1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** The collating sequence might be determined by a COLLATE operator 128 ** or by the presence of a column with a defined collating sequence. 129 ** COLLATE operators take first precedence. Left operands take 130 ** precedence over right operands. 131 */ 132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 133 sqlite3 *db = pParse->db; 134 CollSeq *pColl = 0; 135 Expr *p = pExpr; 136 while( p ){ 137 int op = p->op; 138 if( p->flags & EP_Generic ) break; 139 if( op==TK_CAST || op==TK_UPLUS ){ 140 p = p->pLeft; 141 continue; 142 } 143 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 144 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 145 break; 146 } 147 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 148 || op==TK_REGISTER || op==TK_TRIGGER) 149 && p->pTab!=0 150 ){ 151 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 152 ** a TK_COLUMN but was previously evaluated and cached in a register */ 153 int j = p->iColumn; 154 if( j>=0 ){ 155 const char *zColl = p->pTab->aCol[j].zColl; 156 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 157 } 158 break; 159 } 160 if( p->flags & EP_Collate ){ 161 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 162 p = p->pLeft; 163 }else{ 164 Expr *pNext = p->pRight; 165 /* The Expr.x union is never used at the same time as Expr.pRight */ 166 assert( p->x.pList==0 || p->pRight==0 ); 167 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 168 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 169 ** least one EP_Collate. Thus the following two ALWAYS. */ 170 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 171 int i; 172 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 173 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 174 pNext = p->x.pList->a[i].pExpr; 175 break; 176 } 177 } 178 } 179 p = pNext; 180 } 181 }else{ 182 break; 183 } 184 } 185 if( sqlite3CheckCollSeq(pParse, pColl) ){ 186 pColl = 0; 187 } 188 return pColl; 189 } 190 191 /* 192 ** pExpr is an operand of a comparison operator. aff2 is the 193 ** type affinity of the other operand. This routine returns the 194 ** type affinity that should be used for the comparison operator. 195 */ 196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 197 char aff1 = sqlite3ExprAffinity(pExpr); 198 if( aff1 && aff2 ){ 199 /* Both sides of the comparison are columns. If one has numeric 200 ** affinity, use that. Otherwise use no affinity. 201 */ 202 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 203 return SQLITE_AFF_NUMERIC; 204 }else{ 205 return SQLITE_AFF_BLOB; 206 } 207 }else if( !aff1 && !aff2 ){ 208 /* Neither side of the comparison is a column. Compare the 209 ** results directly. 210 */ 211 return SQLITE_AFF_BLOB; 212 }else{ 213 /* One side is a column, the other is not. Use the columns affinity. */ 214 assert( aff1==0 || aff2==0 ); 215 return (aff1 + aff2); 216 } 217 } 218 219 /* 220 ** pExpr is a comparison operator. Return the type affinity that should 221 ** be applied to both operands prior to doing the comparison. 222 */ 223 static char comparisonAffinity(Expr *pExpr){ 224 char aff; 225 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 226 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 227 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 228 assert( pExpr->pLeft ); 229 aff = sqlite3ExprAffinity(pExpr->pLeft); 230 if( pExpr->pRight ){ 231 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 232 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 233 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 234 }else if( aff==0 ){ 235 aff = SQLITE_AFF_BLOB; 236 } 237 return aff; 238 } 239 240 /* 241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 242 ** idx_affinity is the affinity of an indexed column. Return true 243 ** if the index with affinity idx_affinity may be used to implement 244 ** the comparison in pExpr. 245 */ 246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 247 char aff = comparisonAffinity(pExpr); 248 switch( aff ){ 249 case SQLITE_AFF_BLOB: 250 return 1; 251 case SQLITE_AFF_TEXT: 252 return idx_affinity==SQLITE_AFF_TEXT; 253 default: 254 return sqlite3IsNumericAffinity(idx_affinity); 255 } 256 } 257 258 /* 259 ** Return the P5 value that should be used for a binary comparison 260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 261 */ 262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 263 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 264 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 265 return aff; 266 } 267 268 /* 269 ** Return a pointer to the collation sequence that should be used by 270 ** a binary comparison operator comparing pLeft and pRight. 271 ** 272 ** If the left hand expression has a collating sequence type, then it is 273 ** used. Otherwise the collation sequence for the right hand expression 274 ** is used, or the default (BINARY) if neither expression has a collating 275 ** type. 276 ** 277 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 278 ** it is not considered. 279 */ 280 CollSeq *sqlite3BinaryCompareCollSeq( 281 Parse *pParse, 282 Expr *pLeft, 283 Expr *pRight 284 ){ 285 CollSeq *pColl; 286 assert( pLeft ); 287 if( pLeft->flags & EP_Collate ){ 288 pColl = sqlite3ExprCollSeq(pParse, pLeft); 289 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 290 pColl = sqlite3ExprCollSeq(pParse, pRight); 291 }else{ 292 pColl = sqlite3ExprCollSeq(pParse, pLeft); 293 if( !pColl ){ 294 pColl = sqlite3ExprCollSeq(pParse, pRight); 295 } 296 } 297 return pColl; 298 } 299 300 /* 301 ** Generate code for a comparison operator. 302 */ 303 static int codeCompare( 304 Parse *pParse, /* The parsing (and code generating) context */ 305 Expr *pLeft, /* The left operand */ 306 Expr *pRight, /* The right operand */ 307 int opcode, /* The comparison opcode */ 308 int in1, int in2, /* Register holding operands */ 309 int dest, /* Jump here if true. */ 310 int jumpIfNull /* If true, jump if either operand is NULL */ 311 ){ 312 int p5; 313 int addr; 314 CollSeq *p4; 315 316 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 317 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 318 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 319 (void*)p4, P4_COLLSEQ); 320 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 321 return addr; 322 } 323 324 /* 325 ** Return true if expression pExpr is a vector, or false otherwise. 326 ** 327 ** A vector is defined as any expression that results in two or more 328 ** columns of result. Every TK_VECTOR node is an vector because the 329 ** parser will not generate a TK_VECTOR with fewer than two entries. 330 ** But a TK_SELECT might be either a vector or a scalar. It is only 331 ** considered a vector if it has two or more result columns. 332 */ 333 int sqlite3ExprIsVector(Expr *pExpr){ 334 return sqlite3ExprVectorSize(pExpr)>1; 335 } 336 337 /* 338 ** If the expression passed as the only argument is of type TK_VECTOR 339 ** return the number of expressions in the vector. Or, if the expression 340 ** is a sub-select, return the number of columns in the sub-select. For 341 ** any other type of expression, return 1. 342 */ 343 int sqlite3ExprVectorSize(Expr *pExpr){ 344 u8 op = pExpr->op; 345 if( op==TK_REGISTER ) op = pExpr->op2; 346 if( op==TK_VECTOR ){ 347 return pExpr->x.pList->nExpr; 348 }else if( op==TK_SELECT ){ 349 return pExpr->x.pSelect->pEList->nExpr; 350 }else{ 351 return 1; 352 } 353 } 354 355 /* 356 ** Return a pointer to a subexpression of pVector that is the i-th 357 ** column of the vector (numbered starting with 0). The caller must 358 ** ensure that i is within range. 359 ** 360 ** If pVector is really a scalar (and "scalar" here includes subqueries 361 ** that return a single column!) then return pVector unmodified. 362 ** 363 ** pVector retains ownership of the returned subexpression. 364 ** 365 ** If the vector is a (SELECT ...) then the expression returned is 366 ** just the expression for the i-th term of the result set, and may 367 ** not be ready for evaluation because the table cursor has not yet 368 ** been positioned. 369 */ 370 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 371 assert( i<sqlite3ExprVectorSize(pVector) ); 372 if( sqlite3ExprIsVector(pVector) ){ 373 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 374 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 375 return pVector->x.pSelect->pEList->a[i].pExpr; 376 }else{ 377 return pVector->x.pList->a[i].pExpr; 378 } 379 } 380 return pVector; 381 } 382 383 /* 384 ** Compute and return a new Expr object which when passed to 385 ** sqlite3ExprCode() will generate all necessary code to compute 386 ** the iField-th column of the vector expression pVector. 387 ** 388 ** It is ok for pVector to be a scalar (as long as iField==0). 389 ** In that case, this routine works like sqlite3ExprDup(). 390 ** 391 ** The caller owns the returned Expr object and is responsible for 392 ** ensuring that the returned value eventually gets freed. 393 ** 394 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 395 ** then the returned object will reference pVector and so pVector must remain 396 ** valid for the life of the returned object. If pVector is a TK_VECTOR 397 ** or a scalar expression, then it can be deleted as soon as this routine 398 ** returns. 399 ** 400 ** A trick to cause a TK_SELECT pVector to be deleted together with 401 ** the returned Expr object is to attach the pVector to the pRight field 402 ** of the returned TK_SELECT_COLUMN Expr object. 403 */ 404 Expr *sqlite3ExprForVectorField( 405 Parse *pParse, /* Parsing context */ 406 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 407 int iField /* Which column of the vector to return */ 408 ){ 409 Expr *pRet; 410 if( pVector->op==TK_SELECT ){ 411 assert( pVector->flags & EP_xIsSelect ); 412 /* The TK_SELECT_COLUMN Expr node: 413 ** 414 ** pLeft: pVector containing TK_SELECT. Not deleted. 415 ** pRight: not used. But recursively deleted. 416 ** iColumn: Index of a column in pVector 417 ** iTable: 0 or the number of columns on the LHS of an assignment 418 ** pLeft->iTable: First in an array of register holding result, or 0 419 ** if the result is not yet computed. 420 ** 421 ** sqlite3ExprDelete() specifically skips the recursive delete of 422 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 423 ** can be attached to pRight to cause this node to take ownership of 424 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 425 ** with the same pLeft pointer to the pVector, but only one of them 426 ** will own the pVector. 427 */ 428 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 429 if( pRet ){ 430 pRet->iColumn = iField; 431 pRet->pLeft = pVector; 432 } 433 assert( pRet==0 || pRet->iTable==0 ); 434 }else{ 435 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 436 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 437 } 438 return pRet; 439 } 440 441 /* 442 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 443 ** it. Return the register in which the result is stored (or, if the 444 ** sub-select returns more than one column, the first in an array 445 ** of registers in which the result is stored). 446 ** 447 ** If pExpr is not a TK_SELECT expression, return 0. 448 */ 449 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 450 int reg = 0; 451 #ifndef SQLITE_OMIT_SUBQUERY 452 if( pExpr->op==TK_SELECT ){ 453 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 454 } 455 #endif 456 return reg; 457 } 458 459 /* 460 ** Argument pVector points to a vector expression - either a TK_VECTOR 461 ** or TK_SELECT that returns more than one column. This function returns 462 ** the register number of a register that contains the value of 463 ** element iField of the vector. 464 ** 465 ** If pVector is a TK_SELECT expression, then code for it must have 466 ** already been generated using the exprCodeSubselect() routine. In this 467 ** case parameter regSelect should be the first in an array of registers 468 ** containing the results of the sub-select. 469 ** 470 ** If pVector is of type TK_VECTOR, then code for the requested field 471 ** is generated. In this case (*pRegFree) may be set to the number of 472 ** a temporary register to be freed by the caller before returning. 473 ** 474 ** Before returning, output parameter (*ppExpr) is set to point to the 475 ** Expr object corresponding to element iElem of the vector. 476 */ 477 static int exprVectorRegister( 478 Parse *pParse, /* Parse context */ 479 Expr *pVector, /* Vector to extract element from */ 480 int iField, /* Field to extract from pVector */ 481 int regSelect, /* First in array of registers */ 482 Expr **ppExpr, /* OUT: Expression element */ 483 int *pRegFree /* OUT: Temp register to free */ 484 ){ 485 u8 op = pVector->op; 486 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 487 if( op==TK_REGISTER ){ 488 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 489 return pVector->iTable+iField; 490 } 491 if( op==TK_SELECT ){ 492 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 493 return regSelect+iField; 494 } 495 *ppExpr = pVector->x.pList->a[iField].pExpr; 496 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 497 } 498 499 /* 500 ** Expression pExpr is a comparison between two vector values. Compute 501 ** the result of the comparison (1, 0, or NULL) and write that 502 ** result into register dest. 503 ** 504 ** The caller must satisfy the following preconditions: 505 ** 506 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 507 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 508 ** otherwise: op==pExpr->op and p5==0 509 */ 510 static void codeVectorCompare( 511 Parse *pParse, /* Code generator context */ 512 Expr *pExpr, /* The comparison operation */ 513 int dest, /* Write results into this register */ 514 u8 op, /* Comparison operator */ 515 u8 p5 /* SQLITE_NULLEQ or zero */ 516 ){ 517 Vdbe *v = pParse->pVdbe; 518 Expr *pLeft = pExpr->pLeft; 519 Expr *pRight = pExpr->pRight; 520 int nLeft = sqlite3ExprVectorSize(pLeft); 521 int i; 522 int regLeft = 0; 523 int regRight = 0; 524 u8 opx = op; 525 int addrDone = sqlite3VdbeMakeLabel(v); 526 527 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 528 sqlite3ErrorMsg(pParse, "row value misused"); 529 return; 530 } 531 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 532 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 533 || pExpr->op==TK_LT || pExpr->op==TK_GT 534 || pExpr->op==TK_LE || pExpr->op==TK_GE 535 ); 536 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 537 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 538 assert( p5==0 || pExpr->op!=op ); 539 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 540 541 p5 |= SQLITE_STOREP2; 542 if( opx==TK_LE ) opx = TK_LT; 543 if( opx==TK_GE ) opx = TK_GT; 544 545 regLeft = exprCodeSubselect(pParse, pLeft); 546 regRight = exprCodeSubselect(pParse, pRight); 547 548 for(i=0; 1 /*Loop exits by "break"*/; i++){ 549 int regFree1 = 0, regFree2 = 0; 550 Expr *pL, *pR; 551 int r1, r2; 552 assert( i>=0 && i<nLeft ); 553 if( i>0 ) sqlite3ExprCachePush(pParse); 554 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 555 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 556 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 557 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 558 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 559 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 560 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 561 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 562 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 563 sqlite3ReleaseTempReg(pParse, regFree1); 564 sqlite3ReleaseTempReg(pParse, regFree2); 565 if( i>0 ) sqlite3ExprCachePop(pParse); 566 if( i==nLeft-1 ){ 567 break; 568 } 569 if( opx==TK_EQ ){ 570 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 571 p5 |= SQLITE_KEEPNULL; 572 }else if( opx==TK_NE ){ 573 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 574 p5 |= SQLITE_KEEPNULL; 575 }else{ 576 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 577 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 578 VdbeCoverageIf(v, op==TK_LT); 579 VdbeCoverageIf(v, op==TK_GT); 580 VdbeCoverageIf(v, op==TK_LE); 581 VdbeCoverageIf(v, op==TK_GE); 582 if( i==nLeft-2 ) opx = op; 583 } 584 } 585 sqlite3VdbeResolveLabel(v, addrDone); 586 } 587 588 #if SQLITE_MAX_EXPR_DEPTH>0 589 /* 590 ** Check that argument nHeight is less than or equal to the maximum 591 ** expression depth allowed. If it is not, leave an error message in 592 ** pParse. 593 */ 594 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 595 int rc = SQLITE_OK; 596 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 597 if( nHeight>mxHeight ){ 598 sqlite3ErrorMsg(pParse, 599 "Expression tree is too large (maximum depth %d)", mxHeight 600 ); 601 rc = SQLITE_ERROR; 602 } 603 return rc; 604 } 605 606 /* The following three functions, heightOfExpr(), heightOfExprList() 607 ** and heightOfSelect(), are used to determine the maximum height 608 ** of any expression tree referenced by the structure passed as the 609 ** first argument. 610 ** 611 ** If this maximum height is greater than the current value pointed 612 ** to by pnHeight, the second parameter, then set *pnHeight to that 613 ** value. 614 */ 615 static void heightOfExpr(Expr *p, int *pnHeight){ 616 if( p ){ 617 if( p->nHeight>*pnHeight ){ 618 *pnHeight = p->nHeight; 619 } 620 } 621 } 622 static void heightOfExprList(ExprList *p, int *pnHeight){ 623 if( p ){ 624 int i; 625 for(i=0; i<p->nExpr; i++){ 626 heightOfExpr(p->a[i].pExpr, pnHeight); 627 } 628 } 629 } 630 static void heightOfSelect(Select *p, int *pnHeight){ 631 if( p ){ 632 heightOfExpr(p->pWhere, pnHeight); 633 heightOfExpr(p->pHaving, pnHeight); 634 heightOfExpr(p->pLimit, pnHeight); 635 heightOfExpr(p->pOffset, pnHeight); 636 heightOfExprList(p->pEList, pnHeight); 637 heightOfExprList(p->pGroupBy, pnHeight); 638 heightOfExprList(p->pOrderBy, pnHeight); 639 heightOfSelect(p->pPrior, pnHeight); 640 } 641 } 642 643 /* 644 ** Set the Expr.nHeight variable in the structure passed as an 645 ** argument. An expression with no children, Expr.pList or 646 ** Expr.pSelect member has a height of 1. Any other expression 647 ** has a height equal to the maximum height of any other 648 ** referenced Expr plus one. 649 ** 650 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 651 ** if appropriate. 652 */ 653 static void exprSetHeight(Expr *p){ 654 int nHeight = 0; 655 heightOfExpr(p->pLeft, &nHeight); 656 heightOfExpr(p->pRight, &nHeight); 657 if( ExprHasProperty(p, EP_xIsSelect) ){ 658 heightOfSelect(p->x.pSelect, &nHeight); 659 }else if( p->x.pList ){ 660 heightOfExprList(p->x.pList, &nHeight); 661 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 662 } 663 p->nHeight = nHeight + 1; 664 } 665 666 /* 667 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 668 ** the height is greater than the maximum allowed expression depth, 669 ** leave an error in pParse. 670 ** 671 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 672 ** Expr.flags. 673 */ 674 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 675 if( pParse->nErr ) return; 676 exprSetHeight(p); 677 sqlite3ExprCheckHeight(pParse, p->nHeight); 678 } 679 680 /* 681 ** Return the maximum height of any expression tree referenced 682 ** by the select statement passed as an argument. 683 */ 684 int sqlite3SelectExprHeight(Select *p){ 685 int nHeight = 0; 686 heightOfSelect(p, &nHeight); 687 return nHeight; 688 } 689 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 690 /* 691 ** Propagate all EP_Propagate flags from the Expr.x.pList into 692 ** Expr.flags. 693 */ 694 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 695 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 696 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 697 } 698 } 699 #define exprSetHeight(y) 700 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 701 702 /* 703 ** This routine is the core allocator for Expr nodes. 704 ** 705 ** Construct a new expression node and return a pointer to it. Memory 706 ** for this node and for the pToken argument is a single allocation 707 ** obtained from sqlite3DbMalloc(). The calling function 708 ** is responsible for making sure the node eventually gets freed. 709 ** 710 ** If dequote is true, then the token (if it exists) is dequoted. 711 ** If dequote is false, no dequoting is performed. The deQuote 712 ** parameter is ignored if pToken is NULL or if the token does not 713 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 714 ** then the EP_DblQuoted flag is set on the expression node. 715 ** 716 ** Special case: If op==TK_INTEGER and pToken points to a string that 717 ** can be translated into a 32-bit integer, then the token is not 718 ** stored in u.zToken. Instead, the integer values is written 719 ** into u.iValue and the EP_IntValue flag is set. No extra storage 720 ** is allocated to hold the integer text and the dequote flag is ignored. 721 */ 722 Expr *sqlite3ExprAlloc( 723 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 724 int op, /* Expression opcode */ 725 const Token *pToken, /* Token argument. Might be NULL */ 726 int dequote /* True to dequote */ 727 ){ 728 Expr *pNew; 729 int nExtra = 0; 730 int iValue = 0; 731 732 assert( db!=0 ); 733 if( pToken ){ 734 if( op!=TK_INTEGER || pToken->z==0 735 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 736 nExtra = pToken->n+1; 737 assert( iValue>=0 ); 738 } 739 } 740 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 741 if( pNew ){ 742 memset(pNew, 0, sizeof(Expr)); 743 pNew->op = (u8)op; 744 pNew->iAgg = -1; 745 if( pToken ){ 746 if( nExtra==0 ){ 747 pNew->flags |= EP_IntValue|EP_Leaf; 748 pNew->u.iValue = iValue; 749 }else{ 750 pNew->u.zToken = (char*)&pNew[1]; 751 assert( pToken->z!=0 || pToken->n==0 ); 752 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 753 pNew->u.zToken[pToken->n] = 0; 754 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 755 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 756 sqlite3Dequote(pNew->u.zToken); 757 } 758 } 759 } 760 #if SQLITE_MAX_EXPR_DEPTH>0 761 pNew->nHeight = 1; 762 #endif 763 } 764 return pNew; 765 } 766 767 /* 768 ** Allocate a new expression node from a zero-terminated token that has 769 ** already been dequoted. 