplified expression.
1836 ** Or return the original expression if no simplification is possible.
1837 **
1838 ** Examples:
1839 **
1840 **     (x<10) AND true                =>   (x<10)
1841 **     (x<10) AND false               =>   false
1842 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1843 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1844 **     (y=22) OR true                 =>   true
1845 */
1846 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1847   assert( pExpr!=0 );
1848   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1849     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1850     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1851     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1852       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1853     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1854       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1855     }
1856   }
1857   return pExpr;
1858 }
1859 
1860 
1861 /*
1862 ** These routines are Walker callbacks used to check expressions to
1863 ** see if they are "constant" for some definition of constant.  The
1864 ** Walker.eCode value determines the type of "constant" we are looking
1865 ** for.
1866 **
1867 ** These callback routines are used to implement the following:
1868 **
1869 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1870 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1871 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1872 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1873 **
1874 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1875 ** is found to not be a constant.
1876 **
1877 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1878 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1879 ** an existing schema and 4 when processing a new statement.  A bound
1880 ** parameter raises an error for new statements, but is silently converted
1881 ** to NULL for existing schemas.  This allows sqlite_master tables that
1882 ** contain a bound parameter because they were generated by older versions
1883 ** of SQLite to be parsed by newer versions of SQLite without raising a
1884 ** malformed schema error.
1885 */
1886 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1887 
1888   /* If pWalker->eCode is 2 then any term of the expression that comes from
1889   ** the ON or USING clauses of a left join disqualifies the expression
1890   ** from being considered constant. */
1891   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1892     pWalker->eCode = 0;
1893     return WRC_Abort;
1894   }
1895 
1896   switch( pExpr->op ){
1897     /* Consider functions to be constant if all their arguments are constant
1898     ** and either pWalker->eCode==4 or 5 or the function has the
1899     ** SQLITE_FUNC_CONST flag. */
1900     case TK_FUNCTION:
1901       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1902         return WRC_Continue;
1903       }else{
1904         pWalker->eCode = 0;
1905         return WRC_Abort;
1906       }
1907     case TK_ID:
1908       /* Convert "true" or "false" in a DEFAULT clause into the
1909       ** appropriate TK_TRUEFALSE operator */
1910       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1911         return WRC_Prune;
1912       }
1913       /* Fall thru */
1914     case TK_COLUMN:
1915     case TK_AGG_FUNCTION:
1916     case TK_AGG_COLUMN:
1917       testcase( pExpr->op==TK_ID );
1918       testcase( pExpr->op==TK_COLUMN );
1919       testcase( pExpr->op==TK_AGG_FUNCTION );
1920       testcase( pExpr->op==TK_AGG_COLUMN );
1921       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1922         return WRC_Continue;
1923       }
1924       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1925         return WRC_Continue;
1926       }
1927       /* Fall through */
1928     case TK_IF_NULL_ROW:
1929     case TK_REGISTER:
1930       testcase( pExpr->op==TK_REGISTER );
1931       testcase( pExpr->op==TK_IF_NULL_ROW );
1932       pWalker->eCode = 0;
1933       return WRC_Abort;
1934     case TK_VARIABLE:
1935       if( pWalker->eCode==5 ){
1936         /* Silently convert bound parameters that appear inside of CREATE
1937         ** statements into a NULL when parsing the CREATE statement text out
1938         ** of the sqlite_master table */
1939         pExpr->op = TK_NULL;
1940       }else if( pWalker->eCode==4 ){
1941         /* A bound parameter in a CREATE statement that originates from
1942         ** sqlite3_prepare() causes an error */
1943         pWalker->eCode = 0;
1944         return WRC_Abort;
1945       }
1946       /* Fall through */
1947     default:
1948       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1949       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1950       return WRC_Continue;
1951   }
1952 }
1953 static int exprIsConst(Expr *p, int initFlag, int iCur){
1954   Walker w;
1955   w.eCode = initFlag;
1956   w.xExprCallback = exprNodeIsConstant;
1957   w.xSelectCallback = sqlite3SelectWalkFail;
1958 #ifdef SQLITE_DEBUG
1959   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1960 #endif
1961   w.u.iCur = iCur;
1962   sqlite3WalkExpr(&w, p);
1963   return w.eCode;
1964 }
1965 
1966 /*
1967 ** Walk an expression tree.  Return non-zero if the expression is constant
1968 ** and 0 if it involves variables or function calls.
1969 **
1970 ** For the purposes of this function, a double-quoted string (ex: "abc")
1971 ** is considered a variable but a single-quoted string (ex: 'abc') is
1972 ** a constant.
1973 */
1974 int sqlite3ExprIsConstant(Expr *p){
1975   return exprIsConst(p, 1, 0);
1976 }
1977 
1978 /*
1979 ** Walk an expression tree.  Return non-zero if
1980 **
1981 **   (1) the expression is constant, and
1982 **   (2) the expression does originate in the ON or USING clause
1983 **       of a LEFT JOIN, and
1984 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
1985 **       operands created by the constant propagation optimization.
1986 **
1987 ** When this routine returns true, it indicates that the expression
1988 ** can be added to the pParse->pConstExpr list and evaluated once when
1989 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
1990 */
1991 int sqlite3ExprIsConstantNotJoin(Expr *p){
1992   return exprIsConst(p, 2, 0);
1993 }
1994 
1995 /*
1996 ** Walk an expression tree.  Return non-zero if the expression is constant
1997 ** for any single row of the table with cursor iCur.  In other words, the
1998 ** expression must not refer to any non-deterministic function nor any
1999 ** table other than iCur.
2000 */
2001 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2002   return exprIsConst(p, 3, iCur);
2003 }
2004 
2005 
2006 /*
2007 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2008 */
2009 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2010   ExprList *pGroupBy = pWalker->u.pGroupBy;
2011   int i;
2012 
2013   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2014   ** it constant.  */
2015   for(i=0; i<pGroupBy->nExpr; i++){
2016     Expr *p = pGroupBy->a[i].pExpr;
2017     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2018       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2019       if( sqlite3IsBinary(pColl) ){
2020         return WRC_Prune;
2021       }
2022     }
2023   }
2024 
2025   /* Check if pExpr is a sub-select. If so, consider it variable. */
2026   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2027     pWalker->eCode = 0;
2028     return WRC_Abort;
2029   }
2030 
2031   return exprNodeIsConstant(pWalker, pExpr);
2032 }
2033 
2034 /*
2035 ** Walk the expression tree passed as the first argument. Return non-zero
2036 ** if the expression consists entirely of constants or copies of terms
2037 ** in pGroupBy that sort with the BINARY collation sequence.
2038 **
2039 ** This routine is used to determine if a term of the HAVING clause can
2040 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2041 ** the value of the HAVING clause term must be the same for all members of
2042 ** a "group".  The requirement that the GROUP BY term must be BINARY
2043 ** assumes that no other collating sequence will have a finer-grained
2044 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2045 ** A=B in every other collating sequence.  The requirement that the
2046 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2047 ** to promote HAVING clauses that use the same alternative collating
2048 ** sequence as the GROUP BY term, but that is much harder to check,
2049 ** alternative collating sequences are uncommon, and this is only an
2050 ** optimization, so we take the easy way out and simply require the
2051 ** GROUP BY to use the BINARY collating sequence.
2052 */
2053 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2054   Walker w;
2055   w.eCode = 1;
2056   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2057   w.xSelectCallback = 0;
2058   w.u.pGroupBy = pGroupBy;
2059   w.pParse = pParse;
2060   sqlite3WalkExpr(&w, p);
2061   return w.eCode;
2062 }
2063 
2064 /*
2065 ** Walk an expression tree.  Return non-zero if the expression is constant
2066 ** or a function call with constant arguments.  Return and 0 if there
2067 ** are any variables.
2068 **
2069 ** For the purposes of this function, a double-quoted string (ex: "abc")
2070 ** is considered a variable but a single-quoted string (ex: 'abc') is
2071 ** a constant.
2072 */
2073 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2074   assert( isInit==0 || isInit==1 );
2075   return exprIsConst(p, 4+isInit, 0);
2076 }
2077 
2078 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2079 /*
2080 ** Walk an expression tree.  Return 1 if the expression contains a
2081 ** subquery of some kind.  Return 0 if there are no subqueries.
2082 */
2083 int sqlite3ExprContainsSubquery(Expr *p){
2084   Walker w;
2085   w.eCode = 1;
2086   w.xExprCallback = sqlite3ExprWalkNoop;
2087   w.xSelectCallback = sqlite3SelectWalkFail;
2088 #ifdef SQLITE_DEBUG
2089   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2090 #endif
2091   sqlite3WalkExpr(&w, p);
2092   return w.eCode==0;
2093 }
2094 #endif
2095 
2096 /*
2097 ** If the expression p codes a constant integer that is small enough
2098 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2099 ** in *pValue.  If the expression is not an integer or if it is too big
2100 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2101 */
2102 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2103   int rc = 0;
2104   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2105 
2106   /* If an expression is an integer literal that fits in a signed 32-bit
2107   ** integer, then the EP_IntValue flag will have already been set */
2108   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2109            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2110 
2111   if( p->flags & EP_IntValue ){
2112     *pValue = p->u.iValue;
2113     return 1;
2114   }
2115   switch( p->op ){
2116     case TK_UPLUS: {
2117       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2118       break;
2119     }
2120     case TK_UMINUS: {
2121       int v;
2122       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2123         assert( v!=(-2147483647-1) );
2124         *pValue = -v;
2125         rc = 1;
2126       }
2127       break;
2128     }
2129     default: break;
2130   }
2131   return rc;
2132 }
2133 
2134 /*
2135 ** Return FALSE if there is no chance that the expression can be NULL.
2136 **
2137 ** If the expression might be NULL or if the expression is too complex
2138 ** to tell return TRUE.
2139 **
2140 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2141 ** when we know that a value cannot be NULL.  Hence, a false positive
2142 ** (returning TRUE when in fact the expression can never be NULL) might
2143 ** be a small performance hit but is otherwise harmless.  On the other
2144 ** hand, a false negative (returning FALSE when the result could be NULL)
2145 ** will likely result in an incorrect answer.  So when in doubt, return
2146 ** TRUE.
2147 */
2148 int sqlite3ExprCanBeNull(const Expr *p){
2149   u8 op;
2150   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2151     p = p->pLeft;
2152   }
2153   op = p->op;
2154   if( op==TK_REGISTER ) op = p->op2;
2155   switch( op ){
2156     case TK_INTEGER:
2157     case TK_STRING:
2158     case TK_FLOAT:
2159     case TK_BLOB:
2160       return 0;
2161     case TK_COLUMN:
2162       return ExprHasProperty(p, EP_CanBeNull) ||
2163              p->y.pTab==0 ||  /* Reference to column of index on expression */
2164              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2165     default:
2166       return 1;
2167   }
2168 }
2169 
2170 /*
2171 ** Return TRUE if the given expression is a constant which would be
2172 ** unchanged by OP_Affinity with the affinity given in the second
2173 ** argument.
2174 **
2175 ** This routine is used to determine if the OP_Affinity operation
2176 ** can be omitted.  When in doubt return FALSE.  A false negative
2177 ** is harmless.  A false positive, however, can result in the wrong
2178 ** answer.
2179 */
2180 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2181   u8 op;
2182   if( aff==SQLITE_AFF_BLOB ) return 1;
2183   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2184   op = p->op;
2185   if( op==TK_REGISTER ) op = p->op2;
2186   switch( op ){
2187     case TK_INTEGER: {
2188       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2189     }
2190     case TK_FLOAT: {
2191       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2192     }
2193     case TK_STRING: {
2194       return aff==SQLITE_AFF_TEXT;
2195     }
2196     case TK_BLOB: {
2197       return 1;
2198     }
2199     case TK_COLUMN: {
2200       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2201       return p->iColumn<0
2202           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2203     }
2204     default: {
2205       return 0;
2206     }
2207   }
2208 }
2209 
2210 /*
2211 ** Return TRUE if the given string is a row-id column name.
2212 */
2213 int sqlite3IsRowid(const char *z){
2214   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2215   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2216   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2217   return 0;
2218 }
2219 
2220 /*
2221 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2222 ** that can be simplified to a direct table access, then return
2223 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2224 ** or if the SELECT statement needs to be manifested into a transient
2225 ** table, then return NULL.
2226 */
2227 #ifndef SQLITE_OMIT_SUBQUERY
2228 static Select *isCandidateForInOpt(Expr *pX){
2229   Select *p;
2230   SrcList *pSrc;
2231   ExprList *pEList;
2232   Table *pTab;
2233   int i;
2234   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2235   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2236   p = pX->x.pSelect;
2237   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2238   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2239     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2240     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2241     return 0; /* No DISTINCT keyword and no aggregate functions */
2242   }
2243   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2244   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2245   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2246   pSrc = p->pSrc;
2247   assert( pSrc!=0 );
2248   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2249   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2250   pTab = pSrc->a[0].pTab;
2251   assert( pTab!=0 );
2252   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2253   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2254   pEList = p->pEList;
2255   assert( pEList!=0 );
2256   /* All SELECT results must be columns. */
2257   for(i=0; i<pEList->nExpr; i++){
2258     Expr *pRes = pEList->a[i].pExpr;
2259     if( pRes->op!=TK_COLUMN ) return 0;
2260     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2261   }
2262   return p;
2263 }
2264 #endif /* SQLITE_OMIT_SUBQUERY */
2265 
2266 #ifndef SQLITE_OMIT_SUBQUERY
2267 /*
2268 ** Generate code that checks the left-most column of index table iCur to see if
2269 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2270 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2271 ** to be set to NULL if iCur contains one or more NULL values.
2272 */
2273 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2274   int addr1;
2275   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2276   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2277   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2278   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2279   VdbeComment((v, "first_entry_in(%d)", iCur));
2280   sqlite3VdbeJumpHere(v, addr1);
2281 }
2282 #endif
2283 
2284 
2285 #ifndef SQLITE_OMIT_SUBQUERY
2286 /*
2287 ** The argument is an IN operator with a list (not a subquery) on the
2288 ** right-hand side.  Return TRUE if that list is constant.
2289 */
2290 static int sqlite3InRhsIsConstant(Expr *pIn){
2291   Expr *pLHS;
2292   int res;
2293   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2294   pLHS = pIn->pLeft;
2295   pIn->pLeft = 0;
2296   res = sqlite3ExprIsConstant(pIn);
2297   pIn->pLeft = pLHS;
2298   return res;
2299 }
2300 #endif
2301 
2302 /*
2303 ** This function is used by the implementation of the IN (...) operator.
2304 ** The pX parameter is the expression on the RHS of the IN operator, which
2305 ** might be either a list of expressions or a subquery.
2306 **
2307 ** The job of this routine is to find or create a b-tree object that can
2308 ** be used either to test for membership in the RHS set or to iterate through
2309 ** all members of the RHS set, skipping duplicates.
