1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 assert( pExpr->y.pTab!=0 ); 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 if( op==TK_SELECT ){ 62 assert( ExprUseXSelect(pExpr) ); 63 assert( pExpr->x.pSelect!=0 ); 64 assert( pExpr->x.pSelect->pEList!=0 ); 65 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 66 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 67 } 68 #ifndef SQLITE_OMIT_CAST 69 if( op==TK_CAST ){ 70 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 71 return sqlite3AffinityType(pExpr->u.zToken, 0); 72 } 73 #endif 74 if( op==TK_SELECT_COLUMN ){ 75 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 76 assert( pExpr->iColumn < pExpr->iTable ); 77 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 78 return sqlite3ExprAffinity( 79 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 80 ); 81 } 82 if( op==TK_VECTOR ){ 83 assert( ExprUseXList(pExpr) ); 84 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 85 } 86 return pExpr->affExpr; 87 } 88 89 /* 90 ** Set the collating sequence for expression pExpr to be the collating 91 ** sequence named by pToken. Return a pointer to a new Expr node that 92 ** implements the COLLATE operator. 93 ** 94 ** If a memory allocation error occurs, that fact is recorded in pParse->db 95 ** and the pExpr parameter is returned unchanged. 96 */ 97 Expr *sqlite3ExprAddCollateToken( 98 const Parse *pParse, /* Parsing context */ 99 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 100 const Token *pCollName, /* Name of collating sequence */ 101 int dequote /* True to dequote pCollName */ 102 ){ 103 if( pCollName->n>0 ){ 104 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 105 if( pNew ){ 106 pNew->pLeft = pExpr; 107 pNew->flags |= EP_Collate|EP_Skip; 108 pExpr = pNew; 109 } 110 } 111 return pExpr; 112 } 113 Expr *sqlite3ExprAddCollateString( 114 const Parse *pParse, /* Parsing context */ 115 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 116 const char *zC /* The collating sequence name */ 117 ){ 118 Token s; 119 assert( zC!=0 ); 120 sqlite3TokenInit(&s, (char*)zC); 121 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 122 } 123 124 /* 125 ** Skip over any TK_COLLATE operators. 126 */ 127 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 128 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 129 assert( pExpr->op==TK_COLLATE ); 130 pExpr = pExpr->pLeft; 131 } 132 return pExpr; 133 } 134 135 /* 136 ** Skip over any TK_COLLATE operators and/or any unlikely() 137 ** or likelihood() or likely() functions at the root of an 138 ** expression. 139 */ 140 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 141 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 142 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 143 assert( ExprUseXList(pExpr) ); 144 assert( pExpr->x.pList->nExpr>0 ); 145 assert( pExpr->op==TK_FUNCTION ); 146 pExpr = pExpr->x.pList->a[0].pExpr; 147 }else{ 148 assert( pExpr->op==TK_COLLATE ); 149 pExpr = pExpr->pLeft; 150 } 151 } 152 return pExpr; 153 } 154 155 /* 156 ** Return the collation sequence for the expression pExpr. If 157 ** there is no defined collating sequence, return NULL. 158 ** 159 ** See also: sqlite3ExprNNCollSeq() 160 ** 161 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 162 ** default collation if pExpr has no defined collation. 163 ** 164 ** The collating sequence might be determined by a COLLATE operator 165 ** or by the presence of a column with a defined collating sequence. 166 ** COLLATE operators take first precedence. Left operands take 167 ** precedence over right operands. 168 */ 169 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 170 sqlite3 *db = pParse->db; 171 CollSeq *pColl = 0; 172 const Expr *p = pExpr; 173 while( p ){ 174 int op = p->op; 175 if( op==TK_REGISTER ) op = p->op2; 176 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 177 int j; 178 assert( ExprUseYTab(p) ); 179 assert( p->y.pTab!=0 ); 180 if( (j = p->iColumn)>=0 ){ 181 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 182 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 183 } 184 break; 185 } 186 if( op==TK_CAST || op==TK_UPLUS ){ 187 p = p->pLeft; 188 continue; 189 } 190 if( op==TK_VECTOR ){ 191 assert( ExprUseXList(p) ); 192 p = p->x.pList->a[0].pExpr; 193 continue; 194 } 195 if( op==TK_COLLATE ){ 196 assert( !ExprHasProperty(p, EP_IntValue) ); 197 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 198 break; 199 } 200 if( p->flags & EP_Collate ){ 201 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 202 p = p->pLeft; 203 }else{ 204 Expr *pNext = p->pRight; 205 /* The Expr.x union is never used at the same time as Expr.pRight */ 206 assert( ExprUseXList(p) ); 207 assert( p->x.pList==0 || p->pRight==0 ); 208 if( p->x.pList!=0 && !db->mallocFailed ){ 209 int i; 210 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 211 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 212 pNext = p->x.pList->a[i].pExpr; 213 break; 214 } 215 } 216 } 217 p = pNext; 218 } 219 }else{ 220 break; 221 } 222 } 223 if( sqlite3CheckCollSeq(pParse, pColl) ){ 224 pColl = 0; 225 } 226 return pColl; 227 } 228 229 /* 230 ** Return the collation sequence for the expression pExpr. If 231 ** there is no defined collating sequence, return a pointer to the 232 ** defautl collation sequence. 233 ** 234 ** See also: sqlite3ExprCollSeq() 235 ** 236 ** The sqlite3ExprCollSeq() routine works the same except that it 237 ** returns NULL if there is no defined collation. 238 */ 239 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 240 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 241 if( p==0 ) p = pParse->db->pDfltColl; 242 assert( p!=0 ); 243 return p; 244 } 245 246 /* 247 ** Return TRUE if the two expressions have equivalent collating sequences. 248 */ 249 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 250 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 251 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 252 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 253 } 254 255 /* 256 ** pExpr is an operand of a comparison operator. aff2 is the 257 ** type affinity of the other operand. This routine returns the 258 ** type affinity that should be used for the comparison operator. 259 */ 260 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 261 char aff1 = sqlite3ExprAffinity(pExpr); 262 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 263 /* Both sides of the comparison are columns. If one has numeric 264 ** affinity, use that. Otherwise use no affinity. 265 */ 266 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 267 return SQLITE_AFF_NUMERIC; 268 }else{ 269 return SQLITE_AFF_BLOB; 270 } 271 }else{ 272 /* One side is a column, the other is not. Use the columns affinity. */ 273 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 274 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 275 } 276 } 277 278 /* 279 ** pExpr is a comparison operator. Return the type affinity that should 280 ** be applied to both operands prior to doing the comparison. 281 */ 282 static char comparisonAffinity(const Expr *pExpr){ 283 char aff; 284 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 285 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 286 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 287 assert( pExpr->pLeft ); 288 aff = sqlite3ExprAffinity(pExpr->pLeft); 289 if( pExpr->pRight ){ 290 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 291 }else if( ExprUseXSelect(pExpr) ){ 292 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 293 }else if( aff==0 ){ 294 aff = SQLITE_AFF_BLOB; 295 } 296 return aff; 297 } 298 299 /* 300 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 301 ** idx_affinity is the affinity of an indexed column. Return true 302 ** if the index with affinity idx_affinity may be used to implement 303 ** the comparison in pExpr. 304 */ 305 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 306 char aff = comparisonAffinity(pExpr); 307 if( aff<SQLITE_AFF_TEXT ){ 308 return 1; 309 } 310 if( aff==SQLITE_AFF_TEXT ){ 311 return idx_affinity==SQLITE_AFF_TEXT; 312 } 313 return sqlite3IsNumericAffinity(idx_affinity); 314 } 315 316 /* 317 ** Return the P5 value that should be used for a binary comparison 318 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 319 */ 320 static u8 binaryCompareP5( 321 const Expr *pExpr1, /* Left operand */ 322 const Expr *pExpr2, /* Right operand */ 323 int jumpIfNull /* Extra flags added to P5 */ 324 ){ 325 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 326 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 327 return aff; 328 } 329 330 /* 331 ** Return a pointer to the collation sequence that should be used by 332 ** a binary comparison operator comparing pLeft and pRight. 333 ** 334 ** If the left hand expression has a collating sequence type, then it is 335 ** used. Otherwise the collation sequence for the right hand expression 336 ** is used, or the default (BINARY) if neither expression has a collating 337 ** type. 338 ** 339 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 340 ** it is not considered. 341 */ 342 CollSeq *sqlite3BinaryCompareCollSeq( 343 Parse *pParse, 344 const Expr *pLeft, 345 const Expr *pRight 346 ){ 347 CollSeq *pColl; 348 assert( pLeft ); 349 if( pLeft->flags & EP_Collate ){ 350 pColl = sqlite3ExprCollSeq(pParse, pLeft); 351 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 352 pColl = sqlite3ExprCollSeq(pParse, pRight); 353 }else{ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 if( !pColl ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 } 358 } 359 return pColl; 360 } 361 362 /* Expresssion p is a comparison operator. Return a collation sequence 363 ** appropriate for the comparison operator. 364 ** 365 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 366 ** However, if the OP_Commuted flag is set, then the order of the operands 367 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 368 ** correct collating sequence is found. 369 */ 370 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 371 if( ExprHasProperty(p, EP_Commuted) ){ 372 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 373 }else{ 374 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 375 } 376 } 377 378 /* 379 ** Generate code for a comparison operator. 380 */ 381 static int codeCompare( 382 Parse *pParse, /* The parsing (and code generating) context */ 383 Expr *pLeft, /* The left operand */ 384 Expr *pRight, /* The right operand */ 385 int opcode, /* The comparison opcode */ 386 int in1, int in2, /* Register holding operands */ 387 int dest, /* Jump here if true. */ 388 int jumpIfNull, /* If true, jump if either operand is NULL */ 389 int isCommuted /* The comparison has been commuted */ 390 ){ 391 int p5; 392 int addr; 393 CollSeq *p4; 394 395 if( pParse->nErr ) return 0; 396 if( isCommuted ){ 397 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 398 }else{ 399 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 400 } 401 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 402 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 403 (void*)p4, P4_COLLSEQ); 404 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 405 return addr; 406 } 407 408 /* 409 ** Return true if expression pExpr is a vector, or false otherwise. 410 ** 411 ** A vector is defined as any expression that results in two or more 412 ** columns of result. Every TK_VECTOR node is an vector because the 413 ** parser will not generate a TK_VECTOR with fewer than two entries. 414 ** But a TK_SELECT might be either a vector or a scalar. It is only 415 ** considered a vector if it has two or more result columns. 416 */ 417 int sqlite3ExprIsVector(const Expr *pExpr){ 418 return sqlite3ExprVectorSize(pExpr)>1; 419 } 420 421 /* 422 ** If the expression passed as the only argument is of type TK_VECTOR 423 ** return the number of expressions in the vector. Or, if the expression 424 ** is a sub-select, return the number of columns in the sub-select. For 425 ** any other type of expression, return 1. 426 */ 427 int sqlite3ExprVectorSize(const Expr *pExpr){ 428 u8 op = pExpr->op; 429 if( op==TK_REGISTER ) op = pExpr->op2; 430 if( op==TK_VECTOR ){ 431 assert( ExprUseXList(pExpr) ); 432 return pExpr->x.pList->nExpr; 433 }else if( op==TK_SELECT ){ 434 assert( ExprUseXSelect(pExpr) ); 435 return pExpr->x.pSelect->pEList->nExpr; 436 }else{ 437 return 1; 438 } 439 } 440 441 /* 442 ** Return a pointer to a subexpression of pVector that is the i-th 443 ** column of the vector (numbered starting with 0). The caller must 444 ** ensure that i is within range. 445 ** 446 ** If pVector is really a scalar (and "scalar" here includes subqueries 447 ** that return a single column!) then return pVector unmodified. 448 ** 449 ** pVector retains ownership of the returned subexpression. 450 ** 451 ** If the vector is a (SELECT ...) then the expression returned is 452 ** just the expression for the i-th term of the result set, and may 453 ** not be ready for evaluation because the table cursor has not yet 454 ** been positioned. 455 */ 456 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 457 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 458 if( sqlite3ExprIsVector(pVector) ){ 459 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 460 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 461 assert( ExprUseXSelect(pVector) ); 462 return pVector->x.pSelect->pEList->a[i].pExpr; 463 }else{ 464 assert( ExprUseXList(pVector) ); 465 return pVector->x.pList->a[i].pExpr; 466 } 467 } 468 return pVector; 469 } 470 471 /* 472 ** Compute and return a new Expr object which when passed to 473 ** sqlite3ExprCode() will generate all necessary code to compute 474 ** the iField-th column of the vector expression pVector. 475 ** 476 ** It is ok for pVector to be a scalar (as long as iField==0). 477 ** In that case, this routine works like sqlite3ExprDup(). 478 ** 479 ** The caller owns the returned Expr object and is responsible for 480 ** ensuring that the returned value eventually gets freed. 481 ** 482 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 483 ** then the returned object will reference pVector and so pVector must remain 484 ** valid for the life of the returned object. If pVector is a TK_VECTOR 485 ** or a scalar expression, then it can be deleted as soon as this routine 486 ** returns. 487 ** 488 ** A trick to cause a TK_SELECT pVector to be deleted together with 489 ** the returned Expr object is to attach the pVector to the pRight field 490 ** of the returned TK_SELECT_COLUMN Expr object. 491 */ 492 Expr *sqlite3ExprForVectorField( 493 Parse *pParse, /* Parsing context */ 494 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 495 int iField, /* Which column of the vector to return */ 496 int nField /* Total number of columns in the vector */ 497 ){ 498 Expr *pRet; 499 if( pVector->op==TK_SELECT ){ 500 assert( ExprUseXSelect(pVector) ); 501 /* The TK_SELECT_COLUMN Expr node: 502 ** 503 ** pLeft: pVector containing TK_SELECT. Not deleted. 504 ** pRight: not used. But recursively deleted. 505 ** iColumn: Index of a column in pVector 506 ** iTable: 0 or the number of columns on the LHS of an assignment 507 ** pLeft->iTable: First in an array of register holding result, or 0 508 ** if the result is not yet computed. 509 ** 510 ** sqlite3ExprDelete() specifically skips the recursive delete of 511 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 512 ** can be attached to pRight to cause this node to take ownership of 513 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 514 ** with the same pLeft pointer to the pVector, but only one of them 515 ** will own the pVector. 516 */ 517 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 518 if( pRet ){ 519 pRet->iTable = nField; 520 pRet->iColumn = iField; 521 pRet->pLeft = pVector; 522 } 523 }else{ 524 if( pVector->op==TK_VECTOR ){ 525 Expr **ppVector; 526 assert( ExprUseXList(pVector) ); 527 ppVector = &pVector->x.pList->a[iField].pExpr; 528 pVector = *ppVector; 529 if( IN_RENAME_OBJECT ){ 530 /* This must be a vector UPDATE inside a trigger */ 531 *ppVector = 0; 532 return pVector; 533 } 534 } 535 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 536 } 537 return pRet; 538 } 539 540 /* 541 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 542 ** it. Return the register in which the result is stored (or, if the 543 ** sub-select returns more than one column, the first in an array 544 ** of registers in which the result is stored). 545 ** 546 ** If pExpr is not a TK_SELECT expression, return 0. 547 */ 548 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 549 int reg = 0; 550 #ifndef SQLITE_OMIT_SUBQUERY 551 if( pExpr->op==TK_SELECT ){ 552 reg = sqlite3CodeSubselect(pParse, pExpr); 553 } 554 #endif 555 return reg; 556 } 557 558 /* 559 ** Argument pVector points to a vector expression - either a TK_VECTOR 560 ** or TK_SELECT that returns more than one column. This function returns 561 ** the register number of a register that contains the value of 562 ** element iField of the vector. 563 ** 564 ** If pVector is a TK_SELECT expression, then code for it must have 565 ** already been generated using the exprCodeSubselect() routine. In this 566 ** case parameter regSelect should be the first in an array of registers 567 ** containing the results of the sub-select. 568 ** 569 ** If pVector is of type TK_VECTOR, then code for the requested field 570 ** is generated. In this case (*pRegFree) may be set to the number of 571 ** a temporary register to be freed by the caller before returning. 572 ** 573 ** Before returning, output parameter (*ppExpr) is set to point to the 574 ** Expr object corresponding to element iElem of the vector. 575 */ 576 static int exprVectorRegister( 577 Parse *pParse, /* Parse context */ 578 Expr *pVector, /* Vector to extract element from */ 579 int iField, /* Field to extract from pVector */ 580 int regSelect, /* First in array of registers */ 581 Expr **ppExpr, /* OUT: Expression element */ 582 int *pRegFree /* OUT: Temp register to free */ 583 ){ 584 u8 op = pVector->op; 585 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 586 if( op==TK_REGISTER ){ 587 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 588 return pVector->iTable+iField; 589 } 590 if( op==TK_SELECT ){ 591 assert( ExprUseXSelect(pVector) ); 592 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 593 return regSelect+iField; 594 } 595 if( op==TK_VECTOR ){ 596 assert( ExprUseXList(pVector) ); 597 *ppExpr = pVector->x.pList->a[iField].pExpr; 598 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 599 } 600 return 0; 601 } 602 603 /* 604 ** Expression pExpr is a comparison between two vector values. Compute 605 ** the result of the comparison (1, 0, or NULL) and write that 606 ** result into register dest. 607 ** 608 ** The caller must satisfy the following preconditions: 609 ** 610 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 611 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 612 ** otherwise: op==pExpr->op and p5==0 613 */ 614 static void codeVectorCompare( 615 Parse *pParse, /* Code generator context */ 616 Expr *pExpr, /* The comparison operation */ 617 int dest, /* Write results into this register */ 618 u8 op, /* Comparison operator */ 619 u8 p5 /* SQLITE_NULLEQ or zero */ 620 ){ 621 Vdbe *v = pParse->pVdbe; 622 Expr *pLeft = pExpr->pLeft; 623 Expr *pRight = pExpr->pRight; 624 int nLeft = sqlite3ExprVectorSize(pLeft); 625 int i; 626 int regLeft = 0; 627 int regRight = 0; 628 u8 opx = op; 629 int addrCmp = 0; 630 int addrDone = sqlite3VdbeMakeLabel(pParse); 631 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 632 633 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 634 if( pParse->nErr ) return; 635 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 636 sqlite3ErrorMsg(pParse, "row value misused"); 637 return; 638 } 639 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 640 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 641 || pExpr->op==TK_LT || pExpr->op==TK_GT 642 || pExpr->op==TK_LE || pExpr->op==TK_GE 643 ); 644 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 645 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 646 assert( p5==0 || pExpr->op!=op ); 647 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 648 649 if( op==TK_LE ) opx = TK_LT; 650 if( op==TK_GE ) opx = TK_GT; 651 if( op==TK_NE ) opx = TK_EQ; 652 653 regLeft = exprCodeSubselect(pParse, pLeft); 654 regRight = exprCodeSubselect(pParse, pRight); 655 656 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 657 for(i=0; 1 /*Loop exits by "break"*/; i++){ 658 int regFree1 = 0, regFree2 = 0; 659 Expr *pL = 0, *pR = 0; 660 int r1, r2; 661 assert( i>=0 && i<nLeft ); 662 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 663 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 664 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 665 addrCmp = sqlite3VdbeCurrentAddr(v); 666 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 667 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 668 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 669 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 670 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 671 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 672 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 673 sqlite3ReleaseTempReg(pParse, regFree1); 674 sqlite3ReleaseTempReg(pParse, regFree2); 675 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 676 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 677 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 678 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 679 } 680 if( p5==SQLITE_NULLEQ ){ 681 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 682 }else{ 683 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 684 } 685 if( i==nLeft-1 ){ 686 break; 687 } 688 if( opx==TK_EQ ){ 689 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 690 }else{ 691 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 692 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 693 if( i==nLeft-2 ) opx = op; 694 } 695 } 696 sqlite3VdbeJumpHere(v, addrCmp); 697 sqlite3VdbeResolveLabel(v, addrDone); 698 if( op==TK_NE ){ 699 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 700 } 701 } 702 703 #if SQLITE_MAX_EXPR_DEPTH>0 704 /* 705 ** Check that argument nHeight is less than or equal to the maximum 706 ** expression depth allowed. If it is not, leave an error message in 707 ** pParse. 708 */ 709 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 710 int rc = SQLITE_OK; 711 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 712 if( nHeight>mxHeight ){ 713 sqlite3ErrorMsg(pParse, 714 "Expression tree is too large (maximum depth %d)", mxHeight 715 ); 716 rc = SQLITE_ERROR; 717 } 718 return rc; 719 } 720 721 /* The following three functions, heightOfExpr(), heightOfExprList() 722 ** and heightOfSelect(), are used to determine the maximum height 723 ** of any expression tree referenced by the structure passed as the 724 ** first argument. 725 ** 726 ** If this maximum height is greater than the current value pointed 727 ** to by pnHeight, the second parameter, then set *pnHeight to that 728 ** value. 729 */ 730 static void heightOfExpr(const Expr *p, int *pnHeight){ 731 if( p ){ 732 if( p->nHeight>*pnHeight ){ 733 *pnHeight = p->nHeight; 734 } 735 } 736 } 737 static void heightOfExprList(const ExprList *p, int *pnHeight){ 738 if( p ){ 739 int i; 740 for(i=0; i<p->nExpr; i++){ 741 heightOfExpr(p->a[i].pExpr, pnHeight); 742 } 743 } 744 } 745 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 746 const Select *p; 747 for(p=pSelect; p; p=p->pPrior){ 748 heightOfExpr(p->pWhere, pnHeight); 749 heightOfExpr(p->pHaving, pnHeight); 750 heightOfExpr(p->pLimit, pnHeight); 751 heightOfExprList(p->pEList, pnHeight); 752 heightOfExprList(p->pGroupBy, pnHeight); 753 heightOfExprList(p->pOrderBy, pnHeight); 754 } 755 } 756 757 /* 758 ** Set the Expr.nHeight variable in the structure passed as an 759 ** argument. An expression with no children, Expr.pList or 760 ** Expr.pSelect member has a height of 1. Any other expression 761 ** has a height equal to the maximum height of any other 762 ** referenced Expr plus one. 763 ** 764 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 765 ** if appropriate. 766 */ 767 static void exprSetHeight(Expr *p){ 768 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 769 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ 770 nHeight = p->pRight->nHeight; 771 } 772 if( ExprUseXSelect(p) ){ 773 heightOfSelect(p->x.pSelect, &nHeight); 774 }else if( p->x.pList ){ 775 heightOfExprList(p->x.pList, &nHeight); 776 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 777 } 778 p->nHeight = nHeight + 1; 779 } 780 781 /* 782 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 783 ** the height is greater than the maximum allowed expression depth, 784 ** leave an error in pParse. 785 ** 786 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 787 ** Expr.flags. 788 */ 789 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 790 if( pParse->nErr ) return; 791 exprSetHeight(p); 792 sqlite3ExprCheckHeight(pParse, p->nHeight); 793 } 794 795 /* 796 ** Return the maximum height of any expression tree referenced 797 ** by the select statement passed as an argument. 798 */ 799 int sqlite3SelectExprHeight(const Select *p){ 800 int nHeight = 0; 801 heightOfSelect(p, &nHeight); 802 return nHeight; 803 } 804 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 805 /* 806 ** Propagate all EP_Propagate flags from the Expr.x.pList into 807 ** Expr.flags. 808 */ 809 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 810 if( pParse->nErr ) return; 811 if( p && ExprUseXList(p) && p->x.pList ){ 812 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 813 } 814 } 815 #define exprSetHeight(y) 816 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 817 818 /* 819 ** This routine is the core allocator for Expr nodes. 820 ** 821 ** Construct a new expression node and return a pointer to it. Memory 822 ** for this node and for the pToken argument is a single allocation 823 ** obtained from sqlite3DbMalloc(). The calling function 824 ** is responsible for making sure the node eventually gets freed. 825 ** 826 ** If dequote is true, then the token (if it exists) is dequoted. 827 ** If dequote is false, no dequoting is performed. The deQuote 828 ** parameter is ignored if pToken is NULL or if the token does not 829 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 830 ** then the EP_DblQuoted flag is set on the expression node. 831 ** 832 ** Special case: If op==TK_INTEGER and pToken points to a string that 833 ** can be translated into a 32-bit integer, then the token is not 834 ** stored in u.zToken. Instead, the integer values is written 835 ** into u.iValue and the EP_IntValue flag is set. No extra storage 836 ** is allocated to hold the integer text and the dequote flag is ignored. 837 */ 838 Expr *sqlite3ExprAlloc( 839 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 840 int op, /* Expression opcode */ 841 const Token *pToken, /* Token argument. Might be NULL */ 842 int dequote /* True to dequote */ 843 ){ 844 Expr *pNew; 845 int nExtra = 0; 846 int iValue = 0; 847 848 assert( db!=0 ); 849 if( pToken ){ 850 if( op!=TK_INTEGER || pToken->z==0 851 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 852 nExtra = pToken->n+1; 853 assert( iValue>=0 ); 854 } 855 } 856 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 857 if( pNew ){ 858 memset(pNew, 0, sizeof(Expr)); 859 pNew->op = (u8)op; 860 pNew->iAgg = -1; 861 if( pToken ){ 862 if( nExtra==0 ){ 863 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 864 pNew->u.iValue = iValue; 865 }else{ 866 pNew->u.zToken = (char*)&pNew[1]; 867 assert( pToken->z!