770 */ 771 Expr *sqlite3Expr( 772 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 773 int op, /* Expression opcode */ 774 const char *zToken /* Token argument. Might be NULL */ 775 ){ 776 Token x; 777 x.z = zToken; 778 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 779 return sqlite3ExprAlloc(db, op, &x, 0); 780 } 781 782 /* 783 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 784 ** 785 ** If pRoot==NULL that means that a memory allocation error has occurred. 786 ** In that case, delete the subtrees pLeft and pRight. 787 */ 788 void sqlite3ExprAttachSubtrees( 789 sqlite3 *db, 790 Expr *pRoot, 791 Expr *pLeft, 792 Expr *pRight 793 ){ 794 if( pRoot==0 ){ 795 assert( db->mallocFailed ); 796 sqlite3ExprDelete(db, pLeft); 797 sqlite3ExprDelete(db, pRight); 798 }else{ 799 if( pRight ){ 800 pRoot->pRight = pRight; 801 pRoot->flags |= EP_Propagate & pRight->flags; 802 } 803 if( pLeft ){ 804 pRoot->pLeft = pLeft; 805 pRoot->flags |= EP_Propagate & pLeft->flags; 806 } 807 exprSetHeight(pRoot); 808 } 809 } 810 811 /* 812 ** Allocate an Expr node which joins as many as two subtrees. 813 ** 814 ** One or both of the subtrees can be NULL. Return a pointer to the new 815 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 816 ** free the subtrees and return NULL. 817 */ 818 Expr *sqlite3PExpr( 819 Parse *pParse, /* Parsing context */ 820 int op, /* Expression opcode */ 821 Expr *pLeft, /* Left operand */ 822 Expr *pRight /* Right operand */ 823 ){ 824 Expr *p; 825 if( op==TK_AND && pParse->nErr==0 ){ 826 /* Take advantage of short-circuit false optimization for AND */ 827 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 828 }else{ 829 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 830 if( p ){ 831 memset(p, 0, sizeof(Expr)); 832 p->op = op & TKFLG_MASK; 833 p->iAgg = -1; 834 } 835 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 836 } 837 if( p ) { 838 sqlite3ExprCheckHeight(pParse, p->nHeight); 839 } 840 return p; 841 } 842 843 /* 844 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 845 ** do a memory allocation failure) then delete the pSelect object. 846 */ 847 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 848 if( pExpr ){ 849 pExpr->x.pSelect = pSelect; 850 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 851 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 852 }else{ 853 assert( pParse->db->mallocFailed ); 854 sqlite3SelectDelete(pParse->db, pSelect); 855 } 856 } 857 858 859 /* 860 ** If the expression is always either TRUE or FALSE (respectively), 861 ** then return 1. If one cannot determine the truth value of the 862 ** expression at compile-time return 0. 863 ** 864 ** This is an optimization. If is OK to return 0 here even if 865 ** the expression really is always false or false (a false negative). 866 ** But it is a bug to return 1 if the expression might have different 867 ** boolean values in different circumstances (a false positive.) 868 ** 869 ** Note that if the expression is part of conditional for a 870 ** LEFT JOIN, then we cannot determine at compile-time whether or not 871 ** is it true or false, so always return 0. 872 */ 873 static int exprAlwaysTrue(Expr *p){ 874 int v = 0; 875 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 876 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 877 return v!=0; 878 } 879 static int exprAlwaysFalse(Expr *p){ 880 int v = 0; 881 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 882 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 883 return v==0; 884 } 885 886 /* 887 ** Join two expressions using an AND operator. If either expression is 888 ** NULL, then just return the other expression. 889 ** 890 ** If one side or the other of the AND is known to be false, then instead 891 ** of returning an AND expression, just return a constant expression with 892 ** a value of false. 893 */ 894 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 895 if( pLeft==0 ){ 896 return pRight; 897 }else if( pRight==0 ){ 898 return pLeft; 899 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 900 sqlite3ExprDelete(db, pLeft); 901 sqlite3ExprDelete(db, pRight); 902 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 903 }else{ 904 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 905 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 906 return pNew; 907 } 908 } 909 910 /* 911 ** Construct a new expression node for a function with multiple 912 ** arguments. 913 */ 914 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 915 Expr *pNew; 916 sqlite3 *db = pParse->db; 917 assert( pToken ); 918 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 919 if( pNew==0 ){ 920 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 921 return 0; 922 } 923 pNew->x.pList = pList; 924 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 925 sqlite3ExprSetHeightAndFlags(pParse, pNew); 926 return pNew; 927 } 928 929 /* 930 ** Assign a variable number to an expression that encodes a wildcard 931 ** in the original SQL statement. 932 ** 933 ** Wildcards consisting of a single "?" are assigned the next sequential 934 ** variable number. 935 ** 936 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 937 ** sure "nnn" is not too big to avoid a denial of service attack when 938 ** the SQL statement comes from an external source. 939 ** 940 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 941 ** as the previous instance of the same wildcard. Or if this is the first 942 ** instance of the wildcard, the next sequential variable number is 943 ** assigned. 944 */ 945 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 946 sqlite3 *db = pParse->db; 947 const char *z; 948 ynVar x; 949 950 if( pExpr==0 ) return; 951 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 952 z = pExpr->u.zToken; 953 assert( z!=0 ); 954 assert( z[0]!=0 ); 955 assert( n==(u32)sqlite3Strlen30(z) ); 956 if( z[1]==0 ){ 957 /* Wildcard of the form "?". Assign the next variable number */ 958 assert( z[0]=='?' ); 959 x = (ynVar)(++pParse->nVar); 960 }else{ 961 int doAdd = 0; 962 if( z[0]=='?' ){ 963 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 964 ** use it as the variable number */ 965 i64 i; 966 int bOk; 967 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 968 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 969 bOk = 1; 970 }else{ 971 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 972 } 973 testcase( i==0 ); 974 testcase( i==1 ); 975 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 976 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 977 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 978 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 979 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 980 return; 981 } 982 x = (ynVar)i; 983 if( x>pParse->nVar ){ 984 pParse->nVar = (int)x; 985 doAdd = 1; 986 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 987 doAdd = 1; 988 } 989 }else{ 990 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 991 ** number as the prior appearance of the same name, or if the name 992 ** has never appeared before, reuse the same variable number 993 */ 994 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 995 if( x==0 ){ 996 x = (ynVar)(++pParse->nVar); 997 doAdd = 1; 998 } 999 } 1000 if( doAdd ){ 1001 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1002 } 1003 } 1004 pExpr->iColumn = x; 1005 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1006 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1007 } 1008 } 1009 1010 /* 1011 ** Recursively delete an expression tree. 1012 */ 1013 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1014 assert( p!=0 ); 1015 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1016 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1017 #ifdef SQLITE_DEBUG 1018 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1019 assert( p->pLeft==0 ); 1020 assert( p->pRight==0 ); 1021 assert( p->x.pSelect==0 ); 1022 } 1023 #endif 1024 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1025 /* The Expr.x union is never used at the same time as Expr.pRight */ 1026 assert( p->x.pList==0 || p->pRight==0 ); 1027 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1028 if( p->pRight ){ 1029 sqlite3ExprDeleteNN(db, p->pRight); 1030 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1031 sqlite3SelectDelete(db, p->x.pSelect); 1032 }else{ 1033 sqlite3ExprListDelete(db, p->x.pList); 1034 } 1035 } 1036 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1037 if( !ExprHasProperty(p, EP_Static) ){ 1038 sqlite3DbFreeNN(db, p); 1039 } 1040 } 1041 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1042 if( p ) sqlite3ExprDeleteNN(db, p); 1043 } 1044 1045 /* 1046 ** Return the number of bytes allocated for the expression structure 1047 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1048 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1049 */ 1050 static int exprStructSize(Expr *p){ 1051 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1052 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1053 return EXPR_FULLSIZE; 1054 } 1055 1056 /* 1057 ** The dupedExpr*Size() routines each return the number of bytes required 1058 ** to store a copy of an expression or expression tree. They differ in 1059 ** how much of the tree is measured. 1060 ** 1061 ** dupedExprStructSize() Size of only the Expr structure 1062 ** dupedExprNodeSize() Size of Expr + space for token 1063 ** dupedExprSize() Expr + token + subtree components 1064 ** 1065 *************************************************************************** 1066 ** 1067 ** The dupedExprStructSize() function returns two values OR-ed together: 1068 ** (1) the space required for a copy of the Expr structure only and 1069 ** (2) the EP_xxx flags that indicate what the structure size should be. 1070 ** The return values is always one of: 1071 ** 1072 ** EXPR_FULLSIZE 1073 ** EXPR_REDUCEDSIZE | EP_Reduced 1074 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1075 ** 1076 ** The size of the structure can be found by masking the return value 1077 ** of this routine with 0xfff. The flags can be found by masking the 1078 ** return value with EP_Reduced|EP_TokenOnly. 1079 ** 1080 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1081 ** (unreduced) Expr objects as they or originally constructed by the parser. 1082 ** During expression analysis, extra information is computed and moved into 1083 ** later parts of teh Expr object and that extra information might get chopped 1084 ** off if the expression is reduced. Note also that it does not work to 1085 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1086 ** to reduce a pristine expression tree from the parser. The implementation 1087 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1088 ** to enforce this constraint. 1089 */ 1090 static int dupedExprStructSize(Expr *p, int flags){ 1091 int nSize; 1092 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1093 assert( EXPR_FULLSIZE<=0xfff ); 1094 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1095 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1096 nSize = EXPR_FULLSIZE; 1097 }else{ 1098 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1099 assert( !ExprHasProperty(p, EP_FromJoin) ); 1100 assert( !ExprHasProperty(p, EP_MemToken) ); 1101 assert( !ExprHasProperty(p, EP_NoReduce) ); 1102 if( p->pLeft || p->x.pList ){ 1103 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1104 }else{ 1105 assert( p->pRight==0 ); 1106 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1107 } 1108 } 1109 return nSize; 1110 } 1111 1112 /* 1113 ** This function returns the space in bytes required to store the copy 1114 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1115 ** string is defined.) 1116 */ 1117 static int dupedExprNodeSize(Expr *p, int flags){ 1118 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1119 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1120 nByte += sqlite3Strlen30(p->u.zToken)+1; 1121 } 1122 return ROUND8(nByte); 1123 } 1124 1125 /* 1126 ** Return the number of bytes required to create a duplicate of the 1127 ** expression passed as the first argument. The second argument is a 1128 ** mask containing EXPRDUP_XXX flags. 1129 ** 1130 ** The value returned includes space to create a copy of the Expr struct 1131 ** itself and the buffer referred to by Expr.u.zToken, if any. 1132 ** 1133 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1134 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1135 ** and Expr.pRight variables (but not for any structures pointed to or 1136 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1137 */ 1138 static int dupedExprSize(Expr *p, int flags){ 1139 int nByte = 0; 1140 if( p ){ 1141 nByte = dupedExprNodeSize(p, flags); 1142 if( flags&EXPRDUP_REDUCE ){ 1143 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1144 } 1145 } 1146 return nByte; 1147 } 1148 1149 /* 1150 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1151 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1152 ** to store the copy of expression p, the copies of p->u.zToken 1153 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1154 ** if any. Before returning, *pzBuffer is set to the first byte past the 1155 ** portion of the buffer copied into by this function. 1156 */ 1157 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1158 Expr *pNew; /* Value to return */ 1159 u8 *zAlloc; /* Memory space from which to build Expr object */ 1160 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1161 1162 assert( db!=0 ); 1163 assert( p ); 1164 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1165 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1166 1167 /* Figure out where to write the new Expr structure. */ 1168 if( pzBuffer ){ 1169 zAlloc = *pzBuffer; 1170 staticFlag = EP_Static; 1171 }else{ 1172 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1173 staticFlag = 0; 1174 } 1175 pNew = (Expr *)zAlloc; 1176 1177 if( pNew ){ 1178 /* Set nNewSize to the size allocated for the structure pointed to 1179 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1180 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1181 ** by the copy of the p->u.zToken string (if any). 1182 */ 1183 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1184 const int nNewSize = nStructSize & 0xfff; 1185 int nToken; 1186 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1187 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1188 }else{ 1189 nToken = 0; 1190 } 1191 if( dupFlags ){ 1192 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1193 memcpy(zAlloc, p, nNewSize); 1194 }else{ 1195 u32 nSize = (u32)exprStructSize(p); 1196 memcpy(zAlloc, p, nSize); 1197 if( nSize<EXPR_FULLSIZE ){ 1198 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1199 } 1200 } 1201 1202 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1203 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1204 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1205 pNew->flags |= staticFlag; 1206 1207 /* Copy the p->u.zToken string, if any. */ 1208 if( nToken ){ 1209 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1210 memcpy(zToken, p->u.zToken, nToken); 1211 } 1212 1213 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1214 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1215 if( ExprHasProperty(p, EP_xIsSelect) ){ 1216 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1217 }else{ 1218 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1219 } 1220 } 1221 1222 /* Fill in pNew->pLeft and pNew->pRight. */ 1223 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1224 zAlloc += dupedExprNodeSize(p, dupFlags); 1225 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1226 pNew->pLeft = p->pLeft ? 1227 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1228 pNew->pRight = p->pRight ? 1229 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1230 } 1231 if( pzBuffer ){ 1232 *pzBuffer = zAlloc; 1233 } 1234 }else{ 1235 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1236 if( pNew->op==TK_SELECT_COLUMN ){ 1237 pNew->pLeft = p->pLeft; 1238 assert( p->iColumn==0 || p->pRight==0 ); 1239 assert( p->pRight==0 || p->pRight==p->pLeft ); 1240 }else{ 1241 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1242 } 1243 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1244 } 1245 } 1246 } 1247 return pNew; 1248 } 1249 1250 /* 1251 ** Create and return a deep copy of the object passed as the second 1252 ** argument. If an OOM condition is encountered, NULL is returned 1253 ** and the db->mallocFailed flag set. 1254 */ 1255 #ifndef SQLITE_OMIT_CTE 1256 static With *withDup(sqlite3 *db, With *p){ 1257 With *pRet = 0; 1258 if( p ){ 1259 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1260 pRet = sqlite3DbMallocZero(db, nByte); 1261 if( pRet ){ 1262 int i; 1263 pRet->nCte = p->nCte; 1264 for(i=0; i<p->nCte; i++){ 1265 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1266 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1267 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1268 } 1269 } 1270 } 1271 return pRet; 1272 } 1273 #else 1274 # define withDup(x,y) 0 1275 #endif 1276 1277 /* 1278 ** The following group of routines make deep copies of expressions, 1279 ** expression lists, ID lists, and select statements. The copies can 1280 ** be deleted (by being passed to their respective ...Delete() routines) 1281 ** without effecting the originals. 1282 ** 1283 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1284 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1285 ** by subsequent calls to sqlite*ListAppend() routines. 1286 ** 1287 ** Any tables that the SrcList might point to are not duplicated. 1288 ** 1289 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1290 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1291 ** truncated version of the usual Expr structure that will be stored as 1292 ** part of the in-memory representation of the database schema. 1293 */ 1294 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1295 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1296 return p ? exprDup(db, p, flags, 0) : 0; 1297 } 1298 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1299 ExprList *pNew; 1300 struct ExprList_item *pItem, *pOldItem; 1301 int i; 1302 Expr *pPriorSelectCol = 0; 1303 assert( db!=0 ); 1304 if( p==0 ) return 0; 1305 pNew = sqlite3DbMallocRawNN(db, 1306 sizeof(*pNew)+sizeof(pNew->a[0])*(p->nExpr-1) ); 1307 if( pNew==0 ) return 0; 1308 pNew->nAlloc = pNew->nExpr = p->nExpr; 1309 pItem = pNew->a; 1310 pOldItem = p->a; 1311 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1312 Expr *pOldExpr = pOldItem->pExpr; 1313 Expr *pNewExpr; 1314 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1315 if( pOldExpr 1316 && pOldExpr->op==TK_SELECT_COLUMN 1317 && (pNewExpr = pItem->pExpr)!=0 1318 ){ 1319 assert( pNewExpr->iColumn==0 || i>0 ); 1320 if( pNewExpr->iColumn==0 ){ 1321 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1322 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1323 }else{ 1324 assert( i>0 ); 1325 assert( pItem[-1].pExpr!=0 ); 1326 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1327 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1328 pNewExpr->pLeft = pPriorSelectCol; 1329 } 1330 } 1331 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1332 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1333 pItem->sortOrder = pOldItem->sortOrder; 1334 pItem->done = 0; 1335 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1336 pItem->u = pOldItem->u; 1337 } 1338 return pNew; 1339 } 1340 1341 /* 1342 ** If cursors, triggers, views and subqueries are all omitted from 1343 ** the build, then none of the following routines, except for 1344 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1345 ** called with a NULL argument. 1346 */ 1347 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1348 || !defined(SQLITE_OMIT_SUBQUERY) 1349 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1350 SrcList *pNew; 1351 int i; 1352 int nByte; 1353 assert( db!=0 ); 1354 if( p==0 ) return 0; 1355 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1356 pNew = sqlite3DbMallocRawNN(db, nByte ); 1357 if( pNew==0 ) return 0; 1358 pNew->nSrc = pNew->nAlloc = p->nSrc; 1359 for(i=0; i<p->nSrc; i++){ 1360 struct SrcList_item *pNewItem = &pNew->a[i]; 1361 struct SrcList_item *pOldItem = &p->a[i]; 1362 Table *pTab; 1363 pNewItem->pSchema = pOldItem->pSchema; 1364 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1365 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1366 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1367 pNewItem->fg = pOldItem->fg; 1368 pNewItem->iCursor = pOldItem->iCursor; 1369 pNewItem->addrFillSub = pOldItem->addrFillSub; 1370 pNewItem->regReturn = pOldItem->regReturn; 1371 if( pNewItem->fg.isIndexedBy ){ 1372 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1373 } 1374 pNewItem->pIBIndex = pOldItem->pIBIndex; 1375 if( pNewItem->fg.isTabFunc ){ 1376 pNewItem->u1.pFuncArg = 1377 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1378 } 1379 pTab = pNewItem->pTab = pOldItem->pTab; 1380 if( pTab ){ 1381 pTab->nTabRef++; 1382 } 1383 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1384 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1385 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1386 pNewItem->colUsed = pOldItem->colUsed; 1387 } 1388 return pNew; 1389 } 1390 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1391 IdList *pNew; 1392 int i; 1393 assert( db!=0 ); 1394 if( p==0 ) return 0; 1395 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1396 if( pNew==0 ) return 0; 1397 pNew->nId = p->nId; 1398 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1399 if( pNew->a==0 ){ 1400 sqlite3DbFreeNN(db, pNew); 1401 return 0; 1402 } 1403 /* Note that because the size of the allocation for p->a[] is not 1404 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1405 ** on the duplicate created by this function. */ 1406 for(i=0; i<p->nId; i++){ 1407 struct IdList_item *pNewItem = &pNew->a[i]; 1408 struct IdList_item *pOldItem = &p->a[i]; 1409 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1410 pNewItem->idx = pOldItem->idx; 1411 } 1412 return pNew; 1413 } 1414 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1415 Select *pRet = 0; 1416 Select *pNext = 0; 1417 Select **pp = &pRet; 1418 Select *p; 1419 1420 assert( db!