2310 **
2311 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2312 ** and pX->iTable is set to the index of that cursor.
2313 **
2314 ** The returned value of this function indicates the b-tree type, as follows:
2315 **
2316 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2317 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2318 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2319 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2320 **                         populated epheremal table.
2321 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2322 **                         implemented as a sequence of comparisons.
2323 **
2324 ** An existing b-tree might be used if the RHS expression pX is a simple
2325 ** subquery such as:
2326 **
2327 **     SELECT <column1>, <column2>... FROM <table>
2328 **
2329 ** If the RHS of the IN operator is a list or a more complex subquery, then
2330 ** an ephemeral table might need to be generated from the RHS and then
2331 ** pX->iTable made to point to the ephemeral table instead of an
2332 ** existing table.
2333 **
2334 ** The inFlags parameter must contain, at a minimum, one of the bits
2335 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2336 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2337 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2338 ** be used to loop over all values of the RHS of the IN operator.
2339 **
2340 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2341 ** through the set members) then the b-tree must not contain duplicates.
2342 ** An epheremal table will be created unless the selected columns are guaranteed
2343 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2344 ** a UNIQUE constraint or index.
2345 **
2346 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2347 ** for fast set membership tests) then an epheremal table must
2348 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2349 ** index can be found with the specified <columns> as its left-most.
2350 **
2351 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2352 ** if the RHS of the IN operator is a list (not a subquery) then this
2353 ** routine might decide that creating an ephemeral b-tree for membership
2354 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2355 ** calling routine should implement the IN operator using a sequence
2356 ** of Eq or Ne comparison operations.
2357 **
2358 ** When the b-tree is being used for membership tests, the calling function
2359 ** might need to know whether or not the RHS side of the IN operator
2360 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2361 ** if there is any chance that the (...) might contain a NULL value at
2362 ** runtime, then a register is allocated and the register number written
2363 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2364 ** NULL value, then *prRhsHasNull is left unchanged.
2365 **
2366 ** If a register is allocated and its location stored in *prRhsHasNull, then
2367 ** the value in that register will be NULL if the b-tree contains one or more
2368 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2369 ** NULL values.
2370 **
2371 ** If the aiMap parameter is not NULL, it must point to an array containing
2372 ** one element for each column returned by the SELECT statement on the RHS
2373 ** of the IN(...) operator. The i'th entry of the array is populated with the
2374 ** offset of the index column that matches the i'th column returned by the
2375 ** SELECT. For example, if the expression and selected index are:
2376 **
2377 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2378 **   CREATE INDEX i1 ON t1(b, c, a);
2379 **
2380 ** then aiMap[] is populated with {2, 0, 1}.
2381 */
2382 #ifndef SQLITE_OMIT_SUBQUERY
2383 int sqlite3FindInIndex(
2384   Parse *pParse,             /* Parsing context */
2385   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2386   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2387   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2388   int *aiMap,                /* Mapping from Index fields to RHS fields */
2389   int *piTab                 /* OUT: index to use */
2390 ){
2391   Select *p;                            /* SELECT to the right of IN operator */
2392   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2393   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2394   int mustBeUnique;                     /* True if RHS must be unique */
2395   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2396 
2397   assert( pX->op==TK_IN );
2398   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2399 
2400   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2401   ** whether or not the SELECT result contains NULL values, check whether
2402   ** or not NULL is actually possible (it may not be, for example, due
2403   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2404   ** set prRhsHasNull to 0 before continuing.  */
2405   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2406     int i;
2407     ExprList *pEList = pX->x.pSelect->pEList;
2408     for(i=0; i<pEList->nExpr; i++){
2409       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2410     }
2411     if( i==pEList->nExpr ){
2412       prRhsHasNull = 0;
2413     }
2414   }
2415 
2416   /* Check to see if an existing table or index can be used to
2417   ** satisfy the query.  This is preferable to generating a new
2418   ** ephemeral table.  */
2419   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2420     sqlite3 *db = pParse->db;              /* Database connection */
2421     Table *pTab;                           /* Table <table>. */
2422     i16 iDb;                               /* Database idx for pTab */
2423     ExprList *pEList = p->pEList;
2424     int nExpr = pEList->nExpr;
2425 
2426     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2427     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2428     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2429     pTab = p->pSrc->a[0].pTab;
2430 
2431     /* Code an OP_Transaction and OP_TableLock for <table>. */
2432     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2433     sqlite3CodeVerifySchema(pParse, iDb);
2434     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2435 
2436     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2437     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2438       /* The "x IN (SELECT rowid FROM table)" case */
2439       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2440       VdbeCoverage(v);
2441 
2442       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2443       eType = IN_INDEX_ROWID;
2444       ExplainQueryPlan((pParse, 0,
2445             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2446       sqlite3VdbeJumpHere(v, iAddr);
2447     }else{
2448       Index *pIdx;                         /* Iterator variable */
2449       int affinity_ok = 1;
2450       int i;
2451 
2452       /* Check that the affinity that will be used to perform each
2453       ** comparison is the same as the affinity of each column in table
2454       ** on the RHS of the IN operator.  If it not, it is not possible to
2455       ** use any index of the RHS table.  */
2456       for(i=0; i<nExpr && affinity_ok; i++){
2457         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2458         int iCol = pEList->a[i].pExpr->iColumn;
2459         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2460         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2461         testcase( cmpaff==SQLITE_AFF_BLOB );
2462         testcase( cmpaff==SQLITE_AFF_TEXT );
2463         switch( cmpaff ){
2464           case SQLITE_AFF_BLOB:
2465             break;
2466           case SQLITE_AFF_TEXT:
2467             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2468             ** other has no affinity and the other side is TEXT.  Hence,
2469             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2470             ** and for the term on the LHS of the IN to have no affinity. */
2471             assert( idxaff==SQLITE_AFF_TEXT );
2472             break;
2473           default:
2474             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2475         }
2476       }
2477 
2478       if( affinity_ok ){
2479         /* Search for an existing index that will work for this IN operator */
2480         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2481           Bitmask colUsed;      /* Columns of the index used */
2482           Bitmask mCol;         /* Mask for the current column */
2483           if( pIdx->nColumn<nExpr ) continue;
2484           if( pIdx->pPartIdxWhere!=0 ) continue;
2485           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2486           ** BITMASK(nExpr) without overflowing */
2487           testcase( pIdx->nColumn==BMS-2 );
2488           testcase( pIdx->nColumn==BMS-1 );
2489           if( pIdx->nColumn>=BMS-1 ) continue;
2490           if( mustBeUnique ){
2491             if( pIdx->nKeyCol>nExpr
2492              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2493             ){
2494               continue;  /* This index is not unique over the IN RHS columns */
2495             }
2496           }
2497 
2498           colUsed = 0;   /* Columns of index used so far */
2499           for(i=0; i<nExpr; i++){
2500             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2501             Expr *pRhs = pEList->a[i].pExpr;
2502             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2503             int j;
2504 
2505             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2506             for(j=0; j<nExpr; j++){
2507               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2508               assert( pIdx->azColl[j] );
2509               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2510                 continue;
2511               }
2512               break;
2513             }
2514             if( j==nExpr ) break;
2515             mCol = MASKBIT(j);
2516             if( mCol & colUsed ) break; /* Each column used only once */
2517             colUsed |= mCol;
2518             if( aiMap ) aiMap[i] = j;
2519           }
2520 
2521           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2522           if( colUsed==(MASKBIT(nExpr)-1) ){
2523             /* If we reach this point, that means the index pIdx is usable */
2524             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2525             ExplainQueryPlan((pParse, 0,
2526                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2527             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2528             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2529             VdbeComment((v, "%s", pIdx->zName));
2530             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2531             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2532 
2533             if( prRhsHasNull ){
2534 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2535               i64 mask = (1<<nExpr)-1;
2536               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2537                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2538 #endif
2539               *prRhsHasNull = ++pParse->nMem;
2540               if( nExpr==1 ){
2541                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2542               }
2543             }
2544             sqlite3VdbeJumpHere(v, iAddr);
2545           }
2546         } /* End loop over indexes */
2547       } /* End if( affinity_ok ) */
2548     } /* End if not an rowid index */
2549   } /* End attempt to optimize using an index */
2550 
2551   /* If no preexisting index is available for the IN clause
2552   ** and IN_INDEX_NOOP is an allowed reply
2553   ** and the RHS of the IN operator is a list, not a subquery
2554   ** and the RHS is not constant or has two or fewer terms,
2555   ** then it is not worth creating an ephemeral table to evaluate
2556   ** the IN operator so return IN_INDEX_NOOP.
2557   */
2558   if( eType==0
2559    && (inFlags & IN_INDEX_NOOP_OK)
2560    && !ExprHasProperty(pX, EP_xIsSelect)
2561    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2562   ){
2563     eType = IN_INDEX_NOOP;
2564   }
2565 
2566   if( eType==0 ){
2567     /* Could not find an existing table or index to use as the RHS b-tree.
2568     ** We will have to generate an ephemeral table to do the job.
2569     */
2570     u32 savedNQueryLoop = pParse->nQueryLoop;
2571     int rMayHaveNull = 0;
2572     eType = IN_INDEX_EPH;
2573     if( inFlags & IN_INDEX_LOOP ){
2574       pParse->nQueryLoop = 0;
2575     }else if( prRhsHasNull ){
2576       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2577     }
2578     assert( pX->op==TK_IN );
2579     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2580     if( rMayHaveNull ){
2581       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2582     }
2583     pParse->nQueryLoop = savedNQueryLoop;
2584   }
2585 
2586   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2587     int i, n;
2588     n = sqlite3ExprVectorSize(pX->pLeft);
2589     for(i=0; i<n; i++) aiMap[i] = i;
2590   }
2591   *piTab = iTab;
2592   return eType;
2593 }
2594 #endif
2595 
2596 #ifndef SQLITE_OMIT_SUBQUERY
2597 /*
2598 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2599 ** function allocates and returns a nul-terminated string containing
2600 ** the affinities to be used for each column of the comparison.
2601 **
2602 ** It is the responsibility of the caller to ensure that the returned
2603 ** string is eventually freed using sqlite3DbFree().
2604 */
2605 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2606   Expr *pLeft = pExpr->pLeft;
2607   int nVal = sqlite3ExprVectorSize(pLeft);
2608   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2609   char *zRet;
2610 
2611   assert( pExpr->op==TK_IN );
2612   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2613   if( zRet ){
2614     int i;
2615     for(i=0; i<nVal; i++){
2616       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2617       char a = sqlite3ExprAffinity(pA);
2618       if( pSelect ){
2619         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2620       }else{
2621         zRet[i] = a;
2622       }
2623     }
2624     zRet[nVal] = '\0';
2625   }
2626   return zRet;
2627 }
2628 #endif
2629 
2630 #ifndef SQLITE_OMIT_SUBQUERY
2631 /*
2632 ** Load the Parse object passed as the first argument with an error
2633 ** message of the form:
2634 **
2635 **   "sub-select returns N columns - expected M"
2636 */
2637 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2638   const char *zFmt = "sub-select returns %d columns - expected %d";
2639   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2640 }
2641 #endif
2642 
2643 /*
2644 ** Expression pExpr is a vector that has been used in a context where
2645 ** it is not permitted. If pExpr is a sub-select vector, this routine
2646 ** loads the Parse object with a message of the form:
2647 **
2648 **   "sub-select returns N columns - expected 1"
2649 **
2650 ** Or, if it is a regular scalar vector:
2651 **
2652 **   "row value misused"
2653 */
2654 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2655 #ifndef SQLITE_OMIT_SUBQUERY
2656   if( pExpr->flags & EP_xIsSelect ){
2657     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2658   }else
2659 #endif
2660   {
2661     sqlite3ErrorMsg(pParse, "row value misused");
2662   }
2663 }
2664 
2665 #ifndef SQLITE_OMIT_SUBQUERY
2666 /*
2667 ** Generate code that will construct an ephemeral table containing all terms
2668 ** in the RHS of an IN operator.  The IN operator can be in either of two
2669 ** forms:
2670 **
2671 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2672 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2673 **
2674 ** The pExpr parameter is the IN operator.  The cursor number for the
2675 ** constructed ephermeral table is returned.  The first time the ephemeral
2676 ** table is computed, the cursor number is also stored in pExpr->iTable,
2677 ** however the cursor number returned might not be the same, as it might
2678 ** have been duplicated using OP_OpenDup.
2679 **
2680 ** If the LHS expression ("x" in the examples) is a column value, or
2681 ** the SELECT statement returns a column value, then the affinity of that
2682 ** column is used to build the index keys. If both 'x' and the
2683 ** SELECT... statement are columns, then numeric affinity is used
2684 ** if either column has NUMERIC or INTEGER affinity. If neither
2685 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2686 ** is used.
2687 */
2688 void sqlite3CodeRhsOfIN(
2689   Parse *pParse,          /* Parsing context */
2690   Expr *pExpr,            /* The IN operator */
2691   int iTab                /* Use this cursor number */
2692 ){
2693   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2694   int addr;                   /* Address of OP_OpenEphemeral instruction */
2695   Expr *pLeft;                /* the LHS of the IN operator */
2696   KeyInfo *pKeyInfo = 0;      /* Key information */
2697   int nVal;                   /* Size of vector pLeft */
2698   Vdbe *v;                    /* The prepared statement under construction */
2699 
2700   v = pParse->pVdbe;
2701   assert( v!=0 );
2702 
2703   /* The evaluation of the IN must be repeated every time it
2704   ** is encountered if any of the following is true:
2705   **
2706   **    *  The right-hand side is a correlated subquery
2707   **    *  The right-hand side is an expression list containing variables
2708   **    *  We are inside a trigger
2709   **
2710   ** If all of the above are false, then we can compute the RHS just once
2711   ** and reuse it many names.
2712   */
2713   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2714     /* Reuse of the RHS is allowed */
2715     /* If this routine has already been coded, but the previous code
2716     ** might not have been invoked yet, so invoke it now as a subroutine.
2717     */
2718     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2719       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2720       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2721         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2722               pExpr->x.pSelect->selId));
2723       }
2724       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2725                         pExpr->y.sub.iAddr);
2726       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2727       sqlite3VdbeJumpHere(v, addrOnce);
2728       return;
2729     }
2730 
2731     /* Begin coding the subroutine */
2732     ExprSetProperty(pExpr, EP_Subrtn);
2733     pExpr->y.sub.regReturn = ++pParse->nMem;
2734     pExpr->y.sub.iAddr =
2735       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2736     VdbeComment((v, "return address"));
2737 
2738     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2739   }
2740 
2741   /* Check to see if this is a vector IN operator */
2742   pLeft = pExpr->pLeft;
2743   nVal = sqlite3ExprVectorSize(pLeft);
2744 
2745   /* Construct the ephemeral table that will contain the content of
2746   ** RHS of the IN operator.
