1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( p ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 assert( iValue>=0 ); 393 } 394 } 395 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 396 if( pNew ){ 397 pNew->op = (u8)op; 398 pNew->iAgg = -1; 399 if( pToken ){ 400 if( nExtra==0 ){ 401 pNew->flags |= EP_IntValue; 402 pNew->u.iValue = iValue; 403 }else{ 404 int c; 405 pNew->u.zToken = (char*)&pNew[1]; 406 assert( pToken->z!=0 || pToken->n==0 ); 407 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 408 pNew->u.zToken[pToken->n] = 0; 409 if( dequote && nExtra>=3 410 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 411 sqlite3Dequote(pNew->u.zToken); 412 if( c=='"' ) pNew->flags |= EP_DblQuoted; 413 } 414 } 415 } 416 #if SQLITE_MAX_EXPR_DEPTH>0 417 pNew->nHeight = 1; 418 #endif 419 } 420 return pNew; 421 } 422 423 /* 424 ** Allocate a new expression node from a zero-terminated token that has 425 ** already been dequoted. 426 */ 427 Expr *sqlite3Expr( 428 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 429 int op, /* Expression opcode */ 430 const char *zToken /* Token argument. Might be NULL */ 431 ){ 432 Token x; 433 x.z = zToken; 434 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 435 return sqlite3ExprAlloc(db, op, &x, 0); 436 } 437 438 /* 439 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 440 ** 441 ** If pRoot==NULL that means that a memory allocation error has occurred. 442 ** In that case, delete the subtrees pLeft and pRight. 443 */ 444 void sqlite3ExprAttachSubtrees( 445 sqlite3 *db, 446 Expr *pRoot, 447 Expr *pLeft, 448 Expr *pRight 449 ){ 450 if( pRoot==0 ){ 451 assert( db->mallocFailed ); 452 sqlite3ExprDelete(db, pLeft); 453 sqlite3ExprDelete(db, pRight); 454 }else{ 455 if( pRight ){ 456 pRoot->pRight = pRight; 457 if( pRight->flags & EP_ExpCollate ){ 458 pRoot->flags |= EP_ExpCollate; 459 pRoot->pColl = pRight->pColl; 460 } 461 } 462 if( pLeft ){ 463 pRoot->pLeft = pLeft; 464 if( pLeft->flags & EP_ExpCollate ){ 465 pRoot->flags |= EP_ExpCollate; 466 pRoot->pColl = pLeft->pColl; 467 } 468 } 469 exprSetHeight(pRoot); 470 } 471 } 472 473 /* 474 ** Allocate a Expr node which joins as many as two subtrees. 475 ** 476 ** One or both of the subtrees can be NULL. Return a pointer to the new 477 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 478 ** free the subtrees and return NULL. 479 */ 480 Expr *sqlite3PExpr( 481 Parse *pParse, /* Parsing context */ 482 int op, /* Expression opcode */ 483 Expr *pLeft, /* Left operand */ 484 Expr *pRight, /* Right operand */ 485 const Token *pToken /* Argument token */ 486 ){ 487 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 488 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 489 if( p ) { 490 sqlite3ExprCheckHeight(pParse, p->nHeight); 491 } 492 return p; 493 } 494 495 /* 496 ** Join two expressions using an AND operator. If either expression is 497 ** NULL, then just return the other expression. 498 */ 499 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 500 if( pLeft==0 ){ 501 return pRight; 502 }else if( pRight==0 ){ 503 return pLeft; 504 }else{ 505 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 506 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 507 return pNew; 508 } 509 } 510 511 /* 512 ** Construct a new expression node for a function with multiple 513 ** arguments. 514 */ 515 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 516 Expr *pNew; 517 sqlite3 *db = pParse->db; 518 assert( pToken ); 519 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 520 if( pNew==0 ){ 521 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 522 return 0; 523 } 524 pNew->x.pList = pList; 525 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 526 sqlite3ExprSetHeight(pParse, pNew); 527 return pNew; 528 } 529 530 /* 531 ** Assign a variable number to an expression that encodes a wildcard 532 ** in the original SQL statement. 533 ** 534 ** Wildcards consisting of a single "?" are assigned the next sequential 535 ** variable number. 536 ** 537 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 538 ** sure "nnn" is not too be to avoid a denial of service attack when 539 ** the SQL statement comes from an external source. 540 ** 541 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 542 ** as the previous instance of the same wildcard. Or if this is the first 543 ** instance of the wildcard, the next sequenial variable number is 544 ** assigned. 545 */ 546 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 547 sqlite3 *db = pParse->db; 548 const char *z; 549 550 if( pExpr==0 ) return; 551 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 552 z = pExpr->u.zToken; 553 assert( z!=0 ); 554 assert( z[0]!=0 ); 555 if( z[1]==0 ){ 556 /* Wildcard of the form "?". Assign the next variable number */ 557 assert( z[0]=='?' ); 558 pExpr->iColumn = (ynVar)(++pParse->nVar); 559 }else{ 560 ynVar x = 0; 561 u32 n = sqlite3Strlen30(z); 562 if( z[0]=='?' ){ 563 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 564 ** use it as the variable number */ 565 i64 i; 566 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 567 pExpr->iColumn = x = (ynVar)i; 568 testcase( i==0 ); 569 testcase( i==1 ); 570 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 571 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 572 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 573 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 574 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 575 x = 0; 576 } 577 if( i>pParse->nVar ){ 578 pParse->nVar = (int)i; 579 } 580 }else{ 581 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 582 ** number as the prior appearance of the same name, or if the name 583 ** has never appeared before, reuse the same variable number 584 */ 585 ynVar i; 586 for(i=0; i<pParse->nzVar; i++){ 587 if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){ 588 pExpr->iColumn = x = (ynVar)i+1; 589 break; 590 } 591 } 592 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 593 } 594 if( x>0 ){ 595 if( x>pParse->nzVar ){ 596 char **a; 597 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 598 if( a==0 ) return; /* Error reported through db->mallocFailed */ 599 pParse->azVar = a; 600 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 601 pParse->nzVar = x; 602 } 603 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 604 sqlite3DbFree(db, pParse->azVar[x-1]); 605 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 606 } 607 } 608 } 609 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 610 sqlite3ErrorMsg(pParse, "too many SQL variables"); 611 } 612 } 613 614 /* 615 ** Recursively delete an expression tree. 616 */ 617 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 618 if( p==0 ) return; 619 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 620 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 621 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 622 sqlite3ExprDelete(db, p->pLeft); 623 sqlite3ExprDelete(db, p->pRight); 624 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 625 sqlite3DbFree(db, p->u.zToken); 626 } 627 if( ExprHasProperty(p, EP_xIsSelect) ){ 628 sqlite3SelectDelete(db, p->x.pSelect); 629 }else{ 630 sqlite3ExprListDelete(db, p->x.pList); 631 } 632 } 633 if( !ExprHasProperty(p, EP_Static) ){ 634 sqlite3DbFree(db, p); 635 } 636 } 637 638 /* 639 ** Return the number of bytes allocated for the expression structure 640 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 641 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 642 */ 643 static int exprStructSize(Expr *p){ 644 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 645 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 646 return EXPR_FULLSIZE; 647 } 648 649 /* 650 ** The dupedExpr*Size() routines each return the number of bytes required 651 ** to store a copy of an expression or expression tree. They differ in 652 ** how much of the tree is measured. 653 ** 654 ** dupedExprStructSize() Size of only the Expr structure 655 ** dupedExprNodeSize() Size of Expr + space for token 656 ** dupedExprSize() Expr + token + subtree components 657 ** 658 *************************************************************************** 659 ** 660 ** The dupedExprStructSize() function returns two values OR-ed together: 661 ** (1) the space required for a copy of the Expr structure only and 662 ** (2) the EP_xxx flags that indicate what the structure size should be. 663 ** The return values is always one of: 664 ** 665 ** EXPR_FULLSIZE 666 ** EXPR_REDUCEDSIZE | EP_Reduced 667 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 668 ** 669 ** The size of the structure can be found by masking the return value 670 ** of this routine with 0xfff. The flags can be found by masking the 671 ** return value with EP_Reduced|EP_TokenOnly. 672 ** 673 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 674 ** (unreduced) Expr objects as they or originally constructed by the parser. 675 ** During expression analysis, extra information is computed and moved into 676 ** later parts of teh Expr object and that extra information might get chopped 677 ** off if the expression is reduced. Note also that it does not work to 678 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 679 ** to reduce a pristine expression tree from the parser. The implementation 680 ** of dupedExprStructSize() contain multiple assert() statements that attempt 681 ** to enforce this constraint. 682 */ 683 static int dupedExprStructSize(Expr *p, int flags){ 684 int nSize; 685 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 686 if( 0==(flags&EXPRDUP_REDUCE) ){ 687 nSize = EXPR_FULLSIZE; 688 }else{ 689 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 690 assert( !ExprHasProperty(p, EP_FromJoin) ); 691 assert( (p->flags2 & EP2_MallocedToken)==0 ); 692 assert( (p->flags2 & EP2_Irreducible)==0 ); 693 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 694 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 695 }else{ 696 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 697 } 698 } 699 return nSize; 700 } 701 702 /* 703 ** This function returns the space in bytes required to store the copy 704 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 705 ** string is defined.) 706 */ 707 static int dupedExprNodeSize(Expr *p, int flags){ 708 int nByte = dupedExprStructSize(p, flags) & 0xfff; 709 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 710 nByte += sqlite3Strlen30(p->u.zToken)+1; 711 } 712 return ROUND8(nByte); 713 } 714 715 /* 716 ** Return the number of bytes required to create a duplicate of the 717 ** expression passed as the first argument. The second argument is a 718 ** mask containing EXPRDUP_XXX flags. 719 ** 720 ** The value returned includes space to create a copy of the Expr struct 721 ** itself and the buffer referred to by Expr.u.zToken, if any. 722 ** 723 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 724 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 725 ** and Expr.pRight variables (but not for any structures pointed to or 726 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 727 */ 728 static int dupedExprSize(Expr *p, int flags){ 729 int nByte = 0; 730 if( p ){ 731 nByte = dupedExprNodeSize(p, flags); 732 if( flags&EXPRDUP_REDUCE ){ 733 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 734 } 735 } 736 return nByte; 737 } 738 739 /* 740 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 741 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 742 ** to store the copy of expression p, the copies of p->u.zToken 743 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 744 ** if any. Before returning, *pzBuffer is set to the first byte passed the 745 ** portion of the buffer copied into by this function. 746 */ 747 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 748 Expr *pNew = 0; /* Value to return */ 749 if( p ){ 750 const int isReduced = (flags&EXPRDUP_REDUCE); 751 u8 *zAlloc; 752 u32 staticFlag = 0; 753 754 assert( pzBuffer==0 || isReduced ); 755 756 /* Figure out where to write the new Expr structure. */ 757 if( pzBuffer ){ 758 zAlloc = *pzBuffer; 759 staticFlag = EP_Static; 760 }else{ 761 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 762 } 763 pNew = (Expr *)zAlloc; 764 765 if( pNew ){ 766 /* Set nNewSize to the size allocated for the structure pointed to 767 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 768 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 769 ** by the copy of the p->u.zToken string (if any). 770 */ 771 const unsigned nStructSize = dupedExprStructSize(p, flags); 772 const int nNewSize = nStructSize & 0xfff; 773 int nToken; 774 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 775 nToken = sqlite3Strlen30(p->u.zToken) + 1; 776 }else{ 777 nToken = 0; 778 } 779 if( isReduced ){ 780 assert( ExprHasProperty(p, EP_Reduced)==0 ); 781 memcpy(zAlloc, p, nNewSize); 782 }else{ 783 int nSize = exprStructSize(p); 784 memcpy(zAlloc, p, nSize); 785 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 786 } 787 788 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 789 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 790 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 791 pNew->flags |= staticFlag; 792 793 /* Copy the p->u.zToken string, if any. */ 794 if( nToken ){ 795 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 796 memcpy(zToken, p->u.zToken, nToken); 797 } 798 799 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 800 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 801 if( ExprHasProperty(p, EP_xIsSelect) ){ 802 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 803 }else{ 804 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 805 } 806 } 807 808 /* Fill in pNew->pLeft and pNew->pRight. */ 809 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 810 zAlloc += dupedExprNodeSize(p, flags); 811 if( ExprHasProperty(pNew, EP_Reduced) ){ 812 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 813 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 814 } 815 if( pzBuffer ){ 816 *pzBuffer = zAlloc; 817 } 818 }else{ 819 pNew->flags2 = 0; 820 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 821 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 822 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 823 } 824 } 825 826 } 827 } 828 return pNew; 829 } 830 831 /* 832 ** The following group of routines make deep copies of expressions, 833 ** expression lists, ID lists, and select statements. The copies can 834 ** be deleted (by being passed to their respective ...Delete() routines) 835 ** without effecting the originals. 836 ** 837 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 838 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 839 ** by subsequent calls to sqlite*ListAppend() routines. 840 ** 841 ** Any tables that the SrcList might point to are not duplicated. 842 ** 843 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 844 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 845 ** truncated version of the usual Expr structure that will be stored as 846 ** part of the in-memory representation of the database schema. 