1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 if( pExpr->flags & EP_Generic ) return 0; 48 while( ExprHasProperty(pExpr, EP_Skip) ){ 49 assert( pExpr->op==TK_COLLATE ); 50 pExpr = pExpr->pLeft; 51 assert( pExpr!=0 ); 52 } 53 op = pExpr->op; 54 if( op==TK_SELECT ){ 55 assert( pExpr->flags&EP_xIsSelect ); 56 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 57 } 58 if( op==TK_REGISTER ) op = pExpr->op2; 59 #ifndef SQLITE_OMIT_CAST 60 if( op==TK_CAST ){ 61 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 62 return sqlite3AffinityType(pExpr->u.zToken, 0); 63 } 64 #endif 65 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 66 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 67 } 68 if( op==TK_SELECT_COLUMN ){ 69 assert( pExpr->pLeft->flags&EP_xIsSelect ); 70 return sqlite3ExprAffinity( 71 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 72 ); 73 } 74 return pExpr->affExpr; 75 } 76 77 /* 78 ** Set the collating sequence for expression pExpr to be the collating 79 ** sequence named by pToken. Return a pointer to a new Expr node that 80 ** implements the COLLATE operator. 81 ** 82 ** If a memory allocation error occurs, that fact is recorded in pParse->db 83 ** and the pExpr parameter is returned unchanged. 84 */ 85 Expr *sqlite3ExprAddCollateToken( 86 Parse *pParse, /* Parsing context */ 87 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 88 const Token *pCollName, /* Name of collating sequence */ 89 int dequote /* True to dequote pCollName */ 90 ){ 91 if( pCollName->n>0 ){ 92 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 93 if( pNew ){ 94 pNew->pLeft = pExpr; 95 pNew->flags |= EP_Collate|EP_Skip; 96 pExpr = pNew; 97 } 98 } 99 return pExpr; 100 } 101 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 102 Token s; 103 assert( zC!=0 ); 104 sqlite3TokenInit(&s, (char*)zC); 105 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 106 } 107 108 /* 109 ** Skip over any TK_COLLATE operators and any unlikely() 110 ** or likelihood() function at the root of an expression. 111 */ 112 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 113 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 114 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 115 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 116 assert( pExpr->x.pList->nExpr>0 ); 117 assert( pExpr->op==TK_FUNCTION ); 118 pExpr = pExpr->x.pList->a[0].pExpr; 119 }else{ 120 assert( pExpr->op==TK_COLLATE ); 121 pExpr = pExpr->pLeft; 122 } 123 } 124 return pExpr; 125 } 126 127 /* 128 ** Return the collation sequence for the expression pExpr. If 129 ** there is no defined collating sequence, return NULL. 130 ** 131 ** See also: sqlite3ExprNNCollSeq() 132 ** 133 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 134 ** default collation if pExpr has no defined collation. 135 ** 136 ** The collating sequence might be determined by a COLLATE operator 137 ** or by the presence of a column with a defined collating sequence. 138 ** COLLATE operators take first precedence. Left operands take 139 ** precedence over right operands. 140 */ 141 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 142 sqlite3 *db = pParse->db; 143 CollSeq *pColl = 0; 144 Expr *p = pExpr; 145 while( p ){ 146 int op = p->op; 147 if( p->flags & EP_Generic ) break; 148 if( op==TK_REGISTER ) op = p->op2; 149 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 150 && p->y.pTab!=0 151 ){ 152 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 153 ** a TK_COLUMN but was previously evaluated and cached in a register */ 154 int j = p->iColumn; 155 if( j>=0 ){ 156 const char *zColl = p->y.pTab->aCol[j].zColl; 157 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 158 } 159 break; 160 } 161 if( op==TK_CAST || op==TK_UPLUS ){ 162 p = p->pLeft; 163 continue; 164 } 165 if( op==TK_COLLATE ){ 166 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 167 break; 168 } 169 if( p->flags & EP_Collate ){ 170 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 171 p = p->pLeft; 172 }else{ 173 Expr *pNext = p->pRight; 174 /* The Expr.x union is never used at the same time as Expr.pRight */ 175 assert( p->x.pList==0 || p->pRight==0 ); 176 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 177 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 178 ** least one EP_Collate. Thus the following two ALWAYS. */ 179 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 180 int i; 181 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 182 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 183 pNext = p->x.pList->a[i].pExpr; 184 break; 185 } 186 } 187 } 188 p = pNext; 189 } 190 }else{ 191 break; 192 } 193 } 194 if( sqlite3CheckCollSeq(pParse, pColl) ){ 195 pColl = 0; 196 } 197 return pColl; 198 } 199 200 /* 201 ** Return the collation sequence for the expression pExpr. If 202 ** there is no defined collating sequence, return a pointer to the 203 ** defautl collation sequence. 204 ** 205 ** See also: sqlite3ExprCollSeq() 206 ** 207 ** The sqlite3ExprCollSeq() routine works the same except that it 208 ** returns NULL if there is no defined collation. 209 */ 210 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 211 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 212 if( p==0 ) p = pParse->db->pDfltColl; 213 assert( p!=0 ); 214 return p; 215 } 216 217 /* 218 ** Return TRUE if the two expressions have equivalent collating sequences. 219 */ 220 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 221 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 222 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 223 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 224 } 225 226 /* 227 ** pExpr is an operand of a comparison operator. aff2 is the 228 ** type affinity of the other operand. This routine returns the 229 ** type affinity that should be used for the comparison operator. 230 */ 231 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 232 char aff1 = sqlite3ExprAffinity(pExpr); 233 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 234 /* Both sides of the comparison are columns. If one has numeric 235 ** affinity, use that. Otherwise use no affinity. 236 */ 237 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 238 return SQLITE_AFF_NUMERIC; 239 }else{ 240 return SQLITE_AFF_BLOB; 241 } 242 }else{ 243 /* One side is a column, the other is not. Use the columns affinity. */ 244 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 245 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 246 } 247 } 248 249 /* 250 ** pExpr is a comparison operator. Return the type affinity that should 251 ** be applied to both operands prior to doing the comparison. 252 */ 253 static char comparisonAffinity(Expr *pExpr){ 254 char aff; 255 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 256 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 257 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 258 assert( pExpr->pLeft ); 259 aff = sqlite3ExprAffinity(pExpr->pLeft); 260 if( pExpr->pRight ){ 261 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 262 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 263 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 264 }else if( aff==0 ){ 265 aff = SQLITE_AFF_BLOB; 266 } 267 return aff; 268 } 269 270 /* 271 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 272 ** idx_affinity is the affinity of an indexed column. Return true 273 ** if the index with affinity idx_affinity may be used to implement 274 ** the comparison in pExpr. 275 */ 276 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 277 char aff = comparisonAffinity(pExpr); 278 if( aff<SQLITE_AFF_TEXT ){ 279 return 1; 280 } 281 if( aff==SQLITE_AFF_TEXT ){ 282 return idx_affinity==SQLITE_AFF_TEXT; 283 } 284 return sqlite3IsNumericAffinity(idx_affinity); 285 } 286 287 /* 288 ** Return the P5 value that should be used for a binary comparison 289 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 290 */ 291 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 292 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 293 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 294 return aff; 295 } 296 297 /* 298 ** Return a pointer to the collation sequence that should be used by 299 ** a binary comparison operator comparing pLeft and pRight. 300 ** 301 ** If the left hand expression has a collating sequence type, then it is 302 ** used. Otherwise the collation sequence for the right hand expression 303 ** is used, or the default (BINARY) if neither expression has a collating 304 ** type. 305 ** 306 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 307 ** it is not considered. 308 */ 309 CollSeq *sqlite3BinaryCompareCollSeq( 310 Parse *pParse, 311 Expr *pLeft, 312 Expr *pRight 313 ){ 314 CollSeq *pColl; 315 assert( pLeft ); 316 if( pLeft->flags & EP_Collate ){ 317 pColl = sqlite3ExprCollSeq(pParse, pLeft); 318 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 319 pColl = sqlite3ExprCollSeq(pParse, pRight); 320 }else{ 321 pColl = sqlite3ExprCollSeq(pParse, pLeft); 322 if( !pColl ){ 323 pColl = sqlite3ExprCollSeq(pParse, pRight); 324 } 325 } 326 return pColl; 327 } 328 329 /* 330 ** Generate code for a comparison operator. 331 */ 332 static int codeCompare( 333 Parse *pParse, /* The parsing (and code generating) context */ 334 Expr *pLeft, /* The left operand */ 335 Expr *pRight, /* The right operand */ 336 int opcode, /* The comparison opcode */ 337 int in1, int in2, /* Register holding operands */ 338 int dest, /* Jump here if true. */ 339 int jumpIfNull /* If true, jump if either operand is NULL */ 340 ){ 341 int p5; 342 int addr; 343 CollSeq *p4; 344 345 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 346 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 347 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 348 (void*)p4, P4_COLLSEQ); 349 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 350 return addr; 351 } 352 353 /* 354 ** Return true if expression pExpr is a vector, or false otherwise. 355 ** 356 ** A vector is defined as any expression that results in two or more 357 ** columns of result. Every TK_VECTOR node is an vector because the 358 ** parser will not generate a TK_VECTOR with fewer than two entries. 359 ** But a TK_SELECT might be either a vector or a scalar. It is only 360 ** considered a vector if it has two or more result columns. 361 */ 362 int sqlite3ExprIsVector(Expr *pExpr){ 363 return sqlite3ExprVectorSize(pExpr)>1; 364 } 365 366 /* 367 ** If the expression passed as the only argument is of type TK_VECTOR 368 ** return the number of expressions in the vector. Or, if the expression 369 ** is a sub-select, return the number of columns in the sub-select. For 370 ** any other type of expression, return 1. 371 */ 372 int sqlite3ExprVectorSize(Expr *pExpr){ 373 u8 op = pExpr->op; 374 if( op==TK_REGISTER ) op = pExpr->op2; 375 if( op==TK_VECTOR ){ 376 return pExpr->x.pList->nExpr; 377 }else if( op==TK_SELECT ){ 378 return pExpr->x.pSelect->pEList->nExpr; 379 }else{ 380 return 1; 381 } 382 } 383 384 /* 385 ** Return a pointer to a subexpression of pVector that is the i-th 386 ** column of the vector (numbered starting with 0). The caller must 387 ** ensure that i is within range. 388 ** 389 ** If pVector is really a scalar (and "scalar" here includes subqueries 390 ** that return a single column!) then return pVector unmodified. 391 ** 392 ** pVector retains ownership of the returned subexpression. 393 ** 394 ** If the vector is a (SELECT ...) then the expression returned is 395 ** just the expression for the i-th term of the result set, and may 396 ** not be ready for evaluation because the table cursor has not yet 397 ** been positioned. 398 */ 399 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 400 assert( i<sqlite3ExprVectorSize(pVector) ); 401 if( sqlite3ExprIsVector(pVector) ){ 402 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 403 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 404 return pVector->x.pSelect->pEList->a[i].pExpr; 405 }else{ 406 return pVector->x.pList->a[i].pExpr; 407 } 408 } 409 return pVector; 410 } 411 412 /* 413 ** Compute and return a new Expr object which when passed to 414 ** sqlite3ExprCode() will generate all necessary code to compute 415 ** the iField-th column of the vector expression pVector. 416 ** 417 ** It is ok for pVector to be a scalar (as long as iField==0). 418 ** In that case, this routine works like sqlite3ExprDup(). 419 ** 420 ** The caller owns the returned Expr object and is responsible for 421 ** ensuring that the returned value eventually gets freed. 422 ** 423 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 424 ** then the returned object will reference pVector and so pVector must remain 425 ** valid for the life of the returned object. If pVector is a TK_VECTOR 426 ** or a scalar expression, then it can be deleted as soon as this routine 427 ** returns. 428 ** 429 ** A trick to cause a TK_SELECT pVector to be deleted together with 430 ** the returned Expr object is to attach the pVector to the pRight field 431 ** of the returned TK_SELECT_COLUMN Expr object. 432 */ 433 Expr *sqlite3ExprForVectorField( 434 Parse *pParse, /* Parsing context */ 435 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 436 int iField /* Which column of the vector to return */ 437 ){ 438 Expr *pRet; 439 if( pVector->op==TK_SELECT ){ 440 assert( pVector->flags & EP_xIsSelect ); 441 /* The TK_SELECT_COLUMN Expr node: 442 ** 443 ** pLeft: pVector containing TK_SELECT. Not deleted. 444 ** pRight: not used. But recursively deleted. 445 ** iColumn: Index of a column in pVector 446 ** iTable: 0 or the number of columns on the LHS of an assignment 447 ** pLeft->iTable: First in an array of register holding result, or 0 448 ** if the result is not yet computed. 449 ** 450 ** sqlite3ExprDelete() specifically skips the recursive delete of 451 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 452 ** can be attached to pRight to cause this node to take ownership of 453 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 454 ** with the same pLeft pointer to the pVector, but only one of them 455 ** will own the pVector. 456 */ 457 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 458 if( pRet ){ 459 pRet->iColumn = iField; 460 pRet->pLeft = pVector; 461 } 462 assert( pRet==0 || pRet->iTable==0 ); 463 }else{ 464 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 465 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 466 sqlite3RenameTokenRemap(pParse, pRet, pVector); 467 } 468 return pRet; 469 } 470 471 /* 472 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 473 ** it. Return the register in which the result is stored (or, if the 474 ** sub-select returns more than one column, the first in an array 475 ** of registers in which the result is stored). 476 ** 477 ** If pExpr is not a TK_SELECT expression, return 0. 478 */ 479 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 480 int reg = 0; 481 #ifndef SQLITE_OMIT_SUBQUERY 482 if( pExpr->op==TK_SELECT ){ 483 reg = sqlite3CodeSubselect(pParse, pExpr); 484 } 485 #endif 486 return reg; 487 } 488 489 /* 490 ** Argument pVector points to a vector expression - either a TK_VECTOR 491 ** or TK_SELECT that returns more than one column. This function returns 492 ** the register number of a register that contains the value of 493 ** element iField of the vector. 494 ** 495 ** If pVector is a TK_SELECT expression, then code for it must have 496 ** already been generated using the exprCodeSubselect() routine. In this 497 ** case parameter regSelect should be the first in an array of registers 498 ** containing the results of the sub-select. 499 ** 500 ** If pVector is of type TK_VECTOR, then code for the requested field 501 ** is generated. In this case (*pRegFree) may be set to the number of 502 ** a temporary register to be freed by the caller before returning. 503 ** 504 ** Before returning, output parameter (*ppExpr) is set to point to the 505 ** Expr object corresponding to element iElem of the vector. 506 */ 507 static int exprVectorRegister( 508 Parse *pParse, /* Parse context */ 509 Expr *pVector, /* Vector to extract element from */ 510 int iField, /* Field to extract from pVector */ 511 int regSelect, /* First in array of registers */ 512 Expr **ppExpr, /* OUT: Expression element */ 513 int *pRegFree /* OUT: Temp register to free */ 514 ){ 515 u8 op = pVector->op; 516 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 517 if( op==TK_REGISTER ){ 518 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 519 return pVector->iTable+iField; 520 } 521 if( op==TK_SELECT ){ 522 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 523 return regSelect+iField; 524 } 525 *ppExpr = pVector->x.pList->a[iField].pExpr; 526 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 527 } 528 529 /* 530 ** Expression pExpr is a comparison between two vector values. Compute 531 ** the result of the comparison (1, 0, or NULL) and write that 532 ** result into register dest. 533 ** 534 ** The caller must satisfy the following preconditions: 535 ** 536 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 537 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 538 ** otherwise: op==pExpr->op and p5==0 539 */ 540 static void codeVectorCompare( 541 Parse *pParse, /* Code generator context */ 542 Expr *pExpr, /* The comparison operation */ 543 int dest, /* Write results into this register */ 544 u8 op, /* Comparison operator */ 545 u8 p5 /* SQLITE_NULLEQ or zero */ 546 ){ 547 Vdbe *v = pParse->pVdbe; 548 Expr *pLeft = pExpr->pLeft; 549 Expr *pRight = pExpr->pRight; 550 int nLeft = sqlite3ExprVectorSize(pLeft); 551 int i; 552 int regLeft = 0; 553 int regRight = 0; 554 u8 opx = op; 555 int addrDone = sqlite3VdbeMakeLabel(pParse); 556 557 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 558 sqlite3ErrorMsg(pParse, "row value misused"); 559 return; 560 } 561 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 562 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 563 || pExpr->op==TK_LT || pExpr->op==TK_GT 564 || pExpr->op==TK_LE || pExpr->op==TK_GE 565 ); 566 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 567 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 568 assert( p5==0 || pExpr->op!=op ); 569 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 570 571 p5 |= SQLITE_STOREP2; 572 if( opx==TK_LE ) opx = TK_LT; 573 if( opx==TK_GE ) opx = TK_GT; 574 575 regLeft = exprCodeSubselect(pParse, pLeft); 576 regRight = exprCodeSubselect(pParse, pRight); 577 578 for(i=0; 1 /*Loop exits by "break"*/; i++){ 579 int regFree1 = 0, regFree2 = 0; 580 Expr *pL, *pR; 581 int r1, r2; 582 assert( i>=0 && i<nLeft ); 583 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 584 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 585 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 586 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 587 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 588 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 589 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 590 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 591 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 592 sqlite3ReleaseTempReg(pParse, regFree1); 593 sqlite3ReleaseTempReg(pParse, regFree2); 594 if( i==nLeft-1 ){ 595 break; 596 } 597 if( opx==TK_EQ ){ 598 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 599 p5 |= SQLITE_KEEPNULL; 600 }else if( opx==TK_NE ){ 601 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else{ 604 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 605 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 606 VdbeCoverageIf(v, op==TK_LT); 607 VdbeCoverageIf(v, op==TK_GT); 608 VdbeCoverageIf(v, op==TK_LE); 609 VdbeCoverageIf(v, op==TK_GE); 610 if( i==nLeft-2 ) opx = op; 611 } 612 } 613 sqlite3VdbeResolveLabel(v, addrDone); 614 } 615 616 #if SQLITE_MAX_EXPR_DEPTH>0 617 /* 618 ** Check that argument nHeight is less than or equal to the maximum 619 ** expression depth allowed. If it is not, leave an error message in 620 ** pParse. 621 */ 622 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 623 int rc = SQLITE_OK; 624 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 625 if( nHeight>mxHeight ){ 626 sqlite3ErrorMsg(pParse, 627 "Expression tree is too large (maximum depth %d)", mxHeight 628 ); 629 rc = SQLITE_ERROR; 630 } 631 return rc; 632 } 633 634 /* The following three functions, heightOfExpr(), heightOfExprList() 635 ** and heightOfSelect(), are used to determine the maximum height 636 ** of any expression tree referenced by the structure passed as the 637 ** first argument. 638 ** 639 ** If this maximum height is greater than the current value pointed 640 ** to by pnHeight, the second parameter, then set *pnHeight to that 641 ** value. 642 */ 643 static void heightOfExpr(Expr *p, int *pnHeight){ 644 if( p ){ 645 if( p->nHeight>*pnHeight ){ 646 *pnHeight = p->nHeight; 647 } 648 } 649 } 650 static void heightOfExprList(ExprList *p, int *pnHeight){ 651 if( p ){ 652 int i; 653 for(i=0; i<p->nExpr; i++){ 654 heightOfExpr(p->a[i].pExpr, pnHeight); 655 } 656 } 657 } 658 static void heightOfSelect(Select *pSelect, int *pnHeight){ 659 Select *p; 660 for(p=pSelect; p; p=p->pPrior){ 661 heightOfExpr(p->pWhere, pnHeight); 662 heightOfExpr(p->pHaving, pnHeight); 663 heightOfExpr(p->pLimit, pnHeight); 664 heightOfExprList(p->pEList, pnHeight); 665 heightOfExprList(p->pGroupBy, pnHeight); 666 heightOfExprList(p->pOrderBy, pnHeight); 667 } 668 } 669 670 /* 671 ** Set the Expr.nHeight variable in the structure passed as an 672 ** argument. An expression with no children, Expr.pList or 673 ** Expr.pSelect member has a height of 1. Any other expression 674 ** has a height equal to the maximum height of any other 675 ** referenced Expr plus one. 676 ** 677 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 678 ** if appropriate. 679 */ 680 static void exprSetHeight(Expr *p){ 681 int nHeight = 0; 682 heightOfExpr(p->pLeft, &nHeight); 683 heightOfExpr(p->pRight, &nHeight); 684 if( ExprHasProperty(p, EP_xIsSelect) ){ 685 heightOfSelect(p->x.pSelect, &nHeight); 686 }else if( p->x.pList ){ 687 heightOfExprList(p->x.pList, &nHeight); 688 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 689 } 690 p->nHeight = nHeight + 1; 691 } 692 693 /* 694 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 695 ** the height is greater than the maximum allowed expression depth, 696 ** leave an error in pParse. 697 ** 698 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 699 ** Expr.flags. 700 */ 701 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 702 if( pParse->nErr ) return; 703 exprSetHeight(p); 704 sqlite3ExprCheckHeight(pParse, p->nHeight); 705 } 706 707 /* 708 ** Return the maximum height of any expression tree referenced 709 ** by the select statement passed as an argument. 710 */ 711 int sqlite3SelectExprHeight(Select *p){ 712 int nHeight = 0; 713 heightOfSelect(p, &nHeight); 714 return nHeight; 715 } 716 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 717 /* 718 ** Propagate all EP_Propagate flags from the Expr.x.pList into 719 ** Expr.flags. 720 */ 721 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 722 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 723 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 724 } 725 } 726 #define exprSetHeight(y) 727 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 728 729 /* 730 ** This routine is the core allocator for Expr nodes. 731 ** 732 ** Construct a new expression node and return a pointer to it. Memory 733 ** for this node and for the pToken argument is a single allocation 734 ** obtained from sqlite3DbMalloc(). The calling function 735 ** is responsible for making sure the node eventually gets freed. 736 ** 737 ** If dequote is true, then the token (if it exists) is dequoted. 