=0 || pToken->n==0 ); 868 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 869 pNew->u.zToken[pToken->n] = 0; 870 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 871 sqlite3DequoteExpr(pNew); 872 } 873 } 874 } 875 #if SQLITE_MAX_EXPR_DEPTH>0 876 pNew->nHeight = 1; 877 #endif 878 } 879 return pNew; 880 } 881 882 /* 883 ** Allocate a new expression node from a zero-terminated token that has 884 ** already been dequoted. 885 */ 886 Expr *sqlite3Expr( 887 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 888 int op, /* Expression opcode */ 889 const char *zToken /* Token argument. Might be NULL */ 890 ){ 891 Token x; 892 x.z = zToken; 893 x.n = sqlite3Strlen30(zToken); 894 return sqlite3ExprAlloc(db, op, &x, 0); 895 } 896 897 /* 898 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 899 ** 900 ** If pRoot==NULL that means that a memory allocation error has occurred. 901 ** In that case, delete the subtrees pLeft and pRight. 902 */ 903 void sqlite3ExprAttachSubtrees( 904 sqlite3 *db, 905 Expr *pRoot, 906 Expr *pLeft, 907 Expr *pRight 908 ){ 909 if( pRoot==0 ){ 910 assert( db->mallocFailed ); 911 sqlite3ExprDelete(db, pLeft); 912 sqlite3ExprDelete(db, pRight); 913 }else{ 914 assert( ExprUseXList(pRoot) ); 915 assert( pRoot->x.pSelect==0 ); 916 if( pRight ){ 917 pRoot->pRight = pRight; 918 pRoot->flags |= EP_Propagate & pRight->flags; 919 #if SQLITE_MAX_EXPR_DEPTH>0 920 pRoot->nHeight = pRight->nHeight+1; 921 }else{ 922 pRoot->nHeight = 1; 923 #endif 924 } 925 if( pLeft ){ 926 pRoot->pLeft = pLeft; 927 pRoot->flags |= EP_Propagate & pLeft->flags; 928 #if SQLITE_MAX_EXPR_DEPTH>0 929 if( pLeft->nHeight>=pRoot->nHeight ){ 930 pRoot->nHeight = pLeft->nHeight+1; 931 } 932 #endif 933 } 934 } 935 } 936 937 /* 938 ** Allocate an Expr node which joins as many as two subtrees. 939 ** 940 ** One or both of the subtrees can be NULL. Return a pointer to the new 941 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 942 ** free the subtrees and return NULL. 943 */ 944 Expr *sqlite3PExpr( 945 Parse *pParse, /* Parsing context */ 946 int op, /* Expression opcode */ 947 Expr *pLeft, /* Left operand */ 948 Expr *pRight /* Right operand */ 949 ){ 950 Expr *p; 951 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 952 if( p ){ 953 memset(p, 0, sizeof(Expr)); 954 p->op = op & 0xff; 955 p->iAgg = -1; 956 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 957 sqlite3ExprCheckHeight(pParse, p->nHeight); 958 }else{ 959 sqlite3ExprDelete(pParse->db, pLeft); 960 sqlite3ExprDelete(pParse->db, pRight); 961 } 962 return p; 963 } 964 965 /* 966 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 967 ** do a memory allocation failure) then delete the pSelect object. 968 */ 969 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 970 if( pExpr ){ 971 pExpr->x.pSelect = pSelect; 972 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 973 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 974 }else{ 975 assert( pParse->db->mallocFailed ); 976 sqlite3SelectDelete(pParse->db, pSelect); 977 } 978 } 979 980 /* 981 ** Expression list pEList is a list of vector values. This function 982 ** converts the contents of pEList to a VALUES(...) Select statement 983 ** returning 1 row for each element of the list. For example, the 984 ** expression list: 985 ** 986 ** ( (1,2), (3,4) (5,6) ) 987 ** 988 ** is translated to the equivalent of: 989 ** 990 ** VALUES(1,2), (3,4), (5,6) 991 ** 992 ** Each of the vector values in pEList must contain exactly nElem terms. 993 ** If a list element that is not a vector or does not contain nElem terms, 994 ** an error message is left in pParse. 995 ** 996 ** This is used as part of processing IN(...) expressions with a list 997 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 998 */ 999 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 1000 int ii; 1001 Select *pRet = 0; 1002 assert( nElem>1 ); 1003 for(ii=0; ii<pEList->nExpr; ii++){ 1004 Select *pSel; 1005 Expr *pExpr = pEList->a[ii].pExpr; 1006 int nExprElem; 1007 if( pExpr->op==TK_VECTOR ){ 1008 assert( ExprUseXList(pExpr) ); 1009 nExprElem = pExpr->x.pList->nExpr; 1010 }else{ 1011 nExprElem = 1; 1012 } 1013 if( nExprElem!=nElem ){ 1014 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1015 nExprElem, nExprElem>1?"s":"", nElem 1016 ); 1017 break; 1018 } 1019 assert( ExprUseXList(pExpr) ); 1020 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1021 pExpr->x.pList = 0; 1022 if( pSel ){ 1023 if( pRet ){ 1024 pSel->op = TK_ALL; 1025 pSel->pPrior = pRet; 1026 } 1027 pRet = pSel; 1028 } 1029 } 1030 1031 if( pRet && pRet->pPrior ){ 1032 pRet->selFlags |= SF_MultiValue; 1033 } 1034 sqlite3ExprListDelete(pParse->db, pEList); 1035 return pRet; 1036 } 1037 1038 /* 1039 ** Join two expressions using an AND operator. If either expression is 1040 ** NULL, then just return the other expression. 1041 ** 1042 ** If one side or the other of the AND is known to be false, then instead 1043 ** of returning an AND expression, just return a constant expression with 1044 ** a value of false. 1045 */ 1046 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1047 sqlite3 *db = pParse->db; 1048 if( pLeft==0 ){ 1049 return pRight; 1050 }else if( pRight==0 ){ 1051 return pLeft; 1052 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1053 && !IN_RENAME_OBJECT 1054 ){ 1055 sqlite3ExprDeferredDelete(pParse, pLeft); 1056 sqlite3ExprDeferredDelete(pParse, pRight); 1057 return sqlite3Expr(db, TK_INTEGER, "0"); 1058 }else{ 1059 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1060 } 1061 } 1062 1063 /* 1064 ** Construct a new expression node for a function with multiple 1065 ** arguments. 1066 */ 1067 Expr *sqlite3ExprFunction( 1068 Parse *pParse, /* Parsing context */ 1069 ExprList *pList, /* Argument list */ 1070 const Token *pToken, /* Name of the function */ 1071 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1072 ){ 1073 Expr *pNew; 1074 sqlite3 *db = pParse->db; 1075 assert( pToken ); 1076 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1077 if( pNew==0 ){ 1078 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1079 return 0; 1080 } 1081 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); 1082 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1083 if( pList 1084 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1085 && !pParse->nested 1086 ){ 1087 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1088 } 1089 pNew->x.pList = pList; 1090 ExprSetProperty(pNew, EP_HasFunc); 1091 assert( ExprUseXList(pNew) ); 1092 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1093 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1094 return pNew; 1095 } 1096 1097 /* 1098 ** Check to see if a function is usable according to current access 1099 ** rules: 1100 ** 1101 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1102 ** 1103 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1104 ** top-level SQL 1105 ** 1106 ** If the function is not usable, create an error. 1107 */ 1108 void sqlite3ExprFunctionUsable( 1109 Parse *pParse, /* Parsing and code generating context */ 1110 const Expr *pExpr, /* The function invocation */ 1111 const FuncDef *pDef /* The function being invoked */ 1112 ){ 1113 assert( !IN_RENAME_OBJECT ); 1114 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1115 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1116 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1117 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1118 ){ 1119 /* Functions prohibited in triggers and views if: 1120 ** (1) tagged with SQLITE_DIRECTONLY 1121 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1122 ** is tagged with SQLITE_FUNC_UNSAFE) and 1123 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1124 ** that the schema is possibly tainted). 1125 */ 1126 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1127 } 1128 } 1129 } 1130 1131 /* 1132 ** Assign a variable number to an expression that encodes a wildcard 1133 ** in the original SQL statement. 1134 ** 1135 ** Wildcards consisting of a single "?" are assigned the next sequential 1136 ** variable number. 1137 ** 1138 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1139 ** sure "nnn" is not too big to avoid a denial of service attack when 1140 ** the SQL statement comes from an external source. 1141 ** 1142 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1143 ** as the previous instance of the same wildcard. Or if this is the first 1144 ** instance of the wildcard, the next sequential variable number is 1145 ** assigned. 1146 */ 1147 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1148 sqlite3 *db = pParse->db; 1149 const char *z; 1150 ynVar x; 1151 1152 if( pExpr==0 ) return; 1153 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1154 z = pExpr->u.zToken; 1155 assert( z!=0 ); 1156 assert( z[0]!=0 ); 1157 assert( n==(u32)sqlite3Strlen30(z) ); 1158 if( z[1]==0 ){ 1159 /* Wildcard of the form "?". Assign the next variable number */ 1160 assert( z[0]=='?' ); 1161 x = (ynVar)(++pParse->nVar); 1162 }else{ 1163 int doAdd = 0; 1164 if( z[0]=='?' ){ 1165 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1166 ** use it as the variable number */ 1167 i64 i; 1168 int bOk; 1169 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1170 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1171 bOk = 1; 1172 }else{ 1173 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1174 } 1175 testcase( i==0 ); 1176 testcase( i==1 ); 1177 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1178 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1179 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1180 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1181 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1182 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1183 return; 1184 } 1185 x = (ynVar)i; 1186 if( x>pParse->nVar ){ 1187 pParse->nVar = (int)x; 1188 doAdd = 1; 1189 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1190 doAdd = 1; 1191 } 1192 }else{ 1193 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1194 ** number as the prior appearance of the same name, or if the name 1195 ** has never appeared before, reuse the same variable number 1196 */ 1197 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1198 if( x==0 ){ 1199 x = (ynVar)(++pParse->nVar); 1200 doAdd = 1; 1201 } 1202 } 1203 if( doAdd ){ 1204 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1205 } 1206 } 1207 pExpr->iColumn = x; 1208 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1209 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1210 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1211 } 1212 } 1213 1214 /* 1215 ** Recursively delete an expression tree. 1216 */ 1217 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1218 assert( p!=0 ); 1219 assert( db!=0 ); 1220 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1221 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1222 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1223 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1224 #ifdef SQLITE_DEBUG 1225 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1226 assert( p->pLeft==0 ); 1227 assert( p->pRight==0 ); 1228 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1229 assert( !ExprUseXList(p) || p->x.pList==0 ); 1230 } 1231 #endif 1232 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1233 /* The Expr.x union is never used at the same time as Expr.pRight */ 1234 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1235 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1236 if( p->pRight ){ 1237 assert( !ExprHasProperty(p, EP_WinFunc) ); 1238 sqlite3ExprDeleteNN(db, p->pRight); 1239 }else if( ExprUseXSelect(p) ){ 1240 assert( !ExprHasProperty(p, EP_WinFunc) ); 1241 sqlite3SelectDelete(db, p->x.pSelect); 1242 }else{ 1243 sqlite3ExprListDelete(db, p->x.pList); 1244 #ifndef SQLITE_OMIT_WINDOWFUNC 1245 if( ExprHasProperty(p, EP_WinFunc) ){ 1246 sqlite3WindowDelete(db, p->y.pWin); 1247 } 1248 #endif 1249 } 1250 } 1251 if( !ExprHasProperty(p, EP_Static) ){ 1252 sqlite3DbNNFreeNN(db, p); 1253 } 1254 } 1255 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1256 if( p ) sqlite3ExprDeleteNN(db, p); 1257 } 1258 1259 /* 1260 ** Clear both elements of an OnOrUsing object 1261 */ 1262 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1263 if( p==0 ){ 1264 /* Nothing to clear */ 1265 }else if( p->pOn ){ 1266 sqlite3ExprDeleteNN(db, p->pOn); 1267 }else if( p->pUsing ){ 1268 sqlite3IdListDelete(db, p->pUsing); 1269 } 1270 } 1271 1272 /* 1273 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1274 ** This is similar to sqlite3ExprDelete() except that the delete is 1275 ** deferred untilthe pParse is deleted. 1276 ** 1277 ** The pExpr might be deleted immediately on an OOM error. 1278 ** 1279 ** The deferred delete is (currently) implemented by adding the 1280 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1281 */ 1282 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1283 sqlite3ParserAddCleanup(pParse, 1284 (void(*)(sqlite3*,void*))sqlite3ExprDelete, 1285 pExpr); 1286 } 1287 1288 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1289 ** expression. 1290 */ 1291 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1292 if( p ){ 1293 if( IN_RENAME_OBJECT ){ 1294 sqlite3RenameExprUnmap(pParse, p); 1295 } 1296 sqlite3ExprDeleteNN(pParse->db, p); 1297 } 1298 } 1299 1300 /* 1301 ** Return the number of bytes allocated for the expression structure 1302 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1303 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1304 */ 1305 static int exprStructSize(const Expr *p){ 1306 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1307 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1308 return EXPR_FULLSIZE; 1309 } 1310 1311 /* 1312 ** The dupedExpr*Size() routines each return the number of bytes required 1313 ** to store a copy of an expression or expression tree. They differ in 1314 ** how much of the tree is measured. 1315 ** 1316 ** dupedExprStructSize() Size of only the Expr structure 1317 ** dupedExprNodeSize() Size of Expr + space for token 1318 ** dupedExprSize() Expr + token + subtree components 1319 ** 1320 *************************************************************************** 1321 ** 1322 ** The dupedExprStructSize() function returns two values OR-ed together: 1323 ** (1) the space required for a copy of the Expr structure only and 1324 ** (2) the EP_xxx flags that indicate what the structure size should be. 1325 ** The return values is always one of: 1326 ** 1327 ** EXPR_FULLSIZE 1328 ** EXPR_REDUCEDSIZE | EP_Reduced 1329 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1330 ** 1331 ** The size of the structure can be found by masking the return value 1332 ** of this routine with 0xfff. The flags can be found by masking the 1333 ** return value with EP_Reduced|EP_TokenOnly. 1334 ** 1335 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1336 ** (unreduced) Expr objects as they or originally constructed by the parser. 1337 ** During expression analysis, extra information is computed and moved into 1338 ** later parts of the Expr object and that extra information might get chopped 1339 ** off if the expression is reduced. Note also that it does not work to 1340 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1341 ** to reduce a pristine expression tree from the parser. The implementation 1342 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1343 ** to enforce this constraint. 1344 */ 1345 static int dupedExprStructSize(const Expr *p, int flags){ 1346 int nSize; 1347 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1348 assert( EXPR_FULLSIZE<=0xfff ); 1349 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1350 if( 0==flags || p->op==TK_SELECT_COLUMN 1351 #ifndef SQLITE_OMIT_WINDOWFUNC 1352 || ExprHasProperty(p, EP_WinFunc) 1353 #endif 1354 ){ 1355 nSize = EXPR_FULLSIZE; 1356 }else{ 1357 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1358 assert( !ExprHasProperty(p, EP_OuterON) ); 1359 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1360 if( p->pLeft || p->x.pList ){ 1361 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1362 }else{ 1363 assert( p->pRight==0 ); 1364 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1365 } 1366 } 1367 return nSize; 1368 } 1369 1370 /* 1371 ** This function returns the space in bytes required to store the copy 1372 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1373 ** string is defined.) 1374 */ 1375 static int dupedExprNodeSize(const Expr *p, int flags){ 1376 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1377 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1378 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1379 } 1380 return ROUND8(nByte); 1381 } 1382 1383 /* 1384 ** Return the number of bytes required to create a duplicate of the 1385 ** expression passed as the first argument. The second argument is a 1386 ** mask containing EXPRDUP_XXX flags. 1387 ** 1388 ** The value returned includes space to create a copy of the Expr struct 1389 ** itself and the buffer referred to by Expr.u.zToken, if any. 1390 ** 1391 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1392 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1393 ** and Expr.pRight variables (but not for any structures pointed to or 1394 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1395 */ 1396 static int dupedExprSize(const Expr *p, int flags){ 1397 int nByte = 0; 1398 if( p ){ 1399 nByte = dupedExprNodeSize(p, flags); 1400 if( flags&EXPRDUP_REDUCE ){ 1401 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1402 } 1403 } 1404 return nByte; 1405 } 1406 1407 /* 1408 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1409 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1410 ** to store the copy of expression p, the copies of p->u.zToken 1411 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1412 ** if any. Before returning, *pzBuffer is set to the first byte past the 1413 ** portion of the buffer copied into by this function. 1414 */ 1415 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1416 Expr *pNew; /* Value to return */ 1417 u8 *zAlloc; /* Memory space from which to build Expr object */ 1418 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1419 1420 assert( db!=0 ); 1421 assert( p ); 1422 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1423 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1424 1425 /* Figure out where to write the new Expr structure. */ 1426 if( pzBuffer ){ 1427 zAlloc = *pzBuffer; 1428 staticFlag = EP_Static; 1429 assert( zAlloc!=0 ); 1430 }else{ 1431 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1432 staticFlag = 0; 1433 } 1434 pNew = (Expr *)zAlloc; 1435 1436 if( pNew ){ 1437 /* Set nNewSize to the size allocated for the structure pointed to 1438 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1439 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1440 ** by the copy of the p->u.zToken string (if any). 1441 */ 1442 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1443 const int nNewSize = nStructSize & 0xfff; 1444 int nToken; 1445 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1446 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1447 }else{ 1448 nToken = 0; 1449 } 1450 if( dupFlags ){ 1451 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1452 memcpy(zAlloc, p, nNewSize); 1453 }else{ 1454 u32 nSize = (u32)exprStructSize(p); 1455 memcpy(zAlloc, p, nSize); 1456 if( nSize<EXPR_FULLSIZE ){ 1457 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1458 } 1459 } 1460 1461 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1462 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 1463 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1464 pNew->flags |= staticFlag; 1465 ExprClearVVAProperties(pNew); 1466 if( dupFlags ){ 1467 ExprSetVVAProperty(pNew, EP_Immutable); 1468 } 1469 1470 /* Copy the p->u.zToken string, if any. */ 1471 if( nToken ){ 1472 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1473 memcpy(zToken, p->u.zToken, nToken); 1474 } 1475 1476 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1477 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1478 if( ExprUseXSelect(p) ){ 1479 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1480 }else{ 1481 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1482 } 1483 } 1484 1485 /* Fill in pNew->pLeft and pNew->pRight. */ 1486 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1487 zAlloc += dupedExprNodeSize(p, dupFlags); 1488 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1489 pNew->pLeft = p->pLeft ? 1490 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1491 pNew->pRight = p->pRight ? 1492 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1493 } 1494 #ifndef SQLITE_OMIT_WINDOWFUNC 1495 if( ExprHasProperty(p, EP_WinFunc) ){ 1496 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1497 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1498 } 1499 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1500 if( pzBuffer ){ 1501 *pzBuffer = zAlloc; 1502 } 1503 }else{ 1504 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1505 if( pNew->op==TK_SELECT_COLUMN ){ 1506 pNew->pLeft = p->pLeft; 1507 assert( p->pRight==0 || p->pRight==p->pLeft 1508 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1509 }else{ 1510 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1511 } 1512 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1513 } 1514 } 1515 } 1516 return pNew; 1517 } 1518 1519 /* 1520 ** Create and return a deep copy of the object passed as the second 1521 ** argument. If an OOM condition is encountered, NULL is returned 1522 ** and the db->mallocFailed flag set. 1523 */ 1524 #ifndef SQLITE_OMIT_CTE 1525 With *sqlite3WithDup(sqlite3 *db, With *p){ 1526 With *pRet = 0; 1527 if( p ){ 1528 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1529 pRet = sqlite3DbMallocZero(db, nByte); 1530 if( pRet ){ 1531 int i; 1532 pRet->nCte = p->nCte; 1533 for(i=0; i<p->nCte; i++){ 1534 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1535 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1536 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1537 pRet->a[i].eM10d = p->a[i].eM10d; 1538 } 1539 } 1540 } 1541 return pRet; 1542 } 1543 #else 1544 # define sqlite3WithDup(x,y) 0 1545 #endif 1546 1547 #ifndef SQLITE_OMIT_WINDOWFUNC 1548 /* 1549 ** The gatherSelectWindows() procedure and its helper routine 1550 ** gatherSelectWindowsCallback() are used to scan all the expressions 1551 ** an a newly duplicated SELECT statement and gather all of the Window 1552 ** objects found there, assembling them onto the linked list at Select->pWin. 1553 */ 1554 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1555 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1556 Select *pSelect = pWalker->u.pSelect; 1557 Window *pWin = pExpr->y.pWin; 1558 assert( pWin ); 1559 assert( IsWindowFunc(pExpr) ); 1560 assert( pWin->ppThis==0 ); 1561 sqlite3WindowLink(pSelect, pWin); 1562 } 1563 return WRC_Continue; 1564 } 1565 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1566 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1567 } 1568 static void gatherSelectWindows(Select *p){ 1569 Walker w; 1570 w.xExprCallback = gatherSelectWindowsCallback; 1571 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1572 w.xSelectCallback2 = 0; 1573 w.pParse = 0; 1574 w.u.pSelect = p; 1575 sqlite3WalkSelect(&w, p); 1576 } 1577 #endif 1578 1579 1580 /* 1581 ** The following group of routines make deep copies of expressions, 1582 ** expression lists, ID lists, and select statements. The copies can 1583 ** be deleted (by being passed to their respective ...Delete() routines) 1584 ** without effecting the originals. 1585 ** 1586 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1587 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1588 ** by subsequent calls to sqlite*ListAppend() routines. 1589 ** 1590 ** Any tables that the SrcList might point to are not duplicated. 1591 ** 1592 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1593 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1594 ** truncated version of the usual Expr structure that will be stored as 1595 ** part of the in-memory representation of the database schema. 1596 */ 1597 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1598 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1599 return p ? exprDup(db, p, flags, 0) : 0; 1600 } 1601 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1602 ExprList *pNew; 1603 struct ExprList_item *pItem; 1604 const struct ExprList_item *pOldItem; 1605 int i; 1606 Expr *pPriorSelectColOld = 0; 1607 Expr *pPriorSelectColNew = 0; 1608 assert( db!=0 ); 1609 if( p==0 ) return 0; 1610 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1611 if( pNew==0 ) return 0; 1612 pNew->nExpr = p->nExpr; 1613 pNew->nAlloc = p->nAlloc; 1614 pItem = pNew->a; 1615 pOldItem = p->a; 1616 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1617 Expr *pOldExpr = pOldItem->pExpr; 1618 Expr *pNewExpr; 1619 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1620 if( pOldExpr 1621 && pOldExpr->op==TK_SELECT_COLUMN 1622 && (pNewExpr = pItem->pExpr)!=0 1623 ){ 1624 if( pNewExpr->pRight ){ 1625 pPriorSelectColOld = pOldExpr->pRight; 1626 pPriorSelectColNew = pNewExpr->pRight; 1627 pNewExpr->pLeft = pNewExpr->pRight; 1628 }else{ 1629 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1630 pPriorSelectColOld = pOldExpr->pLeft; 1631 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1632 pNewExpr->pRight = pPriorSelectColNew; 1633 } 1634 pNewExpr->pLeft = pPriorSelectColNew; 1635 } 1636 } 1637 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1638 pItem->fg = pOldItem->fg; 1639 pItem->fg.done = 0; 1640 pItem->u = pOldItem->u; 1641 } 1642 return pNew; 1643 } 1644 1645 /* 1646 ** If cursors, triggers, views and subqueries are all omitted from 1647 ** the build, then none of the following routines, except for 1648 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1649 ** called with a NULL argument. 1650 */ 1651 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1652 || !defined(SQLITE_OMIT_SUBQUERY) 1653 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1654 SrcList *pNew; 1655 int i; 1656 int nByte; 1657 assert( db!=0 ); 1658 if( p==0 ) return 0; 1659 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1660 pNew = sqlite3DbMallocRawNN(db, nByte ); 1661 if( pNew==0 ) return 0; 1662 pNew->nSrc = pNew->nAlloc = p->nSrc; 1663 for(i=0; i<p->nSrc; i++){ 1664 SrcItem *pNewItem = &pNew->a[i]; 1665 const SrcItem *pOldItem = &p->a[i]; 1666 Table *pTab; 1667 pNewItem->pSchema = pOldItem->pSchema; 1668 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1669 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1670 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1671 pNewItem->fg = pOldItem->fg; 1672 pNewItem->iCursor = pOldItem->iCursor; 1673 pNewItem->addrFillSub = pOldItem->addrFillSub; 1674 pNewItem->regReturn = pOldItem->regReturn; 1675 if( pNewItem->fg.isIndexedBy ){ 1676 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1677 } 1678 pNewItem->u2 = pOldItem->u2; 1679 if( pNewItem->fg.isCte ){ 1680 pNewItem->u2.pCteUse->nUse++; 1681 } 1682 if( pNewItem->fg.isTabFunc ){ 1683 pNewItem->u1.pFuncArg = 1684 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1685 } 1686 pTab = pNewItem->pTab = pOldItem->pTab; 1687 if( pTab ){ 1688 pTab->nTabRef++; 1689 } 1690 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1691 if( pOldItem->fg.isUsing ){ 1692 assert( pNewItem->fg.isUsing ); 1693 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1694 }else{ 1695 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1696 } 1697 pNewItem->colUsed = pOldItem->colUsed; 1698 } 1699 return pNew; 1700 } 1701 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1702 IdList *pNew; 1703 int i; 1704 assert( db!=0 ); 1705 if( p==0 ) return 0; 1706 assert( p->eU4!