2747   */
2748   pExpr->iTable = iTab;
2749   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2750 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2751   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2752     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2753   }else{
2754     VdbeComment((v, "RHS of IN operator"));
2755   }
2756 #endif
2757   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2758 
2759   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2760     /* Case 1:     expr IN (SELECT ...)
2761     **
2762     ** Generate code to write the results of the select into the temporary
2763     ** table allocated and opened above.
2764     */
2765     Select *pSelect = pExpr->x.pSelect;
2766     ExprList *pEList = pSelect->pEList;
2767 
2768     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2769         addrOnce?"":"CORRELATED ", pSelect->selId
2770     ));
2771     /* If the LHS and RHS of the IN operator do not match, that
2772     ** error will have been caught long before we reach this point. */
2773     if( ALWAYS(pEList->nExpr==nVal) ){
2774       SelectDest dest;
2775       int i;
2776       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2777       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2778       pSelect->iLimit = 0;
2779       testcase( pSelect->selFlags & SF_Distinct );
2780       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2781       if( sqlite3Select(pParse, pSelect, &dest) ){
2782         sqlite3DbFree(pParse->db, dest.zAffSdst);
2783         sqlite3KeyInfoUnref(pKeyInfo);
2784         return;
2785       }
2786       sqlite3DbFree(pParse->db, dest.zAffSdst);
2787       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2788       assert( pEList!=0 );
2789       assert( pEList->nExpr>0 );
2790       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2791       for(i=0; i<nVal; i++){
2792         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2793         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2794             pParse, p, pEList->a[i].pExpr
2795         );
2796       }
2797     }
2798   }else if( ALWAYS(pExpr->x.pList!=0) ){
2799     /* Case 2:     expr IN (exprlist)
2800     **
2801     ** For each expression, build an index key from the evaluation and
2802     ** store it in the temporary table. If <expr> is a column, then use
2803     ** that columns affinity when building index keys. If <expr> is not
2804     ** a column, use numeric affinity.
2805     */
2806     char affinity;            /* Affinity of the LHS of the IN */
2807     int i;
2808     ExprList *pList = pExpr->x.pList;
2809     struct ExprList_item *pItem;
2810     int r1, r2;
2811     affinity = sqlite3ExprAffinity(pLeft);
2812     if( affinity<=SQLITE_AFF_NONE ){
2813       affinity = SQLITE_AFF_BLOB;
2814     }
2815     if( pKeyInfo ){
2816       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2817       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2818     }
2819 
2820     /* Loop through each expression in <exprlist>. */
2821     r1 = sqlite3GetTempReg(pParse);
2822     r2 = sqlite3GetTempReg(pParse);
2823     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2824       Expr *pE2 = pItem->pExpr;
2825 
2826       /* If the expression is not constant then we will need to
2827       ** disable the test that was generated above that makes sure
2828       ** this code only executes once.  Because for a non-constant
2829       ** expression we need to rerun this code each time.
2830       */
2831       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2832         sqlite3VdbeChangeToNoop(v, addrOnce);
2833         ExprClearProperty(pExpr, EP_Subrtn);
2834         addrOnce = 0;
2835       }
2836 
2837       /* Evaluate the expression and insert it into the temp table */
2838       sqlite3ExprCode(pParse, pE2, r1);
2839       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2840       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2841     }
2842     sqlite3ReleaseTempReg(pParse, r1);
2843     sqlite3ReleaseTempReg(pParse, r2);
2844   }
2845   if( pKeyInfo ){
2846     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2847   }
2848   if( addrOnce ){
2849     sqlite3VdbeJumpHere(v, addrOnce);
2850     /* Subroutine return */
2851     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2852     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2853   }
2854 }
2855 #endif /* SQLITE_OMIT_SUBQUERY */
2856 
2857 /*
2858 ** Generate code for scalar subqueries used as a subquery expression
2859 ** or EXISTS operator:
2860 **
2861 **     (SELECT a FROM b)          -- subquery
2862 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2863 **
2864 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2865 **
2866 ** The register that holds the result.  For a multi-column SELECT,
2867 ** the result is stored in a contiguous array of registers and the
2868 ** return value is the register of the left-most result column.
2869 ** Return 0 if an error occurs.
2870 */
2871 #ifndef SQLITE_OMIT_SUBQUERY
2872 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2873   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2874   int rReg = 0;               /* Register storing resulting */
2875   Select *pSel;               /* SELECT statement to encode */
2876   SelectDest dest;            /* How to deal with SELECT result */
2877   int nReg;                   /* Registers to allocate */
2878   Expr *pLimit;               /* New limit expression */
2879 
2880   Vdbe *v = pParse->pVdbe;
2881   assert( v!=0 );
2882   testcase( pExpr->op==TK_EXISTS );
2883   testcase( pExpr->op==TK_SELECT );
2884   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2885   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2886   pSel = pExpr->x.pSelect;
2887 
2888   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2889   ** is encountered if any of the following is true:
2890   **
2891   **    *  The right-hand side is a correlated subquery
2892   **    *  The right-hand side is an expression list containing variables
2893   **    *  We are inside a trigger
2894   **
2895   ** If all of the above are false, then we can run this code just once
2896   ** save the results, and reuse the same result on subsequent invocations.
2897   */
2898   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2899     /* If this routine has already been coded, then invoke it as a
2900     ** subroutine. */
2901     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2902       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2903       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2904                         pExpr->y.sub.iAddr);
2905       return pExpr->iTable;
2906     }
2907 
2908     /* Begin coding the subroutine */
2909     ExprSetProperty(pExpr, EP_Subrtn);
2910     pExpr->y.sub.regReturn = ++pParse->nMem;
2911     pExpr->y.sub.iAddr =
2912       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2913     VdbeComment((v, "return address"));
2914 
2915     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2916   }
2917 
2918   /* For a SELECT, generate code to put the values for all columns of
2919   ** the first row into an array of registers and return the index of
2920   ** the first register.
2921   **
2922   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2923   ** into a register and return that register number.
2924   **
2925   ** In both cases, the query is augmented with "LIMIT 1".  Any
2926   ** preexisting limit is discarded in place of the new LIMIT 1.
2927   */
2928   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
2929         addrOnce?"":"CORRELATED ", pSel->selId));
2930   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2931   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2932   pParse->nMem += nReg;
2933   if( pExpr->op==TK_SELECT ){
2934     dest.eDest = SRT_Mem;
2935     dest.iSdst = dest.iSDParm;
2936     dest.nSdst = nReg;
2937     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2938     VdbeComment((v, "Init subquery result"));
2939   }else{
2940     dest.eDest = SRT_Exists;
2941     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2942     VdbeComment((v, "Init EXISTS result"));
2943   }
2944   pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2945   if( pSel->pLimit ){
2946     sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2947     pSel->pLimit->pLeft = pLimit;
2948   }else{
2949     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2950   }
2951   pSel->iLimit = 0;
2952   if( sqlite3Select(pParse, pSel, &dest) ){
2953     return 0;
2954   }
2955   pExpr->iTable = rReg = dest.iSDParm;
2956   ExprSetVVAProperty(pExpr, EP_NoReduce);
2957   if( addrOnce ){
2958     sqlite3VdbeJumpHere(v, addrOnce);
2959 
2960     /* Subroutine return */
2961     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2962     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2963   }
2964 
2965   return rReg;
2966 }
2967 #endif /* SQLITE_OMIT_SUBQUERY */
2968 
2969 #ifndef SQLITE_OMIT_SUBQUERY
2970 /*
2971 ** Expr pIn is an IN(...) expression. This function checks that the
2972 ** sub-select on the RHS of the IN() operator has the same number of
2973 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2974 ** a sub-query, that the LHS is a vector of size 1.
2975 */
2976 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2977   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2978   if( (pIn->flags & EP_xIsSelect) ){
2979     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2980       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2981       return 1;
2982     }
2983   }else if( nVector!=1 ){
2984     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2985     return 1;
2986   }
2987   return 0;
2988 }
2989 #endif
2990 
2991 #ifndef SQLITE_OMIT_SUBQUERY
2992 /*
2993 ** Generate code for an IN expression.
2994 **
2995 **      x IN (SELECT ...)
2996 **      x IN (value, value, ...)
2997 **
2998 ** The left-hand side (LHS) is a scalar or vector expression.  The
2999 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3000 ** subquery.  If the RHS is a subquery, the number of result columns must
3001 ** match the number of columns in the vector on the LHS.  If the RHS is
3002 ** a list of values, the LHS must be a scalar.
3003 **
3004 ** The IN operator is true if the LHS value is contained within the RHS.
3005 ** The result is false if the LHS is definitely not in the RHS.  The
3006 ** result is NULL if the presence of the LHS in the RHS cannot be
3007 ** determined due to NULLs.
3008 **
3009 ** This routine generates code that jumps to destIfFalse if the LHS is not
3010 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3011 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3012 ** within the RHS then fall through.
3013 **
3014 ** See the separate in-operator.md documentation file in the canonical
3015 ** SQLite source tree for additional information.
3016 */
3017 static void sqlite3ExprCodeIN(
3018   Parse *pParse,        /* Parsing and code generating context */
3019   Expr *pExpr,          /* The IN expression */
3020   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3021   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3022 ){
3023   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3024   int eType;            /* Type of the RHS */
3025   int rLhs;             /* Register(s) holding the LHS values */
3026   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3027   Vdbe *v;              /* Statement under construction */
3028   int *aiMap = 0;       /* Map from vector field to index column */
3029   char *zAff = 0;       /* Affinity string for comparisons */
3030   int nVector;          /* Size of vectors for this IN operator */
3031   int iDummy;           /* Dummy parameter to exprCodeVector() */
3032   Expr *pLeft;          /* The LHS of the IN operator */
3033   int i;                /* loop counter */
3034   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3035   int destStep6 = 0;    /* Start of code for Step 6 */
3036   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3037   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3038   int addrTop;          /* Top of the step-6 loop */
3039   int iTab = 0;         /* Index to use */
3040 
3041   pLeft = pExpr->pLeft;
3042   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3043   zAff = exprINAffinity(pParse, pExpr);
3044   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3045   aiMap = (int*)sqlite3DbMallocZero(
3046       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3047   );
3048   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3049 
3050   /* Attempt to compute the RHS. After this step, if anything other than
3051   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3052   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3053   ** the RHS has not yet been coded.  */
3054   v = pParse->pVdbe;
3055   assert( v!=0 );       /* OOM detected prior to this routine */
3056   VdbeNoopComment((v, "begin IN expr"));
3057   eType = sqlite3FindInIndex(pParse, pExpr,
3058                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3059                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3060                              aiMap, &iTab);
3061 
3062   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3063        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3064   );
3065 #ifdef SQLITE_DEBUG
3066   /* Confirm that aiMap[] contains nVector integer values between 0 and
3067   ** nVector-1. */
3068   for(i=0; i<nVector; i++){
3069     int j, cnt;
3070     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3071     assert( cnt==1 );
3072   }
3073 #endif
3074 
3075   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3076   ** vector, then it is stored in an array of nVector registers starting
3077   ** at r1.
3078   **
3079   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3080   ** so that the fields are in the same order as an existing index.   The
3081   ** aiMap[] array contains a mapping from the original LHS field order to
3082   ** the field order that matches the RHS index.
3083   */
3084   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3085   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3086   if( i==nVector ){
3087     /* LHS fields are not reordered */
3088     rLhs = rLhsOrig;
3089   }else{
3090     /* Need to reorder the LHS fields according to aiMap */
3091     rLhs = sqlite3GetTempRange(pParse, nVector);
3092     for(i=0; i<nVector; i++){
3093       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3094     }
3095   }
3096 
3097   /* If sqlite3FindInIndex() did not find or create an index that is
3098   ** suitable for evaluating the IN operator, then evaluate using a
3099   ** sequence of comparisons.
3100   **
3101   ** This is step (1) in the in-operator.md optimized algorithm.
3102   */
3103   if( eType==IN_INDEX_NOOP ){
3104     ExprList *pList = pExpr->x.pList;
3105     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3106     int labelOk = sqlite3VdbeMakeLabel(pParse);
3107     int r2, regToFree;
3108     int regCkNull = 0;
3109     int ii;
3110     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3111     if( destIfNull!=destIfFalse ){
3112       regCkNull = sqlite3GetTempReg(pParse);
3113       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3114     }
3115     for(ii=0; ii<pList->nExpr; ii++){
3116       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3117       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3118         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3119       }
3120       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3121         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3122                           (void*)pColl, P4_COLLSEQ);
3123         VdbeCoverageIf(v, ii<pList->nExpr-1);
3124         VdbeCoverageIf(v, ii==pList->nExpr-1);
3125         sqlite3VdbeChangeP5(v, zAff[0]);
3126       }else{
3127         assert( destIfNull==destIfFalse );
3128         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3129                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3130         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3131       }
3132       sqlite3ReleaseTempReg(pParse, regToFree);
3133     }
3134     if( regCkNull ){
3135       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3136       sqlite3VdbeGoto(v, destIfFalse);
3137     }
3138     sqlite3VdbeResolveLabel(v, labelOk);
3139     sqlite3ReleaseTempReg(pParse, regCkNull);
3140     goto sqlite3ExprCodeIN_finished;
3141   }
3142 
3143   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3144   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3145   ** We will then skip the binary search of the RHS.
3146   */
3147   if( destIfNull==destIfFalse ){
3148     destStep2 = destIfFalse;
3149   }else{
3150     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3151   }
3152   for(i=0; i<nVector; i++){
3153     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3154     if( sqlite3ExprCanBeNull(p) ){
3155       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3156       VdbeCoverage(v);
3157     }
3158   }
3159 
3160   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3161   ** of the RHS using the LHS as a probe.  If found, the result is
3162   ** true.
3163   */
3164   if( eType==IN_INDEX_ROWID ){
3165     /* In this case, the RHS is the ROWID of table b-tree and so we also
3166     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3167     ** into a single opcode. */
3168     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3169     VdbeCoverage(v);
3170     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3171   }else{
3172     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3173     if( destIfFalse==destIfNull ){
3174       /* Combine Step 3 and Step 5 into a single opcode */
3175       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3176                            rLhs, nVector); VdbeCoverage(v);
3177       goto sqlite3ExprCodeIN_finished;
3178     }
3179     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3180     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3181                                       rLhs, nVector); VdbeCoverage(v);
3182   }
3183 
3184   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3185   ** an match on the search above, then the result must be FALSE.
3186   */
3187   if( rRhsHasNull && nVector==1 ){
3188     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3189     VdbeCoverage(v);
3190   }
3191 
3192   /* Step 5.  If we do not care about the difference between NULL and
3193   ** FALSE, then just return false.
3194   */
3195   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3196 
3197   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3198   ** If any comparison is NULL, then the result is NULL.  If all
3199   ** comparisons are FALSE then the final result is FALSE.