738 ** If dequote is false, no dequoting is performed. The deQuote 739 ** parameter is ignored if pToken is NULL or if the token does not 740 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 741 ** then the EP_DblQuoted flag is set on the expression node. 742 ** 743 ** Special case: If op==TK_INTEGER and pToken points to a string that 744 ** can be translated into a 32-bit integer, then the token is not 745 ** stored in u.zToken. Instead, the integer values is written 746 ** into u.iValue and the EP_IntValue flag is set. No extra storage 747 ** is allocated to hold the integer text and the dequote flag is ignored. 748 */ 749 Expr *sqlite3ExprAlloc( 750 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 751 int op, /* Expression opcode */ 752 const Token *pToken, /* Token argument. Might be NULL */ 753 int dequote /* True to dequote */ 754 ){ 755 Expr *pNew; 756 int nExtra = 0; 757 int iValue = 0; 758 759 assert( db!=0 ); 760 if( pToken ){ 761 if( op!=TK_INTEGER || pToken->z==0 762 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 763 nExtra = pToken->n+1; 764 assert( iValue>=0 ); 765 } 766 } 767 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 768 if( pNew ){ 769 memset(pNew, 0, sizeof(Expr)); 770 pNew->op = (u8)op; 771 pNew->iAgg = -1; 772 if( pToken ){ 773 if( nExtra==0 ){ 774 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 775 pNew->u.iValue = iValue; 776 }else{ 777 pNew->u.zToken = (char*)&pNew[1]; 778 assert( pToken->z!=0 || pToken->n==0 ); 779 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 780 pNew->u.zToken[pToken->n] = 0; 781 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 782 sqlite3DequoteExpr(pNew); 783 } 784 } 785 } 786 #if SQLITE_MAX_EXPR_DEPTH>0 787 pNew->nHeight = 1; 788 #endif 789 } 790 return pNew; 791 } 792 793 /* 794 ** Allocate a new expression node from a zero-terminated token that has 795 ** already been dequoted. 796 */ 797 Expr *sqlite3Expr( 798 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 799 int op, /* Expression opcode */ 800 const char *zToken /* Token argument. Might be NULL */ 801 ){ 802 Token x; 803 x.z = zToken; 804 x.n = sqlite3Strlen30(zToken); 805 return sqlite3ExprAlloc(db, op, &x, 0); 806 } 807 808 /* 809 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 810 ** 811 ** If pRoot==NULL that means that a memory allocation error has occurred. 812 ** In that case, delete the subtrees pLeft and pRight. 813 */ 814 void sqlite3ExprAttachSubtrees( 815 sqlite3 *db, 816 Expr *pRoot, 817 Expr *pLeft, 818 Expr *pRight 819 ){ 820 if( pRoot==0 ){ 821 assert( db->mallocFailed ); 822 sqlite3ExprDelete(db, pLeft); 823 sqlite3ExprDelete(db, pRight); 824 }else{ 825 if( pRight ){ 826 pRoot->pRight = pRight; 827 pRoot->flags |= EP_Propagate & pRight->flags; 828 } 829 if( pLeft ){ 830 pRoot->pLeft = pLeft; 831 pRoot->flags |= EP_Propagate & pLeft->flags; 832 } 833 exprSetHeight(pRoot); 834 } 835 } 836 837 /* 838 ** Allocate an Expr node which joins as many as two subtrees. 839 ** 840 ** One or both of the subtrees can be NULL. Return a pointer to the new 841 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 842 ** free the subtrees and return NULL. 843 */ 844 Expr *sqlite3PExpr( 845 Parse *pParse, /* Parsing context */ 846 int op, /* Expression opcode */ 847 Expr *pLeft, /* Left operand */ 848 Expr *pRight /* Right operand */ 849 ){ 850 Expr *p; 851 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 852 if( p ){ 853 memset(p, 0, sizeof(Expr)); 854 p->op = op & 0xff; 855 p->iAgg = -1; 856 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 857 sqlite3ExprCheckHeight(pParse, p->nHeight); 858 }else{ 859 sqlite3ExprDelete(pParse->db, pLeft); 860 sqlite3ExprDelete(pParse->db, pRight); 861 } 862 return p; 863 } 864 865 /* 866 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 867 ** do a memory allocation failure) then delete the pSelect object. 868 */ 869 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 870 if( pExpr ){ 871 pExpr->x.pSelect = pSelect; 872 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 873 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 874 }else{ 875 assert( pParse->db->mallocFailed ); 876 sqlite3SelectDelete(pParse->db, pSelect); 877 } 878 } 879 880 881 /* 882 ** Join two expressions using an AND operator. If either expression is 883 ** NULL, then just return the other expression. 884 ** 885 ** If one side or the other of the AND is known to be false, then instead 886 ** of returning an AND expression, just return a constant expression with 887 ** a value of false. 888 */ 889 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 890 sqlite3 *db = pParse->db; 891 if( pLeft==0 ){ 892 return pRight; 893 }else if( pRight==0 ){ 894 return pLeft; 895 }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){ 896 sqlite3ExprUnmapAndDelete(pParse, pLeft); 897 sqlite3ExprUnmapAndDelete(pParse, pRight); 898 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 899 }else{ 900 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 901 } 902 } 903 904 /* 905 ** Construct a new expression node for a function with multiple 906 ** arguments. 907 */ 908 Expr *sqlite3ExprFunction( 909 Parse *pParse, /* Parsing context */ 910 ExprList *pList, /* Argument list */ 911 Token *pToken, /* Name of the function */ 912 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 913 ){ 914 Expr *pNew; 915 sqlite3 *db = pParse->db; 916 assert( pToken ); 917 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 918 if( pNew==0 ){ 919 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 920 return 0; 921 } 922 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 923 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 924 } 925 pNew->x.pList = pList; 926 ExprSetProperty(pNew, EP_HasFunc); 927 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 928 sqlite3ExprSetHeightAndFlags(pParse, pNew); 929 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 930 return pNew; 931 } 932 933 /* 934 ** Assign a variable number to an expression that encodes a wildcard 935 ** in the original SQL statement. 936 ** 937 ** Wildcards consisting of a single "?" are assigned the next sequential 938 ** variable number. 939 ** 940 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 941 ** sure "nnn" is not too big to avoid a denial of service attack when 942 ** the SQL statement comes from an external source. 943 ** 944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 945 ** as the previous instance of the same wildcard. Or if this is the first 946 ** instance of the wildcard, the next sequential variable number is 947 ** assigned. 948 */ 949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 950 sqlite3 *db = pParse->db; 951 const char *z; 952 ynVar x; 953 954 if( pExpr==0 ) return; 955 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 956 z = pExpr->u.zToken; 957 assert( z!=0 ); 958 assert( z[0]!=0 ); 959 assert( n==(u32)sqlite3Strlen30(z) ); 960 if( z[1]==0 ){ 961 /* Wildcard of the form "?". Assign the next variable number */ 962 assert( z[0]=='?' ); 963 x = (ynVar)(++pParse->nVar); 964 }else{ 965 int doAdd = 0; 966 if( z[0]=='?' ){ 967 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 968 ** use it as the variable number */ 969 i64 i; 970 int bOk; 971 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 972 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 973 bOk = 1; 974 }else{ 975 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 976 } 977 testcase( i==0 ); 978 testcase( i==1 ); 979 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 980 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 981 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 982 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 983 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 984 return; 985 } 986 x = (ynVar)i; 987 if( x>pParse->nVar ){ 988 pParse->nVar = (int)x; 989 doAdd = 1; 990 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 991 doAdd = 1; 992 } 993 }else{ 994 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 995 ** number as the prior appearance of the same name, or if the name 996 ** has never appeared before, reuse the same variable number 997 */ 998 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 999 if( x==0 ){ 1000 x = (ynVar)(++pParse->nVar); 1001 doAdd = 1; 1002 } 1003 } 1004 if( doAdd ){ 1005 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1006 } 1007 } 1008 pExpr->iColumn = x; 1009 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1010 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1011 } 1012 } 1013 1014 /* 1015 ** Recursively delete an expression tree. 1016 */ 1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1018 assert( p!=0 ); 1019 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1020 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1021 1022 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1023 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1024 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1025 #ifdef SQLITE_DEBUG 1026 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1027 assert( p->pLeft==0 ); 1028 assert( p->pRight==0 ); 1029 assert( p->x.pSelect==0 ); 1030 } 1031 #endif 1032 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1033 /* The Expr.x union is never used at the same time as Expr.pRight */ 1034 assert( p->x.pList==0 || p->pRight==0 ); 1035 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1036 if( p->pRight ){ 1037 assert( !ExprHasProperty(p, EP_WinFunc) ); 1038 sqlite3ExprDeleteNN(db, p->pRight); 1039 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1040 assert( !ExprHasProperty(p, EP_WinFunc) ); 1041 sqlite3SelectDelete(db, p->x.pSelect); 1042 }else{ 1043 sqlite3ExprListDelete(db, p->x.pList); 1044 #ifndef SQLITE_OMIT_WINDOWFUNC 1045 if( ExprHasProperty(p, EP_WinFunc) ){ 1046 sqlite3WindowDelete(db, p->y.pWin); 1047 } 1048 #endif 1049 } 1050 } 1051 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1052 if( !ExprHasProperty(p, EP_Static) ){ 1053 sqlite3DbFreeNN(db, p); 1054 } 1055 } 1056 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1057 if( p ) sqlite3ExprDeleteNN(db, p); 1058 } 1059 1060 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1061 ** expression. 1062 */ 1063 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1064 if( p ){ 1065 if( IN_RENAME_OBJECT ){ 1066 sqlite3RenameExprUnmap(pParse, p); 1067 } 1068 sqlite3ExprDeleteNN(pParse->db, p); 1069 } 1070 } 1071 1072 /* 1073 ** Return the number of bytes allocated for the expression structure 1074 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1075 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1076 */ 1077 static int exprStructSize(Expr *p){ 1078 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1079 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1080 return EXPR_FULLSIZE; 1081 } 1082 1083 /* 1084 ** The dupedExpr*Size() routines each return the number of bytes required 1085 ** to store a copy of an expression or expression tree. They differ in 1086 ** how much of the tree is measured. 1087 ** 1088 ** dupedExprStructSize() Size of only the Expr structure 1089 ** dupedExprNodeSize() Size of Expr + space for token 1090 ** dupedExprSize() Expr + token + subtree components 1091 ** 1092 *************************************************************************** 1093 ** 1094 ** The dupedExprStructSize() function returns two values OR-ed together: 1095 ** (1) the space required for a copy of the Expr structure only and 1096 ** (2) the EP_xxx flags that indicate what the structure size should be. 1097 ** The return values is always one of: 1098 ** 1099 ** EXPR_FULLSIZE 1100 ** EXPR_REDUCEDSIZE | EP_Reduced 1101 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1102 ** 1103 ** The size of the structure can be found by masking the return value 1104 ** of this routine with 0xfff. The flags can be found by masking the 1105 ** return value with EP_Reduced|EP_TokenOnly. 1106 ** 1107 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1108 ** (unreduced) Expr objects as they or originally constructed by the parser. 1109 ** During expression analysis, extra information is computed and moved into 1110 ** later parts of the Expr object and that extra information might get chopped 1111 ** off if the expression is reduced. Note also that it does not work to 1112 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1113 ** to reduce a pristine expression tree from the parser. The implementation 1114 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1115 ** to enforce this constraint. 1116 */ 1117 static int dupedExprStructSize(Expr *p, int flags){ 1118 int nSize; 1119 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1120 assert( EXPR_FULLSIZE<=0xfff ); 1121 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1122 if( 0==flags || p->op==TK_SELECT_COLUMN 1123 #ifndef SQLITE_OMIT_WINDOWFUNC 1124 || ExprHasProperty(p, EP_WinFunc) 1125 #endif 1126 ){ 1127 nSize = EXPR_FULLSIZE; 1128 }else{ 1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1130 assert( !ExprHasProperty(p, EP_FromJoin) ); 1131 assert( !ExprHasProperty(p, EP_MemToken) ); 1132 assert( !ExprHasProperty(p, EP_NoReduce) ); 1133 if( p->pLeft || p->x.pList ){ 1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1135 }else{ 1136 assert( p->pRight==0 ); 1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1138 } 1139 } 1140 return nSize; 1141 } 1142 1143 /* 1144 ** This function returns the space in bytes required to store the copy 1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1146 ** string is defined.) 1147 */ 1148 static int dupedExprNodeSize(Expr *p, int flags){ 1149 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1151 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1152 } 1153 return ROUND8(nByte); 1154 } 1155 1156 /* 1157 ** Return the number of bytes required to create a duplicate of the 1158 ** expression passed as the first argument. The second argument is a 1159 ** mask containing EXPRDUP_XXX flags. 1160 ** 1161 ** The value returned includes space to create a copy of the Expr struct 1162 ** itself and the buffer referred to by Expr.u.zToken, if any. 1163 ** 1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1166 ** and Expr.pRight variables (but not for any structures pointed to or 1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1168 */ 1169 static int dupedExprSize(Expr *p, int flags){ 1170 int nByte = 0; 1171 if( p ){ 1172 nByte = dupedExprNodeSize(p, flags); 1173 if( flags&EXPRDUP_REDUCE ){ 1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1175 } 1176 } 1177 return nByte; 1178 } 1179 1180 /* 1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1183 ** to store the copy of expression p, the copies of p->u.zToken 1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1185 ** if any. Before returning, *pzBuffer is set to the first byte past the 1186 ** portion of the buffer copied into by this function. 1187 */ 1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1189 Expr *pNew; /* Value to return */ 1190 u8 *zAlloc; /* Memory space from which to build Expr object */ 1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1192 1193 assert( db!=0 ); 1194 assert( p ); 1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1197 1198 /* Figure out where to write the new Expr structure. */ 1199 if( pzBuffer ){ 1200 zAlloc = *pzBuffer; 1201 staticFlag = EP_Static; 1202 }else{ 1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1204 staticFlag = 0; 1205 } 1206 pNew = (Expr *)zAlloc; 1207 1208 if( pNew ){ 1209 /* Set nNewSize to the size allocated for the structure pointed to 1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1212 ** by the copy of the p->u.zToken string (if any). 1213 */ 1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1215 const int nNewSize = nStructSize & 0xfff; 1216 int nToken; 1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1218 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1219 }else{ 1220 nToken = 0; 1221 } 1222 if( dupFlags ){ 1223 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1224 memcpy(zAlloc, p, nNewSize); 1225 }else{ 1226 u32 nSize = (u32)exprStructSize(p); 1227 memcpy(zAlloc, p, nSize); 1228 if( nSize<EXPR_FULLSIZE ){ 1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1230 } 1231 } 1232 1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1236 pNew->flags |= staticFlag; 1237 1238 /* Copy the p->u.zToken string, if any. */ 1239 if( nToken ){ 1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1241 memcpy(zToken, p->u.zToken, nToken); 1242 } 1243 1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1246 if( ExprHasProperty(p, EP_xIsSelect) ){ 1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1248 }else{ 1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1250 } 1251 } 1252 1253 /* Fill in pNew->pLeft and pNew->pRight. */ 1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1255 zAlloc += dupedExprNodeSize(p, dupFlags); 1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1257 pNew->pLeft = p->pLeft ? 1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1259 pNew->pRight = p->pRight ? 1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1261 } 1262 #ifndef SQLITE_OMIT_WINDOWFUNC 1263 if( ExprHasProperty(p, EP_WinFunc) ){ 1264 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1265 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1266 } 1267 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1268 if( pzBuffer ){ 1269 *pzBuffer = zAlloc; 1270 } 1271 }else{ 1272 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1273 if( pNew->op==TK_SELECT_COLUMN ){ 1274 pNew->pLeft = p->pLeft; 1275 assert( p->iColumn==0 || p->pRight==0 ); 1276 assert( p->pRight==0 || p->pRight==p->pLeft ); 1277 }else{ 1278 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1279 } 1280 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1281 } 1282 } 1283 } 1284 return pNew; 1285 } 1286 1287 /* 1288 ** Create and return a deep copy of the object passed as the second 1289 ** argument. If an OOM condition is encountered, NULL is returned 1290 ** and the db->mallocFailed flag set. 1291 */ 1292 #ifndef SQLITE_OMIT_CTE 1293 static With *withDup(sqlite3 *db, With *p){ 1294 With *pRet = 0; 1295 if( p ){ 1296 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1297 pRet = sqlite3DbMallocZero(db, nByte); 1298 if( pRet ){ 1299 int i; 1300 pRet->nCte = p->nCte; 1301 for(i=0; i<p->nCte; i++){ 1302 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1303 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1304 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1305 } 1306 } 1307 } 1308 return pRet; 1309 } 1310 #else 1311 # define withDup(x,y) 0 1312 #endif 1313 1314 #ifndef SQLITE_OMIT_WINDOWFUNC 1315 /* 1316 ** The gatherSelectWindows() procedure and its helper routine 1317 ** gatherSelectWindowsCallback() are used to scan all the expressions 1318 ** an a newly duplicated SELECT statement and gather all of the Window 1319 ** objects found there, assembling them onto the linked list at Select->pWin. 1320 */ 1321 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1322 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1323 Select *pSelect = pWalker->u.pSelect; 1324 Window *pWin = pExpr->y.pWin; 1325 assert( pWin ); 1326 assert( IsWindowFunc(pExpr) ); 1327 assert( pWin->ppThis==0 ); 1328 sqlite3WindowLink(pSelect, pWin); 1329 } 1330 return WRC_Continue; 1331 } 1332 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1333 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1334 } 1335 static void gatherSelectWindows(Select *p){ 1336 Walker w; 1337 w.xExprCallback = gatherSelectWindowsCallback; 1338 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1339 w.xSelectCallback2 = 0; 1340 w.pParse = 0; 1341 w.u.pSelect = p; 1342 sqlite3WalkSelect(&w, p); 1343 } 1344 #endif 1345 1346 1347 /* 1348 ** The following group of routines make deep copies of expressions, 1349 ** expression lists, ID lists, and select statements. The copies can 1350 ** be deleted (by being passed to their respective ...Delete() routines) 1351 ** without effecting the originals. 1352 ** 1353 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1354 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1355 ** by subsequent calls to sqlite*ListAppend() routines. 1356 ** 1357 ** Any tables that the SrcList might point to are not duplicated. 1358 ** 1359 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1360 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1361 ** truncated version of the usual Expr structure that will be stored as 1362 ** part of the in-memory representation of the database schema. 1363 */ 1364 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1365 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1366 return p ? exprDup(db, p, flags, 0) : 0; 1367 } 1368 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1369 ExprList *pNew; 1370 struct ExprList_item *pItem, *pOldItem; 1371 int i; 1372 Expr *pPriorSelectCol = 0; 1373 assert( db!=0 ); 1374 if( p==0 ) return 0; 1375 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1376 if( pNew==0 ) return 0; 1377 pNew->nExpr = p->nExpr; 1378 pItem = pNew->a; 1379 pOldItem = p->a; 1380 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1381 Expr *pOldExpr = pOldItem->pExpr; 1382 Expr *pNewExpr; 1383 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1384 if( pOldExpr 1385 && pOldExpr->op==TK_SELECT_COLUMN 1386 && (pNewExpr = pItem->pExpr)!=0 1387 ){ 1388 assert( pNewExpr->iColumn==0 || i>0 ); 1389 if( pNewExpr->iColumn==0 ){ 1390 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1391 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1392 }else{ 1393 assert( i>0 ); 1394 assert( pItem[-1].pExpr!=0 ); 1395 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1396 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1397 pNewExpr->pLeft = pPriorSelectCol; 1398 } 1399 } 1400 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1401 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1402 pItem->sortFlags = pOldItem->sortFlags; 1403 pItem->done = 0; 1404 pItem->bNulls = pOldItem->bNulls; 1405 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1406 pItem->bSorterRef = pOldItem->bSorterRef; 1407 pItem->u = pOldItem->u; 1408 } 1409 return pNew; 1410 } 1411 1412 /* 1413 ** If cursors, triggers, views and subqueries are all omitted from 1414 ** the build, then none of the following routines, except for 1415 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1416 ** called with a NULL argument. 1417 */ 1418 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1419 || !defined(SQLITE_OMIT_SUBQUERY) 1420 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1421 SrcList *pNew; 1422 int i; 1423 int nByte; 1424 assert( db!=0 ); 1425 if( p==0 ) return 0; 1426 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1427 pNew = sqlite3DbMallocRawNN(db, nByte ); 1428 if( pNew==0 ) return 0; 1429 pNew->nSrc = pNew->nAlloc = p->nSrc; 1430 for(i=0; i<p->nSrc; i++){ 1431 struct SrcList_item *pNewItem = &pNew->a[i]; 1432 struct SrcList_item *pOldItem = &p->a[i]; 1433 Table *pTab; 1434 pNewItem->pSchema = pOldItem->pSchema; 1435 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1436 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1437 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1438 pNewItem->fg = pOldItem->fg; 1439 pNewItem->iCursor = pOldItem->iCursor; 1440 pNewItem->addrFillSub = pOldItem->addrFillSub; 1441 pNewItem->regReturn = pOldItem->regReturn; 1442 if( pNewItem->fg.isIndexedBy ){ 1443 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1444 } 1445 pNewItem->pIBIndex = pOldItem->pIBIndex; 1446 if( pNewItem->fg.isTabFunc ){ 1447 pNewItem->u1.pFuncArg = 1448 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1449 } 1450 pTab = pNewItem->pTab = pOldItem->pTab; 1451 if( pTab ){ 1452 pTab->nTabRef++; 1453 } 1454 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1455 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1456 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1457 pNewItem->colUsed = pOldItem->colUsed; 1458 } 1459 return pNew; 1460 } 1461 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1462 IdList *pNew; 1463 int i; 1464 assert( db!