=EU4_EXPR ); 1707 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 1708 if( pNew==0 ) return 0; 1709 pNew->nId = p->nId; 1710 pNew->eU4 = p->eU4; 1711 for(i=0; i<p->nId; i++){ 1712 struct IdList_item *pNewItem = &pNew->a[i]; 1713 const struct IdList_item *pOldItem = &p->a[i]; 1714 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1715 pNewItem->u4 = pOldItem->u4; 1716 } 1717 return pNew; 1718 } 1719 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1720 Select *pRet = 0; 1721 Select *pNext = 0; 1722 Select **pp = &pRet; 1723 const Select *p; 1724 1725 assert( db!=0 ); 1726 for(p=pDup; p; p=p->pPrior){ 1727 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1728 if( pNew==0 ) break; 1729 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1730 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1731 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1732 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1733 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1734 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1735 pNew->op = p->op; 1736 pNew->pNext = pNext; 1737 pNew->pPrior = 0; 1738 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1739 pNew->iLimit = 0; 1740 pNew->iOffset = 0; 1741 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1742 pNew->addrOpenEphm[0] = -1; 1743 pNew->addrOpenEphm[1] = -1; 1744 pNew->nSelectRow = p->nSelectRow; 1745 pNew->pWith = sqlite3WithDup(db, p->pWith); 1746 #ifndef SQLITE_OMIT_WINDOWFUNC 1747 pNew->pWin = 0; 1748 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1749 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1750 #endif 1751 pNew->selId = p->selId; 1752 if( db->mallocFailed ){ 1753 /* Any prior OOM might have left the Select object incomplete. 1754 ** Delete the whole thing rather than allow an incomplete Select 1755 ** to be used by the code generator. */ 1756 pNew->pNext = 0; 1757 sqlite3SelectDelete(db, pNew); 1758 break; 1759 } 1760 *pp = pNew; 1761 pp = &pNew->pPrior; 1762 pNext = pNew; 1763 } 1764 1765 return pRet; 1766 } 1767 #else 1768 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1769 assert( p==0 ); 1770 return 0; 1771 } 1772 #endif 1773 1774 1775 /* 1776 ** Add a new element to the end of an expression list. If pList is 1777 ** initially NULL, then create a new expression list. 1778 ** 1779 ** The pList argument must be either NULL or a pointer to an ExprList 1780 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1781 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1782 ** Reason: This routine assumes that the number of slots in pList->a[] 1783 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1784 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1785 ** 1786 ** If a memory allocation error occurs, the entire list is freed and 1787 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1788 ** that the new entry was successfully appended. 1789 */ 1790 static const struct ExprList_item zeroItem = {0}; 1791 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1792 sqlite3 *db, /* Database handle. Used for memory allocation */ 1793 Expr *pExpr /* Expression to be appended. Might be NULL */ 1794 ){ 1795 struct ExprList_item *pItem; 1796 ExprList *pList; 1797 1798 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1799 if( pList==0 ){ 1800 sqlite3ExprDelete(db, pExpr); 1801 return 0; 1802 } 1803 pList->nAlloc = 4; 1804 pList->nExpr = 1; 1805 pItem = &pList->a[0]; 1806 *pItem = zeroItem; 1807 pItem->pExpr = pExpr; 1808 return pList; 1809 } 1810 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1811 sqlite3 *db, /* Database handle. Used for memory allocation */ 1812 ExprList *pList, /* List to which to append. Might be NULL */ 1813 Expr *pExpr /* Expression to be appended. Might be NULL */ 1814 ){ 1815 struct ExprList_item *pItem; 1816 ExprList *pNew; 1817 pList->nAlloc *= 2; 1818 pNew = sqlite3DbRealloc(db, pList, 1819 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1820 if( pNew==0 ){ 1821 sqlite3ExprListDelete(db, pList); 1822 sqlite3ExprDelete(db, pExpr); 1823 return 0; 1824 }else{ 1825 pList = pNew; 1826 } 1827 pItem = &pList->a[pList->nExpr++]; 1828 *pItem = zeroItem; 1829 pItem->pExpr = pExpr; 1830 return pList; 1831 } 1832 ExprList *sqlite3ExprListAppend( 1833 Parse *pParse, /* Parsing context */ 1834 ExprList *pList, /* List to which to append. Might be NULL */ 1835 Expr *pExpr /* Expression to be appended. Might be NULL */ 1836 ){ 1837 struct ExprList_item *pItem; 1838 if( pList==0 ){ 1839 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1840 } 1841 if( pList->nAlloc<pList->nExpr+1 ){ 1842 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1843 } 1844 pItem = &pList->a[pList->nExpr++]; 1845 *pItem = zeroItem; 1846 pItem->pExpr = pExpr; 1847 return pList; 1848 } 1849 1850 /* 1851 ** pColumns and pExpr form a vector assignment which is part of the SET 1852 ** clause of an UPDATE statement. Like this: 1853 ** 1854 ** (a,b,c) = (expr1,expr2,expr3) 1855 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1856 ** 1857 ** For each term of the vector assignment, append new entries to the 1858 ** expression list pList. In the case of a subquery on the RHS, append 1859 ** TK_SELECT_COLUMN expressions. 1860 */ 1861 ExprList *sqlite3ExprListAppendVector( 1862 Parse *pParse, /* Parsing context */ 1863 ExprList *pList, /* List to which to append. Might be NULL */ 1864 IdList *pColumns, /* List of names of LHS of the assignment */ 1865 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1866 ){ 1867 sqlite3 *db = pParse->db; 1868 int n; 1869 int i; 1870 int iFirst = pList ? pList->nExpr : 0; 1871 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1872 ** exit prior to this routine being invoked */ 1873 if( NEVER(pColumns==0) ) goto vector_append_error; 1874 if( pExpr==0 ) goto vector_append_error; 1875 1876 /* If the RHS is a vector, then we can immediately check to see that 1877 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1878 ** wildcards ("*") in the result set of the SELECT must be expanded before 1879 ** we can do the size check, so defer the size check until code generation. 1880 */ 1881 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1882 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1883 pColumns->nId, n); 1884 goto vector_append_error; 1885 } 1886 1887 for(i=0; i<pColumns->nId; i++){ 1888 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1889 assert( pSubExpr!=0 || db->mallocFailed ); 1890 if( pSubExpr==0 ) continue; 1891 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1892 if( pList ){ 1893 assert( pList->nExpr==iFirst+i+1 ); 1894 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1895 pColumns->a[i].zName = 0; 1896 } 1897 } 1898 1899 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1900 Expr *pFirst = pList->a[iFirst].pExpr; 1901 assert( pFirst!=0 ); 1902 assert( pFirst->op==TK_SELECT_COLUMN ); 1903 1904 /* Store the SELECT statement in pRight so it will be deleted when 1905 ** sqlite3ExprListDelete() is called */ 1906 pFirst->pRight = pExpr; 1907 pExpr = 0; 1908 1909 /* Remember the size of the LHS in iTable so that we can check that 1910 ** the RHS and LHS sizes match during code generation. */ 1911 pFirst->iTable = pColumns->nId; 1912 } 1913 1914 vector_append_error: 1915 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1916 sqlite3IdListDelete(db, pColumns); 1917 return pList; 1918 } 1919 1920 /* 1921 ** Set the sort order for the last element on the given ExprList. 1922 */ 1923 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1924 struct ExprList_item *pItem; 1925 if( p==0 ) return; 1926 assert( p->nExpr>0 ); 1927 1928 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1929 assert( iSortOrder==SQLITE_SO_UNDEFINED 1930 || iSortOrder==SQLITE_SO_ASC 1931 || iSortOrder==SQLITE_SO_DESC 1932 ); 1933 assert( eNulls==SQLITE_SO_UNDEFINED 1934 || eNulls==SQLITE_SO_ASC 1935 || eNulls==SQLITE_SO_DESC 1936 ); 1937 1938 pItem = &p->a[p->nExpr-1]; 1939 assert( pItem->fg.bNulls==0 ); 1940 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1941 iSortOrder = SQLITE_SO_ASC; 1942 } 1943 pItem->fg.sortFlags = (u8)iSortOrder; 1944 1945 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1946 pItem->fg.bNulls = 1; 1947 if( iSortOrder!=eNulls ){ 1948 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; 1949 } 1950 } 1951 } 1952 1953 /* 1954 ** Set the ExprList.a[].zEName element of the most recently added item 1955 ** on the expression list. 1956 ** 1957 ** pList might be NULL following an OOM error. But pName should never be 1958 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1959 ** is set. 1960 */ 1961 void sqlite3ExprListSetName( 1962 Parse *pParse, /* Parsing context */ 1963 ExprList *pList, /* List to which to add the span. */ 1964 const Token *pName, /* Name to be added */ 1965 int dequote /* True to cause the name to be dequoted */ 1966 ){ 1967 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1968 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1969 if( pList ){ 1970 struct ExprList_item *pItem; 1971 assert( pList->nExpr>0 ); 1972 pItem = &pList->a[pList->nExpr-1]; 1973 assert( pItem->zEName==0 ); 1974 assert( pItem->fg.eEName==ENAME_NAME ); 1975 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1976 if( dequote ){ 1977 /* If dequote==0, then pName->z does not point to part of a DDL 1978 ** statement handled by the parser. And so no token need be added 1979 ** to the token-map. */ 1980 sqlite3Dequote(pItem->zEName); 1981 if( IN_RENAME_OBJECT ){ 1982 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1983 } 1984 } 1985 } 1986 } 1987 1988 /* 1989 ** Set the ExprList.a[].zSpan element of the most recently added item 1990 ** on the expression list. 1991 ** 1992 ** pList might be NULL following an OOM error. But pSpan should never be 1993 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1994 ** is set. 1995 */ 1996 void sqlite3ExprListSetSpan( 1997 Parse *pParse, /* Parsing context */ 1998 ExprList *pList, /* List to which to add the span. */ 1999 const char *zStart, /* Start of the span */ 2000 const char *zEnd /* End of the span */ 2001 ){ 2002 sqlite3 *db = pParse->db; 2003 assert( pList!=0 || db->mallocFailed!=0 ); 2004 if( pList ){ 2005 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 2006 assert( pList->nExpr>0 ); 2007 if( pItem->zEName==0 ){ 2008 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 2009 pItem->fg.eEName = ENAME_SPAN; 2010 } 2011 } 2012 } 2013 2014 /* 2015 ** If the expression list pEList contains more than iLimit elements, 2016 ** leave an error message in pParse. 2017 */ 2018 void sqlite3ExprListCheckLength( 2019 Parse *pParse, 2020 ExprList *pEList, 2021 const char *zObject 2022 ){ 2023 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2024 testcase( pEList && pEList->nExpr==mx ); 2025 testcase( pEList && pEList->nExpr==mx+1 ); 2026 if( pEList && pEList->nExpr>mx ){ 2027 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2028 } 2029 } 2030 2031 /* 2032 ** Delete an entire expression list. 2033 */ 2034 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2035 int i = pList->nExpr; 2036 struct ExprList_item *pItem = pList->a; 2037 assert( pList->nExpr>0 ); 2038 assert( db!=0 ); 2039 do{ 2040 sqlite3ExprDelete(db, pItem->pExpr); 2041 if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); 2042 pItem++; 2043 }while( --i>0 ); 2044 sqlite3DbNNFreeNN(db, pList); 2045 } 2046 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2047 if( pList ) exprListDeleteNN(db, pList); 2048 } 2049 2050 /* 2051 ** Return the bitwise-OR of all Expr.flags fields in the given 2052 ** ExprList. 2053 */ 2054 u32 sqlite3ExprListFlags(const ExprList *pList){ 2055 int i; 2056 u32 m = 0; 2057 assert( pList!=0 ); 2058 for(i=0; i<pList->nExpr; i++){ 2059 Expr *pExpr = pList->a[i].pExpr; 2060 assert( pExpr!=0 ); 2061 m |= pExpr->flags; 2062 } 2063 return m; 2064 } 2065 2066 /* 2067 ** This is a SELECT-node callback for the expression walker that 2068 ** always "fails". By "fail" in this case, we mean set 2069 ** pWalker->eCode to zero and abort. 2070 ** 2071 ** This callback is used by multiple expression walkers. 2072 */ 2073 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2074 UNUSED_PARAMETER(NotUsed); 2075 pWalker->eCode = 0; 2076 return WRC_Abort; 2077 } 2078 2079 /* 2080 ** Check the input string to see if it is "true" or "false" (in any case). 2081 ** 2082 ** If the string is.... Return 2083 ** "true" EP_IsTrue 2084 ** "false" EP_IsFalse 2085 ** anything else 0 2086 */ 2087 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2088 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2089 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2090 return 0; 2091 } 2092 2093 2094 /* 2095 ** If the input expression is an ID with the name "true" or "false" 2096 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2097 ** the conversion happened, and zero if the expression is unaltered. 2098 */ 2099 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2100 u32 v; 2101 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2102 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2103 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2104 ){ 2105 pExpr->op = TK_TRUEFALSE; 2106 ExprSetProperty(pExpr, v); 2107 return 1; 2108 } 2109 return 0; 2110 } 2111 2112 /* 2113 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2114 ** and 0 if it is FALSE. 2115 */ 2116 int sqlite3ExprTruthValue(const Expr *pExpr){ 2117 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2118 assert( pExpr->op==TK_TRUEFALSE ); 2119 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2120 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2121 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2122 return pExpr->u.zToken[4]==0; 2123 } 2124 2125 /* 2126 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2127 ** terms that are always true or false. Return the simplified expression. 2128 ** Or return the original expression if no simplification is possible. 2129 ** 2130 ** Examples: 2131 ** 2132 ** (x<10) AND true => (x<10) 2133 ** (x<10) AND false => false 2134 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2135 ** (x<10) AND (y=22 OR true) => (x<10) 2136 ** (y=22) OR true => true 2137 */ 2138 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2139 assert( pExpr!=0 ); 2140 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2141 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2142 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2143 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2144 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2145 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2146 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2147 } 2148 } 2149 return pExpr; 2150 } 2151 2152 2153 /* 2154 ** These routines are Walker callbacks used to check expressions to 2155 ** see if they are "constant" for some definition of constant. The 2156 ** Walker.eCode value determines the type of "constant" we are looking 2157 ** for. 2158 ** 2159 ** These callback routines are used to implement the following: 2160 ** 2161 ** sqlite3ExprIsConstant() pWalker->eCode==1 2162 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2163 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2164 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2165 ** 2166 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2167 ** is found to not be a constant. 2168 ** 2169 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2170 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2171 ** when parsing an existing schema out of the sqlite_schema table and 4 2172 ** when processing a new CREATE TABLE statement. A bound parameter raises 2173 ** an error for new statements, but is silently converted 2174 ** to NULL for existing schemas. This allows sqlite_schema tables that 2175 ** contain a bound parameter because they were generated by older versions 2176 ** of SQLite to be parsed by newer versions of SQLite without raising a 2177 ** malformed schema error. 2178 */ 2179 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2180 2181 /* If pWalker->eCode is 2 then any term of the expression that comes from 2182 ** the ON or USING clauses of an outer join disqualifies the expression 2183 ** from being considered constant. */ 2184 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ 2185 pWalker->eCode = 0; 2186 return WRC_Abort; 2187 } 2188 2189 switch( pExpr->op ){ 2190 /* Consider functions to be constant if all their arguments are constant 2191 ** and either pWalker->eCode==4 or 5 or the function has the 2192 ** SQLITE_FUNC_CONST flag. */ 2193 case TK_FUNCTION: 2194 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2195 && !ExprHasProperty(pExpr, EP_WinFunc) 2196 ){ 2197 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2198 return WRC_Continue; 2199 }else{ 2200 pWalker->eCode = 0; 2201 return WRC_Abort; 2202 } 2203 case TK_ID: 2204 /* Convert "true" or "false" in a DEFAULT clause into the 2205 ** appropriate TK_TRUEFALSE operator */ 2206 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2207 return WRC_Prune; 2208 } 2209 /* no break */ deliberate_fall_through 2210 case TK_COLUMN: 2211 case TK_AGG_FUNCTION: 2212 case TK_AGG_COLUMN: 2213 testcase( pExpr->op==TK_ID ); 2214 testcase( pExpr->op==TK_COLUMN ); 2215 testcase( pExpr->op==TK_AGG_FUNCTION ); 2216 testcase( pExpr->op==TK_AGG_COLUMN ); 2217 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2218 return WRC_Continue; 2219 } 2220 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2221 return WRC_Continue; 2222 } 2223 /* no break */ deliberate_fall_through 2224 case TK_IF_NULL_ROW: 2225 case TK_REGISTER: 2226 case TK_DOT: 2227 testcase( pExpr->op==TK_REGISTER ); 2228 testcase( pExpr->op==TK_IF_NULL_ROW ); 2229 testcase( pExpr->op==TK_DOT ); 2230 pWalker->eCode = 0; 2231 return WRC_Abort; 2232 case TK_VARIABLE: 2233 if( pWalker->eCode==5 ){ 2234 /* Silently convert bound parameters that appear inside of CREATE 2235 ** statements into a NULL when parsing the CREATE statement text out 2236 ** of the sqlite_schema table */ 2237 pExpr->op = TK_NULL; 2238 }else if( pWalker->eCode==4 ){ 2239 /* A bound parameter in a CREATE statement that originates from 2240 ** sqlite3_prepare() causes an error */ 2241 pWalker->eCode = 0; 2242 return WRC_Abort; 2243 } 2244 /* no break */ deliberate_fall_through 2245 default: 2246 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2247 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2248 return WRC_Continue; 2249 } 2250 } 2251 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2252 Walker w; 2253 w.eCode = initFlag; 2254 w.xExprCallback = exprNodeIsConstant; 2255 w.xSelectCallback = sqlite3SelectWalkFail; 2256 #ifdef SQLITE_DEBUG 2257 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2258 #endif 2259 w.u.iCur = iCur; 2260 sqlite3WalkExpr(&w, p); 2261 return w.eCode; 2262 } 2263 2264 /* 2265 ** Walk an expression tree. Return non-zero if the expression is constant 2266 ** and 0 if it involves variables or function calls. 2267 ** 2268 ** For the purposes of this function, a double-quoted string (ex: "abc") 2269 ** is considered a variable but a single-quoted string (ex: 'abc') is 2270 ** a constant. 2271 */ 2272 int sqlite3ExprIsConstant(Expr *p){ 2273 return exprIsConst(p, 1, 0); 2274 } 2275 2276 /* 2277 ** Walk an expression tree. Return non-zero if 2278 ** 2279 ** (1) the expression is constant, and 2280 ** (2) the expression does originate in the ON or USING clause 2281 ** of a LEFT JOIN, and 2282 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2283 ** operands created by the constant propagation optimization. 2284 ** 2285 ** When this routine returns true, it indicates that the expression 2286 ** can be added to the pParse->pConstExpr list and evaluated once when 2287 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2288 */ 2289 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2290 return exprIsConst(p, 2, 0); 2291 } 2292 2293 /* 2294 ** Walk an expression tree. Return non-zero if the expression is constant 2295 ** for any single row of the table with cursor iCur. In other words, the 2296 ** expression must not refer to any non-deterministic function nor any 2297 ** table other than iCur. 2298 */ 2299 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2300 return exprIsConst(p, 3, iCur); 2301 } 2302 2303 /* 2304 ** Check pExpr to see if it is an invariant constraint on data source pSrc. 2305 ** This is an optimization. False negatives will perhaps cause slower 2306 ** queries, but false positives will yield incorrect answers. So when in 2307 ** doubt, return 0. 2308 ** 2309 ** To be an invariant constraint, the following must be true: 2310 ** 2311 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 2312 ** 2313 ** (2) pExpr cannot use subqueries or non-deterministic functions. 2314 ** 2315 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 2316 ** (Is there some way to relax this constraint?) 2317 ** 2318 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 2319 ** (4a) pExpr must come from an ON clause.. 2320 (4b) and specifically the ON clause associated with the LEFT JOIN. 2321 ** 2322 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left 2323 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 2324 ** clause, not an ON clause. 2325 */ 2326 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ 2327 if( pSrc->fg.jointype & JT_LTORJ ){ 2328 return 0; /* rule (3) */ 2329 } 2330 if( pSrc->fg.jointype & JT_LEFT ){ 2331 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ 2332 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 2333 }else{ 2334 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ 2335 } 2336 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ 2337 } 2338 2339 2340 /* 2341 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2342 */ 2343 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2344 ExprList *pGroupBy = pWalker->u.pGroupBy; 2345 int i; 2346 2347 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2348 ** it constant. */ 2349 for(i=0; i<pGroupBy->nExpr; i++){ 2350 Expr *p = pGroupBy->a[i].pExpr; 2351 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2352 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2353 if( sqlite3IsBinary(pColl) ){ 2354 return WRC_Prune; 2355 } 2356 } 2357 } 2358 2359 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2360 if( ExprUseXSelect(pExpr) ){ 2361 pWalker->eCode = 0; 2362 return WRC_Abort; 2363 } 2364 2365 return exprNodeIsConstant(pWalker, pExpr); 2366 } 2367 2368 /* 2369 ** Walk the expression tree passed as the first argument. Return non-zero 2370 ** if the expression consists entirely of constants or copies of terms 2371 ** in pGroupBy that sort with the BINARY collation sequence. 2372 ** 2373 ** This routine is used to determine if a term of the HAVING clause can 2374 ** be promoted into the WHERE clause. In order for such a promotion to work, 2375 ** the value of the HAVING clause term must be the same for all members of 2376 ** a "group". The requirement that the GROUP BY term must be BINARY 2377 ** assumes that no other collating sequence will have a finer-grained 2378 ** grouping than binary. In other words (A=B COLLATE binary) implies 2379 ** A=B in every other collating sequence. The requirement that the 2380 ** GROUP BY be BINARY is stricter than necessary. It would also work 2381 ** to promote HAVING clauses that use the same alternative collating 2382 ** sequence as the GROUP BY term, but that is much harder to check, 2383 ** alternative collating sequences are uncommon, and this is only an 2384 ** optimization, so we take the easy way out and simply require the 2385 ** GROUP BY to use the BINARY collating sequence. 2386 */ 2387 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2388 Walker w; 2389 w.eCode = 1; 2390 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2391 w.xSelectCallback = 0; 2392 w.u.pGroupBy = pGroupBy; 2393 w.pParse = pParse; 2394 sqlite3WalkExpr(&w, p); 2395 return w.eCode; 2396 } 2397 2398 /* 2399 ** Walk an expression tree for the DEFAULT field of a column definition 2400 ** in a CREATE TABLE statement. Return non-zero if the expression is 2401 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2402 ** the expression is constant or a function call with constant arguments. 2403 ** Return and 0 if there are any variables. 2404 ** 2405 ** isInit is true when parsing from sqlite_schema. isInit is false when 2406 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2407 ** (such as ? or $abc) in the expression are converted into NULL. When 2408 ** isInit is false, parameters raise an error. Parameters should not be 2409 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2410 ** allowed it, so we need to support it when reading sqlite_schema for 2411 ** backwards compatibility. 2412 ** 2413 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2414 ** 2415 ** For the purposes of this function, a double-quoted string (ex: "abc") 2416 ** is considered a variable but a single-quoted string (ex: 'abc') is 2417 ** a constant. 2418 */ 2419 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2420 assert( isInit==0 || isInit==1 ); 2421 return exprIsConst(p, 4+isInit, 0); 2422 } 2423 2424 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2425 /* 2426 ** Walk an expression tree. Return 1 if the expression contains a 2427 ** subquery of some kind. Return 0 if there are no subqueries. 2428 */ 2429 int sqlite3ExprContainsSubquery(Expr *p){ 2430 Walker w; 2431 w.eCode = 1; 2432 w.xExprCallback = sqlite3ExprWalkNoop; 2433 w.xSelectCallback = sqlite3SelectWalkFail; 2434 #ifdef SQLITE_DEBUG 2435 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2436 #endif 2437 sqlite3WalkExpr(&w, p); 2438 return w.eCode==0; 2439 } 2440 #endif 2441 2442 /* 2443 ** If the expression p codes a constant integer that is small enough 2444 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2445 ** in *pValue. If the expression is not an integer or if it is too big 2446 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2447 */ 2448 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2449 int rc = 0; 2450 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2451 2452 /* If an expression is an integer literal that fits in a signed 32-bit 2453 ** integer, then the EP_IntValue flag will have already been set */ 2454 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2455 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2456 2457 if( p->flags & EP_IntValue ){ 2458 *pValue = p->u.iValue; 2459 return 1; 2460 } 2461 switch( p->op ){ 2462 case TK_UPLUS: { 2463 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2464 break; 2465 } 2466 case TK_UMINUS: { 2467 int v = 0; 2468 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2469 assert( ((unsigned int)v)!=0x80000000 ); 2470 *pValue = -v; 2471 rc = 1; 2472 } 2473 break; 2474 } 2475 default: break; 2476 } 2477 return rc; 2478 } 2479 2480 /* 2481 ** Return FALSE if there is no chance that the expression can be NULL. 2482 ** 2483 ** If the expression might be NULL or if the expression is too complex 2484 ** to tell return TRUE. 2485 ** 2486 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2487 ** when we know that a value cannot be NULL. Hence, a false positive 2488 ** (returning TRUE when in fact the expression can never be NULL) might 2489 ** be a small performance hit but is otherwise harmless. On the other 2490 ** hand, a false negative (returning FALSE when the result could be NULL) 2491 ** will likely result in an incorrect answer. So when in doubt, return 2492 ** TRUE. 2493 */ 2494 int sqlite3ExprCanBeNull(const Expr *p){ 2495 u8 op; 2496 assert( p!=0 ); 2497 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2498 p = p->pLeft; 2499 assert( p!=0 ); 2500 } 2501 op = p->op; 2502 if( op==TK_REGISTER ) op = p->op2; 2503 switch( op ){ 2504 case TK_INTEGER: 2505 case TK_STRING: 2506 case TK_FLOAT: 2507 case TK_BLOB: 2508 return 0; 2509 case TK_COLUMN: 2510 assert( ExprUseYTab(p) ); 2511 return ExprHasProperty(p, EP_CanBeNull) || 2512 p->y.pTab==0 || /* Reference to column of index on expression */ 2513 (p->iColumn>=0 2514 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2515 && p->y.pTab->aCol[p->iColumn].notNull==0); 2516 default: 2517 return 1; 2518 } 2519 } 2520 2521 /* 2522 ** Return TRUE if the given expression is a constant which would be 2523 ** unchanged by OP_Affinity with the affinity given in the second 2524 ** argument. 