847 */ 848 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 849 return exprDup(db, p, flags, 0); 850 } 851 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 852 ExprList *pNew; 853 struct ExprList_item *pItem, *pOldItem; 854 int i; 855 if( p==0 ) return 0; 856 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 857 if( pNew==0 ) return 0; 858 pNew->iECursor = 0; 859 pNew->nExpr = i = p->nExpr; 860 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 861 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 862 if( pItem==0 ){ 863 sqlite3DbFree(db, pNew); 864 return 0; 865 } 866 pOldItem = p->a; 867 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 868 Expr *pOldExpr = pOldItem->pExpr; 869 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 870 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 871 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 872 pItem->sortOrder = pOldItem->sortOrder; 873 pItem->done = 0; 874 pItem->iOrderByCol = pOldItem->iOrderByCol; 875 pItem->iAlias = pOldItem->iAlias; 876 } 877 return pNew; 878 } 879 880 /* 881 ** If cursors, triggers, views and subqueries are all omitted from 882 ** the build, then none of the following routines, except for 883 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 884 ** called with a NULL argument. 885 */ 886 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 887 || !defined(SQLITE_OMIT_SUBQUERY) 888 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 889 SrcList *pNew; 890 int i; 891 int nByte; 892 if( p==0 ) return 0; 893 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 894 pNew = sqlite3DbMallocRaw(db, nByte ); 895 if( pNew==0 ) return 0; 896 pNew->nSrc = pNew->nAlloc = p->nSrc; 897 for(i=0; i<p->nSrc; i++){ 898 struct SrcList_item *pNewItem = &pNew->a[i]; 899 struct SrcList_item *pOldItem = &p->a[i]; 900 Table *pTab; 901 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 902 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 903 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 904 pNewItem->jointype = pOldItem->jointype; 905 pNewItem->iCursor = pOldItem->iCursor; 906 pNewItem->addrFillSub = pOldItem->addrFillSub; 907 pNewItem->regReturn = pOldItem->regReturn; 908 pNewItem->isCorrelated = pOldItem->isCorrelated; 909 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 910 pNewItem->notIndexed = pOldItem->notIndexed; 911 pNewItem->pIndex = pOldItem->pIndex; 912 pTab = pNewItem->pTab = pOldItem->pTab; 913 if( pTab ){ 914 pTab->nRef++; 915 } 916 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 917 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 918 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 919 pNewItem->colUsed = pOldItem->colUsed; 920 } 921 return pNew; 922 } 923 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 924 IdList *pNew; 925 int i; 926 if( p==0 ) return 0; 927 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 928 if( pNew==0 ) return 0; 929 pNew->nId = p->nId; 930 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 931 if( pNew->a==0 ){ 932 sqlite3DbFree(db, pNew); 933 return 0; 934 } 935 /* Note that because the size of the allocation for p->a[] is not 936 ** necessarily a power of two, sqlite3IdListAppend() may not be called 937 ** on the duplicate created by this function. */ 938 for(i=0; i<p->nId; i++){ 939 struct IdList_item *pNewItem = &pNew->a[i]; 940 struct IdList_item *pOldItem = &p->a[i]; 941 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 942 pNewItem->idx = pOldItem->idx; 943 } 944 return pNew; 945 } 946 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 947 Select *pNew, *pPrior; 948 if( p==0 ) return 0; 949 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 950 if( pNew==0 ) return 0; 951 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 952 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 953 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 954 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 955 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 956 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 957 pNew->op = p->op; 958 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 959 if( pPrior ) pPrior->pNext = pNew; 960 pNew->pNext = 0; 961 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 962 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 963 pNew->iLimit = 0; 964 pNew->iOffset = 0; 965 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 966 pNew->pRightmost = 0; 967 pNew->addrOpenEphm[0] = -1; 968 pNew->addrOpenEphm[1] = -1; 969 pNew->addrOpenEphm[2] = -1; 970 return pNew; 971 } 972 #else 973 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 974 assert( p==0 ); 975 return 0; 976 } 977 #endif 978 979 980 /* 981 ** Add a new element to the end of an expression list. If pList is 982 ** initially NULL, then create a new expression list. 983 ** 984 ** If a memory allocation error occurs, the entire list is freed and 985 ** NULL is returned. If non-NULL is returned, then it is guaranteed 986 ** that the new entry was successfully appended. 987 */ 988 ExprList *sqlite3ExprListAppend( 989 Parse *pParse, /* Parsing context */ 990 ExprList *pList, /* List to which to append. Might be NULL */ 991 Expr *pExpr /* Expression to be appended. Might be NULL */ 992 ){ 993 sqlite3 *db = pParse->db; 994 if( pList==0 ){ 995 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 996 if( pList==0 ){ 997 goto no_mem; 998 } 999 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1000 if( pList->a==0 ) goto no_mem; 1001 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1002 struct ExprList_item *a; 1003 assert( pList->nExpr>0 ); 1004 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1005 if( a==0 ){ 1006 goto no_mem; 1007 } 1008 pList->a = a; 1009 } 1010 assert( pList->a!=0 ); 1011 if( 1 ){ 1012 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1013 memset(pItem, 0, sizeof(*pItem)); 1014 pItem->pExpr = pExpr; 1015 } 1016 return pList; 1017 1018 no_mem: 1019 /* Avoid leaking memory if malloc has failed. */ 1020 sqlite3ExprDelete(db, pExpr); 1021 sqlite3ExprListDelete(db, pList); 1022 return 0; 1023 } 1024 1025 /* 1026 ** Set the ExprList.a[].zName element of the most recently added item 1027 ** on the expression list. 1028 ** 1029 ** pList might be NULL following an OOM error. But pName should never be 1030 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1031 ** is set. 1032 */ 1033 void sqlite3ExprListSetName( 1034 Parse *pParse, /* Parsing context */ 1035 ExprList *pList, /* List to which to add the span. */ 1036 Token *pName, /* Name to be added */ 1037 int dequote /* True to cause the name to be dequoted */ 1038 ){ 1039 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1040 if( pList ){ 1041 struct ExprList_item *pItem; 1042 assert( pList->nExpr>0 ); 1043 pItem = &pList->a[pList->nExpr-1]; 1044 assert( pItem->zName==0 ); 1045 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1046 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1047 } 1048 } 1049 1050 /* 1051 ** Set the ExprList.a[].zSpan element of the most recently added item 1052 ** on the expression list. 1053 ** 1054 ** pList might be NULL following an OOM error. But pSpan should never be 1055 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1056 ** is set. 1057 */ 1058 void sqlite3ExprListSetSpan( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* List to which to add the span. */ 1061 ExprSpan *pSpan /* The span to be added */ 1062 ){ 1063 sqlite3 *db = pParse->db; 1064 assert( pList!=0 || db->mallocFailed!=0 ); 1065 if( pList ){ 1066 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1067 assert( pList->nExpr>0 ); 1068 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1069 sqlite3DbFree(db, pItem->zSpan); 1070 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1071 (int)(pSpan->zEnd - pSpan->zStart)); 1072 } 1073 } 1074 1075 /* 1076 ** If the expression list pEList contains more than iLimit elements, 1077 ** leave an error message in pParse. 1078 */ 1079 void sqlite3ExprListCheckLength( 1080 Parse *pParse, 1081 ExprList *pEList, 1082 const char *zObject 1083 ){ 1084 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1085 testcase( pEList && pEList->nExpr==mx ); 1086 testcase( pEList && pEList->nExpr==mx+1 ); 1087 if( pEList && pEList->nExpr>mx ){ 1088 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1089 } 1090 } 1091 1092 /* 1093 ** Delete an entire expression list. 1094 */ 1095 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1096 int i; 1097 struct ExprList_item *pItem; 1098 if( pList==0 ) return; 1099 assert( pList->a!=0 || pList->nExpr==0 ); 1100 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1101 sqlite3ExprDelete(db, pItem->pExpr); 1102 sqlite3DbFree(db, pItem->zName); 1103 sqlite3DbFree(db, pItem->zSpan); 1104 } 1105 sqlite3DbFree(db, pList->a); 1106 sqlite3DbFree(db, pList); 1107 } 1108 1109 /* 1110 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1111 ** to an integer. These routines are checking an expression to see 1112 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1113 ** not constant. 1114 ** 1115 ** These callback routines are used to implement the following: 1116 ** 1117 ** sqlite3ExprIsConstant() 1118 ** sqlite3ExprIsConstantNotJoin() 1119 ** sqlite3ExprIsConstantOrFunction() 1120 ** 1121 */ 1122 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1123 1124 /* If pWalker->u.i is 3 then any term of the expression that comes from 1125 ** the ON or USING clauses of a join disqualifies the expression 1126 ** from being considered constant. */ 1127 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1128 pWalker->u.i = 0; 1129 return WRC_Abort; 1130 } 1131 1132 switch( pExpr->op ){ 1133 /* Consider functions to be constant if all their arguments are constant 1134 ** and pWalker->u.i==2 */ 1135 case TK_FUNCTION: 1136 if( pWalker->u.i==2 ) return 0; 1137 /* Fall through */ 1138 case TK_ID: 1139 case TK_COLUMN: 1140 case TK_AGG_FUNCTION: 1141 case TK_AGG_COLUMN: 1142 testcase( pExpr->op==TK_ID ); 1143 testcase( pExpr->op==TK_COLUMN ); 1144 testcase( pExpr->op==TK_AGG_FUNCTION ); 1145 testcase( pExpr->op==TK_AGG_COLUMN ); 1146 pWalker->u.i = 0; 1147 return WRC_Abort; 1148 default: 1149 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1150 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1151 return WRC_Continue; 1152 } 1153 } 1154 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1155 UNUSED_PARAMETER(NotUsed); 1156 pWalker->u.i = 0; 1157 return WRC_Abort; 1158 } 1159 static int exprIsConst(Expr *p, int initFlag){ 1160 Walker w; 1161 w.u.i = initFlag; 1162 w.xExprCallback = exprNodeIsConstant; 1163 w.xSelectCallback = selectNodeIsConstant; 1164 sqlite3WalkExpr(&w, p); 1165 return w.u.i; 1166 } 1167 1168 /* 1169 ** Walk an expression tree. Return 1 if the expression is constant 1170 ** and 0 if it involves variables or function calls. 1171 ** 1172 ** For the purposes of this function, a double-quoted string (ex: "abc") 1173 ** is considered a variable but a single-quoted string (ex: 'abc') is 1174 ** a constant. 1175 */ 1176 int sqlite3ExprIsConstant(Expr *p){ 1177 return exprIsConst(p, 1); 1178 } 1179 1180 /* 1181 ** Walk an expression tree. Return 1 if the expression is constant 1182 ** that does no originate from the ON or USING clauses of a join. 1183 ** Return 0 if it involves variables or function calls or terms from 1184 ** an ON or USING clause. 1185 */ 1186 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1187 return exprIsConst(p, 3); 1188 } 1189 1190 /* 1191 ** Walk an expression tree. Return 1 if the expression is constant 1192 ** or a function call with constant arguments. Return and 0 if there 1193 ** are any variables. 1194 ** 1195 ** For the purposes of this function, a double-quoted string (ex: "abc") 1196 ** is considered a variable but a single-quoted string (ex: 'abc') is 1197 ** a constant. 1198 */ 1199 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1200 return exprIsConst(p, 2); 1201 } 1202 1203 /* 1204 ** If the expression p codes a constant integer that is small enough 1205 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1206 ** in *pValue. If the expression is not an integer or if it is too big 1207 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1208 */ 1209 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1210 int rc = 0; 1211 1212 /* If an expression is an integer literal that fits in a signed 32-bit 1213 ** integer, then the EP_IntValue flag will have already been set */ 1214 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1215 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1216 1217 if( p->flags & EP_IntValue ){ 1218 *pValue = p->u.iValue; 1219 return 1; 1220 } 1221 switch( p->op ){ 1222 case TK_UPLUS: { 1223 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1224 break; 1225 } 1226 case TK_UMINUS: { 1227 int v; 1228 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1229 *pValue = -v; 1230 rc = 1; 1231 } 1232 break; 1233 } 1234 default: break; 1235 } 1236 return rc; 1237 } 1238 1239 /* 1240 ** Return FALSE if there is no chance that the expression can be NULL. 1241 ** 1242 ** If the expression might be NULL or if the expression is too complex 1243 ** to tell return TRUE. 1244 ** 1245 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1246 ** when we know that a value cannot be NULL. Hence, a false positive 1247 ** (returning TRUE when in fact the expression can never be NULL) might 1248 ** be a small performance hit but is otherwise harmless. On the other 1249 ** hand, a false negative (returning FALSE when the result could be NULL) 1250 ** will likely result in an incorrect answer. So when in doubt, return 1251 ** TRUE. 1252 */ 1253 int sqlite3ExprCanBeNull(const Expr *p){ 1254 u8 op; 1255 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1256 op = p->op; 1257 if( op==TK_REGISTER ) op = p->op2; 1258 switch( op ){ 1259 case TK_INTEGER: 1260 case TK_STRING: 1261 case TK_FLOAT: 1262 case TK_BLOB: 1263 return 0; 1264 default: 1265 return 1; 1266 } 1267 } 1268 1269 /* 1270 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1271 ** to location iDest if the value in iReg is NULL. The value in iReg 1272 ** was computed by pExpr. If we can look at pExpr at compile-time and 1273 ** determine that it can never generate a NULL, then the OP_IsNull operation 1274 ** can be omitted. 1275 */ 1276 void sqlite3ExprCodeIsNullJump( 1277 Vdbe *v, /* The VDBE under construction */ 1278 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1279 int iReg, /* Test the value in this register for NULL */ 1280 int iDest /* Jump here if the value is null */ 1281 ){ 1282 if( sqlite3ExprCanBeNull(pExpr) ){ 1283 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1284 } 1285 } 1286 1287 /* 1288 ** Return TRUE if the given expression is a constant which would be 1289 ** unchanged by OP_Affinity with the affinity given in the second 1290 ** argument. 1291 ** 1292 ** This routine is used to determine if the OP_Affinity operation 1293 ** can be omitted. When in doubt return FALSE. A false negative 1294 ** is harmless. A false positive, however, can result in the wrong 1295 ** answer. 