=0 ); 1465 if( p==0 ) return 0; 1466 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1467 if( pNew==0 ) return 0; 1468 pNew->nId = p->nId; 1469 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1470 if( pNew->a==0 ){ 1471 sqlite3DbFreeNN(db, pNew); 1472 return 0; 1473 } 1474 /* Note that because the size of the allocation for p->a[] is not 1475 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1476 ** on the duplicate created by this function. */ 1477 for(i=0; i<p->nId; i++){ 1478 struct IdList_item *pNewItem = &pNew->a[i]; 1479 struct IdList_item *pOldItem = &p->a[i]; 1480 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1481 pNewItem->idx = pOldItem->idx; 1482 } 1483 return pNew; 1484 } 1485 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1486 Select *pRet = 0; 1487 Select *pNext = 0; 1488 Select **pp = &pRet; 1489 Select *p; 1490 1491 assert( db!=0 ); 1492 for(p=pDup; p; p=p->pPrior){ 1493 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1494 if( pNew==0 ) break; 1495 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1496 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1497 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1498 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1499 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1500 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1501 pNew->op = p->op; 1502 pNew->pNext = pNext; 1503 pNew->pPrior = 0; 1504 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1505 pNew->iLimit = 0; 1506 pNew->iOffset = 0; 1507 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1508 pNew->addrOpenEphm[0] = -1; 1509 pNew->addrOpenEphm[1] = -1; 1510 pNew->nSelectRow = p->nSelectRow; 1511 pNew->pWith = withDup(db, p->pWith); 1512 #ifndef SQLITE_OMIT_WINDOWFUNC 1513 pNew->pWin = 0; 1514 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1515 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1516 #endif 1517 pNew->selId = p->selId; 1518 *pp = pNew; 1519 pp = &pNew->pPrior; 1520 pNext = pNew; 1521 } 1522 1523 return pRet; 1524 } 1525 #else 1526 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1527 assert( p==0 ); 1528 return 0; 1529 } 1530 #endif 1531 1532 1533 /* 1534 ** Add a new element to the end of an expression list. If pList is 1535 ** initially NULL, then create a new expression list. 1536 ** 1537 ** The pList argument must be either NULL or a pointer to an ExprList 1538 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1539 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1540 ** Reason: This routine assumes that the number of slots in pList->a[] 1541 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1542 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1543 ** 1544 ** If a memory allocation error occurs, the entire list is freed and 1545 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1546 ** that the new entry was successfully appended. 1547 */ 1548 ExprList *sqlite3ExprListAppend( 1549 Parse *pParse, /* Parsing context */ 1550 ExprList *pList, /* List to which to append. Might be NULL */ 1551 Expr *pExpr /* Expression to be appended. Might be NULL */ 1552 ){ 1553 struct ExprList_item *pItem; 1554 sqlite3 *db = pParse->db; 1555 assert( db!=0 ); 1556 if( pList==0 ){ 1557 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1558 if( pList==0 ){ 1559 goto no_mem; 1560 } 1561 pList->nExpr = 0; 1562 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1563 ExprList *pNew; 1564 pNew = sqlite3DbRealloc(db, pList, 1565 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1566 if( pNew==0 ){ 1567 goto no_mem; 1568 } 1569 pList = pNew; 1570 } 1571 pItem = &pList->a[pList->nExpr++]; 1572 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1573 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1574 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1575 pItem->pExpr = pExpr; 1576 return pList; 1577 1578 no_mem: 1579 /* Avoid leaking memory if malloc has failed. */ 1580 sqlite3ExprDelete(db, pExpr); 1581 sqlite3ExprListDelete(db, pList); 1582 return 0; 1583 } 1584 1585 /* 1586 ** pColumns and pExpr form a vector assignment which is part of the SET 1587 ** clause of an UPDATE statement. Like this: 1588 ** 1589 ** (a,b,c) = (expr1,expr2,expr3) 1590 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1591 ** 1592 ** For each term of the vector assignment, append new entries to the 1593 ** expression list pList. In the case of a subquery on the RHS, append 1594 ** TK_SELECT_COLUMN expressions. 1595 */ 1596 ExprList *sqlite3ExprListAppendVector( 1597 Parse *pParse, /* Parsing context */ 1598 ExprList *pList, /* List to which to append. Might be NULL */ 1599 IdList *pColumns, /* List of names of LHS of the assignment */ 1600 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1601 ){ 1602 sqlite3 *db = pParse->db; 1603 int n; 1604 int i; 1605 int iFirst = pList ? pList->nExpr : 0; 1606 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1607 ** exit prior to this routine being invoked */ 1608 if( NEVER(pColumns==0) ) goto vector_append_error; 1609 if( pExpr==0 ) goto vector_append_error; 1610 1611 /* If the RHS is a vector, then we can immediately check to see that 1612 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1613 ** wildcards ("*") in the result set of the SELECT must be expanded before 1614 ** we can do the size check, so defer the size check until code generation. 1615 */ 1616 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1617 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1618 pColumns->nId, n); 1619 goto vector_append_error; 1620 } 1621 1622 for(i=0; i<pColumns->nId; i++){ 1623 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1624 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1625 if( pList ){ 1626 assert( pList->nExpr==iFirst+i+1 ); 1627 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1628 pColumns->a[i].zName = 0; 1629 } 1630 } 1631 1632 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1633 Expr *pFirst = pList->a[iFirst].pExpr; 1634 assert( pFirst!=0 ); 1635 assert( pFirst->op==TK_SELECT_COLUMN ); 1636 1637 /* Store the SELECT statement in pRight so it will be deleted when 1638 ** sqlite3ExprListDelete() is called */ 1639 pFirst->pRight = pExpr; 1640 pExpr = 0; 1641 1642 /* Remember the size of the LHS in iTable so that we can check that 1643 ** the RHS and LHS sizes match during code generation. */ 1644 pFirst->iTable = pColumns->nId; 1645 } 1646 1647 vector_append_error: 1648 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1649 sqlite3IdListDelete(db, pColumns); 1650 return pList; 1651 } 1652 1653 /* 1654 ** Set the sort order for the last element on the given ExprList. 1655 */ 1656 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1657 struct ExprList_item *pItem; 1658 if( p==0 ) return; 1659 assert( p->nExpr>0 ); 1660 1661 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1662 assert( iSortOrder==SQLITE_SO_UNDEFINED 1663 || iSortOrder==SQLITE_SO_ASC 1664 || iSortOrder==SQLITE_SO_DESC 1665 ); 1666 assert( eNulls==SQLITE_SO_UNDEFINED 1667 || eNulls==SQLITE_SO_ASC 1668 || eNulls==SQLITE_SO_DESC 1669 ); 1670 1671 pItem = &p->a[p->nExpr-1]; 1672 assert( pItem->bNulls==0 ); 1673 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1674 iSortOrder = SQLITE_SO_ASC; 1675 } 1676 pItem->sortFlags = (u8)iSortOrder; 1677 1678 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1679 pItem->bNulls = 1; 1680 if( iSortOrder!=eNulls ){ 1681 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1682 } 1683 } 1684 } 1685 1686 /* 1687 ** Set the ExprList.a[].zName element of the most recently added item 1688 ** on the expression list. 1689 ** 1690 ** pList might be NULL following an OOM error. But pName should never be 1691 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1692 ** is set. 1693 */ 1694 void sqlite3ExprListSetName( 1695 Parse *pParse, /* Parsing context */ 1696 ExprList *pList, /* List to which to add the span. */ 1697 Token *pName, /* Name to be added */ 1698 int dequote /* True to cause the name to be dequoted */ 1699 ){ 1700 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1701 if( pList ){ 1702 struct ExprList_item *pItem; 1703 assert( pList->nExpr>0 ); 1704 pItem = &pList->a[pList->nExpr-1]; 1705 assert( pItem->zName==0 ); 1706 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1707 if( dequote ) sqlite3Dequote(pItem->zName); 1708 if( IN_RENAME_OBJECT ){ 1709 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1710 } 1711 } 1712 } 1713 1714 /* 1715 ** Set the ExprList.a[].zSpan element of the most recently added item 1716 ** on the expression list. 1717 ** 1718 ** pList might be NULL following an OOM error. But pSpan should never be 1719 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1720 ** is set. 1721 */ 1722 void sqlite3ExprListSetSpan( 1723 Parse *pParse, /* Parsing context */ 1724 ExprList *pList, /* List to which to add the span. */ 1725 const char *zStart, /* Start of the span */ 1726 const char *zEnd /* End of the span */ 1727 ){ 1728 sqlite3 *db = pParse->db; 1729 assert( pList!=0 || db->mallocFailed!=0 ); 1730 if( pList ){ 1731 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1732 assert( pList->nExpr>0 ); 1733 sqlite3DbFree(db, pItem->zSpan); 1734 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1735 } 1736 } 1737 1738 /* 1739 ** If the expression list pEList contains more than iLimit elements, 1740 ** leave an error message in pParse. 1741 */ 1742 void sqlite3ExprListCheckLength( 1743 Parse *pParse, 1744 ExprList *pEList, 1745 const char *zObject 1746 ){ 1747 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1748 testcase( pEList && pEList->nExpr==mx ); 1749 testcase( pEList && pEList->nExpr==mx+1 ); 1750 if( pEList && pEList->nExpr>mx ){ 1751 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1752 } 1753 } 1754 1755 /* 1756 ** Delete an entire expression list. 1757 */ 1758 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1759 int i = pList->nExpr; 1760 struct ExprList_item *pItem = pList->a; 1761 assert( pList->nExpr>0 ); 1762 do{ 1763 sqlite3ExprDelete(db, pItem->pExpr); 1764 sqlite3DbFree(db, pItem->zName); 1765 sqlite3DbFree(db, pItem->zSpan); 1766 pItem++; 1767 }while( --i>0 ); 1768 sqlite3DbFreeNN(db, pList); 1769 } 1770 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1771 if( pList ) exprListDeleteNN(db, pList); 1772 } 1773 1774 /* 1775 ** Return the bitwise-OR of all Expr.flags fields in the given 1776 ** ExprList. 1777 */ 1778 u32 sqlite3ExprListFlags(const ExprList *pList){ 1779 int i; 1780 u32 m = 0; 1781 assert( pList!=0 ); 1782 for(i=0; i<pList->nExpr; i++){ 1783 Expr *pExpr = pList->a[i].pExpr; 1784 assert( pExpr!=0 ); 1785 m |= pExpr->flags; 1786 } 1787 return m; 1788 } 1789 1790 /* 1791 ** This is a SELECT-node callback for the expression walker that 1792 ** always "fails". By "fail" in this case, we mean set 1793 ** pWalker->eCode to zero and abort. 1794 ** 1795 ** This callback is used by multiple expression walkers. 1796 */ 1797 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1798 UNUSED_PARAMETER(NotUsed); 1799 pWalker->eCode = 0; 1800 return WRC_Abort; 1801 } 1802 1803 /* 1804 ** If the input expression is an ID with the name "true" or "false" 1805 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1806 ** the conversion happened, and zero if the expression is unaltered. 1807 */ 1808 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1809 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1810 if( !ExprHasProperty(pExpr, EP_Quoted) 1811 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1812 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1813 ){ 1814 pExpr->op = TK_TRUEFALSE; 1815 ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse); 1816 return 1; 1817 } 1818 return 0; 1819 } 1820 1821 /* 1822 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1823 ** and 0 if it is FALSE. 1824 */ 1825 int sqlite3ExprTruthValue(const Expr *pExpr){ 1826 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1827 assert( pExpr->op==TK_TRUEFALSE ); 1828 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1829 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1830 return pExpr->u.zToken[4]==0; 1831 } 1832 1833 /* 1834 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1835 ** terms that are always true or false. Return the simplified expression. 1836 ** Or return the original expression if no simplification is possible. 1837 ** 1838 ** Examples: 1839 ** 1840 ** (x<10) AND true => (x<10) 1841 ** (x<10) AND false => false 1842 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1843 ** (x<10) AND (y=22 OR true) => (x<10) 1844 ** (y=22) OR true => true 1845 */ 1846 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1847 assert( pExpr!=0 ); 1848 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1849 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1850 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1851 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1852 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1853 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1854 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1855 } 1856 } 1857 return pExpr; 1858 } 1859 1860 1861 /* 1862 ** These routines are Walker callbacks used to check expressions to 1863 ** see if they are "constant" for some definition of constant. The 1864 ** Walker.eCode value determines the type of "constant" we are looking 1865 ** for. 1866 ** 1867 ** These callback routines are used to implement the following: 1868 ** 1869 ** sqlite3ExprIsConstant() pWalker->eCode==1 1870 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1871 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1872 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1873 ** 1874 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1875 ** is found to not be a constant. 1876 ** 1877 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1878 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1879 ** an existing schema and 4 when processing a new statement. A bound 1880 ** parameter raises an error for new statements, but is silently converted 1881 ** to NULL for existing schemas. This allows sqlite_master tables that 1882 ** contain a bound parameter because they were generated by older versions 1883 ** of SQLite to be parsed by newer versions of SQLite without raising a 1884 ** malformed schema error. 1885 */ 1886 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1887 1888 /* If pWalker->eCode is 2 then any term of the expression that comes from 1889 ** the ON or USING clauses of a left join disqualifies the expression 1890 ** from being considered constant. */ 1891 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1892 pWalker->eCode = 0; 1893 return WRC_Abort; 1894 } 1895 1896 switch( pExpr->op ){ 1897 /* Consider functions to be constant if all their arguments are constant 1898 ** and either pWalker->eCode==4 or 5 or the function has the 1899 ** SQLITE_FUNC_CONST flag. */ 1900 case TK_FUNCTION: 1901 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1902 return WRC_Continue; 1903 }else{ 1904 pWalker->eCode = 0; 1905 return WRC_Abort; 1906 } 1907 case TK_ID: 1908 /* Convert "true" or "false" in a DEFAULT clause into the 1909 ** appropriate TK_TRUEFALSE operator */ 1910 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1911 return WRC_Prune; 1912 } 1913 /* Fall thru */ 1914 case TK_COLUMN: 1915 case TK_AGG_FUNCTION: 1916 case TK_AGG_COLUMN: 1917 testcase( pExpr->op==TK_ID ); 1918 testcase( pExpr->op==TK_COLUMN ); 1919 testcase( pExpr->op==TK_AGG_FUNCTION ); 1920 testcase( pExpr->op==TK_AGG_COLUMN ); 1921 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1922 return WRC_Continue; 1923 } 1924 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1925 return WRC_Continue; 1926 } 1927 /* Fall through */ 1928 case TK_IF_NULL_ROW: 1929 case TK_REGISTER: 1930 testcase( pExpr->op==TK_REGISTER ); 1931 testcase( pExpr->op==TK_IF_NULL_ROW ); 1932 pWalker->eCode = 0; 1933 return WRC_Abort; 1934 case TK_VARIABLE: 1935 if( pWalker->eCode==5 ){ 1936 /* Silently convert bound parameters that appear inside of CREATE 1937 ** statements into a NULL when parsing the CREATE statement text out 1938 ** of the sqlite_master table */ 1939 pExpr->op = TK_NULL; 1940 }else if( pWalker->eCode==4 ){ 1941 /* A bound parameter in a CREATE statement that originates from 1942 ** sqlite3_prepare() causes an error */ 1943 pWalker->eCode = 0; 1944 return WRC_Abort; 1945 } 1946 /* Fall through */ 1947 default: 1948 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1949 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1950 return WRC_Continue; 1951 } 1952 } 1953 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1954 Walker w; 1955 w.eCode = initFlag; 1956 w.xExprCallback = exprNodeIsConstant; 1957 w.xSelectCallback = sqlite3SelectWalkFail; 1958 #ifdef SQLITE_DEBUG 1959 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1960 #endif 1961 w.u.iCur = iCur; 1962 sqlite3WalkExpr(&w, p); 1963 return w.eCode; 1964 } 1965 1966 /* 1967 ** Walk an expression tree. Return non-zero if the expression is constant 1968 ** and 0 if it involves variables or function calls. 1969 ** 1970 ** For the purposes of this function, a double-quoted string (ex: "abc") 1971 ** is considered a variable but a single-quoted string (ex: 'abc') is 1972 ** a constant. 1973 */ 1974 int sqlite3ExprIsConstant(Expr *p){ 1975 return exprIsConst(p, 1, 0); 1976 } 1977 1978 /* 1979 ** Walk an expression tree. Return non-zero if 1980 ** 1981 ** (1) the expression is constant, and 1982 ** (2) the expression does originate in the ON or USING clause 1983 ** of a LEFT JOIN, and 1984 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 1985 ** operands created by the constant propagation optimization. 1986 ** 1987 ** When this routine returns true, it indicates that the expression 1988 ** can be added to the pParse->pConstExpr list and evaluated once when 1989 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 1990 */ 1991 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1992 return exprIsConst(p, 2, 0); 1993 } 1994 1995 /* 1996 ** Walk an expression tree. Return non-zero if the expression is constant 1997 ** for any single row of the table with cursor iCur. In other words, the 1998 ** expression must not refer to any non-deterministic function nor any 1999 ** table other than iCur. 2000 */ 2001 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2002 return exprIsConst(p, 3, iCur); 2003 } 2004 2005 2006 /* 2007 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2008 */ 2009 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2010 ExprList *pGroupBy = pWalker->u.pGroupBy; 2011 int i; 2012 2013 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2014 ** it constant. */ 2015 for(i=0; i<pGroupBy->nExpr; i++){ 2016 Expr *p = pGroupBy->a[i].pExpr; 2017 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2018 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2019 if( sqlite3IsBinary(pColl) ){ 2020 return WRC_Prune; 2021 } 2022 } 2023 } 2024 2025 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2026 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2027 pWalker->eCode = 0; 2028 return WRC_Abort; 2029 } 2030 2031 return exprNodeIsConstant(pWalker, pExpr); 2032 } 2033 2034 /* 2035 ** Walk the expression tree passed as the first argument. Return non-zero 2036 ** if the expression consists entirely of constants or copies of terms 2037 ** in pGroupBy that sort with the BINARY collation sequence. 2038 ** 2039 ** This routine is used to determine if a term of the HAVING clause can 2040 ** be promoted into the WHERE clause. In order for such a promotion to work, 2041 ** the value of the HAVING clause term must be the same for all members of 2042 ** a "group". The requirement that the GROUP BY term must be BINARY 2043 ** assumes that no other collating sequence will have a finer-grained 2044 ** grouping than binary. In other words (A=B COLLATE binary) implies 2045 ** A=B in every other collating sequence. The requirement that the 2046 ** GROUP BY be BINARY is stricter than necessary. It would also work 2047 ** to promote HAVING clauses that use the same alternative collating 2048 ** sequence as the GROUP BY term, but that is much harder to check, 2049 ** alternative collating sequences are uncommon, and this is only an 2050 ** optimization, so we take the easy way out and simply require the 2051 ** GROUP BY to use the BINARY collating sequence. 2052 */ 2053 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2054 Walker w; 2055 w.eCode = 1; 2056 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2057 w.xSelectCallback = 0; 2058 w.u.pGroupBy = pGroupBy; 2059 w.pParse = pParse; 2060 sqlite3WalkExpr(&w, p); 2061 return w.eCode; 2062 } 2063 2064 /* 2065 ** Walk an expression tree. Return non-zero if the expression is constant 2066 ** or a function call with constant arguments. Return and 0 if there 2067 ** are any variables. 2068 ** 2069 ** For the purposes of this function, a double-quoted string (ex: "abc") 2070 ** is considered a variable but a single-quoted string (ex: 'abc') is 2071 ** a constant. 2072 */ 2073 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2074 assert( isInit==0 || isInit==1 ); 2075 return exprIsConst(p, 4+isInit, 0); 2076 } 2077 2078 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2079 /* 2080 ** Walk an expression tree. Return 1 if the expression contains a 2081 ** subquery of some kind. Return 0 if there are no subqueries. 2082 */ 2083 int sqlite3ExprContainsSubquery(Expr *p){ 2084 Walker w; 2085 w.eCode = 1; 2086 w.xExprCallback = sqlite3ExprWalkNoop; 2087 w.xSelectCallback = sqlite3SelectWalkFail; 2088 #ifdef SQLITE_DEBUG 2089 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2090 #endif 2091 sqlite3WalkExpr(&w, p); 2092 return w.eCode==0; 2093 } 2094 #endif 2095 2096 /* 2097 ** If the expression p codes a constant integer that is small enough 2098 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2099 ** in *pValue. If the expression is not an integer or if it is too big 2100 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2101 */ 2102 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2103 int rc = 0; 2104 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2105 2106 /* If an expression is an integer literal that fits in a signed 32-bit 2107 ** integer, then the EP_IntValue flag will have already been set */ 2108 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2109 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2110 2111 if( p->flags & EP_IntValue ){ 2112 *pValue = p->u.iValue; 2113 return 1; 2114 } 2115 switch( p->op ){ 2116 case TK_UPLUS: { 2117 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2118 break; 2119 } 2120 case TK_UMINUS: { 2121 int v; 2122 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2123 assert( v!=(-2147483647-1) ); 2124 *pValue = -v; 2125 rc = 1; 2126 } 2127 break; 2128 } 2129 default: break; 2130 } 2131 return rc; 2132 } 2133 2134 /* 2135 ** Return FALSE if there is no chance that the expression can be NULL. 2136 ** 2137 ** If the expression might be NULL or if the expression is too complex 2138 ** to tell return TRUE. 2139 ** 2140 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2141 ** when we know that a value cannot be NULL. Hence, a false positive 2142 ** (returning TRUE when in fact the expression can never be NULL) might 2143 ** be a small performance hit but is otherwise harmless. On the other 2144 ** hand, a false negative (returning FALSE when the result could be NULL) 2145 ** will likely result in an incorrect answer. So when in doubt, return 2146 ** TRUE. 2147 */ 2148 int sqlite3ExprCanBeNull(const Expr *p){ 2149 u8 op; 2150 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2151 p = p->pLeft; 2152 } 2153 op = p->op; 2154 if( op==TK_REGISTER ) op = p->op2; 2155 switch( op ){ 2156 case TK_INTEGER: 2157 case TK_STRING: 2158 case TK_FLOAT: 2159 case TK_BLOB: 2160 return 0; 2161 case TK_COLUMN: 2162 return ExprHasProperty(p, EP_CanBeNull) || 2163 p->y.pTab==0 || /* Reference to column of index on expression */ 2164 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2165 default: 2166 return 1; 2167 } 2168 } 2169 2170 /* 2171 ** Return TRUE if the given expression is a constant which would be 2172 ** unchanged by OP_Affinity with the affinity given in the second 2173 ** argument. 