=0 ); 1421 for(p=pDup; p; p=p->pPrior){ 1422 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1423 if( pNew==0 ) break; 1424 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1425 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1426 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1427 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1428 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1429 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1430 pNew->op = p->op; 1431 pNew->pNext = pNext; 1432 pNew->pPrior = 0; 1433 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1434 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1435 pNew->iLimit = 0; 1436 pNew->iOffset = 0; 1437 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1438 pNew->addrOpenEphm[0] = -1; 1439 pNew->addrOpenEphm[1] = -1; 1440 pNew->nSelectRow = p->nSelectRow; 1441 pNew->pWith = withDup(db, p->pWith); 1442 sqlite3SelectSetName(pNew, p->zSelName); 1443 *pp = pNew; 1444 pp = &pNew->pPrior; 1445 pNext = pNew; 1446 } 1447 1448 return pRet; 1449 } 1450 #else 1451 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1452 assert( p==0 ); 1453 return 0; 1454 } 1455 #endif 1456 1457 1458 /* 1459 ** Add a new element to the end of an expression list. If pList is 1460 ** initially NULL, then create a new expression list. 1461 ** 1462 ** If a memory allocation error occurs, the entire list is freed and 1463 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1464 ** that the new entry was successfully appended. 1465 */ 1466 ExprList *sqlite3ExprListAppend( 1467 Parse *pParse, /* Parsing context */ 1468 ExprList *pList, /* List to which to append. Might be NULL */ 1469 Expr *pExpr /* Expression to be appended. Might be NULL */ 1470 ){ 1471 struct ExprList_item *pItem; 1472 sqlite3 *db = pParse->db; 1473 assert( db!=0 ); 1474 if( pList==0 ){ 1475 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1476 if( pList==0 ){ 1477 goto no_mem; 1478 } 1479 pList->nExpr = 0; 1480 pList->nAlloc = 1; 1481 }else if( pList->nExpr==pList->nAlloc ){ 1482 ExprList *pNew; 1483 pNew = sqlite3DbRealloc(db, pList, 1484 sizeof(*pList)+(2*pList->nAlloc - 1)*sizeof(pList->a[0])); 1485 if( pNew==0 ){ 1486 goto no_mem; 1487 } 1488 pList = pNew; 1489 pList->nAlloc *= 2; 1490 } 1491 pItem = &pList->a[pList->nExpr++]; 1492 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1493 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1494 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1495 pItem->pExpr = pExpr; 1496 return pList; 1497 1498 no_mem: 1499 /* Avoid leaking memory if malloc has failed. */ 1500 sqlite3ExprDelete(db, pExpr); 1501 sqlite3ExprListDelete(db, pList); 1502 return 0; 1503 } 1504 1505 /* 1506 ** pColumns and pExpr form a vector assignment which is part of the SET 1507 ** clause of an UPDATE statement. Like this: 1508 ** 1509 ** (a,b,c) = (expr1,expr2,expr3) 1510 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1511 ** 1512 ** For each term of the vector assignment, append new entries to the 1513 ** expression list pList. In the case of a subquery on the RHS, append 1514 ** TK_SELECT_COLUMN expressions. 1515 */ 1516 ExprList *sqlite3ExprListAppendVector( 1517 Parse *pParse, /* Parsing context */ 1518 ExprList *pList, /* List to which to append. Might be NULL */ 1519 IdList *pColumns, /* List of names of LHS of the assignment */ 1520 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1521 ){ 1522 sqlite3 *db = pParse->db; 1523 int n; 1524 int i; 1525 int iFirst = pList ? pList->nExpr : 0; 1526 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1527 ** exit prior to this routine being invoked */ 1528 if( NEVER(pColumns==0) ) goto vector_append_error; 1529 if( pExpr==0 ) goto vector_append_error; 1530 1531 /* If the RHS is a vector, then we can immediately check to see that 1532 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1533 ** wildcards ("*") in the result set of the SELECT must be expanded before 1534 ** we can do the size check, so defer the size check until code generation. 1535 */ 1536 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1537 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1538 pColumns->nId, n); 1539 goto vector_append_error; 1540 } 1541 1542 for(i=0; i<pColumns->nId; i++){ 1543 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1544 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1545 if( pList ){ 1546 assert( pList->nExpr==iFirst+i+1 ); 1547 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1548 pColumns->a[i].zName = 0; 1549 } 1550 } 1551 1552 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1553 Expr *pFirst = pList->a[iFirst].pExpr; 1554 assert( pFirst!=0 ); 1555 assert( pFirst->op==TK_SELECT_COLUMN ); 1556 1557 /* Store the SELECT statement in pRight so it will be deleted when 1558 ** sqlite3ExprListDelete() is called */ 1559 pFirst->pRight = pExpr; 1560 pExpr = 0; 1561 1562 /* Remember the size of the LHS in iTable so that we can check that 1563 ** the RHS and LHS sizes match during code generation. */ 1564 pFirst->iTable = pColumns->nId; 1565 } 1566 1567 vector_append_error: 1568 sqlite3ExprDelete(db, pExpr); 1569 sqlite3IdListDelete(db, pColumns); 1570 return pList; 1571 } 1572 1573 /* 1574 ** Set the sort order for the last element on the given ExprList. 1575 */ 1576 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1577 if( p==0 ) return; 1578 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1579 assert( p->nExpr>0 ); 1580 if( iSortOrder<0 ){ 1581 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1582 return; 1583 } 1584 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1585 } 1586 1587 /* 1588 ** Set the ExprList.a[].zName element of the most recently added item 1589 ** on the expression list. 1590 ** 1591 ** pList might be NULL following an OOM error. But pName should never be 1592 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1593 ** is set. 1594 */ 1595 void sqlite3ExprListSetName( 1596 Parse *pParse, /* Parsing context */ 1597 ExprList *pList, /* List to which to add the span. */ 1598 Token *pName, /* Name to be added */ 1599 int dequote /* True to cause the name to be dequoted */ 1600 ){ 1601 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1602 if( pList ){ 1603 struct ExprList_item *pItem; 1604 assert( pList->nExpr>0 ); 1605 pItem = &pList->a[pList->nExpr-1]; 1606 assert( pItem->zName==0 ); 1607 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1608 if( dequote ) sqlite3Dequote(pItem->zName); 1609 } 1610 } 1611 1612 /* 1613 ** Set the ExprList.a[].zSpan element of the most recently added item 1614 ** on the expression list. 1615 ** 1616 ** pList might be NULL following an OOM error. But pSpan should never be 1617 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1618 ** is set. 1619 */ 1620 void sqlite3ExprListSetSpan( 1621 Parse *pParse, /* Parsing context */ 1622 ExprList *pList, /* List to which to add the span. */ 1623 ExprSpan *pSpan /* The span to be added */ 1624 ){ 1625 sqlite3 *db = pParse->db; 1626 assert( pList!=0 || db->mallocFailed!=0 ); 1627 if( pList ){ 1628 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1629 assert( pList->nExpr>0 ); 1630 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1631 sqlite3DbFree(db, pItem->zSpan); 1632 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1633 (int)(pSpan->zEnd - pSpan->zStart)); 1634 } 1635 } 1636 1637 /* 1638 ** If the expression list pEList contains more than iLimit elements, 1639 ** leave an error message in pParse. 1640 */ 1641 void sqlite3ExprListCheckLength( 1642 Parse *pParse, 1643 ExprList *pEList, 1644 const char *zObject 1645 ){ 1646 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1647 testcase( pEList && pEList->nExpr==mx ); 1648 testcase( pEList && pEList->nExpr==mx+1 ); 1649 if( pEList && pEList->nExpr>mx ){ 1650 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1651 } 1652 } 1653 1654 /* 1655 ** Delete an entire expression list. 1656 */ 1657 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1658 int i = pList->nExpr; 1659 struct ExprList_item *pItem = pList->a; 1660 assert( pList->nExpr>0 ); 1661 do{ 1662 sqlite3ExprDelete(db, pItem->pExpr); 1663 sqlite3DbFree(db, pItem->zName); 1664 sqlite3DbFree(db, pItem->zSpan); 1665 pItem++; 1666 }while( --i>0 ); 1667 sqlite3DbFreeNN(db, pList); 1668 } 1669 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1670 if( pList ) exprListDeleteNN(db, pList); 1671 } 1672 1673 /* 1674 ** Return the bitwise-OR of all Expr.flags fields in the given 1675 ** ExprList. 1676 */ 1677 u32 sqlite3ExprListFlags(const ExprList *pList){ 1678 int i; 1679 u32 m = 0; 1680 if( pList ){ 1681 for(i=0; i<pList->nExpr; i++){ 1682 Expr *pExpr = pList->a[i].pExpr; 1683 assert( pExpr!=0 ); 1684 m |= pExpr->flags; 1685 } 1686 } 1687 return m; 1688 } 1689 1690 /* 1691 ** These routines are Walker callbacks used to check expressions to 1692 ** see if they are "constant" for some definition of constant. The 1693 ** Walker.eCode value determines the type of "constant" we are looking 1694 ** for. 1695 ** 1696 ** These callback routines are used to implement the following: 1697 ** 1698 ** sqlite3ExprIsConstant() pWalker->eCode==1 1699 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1700 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1701 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1702 ** 1703 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1704 ** is found to not be a constant. 1705 ** 1706 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1707 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1708 ** an existing schema and 4 when processing a new statement. A bound 1709 ** parameter raises an error for new statements, but is silently converted 1710 ** to NULL for existing schemas. This allows sqlite_master tables that 1711 ** contain a bound parameter because they were generated by older versions 1712 ** of SQLite to be parsed by newer versions of SQLite without raising a 1713 ** malformed schema error. 1714 */ 1715 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1716 1717 /* If pWalker->eCode is 2 then any term of the expression that comes from 1718 ** the ON or USING clauses of a left join disqualifies the expression 1719 ** from being considered constant. */ 1720 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1721 pWalker->eCode = 0; 1722 return WRC_Abort; 1723 } 1724 1725 switch( pExpr->op ){ 1726 /* Consider functions to be constant if all their arguments are constant 1727 ** and either pWalker->eCode==4 or 5 or the function has the 1728 ** SQLITE_FUNC_CONST flag. */ 1729 case TK_FUNCTION: 1730 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1731 return WRC_Continue; 1732 }else{ 1733 pWalker->eCode = 0; 1734 return WRC_Abort; 1735 } 1736 case TK_ID: 1737 case TK_COLUMN: 1738 case TK_AGG_FUNCTION: 1739 case TK_AGG_COLUMN: 1740 testcase( pExpr->op==TK_ID ); 1741 testcase( pExpr->op==TK_COLUMN ); 1742 testcase( pExpr->op==TK_AGG_FUNCTION ); 1743 testcase( pExpr->op==TK_AGG_COLUMN ); 1744 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1745 return WRC_Continue; 1746 } 1747 /* Fall through */ 1748 case TK_IF_NULL_ROW: 1749 testcase( pExpr->op==TK_IF_NULL_ROW ); 1750 pWalker->eCode = 0; 1751 return WRC_Abort; 1752 case TK_VARIABLE: 1753 if( pWalker->eCode==5 ){ 1754 /* Silently convert bound parameters that appear inside of CREATE 1755 ** statements into a NULL when parsing the CREATE statement text out 1756 ** of the sqlite_master table */ 1757 pExpr->op = TK_NULL; 1758 }else if( pWalker->eCode==4 ){ 1759 /* A bound parameter in a CREATE statement that originates from 1760 ** sqlite3_prepare() causes an error */ 1761 pWalker->eCode = 0; 1762 return WRC_Abort; 1763 } 1764 /* Fall through */ 1765 default: 1766 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1767 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1768 return WRC_Continue; 1769 } 1770 } 1771 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1772 UNUSED_PARAMETER(NotUsed); 1773 pWalker->eCode = 0; 1774 return WRC_Abort; 1775 } 1776 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1777 Walker w; 1778 w.eCode = initFlag; 1779 w.xExprCallback = exprNodeIsConstant; 1780 w.xSelectCallback = selectNodeIsConstant; 1781 #ifdef SQLITE_DEBUG 1782 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1783 #endif 1784 w.u.iCur = iCur; 1785 sqlite3WalkExpr(&w, p); 1786 return w.eCode; 1787 } 1788 1789 /* 1790 ** Walk an expression tree. Return non-zero if the expression is constant 1791 ** and 0 if it involves variables or function calls. 1792 ** 1793 ** For the purposes of this function, a double-quoted string (ex: "abc") 1794 ** is considered a variable but a single-quoted string (ex: 'abc') is 1795 ** a constant. 1796 */ 1797 int sqlite3ExprIsConstant(Expr *p){ 1798 return exprIsConst(p, 1, 0); 1799 } 1800 1801 /* 1802 ** Walk an expression tree. Return non-zero if the expression is constant 1803 ** that does no originate from the ON or USING clauses of a join. 1804 ** Return 0 if it involves variables or function calls or terms from 1805 ** an ON or USING clause. 1806 */ 1807 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1808 return exprIsConst(p, 2, 0); 1809 } 1810 1811 /* 1812 ** Walk an expression tree. Return non-zero if the expression is constant 1813 ** for any single row of the table with cursor iCur. In other words, the 1814 ** expression must not refer to any non-deterministic function nor any 1815 ** table other than iCur. 1816 */ 1817 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1818 return exprIsConst(p, 3, iCur); 1819 } 1820 1821 1822 /* 1823 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1824 */ 1825 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1826 ExprList *pGroupBy = pWalker->u.pGroupBy; 1827 int i; 1828 1829 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1830 ** it constant. */ 1831 for(i=0; i<pGroupBy->nExpr; i++){ 1832 Expr *p = pGroupBy->a[i].pExpr; 1833 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1834 CollSeq *pColl = sqlite3ExprCollSeq(pWalker->pParse, p); 1835 if( pColl==0 || sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1836 return WRC_Prune; 1837 } 1838 } 1839 } 1840 1841 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1842 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1843 pWalker->eCode = 0; 1844 return WRC_Abort; 1845 } 1846 1847 return exprNodeIsConstant(pWalker, pExpr); 1848 } 1849 1850 /* 1851 ** Walk the expression tree passed as the first argument. Return non-zero 1852 ** if the expression consists entirely of constants or copies of terms 1853 ** in pGroupBy that sort with the BINARY collation sequence. 1854 ** 1855 ** This routine is used to determine if a term of the HAVING clause can 1856 ** be promoted into the WHERE clause. In order for such a promotion to work, 1857 ** the value of the HAVING clause term must be the same for all members of 1858 ** a "group". The requirement that the GROUP BY term must be BINARY 1859 ** assumes that no other collating sequence will have a finer-grained 1860 ** grouping than binary. In other words (A=B COLLATE binary) implies 1861 ** A=B in every other collating sequence. The requirement that the 1862 ** GROUP BY be BINARY is stricter than necessary. It would also work 1863 ** to promote HAVING clauses that use the same alternative collating 1864 ** sequence as the GROUP BY term, but that is much harder to check, 1865 ** alternative collating sequences are uncommon, and this is only an 1866 ** optimization, so we take the easy way out and simply require the 1867 ** GROUP BY to use the BINARY collating sequence. 1868 */ 1869 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1870 Walker w; 1871 w.eCode = 1; 1872 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1873 w.xSelectCallback = 0; 1874 w.u.pGroupBy = pGroupBy; 1875 w.pParse = pParse; 1876 sqlite3WalkExpr(&w, p); 1877 return w.eCode; 1878 } 1879 1880 /* 1881 ** Walk an expression tree. Return non-zero if the expression is constant 1882 ** or a function call with constant arguments. Return and 0 if there 1883 ** are any variables. 1884 ** 1885 ** For the purposes of this function, a double-quoted string (ex: "abc") 1886 ** is considered a variable but a single-quoted string (ex: 'abc') is 1887 ** a constant. 1888 */ 1889 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1890 assert( isInit==0 || isInit==1 ); 1891 return exprIsConst(p, 4+isInit, 0); 1892 } 1893 1894 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1895 /* 1896 ** Walk an expression tree. Return 1 if the expression contains a 1897 ** subquery of some kind. Return 0 if there are no subqueries. 1898 */ 1899 int sqlite3ExprContainsSubquery(Expr *p){ 1900 Walker w; 1901 w.eCode = 1; 1902 w.xExprCallback = sqlite3ExprWalkNoop; 1903 w.xSelectCallback = selectNodeIsConstant; 1904 #ifdef SQLITE_DEBUG 1905 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1906 #endif 1907 sqlite3WalkExpr(&w, p); 1908 return w.eCode==0; 1909 } 1910 #endif 1911 1912 /* 1913 ** If the expression p codes a constant integer that is small enough 1914 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1915 ** in *pValue. If the expression is not an integer or if it is too big 1916 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1917 */ 1918 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1919 int rc = 0; 1920 if( p==0 ) return 0; /* Can only happen following on OOM */ 1921 1922 /* If an expression is an integer literal that fits in a signed 32-bit 1923 ** integer, then the EP_IntValue flag will have already been set */ 1924 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1925 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1926 1927 if( p->flags & EP_IntValue ){ 1928 *pValue = p->u.iValue; 1929 return 1; 1930 } 1931 switch( p->op ){ 1932 case TK_UPLUS: { 1933 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1934 break; 1935 } 1936 case TK_UMINUS: { 1937 int v; 1938 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1939 assert( v!=(-2147483647-1) ); 1940 *pValue = -v; 1941 rc = 1; 1942 } 1943 break; 1944 } 1945 default: break; 1946 } 1947 return rc; 1948 } 1949 1950 /* 1951 ** Return FALSE if there is no chance that the expression can be NULL. 1952 ** 1953 ** If the expression might be NULL or if the expression is too complex 1954 ** to tell return TRUE. 1955 ** 1956 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1957 ** when we know that a value cannot be NULL. Hence, a false positive 1958 ** (returning TRUE when in fact the expression can never be NULL) might 1959 ** be a small performance hit but is otherwise harmless. On the other 1960 ** hand, a false negative (returning FALSE when the result could be NULL) 1961 ** will likely result in an incorrect answer. So when in doubt, return 1962 ** TRUE. 1963 */ 1964 int sqlite3ExprCanBeNull(const Expr *p){ 1965 u8 op; 1966 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1967 op = p->op; 1968 if( op==TK_REGISTER ) op = p->op2; 1969 switch( op ){ 1970 case TK_INTEGER: 1971 case TK_STRING: 1972 case TK_FLOAT: 1973 case TK_BLOB: 1974 return 0; 1975 case TK_COLUMN: 1976 assert( p->pTab!=0 ); 1977 return ExprHasProperty(p, EP_CanBeNull) || 1978 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1979 default: 1980 return 1; 1981 } 1982 } 1983 1984 /* 1985 ** Return TRUE if the given expression is a constant which would be 1986 ** unchanged by OP_Affinity with the affinity given in the second 1987 ** argument. 1988 ** 1989 ** This routine is used to determine if the OP_Affinity operation 1990 ** can be omitted. When in doubt return FALSE. A false negative 1991 ** is harmless. A false positive, however, can result in the wrong 1992 ** answer. 1993 */ 1994 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1995 u8 op; 1996 if( aff==SQLITE_AFF_BLOB ) return 1; 1997 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1998 op = p->op; 1999 if( op==TK_REGISTER ) op = p->op2; 2000 switch( op ){ 2001 case TK_INTEGER: { 2002 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2003 } 2004 case TK_FLOAT: { 2005 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2006 } 2007 case TK_STRING: { 2008 return aff==SQLITE_AFF_TEXT; 2009 } 2010 case TK_BLOB: { 2011 return 1; 2012 } 2013 case TK_COLUMN: { 2014 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2015 return p->iColumn<0 2016 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2017 } 2018 default: { 2019 return 0; 2020 } 2021 } 2022 } 2023 2024 /* 2025 ** Return TRUE if the given string is a row-id column name. 2026 */ 2027 int sqlite3IsRowid(const char *z){ 2028 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2029 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2030 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2031 return 0; 2032 } 2033 2034 /* 2035 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2036 ** that can be simplified to a direct table access, then return 2037 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2038 ** or if the SELECT statement needs to be manifested into a transient 2039 ** table, then return NULL. 2040 */ 2041 #ifndef SQLITE_OMIT_SUBQUERY 2042 static Select *isCandidateForInOpt(Expr *pX){ 2043 Select *p; 2044 SrcList *pSrc; 2045 ExprList *pEList; 2046 Table *pTab; 2047 int i; 2048 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2049 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2050 p = pX->x.pSelect; 2051 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2052 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2053 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2054 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2055 return 0; /* No DISTINCT keyword and no aggregate functions */ 2056 } 2057 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2058 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2059 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 2060 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2061 pSrc = p->pSrc; 2062 assert( pSrc!=0 ); 2063 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2064 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2065 pTab = pSrc->a[0].pTab; 2066 assert( pTab!=0 ); 2067 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2068 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2069 pEList = p->pEList; 2070 assert( pEList!=0 ); 2071 /* All SELECT results must be columns. */ 2072 for(i=0; i<pEList->nExpr; i++){ 2073 Expr *pRes = pEList->a[i].pExpr; 2074 if( pRes->op!