1296 */ 1297 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1298 u8 op; 1299 if( aff==SQLITE_AFF_NONE ) return 1; 1300 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1301 op = p->op; 1302 if( op==TK_REGISTER ) op = p->op2; 1303 switch( op ){ 1304 case TK_INTEGER: { 1305 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1306 } 1307 case TK_FLOAT: { 1308 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1309 } 1310 case TK_STRING: { 1311 return aff==SQLITE_AFF_TEXT; 1312 } 1313 case TK_BLOB: { 1314 return 1; 1315 } 1316 case TK_COLUMN: { 1317 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1318 return p->iColumn<0 1319 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1320 } 1321 default: { 1322 return 0; 1323 } 1324 } 1325 } 1326 1327 /* 1328 ** Return TRUE if the given string is a row-id column name. 1329 */ 1330 int sqlite3IsRowid(const char *z){ 1331 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1332 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1333 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1334 return 0; 1335 } 1336 1337 /* 1338 ** Return true if we are able to the IN operator optimization on a 1339 ** query of the form 1340 ** 1341 ** x IN (SELECT ...) 1342 ** 1343 ** Where the SELECT... clause is as specified by the parameter to this 1344 ** routine. 1345 ** 1346 ** The Select object passed in has already been preprocessed and no 1347 ** errors have been found. 1348 */ 1349 #ifndef SQLITE_OMIT_SUBQUERY 1350 static int isCandidateForInOpt(Select *p){ 1351 SrcList *pSrc; 1352 ExprList *pEList; 1353 Table *pTab; 1354 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1355 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1356 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1357 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1358 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1359 return 0; /* No DISTINCT keyword and no aggregate functions */ 1360 } 1361 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1362 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1363 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1364 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1365 pSrc = p->pSrc; 1366 assert( pSrc!=0 ); 1367 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1368 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1369 pTab = pSrc->a[0].pTab; 1370 if( NEVER(pTab==0) ) return 0; 1371 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1372 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1373 pEList = p->pEList; 1374 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1375 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1376 return 1; 1377 } 1378 #endif /* SQLITE_OMIT_SUBQUERY */ 1379 1380 /* 1381 ** Code an OP_Once instruction and allocate space for its flag. Return the 1382 ** address of the new instruction. 1383 */ 1384 int sqlite3CodeOnce(Parse *pParse){ 1385 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1386 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1387 } 1388 1389 /* 1390 ** This function is used by the implementation of the IN (...) operator. 1391 ** It's job is to find or create a b-tree structure that may be used 1392 ** either to test for membership of the (...) set or to iterate through 1393 ** its members, skipping duplicates. 1394 ** 1395 ** The index of the cursor opened on the b-tree (database table, database index 1396 ** or ephermal table) is stored in pX->iTable before this function returns. 1397 ** The returned value of this function indicates the b-tree type, as follows: 1398 ** 1399 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1400 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1401 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1402 ** populated epheremal table. 1403 ** 1404 ** An existing b-tree may only be used if the SELECT is of the simple 1405 ** form: 1406 ** 1407 ** SELECT <column> FROM <table> 1408 ** 1409 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1410 ** through the set members, skipping any duplicates. In this case an 1411 ** epheremal table must be used unless the selected <column> is guaranteed 1412 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1413 ** has a UNIQUE constraint or UNIQUE index. 1414 ** 1415 ** If the prNotFound parameter is not 0, then the b-tree will be used 1416 ** for fast set membership tests. In this case an epheremal table must 1417 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1418 ** be found with <column> as its left-most column. 1419 ** 1420 ** When the b-tree is being used for membership tests, the calling function 1421 ** needs to know whether or not the structure contains an SQL NULL 1422 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1423 ** If there is any chance that the (...) might contain a NULL value at 1424 ** runtime, then a register is allocated and the register number written 1425 ** to *prNotFound. If there is no chance that the (...) contains a 1426 ** NULL value, then *prNotFound is left unchanged. 1427 ** 1428 ** If a register is allocated and its location stored in *prNotFound, then 1429 ** its initial value is NULL. If the (...) does not remain constant 1430 ** for the duration of the query (i.e. the SELECT within the (...) 1431 ** is a correlated subquery) then the value of the allocated register is 1432 ** reset to NULL each time the subquery is rerun. This allows the 1433 ** caller to use vdbe code equivalent to the following: 1434 ** 1435 ** if( register==NULL ){ 1436 ** has_null = <test if data structure contains null> 1437 ** register = 1 1438 ** } 1439 ** 1440 ** in order to avoid running the <test if data structure contains null> 1441 ** test more often than is necessary. 1442 */ 1443 #ifndef SQLITE_OMIT_SUBQUERY 1444 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1445 Select *p; /* SELECT to the right of IN operator */ 1446 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1447 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1448 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1449 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1450 1451 assert( pX->op==TK_IN ); 1452 1453 /* Check to see if an existing table or index can be used to 1454 ** satisfy the query. This is preferable to generating a new 1455 ** ephemeral table. 1456 */ 1457 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1458 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1459 sqlite3 *db = pParse->db; /* Database connection */ 1460 Table *pTab; /* Table <table>. */ 1461 Expr *pExpr; /* Expression <column> */ 1462 int iCol; /* Index of column <column> */ 1463 int iDb; /* Database idx for pTab */ 1464 1465 assert( p ); /* Because of isCandidateForInOpt(p) */ 1466 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1467 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1468 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1469 pTab = p->pSrc->a[0].pTab; 1470 pExpr = p->pEList->a[0].pExpr; 1471 iCol = pExpr->iColumn; 1472 1473 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1474 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1475 sqlite3CodeVerifySchema(pParse, iDb); 1476 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1477 1478 /* This function is only called from two places. In both cases the vdbe 1479 ** has already been allocated. So assume sqlite3GetVdbe() is always 1480 ** successful here. 1481 */ 1482 assert(v); 1483 if( iCol<0 ){ 1484 int iAddr; 1485 1486 iAddr = sqlite3CodeOnce(pParse); 1487 1488 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1489 eType = IN_INDEX_ROWID; 1490 1491 sqlite3VdbeJumpHere(v, iAddr); 1492 }else{ 1493 Index *pIdx; /* Iterator variable */ 1494 1495 /* The collation sequence used by the comparison. If an index is to 1496 ** be used in place of a temp-table, it must be ordered according 1497 ** to this collation sequence. */ 1498 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1499 1500 /* Check that the affinity that will be used to perform the 1501 ** comparison is the same as the affinity of the column. If 1502 ** it is not, it is not possible to use any index. 1503 */ 1504 char aff = comparisonAffinity(pX); 1505 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1506 1507 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1508 if( (pIdx->aiColumn[0]==iCol) 1509 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1510 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1511 ){ 1512 int iAddr; 1513 char *pKey; 1514 1515 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1516 iAddr = sqlite3CodeOnce(pParse); 1517 1518 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1519 pKey,P4_KEYINFO_HANDOFF); 1520 VdbeComment((v, "%s", pIdx->zName)); 1521 eType = IN_INDEX_INDEX; 1522 1523 sqlite3VdbeJumpHere(v, iAddr); 1524 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1525 *prNotFound = ++pParse->nMem; 1526 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1527 } 1528 } 1529 } 1530 } 1531 } 1532 1533 if( eType==0 ){ 1534 /* Could not found an existing table or index to use as the RHS b-tree. 1535 ** We will have to generate an ephemeral table to do the job. 1536 */ 1537 double savedNQueryLoop = pParse->nQueryLoop; 1538 int rMayHaveNull = 0; 1539 eType = IN_INDEX_EPH; 1540 if( prNotFound ){ 1541 *prNotFound = rMayHaveNull = ++pParse->nMem; 1542 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1543 }else{ 1544 testcase( pParse->nQueryLoop>(double)1 ); 1545 pParse->nQueryLoop = (double)1; 1546 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1547 eType = IN_INDEX_ROWID; 1548 } 1549 } 1550 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1551 pParse->nQueryLoop = savedNQueryLoop; 1552 }else{ 1553 pX->iTable = iTab; 1554 } 1555 return eType; 1556 } 1557 #endif 1558 1559 /* 1560 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1561 ** or IN operators. Examples: 1562 ** 1563 ** (SELECT a FROM b) -- subquery 1564 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1565 ** x IN (4,5,11) -- IN operator with list on right-hand side 1566 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1567 ** 1568 ** The pExpr parameter describes the expression that contains the IN 1569 ** operator or subquery. 1570 ** 1571 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1572 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1573 ** to some integer key column of a table B-Tree. In this case, use an 1574 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1575 ** (slower) variable length keys B-Tree. 1576 ** 1577 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1578 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1579 ** Furthermore, the IN is in a WHERE clause and that we really want 1580 ** to iterate over the RHS of the IN operator in order to quickly locate 1581 ** all corresponding LHS elements. All this routine does is initialize 1582 ** the register given by rMayHaveNull to NULL. Calling routines will take 1583 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1584 ** 1585 ** If rMayHaveNull is zero, that means that the subquery is being used 1586 ** for membership testing only. There is no need to initialize any 1587 ** registers to indicate the presense or absence of NULLs on the RHS. 1588 ** 1589 ** For a SELECT or EXISTS operator, return the register that holds the 1590 ** result. For IN operators or if an error occurs, the return value is 0. 1591 */ 1592 #ifndef SQLITE_OMIT_SUBQUERY 1593 int sqlite3CodeSubselect( 1594 Parse *pParse, /* Parsing context */ 1595 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1596 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1597 int isRowid /* If true, LHS of IN operator is a rowid */ 1598 ){ 1599 int testAddr = -1; /* One-time test address */ 1600 int rReg = 0; /* Register storing resulting */ 1601 Vdbe *v = sqlite3GetVdbe(pParse); 1602 if( NEVER(v==0) ) return 0; 1603 sqlite3ExprCachePush(pParse); 1604 1605 /* This code must be run in its entirety every time it is encountered 1606 ** if any of the following is true: 1607 ** 1608 ** * The right-hand side is a correlated subquery 1609 ** * The right-hand side is an expression list containing variables 1610 ** * We are inside a trigger 1611 ** 1612 ** If all of the above are false, then we can run this code just once 1613 ** save the results, and reuse the same result on subsequent invocations. 1614 */ 1615 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1616 testAddr = sqlite3CodeOnce(pParse); 1617 } 1618 1619 #ifndef SQLITE_OMIT_EXPLAIN 1620 if( pParse->explain==2 ){ 1621 char *zMsg = sqlite3MPrintf( 1622 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1623 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1624 ); 1625 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1626 } 1627 #endif 1628 1629 switch( pExpr->op ){ 1630 case TK_IN: { 1631 char affinity; /* Affinity of the LHS of the IN */ 1632 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1633 int addr; /* Address of OP_OpenEphemeral instruction */ 1634 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1635 1636 if( rMayHaveNull ){ 1637 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1638 } 1639 1640 affinity = sqlite3ExprAffinity(pLeft); 1641 1642 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1643 ** expression it is handled the same way. An ephemeral table is 1644 ** filled with single-field index keys representing the results 1645 ** from the SELECT or the <exprlist>. 1646 ** 1647 ** If the 'x' expression is a column value, or the SELECT... 1648 ** statement returns a column value, then the affinity of that 1649 ** column is used to build the index keys. If both 'x' and the 1650 ** SELECT... statement are columns, then numeric affinity is used 1651 ** if either column has NUMERIC or INTEGER affinity. If neither 1652 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1653 ** is used. 1654 */ 1655 pExpr->iTable = pParse->nTab++; 1656 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1657 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1658 memset(&keyInfo, 0, sizeof(keyInfo)); 1659 keyInfo.nField = 1; 1660 1661 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1662 /* Case 1: expr IN (SELECT ...) 1663 ** 1664 ** Generate code to write the results of the select into the temporary 1665 ** table allocated and opened above. 1666 */ 1667 SelectDest dest; 1668 ExprList *pEList; 1669 1670 assert( !isRowid ); 1671 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1672 dest.affinity = (u8)affinity; 1673 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1674 pExpr->x.pSelect->iLimit = 0; 1675 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1676 return 0; 1677 } 1678 pEList = pExpr->x.pSelect->pEList; 1679 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1680 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1681 pEList->a[0].pExpr); 1682 } 1683 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1684 /* Case 2: expr IN (exprlist) 1685 ** 1686 ** For each expression, build an index key from the evaluation and 1687 ** store it in the temporary table. If <expr> is a column, then use 1688 ** that columns affinity when building index keys. If <expr> is not 1689 ** a column, use numeric affinity. 