3200   **
3201   ** For a scalar LHS, it is sufficient to check just the first row
3202   ** of the RHS.
3203   */
3204   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3205   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3206   VdbeCoverage(v);
3207   if( nVector>1 ){
3208     destNotNull = sqlite3VdbeMakeLabel(pParse);
3209   }else{
3210     /* For nVector==1, combine steps 6 and 7 by immediately returning
3211     ** FALSE if the first comparison is not NULL */
3212     destNotNull = destIfFalse;
3213   }
3214   for(i=0; i<nVector; i++){
3215     Expr *p;
3216     CollSeq *pColl;
3217     int r3 = sqlite3GetTempReg(pParse);
3218     p = sqlite3VectorFieldSubexpr(pLeft, i);
3219     pColl = sqlite3ExprCollSeq(pParse, p);
3220     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3221     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3222                       (void*)pColl, P4_COLLSEQ);
3223     VdbeCoverage(v);
3224     sqlite3ReleaseTempReg(pParse, r3);
3225   }
3226   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3227   if( nVector>1 ){
3228     sqlite3VdbeResolveLabel(v, destNotNull);
3229     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3230     VdbeCoverage(v);
3231 
3232     /* Step 7:  If we reach this point, we know that the result must
3233     ** be false. */
3234     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3235   }
3236 
3237   /* Jumps here in order to return true. */
3238   sqlite3VdbeJumpHere(v, addrTruthOp);
3239 
3240 sqlite3ExprCodeIN_finished:
3241   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3242   VdbeComment((v, "end IN expr"));
3243 sqlite3ExprCodeIN_oom_error:
3244   sqlite3DbFree(pParse->db, aiMap);
3245   sqlite3DbFree(pParse->db, zAff);
3246 }
3247 #endif /* SQLITE_OMIT_SUBQUERY */
3248 
3249 #ifndef SQLITE_OMIT_FLOATING_POINT
3250 /*
3251 ** Generate an instruction that will put the floating point
3252 ** value described by z[0..n-1] into register iMem.
3253 **
3254 ** The z[] string will probably not be zero-terminated.  But the
3255 ** z[n] character is guaranteed to be something that does not look
3256 ** like the continuation of the number.
3257 */
3258 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3259   if( ALWAYS(z!=0) ){
3260     double value;
3261     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3262     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3263     if( negateFlag ) value = -value;
3264     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3265   }
3266 }
3267 #endif
3268 
3269 
3270 /*
3271 ** Generate an instruction that will put the integer describe by
3272 ** text z[0..n-1] into register iMem.
3273 **
3274 ** Expr.u.zToken is always UTF8 and zero-terminated.
3275 */
3276 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3277   Vdbe *v = pParse->pVdbe;
3278   if( pExpr->flags & EP_IntValue ){
3279     int i = pExpr->u.iValue;
3280     assert( i>=0 );
3281     if( negFlag ) i = -i;
3282     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3283   }else{
3284     int c;
3285     i64 value;
3286     const char *z = pExpr->u.zToken;
3287     assert( z!=0 );
3288     c = sqlite3DecOrHexToI64(z, &value);
3289     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3290 #ifdef SQLITE_OMIT_FLOATING_POINT
3291       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3292 #else
3293 #ifndef SQLITE_OMIT_HEX_INTEGER
3294       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3295         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3296       }else
3297 #endif
3298       {
3299         codeReal(v, z, negFlag, iMem);
3300       }
3301 #endif
3302     }else{
3303       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3304       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3305     }
3306   }
3307 }
3308 
3309 
3310 /* Generate code that will load into register regOut a value that is
3311 ** appropriate for the iIdxCol-th column of index pIdx.
3312 */
3313 void sqlite3ExprCodeLoadIndexColumn(
3314   Parse *pParse,  /* The parsing context */
3315   Index *pIdx,    /* The index whose column is to be loaded */
3316   int iTabCur,    /* Cursor pointing to a table row */
3317   int iIdxCol,    /* The column of the index to be loaded */
3318   int regOut      /* Store the index column value in this register */
3319 ){
3320   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3321   if( iTabCol==XN_EXPR ){
3322     assert( pIdx->aColExpr );
3323     assert( pIdx->aColExpr->nExpr>iIdxCol );
3324     pParse->iSelfTab = iTabCur + 1;
3325     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3326     pParse->iSelfTab = 0;
3327   }else{
3328     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3329                                     iTabCol, regOut);
3330   }
3331 }
3332 
3333 /*
3334 ** Generate code to extract the value of the iCol-th column of a table.
3335 */
3336 void sqlite3ExprCodeGetColumnOfTable(
3337   Vdbe *v,        /* The VDBE under construction */
3338   Table *pTab,    /* The table containing the value */
3339   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3340   int iCol,       /* Index of the column to extract */
3341   int regOut      /* Extract the value into this register */
3342 ){
3343   if( pTab==0 ){
3344     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3345     return;
3346   }
3347   if( iCol<0 || iCol==pTab->iPKey ){
3348     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3349   }else{
3350     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3351     int x = iCol;
3352     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3353       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3354     }
3355     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3356   }
3357   if( iCol>=0 ){
3358     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3359   }
3360 }
3361 
3362 /*
3363 ** Generate code that will extract the iColumn-th column from
3364 ** table pTab and store the column value in register iReg.
3365 **
3366 ** There must be an open cursor to pTab in iTable when this routine
3367 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3368 */
3369 int sqlite3ExprCodeGetColumn(
3370   Parse *pParse,   /* Parsing and code generating context */
3371   Table *pTab,     /* Description of the table we are reading from */
3372   int iColumn,     /* Index of the table column */
3373   int iTable,      /* The cursor pointing to the table */
3374   int iReg,        /* Store results here */
3375   u8 p5            /* P5 value for OP_Column + FLAGS */
3376 ){
3377   Vdbe *v = pParse->pVdbe;
3378   assert( v!=0 );
3379   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3380   if( p5 ){
3381     sqlite3VdbeChangeP5(v, p5);
3382   }
3383   return iReg;
3384 }
3385 
3386 /*
3387 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3388 ** over to iTo..iTo+nReg-1.
3389 */
3390 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3391   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3392   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3393 }
3394 
3395 /*
3396 ** Convert a scalar expression node to a TK_REGISTER referencing
3397 ** register iReg.  The caller must ensure that iReg already contains
3398 ** the correct value for the expression.
3399 */
3400 static void exprToRegister(Expr *pExpr, int iReg){
3401   Expr *p = sqlite3ExprSkipCollate(pExpr);
3402   p->op2 = p->op;
3403   p->op = TK_REGISTER;
3404   p->iTable = iReg;
3405   ExprClearProperty(p, EP_Skip);
3406 }
3407 
3408 /*
3409 ** Evaluate an expression (either a vector or a scalar expression) and store
3410 ** the result in continguous temporary registers.  Return the index of
3411 ** the first register used to store the result.
3412 **
3413 ** If the returned result register is a temporary scalar, then also write
3414 ** that register number into *piFreeable.  If the returned result register
3415 ** is not a temporary or if the expression is a vector set *piFreeable
3416 ** to 0.
3417 */
3418 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3419   int iResult;
3420   int nResult = sqlite3ExprVectorSize(p);
3421   if( nResult==1 ){
3422     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3423   }else{
3424     *piFreeable = 0;
3425     if( p->op==TK_SELECT ){
3426 #if SQLITE_OMIT_SUBQUERY
3427       iResult = 0;
3428 #else
3429       iResult = sqlite3CodeSubselect(pParse, p);
3430 #endif
3431     }else{
3432       int i;
3433       iResult = pParse->nMem+1;
3434       pParse->nMem += nResult;
3435       for(i=0; i<nResult; i++){
3436         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3437       }
3438     }
3439   }
3440   return iResult;
3441 }
3442 
3443 
3444 /*
3445 ** Generate code into the current Vdbe to evaluate the given
3446 ** expression.  Attempt to store the results in register "target".
3447 ** Return the register where results are stored.
3448 **
3449 ** With this routine, there is no guarantee that results will
3450 ** be stored in target.  The result might be stored in some other
3451 ** register if it is convenient to do so.  The calling function
3452 ** must check the return code and move the results to the desired
3453 ** register.
3454 */
3455 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3456   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3457   int op;                   /* The opcode being coded */
3458   int inReg = target;       /* Results stored in register inReg */
3459   int regFree1 = 0;         /* If non-zero free this temporary register */
3460   int regFree2 = 0;         /* If non-zero free this temporary register */
3461   int r1, r2;               /* Various register numbers */
3462   Expr tempX;               /* Temporary expression node */
3463   int p5 = 0;
3464 
3465   assert( target>0 && target<=pParse->nMem );
3466   if( v==0 ){
3467     assert( pParse->db->mallocFailed );
3468     return 0;
3469   }
3470 
3471 expr_code_doover:
3472   if( pExpr==0 ){
3473     op = TK_NULL;
3474   }else{
3475     op = pExpr->op;
3476   }
3477   switch( op ){
3478     case TK_AGG_COLUMN: {
3479       AggInfo *pAggInfo = pExpr->pAggInfo;
3480       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3481       if( !pAggInfo->directMode ){
3482         assert( pCol->iMem>0 );
3483         return pCol->iMem;
3484       }else if( pAggInfo->useSortingIdx ){
3485         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3486                               pCol->iSorterColumn, target);
3487         return target;
3488       }
3489       /* Otherwise, fall thru into the TK_COLUMN case */
3490     }
3491     case TK_COLUMN: {
3492       int iTab = pExpr->iTable;
3493       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3494         /* This COLUMN expression is really a constant due to WHERE clause
3495         ** constraints, and that constant is coded by the pExpr->pLeft
3496         ** expresssion.  However, make sure the constant has the correct
3497         ** datatype by applying the Affinity of the table column to the
3498         ** constant.
3499         */
3500         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3501         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3502         if( aff>SQLITE_AFF_BLOB ){
3503           static const char zAff[] = "B\000C\000D\000E";
3504           assert( SQLITE_AFF_BLOB=='A' );
3505           assert( SQLITE_AFF_TEXT=='B' );
3506           if( iReg!=target ){
3507             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3508             iReg = target;
3509           }
3510           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3511                             &zAff[(aff-'B')*2], P4_STATIC);
3512         }
3513         return iReg;
3514       }
3515       if( iTab<0 ){
3516         if( pParse->iSelfTab<0 ){
3517           /* Generating CHECK constraints or inserting into partial index */
3518           return pExpr->iColumn - pParse->iSelfTab;
3519         }else{
3520           /* Coding an expression that is part of an index where column names
3521           ** in the index refer to the table to which the index belongs */
3522           iTab = pParse->iSelfTab - 1;
3523         }
3524       }
3525       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3526                                pExpr->iColumn, iTab, target,
3527                                pExpr->op2);
3528     }
3529     case TK_INTEGER: {
3530       codeInteger(pParse, pExpr, 0, target);
3531       return target;
3532     }
3533     case TK_TRUEFALSE: {
3534       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3535       return target;
3536     }
3537 #ifndef SQLITE_OMIT_FLOATING_POINT
3538     case TK_FLOAT: {
3539       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3540       codeReal(v, pExpr->u.zToken, 0, target);
3541       return target;
3542     }
3543 #endif
3544     case TK_STRING: {
3545       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3546       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3547       return target;
3548     }
3549     case TK_NULL: {
3550       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3551       return target;
3552     }
3553 #ifndef SQLITE_OMIT_BLOB_LITERAL
3554     case TK_BLOB: {
3555       int n;
3556       const char *z;
3557       char *zBlob;
3558       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3559       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3560       assert( pExpr->u.zToken[1]=='\'' );
3561       z = &pExpr->u.zToken[2];
3562       n = sqlite3Strlen30(z) - 1;
3563       assert( z[n]=='\'' );
3564       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3565       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3566       return target;
3567     }
3568 #endif
3569     case TK_VARIABLE: {
3570       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3571       assert( pExpr->u.zToken!=0 );
3572       assert( pExpr->u.zToken[0]!=0 );
3573       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3574       if( pExpr->u.zToken[1]!=0 ){
3575         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3576         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3577         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3578         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3579       }
3580       return target;
3581     }
3582     case TK_REGISTER: {
3583       return pExpr->iTable;
3584     }
3585 #ifndef SQLITE_OMIT_CAST
3586     case TK_CAST: {
3587       /* Expressions of the form:   CAST(pLeft AS token) */
3588       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3589       if( inReg!=target ){
3590         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3591         inReg = target;
3592       }
3593       sqlite3VdbeAddOp2(v, OP_Cast, target,
3594                         sqlite3AffinityType(pExpr->u.zToken, 0));
3595       return inReg;
3596     }
3597 #endif /* SQLITE_OMIT_CAST */
3598     case TK_IS:
3599     case TK_ISNOT:
3600       op = (op==TK_IS) ? TK_EQ : TK_NE;
3601       p5 = SQLITE_NULLEQ;
3602       /* fall-through */
3603     case TK_LT:
3604     case TK_LE:
3605     case TK_GT:
3606     case TK_GE:
3607     case TK_NE:
3608     case TK_EQ: {
3609       Expr *pLeft = pExpr->pLeft;
3610       if( sqlite3ExprIsVector(pLeft) ){
3611         codeVectorCompare(pParse, pExpr, target, op, p5);
3612       }else{
3613         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3614         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3615         codeCompare(pParse, pLeft, pExpr->pRight, op,
3616             r1, r2, inReg, SQLITE_STOREP2 | p5);
3617         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3618         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3619         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3620         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3621         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3622         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3623         testcase( regFree1==0 );
3624         testcase( regFree2==0 );
3625       }
3626       break;
3627     }
3628     case TK_AND:
3629     case TK_OR:
3630     case TK_PLUS:
3631     case TK_STAR:
3632     case TK_MINUS:
3633     case TK_REM:
3634     case TK_BITAND:
3635     case TK_BITOR:
3636     case TK_SLASH:
3637     case TK_LSHIFT:
3638     case TK_RSHIFT:
3639     case TK_CONCAT: {
3640       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3641       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3642       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3643       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3644       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3645       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3646       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3647       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3648       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3649       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3650       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3651       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3652       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3653       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3654       testcase( regFree1==0 );
3655       testcase( regFree2==0 );
3656       break;
3657     }
3658     case TK_UMINUS: {
3659       Expr *pLeft = pExpr->pLeft;
3660       assert( pLeft );
3661       if( pLeft->op==TK_INTEGER ){
3662         codeInteger(pParse, pLeft, 1, target);
3663         return target;
3664 #ifndef SQLITE_OMIT_FLOATING_POINT
3665       }else if( pLeft->op==TK_FLOAT ){
3666         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3667         codeReal(v, pLeft->u.zToken, 1, target);
3668         return target;
3669 #endif
3670       }else{
3671         tempX.op = TK_INTEGER;
3672         tempX.flags = EP_IntValue|EP_TokenOnly;
3673         tempX.u.iValue = 0;
3674         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3675         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3676         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3677         testcase( regFree2==0 );
3678       }
3679       break;
3680     }
3681     case TK_BITNOT:
3682     case TK_NOT: {
3683       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3684       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3685       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3686       testcase( regFree1==0 );
3687       sqlite3VdbeAddOp2(v, op, r1, inReg);
3688       break;
3689     }
3690     case TK_TRUTH: {
3691       int isTrue;    /* IS TRUE or IS NOT TRUE */
3692       int bNormal;   /* IS TRUE or IS FALSE */
3693       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3694       testcase( regFree1==0 );
3695       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3696       bNormal = pExpr->op2==TK_IS;
3697       testcase( isTrue && bNormal);
3698       testcase( !isTrue && bNormal);
3699       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3700       break;
3701     }
3702     case TK_ISNULL:
3703     case TK_NOTNULL: {
3704       int addr;
3705       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3706       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3707       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3708       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3709       testcase( regFree1==0 );
3710       addr = sqlite3VdbeAddOp1(v, op, r1);
3711       VdbeCoverageIf(v, op==TK_ISNULL);
3712       VdbeCoverageIf(v, op==TK_NOTNULL);
3713       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3714       sqlite3VdbeJumpHere(v, addr);
3715       break;
3716     }
3717     case TK_AGG_FUNCTION: {
3718       AggInfo *pInfo = pExpr->pAggInfo;
3719       if( pInfo==0 ){
3720         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3721         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3722       }else{
3723         return pInfo->aFunc[pExpr->iAgg].iMem;
3724       }
3725       break;
3726     }
3727     case TK_FUNCTION: {
3728       ExprList *pFarg;       /* List of function arguments */
3729       int nFarg;             /* Number of function arguments */
3730       FuncDef *pDef;         /* The function definition object */
3731       const char *zId;       /* The function name */
3732       u32 constMask = 0;     /* Mask of function arguments that are constant */
3733       int i;                 /* Loop counter */
3734       sqlite3 *db = pParse->db;  /* The database connection */
3735       u8 enc = ENC(db);      /* The text encoding used by this database */
3736       CollSeq *pColl = 0;    /* A collating sequence */
3737 
3738 #ifndef SQLITE_OMIT_WINDOWFUNC
3739       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3740         return pExpr->y.pWin->regResult;
3741       }
3742 #endif
3743 
3744       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3745         /* SQL functions can be expensive. So try to move constant functions
3746         ** out of the inner loop, even if that means an extra OP_Copy. */
3747         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3748       }
3749       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3750       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3751         pFarg = 0;
3752       }else{
3753         pFarg = pExpr->x.pList;
3754       }
3755       nFarg = pFarg ? pFarg->nExpr : 0;
3756       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3757       zId = pExpr->u.zToken;
3758       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3759 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3760       if( pDef==0 && pParse->explain ){
3761         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3762       }
3763 #endif
3764       if( pDef==0 || pDef->xFinalize!=0 ){
3765         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3766         break;
3767       }
3768 
3769       /* Attempt a direct implementation of the built-in COALESCE() and
3770       ** IFNULL() functions.  This avoids unnecessary evaluation of
3771       ** arguments past the first non-NULL argument.