2525 ** 2526 ** This routine is used to determine if the OP_Affinity operation 2527 ** can be omitted. When in doubt return FALSE. A false negative 2528 ** is harmless. A false positive, however, can result in the wrong 2529 ** answer. 2530 */ 2531 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2532 u8 op; 2533 int unaryMinus = 0; 2534 if( aff==SQLITE_AFF_BLOB ) return 1; 2535 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2536 if( p->op==TK_UMINUS ) unaryMinus = 1; 2537 p = p->pLeft; 2538 } 2539 op = p->op; 2540 if( op==TK_REGISTER ) op = p->op2; 2541 switch( op ){ 2542 case TK_INTEGER: { 2543 return aff>=SQLITE_AFF_NUMERIC; 2544 } 2545 case TK_FLOAT: { 2546 return aff>=SQLITE_AFF_NUMERIC; 2547 } 2548 case TK_STRING: { 2549 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2550 } 2551 case TK_BLOB: { 2552 return !unaryMinus; 2553 } 2554 case TK_COLUMN: { 2555 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2556 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2557 } 2558 default: { 2559 return 0; 2560 } 2561 } 2562 } 2563 2564 /* 2565 ** Return TRUE if the given string is a row-id column name. 2566 */ 2567 int sqlite3IsRowid(const char *z){ 2568 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2569 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2570 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2571 return 0; 2572 } 2573 2574 /* 2575 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2576 ** that can be simplified to a direct table access, then return 2577 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2578 ** or if the SELECT statement needs to be manifested into a transient 2579 ** table, then return NULL. 2580 */ 2581 #ifndef SQLITE_OMIT_SUBQUERY 2582 static Select *isCandidateForInOpt(const Expr *pX){ 2583 Select *p; 2584 SrcList *pSrc; 2585 ExprList *pEList; 2586 Table *pTab; 2587 int i; 2588 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2589 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2590 p = pX->x.pSelect; 2591 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2592 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2593 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2594 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2595 return 0; /* No DISTINCT keyword and no aggregate functions */ 2596 } 2597 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2598 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2599 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2600 pSrc = p->pSrc; 2601 assert( pSrc!=0 ); 2602 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2603 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2604 pTab = pSrc->a[0].pTab; 2605 assert( pTab!=0 ); 2606 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2607 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2608 pEList = p->pEList; 2609 assert( pEList!=0 ); 2610 /* All SELECT results must be columns. */ 2611 for(i=0; i<pEList->nExpr; i++){ 2612 Expr *pRes = pEList->a[i].pExpr; 2613 if( pRes->op!=TK_COLUMN ) return 0; 2614 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2615 } 2616 return p; 2617 } 2618 #endif /* SQLITE_OMIT_SUBQUERY */ 2619 2620 #ifndef SQLITE_OMIT_SUBQUERY 2621 /* 2622 ** Generate code that checks the left-most column of index table iCur to see if 2623 ** it contains any NULL entries. Cause the register at regHasNull to be set 2624 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2625 ** to be set to NULL if iCur contains one or more NULL values. 2626 */ 2627 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2628 int addr1; 2629 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2630 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2631 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2632 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2633 VdbeComment((v, "first_entry_in(%d)", iCur)); 2634 sqlite3VdbeJumpHere(v, addr1); 2635 } 2636 #endif 2637 2638 2639 #ifndef SQLITE_OMIT_SUBQUERY 2640 /* 2641 ** The argument is an IN operator with a list (not a subquery) on the 2642 ** right-hand side. Return TRUE if that list is constant. 2643 */ 2644 static int sqlite3InRhsIsConstant(Expr *pIn){ 2645 Expr *pLHS; 2646 int res; 2647 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2648 pLHS = pIn->pLeft; 2649 pIn->pLeft = 0; 2650 res = sqlite3ExprIsConstant(pIn); 2651 pIn->pLeft = pLHS; 2652 return res; 2653 } 2654 #endif 2655 2656 /* 2657 ** This function is used by the implementation of the IN (...) operator. 2658 ** The pX parameter is the expression on the RHS of the IN operator, which 2659 ** might be either a list of expressions or a subquery. 2660 ** 2661 ** The job of this routine is to find or create a b-tree object that can 2662 ** be used either to test for membership in the RHS set or to iterate through 2663 ** all members of the RHS set, skipping duplicates. 2664 ** 2665 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2666 ** and the *piTab parameter is set to the index of that cursor. 2667 ** 2668 ** The returned value of this function indicates the b-tree type, as follows: 2669 ** 2670 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2671 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2672 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2673 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2674 ** populated epheremal table. 2675 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2676 ** implemented as a sequence of comparisons. 2677 ** 2678 ** An existing b-tree might be used if the RHS expression pX is a simple 2679 ** subquery such as: 2680 ** 2681 ** SELECT <column1>, <column2>... FROM <table> 2682 ** 2683 ** If the RHS of the IN operator is a list or a more complex subquery, then 2684 ** an ephemeral table might need to be generated from the RHS and then 2685 ** pX->iTable made to point to the ephemeral table instead of an 2686 ** existing table. In this case, the creation and initialization of the 2687 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag 2688 ** will be set on pX and the pX->y.sub fields will be set to show where 2689 ** the subroutine is coded. 2690 ** 2691 ** The inFlags parameter must contain, at a minimum, one of the bits 2692 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2693 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2694 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2695 ** be used to loop over all values of the RHS of the IN operator. 2696 ** 2697 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2698 ** through the set members) then the b-tree must not contain duplicates. 2699 ** An epheremal table will be created unless the selected columns are guaranteed 2700 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2701 ** a UNIQUE constraint or index. 2702 ** 2703 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2704 ** for fast set membership tests) then an epheremal table must 2705 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2706 ** index can be found with the specified <columns> as its left-most. 2707 ** 2708 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2709 ** if the RHS of the IN operator is a list (not a subquery) then this 2710 ** routine might decide that creating an ephemeral b-tree for membership 2711 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2712 ** calling routine should implement the IN operator using a sequence 2713 ** of Eq or Ne comparison operations. 2714 ** 2715 ** When the b-tree is being used for membership tests, the calling function 2716 ** might need to know whether or not the RHS side of the IN operator 2717 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2718 ** if there is any chance that the (...) might contain a NULL value at 2719 ** runtime, then a register is allocated and the register number written 2720 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2721 ** NULL value, then *prRhsHasNull is left unchanged. 2722 ** 2723 ** If a register is allocated and its location stored in *prRhsHasNull, then 2724 ** the value in that register will be NULL if the b-tree contains one or more 2725 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2726 ** NULL values. 2727 ** 2728 ** If the aiMap parameter is not NULL, it must point to an array containing 2729 ** one element for each column returned by the SELECT statement on the RHS 2730 ** of the IN(...) operator. The i'th entry of the array is populated with the 2731 ** offset of the index column that matches the i'th column returned by the 2732 ** SELECT. For example, if the expression and selected index are: 2733 ** 2734 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2735 ** CREATE INDEX i1 ON t1(b, c, a); 2736 ** 2737 ** then aiMap[] is populated with {2, 0, 1}. 2738 */ 2739 #ifndef SQLITE_OMIT_SUBQUERY 2740 int sqlite3FindInIndex( 2741 Parse *pParse, /* Parsing context */ 2742 Expr *pX, /* The IN expression */ 2743 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2744 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2745 int *aiMap, /* Mapping from Index fields to RHS fields */ 2746 int *piTab /* OUT: index to use */ 2747 ){ 2748 Select *p; /* SELECT to the right of IN operator */ 2749 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2750 int iTab; /* Cursor of the RHS table */ 2751 int mustBeUnique; /* True if RHS must be unique */ 2752 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2753 2754 assert( pX->op==TK_IN ); 2755 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2756 iTab = pParse->nTab++; 2757 2758 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2759 ** whether or not the SELECT result contains NULL values, check whether 2760 ** or not NULL is actually possible (it may not be, for example, due 2761 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2762 ** set prRhsHasNull to 0 before continuing. */ 2763 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2764 int i; 2765 ExprList *pEList = pX->x.pSelect->pEList; 2766 for(i=0; i<pEList->nExpr; i++){ 2767 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2768 } 2769 if( i==pEList->nExpr ){ 2770 prRhsHasNull = 0; 2771 } 2772 } 2773 2774 /* Check to see if an existing table or index can be used to 2775 ** satisfy the query. This is preferable to generating a new 2776 ** ephemeral table. */ 2777 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2778 sqlite3 *db = pParse->db; /* Database connection */ 2779 Table *pTab; /* Table <table>. */ 2780 int iDb; /* Database idx for pTab */ 2781 ExprList *pEList = p->pEList; 2782 int nExpr = pEList->nExpr; 2783 2784 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2785 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2786 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2787 pTab = p->pSrc->a[0].pTab; 2788 2789 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2790 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2791 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2792 sqlite3CodeVerifySchema(pParse, iDb); 2793 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2794 2795 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2796 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2797 /* The "x IN (SELECT rowid FROM table)" case */ 2798 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2799 VdbeCoverage(v); 2800 2801 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2802 eType = IN_INDEX_ROWID; 2803 ExplainQueryPlan((pParse, 0, 2804 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2805 sqlite3VdbeJumpHere(v, iAddr); 2806 }else{ 2807 Index *pIdx; /* Iterator variable */ 2808 int affinity_ok = 1; 2809 int i; 2810 2811 /* Check that the affinity that will be used to perform each 2812 ** comparison is the same as the affinity of each column in table 2813 ** on the RHS of the IN operator. If it not, it is not possible to 2814 ** use any index of the RHS table. */ 2815 for(i=0; i<nExpr && affinity_ok; i++){ 2816 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2817 int iCol = pEList->a[i].pExpr->iColumn; 2818 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2819 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2820 testcase( cmpaff==SQLITE_AFF_BLOB ); 2821 testcase( cmpaff==SQLITE_AFF_TEXT ); 2822 switch( cmpaff ){ 2823 case SQLITE_AFF_BLOB: 2824 break; 2825 case SQLITE_AFF_TEXT: 2826 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2827 ** other has no affinity and the other side is TEXT. Hence, 2828 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2829 ** and for the term on the LHS of the IN to have no affinity. */ 2830 assert( idxaff==SQLITE_AFF_TEXT ); 2831 break; 2832 default: 2833 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2834 } 2835 } 2836 2837 if( affinity_ok ){ 2838 /* Search for an existing index that will work for this IN operator */ 2839 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2840 Bitmask colUsed; /* Columns of the index used */ 2841 Bitmask mCol; /* Mask for the current column */ 2842 if( pIdx->nColumn<nExpr ) continue; 2843 if( pIdx->pPartIdxWhere!=0 ) continue; 2844 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2845 ** BITMASK(nExpr) without overflowing */ 2846 testcase( pIdx->nColumn==BMS-2 ); 2847 testcase( pIdx->nColumn==BMS-1 ); 2848 if( pIdx->nColumn>=BMS-1 ) continue; 2849 if( mustBeUnique ){ 2850 if( pIdx->nKeyCol>nExpr 2851 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2852 ){ 2853 continue; /* This index is not unique over the IN RHS columns */ 2854 } 2855 } 2856 2857 colUsed = 0; /* Columns of index used so far */ 2858 for(i=0; i<nExpr; i++){ 2859 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2860 Expr *pRhs = pEList->a[i].pExpr; 2861 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2862 int j; 2863 2864 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2865 for(j=0; j<nExpr; j++){ 2866 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2867 assert( pIdx->azColl[j] ); 2868 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2869 continue; 2870 } 2871 break; 2872 } 2873 if( j==nExpr ) break; 2874 mCol = MASKBIT(j); 2875 if( mCol & colUsed ) break; /* Each column used only once */ 2876 colUsed |= mCol; 2877 if( aiMap ) aiMap[i] = j; 2878 } 2879 2880 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2881 if( colUsed==(MASKBIT(nExpr)-1) ){ 2882 /* If we reach this point, that means the index pIdx is usable */ 2883 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2884 ExplainQueryPlan((pParse, 0, 2885 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2886 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2887 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2888 VdbeComment((v, "%s", pIdx->zName)); 2889 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2890 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2891 2892 if( prRhsHasNull ){ 2893 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2894 i64 mask = (1<<nExpr)-1; 2895 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2896 iTab, 0, 0, (u8*)&mask, P4_INT64); 2897 #endif 2898 *prRhsHasNull = ++pParse->nMem; 2899 if( nExpr==1 ){ 2900 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2901 } 2902 } 2903 sqlite3VdbeJumpHere(v, iAddr); 2904 } 2905 } /* End loop over indexes */ 2906 } /* End if( affinity_ok ) */ 2907 } /* End if not an rowid index */ 2908 } /* End attempt to optimize using an index */ 2909 2910 /* If no preexisting index is available for the IN clause 2911 ** and IN_INDEX_NOOP is an allowed reply 2912 ** and the RHS of the IN operator is a list, not a subquery 2913 ** and the RHS is not constant or has two or fewer terms, 2914 ** then it is not worth creating an ephemeral table to evaluate 2915 ** the IN operator so return IN_INDEX_NOOP. 2916 */ 2917 if( eType==0 2918 && (inFlags & IN_INDEX_NOOP_OK) 2919 && ExprUseXList(pX) 2920 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2921 ){ 2922 pParse->nTab--; /* Back out the allocation of the unused cursor */ 2923 iTab = -1; /* Cursor is not allocated */ 2924 eType = IN_INDEX_NOOP; 2925 } 2926 2927 if( eType==0 ){ 2928 /* Could not find an existing table or index to use as the RHS b-tree. 2929 ** We will have to generate an ephemeral table to do the job. 2930 */ 2931 u32 savedNQueryLoop = pParse->nQueryLoop; 2932 int rMayHaveNull = 0; 2933 eType = IN_INDEX_EPH; 2934 if( inFlags & IN_INDEX_LOOP ){ 2935 pParse->nQueryLoop = 0; 2936 }else if( prRhsHasNull ){ 2937 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2938 } 2939 assert( pX->op==TK_IN ); 2940 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2941 if( rMayHaveNull ){ 2942 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2943 } 2944 pParse->nQueryLoop = savedNQueryLoop; 2945 } 2946 2947 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2948 int i, n; 2949 n = sqlite3ExprVectorSize(pX->pLeft); 2950 for(i=0; i<n; i++) aiMap[i] = i; 2951 } 2952 *piTab = iTab; 2953 return eType; 2954 } 2955 #endif 2956 2957 #ifndef SQLITE_OMIT_SUBQUERY 2958 /* 2959 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2960 ** function allocates and returns a nul-terminated string containing 2961 ** the affinities to be used for each column of the comparison. 2962 ** 2963 ** It is the responsibility of the caller to ensure that the returned 2964 ** string is eventually freed using sqlite3DbFree(). 2965 */ 2966 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2967 Expr *pLeft = pExpr->pLeft; 2968 int nVal = sqlite3ExprVectorSize(pLeft); 2969 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2970 char *zRet; 2971 2972 assert( pExpr->op==TK_IN ); 2973 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2974 if( zRet ){ 2975 int i; 2976 for(i=0; i<nVal; i++){ 2977 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2978 char a = sqlite3ExprAffinity(pA); 2979 if( pSelect ){ 2980 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2981 }else{ 2982 zRet[i] = a; 2983 } 2984 } 2985 zRet[nVal] = '\0'; 2986 } 2987 return zRet; 2988 } 2989 #endif 2990 2991 #ifndef SQLITE_OMIT_SUBQUERY 2992 /* 2993 ** Load the Parse object passed as the first argument with an error 2994 ** message of the form: 2995 ** 2996 ** "sub-select returns N columns - expected M" 2997 */ 2998 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2999 if( pParse->nErr==0 ){ 3000 const char *zFmt = "sub-select returns %d columns - expected %d"; 3001 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 3002 } 3003 } 3004 #endif 3005 3006 /* 3007 ** Expression pExpr is a vector that has been used in a context where 3008 ** it is not permitted. If pExpr is a sub-select vector, this routine 3009 ** loads the Parse object with a message of the form: 3010 ** 3011 ** "sub-select returns N columns - expected 1" 3012 ** 3013 ** Or, if it is a regular scalar vector: 3014 ** 3015 ** "row value misused" 3016 */ 3017 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 3018 #ifndef SQLITE_OMIT_SUBQUERY 3019 if( ExprUseXSelect(pExpr) ){ 3020 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 3021 }else 3022 #endif 3023 { 3024 sqlite3ErrorMsg(pParse, "row value misused"); 3025 } 3026 } 3027 3028 #ifndef SQLITE_OMIT_SUBQUERY 3029 /* 3030 ** Generate code that will construct an ephemeral table containing all terms 3031 ** in the RHS of an IN operator. The IN operator can be in either of two 3032 ** forms: 3033 ** 3034 ** x IN (4,5,11) -- IN operator with list on right-hand side 3035 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 3036 ** 3037 ** The pExpr parameter is the IN operator. The cursor number for the 3038 ** constructed ephermeral table is returned. The first time the ephemeral 3039 ** table is computed, the cursor number is also stored in pExpr->iTable, 3040 ** however the cursor number returned might not be the same, as it might 3041 ** have been duplicated using OP_OpenDup. 3042 ** 3043 ** If the LHS expression ("x" in the examples) is a column value, or 3044 ** the SELECT statement returns a column value, then the affinity of that 3045 ** column is used to build the index keys. If both 'x' and the 3046 ** SELECT... statement are columns, then numeric affinity is used 3047 ** if either column has NUMERIC or INTEGER affinity. If neither 3048 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3049 ** is used. 3050 */ 3051 void sqlite3CodeRhsOfIN( 3052 Parse *pParse, /* Parsing context */ 3053 Expr *pExpr, /* The IN operator */ 3054 int iTab /* Use this cursor number */ 3055 ){ 3056 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3057 int addr; /* Address of OP_OpenEphemeral instruction */ 3058 Expr *pLeft; /* the LHS of the IN operator */ 3059 KeyInfo *pKeyInfo = 0; /* Key information */ 3060 int nVal; /* Size of vector pLeft */ 3061 Vdbe *v; /* The prepared statement under construction */ 3062 3063 v = pParse->pVdbe; 3064 assert( v!=0 ); 3065 3066 /* The evaluation of the IN must be repeated every time it 3067 ** is encountered if any of the following is true: 3068 ** 3069 ** * The right-hand side is a correlated subquery 3070 ** * The right-hand side is an expression list containing variables 3071 ** * We are inside a trigger 3072 ** 3073 ** If all of the above are false, then we can compute the RHS just once 3074 ** and reuse it many names. 3075 */ 3076 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3077 /* Reuse of the RHS is allowed */ 3078 /* If this routine has already been coded, but the previous code 3079 ** might not have been invoked yet, so invoke it now as a subroutine. 3080 */ 3081 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3082 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3083 if( ExprUseXSelect(pExpr) ){ 3084 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3085 pExpr->x.pSelect->selId)); 3086 } 3087 assert( ExprUseYSub(pExpr) ); 3088 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3089 pExpr->y.sub.iAddr); 3090 assert( iTab!=pExpr->iTable ); 3091 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3092 sqlite3VdbeJumpHere(v, addrOnce); 3093 return; 3094 } 3095 3096 /* Begin coding the subroutine */ 3097 assert( !ExprUseYWin(pExpr) ); 3098 ExprSetProperty(pExpr, EP_Subrtn); 3099 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3100 pExpr->y.sub.regReturn = ++pParse->nMem; 3101 pExpr->y.sub.iAddr = 3102 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3103 3104 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3105 } 3106 3107 /* Check to see if this is a vector IN operator */ 3108 pLeft = pExpr->pLeft; 3109 nVal = sqlite3ExprVectorSize(pLeft); 3110 3111 /* Construct the ephemeral table that will contain the content of 3112 ** RHS of the IN operator. 3113 */ 3114 pExpr->iTable = iTab; 3115 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3116 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3117 if( ExprUseXSelect(pExpr) ){ 3118 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3119 }else{ 3120 VdbeComment((v, "RHS of IN operator")); 3121 } 3122 #endif 3123 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3124 3125 if( ExprUseXSelect(pExpr) ){ 3126 /* Case 1: expr IN (SELECT ...) 3127 ** 3128 ** Generate code to write the results of the select into the temporary 3129 ** table allocated and opened above. 3130 */ 3131 Select *pSelect = pExpr->x.pSelect; 3132 ExprList *pEList = pSelect->pEList; 3133 3134 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3135 addrOnce?"":"CORRELATED ", pSelect->selId 3136 )); 3137 /* If the LHS and RHS of the IN operator do not match, that 3138 ** error will have been caught long before we reach this point. */ 3139 if( ALWAYS(pEList->nExpr==nVal) ){ 3140 Select *pCopy; 3141 SelectDest dest; 3142 int i; 3143 int rc; 3144 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3145 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3146 pSelect->iLimit = 0; 3147 testcase( pSelect->selFlags & SF_Distinct ); 3148 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3149 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3150 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3151 sqlite3SelectDelete(pParse->db, pCopy); 3152 sqlite3DbFree(pParse->db, dest.zAffSdst); 3153 if( rc ){ 3154 sqlite3KeyInfoUnref(pKeyInfo); 3155 return; 3156 } 3157 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3158 assert( pEList!=0 ); 3159 assert( pEList->nExpr>0 ); 3160 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3161 for(i=0; i<nVal; i++){ 3162 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3163 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3164 pParse, p, pEList->a[i].pExpr 3165 ); 3166 } 3167 } 3168 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3169 /* Case 2: expr IN (exprlist) 3170 ** 3171 ** For each expression, build an index key from the evaluation and 3172 ** store it in the temporary table. If <expr> is a column, then use 3173 ** that columns affinity when building index keys. If <expr> is not 3174 ** a column, use numeric affinity. 3175 */ 3176 char affinity; /* Affinity of the LHS of the IN */ 3177 int i; 3178 ExprList *pList = pExpr->x.pList; 3179 struct ExprList_item *pItem; 3180 int r1, r2; 3181 affinity = sqlite3ExprAffinity(pLeft); 3182 if( affinity<=SQLITE_AFF_NONE ){ 3183 affinity = SQLITE_AFF_BLOB; 3184 }else if( affinity==SQLITE_AFF_REAL ){ 3185 affinity = SQLITE_AFF_NUMERIC; 3186 } 3187 if( pKeyInfo ){ 3188 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3189 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3190 } 3191 3192 /* Loop through each expression in <exprlist>. */ 3193 r1 = sqlite3GetTempReg(pParse); 3194 r2 = sqlite3GetTempReg(pParse); 3195 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3196 Expr *pE2 = pItem->pExpr; 3197 3198 /* If the expression is not constant then we will need to 3199 ** disable the test that was generated above that makes sure 3200 ** this code only executes once. Because for a non-constant 3201 ** expression we need to rerun this code each time. 3202 */ 3203 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3204 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3205 sqlite3VdbeChangeToNoop(v, addrOnce); 3206 ExprClearProperty(pExpr, EP_Subrtn); 3207 addrOnce = 0; 3208 } 3209 3210 /* Evaluate the expression and insert it into the temp table */ 3211 sqlite3ExprCode(pParse, pE2, r1); 3212 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3213 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3214 } 3215 sqlite3ReleaseTempReg(pParse, r1); 3216 sqlite3ReleaseTempReg(pParse, r2); 3217 } 3218 if( pKeyInfo ){ 3219 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3220 } 3221 if( addrOnce ){ 3222 sqlite3VdbeAddOp1(v, OP_NullRow, iTab); 3223 sqlite3VdbeJumpHere(v, addrOnce); 3224 /* Subroutine return */ 3225 assert( ExprUseYSub(pExpr) ); 3226 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3227 || pParse->nErr ); 3228 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3229 pExpr->y.sub.iAddr, 1); 3230 VdbeCoverage(v); 3231 sqlite3ClearTempRegCache(pParse); 3232 } 3233 } 3234 #endif /* SQLITE_OMIT_SUBQUERY */ 3235 3236 /* 3237 ** Generate code for scalar subqueries used as a subquery expression 3238 ** or EXISTS operator: 3239 ** 3240 ** (SELECT a FROM b) -- subquery 3241 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3242 ** 3243 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3244 ** 3245 ** Return the register that holds the result. For a multi-column SELECT, 3246 ** the result is stored in a contiguous array of registers and the 3247 ** return value is the register of the left-most result column. 3248 ** Return 0 if an error occurs. 3249 */ 3250 #ifndef SQLITE_OMIT_SUBQUERY 3251 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3252 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3253 int rReg = 0; /* Register storing resulting */ 3254 Select *pSel; /* SELECT statement to encode */ 3255 SelectDest dest; /* How to deal with SELECT result */ 3256 int nReg; /* Registers to allocate */ 3257 Expr *pLimit; /* New limit expression */ 3258 3259 Vdbe *v = pParse->pVdbe; 3260 assert( v!