1690 */ 1691 int i; 1692 ExprList *pList = pExpr->x.pList; 1693 struct ExprList_item *pItem; 1694 int r1, r2, r3; 1695 1696 if( !affinity ){ 1697 affinity = SQLITE_AFF_NONE; 1698 } 1699 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1700 1701 /* Loop through each expression in <exprlist>. */ 1702 r1 = sqlite3GetTempReg(pParse); 1703 r2 = sqlite3GetTempReg(pParse); 1704 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1705 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1706 Expr *pE2 = pItem->pExpr; 1707 int iValToIns; 1708 1709 /* If the expression is not constant then we will need to 1710 ** disable the test that was generated above that makes sure 1711 ** this code only executes once. Because for a non-constant 1712 ** expression we need to rerun this code each time. 1713 */ 1714 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1715 sqlite3VdbeChangeToNoop(v, testAddr); 1716 testAddr = -1; 1717 } 1718 1719 /* Evaluate the expression and insert it into the temp table */ 1720 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1721 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1722 }else{ 1723 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1724 if( isRowid ){ 1725 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1726 sqlite3VdbeCurrentAddr(v)+2); 1727 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1728 }else{ 1729 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1730 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1731 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1732 } 1733 } 1734 } 1735 sqlite3ReleaseTempReg(pParse, r1); 1736 sqlite3ReleaseTempReg(pParse, r2); 1737 } 1738 if( !isRowid ){ 1739 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1740 } 1741 break; 1742 } 1743 1744 case TK_EXISTS: 1745 case TK_SELECT: 1746 default: { 1747 /* If this has to be a scalar SELECT. Generate code to put the 1748 ** value of this select in a memory cell and record the number 1749 ** of the memory cell in iColumn. If this is an EXISTS, write 1750 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1751 ** and record that memory cell in iColumn. 1752 */ 1753 Select *pSel; /* SELECT statement to encode */ 1754 SelectDest dest; /* How to deal with SELECt result */ 1755 1756 testcase( pExpr->op==TK_EXISTS ); 1757 testcase( pExpr->op==TK_SELECT ); 1758 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1759 1760 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1761 pSel = pExpr->x.pSelect; 1762 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1763 if( pExpr->op==TK_SELECT ){ 1764 dest.eDest = SRT_Mem; 1765 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1766 VdbeComment((v, "Init subquery result")); 1767 }else{ 1768 dest.eDest = SRT_Exists; 1769 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1770 VdbeComment((v, "Init EXISTS result")); 1771 } 1772 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1773 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1774 &sqlite3IntTokens[1]); 1775 pSel->iLimit = 0; 1776 if( sqlite3Select(pParse, pSel, &dest) ){ 1777 return 0; 1778 } 1779 rReg = dest.iParm; 1780 ExprSetIrreducible(pExpr); 1781 break; 1782 } 1783 } 1784 1785 if( testAddr>=0 ){ 1786 sqlite3VdbeJumpHere(v, testAddr); 1787 } 1788 sqlite3ExprCachePop(pParse, 1); 1789 1790 return rReg; 1791 } 1792 #endif /* SQLITE_OMIT_SUBQUERY */ 1793 1794 #ifndef SQLITE_OMIT_SUBQUERY 1795 /* 1796 ** Generate code for an IN expression. 1797 ** 1798 ** x IN (SELECT ...) 1799 ** x IN (value, value, ...) 1800 ** 1801 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1802 ** is an array of zero or more values. The expression is true if the LHS is 1803 ** contained within the RHS. The value of the expression is unknown (NULL) 1804 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1805 ** RHS contains one or more NULL values. 1806 ** 1807 ** This routine generates code will jump to destIfFalse if the LHS is not 1808 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1809 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1810 ** within the RHS then fall through. 1811 */ 1812 static void sqlite3ExprCodeIN( 1813 Parse *pParse, /* Parsing and code generating context */ 1814 Expr *pExpr, /* The IN expression */ 1815 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1816 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1817 ){ 1818 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1819 char affinity; /* Comparison affinity to use */ 1820 int eType; /* Type of the RHS */ 1821 int r1; /* Temporary use register */ 1822 Vdbe *v; /* Statement under construction */ 1823 1824 /* Compute the RHS. After this step, the table with cursor 1825 ** pExpr->iTable will contains the values that make up the RHS. 1826 */ 1827 v = pParse->pVdbe; 1828 assert( v!=0 ); /* OOM detected prior to this routine */ 1829 VdbeNoopComment((v, "begin IN expr")); 1830 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1831 1832 /* Figure out the affinity to use to create a key from the results 1833 ** of the expression. affinityStr stores a static string suitable for 1834 ** P4 of OP_MakeRecord. 1835 */ 1836 affinity = comparisonAffinity(pExpr); 1837 1838 /* Code the LHS, the <expr> from "<expr> IN (...)". 1839 */ 1840 sqlite3ExprCachePush(pParse); 1841 r1 = sqlite3GetTempReg(pParse); 1842 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1843 1844 /* If the LHS is NULL, then the result is either false or NULL depending 1845 ** on whether the RHS is empty or not, respectively. 1846 */ 1847 if( destIfNull==destIfFalse ){ 1848 /* Shortcut for the common case where the false and NULL outcomes are 1849 ** the same. */ 1850 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1851 }else{ 1852 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1853 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1854 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1855 sqlite3VdbeJumpHere(v, addr1); 1856 } 1857 1858 if( eType==IN_INDEX_ROWID ){ 1859 /* In this case, the RHS is the ROWID of table b-tree 1860 */ 1861 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1862 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1863 }else{ 1864 /* In this case, the RHS is an index b-tree. 1865 */ 1866 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1867 1868 /* If the set membership test fails, then the result of the 1869 ** "x IN (...)" expression must be either 0 or NULL. If the set 1870 ** contains no NULL values, then the result is 0. If the set 1871 ** contains one or more NULL values, then the result of the 1872 ** expression is also NULL. 1873 */ 1874 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1875 /* This branch runs if it is known at compile time that the RHS 1876 ** cannot contain NULL values. This happens as the result 1877 ** of a "NOT NULL" constraint in the database schema. 1878 ** 1879 ** Also run this branch if NULL is equivalent to FALSE 1880 ** for this particular IN operator. 1881 */ 1882 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1883 1884 }else{ 1885 /* In this branch, the RHS of the IN might contain a NULL and 1886 ** the presence of a NULL on the RHS makes a difference in the 1887 ** outcome. 1888 */ 1889 int j1, j2, j3; 1890 1891 /* First check to see if the LHS is contained in the RHS. If so, 1892 ** then the presence of NULLs in the RHS does not matter, so jump 1893 ** over all of the code that follows. 1894 */ 1895 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1896 1897 /* Here we begin generating code that runs if the LHS is not 1898 ** contained within the RHS. Generate additional code that 1899 ** tests the RHS for NULLs. If the RHS contains a NULL then 1900 ** jump to destIfNull. If there are no NULLs in the RHS then 1901 ** jump to destIfFalse. 1902 */ 1903 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1904 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1905 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1906 sqlite3VdbeJumpHere(v, j3); 1907 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1908 sqlite3VdbeJumpHere(v, j2); 1909 1910 /* Jump to the appropriate target depending on whether or not 1911 ** the RHS contains a NULL 1912 */ 1913 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1914 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1915 1916 /* The OP_Found at the top of this branch jumps here when true, 1917 ** causing the overall IN expression evaluation to fall through. 1918 */ 1919 sqlite3VdbeJumpHere(v, j1); 1920 } 1921 } 1922 sqlite3ReleaseTempReg(pParse, r1); 1923 sqlite3ExprCachePop(pParse, 1); 1924 VdbeComment((v, "end IN expr")); 1925 } 1926 #endif /* SQLITE_OMIT_SUBQUERY */ 1927 1928 /* 1929 ** Duplicate an 8-byte value 1930 */ 1931 static char *dup8bytes(Vdbe *v, const char *in){ 1932 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1933 if( out ){ 1934 memcpy(out, in, 8); 1935 } 1936 return out; 1937 } 1938 1939 #ifndef SQLITE_OMIT_FLOATING_POINT 1940 /* 1941 ** Generate an instruction that will put the floating point 1942 ** value described by z[0..n-1] into register iMem. 1943 ** 1944 ** The z[] string will probably not be zero-terminated. But the 1945 ** z[n] character is guaranteed to be something that does not look 1946 ** like the continuation of the number. 1947 */ 1948 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1949 if( ALWAYS(z!=0) ){ 1950 double value; 1951 char *zV; 1952 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1953 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1954 if( negateFlag ) value = -value; 1955 zV = dup8bytes(v, (char*)&value); 1956 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1957 } 1958 } 1959 #endif 1960 1961 1962 /* 1963 ** Generate an instruction that will put the integer describe by 1964 ** text z[0..n-1] into register iMem. 1965 ** 1966 ** Expr.u.zToken is always UTF8 and zero-terminated. 1967 */ 1968 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 1969 Vdbe *v = pParse->pVdbe; 1970 if( pExpr->flags & EP_IntValue ){ 1971 int i = pExpr->u.iValue; 1972 assert( i>=0 ); 1973 if( negFlag ) i = -i; 1974 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1975 }else{ 1976 int c; 1977 i64 value; 1978 const char *z = pExpr->u.zToken; 1979 assert( z!=0 ); 1980 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1981 if( c==0 || (c==2 && negFlag) ){ 1982 char *zV; 1983 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 1984 zV = dup8bytes(v, (char*)&value); 1985 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1986 }else{ 1987 #ifdef SQLITE_OMIT_FLOATING_POINT 1988 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 1989 #else 1990 codeReal(v, z, negFlag, iMem); 1991 #endif 1992 } 1993 } 1994 } 1995 1996 /* 1997 ** Clear a cache entry. 1998 */ 1999 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2000 if( p->tempReg ){ 2001 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2002 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2003 } 2004 p->tempReg = 0; 2005 } 2006 } 2007 2008 2009 /* 2010 ** Record in the column cache that a particular column from a 2011 ** particular table is stored in a particular register. 2012 */ 2013 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2014 int i; 2015 int minLru; 2016 int idxLru; 2017 struct yColCache *p; 2018 2019 assert( iReg>0 ); /* Register numbers are always positive */ 2020 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2021 2022 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2023 ** for testing only - to verify that SQLite always gets the same answer 2024 ** with and without the column cache. 2025 */ 2026 if( pParse->db->flags & SQLITE_ColumnCache ) return; 2027 2028 /* First replace any existing entry. 2029 ** 2030 ** Actually, the way the column cache is currently used, we are guaranteed 2031 ** that the object will never already be in cache. Verify this guarantee. 2032 */ 2033 #ifndef NDEBUG 2034 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2035 #if 0 /* This code wold remove the entry from the cache if it existed */ 2036 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 2037 cacheEntryClear(pParse, p); 2038 p->iLevel = pParse->iCacheLevel; 2039 p->iReg = iReg; 2040 p->lru = pParse->iCacheCnt++; 2041 return; 2042 } 2043 #endif 2044 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2045 } 2046 #endif 2047 2048 /* Find an empty slot and replace it */ 2049 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2050 if( p->iReg==0 ){ 2051 p->iLevel = pParse->iCacheLevel; 2052 p->iTable = iTab; 2053 p->iColumn = iCol; 2054 p->iReg = iReg; 2055 p->tempReg = 0; 2056 p->lru = pParse->iCacheCnt++; 2057 return; 2058 } 2059 } 2060 2061 /* Replace the last recently used */ 2062 minLru = 0x7fffffff; 2063 idxLru = -1; 2064 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2065 if( p->lru<minLru ){ 2066 idxLru = i; 2067 minLru = p->lru; 2068 } 2069 } 2070 if( ALWAYS(idxLru>=0) ){ 2071 p = &pParse->aColCache[idxLru]; 2072 p->iLevel = pParse->iCacheLevel; 2073 p->iTable = iTab; 2074 p->iColumn = iCol; 2075 p->iReg = iReg; 2076 p->tempReg = 0; 2077 p->lru = pParse->iCacheCnt++; 2078 return; 2079 } 2080 } 2081 2082 /* 2083 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2084 ** Purge the range of registers from the column cache. 2085 */ 2086 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2087 int i; 2088 int iLast = iReg + nReg - 1; 2089 struct yColCache *p; 2090 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2091 int r = p->iReg; 2092 if( r>=iReg && r<=iLast ){ 2093 cacheEntryClear(pParse, p); 2094 p->iReg = 0; 2095 } 2096 } 2097 } 2098 2099 /* 2100 ** Remember the current column cache context. Any new entries added 2101 ** added to the column cache after this call are removed when the 2102 ** corresponding pop occurs. 2103 */ 2104 void sqlite3ExprCachePush(Parse *pParse){ 2105 pParse->iCacheLevel++; 2106 } 2107 2108 /* 2109 ** Remove from the column cache any entries that were added since the 2110 ** the previous N Push operations. In other words, restore the cache 2111 ** to the state it was in N Pushes ago. 2112 */ 2113 void sqlite3ExprCachePop(Parse *pParse, int N){ 2114 int i; 2115 struct yColCache *p; 2116 assert( N>0 ); 2117 assert( pParse->iCacheLevel>=N ); 2118 pParse->iCacheLevel -= N; 2119 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2120 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2121 cacheEntryClear(pParse, p); 2122 p->iReg = 0; 2123 } 2124 } 2125 } 2126 2127 /* 2128 ** When a cached column is reused, make sure that its register is 2129 ** no longer available as a temp register. ticket #3879: that same 2130 ** register might be in the cache in multiple places, so be sure to 2131 ** get them all. 2132 */ 2133 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2134 int i; 2135 struct yColCache *p; 2136 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2137 if( p->iReg==iReg ){ 2138 p->tempReg = 0; 2139 } 2140 } 2141 } 2142 2143 /* 2144 ** Generate code to extract the value of the iCol-th column of a table. 2145 */ 2146 void sqlite3ExprCodeGetColumnOfTable( 2147 Vdbe *v, /* The VDBE under construction */ 2148 Table *pTab, /* The table containing the value */ 2149 int iTabCur, /* The cursor for this table */ 2150 int iCol, /* Index of the column to extract */ 2151 int regOut /* Extract the valud into this register */ 2152 ){ 2153 if( iCol<0 || iCol==pTab->iPKey ){ 2154 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2155 }else{ 2156 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2157 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2158 } 2159 if( iCol>=0 ){ 2160 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2161 } 2162 } 2163 2164 /* 2165 ** Generate code that will extract the iColumn-th column from 2166 ** table pTab and store the column value in a register. An effort 2167 ** is made to store the column value in register iReg, but this is 2168 ** not guaranteed. The location of the column value is returned. 