3772       */
3773       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3774         int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3775         assert( nFarg>=2 );
3776         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3777         for(i=1; i<nFarg; i++){
3778           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3779           VdbeCoverage(v);
3780           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3781         }
3782         sqlite3VdbeResolveLabel(v, endCoalesce);
3783         break;
3784       }
3785 
3786       /* The UNLIKELY() function is a no-op.  The result is the value
3787       ** of the first argument.
3788       */
3789       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3790         assert( nFarg>=1 );
3791         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3792       }
3793 
3794 #ifdef SQLITE_DEBUG
3795       /* The AFFINITY() function evaluates to a string that describes
3796       ** the type affinity of the argument.  This is used for testing of
3797       ** the SQLite type logic.
3798       */
3799       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3800         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3801         char aff;
3802         assert( nFarg==1 );
3803         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3804         sqlite3VdbeLoadString(v, target,
3805                 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3806         return target;
3807       }
3808 #endif
3809 
3810       for(i=0; i<nFarg; i++){
3811         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3812           testcase( i==31 );
3813           constMask |= MASKBIT32(i);
3814         }
3815         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3816           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3817         }
3818       }
3819       if( pFarg ){
3820         if( constMask ){
3821           r1 = pParse->nMem+1;
3822           pParse->nMem += nFarg;
3823         }else{
3824           r1 = sqlite3GetTempRange(pParse, nFarg);
3825         }
3826 
3827         /* For length() and typeof() functions with a column argument,
3828         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3829         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3830         ** loading.
3831         */
3832         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3833           u8 exprOp;
3834           assert( nFarg==1 );
3835           assert( pFarg->a[0].pExpr!=0 );
3836           exprOp = pFarg->a[0].pExpr->op;
3837           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3838             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3839             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3840             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3841             pFarg->a[0].pExpr->op2 =
3842                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3843           }
3844         }
3845 
3846         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3847                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3848       }else{
3849         r1 = 0;
3850       }
3851 #ifndef SQLITE_OMIT_VIRTUALTABLE
3852       /* Possibly overload the function if the first argument is
3853       ** a virtual table column.
3854       **
3855       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3856       ** second argument, not the first, as the argument to test to
3857       ** see if it is a column in a virtual table.  This is done because
3858       ** the left operand of infix functions (the operand we want to
3859       ** control overloading) ends up as the second argument to the
3860       ** function.  The expression "A glob B" is equivalent to
3861       ** "glob(B,A).  We want to use the A in "A glob B" to test
3862       ** for function overloading.  But we use the B term in "glob(B,A)".
3863       */
3864       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3865         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3866       }else if( nFarg>0 ){
3867         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3868       }
3869 #endif
3870       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3871         if( !pColl ) pColl = db->pDfltColl;
3872         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3873       }
3874 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3875       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3876         Expr *pArg = pFarg->a[0].pExpr;
3877         if( pArg->op==TK_COLUMN ){
3878           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3879         }else{
3880           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3881         }
3882       }else
3883 #endif
3884       {
3885         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3886                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3887         sqlite3VdbeChangeP5(v, (u8)nFarg);
3888       }
3889       if( nFarg && constMask==0 ){
3890         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3891       }
3892       return target;
3893     }
3894 #ifndef SQLITE_OMIT_SUBQUERY
3895     case TK_EXISTS:
3896     case TK_SELECT: {
3897       int nCol;
3898       testcase( op==TK_EXISTS );
3899       testcase( op==TK_SELECT );
3900       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3901         sqlite3SubselectError(pParse, nCol, 1);
3902       }else{
3903         return sqlite3CodeSubselect(pParse, pExpr);
3904       }
3905       break;
3906     }
3907     case TK_SELECT_COLUMN: {
3908       int n;
3909       if( pExpr->pLeft->iTable==0 ){
3910         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
3911       }
3912       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3913       if( pExpr->iTable
3914        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3915       ){
3916         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3917                                 pExpr->iTable, n);
3918       }
3919       return pExpr->pLeft->iTable + pExpr->iColumn;
3920     }
3921     case TK_IN: {
3922       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
3923       int destIfNull = sqlite3VdbeMakeLabel(pParse);
3924       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3925       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3926       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3927       sqlite3VdbeResolveLabel(v, destIfFalse);
3928       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3929       sqlite3VdbeResolveLabel(v, destIfNull);
3930       return target;
3931     }
3932 #endif /* SQLITE_OMIT_SUBQUERY */
3933 
3934 
3935     /*
3936     **    x BETWEEN y AND z
3937     **
3938     ** This is equivalent to
3939     **
3940     **    x>=y AND x<=z
3941     **
3942     ** X is stored in pExpr->pLeft.
3943     ** Y is stored in pExpr->pList->a[0].pExpr.
3944     ** Z is stored in pExpr->pList->a[1].pExpr.
3945     */
3946     case TK_BETWEEN: {
3947       exprCodeBetween(pParse, pExpr, target, 0, 0);
3948       return target;
3949     }
3950     case TK_SPAN:
3951     case TK_COLLATE:
3952     case TK_UPLUS: {
3953       pExpr = pExpr->pLeft;
3954       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
3955     }
3956 
3957     case TK_TRIGGER: {
3958       /* If the opcode is TK_TRIGGER, then the expression is a reference
3959       ** to a column in the new.* or old.* pseudo-tables available to
3960       ** trigger programs. In this case Expr.iTable is set to 1 for the
3961       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3962       ** is set to the column of the pseudo-table to read, or to -1 to
3963       ** read the rowid field.
3964       **
3965       ** The expression is implemented using an OP_Param opcode. The p1
3966       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3967       ** to reference another column of the old.* pseudo-table, where
3968       ** i is the index of the column. For a new.rowid reference, p1 is
3969       ** set to (n+1), where n is the number of columns in each pseudo-table.
3970       ** For a reference to any other column in the new.* pseudo-table, p1
3971       ** is set to (n+2+i), where n and i are as defined previously. For
3972       ** example, if the table on which triggers are being fired is
3973       ** declared as:
3974       **
3975       **   CREATE TABLE t1(a, b);
3976       **
3977       ** Then p1 is interpreted as follows:
3978       **
3979       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3980       **   p1==1   ->    old.a         p1==4   ->    new.a
3981       **   p1==2   ->    old.b         p1==5   ->    new.b
3982       */
3983       Table *pTab = pExpr->y.pTab;
3984       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3985 
3986       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3987       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3988       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3989       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3990 
3991       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3992       VdbeComment((v, "r[%d]=%s.%s", target,
3993         (pExpr->iTable ? "new" : "old"),
3994         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
3995       ));
3996 
3997 #ifndef SQLITE_OMIT_FLOATING_POINT
3998       /* If the column has REAL affinity, it may currently be stored as an
3999       ** integer. Use OP_RealAffinity to make sure it is really real.
4000       **
4001       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4002       ** floating point when extracting it from the record.  */
4003       if( pExpr->iColumn>=0
4004        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
4005       ){
4006         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4007       }
4008 #endif
4009       break;
4010     }
4011 
4012     case TK_VECTOR: {
4013       sqlite3ErrorMsg(pParse, "row value misused");
4014       break;
4015     }
4016 
4017     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4018     ** that derive from the right-hand table of a LEFT JOIN.  The
4019     ** Expr.iTable value is the table number for the right-hand table.
4020     ** The expression is only evaluated if that table is not currently
4021     ** on a LEFT JOIN NULL row.
4022     */
4023     case TK_IF_NULL_ROW: {
4024       int addrINR;
4025       u8 okConstFactor = pParse->okConstFactor;
4026       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4027       /* Temporarily disable factoring of constant expressions, since
4028       ** even though expressions may appear to be constant, they are not
4029       ** really constant because they originate from the right-hand side
4030       ** of a LEFT JOIN. */
4031       pParse->okConstFactor = 0;
4032       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4033       pParse->okConstFactor = okConstFactor;
4034       sqlite3VdbeJumpHere(v, addrINR);
4035       sqlite3VdbeChangeP3(v, addrINR, inReg);
4036       break;
4037     }
4038 
4039     /*
4040     ** Form A:
4041     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4042     **
4043     ** Form B:
4044     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4045     **
4046     ** Form A is can be transformed into the equivalent form B as follows:
4047     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4048     **        WHEN x=eN THEN rN ELSE y END
4049     **
4050     ** X (if it exists) is in pExpr->pLeft.
4051     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4052     ** odd.  The Y is also optional.  If the number of elements in x.pList
4053     ** is even, then Y is omitted and the "otherwise" result is NULL.
4054     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4055     **
4056     ** The result of the expression is the Ri for the first matching Ei,
4057     ** or if there is no matching Ei, the ELSE term Y, or if there is
4058     ** no ELSE term, NULL.
4059     */
4060     default: assert( op==TK_CASE ); {
4061       int endLabel;                     /* GOTO label for end of CASE stmt */
4062       int nextCase;                     /* GOTO label for next WHEN clause */
4063       int nExpr;                        /* 2x number of WHEN terms */
4064       int i;                            /* Loop counter */
4065       ExprList *pEList;                 /* List of WHEN terms */
4066       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4067       Expr opCompare;                   /* The X==Ei expression */
4068       Expr *pX;                         /* The X expression */
4069       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4070       Expr *pDel = 0;
4071       sqlite3 *db = pParse->db;
4072 
4073       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4074       assert(pExpr->x.pList->nExpr > 0);
4075       pEList = pExpr->x.pList;
4076       aListelem = pEList->a;
4077       nExpr = pEList->nExpr;
4078       endLabel = sqlite3VdbeMakeLabel(pParse);
4079       if( (pX = pExpr->pLeft)!=0 ){
4080         pDel = sqlite3ExprDup(db, pX, 0);
4081         if( db->mallocFailed ){
4082           sqlite3ExprDelete(db, pDel);
4083           break;
4084         }
4085         testcase( pX->op==TK_COLUMN );
4086         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4087         testcase( regFree1==0 );
4088         memset(&opCompare, 0, sizeof(opCompare));
4089         opCompare.op = TK_EQ;
4090         opCompare.pLeft = pDel;
4091         pTest = &opCompare;
4092         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4093         ** The value in regFree1 might get SCopy-ed into the file result.
4094         ** So make sure that the regFree1 register is not reused for other
4095         ** purposes and possibly overwritten.  */
4096         regFree1 = 0;
4097       }
4098       for(i=0; i<nExpr-1; i=i+2){
4099         if( pX ){
4100           assert( pTest!=0 );
4101           opCompare.pRight = aListelem[i].pExpr;
4102         }else{
4103           pTest = aListelem[i].pExpr;
4104         }
4105         nextCase = sqlite3VdbeMakeLabel(pParse);
4106         testcase( pTest->op==TK_COLUMN );
4107         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4108         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4109         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4110         sqlite3VdbeGoto(v, endLabel);
4111         sqlite3VdbeResolveLabel(v, nextCase);
4112       }
4113       if( (nExpr&1)!=0 ){
4114         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4115       }else{
4116         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4117       }
4118       sqlite3ExprDelete(db, pDel);
4119       sqlite3VdbeResolveLabel(v, endLabel);
4120       break;
4121     }
4122 #ifndef SQLITE_OMIT_TRIGGER
4123     case TK_RAISE: {
4124       assert( pExpr->affExpr==OE_Rollback
4125            || pExpr->affExpr==OE_Abort
4126            || pExpr->affExpr==OE_Fail
4127            || pExpr->affExpr==OE_Ignore
4128       );
4129       if( !pParse->pTriggerTab ){
4130         sqlite3ErrorMsg(pParse,
4131                        "RAISE() may only be used within a trigger-program");
4132         return 0;
4133       }
4134       if( pExpr->affExpr==OE_Abort ){
4135         sqlite3MayAbort(pParse);
4136       }
4137       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4138       if( pExpr->affExpr==OE_Ignore ){
4139         sqlite3VdbeAddOp4(
4140             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4141         VdbeCoverage(v);
4142       }else{
4143         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4144                               pExpr->affExpr, pExpr->u.zToken, 0, 0);
4145       }
4146 
4147       break;
4148     }
4149 #endif
4150   }
4151   sqlite3ReleaseTempReg(pParse, regFree1);
4152   sqlite3ReleaseTempReg(pParse, regFree2);
4153   return inReg;
4154 }
4155 
4156 /*
4157 ** Factor out the code of the given expression to initialization time.