=0 ); 3261 if( pParse->nErr ) return 0; 3262 testcase( pExpr->op==TK_EXISTS ); 3263 testcase( pExpr->op==TK_SELECT ); 3264 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3265 assert( ExprUseXSelect(pExpr) ); 3266 pSel = pExpr->x.pSelect; 3267 3268 /* If this routine has already been coded, then invoke it as a 3269 ** subroutine. */ 3270 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3271 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3272 assert( ExprUseYSub(pExpr) ); 3273 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3274 pExpr->y.sub.iAddr); 3275 return pExpr->iTable; 3276 } 3277 3278 /* Begin coding the subroutine */ 3279 assert( !ExprUseYWin(pExpr) ); 3280 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3281 ExprSetProperty(pExpr, EP_Subrtn); 3282 pExpr->y.sub.regReturn = ++pParse->nMem; 3283 pExpr->y.sub.iAddr = 3284 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3285 3286 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3287 ** is encountered if any of the following is true: 3288 ** 3289 ** * The right-hand side is a correlated subquery 3290 ** * The right-hand side is an expression list containing variables 3291 ** * We are inside a trigger 3292 ** 3293 ** If all of the above are false, then we can run this code just once 3294 ** save the results, and reuse the same result on subsequent invocations. 3295 */ 3296 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3297 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3298 } 3299 3300 /* For a SELECT, generate code to put the values for all columns of 3301 ** the first row into an array of registers and return the index of 3302 ** the first register. 3303 ** 3304 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3305 ** into a register and return that register number. 3306 ** 3307 ** In both cases, the query is augmented with "LIMIT 1". Any 3308 ** preexisting limit is discarded in place of the new LIMIT 1. 3309 */ 3310 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3311 addrOnce?"":"CORRELATED ", pSel->selId)); 3312 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3313 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3314 pParse->nMem += nReg; 3315 if( pExpr->op==TK_SELECT ){ 3316 dest.eDest = SRT_Mem; 3317 dest.iSdst = dest.iSDParm; 3318 dest.nSdst = nReg; 3319 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3320 VdbeComment((v, "Init subquery result")); 3321 }else{ 3322 dest.eDest = SRT_Exists; 3323 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3324 VdbeComment((v, "Init EXISTS result")); 3325 } 3326 if( pSel->pLimit ){ 3327 /* The subquery already has a limit. If the pre-existing limit is X 3328 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3329 sqlite3 *db = pParse->db; 3330 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3331 if( pLimit ){ 3332 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3333 pLimit = sqlite3PExpr(pParse, TK_NE, 3334 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3335 } 3336 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); 3337 pSel->pLimit->pLeft = pLimit; 3338 }else{ 3339 /* If there is no pre-existing limit add a limit of 1 */ 3340 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3341 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3342 } 3343 pSel->iLimit = 0; 3344 if( sqlite3Select(pParse, pSel, &dest) ){ 3345 pExpr->op2 = pExpr->op; 3346 pExpr->op = TK_ERROR; 3347 return 0; 3348 } 3349 pExpr->iTable = rReg = dest.iSDParm; 3350 ExprSetVVAProperty(pExpr, EP_NoReduce); 3351 if( addrOnce ){ 3352 sqlite3VdbeJumpHere(v, addrOnce); 3353 } 3354 3355 /* Subroutine return */ 3356 assert( ExprUseYSub(pExpr) ); 3357 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3358 || pParse->nErr ); 3359 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3360 pExpr->y.sub.iAddr, 1); 3361 VdbeCoverage(v); 3362 sqlite3ClearTempRegCache(pParse); 3363 return rReg; 3364 } 3365 #endif /* SQLITE_OMIT_SUBQUERY */ 3366 3367 #ifndef SQLITE_OMIT_SUBQUERY 3368 /* 3369 ** Expr pIn is an IN(...) expression. This function checks that the 3370 ** sub-select on the RHS of the IN() operator has the same number of 3371 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3372 ** a sub-query, that the LHS is a vector of size 1. 3373 */ 3374 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3375 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3376 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3377 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3378 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3379 return 1; 3380 } 3381 }else if( nVector!=1 ){ 3382 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3383 return 1; 3384 } 3385 return 0; 3386 } 3387 #endif 3388 3389 #ifndef SQLITE_OMIT_SUBQUERY 3390 /* 3391 ** Generate code for an IN expression. 3392 ** 3393 ** x IN (SELECT ...) 3394 ** x IN (value, value, ...) 3395 ** 3396 ** The left-hand side (LHS) is a scalar or vector expression. The 3397 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3398 ** subquery. If the RHS is a subquery, the number of result columns must 3399 ** match the number of columns in the vector on the LHS. If the RHS is 3400 ** a list of values, the LHS must be a scalar. 3401 ** 3402 ** The IN operator is true if the LHS value is contained within the RHS. 3403 ** The result is false if the LHS is definitely not in the RHS. The 3404 ** result is NULL if the presence of the LHS in the RHS cannot be 3405 ** determined due to NULLs. 3406 ** 3407 ** This routine generates code that jumps to destIfFalse if the LHS is not 3408 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3409 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3410 ** within the RHS then fall through. 3411 ** 3412 ** See the separate in-operator.md documentation file in the canonical 3413 ** SQLite source tree for additional information. 3414 */ 3415 static void sqlite3ExprCodeIN( 3416 Parse *pParse, /* Parsing and code generating context */ 3417 Expr *pExpr, /* The IN expression */ 3418 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3419 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3420 ){ 3421 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3422 int eType; /* Type of the RHS */ 3423 int rLhs; /* Register(s) holding the LHS values */ 3424 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3425 Vdbe *v; /* Statement under construction */ 3426 int *aiMap = 0; /* Map from vector field to index column */ 3427 char *zAff = 0; /* Affinity string for comparisons */ 3428 int nVector; /* Size of vectors for this IN operator */ 3429 int iDummy; /* Dummy parameter to exprCodeVector() */ 3430 Expr *pLeft; /* The LHS of the IN operator */ 3431 int i; /* loop counter */ 3432 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3433 int destStep6 = 0; /* Start of code for Step 6 */ 3434 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3435 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3436 int addrTop; /* Top of the step-6 loop */ 3437 int iTab = 0; /* Index to use */ 3438 u8 okConstFactor = pParse->okConstFactor; 3439 3440 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3441 pLeft = pExpr->pLeft; 3442 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3443 zAff = exprINAffinity(pParse, pExpr); 3444 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3445 aiMap = (int*)sqlite3DbMallocZero( 3446 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3447 ); 3448 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3449 3450 /* Attempt to compute the RHS. After this step, if anything other than 3451 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3452 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3453 ** the RHS has not yet been coded. */ 3454 v = pParse->pVdbe; 3455 assert( v!=0 ); /* OOM detected prior to this routine */ 3456 VdbeNoopComment((v, "begin IN expr")); 3457 eType = sqlite3FindInIndex(pParse, pExpr, 3458 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3459 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3460 aiMap, &iTab); 3461 3462 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3463 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3464 ); 3465 #ifdef SQLITE_DEBUG 3466 /* Confirm that aiMap[] contains nVector integer values between 0 and 3467 ** nVector-1. */ 3468 for(i=0; i<nVector; i++){ 3469 int j, cnt; 3470 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3471 assert( cnt==1 ); 3472 } 3473 #endif 3474 3475 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3476 ** vector, then it is stored in an array of nVector registers starting 3477 ** at r1. 3478 ** 3479 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3480 ** so that the fields are in the same order as an existing index. The 3481 ** aiMap[] array contains a mapping from the original LHS field order to 3482 ** the field order that matches the RHS index. 3483 ** 3484 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3485 ** even if it is constant, as OP_Affinity may be used on the register 3486 ** by code generated below. */ 3487 assert( pParse->okConstFactor==okConstFactor ); 3488 pParse->okConstFactor = 0; 3489 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3490 pParse->okConstFactor = okConstFactor; 3491 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3492 if( i==nVector ){ 3493 /* LHS fields are not reordered */ 3494 rLhs = rLhsOrig; 3495 }else{ 3496 /* Need to reorder the LHS fields according to aiMap */ 3497 rLhs = sqlite3GetTempRange(pParse, nVector); 3498 for(i=0; i<nVector; i++){ 3499 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3500 } 3501 } 3502 3503 /* If sqlite3FindInIndex() did not find or create an index that is 3504 ** suitable for evaluating the IN operator, then evaluate using a 3505 ** sequence of comparisons. 3506 ** 3507 ** This is step (1) in the in-operator.md optimized algorithm. 3508 */ 3509 if( eType==IN_INDEX_NOOP ){ 3510 ExprList *pList; 3511 CollSeq *pColl; 3512 int labelOk = sqlite3VdbeMakeLabel(pParse); 3513 int r2, regToFree; 3514 int regCkNull = 0; 3515 int ii; 3516 assert( ExprUseXList(pExpr) ); 3517 pList = pExpr->x.pList; 3518 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3519 if( destIfNull!=destIfFalse ){ 3520 regCkNull = sqlite3GetTempReg(pParse); 3521 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3522 } 3523 for(ii=0; ii<pList->nExpr; ii++){ 3524 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3525 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3526 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3527 } 3528 sqlite3ReleaseTempReg(pParse, regToFree); 3529 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3530 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3531 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3532 (void*)pColl, P4_COLLSEQ); 3533 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3534 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3535 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3536 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3537 sqlite3VdbeChangeP5(v, zAff[0]); 3538 }else{ 3539 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3540 assert( destIfNull==destIfFalse ); 3541 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3542 (void*)pColl, P4_COLLSEQ); 3543 VdbeCoverageIf(v, op==OP_Ne); 3544 VdbeCoverageIf(v, op==OP_IsNull); 3545 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3546 } 3547 } 3548 if( regCkNull ){ 3549 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3550 sqlite3VdbeGoto(v, destIfFalse); 3551 } 3552 sqlite3VdbeResolveLabel(v, labelOk); 3553 sqlite3ReleaseTempReg(pParse, regCkNull); 3554 goto sqlite3ExprCodeIN_finished; 3555 } 3556 3557 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3558 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3559 ** We will then skip the binary search of the RHS. 3560 */ 3561 if( destIfNull==destIfFalse ){ 3562 destStep2 = destIfFalse; 3563 }else{ 3564 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3565 } 3566 for(i=0; i<nVector; i++){ 3567 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3568 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3569 if( sqlite3ExprCanBeNull(p) ){ 3570 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3571 VdbeCoverage(v); 3572 } 3573 } 3574 3575 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3576 ** of the RHS using the LHS as a probe. If found, the result is 3577 ** true. 3578 */ 3579 if( eType==IN_INDEX_ROWID ){ 3580 /* In this case, the RHS is the ROWID of table b-tree and so we also 3581 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3582 ** into a single opcode. */ 3583 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3584 VdbeCoverage(v); 3585 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3586 }else{ 3587 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3588 if( destIfFalse==destIfNull ){ 3589 /* Combine Step 3 and Step 5 into a single opcode */ 3590 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3591 rLhs, nVector); VdbeCoverage(v); 3592 goto sqlite3ExprCodeIN_finished; 3593 } 3594 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3595 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3596 rLhs, nVector); VdbeCoverage(v); 3597 } 3598 3599 /* Step 4. If the RHS is known to be non-NULL and we did not find 3600 ** an match on the search above, then the result must be FALSE. 3601 */ 3602 if( rRhsHasNull && nVector==1 ){ 3603 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3604 VdbeCoverage(v); 3605 } 3606 3607 /* Step 5. If we do not care about the difference between NULL and 3608 ** FALSE, then just return false. 3609 */ 3610 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3611 3612 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3613 ** If any comparison is NULL, then the result is NULL. If all 3614 ** comparisons are FALSE then the final result is FALSE. 3615 ** 3616 ** For a scalar LHS, it is sufficient to check just the first row 3617 ** of the RHS. 3618 */ 3619 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3620 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3621 VdbeCoverage(v); 3622 if( nVector>1 ){ 3623 destNotNull = sqlite3VdbeMakeLabel(pParse); 3624 }else{ 3625 /* For nVector==1, combine steps 6 and 7 by immediately returning 3626 ** FALSE if the first comparison is not NULL */ 3627 destNotNull = destIfFalse; 3628 } 3629 for(i=0; i<nVector; i++){ 3630 Expr *p; 3631 CollSeq *pColl; 3632 int r3 = sqlite3GetTempReg(pParse); 3633 p = sqlite3VectorFieldSubexpr(pLeft, i); 3634 pColl = sqlite3ExprCollSeq(pParse, p); 3635 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3636 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3637 (void*)pColl, P4_COLLSEQ); 3638 VdbeCoverage(v); 3639 sqlite3ReleaseTempReg(pParse, r3); 3640 } 3641 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3642 if( nVector>1 ){ 3643 sqlite3VdbeResolveLabel(v, destNotNull); 3644 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3645 VdbeCoverage(v); 3646 3647 /* Step 7: If we reach this point, we know that the result must 3648 ** be false. */ 3649 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3650 } 3651 3652 /* Jumps here in order to return true. */ 3653 sqlite3VdbeJumpHere(v, addrTruthOp); 3654 3655 sqlite3ExprCodeIN_finished: 3656 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3657 VdbeComment((v, "end IN expr")); 3658 sqlite3ExprCodeIN_oom_error: 3659 sqlite3DbFree(pParse->db, aiMap); 3660 sqlite3DbFree(pParse->db, zAff); 3661 } 3662 #endif /* SQLITE_OMIT_SUBQUERY */ 3663 3664 #ifndef SQLITE_OMIT_FLOATING_POINT 3665 /* 3666 ** Generate an instruction that will put the floating point 3667 ** value described by z[0..n-1] into register iMem. 3668 ** 3669 ** The z[] string will probably not be zero-terminated. But the 3670 ** z[n] character is guaranteed to be something that does not look 3671 ** like the continuation of the number. 3672 */ 3673 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3674 if( ALWAYS(z!=0) ){ 3675 double value; 3676 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3677 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3678 if( negateFlag ) value = -value; 3679 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3680 } 3681 } 3682 #endif 3683 3684 3685 /* 3686 ** Generate an instruction that will put the integer describe by 3687 ** text z[0..n-1] into register iMem. 3688 ** 3689 ** Expr.u.zToken is always UTF8 and zero-terminated. 3690 */ 3691 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3692 Vdbe *v = pParse->pVdbe; 3693 if( pExpr->flags & EP_IntValue ){ 3694 int i = pExpr->u.iValue; 3695 assert( i>=0 ); 3696 if( negFlag ) i = -i; 3697 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3698 }else{ 3699 int c; 3700 i64 value; 3701 const char *z = pExpr->u.zToken; 3702 assert( z!=0 ); 3703 c = sqlite3DecOrHexToI64(z, &value); 3704 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3705 #ifdef SQLITE_OMIT_FLOATING_POINT 3706 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3707 #else 3708 #ifndef SQLITE_OMIT_HEX_INTEGER 3709 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3710 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3711 negFlag?"-":"",pExpr); 3712 }else 3713 #endif 3714 { 3715 codeReal(v, z, negFlag, iMem); 3716 } 3717 #endif 3718 }else{ 3719 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3720 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3721 } 3722 } 3723 } 3724 3725 3726 /* Generate code that will load into register regOut a value that is 3727 ** appropriate for the iIdxCol-th column of index pIdx. 3728 */ 3729 void sqlite3ExprCodeLoadIndexColumn( 3730 Parse *pParse, /* The parsing context */ 3731 Index *pIdx, /* The index whose column is to be loaded */ 3732 int iTabCur, /* Cursor pointing to a table row */ 3733 int iIdxCol, /* The column of the index to be loaded */ 3734 int regOut /* Store the index column value in this register */ 3735 ){ 3736 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3737 if( iTabCol==XN_EXPR ){ 3738 assert( pIdx->aColExpr ); 3739 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3740 pParse->iSelfTab = iTabCur + 1; 3741 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3742 pParse->iSelfTab = 0; 3743 }else{ 3744 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3745 iTabCol, regOut); 3746 } 3747 } 3748 3749 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3750 /* 3751 ** Generate code that will compute the value of generated column pCol 3752 ** and store the result in register regOut 3753 */ 3754 void sqlite3ExprCodeGeneratedColumn( 3755 Parse *pParse, /* Parsing context */ 3756 Table *pTab, /* Table containing the generated column */ 3757 Column *pCol, /* The generated column */ 3758 int regOut /* Put the result in this register */ 3759 ){ 3760 int iAddr; 3761 Vdbe *v = pParse->pVdbe; 3762 assert( v!=0 ); 3763 assert( pParse->iSelfTab!=0 ); 3764 if( pParse->iSelfTab>0 ){ 3765 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3766 }else{ 3767 iAddr = 0; 3768 } 3769 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3770 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3771 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3772 } 3773 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3774 } 3775 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3776 3777 /* 3778 ** Generate code to extract the value of the iCol-th column of a table. 3779 */ 3780 void sqlite3ExprCodeGetColumnOfTable( 3781 Vdbe *v, /* Parsing context */ 3782 Table *pTab, /* The table containing the value */ 3783 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3784 int iCol, /* Index of the column to extract */ 3785 int regOut /* Extract the value into this register */ 3786 ){ 3787 Column *pCol; 3788 assert( v!=0 ); 3789 assert( pTab!=0 ); 3790 if( iCol<0 || iCol==pTab->iPKey ){ 3791 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3792 VdbeComment((v, "%s.rowid", pTab->zName)); 3793 }else{ 3794 int op; 3795 int x; 3796 if( IsVirtual(pTab) ){ 3797 op = OP_VColumn; 3798 x = iCol; 3799 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3800 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3801 Parse *pParse = sqlite3VdbeParser(v); 3802 if( pCol->colFlags & COLFLAG_BUSY ){ 3803 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3804 pCol->zCnName); 3805 }else{ 3806 int savedSelfTab = pParse->iSelfTab; 3807 pCol->colFlags |= COLFLAG_BUSY; 3808 pParse->iSelfTab = iTabCur+1; 3809 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3810 pParse->iSelfTab = savedSelfTab; 3811 pCol->colFlags &= ~COLFLAG_BUSY; 3812 } 3813 return; 3814 #endif 3815 }else if( !HasRowid(pTab) ){ 3816 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3817 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3818 op = OP_Column; 3819 }else{ 3820 x = sqlite3TableColumnToStorage(pTab,iCol); 3821 testcase( x!=iCol ); 3822 op = OP_Column; 3823 } 3824 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3825 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3826 } 3827 } 3828 3829 /* 3830 ** Generate code that will extract the iColumn-th column from 3831 ** table pTab and store the column value in register iReg. 3832 ** 3833 ** There must be an open cursor to pTab in iTable when this routine 3834 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3835 */ 3836 int sqlite3ExprCodeGetColumn( 3837 Parse *pParse, /* Parsing and code generating context */ 3838 Table *pTab, /* Description of the table we are reading from */ 3839 int iColumn, /* Index of the table column */ 3840 int iTable, /* The cursor pointing to the table */ 3841 int iReg, /* Store results here */ 3842 u8 p5 /* P5 value for OP_Column + FLAGS */ 3843 ){ 3844 assert( pParse->pVdbe!=0 ); 3845 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3846 if( p5 ){ 3847 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 3848 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3849 } 3850 return iReg; 3851 } 3852 3853 /* 3854 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3855 ** over to iTo..iTo+nReg-1. 3856 */ 3857 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3858 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3859 } 3860 3861 /* 3862 ** Convert a scalar expression node to a TK_REGISTER referencing 3863 ** register iReg. The caller must ensure that iReg already contains 3864 ** the correct value for the expression. 3865 */ 3866 static void exprToRegister(Expr *pExpr, int iReg){ 3867 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3868 if( NEVER(p==0) ) return; 3869 p->op2 = p->op; 3870 p->op = TK_REGISTER; 3871 p->iTable = iReg; 3872 ExprClearProperty(p, EP_Skip); 3873 } 3874 3875 /* 3876 ** Evaluate an expression (either a vector or a scalar expression) and store 3877 ** the result in continguous temporary registers. Return the index of 3878 ** the first register used to store the result. 3879 ** 3880 ** If the returned result register is a temporary scalar, then also write 3881 ** that register number into *piFreeable. If the returned result register 3882 ** is not a temporary or if the expression is a vector set *piFreeable 3883 ** to 0. 3884 */ 3885 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3886 int iResult; 3887 int nResult = sqlite3ExprVectorSize(p); 3888 if( nResult==1 ){ 3889 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3890 }else{ 3891 *piFreeable = 0; 3892 if( p->op==TK_SELECT ){ 3893 #if SQLITE_OMIT_SUBQUERY 3894 iResult = 0; 3895 #else 3896 iResult = sqlite3CodeSubselect(pParse, p); 3897 #endif 3898 }else{ 3899 int i; 3900 iResult = pParse->nMem+1; 3901 pParse->nMem += nResult; 3902 assert( ExprUseXList(p) ); 3903 for(i=0; i<nResult; i++){ 3904 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3905 } 3906 } 3907 } 3908 return iResult; 3909 } 3910 3911 /* 3912 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3913 ** so that a subsequent copy will not be merged into this one. 3914 */ 3915 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3916 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ 3917 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3918 } 3919 } 3920 3921 /* 3922 ** Generate code to implement special SQL functions that are implemented 3923 ** in-line rather than by using the usual callbacks. 3924 */ 3925 static int exprCodeInlineFunction( 3926 Parse *pParse, /* Parsing context */ 3927 ExprList *pFarg, /* List of function arguments */ 3928 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3929 int target /* Store function result in this register */ 3930 ){ 3931 int nFarg; 3932 Vdbe *v = pParse->pVdbe; 3933 assert( v!=0 ); 3934 assert( pFarg!=0 ); 3935 nFarg = pFarg->nExpr; 3936 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3937 switch( iFuncId ){ 3938 case INLINEFUNC_coalesce: { 3939 /* Attempt a direct implementation of the built-in COALESCE() and 3940 ** IFNULL() functions. This avoids unnecessary evaluation of 3941 ** arguments past the first non-NULL argument. 3942 */ 3943 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3944 int i; 3945 assert( nFarg>=2 ); 3946 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3947 for(i=1; i<nFarg; i++){ 3948 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3949 VdbeCoverage(v); 3950 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3951 } 3952 setDoNotMergeFlagOnCopy(v); 3953 sqlite3VdbeResolveLabel(v, endCoalesce); 3954 break; 3955 } 3956 case INLINEFUNC_iif: { 3957 Expr caseExpr; 3958 memset(&caseExpr, 0, sizeof(caseExpr)); 3959 caseExpr.op = TK_CASE; 3960 caseExpr.x.pList = pFarg; 3961 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3962 } 3963 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3964 case INLINEFUNC_sqlite_offset: { 3965 Expr *pArg = pFarg->a[0].pExpr; 3966 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ 3967 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3968 }else{ 3969 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3970 } 3971 break; 3972 } 3973 #endif 3974 default: { 3975 /* The UNLIKELY() function is a no-op. The result is the value 3976 ** of the first argument. 3977 */ 3978 assert( nFarg==1 || nFarg==2 ); 3979 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3980 break; 3981 } 3982 3983 /*********************************************************************** 3984 ** Test-only SQL functions that are only usable if enabled 3985 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3986 */ 3987 #if !defined(SQLITE_UNTESTABLE) 3988 case INLINEFUNC_expr_compare: { 3989 /* Compare two expressions using sqlite3ExprCompare() */ 3990 assert( nFarg==2 ); 3991 sqlite3VdbeAddOp2(v, OP_Integer, 3992 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3993 target); 3994 break; 3995 } 3996 3997 case INLINEFUNC_expr_implies_expr: { 3998 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3999 assert( nFarg==2 ); 4000 sqlite3VdbeAddOp2(v, OP_Integer, 4001 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 4002 target); 4003 break; 4004 } 4005 4006 case INLINEFUNC_implies_nonnull_row: { 4007 /* REsult of sqlite3ExprImpliesNonNullRow() */ 4008 Expr *pA1; 4009 assert( nFarg==2 ); 4010 pA1 = pFarg->a[1].pExpr; 4011 if( pA1->op==TK_COLUMN ){ 4012 sqlite3VdbeAddOp2(v, OP_Integer, 4013 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 4014 target); 4015 }else{ 4016 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4017 } 4018 break; 4019 } 4020 4021 case INLINEFUNC_affinity: { 4022 /* The AFFINITY() function evaluates to a string that describes 4023 ** the type affinity of the argument. This is used for testing of 4024 ** the SQLite type logic. 4025 */ 4026 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 4027 char aff; 4028 assert( nFarg==1 ); 4029 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 4030 sqlite3VdbeLoadString(v, target, 4031 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 4032 break; 4033 } 4034 #endif /* !defined(SQLITE_UNTESTABLE) */ 4035 } 4036 return target; 4037 } 4038 4039 /* 4040 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxExpr. 