2169 ** 2170 ** There must be an open cursor to pTab in iTable when this routine 2171 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2172 */ 2173 int sqlite3ExprCodeGetColumn( 2174 Parse *pParse, /* Parsing and code generating context */ 2175 Table *pTab, /* Description of the table we are reading from */ 2176 int iColumn, /* Index of the table column */ 2177 int iTable, /* The cursor pointing to the table */ 2178 int iReg /* Store results here */ 2179 ){ 2180 Vdbe *v = pParse->pVdbe; 2181 int i; 2182 struct yColCache *p; 2183 2184 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2185 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2186 p->lru = pParse->iCacheCnt++; 2187 sqlite3ExprCachePinRegister(pParse, p->iReg); 2188 return p->iReg; 2189 } 2190 } 2191 assert( v!=0 ); 2192 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2193 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2194 return iReg; 2195 } 2196 2197 /* 2198 ** Clear all column cache entries. 2199 */ 2200 void sqlite3ExprCacheClear(Parse *pParse){ 2201 int i; 2202 struct yColCache *p; 2203 2204 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2205 if( p->iReg ){ 2206 cacheEntryClear(pParse, p); 2207 p->iReg = 0; 2208 } 2209 } 2210 } 2211 2212 /* 2213 ** Record the fact that an affinity change has occurred on iCount 2214 ** registers starting with iStart. 2215 */ 2216 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2217 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2218 } 2219 2220 /* 2221 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2222 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2223 */ 2224 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2225 int i; 2226 struct yColCache *p; 2227 if( NEVER(iFrom==iTo) ) return; 2228 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2229 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2230 int x = p->iReg; 2231 if( x>=iFrom && x<iFrom+nReg ){ 2232 p->iReg += iTo-iFrom; 2233 } 2234 } 2235 } 2236 2237 /* 2238 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2239 ** over to iTo..iTo+nReg-1. 2240 */ 2241 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2242 int i; 2243 if( NEVER(iFrom==iTo) ) return; 2244 for(i=0; i<nReg; i++){ 2245 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2246 } 2247 } 2248 2249 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2250 /* 2251 ** Return true if any register in the range iFrom..iTo (inclusive) 2252 ** is used as part of the column cache. 2253 ** 2254 ** This routine is used within assert() and testcase() macros only 2255 ** and does not appear in a normal build. 2256 */ 2257 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2258 int i; 2259 struct yColCache *p; 2260 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2261 int r = p->iReg; 2262 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2263 } 2264 return 0; 2265 } 2266 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2267 2268 /* 2269 ** Generate code into the current Vdbe to evaluate the given 2270 ** expression. Attempt to store the results in register "target". 2271 ** Return the register where results are stored. 2272 ** 2273 ** With this routine, there is no guarantee that results will 2274 ** be stored in target. The result might be stored in some other 2275 ** register if it is convenient to do so. The calling function 2276 ** must check the return code and move the results to the desired 2277 ** register. 2278 */ 2279 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2280 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2281 int op; /* The opcode being coded */ 2282 int inReg = target; /* Results stored in register inReg */ 2283 int regFree1 = 0; /* If non-zero free this temporary register */ 2284 int regFree2 = 0; /* If non-zero free this temporary register */ 2285 int r1, r2, r3, r4; /* Various register numbers */ 2286 sqlite3 *db = pParse->db; /* The database connection */ 2287 2288 assert( target>0 && target<=pParse->nMem ); 2289 if( v==0 ){ 2290 assert( pParse->db->mallocFailed ); 2291 return 0; 2292 } 2293 2294 if( pExpr==0 ){ 2295 op = TK_NULL; 2296 }else{ 2297 op = pExpr->op; 2298 } 2299 switch( op ){ 2300 case TK_AGG_COLUMN: { 2301 AggInfo *pAggInfo = pExpr->pAggInfo; 2302 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2303 if( !pAggInfo->directMode ){ 2304 assert( pCol->iMem>0 ); 2305 inReg = pCol->iMem; 2306 break; 2307 }else if( pAggInfo->useSortingIdx ){ 2308 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2309 pCol->iSorterColumn, target); 2310 break; 2311 } 2312 /* Otherwise, fall thru into the TK_COLUMN case */ 2313 } 2314 case TK_COLUMN: { 2315 if( pExpr->iTable<0 ){ 2316 /* This only happens when coding check constraints */ 2317 assert( pParse->ckBase>0 ); 2318 inReg = pExpr->iColumn + pParse->ckBase; 2319 }else{ 2320 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2321 pExpr->iColumn, pExpr->iTable, target); 2322 } 2323 break; 2324 } 2325 case TK_INTEGER: { 2326 codeInteger(pParse, pExpr, 0, target); 2327 break; 2328 } 2329 #ifndef SQLITE_OMIT_FLOATING_POINT 2330 case TK_FLOAT: { 2331 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2332 codeReal(v, pExpr->u.zToken, 0, target); 2333 break; 2334 } 2335 #endif 2336 case TK_STRING: { 2337 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2338 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2339 break; 2340 } 2341 case TK_NULL: { 2342 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2343 break; 2344 } 2345 #ifndef SQLITE_OMIT_BLOB_LITERAL 2346 case TK_BLOB: { 2347 int n; 2348 const char *z; 2349 char *zBlob; 2350 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2351 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2352 assert( pExpr->u.zToken[1]=='\'' ); 2353 z = &pExpr->u.zToken[2]; 2354 n = sqlite3Strlen30(z) - 1; 2355 assert( z[n]=='\'' ); 2356 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2357 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2358 break; 2359 } 2360 #endif 2361 case TK_VARIABLE: { 2362 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2363 assert( pExpr->u.zToken!=0 ); 2364 assert( pExpr->u.zToken[0]!=0 ); 2365 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2366 if( pExpr->u.zToken[1]!=0 ){ 2367 assert( pExpr->u.zToken[0]=='?' 2368 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2369 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2370 } 2371 break; 2372 } 2373 case TK_REGISTER: { 2374 inReg = pExpr->iTable; 2375 break; 2376 } 2377 case TK_AS: { 2378 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2379 break; 2380 } 2381 #ifndef SQLITE_OMIT_CAST 2382 case TK_CAST: { 2383 /* Expressions of the form: CAST(pLeft AS token) */ 2384 int aff, to_op; 2385 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2386 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2387 aff = sqlite3AffinityType(pExpr->u.zToken); 2388 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2389 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2390 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2391 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2392 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2393 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2394 testcase( to_op==OP_ToText ); 2395 testcase( to_op==OP_ToBlob ); 2396 testcase( to_op==OP_ToNumeric ); 2397 testcase( to_op==OP_ToInt ); 2398 testcase( to_op==OP_ToReal ); 2399 if( inReg!=target ){ 2400 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2401 inReg = target; 2402 } 2403 sqlite3VdbeAddOp1(v, to_op, inReg); 2404 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2405 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2406 break; 2407 } 2408 #endif /* SQLITE_OMIT_CAST */ 2409 case TK_LT: 2410 case TK_LE: 2411 case TK_GT: 2412 case TK_GE: 2413 case TK_NE: 2414 case TK_EQ: { 2415 assert( TK_LT==OP_Lt ); 2416 assert( TK_LE==OP_Le ); 2417 assert( TK_GT==OP_Gt ); 2418 assert( TK_GE==OP_Ge ); 2419 assert( TK_EQ==OP_Eq ); 2420 assert( TK_NE==OP_Ne ); 2421 testcase( op==TK_LT ); 2422 testcase( op==TK_LE ); 2423 testcase( op==TK_GT ); 2424 testcase( op==TK_GE ); 2425 testcase( op==TK_EQ ); 2426 testcase( op==TK_NE ); 2427 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2428 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2429 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2430 r1, r2, inReg, SQLITE_STOREP2); 2431 testcase( regFree1==0 ); 2432 testcase( regFree2==0 ); 2433 break; 2434 } 2435 case TK_IS: 2436 case TK_ISNOT: { 2437 testcase( op==TK_IS ); 2438 testcase( op==TK_ISNOT ); 2439 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2440 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2441 op = (op==TK_IS) ? TK_EQ : TK_NE; 2442 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2443 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2444 testcase( regFree1==0 ); 2445 testcase( regFree2==0 ); 2446 break; 2447 } 2448 case TK_AND: 2449 case TK_OR: 2450 case TK_PLUS: 2451 case TK_STAR: 2452 case TK_MINUS: 2453 case TK_REM: 2454 case TK_BITAND: 2455 case TK_BITOR: 2456 case TK_SLASH: 2457 case TK_LSHIFT: 2458 case TK_RSHIFT: 2459 case TK_CONCAT: { 2460 assert( TK_AND==OP_And ); 2461 assert( TK_OR==OP_Or ); 2462 assert( TK_PLUS==OP_Add ); 2463 assert( TK_MINUS==OP_Subtract ); 2464 assert( TK_REM==OP_Remainder ); 2465 assert( TK_BITAND==OP_BitAnd ); 2466 assert( TK_BITOR==OP_BitOr ); 2467 assert( TK_SLASH==OP_Divide ); 2468 assert( TK_LSHIFT==OP_ShiftLeft ); 2469 assert( TK_RSHIFT==OP_ShiftRight ); 2470 assert( TK_CONCAT==OP_Concat ); 2471 testcase( op==TK_AND ); 2472 testcase( op==TK_OR ); 2473 testcase( op==TK_PLUS ); 2474 testcase( op==TK_MINUS ); 2475 testcase( op==TK_REM ); 2476 testcase( op==TK_BITAND ); 2477 testcase( op==TK_BITOR ); 2478 testcase( op==TK_SLASH ); 2479 testcase( op==TK_LSHIFT ); 2480 testcase( op==TK_RSHIFT ); 2481 testcase( op==TK_CONCAT ); 2482 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2483 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2484 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2485 testcase( regFree1==0 ); 2486 testcase( regFree2==0 ); 2487 break; 2488 } 2489 case TK_UMINUS: { 2490 Expr *pLeft = pExpr->pLeft; 2491 assert( pLeft ); 2492 if( pLeft->op==TK_INTEGER ){ 2493 codeInteger(pParse, pLeft, 1, target); 2494 #ifndef SQLITE_OMIT_FLOATING_POINT 2495 }else if( pLeft->op==TK_FLOAT ){ 2496 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2497 codeReal(v, pLeft->u.zToken, 1, target); 2498 #endif 2499 }else{ 2500 regFree1 = r1 = sqlite3GetTempReg(pParse); 2501 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2502 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2503 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2504 testcase( regFree2==0 ); 2505 } 2506 inReg = target; 2507 break; 2508 } 2509 case TK_BITNOT: 2510 case TK_NOT: { 2511 assert( TK_BITNOT==OP_BitNot ); 2512 assert( TK_NOT==OP_Not ); 2513 testcase( op==TK_BITNOT ); 2514 testcase( op==TK_NOT ); 2515 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2516 testcase( regFree1==0 ); 2517 inReg = target; 2518 sqlite3VdbeAddOp2(v, op, r1, inReg); 2519 break; 2520 } 2521 case TK_ISNULL: 2522 case TK_NOTNULL: { 2523 int addr; 2524 assert( TK_ISNULL==OP_IsNull ); 2525 assert( TK_NOTNULL==OP_NotNull ); 2526 testcase( op==TK_ISNULL ); 2527 testcase( op==TK_NOTNULL ); 2528 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2529 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2530 testcase( regFree1==0 ); 2531 addr = sqlite3VdbeAddOp1(v, op, r1); 2532 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2533 sqlite3VdbeJumpHere(v, addr); 2534 break; 2535 } 2536 case TK_AGG_FUNCTION: { 2537 AggInfo *pInfo = pExpr->pAggInfo; 2538 if( pInfo==0 ){ 2539 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2540 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2541 }else{ 2542 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2543 } 2544 break; 2545 } 2546 case TK_CONST_FUNC: 2547 case TK_FUNCTION: { 2548 ExprList *pFarg; /* List of function arguments */ 2549 int nFarg; /* Number of function arguments */ 2550 FuncDef *pDef; /* The function definition object */ 2551 int nId; /* Length of the function name in bytes */ 2552 const char *zId; /* The function name */ 2553 int constMask = 0; /* Mask of function arguments that are constant */ 2554 int i; /* Loop counter */ 2555 u8 enc = ENC(db); /* The text encoding used by this database */ 2556 CollSeq *pColl = 0; /* A collating sequence */ 2557 2558 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2559 testcase( op==TK_CONST_FUNC ); 2560 testcase( op==TK_FUNCTION ); 2561 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2562 pFarg = 0; 2563 }else{ 2564 pFarg = pExpr->x.pList; 2565 } 2566 nFarg = pFarg ? pFarg->nExpr : 0; 2567 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2568 zId = pExpr->u.zToken; 2569 nId = sqlite3Strlen30(zId); 2570 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2571 if( pDef==0 ){ 2572 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2573 break; 2574 } 2575 2576 /* Attempt a direct implementation of the built-in COALESCE() and 2577 ** IFNULL() functions. This avoids unnecessary evalation of 2578 ** arguments past the first non-NULL argument. 2579 */ 2580 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2581 int endCoalesce = sqlite3VdbeMakeLabel(v); 2582 assert( nFarg>=2 ); 2583 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2584 for(i=1; i<nFarg; i++){ 2585 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2586 sqlite3ExprCacheRemove(pParse, target, 1); 2587 sqlite3ExprCachePush(pParse); 2588 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2589 sqlite3ExprCachePop(pParse, 1); 2590 } 2591 sqlite3VdbeResolveLabel(v, endCoalesce); 2592 break; 2593 } 2594 2595 2596 if( pFarg ){ 2597 r1 = sqlite3GetTempRange(pParse, nFarg); 2598 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2599 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2600 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2601 }else{ 2602 r1 = 0; 2603 } 2604 #ifndef SQLITE_OMIT_VIRTUALTABLE 2605 /* Possibly overload the function if the first argument is 2606 ** a virtual table column. 2607 ** 2608 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2609 ** second argument, not the first, as the argument to test to 2610 ** see if it is a column in a virtual table. This is done because 2611 ** the left operand of infix functions (the operand we want to 2612 ** control overloading) ends up as the second argument to the 2613 ** function. The expression "A glob B" is equivalent to 2614 ** "glob(B,A). We want to use the A in "A glob B" to test 2615 ** for function overloading. But we use the B term in "glob(B,A)". 2616 */ 2617 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2618 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2619 }else if( nFarg>0 ){ 2620 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2621 } 2622 #endif 2623 for(i=0; i<nFarg; i++){ 2624 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2625 constMask |= (1<<i); 2626 } 2627 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2628 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2629 } 2630 } 2631 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2632 if( !pColl ) pColl = db->pDfltColl; 2633 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2634 } 2635 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2636 (char*)pDef, P4_FUNCDEF); 2637 sqlite3VdbeChangeP5(v, (u8)nFarg); 2638 if( nFarg ){ 2639 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2640 } 2641 break; 2642 } 2643 #ifndef SQLITE_OMIT_SUBQUERY 2644 case TK_EXISTS: 2645 case TK_SELECT: { 2646 testcase( op==TK_EXISTS ); 2647 testcase( op==TK_SELECT ); 2648 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2649 break; 2650 } 2651 case TK_IN: { 2652 int destIfFalse = sqlite3VdbeMakeLabel(v); 2653 int destIfNull = sqlite3VdbeMakeLabel(v); 2654 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2655 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2656 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2657 sqlite3VdbeResolveLabel(v, destIfFalse); 2658 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2659 sqlite3VdbeResolveLabel(v, destIfNull); 2660 break; 2661 } 2662 #endif /* SQLITE_OMIT_SUBQUERY */ 2663 2664 2665 /* 2666 ** x BETWEEN y AND z 2667 ** 2668 ** This is equivalent to 2669 ** 2670 ** x>=y AND x<=z 2671 ** 2672 ** X is stored in pExpr->pLeft. 