2174 ** 2175 ** This routine is used to determine if the OP_Affinity operation 2176 ** can be omitted. When in doubt return FALSE. A false negative 2177 ** is harmless. A false positive, however, can result in the wrong 2178 ** answer. 2179 */ 2180 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2181 u8 op; 2182 if( aff==SQLITE_AFF_BLOB ) return 1; 2183 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2184 op = p->op; 2185 if( op==TK_REGISTER ) op = p->op2; 2186 switch( op ){ 2187 case TK_INTEGER: { 2188 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2189 } 2190 case TK_FLOAT: { 2191 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2192 } 2193 case TK_STRING: { 2194 return aff==SQLITE_AFF_TEXT; 2195 } 2196 case TK_BLOB: { 2197 return 1; 2198 } 2199 case TK_COLUMN: { 2200 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2201 return p->iColumn<0 2202 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2203 } 2204 default: { 2205 return 0; 2206 } 2207 } 2208 } 2209 2210 /* 2211 ** Return TRUE if the given string is a row-id column name. 2212 */ 2213 int sqlite3IsRowid(const char *z){ 2214 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2215 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2216 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2217 return 0; 2218 } 2219 2220 /* 2221 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2222 ** that can be simplified to a direct table access, then return 2223 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2224 ** or if the SELECT statement needs to be manifested into a transient 2225 ** table, then return NULL. 2226 */ 2227 #ifndef SQLITE_OMIT_SUBQUERY 2228 static Select *isCandidateForInOpt(Expr *pX){ 2229 Select *p; 2230 SrcList *pSrc; 2231 ExprList *pEList; 2232 Table *pTab; 2233 int i; 2234 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2235 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2236 p = pX->x.pSelect; 2237 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2238 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2239 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2240 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2241 return 0; /* No DISTINCT keyword and no aggregate functions */ 2242 } 2243 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2244 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2245 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2246 pSrc = p->pSrc; 2247 assert( pSrc!=0 ); 2248 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2249 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2250 pTab = pSrc->a[0].pTab; 2251 assert( pTab!=0 ); 2252 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2253 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2254 pEList = p->pEList; 2255 assert( pEList!=0 ); 2256 /* All SELECT results must be columns. */ 2257 for(i=0; i<pEList->nExpr; i++){ 2258 Expr *pRes = pEList->a[i].pExpr; 2259 if( pRes->op!=TK_COLUMN ) return 0; 2260 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2261 } 2262 return p; 2263 } 2264 #endif /* SQLITE_OMIT_SUBQUERY */ 2265 2266 #ifndef SQLITE_OMIT_SUBQUERY 2267 /* 2268 ** Generate code that checks the left-most column of index table iCur to see if 2269 ** it contains any NULL entries. Cause the register at regHasNull to be set 2270 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2271 ** to be set to NULL if iCur contains one or more NULL values. 2272 */ 2273 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2274 int addr1; 2275 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2276 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2277 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2278 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2279 VdbeComment((v, "first_entry_in(%d)", iCur)); 2280 sqlite3VdbeJumpHere(v, addr1); 2281 } 2282 #endif 2283 2284 2285 #ifndef SQLITE_OMIT_SUBQUERY 2286 /* 2287 ** The argument is an IN operator with a list (not a subquery) on the 2288 ** right-hand side. Return TRUE if that list is constant. 2289 */ 2290 static int sqlite3InRhsIsConstant(Expr *pIn){ 2291 Expr *pLHS; 2292 int res; 2293 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2294 pLHS = pIn->pLeft; 2295 pIn->pLeft = 0; 2296 res = sqlite3ExprIsConstant(pIn); 2297 pIn->pLeft = pLHS; 2298 return res; 2299 } 2300 #endif 2301 2302 /* 2303 ** This function is used by the implementation of the IN (...) operator. 2304 ** The pX parameter is the expression on the RHS of the IN operator, which 2305 ** might be either a list of expressions or a subquery. 2306 ** 2307 ** The job of this routine is to find or create a b-tree object that can 2308 ** be used either to test for membership in the RHS set or to iterate through 2309 ** all members of the RHS set, skipping duplicates. 2310 ** 2311 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2312 ** and pX->iTable is set to the index of that cursor. 2313 ** 2314 ** The returned value of this function indicates the b-tree type, as follows: 2315 ** 2316 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2317 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2318 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2319 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2320 ** populated epheremal table. 2321 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2322 ** implemented as a sequence of comparisons. 2323 ** 2324 ** An existing b-tree might be used if the RHS expression pX is a simple 2325 ** subquery such as: 2326 ** 2327 ** SELECT <column1>, <column2>... FROM <table> 2328 ** 2329 ** If the RHS of the IN operator is a list or a more complex subquery, then 2330 ** an ephemeral table might need to be generated from the RHS and then 2331 ** pX->iTable made to point to the ephemeral table instead of an 2332 ** existing table. 2333 ** 2334 ** The inFlags parameter must contain, at a minimum, one of the bits 2335 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2336 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2337 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2338 ** be used to loop over all values of the RHS of the IN operator. 2339 ** 2340 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2341 ** through the set members) then the b-tree must not contain duplicates. 2342 ** An epheremal table will be created unless the selected columns are guaranteed 2343 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2344 ** a UNIQUE constraint or index. 2345 ** 2346 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2347 ** for fast set membership tests) then an epheremal table must 2348 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2349 ** index can be found with the specified <columns> as its left-most. 2350 ** 2351 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2352 ** if the RHS of the IN operator is a list (not a subquery) then this 2353 ** routine might decide that creating an ephemeral b-tree for membership 2354 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2355 ** calling routine should implement the IN operator using a sequence 2356 ** of Eq or Ne comparison operations. 2357 ** 2358 ** When the b-tree is being used for membership tests, the calling function 2359 ** might need to know whether or not the RHS side of the IN operator 2360 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2361 ** if there is any chance that the (...) might contain a NULL value at 2362 ** runtime, then a register is allocated and the register number written 2363 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2364 ** NULL value, then *prRhsHasNull is left unchanged. 2365 ** 2366 ** If a register is allocated and its location stored in *prRhsHasNull, then 2367 ** the value in that register will be NULL if the b-tree contains one or more 2368 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2369 ** NULL values. 2370 ** 2371 ** If the aiMap parameter is not NULL, it must point to an array containing 2372 ** one element for each column returned by the SELECT statement on the RHS 2373 ** of the IN(...) operator. The i'th entry of the array is populated with the 2374 ** offset of the index column that matches the i'th column returned by the 2375 ** SELECT. For example, if the expression and selected index are: 2376 ** 2377 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2378 ** CREATE INDEX i1 ON t1(b, c, a); 2379 ** 2380 ** then aiMap[] is populated with {2, 0, 1}. 2381 */ 2382 #ifndef SQLITE_OMIT_SUBQUERY 2383 int sqlite3FindInIndex( 2384 Parse *pParse, /* Parsing context */ 2385 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2386 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2387 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2388 int *aiMap, /* Mapping from Index fields to RHS fields */ 2389 int *piTab /* OUT: index to use */ 2390 ){ 2391 Select *p; /* SELECT to the right of IN operator */ 2392 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2393 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2394 int mustBeUnique; /* True if RHS must be unique */ 2395 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2396 2397 assert( pX->op==TK_IN ); 2398 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2399 2400 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2401 ** whether or not the SELECT result contains NULL values, check whether 2402 ** or not NULL is actually possible (it may not be, for example, due 2403 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2404 ** set prRhsHasNull to 0 before continuing. */ 2405 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2406 int i; 2407 ExprList *pEList = pX->x.pSelect->pEList; 2408 for(i=0; i<pEList->nExpr; i++){ 2409 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2410 } 2411 if( i==pEList->nExpr ){ 2412 prRhsHasNull = 0; 2413 } 2414 } 2415 2416 /* Check to see if an existing table or index can be used to 2417 ** satisfy the query. This is preferable to generating a new 2418 ** ephemeral table. */ 2419 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2420 sqlite3 *db = pParse->db; /* Database connection */ 2421 Table *pTab; /* Table <table>. */ 2422 i16 iDb; /* Database idx for pTab */ 2423 ExprList *pEList = p->pEList; 2424 int nExpr = pEList->nExpr; 2425 2426 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2427 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2428 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2429 pTab = p->pSrc->a[0].pTab; 2430 2431 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2432 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2433 sqlite3CodeVerifySchema(pParse, iDb); 2434 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2435 2436 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2437 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2438 /* The "x IN (SELECT rowid FROM table)" case */ 2439 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2440 VdbeCoverage(v); 2441 2442 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2443 eType = IN_INDEX_ROWID; 2444 ExplainQueryPlan((pParse, 0, 2445 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2446 sqlite3VdbeJumpHere(v, iAddr); 2447 }else{ 2448 Index *pIdx; /* Iterator variable */ 2449 int affinity_ok = 1; 2450 int i; 2451 2452 /* Check that the affinity that will be used to perform each 2453 ** comparison is the same as the affinity of each column in table 2454 ** on the RHS of the IN operator. If it not, it is not possible to 2455 ** use any index of the RHS table. */ 2456 for(i=0; i<nExpr && affinity_ok; i++){ 2457 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2458 int iCol = pEList->a[i].pExpr->iColumn; 2459 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2460 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2461 testcase( cmpaff==SQLITE_AFF_BLOB ); 2462 testcase( cmpaff==SQLITE_AFF_TEXT ); 2463 switch( cmpaff ){ 2464 case SQLITE_AFF_BLOB: 2465 break; 2466 case SQLITE_AFF_TEXT: 2467 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2468 ** other has no affinity and the other side is TEXT. Hence, 2469 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2470 ** and for the term on the LHS of the IN to have no affinity. */ 2471 assert( idxaff==SQLITE_AFF_TEXT ); 2472 break; 2473 default: 2474 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2475 } 2476 } 2477 2478 if( affinity_ok ){ 2479 /* Search for an existing index that will work for this IN operator */ 2480 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2481 Bitmask colUsed; /* Columns of the index used */ 2482 Bitmask mCol; /* Mask for the current column */ 2483 if( pIdx->nColumn<nExpr ) continue; 2484 if( pIdx->pPartIdxWhere!=0 ) continue; 2485 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2486 ** BITMASK(nExpr) without overflowing */ 2487 testcase( pIdx->nColumn==BMS-2 ); 2488 testcase( pIdx->nColumn==BMS-1 ); 2489 if( pIdx->nColumn>=BMS-1 ) continue; 2490 if( mustBeUnique ){ 2491 if( pIdx->nKeyCol>nExpr 2492 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2493 ){ 2494 continue; /* This index is not unique over the IN RHS columns */ 2495 } 2496 } 2497 2498 colUsed = 0; /* Columns of index used so far */ 2499 for(i=0; i<nExpr; i++){ 2500 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2501 Expr *pRhs = pEList->a[i].pExpr; 2502 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2503 int j; 2504 2505 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2506 for(j=0; j<nExpr; j++){ 2507 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2508 assert( pIdx->azColl[j] ); 2509 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2510 continue; 2511 } 2512 break; 2513 } 2514 if( j==nExpr ) break; 2515 mCol = MASKBIT(j); 2516 if( mCol & colUsed ) break; /* Each column used only once */ 2517 colUsed |= mCol; 2518 if( aiMap ) aiMap[i] = j; 2519 } 2520 2521 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2522 if( colUsed==(MASKBIT(nExpr)-1) ){ 2523 /* If we reach this point, that means the index pIdx is usable */ 2524 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2525 ExplainQueryPlan((pParse, 0, 2526 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2527 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2528 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2529 VdbeComment((v, "%s", pIdx->zName)); 2530 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2531 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2532 2533 if( prRhsHasNull ){ 2534 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2535 i64 mask = (1<<nExpr)-1; 2536 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2537 iTab, 0, 0, (u8*)&mask, P4_INT64); 2538 #endif 2539 *prRhsHasNull = ++pParse->nMem; 2540 if( nExpr==1 ){ 2541 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2542 } 2543 } 2544 sqlite3VdbeJumpHere(v, iAddr); 2545 } 2546 } /* End loop over indexes */ 2547 } /* End if( affinity_ok ) */ 2548 } /* End if not an rowid index */ 2549 } /* End attempt to optimize using an index */ 2550 2551 /* If no preexisting index is available for the IN clause 2552 ** and IN_INDEX_NOOP is an allowed reply 2553 ** and the RHS of the IN operator is a list, not a subquery 2554 ** and the RHS is not constant or has two or fewer terms, 2555 ** then it is not worth creating an ephemeral table to evaluate 2556 ** the IN operator so return IN_INDEX_NOOP. 2557 */ 2558 if( eType==0 2559 && (inFlags & IN_INDEX_NOOP_OK) 2560 && !ExprHasProperty(pX, EP_xIsSelect) 2561 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2562 ){ 2563 eType = IN_INDEX_NOOP; 2564 } 2565 2566 if( eType==0 ){ 2567 /* Could not find an existing table or index to use as the RHS b-tree. 2568 ** We will have to generate an ephemeral table to do the job. 2569 */ 2570 u32 savedNQueryLoop = pParse->nQueryLoop; 2571 int rMayHaveNull = 0; 2572 eType = IN_INDEX_EPH; 2573 if( inFlags & IN_INDEX_LOOP ){ 2574 pParse->nQueryLoop = 0; 2575 }else if( prRhsHasNull ){ 2576 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2577 } 2578 assert( pX->op==TK_IN ); 2579 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2580 if( rMayHaveNull ){ 2581 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2582 } 2583 pParse->nQueryLoop = savedNQueryLoop; 2584 } 2585 2586 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2587 int i, n; 2588 n = sqlite3ExprVectorSize(pX->pLeft); 2589 for(i=0; i<n; i++) aiMap[i] = i; 2590 } 2591 *piTab = iTab; 2592 return eType; 2593 } 2594 #endif 2595 2596 #ifndef SQLITE_OMIT_SUBQUERY 2597 /* 2598 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2599 ** function allocates and returns a nul-terminated string containing 2600 ** the affinities to be used for each column of the comparison. 2601 ** 2602 ** It is the responsibility of the caller to ensure that the returned 2603 ** string is eventually freed using sqlite3DbFree(). 2604 */ 2605 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2606 Expr *pLeft = pExpr->pLeft; 2607 int nVal = sqlite3ExprVectorSize(pLeft); 2608 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2609 char *zRet; 2610 2611 assert( pExpr->op==TK_IN ); 2612 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2613 if( zRet ){ 2614 int i; 2615 for(i=0; i<nVal; i++){ 2616 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2617 char a = sqlite3ExprAffinity(pA); 2618 if( pSelect ){ 2619 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2620 }else{ 2621 zRet[i] = a; 2622 } 2623 } 2624 zRet[nVal] = '\0'; 2625 } 2626 return zRet; 2627 } 2628 #endif 2629 2630 #ifndef SQLITE_OMIT_SUBQUERY 2631 /* 2632 ** Load the Parse object passed as the first argument with an error 2633 ** message of the form: 2634 ** 2635 ** "sub-select returns N columns - expected M" 2636 */ 2637 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2638 const char *zFmt = "sub-select returns %d columns - expected %d"; 2639 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2640 } 2641 #endif 2642 2643 /* 2644 ** Expression pExpr is a vector that has been used in a context where 2645 ** it is not permitted. If pExpr is a sub-select vector, this routine 2646 ** loads the Parse object with a message of the form: 2647 ** 2648 ** "sub-select returns N columns - expected 1" 2649 ** 2650 ** Or, if it is a regular scalar vector: 2651 ** 2652 ** "row value misused" 2653 */ 2654 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2655 #ifndef SQLITE_OMIT_SUBQUERY 2656 if( pExpr->flags & EP_xIsSelect ){ 2657 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2658 }else 2659 #endif 2660 { 2661 sqlite3ErrorMsg(pParse, "row value misused"); 2662 } 2663 } 2664 2665 #ifndef SQLITE_OMIT_SUBQUERY 2666 /* 2667 ** Generate code that will construct an ephemeral table containing all terms 2668 ** in the RHS of an IN operator. The IN operator can be in either of two 2669 ** forms: 2670 ** 2671 ** x IN (4,5,11) -- IN operator with list on right-hand side 2672 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2673 ** 2674 ** The pExpr parameter is the IN operator. The cursor number for the 2675 ** constructed ephermeral table is returned. The first time the ephemeral 2676 ** table is computed, the cursor number is also stored in pExpr->iTable, 2677 ** however the cursor number returned might not be the same, as it might 2678 ** have been duplicated using OP_OpenDup. 2679 ** 2680 ** If the LHS expression ("x" in the examples) is a column value, or 2681 ** the SELECT statement returns a column value, then the affinity of that 2682 ** column is used to build the index keys. If both 'x' and the 2683 ** SELECT... statement are columns, then numeric affinity is used 2684 ** if either column has NUMERIC or INTEGER affinity. If neither 2685 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2686 ** is used. 2687 */ 2688 void sqlite3CodeRhsOfIN( 2689 Parse *pParse, /* Parsing context */ 2690 Expr *pExpr, /* The IN operator */ 2691 int iTab /* Use this cursor number */ 2692 ){ 2693 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2694 int addr; /* Address of OP_OpenEphemeral instruction */ 2695 Expr *pLeft; /* the LHS of the IN operator */ 2696 KeyInfo *pKeyInfo = 0; /* Key information */ 2697 int nVal; /* Size of vector pLeft */ 2698 Vdbe *v; /* The prepared statement under construction */ 2699 2700 v = pParse->pVdbe; 2701 assert( v!=0 ); 2702 2703 /* The evaluation of the IN must be repeated every time it 2704 ** is encountered if any of the following is true: 2705 ** 2706 ** * The right-hand side is a correlated subquery 2707 ** * The right-hand side is an expression list containing variables 2708 ** * We are inside a trigger 2709 ** 2710 ** If all of the above are false, then we can compute the RHS just once 2711 ** and reuse it many names. 2712 */ 2713 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2714 /* Reuse of the RHS is allowed */ 2715 /* If this routine has already been coded, but the previous code 2716 ** might not have been invoked yet, so invoke it now as a subroutine. 2717 */ 2718 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2719 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2720 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2721 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2722 pExpr->x.pSelect->selId)); 2723 } 2724 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2725 pExpr->y.sub.iAddr); 2726 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2727 sqlite3VdbeJumpHere(v, addrOnce); 2728 return; 2729 } 2730 2731 /* Begin coding the subroutine */ 2732 ExprSetProperty(pExpr, EP_Subrtn); 2733 pExpr->y.sub.regReturn = ++pParse->nMem; 2734 pExpr->y.sub.iAddr = 2735 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2736 VdbeComment((v, "return address")); 2737 2738 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2739 } 2740 2741 /* Check to see if this is a vector IN operator */ 2742 pLeft = pExpr->pLeft; 2743 nVal = sqlite3ExprVectorSize(pLeft); 2744 2745 /* Construct the ephemeral table that will contain the content of 2746 ** RHS of the IN operator. 2747 */ 2748 pExpr->iTable = iTab; 2749 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2750 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2751 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2752 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2753 }else{ 2754 VdbeComment((v, "RHS of IN operator")); 2755 } 2756 #endif 2757 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2758 2759 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2760 /* Case 1: expr IN (SELECT ...) 2761 ** 2762 ** Generate code to write the results of the select into the temporary 2763 ** table allocated and opened above. 2764 */ 2765 Select *pSelect = pExpr->x.pSelect; 2766 ExprList *pEList = pSelect->pEList; 2767 2768 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2769 addrOnce?"":"CORRELATED ", pSelect->selId 2770 )); 2771 /* If the LHS and RHS of the IN operator do not match, that 2772 ** error will have been caught long before we reach this point. */ 2773 if( ALWAYS(pEList->nExpr==nVal) ){ 2774 SelectDest dest; 2775 int i; 2776 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2777 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2778 pSelect->iLimit = 0; 2779 testcase( pSelect->selFlags & SF_Distinct ); 2780 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2781 if( sqlite3Select(pParse, pSelect, &dest) ){ 2782 sqlite3DbFree(pParse->db, dest.zAffSdst); 2783 sqlite3KeyInfoUnref(pKeyInfo); 2784 return; 2785 } 2786 sqlite3DbFree(pParse->db, dest.zAffSdst); 2787 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2788 assert( pEList!