4041 ** If it is, then resolve the expression by reading from the index and 4042 ** return the register into which the value has been read. If pExpr is 4043 ** not an indexed expression, then return negative. 4044 */ 4045 static SQLITE_NOINLINE int sqlite3IndexedExprLookup( 4046 Parse *pParse, /* The parsing context */ 4047 Expr *pExpr, /* The expression to potentially bypass */ 4048 int target /* Where to store the result of the expression */ 4049 ){ 4050 IndexedExpr *p; 4051 Vdbe *v; 4052 for(p=pParse->pIdxExpr; p; p=p->pIENext){ 4053 int iDataCur = p->iDataCur; 4054 if( iDataCur<0 ) continue; 4055 if( pParse->iSelfTab ){ 4056 if( p->iDataCur!=pParse->iSelfTab-1 ) continue; 4057 iDataCur = -1; 4058 } 4059 if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue; 4060 v = pParse->pVdbe; 4061 assert( v!=0 ); 4062 if( p->bMaybeNullRow ){ 4063 /* If the index is on a NULL row due to an outer join, then we 4064 ** cannot extract the value from the index. The value must be 4065 ** computed using the original expression. */ 4066 int addr = sqlite3VdbeCurrentAddr(v); 4067 sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target); 4068 VdbeCoverage(v); 4069 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 4070 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); 4071 sqlite3VdbeGoto(v, 0); 4072 p = pParse->pIdxExpr; 4073 pParse->pIdxExpr = 0; 4074 sqlite3ExprCode(pParse, pExpr, target); 4075 pParse->pIdxExpr = p; 4076 sqlite3VdbeJumpHere(v, addr+2); 4077 }else{ 4078 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 4079 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); 4080 } 4081 return target; 4082 } 4083 return -1; /* Not found */ 4084 } 4085 4086 4087 /* 4088 ** Generate code into the current Vdbe to evaluate the given 4089 ** expression. Attempt to store the results in register "target". 4090 ** Return the register where results are stored. 4091 ** 4092 ** With this routine, there is no guarantee that results will 4093 ** be stored in target. The result might be stored in some other 4094 ** register if it is convenient to do so. The calling function 4095 ** must check the return code and move the results to the desired 4096 ** register. 4097 */ 4098 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 4099 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 4100 int op; /* The opcode being coded */ 4101 int inReg = target; /* Results stored in register inReg */ 4102 int regFree1 = 0; /* If non-zero free this temporary register */ 4103 int regFree2 = 0; /* If non-zero free this temporary register */ 4104 int r1, r2; /* Various register numbers */ 4105 Expr tempX; /* Temporary expression node */ 4106 int p5 = 0; 4107 4108 assert( target>0 && target<=pParse->nMem ); 4109 assert( v!=0 ); 4110 4111 expr_code_doover: 4112 if( pExpr==0 ){ 4113 op = TK_NULL; 4114 }else if( pParse->pIdxExpr!=0 4115 && !ExprHasProperty(pExpr, EP_Leaf) 4116 && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0 4117 ){ 4118 return r1; 4119 }else{ 4120 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4121 op = pExpr->op; 4122 } 4123 switch( op ){ 4124 case TK_AGG_COLUMN: { 4125 AggInfo *pAggInfo = pExpr->pAggInfo; 4126 struct AggInfo_col *pCol; 4127 assert( pAggInfo!=0 ); 4128 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4129 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4130 if( !pAggInfo->directMode ){ 4131 assert( pCol->iMem>0 ); 4132 return pCol->iMem; 4133 }else if( pAggInfo->useSortingIdx ){ 4134 Table *pTab = pCol->pTab; 4135 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4136 pCol->iSorterColumn, target); 4137 if( pCol->iColumn<0 ){ 4138 VdbeComment((v,"%s.rowid",pTab->zName)); 4139 }else if( ALWAYS(pTab!=0) ){ 4140 VdbeComment((v,"%s.%s", 4141 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4142 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4143 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4144 } 4145 } 4146 return target; 4147 } 4148 /* Otherwise, fall thru into the TK_COLUMN case */ 4149 /* no break */ deliberate_fall_through 4150 } 4151 case TK_COLUMN: { 4152 int iTab = pExpr->iTable; 4153 int iReg; 4154 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4155 /* This COLUMN expression is really a constant due to WHERE clause 4156 ** constraints, and that constant is coded by the pExpr->pLeft 4157 ** expresssion. However, make sure the constant has the correct 4158 ** datatype by applying the Affinity of the table column to the 4159 ** constant. 4160 */ 4161 int aff; 4162 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4163 assert( ExprUseYTab(pExpr) ); 4164 assert( pExpr->y.pTab!=0 ); 4165 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4166 if( aff>SQLITE_AFF_BLOB ){ 4167 static const char zAff[] = "B\000C\000D\000E"; 4168 assert( SQLITE_AFF_BLOB=='A' ); 4169 assert( SQLITE_AFF_TEXT=='B' ); 4170 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4171 &zAff[(aff-'B')*2], P4_STATIC); 4172 } 4173 return iReg; 4174 } 4175 if( iTab<0 ){ 4176 if( pParse->iSelfTab<0 ){ 4177 /* Other columns in the same row for CHECK constraints or 4178 ** generated columns or for inserting into partial index. 4179 ** The row is unpacked into registers beginning at 4180 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4181 ** immediately prior to the first column. 4182 */ 4183 Column *pCol; 4184 Table *pTab; 4185 int iSrc; 4186 int iCol = pExpr->iColumn; 4187 assert( ExprUseYTab(pExpr) ); 4188 pTab = pExpr->y.pTab; 4189 assert( pTab!=0 ); 4190 assert( iCol>=XN_ROWID ); 4191 assert( iCol<pTab->nCol ); 4192 if( iCol<0 ){ 4193 return -1-pParse->iSelfTab; 4194 } 4195 pCol = pTab->aCol + iCol; 4196 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4197 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4198 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4199 if( pCol->colFlags & COLFLAG_GENERATED ){ 4200 if( pCol->colFlags & COLFLAG_BUSY ){ 4201 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4202 pCol->zCnName); 4203 return 0; 4204 } 4205 pCol->colFlags |= COLFLAG_BUSY; 4206 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4207 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4208 } 4209 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4210 return iSrc; 4211 }else 4212 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4213 if( pCol->affinity==SQLITE_AFF_REAL ){ 4214 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4215 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4216 return target; 4217 }else{ 4218 return iSrc; 4219 } 4220 }else{ 4221 /* Coding an expression that is part of an index where column names 4222 ** in the index refer to the table to which the index belongs */ 4223 iTab = pParse->iSelfTab - 1; 4224 } 4225 } 4226 assert( ExprUseYTab(pExpr) ); 4227 assert( pExpr->y.pTab!=0 ); 4228 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4229 pExpr->iColumn, iTab, target, 4230 pExpr->op2); 4231 return iReg; 4232 } 4233 case TK_INTEGER: { 4234 codeInteger(pParse, pExpr, 0, target); 4235 return target; 4236 } 4237 case TK_TRUEFALSE: { 4238 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4239 return target; 4240 } 4241 #ifndef SQLITE_OMIT_FLOATING_POINT 4242 case TK_FLOAT: { 4243 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4244 codeReal(v, pExpr->u.zToken, 0, target); 4245 return target; 4246 } 4247 #endif 4248 case TK_STRING: { 4249 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4250 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4251 return target; 4252 } 4253 default: { 4254 /* Make NULL the default case so that if a bug causes an illegal 4255 ** Expr node to be passed into this function, it will be handled 4256 ** sanely and not crash. But keep the assert() to bring the problem 4257 ** to the attention of the developers. */ 4258 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4259 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4260 return target; 4261 } 4262 #ifndef SQLITE_OMIT_BLOB_LITERAL 4263 case TK_BLOB: { 4264 int n; 4265 const char *z; 4266 char *zBlob; 4267 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4268 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4269 assert( pExpr->u.zToken[1]=='\'' ); 4270 z = &pExpr->u.zToken[2]; 4271 n = sqlite3Strlen30(z) - 1; 4272 assert( z[n]=='\'' ); 4273 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4274 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4275 return target; 4276 } 4277 #endif 4278 case TK_VARIABLE: { 4279 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4280 assert( pExpr->u.zToken!=0 ); 4281 assert( pExpr->u.zToken[0]!=0 ); 4282 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4283 if( pExpr->u.zToken[1]!=0 ){ 4284 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4285 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4286 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4287 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4288 } 4289 return target; 4290 } 4291 case TK_REGISTER: { 4292 return pExpr->iTable; 4293 } 4294 #ifndef SQLITE_OMIT_CAST 4295 case TK_CAST: { 4296 /* Expressions of the form: CAST(pLeft AS token) */ 4297 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4298 if( inReg!=target ){ 4299 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4300 inReg = target; 4301 } 4302 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4303 sqlite3VdbeAddOp2(v, OP_Cast, target, 4304 sqlite3AffinityType(pExpr->u.zToken, 0)); 4305 return inReg; 4306 } 4307 #endif /* SQLITE_OMIT_CAST */ 4308 case TK_IS: 4309 case TK_ISNOT: 4310 op = (op==TK_IS) ? TK_EQ : TK_NE; 4311 p5 = SQLITE_NULLEQ; 4312 /* fall-through */ 4313 case TK_LT: 4314 case TK_LE: 4315 case TK_GT: 4316 case TK_GE: 4317 case TK_NE: 4318 case TK_EQ: { 4319 Expr *pLeft = pExpr->pLeft; 4320 if( sqlite3ExprIsVector(pLeft) ){ 4321 codeVectorCompare(pParse, pExpr, target, op, p5); 4322 }else{ 4323 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4324 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4325 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4326 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4327 sqlite3VdbeCurrentAddr(v)+2, p5, 4328 ExprHasProperty(pExpr,EP_Commuted)); 4329 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4330 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4331 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4332 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4333 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4334 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4335 if( p5==SQLITE_NULLEQ ){ 4336 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4337 }else{ 4338 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4339 } 4340 testcase( regFree1==0 ); 4341 testcase( regFree2==0 ); 4342 } 4343 break; 4344 } 4345 case TK_AND: 4346 case TK_OR: 4347 case TK_PLUS: 4348 case TK_STAR: 4349 case TK_MINUS: 4350 case TK_REM: 4351 case TK_BITAND: 4352 case TK_BITOR: 4353 case TK_SLASH: 4354 case TK_LSHIFT: 4355 case TK_RSHIFT: 4356 case TK_CONCAT: { 4357 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4358 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4359 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4360 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4361 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4362 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4363 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4364 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4365 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4366 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4367 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4368 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4369 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4370 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4371 testcase( regFree1==0 ); 4372 testcase( regFree2==0 ); 4373 break; 4374 } 4375 case TK_UMINUS: { 4376 Expr *pLeft = pExpr->pLeft; 4377 assert( pLeft ); 4378 if( pLeft->op==TK_INTEGER ){ 4379 codeInteger(pParse, pLeft, 1, target); 4380 return target; 4381 #ifndef SQLITE_OMIT_FLOATING_POINT 4382 }else if( pLeft->op==TK_FLOAT ){ 4383 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4384 codeReal(v, pLeft->u.zToken, 1, target); 4385 return target; 4386 #endif 4387 }else{ 4388 tempX.op = TK_INTEGER; 4389 tempX.flags = EP_IntValue|EP_TokenOnly; 4390 tempX.u.iValue = 0; 4391 ExprClearVVAProperties(&tempX); 4392 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4393 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4394 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4395 testcase( regFree2==0 ); 4396 } 4397 break; 4398 } 4399 case TK_BITNOT: 4400 case TK_NOT: { 4401 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4402 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4403 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4404 testcase( regFree1==0 ); 4405 sqlite3VdbeAddOp2(v, op, r1, inReg); 4406 break; 4407 } 4408 case TK_TRUTH: { 4409 int isTrue; /* IS TRUE or IS NOT TRUE */ 4410 int bNormal; /* IS TRUE or IS FALSE */ 4411 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4412 testcase( regFree1==0 ); 4413 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4414 bNormal = pExpr->op2==TK_IS; 4415 testcase( isTrue && bNormal); 4416 testcase( !isTrue && bNormal); 4417 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4418 break; 4419 } 4420 case TK_ISNULL: 4421 case TK_NOTNULL: { 4422 int addr; 4423 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4424 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4425 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4426 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4427 testcase( regFree1==0 ); 4428 addr = sqlite3VdbeAddOp1(v, op, r1); 4429 VdbeCoverageIf(v, op==TK_ISNULL); 4430 VdbeCoverageIf(v, op==TK_NOTNULL); 4431 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4432 sqlite3VdbeJumpHere(v, addr); 4433 break; 4434 } 4435 case TK_AGG_FUNCTION: { 4436 AggInfo *pInfo = pExpr->pAggInfo; 4437 if( pInfo==0 4438 || NEVER(pExpr->iAgg<0) 4439 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4440 ){ 4441 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4442 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4443 }else{ 4444 return pInfo->aFunc[pExpr->iAgg].iMem; 4445 } 4446 break; 4447 } 4448 case TK_FUNCTION: { 4449 ExprList *pFarg; /* List of function arguments */ 4450 int nFarg; /* Number of function arguments */ 4451 FuncDef *pDef; /* The function definition object */ 4452 const char *zId; /* The function name */ 4453 u32 constMask = 0; /* Mask of function arguments that are constant */ 4454 int i; /* Loop counter */ 4455 sqlite3 *db = pParse->db; /* The database connection */ 4456 u8 enc = ENC(db); /* The text encoding used by this database */ 4457 CollSeq *pColl = 0; /* A collating sequence */ 4458 4459 #ifndef SQLITE_OMIT_WINDOWFUNC 4460 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4461 return pExpr->y.pWin->regResult; 4462 } 4463 #endif 4464 4465 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4466 /* SQL functions can be expensive. So try to avoid running them 4467 ** multiple times if we know they always give the same result */ 4468 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4469 } 4470 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4471 assert( ExprUseXList(pExpr) ); 4472 pFarg = pExpr->x.pList; 4473 nFarg = pFarg ? pFarg->nExpr : 0; 4474 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4475 zId = pExpr->u.zToken; 4476 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4477 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4478 if( pDef==0 && pParse->explain ){ 4479 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4480 } 4481 #endif 4482 if( pDef==0 || pDef->xFinalize!=0 ){ 4483 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4484 break; 4485 } 4486 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4487 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4488 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4489 return exprCodeInlineFunction(pParse, pFarg, 4490 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4491 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4492 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4493 } 4494 4495 for(i=0; i<nFarg; i++){ 4496 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4497 testcase( i==31 ); 4498 constMask |= MASKBIT32(i); 4499 } 4500 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4501 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4502 } 4503 } 4504 if( pFarg ){ 4505 if( constMask ){ 4506 r1 = pParse->nMem+1; 4507 pParse->nMem += nFarg; 4508 }else{ 4509 r1 = sqlite3GetTempRange(pParse, nFarg); 4510 } 4511 4512 /* For length() and typeof() functions with a column argument, 4513 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4514 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4515 ** loading. 4516 */ 4517 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4518 u8 exprOp; 4519 assert( nFarg==1 ); 4520 assert( pFarg->a[0].pExpr!=0 ); 4521 exprOp = pFarg->a[0].pExpr->op; 4522 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4523 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4524 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4525 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4526 pFarg->a[0].pExpr->op2 = 4527 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4528 } 4529 } 4530 4531 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4532 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4533 }else{ 4534 r1 = 0; 4535 } 4536 #ifndef SQLITE_OMIT_VIRTUALTABLE 4537 /* Possibly overload the function if the first argument is 4538 ** a virtual table column. 4539 ** 4540 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4541 ** second argument, not the first, as the argument to test to 4542 ** see if it is a column in a virtual table. This is done because 4543 ** the left operand of infix functions (the operand we want to 4544 ** control overloading) ends up as the second argument to the 4545 ** function. The expression "A glob B" is equivalent to 4546 ** "glob(B,A). We want to use the A in "A glob B" to test 4547 ** for function overloading. But we use the B term in "glob(B,A)". 4548 */ 4549 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4550 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4551 }else if( nFarg>0 ){ 4552 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4553 } 4554 #endif 4555 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4556 if( !pColl ) pColl = db->pDfltColl; 4557 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4558 } 4559 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4560 pDef, pExpr->op2); 4561 if( nFarg ){ 4562 if( constMask==0 ){ 4563 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4564 }else{ 4565 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4566 } 4567 } 4568 return target; 4569 } 4570 #ifndef SQLITE_OMIT_SUBQUERY 4571 case TK_EXISTS: 4572 case TK_SELECT: { 4573 int nCol; 4574 testcase( op==TK_EXISTS ); 4575 testcase( op==TK_SELECT ); 4576 if( pParse->db->mallocFailed ){ 4577 return 0; 4578 }else if( op==TK_SELECT 4579 && ALWAYS( ExprUseXSelect(pExpr) ) 4580 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4581 ){ 4582 sqlite3SubselectError(pParse, nCol, 1); 4583 }else{ 4584 return sqlite3CodeSubselect(pParse, pExpr); 4585 } 4586 break; 4587 } 4588 case TK_SELECT_COLUMN: { 4589 int n; 4590 Expr *pLeft = pExpr->pLeft; 4591 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 4592 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 4593 pLeft->op2 = pParse->withinRJSubrtn; 4594 } 4595 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 4596 n = sqlite3ExprVectorSize(pLeft); 4597 if( pExpr->iTable!=n ){ 4598 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4599 pExpr->iTable, n); 4600 } 4601 return pLeft->iTable + pExpr->iColumn; 4602 } 4603 case TK_IN: { 4604 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4605 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4606 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4607 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4608 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4609 sqlite3VdbeResolveLabel(v, destIfFalse); 4610 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4611 sqlite3VdbeResolveLabel(v, destIfNull); 4612 return target; 4613 } 4614 #endif /* SQLITE_OMIT_SUBQUERY */ 4615 4616 4617 /* 4618 ** x BETWEEN y AND z 4619 ** 4620 ** This is equivalent to 4621 ** 4622 ** x>=y AND x<=z 4623 ** 4624 ** X is stored in pExpr->pLeft. 4625 ** Y is stored in pExpr->pList->a[0].pExpr. 4626 ** Z is stored in pExpr->pList->a[1].pExpr. 4627 */ 4628 case TK_BETWEEN: { 4629 exprCodeBetween(pParse, pExpr, target, 0, 0); 4630 return target; 4631 } 4632 case TK_COLLATE: { 4633 if( !ExprHasProperty(pExpr, EP_Collate) 4634 && ALWAYS(pExpr->pLeft) 4635 && pExpr->pLeft->op==TK_FUNCTION 4636 ){ 4637 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4638 if( inReg!=target ){ 4639 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4640 inReg = target; 4641 } 4642 sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg); 4643 return inReg; 4644 }else{ 4645 pExpr = pExpr->pLeft; 4646 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ 4647 } 4648 } 4649 case TK_SPAN: 4650 case TK_UPLUS: { 4651 pExpr = pExpr->pLeft; 4652 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4653 } 4654 4655 case TK_TRIGGER: { 4656 /* If the opcode is TK_TRIGGER, then the expression is a reference 4657 ** to a column in the new.* or old.* pseudo-tables available to 4658 ** trigger programs. In this case Expr.iTable is set to 1 for the 4659 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4660 ** is set to the column of the pseudo-table to read, or to -1 to 4661 ** read the rowid field. 4662 ** 4663 ** The expression is implemented using an OP_Param opcode. The p1 4664 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4665 ** to reference another column of the old.* pseudo-table, where 4666 ** i is the index of the column. For a new.rowid reference, p1 is 4667 ** set to (n+1), where n is the number of columns in each pseudo-table. 4668 ** For a reference to any other column in the new.* pseudo-table, p1 4669 ** is set to (n+2+i), where n and i are as defined previously. For 4670 ** example, if the table on which triggers are being fired is 4671 ** declared as: 4672 ** 4673 ** CREATE TABLE t1(a, b); 4674 ** 4675 ** Then p1 is interpreted as follows: 4676 ** 4677 ** p1==0 -> old.rowid p1==3 -> new.rowid 4678 ** p1==1 -> old.a p1==4 -> new.a 4679 ** p1==2 -> old.b p1==5 -> new.b 4680 */ 4681 Table *pTab; 4682 int iCol; 4683 int p1; 4684 4685 assert( ExprUseYTab(pExpr) ); 4686 pTab = pExpr->y.pTab; 4687 iCol = pExpr->iColumn; 4688 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4689 + sqlite3TableColumnToStorage(pTab, iCol); 4690 4691 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4692 assert( iCol>=-1 && iCol<pTab->nCol ); 4693 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4694 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4695 4696 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4697 VdbeComment((v, "r[%d]=%s.%s", target, 4698 (pExpr->iTable ? "new" : "old"), 4699 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4700 )); 4701 4702 #ifndef SQLITE_OMIT_FLOATING_POINT 4703 /* If the column has REAL affinity, it may currently be stored as an 4704 ** integer. Use OP_RealAffinity to make sure it is really real. 4705 ** 4706 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4707 ** floating point when extracting it from the record. */ 4708 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4709 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4710 } 4711 #endif 4712 break; 4713 } 4714 4715 case TK_VECTOR: { 4716 sqlite3ErrorMsg(pParse, "row value misused"); 4717 break; 4718 } 4719 4720 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4721 ** that derive from the right-hand table of a LEFT JOIN. The 4722 ** Expr.iTable value is the table number for the right-hand table. 4723 ** The expression is only evaluated if that table is not currently 4724 ** on a LEFT JOIN NULL row. 4725 */ 4726 case TK_IF_NULL_ROW: { 4727 int addrINR; 4728 u8 okConstFactor = pParse->okConstFactor; 4729 AggInfo *pAggInfo = pExpr->pAggInfo; 4730 if( pAggInfo ){ 4731 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4732 if( !pAggInfo->directMode ){ 4733 inReg = pAggInfo->aCol[pExpr->iAgg].iMem; 4734 break; 4735 } 4736 if( pExpr->pAggInfo->useSortingIdx ){ 4737 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4738 pAggInfo->aCol[pExpr->iAgg].iSorterColumn, 4739 target); 4740 inReg = target; 4741 break; 4742 } 4743 } 4744 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4745 /* Temporarily disable factoring of constant expressions, since 4746 ** even though expressions may appear to be constant, they are not 4747 ** really constant because they originate from the right-hand side 4748 ** of a LEFT JOIN. */ 4749 pParse->okConstFactor = 0; 4750 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4751 pParse->okConstFactor = okConstFactor; 4752 sqlite3VdbeJumpHere(v, addrINR); 4753 sqlite3VdbeChangeP3(v, addrINR, inReg); 4754 break; 4755 } 4756 4757 /* 4758 ** Form A: 4759 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4760 ** 4761 ** Form B: 4762 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4763 ** 4764 ** Form A is can be transformed into the equivalent form B as follows: 4765 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4766 ** WHEN x=eN THEN rN ELSE y END 4767 ** 4768 ** X (if it exists) is in pExpr->pLeft. 4769 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4770 ** odd. The Y is also optional. If the number of elements in x.pList 4771 ** is even, then Y is omitted and the "otherwise" result is NULL. 4772 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4773 ** 4774 ** The result of the expression is the Ri for the first matching Ei, 4775 ** or if there is no matching Ei, the ELSE term Y, or if there is 4776 ** no ELSE term, NULL. 4777 */ 4778 case TK_CASE: { 4779 int endLabel; /* GOTO label for end of CASE stmt */ 4780 int nextCase; /* GOTO label for next WHEN clause */ 4781 int nExpr; /* 2x number of WHEN terms */ 4782 int i; /* Loop counter */ 4783 ExprList *pEList; /* List of WHEN terms */ 4784 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4785 Expr opCompare; /* The X==Ei expression */ 4786 Expr *pX; /* The X expression */ 4787 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4788 Expr *pDel = 0; 4789 sqlite3 *db = pParse->db; 4790 4791 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4792 assert(pExpr->x.pList->nExpr > 0); 4793 pEList = pExpr->x.pList; 4794 aListelem = pEList->a; 4795 nExpr = pEList->nExpr; 4796 endLabel = sqlite3VdbeMakeLabel(pParse); 4797 if( (pX = pExpr->pLeft)!=0 ){ 4798 pDel = sqlite3ExprDup(db, pX, 0); 4799 if( db->mallocFailed ){ 4800 sqlite3ExprDelete(db, pDel); 4801 break; 4802 } 4803 testcase( pX->op==TK_COLUMN ); 4804 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4805 testcase( regFree1==0 ); 4806 memset(&opCompare, 0, sizeof(opCompare)); 4807 opCompare.op = TK_EQ; 4808 opCompare.pLeft = pDel; 4809 pTest = &opCompare; 4810 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4811 ** The value in regFree1 might get SCopy-ed into the file result. 4812 ** So make sure that the regFree1 register is not reused for other 4813 ** purposes and possibly overwritten. */ 4814 regFree1 = 0; 4815 } 4816 for(i=0; i<nExpr-1; i=i+2){ 4817 if( pX ){ 4818 assert( pTest!