4158 **
4159 ** If regDest>=0 then the result is always stored in that register and the
4160 ** result is not reusable.  If regDest<0 then this routine is free to
4161 ** store the value whereever it wants.  The register where the expression
4162 ** is stored is returned.  When regDest<0, two identical expressions will
4163 ** code to the same register.
4164 */
4165 int sqlite3ExprCodeAtInit(
4166   Parse *pParse,    /* Parsing context */
4167   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4168   int regDest       /* Store the value in this register */
4169 ){
4170   ExprList *p;
4171   assert( ConstFactorOk(pParse) );
4172   p = pParse->pConstExpr;
4173   if( regDest<0 && p ){
4174     struct ExprList_item *pItem;
4175     int i;
4176     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4177       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4178         return pItem->u.iConstExprReg;
4179       }
4180     }
4181   }
4182   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4183   p = sqlite3ExprListAppend(pParse, p, pExpr);
4184   if( p ){
4185      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4186      pItem->reusable = regDest<0;
4187      if( regDest<0 ) regDest = ++pParse->nMem;
4188      pItem->u.iConstExprReg = regDest;
4189   }
4190   pParse->pConstExpr = p;
4191   return regDest;
4192 }
4193 
4194 /*
4195 ** Generate code to evaluate an expression and store the results
4196 ** into a register.  Return the register number where the results
4197 ** are stored.
4198 **
4199 ** If the register is a temporary register that can be deallocated,
4200 ** then write its number into *pReg.  If the result register is not
4201 ** a temporary, then set *pReg to zero.
4202 **
4203 ** If pExpr is a constant, then this routine might generate this
4204 ** code to fill the register in the initialization section of the
4205 ** VDBE program, in order to factor it out of the evaluation loop.
4206 */
4207 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4208   int r2;
4209   pExpr = sqlite3ExprSkipCollate(pExpr);
4210   if( ConstFactorOk(pParse)
4211    && pExpr->op!=TK_REGISTER
4212    && sqlite3ExprIsConstantNotJoin(pExpr)
4213   ){
4214     *pReg  = 0;
4215     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4216   }else{
4217     int r1 = sqlite3GetTempReg(pParse);
4218     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4219     if( r2==r1 ){
4220       *pReg = r1;
4221     }else{
4222       sqlite3ReleaseTempReg(pParse, r1);
4223       *pReg = 0;
4224     }
4225   }
4226   return r2;
4227 }
4228 
4229 /*
4230 ** Generate code that will evaluate expression pExpr and store the
4231 ** results in register target.  The results are guaranteed to appear
4232 ** in register target.
4233 */
4234 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4235   int inReg;
4236 
4237   assert( target>0 && target<=pParse->nMem );
4238   if( pExpr && pExpr->op==TK_REGISTER ){
4239     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4240   }else{
4241     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4242     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4243     if( inReg!=target && pParse->pVdbe ){
4244       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4245     }
4246   }
4247 }
4248 
4249 /*
4250 ** Make a transient copy of expression pExpr and then code it using
4251 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4252 ** except that the input expression is guaranteed to be unchanged.
4253 */
4254 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4255   sqlite3 *db = pParse->db;
4256   pExpr = sqlite3ExprDup(db, pExpr, 0);
4257   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4258   sqlite3ExprDelete(db, pExpr);
4259 }
4260 
4261 /*
4262 ** Generate code that will evaluate expression pExpr and store the
4263 ** results in register target.  The results are guaranteed to appear
4264 ** in register target.  If the expression is constant, then this routine
4265 ** might choose to code the expression at initialization time.
4266 */
4267 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4268   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4269     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4270   }else{
4271     sqlite3ExprCode(pParse, pExpr, target);
4272   }
4273 }
4274 
4275 /*
4276 ** Generate code that evaluates the given expression and puts the result
4277 ** in register target.
4278 **
4279 ** Also make a copy of the expression results into another "cache" register
4280 ** and modify the expression so that the next time it is evaluated,
4281 ** the result is a copy of the cache register.
4282 **
4283 ** This routine is used for expressions that are used multiple
4284 ** times.  They are evaluated once and the results of the expression
4285 ** are reused.
4286 */
4287 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4288   Vdbe *v = pParse->pVdbe;
4289   int iMem;
4290 
4291   assert( target>0 );
4292   assert( pExpr->op!=TK_REGISTER );
4293   sqlite3ExprCode(pParse, pExpr, target);
4294   iMem = ++pParse->nMem;
4295   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4296   exprToRegister(pExpr, iMem);
4297 }
4298 
4299 /*
4300 ** Generate code that pushes the value of every element of the given
4301 ** expression list into a sequence of registers beginning at target.
4302 **
4303 ** Return the number of elements evaluated.  The number returned will
4304 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4305 ** is defined.
4306 **
4307 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4308 ** filled using OP_SCopy.  OP_Copy must be used instead.
4309 **
4310 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4311 ** factored out into initialization code.
4312 **
4313 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4314 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4315 ** in registers at srcReg, and so the value can be copied from there.
4316 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4317 ** are simply omitted rather than being copied from srcReg.
4318 */
4319 int sqlite3ExprCodeExprList(
4320   Parse *pParse,     /* Parsing context */
4321   ExprList *pList,   /* The expression list to be coded */
4322   int target,        /* Where to write results */
4323   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4324   u8 flags           /* SQLITE_ECEL_* flags */
4325 ){
4326   struct ExprList_item *pItem;
4327   int i, j, n;
4328   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4329   Vdbe *v = pParse->pVdbe;
4330   assert( pList!=0 );
4331   assert( target>0 );
4332   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4333   n = pList->nExpr;
4334   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4335   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4336     Expr *pExpr = pItem->pExpr;
4337 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4338     if( pItem->bSorterRef ){
4339       i--;
4340       n--;
4341     }else
4342 #endif
4343     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4344       if( flags & SQLITE_ECEL_OMITREF ){
4345         i--;
4346         n--;
4347       }else{
4348         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4349       }
4350     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4351            && sqlite3ExprIsConstantNotJoin(pExpr)
4352     ){
4353       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4354     }else{
4355       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4356       if( inReg!=target+i ){
4357         VdbeOp *pOp;
4358         if( copyOp==OP_Copy
4359          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4360          && pOp->p1+pOp->p3+1==inReg
4361          && pOp->p2+pOp->p3+1==target+i
4362         ){
4363           pOp->p3++;
4364         }else{
4365           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4366         }
4367       }
4368     }
4369   }
4370   return n;
4371 }
4372 
4373 /*
4374 ** Generate code for a BETWEEN operator.
4375 **
4376 **    x BETWEEN y AND z
4377 **
4378 ** The above is equivalent to
4379 **
4380 **    x>=y AND x<=z
4381 **
4382 ** Code it as such, taking care to do the common subexpression
4383 ** elimination of x.
4384 **
4385 ** The xJumpIf parameter determines details:
4386 **
4387 **    NULL:                   Store the boolean result in reg[dest]
4388 **    sqlite3ExprIfTrue:      Jump to dest if true
4389 **    sqlite3ExprIfFalse:     Jump to dest if false
4390 **
4391 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4392 */
4393 static void exprCodeBetween(
4394   Parse *pParse,    /* Parsing and code generating context */
4395   Expr *pExpr,      /* The BETWEEN expression */
4396   int dest,         /* Jump destination or storage location */
4397   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4398   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4399 ){
4400   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4401   Expr compLeft;    /* The  x>=y  term */
4402   Expr compRight;   /* The  x<=z  term */
4403   int regFree1 = 0; /* Temporary use register */
4404   Expr *pDel = 0;
4405   sqlite3 *db = pParse->db;
4406 
4407   memset(&compLeft, 0, sizeof(Expr));
4408   memset(&compRight, 0, sizeof(Expr));
4409   memset(&exprAnd, 0, sizeof(Expr));
4410 
4411   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4412   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4413   if( db->mallocFailed==0 ){
4414     exprAnd.op = TK_AND;
4415     exprAnd.pLeft = &compLeft;
4416     exprAnd.pRight = &compRight;
4417     compLeft.op = TK_GE;
4418     compLeft.pLeft = pDel;
4419     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4420     compRight.op = TK_LE;
4421     compRight.pLeft = pDel;
4422     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4423     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4424     if( xJump ){
4425       xJump(pParse, &exprAnd, dest, jumpIfNull);
4426     }else{
4427       /* Mark the expression is being from the ON or USING clause of a join
4428       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4429       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4430       ** for clarity, but we are out of bits in the Expr.flags field so we
4431       ** have to reuse the EP_FromJoin bit.  Bummer. */
4432       pDel->flags |= EP_FromJoin;
4433       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4434     }
4435     sqlite3ReleaseTempReg(pParse, regFree1);
4436   }
4437   sqlite3ExprDelete(db, pDel);
4438 
4439   /* Ensure adequate test coverage */
4440   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4441   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4442   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4443   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4444   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4445   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4446   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4447   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4448   testcase( xJump==0 );
4449 }
4450 
4451 /*
4452 ** Generate code for a boolean expression such that a jump is made
4453 ** to the label "dest" if the expression is true but execution
4454 ** continues straight thru if the expression is false.
4455 **
4456 ** If the expression evaluates to NULL (neither true nor false), then
4457 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4458 **
4459 ** This code depends on the fact that certain token values (ex: TK_EQ)
4460 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4461 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4462 ** the make process cause these values to align.  Assert()s in the code
4463 ** below verify that the numbers are aligned correctly.
4464 */
4465 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4466   Vdbe *v = pParse->pVdbe;
4467   int op = 0;
4468   int regFree1 = 0;
4469   int regFree2 = 0;
4470   int r1, r2;
4471 
4472   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4473   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4474   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4475   op = pExpr->op;
4476   switch( op ){
4477     case TK_AND:
4478     case TK_OR: {
4479       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4480       if( pAlt!=pExpr ){
4481         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4482       }else if( op==TK_AND ){
4483         int d2 = sqlite3VdbeMakeLabel(pParse);
4484         testcase( jumpIfNull==0 );
4485         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4486                            jumpIfNull^SQLITE_JUMPIFNULL);
4487         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4488         sqlite3VdbeResolveLabel(v, d2);
4489       }else{
4490         testcase( jumpIfNull==0 );
4491         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4492         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4493       }
4494       break;
4495     }
4496     case TK_NOT: {
4497       testcase( jumpIfNull==0 );
4498       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4499       break;
4500     }
4501     case TK_TRUTH: {
4502       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4503       int isTrue;     /* IS TRUE or IS NOT TRUE */
4504       testcase( jumpIfNull==0 );
4505       isNot = pExpr->op2==TK_ISNOT;
4506       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4507       testcase( isTrue && isNot );
4508       testcase( !isTrue && isNot );
4509       if( isTrue ^ isNot ){
4510         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4511                           isNot ? SQLITE_JUMPIFNULL : 0);
4512       }else{
4513         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4514                            isNot ? SQLITE_JUMPIFNULL : 0);
4515       }
4516       break;
4517     }
4518     case TK_IS:
4519     case TK_ISNOT:
4520       testcase( op==TK_IS );
4521       testcase( op==TK_ISNOT );
4522       op = (op==TK_IS) ? TK_EQ : TK_NE;
4523       jumpIfNull = SQLITE_NULLEQ;
4524       /* Fall thru */
4525     case TK_LT:
4526     case TK_LE:
4527     case TK_GT:
4528     case TK_GE:
4529     case TK_NE:
4530     case TK_EQ: {
4531       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4532       testcase( jumpIfNull==0 );
4533       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4534       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4535       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4536                   r1, r2, dest, jumpIfNull);
4537       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4538       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4539       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4540       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4541       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4542       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4543       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4544       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4545       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4546       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4547       testcase( regFree1==0 );
4548       testcase( regFree2==0 );
4549       break;
4550     }
4551     case TK_ISNULL:
4552     case TK_NOTNULL: {
4553       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4554       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4555       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4556       sqlite3VdbeAddOp2(v, op, r1, dest);
4557       VdbeCoverageIf(v, op==TK_ISNULL);
4558       VdbeCoverageIf(v, op==TK_NOTNULL);
4559       testcase( regFree1==0 );
4560       break;
4561     }
4562     case TK_BETWEEN: {
4563       testcase( jumpIfNull==0 );
4564       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4565       break;
4566     }
4567 #ifndef SQLITE_OMIT_SUBQUERY
4568     case TK_IN: {
4569       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4570       int destIfNull = jumpIfNull ? dest : destIfFalse;
4571       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4572       sqlite3VdbeGoto(v, dest);
4573       sqlite3VdbeResolveLabel(v, destIfFalse);
4574       break;
4575     }
4576 #endif
4577     default: {
4578     default_expr:
4579       if( ExprAlwaysTrue(pExpr) ){
4580         sqlite3VdbeGoto(v, dest);
4581       }else if( ExprAlwaysFalse(pExpr) ){
4582         /* No-op */
4583       }else{
4584         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4585         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4586         VdbeCoverage(v);
4587         testcase( regFree1==0 );
4588         testcase( jumpIfNull==0 );
4589       }
4590       break;
4591     }
4592   }
4593   sqlite3ReleaseTempReg(pParse, regFree1);
4594   sqlite3ReleaseTempReg(pParse, regFree2);
4595 }
4596 
4597 /*
4598 ** Generate code for a boolean expression such that a jump is made
4599 ** to the label "dest" if the expression is false but execution
4600 ** continues straight thru if the expression is true.
4601 **
4602 ** If the expression evaluates to NULL (neither true nor false) then
4603 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4604 ** is 0.
4605 */
4606 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4607   Vdbe *v = pParse->pVdbe;
4608   int op = 0;
4609   int regFree1 = 0;
4610   int regFree2 = 0;
4611   int r1, r2;
4612 
4613   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4614   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4615   if( pExpr==0 )    return;
4616 
4617   /* The value of pExpr->op and op are related as follows:
4618   **
4619   **       pExpr->op            op
4620   **       ---------          ----------
4621   **       TK_ISNULL          OP_NotNull
4622   **       TK_NOTNULL         OP_IsNull
4623   **       TK_NE              OP_Eq
4624   **       TK_EQ              OP_Ne
4625   **       TK_GT              OP_Le
4626   **       TK_LE              OP_Gt
4627   **       TK_GE              OP_Lt
4628   **       TK_LT              OP_Ge
4629   **
4630   ** For other values of pExpr->op, op is undefined and unused.