=TK_COLUMN ) return 0; 2075 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2076 } 2077 return p; 2078 } 2079 #endif /* SQLITE_OMIT_SUBQUERY */ 2080 2081 #ifndef SQLITE_OMIT_SUBQUERY 2082 /* 2083 ** Generate code that checks the left-most column of index table iCur to see if 2084 ** it contains any NULL entries. Cause the register at regHasNull to be set 2085 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2086 ** to be set to NULL if iCur contains one or more NULL values. 2087 */ 2088 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2089 int addr1; 2090 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2091 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2092 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2093 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2094 VdbeComment((v, "first_entry_in(%d)", iCur)); 2095 sqlite3VdbeJumpHere(v, addr1); 2096 } 2097 #endif 2098 2099 2100 #ifndef SQLITE_OMIT_SUBQUERY 2101 /* 2102 ** The argument is an IN operator with a list (not a subquery) on the 2103 ** right-hand side. Return TRUE if that list is constant. 2104 */ 2105 static int sqlite3InRhsIsConstant(Expr *pIn){ 2106 Expr *pLHS; 2107 int res; 2108 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2109 pLHS = pIn->pLeft; 2110 pIn->pLeft = 0; 2111 res = sqlite3ExprIsConstant(pIn); 2112 pIn->pLeft = pLHS; 2113 return res; 2114 } 2115 #endif 2116 2117 /* 2118 ** This function is used by the implementation of the IN (...) operator. 2119 ** The pX parameter is the expression on the RHS of the IN operator, which 2120 ** might be either a list of expressions or a subquery. 2121 ** 2122 ** The job of this routine is to find or create a b-tree object that can 2123 ** be used either to test for membership in the RHS set or to iterate through 2124 ** all members of the RHS set, skipping duplicates. 2125 ** 2126 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2127 ** and pX->iTable is set to the index of that cursor. 2128 ** 2129 ** The returned value of this function indicates the b-tree type, as follows: 2130 ** 2131 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2132 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2133 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2134 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2135 ** populated epheremal table. 2136 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2137 ** implemented as a sequence of comparisons. 2138 ** 2139 ** An existing b-tree might be used if the RHS expression pX is a simple 2140 ** subquery such as: 2141 ** 2142 ** SELECT <column1>, <column2>... FROM <table> 2143 ** 2144 ** If the RHS of the IN operator is a list or a more complex subquery, then 2145 ** an ephemeral table might need to be generated from the RHS and then 2146 ** pX->iTable made to point to the ephemeral table instead of an 2147 ** existing table. 2148 ** 2149 ** The inFlags parameter must contain exactly one of the bits 2150 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2151 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2152 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2153 ** IN index will be used to loop over all values of the RHS of the 2154 ** IN operator. 2155 ** 2156 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2157 ** through the set members) then the b-tree must not contain duplicates. 2158 ** An epheremal table must be used unless the selected columns are guaranteed 2159 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2160 ** a UNIQUE constraint or index. 2161 ** 2162 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2163 ** for fast set membership tests) then an epheremal table must 2164 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2165 ** index can be found with the specified <columns> as its left-most. 2166 ** 2167 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2168 ** if the RHS of the IN operator is a list (not a subquery) then this 2169 ** routine might decide that creating an ephemeral b-tree for membership 2170 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2171 ** calling routine should implement the IN operator using a sequence 2172 ** of Eq or Ne comparison operations. 2173 ** 2174 ** When the b-tree is being used for membership tests, the calling function 2175 ** might need to know whether or not the RHS side of the IN operator 2176 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2177 ** if there is any chance that the (...) might contain a NULL value at 2178 ** runtime, then a register is allocated and the register number written 2179 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2180 ** NULL value, then *prRhsHasNull is left unchanged. 2181 ** 2182 ** If a register is allocated and its location stored in *prRhsHasNull, then 2183 ** the value in that register will be NULL if the b-tree contains one or more 2184 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2185 ** NULL values. 2186 ** 2187 ** If the aiMap parameter is not NULL, it must point to an array containing 2188 ** one element for each column returned by the SELECT statement on the RHS 2189 ** of the IN(...) operator. The i'th entry of the array is populated with the 2190 ** offset of the index column that matches the i'th column returned by the 2191 ** SELECT. For example, if the expression and selected index are: 2192 ** 2193 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2194 ** CREATE INDEX i1 ON t1(b, c, a); 2195 ** 2196 ** then aiMap[] is populated with {2, 0, 1}. 2197 */ 2198 #ifndef SQLITE_OMIT_SUBQUERY 2199 int sqlite3FindInIndex( 2200 Parse *pParse, /* Parsing context */ 2201 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2202 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2203 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2204 int *aiMap /* Mapping from Index fields to RHS fields */ 2205 ){ 2206 Select *p; /* SELECT to the right of IN operator */ 2207 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2208 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2209 int mustBeUnique; /* True if RHS must be unique */ 2210 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2211 2212 assert( pX->op==TK_IN ); 2213 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2214 2215 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2216 ** whether or not the SELECT result contains NULL values, check whether 2217 ** or not NULL is actually possible (it may not be, for example, due 2218 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2219 ** set prRhsHasNull to 0 before continuing. */ 2220 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2221 int i; 2222 ExprList *pEList = pX->x.pSelect->pEList; 2223 for(i=0; i<pEList->nExpr; i++){ 2224 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2225 } 2226 if( i==pEList->nExpr ){ 2227 prRhsHasNull = 0; 2228 } 2229 } 2230 2231 /* Check to see if an existing table or index can be used to 2232 ** satisfy the query. This is preferable to generating a new 2233 ** ephemeral table. */ 2234 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2235 sqlite3 *db = pParse->db; /* Database connection */ 2236 Table *pTab; /* Table <table>. */ 2237 i16 iDb; /* Database idx for pTab */ 2238 ExprList *pEList = p->pEList; 2239 int nExpr = pEList->nExpr; 2240 2241 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2242 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2243 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2244 pTab = p->pSrc->a[0].pTab; 2245 2246 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2247 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2248 sqlite3CodeVerifySchema(pParse, iDb); 2249 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2250 2251 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2252 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2253 /* The "x IN (SELECT rowid FROM table)" case */ 2254 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2255 VdbeCoverage(v); 2256 2257 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2258 eType = IN_INDEX_ROWID; 2259 2260 sqlite3VdbeJumpHere(v, iAddr); 2261 }else{ 2262 Index *pIdx; /* Iterator variable */ 2263 int affinity_ok = 1; 2264 int i; 2265 2266 /* Check that the affinity that will be used to perform each 2267 ** comparison is the same as the affinity of each column in table 2268 ** on the RHS of the IN operator. If it not, it is not possible to 2269 ** use any index of the RHS table. */ 2270 for(i=0; i<nExpr && affinity_ok; i++){ 2271 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2272 int iCol = pEList->a[i].pExpr->iColumn; 2273 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2274 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2275 testcase( cmpaff==SQLITE_AFF_BLOB ); 2276 testcase( cmpaff==SQLITE_AFF_TEXT ); 2277 switch( cmpaff ){ 2278 case SQLITE_AFF_BLOB: 2279 break; 2280 case SQLITE_AFF_TEXT: 2281 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2282 ** other has no affinity and the other side is TEXT. Hence, 2283 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2284 ** and for the term on the LHS of the IN to have no affinity. */ 2285 assert( idxaff==SQLITE_AFF_TEXT ); 2286 break; 2287 default: 2288 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2289 } 2290 } 2291 2292 if( affinity_ok ){ 2293 /* Search for an existing index that will work for this IN operator */ 2294 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2295 Bitmask colUsed; /* Columns of the index used */ 2296 Bitmask mCol; /* Mask for the current column */ 2297 if( pIdx->nColumn<nExpr ) continue; 2298 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2299 ** BITMASK(nExpr) without overflowing */ 2300 testcase( pIdx->nColumn==BMS-2 ); 2301 testcase( pIdx->nColumn==BMS-1 ); 2302 if( pIdx->nColumn>=BMS-1 ) continue; 2303 if( mustBeUnique ){ 2304 if( pIdx->nKeyCol>nExpr 2305 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2306 ){ 2307 continue; /* This index is not unique over the IN RHS columns */ 2308 } 2309 } 2310 2311 colUsed = 0; /* Columns of index used so far */ 2312 for(i=0; i<nExpr; i++){ 2313 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2314 Expr *pRhs = pEList->a[i].pExpr; 2315 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2316 int j; 2317 2318 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2319 for(j=0; j<nExpr; j++){ 2320 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2321 assert( pIdx->azColl[j] ); 2322 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2323 continue; 2324 } 2325 break; 2326 } 2327 if( j==nExpr ) break; 2328 mCol = MASKBIT(j); 2329 if( mCol & colUsed ) break; /* Each column used only once */ 2330 colUsed |= mCol; 2331 if( aiMap ) aiMap[i] = j; 2332 } 2333 2334 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2335 if( colUsed==(MASKBIT(nExpr)-1) ){ 2336 /* If we reach this point, that means the index pIdx is usable */ 2337 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2338 #ifndef SQLITE_OMIT_EXPLAIN 2339 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2340 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2341 P4_DYNAMIC); 2342 #endif 2343 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2344 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2345 VdbeComment((v, "%s", pIdx->zName)); 2346 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2347 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2348 2349 if( prRhsHasNull ){ 2350 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2351 i64 mask = (1<<nExpr)-1; 2352 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2353 iTab, 0, 0, (u8*)&mask, P4_INT64); 2354 #endif 2355 *prRhsHasNull = ++pParse->nMem; 2356 if( nExpr==1 ){ 2357 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2358 } 2359 } 2360 sqlite3VdbeJumpHere(v, iAddr); 2361 } 2362 } /* End loop over indexes */ 2363 } /* End if( affinity_ok ) */ 2364 } /* End if not an rowid index */ 2365 } /* End attempt to optimize using an index */ 2366 2367 /* If no preexisting index is available for the IN clause 2368 ** and IN_INDEX_NOOP is an allowed reply 2369 ** and the RHS of the IN operator is a list, not a subquery 2370 ** and the RHS is not constant or has two or fewer terms, 2371 ** then it is not worth creating an ephemeral table to evaluate 2372 ** the IN operator so return IN_INDEX_NOOP. 2373 */ 2374 if( eType==0 2375 && (inFlags & IN_INDEX_NOOP_OK) 2376 && !ExprHasProperty(pX, EP_xIsSelect) 2377 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2378 ){ 2379 eType = IN_INDEX_NOOP; 2380 } 2381 2382 if( eType==0 ){ 2383 /* Could not find an existing table or index to use as the RHS b-tree. 2384 ** We will have to generate an ephemeral table to do the job. 2385 */ 2386 u32 savedNQueryLoop = pParse->nQueryLoop; 2387 int rMayHaveNull = 0; 2388 eType = IN_INDEX_EPH; 2389 if( inFlags & IN_INDEX_LOOP ){ 2390 pParse->nQueryLoop = 0; 2391 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2392 eType = IN_INDEX_ROWID; 2393 } 2394 }else if( prRhsHasNull ){ 2395 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2396 } 2397 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2398 pParse->nQueryLoop = savedNQueryLoop; 2399 }else{ 2400 pX->iTable = iTab; 2401 } 2402 2403 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2404 int i, n; 2405 n = sqlite3ExprVectorSize(pX->pLeft); 2406 for(i=0; i<n; i++) aiMap[i] = i; 2407 } 2408 return eType; 2409 } 2410 #endif 2411 2412 #ifndef SQLITE_OMIT_SUBQUERY 2413 /* 2414 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2415 ** function allocates and returns a nul-terminated string containing 2416 ** the affinities to be used for each column of the comparison. 2417 ** 2418 ** It is the responsibility of the caller to ensure that the returned 2419 ** string is eventually freed using sqlite3DbFree(). 2420 */ 2421 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2422 Expr *pLeft = pExpr->pLeft; 2423 int nVal = sqlite3ExprVectorSize(pLeft); 2424 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2425 char *zRet; 2426 2427 assert( pExpr->op==TK_IN ); 2428 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2429 if( zRet ){ 2430 int i; 2431 for(i=0; i<nVal; i++){ 2432 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2433 char a = sqlite3ExprAffinity(pA); 2434 if( pSelect ){ 2435 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2436 }else{ 2437 zRet[i] = a; 2438 } 2439 } 2440 zRet[nVal] = '\0'; 2441 } 2442 return zRet; 2443 } 2444 #endif 2445 2446 #ifndef SQLITE_OMIT_SUBQUERY 2447 /* 2448 ** Load the Parse object passed as the first argument with an error 2449 ** message of the form: 2450 ** 2451 ** "sub-select returns N columns - expected M" 2452 */ 2453 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2454 const char *zFmt = "sub-select returns %d columns - expected %d"; 2455 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2456 } 2457 #endif 2458 2459 /* 2460 ** Expression pExpr is a vector that has been used in a context where 2461 ** it is not permitted. If pExpr is a sub-select vector, this routine 2462 ** loads the Parse object with a message of the form: 2463 ** 2464 ** "sub-select returns N columns - expected 1" 2465 ** 2466 ** Or, if it is a regular scalar vector: 2467 ** 2468 ** "row value misused" 2469 */ 2470 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2471 #ifndef SQLITE_OMIT_SUBQUERY 2472 if( pExpr->flags & EP_xIsSelect ){ 2473 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2474 }else 2475 #endif 2476 { 2477 sqlite3ErrorMsg(pParse, "row value misused"); 2478 } 2479 } 2480 2481 /* 2482 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2483 ** or IN operators. Examples: 2484 ** 2485 ** (SELECT a FROM b) -- subquery 2486 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2487 ** x IN (4,5,11) -- IN operator with list on right-hand side 2488 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2489 ** 2490 ** The pExpr parameter describes the expression that contains the IN 2491 ** operator or subquery. 2492 ** 2493 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2494 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2495 ** to some integer key column of a table B-Tree. In this case, use an 2496 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2497 ** (slower) variable length keys B-Tree. 2498 ** 2499 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2500 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2501 ** All this routine does is initialize the register given by rMayHaveNull 2502 ** to NULL. Calling routines will take care of changing this register 2503 ** value to non-NULL if the RHS is NULL-free. 2504 ** 2505 ** For a SELECT or EXISTS operator, return the register that holds the 2506 ** result. For a multi-column SELECT, the result is stored in a contiguous 2507 ** array of registers and the return value is the register of the left-most 2508 ** result column. Return 0 for IN operators or if an error occurs. 2509 */ 2510 #ifndef SQLITE_OMIT_SUBQUERY 2511 int sqlite3CodeSubselect( 2512 Parse *pParse, /* Parsing context */ 2513 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2514 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2515 int isRowid /* If true, LHS of IN operator is a rowid */ 2516 ){ 2517 int jmpIfDynamic = -1; /* One-time test address */ 2518 int rReg = 0; /* Register storing resulting */ 2519 Vdbe *v = sqlite3GetVdbe(pParse); 2520 if( NEVER(v==0) ) return 0; 2521 sqlite3ExprCachePush(pParse); 2522 2523 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2524 ** is encountered if any of the following is true: 2525 ** 2526 ** * The right-hand side is a correlated subquery 2527 ** * The right-hand side is an expression list containing variables 2528 ** * We are inside a trigger 2529 ** 2530 ** If all of the above are false, then we can run this code just once 2531 ** save the results, and reuse the same result on subsequent invocations. 2532 */ 2533 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2534 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2535 } 2536 2537 #ifndef SQLITE_OMIT_EXPLAIN 2538 if( pParse->explain==2 ){ 2539 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2540 jmpIfDynamic>=0?"":"CORRELATED ", 2541 pExpr->op==TK_IN?"LIST":"SCALAR", 2542 pParse->iNextSelectId 2543 ); 2544 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2545 } 2546 #endif 2547 2548 switch( pExpr->op ){ 2549 case TK_IN: { 2550 int addr; /* Address of OP_OpenEphemeral instruction */ 2551 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2552 KeyInfo *pKeyInfo = 0; /* Key information */ 2553 int nVal; /* Size of vector pLeft */ 2554 2555 nVal = sqlite3ExprVectorSize(pLeft); 2556 assert( !isRowid || nVal==1 ); 2557 2558 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2559 ** expression it is handled the same way. An ephemeral table is 2560 ** filled with index keys representing the results from the 2561 ** SELECT or the <exprlist>. 2562 ** 2563 ** If the 'x' expression is a column value, or the SELECT... 2564 ** statement returns a column value, then the affinity of that 2565 ** column is used to build the index keys. If both 'x' and the 2566 ** SELECT... statement are columns, then numeric affinity is used 2567 ** if either column has NUMERIC or INTEGER affinity. If neither 2568 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2569 ** is used. 2570 */ 2571 pExpr->iTable = pParse->nTab++; 2572 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2573 pExpr->iTable, (isRowid?0:nVal)); 2574 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2575 2576 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2577 /* Case 1: expr IN (SELECT ...) 2578 ** 2579 ** Generate code to write the results of the select into the temporary 2580 ** table allocated and opened above. 2581 */ 2582 Select *pSelect = pExpr->x.pSelect; 2583 ExprList *pEList = pSelect->pEList; 2584 2585 assert( !isRowid ); 2586 /* If the LHS and RHS of the IN operator do not match, that 2587 ** error will have been caught long before we reach this point. */ 2588 if( ALWAYS(pEList->nExpr==nVal) ){ 2589 SelectDest dest; 2590 int i; 2591 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2592 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2593 pSelect->iLimit = 0; 2594 testcase( pSelect->selFlags & SF_Distinct ); 2595 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2596 if( sqlite3Select(pParse, pSelect, &dest) ){ 2597 sqlite3DbFree(pParse->db, dest.zAffSdst); 2598 sqlite3KeyInfoUnref(pKeyInfo); 2599 return 0; 2600 } 2601 sqlite3DbFree(pParse->db, dest.zAffSdst); 2602 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2603 assert( pEList!=0 ); 2604 assert( pEList->nExpr>0 ); 2605 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2606 for(i=0; i<nVal; i++){ 2607 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2608 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2609 pParse, p, pEList->a[i].pExpr 2610 ); 2611 } 2612 } 2613 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2614 /* Case 2: expr IN (exprlist) 2615 ** 2616 ** For each expression, build an index key from the evaluation and 2617 ** store it in the temporary table. If <expr> is a column, then use 2618 ** that columns affinity when building index keys. If <expr> is not 2619 ** a column, use numeric affinity. 2620 */ 2621 char affinity; /* Affinity of the LHS of the IN */ 2622 int i; 2623 ExprList *pList = pExpr->x.pList; 2624 struct ExprList_item *pItem; 2625 int r1, r2, r3; 2626 2627 affinity = sqlite3ExprAffinity(pLeft); 2628 if( !affinity ){ 2629 affinity = SQLITE_AFF_BLOB; 2630 } 2631 if( pKeyInfo ){ 2632 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2633 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2634 } 2635 2636 /* Loop through each expression in <exprlist>. */ 2637 r1 = sqlite3GetTempReg(pParse); 2638 r2 = sqlite3GetTempReg(pParse); 2639 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2640 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2641 Expr *pE2 = pItem->pExpr; 2642 int iValToIns; 2643 2644 /* If the expression is not constant then we will need to 2645 ** disable the test that was generated above that makes sure 2646 ** this code only executes once. Because for a non-constant 2647 ** expression we need to rerun this code each time. 2648 */ 2649 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2650 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2651 jmpIfDynamic = -1; 2652 } 2653 2654 /* Evaluate the expression and insert it into the temp table */ 2655 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2656 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2657 }else{ 2658 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2659 if( isRowid ){ 2660 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2661 sqlite3VdbeCurrentAddr(v)+2); 2662 VdbeCoverage(v); 2663 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2664 }else{ 2665 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2666 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2667 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2668 } 2669 } 2670 } 2671 sqlite3ReleaseTempReg(pParse, r1); 2672 sqlite3ReleaseTempReg(pParse, r2); 2673 } 2674 if( pKeyInfo ){ 2675 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2676 } 2677 break; 2678 } 2679 2680 case TK_EXISTS: 2681 case TK_SELECT: 2682 default: { 2683 /* Case 3: (SELECT ... FROM ...) 