=0 ); 4819 opCompare.pRight = aListelem[i].pExpr; 4820 }else{ 4821 pTest = aListelem[i].pExpr; 4822 } 4823 nextCase = sqlite3VdbeMakeLabel(pParse); 4824 testcase( pTest->op==TK_COLUMN ); 4825 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4826 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4827 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4828 sqlite3VdbeGoto(v, endLabel); 4829 sqlite3VdbeResolveLabel(v, nextCase); 4830 } 4831 if( (nExpr&1)!=0 ){ 4832 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4833 }else{ 4834 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4835 } 4836 sqlite3ExprDelete(db, pDel); 4837 setDoNotMergeFlagOnCopy(v); 4838 sqlite3VdbeResolveLabel(v, endLabel); 4839 break; 4840 } 4841 #ifndef SQLITE_OMIT_TRIGGER 4842 case TK_RAISE: { 4843 assert( pExpr->affExpr==OE_Rollback 4844 || pExpr->affExpr==OE_Abort 4845 || pExpr->affExpr==OE_Fail 4846 || pExpr->affExpr==OE_Ignore 4847 ); 4848 if( !pParse->pTriggerTab && !pParse->nested ){ 4849 sqlite3ErrorMsg(pParse, 4850 "RAISE() may only be used within a trigger-program"); 4851 return 0; 4852 } 4853 if( pExpr->affExpr==OE_Abort ){ 4854 sqlite3MayAbort(pParse); 4855 } 4856 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4857 if( pExpr->affExpr==OE_Ignore ){ 4858 sqlite3VdbeAddOp4( 4859 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4860 VdbeCoverage(v); 4861 }else{ 4862 sqlite3HaltConstraint(pParse, 4863 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4864 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4865 } 4866 4867 break; 4868 } 4869 #endif 4870 } 4871 sqlite3ReleaseTempReg(pParse, regFree1); 4872 sqlite3ReleaseTempReg(pParse, regFree2); 4873 return inReg; 4874 } 4875 4876 /* 4877 ** Generate code that will evaluate expression pExpr just one time 4878 ** per prepared statement execution. 4879 ** 4880 ** If the expression uses functions (that might throw an exception) then 4881 ** guard them with an OP_Once opcode to ensure that the code is only executed 4882 ** once. If no functions are involved, then factor the code out and put it at 4883 ** the end of the prepared statement in the initialization section. 4884 ** 4885 ** If regDest>=0 then the result is always stored in that register and the 4886 ** result is not reusable. If regDest<0 then this routine is free to 4887 ** store the value whereever it wants. The register where the expression 4888 ** is stored is returned. When regDest<0, two identical expressions might 4889 ** code to the same register, if they do not contain function calls and hence 4890 ** are factored out into the initialization section at the end of the 4891 ** prepared statement. 4892 */ 4893 int sqlite3ExprCodeRunJustOnce( 4894 Parse *pParse, /* Parsing context */ 4895 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4896 int regDest /* Store the value in this register */ 4897 ){ 4898 ExprList *p; 4899 assert( ConstFactorOk(pParse) ); 4900 p = pParse->pConstExpr; 4901 if( regDest<0 && p ){ 4902 struct ExprList_item *pItem; 4903 int i; 4904 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4905 if( pItem->fg.reusable 4906 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 4907 ){ 4908 return pItem->u.iConstExprReg; 4909 } 4910 } 4911 } 4912 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4913 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4914 Vdbe *v = pParse->pVdbe; 4915 int addr; 4916 assert( v ); 4917 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4918 pParse->okConstFactor = 0; 4919 if( !pParse->db->mallocFailed ){ 4920 if( regDest<0 ) regDest = ++pParse->nMem; 4921 sqlite3ExprCode(pParse, pExpr, regDest); 4922 } 4923 pParse->okConstFactor = 1; 4924 sqlite3ExprDelete(pParse->db, pExpr); 4925 sqlite3VdbeJumpHere(v, addr); 4926 }else{ 4927 p = sqlite3ExprListAppend(pParse, p, pExpr); 4928 if( p ){ 4929 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4930 pItem->fg.reusable = regDest<0; 4931 if( regDest<0 ) regDest = ++pParse->nMem; 4932 pItem->u.iConstExprReg = regDest; 4933 } 4934 pParse->pConstExpr = p; 4935 } 4936 return regDest; 4937 } 4938 4939 /* 4940 ** Generate code to evaluate an expression and store the results 4941 ** into a register. Return the register number where the results 4942 ** are stored. 4943 ** 4944 ** If the register is a temporary register that can be deallocated, 4945 ** then write its number into *pReg. If the result register is not 4946 ** a temporary, then set *pReg to zero. 4947 ** 4948 ** If pExpr is a constant, then this routine might generate this 4949 ** code to fill the register in the initialization section of the 4950 ** VDBE program, in order to factor it out of the evaluation loop. 4951 */ 4952 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4953 int r2; 4954 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4955 if( ConstFactorOk(pParse) 4956 && ALWAYS(pExpr!=0) 4957 && pExpr->op!=TK_REGISTER 4958 && sqlite3ExprIsConstantNotJoin(pExpr) 4959 ){ 4960 *pReg = 0; 4961 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4962 }else{ 4963 int r1 = sqlite3GetTempReg(pParse); 4964 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4965 if( r2==r1 ){ 4966 *pReg = r1; 4967 }else{ 4968 sqlite3ReleaseTempReg(pParse, r1); 4969 *pReg = 0; 4970 } 4971 } 4972 return r2; 4973 } 4974 4975 /* 4976 ** Generate code that will evaluate expression pExpr and store the 4977 ** results in register target. The results are guaranteed to appear 4978 ** in register target. 4979 */ 4980 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4981 int inReg; 4982 4983 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4984 assert( target>0 && target<=pParse->nMem ); 4985 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4986 if( pParse->pVdbe==0 ) return; 4987 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4988 if( inReg!=target ){ 4989 u8 op; 4990 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4991 op = OP_Copy; 4992 }else{ 4993 op = OP_SCopy; 4994 } 4995 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4996 } 4997 } 4998 4999 /* 5000 ** Make a transient copy of expression pExpr and then code it using 5001 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 5002 ** except that the input expression is guaranteed to be unchanged. 5003 */ 5004 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 5005 sqlite3 *db = pParse->db; 5006 pExpr = sqlite3ExprDup(db, pExpr, 0); 5007 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 5008 sqlite3ExprDelete(db, pExpr); 5009 } 5010 5011 /* 5012 ** Generate code that will evaluate expression pExpr and store the 5013 ** results in register target. The results are guaranteed to appear 5014 ** in register target. If the expression is constant, then this routine 5015 ** might choose to code the expression at initialization time. 5016 */ 5017 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 5018 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 5019 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 5020 }else{ 5021 sqlite3ExprCodeCopy(pParse, pExpr, target); 5022 } 5023 } 5024 5025 /* 5026 ** Generate code that pushes the value of every element of the given 5027 ** expression list into a sequence of registers beginning at target. 5028 ** 5029 ** Return the number of elements evaluated. The number returned will 5030 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 5031 ** is defined. 5032 ** 5033 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 5034 ** filled using OP_SCopy. OP_Copy must be used instead. 5035 ** 5036 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 5037 ** factored out into initialization code. 5038 ** 5039 ** The SQLITE_ECEL_REF flag means that expressions in the list with 5040 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 5041 ** in registers at srcReg, and so the value can be copied from there. 5042 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 5043 ** are simply omitted rather than being copied from srcReg. 5044 */ 5045 int sqlite3ExprCodeExprList( 5046 Parse *pParse, /* Parsing context */ 5047 ExprList *pList, /* The expression list to be coded */ 5048 int target, /* Where to write results */ 5049 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 5050 u8 flags /* SQLITE_ECEL_* flags */ 5051 ){ 5052 struct ExprList_item *pItem; 5053 int i, j, n; 5054 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 5055 Vdbe *v = pParse->pVdbe; 5056 assert( pList!=0 ); 5057 assert( target>0 ); 5058 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 5059 n = pList->nExpr; 5060 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 5061 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 5062 Expr *pExpr = pItem->pExpr; 5063 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 5064 if( pItem->fg.bSorterRef ){ 5065 i--; 5066 n--; 5067 }else 5068 #endif 5069 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 5070 if( flags & SQLITE_ECEL_OMITREF ){ 5071 i--; 5072 n--; 5073 }else{ 5074 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 5075 } 5076 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 5077 && sqlite3ExprIsConstantNotJoin(pExpr) 5078 ){ 5079 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 5080 }else{ 5081 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 5082 if( inReg!=target+i ){ 5083 VdbeOp *pOp; 5084 if( copyOp==OP_Copy 5085 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy 5086 && pOp->p1+pOp->p3+1==inReg 5087 && pOp->p2+pOp->p3+1==target+i 5088 && pOp->p5==0 /* The do-not-merge flag must be clear */ 5089 ){ 5090 pOp->p3++; 5091 }else{ 5092 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 5093 } 5094 } 5095 } 5096 } 5097 return n; 5098 } 5099 5100 /* 5101 ** Generate code for a BETWEEN operator. 5102 ** 5103 ** x BETWEEN y AND z 5104 ** 5105 ** The above is equivalent to 5106 ** 5107 ** x>=y AND x<=z 5108 ** 5109 ** Code it as such, taking care to do the common subexpression 5110 ** elimination of x. 5111 ** 5112 ** The xJumpIf parameter determines details: 5113 ** 5114 ** NULL: Store the boolean result in reg[dest] 5115 ** sqlite3ExprIfTrue: Jump to dest if true 5116 ** sqlite3ExprIfFalse: Jump to dest if false 5117 ** 5118 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 5119 */ 5120 static void exprCodeBetween( 5121 Parse *pParse, /* Parsing and code generating context */ 5122 Expr *pExpr, /* The BETWEEN expression */ 5123 int dest, /* Jump destination or storage location */ 5124 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5125 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5126 ){ 5127 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5128 Expr compLeft; /* The x>=y term */ 5129 Expr compRight; /* The x<=z term */ 5130 int regFree1 = 0; /* Temporary use register */ 5131 Expr *pDel = 0; 5132 sqlite3 *db = pParse->db; 5133 5134 memset(&compLeft, 0, sizeof(Expr)); 5135 memset(&compRight, 0, sizeof(Expr)); 5136 memset(&exprAnd, 0, sizeof(Expr)); 5137 5138 assert( ExprUseXList(pExpr) ); 5139 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5140 if( db->mallocFailed==0 ){ 5141 exprAnd.op = TK_AND; 5142 exprAnd.pLeft = &compLeft; 5143 exprAnd.pRight = &compRight; 5144 compLeft.op = TK_GE; 5145 compLeft.pLeft = pDel; 5146 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5147 compRight.op = TK_LE; 5148 compRight.pLeft = pDel; 5149 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5150 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5151 if( xJump ){ 5152 xJump(pParse, &exprAnd, dest, jumpIfNull); 5153 }else{ 5154 /* Mark the expression is being from the ON or USING clause of a join 5155 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5156 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5157 ** for clarity, but we are out of bits in the Expr.flags field so we 5158 ** have to reuse the EP_OuterON bit. Bummer. */ 5159 pDel->flags |= EP_OuterON; 5160 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5161 } 5162 sqlite3ReleaseTempReg(pParse, regFree1); 5163 } 5164 sqlite3ExprDelete(db, pDel); 5165 5166 /* Ensure adequate test coverage */ 5167 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5168 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5169 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5170 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5171 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5172 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5173 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5174 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5175 testcase( xJump==0 ); 5176 } 5177 5178 /* 5179 ** Generate code for a boolean expression such that a jump is made 5180 ** to the label "dest" if the expression is true but execution 5181 ** continues straight thru if the expression is false. 5182 ** 5183 ** If the expression evaluates to NULL (neither true nor false), then 5184 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5185 ** 5186 ** This code depends on the fact that certain token values (ex: TK_EQ) 5187 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5188 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5189 ** the make process cause these values to align. Assert()s in the code 5190 ** below verify that the numbers are aligned correctly. 5191 */ 5192 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5193 Vdbe *v = pParse->pVdbe; 5194 int op = 0; 5195 int regFree1 = 0; 5196 int regFree2 = 0; 5197 int r1, r2; 5198 5199 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5200 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5201 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5202 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5203 op = pExpr->op; 5204 switch( op ){ 5205 case TK_AND: 5206 case TK_OR: { 5207 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5208 if( pAlt!=pExpr ){ 5209 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5210 }else if( op==TK_AND ){ 5211 int d2 = sqlite3VdbeMakeLabel(pParse); 5212 testcase( jumpIfNull==0 ); 5213 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5214 jumpIfNull^SQLITE_JUMPIFNULL); 5215 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5216 sqlite3VdbeResolveLabel(v, d2); 5217 }else{ 5218 testcase( jumpIfNull==0 ); 5219 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5220 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5221 } 5222 break; 5223 } 5224 case TK_NOT: { 5225 testcase( jumpIfNull==0 ); 5226 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5227 break; 5228 } 5229 case TK_TRUTH: { 5230 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5231 int isTrue; /* IS TRUE or IS NOT TRUE */ 5232 testcase( jumpIfNull==0 ); 5233 isNot = pExpr->op2==TK_ISNOT; 5234 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5235 testcase( isTrue && isNot ); 5236 testcase( !isTrue && isNot ); 5237 if( isTrue ^ isNot ){ 5238 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5239 isNot ? SQLITE_JUMPIFNULL : 0); 5240 }else{ 5241 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5242 isNot ? SQLITE_JUMPIFNULL : 0); 5243 } 5244 break; 5245 } 5246 case TK_IS: 5247 case TK_ISNOT: 5248 testcase( op==TK_IS ); 5249 testcase( op==TK_ISNOT ); 5250 op = (op==TK_IS) ? TK_EQ : TK_NE; 5251 jumpIfNull = SQLITE_NULLEQ; 5252 /* no break */ deliberate_fall_through 5253 case TK_LT: 5254 case TK_LE: 5255 case TK_GT: 5256 case TK_GE: 5257 case TK_NE: 5258 case TK_EQ: { 5259 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5260 testcase( jumpIfNull==0 ); 5261 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5262 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5263 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5264 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5265 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5266 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5267 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5268 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5269 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5270 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5271 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5272 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5273 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5274 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5275 testcase( regFree1==0 ); 5276 testcase( regFree2==0 ); 5277 break; 5278 } 5279 case TK_ISNULL: 5280 case TK_NOTNULL: { 5281 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5282 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5283 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5284 sqlite3VdbeTypeofColumn(v, r1); 5285 sqlite3VdbeAddOp2(v, op, r1, dest); 5286 VdbeCoverageIf(v, op==TK_ISNULL); 5287 VdbeCoverageIf(v, op==TK_NOTNULL); 5288 testcase( regFree1==0 ); 5289 break; 5290 } 5291 case TK_BETWEEN: { 5292 testcase( jumpIfNull==0 ); 5293 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5294 break; 5295 } 5296 #ifndef SQLITE_OMIT_SUBQUERY 5297 case TK_IN: { 5298 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5299 int destIfNull = jumpIfNull ? dest : destIfFalse; 5300 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5301 sqlite3VdbeGoto(v, dest); 5302 sqlite3VdbeResolveLabel(v, destIfFalse); 5303 break; 5304 } 5305 #endif 5306 default: { 5307 default_expr: 5308 if( ExprAlwaysTrue(pExpr) ){ 5309 sqlite3VdbeGoto(v, dest); 5310 }else if( ExprAlwaysFalse(pExpr) ){ 5311 /* No-op */ 5312 }else{ 5313 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5314 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5315 VdbeCoverage(v); 5316 testcase( regFree1==0 ); 5317 testcase( jumpIfNull==0 ); 5318 } 5319 break; 5320 } 5321 } 5322 sqlite3ReleaseTempReg(pParse, regFree1); 5323 sqlite3ReleaseTempReg(pParse, regFree2); 5324 } 5325 5326 /* 5327 ** Generate code for a boolean expression such that a jump is made 5328 ** to the label "dest" if the expression is false but execution 5329 ** continues straight thru if the expression is true. 5330 ** 5331 ** If the expression evaluates to NULL (neither true nor false) then 5332 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5333 ** is 0. 5334 */ 5335 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5336 Vdbe *v = pParse->pVdbe; 5337 int op = 0; 5338 int regFree1 = 0; 5339 int regFree2 = 0; 5340 int r1, r2; 5341 5342 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5343 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5344 if( pExpr==0 ) return; 5345 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5346 5347 /* The value of pExpr->op and op are related as follows: 5348 ** 5349 ** pExpr->op op 5350 ** --------- ---------- 5351 ** TK_ISNULL OP_NotNull 5352 ** TK_NOTNULL OP_IsNull 5353 ** TK_NE OP_Eq 5354 ** TK_EQ OP_Ne 5355 ** TK_GT OP_Le 5356 ** TK_LE OP_Gt 5357 ** TK_GE OP_Lt 5358 ** TK_LT OP_Ge 5359 ** 5360 ** For other values of pExpr->op, op is undefined and unused. 5361 ** The value of TK_ and OP_ constants are arranged such that we 5362 ** can compute the mapping above using the following expression. 5363 ** Assert()s verify that the computation is correct. 5364 */ 5365 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5366 5367 /* Verify correct alignment of TK_ and OP_ constants 5368 */ 5369 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5370 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5371 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5372 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5373 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5374 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5375 assert( pExpr->op!=TK_GT || op==OP_Le ); 5376 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5377 5378 switch( pExpr->op ){ 5379 case TK_AND: 5380 case TK_OR: { 5381 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5382 if( pAlt!=pExpr ){ 5383 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5384 }else if( pExpr->op==TK_AND ){ 5385 testcase( jumpIfNull==0 ); 5386 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5387 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5388 }else{ 5389 int d2 = sqlite3VdbeMakeLabel(pParse); 5390 testcase( jumpIfNull==0 ); 5391 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5392 jumpIfNull^SQLITE_JUMPIFNULL); 5393 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5394 sqlite3VdbeResolveLabel(v, d2); 5395 } 5396 break; 5397 } 5398 case TK_NOT: { 5399 testcase( jumpIfNull==0 ); 5400 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5401 break; 5402 } 5403 case TK_TRUTH: { 5404 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5405 int isTrue; /* IS TRUE or IS NOT TRUE */ 5406 testcase( jumpIfNull==0 ); 5407 isNot = pExpr->op2==TK_ISNOT; 5408 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5409 testcase( isTrue && isNot ); 5410 testcase( !isTrue && isNot ); 5411 if( isTrue ^ isNot ){ 5412 /* IS TRUE and IS NOT FALSE */ 5413 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5414 isNot ? 0 : SQLITE_JUMPIFNULL); 5415 5416 }else{ 5417 /* IS FALSE and IS NOT TRUE */ 5418 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5419 isNot ? 0 : SQLITE_JUMPIFNULL); 5420 } 5421 break; 5422 } 5423 case TK_IS: 5424 case TK_ISNOT: 5425 testcase( pExpr->op==TK_IS ); 5426 testcase( pExpr->op==TK_ISNOT ); 5427 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5428 jumpIfNull = SQLITE_NULLEQ; 5429 /* no break */ deliberate_fall_through 5430 case TK_LT: 5431 case TK_LE: 5432 case TK_GT: 5433 case TK_GE: 5434 case TK_NE: 5435 case TK_EQ: { 5436 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5437 testcase( jumpIfNull==0 ); 5438 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5439 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5440 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5441 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5442 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5443 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5444 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5445 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5446 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5447 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5448 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5449 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5450 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5451 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5452 testcase( regFree1==0 ); 5453 testcase( regFree2==0 ); 5454 break; 5455 } 5456 case TK_ISNULL: 5457 case TK_NOTNULL: { 5458 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5459 sqlite3VdbeTypeofColumn(v, r1); 5460 sqlite3VdbeAddOp2(v, op, r1, dest); 5461 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5462 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5463 testcase( regFree1==0 ); 5464 break; 5465 } 5466 case TK_BETWEEN: { 5467 testcase( jumpIfNull==0 ); 5468 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5469 break; 5470 } 5471 #ifndef SQLITE_OMIT_SUBQUERY 5472 case TK_IN: { 5473 if( jumpIfNull ){ 5474 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5475 }else{ 5476 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5477 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5478 sqlite3VdbeResolveLabel(v, destIfNull); 5479 } 5480 break; 5481 } 5482 #endif 5483 default: { 5484 default_expr: 5485 if( ExprAlwaysFalse(pExpr) ){ 5486 sqlite3VdbeGoto(v, dest); 5487 }else if( ExprAlwaysTrue(pExpr) ){ 5488 /* no-op */ 5489 }else{ 5490 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5491 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5492 VdbeCoverage(v); 5493 testcase( regFree1==0 ); 5494 testcase( jumpIfNull==0 ); 5495 } 5496 break; 5497 } 5498 } 5499 sqlite3ReleaseTempReg(pParse, regFree1); 5500 sqlite3ReleaseTempReg(pParse, regFree2); 5501 } 5502 5503 /* 5504 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5505 ** code generation, and that copy is deleted after code generation. This 5506 ** ensures that the original pExpr is unchanged. 5507 */ 5508 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5509 sqlite3 *db = pParse->db; 5510 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5511 if( db->mallocFailed==0 ){ 5512 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5513 } 5514 sqlite3ExprDelete(db, pCopy); 5515 } 5516 5517 /* 5518 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5519 ** type of expression. 5520 ** 5521 ** If pExpr is a simple SQL value - an integer, real, string, blob 5522 ** or NULL value - then the VDBE currently being prepared is configured 5523 ** to re-prepare each time a new value is bound to variable pVar. 5524 ** 5525 ** Additionally, if pExpr is a simple SQL value and the value is the 5526 ** same as that currently bound to variable pVar, non-zero is returned. 5527 ** Otherwise, if the values are not the same or if pExpr is not a simple 5528 ** SQL value, zero is returned. 5529 */ 5530 static int exprCompareVariable( 5531 const Parse *pParse, 5532 const Expr *pVar, 5533 const Expr *pExpr 5534 ){ 5535 int res = 0; 5536 int iVar; 5537 sqlite3_value *pL, *pR = 0; 5538 5539 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5540 if( pR ){ 5541 iVar = pVar->iColumn; 5542 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5543 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5544 if( pL ){ 5545 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5546 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5547 } 5548 res = 0==sqlite3MemCompare(pL, pR, 0); 5549 } 5550 sqlite3ValueFree(pR); 5551 sqlite3ValueFree(pL); 5552 } 5553 5554 return res; 5555 } 5556 5557 /* 5558 ** Do a deep comparison of two expression trees. Return 0 if the two 5559 ** expressions are completely identical. Return 1 if they differ only 5560 ** by a COLLATE operator at the top level. Return 2 if there are differences 5561 ** other than the top-level COLLATE operator. 5562 ** 5563 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5564 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5565 ** 5566 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5567 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5568 ** 5569 ** Sometimes this routine will return 2 even if the two expressions 5570 ** really are equivalent. If we cannot prove that the expressions are 5571 ** identical, we return 2 just to be safe. So if this routine 5572 ** returns 2, then you do not really know for certain if the two 5573 ** expressions are the same. But if you get a 0 or 1 return, then you 5574 ** can be sure the expressions are the same. In the places where 5575 ** this routine is used, it does not hurt to get an extra 2 - that 5576 ** just might result in some slightly slower code. But returning 5577 ** an incorrect 0 or 1 could lead to a malfunction. 5578 ** 5579 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5580 ** pParse->pReprepare can be matched against literals in pB. The 5581 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5582 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5583 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5584 ** pB causes a return value of 2. 5585 */ 5586 int sqlite3ExprCompare( 5587 const Parse *pParse, 5588 const Expr *pA, 5589 const Expr *pB, 5590 int iTab 5591 ){ 5592 u32 combinedFlags; 5593 if( pA==0 || pB==0 ){ 5594 return pB==pA ? 0 : 2; 5595 } 5596 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5597 return 0; 5598 } 5599 combinedFlags = pA->flags | pB->flags; 5600 if( combinedFlags & EP_IntValue ){ 5601 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5602 return 0; 5603 } 5604 return 2; 5605 } 5606 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5607 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5608 return 1; 5609 } 5610 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5611 return 1; 5612 } 5613 if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN 5614 && pB->iTable<0 && pA->iTable==iTab 5615 ){ 5616 /* fall through */ 5617 }else{ 5618 return 2; 5619 } 5620 } 5621 assert( !ExprHasProperty(pA, EP_IntValue) ); 5622 assert( !ExprHasProperty(pB, EP_IntValue) ); 5623 if( pA->u.zToken ){ 5624 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5625 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5626 #ifndef SQLITE_OMIT_WINDOWFUNC 5627 assert( pA->op==pB->op ); 5628 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5629 return 2; 5630 } 5631 if( ExprHasProperty(pA,EP_WinFunc) ){ 5632 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5633 return 2; 5634 } 5635 } 5636 #endif 5637 }else if( pA->op==TK_NULL ){ 5638 return 0; 5639 }else if( pA->op==TK_COLLATE ){ 5640 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5641 }else 5642 if( pB->u.zToken!