xref: /sqlite-3.40.0/src/expr.c (revision 2c1023df)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   s.z = zC;
89   s.n = sqlite3Strlen30(s.z);
90   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92 
93 /*
94 ** Skip over any TK_COLLATE operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99     if( ExprHasProperty(pExpr, EP_Unlikely) ){
100       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101       assert( pExpr->x.pList->nExpr>0 );
102       assert( pExpr->op==TK_FUNCTION );
103       pExpr = pExpr->x.pList->a[0].pExpr;
104     }else{
105       assert( pExpr->op==TK_COLLATE );
106       pExpr = pExpr->pLeft;
107     }
108   }
109   return pExpr;
110 }
111 
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence.  Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122   sqlite3 *db = pParse->db;
123   CollSeq *pColl = 0;
124   Expr *p = pExpr;
125   while( p ){
126     int op = p->op;
127     if( p->flags & EP_Generic ) break;
128     if( op==TK_CAST || op==TK_UPLUS ){
129       p = p->pLeft;
130       continue;
131     }
132     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134       break;
135     }
136     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138      && p->pTab!=0
139     ){
140       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141       ** a TK_COLUMN but was previously evaluated and cached in a register */
142       int j = p->iColumn;
143       if( j>=0 ){
144         const char *zColl = p->pTab->aCol[j].zColl;
145         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146       }
147       break;
148     }
149     if( p->flags & EP_Collate ){
150       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151         p = p->pLeft;
152       }else{
153         Expr *pNext  = p->pRight;
154         /* The Expr.x union is never used at the same time as Expr.pRight */
155         assert( p->x.pList==0 || p->pRight==0 );
156         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
157         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
158         ** least one EP_Collate. Thus the following two ALWAYS. */
159         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160           int i;
161           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163               pNext = p->x.pList->a[i].pExpr;
164               break;
165             }
166           }
167         }
168         p = pNext;
169       }
170     }else{
171       break;
172     }
173   }
174   if( sqlite3CheckCollSeq(pParse, pColl) ){
175     pColl = 0;
176   }
177   return pColl;
178 }
179 
180 /*
181 ** pExpr is an operand of a comparison operator.  aff2 is the
182 ** type affinity of the other operand.  This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186   char aff1 = sqlite3ExprAffinity(pExpr);
187   if( aff1 && aff2 ){
188     /* Both sides of the comparison are columns. If one has numeric
189     ** affinity, use that. Otherwise use no affinity.
190     */
191     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192       return SQLITE_AFF_NUMERIC;
193     }else{
194       return SQLITE_AFF_BLOB;
195     }
196   }else if( !aff1 && !aff2 ){
197     /* Neither side of the comparison is a column.  Compare the
198     ** results directly.
199     */
200     return SQLITE_AFF_BLOB;
201   }else{
202     /* One side is a column, the other is not. Use the columns affinity. */
203     assert( aff1==0 || aff2==0 );
204     return (aff1 + aff2);
205   }
206 }
207 
208 /*
209 ** pExpr is a comparison operator.  Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213   char aff;
214   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217   assert( pExpr->pLeft );
218   aff = sqlite3ExprAffinity(pExpr->pLeft);
219   if( pExpr->pRight ){
220     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223   }else if( !aff ){
224     aff = SQLITE_AFF_BLOB;
225   }
226   return aff;
227 }
228 
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236   char aff = comparisonAffinity(pExpr);
237   switch( aff ){
238     case SQLITE_AFF_BLOB:
239       return 1;
240     case SQLITE_AFF_TEXT:
241       return idx_affinity==SQLITE_AFF_TEXT;
242     default:
243       return sqlite3IsNumericAffinity(idx_affinity);
244   }
245 }
246 
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254   return aff;
255 }
256 
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270   Parse *pParse,
271   Expr *pLeft,
272   Expr *pRight
273 ){
274   CollSeq *pColl;
275   assert( pLeft );
276   if( pLeft->flags & EP_Collate ){
277     pColl = sqlite3ExprCollSeq(pParse, pLeft);
278   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279     pColl = sqlite3ExprCollSeq(pParse, pRight);
280   }else{
281     pColl = sqlite3ExprCollSeq(pParse, pLeft);
282     if( !pColl ){
283       pColl = sqlite3ExprCollSeq(pParse, pRight);
284     }
285   }
286   return pColl;
287 }
288 
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293   Parse *pParse,    /* The parsing (and code generating) context */
294   Expr *pLeft,      /* The left operand */
295   Expr *pRight,     /* The right operand */