2684 ** or: EXISTS(SELECT ... FROM ...) 2685 ** 2686 ** For a SELECT, generate code to put the values for all columns of 2687 ** the first row into an array of registers and return the index of 2688 ** the first register. 2689 ** 2690 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2691 ** into a register and return that register number. 2692 ** 2693 ** In both cases, the query is augmented with "LIMIT 1". Any 2694 ** preexisting limit is discarded in place of the new LIMIT 1. 2695 */ 2696 Select *pSel; /* SELECT statement to encode */ 2697 SelectDest dest; /* How to deal with SELECT result */ 2698 int nReg; /* Registers to allocate */ 2699 2700 testcase( pExpr->op==TK_EXISTS ); 2701 testcase( pExpr->op==TK_SELECT ); 2702 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2703 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2704 2705 pSel = pExpr->x.pSelect; 2706 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2707 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2708 pParse->nMem += nReg; 2709 if( pExpr->op==TK_SELECT ){ 2710 dest.eDest = SRT_Mem; 2711 dest.iSdst = dest.iSDParm; 2712 dest.nSdst = nReg; 2713 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2714 VdbeComment((v, "Init subquery result")); 2715 }else{ 2716 dest.eDest = SRT_Exists; 2717 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2718 VdbeComment((v, "Init EXISTS result")); 2719 } 2720 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2721 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2722 &sqlite3IntTokens[1], 0); 2723 pSel->iLimit = 0; 2724 pSel->selFlags &= ~SF_MultiValue; 2725 if( sqlite3Select(pParse, pSel, &dest) ){ 2726 return 0; 2727 } 2728 rReg = dest.iSDParm; 2729 ExprSetVVAProperty(pExpr, EP_NoReduce); 2730 break; 2731 } 2732 } 2733 2734 if( rHasNullFlag ){ 2735 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2736 } 2737 2738 if( jmpIfDynamic>=0 ){ 2739 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2740 } 2741 sqlite3ExprCachePop(pParse); 2742 2743 return rReg; 2744 } 2745 #endif /* SQLITE_OMIT_SUBQUERY */ 2746 2747 #ifndef SQLITE_OMIT_SUBQUERY 2748 /* 2749 ** Expr pIn is an IN(...) expression. This function checks that the 2750 ** sub-select on the RHS of the IN() operator has the same number of 2751 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2752 ** a sub-query, that the LHS is a vector of size 1. 2753 */ 2754 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2755 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2756 if( (pIn->flags & EP_xIsSelect) ){ 2757 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2758 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2759 return 1; 2760 } 2761 }else if( nVector!=1 ){ 2762 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2763 return 1; 2764 } 2765 return 0; 2766 } 2767 #endif 2768 2769 #ifndef SQLITE_OMIT_SUBQUERY 2770 /* 2771 ** Generate code for an IN expression. 2772 ** 2773 ** x IN (SELECT ...) 2774 ** x IN (value, value, ...) 2775 ** 2776 ** The left-hand side (LHS) is a scalar or vector expression. The 2777 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2778 ** subquery. If the RHS is a subquery, the number of result columns must 2779 ** match the number of columns in the vector on the LHS. If the RHS is 2780 ** a list of values, the LHS must be a scalar. 2781 ** 2782 ** The IN operator is true if the LHS value is contained within the RHS. 2783 ** The result is false if the LHS is definitely not in the RHS. The 2784 ** result is NULL if the presence of the LHS in the RHS cannot be 2785 ** determined due to NULLs. 2786 ** 2787 ** This routine generates code that jumps to destIfFalse if the LHS is not 2788 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2789 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2790 ** within the RHS then fall through. 2791 ** 2792 ** See the separate in-operator.md documentation file in the canonical 2793 ** SQLite source tree for additional information. 2794 */ 2795 static void sqlite3ExprCodeIN( 2796 Parse *pParse, /* Parsing and code generating context */ 2797 Expr *pExpr, /* The IN expression */ 2798 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2799 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2800 ){ 2801 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2802 int eType; /* Type of the RHS */ 2803 int rLhs; /* Register(s) holding the LHS values */ 2804 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2805 Vdbe *v; /* Statement under construction */ 2806 int *aiMap = 0; /* Map from vector field to index column */ 2807 char *zAff = 0; /* Affinity string for comparisons */ 2808 int nVector; /* Size of vectors for this IN operator */ 2809 int iDummy; /* Dummy parameter to exprCodeVector() */ 2810 Expr *pLeft; /* The LHS of the IN operator */ 2811 int i; /* loop counter */ 2812 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2813 int destStep6 = 0; /* Start of code for Step 6 */ 2814 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2815 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2816 int addrTop; /* Top of the step-6 loop */ 2817 2818 pLeft = pExpr->pLeft; 2819 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2820 zAff = exprINAffinity(pParse, pExpr); 2821 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2822 aiMap = (int*)sqlite3DbMallocZero( 2823 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2824 ); 2825 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2826 2827 /* Attempt to compute the RHS. After this step, if anything other than 2828 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2829 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2830 ** the RHS has not yet been coded. */ 2831 v = pParse->pVdbe; 2832 assert( v!=0 ); /* OOM detected prior to this routine */ 2833 VdbeNoopComment((v, "begin IN expr")); 2834 eType = sqlite3FindInIndex(pParse, pExpr, 2835 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2836 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2837 2838 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2839 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2840 ); 2841 #ifdef SQLITE_DEBUG 2842 /* Confirm that aiMap[] contains nVector integer values between 0 and 2843 ** nVector-1. */ 2844 for(i=0; i<nVector; i++){ 2845 int j, cnt; 2846 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2847 assert( cnt==1 ); 2848 } 2849 #endif 2850 2851 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2852 ** vector, then it is stored in an array of nVector registers starting 2853 ** at r1. 2854 ** 2855 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2856 ** so that the fields are in the same order as an existing index. The 2857 ** aiMap[] array contains a mapping from the original LHS field order to 2858 ** the field order that matches the RHS index. 2859 */ 2860 sqlite3ExprCachePush(pParse); 2861 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2862 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2863 if( i==nVector ){ 2864 /* LHS fields are not reordered */ 2865 rLhs = rLhsOrig; 2866 }else{ 2867 /* Need to reorder the LHS fields according to aiMap */ 2868 rLhs = sqlite3GetTempRange(pParse, nVector); 2869 for(i=0; i<nVector; i++){ 2870 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2871 } 2872 } 2873 2874 /* If sqlite3FindInIndex() did not find or create an index that is 2875 ** suitable for evaluating the IN operator, then evaluate using a 2876 ** sequence of comparisons. 2877 ** 2878 ** This is step (1) in the in-operator.md optimized algorithm. 2879 */ 2880 if( eType==IN_INDEX_NOOP ){ 2881 ExprList *pList = pExpr->x.pList; 2882 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2883 int labelOk = sqlite3VdbeMakeLabel(v); 2884 int r2, regToFree; 2885 int regCkNull = 0; 2886 int ii; 2887 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2888 if( destIfNull!=destIfFalse ){ 2889 regCkNull = sqlite3GetTempReg(pParse); 2890 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2891 } 2892 for(ii=0; ii<pList->nExpr; ii++){ 2893 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2894 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2895 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2896 } 2897 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2898 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2899 (void*)pColl, P4_COLLSEQ); 2900 VdbeCoverageIf(v, ii<pList->nExpr-1); 2901 VdbeCoverageIf(v, ii==pList->nExpr-1); 2902 sqlite3VdbeChangeP5(v, zAff[0]); 2903 }else{ 2904 assert( destIfNull==destIfFalse ); 2905 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2906 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2907 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2908 } 2909 sqlite3ReleaseTempReg(pParse, regToFree); 2910 } 2911 if( regCkNull ){ 2912 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2913 sqlite3VdbeGoto(v, destIfFalse); 2914 } 2915 sqlite3VdbeResolveLabel(v, labelOk); 2916 sqlite3ReleaseTempReg(pParse, regCkNull); 2917 goto sqlite3ExprCodeIN_finished; 2918 } 2919 2920 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2921 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2922 ** We will then skip the binary search of the RHS. 2923 */ 2924 if( destIfNull==destIfFalse ){ 2925 destStep2 = destIfFalse; 2926 }else{ 2927 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2928 } 2929 for(i=0; i<nVector; i++){ 2930 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2931 if( sqlite3ExprCanBeNull(p) ){ 2932 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2933 VdbeCoverage(v); 2934 } 2935 } 2936 2937 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2938 ** of the RHS using the LHS as a probe. If found, the result is 2939 ** true. 2940 */ 2941 if( eType==IN_INDEX_ROWID ){ 2942 /* In this case, the RHS is the ROWID of table b-tree and so we also 2943 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2944 ** into a single opcode. */ 2945 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2946 VdbeCoverage(v); 2947 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2948 }else{ 2949 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2950 if( destIfFalse==destIfNull ){ 2951 /* Combine Step 3 and Step 5 into a single opcode */ 2952 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2953 rLhs, nVector); VdbeCoverage(v); 2954 goto sqlite3ExprCodeIN_finished; 2955 } 2956 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 2957 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 2958 rLhs, nVector); VdbeCoverage(v); 2959 } 2960 2961 /* Step 4. If the RHS is known to be non-NULL and we did not find 2962 ** an match on the search above, then the result must be FALSE. 2963 */ 2964 if( rRhsHasNull && nVector==1 ){ 2965 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 2966 VdbeCoverage(v); 2967 } 2968 2969 /* Step 5. If we do not care about the difference between NULL and 2970 ** FALSE, then just return false. 2971 */ 2972 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 2973 2974 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 2975 ** If any comparison is NULL, then the result is NULL. If all 2976 ** comparisons are FALSE then the final result is FALSE. 2977 ** 2978 ** For a scalar LHS, it is sufficient to check just the first row 2979 ** of the RHS. 2980 */ 2981 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 2982 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2983 VdbeCoverage(v); 2984 if( nVector>1 ){ 2985 destNotNull = sqlite3VdbeMakeLabel(v); 2986 }else{ 2987 /* For nVector==1, combine steps 6 and 7 by immediately returning 2988 ** FALSE if the first comparison is not NULL */ 2989 destNotNull = destIfFalse; 2990 } 2991 for(i=0; i<nVector; i++){ 2992 Expr *p; 2993 CollSeq *pColl; 2994 int r3 = sqlite3GetTempReg(pParse); 2995 p = sqlite3VectorFieldSubexpr(pLeft, i); 2996 pColl = sqlite3ExprCollSeq(pParse, p); 2997 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 2998 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 2999 (void*)pColl, P4_COLLSEQ); 3000 VdbeCoverage(v); 3001 sqlite3ReleaseTempReg(pParse, r3); 3002 } 3003 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3004 if( nVector>1 ){ 3005 sqlite3VdbeResolveLabel(v, destNotNull); 3006 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3007 VdbeCoverage(v); 3008 3009 /* Step 7: If we reach this point, we know that the result must 3010 ** be false. */ 3011 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3012 } 3013 3014 /* Jumps here in order to return true. */ 3015 sqlite3VdbeJumpHere(v, addrTruthOp); 3016 3017 sqlite3ExprCodeIN_finished: 3018 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3019 sqlite3ExprCachePop(pParse); 3020 VdbeComment((v, "end IN expr")); 3021 sqlite3ExprCodeIN_oom_error: 3022 sqlite3DbFree(pParse->db, aiMap); 3023 sqlite3DbFree(pParse->db, zAff); 3024 } 3025 #endif /* SQLITE_OMIT_SUBQUERY */ 3026 3027 #ifndef SQLITE_OMIT_FLOATING_POINT 3028 /* 3029 ** Generate an instruction that will put the floating point 3030 ** value described by z[0..n-1] into register iMem. 3031 ** 3032 ** The z[] string will probably not be zero-terminated. But the 3033 ** z[n] character is guaranteed to be something that does not look 3034 ** like the continuation of the number. 3035 */ 3036 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3037 if( ALWAYS(z!=0) ){ 3038 double value; 3039 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3040 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3041 if( negateFlag ) value = -value; 3042 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3043 } 3044 } 3045 #endif 3046 3047 3048 /* 3049 ** Generate an instruction that will put the integer describe by 3050 ** text z[0..n-1] into register iMem. 3051 ** 3052 ** Expr.u.zToken is always UTF8 and zero-terminated. 3053 */ 3054 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3055 Vdbe *v = pParse->pVdbe; 3056 if( pExpr->flags & EP_IntValue ){ 3057 int i = pExpr->u.iValue; 3058 assert( i>=0 ); 3059 if( negFlag ) i = -i; 3060 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3061 }else{ 3062 int c; 3063 i64 value; 3064 const char *z = pExpr->u.zToken; 3065 assert( z!=0 ); 3066 c = sqlite3DecOrHexToI64(z, &value); 3067 if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ 3068 #ifdef SQLITE_OMIT_FLOATING_POINT 3069 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3070 #else 3071 #ifndef SQLITE_OMIT_HEX_INTEGER 3072 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3073 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3074 }else 3075 #endif 3076 { 3077 codeReal(v, z, negFlag, iMem); 3078 } 3079 #endif 3080 }else{ 3081 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 3082 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3083 } 3084 } 3085 } 3086 3087 /* 3088 ** Erase column-cache entry number i 3089 */ 3090 static void cacheEntryClear(Parse *pParse, int i){ 3091 if( pParse->aColCache[i].tempReg ){ 3092 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3093 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3094 } 3095 } 3096 pParse->nColCache--; 3097 if( i<pParse->nColCache ){ 3098 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3099 } 3100 } 3101 3102 3103 /* 3104 ** Record in the column cache that a particular column from a 3105 ** particular table is stored in a particular register. 3106 */ 3107 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3108 int i; 3109 int minLru; 3110 int idxLru; 3111 struct yColCache *p; 3112 3113 /* Unless an error has occurred, register numbers are always positive. */ 3114 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3115 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3116 3117 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3118 ** for testing only - to verify that SQLite always gets the same answer 3119 ** with and without the column cache. 3120 */ 3121 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3122 3123 /* First replace any existing entry. 3124 ** 3125 ** Actually, the way the column cache is currently used, we are guaranteed 3126 ** that the object will never already be in cache. Verify this guarantee. 3127 */ 3128 #ifndef NDEBUG 3129 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3130 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3131 } 3132 #endif 3133 3134 /* If the cache is already full, delete the least recently used entry */ 3135 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3136 minLru = 0x7fffffff; 3137 idxLru = -1; 3138 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3139 if( p->lru<minLru ){ 3140 idxLru = i; 3141 minLru = p->lru; 3142 } 3143 } 3144 p = &pParse->aColCache[idxLru]; 3145 }else{ 3146 p = &pParse->aColCache[pParse->nColCache++]; 3147 } 3148 3149 /* Add the new entry to the end of the cache */ 3150 p->iLevel = pParse->iCacheLevel; 3151 p->iTable = iTab; 3152 p->iColumn = iCol; 3153 p->iReg = iReg; 3154 p->tempReg = 0; 3155 p->lru = pParse->iCacheCnt++; 3156 } 3157 3158 /* 3159 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3160 ** Purge the range of registers from the column cache. 3161 */ 3162 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3163 int i = 0; 3164 while( i<pParse->nColCache ){ 3165 struct yColCache *p = &pParse->aColCache[i]; 3166 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3167 cacheEntryClear(pParse, i); 3168 }else{ 3169 i++; 3170 } 3171 } 3172 } 3173 3174 /* 3175 ** Remember the current column cache context. Any new entries added 3176 ** added to the column cache after this call are removed when the 3177 ** corresponding pop occurs. 3178 */ 3179 void sqlite3ExprCachePush(Parse *pParse){ 3180 pParse->iCacheLevel++; 3181 #ifdef SQLITE_DEBUG 3182 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3183 printf("PUSH to %d\n", pParse->iCacheLevel); 3184 } 3185 #endif 3186 } 3187 3188 /* 3189 ** Remove from the column cache any entries that were added since the 3190 ** the previous sqlite3ExprCachePush operation. In other words, restore 3191 ** the cache to the state it was in prior the most recent Push. 3192 */ 3193 void sqlite3ExprCachePop(Parse *pParse){ 3194 int i = 0; 3195 assert( pParse->iCacheLevel>=1 ); 3196 pParse->iCacheLevel--; 3197 #ifdef SQLITE_DEBUG 3198 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3199 printf("POP to %d\n", pParse->iCacheLevel); 3200 } 3201 #endif 3202 while( i<pParse->nColCache ){ 3203 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3204 cacheEntryClear(pParse, i); 3205 }else{ 3206 i++; 3207 } 3208 } 3209 } 3210 3211 /* 3212 ** When a cached column is reused, make sure that its register is 3213 ** no longer available as a temp register. ticket #3879: that same 3214 ** register might be in the cache in multiple places, so be sure to 3215 ** get them all. 3216 */ 3217 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3218 int i; 3219 struct yColCache *p; 3220 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3221 if( p->iReg==iReg ){ 3222 p->tempReg = 0; 3223 } 3224 } 3225 } 3226 3227 /* Generate code that will load into register regOut a value that is 3228 ** appropriate for the iIdxCol-th column of index pIdx. 3229 */ 3230 void sqlite3ExprCodeLoadIndexColumn( 3231 Parse *pParse, /* The parsing context */ 3232 Index *pIdx, /* The index whose column is to be loaded */ 3233 int iTabCur, /* Cursor pointing to a table row */ 3234 int iIdxCol, /* The column of the index to be loaded */ 3235 int regOut /* Store the index column value in this register */ 3236 ){ 3237 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3238 if( iTabCol==XN_EXPR ){ 3239 assert( pIdx->aColExpr ); 3240 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3241 pParse->iSelfTab = iTabCur + 1; 3242 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3243 pParse->iSelfTab = 0; 3244 }else{ 3245 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3246 iTabCol, regOut); 3247 } 3248 } 3249 3250 /* 3251 ** Generate code to extract the value of the iCol-th column of a table. 3252 */ 3253 void sqlite3ExprCodeGetColumnOfTable( 3254 Vdbe *v, /* The VDBE under construction */ 3255 Table *pTab, /* The table containing the value */ 3256 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3257 int iCol, /* Index of the column to extract */ 3258 int regOut /* Extract the value into this register */ 3259 ){ 3260 if( pTab==0 ){ 3261 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3262 return; 3263 } 3264 if( iCol<0 || iCol==pTab->iPKey ){ 3265 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3266 }else{ 3267 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3268 int x = iCol; 3269 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3270 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3271 } 3272 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3273 } 3274 if( iCol>=0 ){ 3275 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3276 } 3277 } 3278 3279 /* 3280 ** Generate code that will extract the iColumn-th column from 3281 ** table pTab and store the column value in a register. 3282 ** 3283 ** An effort is made to store the column value in register iReg. This 3284 ** is not garanteeed for GetColumn() - the result can be stored in 3285 ** any register. But the result is guaranteed to land in register iReg 3286 ** for GetColumnToReg(). 