=0 5643 && pA->op!=TK_COLUMN 5644 && pA->op!=TK_AGG_COLUMN 5645 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5646 ){ 5647 return 2; 5648 } 5649 } 5650 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5651 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5652 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5653 if( combinedFlags & EP_xIsSelect ) return 2; 5654 if( (combinedFlags & EP_FixedCol)==0 5655 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5656 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5657 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5658 if( pA->op!=TK_STRING 5659 && pA->op!=TK_TRUEFALSE 5660 && ALWAYS((combinedFlags & EP_Reduced)==0) 5661 ){ 5662 if( pA->iColumn!=pB->iColumn ) return 2; 5663 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5664 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5665 return 2; 5666 } 5667 } 5668 } 5669 return 0; 5670 } 5671 5672 /* 5673 ** Compare two ExprList objects. Return 0 if they are identical, 1 5674 ** if they are certainly different, or 2 if it is not possible to 5675 ** determine if they are identical or not. 5676 ** 5677 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5678 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5679 ** 5680 ** This routine might return non-zero for equivalent ExprLists. The 5681 ** only consequence will be disabled optimizations. But this routine 5682 ** must never return 0 if the two ExprList objects are different, or 5683 ** a malfunction will result. 5684 ** 5685 ** Two NULL pointers are considered to be the same. But a NULL pointer 5686 ** always differs from a non-NULL pointer. 5687 */ 5688 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5689 int i; 5690 if( pA==0 && pB==0 ) return 0; 5691 if( pA==0 || pB==0 ) return 1; 5692 if( pA->nExpr!=pB->nExpr ) return 1; 5693 for(i=0; i<pA->nExpr; i++){ 5694 int res; 5695 Expr *pExprA = pA->a[i].pExpr; 5696 Expr *pExprB = pB->a[i].pExpr; 5697 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; 5698 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5699 } 5700 return 0; 5701 } 5702 5703 /* 5704 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5705 ** are ignored. 5706 */ 5707 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5708 return sqlite3ExprCompare(0, 5709 sqlite3ExprSkipCollateAndLikely(pA), 5710 sqlite3ExprSkipCollateAndLikely(pB), 5711 iTab); 5712 } 5713 5714 /* 5715 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5716 ** 5717 ** Or if seenNot is true, return non-zero if Expr p can only be 5718 ** non-NULL if pNN is not NULL 5719 */ 5720 static int exprImpliesNotNull( 5721 const Parse *pParse,/* Parsing context */ 5722 const Expr *p, /* The expression to be checked */ 5723 const Expr *pNN, /* The expression that is NOT NULL */ 5724 int iTab, /* Table being evaluated */ 5725 int seenNot /* Return true only if p can be any non-NULL value */ 5726 ){ 5727 assert( p ); 5728 assert( pNN ); 5729 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5730 return pNN->op!=TK_NULL; 5731 } 5732 switch( p->op ){ 5733 case TK_IN: { 5734 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5735 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5736 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5737 } 5738 case TK_BETWEEN: { 5739 ExprList *pList; 5740 assert( ExprUseXList(p) ); 5741 pList = p->x.pList; 5742 assert( pList!=0 ); 5743 assert( pList->nExpr==2 ); 5744 if( seenNot ) return 0; 5745 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5746 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5747 ){ 5748 return 1; 5749 } 5750 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5751 } 5752 case TK_EQ: 5753 case TK_NE: 5754 case TK_LT: 5755 case TK_LE: 5756 case TK_GT: 5757 case TK_GE: 5758 case TK_PLUS: 5759 case TK_MINUS: 5760 case TK_BITOR: 5761 case TK_LSHIFT: 5762 case TK_RSHIFT: 5763 case TK_CONCAT: 5764 seenNot = 1; 5765 /* no break */ deliberate_fall_through 5766 case TK_STAR: 5767 case TK_REM: 5768 case TK_BITAND: 5769 case TK_SLASH: { 5770 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5771 /* no break */ deliberate_fall_through 5772 } 5773 case TK_SPAN: 5774 case TK_COLLATE: 5775 case TK_UPLUS: 5776 case TK_UMINUS: { 5777 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5778 } 5779 case TK_TRUTH: { 5780 if( seenNot ) return 0; 5781 if( p->op2!=TK_IS ) return 0; 5782 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5783 } 5784 case TK_BITNOT: 5785 case TK_NOT: { 5786 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5787 } 5788 } 5789 return 0; 5790 } 5791 5792 /* 5793 ** Return true if we can prove the pE2 will always be true if pE1 is 5794 ** true. Return false if we cannot complete the proof or if pE2 might 5795 ** be false. Examples: 5796 ** 5797 ** pE1: x==5 pE2: x==5 Result: true 5798 ** pE1: x>0 pE2: x==5 Result: false 5799 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5800 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5801 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5802 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5803 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5804 ** 5805 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5806 ** Expr.iTable<0 then assume a table number given by iTab. 5807 ** 5808 ** If pParse is not NULL, then the values of bound variables in pE1 are 5809 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5810 ** modified to record which bound variables are referenced. If pParse 5811 ** is NULL, then false will be returned if pE1 contains any bound variables. 5812 ** 5813 ** When in doubt, return false. Returning true might give a performance 5814 ** improvement. Returning false might cause a performance reduction, but 5815 ** it will always give the correct answer and is hence always safe. 5816 */ 5817 int sqlite3ExprImpliesExpr( 5818 const Parse *pParse, 5819 const Expr *pE1, 5820 const Expr *pE2, 5821 int iTab 5822 ){ 5823 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5824 return 1; 5825 } 5826 if( pE2->op==TK_OR 5827 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5828 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5829 ){ 5830 return 1; 5831 } 5832 if( pE2->op==TK_NOTNULL 5833 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5834 ){ 5835 return 1; 5836 } 5837 return 0; 5838 } 5839 5840 /* 5841 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5842 ** If the expression node requires that the table at pWalker->iCur 5843 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5844 ** 5845 ** This routine controls an optimization. False positives (setting 5846 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5847 ** (never setting pWalker->eCode) is a harmless missed optimization. 5848 */ 5849 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5850 testcase( pExpr->op==TK_AGG_COLUMN ); 5851 testcase( pExpr->op==TK_AGG_FUNCTION ); 5852 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; 5853 switch( pExpr->op ){ 5854 case TK_ISNOT: 5855 case TK_ISNULL: 5856 case TK_NOTNULL: 5857 case TK_IS: 5858 case TK_OR: 5859 case TK_VECTOR: 5860 case TK_CASE: 5861 case TK_IN: 5862 case TK_FUNCTION: 5863 case TK_TRUTH: 5864 testcase( pExpr->op==TK_ISNOT ); 5865 testcase( pExpr->op==TK_ISNULL ); 5866 testcase( pExpr->op==TK_NOTNULL ); 5867 testcase( pExpr->op==TK_IS ); 5868 testcase( pExpr->op==TK_OR ); 5869 testcase( pExpr->op==TK_VECTOR ); 5870 testcase( pExpr->op==TK_CASE ); 5871 testcase( pExpr->op==TK_IN ); 5872 testcase( pExpr->op==TK_FUNCTION ); 5873 testcase( pExpr->op==TK_TRUTH ); 5874 return WRC_Prune; 5875 case TK_COLUMN: 5876 if( pWalker->u.iCur==pExpr->iTable ){ 5877 pWalker->eCode = 1; 5878 return WRC_Abort; 5879 } 5880 return WRC_Prune; 5881 5882 case TK_AND: 5883 if( pWalker->eCode==0 ){ 5884 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5885 if( pWalker->eCode ){ 5886 pWalker->eCode = 0; 5887 sqlite3WalkExpr(pWalker, pExpr->pRight); 5888 } 5889 } 5890 return WRC_Prune; 5891 5892 case TK_BETWEEN: 5893 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5894 assert( pWalker->eCode ); 5895 return WRC_Abort; 5896 } 5897 return WRC_Prune; 5898 5899 /* Virtual tables are allowed to use constraints like x=NULL. So 5900 ** a term of the form x=y does not prove that y is not null if x 5901 ** is the column of a virtual table */ 5902 case TK_EQ: 5903 case TK_NE: 5904 case TK_LT: 5905 case TK_LE: 5906 case TK_GT: 5907 case TK_GE: { 5908 Expr *pLeft = pExpr->pLeft; 5909 Expr *pRight = pExpr->pRight; 5910 testcase( pExpr->op==TK_EQ ); 5911 testcase( pExpr->op==TK_NE ); 5912 testcase( pExpr->op==TK_LT ); 5913 testcase( pExpr->op==TK_LE ); 5914 testcase( pExpr->op==TK_GT ); 5915 testcase( pExpr->op==TK_GE ); 5916 /* The y.pTab=0 assignment in wherecode.c always happens after the 5917 ** impliesNotNullRow() test */ 5918 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5919 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5920 if( (pLeft->op==TK_COLUMN 5921 && ALWAYS(pLeft->y.pTab!=0) 5922 && IsVirtual(pLeft->y.pTab)) 5923 || (pRight->op==TK_COLUMN 5924 && ALWAYS(pRight->y.pTab!=0) 5925 && IsVirtual(pRight->y.pTab)) 5926 ){ 5927 return WRC_Prune; 5928 } 5929 /* no break */ deliberate_fall_through 5930 } 5931 default: 5932 return WRC_Continue; 5933 } 5934 } 5935 5936 /* 5937 ** Return true (non-zero) if expression p can only be true if at least 5938 ** one column of table iTab is non-null. In other words, return true 5939 ** if expression p will always be NULL or false if every column of iTab 5940 ** is NULL. 5941 ** 5942 ** False negatives are acceptable. In other words, it is ok to return 5943 ** zero even if expression p will never be true of every column of iTab 5944 ** is NULL. A false negative is merely a missed optimization opportunity. 5945 ** 5946 ** False positives are not allowed, however. A false positive may result 5947 ** in an incorrect answer. 5948 ** 5949 ** Terms of p that are marked with EP_OuterON (and hence that come from 5950 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 5951 ** 5952 ** This routine is used to check if a LEFT JOIN can be converted into 5953 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5954 ** clause requires that some column of the right table of the LEFT JOIN 5955 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5956 ** ordinary join. 5957 */ 5958 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5959 Walker w; 5960 p = sqlite3ExprSkipCollateAndLikely(p); 5961 if( p==0 ) return 0; 5962 if( p->op==TK_NOTNULL ){ 5963 p = p->pLeft; 5964 }else{ 5965 while( p->op==TK_AND ){ 5966 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5967 p = p->pRight; 5968 } 5969 } 5970 w.xExprCallback = impliesNotNullRow; 5971 w.xSelectCallback = 0; 5972 w.xSelectCallback2 = 0; 5973 w.eCode = 0; 5974 w.u.iCur = iTab; 5975 sqlite3WalkExpr(&w, p); 5976 return w.eCode; 5977 } 5978 5979 /* 5980 ** An instance of the following structure is used by the tree walker 5981 ** to determine if an expression can be evaluated by reference to the 5982 ** index only, without having to do a search for the corresponding 5983 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5984 ** is the cursor for the table. 5985 */ 5986 struct IdxCover { 5987 Index *pIdx; /* The index to be tested for coverage */ 5988 int iCur; /* Cursor number for the table corresponding to the index */ 5989 }; 5990 5991 /* 5992 ** Check to see if there are references to columns in table 5993 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5994 ** pWalker->u.pIdxCover->pIdx. 5995 */ 5996 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5997 if( pExpr->op==TK_COLUMN 5998 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5999 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 6000 ){ 6001 pWalker->eCode = 1; 6002 return WRC_Abort; 6003 } 6004 return WRC_Continue; 6005 } 6006 6007 /* 6008 ** Determine if an index pIdx on table with cursor iCur contains will 6009 ** the expression pExpr. Return true if the index does cover the 6010 ** expression and false if the pExpr expression references table columns 6011 ** that are not found in the index pIdx. 6012 ** 6013 ** An index covering an expression means that the expression can be 6014 ** evaluated using only the index and without having to lookup the 6015 ** corresponding table entry. 6016 */ 6017 int sqlite3ExprCoveredByIndex( 6018 Expr *pExpr, /* The index to be tested */ 6019 int iCur, /* The cursor number for the corresponding table */ 6020 Index *pIdx /* The index that might be used for coverage */ 6021 ){ 6022 Walker w; 6023 struct IdxCover xcov; 6024 memset(&w, 0, sizeof(w)); 6025 xcov.iCur = iCur; 6026 xcov.pIdx = pIdx; 6027 w.xExprCallback = exprIdxCover; 6028 w.u.pIdxCover = &xcov; 6029 sqlite3WalkExpr(&w, pExpr); 6030 return !w.eCode; 6031 } 6032 6033 6034 /* Structure used to pass information throught the Walker in order to 6035 ** implement sqlite3ReferencesSrcList(). 6036 */ 6037 struct RefSrcList { 6038 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 6039 SrcList *pRef; /* Looking for references to these tables */ 6040 i64 nExclude; /* Number of tables to exclude from the search */ 6041 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 6042 }; 6043 6044 /* 6045 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 6046 ** 6047 ** When entering a new subquery on the pExpr argument, add all FROM clause 6048 ** entries for that subquery to the exclude list. 6049 ** 6050 ** When leaving the subquery, remove those entries from the exclude list. 6051 */ 6052 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 6053 struct RefSrcList *p = pWalker->u.pRefSrcList; 6054 SrcList *pSrc = pSelect->pSrc; 6055 i64 i, j; 6056 int *piNew; 6057 if( pSrc->nSrc==0 ) return WRC_Continue; 6058 j = p->nExclude; 6059 p->nExclude += pSrc->nSrc; 6060 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 6061 if( piNew==0 ){ 6062 p->nExclude = 0; 6063 return WRC_Abort; 6064 }else{ 6065 p->aiExclude = piNew; 6066 } 6067 for(i=0; i<pSrc->nSrc; i++, j++){ 6068 p->aiExclude[j] = pSrc->a[i].iCursor; 6069 } 6070 return WRC_Continue; 6071 } 6072 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 6073 struct RefSrcList *p = pWalker->u.pRefSrcList; 6074 SrcList *pSrc = pSelect->pSrc; 6075 if( p->nExclude ){ 6076 assert( p->nExclude>=pSrc->nSrc ); 6077 p->nExclude -= pSrc->nSrc; 6078 } 6079 } 6080 6081 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 6082 ** 6083 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 6084 ** of the tables shown in RefSrcList.pRef. 6085 ** 6086 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 6087 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 6088 */ 6089 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 6090 if( pExpr->op==TK_COLUMN 6091 || pExpr->op==TK_AGG_COLUMN 6092 ){ 6093 int i; 6094 struct RefSrcList *p = pWalker->u.pRefSrcList; 6095 SrcList *pSrc = p->pRef; 6096 int nSrc = pSrc ? pSrc->nSrc : 0; 6097 for(i=0; i<nSrc; i++){ 6098 if( pExpr->iTable==pSrc->a[i].iCursor ){ 6099 pWalker->eCode |= 1; 6100 return WRC_Continue; 6101 } 6102 } 6103 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 6104 if( i>=p->nExclude ){ 6105 pWalker->eCode |= 2; 6106 } 6107 } 6108 return WRC_Continue; 6109 } 6110 6111 /* 6112 ** Check to see if pExpr references any tables in pSrcList. 6113 ** Possible return values: 6114 ** 6115 ** 1 pExpr does references a table in pSrcList. 6116 ** 6117 ** 0 pExpr references some table that is not defined in either 6118 ** pSrcList or in subqueries of pExpr itself. 6119 ** 6120 ** -1 pExpr only references no tables at all, or it only 6121 ** references tables defined in subqueries of pExpr itself. 6122 ** 6123 ** As currently used, pExpr is always an aggregate function call. That 6124 ** fact is exploited for efficiency. 6125 */ 6126 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 6127 Walker w; 6128 struct RefSrcList x; 6129 assert( pParse->db!=0 ); 6130 memset(&w, 0, sizeof(w)); 6131 memset(&x, 0, sizeof(x)); 6132 w.xExprCallback = exprRefToSrcList; 6133 w.xSelectCallback = selectRefEnter; 6134 w.xSelectCallback2 = selectRefLeave; 6135 w.u.pRefSrcList = &x; 6136 x.db = pParse->db; 6137 x.pRef = pSrcList; 6138 assert( pExpr->op==TK_AGG_FUNCTION ); 6139 assert( ExprUseXList(pExpr) ); 6140 sqlite3WalkExprList(&w, pExpr->x.pList); 6141 #ifndef SQLITE_OMIT_WINDOWFUNC 6142 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6143 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6144 } 6145 #endif 6146 if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); 6147 if( w.eCode & 0x01 ){ 6148 return 1; 6149 }else if( w.eCode ){ 6150 return 0; 6151 }else{ 6152 return -1; 6153 } 6154 } 6155 6156 /* 6157 ** This is a Walker expression node callback. 6158 ** 6159 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6160 ** object that is referenced does not refer directly to the Expr. If 6161 ** it does, make a copy. This is done because the pExpr argument is 6162 ** subject to change. 6163 ** 6164 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6165 ** This will cause the expression to be deleted automatically when the 6166 ** Parse object is destroyed, but the zero register number means that it 6167 ** will not generate any code in the preamble. 6168 */ 6169 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6170 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6171 && pExpr->pAggInfo!=0 6172 ){ 6173 AggInfo *pAggInfo = pExpr->pAggInfo; 6174 int iAgg = pExpr->iAgg; 6175 Parse *pParse = pWalker->pParse; 6176 sqlite3 *db = pParse->db; 6177 if( pExpr->op!=TK_AGG_FUNCTION ){ 6178 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_IF_NULL_ROW ); 6179 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6180 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6181 pExpr = sqlite3ExprDup(db, pExpr, 0); 6182 if( pExpr ){ 6183 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6184 sqlite3ExprDeferredDelete(pParse, pExpr); 6185 } 6186 } 6187 }else{ 6188 assert( pExpr->op==TK_AGG_FUNCTION ); 6189 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6190 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6191 pExpr = sqlite3ExprDup(db, pExpr, 0); 6192 if( pExpr ){ 6193 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6194 sqlite3ExprDeferredDelete(pParse, pExpr); 6195 } 6196 } 6197 } 6198 } 6199 return WRC_Continue; 6200 } 6201 6202 /* 6203 ** Initialize a Walker object so that will persist AggInfo entries referenced 6204 ** by the tree that is walked. 6205 */ 6206 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6207 memset(pWalker, 0, sizeof(*pWalker)); 6208 pWalker->pParse = pParse; 6209 pWalker->xExprCallback = agginfoPersistExprCb; 6210 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6211 } 6212 6213 /* 6214 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6215 ** the new element. Return a negative number if malloc fails. 6216 */ 6217 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6218 int i; 6219 pInfo->aCol = sqlite3ArrayAllocate( 6220 db, 6221 pInfo->aCol, 6222 sizeof(pInfo->aCol[0]), 6223 &pInfo->nColumn, 6224 &i 6225 ); 6226 return i; 6227 } 6228 6229 /* 6230 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6231 ** the new element. Return a negative number if malloc fails. 6232 */ 6233 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6234 int i; 6235 pInfo->aFunc = sqlite3ArrayAllocate( 6236 db, 6237 pInfo->aFunc, 6238 sizeof(pInfo->aFunc[0]), 6239 &pInfo->nFunc, 6240 &i 6241 ); 6242 return i; 6243 } 6244 6245 /* 6246 ** This is the xExprCallback for a tree walker. It is used to 6247 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6248 ** for additional information. 6249 */ 6250 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6251 int i; 6252 NameContext *pNC = pWalker->u.pNC; 6253 Parse *pParse = pNC->pParse; 6254 SrcList *pSrcList = pNC->pSrcList; 6255 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6256 6257 assert( pNC->ncFlags & NC_UAggInfo ); 6258 switch( pExpr->op ){ 6259 case TK_IF_NULL_ROW: 6260 case TK_AGG_COLUMN: 6261 case TK_COLUMN: { 6262 testcase( pExpr->op==TK_AGG_COLUMN ); 6263 testcase( pExpr->op==TK_COLUMN ); 6264 testcase( pExpr->op==TK_IF_NULL_ROW ); 6265 /* Check to see if the column is in one of the tables in the FROM 6266 ** clause of the aggregate query */ 6267 if( ALWAYS(pSrcList!=0) ){ 6268 SrcItem *pItem = pSrcList->a; 6269 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6270 struct AggInfo_col *pCol; 6271 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6272 if( pExpr->iTable==pItem->iCursor ){ 6273 /* If we reach this point, it means that pExpr refers to a table 6274 ** that is in the FROM clause of the aggregate query. 6275 ** 6276 ** Make an entry for the column in pAggInfo->aCol[] if there 6277 ** is not an entry there already. 6278 */ 6279 int k; 6280 pCol = pAggInfo->aCol; 6281 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6282 if( pCol->iTable==pExpr->iTable 6283 && pCol->iColumn==pExpr->iColumn 6284 && pExpr->op!=TK_IF_NULL_ROW 6285 ){ 6286 break; 6287 } 6288 } 6289 if( (k>=pAggInfo->nColumn) 6290 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6291 ){ 6292 pCol = &pAggInfo->aCol[k]; 6293 assert( ExprUseYTab(pExpr) ); 6294 pCol->pTab = pExpr->y.pTab; 6295 pCol->iTable = pExpr->iTable; 6296 pCol->iColumn = pExpr->iColumn; 6297 pCol->iMem = ++pParse->nMem; 6298 pCol->iSorterColumn = -1; 6299 pCol->pCExpr = pExpr; 6300 if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){ 6301 int j, n; 6302 ExprList *pGB = pAggInfo->pGroupBy; 6303 struct ExprList_item *pTerm = pGB->a; 6304 n = pGB->nExpr; 6305 for(j=0; j<n; j++, pTerm++){ 6306 Expr *pE = pTerm->pExpr; 6307 if( pE->op==TK_COLUMN 6308 && pE->iTable==pExpr->iTable 6309 && pE->iColumn==pExpr->iColumn 6310 ){ 6311 pCol->iSorterColumn = j; 6312 break; 6313 } 6314 } 6315 } 6316 if( pCol->iSorterColumn<0 ){ 6317 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6318 } 6319 } 6320 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6321 ** because it was there before or because we just created it). 6322 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6323 ** pAggInfo->aCol[] entry. 6324 */ 6325 ExprSetVVAProperty(pExpr, EP_NoReduce); 6326 pExpr->pAggInfo = pAggInfo; 6327 if( pExpr->op==TK_COLUMN ){ 6328 pExpr->op = TK_AGG_COLUMN; 6329 } 6330 pExpr->iAgg = (i16)k; 6331 break; 6332 } /* endif pExpr->iTable==pItem->iCursor */ 6333 } /* end loop over pSrcList */ 6334 } 6335 return WRC_Prune; 6336 } 6337 case TK_AGG_FUNCTION: { 6338 if( (pNC->ncFlags & NC_InAggFunc)==0 6339 && pWalker->walkerDepth==pExpr->op2 6340 ){ 6341 /* Check to see if pExpr is a duplicate of another aggregate 6342 ** function that is already in the pAggInfo structure 6343 */ 6344 struct AggInfo_func *pItem = pAggInfo->aFunc; 6345 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6346 if( pItem->pFExpr==pExpr ) break; 6347 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6348 break; 6349 } 6350 } 6351 if( i>=pAggInfo->nFunc ){ 6352 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6353 */ 6354 u8 enc = ENC(pParse->db); 6355 i = addAggInfoFunc(pParse->db, pAggInfo); 6356 if( i>=0 ){ 6357 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6358 pItem = &pAggInfo->aFunc[i]; 6359 pItem->pFExpr = pExpr; 6360 pItem->iMem = ++pParse->nMem; 6361 assert( ExprUseUToken(pExpr) ); 6362 pItem->pFunc = sqlite3FindFunction(pParse->db, 6363 pExpr->u.zToken, 6364 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6365 if( pExpr->flags & EP_Distinct ){ 6366 pItem->iDistinct = pParse->nTab++; 6367 }else{ 6368 pItem->iDistinct = -1; 6369 } 6370 } 6371 } 6372 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6373 */ 6374 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6375 ExprSetVVAProperty(pExpr, EP_NoReduce); 6376 pExpr->iAgg = (i16)i; 6377 pExpr->pAggInfo = pAggInfo; 6378 return WRC_Prune; 6379 }else{ 6380 return WRC_Continue; 6381 } 6382 } 6383 } 6384 return WRC_Continue; 6385 } 6386 6387 /* 6388 ** Analyze the pExpr expression looking for aggregate functions and 6389 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6390 ** points to. Additional entries are made on the AggInfo object as 6391 ** necessary. 6392 ** 6393 ** This routine should only be called after the expression has been 6394 ** analyzed by sqlite3ResolveExprNames(). 6395 */ 6396 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6397 Walker w; 6398 w.xExprCallback = analyzeAggregate; 6399 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6400 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6401 w.walkerDepth = 0; 6402 w.u.pNC = pNC; 6403 w.pParse = 0; 6404 assert( pNC->pSrcList!=0 ); 6405 sqlite3WalkExpr(&w, pExpr); 6406 } 6407 6408 /* 6409 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6410 ** expression list. Return the number of errors. 6411 ** 6412 ** If an error is found, the analysis is cut short. 6413 */ 6414 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6415 struct ExprList_item *pItem; 6416 int i; 6417 if( pList ){ 6418 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6419 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6420 } 6421 } 6422 } 6423 6424 /* 6425 ** Allocate a single new register for use to hold some intermediate result. 6426 */ 6427 int sqlite3GetTempReg(Parse *pParse){ 6428 if( pParse->nTempReg==0 ){ 6429 return ++pParse->nMem; 6430 } 6431 return pParse->aTempReg[--pParse->nTempReg]; 6432 } 6433 6434 /* 6435 ** Deallocate a register, making available for reuse for some other 6436 ** purpose. 6437 */ 6438 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6439 if( iReg ){ 6440 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6441 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6442 pParse->aTempReg[pParse->nTempReg++] = iReg; 6443 } 6444 } 6445 } 6446 6447 /* 6448 ** Allocate or deallocate a block of nReg consecutive registers. 6449 */ 6450 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6451 int i, n; 6452 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6453 i = pParse->iRangeReg; 6454 n = pParse->nRangeReg; 6455 if( nReg<=n ){ 6456 pParse->iRangeReg += nReg; 6457 pParse->nRangeReg -= nReg; 6458 }else{ 6459 i = pParse->nMem+1; 6460 pParse->nMem += nReg; 6461 } 6462 return i; 6463 } 6464 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6465 if( nReg==1 ){ 6466 sqlite3ReleaseTempReg(pParse, iReg); 6467 return; 6468 } 6469 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6470 if( nReg>pParse->nRangeReg ){ 6471 pParse->nRangeReg = nReg; 6472 pParse->iRangeReg = iReg; 6473 } 6474 } 6475 6476 /* 6477 ** Mark all temporary registers as being unavailable for reuse. 6478 ** 6479 ** Always invoke this procedure after coding a subroutine or co-routine 6480 ** that might be invoked from other parts of the code, to ensure that 6481 ** the sub/co-routine does not use registers in common with the code that 6482 ** invokes the sub/co-routine. 6483 */ 6484 void sqlite3ClearTempRegCache(Parse *pParse){ 6485 pParse->nTempReg = 0; 6486 pParse->nRangeReg = 0; 6487 } 6488 6489 /* 6490 ** Validate that no temporary register falls within the range of 6491 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6492 ** statements. 6493 */ 6494 #ifdef SQLITE_DEBUG 6495 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6496 int i; 6497 if( pParse->nRangeReg>0 6498 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6499 && pParse->iRangeReg <= iLast 6500 ){ 6501 return 0; 6502 } 6503 for(i=0; i<pParse->nTempReg; i++){ 6504 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6505 return 0; 6506 } 6507 } 6508 return 1; 6509 } 6510 #endif /* SQLITE_DEBUG */ 6511