=0 ); 2789 assert( pEList->nExpr>0 ); 2790 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2791 for(i=0; i<nVal; i++){ 2792 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2793 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2794 pParse, p, pEList->a[i].pExpr 2795 ); 2796 } 2797 } 2798 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2799 /* Case 2: expr IN (exprlist) 2800 ** 2801 ** For each expression, build an index key from the evaluation and 2802 ** store it in the temporary table. If <expr> is a column, then use 2803 ** that columns affinity when building index keys. If <expr> is not 2804 ** a column, use numeric affinity. 2805 */ 2806 char affinity; /* Affinity of the LHS of the IN */ 2807 int i; 2808 ExprList *pList = pExpr->x.pList; 2809 struct ExprList_item *pItem; 2810 int r1, r2; 2811 affinity = sqlite3ExprAffinity(pLeft); 2812 if( affinity<=SQLITE_AFF_NONE ){ 2813 affinity = SQLITE_AFF_BLOB; 2814 } 2815 if( pKeyInfo ){ 2816 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2817 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2818 } 2819 2820 /* Loop through each expression in <exprlist>. */ 2821 r1 = sqlite3GetTempReg(pParse); 2822 r2 = sqlite3GetTempReg(pParse); 2823 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2824 Expr *pE2 = pItem->pExpr; 2825 2826 /* If the expression is not constant then we will need to 2827 ** disable the test that was generated above that makes sure 2828 ** this code only executes once. Because for a non-constant 2829 ** expression we need to rerun this code each time. 2830 */ 2831 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2832 sqlite3VdbeChangeToNoop(v, addrOnce); 2833 ExprClearProperty(pExpr, EP_Subrtn); 2834 addrOnce = 0; 2835 } 2836 2837 /* Evaluate the expression and insert it into the temp table */ 2838 sqlite3ExprCode(pParse, pE2, r1); 2839 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2840 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2841 } 2842 sqlite3ReleaseTempReg(pParse, r1); 2843 sqlite3ReleaseTempReg(pParse, r2); 2844 } 2845 if( pKeyInfo ){ 2846 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2847 } 2848 if( addrOnce ){ 2849 sqlite3VdbeJumpHere(v, addrOnce); 2850 /* Subroutine return */ 2851 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2852 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2853 } 2854 } 2855 #endif /* SQLITE_OMIT_SUBQUERY */ 2856 2857 /* 2858 ** Generate code for scalar subqueries used as a subquery expression 2859 ** or EXISTS operator: 2860 ** 2861 ** (SELECT a FROM b) -- subquery 2862 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2863 ** 2864 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2865 ** 2866 ** The register that holds the result. For a multi-column SELECT, 2867 ** the result is stored in a contiguous array of registers and the 2868 ** return value is the register of the left-most result column. 2869 ** Return 0 if an error occurs. 2870 */ 2871 #ifndef SQLITE_OMIT_SUBQUERY 2872 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2873 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2874 int rReg = 0; /* Register storing resulting */ 2875 Select *pSel; /* SELECT statement to encode */ 2876 SelectDest dest; /* How to deal with SELECT result */ 2877 int nReg; /* Registers to allocate */ 2878 Expr *pLimit; /* New limit expression */ 2879 2880 Vdbe *v = pParse->pVdbe; 2881 assert( v!=0 ); 2882 testcase( pExpr->op==TK_EXISTS ); 2883 testcase( pExpr->op==TK_SELECT ); 2884 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2885 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2886 pSel = pExpr->x.pSelect; 2887 2888 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2889 ** is encountered if any of the following is true: 2890 ** 2891 ** * The right-hand side is a correlated subquery 2892 ** * The right-hand side is an expression list containing variables 2893 ** * We are inside a trigger 2894 ** 2895 ** If all of the above are false, then we can run this code just once 2896 ** save the results, and reuse the same result on subsequent invocations. 2897 */ 2898 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2899 /* If this routine has already been coded, then invoke it as a 2900 ** subroutine. */ 2901 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2902 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2903 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2904 pExpr->y.sub.iAddr); 2905 return pExpr->iTable; 2906 } 2907 2908 /* Begin coding the subroutine */ 2909 ExprSetProperty(pExpr, EP_Subrtn); 2910 pExpr->y.sub.regReturn = ++pParse->nMem; 2911 pExpr->y.sub.iAddr = 2912 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2913 VdbeComment((v, "return address")); 2914 2915 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2916 } 2917 2918 /* For a SELECT, generate code to put the values for all columns of 2919 ** the first row into an array of registers and return the index of 2920 ** the first register. 2921 ** 2922 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2923 ** into a register and return that register number. 2924 ** 2925 ** In both cases, the query is augmented with "LIMIT 1". Any 2926 ** preexisting limit is discarded in place of the new LIMIT 1. 2927 */ 2928 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2929 addrOnce?"":"CORRELATED ", pSel->selId)); 2930 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2931 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2932 pParse->nMem += nReg; 2933 if( pExpr->op==TK_SELECT ){ 2934 dest.eDest = SRT_Mem; 2935 dest.iSdst = dest.iSDParm; 2936 dest.nSdst = nReg; 2937 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2938 VdbeComment((v, "Init subquery result")); 2939 }else{ 2940 dest.eDest = SRT_Exists; 2941 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2942 VdbeComment((v, "Init EXISTS result")); 2943 } 2944 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2945 if( pSel->pLimit ){ 2946 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2947 pSel->pLimit->pLeft = pLimit; 2948 }else{ 2949 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2950 } 2951 pSel->iLimit = 0; 2952 if( sqlite3Select(pParse, pSel, &dest) ){ 2953 return 0; 2954 } 2955 pExpr->iTable = rReg = dest.iSDParm; 2956 ExprSetVVAProperty(pExpr, EP_NoReduce); 2957 if( addrOnce ){ 2958 sqlite3VdbeJumpHere(v, addrOnce); 2959 2960 /* Subroutine return */ 2961 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2962 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2963 } 2964 2965 return rReg; 2966 } 2967 #endif /* SQLITE_OMIT_SUBQUERY */ 2968 2969 #ifndef SQLITE_OMIT_SUBQUERY 2970 /* 2971 ** Expr pIn is an IN(...) expression. This function checks that the 2972 ** sub-select on the RHS of the IN() operator has the same number of 2973 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2974 ** a sub-query, that the LHS is a vector of size 1. 2975 */ 2976 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2977 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2978 if( (pIn->flags & EP_xIsSelect) ){ 2979 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2980 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2981 return 1; 2982 } 2983 }else if( nVector!=1 ){ 2984 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2985 return 1; 2986 } 2987 return 0; 2988 } 2989 #endif 2990 2991 #ifndef SQLITE_OMIT_SUBQUERY 2992 /* 2993 ** Generate code for an IN expression. 2994 ** 2995 ** x IN (SELECT ...) 2996 ** x IN (value, value, ...) 2997 ** 2998 ** The left-hand side (LHS) is a scalar or vector expression. The 2999 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3000 ** subquery. If the RHS is a subquery, the number of result columns must 3001 ** match the number of columns in the vector on the LHS. If the RHS is 3002 ** a list of values, the LHS must be a scalar. 3003 ** 3004 ** The IN operator is true if the LHS value is contained within the RHS. 3005 ** The result is false if the LHS is definitely not in the RHS. The 3006 ** result is NULL if the presence of the LHS in the RHS cannot be 3007 ** determined due to NULLs. 3008 ** 3009 ** This routine generates code that jumps to destIfFalse if the LHS is not 3010 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3011 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3012 ** within the RHS then fall through. 3013 ** 3014 ** See the separate in-operator.md documentation file in the canonical 3015 ** SQLite source tree for additional information. 3016 */ 3017 static void sqlite3ExprCodeIN( 3018 Parse *pParse, /* Parsing and code generating context */ 3019 Expr *pExpr, /* The IN expression */ 3020 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3021 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3022 ){ 3023 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3024 int eType; /* Type of the RHS */ 3025 int rLhs; /* Register(s) holding the LHS values */ 3026 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3027 Vdbe *v; /* Statement under construction */ 3028 int *aiMap = 0; /* Map from vector field to index column */ 3029 char *zAff = 0; /* Affinity string for comparisons */ 3030 int nVector; /* Size of vectors for this IN operator */ 3031 int iDummy; /* Dummy parameter to exprCodeVector() */ 3032 Expr *pLeft; /* The LHS of the IN operator */ 3033 int i; /* loop counter */ 3034 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3035 int destStep6 = 0; /* Start of code for Step 6 */ 3036 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3037 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3038 int addrTop; /* Top of the step-6 loop */ 3039 int iTab = 0; /* Index to use */ 3040 3041 pLeft = pExpr->pLeft; 3042 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3043 zAff = exprINAffinity(pParse, pExpr); 3044 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3045 aiMap = (int*)sqlite3DbMallocZero( 3046 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3047 ); 3048 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3049 3050 /* Attempt to compute the RHS. After this step, if anything other than 3051 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3052 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3053 ** the RHS has not yet been coded. */ 3054 v = pParse->pVdbe; 3055 assert( v!=0 ); /* OOM detected prior to this routine */ 3056 VdbeNoopComment((v, "begin IN expr")); 3057 eType = sqlite3FindInIndex(pParse, pExpr, 3058 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3059 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3060 aiMap, &iTab); 3061 3062 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3063 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3064 ); 3065 #ifdef SQLITE_DEBUG 3066 /* Confirm that aiMap[] contains nVector integer values between 0 and 3067 ** nVector-1. */ 3068 for(i=0; i<nVector; i++){ 3069 int j, cnt; 3070 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3071 assert( cnt==1 ); 3072 } 3073 #endif 3074 3075 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3076 ** vector, then it is stored in an array of nVector registers starting 3077 ** at r1. 3078 ** 3079 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3080 ** so that the fields are in the same order as an existing index. The 3081 ** aiMap[] array contains a mapping from the original LHS field order to 3082 ** the field order that matches the RHS index. 3083 */ 3084 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3085 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3086 if( i==nVector ){ 3087 /* LHS fields are not reordered */ 3088 rLhs = rLhsOrig; 3089 }else{ 3090 /* Need to reorder the LHS fields according to aiMap */ 3091 rLhs = sqlite3GetTempRange(pParse, nVector); 3092 for(i=0; i<nVector; i++){ 3093 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3094 } 3095 } 3096 3097 /* If sqlite3FindInIndex() did not find or create an index that is 3098 ** suitable for evaluating the IN operator, then evaluate using a 3099 ** sequence of comparisons. 3100 ** 3101 ** This is step (1) in the in-operator.md optimized algorithm. 3102 */ 3103 if( eType==IN_INDEX_NOOP ){ 3104 ExprList *pList = pExpr->x.pList; 3105 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3106 int labelOk = sqlite3VdbeMakeLabel(pParse); 3107 int r2, regToFree; 3108 int regCkNull = 0; 3109 int ii; 3110 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3111 if( destIfNull!=destIfFalse ){ 3112 regCkNull = sqlite3GetTempReg(pParse); 3113 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3114 } 3115 for(ii=0; ii<pList->nExpr; ii++){ 3116 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3117 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3118 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3119 } 3120 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3121 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3122 (void*)pColl, P4_COLLSEQ); 3123 VdbeCoverageIf(v, ii<pList->nExpr-1); 3124 VdbeCoverageIf(v, ii==pList->nExpr-1); 3125 sqlite3VdbeChangeP5(v, zAff[0]); 3126 }else{ 3127 assert( destIfNull==destIfFalse ); 3128 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3129 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3130 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3131 } 3132 sqlite3ReleaseTempReg(pParse, regToFree); 3133 } 3134 if( regCkNull ){ 3135 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3136 sqlite3VdbeGoto(v, destIfFalse); 3137 } 3138 sqlite3VdbeResolveLabel(v, labelOk); 3139 sqlite3ReleaseTempReg(pParse, regCkNull); 3140 goto sqlite3ExprCodeIN_finished; 3141 } 3142 3143 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3144 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3145 ** We will then skip the binary search of the RHS. 3146 */ 3147 if( destIfNull==destIfFalse ){ 3148 destStep2 = destIfFalse; 3149 }else{ 3150 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3151 } 3152 for(i=0; i<nVector; i++){ 3153 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3154 if( sqlite3ExprCanBeNull(p) ){ 3155 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3156 VdbeCoverage(v); 3157 } 3158 } 3159 3160 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3161 ** of the RHS using the LHS as a probe. If found, the result is 3162 ** true. 3163 */ 3164 if( eType==IN_INDEX_ROWID ){ 3165 /* In this case, the RHS is the ROWID of table b-tree and so we also 3166 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3167 ** into a single opcode. */ 3168 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3169 VdbeCoverage(v); 3170 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3171 }else{ 3172 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3173 if( destIfFalse==destIfNull ){ 3174 /* Combine Step 3 and Step 5 into a single opcode */ 3175 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3176 rLhs, nVector); VdbeCoverage(v); 3177 goto sqlite3ExprCodeIN_finished; 3178 } 3179 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3180 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3181 rLhs, nVector); VdbeCoverage(v); 3182 } 3183 3184 /* Step 4. If the RHS is known to be non-NULL and we did not find 3185 ** an match on the search above, then the result must be FALSE. 3186 */ 3187 if( rRhsHasNull && nVector==1 ){ 3188 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3189 VdbeCoverage(v); 3190 } 3191 3192 /* Step 5. If we do not care about the difference between NULL and 3193 ** FALSE, then just return false. 3194 */ 3195 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3196 3197 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3198 ** If any comparison is NULL, then the result is NULL. If all 3199 ** comparisons are FALSE then the final result is FALSE. 3200 ** 3201 ** For a scalar LHS, it is sufficient to check just the first row 3202 ** of the RHS. 3203 */ 3204 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3205 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3206 VdbeCoverage(v); 3207 if( nVector>1 ){ 3208 destNotNull = sqlite3VdbeMakeLabel(pParse); 3209 }else{ 3210 /* For nVector==1, combine steps 6 and 7 by immediately returning 3211 ** FALSE if the first comparison is not NULL */ 3212 destNotNull = destIfFalse; 3213 } 3214 for(i=0; i<nVector; i++){ 3215 Expr *p; 3216 CollSeq *pColl; 3217 int r3 = sqlite3GetTempReg(pParse); 3218 p = sqlite3VectorFieldSubexpr(pLeft, i); 3219 pColl = sqlite3ExprCollSeq(pParse, p); 3220 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3221 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3222 (void*)pColl, P4_COLLSEQ); 3223 VdbeCoverage(v); 3224 sqlite3ReleaseTempReg(pParse, r3); 3225 } 3226 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3227 if( nVector>1 ){ 3228 sqlite3VdbeResolveLabel(v, destNotNull); 3229 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3230 VdbeCoverage(v); 3231 3232 /* Step 7: If we reach this point, we know that the result must 3233 ** be false. */ 3234 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3235 } 3236 3237 /* Jumps here in order to return true. */ 3238 sqlite3VdbeJumpHere(v, addrTruthOp); 3239 3240 sqlite3ExprCodeIN_finished: 3241 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3242 VdbeComment((v, "end IN expr")); 3243 sqlite3ExprCodeIN_oom_error: 3244 sqlite3DbFree(pParse->db, aiMap); 3245 sqlite3DbFree(pParse->db, zAff); 3246 } 3247 #endif /* SQLITE_OMIT_SUBQUERY */ 3248 3249 #ifndef SQLITE_OMIT_FLOATING_POINT 3250 /* 3251 ** Generate an instruction that will put the floating point 3252 ** value described by z[0..n-1] into register iMem. 3253 ** 3254 ** The z[] string will probably not be zero-terminated. But the 3255 ** z[n] character is guaranteed to be something that does not look 3256 ** like the continuation of the number. 3257 */ 3258 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3259 if( ALWAYS(z!=0) ){ 3260 double value; 3261 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3262 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3263 if( negateFlag ) value = -value; 3264 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3265 } 3266 } 3267 #endif 3268 3269 3270 /* 3271 ** Generate an instruction that will put the integer describe by 3272 ** text z[0..n-1] into register iMem. 3273 ** 3274 ** Expr.u.zToken is always UTF8 and zero-terminated. 3275 */ 3276 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3277 Vdbe *v = pParse->pVdbe; 3278 if( pExpr->flags & EP_IntValue ){ 3279 int i = pExpr->u.iValue; 3280 assert( i>=0 ); 3281 if( negFlag ) i = -i; 3282 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3283 }else{ 3284 int c; 3285 i64 value; 3286 const char *z = pExpr->u.zToken; 3287 assert( z!=0 ); 3288 c = sqlite3DecOrHexToI64(z, &value); 3289 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3290 #ifdef SQLITE_OMIT_FLOATING_POINT 3291 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3292 #else 3293 #ifndef SQLITE_OMIT_HEX_INTEGER 3294 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3295 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3296 }else 3297 #endif 3298 { 3299 codeReal(v, z, negFlag, iMem); 3300 } 3301 #endif 3302 }else{ 3303 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3304 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3305 } 3306 } 3307 } 3308 3309 3310 /* Generate code that will load into register regOut a value that is 3311 ** appropriate for the iIdxCol-th column of index pIdx. 3312 */ 3313 void sqlite3ExprCodeLoadIndexColumn( 3314 Parse *pParse, /* The parsing context */ 3315 Index *pIdx, /* The index whose column is to be loaded */ 3316 int iTabCur, /* Cursor pointing to a table row */ 3317 int iIdxCol, /* The column of the index to be loaded */ 3318 int regOut /* Store the index column value in this register */ 3319 ){ 3320 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3321 if( iTabCol==XN_EXPR ){ 3322 assert( pIdx->aColExpr ); 3323 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3324 pParse->iSelfTab = iTabCur + 1; 3325 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3326 pParse->iSelfTab = 0; 3327 }else{ 3328 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3329 iTabCol, regOut); 3330 } 3331 } 3332 3333 /* 3334 ** Generate code to extract the value of the iCol-th column of a table. 3335 */ 3336 void sqlite3ExprCodeGetColumnOfTable( 3337 Vdbe *v, /* The VDBE under construction */ 3338 Table *pTab, /* The table containing the value */ 3339 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3340 int iCol, /* Index of the column to extract */ 3341 int regOut /* Extract the value into this register */ 3342 ){ 3343 if( pTab==0 ){ 3344 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3345 return; 3346 } 3347 if( iCol<0 || iCol==pTab->iPKey ){ 3348 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3349 }else{ 3350 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3351 int x = iCol; 3352 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3353 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3354 } 3355 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3356 } 3357 if( iCol>=0 ){ 3358 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3359 } 3360 } 3361 3362 /* 3363 ** Generate code that will extract the iColumn-th column from 3364 ** table pTab and store the column value in register iReg. 3365 ** 3366 ** There must be an open cursor to pTab in iTable when this routine 3367 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3368 */ 3369 int sqlite3ExprCodeGetColumn( 3370 Parse *pParse, /* Parsing and code generating context */ 3371 Table *pTab, /* Description of the table we are reading from */ 3372 int iColumn, /* Index of the table column */ 3373 int iTable, /* The cursor pointing to the table */ 3374 int iReg, /* Store results here */ 3375 u8 p5 /* P5 value for OP_Column + FLAGS */ 3376 ){ 3377 Vdbe *v = pParse->pVdbe; 3378 assert( v!=0 ); 3379 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3380 if( p5 ){ 3381 sqlite3VdbeChangeP5(v, p5); 3382 } 3383 return iReg; 3384 } 3385 3386 /* 3387 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3388 ** over to iTo..iTo+nReg-1. 3389 */ 3390 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3391 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3392 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3393 } 3394 3395 /* 3396 ** Convert a scalar expression node to a TK_REGISTER referencing 3397 ** register iReg. The caller must ensure that iReg already contains 3398 ** the correct value for the expression. 3399 */ 3400 static void exprToRegister(Expr *pExpr, int iReg){ 3401 Expr *p = sqlite3ExprSkipCollate(pExpr); 3402 p->op2 = p->op; 3403 p->op = TK_REGISTER; 3404 p->iTable = iReg; 3405 ExprClearProperty(p, EP_Skip); 3406 } 3407 3408 /* 3409 ** Evaluate an expression (either a vector or a scalar expression) and store 3410 ** the result in continguous temporary registers. Return the index of 3411 ** the first register used to store the result. 3412 ** 3413 ** If the returned result register is a temporary scalar, then also write 3414 ** that register number into *piFreeable. If the returned result register 3415 ** is not a temporary or if the expression is a vector set *piFreeable 3416 ** to 0. 3417 */ 3418 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3419 int iResult; 3420 int nResult = sqlite3ExprVectorSize(p); 3421 if( nResult==1 ){ 3422 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3423 }else{ 3424 *piFreeable = 0; 3425 if( p->op==TK_SELECT ){ 3426 #if SQLITE_OMIT_SUBQUERY 3427 iResult = 0; 3428 #else 3429 iResult = sqlite3CodeSubselect(pParse, p); 3430 #endif 3431 }else{ 3432 int i; 3433 iResult = pParse->nMem+1; 3434 pParse->nMem += nResult; 3435 for(i=0; i<nResult; i++){ 3436 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3437 } 3438 } 3439 } 3440 return iResult; 3441 } 3442 3443 3444 /* 3445 ** Generate code into the current Vdbe to evaluate the given 3446 ** expression. Attempt to store the results in register "target". 3447 ** Return the register where results are stored. 3448 ** 3449 ** With this routine, there is no guarantee that results will 3450 ** be stored in target. The result might be stored in some other 3451 ** register if it is convenient to do so. The calling function 3452 ** must check the return code and move the results to the desired 3453 ** register. 