2673 ** Y is stored in pExpr->pList->a[0].pExpr. 2674 ** Z is stored in pExpr->pList->a[1].pExpr. 2675 */ 2676 case TK_BETWEEN: { 2677 Expr *pLeft = pExpr->pLeft; 2678 struct ExprList_item *pLItem = pExpr->x.pList->a; 2679 Expr *pRight = pLItem->pExpr; 2680 2681 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2682 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2683 testcase( regFree1==0 ); 2684 testcase( regFree2==0 ); 2685 r3 = sqlite3GetTempReg(pParse); 2686 r4 = sqlite3GetTempReg(pParse); 2687 codeCompare(pParse, pLeft, pRight, OP_Ge, 2688 r1, r2, r3, SQLITE_STOREP2); 2689 pLItem++; 2690 pRight = pLItem->pExpr; 2691 sqlite3ReleaseTempReg(pParse, regFree2); 2692 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2693 testcase( regFree2==0 ); 2694 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2695 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2696 sqlite3ReleaseTempReg(pParse, r3); 2697 sqlite3ReleaseTempReg(pParse, r4); 2698 break; 2699 } 2700 case TK_UPLUS: { 2701 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2702 break; 2703 } 2704 2705 case TK_TRIGGER: { 2706 /* If the opcode is TK_TRIGGER, then the expression is a reference 2707 ** to a column in the new.* or old.* pseudo-tables available to 2708 ** trigger programs. In this case Expr.iTable is set to 1 for the 2709 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2710 ** is set to the column of the pseudo-table to read, or to -1 to 2711 ** read the rowid field. 2712 ** 2713 ** The expression is implemented using an OP_Param opcode. The p1 2714 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2715 ** to reference another column of the old.* pseudo-table, where 2716 ** i is the index of the column. For a new.rowid reference, p1 is 2717 ** set to (n+1), where n is the number of columns in each pseudo-table. 2718 ** For a reference to any other column in the new.* pseudo-table, p1 2719 ** is set to (n+2+i), where n and i are as defined previously. For 2720 ** example, if the table on which triggers are being fired is 2721 ** declared as: 2722 ** 2723 ** CREATE TABLE t1(a, b); 2724 ** 2725 ** Then p1 is interpreted as follows: 2726 ** 2727 ** p1==0 -> old.rowid p1==3 -> new.rowid 2728 ** p1==1 -> old.a p1==4 -> new.a 2729 ** p1==2 -> old.b p1==5 -> new.b 2730 */ 2731 Table *pTab = pExpr->pTab; 2732 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2733 2734 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2735 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2736 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2737 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2738 2739 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2740 VdbeComment((v, "%s.%s -> $%d", 2741 (pExpr->iTable ? "new" : "old"), 2742 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2743 target 2744 )); 2745 2746 #ifndef SQLITE_OMIT_FLOATING_POINT 2747 /* If the column has REAL affinity, it may currently be stored as an 2748 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2749 if( pExpr->iColumn>=0 2750 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2751 ){ 2752 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2753 } 2754 #endif 2755 break; 2756 } 2757 2758 2759 /* 2760 ** Form A: 2761 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2762 ** 2763 ** Form B: 2764 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2765 ** 2766 ** Form A is can be transformed into the equivalent form B as follows: 2767 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2768 ** WHEN x=eN THEN rN ELSE y END 2769 ** 2770 ** X (if it exists) is in pExpr->pLeft. 2771 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2772 ** ELSE clause and no other term matches, then the result of the 2773 ** exprssion is NULL. 2774 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2775 ** 2776 ** The result of the expression is the Ri for the first matching Ei, 2777 ** or if there is no matching Ei, the ELSE term Y, or if there is 2778 ** no ELSE term, NULL. 2779 */ 2780 default: assert( op==TK_CASE ); { 2781 int endLabel; /* GOTO label for end of CASE stmt */ 2782 int nextCase; /* GOTO label for next WHEN clause */ 2783 int nExpr; /* 2x number of WHEN terms */ 2784 int i; /* Loop counter */ 2785 ExprList *pEList; /* List of WHEN terms */ 2786 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2787 Expr opCompare; /* The X==Ei expression */ 2788 Expr cacheX; /* Cached expression X */ 2789 Expr *pX; /* The X expression */ 2790 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2791 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2792 2793 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2794 assert((pExpr->x.pList->nExpr % 2) == 0); 2795 assert(pExpr->x.pList->nExpr > 0); 2796 pEList = pExpr->x.pList; 2797 aListelem = pEList->a; 2798 nExpr = pEList->nExpr; 2799 endLabel = sqlite3VdbeMakeLabel(v); 2800 if( (pX = pExpr->pLeft)!=0 ){ 2801 cacheX = *pX; 2802 testcase( pX->op==TK_COLUMN ); 2803 testcase( pX->op==TK_REGISTER ); 2804 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2805 testcase( regFree1==0 ); 2806 cacheX.op = TK_REGISTER; 2807 opCompare.op = TK_EQ; 2808 opCompare.pLeft = &cacheX; 2809 pTest = &opCompare; 2810 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2811 ** The value in regFree1 might get SCopy-ed into the file result. 2812 ** So make sure that the regFree1 register is not reused for other 2813 ** purposes and possibly overwritten. */ 2814 regFree1 = 0; 2815 } 2816 for(i=0; i<nExpr; i=i+2){ 2817 sqlite3ExprCachePush(pParse); 2818 if( pX ){ 2819 assert( pTest!=0 ); 2820 opCompare.pRight = aListelem[i].pExpr; 2821 }else{ 2822 pTest = aListelem[i].pExpr; 2823 } 2824 nextCase = sqlite3VdbeMakeLabel(v); 2825 testcase( pTest->op==TK_COLUMN ); 2826 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2827 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2828 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2829 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2830 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2831 sqlite3ExprCachePop(pParse, 1); 2832 sqlite3VdbeResolveLabel(v, nextCase); 2833 } 2834 if( pExpr->pRight ){ 2835 sqlite3ExprCachePush(pParse); 2836 sqlite3ExprCode(pParse, pExpr->pRight, target); 2837 sqlite3ExprCachePop(pParse, 1); 2838 }else{ 2839 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2840 } 2841 assert( db->mallocFailed || pParse->nErr>0 2842 || pParse->iCacheLevel==iCacheLevel ); 2843 sqlite3VdbeResolveLabel(v, endLabel); 2844 break; 2845 } 2846 #ifndef SQLITE_OMIT_TRIGGER 2847 case TK_RAISE: { 2848 assert( pExpr->affinity==OE_Rollback 2849 || pExpr->affinity==OE_Abort 2850 || pExpr->affinity==OE_Fail 2851 || pExpr->affinity==OE_Ignore 2852 ); 2853 if( !pParse->pTriggerTab ){ 2854 sqlite3ErrorMsg(pParse, 2855 "RAISE() may only be used within a trigger-program"); 2856 return 0; 2857 } 2858 if( pExpr->affinity==OE_Abort ){ 2859 sqlite3MayAbort(pParse); 2860 } 2861 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2862 if( pExpr->affinity==OE_Ignore ){ 2863 sqlite3VdbeAddOp4( 2864 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2865 }else{ 2866 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2867 } 2868 2869 break; 2870 } 2871 #endif 2872 } 2873 sqlite3ReleaseTempReg(pParse, regFree1); 2874 sqlite3ReleaseTempReg(pParse, regFree2); 2875 return inReg; 2876 } 2877 2878 /* 2879 ** Generate code to evaluate an expression and store the results 2880 ** into a register. Return the register number where the results 2881 ** are stored. 2882 ** 2883 ** If the register is a temporary register that can be deallocated, 2884 ** then write its number into *pReg. If the result register is not 2885 ** a temporary, then set *pReg to zero. 2886 */ 2887 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2888 int r1 = sqlite3GetTempReg(pParse); 2889 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2890 if( r2==r1 ){ 2891 *pReg = r1; 2892 }else{ 2893 sqlite3ReleaseTempReg(pParse, r1); 2894 *pReg = 0; 2895 } 2896 return r2; 2897 } 2898 2899 /* 2900 ** Generate code that will evaluate expression pExpr and store the 2901 ** results in register target. The results are guaranteed to appear 2902 ** in register target. 2903 */ 2904 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2905 int inReg; 2906 2907 assert( target>0 && target<=pParse->nMem ); 2908 if( pExpr && pExpr->op==TK_REGISTER ){ 2909 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2910 }else{ 2911 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2912 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2913 if( inReg!=target && pParse->pVdbe ){ 2914 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2915 } 2916 } 2917 return target; 2918 } 2919 2920 /* 2921 ** Generate code that evalutes the given expression and puts the result 2922 ** in register target. 2923 ** 2924 ** Also make a copy of the expression results into another "cache" register 2925 ** and modify the expression so that the next time it is evaluated, 2926 ** the result is a copy of the cache register. 2927 ** 2928 ** This routine is used for expressions that are used multiple 2929 ** times. They are evaluated once and the results of the expression 2930 ** are reused. 2931 */ 2932 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2933 Vdbe *v = pParse->pVdbe; 2934 int inReg; 2935 inReg = sqlite3ExprCode(pParse, pExpr, target); 2936 assert( target>0 ); 2937 /* This routine is called for terms to INSERT or UPDATE. And the only 2938 ** other place where expressions can be converted into TK_REGISTER is 2939 ** in WHERE clause processing. So as currently implemented, there is 2940 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2941 ** keep the ALWAYS() in case the conditions above change with future 2942 ** modifications or enhancements. */ 2943 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2944 int iMem; 2945 iMem = ++pParse->nMem; 2946 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2947 pExpr->iTable = iMem; 2948 pExpr->op2 = pExpr->op; 2949 pExpr->op = TK_REGISTER; 2950 } 2951 return inReg; 2952 } 2953 2954 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2955 /* 2956 ** Generate a human-readable explanation of an expression tree. 2957 */ 2958 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 2959 int op; /* The opcode being coded */ 2960 const char *zBinOp = 0; /* Binary operator */ 2961 const char *zUniOp = 0; /* Unary operator */ 2962 if( pExpr==0 ){ 2963 op = TK_NULL; 2964 }else{ 2965 op = pExpr->op; 2966 } 2967 switch( op ){ 2968 case TK_AGG_COLUMN: { 2969 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 2970 pExpr->iTable, pExpr->iColumn); 2971 break; 2972 } 2973 case TK_COLUMN: { 2974 if( pExpr->iTable<0 ){ 2975 /* This only happens when coding check constraints */ 2976 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 2977 }else{ 2978 sqlite3ExplainPrintf(pOut, "{%d:%d}", 2979 pExpr->iTable, pExpr->iColumn); 2980 } 2981 break; 2982 } 2983 case TK_INTEGER: { 2984 if( pExpr->flags & EP_IntValue ){ 2985 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 2986 }else{ 2987 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 2988 } 2989 break; 2990 } 2991 #ifndef SQLITE_OMIT_FLOATING_POINT 2992 case TK_FLOAT: { 2993 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 2994 break; 2995 } 2996 #endif 2997 case TK_STRING: { 2998 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 2999 break; 3000 } 3001 case TK_NULL: { 3002 sqlite3ExplainPrintf(pOut,"NULL"); 3003 break; 3004 } 3005 #ifndef SQLITE_OMIT_BLOB_LITERAL 3006 case TK_BLOB: { 3007 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3008 break; 3009 } 3010 #endif 3011 case TK_VARIABLE: { 3012 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3013 pExpr->u.zToken, pExpr->iColumn); 3014 break; 3015 } 3016 case TK_REGISTER: { 3017 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3018 break; 3019 } 3020 case TK_AS: { 3021 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3022 break; 3023 } 3024 #ifndef SQLITE_OMIT_CAST 3025 case TK_CAST: { 3026 /* Expressions of the form: CAST(pLeft AS token) */ 3027 const char *zAff = "unk"; 3028 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3029 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3030 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3031 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3032 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3033 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3034 } 3035 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3036 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3037 sqlite3ExplainPrintf(pOut, ")"); 3038 break; 3039 } 3040 #endif /* SQLITE_OMIT_CAST */ 3041 case TK_LT: zBinOp = "LT"; break; 3042 case TK_LE: zBinOp = "LE"; break; 3043 case TK_GT: zBinOp = "GT"; break; 3044 case TK_GE: zBinOp = "GE"; break; 3045 case TK_NE: zBinOp = "NE"; break; 3046 case TK_EQ: zBinOp = "EQ"; break; 3047 case TK_IS: zBinOp = "IS"; break; 3048 case TK_ISNOT: zBinOp = "ISNOT"; break; 3049 case TK_AND: zBinOp = "AND"; break; 3050 case TK_OR: zBinOp = "OR"; break; 3051 case TK_PLUS: zBinOp = "ADD"; break; 3052 case TK_STAR: zBinOp = "MUL"; break; 3053 case TK_MINUS: zBinOp = "SUB"; break; 3054 case TK_REM: zBinOp = "REM"; break; 3055 case TK_BITAND: zBinOp = "BITAND"; break; 3056 case TK_BITOR: zBinOp = "BITOR"; break; 3057 case TK_SLASH: zBinOp = "DIV"; break; 3058 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3059 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3060 case TK_CONCAT: zBinOp = "CONCAT"; break; 3061 3062 case TK_UMINUS: zUniOp = "UMINUS"; break; 3063 case TK_UPLUS: zUniOp = "UPLUS"; break; 3064 case TK_BITNOT: zUniOp = "BITNOT"; break; 3065 case TK_NOT: zUniOp = "NOT"; break; 3066 case TK_ISNULL: zUniOp = "ISNULL"; break; 3067 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3068 3069 case TK_AGG_FUNCTION: 3070 case TK_CONST_FUNC: 3071 case TK_FUNCTION: { 3072 ExprList *pFarg; /* List of function arguments */ 3073 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3074 pFarg = 0; 3075 }else{ 3076 pFarg = pExpr->x.pList; 3077 } 3078 sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(", 3079 op==TK_AGG_FUNCTION ? "AGG_" : "", 3080 pExpr->u.zToken); 3081 if( pFarg ){ 3082 sqlite3ExplainExprList(pOut, pFarg); 3083 } 3084 sqlite3ExplainPrintf(pOut, ")"); 3085 break; 3086 } 3087 #ifndef SQLITE_OMIT_SUBQUERY 3088 case TK_EXISTS: { 3089 sqlite3ExplainPrintf(pOut, "EXISTS("); 3090 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3091 sqlite3ExplainPrintf(pOut,")"); 3092 break; 3093 } 3094 case TK_SELECT: { 3095 sqlite3ExplainPrintf(pOut, "("); 3096 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3097 sqlite3ExplainPrintf(pOut, ")"); 3098 break; 3099 } 3100 case TK_IN: { 3101 sqlite3ExplainPrintf(pOut, "IN("); 3102 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3103 sqlite3ExplainPrintf(pOut, ","); 3104 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3105 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3106 }else{ 3107 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3108 } 3109 sqlite3ExplainPrintf(pOut, ")"); 3110 break; 3111 } 3112 #endif /* SQLITE_OMIT_SUBQUERY */ 3113 3114 /* 3115 ** x BETWEEN y AND z 3116 ** 3117 ** This is equivalent to 3118 ** 3119 ** x>=y AND x<=z 3120 ** 3121 ** X is stored in pExpr->pLeft. 