3287 ** 3288 ** There must be an open cursor to pTab in iTable when this routine 3289 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3290 */ 3291 int sqlite3ExprCodeGetColumn( 3292 Parse *pParse, /* Parsing and code generating context */ 3293 Table *pTab, /* Description of the table we are reading from */ 3294 int iColumn, /* Index of the table column */ 3295 int iTable, /* The cursor pointing to the table */ 3296 int iReg, /* Store results here */ 3297 u8 p5 /* P5 value for OP_Column + FLAGS */ 3298 ){ 3299 Vdbe *v = pParse->pVdbe; 3300 int i; 3301 struct yColCache *p; 3302 3303 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3304 if( p->iTable==iTable && p->iColumn==iColumn ){ 3305 p->lru = pParse->iCacheCnt++; 3306 sqlite3ExprCachePinRegister(pParse, p->iReg); 3307 return p->iReg; 3308 } 3309 } 3310 assert( v!=0 ); 3311 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3312 if( p5 ){ 3313 sqlite3VdbeChangeP5(v, p5); 3314 }else{ 3315 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3316 } 3317 return iReg; 3318 } 3319 void sqlite3ExprCodeGetColumnToReg( 3320 Parse *pParse, /* Parsing and code generating context */ 3321 Table *pTab, /* Description of the table we are reading from */ 3322 int iColumn, /* Index of the table column */ 3323 int iTable, /* The cursor pointing to the table */ 3324 int iReg /* Store results here */ 3325 ){ 3326 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3327 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3328 } 3329 3330 3331 /* 3332 ** Clear all column cache entries. 3333 */ 3334 void sqlite3ExprCacheClear(Parse *pParse){ 3335 int i; 3336 3337 #ifdef SQLITE_DEBUG 3338 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3339 printf("CLEAR\n"); 3340 } 3341 #endif 3342 for(i=0; i<pParse->nColCache; i++){ 3343 if( pParse->aColCache[i].tempReg 3344 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3345 ){ 3346 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3347 } 3348 } 3349 pParse->nColCache = 0; 3350 } 3351 3352 /* 3353 ** Record the fact that an affinity change has occurred on iCount 3354 ** registers starting with iStart. 3355 */ 3356 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3357 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3358 } 3359 3360 /* 3361 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3362 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3363 */ 3364 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3365 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3366 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3367 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3368 } 3369 3370 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3371 /* 3372 ** Return true if any register in the range iFrom..iTo (inclusive) 3373 ** is used as part of the column cache. 3374 ** 3375 ** This routine is used within assert() and testcase() macros only 3376 ** and does not appear in a normal build. 3377 */ 3378 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3379 int i; 3380 struct yColCache *p; 3381 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3382 int r = p->iReg; 3383 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3384 } 3385 return 0; 3386 } 3387 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3388 3389 3390 /* 3391 ** Convert a scalar expression node to a TK_REGISTER referencing 3392 ** register iReg. The caller must ensure that iReg already contains 3393 ** the correct value for the expression. 3394 */ 3395 static void exprToRegister(Expr *p, int iReg){ 3396 p->op2 = p->op; 3397 p->op = TK_REGISTER; 3398 p->iTable = iReg; 3399 ExprClearProperty(p, EP_Skip); 3400 } 3401 3402 /* 3403 ** Evaluate an expression (either a vector or a scalar expression) and store 3404 ** the result in continguous temporary registers. Return the index of 3405 ** the first register used to store the result. 3406 ** 3407 ** If the returned result register is a temporary scalar, then also write 3408 ** that register number into *piFreeable. If the returned result register 3409 ** is not a temporary or if the expression is a vector set *piFreeable 3410 ** to 0. 3411 */ 3412 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3413 int iResult; 3414 int nResult = sqlite3ExprVectorSize(p); 3415 if( nResult==1 ){ 3416 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3417 }else{ 3418 *piFreeable = 0; 3419 if( p->op==TK_SELECT ){ 3420 #if SQLITE_OMIT_SUBQUERY 3421 iResult = 0; 3422 #else 3423 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3424 #endif 3425 }else{ 3426 int i; 3427 iResult = pParse->nMem+1; 3428 pParse->nMem += nResult; 3429 for(i=0; i<nResult; i++){ 3430 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3431 } 3432 } 3433 } 3434 return iResult; 3435 } 3436 3437 3438 /* 3439 ** Generate code into the current Vdbe to evaluate the given 3440 ** expression. Attempt to store the results in register "target". 3441 ** Return the register where results are stored. 3442 ** 3443 ** With this routine, there is no guarantee that results will 3444 ** be stored in target. The result might be stored in some other 3445 ** register if it is convenient to do so. The calling function 3446 ** must check the return code and move the results to the desired 3447 ** register. 3448 */ 3449 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3450 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3451 int op; /* The opcode being coded */ 3452 int inReg = target; /* Results stored in register inReg */ 3453 int regFree1 = 0; /* If non-zero free this temporary register */ 3454 int regFree2 = 0; /* If non-zero free this temporary register */ 3455 int r1, r2; /* Various register numbers */ 3456 Expr tempX; /* Temporary expression node */ 3457 int p5 = 0; 3458 3459 assert( target>0 && target<=pParse->nMem ); 3460 if( v==0 ){ 3461 assert( pParse->db->mallocFailed ); 3462 return 0; 3463 } 3464 3465 if( pExpr==0 ){ 3466 op = TK_NULL; 3467 }else{ 3468 op = pExpr->op; 3469 } 3470 switch( op ){ 3471 case TK_AGG_COLUMN: { 3472 AggInfo *pAggInfo = pExpr->pAggInfo; 3473 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3474 if( !pAggInfo->directMode ){ 3475 assert( pCol->iMem>0 ); 3476 return pCol->iMem; 3477 }else if( pAggInfo->useSortingIdx ){ 3478 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3479 pCol->iSorterColumn, target); 3480 return target; 3481 } 3482 /* Otherwise, fall thru into the TK_COLUMN case */ 3483 } 3484 case TK_COLUMN: { 3485 int iTab = pExpr->iTable; 3486 if( iTab<0 ){ 3487 if( pParse->iSelfTab<0 ){ 3488 /* Generating CHECK constraints or inserting into partial index */ 3489 return pExpr->iColumn - pParse->iSelfTab; 3490 }else{ 3491 /* Coding an expression that is part of an index where column names 3492 ** in the index refer to the table to which the index belongs */ 3493 iTab = pParse->iSelfTab - 1; 3494 } 3495 } 3496 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3497 pExpr->iColumn, iTab, target, 3498 pExpr->op2); 3499 } 3500 case TK_INTEGER: { 3501 codeInteger(pParse, pExpr, 0, target); 3502 return target; 3503 } 3504 #ifndef SQLITE_OMIT_FLOATING_POINT 3505 case TK_FLOAT: { 3506 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3507 codeReal(v, pExpr->u.zToken, 0, target); 3508 return target; 3509 } 3510 #endif 3511 case TK_STRING: { 3512 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3513 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3514 return target; 3515 } 3516 case TK_NULL: { 3517 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3518 return target; 3519 } 3520 #ifndef SQLITE_OMIT_BLOB_LITERAL 3521 case TK_BLOB: { 3522 int n; 3523 const char *z; 3524 char *zBlob; 3525 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3526 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3527 assert( pExpr->u.zToken[1]=='\'' ); 3528 z = &pExpr->u.zToken[2]; 3529 n = sqlite3Strlen30(z) - 1; 3530 assert( z[n]=='\'' ); 3531 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3532 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3533 return target; 3534 } 3535 #endif 3536 case TK_VARIABLE: { 3537 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3538 assert( pExpr->u.zToken!=0 ); 3539 assert( pExpr->u.zToken[0]!=0 ); 3540 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3541 if( pExpr->u.zToken[1]!=0 ){ 3542 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3543 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3544 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3545 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3546 } 3547 return target; 3548 } 3549 case TK_REGISTER: { 3550 return pExpr->iTable; 3551 } 3552 #ifndef SQLITE_OMIT_CAST 3553 case TK_CAST: { 3554 /* Expressions of the form: CAST(pLeft AS token) */ 3555 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3556 if( inReg!=target ){ 3557 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3558 inReg = target; 3559 } 3560 sqlite3VdbeAddOp2(v, OP_Cast, target, 3561 sqlite3AffinityType(pExpr->u.zToken, 0)); 3562 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3563 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3564 return inReg; 3565 } 3566 #endif /* SQLITE_OMIT_CAST */ 3567 case TK_IS: 3568 case TK_ISNOT: 3569 op = (op==TK_IS) ? TK_EQ : TK_NE; 3570 p5 = SQLITE_NULLEQ; 3571 /* fall-through */ 3572 case TK_LT: 3573 case TK_LE: 3574 case TK_GT: 3575 case TK_GE: 3576 case TK_NE: 3577 case TK_EQ: { 3578 Expr *pLeft = pExpr->pLeft; 3579 if( sqlite3ExprIsVector(pLeft) ){ 3580 codeVectorCompare(pParse, pExpr, target, op, p5); 3581 }else{ 3582 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3583 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3584 codeCompare(pParse, pLeft, pExpr->pRight, op, 3585 r1, r2, inReg, SQLITE_STOREP2 | p5); 3586 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3587 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3588 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3589 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3590 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3591 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3592 testcase( regFree1==0 ); 3593 testcase( regFree2==0 ); 3594 } 3595 break; 3596 } 3597 case TK_AND: 3598 case TK_OR: 3599 case TK_PLUS: 3600 case TK_STAR: 3601 case TK_MINUS: 3602 case TK_REM: 3603 case TK_BITAND: 3604 case TK_BITOR: 3605 case TK_SLASH: 3606 case TK_LSHIFT: 3607 case TK_RSHIFT: 3608 case TK_CONCAT: { 3609 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3610 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3611 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3612 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3613 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3614 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3615 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3616 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3617 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3618 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3619 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3620 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3621 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3622 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3623 testcase( regFree1==0 ); 3624 testcase( regFree2==0 ); 3625 break; 3626 } 3627 case TK_UMINUS: { 3628 Expr *pLeft = pExpr->pLeft; 3629 assert( pLeft ); 3630 if( pLeft->op==TK_INTEGER ){ 3631 codeInteger(pParse, pLeft, 1, target); 3632 return target; 3633 #ifndef SQLITE_OMIT_FLOATING_POINT 3634 }else if( pLeft->op==TK_FLOAT ){ 3635 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3636 codeReal(v, pLeft->u.zToken, 1, target); 3637 return target; 3638 #endif 3639 }else{ 3640 tempX.op = TK_INTEGER; 3641 tempX.flags = EP_IntValue|EP_TokenOnly; 3642 tempX.u.iValue = 0; 3643 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3644 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3645 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3646 testcase( regFree2==0 ); 3647 } 3648 break; 3649 } 3650 case TK_BITNOT: 3651 case TK_NOT: { 3652 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3653 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3654 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3655 testcase( regFree1==0 ); 3656 sqlite3VdbeAddOp2(v, op, r1, inReg); 3657 break; 3658 } 3659 case TK_ISNULL: 3660 case TK_NOTNULL: { 3661 int addr; 3662 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3663 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3664 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3665 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3666 testcase( regFree1==0 ); 3667 addr = sqlite3VdbeAddOp1(v, op, r1); 3668 VdbeCoverageIf(v, op==TK_ISNULL); 3669 VdbeCoverageIf(v, op==TK_NOTNULL); 3670 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3671 sqlite3VdbeJumpHere(v, addr); 3672 break; 3673 } 3674 case TK_AGG_FUNCTION: { 3675 AggInfo *pInfo = pExpr->pAggInfo; 3676 if( pInfo==0 ){ 3677 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3678 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3679 }else{ 3680 return pInfo->aFunc[pExpr->iAgg].iMem; 3681 } 3682 break; 3683 } 3684 case TK_FUNCTION: { 3685 ExprList *pFarg; /* List of function arguments */ 3686 int nFarg; /* Number of function arguments */ 3687 FuncDef *pDef; /* The function definition object */ 3688 const char *zId; /* The function name */ 3689 u32 constMask = 0; /* Mask of function arguments that are constant */ 3690 int i; /* Loop counter */ 3691 sqlite3 *db = pParse->db; /* The database connection */ 3692 u8 enc = ENC(db); /* The text encoding used by this database */ 3693 CollSeq *pColl = 0; /* A collating sequence */ 3694 3695 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3696 /* SQL functions can be expensive. So try to move constant functions 3697 ** out of the inner loop, even if that means an extra OP_Copy. */ 3698 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3699 } 3700 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3701 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3702 pFarg = 0; 3703 }else{ 3704 pFarg = pExpr->x.pList; 3705 } 3706 nFarg = pFarg ? pFarg->nExpr : 0; 3707 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3708 zId = pExpr->u.zToken; 3709 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3710 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3711 if( pDef==0 && pParse->explain ){ 3712 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3713 } 3714 #endif 3715 if( pDef==0 || pDef->xFinalize!=0 ){ 3716 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3717 break; 3718 } 3719 3720 /* Attempt a direct implementation of the built-in COALESCE() and 3721 ** IFNULL() functions. This avoids unnecessary evaluation of 3722 ** arguments past the first non-NULL argument. 3723 */ 3724 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3725 int endCoalesce = sqlite3VdbeMakeLabel(v); 3726 assert( nFarg>=2 ); 3727 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3728 for(i=1; i<nFarg; i++){ 3729 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3730 VdbeCoverage(v); 3731 sqlite3ExprCacheRemove(pParse, target, 1); 3732 sqlite3ExprCachePush(pParse); 3733 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3734 sqlite3ExprCachePop(pParse); 3735 } 3736 sqlite3VdbeResolveLabel(v, endCoalesce); 3737 break; 3738 } 3739 3740 /* The UNLIKELY() function is a no-op. The result is the value 3741 ** of the first argument. 3742 */ 3743 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3744 assert( nFarg>=1 ); 3745 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3746 } 3747 3748 #ifdef SQLITE_DEBUG 3749 /* The AFFINITY() function evaluates to a string that describes 3750 ** the type affinity of the argument. This is used for testing of 3751 ** the SQLite type logic. 3752 */ 3753 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3754 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3755 char aff; 3756 assert( nFarg==1 ); 3757 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3758 sqlite3VdbeLoadString(v, target, 3759 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3760 return target; 3761 } 3762 #endif 3763 3764 for(i=0; i<nFarg; i++){ 3765 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3766 testcase( i==31 ); 3767 constMask |= MASKBIT32(i); 3768 } 3769 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3770 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3771 } 3772 } 3773 if( pFarg ){ 3774 if( constMask ){ 3775 r1 = pParse->nMem+1; 3776 pParse->nMem += nFarg; 3777 }else{ 3778 r1 = sqlite3GetTempRange(pParse, nFarg); 3779 } 3780 3781 /* For length() and typeof() functions with a column argument, 3782 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3783 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3784 ** loading. 3785 */ 3786 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3787 u8 exprOp; 3788 assert( nFarg==1 ); 3789 assert( pFarg->a[0].pExpr!=0 ); 3790 exprOp = pFarg->a[0].pExpr->op; 3791 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3792 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3793 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3794 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3795 pFarg->a[0].pExpr->op2 = 3796 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3797 } 3798 } 3799 3800 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3801 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3802 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3803 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3804 }else{ 3805 r1 = 0; 3806 } 3807 #ifndef SQLITE_OMIT_VIRTUALTABLE 3808 /* Possibly overload the function if the first argument is 3809 ** a virtual table column. 3810 ** 3811 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3812 ** second argument, not the first, as the argument to test to 3813 ** see if it is a column in a virtual table. This is done because 3814 ** the left operand of infix functions (the operand we want to 3815 ** control overloading) ends up as the second argument to the 3816 ** function. The expression "A glob B" is equivalent to 3817 ** "glob(B,A). We want to use the A in "A glob B" to test 3818 ** for function overloading. But we use the B term in "glob(B,A)". 3819 */ 3820 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3821 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3822 }else if( nFarg>0 ){ 3823 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3824 } 3825 #endif 3826 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3827 if( !pColl ) pColl = db->pDfltColl; 3828 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3829 } 3830 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3831 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3832 sqlite3VdbeChangeP5(v, (u8)nFarg); 3833 if( nFarg && constMask==0 ){ 3834 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3835 } 3836 return target; 3837 } 3838 #ifndef SQLITE_OMIT_SUBQUERY 3839 case TK_EXISTS: 3840 case TK_SELECT: { 3841 int nCol; 3842 testcase( op==TK_EXISTS ); 3843 testcase( op==TK_SELECT ); 3844 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3845 sqlite3SubselectError(pParse, nCol, 1); 3846 }else{ 3847 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3848 } 3849 break; 3850 } 3851 case TK_SELECT_COLUMN: { 3852 int n; 3853 if( pExpr->pLeft->iTable==0 ){ 3854 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3855 } 3856 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3857 if( pExpr->iTable 3858 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3859 ){ 3860 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3861 pExpr->iTable, n); 3862 } 3863 return pExpr->pLeft->iTable + pExpr->iColumn; 3864 } 3865 case TK_IN: { 3866 int destIfFalse = sqlite3VdbeMakeLabel(v); 3867 int destIfNull = sqlite3VdbeMakeLabel(v); 3868 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3869 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3870 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3871 sqlite3VdbeResolveLabel(v, destIfFalse); 3872 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3873 sqlite3VdbeResolveLabel(v, destIfNull); 3874 return target; 3875 } 3876 #endif /* SQLITE_OMIT_SUBQUERY */ 3877 3878 3879 /* 3880 ** x BETWEEN y AND z 3881 ** 3882 ** This is equivalent to 3883 ** 3884 ** x>=y AND x<=z 3885 ** 3886 ** X is stored in pExpr->pLeft. 3887 ** Y is stored in pExpr->pList->a[0].pExpr. 3888 ** Z is stored in pExpr->pList->a[1].pExpr. 3889 */ 3890 case TK_BETWEEN: { 3891 exprCodeBetween(pParse, pExpr, target, 0, 0); 3892 return target; 3893 } 3894 case TK_SPAN: 3895 case TK_COLLATE: 3896 case TK_UPLUS: { 3897 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3898 } 3899 3900 case TK_TRIGGER: { 3901 /* If the opcode is TK_TRIGGER, then the expression is a reference 3902 ** to a column in the new.* or old.* pseudo-tables available to 3903 ** trigger programs. In this case Expr.iTable is set to 1 for the 3904 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3905 ** is set to the column of the pseudo-table to read, or to -1 to 3906 ** read the rowid field. 3907 ** 3908 ** The expression is implemented using an OP_Param opcode. The p1 3909 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3910 ** to reference another column of the old.* pseudo-table, where 3911 ** i is the index of the column. For a new.rowid reference, p1 is 3912 ** set to (n+1), where n is the number of columns in each pseudo-table. 3913 ** For a reference to any other column in the new.* pseudo-table, p1 3914 ** is set to (n+2+i), where n and i are as defined previously. For 3915 ** example, if the table on which triggers are being fired is 3916 ** declared as: 3917 ** 3918 ** CREATE TABLE t1(a, b); 3919 ** 3920 ** Then p1 is interpreted as follows: 3921 ** 3922 ** p1==0 -> old.rowid p1==3 -> new.rowid 3923 ** p1==1 -> old.a p1==4 -> new.a 3924 ** p1==2 -> old.b p1==5 -> new.b 3925 */ 3926 Table *pTab = pExpr->pTab; 3927 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3928 3929 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3930 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3931 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3932 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3933 3934 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3935 VdbeComment((v, "%s.