4631   ** The value of TK_ and OP_ constants are arranged such that we
4632   ** can compute the mapping above using the following expression.
4633   ** Assert()s verify that the computation is correct.
4634   */
4635   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4636 
4637   /* Verify correct alignment of TK_ and OP_ constants
4638   */
4639   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4640   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4641   assert( pExpr->op!=TK_NE || op==OP_Eq );
4642   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4643   assert( pExpr->op!=TK_LT || op==OP_Ge );
4644   assert( pExpr->op!=TK_LE || op==OP_Gt );
4645   assert( pExpr->op!=TK_GT || op==OP_Le );
4646   assert( pExpr->op!=TK_GE || op==OP_Lt );
4647 
4648   switch( pExpr->op ){
4649     case TK_AND:
4650     case TK_OR: {
4651       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4652       if( pAlt!=pExpr ){
4653         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
4654       }else if( pExpr->op==TK_AND ){
4655         testcase( jumpIfNull==0 );
4656         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4657         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4658       }else{
4659         int d2 = sqlite3VdbeMakeLabel(pParse);
4660         testcase( jumpIfNull==0 );
4661         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
4662                           jumpIfNull^SQLITE_JUMPIFNULL);
4663         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4664         sqlite3VdbeResolveLabel(v, d2);
4665       }
4666       break;
4667     }
4668     case TK_NOT: {
4669       testcase( jumpIfNull==0 );
4670       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4671       break;
4672     }
4673     case TK_TRUTH: {
4674       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4675       int isTrue;  /* IS TRUE or IS NOT TRUE */
4676       testcase( jumpIfNull==0 );
4677       isNot = pExpr->op2==TK_ISNOT;
4678       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4679       testcase( isTrue && isNot );
4680       testcase( !isTrue && isNot );
4681       if( isTrue ^ isNot ){
4682         /* IS TRUE and IS NOT FALSE */
4683         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4684                            isNot ? 0 : SQLITE_JUMPIFNULL);
4685 
4686       }else{
4687         /* IS FALSE and IS NOT TRUE */
4688         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4689                           isNot ? 0 : SQLITE_JUMPIFNULL);
4690       }
4691       break;
4692     }
4693     case TK_IS:
4694     case TK_ISNOT:
4695       testcase( pExpr->op==TK_IS );
4696       testcase( pExpr->op==TK_ISNOT );
4697       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4698       jumpIfNull = SQLITE_NULLEQ;
4699       /* Fall thru */
4700     case TK_LT:
4701     case TK_LE:
4702     case TK_GT:
4703     case TK_GE:
4704     case TK_NE:
4705     case TK_EQ: {
4706       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4707       testcase( jumpIfNull==0 );
4708       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4709       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4710       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4711                   r1, r2, dest, jumpIfNull);
4712       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4713       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4714       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4715       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4716       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4717       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4718       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4719       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4720       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4721       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4722       testcase( regFree1==0 );
4723       testcase( regFree2==0 );
4724       break;
4725     }
4726     case TK_ISNULL:
4727     case TK_NOTNULL: {
4728       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4729       sqlite3VdbeAddOp2(v, op, r1, dest);
4730       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4731       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4732       testcase( regFree1==0 );
4733       break;
4734     }
4735     case TK_BETWEEN: {
4736       testcase( jumpIfNull==0 );
4737       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4738       break;
4739     }
4740 #ifndef SQLITE_OMIT_SUBQUERY
4741     case TK_IN: {
4742       if( jumpIfNull ){
4743         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4744       }else{
4745         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4746         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4747         sqlite3VdbeResolveLabel(v, destIfNull);
4748       }
4749       break;
4750     }
4751 #endif
4752     default: {
4753     default_expr:
4754       if( ExprAlwaysFalse(pExpr) ){
4755         sqlite3VdbeGoto(v, dest);
4756       }else if( ExprAlwaysTrue(pExpr) ){
4757         /* no-op */
4758       }else{
4759         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4760         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4761         VdbeCoverage(v);
4762         testcase( regFree1==0 );
4763         testcase( jumpIfNull==0 );
4764       }
4765       break;
4766     }
4767   }
4768   sqlite3ReleaseTempReg(pParse, regFree1);
4769   sqlite3ReleaseTempReg(pParse, regFree2);
4770 }
4771 
4772 /*
4773 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4774 ** code generation, and that copy is deleted after code generation. This
4775 ** ensures that the original pExpr is unchanged.
4776 */
4777 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4778   sqlite3 *db = pParse->db;
4779   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4780   if( db->mallocFailed==0 ){
4781     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4782   }
4783   sqlite3ExprDelete(db, pCopy);
4784 }
4785 
4786 /*
4787 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4788 ** type of expression.
4789 **
4790 ** If pExpr is a simple SQL value - an integer, real, string, blob
4791 ** or NULL value - then the VDBE currently being prepared is configured
4792 ** to re-prepare each time a new value is bound to variable pVar.
4793 **
4794 ** Additionally, if pExpr is a simple SQL value and the value is the
4795 ** same as that currently bound to variable pVar, non-zero is returned.
4796 ** Otherwise, if the values are not the same or if pExpr is not a simple
4797 ** SQL value, zero is returned.
4798 */
4799 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4800   int res = 0;
4801   int iVar;
4802   sqlite3_value *pL, *pR = 0;
4803 
4804   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4805   if( pR ){
4806     iVar = pVar->iColumn;
4807     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4808     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4809     if( pL ){
4810       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4811         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4812       }
4813       res =  0==sqlite3MemCompare(pL, pR, 0);
4814     }
4815     sqlite3ValueFree(pR);
4816     sqlite3ValueFree(pL);
4817   }
4818 
4819   return res;
4820 }
4821 
4822 /*
4823 ** Do a deep comparison of two expression trees.  Return 0 if the two
4824 ** expressions are completely identical.  Return 1 if they differ only
4825 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4826 ** other than the top-level COLLATE operator.
4827 **
4828 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4829 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4830 **
4831 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4832 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4833 **
4834 ** Sometimes this routine will return 2 even if the two expressions
4835 ** really are equivalent.  If we cannot prove that the expressions are
4836 ** identical, we return 2 just to be safe.  So if this routine
4837 ** returns 2, then you do not really know for certain if the two
4838 ** expressions are the same.  But if you get a 0 or 1 return, then you
4839 ** can be sure the expressions are the same.  In the places where
4840 ** this routine is used, it does not hurt to get an extra 2 - that
4841 ** just might result in some slightly slower code.  But returning
4842 ** an incorrect 0 or 1 could lead to a malfunction.
4843 **
4844 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4845 ** pParse->pReprepare can be matched against literals in pB.  The
4846 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4847 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4848 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4849 ** pB causes a return value of 2.
4850 */
4851 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4852   u32 combinedFlags;
4853   if( pA==0 || pB==0 ){
4854     return pB==pA ? 0 : 2;
4855   }
4856   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4857     return 0;
4858   }
4859   combinedFlags = pA->flags | pB->flags;
4860   if( combinedFlags & EP_IntValue ){
4861     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4862       return 0;
4863     }
4864     return 2;
4865   }
4866   if( pA->op!=pB->op || pA->op==TK_RAISE ){
4867     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4868       return 1;
4869     }
4870     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4871       return 1;
4872     }
4873     return 2;
4874   }
4875   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4876     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
4877       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4878 #ifndef SQLITE_OMIT_WINDOWFUNC
4879       assert( pA->op==pB->op );
4880       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
4881         return 2;
4882       }
4883       if( ExprHasProperty(pA,EP_WinFunc) ){
4884         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
4885           return 2;
4886         }
4887       }
4888 #endif
4889     }else if( pA->op==TK_NULL ){
4890       return 0;
4891     }else if( pA->op==TK_COLLATE ){
4892       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4893     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4894       return 2;
4895     }
4896   }
4897   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4898   if( (combinedFlags & EP_TokenOnly)==0 ){
4899     if( combinedFlags & EP_xIsSelect ) return 2;
4900     if( (combinedFlags & EP_FixedCol)==0
4901      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4902     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4903     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4904     if( pA->op!=TK_STRING
4905      && pA->op!=TK_TRUEFALSE
4906      && (combinedFlags & EP_Reduced)==0
4907     ){
4908       if( pA->iColumn!=pB->iColumn ) return 2;
4909       if( pA->op2!=pB->op2 ) return 2;
4910       if( pA->iTable!=pB->iTable
4911        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4912     }
4913   }
4914   return 0;
4915 }
4916 
4917 /*
4918 ** Compare two ExprList objects.  Return 0 if they are identical and
4919 ** non-zero if they differ in any way.
4920 **
4921 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4922 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4923 **
4924 ** This routine might return non-zero for equivalent ExprLists.  The
4925 ** only consequence will be disabled optimizations.  But this routine
4926 ** must never return 0 if the two ExprList objects are different, or
4927 ** a malfunction will result.
4928 **
4929 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4930 ** always differs from a non-NULL pointer.
4931 */
4932 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4933   int i;
4934   if( pA==0 && pB==0 ) return 0;
4935   if( pA==0 || pB==0 ) return 1;
4936   if( pA->nExpr!=pB->nExpr ) return 1;
4937   for(i=0; i<pA->nExpr; i++){
4938     Expr *pExprA = pA->a[i].pExpr;
4939     Expr *pExprB = pB->a[i].pExpr;
4940     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
4941     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4942   }
4943   return 0;
4944 }
4945 
4946 /*
4947 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4948 ** are ignored.
4949 */
4950 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4951   return sqlite3ExprCompare(0,
4952              sqlite3ExprSkipCollate(pA),
4953              sqlite3ExprSkipCollate(pB),
4954              iTab);
4955 }
4956 
4957 /*
4958 ** Return non-zero if Expr p can only be true if pNN is not NULL.
4959 */
4960 static int exprImpliesNotNull(
4961   Parse *pParse,      /* Parsing context */
4962   Expr *p,            /* The expression to be checked */
4963   Expr *pNN,          /* The expression that is NOT NULL */
4964   int iTab,           /* Table being evaluated */
4965   int seenNot         /* True if p is an operand of NOT */
4966 ){
4967   assert( p );
4968   assert( pNN );
4969   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
4970     return pNN->op!=TK_NULL;
4971   }
4972   switch( p->op ){
4973     case TK_IN: {
4974       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
4975       assert( ExprHasProperty(p,EP_xIsSelect)
4976            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
4977       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4978     }
4979     case TK_BETWEEN: {
4980       ExprList *pList = p->x.pList;
4981       assert( pList!=0 );
4982       assert( pList->nExpr==2 );
4983       if( seenNot ) return 0;
4984       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, seenNot)
4985        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, seenNot)
4986       ){
4987         return 1;
4988       }
4989       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4990     }
4991     case TK_EQ:
4992     case TK_NE:
4993     case TK_LT:
4994     case TK_LE:
4995     case TK_GT:
4996     case TK_GE:
4997     case TK_PLUS:
4998     case TK_MINUS:
4999     case TK_STAR:
5000     case TK_REM:
5001     case TK_BITAND:
5002     case TK_BITOR:
5003     case TK_SLASH:
5004     case TK_LSHIFT:
5005     case TK_RSHIFT:
5006     case TK_CONCAT: {
5007       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5008       /* Fall thru into the next case */
5009     }
5010     case TK_SPAN:
5011     case TK_COLLATE:
5012     case TK_BITNOT:
5013     case TK_UPLUS:
5014     case TK_UMINUS: {
5015       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5016     }
5017     case TK_TRUTH: {
5018       if( seenNot ) return 0;
5019       if( p->op2!=TK_IS ) return 0;
5020       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5021     }
5022     case TK_NOT: {
5023       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5024     }
5025   }
5026   return 0;
5027 }
5028 
5029 /*
5030 ** Return true if we can prove the pE2 will always be true if pE1 is
5031 ** true.  Return false if we cannot complete the proof or if pE2 might
5032 ** be false.  Examples:
5033 **
5034 **     pE1: x==5       pE2: x==5             Result: true
5035 **     pE1: x>0        pE2: x==5             Result: false
5036 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5037 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5038 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5039 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5040 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5041 **
5042 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5043 ** Expr.iTable<0 then assume a table number given by iTab.
5044 **
5045 ** If pParse is not NULL, then the values of bound variables in pE1 are
5046 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5047 ** modified to record which bound variables are referenced.  If pParse
5048 ** is NULL, then false will be returned if pE1 contains any bound variables.
5049 **
5050 ** When in doubt, return false.  Returning true might give a performance
5051 ** improvement.  Returning false might cause a performance reduction, but
5052 ** it will always give the correct answer and is hence always safe.
5053 */
5054 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5055   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5056     return 1;
5057   }
5058   if( pE2->op==TK_OR
5059    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5060              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5061   ){
5062     return 1;
5063   }
5064   if( pE2->op==TK_NOTNULL
5065    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5066   ){
5067     return 1;
5068   }
5069   return 0;
5070 }
5071 
5072 /*
5073 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5074 ** If the expression node requires that the table at pWalker->iCur
5075 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5076 **
5077 ** This routine controls an optimization.  False positives (setting
5078 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5079 ** (never setting pWalker->eCode) is a harmless missed optimization.
5080 */
5081 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5082   testcase( pExpr->op==TK_AGG_COLUMN );
5083   testcase( pExpr->op==TK_AGG_FUNCTION );
5084   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5085   switch( pExpr->op ){
5086     case TK_ISNOT:
5087     case TK_NOT:
5088     case TK_ISNULL:
5089     case TK_NOTNULL:
5090     case TK_IS:
5091     case TK_OR:
5092     case TK_CASE:
5093     case TK_IN:
5094     case TK_FUNCTION:
5095       testcase( pExpr->op==TK_ISNOT );
5096       testcase( pExpr->op==TK_NOT );
5097       testcase( pExpr->op==TK_ISNULL );
5098       testcase( pExpr->op==TK_NOTNULL );
5099       testcase( pExpr->op==TK_IS );
5100       testcase( pExpr->op==TK_OR );
5101       testcase( pExpr->op==TK_CASE );
5102       testcase( pExpr->op==TK_IN );
5103       testcase( pExpr->op==TK_FUNCTION );
5104       return WRC_Prune;
5105     case TK_COLUMN:
5106       if( pWalker->u.iCur==pExpr->iTable ){
5107         pWalker->eCode = 1;
5108         return WRC_Abort;
5109       }
5110       return WRC_Prune;
5111 
5112     /* Virtual tables are allowed to use constraints like x=NULL.  So
5113     ** a term of the form x=y does not prove that y is not null if x
5114     ** is the column of a virtual table */
5115     case TK_EQ:
5116     case TK_NE:
5117     case TK_LT:
5118     case TK_LE:
5119     case TK_GT:
5120     case TK_GE:
5121       testcase( pExpr->op==TK_EQ );
5122       testcase( pExpr->op==TK_NE );
5123       testcase( pExpr->op==TK_LT );
5124       testcase( pExpr->op==TK_LE );
5125       testcase( pExpr->op==TK_GT );
5126       testcase( pExpr->op==TK_GE );
5127       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5128        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5129       ){
5130        return WRC_Prune;
5131       }
5132     default:
5133       return WRC_Continue;
5134   }
5135 }
5136 
5137 /*
5138 ** Return true (non-zero) if expression p can only be true if at least
5139 ** one column of table iTab is non-null.  In other words, return true
5140 ** if expression p will always be NULL or false if every column of iTab
5141 ** is NULL.