3454 */ 3455 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3456 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3457 int op; /* The opcode being coded */ 3458 int inReg = target; /* Results stored in register inReg */ 3459 int regFree1 = 0; /* If non-zero free this temporary register */ 3460 int regFree2 = 0; /* If non-zero free this temporary register */ 3461 int r1, r2; /* Various register numbers */ 3462 Expr tempX; /* Temporary expression node */ 3463 int p5 = 0; 3464 3465 assert( target>0 && target<=pParse->nMem ); 3466 if( v==0 ){ 3467 assert( pParse->db->mallocFailed ); 3468 return 0; 3469 } 3470 3471 expr_code_doover: 3472 if( pExpr==0 ){ 3473 op = TK_NULL; 3474 }else{ 3475 op = pExpr->op; 3476 } 3477 switch( op ){ 3478 case TK_AGG_COLUMN: { 3479 AggInfo *pAggInfo = pExpr->pAggInfo; 3480 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3481 if( !pAggInfo->directMode ){ 3482 assert( pCol->iMem>0 ); 3483 return pCol->iMem; 3484 }else if( pAggInfo->useSortingIdx ){ 3485 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3486 pCol->iSorterColumn, target); 3487 return target; 3488 } 3489 /* Otherwise, fall thru into the TK_COLUMN case */ 3490 } 3491 case TK_COLUMN: { 3492 int iTab = pExpr->iTable; 3493 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3494 /* This COLUMN expression is really a constant due to WHERE clause 3495 ** constraints, and that constant is coded by the pExpr->pLeft 3496 ** expresssion. However, make sure the constant has the correct 3497 ** datatype by applying the Affinity of the table column to the 3498 ** constant. 3499 */ 3500 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3501 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3502 if( aff>SQLITE_AFF_BLOB ){ 3503 static const char zAff[] = "B\000C\000D\000E"; 3504 assert( SQLITE_AFF_BLOB=='A' ); 3505 assert( SQLITE_AFF_TEXT=='B' ); 3506 if( iReg!=target ){ 3507 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3508 iReg = target; 3509 } 3510 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3511 &zAff[(aff-'B')*2], P4_STATIC); 3512 } 3513 return iReg; 3514 } 3515 if( iTab<0 ){ 3516 if( pParse->iSelfTab<0 ){ 3517 /* Generating CHECK constraints or inserting into partial index */ 3518 return pExpr->iColumn - pParse->iSelfTab; 3519 }else{ 3520 /* Coding an expression that is part of an index where column names 3521 ** in the index refer to the table to which the index belongs */ 3522 iTab = pParse->iSelfTab - 1; 3523 } 3524 } 3525 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3526 pExpr->iColumn, iTab, target, 3527 pExpr->op2); 3528 } 3529 case TK_INTEGER: { 3530 codeInteger(pParse, pExpr, 0, target); 3531 return target; 3532 } 3533 case TK_TRUEFALSE: { 3534 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3535 return target; 3536 } 3537 #ifndef SQLITE_OMIT_FLOATING_POINT 3538 case TK_FLOAT: { 3539 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3540 codeReal(v, pExpr->u.zToken, 0, target); 3541 return target; 3542 } 3543 #endif 3544 case TK_STRING: { 3545 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3546 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3547 return target; 3548 } 3549 case TK_NULL: { 3550 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3551 return target; 3552 } 3553 #ifndef SQLITE_OMIT_BLOB_LITERAL 3554 case TK_BLOB: { 3555 int n; 3556 const char *z; 3557 char *zBlob; 3558 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3559 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3560 assert( pExpr->u.zToken[1]=='\'' ); 3561 z = &pExpr->u.zToken[2]; 3562 n = sqlite3Strlen30(z) - 1; 3563 assert( z[n]=='\'' ); 3564 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3565 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3566 return target; 3567 } 3568 #endif 3569 case TK_VARIABLE: { 3570 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3571 assert( pExpr->u.zToken!=0 ); 3572 assert( pExpr->u.zToken[0]!=0 ); 3573 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3574 if( pExpr->u.zToken[1]!=0 ){ 3575 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3576 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3577 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3578 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3579 } 3580 return target; 3581 } 3582 case TK_REGISTER: { 3583 return pExpr->iTable; 3584 } 3585 #ifndef SQLITE_OMIT_CAST 3586 case TK_CAST: { 3587 /* Expressions of the form: CAST(pLeft AS token) */ 3588 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3589 if( inReg!=target ){ 3590 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3591 inReg = target; 3592 } 3593 sqlite3VdbeAddOp2(v, OP_Cast, target, 3594 sqlite3AffinityType(pExpr->u.zToken, 0)); 3595 return inReg; 3596 } 3597 #endif /* SQLITE_OMIT_CAST */ 3598 case TK_IS: 3599 case TK_ISNOT: 3600 op = (op==TK_IS) ? TK_EQ : TK_NE; 3601 p5 = SQLITE_NULLEQ; 3602 /* fall-through */ 3603 case TK_LT: 3604 case TK_LE: 3605 case TK_GT: 3606 case TK_GE: 3607 case TK_NE: 3608 case TK_EQ: { 3609 Expr *pLeft = pExpr->pLeft; 3610 if( sqlite3ExprIsVector(pLeft) ){ 3611 codeVectorCompare(pParse, pExpr, target, op, p5); 3612 }else{ 3613 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3614 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3615 codeCompare(pParse, pLeft, pExpr->pRight, op, 3616 r1, r2, inReg, SQLITE_STOREP2 | p5); 3617 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3618 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3619 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3620 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3621 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3622 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3623 testcase( regFree1==0 ); 3624 testcase( regFree2==0 ); 3625 } 3626 break; 3627 } 3628 case TK_AND: 3629 case TK_OR: 3630 case TK_PLUS: 3631 case TK_STAR: 3632 case TK_MINUS: 3633 case TK_REM: 3634 case TK_BITAND: 3635 case TK_BITOR: 3636 case TK_SLASH: 3637 case TK_LSHIFT: 3638 case TK_RSHIFT: 3639 case TK_CONCAT: { 3640 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3641 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3642 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3643 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3644 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3645 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3646 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3647 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3648 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3649 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3650 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3651 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3652 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3653 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3654 testcase( regFree1==0 ); 3655 testcase( regFree2==0 ); 3656 break; 3657 } 3658 case TK_UMINUS: { 3659 Expr *pLeft = pExpr->pLeft; 3660 assert( pLeft ); 3661 if( pLeft->op==TK_INTEGER ){ 3662 codeInteger(pParse, pLeft, 1, target); 3663 return target; 3664 #ifndef SQLITE_OMIT_FLOATING_POINT 3665 }else if( pLeft->op==TK_FLOAT ){ 3666 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3667 codeReal(v, pLeft->u.zToken, 1, target); 3668 return target; 3669 #endif 3670 }else{ 3671 tempX.op = TK_INTEGER; 3672 tempX.flags = EP_IntValue|EP_TokenOnly; 3673 tempX.u.iValue = 0; 3674 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3675 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3676 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3677 testcase( regFree2==0 ); 3678 } 3679 break; 3680 } 3681 case TK_BITNOT: 3682 case TK_NOT: { 3683 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3684 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3685 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3686 testcase( regFree1==0 ); 3687 sqlite3VdbeAddOp2(v, op, r1, inReg); 3688 break; 3689 } 3690 case TK_TRUTH: { 3691 int isTrue; /* IS TRUE or IS NOT TRUE */ 3692 int bNormal; /* IS TRUE or IS FALSE */ 3693 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3694 testcase( regFree1==0 ); 3695 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3696 bNormal = pExpr->op2==TK_IS; 3697 testcase( isTrue && bNormal); 3698 testcase( !isTrue && bNormal); 3699 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3700 break; 3701 } 3702 case TK_ISNULL: 3703 case TK_NOTNULL: { 3704 int addr; 3705 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3706 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3707 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3708 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3709 testcase( regFree1==0 ); 3710 addr = sqlite3VdbeAddOp1(v, op, r1); 3711 VdbeCoverageIf(v, op==TK_ISNULL); 3712 VdbeCoverageIf(v, op==TK_NOTNULL); 3713 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3714 sqlite3VdbeJumpHere(v, addr); 3715 break; 3716 } 3717 case TK_AGG_FUNCTION: { 3718 AggInfo *pInfo = pExpr->pAggInfo; 3719 if( pInfo==0 ){ 3720 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3721 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3722 }else{ 3723 return pInfo->aFunc[pExpr->iAgg].iMem; 3724 } 3725 break; 3726 } 3727 case TK_FUNCTION: { 3728 ExprList *pFarg; /* List of function arguments */ 3729 int nFarg; /* Number of function arguments */ 3730 FuncDef *pDef; /* The function definition object */ 3731 const char *zId; /* The function name */ 3732 u32 constMask = 0; /* Mask of function arguments that are constant */ 3733 int i; /* Loop counter */ 3734 sqlite3 *db = pParse->db; /* The database connection */ 3735 u8 enc = ENC(db); /* The text encoding used by this database */ 3736 CollSeq *pColl = 0; /* A collating sequence */ 3737 3738 #ifndef SQLITE_OMIT_WINDOWFUNC 3739 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3740 return pExpr->y.pWin->regResult; 3741 } 3742 #endif 3743 3744 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3745 /* SQL functions can be expensive. So try to move constant functions 3746 ** out of the inner loop, even if that means an extra OP_Copy. */ 3747 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3748 } 3749 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3750 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3751 pFarg = 0; 3752 }else{ 3753 pFarg = pExpr->x.pList; 3754 } 3755 nFarg = pFarg ? pFarg->nExpr : 0; 3756 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3757 zId = pExpr->u.zToken; 3758 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3759 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3760 if( pDef==0 && pParse->explain ){ 3761 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3762 } 3763 #endif 3764 if( pDef==0 || pDef->xFinalize!=0 ){ 3765 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3766 break; 3767 } 3768 3769 /* Attempt a direct implementation of the built-in COALESCE() and 3770 ** IFNULL() functions. This avoids unnecessary evaluation of 3771 ** arguments past the first non-NULL argument. 3772 */ 3773 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3774 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3775 assert( nFarg>=2 ); 3776 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3777 for(i=1; i<nFarg; i++){ 3778 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3779 VdbeCoverage(v); 3780 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3781 } 3782 sqlite3VdbeResolveLabel(v, endCoalesce); 3783 break; 3784 } 3785 3786 /* The UNLIKELY() function is a no-op. The result is the value 3787 ** of the first argument. 3788 */ 3789 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3790 assert( nFarg>=1 ); 3791 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3792 } 3793 3794 #ifdef SQLITE_DEBUG 3795 /* The AFFINITY() function evaluates to a string that describes 3796 ** the type affinity of the argument. This is used for testing of 3797 ** the SQLite type logic. 3798 */ 3799 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3800 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3801 char aff; 3802 assert( nFarg==1 ); 3803 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3804 sqlite3VdbeLoadString(v, target, 3805 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3806 return target; 3807 } 3808 #endif 3809 3810 for(i=0; i<nFarg; i++){ 3811 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3812 testcase( i==31 ); 3813 constMask |= MASKBIT32(i); 3814 } 3815 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3816 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3817 } 3818 } 3819 if( pFarg ){ 3820 if( constMask ){ 3821 r1 = pParse->nMem+1; 3822 pParse->nMem += nFarg; 3823 }else{ 3824 r1 = sqlite3GetTempRange(pParse, nFarg); 3825 } 3826 3827 /* For length() and typeof() functions with a column argument, 3828 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3829 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3830 ** loading. 3831 */ 3832 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3833 u8 exprOp; 3834 assert( nFarg==1 ); 3835 assert( pFarg->a[0].pExpr!=0 ); 3836 exprOp = pFarg->a[0].pExpr->op; 3837 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3838 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3839 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3840 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3841 pFarg->a[0].pExpr->op2 = 3842 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3843 } 3844 } 3845 3846 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3847 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3848 }else{ 3849 r1 = 0; 3850 } 3851 #ifndef SQLITE_OMIT_VIRTUALTABLE 3852 /* Possibly overload the function if the first argument is 3853 ** a virtual table column. 3854 ** 3855 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3856 ** second argument, not the first, as the argument to test to 3857 ** see if it is a column in a virtual table. This is done because 3858 ** the left operand of infix functions (the operand we want to 3859 ** control overloading) ends up as the second argument to the 3860 ** function. The expression "A glob B" is equivalent to 3861 ** "glob(B,A). We want to use the A in "A glob B" to test 3862 ** for function overloading. But we use the B term in "glob(B,A)". 3863 */ 3864 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3865 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3866 }else if( nFarg>0 ){ 3867 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3868 } 3869 #endif 3870 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3871 if( !pColl ) pColl = db->pDfltColl; 3872 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3873 } 3874 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3875 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3876 Expr *pArg = pFarg->a[0].pExpr; 3877 if( pArg->op==TK_COLUMN ){ 3878 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3879 }else{ 3880 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3881 } 3882 }else 3883 #endif 3884 { 3885 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3886 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3887 sqlite3VdbeChangeP5(v, (u8)nFarg); 3888 } 3889 if( nFarg && constMask==0 ){ 3890 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3891 } 3892 return target; 3893 } 3894 #ifndef SQLITE_OMIT_SUBQUERY 3895 case TK_EXISTS: 3896 case TK_SELECT: { 3897 int nCol; 3898 testcase( op==TK_EXISTS ); 3899 testcase( op==TK_SELECT ); 3900 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3901 sqlite3SubselectError(pParse, nCol, 1); 3902 }else{ 3903 return sqlite3CodeSubselect(pParse, pExpr); 3904 } 3905 break; 3906 } 3907 case TK_SELECT_COLUMN: { 3908 int n; 3909 if( pExpr->pLeft->iTable==0 ){ 3910 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 3911 } 3912 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3913 if( pExpr->iTable 3914 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3915 ){ 3916 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3917 pExpr->iTable, n); 3918 } 3919 return pExpr->pLeft->iTable + pExpr->iColumn; 3920 } 3921 case TK_IN: { 3922 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 3923 int destIfNull = sqlite3VdbeMakeLabel(pParse); 3924 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3925 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3926 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3927 sqlite3VdbeResolveLabel(v, destIfFalse); 3928 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3929 sqlite3VdbeResolveLabel(v, destIfNull); 3930 return target; 3931 } 3932 #endif /* SQLITE_OMIT_SUBQUERY */ 3933 3934 3935 /* 3936 ** x BETWEEN y AND z 3937 ** 3938 ** This is equivalent to 3939 ** 3940 ** x>=y AND x<=z 3941 ** 3942 ** X is stored in pExpr->pLeft. 3943 ** Y is stored in pExpr->pList->a[0].pExpr. 3944 ** Z is stored in pExpr->pList->a[1].pExpr. 3945 */ 3946 case TK_BETWEEN: { 3947 exprCodeBetween(pParse, pExpr, target, 0, 0); 3948 return target; 3949 } 3950 case TK_SPAN: 3951 case TK_COLLATE: 3952 case TK_UPLUS: { 3953 pExpr = pExpr->pLeft; 3954 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 3955 } 3956 3957 case TK_TRIGGER: { 3958 /* If the opcode is TK_TRIGGER, then the expression is a reference 3959 ** to a column in the new.* or old.* pseudo-tables available to 3960 ** trigger programs. In this case Expr.iTable is set to 1 for the 3961 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3962 ** is set to the column of the pseudo-table to read, or to -1 to 3963 ** read the rowid field. 3964 ** 3965 ** The expression is implemented using an OP_Param opcode. The p1 3966 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3967 ** to reference another column of the old.* pseudo-table, where 3968 ** i is the index of the column. For a new.rowid reference, p1 is 3969 ** set to (n+1), where n is the number of columns in each pseudo-table. 3970 ** For a reference to any other column in the new.* pseudo-table, p1 3971 ** is set to (n+2+i), where n and i are as defined previously. For 3972 ** example, if the table on which triggers are being fired is 3973 ** declared as: 3974 ** 3975 ** CREATE TABLE t1(a, b); 3976 ** 3977 ** Then p1 is interpreted as follows: 3978 ** 3979 ** p1==0 -> old.rowid p1==3 -> new.rowid 3980 ** p1==1 -> old.a p1==4 -> new.a 3981 ** p1==2 -> old.b p1==5 -> new.b 3982 */ 3983 Table *pTab = pExpr->y.pTab; 3984 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3985 3986 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3987 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3988 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3989 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3990 3991 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3992 VdbeComment((v, "r[%d]=%s.%s", target, 3993 (pExpr->iTable ? "new" : "old"), 3994 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) 3995 )); 3996 3997 #ifndef SQLITE_OMIT_FLOATING_POINT 3998 /* If the column has REAL affinity, it may currently be stored as an 3999 ** integer. Use OP_RealAffinity to make sure it is really real. 4000 ** 4001 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4002 ** floating point when extracting it from the record. */ 4003 if( pExpr->iColumn>=0 4004 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 4005 ){ 4006 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4007 } 4008 #endif 4009 break; 4010 } 4011 4012 case TK_VECTOR: { 4013 sqlite3ErrorMsg(pParse, "row value misused"); 4014 break; 4015 } 4016 4017 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4018 ** that derive from the right-hand table of a LEFT JOIN. The 4019 ** Expr.iTable value is the table number for the right-hand table. 4020 ** The expression is only evaluated if that table is not currently 4021 ** on a LEFT JOIN NULL row. 4022 */ 4023 case TK_IF_NULL_ROW: { 4024 int addrINR; 4025 u8 okConstFactor = pParse->okConstFactor; 4026 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4027 /* Temporarily disable factoring of constant expressions, since 4028 ** even though expressions may appear to be constant, they are not 4029 ** really constant because they originate from the right-hand side 4030 ** of a LEFT JOIN. */ 4031 pParse->okConstFactor = 0; 4032 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4033 pParse->okConstFactor = okConstFactor; 4034 sqlite3VdbeJumpHere(v, addrINR); 4035 sqlite3VdbeChangeP3(v, addrINR, inReg); 4036 break; 4037 } 4038 4039 /* 4040 ** Form A: 4041 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4042 ** 4043 ** Form B: 4044 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4045 ** 4046 ** Form A is can be transformed into the equivalent form B as follows: 4047 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4048 ** WHEN x=eN THEN rN ELSE y END 4049 ** 4050 ** X (if it exists) is in pExpr->pLeft. 4051 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4052 ** odd. The Y is also optional. If the number of elements in x.pList 4053 ** is even, then Y is omitted and the "otherwise" result is NULL. 4054 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4055 ** 4056 ** The result of the expression is the Ri for the first matching Ei, 4057 ** or if there is no matching Ei, the ELSE term Y, or if there is 4058 ** no ELSE term, NULL. 4059 */ 4060 default: assert( op==TK_CASE ); { 4061 int endLabel; /* GOTO label for end of CASE stmt */ 4062 int nextCase; /* GOTO label for next WHEN clause */ 4063 int nExpr; /* 2x number of WHEN terms */ 4064 int i; /* Loop counter */ 4065 ExprList *pEList; /* List of WHEN terms */ 4066 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4067 Expr opCompare; /* The X==Ei expression */ 4068 Expr *pX; /* The X expression */ 4069 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4070 Expr *pDel = 0; 4071 sqlite3 *db = pParse->db; 4072 4073 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4074 assert(pExpr->x.pList->nExpr > 0); 4075 pEList = pExpr->x.pList; 4076 aListelem = pEList->a; 4077 nExpr = pEList->nExpr; 4078 endLabel = sqlite3VdbeMakeLabel(pParse); 4079 if( (pX = pExpr->pLeft)!=0 ){ 4080 pDel = sqlite3ExprDup(db, pX, 0); 4081 if( db->mallocFailed ){ 4082 sqlite3ExprDelete(db, pDel); 4083 break; 4084 } 4085 testcase( pX->op==TK_COLUMN ); 4086 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4087 testcase( regFree1==0 ); 4088 memset(&opCompare, 0, sizeof(opCompare)); 4089 opCompare.op = TK_EQ; 4090 opCompare.pLeft = pDel; 4091 pTest = &opCompare; 4092 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4093 ** The value in regFree1 might get SCopy-ed into the file result. 4094 ** So make sure that the regFree1 register is not reused for other 4095 ** purposes and possibly overwritten. */ 4096 regFree1 = 0; 4097 } 4098 for(i=0; i<nExpr-1; i=i+2){ 4099 if( pX ){ 4100 assert( pTest!=0 ); 4101 opCompare.pRight = aListelem[i].pExpr; 4102 }else{ 4103 pTest = aListelem[i].pExpr; 4104 } 4105 nextCase = sqlite3VdbeMakeLabel(pParse); 4106 testcase( pTest->op==TK_COLUMN ); 4107 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4108 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4109 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4110 sqlite3VdbeGoto(v, endLabel); 4111 sqlite3VdbeResolveLabel(v, nextCase); 4112 } 4113 if( (nExpr&1)!