%s -> $%d", 3936 (pExpr->iTable ? "new" : "old"), 3937 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3938 target 3939 )); 3940 3941 #ifndef SQLITE_OMIT_FLOATING_POINT 3942 /* If the column has REAL affinity, it may currently be stored as an 3943 ** integer. Use OP_RealAffinity to make sure it is really real. 3944 ** 3945 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3946 ** floating point when extracting it from the record. */ 3947 if( pExpr->iColumn>=0 3948 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3949 ){ 3950 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3951 } 3952 #endif 3953 break; 3954 } 3955 3956 case TK_VECTOR: { 3957 sqlite3ErrorMsg(pParse, "row value misused"); 3958 break; 3959 } 3960 3961 case TK_IF_NULL_ROW: { 3962 int addrINR; 3963 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 3964 sqlite3ExprCachePush(pParse); 3965 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3966 sqlite3ExprCachePop(pParse); 3967 sqlite3VdbeJumpHere(v, addrINR); 3968 sqlite3VdbeChangeP3(v, addrINR, inReg); 3969 break; 3970 } 3971 3972 /* 3973 ** Form A: 3974 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3975 ** 3976 ** Form B: 3977 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3978 ** 3979 ** Form A is can be transformed into the equivalent form B as follows: 3980 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3981 ** WHEN x=eN THEN rN ELSE y END 3982 ** 3983 ** X (if it exists) is in pExpr->pLeft. 3984 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3985 ** odd. The Y is also optional. If the number of elements in x.pList 3986 ** is even, then Y is omitted and the "otherwise" result is NULL. 3987 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3988 ** 3989 ** The result of the expression is the Ri for the first matching Ei, 3990 ** or if there is no matching Ei, the ELSE term Y, or if there is 3991 ** no ELSE term, NULL. 3992 */ 3993 default: assert( op==TK_CASE ); { 3994 int endLabel; /* GOTO label for end of CASE stmt */ 3995 int nextCase; /* GOTO label for next WHEN clause */ 3996 int nExpr; /* 2x number of WHEN terms */ 3997 int i; /* Loop counter */ 3998 ExprList *pEList; /* List of WHEN terms */ 3999 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4000 Expr opCompare; /* The X==Ei expression */ 4001 Expr *pX; /* The X expression */ 4002 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4003 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4004 4005 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4006 assert(pExpr->x.pList->nExpr > 0); 4007 pEList = pExpr->x.pList; 4008 aListelem = pEList->a; 4009 nExpr = pEList->nExpr; 4010 endLabel = sqlite3VdbeMakeLabel(v); 4011 if( (pX = pExpr->pLeft)!=0 ){ 4012 tempX = *pX; 4013 testcase( pX->op==TK_COLUMN ); 4014 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4015 testcase( regFree1==0 ); 4016 memset(&opCompare, 0, sizeof(opCompare)); 4017 opCompare.op = TK_EQ; 4018 opCompare.pLeft = &tempX; 4019 pTest = &opCompare; 4020 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4021 ** The value in regFree1 might get SCopy-ed into the file result. 4022 ** So make sure that the regFree1 register is not reused for other 4023 ** purposes and possibly overwritten. */ 4024 regFree1 = 0; 4025 } 4026 for(i=0; i<nExpr-1; i=i+2){ 4027 sqlite3ExprCachePush(pParse); 4028 if( pX ){ 4029 assert( pTest!=0 ); 4030 opCompare.pRight = aListelem[i].pExpr; 4031 }else{ 4032 pTest = aListelem[i].pExpr; 4033 } 4034 nextCase = sqlite3VdbeMakeLabel(v); 4035 testcase( pTest->op==TK_COLUMN ); 4036 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4037 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4038 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4039 sqlite3VdbeGoto(v, endLabel); 4040 sqlite3ExprCachePop(pParse); 4041 sqlite3VdbeResolveLabel(v, nextCase); 4042 } 4043 if( (nExpr&1)!=0 ){ 4044 sqlite3ExprCachePush(pParse); 4045 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4046 sqlite3ExprCachePop(pParse); 4047 }else{ 4048 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4049 } 4050 assert( pParse->db->mallocFailed || pParse->nErr>0 4051 || pParse->iCacheLevel==iCacheLevel ); 4052 sqlite3VdbeResolveLabel(v, endLabel); 4053 break; 4054 } 4055 #ifndef SQLITE_OMIT_TRIGGER 4056 case TK_RAISE: { 4057 assert( pExpr->affinity==OE_Rollback 4058 || pExpr->affinity==OE_Abort 4059 || pExpr->affinity==OE_Fail 4060 || pExpr->affinity==OE_Ignore 4061 ); 4062 if( !pParse->pTriggerTab ){ 4063 sqlite3ErrorMsg(pParse, 4064 "RAISE() may only be used within a trigger-program"); 4065 return 0; 4066 } 4067 if( pExpr->affinity==OE_Abort ){ 4068 sqlite3MayAbort(pParse); 4069 } 4070 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4071 if( pExpr->affinity==OE_Ignore ){ 4072 sqlite3VdbeAddOp4( 4073 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4074 VdbeCoverage(v); 4075 }else{ 4076 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4077 pExpr->affinity, pExpr->u.zToken, 0, 0); 4078 } 4079 4080 break; 4081 } 4082 #endif 4083 } 4084 sqlite3ReleaseTempReg(pParse, regFree1); 4085 sqlite3ReleaseTempReg(pParse, regFree2); 4086 return inReg; 4087 } 4088 4089 /* 4090 ** Factor out the code of the given expression to initialization time. 4091 ** 4092 ** If regDest>=0 then the result is always stored in that register and the 4093 ** result is not reusable. If regDest<0 then this routine is free to 4094 ** store the value whereever it wants. The register where the expression 4095 ** is stored is returned. When regDest<0, two identical expressions will 4096 ** code to the same register. 4097 */ 4098 int sqlite3ExprCodeAtInit( 4099 Parse *pParse, /* Parsing context */ 4100 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4101 int regDest /* Store the value in this register */ 4102 ){ 4103 ExprList *p; 4104 assert( ConstFactorOk(pParse) ); 4105 p = pParse->pConstExpr; 4106 if( regDest<0 && p ){ 4107 struct ExprList_item *pItem; 4108 int i; 4109 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4110 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4111 return pItem->u.iConstExprReg; 4112 } 4113 } 4114 } 4115 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4116 p = sqlite3ExprListAppend(pParse, p, pExpr); 4117 if( p ){ 4118 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4119 pItem->reusable = regDest<0; 4120 if( regDest<0 ) regDest = ++pParse->nMem; 4121 pItem->u.iConstExprReg = regDest; 4122 } 4123 pParse->pConstExpr = p; 4124 return regDest; 4125 } 4126 4127 /* 4128 ** Generate code to evaluate an expression and store the results 4129 ** into a register. Return the register number where the results 4130 ** are stored. 4131 ** 4132 ** If the register is a temporary register that can be deallocated, 4133 ** then write its number into *pReg. If the result register is not 4134 ** a temporary, then set *pReg to zero. 4135 ** 4136 ** If pExpr is a constant, then this routine might generate this 4137 ** code to fill the register in the initialization section of the 4138 ** VDBE program, in order to factor it out of the evaluation loop. 4139 */ 4140 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4141 int r2; 4142 pExpr = sqlite3ExprSkipCollate(pExpr); 4143 if( ConstFactorOk(pParse) 4144 && pExpr->op!=TK_REGISTER 4145 && sqlite3ExprIsConstantNotJoin(pExpr) 4146 ){ 4147 *pReg = 0; 4148 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4149 }else{ 4150 int r1 = sqlite3GetTempReg(pParse); 4151 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4152 if( r2==r1 ){ 4153 *pReg = r1; 4154 }else{ 4155 sqlite3ReleaseTempReg(pParse, r1); 4156 *pReg = 0; 4157 } 4158 } 4159 return r2; 4160 } 4161 4162 /* 4163 ** Generate code that will evaluate expression pExpr and store the 4164 ** results in register target. The results are guaranteed to appear 4165 ** in register target. 4166 */ 4167 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4168 int inReg; 4169 4170 assert( target>0 && target<=pParse->nMem ); 4171 if( pExpr && pExpr->op==TK_REGISTER ){ 4172 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4173 }else{ 4174 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4175 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4176 if( inReg!=target && pParse->pVdbe ){ 4177 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4178 } 4179 } 4180 } 4181 4182 /* 4183 ** Make a transient copy of expression pExpr and then code it using 4184 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4185 ** except that the input expression is guaranteed to be unchanged. 4186 */ 4187 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4188 sqlite3 *db = pParse->db; 4189 pExpr = sqlite3ExprDup(db, pExpr, 0); 4190 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4191 sqlite3ExprDelete(db, pExpr); 4192 } 4193 4194 /* 4195 ** Generate code that will evaluate expression pExpr and store the 4196 ** results in register target. The results are guaranteed to appear 4197 ** in register target. If the expression is constant, then this routine 4198 ** might choose to code the expression at initialization time. 4199 */ 4200 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4201 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4202 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4203 }else{ 4204 sqlite3ExprCode(pParse, pExpr, target); 4205 } 4206 } 4207 4208 /* 4209 ** Generate code that evaluates the given expression and puts the result 4210 ** in register target. 4211 ** 4212 ** Also make a copy of the expression results into another "cache" register 4213 ** and modify the expression so that the next time it is evaluated, 4214 ** the result is a copy of the cache register. 4215 ** 4216 ** This routine is used for expressions that are used multiple 4217 ** times. They are evaluated once and the results of the expression 4218 ** are reused. 4219 */ 4220 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4221 Vdbe *v = pParse->pVdbe; 4222 int iMem; 4223 4224 assert( target>0 ); 4225 assert( pExpr->op!=TK_REGISTER ); 4226 sqlite3ExprCode(pParse, pExpr, target); 4227 iMem = ++pParse->nMem; 4228 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4229 exprToRegister(pExpr, iMem); 4230 } 4231 4232 /* 4233 ** Generate code that pushes the value of every element of the given 4234 ** expression list into a sequence of registers beginning at target. 4235 ** 4236 ** Return the number of elements evaluated. 4237 ** 4238 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4239 ** filled using OP_SCopy. OP_Copy must be used instead. 4240 ** 4241 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4242 ** factored out into initialization code. 4243 ** 4244 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4245 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4246 ** in registers at srcReg, and so the value can be copied from there. 4247 */ 4248 int sqlite3ExprCodeExprList( 4249 Parse *pParse, /* Parsing context */ 4250 ExprList *pList, /* The expression list to be coded */ 4251 int target, /* Where to write results */ 4252 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4253 u8 flags /* SQLITE_ECEL_* flags */ 4254 ){ 4255 struct ExprList_item *pItem; 4256 int i, j, n; 4257 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4258 Vdbe *v = pParse->pVdbe; 4259 assert( pList!=0 ); 4260 assert( target>0 ); 4261 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4262 n = pList->nExpr; 4263 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4264 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4265 Expr *pExpr = pItem->pExpr; 4266 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4267 if( flags & SQLITE_ECEL_OMITREF ){ 4268 i--; 4269 n--; 4270 }else{ 4271 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4272 } 4273 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4274 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4275 }else{ 4276 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4277 if( inReg!=target+i ){ 4278 VdbeOp *pOp; 4279 if( copyOp==OP_Copy 4280 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4281 && pOp->p1+pOp->p3+1==inReg 4282 && pOp->p2+pOp->p3+1==target+i 4283 ){ 4284 pOp->p3++; 4285 }else{ 4286 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4287 } 4288 } 4289 } 4290 } 4291 return n; 4292 } 4293 4294 /* 4295 ** Generate code for a BETWEEN operator. 4296 ** 4297 ** x BETWEEN y AND z 4298 ** 4299 ** The above is equivalent to 4300 ** 4301 ** x>=y AND x<=z 4302 ** 4303 ** Code it as such, taking care to do the common subexpression 4304 ** elimination of x. 4305 ** 4306 ** The xJumpIf parameter determines details: 4307 ** 4308 ** NULL: Store the boolean result in reg[dest] 4309 ** sqlite3ExprIfTrue: Jump to dest if true 4310 ** sqlite3ExprIfFalse: Jump to dest if false 4311 ** 4312 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4313 */ 4314 static void exprCodeBetween( 4315 Parse *pParse, /* Parsing and code generating context */ 4316 Expr *pExpr, /* The BETWEEN expression */ 4317 int dest, /* Jump destination or storage location */ 4318 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4319 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4320 ){ 4321 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4322 Expr compLeft; /* The x>=y term */ 4323 Expr compRight; /* The x<=z term */ 4324 Expr exprX; /* The x subexpression */ 4325 int regFree1 = 0; /* Temporary use register */ 4326 4327 4328 memset(&compLeft, 0, sizeof(Expr)); 4329 memset(&compRight, 0, sizeof(Expr)); 4330 memset(&exprAnd, 0, sizeof(Expr)); 4331 4332 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4333 exprX = *pExpr->pLeft; 4334 exprAnd.op = TK_AND; 4335 exprAnd.pLeft = &compLeft; 4336 exprAnd.pRight = &compRight; 4337 compLeft.op = TK_GE; 4338 compLeft.pLeft = &exprX; 4339 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4340 compRight.op = TK_LE; 4341 compRight.pLeft = &exprX; 4342 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4343 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4344 if( xJump ){ 4345 xJump(pParse, &exprAnd, dest, jumpIfNull); 4346 }else{ 4347 /* Mark the expression is being from the ON or USING clause of a join 4348 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4349 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4350 ** for clarity, but we are out of bits in the Expr.flags field so we 4351 ** have to reuse the EP_FromJoin bit. Bummer. */ 4352 exprX.flags |= EP_FromJoin; 4353 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4354 } 4355 sqlite3ReleaseTempReg(pParse, regFree1); 4356 4357 /* Ensure adequate test coverage */ 4358 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4359 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4360 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4361 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4362 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4363 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4364 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4365 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4366 testcase( xJump==0 ); 4367 } 4368 4369 /* 4370 ** Generate code for a boolean expression such that a jump is made 4371 ** to the label "dest" if the expression is true but execution 4372 ** continues straight thru if the expression is false. 4373 ** 4374 ** If the expression evaluates to NULL (neither true nor false), then 4375 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4376 ** 4377 ** This code depends on the fact that certain token values (ex: TK_EQ) 4378 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4379 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4380 ** the make process cause these values to align. Assert()s in the code 4381 ** below verify that the numbers are aligned correctly. 4382 */ 4383 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4384 Vdbe *v = pParse->pVdbe; 4385 int op = 0; 4386 int regFree1 = 0; 4387 int regFree2 = 0; 4388 int r1, r2; 4389 4390 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4391 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4392 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4393 op = pExpr->op; 4394 switch( op ){ 4395 case TK_AND: { 4396 int d2 = sqlite3VdbeMakeLabel(v); 4397 testcase( jumpIfNull==0 ); 4398 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4399 sqlite3ExprCachePush(pParse); 4400 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4401 sqlite3VdbeResolveLabel(v, d2); 4402 sqlite3ExprCachePop(pParse); 4403 break; 4404 } 4405 case TK_OR: { 4406 testcase( jumpIfNull==0 ); 4407 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4408 sqlite3ExprCachePush(pParse); 4409 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4410 sqlite3ExprCachePop(pParse); 4411 break; 4412 } 4413 case TK_NOT: { 4414 testcase( jumpIfNull==0 ); 4415 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4416 break; 4417 } 4418 case TK_IS: 4419 case TK_ISNOT: 4420 testcase( op==TK_IS ); 4421 testcase( op==TK_ISNOT ); 4422 op = (op==TK_IS) ? TK_EQ : TK_NE; 4423 jumpIfNull = SQLITE_NULLEQ; 4424 /* Fall thru */ 4425 case TK_LT: 4426 case TK_LE: 4427 case TK_GT: 4428 case TK_GE: 4429 case TK_NE: 4430 case TK_EQ: { 4431 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4432 testcase( jumpIfNull==0 ); 4433 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4434 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4435 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4436 r1, r2, dest, jumpIfNull); 4437 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4438 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4439 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4440 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4441 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4442 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4443 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4444 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4445 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4446 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4447 testcase( regFree1==0 ); 4448 testcase( regFree2==0 ); 4449 break; 4450 } 4451 case TK_ISNULL: 4452 case TK_NOTNULL: { 4453 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4454 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4455 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4456 sqlite3VdbeAddOp2(v, op, r1, dest); 4457 VdbeCoverageIf(v, op==TK_ISNULL); 4458 VdbeCoverageIf(v, op==TK_NOTNULL); 4459 testcase( regFree1==0 ); 4460 break; 4461 } 4462 case TK_BETWEEN: { 4463 testcase( jumpIfNull==0 ); 4464 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4465 break; 4466 } 4467 #ifndef SQLITE_OMIT_SUBQUERY 4468 case TK_IN: { 4469 int destIfFalse = sqlite3VdbeMakeLabel(v); 4470 int destIfNull = jumpIfNull ? dest : destIfFalse; 4471 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4472 sqlite3VdbeGoto(v, dest); 4473 sqlite3VdbeResolveLabel(v, destIfFalse); 4474 break; 4475 } 4476 #endif 4477 default: { 4478 default_expr: 4479 if( exprAlwaysTrue(pExpr) ){ 4480 sqlite3VdbeGoto(v, dest); 4481 }else if( exprAlwaysFalse(pExpr) ){ 4482 /* No-op */ 4483 }else{ 4484 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4485 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4486 VdbeCoverage(v); 4487 testcase( regFree1==0 ); 4488 testcase( jumpIfNull==0 ); 4489 } 4490 break; 4491 } 4492 } 4493 sqlite3ReleaseTempReg(pParse, regFree1); 4494 sqlite3ReleaseTempReg(pParse, regFree2); 4495 } 4496 4497 /* 4498 ** Generate code for a boolean expression such that a jump is made 4499 ** to the label "dest" if the expression is false but execution 4500 ** continues straight thru if the expression is true. 4501 ** 4502 ** If the expression evaluates to NULL (neither true nor false) then 4503 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4504 ** is 0. 4505 */ 4506 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4507 Vdbe *v = pParse->pVdbe; 4508 int op = 0; 4509 int regFree1 = 0; 4510 int regFree2 = 0; 4511 int r1, r2; 4512 4513 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4514 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4515 if( pExpr==0 ) return; 4516 4517 /* The value of pExpr->op and op are related as follows: 4518 ** 4519 ** pExpr->op op 4520 ** --------- ---------- 4521 ** TK_ISNULL OP_NotNull 4522 ** TK_NOTNULL OP_IsNull 4523 ** TK_NE OP_Eq 4524 ** TK_EQ OP_Ne 4525 ** TK_GT OP_Le 4526 ** TK_LE OP_Gt 4527 ** TK_GE OP_Lt 4528 ** TK_LT OP_Ge 4529 ** 4530 ** For other values of pExpr->op, op is undefined and unused. 4531 ** The value of TK_ and OP_ constants are arranged such that we 4532 ** can compute the mapping above using the following expression. 4533 ** Assert()s verify that the computation is correct. 4534 */ 4535 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4536 4537 /* Verify correct alignment of TK_ and OP_ constants 4538 */ 4539 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4540 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4541 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4542 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4543 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4544 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4545 assert( pExpr->op!