5142 **
5143 ** False negatives are acceptable.  In other words, it is ok to return
5144 ** zero even if expression p will never be true of every column of iTab
5145 ** is NULL.  A false negative is merely a missed optimization opportunity.
5146 **
5147 ** False positives are not allowed, however.  A false positive may result
5148 ** in an incorrect answer.
5149 **
5150 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5151 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5152 **
5153 ** This routine is used to check if a LEFT JOIN can be converted into
5154 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5155 ** clause requires that some column of the right table of the LEFT JOIN
5156 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5157 ** ordinary join.
5158 */
5159 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5160   Walker w;
5161   p = sqlite3ExprSkipCollate(p);
5162   while( p ){
5163     if( p->op==TK_NOTNULL ){
5164       p = p->pLeft;
5165     }else if( p->op==TK_AND ){
5166       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5167       p = p->pRight;
5168     }else{
5169       break;
5170     }
5171   }
5172   w.xExprCallback = impliesNotNullRow;
5173   w.xSelectCallback = 0;
5174   w.xSelectCallback2 = 0;
5175   w.eCode = 0;
5176   w.u.iCur = iTab;
5177   sqlite3WalkExpr(&w, p);
5178   return w.eCode;
5179 }
5180 
5181 /*
5182 ** An instance of the following structure is used by the tree walker
5183 ** to determine if an expression can be evaluated by reference to the
5184 ** index only, without having to do a search for the corresponding
5185 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5186 ** is the cursor for the table.
5187 */
5188 struct IdxCover {
5189   Index *pIdx;     /* The index to be tested for coverage */
5190   int iCur;        /* Cursor number for the table corresponding to the index */
5191 };
5192 
5193 /*
5194 ** Check to see if there are references to columns in table
5195 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5196 ** pWalker->u.pIdxCover->pIdx.
5197 */
5198 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5199   if( pExpr->op==TK_COLUMN
5200    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5201    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5202   ){
5203     pWalker->eCode = 1;
5204     return WRC_Abort;
5205   }
5206   return WRC_Continue;
5207 }
5208 
5209 /*
5210 ** Determine if an index pIdx on table with cursor iCur contains will
5211 ** the expression pExpr.  Return true if the index does cover the
5212 ** expression and false if the pExpr expression references table columns
5213 ** that are not found in the index pIdx.
5214 **
5215 ** An index covering an expression means that the expression can be
5216 ** evaluated using only the index and without having to lookup the
5217 ** corresponding table entry.
5218 */
5219 int sqlite3ExprCoveredByIndex(
5220   Expr *pExpr,        /* The index to be tested */
5221   int iCur,           /* The cursor number for the corresponding table */
5222   Index *pIdx         /* The index that might be used for coverage */
5223 ){
5224   Walker w;
5225   struct IdxCover xcov;
5226   memset(&w, 0, sizeof(w));
5227   xcov.iCur = iCur;
5228   xcov.pIdx = pIdx;
5229   w.xExprCallback = exprIdxCover;
5230   w.u.pIdxCover = &xcov;
5231   sqlite3WalkExpr(&w, pExpr);
5232   return !w.eCode;
5233 }
5234 
5235 
5236 /*
5237 ** An instance of the following structure is used by the tree walker
5238 ** to count references to table columns in the arguments of an
5239 ** aggregate function, in order to implement the
5240 ** sqlite3FunctionThisSrc() routine.
5241 */
5242 struct SrcCount {
5243   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5244   int nThis;       /* Number of references to columns in pSrcList */
5245   int nOther;      /* Number of references to columns in other FROM clauses */
5246 };
5247 
5248 /*
5249 ** Count the number of references to columns.
5250 */
5251 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5252   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5253   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5254   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5255   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5256   ** NEVER() will need to be removed. */
5257   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5258     int i;
5259     struct SrcCount *p = pWalker->u.pSrcCount;
5260     SrcList *pSrc = p->pSrc;
5261     int nSrc = pSrc ? pSrc->nSrc : 0;
5262     for(i=0; i<nSrc; i++){
5263       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5264     }
5265     if( i<nSrc ){
5266       p->nThis++;
5267     }else{
5268       p->nOther++;
5269     }
5270   }
5271   return WRC_Continue;
5272 }
5273 
5274 /*
5275 ** Determine if any of the arguments to the pExpr Function reference
5276 ** pSrcList.  Return true if they do.  Also return true if the function
5277 ** has no arguments or has only constant arguments.  Return false if pExpr
5278 ** references columns but not columns of tables found in pSrcList.
5279 */
5280 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5281   Walker w;
5282   struct SrcCount cnt;
5283   assert( pExpr->op==TK_AGG_FUNCTION );
5284   w.xExprCallback = exprSrcCount;
5285   w.xSelectCallback = 0;
5286   w.u.pSrcCount = &cnt;
5287   cnt.pSrc = pSrcList;
5288   cnt.nThis = 0;
5289   cnt.nOther = 0;
5290   sqlite3WalkExprList(&w, pExpr->x.pList);
5291   return cnt.nThis>0 || cnt.nOther==0;
5292 }
5293 
5294 /*
5295 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5296 ** the new element.  Return a negative number if malloc fails.
5297 */
5298 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5299   int i;
5300   pInfo->aCol = sqlite3ArrayAllocate(
5301        db,
5302        pInfo->aCol,
5303        sizeof(pInfo->aCol[0]),
5304        &pInfo->nColumn,
5305        &i
5306   );
5307   return i;
5308 }
5309 
5310 /*
5311 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5312 ** the new element.  Return a negative number if malloc fails.
5313 */
5314 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5315   int i;
5316   pInfo->aFunc = sqlite3ArrayAllocate(
5317        db,
5318        pInfo->aFunc,
5319        sizeof(pInfo->aFunc[0]),
5320        &pInfo->nFunc,
5321        &i
5322   );
5323   return i;
5324 }
5325 
5326 /*
5327 ** This is the xExprCallback for a tree walker.  It is used to
5328 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5329 ** for additional information.
5330 */
5331 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5332   int i;
5333   NameContext *pNC = pWalker->u.pNC;
5334   Parse *pParse = pNC->pParse;
5335   SrcList *pSrcList = pNC->pSrcList;
5336   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5337 
5338   assert( pNC->ncFlags & NC_UAggInfo );
5339   switch( pExpr->op ){
5340     case TK_AGG_COLUMN:
5341     case TK_COLUMN: {
5342       testcase( pExpr->op==TK_AGG_COLUMN );
5343       testcase( pExpr->op==TK_COLUMN );
5344       /* Check to see if the column is in one of the tables in the FROM
5345       ** clause of the aggregate query */
5346       if( ALWAYS(pSrcList!=0) ){
5347         struct SrcList_item *pItem = pSrcList->a;
5348         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5349           struct AggInfo_col *pCol;
5350           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5351           if( pExpr->iTable==pItem->iCursor ){
5352             /* If we reach this point, it means that pExpr refers to a table
5353             ** that is in the FROM clause of the aggregate query.
5354             **
5355             ** Make an entry for the column in pAggInfo->aCol[] if there
5356             ** is not an entry there already.
5357             */
5358             int k;
5359             pCol = pAggInfo->aCol;
5360             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5361               if( pCol->iTable==pExpr->iTable &&
5362                   pCol->iColumn==pExpr->iColumn ){
5363                 break;
5364               }
5365             }
5366             if( (k>=pAggInfo->nColumn)
5367              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5368             ){
5369               pCol = &pAggInfo->aCol[k];
5370               pCol->pTab = pExpr->y.pTab;
5371               pCol->iTable = pExpr->iTable;
5372               pCol->iColumn = pExpr->iColumn;
5373               pCol->iMem = ++pParse->nMem;
5374               pCol->iSorterColumn = -1;
5375               pCol->pExpr = pExpr;
5376               if( pAggInfo->pGroupBy ){
5377                 int j, n;
5378                 ExprList *pGB = pAggInfo->pGroupBy;
5379                 struct ExprList_item *pTerm = pGB->a;
5380                 n = pGB->nExpr;
5381                 for(j=0; j<n; j++, pTerm++){
5382                   Expr *pE = pTerm->pExpr;
5383                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5384                       pE->iColumn==pExpr->iColumn ){
5385                     pCol->iSorterColumn = j;
5386                     break;
5387                   }
5388                 }
5389               }
5390               if( pCol->iSorterColumn<0 ){
5391                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5392               }
5393             }
5394             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5395             ** because it was there before or because we just created it).
5396             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5397             ** pAggInfo->aCol[] entry.
5398             */
5399             ExprSetVVAProperty(pExpr, EP_NoReduce);
5400             pExpr->pAggInfo = pAggInfo;
5401             pExpr->op = TK_AGG_COLUMN;
5402             pExpr->iAgg = (i16)k;
5403             break;
5404           } /* endif pExpr->iTable==pItem->iCursor */
5405         } /* end loop over pSrcList */
5406       }
5407       return WRC_Prune;
5408     }
5409     case TK_AGG_FUNCTION: {
5410       if( (pNC->ncFlags & NC_InAggFunc)==0
5411        && pWalker->walkerDepth==pExpr->op2
5412       ){
5413         /* Check to see if pExpr is a duplicate of another aggregate
5414         ** function that is already in the pAggInfo structure
5415         */
5416         struct AggInfo_func *pItem = pAggInfo->aFunc;
5417         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5418           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5419             break;
5420           }
5421         }
5422         if( i>=pAggInfo->nFunc ){
5423           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5424           */
5425           u8 enc = ENC(pParse->db);
5426           i = addAggInfoFunc(pParse->db, pAggInfo);
5427           if( i>=0 ){
5428             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5429             pItem = &pAggInfo->aFunc[i];
5430             pItem->pExpr = pExpr;
5431             pItem->iMem = ++pParse->nMem;
5432             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5433             pItem->pFunc = sqlite3FindFunction(pParse->db,
5434                    pExpr->u.zToken,
5435                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5436             if( pExpr->flags & EP_Distinct ){
5437               pItem->iDistinct = pParse->nTab++;
5438             }else{
5439               pItem->iDistinct = -1;
5440             }
5441           }
5442         }
5443         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5444         */
5445         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5446         ExprSetVVAProperty(pExpr, EP_NoReduce);
5447         pExpr->iAgg = (i16)i;
5448         pExpr->pAggInfo = pAggInfo;
5449         return WRC_Prune;
5450       }else{
5451         return WRC_Continue;
5452       }
5453     }
5454   }
5455   return WRC_Continue;
5456 }
5457 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5458   UNUSED_PARAMETER(pSelect);
5459   pWalker->walkerDepth++;
5460   return WRC_Continue;
5461 }
5462 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5463   UNUSED_PARAMETER(pSelect);
5464   pWalker->walkerDepth--;
5465 }
5466 
5467 /*
5468 ** Analyze the pExpr expression looking for aggregate functions and
5469 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5470 ** points to.  Additional entries are made on the AggInfo object as
5471 ** necessary.
5472 **
5473 ** This routine should only be called after the expression has been
5474 ** analyzed by sqlite3ResolveExprNames().
5475 */
5476 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5477   Walker w;
5478   w.xExprCallback = analyzeAggregate;
5479   w.xSelectCallback = analyzeAggregatesInSelect;
5480   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5481   w.walkerDepth = 0;
5482   w.u.pNC = pNC;
5483   w.pParse = 0;
5484   assert( pNC->pSrcList!=0 );
5485   sqlite3WalkExpr(&w, pExpr);
5486 }
5487 
5488 /*
5489 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5490 ** expression list.  Return the number of errors.
5491 **
5492 ** If an error is found, the analysis is cut short.
5493 */
5494 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5495   struct ExprList_item *pItem;
5496   int i;
5497   if( pList ){
5498     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5499       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5500     }
5501   }
5502 }
5503 
5504 /*
5505 ** Allocate a single new register for use to hold some intermediate result.
5506 */
5507 int sqlite3GetTempReg(Parse *pParse){
5508   if( pParse->nTempReg==0 ){
5509     return ++pParse->nMem;
5510   }
5511   return pParse->aTempReg[--pParse->nTempReg];
5512 }
5513 
5514 /*
5515 ** Deallocate a register, making available for reuse for some other
5516 ** purpose.
5517 */
5518 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5519   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5520     pParse->aTempReg[pParse->nTempReg++] = iReg;
5521   }
5522 }
5523 
5524 /*
5525 ** Allocate or deallocate a block of nReg consecutive registers.
5526 */
5527 int sqlite3GetTempRange(Parse *pParse, int nReg){
5528   int i, n;
5529   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5530   i = pParse->iRangeReg;
5531   n = pParse->nRangeReg;
5532   if( nReg<=n ){
5533     pParse->iRangeReg += nReg;
5534     pParse->nRangeReg -= nReg;
5535   }else{
5536     i = pParse->nMem+1;
5537     pParse->nMem += nReg;
5538   }
5539   return i;
5540 }
5541 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5542   if( nReg==1 ){
5543     sqlite3ReleaseTempReg(pParse, iReg);
5544     return;
5545   }
5546   if( nReg>pParse->nRangeReg ){
5547     pParse->nRangeReg = nReg;
5548     pParse->iRangeReg = iReg;
5549   }
5550 }
5551 
5552 /*
5553 ** Mark all temporary registers as being unavailable for reuse.
5554 */
5555 void sqlite3ClearTempRegCache(Parse *pParse){
5556   pParse->nTempReg = 0;
5557   pParse->nRangeReg = 0;
5558 }
5559 
5560 /*
5561 ** Validate that no temporary register falls within the range of
5562 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5563 ** statements.
5564 */
5565 #ifdef SQLITE_DEBUG
5566 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5567   int i;
5568   if( pParse->nRangeReg>0
5569    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5570    && pParse->iRangeReg <= iLast
5571   ){
5572      return 0;
5573   }
5574   for(i=0; i<pParse->nTempReg; i++){
5575     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5576       return 0;
5577     }
5578   }
5579   return 1;
5580 }
5581 #endif /* SQLITE_DEBUG */
5582