3122 ** Y is stored in pExpr->pList->a[0].pExpr. 3123 ** Z is stored in pExpr->pList->a[1].pExpr. 3124 */ 3125 case TK_BETWEEN: { 3126 Expr *pX = pExpr->pLeft; 3127 Expr *pY = pExpr->x.pList->a[0].pExpr; 3128 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3129 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3130 sqlite3ExplainExpr(pOut, pX); 3131 sqlite3ExplainPrintf(pOut, ","); 3132 sqlite3ExplainExpr(pOut, pY); 3133 sqlite3ExplainPrintf(pOut, ","); 3134 sqlite3ExplainExpr(pOut, pZ); 3135 sqlite3ExplainPrintf(pOut, ")"); 3136 break; 3137 } 3138 case TK_TRIGGER: { 3139 /* If the opcode is TK_TRIGGER, then the expression is a reference 3140 ** to a column in the new.* or old.* pseudo-tables available to 3141 ** trigger programs. In this case Expr.iTable is set to 1 for the 3142 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3143 ** is set to the column of the pseudo-table to read, or to -1 to 3144 ** read the rowid field. 3145 */ 3146 sqlite3ExplainPrintf(pOut, "%s(%d)", 3147 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3148 break; 3149 } 3150 case TK_CASE: { 3151 sqlite3ExplainPrintf(pOut, "CASE("); 3152 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3153 sqlite3ExplainPrintf(pOut, ","); 3154 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3155 break; 3156 } 3157 #ifndef SQLITE_OMIT_TRIGGER 3158 case TK_RAISE: { 3159 const char *zType = "unk"; 3160 switch( pExpr->affinity ){ 3161 case OE_Rollback: zType = "rollback"; break; 3162 case OE_Abort: zType = "abort"; break; 3163 case OE_Fail: zType = "fail"; break; 3164 case OE_Ignore: zType = "ignore"; break; 3165 } 3166 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3167 break; 3168 } 3169 #endif 3170 } 3171 if( zBinOp ){ 3172 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3173 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3174 sqlite3ExplainPrintf(pOut,","); 3175 sqlite3ExplainExpr(pOut, pExpr->pRight); 3176 sqlite3ExplainPrintf(pOut,")"); 3177 }else if( zUniOp ){ 3178 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3179 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3180 sqlite3ExplainPrintf(pOut,")"); 3181 } 3182 } 3183 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3184 3185 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3186 /* 3187 ** Generate a human-readable explanation of an expression list. 3188 */ 3189 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3190 int i; 3191 if( pList==0 || pList->nExpr==0 ){ 3192 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3193 return; 3194 }else if( pList->nExpr==1 ){ 3195 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3196 }else{ 3197 sqlite3ExplainPush(pOut); 3198 for(i=0; i<pList->nExpr; i++){ 3199 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3200 sqlite3ExplainPush(pOut); 3201 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3202 sqlite3ExplainPop(pOut); 3203 if( i<pList->nExpr-1 ){ 3204 sqlite3ExplainNL(pOut); 3205 } 3206 } 3207 sqlite3ExplainPop(pOut); 3208 } 3209 } 3210 #endif /* SQLITE_DEBUG */ 3211 3212 /* 3213 ** Return TRUE if pExpr is an constant expression that is appropriate 3214 ** for factoring out of a loop. Appropriate expressions are: 3215 ** 3216 ** * Any expression that evaluates to two or more opcodes. 3217 ** 3218 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3219 ** or OP_Variable that does not need to be placed in a 3220 ** specific register. 3221 ** 3222 ** There is no point in factoring out single-instruction constant 3223 ** expressions that need to be placed in a particular register. 3224 ** We could factor them out, but then we would end up adding an 3225 ** OP_SCopy instruction to move the value into the correct register 3226 ** later. We might as well just use the original instruction and 3227 ** avoid the OP_SCopy. 3228 */ 3229 static int isAppropriateForFactoring(Expr *p){ 3230 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3231 return 0; /* Only constant expressions are appropriate for factoring */ 3232 } 3233 if( (p->flags & EP_FixedDest)==0 ){ 3234 return 1; /* Any constant without a fixed destination is appropriate */ 3235 } 3236 while( p->op==TK_UPLUS ) p = p->pLeft; 3237 switch( p->op ){ 3238 #ifndef SQLITE_OMIT_BLOB_LITERAL 3239 case TK_BLOB: 3240 #endif 3241 case TK_VARIABLE: 3242 case TK_INTEGER: 3243 case TK_FLOAT: 3244 case TK_NULL: 3245 case TK_STRING: { 3246 testcase( p->op==TK_BLOB ); 3247 testcase( p->op==TK_VARIABLE ); 3248 testcase( p->op==TK_INTEGER ); 3249 testcase( p->op==TK_FLOAT ); 3250 testcase( p->op==TK_NULL ); 3251 testcase( p->op==TK_STRING ); 3252 /* Single-instruction constants with a fixed destination are 3253 ** better done in-line. If we factor them, they will just end 3254 ** up generating an OP_SCopy to move the value to the destination 3255 ** register. */ 3256 return 0; 3257 } 3258 case TK_UMINUS: { 3259 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3260 return 0; 3261 } 3262 break; 3263 } 3264 default: { 3265 break; 3266 } 3267 } 3268 return 1; 3269 } 3270 3271 /* 3272 ** If pExpr is a constant expression that is appropriate for 3273 ** factoring out of a loop, then evaluate the expression 3274 ** into a register and convert the expression into a TK_REGISTER 3275 ** expression. 3276 */ 3277 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3278 Parse *pParse = pWalker->pParse; 3279 switch( pExpr->op ){ 3280 case TK_IN: 3281 case TK_REGISTER: { 3282 return WRC_Prune; 3283 } 3284 case TK_FUNCTION: 3285 case TK_AGG_FUNCTION: 3286 case TK_CONST_FUNC: { 3287 /* The arguments to a function have a fixed destination. 3288 ** Mark them this way to avoid generated unneeded OP_SCopy 3289 ** instructions. 3290 */ 3291 ExprList *pList = pExpr->x.pList; 3292 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3293 if( pList ){ 3294 int i = pList->nExpr; 3295 struct ExprList_item *pItem = pList->a; 3296 for(; i>0; i--, pItem++){ 3297 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3298 } 3299 } 3300 break; 3301 } 3302 } 3303 if( isAppropriateForFactoring(pExpr) ){ 3304 int r1 = ++pParse->nMem; 3305 int r2; 3306 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3307 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3308 pExpr->op2 = pExpr->op; 3309 pExpr->op = TK_REGISTER; 3310 pExpr->iTable = r2; 3311 return WRC_Prune; 3312 } 3313 return WRC_Continue; 3314 } 3315 3316 /* 3317 ** Preevaluate constant subexpressions within pExpr and store the 3318 ** results in registers. Modify pExpr so that the constant subexpresions 3319 ** are TK_REGISTER opcodes that refer to the precomputed values. 3320 ** 3321 ** This routine is a no-op if the jump to the cookie-check code has 3322 ** already occur. Since the cookie-check jump is generated prior to 3323 ** any other serious processing, this check ensures that there is no 3324 ** way to accidently bypass the constant initializations. 3325 ** 3326 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3327 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3328 ** interface. This allows test logic to verify that the same answer is 3329 ** obtained for queries regardless of whether or not constants are 3330 ** precomputed into registers or if they are inserted in-line. 3331 */ 3332 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3333 Walker w; 3334 if( pParse->cookieGoto ) return; 3335 if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return; 3336 w.xExprCallback = evalConstExpr; 3337 w.xSelectCallback = 0; 3338 w.pParse = pParse; 3339 sqlite3WalkExpr(&w, pExpr); 3340 } 3341 3342 3343 /* 3344 ** Generate code that pushes the value of every element of the given 3345 ** expression list into a sequence of registers beginning at target. 3346 ** 3347 ** Return the number of elements evaluated. 3348 */ 3349 int sqlite3ExprCodeExprList( 3350 Parse *pParse, /* Parsing context */ 3351 ExprList *pList, /* The expression list to be coded */ 3352 int target, /* Where to write results */ 3353 int doHardCopy /* Make a hard copy of every element */ 3354 ){ 3355 struct ExprList_item *pItem; 3356 int i, n; 3357 assert( pList!=0 ); 3358 assert( target>0 ); 3359 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3360 n = pList->nExpr; 3361 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3362 Expr *pExpr = pItem->pExpr; 3363 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3364 if( inReg!=target+i ){ 3365 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3366 inReg, target+i); 3367 } 3368 } 3369 return n; 3370 } 3371 3372 /* 3373 ** Generate code for a BETWEEN operator. 3374 ** 3375 ** x BETWEEN y AND z 3376 ** 3377 ** The above is equivalent to 3378 ** 3379 ** x>=y AND x<=z 3380 ** 3381 ** Code it as such, taking care to do the common subexpression 3382 ** elementation of x. 3383 */ 3384 static void exprCodeBetween( 3385 Parse *pParse, /* Parsing and code generating context */ 3386 Expr *pExpr, /* The BETWEEN expression */ 3387 int dest, /* Jump here if the jump is taken */ 3388 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3389 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3390 ){ 3391 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3392 Expr compLeft; /* The x>=y term */ 3393 Expr compRight; /* The x<=z term */ 3394 Expr exprX; /* The x subexpression */ 3395 int regFree1 = 0; /* Temporary use register */ 3396 3397 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3398 exprX = *pExpr->pLeft; 3399 exprAnd.op = TK_AND; 3400 exprAnd.pLeft = &compLeft; 3401 exprAnd.pRight = &compRight; 3402 compLeft.op = TK_GE; 3403 compLeft.pLeft = &exprX; 3404 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3405 compRight.op = TK_LE; 3406 compRight.pLeft = &exprX; 3407 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3408 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3409 exprX.op = TK_REGISTER; 3410 if( jumpIfTrue ){ 3411 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3412 }else{ 3413 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3414 } 3415 sqlite3ReleaseTempReg(pParse, regFree1); 3416 3417 /* Ensure adequate test coverage */ 3418 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3419 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3420 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3421 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3422 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3423 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3424 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3425 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3426 } 3427 3428 /* 3429 ** Generate code for a boolean expression such that a jump is made 3430 ** to the label "dest" if the expression is true but execution 3431 ** continues straight thru if the expression is false. 3432 ** 3433 ** If the expression evaluates to NULL (neither true nor false), then 3434 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3435 ** 3436 ** This code depends on the fact that certain token values (ex: TK_EQ) 3437 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3438 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3439 ** the make process cause these values to align. Assert()s in the code 3440 ** below verify that the numbers are aligned correctly. 3441 */ 3442 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3443 Vdbe *v = pParse->pVdbe; 3444 int op = 0; 3445 int regFree1 = 0; 3446 int regFree2 = 0; 3447 int r1, r2; 3448 3449 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3450 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3451 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3452 op = pExpr->op; 3453 switch( op ){ 3454 case TK_AND: { 3455 int d2 = sqlite3VdbeMakeLabel(v); 3456 testcase( jumpIfNull==0 ); 3457 sqlite3ExprCachePush(pParse); 3458 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3459 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3460 sqlite3VdbeResolveLabel(v, d2); 3461 sqlite3ExprCachePop(pParse, 1); 3462 break; 3463 } 3464 case TK_OR: { 3465 testcase( jumpIfNull==0 ); 3466 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3467 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3468 break; 3469 } 3470 case TK_NOT: { 3471 testcase( jumpIfNull==0 ); 3472 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3473 break; 3474 } 3475 case TK_LT: 3476 case TK_LE: 3477 case TK_GT: 3478 case TK_GE: 3479 case TK_NE: 3480 case TK_EQ: { 3481 assert( TK_LT==OP_Lt ); 3482 assert( TK_LE==OP_Le ); 3483 assert( TK_GT==OP_Gt ); 3484 assert( TK_GE==OP_Ge ); 3485 assert( TK_EQ==OP_Eq ); 3486 assert( TK_NE==OP_Ne ); 3487 testcase( op==TK_LT ); 3488 testcase( op==TK_LE ); 3489 testcase( op==TK_GT ); 3490 testcase( op==TK_GE ); 3491 testcase( op==TK_EQ ); 3492 testcase( op==TK_NE ); 3493 testcase( jumpIfNull==0 ); 3494 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3495 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3496 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3497 r1, r2, dest, jumpIfNull); 3498 testcase( regFree1==0 ); 3499 testcase( regFree2==0 ); 3500 break; 3501 } 3502 case TK_IS: 3503 case TK_ISNOT: { 3504 testcase( op==TK_IS ); 3505 testcase( op==TK_ISNOT ); 3506 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3507 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3508 op = (op==TK_IS) ? TK_EQ : TK_NE; 3509 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3510 r1, r2, dest, SQLITE_NULLEQ); 3511 testcase( regFree1==0 ); 3512 testcase( regFree2==0 ); 3513 break; 3514 } 3515 case TK_ISNULL: 3516 case TK_NOTNULL: { 3517 assert( TK_ISNULL==OP_IsNull ); 3518 assert( TK_NOTNULL==OP_NotNull ); 3519 testcase( op==TK_ISNULL ); 3520 testcase( op==TK_NOTNULL ); 3521 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3522 sqlite3VdbeAddOp2(v, op, r1, dest); 3523 testcase( regFree1==0 ); 3524 break; 3525 } 3526 case TK_BETWEEN: { 3527 testcase( jumpIfNull==0 ); 3528 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3529 break; 3530 } 3531 #ifndef SQLITE_OMIT_SUBQUERY 3532 case TK_IN: { 3533 int destIfFalse = sqlite3VdbeMakeLabel(v); 3534 int destIfNull = jumpIfNull ? dest : destIfFalse; 3535 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3536 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3537 sqlite3VdbeResolveLabel(v, destIfFalse); 3538 break; 3539 } 3540 #endif 3541 default: { 3542 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3543 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3544 testcase( regFree1==0 ); 3545 testcase( jumpIfNull==0 ); 3546 break; 3547 } 3548 } 3549 sqlite3ReleaseTempReg(pParse, regFree1); 3550 sqlite3ReleaseTempReg(pParse, regFree2); 3551 } 3552 3553 /* 3554 ** Generate code for a boolean expression such that a jump is made 3555 ** to the label "dest" if the expression is false but execution 3556 ** continues straight thru if the expression is true. 3557 ** 3558 ** If the expression evaluates to NULL (neither true nor false) then 3559 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3560 ** is 0. 