=0 ){ 4114 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4115 }else{ 4116 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4117 } 4118 sqlite3ExprDelete(db, pDel); 4119 sqlite3VdbeResolveLabel(v, endLabel); 4120 break; 4121 } 4122 #ifndef SQLITE_OMIT_TRIGGER 4123 case TK_RAISE: { 4124 assert( pExpr->affExpr==OE_Rollback 4125 || pExpr->affExpr==OE_Abort 4126 || pExpr->affExpr==OE_Fail 4127 || pExpr->affExpr==OE_Ignore 4128 ); 4129 if( !pParse->pTriggerTab ){ 4130 sqlite3ErrorMsg(pParse, 4131 "RAISE() may only be used within a trigger-program"); 4132 return 0; 4133 } 4134 if( pExpr->affExpr==OE_Abort ){ 4135 sqlite3MayAbort(pParse); 4136 } 4137 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4138 if( pExpr->affExpr==OE_Ignore ){ 4139 sqlite3VdbeAddOp4( 4140 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4141 VdbeCoverage(v); 4142 }else{ 4143 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4144 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4145 } 4146 4147 break; 4148 } 4149 #endif 4150 } 4151 sqlite3ReleaseTempReg(pParse, regFree1); 4152 sqlite3ReleaseTempReg(pParse, regFree2); 4153 return inReg; 4154 } 4155 4156 /* 4157 ** Factor out the code of the given expression to initialization time. 4158 ** 4159 ** If regDest>=0 then the result is always stored in that register and the 4160 ** result is not reusable. If regDest<0 then this routine is free to 4161 ** store the value whereever it wants. The register where the expression 4162 ** is stored is returned. When regDest<0, two identical expressions will 4163 ** code to the same register. 4164 */ 4165 int sqlite3ExprCodeAtInit( 4166 Parse *pParse, /* Parsing context */ 4167 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4168 int regDest /* Store the value in this register */ 4169 ){ 4170 ExprList *p; 4171 assert( ConstFactorOk(pParse) ); 4172 p = pParse->pConstExpr; 4173 if( regDest<0 && p ){ 4174 struct ExprList_item *pItem; 4175 int i; 4176 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4177 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4178 return pItem->u.iConstExprReg; 4179 } 4180 } 4181 } 4182 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4183 p = sqlite3ExprListAppend(pParse, p, pExpr); 4184 if( p ){ 4185 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4186 pItem->reusable = regDest<0; 4187 if( regDest<0 ) regDest = ++pParse->nMem; 4188 pItem->u.iConstExprReg = regDest; 4189 } 4190 pParse->pConstExpr = p; 4191 return regDest; 4192 } 4193 4194 /* 4195 ** Generate code to evaluate an expression and store the results 4196 ** into a register. Return the register number where the results 4197 ** are stored. 4198 ** 4199 ** If the register is a temporary register that can be deallocated, 4200 ** then write its number into *pReg. If the result register is not 4201 ** a temporary, then set *pReg to zero. 4202 ** 4203 ** If pExpr is a constant, then this routine might generate this 4204 ** code to fill the register in the initialization section of the 4205 ** VDBE program, in order to factor it out of the evaluation loop. 4206 */ 4207 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4208 int r2; 4209 pExpr = sqlite3ExprSkipCollate(pExpr); 4210 if( ConstFactorOk(pParse) 4211 && pExpr->op!=TK_REGISTER 4212 && sqlite3ExprIsConstantNotJoin(pExpr) 4213 ){ 4214 *pReg = 0; 4215 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4216 }else{ 4217 int r1 = sqlite3GetTempReg(pParse); 4218 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4219 if( r2==r1 ){ 4220 *pReg = r1; 4221 }else{ 4222 sqlite3ReleaseTempReg(pParse, r1); 4223 *pReg = 0; 4224 } 4225 } 4226 return r2; 4227 } 4228 4229 /* 4230 ** Generate code that will evaluate expression pExpr and store the 4231 ** results in register target. The results are guaranteed to appear 4232 ** in register target. 4233 */ 4234 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4235 int inReg; 4236 4237 assert( target>0 && target<=pParse->nMem ); 4238 if( pExpr && pExpr->op==TK_REGISTER ){ 4239 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4240 }else{ 4241 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4242 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4243 if( inReg!=target && pParse->pVdbe ){ 4244 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4245 } 4246 } 4247 } 4248 4249 /* 4250 ** Make a transient copy of expression pExpr and then code it using 4251 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4252 ** except that the input expression is guaranteed to be unchanged. 4253 */ 4254 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4255 sqlite3 *db = pParse->db; 4256 pExpr = sqlite3ExprDup(db, pExpr, 0); 4257 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4258 sqlite3ExprDelete(db, pExpr); 4259 } 4260 4261 /* 4262 ** Generate code that will evaluate expression pExpr and store the 4263 ** results in register target. The results are guaranteed to appear 4264 ** in register target. If the expression is constant, then this routine 4265 ** might choose to code the expression at initialization time. 4266 */ 4267 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4268 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4269 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4270 }else{ 4271 sqlite3ExprCode(pParse, pExpr, target); 4272 } 4273 } 4274 4275 /* 4276 ** Generate code that evaluates the given expression and puts the result 4277 ** in register target. 4278 ** 4279 ** Also make a copy of the expression results into another "cache" register 4280 ** and modify the expression so that the next time it is evaluated, 4281 ** the result is a copy of the cache register. 4282 ** 4283 ** This routine is used for expressions that are used multiple 4284 ** times. They are evaluated once and the results of the expression 4285 ** are reused. 4286 */ 4287 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4288 Vdbe *v = pParse->pVdbe; 4289 int iMem; 4290 4291 assert( target>0 ); 4292 assert( pExpr->op!=TK_REGISTER ); 4293 sqlite3ExprCode(pParse, pExpr, target); 4294 iMem = ++pParse->nMem; 4295 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4296 exprToRegister(pExpr, iMem); 4297 } 4298 4299 /* 4300 ** Generate code that pushes the value of every element of the given 4301 ** expression list into a sequence of registers beginning at target. 4302 ** 4303 ** Return the number of elements evaluated. The number returned will 4304 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4305 ** is defined. 4306 ** 4307 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4308 ** filled using OP_SCopy. OP_Copy must be used instead. 4309 ** 4310 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4311 ** factored out into initialization code. 4312 ** 4313 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4314 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4315 ** in registers at srcReg, and so the value can be copied from there. 4316 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4317 ** are simply omitted rather than being copied from srcReg. 4318 */ 4319 int sqlite3ExprCodeExprList( 4320 Parse *pParse, /* Parsing context */ 4321 ExprList *pList, /* The expression list to be coded */ 4322 int target, /* Where to write results */ 4323 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4324 u8 flags /* SQLITE_ECEL_* flags */ 4325 ){ 4326 struct ExprList_item *pItem; 4327 int i, j, n; 4328 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4329 Vdbe *v = pParse->pVdbe; 4330 assert( pList!=0 ); 4331 assert( target>0 ); 4332 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4333 n = pList->nExpr; 4334 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4335 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4336 Expr *pExpr = pItem->pExpr; 4337 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4338 if( pItem->bSorterRef ){ 4339 i--; 4340 n--; 4341 }else 4342 #endif 4343 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4344 if( flags & SQLITE_ECEL_OMITREF ){ 4345 i--; 4346 n--; 4347 }else{ 4348 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4349 } 4350 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4351 && sqlite3ExprIsConstantNotJoin(pExpr) 4352 ){ 4353 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4354 }else{ 4355 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4356 if( inReg!=target+i ){ 4357 VdbeOp *pOp; 4358 if( copyOp==OP_Copy 4359 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4360 && pOp->p1+pOp->p3+1==inReg 4361 && pOp->p2+pOp->p3+1==target+i 4362 ){ 4363 pOp->p3++; 4364 }else{ 4365 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4366 } 4367 } 4368 } 4369 } 4370 return n; 4371 } 4372 4373 /* 4374 ** Generate code for a BETWEEN operator. 4375 ** 4376 ** x BETWEEN y AND z 4377 ** 4378 ** The above is equivalent to 4379 ** 4380 ** x>=y AND x<=z 4381 ** 4382 ** Code it as such, taking care to do the common subexpression 4383 ** elimination of x. 4384 ** 4385 ** The xJumpIf parameter determines details: 4386 ** 4387 ** NULL: Store the boolean result in reg[dest] 4388 ** sqlite3ExprIfTrue: Jump to dest if true 4389 ** sqlite3ExprIfFalse: Jump to dest if false 4390 ** 4391 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4392 */ 4393 static void exprCodeBetween( 4394 Parse *pParse, /* Parsing and code generating context */ 4395 Expr *pExpr, /* The BETWEEN expression */ 4396 int dest, /* Jump destination or storage location */ 4397 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4398 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4399 ){ 4400 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4401 Expr compLeft; /* The x>=y term */ 4402 Expr compRight; /* The x<=z term */ 4403 int regFree1 = 0; /* Temporary use register */ 4404 Expr *pDel = 0; 4405 sqlite3 *db = pParse->db; 4406 4407 memset(&compLeft, 0, sizeof(Expr)); 4408 memset(&compRight, 0, sizeof(Expr)); 4409 memset(&exprAnd, 0, sizeof(Expr)); 4410 4411 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4412 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4413 if( db->mallocFailed==0 ){ 4414 exprAnd.op = TK_AND; 4415 exprAnd.pLeft = &compLeft; 4416 exprAnd.pRight = &compRight; 4417 compLeft.op = TK_GE; 4418 compLeft.pLeft = pDel; 4419 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4420 compRight.op = TK_LE; 4421 compRight.pLeft = pDel; 4422 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4423 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4424 if( xJump ){ 4425 xJump(pParse, &exprAnd, dest, jumpIfNull); 4426 }else{ 4427 /* Mark the expression is being from the ON or USING clause of a join 4428 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4429 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4430 ** for clarity, but we are out of bits in the Expr.flags field so we 4431 ** have to reuse the EP_FromJoin bit. Bummer. */ 4432 pDel->flags |= EP_FromJoin; 4433 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4434 } 4435 sqlite3ReleaseTempReg(pParse, regFree1); 4436 } 4437 sqlite3ExprDelete(db, pDel); 4438 4439 /* Ensure adequate test coverage */ 4440 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4441 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4442 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4443 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4444 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4445 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4446 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4447 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4448 testcase( xJump==0 ); 4449 } 4450 4451 /* 4452 ** Generate code for a boolean expression such that a jump is made 4453 ** to the label "dest" if the expression is true but execution 4454 ** continues straight thru if the expression is false. 4455 ** 4456 ** If the expression evaluates to NULL (neither true nor false), then 4457 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4458 ** 4459 ** This code depends on the fact that certain token values (ex: TK_EQ) 4460 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4461 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4462 ** the make process cause these values to align. Assert()s in the code 4463 ** below verify that the numbers are aligned correctly. 4464 */ 4465 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4466 Vdbe *v = pParse->pVdbe; 4467 int op = 0; 4468 int regFree1 = 0; 4469 int regFree2 = 0; 4470 int r1, r2; 4471 4472 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4473 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4474 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4475 op = pExpr->op; 4476 switch( op ){ 4477 case TK_AND: 4478 case TK_OR: { 4479 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4480 if( pAlt!=pExpr ){ 4481 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4482 }else if( op==TK_AND ){ 4483 int d2 = sqlite3VdbeMakeLabel(pParse); 4484 testcase( jumpIfNull==0 ); 4485 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4486 jumpIfNull^SQLITE_JUMPIFNULL); 4487 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4488 sqlite3VdbeResolveLabel(v, d2); 4489 }else{ 4490 testcase( jumpIfNull==0 ); 4491 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4492 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4493 } 4494 break; 4495 } 4496 case TK_NOT: { 4497 testcase( jumpIfNull==0 ); 4498 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4499 break; 4500 } 4501 case TK_TRUTH: { 4502 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4503 int isTrue; /* IS TRUE or IS NOT TRUE */ 4504 testcase( jumpIfNull==0 ); 4505 isNot = pExpr->op2==TK_ISNOT; 4506 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4507 testcase( isTrue && isNot ); 4508 testcase( !isTrue && isNot ); 4509 if( isTrue ^ isNot ){ 4510 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4511 isNot ? SQLITE_JUMPIFNULL : 0); 4512 }else{ 4513 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4514 isNot ? SQLITE_JUMPIFNULL : 0); 4515 } 4516 break; 4517 } 4518 case TK_IS: 4519 case TK_ISNOT: 4520 testcase( op==TK_IS ); 4521 testcase( op==TK_ISNOT ); 4522 op = (op==TK_IS) ? TK_EQ : TK_NE; 4523 jumpIfNull = SQLITE_NULLEQ; 4524 /* Fall thru */ 4525 case TK_LT: 4526 case TK_LE: 4527 case TK_GT: 4528 case TK_GE: 4529 case TK_NE: 4530 case TK_EQ: { 4531 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4532 testcase( jumpIfNull==0 ); 4533 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4534 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4535 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4536 r1, r2, dest, jumpIfNull); 4537 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4538 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4539 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4540 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4541 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4542 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4543 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4544 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4545 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4546 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4547 testcase( regFree1==0 ); 4548 testcase( regFree2==0 ); 4549 break; 4550 } 4551 case TK_ISNULL: 4552 case TK_NOTNULL: { 4553 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4554 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4555 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4556 sqlite3VdbeAddOp2(v, op, r1, dest); 4557 VdbeCoverageIf(v, op==TK_ISNULL); 4558 VdbeCoverageIf(v, op==TK_NOTNULL); 4559 testcase( regFree1==0 ); 4560 break; 4561 } 4562 case TK_BETWEEN: { 4563 testcase( jumpIfNull==0 ); 4564 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4565 break; 4566 } 4567 #ifndef SQLITE_OMIT_SUBQUERY 4568 case TK_IN: { 4569 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4570 int destIfNull = jumpIfNull ? dest : destIfFalse; 4571 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4572 sqlite3VdbeGoto(v, dest); 4573 sqlite3VdbeResolveLabel(v, destIfFalse); 4574 break; 4575 } 4576 #endif 4577 default: { 4578 default_expr: 4579 if( ExprAlwaysTrue(pExpr) ){ 4580 sqlite3VdbeGoto(v, dest); 4581 }else if( ExprAlwaysFalse(pExpr) ){ 4582 /* No-op */ 4583 }else{ 4584 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4585 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4586 VdbeCoverage(v); 4587 testcase( regFree1==0 ); 4588 testcase( jumpIfNull==0 ); 4589 } 4590 break; 4591 } 4592 } 4593 sqlite3ReleaseTempReg(pParse, regFree1); 4594 sqlite3ReleaseTempReg(pParse, regFree2); 4595 } 4596 4597 /* 4598 ** Generate code for a boolean expression such that a jump is made 4599 ** to the label "dest" if the expression is false but execution 4600 ** continues straight thru if the expression is true. 4601 ** 4602 ** If the expression evaluates to NULL (neither true nor false) then 4603 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4604 ** is 0. 4605 */ 4606 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4607 Vdbe *v = pParse->pVdbe; 4608 int op = 0; 4609 int regFree1 = 0; 4610 int regFree2 = 0; 4611 int r1, r2; 4612 4613 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4614 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4615 if( pExpr==0 ) return; 4616 4617 /* The value of pExpr->op and op are related as follows: 4618 ** 4619 ** pExpr->op op 4620 ** --------- ---------- 4621 ** TK_ISNULL OP_NotNull 4622 ** TK_NOTNULL OP_IsNull 4623 ** TK_NE OP_Eq 4624 ** TK_EQ OP_Ne 4625 ** TK_GT OP_Le 4626 ** TK_LE OP_Gt 4627 ** TK_GE OP_Lt 4628 ** TK_LT OP_Ge 4629 ** 4630 ** For other values of pExpr->op, op is undefined and unused. 4631 ** The value of TK_ and OP_ constants are arranged such that we 4632 ** can compute the mapping above using the following expression. 4633 ** Assert()s verify that the computation is correct. 4634 */ 4635 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4636 4637 /* Verify correct alignment of TK_ and OP_ constants 4638 */ 4639 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4640 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4641 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4642 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4643 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4644 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4645 assert( pExpr->op!=TK_GT || op==OP_Le ); 4646 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4647 4648 switch( pExpr->op ){ 4649 case TK_AND: 4650 case TK_OR: { 4651 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4652 if( pAlt!=pExpr ){ 4653 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4654 }else if( pExpr->op==TK_AND ){ 4655 testcase( jumpIfNull==0 ); 4656 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4657 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4658 }else{ 4659 int d2 = sqlite3VdbeMakeLabel(pParse); 4660 testcase( jumpIfNull==0 ); 4661 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4662 jumpIfNull^SQLITE_JUMPIFNULL); 4663 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4664 sqlite3VdbeResolveLabel(v, d2); 4665 } 4666 break; 4667 } 4668 case TK_NOT: { 4669 testcase( jumpIfNull==0 ); 4670 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4671 break; 4672 } 4673 case TK_TRUTH: { 4674 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4675 int isTrue; /* IS TRUE or IS NOT TRUE */ 4676 testcase( jumpIfNull==0 ); 4677 isNot = pExpr->op2==TK_ISNOT; 4678 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4679 testcase( isTrue && isNot ); 4680 testcase( !isTrue && isNot ); 4681 if( isTrue ^ isNot ){ 4682 /* IS TRUE and IS NOT FALSE */ 4683 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4684 isNot ? 0 : SQLITE_JUMPIFNULL); 4685 4686 }else{ 4687 /* IS FALSE and IS NOT TRUE */ 4688 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4689 isNot ? 0 : SQLITE_JUMPIFNULL); 4690 } 4691 break; 4692 } 4693 case TK_IS: 4694 case TK_ISNOT: 4695 testcase( pExpr->op==TK_IS ); 4696 testcase( pExpr->op==TK_ISNOT ); 4697 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4698 jumpIfNull = SQLITE_NULLEQ; 4699 /* Fall thru */ 4700 case TK_LT: 4701 case TK_LE: 4702 case TK_GT: 4703 case TK_GE: 4704 case TK_NE: 4705 case TK_EQ: { 4706 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4707 testcase( jumpIfNull==0 ); 4708 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4709 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4710 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4711 r1, r2, dest, jumpIfNull); 4712 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4713 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4714 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4715 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4716 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4717 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4718 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4719 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4720 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4721 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4722 testcase( regFree1==0 ); 4723 testcase( regFree2==0 ); 4724 break; 4725 } 4726 case TK_ISNULL: 4727 case TK_NOTNULL: { 4728 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4729 sqlite3VdbeAddOp2(v, op, r1, dest); 4730 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4731 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4732 testcase( regFree1==0 ); 4733 break; 4734 } 4735 case TK_BETWEEN: { 4736 testcase( jumpIfNull==0 ); 4737 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4738 break; 4739 } 4740 #ifndef SQLITE_OMIT_SUBQUERY 4741 case TK_IN: { 4742 if( jumpIfNull ){ 4743 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4744 }else{ 4745 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4746 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4747 sqlite3VdbeResolveLabel(v, destIfNull); 4748 } 4749 break; 4750 } 4751 #endif 4752 default: { 4753 default_expr: 4754 if( ExprAlwaysFalse(pExpr) ){ 4755 sqlite3VdbeGoto(v, dest); 4756 }else if( ExprAlwaysTrue(pExpr) ){ 4757 /* no-op */ 4758 }else{ 4759 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4760 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4761 VdbeCoverage(v); 4762 testcase( regFree1==0 ); 4763 testcase( jumpIfNull==0 ); 4764 } 4765 break; 4766 } 4767 } 4768 sqlite3ReleaseTempReg(pParse, regFree1); 4769 sqlite3ReleaseTempReg(pParse, regFree2); 4770 } 4771 4772 /* 4773 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4774 ** code generation, and that copy is deleted after code generation. This 4775 ** ensures that the original pExpr is unchanged. 4776 */ 4777 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4778 sqlite3 *db = pParse->db; 4779 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4780 if( db->mallocFailed==0 ){ 4781 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4782 } 4783 sqlite3ExprDelete(db, pCopy); 4784 } 4785 4786 /* 4787 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4788 ** type of expression. 4789 ** 4790 ** If pExpr is a simple SQL value - an integer, real, string, blob 4791 ** or NULL value - then the VDBE currently being prepared is configured 4792 ** to re-prepare each time a new value is bound to variable pVar. 4793 ** 4794 ** Additionally, if pExpr is a simple SQL value and the value is the 4795 ** same as that currently bound to variable pVar, non-zero is returned. 4796 ** Otherwise, if the values are not the same or if pExpr is not a simple 4797 ** SQL value, zero is returned. 4798 */ 4799 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4800 int res = 0; 4801 int iVar; 4802 sqlite3_value *pL, *pR = 0; 4803 4804 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4805 if( pR ){ 4806 iVar = pVar->iColumn; 4807 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4808 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4809 if( pL ){ 4810 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4811 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4812 } 4813 res = 0==sqlite3MemCompare(pL, pR, 0); 4814 } 4815 sqlite3ValueFree(pR); 4816 sqlite3ValueFree(pL); 4817 } 4818 4819 return res; 4820 } 4821 4822 /* 4823 ** Do a deep comparison of two expression trees. Return 0 if the two 4824 ** expressions are completely identical. Return 1 if they differ only 4825 ** by a COLLATE operator at the top level. Return 2 if there are differences 4826 ** other than the top-level COLLATE operator. 