=TK_GT || op==OP_Le ); 4546 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4547 4548 switch( pExpr->op ){ 4549 case TK_AND: { 4550 testcase( jumpIfNull==0 ); 4551 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4552 sqlite3ExprCachePush(pParse); 4553 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4554 sqlite3ExprCachePop(pParse); 4555 break; 4556 } 4557 case TK_OR: { 4558 int d2 = sqlite3VdbeMakeLabel(v); 4559 testcase( jumpIfNull==0 ); 4560 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4561 sqlite3ExprCachePush(pParse); 4562 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4563 sqlite3VdbeResolveLabel(v, d2); 4564 sqlite3ExprCachePop(pParse); 4565 break; 4566 } 4567 case TK_NOT: { 4568 testcase( jumpIfNull==0 ); 4569 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4570 break; 4571 } 4572 case TK_IS: 4573 case TK_ISNOT: 4574 testcase( pExpr->op==TK_IS ); 4575 testcase( pExpr->op==TK_ISNOT ); 4576 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4577 jumpIfNull = SQLITE_NULLEQ; 4578 /* Fall thru */ 4579 case TK_LT: 4580 case TK_LE: 4581 case TK_GT: 4582 case TK_GE: 4583 case TK_NE: 4584 case TK_EQ: { 4585 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4586 testcase( jumpIfNull==0 ); 4587 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4588 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4589 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4590 r1, r2, dest, jumpIfNull); 4591 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4592 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4593 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4594 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4595 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4596 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4597 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4598 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4599 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4600 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4601 testcase( regFree1==0 ); 4602 testcase( regFree2==0 ); 4603 break; 4604 } 4605 case TK_ISNULL: 4606 case TK_NOTNULL: { 4607 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4608 sqlite3VdbeAddOp2(v, op, r1, dest); 4609 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4610 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4611 testcase( regFree1==0 ); 4612 break; 4613 } 4614 case TK_BETWEEN: { 4615 testcase( jumpIfNull==0 ); 4616 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4617 break; 4618 } 4619 #ifndef SQLITE_OMIT_SUBQUERY 4620 case TK_IN: { 4621 if( jumpIfNull ){ 4622 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4623 }else{ 4624 int destIfNull = sqlite3VdbeMakeLabel(v); 4625 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4626 sqlite3VdbeResolveLabel(v, destIfNull); 4627 } 4628 break; 4629 } 4630 #endif 4631 default: { 4632 default_expr: 4633 if( exprAlwaysFalse(pExpr) ){ 4634 sqlite3VdbeGoto(v, dest); 4635 }else if( exprAlwaysTrue(pExpr) ){ 4636 /* no-op */ 4637 }else{ 4638 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4639 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4640 VdbeCoverage(v); 4641 testcase( regFree1==0 ); 4642 testcase( jumpIfNull==0 ); 4643 } 4644 break; 4645 } 4646 } 4647 sqlite3ReleaseTempReg(pParse, regFree1); 4648 sqlite3ReleaseTempReg(pParse, regFree2); 4649 } 4650 4651 /* 4652 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4653 ** code generation, and that copy is deleted after code generation. This 4654 ** ensures that the original pExpr is unchanged. 4655 */ 4656 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4657 sqlite3 *db = pParse->db; 4658 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4659 if( db->mallocFailed==0 ){ 4660 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4661 } 4662 sqlite3ExprDelete(db, pCopy); 4663 } 4664 4665 /* 4666 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4667 ** type of expression. 4668 ** 4669 ** If pExpr is a simple SQL value - an integer, real, string, blob 4670 ** or NULL value - then the VDBE currently being prepared is configured 4671 ** to re-prepare each time a new value is bound to variable pVar. 4672 ** 4673 ** Additionally, if pExpr is a simple SQL value and the value is the 4674 ** same as that currently bound to variable pVar, non-zero is returned. 4675 ** Otherwise, if the values are not the same or if pExpr is not a simple 4676 ** SQL value, zero is returned. 4677 */ 4678 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4679 int res = 0; 4680 int iVar; 4681 sqlite3_value *pL, *pR = 0; 4682 4683 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4684 if( pR ){ 4685 iVar = pVar->iColumn; 4686 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4687 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4688 if( pL ){ 4689 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4690 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4691 } 4692 res = 0==sqlite3MemCompare(pL, pR, 0); 4693 } 4694 sqlite3ValueFree(pR); 4695 sqlite3ValueFree(pL); 4696 } 4697 4698 return res; 4699 } 4700 4701 /* 4702 ** Do a deep comparison of two expression trees. Return 0 if the two 4703 ** expressions are completely identical. Return 1 if they differ only 4704 ** by a COLLATE operator at the top level. Return 2 if there are differences 4705 ** other than the top-level COLLATE operator. 4706 ** 4707 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4708 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4709 ** 4710 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4711 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4712 ** 4713 ** Sometimes this routine will return 2 even if the two expressions 4714 ** really are equivalent. If we cannot prove that the expressions are 4715 ** identical, we return 2 just to be safe. So if this routine 4716 ** returns 2, then you do not really know for certain if the two 4717 ** expressions are the same. But if you get a 0 or 1 return, then you 4718 ** can be sure the expressions are the same. In the places where 4719 ** this routine is used, it does not hurt to get an extra 2 - that 4720 ** just might result in some slightly slower code. But returning 4721 ** an incorrect 0 or 1 could lead to a malfunction. 4722 ** 4723 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4724 ** pParse->pReprepare can be matched against literals in pB. The 4725 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4726 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4727 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4728 ** pB causes a return value of 2. 4729 */ 4730 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4731 u32 combinedFlags; 4732 if( pA==0 || pB==0 ){ 4733 return pB==pA ? 0 : 2; 4734 } 4735 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4736 return 0; 4737 } 4738 combinedFlags = pA->flags | pB->flags; 4739 if( combinedFlags & EP_IntValue ){ 4740 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4741 return 0; 4742 } 4743 return 2; 4744 } 4745 if( pA->op!=pB->op ){ 4746 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4747 return 1; 4748 } 4749 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4750 return 1; 4751 } 4752 return 2; 4753 } 4754 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4755 if( pA->op==TK_FUNCTION ){ 4756 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4757 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4758 return pA->op==TK_COLLATE ? 1 : 2; 4759 } 4760 } 4761 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4762 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4763 if( combinedFlags & EP_xIsSelect ) return 2; 4764 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4765 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4766 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4767 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4768 if( pA->iColumn!=pB->iColumn ) return 2; 4769 if( pA->iTable!=pB->iTable 4770 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4771 } 4772 } 4773 return 0; 4774 } 4775 4776 /* 4777 ** Compare two ExprList objects. Return 0 if they are identical and 4778 ** non-zero if they differ in any way. 4779 ** 4780 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4781 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4782 ** 4783 ** This routine might return non-zero for equivalent ExprLists. The 4784 ** only consequence will be disabled optimizations. But this routine 4785 ** must never return 0 if the two ExprList objects are different, or 4786 ** a malfunction will result. 4787 ** 4788 ** Two NULL pointers are considered to be the same. But a NULL pointer 4789 ** always differs from a non-NULL pointer. 4790 */ 4791 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4792 int i; 4793 if( pA==0 && pB==0 ) return 0; 4794 if( pA==0 || pB==0 ) return 1; 4795 if( pA->nExpr!=pB->nExpr ) return 1; 4796 for(i=0; i<pA->nExpr; i++){ 4797 Expr *pExprA = pA->a[i].pExpr; 4798 Expr *pExprB = pB->a[i].pExpr; 4799 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4800 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4801 } 4802 return 0; 4803 } 4804 4805 /* 4806 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4807 ** are ignored. 4808 */ 4809 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4810 return sqlite3ExprCompare(0, 4811 sqlite3ExprSkipCollate(pA), 4812 sqlite3ExprSkipCollate(pB), 4813 iTab); 4814 } 4815 4816 /* 4817 ** Return true if we can prove the pE2 will always be true if pE1 is 4818 ** true. Return false if we cannot complete the proof or if pE2 might 4819 ** be false. Examples: 4820 ** 4821 ** pE1: x==5 pE2: x==5 Result: true 4822 ** pE1: x>0 pE2: x==5 Result: false 4823 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4824 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4825 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4826 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4827 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4828 ** 4829 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4830 ** Expr.iTable<0 then assume a table number given by iTab. 4831 ** 4832 ** If pParse is not NULL, then the values of bound variables in pE1 are 4833 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4834 ** modified to record which bound variables are referenced. If pParse 4835 ** is NULL, then false will be returned if pE1 contains any bound variables. 4836 ** 4837 ** When in doubt, return false. Returning true might give a performance 4838 ** improvement. Returning false might cause a performance reduction, but 4839 ** it will always give the correct answer and is hence always safe. 4840 */ 4841 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4842 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4843 return 1; 4844 } 4845 if( pE2->op==TK_OR 4846 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4847 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4848 ){ 4849 return 1; 4850 } 4851 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4852 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4853 testcase( pX!=pE1->pLeft ); 4854 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4855 } 4856 return 0; 4857 } 4858 4859 /* 4860 ** An instance of the following structure is used by the tree walker 4861 ** to determine if an expression can be evaluated by reference to the 4862 ** index only, without having to do a search for the corresponding 4863 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4864 ** is the cursor for the table. 4865 */ 4866 struct IdxCover { 4867 Index *pIdx; /* The index to be tested for coverage */ 4868 int iCur; /* Cursor number for the table corresponding to the index */ 4869 }; 4870 4871 /* 4872 ** Check to see if there are references to columns in table 4873 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4874 ** pWalker->u.pIdxCover->pIdx. 4875 */ 4876 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4877 if( pExpr->op==TK_COLUMN 4878 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4879 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4880 ){ 4881 pWalker->eCode = 1; 4882 return WRC_Abort; 4883 } 4884 return WRC_Continue; 4885 } 4886 4887 /* 4888 ** Determine if an index pIdx on table with cursor iCur contains will 4889 ** the expression pExpr. Return true if the index does cover the 4890 ** expression and false if the pExpr expression references table columns 4891 ** that are not found in the index pIdx. 4892 ** 4893 ** An index covering an expression means that the expression can be 4894 ** evaluated using only the index and without having to lookup the 4895 ** corresponding table entry. 4896 */ 4897 int sqlite3ExprCoveredByIndex( 4898 Expr *pExpr, /* The index to be tested */ 4899 int iCur, /* The cursor number for the corresponding table */ 4900 Index *pIdx /* The index that might be used for coverage */ 4901 ){ 4902 Walker w; 4903 struct IdxCover xcov; 4904 memset(&w, 0, sizeof(w)); 4905 xcov.iCur = iCur; 4906 xcov.pIdx = pIdx; 4907 w.xExprCallback = exprIdxCover; 4908 w.u.pIdxCover = &xcov; 4909 sqlite3WalkExpr(&w, pExpr); 4910 return !w.eCode; 4911 } 4912 4913 4914 /* 4915 ** An instance of the following structure is used by the tree walker 4916 ** to count references to table columns in the arguments of an 4917 ** aggregate function, in order to implement the 4918 ** sqlite3FunctionThisSrc() routine. 4919 */ 4920 struct SrcCount { 4921 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4922 int nThis; /* Number of references to columns in pSrcList */ 4923 int nOther; /* Number of references to columns in other FROM clauses */ 4924 }; 4925 4926 /* 4927 ** Count the number of references to columns. 4928 */ 4929 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4930 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4931 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4932 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4933 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4934 ** NEVER() will need to be removed. */ 4935 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4936 int i; 4937 struct SrcCount *p = pWalker->u.pSrcCount; 4938 SrcList *pSrc = p->pSrc; 4939 int nSrc = pSrc ? pSrc->nSrc : 0; 4940 for(i=0; i<nSrc; i++){ 4941 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4942 } 4943 if( i<nSrc ){ 4944 p->nThis++; 4945 }else{ 4946 p->nOther++; 4947 } 4948 } 4949 return WRC_Continue; 4950 } 4951 4952 /* 4953 ** Determine if any of the arguments to the pExpr Function reference 4954 ** pSrcList. Return true if they do. Also return true if the function 4955 ** has no arguments or has only constant arguments. Return false if pExpr 4956 ** references columns but not columns of tables found in pSrcList. 4957 */ 4958 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4959 Walker w; 4960 struct SrcCount cnt; 4961 assert( pExpr->op==TK_AGG_FUNCTION ); 4962 w.xExprCallback = exprSrcCount; 4963 w.xSelectCallback = 0; 4964 w.u.pSrcCount = &cnt; 4965 cnt.pSrc = pSrcList; 4966 cnt.nThis = 0; 4967 cnt.nOther = 0; 4968 sqlite3WalkExprList(&w, pExpr->x.pList); 4969 return cnt.nThis>0 || cnt.nOther==0; 4970 } 4971 4972 /* 4973 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4974 ** the new element. Return a negative number if malloc fails. 4975 */ 4976 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4977 int i; 4978 pInfo->aCol = sqlite3ArrayAllocate( 4979 db, 4980 pInfo->aCol, 4981 sizeof(pInfo->aCol[0]), 4982 &pInfo->nColumn, 4983 &i 4984 ); 4985 return i; 4986 } 4987 4988 /* 4989 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4990 ** the new element. Return a negative number if malloc fails. 4991 */ 4992 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4993 int i; 4994 pInfo->aFunc = sqlite3ArrayAllocate( 4995 db, 4996 pInfo->aFunc, 4997 sizeof(pInfo->aFunc[0]), 4998 &pInfo->nFunc, 4999 &i 5000 ); 5001 return i; 5002 } 5003 5004 /* 5005 ** This is the xExprCallback for a tree walker. It is used to 5006 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5007 ** for additional information. 5008 */ 5009 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5010 int i; 5011 NameContext *pNC = pWalker->u.pNC; 5012 Parse *pParse = pNC->pParse; 5013 SrcList *pSrcList = pNC->pSrcList; 5014 AggInfo *pAggInfo = pNC->pAggInfo; 5015 5016 switch( pExpr->op ){ 5017 case TK_AGG_COLUMN: 5018 case TK_COLUMN: { 5019 testcase( pExpr->op==TK_AGG_COLUMN ); 5020 testcase( pExpr->op==TK_COLUMN ); 5021 /* Check to see if the column is in one of the tables in the FROM 5022 ** clause of the aggregate query */ 5023 if( ALWAYS(pSrcList!=0) ){ 5024 struct SrcList_item *pItem = pSrcList->a; 5025 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5026 struct AggInfo_col *pCol; 5027 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5028 if( pExpr->iTable==pItem->iCursor ){ 5029 /* If we reach this point, it means that pExpr refers to a table 5030 ** that is in the FROM clause of the aggregate query. 5031 ** 5032 ** Make an entry for the column in pAggInfo->aCol[] if there 5033 ** is not an entry there already. 5034 */ 5035 int k; 5036 pCol = pAggInfo->aCol; 5037 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5038 if( pCol->iTable==pExpr->iTable && 5039 pCol->iColumn==pExpr->iColumn ){ 5040 break; 5041 } 5042 } 5043 if( (k>=pAggInfo->nColumn) 5044 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5045 ){ 5046 pCol = &pAggInfo->aCol[k]; 5047 pCol->pTab = pExpr->pTab; 5048 pCol->iTable = pExpr->iTable; 5049 pCol->iColumn = pExpr->iColumn; 5050 pCol->iMem = ++pParse->nMem; 5051 pCol->iSorterColumn = -1; 5052 pCol->pExpr = pExpr; 5053 if( pAggInfo->pGroupBy ){ 5054 int j, n; 5055 ExprList *pGB = pAggInfo->pGroupBy; 5056 struct ExprList_item *pTerm = pGB->a; 5057 n = pGB->nExpr; 5058 for(j=0; j<n; j++, pTerm++){ 5059 Expr *pE = pTerm->pExpr; 5060 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5061 pE->iColumn==pExpr->iColumn ){ 5062 pCol->iSorterColumn = j; 5063 break; 5064 } 5065 } 5066 } 5067 if( pCol->iSorterColumn<0 ){ 5068 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5069 } 5070 } 5071 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5072 ** because it was there before or because we just created it). 5073 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5074 ** pAggInfo->aCol[] entry. 5075 */ 5076 ExprSetVVAProperty(pExpr, EP_NoReduce); 5077 pExpr->pAggInfo = pAggInfo; 5078 pExpr->op = TK_AGG_COLUMN; 5079 pExpr->iAgg = (i16)k; 5080 break; 5081 } /* endif pExpr->iTable==pItem->iCursor */ 5082 } /* end loop over pSrcList */ 5083 } 5084 return WRC_Prune; 5085 } 5086 case TK_AGG_FUNCTION: { 5087 if( (pNC->ncFlags & NC_InAggFunc)==0 5088 && pWalker->walkerDepth==pExpr->op2 5089 ){ 5090 /* Check to see if pExpr is a duplicate of another aggregate 5091 ** function that is already in the pAggInfo structure 5092 */ 5093 struct AggInfo_func *pItem = pAggInfo->aFunc; 5094 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5095 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5096 break; 5097 } 5098 } 5099 if( i>=pAggInfo->nFunc ){ 5100 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5101 */ 5102 u8 enc = ENC(pParse->db); 5103 i = addAggInfoFunc(pParse->db, pAggInfo); 5104 if( i>=0 ){ 5105 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5106 pItem = &pAggInfo->aFunc[i]; 5107 pItem->pExpr = pExpr; 5108 pItem->iMem = ++pParse->nMem; 5109 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5110 pItem->pFunc = sqlite3FindFunction(pParse->db, 5111 pExpr->u.zToken, 5112 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5113 if( pExpr->flags & EP_Distinct ){ 5114 pItem->iDistinct = pParse->nTab++; 5115 }else{ 5116 pItem->iDistinct = -1; 5117 } 5118 } 5119 } 5120 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5121 */ 5122 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5123 ExprSetVVAProperty(pExpr, EP_NoReduce); 5124 pExpr->iAgg = (i16)i; 5125 pExpr->pAggInfo = pAggInfo; 5126 return WRC_Prune; 5127 }else{ 5128 return WRC_Continue; 5129 } 5130 } 5131 } 5132 return WRC_Continue; 5133 } 5134 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5135 UNUSED_PARAMETER(pSelect); 5136 pWalker->walkerDepth++; 5137 return WRC_Continue; 5138 } 5139 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5140 UNUSED_PARAMETER(pSelect); 5141 pWalker->walkerDepth--; 5142 } 5143 5144 /* 5145 ** Analyze the pExpr expression looking for aggregate functions and 5146 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5147 ** points to. Additional entries are made on the AggInfo object as 5148 ** necessary. 5149 ** 5150 ** This routine should only be called after the expression has been 5151 ** analyzed by sqlite3ResolveExprNames(). 5152 */ 5153 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5154 Walker w; 5155 w.xExprCallback = analyzeAggregate; 5156 w.xSelectCallback = analyzeAggregatesInSelect; 5157 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5158 w.walkerDepth = 0; 5159 w.u.pNC = pNC; 5160 assert( pNC->pSrcList!=0 ); 5161 sqlite3WalkExpr(&w, pExpr); 5162 } 5163 5164 /* 5165 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5166 ** expression list. Return the number of errors. 5167 ** 5168 ** If an error is found, the analysis is cut short. 5169 */ 5170 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5171 struct ExprList_item *pItem; 5172 int i; 5173 if( pList ){ 5174 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5175 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5176 } 5177 } 5178 } 5179 5180 /* 5181 ** Allocate a single new register for use to hold some intermediate result. 5182 */ 5183 int sqlite3GetTempReg(Parse *pParse){ 5184 if( pParse->nTempReg==0 ){ 5185 return ++pParse->nMem; 5186 } 5187 return pParse->aTempReg[--pParse->nTempReg]; 5188 } 5189 5190 /* 5191 ** Deallocate a register, making available for reuse for some other 5192 ** purpose. 5193 ** 5194 ** If a register is currently being used by the column cache, then 5195 ** the deallocation is deferred until the column cache line that uses 5196 ** the register becomes stale. 5197 */ 5198 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5199 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5200 int i; 5201 struct yColCache *p; 5202 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5203 if( p->iReg==iReg ){ 5204 p->tempReg = 1; 5205 return; 5206 } 5207 } 5208 pParse->aTempReg[pParse->nTempReg++] = iReg; 5209 } 5210 } 5211 5212 /* 5213 ** Allocate or deallocate a block of nReg consecutive registers. 5214 */ 5215 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5216 int i, n; 5217 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5218 i = pParse->iRangeReg; 5219 n = pParse->nRangeReg; 5220 if( nReg<=n ){ 5221 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5222 pParse->iRangeReg += nReg; 5223 pParse->nRangeReg -= nReg; 5224 }else{ 5225 i = pParse->nMem+1; 5226 pParse->nMem += nReg; 5227 } 5228 return i; 5229 } 5230 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5231 if( nReg==1 ){ 5232 sqlite3ReleaseTempReg(pParse, iReg); 5233 return; 5234 } 5235 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5236 if( nReg>pParse->nRangeReg ){ 5237 pParse->nRangeReg = nReg; 5238 pParse->iRangeReg = iReg; 5239 } 5240 } 5241 5242 /* 5243 ** Mark all temporary registers as being unavailable for reuse. 5244 */ 5245 void sqlite3ClearTempRegCache(Parse *pParse){ 5246 pParse->nTempReg = 0; 5247 pParse->nRangeReg = 0; 5248 } 5249 5250 /* 5251 ** Validate that no temporary register falls within the range of 5252 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5253 ** statements. 5254 */ 5255 #ifdef SQLITE_DEBUG 5256 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5257 int i; 5258 if( pParse->nRangeReg>0 5259 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5260 && pParse->iRangeReg <= iLast 5261 ){ 5262 return 0; 5263 } 5264 for(i=0; i<pParse->nTempReg; i++){ 5265 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5266 return 0; 5267 } 5268 } 5269 return 1; 5270 } 5271 #endif /* SQLITE_DEBUG */ 5272