3561 */ 3562 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3563 Vdbe *v = pParse->pVdbe; 3564 int op = 0; 3565 int regFree1 = 0; 3566 int regFree2 = 0; 3567 int r1, r2; 3568 3569 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3570 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3571 if( pExpr==0 ) return; 3572 3573 /* The value of pExpr->op and op are related as follows: 3574 ** 3575 ** pExpr->op op 3576 ** --------- ---------- 3577 ** TK_ISNULL OP_NotNull 3578 ** TK_NOTNULL OP_IsNull 3579 ** TK_NE OP_Eq 3580 ** TK_EQ OP_Ne 3581 ** TK_GT OP_Le 3582 ** TK_LE OP_Gt 3583 ** TK_GE OP_Lt 3584 ** TK_LT OP_Ge 3585 ** 3586 ** For other values of pExpr->op, op is undefined and unused. 3587 ** The value of TK_ and OP_ constants are arranged such that we 3588 ** can compute the mapping above using the following expression. 3589 ** Assert()s verify that the computation is correct. 3590 */ 3591 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3592 3593 /* Verify correct alignment of TK_ and OP_ constants 3594 */ 3595 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3596 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3597 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3598 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3599 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3600 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3601 assert( pExpr->op!=TK_GT || op==OP_Le ); 3602 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3603 3604 switch( pExpr->op ){ 3605 case TK_AND: { 3606 testcase( jumpIfNull==0 ); 3607 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3608 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3609 break; 3610 } 3611 case TK_OR: { 3612 int d2 = sqlite3VdbeMakeLabel(v); 3613 testcase( jumpIfNull==0 ); 3614 sqlite3ExprCachePush(pParse); 3615 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3616 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3617 sqlite3VdbeResolveLabel(v, d2); 3618 sqlite3ExprCachePop(pParse, 1); 3619 break; 3620 } 3621 case TK_NOT: { 3622 testcase( jumpIfNull==0 ); 3623 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3624 break; 3625 } 3626 case TK_LT: 3627 case TK_LE: 3628 case TK_GT: 3629 case TK_GE: 3630 case TK_NE: 3631 case TK_EQ: { 3632 testcase( op==TK_LT ); 3633 testcase( op==TK_LE ); 3634 testcase( op==TK_GT ); 3635 testcase( op==TK_GE ); 3636 testcase( op==TK_EQ ); 3637 testcase( op==TK_NE ); 3638 testcase( jumpIfNull==0 ); 3639 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3640 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3641 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3642 r1, r2, dest, jumpIfNull); 3643 testcase( regFree1==0 ); 3644 testcase( regFree2==0 ); 3645 break; 3646 } 3647 case TK_IS: 3648 case TK_ISNOT: { 3649 testcase( pExpr->op==TK_IS ); 3650 testcase( pExpr->op==TK_ISNOT ); 3651 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3652 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3653 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3654 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3655 r1, r2, dest, SQLITE_NULLEQ); 3656 testcase( regFree1==0 ); 3657 testcase( regFree2==0 ); 3658 break; 3659 } 3660 case TK_ISNULL: 3661 case TK_NOTNULL: { 3662 testcase( op==TK_ISNULL ); 3663 testcase( op==TK_NOTNULL ); 3664 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3665 sqlite3VdbeAddOp2(v, op, r1, dest); 3666 testcase( regFree1==0 ); 3667 break; 3668 } 3669 case TK_BETWEEN: { 3670 testcase( jumpIfNull==0 ); 3671 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3672 break; 3673 } 3674 #ifndef SQLITE_OMIT_SUBQUERY 3675 case TK_IN: { 3676 if( jumpIfNull ){ 3677 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3678 }else{ 3679 int destIfNull = sqlite3VdbeMakeLabel(v); 3680 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3681 sqlite3VdbeResolveLabel(v, destIfNull); 3682 } 3683 break; 3684 } 3685 #endif 3686 default: { 3687 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3688 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3689 testcase( regFree1==0 ); 3690 testcase( jumpIfNull==0 ); 3691 break; 3692 } 3693 } 3694 sqlite3ReleaseTempReg(pParse, regFree1); 3695 sqlite3ReleaseTempReg(pParse, regFree2); 3696 } 3697 3698 /* 3699 ** Do a deep comparison of two expression trees. Return 0 if the two 3700 ** expressions are completely identical. Return 1 if they differ only 3701 ** by a COLLATE operator at the top level. Return 2 if there are differences 3702 ** other than the top-level COLLATE operator. 3703 ** 3704 ** Sometimes this routine will return 2 even if the two expressions 3705 ** really are equivalent. If we cannot prove that the expressions are 3706 ** identical, we return 2 just to be safe. So if this routine 3707 ** returns 2, then you do not really know for certain if the two 3708 ** expressions are the same. But if you get a 0 or 1 return, then you 3709 ** can be sure the expressions are the same. In the places where 3710 ** this routine is used, it does not hurt to get an extra 2 - that 3711 ** just might result in some slightly slower code. But returning 3712 ** an incorrect 0 or 1 could lead to a malfunction. 3713 */ 3714 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3715 if( pA==0||pB==0 ){ 3716 return pB==pA ? 0 : 2; 3717 } 3718 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3719 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3720 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3721 return 2; 3722 } 3723 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3724 if( pA->op!=pB->op ) return 2; 3725 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3726 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3727 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3728 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3729 if( ExprHasProperty(pA, EP_IntValue) ){ 3730 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3731 return 2; 3732 } 3733 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3734 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3735 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3736 return 2; 3737 } 3738 } 3739 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3740 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3741 return 0; 3742 } 3743 3744 /* 3745 ** Compare two ExprList objects. Return 0 if they are identical and 3746 ** non-zero if they differ in any way. 3747 ** 3748 ** This routine might return non-zero for equivalent ExprLists. The 3749 ** only consequence will be disabled optimizations. But this routine 3750 ** must never return 0 if the two ExprList objects are different, or 3751 ** a malfunction will result. 3752 ** 3753 ** Two NULL pointers are considered to be the same. But a NULL pointer 3754 ** always differs from a non-NULL pointer. 3755 */ 3756 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3757 int i; 3758 if( pA==0 && pB==0 ) return 0; 3759 if( pA==0 || pB==0 ) return 1; 3760 if( pA->nExpr!=pB->nExpr ) return 1; 3761 for(i=0; i<pA->nExpr; i++){ 3762 Expr *pExprA = pA->a[i].pExpr; 3763 Expr *pExprB = pB->a[i].pExpr; 3764 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3765 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3766 } 3767 return 0; 3768 } 3769 3770 /* 3771 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3772 ** the new element. Return a negative number if malloc fails. 3773 */ 3774 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3775 int i; 3776 pInfo->aCol = sqlite3ArrayAllocate( 3777 db, 3778 pInfo->aCol, 3779 sizeof(pInfo->aCol[0]), 3780 &pInfo->nColumn, 3781 &i 3782 ); 3783 return i; 3784 } 3785 3786 /* 3787 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3788 ** the new element. Return a negative number if malloc fails. 3789 */ 3790 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3791 int i; 3792 pInfo->aFunc = sqlite3ArrayAllocate( 3793 db, 3794 pInfo->aFunc, 3795 sizeof(pInfo->aFunc[0]), 3796 &pInfo->nFunc, 3797 &i 3798 ); 3799 return i; 3800 } 3801 3802 /* 3803 ** This is the xExprCallback for a tree walker. It is used to 3804 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3805 ** for additional information. 3806 */ 3807 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3808 int i; 3809 NameContext *pNC = pWalker->u.pNC; 3810 Parse *pParse = pNC->pParse; 3811 SrcList *pSrcList = pNC->pSrcList; 3812 AggInfo *pAggInfo = pNC->pAggInfo; 3813 3814 switch( pExpr->op ){ 3815 case TK_AGG_COLUMN: 3816 case TK_COLUMN: { 3817 testcase( pExpr->op==TK_AGG_COLUMN ); 3818 testcase( pExpr->op==TK_COLUMN ); 3819 /* Check to see if the column is in one of the tables in the FROM 3820 ** clause of the aggregate query */ 3821 if( ALWAYS(pSrcList!=0) ){ 3822 struct SrcList_item *pItem = pSrcList->a; 3823 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3824 struct AggInfo_col *pCol; 3825 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3826 if( pExpr->iTable==pItem->iCursor ){ 3827 /* If we reach this point, it means that pExpr refers to a table 3828 ** that is in the FROM clause of the aggregate query. 3829 ** 3830 ** Make an entry for the column in pAggInfo->aCol[] if there 3831 ** is not an entry there already. 3832 */ 3833 int k; 3834 pCol = pAggInfo->aCol; 3835 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3836 if( pCol->iTable==pExpr->iTable && 3837 pCol->iColumn==pExpr->iColumn ){ 3838 break; 3839 } 3840 } 3841 if( (k>=pAggInfo->nColumn) 3842 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3843 ){ 3844 pCol = &pAggInfo->aCol[k]; 3845 pCol->pTab = pExpr->pTab; 3846 pCol->iTable = pExpr->iTable; 3847 pCol->iColumn = pExpr->iColumn; 3848 pCol->iMem = ++pParse->nMem; 3849 pCol->iSorterColumn = -1; 3850 pCol->pExpr = pExpr; 3851 if( pAggInfo->pGroupBy ){ 3852 int j, n; 3853 ExprList *pGB = pAggInfo->pGroupBy; 3854 struct ExprList_item *pTerm = pGB->a; 3855 n = pGB->nExpr; 3856 for(j=0; j<n; j++, pTerm++){ 3857 Expr *pE = pTerm->pExpr; 3858 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3859 pE->iColumn==pExpr->iColumn ){ 3860 pCol->iSorterColumn = j; 3861 break; 3862 } 3863 } 3864 } 3865 if( pCol->iSorterColumn<0 ){ 3866 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3867 } 3868 } 3869 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3870 ** because it was there before or because we just created it). 3871 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3872 ** pAggInfo->aCol[] entry. 3873 */ 3874 ExprSetIrreducible(pExpr); 3875 pExpr->pAggInfo = pAggInfo; 3876 pExpr->op = TK_AGG_COLUMN; 3877 pExpr->iAgg = (i16)k; 3878 break; 3879 } /* endif pExpr->iTable==pItem->iCursor */ 3880 } /* end loop over pSrcList */ 3881 } 3882 return WRC_Prune; 3883 } 3884 case TK_AGG_FUNCTION: { 3885 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3886 ** to be ignored */ 3887 if( pNC->nDepth==0 ){ 3888 /* Check to see if pExpr is a duplicate of another aggregate 3889 ** function that is already in the pAggInfo structure 3890 */ 3891 struct AggInfo_func *pItem = pAggInfo->aFunc; 3892 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3893 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 3894 break; 3895 } 3896 } 3897 if( i>=pAggInfo->nFunc ){ 3898 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3899 */ 3900 u8 enc = ENC(pParse->db); 3901 i = addAggInfoFunc(pParse->db, pAggInfo); 3902 if( i>=0 ){ 3903 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3904 pItem = &pAggInfo->aFunc[i]; 3905 pItem->pExpr = pExpr; 3906 pItem->iMem = ++pParse->nMem; 3907 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3908 pItem->pFunc = sqlite3FindFunction(pParse->db, 3909 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3910 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3911 if( pExpr->flags & EP_Distinct ){ 3912 pItem->iDistinct = pParse->nTab++; 3913 }else{ 3914 pItem->iDistinct = -1; 3915 } 3916 } 3917 } 3918 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3919 */ 3920 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3921 ExprSetIrreducible(pExpr); 3922 pExpr->iAgg = (i16)i; 3923 pExpr->pAggInfo = pAggInfo; 3924 return WRC_Prune; 3925 } 3926 } 3927 } 3928 return WRC_Continue; 3929 } 3930 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3931 NameContext *pNC = pWalker->u.pNC; 3932 if( pNC->nDepth==0 ){ 3933 pNC->nDepth++; 3934 sqlite3WalkSelect(pWalker, pSelect); 3935 pNC->nDepth--; 3936 return WRC_Prune; 3937 }else{ 3938 return WRC_Continue; 3939 } 3940 } 3941 3942 /* 3943 ** Analyze the given expression looking for aggregate functions and 3944 ** for variables that need to be added to the pParse->aAgg[] array. 3945 ** Make additional entries to the pParse->aAgg[] array as necessary. 3946 ** 3947 ** This routine should only be called after the expression has been 3948 ** analyzed by sqlite3ResolveExprNames(). 3949 */ 3950 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3951 Walker w; 3952 w.xExprCallback = analyzeAggregate; 3953 w.xSelectCallback = analyzeAggregatesInSelect; 3954 w.u.pNC = pNC; 3955 assert( pNC->pSrcList!=0 ); 3956 sqlite3WalkExpr(&w, pExpr); 3957 } 3958 3959 /* 3960 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3961 ** expression list. Return the number of errors. 3962 ** 3963 ** If an error is found, the analysis is cut short. 3964 */ 3965 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3966 struct ExprList_item *pItem; 3967 int i; 3968 if( pList ){ 3969 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3970 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3971 } 3972 } 3973 } 3974 3975 /* 3976 ** Allocate a single new register for use to hold some intermediate result. 3977 */ 3978 int sqlite3GetTempReg(Parse *pParse){ 3979 if( pParse->nTempReg==0 ){ 3980 return ++pParse->nMem; 3981 } 3982 return pParse->aTempReg[--pParse->nTempReg]; 3983 } 3984 3985 /* 3986 ** Deallocate a register, making available for reuse for some other 3987 ** purpose. 3988 ** 3989 ** If a register is currently being used by the column cache, then 3990 ** the dallocation is deferred until the column cache line that uses 3991 ** the register becomes stale. 3992 */ 3993 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3994 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3995 int i; 3996 struct yColCache *p; 3997 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3998 if( p->iReg==iReg ){ 3999 p->tempReg = 1; 4000 return; 4001 } 4002 } 4003 pParse->aTempReg[pParse->nTempReg++] = iReg; 4004 } 4005 } 4006 4007 /* 4008 ** Allocate or deallocate a block of nReg consecutive registers 4009 */ 4010 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4011 int i, n; 4012 i = pParse->iRangeReg; 4013 n = pParse->nRangeReg; 4014 if( nReg<=n ){ 4015 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4016 pParse->iRangeReg += nReg; 4017 pParse->nRangeReg -= nReg; 4018 }else{ 4019 i = pParse->nMem+1; 4020 pParse->nMem += nReg; 4021 } 4022 return i; 4023 } 4024 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4025 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4026 if( nReg>pParse->nRangeReg ){ 4027 pParse->nRangeReg = nReg; 4028 pParse->iRangeReg = iReg; 4029 } 4030 } 4031 4032 /* 4033 ** Mark all temporary registers as being unavailable for reuse. 4034 */ 4035 void sqlite3ClearTempRegCache(Parse *pParse){ 4036 pParse->nTempReg = 0; 4037 pParse->nRangeReg = 0; 4038 } 4039