4827 ** 4828 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4829 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4830 ** 4831 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4832 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4833 ** 4834 ** Sometimes this routine will return 2 even if the two expressions 4835 ** really are equivalent. If we cannot prove that the expressions are 4836 ** identical, we return 2 just to be safe. So if this routine 4837 ** returns 2, then you do not really know for certain if the two 4838 ** expressions are the same. But if you get a 0 or 1 return, then you 4839 ** can be sure the expressions are the same. In the places where 4840 ** this routine is used, it does not hurt to get an extra 2 - that 4841 ** just might result in some slightly slower code. But returning 4842 ** an incorrect 0 or 1 could lead to a malfunction. 4843 ** 4844 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4845 ** pParse->pReprepare can be matched against literals in pB. The 4846 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4847 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4848 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4849 ** pB causes a return value of 2. 4850 */ 4851 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4852 u32 combinedFlags; 4853 if( pA==0 || pB==0 ){ 4854 return pB==pA ? 0 : 2; 4855 } 4856 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4857 return 0; 4858 } 4859 combinedFlags = pA->flags | pB->flags; 4860 if( combinedFlags & EP_IntValue ){ 4861 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4862 return 0; 4863 } 4864 return 2; 4865 } 4866 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 4867 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4868 return 1; 4869 } 4870 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4871 return 1; 4872 } 4873 return 2; 4874 } 4875 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4876 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 4877 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4878 #ifndef SQLITE_OMIT_WINDOWFUNC 4879 assert( pA->op==pB->op ); 4880 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 4881 return 2; 4882 } 4883 if( ExprHasProperty(pA,EP_WinFunc) ){ 4884 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 4885 return 2; 4886 } 4887 } 4888 #endif 4889 }else if( pA->op==TK_NULL ){ 4890 return 0; 4891 }else if( pA->op==TK_COLLATE ){ 4892 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4893 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4894 return 2; 4895 } 4896 } 4897 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4898 if( (combinedFlags & EP_TokenOnly)==0 ){ 4899 if( combinedFlags & EP_xIsSelect ) return 2; 4900 if( (combinedFlags & EP_FixedCol)==0 4901 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4902 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4903 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4904 if( pA->op!=TK_STRING 4905 && pA->op!=TK_TRUEFALSE 4906 && (combinedFlags & EP_Reduced)==0 4907 ){ 4908 if( pA->iColumn!=pB->iColumn ) return 2; 4909 if( pA->op2!=pB->op2 ) return 2; 4910 if( pA->iTable!=pB->iTable 4911 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4912 } 4913 } 4914 return 0; 4915 } 4916 4917 /* 4918 ** Compare two ExprList objects. Return 0 if they are identical and 4919 ** non-zero if they differ in any way. 4920 ** 4921 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4922 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4923 ** 4924 ** This routine might return non-zero for equivalent ExprLists. The 4925 ** only consequence will be disabled optimizations. But this routine 4926 ** must never return 0 if the two ExprList objects are different, or 4927 ** a malfunction will result. 4928 ** 4929 ** Two NULL pointers are considered to be the same. But a NULL pointer 4930 ** always differs from a non-NULL pointer. 4931 */ 4932 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4933 int i; 4934 if( pA==0 && pB==0 ) return 0; 4935 if( pA==0 || pB==0 ) return 1; 4936 if( pA->nExpr!=pB->nExpr ) return 1; 4937 for(i=0; i<pA->nExpr; i++){ 4938 Expr *pExprA = pA->a[i].pExpr; 4939 Expr *pExprB = pB->a[i].pExpr; 4940 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 4941 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4942 } 4943 return 0; 4944 } 4945 4946 /* 4947 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4948 ** are ignored. 4949 */ 4950 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4951 return sqlite3ExprCompare(0, 4952 sqlite3ExprSkipCollate(pA), 4953 sqlite3ExprSkipCollate(pB), 4954 iTab); 4955 } 4956 4957 /* 4958 ** Return non-zero if Expr p can only be true if pNN is not NULL. 4959 */ 4960 static int exprImpliesNotNull( 4961 Parse *pParse, /* Parsing context */ 4962 Expr *p, /* The expression to be checked */ 4963 Expr *pNN, /* The expression that is NOT NULL */ 4964 int iTab, /* Table being evaluated */ 4965 int seenNot /* True if p is an operand of NOT */ 4966 ){ 4967 assert( p ); 4968 assert( pNN ); 4969 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 4970 return pNN->op!=TK_NULL; 4971 } 4972 switch( p->op ){ 4973 case TK_IN: { 4974 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 4975 assert( ExprHasProperty(p,EP_xIsSelect) 4976 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 4977 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4978 } 4979 case TK_BETWEEN: { 4980 ExprList *pList = p->x.pList; 4981 assert( pList!=0 ); 4982 assert( pList->nExpr==2 ); 4983 if( seenNot ) return 0; 4984 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, seenNot) 4985 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, seenNot) 4986 ){ 4987 return 1; 4988 } 4989 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4990 } 4991 case TK_EQ: 4992 case TK_NE: 4993 case TK_LT: 4994 case TK_LE: 4995 case TK_GT: 4996 case TK_GE: 4997 case TK_PLUS: 4998 case TK_MINUS: 4999 case TK_STAR: 5000 case TK_REM: 5001 case TK_BITAND: 5002 case TK_BITOR: 5003 case TK_SLASH: 5004 case TK_LSHIFT: 5005 case TK_RSHIFT: 5006 case TK_CONCAT: { 5007 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5008 /* Fall thru into the next case */ 5009 } 5010 case TK_SPAN: 5011 case TK_COLLATE: 5012 case TK_BITNOT: 5013 case TK_UPLUS: 5014 case TK_UMINUS: { 5015 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5016 } 5017 case TK_TRUTH: { 5018 if( seenNot ) return 0; 5019 if( p->op2!=TK_IS ) return 0; 5020 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5021 } 5022 case TK_NOT: { 5023 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5024 } 5025 } 5026 return 0; 5027 } 5028 5029 /* 5030 ** Return true if we can prove the pE2 will always be true if pE1 is 5031 ** true. Return false if we cannot complete the proof or if pE2 might 5032 ** be false. Examples: 5033 ** 5034 ** pE1: x==5 pE2: x==5 Result: true 5035 ** pE1: x>0 pE2: x==5 Result: false 5036 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5037 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5038 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5039 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5040 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5041 ** 5042 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5043 ** Expr.iTable<0 then assume a table number given by iTab. 5044 ** 5045 ** If pParse is not NULL, then the values of bound variables in pE1 are 5046 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5047 ** modified to record which bound variables are referenced. If pParse 5048 ** is NULL, then false will be returned if pE1 contains any bound variables. 5049 ** 5050 ** When in doubt, return false. Returning true might give a performance 5051 ** improvement. Returning false might cause a performance reduction, but 5052 ** it will always give the correct answer and is hence always safe. 5053 */ 5054 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5055 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5056 return 1; 5057 } 5058 if( pE2->op==TK_OR 5059 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5060 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5061 ){ 5062 return 1; 5063 } 5064 if( pE2->op==TK_NOTNULL 5065 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5066 ){ 5067 return 1; 5068 } 5069 return 0; 5070 } 5071 5072 /* 5073 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 5074 ** If the expression node requires that the table at pWalker->iCur 5075 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5076 ** 5077 ** This routine controls an optimization. False positives (setting 5078 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5079 ** (never setting pWalker->eCode) is a harmless missed optimization. 5080 */ 5081 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5082 testcase( pExpr->op==TK_AGG_COLUMN ); 5083 testcase( pExpr->op==TK_AGG_FUNCTION ); 5084 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5085 switch( pExpr->op ){ 5086 case TK_ISNOT: 5087 case TK_NOT: 5088 case TK_ISNULL: 5089 case TK_NOTNULL: 5090 case TK_IS: 5091 case TK_OR: 5092 case TK_CASE: 5093 case TK_IN: 5094 case TK_FUNCTION: 5095 testcase( pExpr->op==TK_ISNOT ); 5096 testcase( pExpr->op==TK_NOT ); 5097 testcase( pExpr->op==TK_ISNULL ); 5098 testcase( pExpr->op==TK_NOTNULL ); 5099 testcase( pExpr->op==TK_IS ); 5100 testcase( pExpr->op==TK_OR ); 5101 testcase( pExpr->op==TK_CASE ); 5102 testcase( pExpr->op==TK_IN ); 5103 testcase( pExpr->op==TK_FUNCTION ); 5104 return WRC_Prune; 5105 case TK_COLUMN: 5106 if( pWalker->u.iCur==pExpr->iTable ){ 5107 pWalker->eCode = 1; 5108 return WRC_Abort; 5109 } 5110 return WRC_Prune; 5111 5112 /* Virtual tables are allowed to use constraints like x=NULL. So 5113 ** a term of the form x=y does not prove that y is not null if x 5114 ** is the column of a virtual table */ 5115 case TK_EQ: 5116 case TK_NE: 5117 case TK_LT: 5118 case TK_LE: 5119 case TK_GT: 5120 case TK_GE: 5121 testcase( pExpr->op==TK_EQ ); 5122 testcase( pExpr->op==TK_NE ); 5123 testcase( pExpr->op==TK_LT ); 5124 testcase( pExpr->op==TK_LE ); 5125 testcase( pExpr->op==TK_GT ); 5126 testcase( pExpr->op==TK_GE ); 5127 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5128 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5129 ){ 5130 return WRC_Prune; 5131 } 5132 default: 5133 return WRC_Continue; 5134 } 5135 } 5136 5137 /* 5138 ** Return true (non-zero) if expression p can only be true if at least 5139 ** one column of table iTab is non-null. In other words, return true 5140 ** if expression p will always be NULL or false if every column of iTab 5141 ** is NULL. 5142 ** 5143 ** False negatives are acceptable. In other words, it is ok to return 5144 ** zero even if expression p will never be true of every column of iTab 5145 ** is NULL. A false negative is merely a missed optimization opportunity. 5146 ** 5147 ** False positives are not allowed, however. A false positive may result 5148 ** in an incorrect answer. 5149 ** 5150 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5151 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5152 ** 5153 ** This routine is used to check if a LEFT JOIN can be converted into 5154 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5155 ** clause requires that some column of the right table of the LEFT JOIN 5156 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5157 ** ordinary join. 5158 */ 5159 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5160 Walker w; 5161 p = sqlite3ExprSkipCollate(p); 5162 while( p ){ 5163 if( p->op==TK_NOTNULL ){ 5164 p = p->pLeft; 5165 }else if( p->op==TK_AND ){ 5166 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5167 p = p->pRight; 5168 }else{ 5169 break; 5170 } 5171 } 5172 w.xExprCallback = impliesNotNullRow; 5173 w.xSelectCallback = 0; 5174 w.xSelectCallback2 = 0; 5175 w.eCode = 0; 5176 w.u.iCur = iTab; 5177 sqlite3WalkExpr(&w, p); 5178 return w.eCode; 5179 } 5180 5181 /* 5182 ** An instance of the following structure is used by the tree walker 5183 ** to determine if an expression can be evaluated by reference to the 5184 ** index only, without having to do a search for the corresponding 5185 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5186 ** is the cursor for the table. 5187 */ 5188 struct IdxCover { 5189 Index *pIdx; /* The index to be tested for coverage */ 5190 int iCur; /* Cursor number for the table corresponding to the index */ 5191 }; 5192 5193 /* 5194 ** Check to see if there are references to columns in table 5195 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5196 ** pWalker->u.pIdxCover->pIdx. 5197 */ 5198 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5199 if( pExpr->op==TK_COLUMN 5200 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5201 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5202 ){ 5203 pWalker->eCode = 1; 5204 return WRC_Abort; 5205 } 5206 return WRC_Continue; 5207 } 5208 5209 /* 5210 ** Determine if an index pIdx on table with cursor iCur contains will 5211 ** the expression pExpr. Return true if the index does cover the 5212 ** expression and false if the pExpr expression references table columns 5213 ** that are not found in the index pIdx. 5214 ** 5215 ** An index covering an expression means that the expression can be 5216 ** evaluated using only the index and without having to lookup the 5217 ** corresponding table entry. 5218 */ 5219 int sqlite3ExprCoveredByIndex( 5220 Expr *pExpr, /* The index to be tested */ 5221 int iCur, /* The cursor number for the corresponding table */ 5222 Index *pIdx /* The index that might be used for coverage */ 5223 ){ 5224 Walker w; 5225 struct IdxCover xcov; 5226 memset(&w, 0, sizeof(w)); 5227 xcov.iCur = iCur; 5228 xcov.pIdx = pIdx; 5229 w.xExprCallback = exprIdxCover; 5230 w.u.pIdxCover = &xcov; 5231 sqlite3WalkExpr(&w, pExpr); 5232 return !w.eCode; 5233 } 5234 5235 5236 /* 5237 ** An instance of the following structure is used by the tree walker 5238 ** to count references to table columns in the arguments of an 5239 ** aggregate function, in order to implement the 5240 ** sqlite3FunctionThisSrc() routine. 5241 */ 5242 struct SrcCount { 5243 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5244 int nThis; /* Number of references to columns in pSrcList */ 5245 int nOther; /* Number of references to columns in other FROM clauses */ 5246 }; 5247 5248 /* 5249 ** Count the number of references to columns. 5250 */ 5251 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5252 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5253 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5254 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5255 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5256 ** NEVER() will need to be removed. */ 5257 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5258 int i; 5259 struct SrcCount *p = pWalker->u.pSrcCount; 5260 SrcList *pSrc = p->pSrc; 5261 int nSrc = pSrc ? pSrc->nSrc : 0; 5262 for(i=0; i<nSrc; i++){ 5263 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5264 } 5265 if( i<nSrc ){ 5266 p->nThis++; 5267 }else{ 5268 p->nOther++; 5269 } 5270 } 5271 return WRC_Continue; 5272 } 5273 5274 /* 5275 ** Determine if any of the arguments to the pExpr Function reference 5276 ** pSrcList. Return true if they do. Also return true if the function 5277 ** has no arguments or has only constant arguments. Return false if pExpr 5278 ** references columns but not columns of tables found in pSrcList. 5279 */ 5280 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5281 Walker w; 5282 struct SrcCount cnt; 5283 assert( pExpr->op==TK_AGG_FUNCTION ); 5284 w.xExprCallback = exprSrcCount; 5285 w.xSelectCallback = 0; 5286 w.u.pSrcCount = &cnt; 5287 cnt.pSrc = pSrcList; 5288 cnt.nThis = 0; 5289 cnt.nOther = 0; 5290 sqlite3WalkExprList(&w, pExpr->x.pList); 5291 return cnt.nThis>0 || cnt.nOther==0; 5292 } 5293 5294 /* 5295 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5296 ** the new element. Return a negative number if malloc fails. 5297 */ 5298 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5299 int i; 5300 pInfo->aCol = sqlite3ArrayAllocate( 5301 db, 5302 pInfo->aCol, 5303 sizeof(pInfo->aCol[0]), 5304 &pInfo->nColumn, 5305 &i 5306 ); 5307 return i; 5308 } 5309 5310 /* 5311 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5312 ** the new element. Return a negative number if malloc fails. 5313 */ 5314 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5315 int i; 5316 pInfo->aFunc = sqlite3ArrayAllocate( 5317 db, 5318 pInfo->aFunc, 5319 sizeof(pInfo->aFunc[0]), 5320 &pInfo->nFunc, 5321 &i 5322 ); 5323 return i; 5324 } 5325 5326 /* 5327 ** This is the xExprCallback for a tree walker. It is used to 5328 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5329 ** for additional information. 5330 */ 5331 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5332 int i; 5333 NameContext *pNC = pWalker->u.pNC; 5334 Parse *pParse = pNC->pParse; 5335 SrcList *pSrcList = pNC->pSrcList; 5336 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5337 5338 assert( pNC->ncFlags & NC_UAggInfo ); 5339 switch( pExpr->op ){ 5340 case TK_AGG_COLUMN: 5341 case TK_COLUMN: { 5342 testcase( pExpr->op==TK_AGG_COLUMN ); 5343 testcase( pExpr->op==TK_COLUMN ); 5344 /* Check to see if the column is in one of the tables in the FROM 5345 ** clause of the aggregate query */ 5346 if( ALWAYS(pSrcList!=0) ){ 5347 struct SrcList_item *pItem = pSrcList->a; 5348 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5349 struct AggInfo_col *pCol; 5350 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5351 if( pExpr->iTable==pItem->iCursor ){ 5352 /* If we reach this point, it means that pExpr refers to a table 5353 ** that is in the FROM clause of the aggregate query. 5354 ** 5355 ** Make an entry for the column in pAggInfo->aCol[] if there 5356 ** is not an entry there already. 5357 */ 5358 int k; 5359 pCol = pAggInfo->aCol; 5360 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5361 if( pCol->iTable==pExpr->iTable && 5362 pCol->iColumn==pExpr->iColumn ){ 5363 break; 5364 } 5365 } 5366 if( (k>=pAggInfo->nColumn) 5367 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5368 ){ 5369 pCol = &pAggInfo->aCol[k]; 5370 pCol->pTab = pExpr->y.pTab; 5371 pCol->iTable = pExpr->iTable; 5372 pCol->iColumn = pExpr->iColumn; 5373 pCol->iMem = ++pParse->nMem; 5374 pCol->iSorterColumn = -1; 5375 pCol->pExpr = pExpr; 5376 if( pAggInfo->pGroupBy ){ 5377 int j, n; 5378 ExprList *pGB = pAggInfo->pGroupBy; 5379 struct ExprList_item *pTerm = pGB->a; 5380 n = pGB->nExpr; 5381 for(j=0; j<n; j++, pTerm++){ 5382 Expr *pE = pTerm->pExpr; 5383 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5384 pE->iColumn==pExpr->iColumn ){ 5385 pCol->iSorterColumn = j; 5386 break; 5387 } 5388 } 5389 } 5390 if( pCol->iSorterColumn<0 ){ 5391 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5392 } 5393 } 5394 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5395 ** because it was there before or because we just created it). 5396 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5397 ** pAggInfo->aCol[] entry. 5398 */ 5399 ExprSetVVAProperty(pExpr, EP_NoReduce); 5400 pExpr->pAggInfo = pAggInfo; 5401 pExpr->op = TK_AGG_COLUMN; 5402 pExpr->iAgg = (i16)k; 5403 break; 5404 } /* endif pExpr->iTable==pItem->iCursor */ 5405 } /* end loop over pSrcList */ 5406 } 5407 return WRC_Prune; 5408 } 5409 case TK_AGG_FUNCTION: { 5410 if( (pNC->ncFlags & NC_InAggFunc)==0 5411 && pWalker->walkerDepth==pExpr->op2 5412 ){ 5413 /* Check to see if pExpr is a duplicate of another aggregate 5414 ** function that is already in the pAggInfo structure 5415 */ 5416 struct AggInfo_func *pItem = pAggInfo->aFunc; 5417 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5418 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5419 break; 5420 } 5421 } 5422 if( i>=pAggInfo->nFunc ){ 5423 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5424 */ 5425 u8 enc = ENC(pParse->db); 5426 i = addAggInfoFunc(pParse->db, pAggInfo); 5427 if( i>=0 ){ 5428 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5429 pItem = &pAggInfo->aFunc[i]; 5430 pItem->pExpr = pExpr; 5431 pItem->iMem = ++pParse->nMem; 5432 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5433 pItem->pFunc = sqlite3FindFunction(pParse->db, 5434 pExpr->u.zToken, 5435 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5436 if( pExpr->flags & EP_Distinct ){ 5437 pItem->iDistinct = pParse->nTab++; 5438 }else{ 5439 pItem->iDistinct = -1; 5440 } 5441 } 5442 } 5443 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5444 */ 5445 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5446 ExprSetVVAProperty(pExpr, EP_NoReduce); 5447 pExpr->iAgg = (i16)i; 5448 pExpr->pAggInfo = pAggInfo; 5449 return WRC_Prune; 5450 }else{ 5451 return WRC_Continue; 5452 } 5453 } 5454 } 5455 return WRC_Continue; 5456 } 5457 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5458 UNUSED_PARAMETER(pSelect); 5459 pWalker->walkerDepth++; 5460 return WRC_Continue; 5461 } 5462 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5463 UNUSED_PARAMETER(pSelect); 5464 pWalker->walkerDepth--; 5465 } 5466 5467 /* 5468 ** Analyze the pExpr expression looking for aggregate functions and 5469 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5470 ** points to. Additional entries are made on the AggInfo object as 5471 ** necessary. 5472 ** 5473 ** This routine should only be called after the expression has been 5474 ** analyzed by sqlite3ResolveExprNames(). 5475 */ 5476 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5477 Walker w; 5478 w.xExprCallback = analyzeAggregate; 5479 w.xSelectCallback = analyzeAggregatesInSelect; 5480 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5481 w.walkerDepth = 0; 5482 w.u.pNC = pNC; 5483 w.pParse = 0; 5484 assert( pNC->pSrcList!=0 ); 5485 sqlite3WalkExpr(&w, pExpr); 5486 } 5487 5488 /* 5489 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5490 ** expression list. Return the number of errors. 5491 ** 5492 ** If an error is found, the analysis is cut short. 5493 */ 5494 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5495 struct ExprList_item *pItem; 5496 int i; 5497 if( pList ){ 5498 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5499 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5500 } 5501 } 5502 } 5503 5504 /* 5505 ** Allocate a single new register for use to hold some intermediate result. 5506 */ 5507 int sqlite3GetTempReg(Parse *pParse){ 5508 if( pParse->nTempReg==0 ){ 5509 return ++pParse->nMem; 5510 } 5511 return pParse->aTempReg[--pParse->nTempReg]; 5512 } 5513 5514 /* 5515 ** Deallocate a register, making available for reuse for some other 5516 ** purpose. 5517 */ 5518 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5519 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5520 pParse->aTempReg[pParse->nTempReg++] = iReg; 5521 } 5522 } 5523 5524 /* 5525 ** Allocate or deallocate a block of nReg consecutive registers. 5526 */ 5527 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5528 int i, n; 5529 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5530 i = pParse->iRangeReg; 5531 n = pParse->nRangeReg; 5532 if( nReg<=n ){ 5533 pParse->iRangeReg += nReg; 5534 pParse->nRangeReg -= nReg; 5535 }else{ 5536 i = pParse->nMem+1; 5537 pParse->nMem += nReg; 5538 } 5539 return i; 5540 } 5541 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5542 if( nReg==1 ){ 5543 sqlite3ReleaseTempReg(pParse, iReg); 5544 return; 5545 } 5546 if( nReg>pParse->nRangeReg ){ 5547 pParse->nRangeReg = nReg; 5548 pParse->iRangeReg = iReg; 5549 } 5550 } 5551 5552 /* 5553 ** Mark all temporary registers as being unavailable for reuse. 5554 */ 5555 void sqlite3ClearTempRegCache(Parse *pParse){ 5556 pParse->nTempReg = 0; 5557 pParse->nRangeReg = 0; 5558 } 5559 5560 /* 5561 ** Validate that no temporary register falls within the range of 5562 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5563 ** statements. 5564 */ 5565 #ifdef SQLITE_DEBUG 5566 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5567 int i; 5568 if( pParse->nRangeReg>0 5569 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5570 && pParse->iRangeReg <= iLast 5571 ){ 5572 return 0; 5573 } 5574 for(i=0; i<pParse->nTempReg; i++){ 5575 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5576 return 0; 5577 } 5578 } 5579 return 1; 5580 } 5581 #endif /* SQLITE_DEBUG */ 5582