296   int opcode,       /* The comparison opcode */
297   int in1, int in2, /* Register holding operands */
298   int dest,         /* Jump here if true.  */
299   int jumpIfNull    /* If true, jump if either operand is NULL */
300 ){
301   int p5;
302   int addr;
303   CollSeq *p4;
304 
305   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308                            (void*)p4, P4_COLLSEQ);
309   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310   return addr;
311 }
312 
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320   int rc = SQLITE_OK;
321   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322   if( nHeight>mxHeight ){
323     sqlite3ErrorMsg(pParse,
324        "Expression tree is too large (maximum depth %d)", mxHeight
325     );
326     rc = SQLITE_ERROR;
327   }
328   return rc;
329 }
330 
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341   if( p ){
342     if( p->nHeight>*pnHeight ){
343       *pnHeight = p->nHeight;
344     }
345   }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348   if( p ){
349     int i;
350     for(i=0; i<p->nExpr; i++){
351       heightOfExpr(p->a[i].pExpr, pnHeight);
352     }
353   }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356   if( p ){
357     heightOfExpr(p->pWhere, pnHeight);
358     heightOfExpr(p->pHaving, pnHeight);
359     heightOfExpr(p->pLimit, pnHeight);
360     heightOfExpr(p->pOffset, pnHeight);
361     heightOfExprList(p->pEList, pnHeight);
362     heightOfExprList(p->pGroupBy, pnHeight);
363     heightOfExprList(p->pOrderBy, pnHeight);
364     heightOfSelect(p->pPrior, pnHeight);
365   }
366 }
367 
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379   int nHeight = 0;
380   heightOfExpr(p->pLeft, &nHeight);
381   heightOfExpr(p->pRight, &nHeight);
382   if( ExprHasProperty(p, EP_xIsSelect) ){
383     heightOfSelect(p->x.pSelect, &nHeight);
384   }else if( p->x.pList ){
385     heightOfExprList(p->x.pList, &nHeight);
386     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387   }
388   p->nHeight = nHeight + 1;
389 }
390 
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400   if( pParse->nErr ) return;
401   exprSetHeight(p);
402   sqlite3ExprCheckHeight(pParse, p->nHeight);
403 }
404 
405 /*
406 ** Return the maximum height of any expression tree referenced
407 ** by the select statement passed as an argument.
408 */
409 int sqlite3SelectExprHeight(Select *p){
410   int nHeight = 0;
411   heightOfSelect(p, &nHeight);
412   return nHeight;
413 }
414 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
415 /*
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into
417 ** Expr.flags.
418 */
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
420   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
421     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
422   }
423 }
424 #define exprSetHeight(y)
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
426 
427 /*
428 ** This routine is the core allocator for Expr nodes.
429 **
430 ** Construct a new expression node and return a pointer to it.  Memory
431 ** for this node and for the pToken argument is a single allocation
432 ** obtained from sqlite3DbMalloc().  The calling function
433 ** is responsible for making sure the node eventually gets freed.
434 **
435 ** If dequote is true, then the token (if it exists) is dequoted.
436 ** If dequote is false, no dequoting is performed.  The deQuote
437 ** parameter is ignored if pToken is NULL or if the token does not
438 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
439 ** then the EP_DblQuoted flag is set on the expression node.
440 **
441 ** Special case:  If op==TK_INTEGER and pToken points to a string that
442 ** can be translated into a 32-bit integer, then the token is not
443 ** stored in u.zToken.  Instead, the integer values is written
444 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
445 ** is allocated to hold the integer text and the dequote flag is ignored.
446 */
447 Expr *sqlite3ExprAlloc(
448   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
449   int op,                 /* Expression opcode */
450   const Token *pToken,    /* Token argument.  Might be NULL */
451   int dequote             /* True to dequote */
452 ){
453   Expr *pNew;
454   int nExtra = 0;
455   int iValue = 0;
456 
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     pNew->op = (u8)op;
467     pNew->iAgg = -1;
468     if( pToken ){
469       if( nExtra==0 ){
470         pNew->flags |= EP_IntValue;
471         pNew->u.iValue = iValue;
472       }else{
473         int c;
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && nExtra>=3
479              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
480           sqlite3Dequote(pNew->u.zToken);
481           if( c=='"' ) pNew->flags |= EP_DblQuoted;
482         }
483       }
484     }
485 #if SQLITE_MAX_EXPR_DEPTH>0
486     pNew->nHeight = 1;
487 #endif
488   }
489   return pNew;
490 }
491 
492 /*
493 ** Allocate a new expression node from a zero-terminated token that has
494 ** already been dequoted.
495 */
496 Expr *sqlite3Expr(
497   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
498   int op,                 /* Expression opcode */
499   const char *zToken      /* Token argument.  Might be NULL */
500 ){
501   Token x;
502   x.z = zToken;
503   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
504   return sqlite3ExprAlloc(db, op, &x, 0);
505 }
506 
507 /*
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
509 **
510 ** If pRoot==NULL that means that a memory allocation error has occurred.
511 ** In that case, delete the subtrees pLeft and pRight.
512 */
513 void sqlite3ExprAttachSubtrees(
514   sqlite3 *db,
515   Expr *pRoot,
516   Expr *pLeft,
517   Expr *pRight
518 ){
519   if( pRoot==0 ){
520     assert( db->mallocFailed );
521     sqlite3ExprDelete(db, pLeft);
522     sqlite3ExprDelete(db, pRight);
523   }else{
524     if( pRight ){
525       pRoot->pRight = pRight;
526       pRoot->flags |= EP_Propagate & pRight->flags;
527     }
528     if( pLeft ){
529       pRoot->pLeft = pLeft;
530       pRoot->flags |= EP_Propagate & pLeft->flags;
531     }
532     exprSetHeight(pRoot);
533   }
534 }
535 
536 /*
537 ** Allocate an Expr node which joins as many as two subtrees.
538 **
539 ** One or both of the subtrees can be NULL.  Return a pointer to the new
540 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
541 ** free the subtrees and return NULL.
542 */
543 Expr *sqlite3PExpr(
544   Parse *pParse,          /* Parsing context */
545   int op,                 /* Expression opcode */
546   Expr *pLeft,            /* Left operand */
547   Expr *pRight,           /* Right operand */
548   const Token *pToken     /* Argument token */
549 ){
550   Expr *p;
551   if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){
552     /* Take advantage of short-circuit false optimization for AND */
553     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
554   }else{
555     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
556     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
557   }
558   if( p ) {
559     sqlite3ExprCheckHeight(pParse, p->nHeight);
560   }
561   return p;
562 }
563 
564 /*
565 ** If the expression is always either TRUE or FALSE (respectively),
566 ** then return 1.  If one cannot determine the truth value of the
567 ** expression at compile-time return 0.
568 **
569 ** This is an optimization.  If is OK to return 0 here even if
570 ** the expression really is always false or false (a false negative).
571 ** But it is a bug to return 1 if the expression might have different
572 ** boolean values in different circumstances (a false positive.)
573 **
574 ** Note that if the expression is part of conditional for a
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not
576 ** is it true or false, so always return 0.
577 */
578 static int exprAlwaysTrue(Expr *p){
579   int v = 0;
580   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
581   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
582   return v!=0;
583 }
584 static int exprAlwaysFalse(Expr *p){
585   int v = 0;
586   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
587   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
588   return v==0;
589 }
590 
591 /*
592 ** Join two expressions using an AND operator.  If either expression is
593 ** NULL, then just return the other expression.
594 **
595 ** If one side or the other of the AND is known to be false, then instead
596 ** of returning an AND expression, just return a constant expression with
597 ** a value of false.
598 */
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
600   if( pLeft==0 ){
601     return pRight;
602   }else if( pRight==0 ){
603     return pLeft;
604   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
605     sqlite3ExprDelete(db, pLeft);
606     sqlite3ExprDelete(db, pRight);
607     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
608   }else{
609     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
610     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
611     return pNew;
612   }
613 }
614 
615 /*
616 ** Construct a new expression node for a function with multiple
617 ** arguments.
618 */
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
620   Expr *pNew;
621   sqlite3 *db = pParse->db;
622   assert( pToken );
623   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
624   if( pNew==0 ){
625     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
626     return 0;
627   }
628   pNew->x.pList = pList;
629   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
630   sqlite3ExprSetHeightAndFlags(pParse, pNew);
631   return pNew;
632 }
633 
634 /*
635 ** Assign a variable number to an expression that encodes a wildcard
636 ** in the original SQL statement.
637 **
638 ** Wildcards consisting of a single "?" are assigned the next sequential
639 ** variable number.
640 **
641 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
642 ** sure "nnn" is not too be to avoid a denial of service attack when
643 ** the SQL statement comes from an external source.
644 **
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
646 ** as the previous instance of the same wildcard.  Or if this is the first
647 ** instance of the wildcard, the next sequential variable number is
648 ** assigned.
649 */
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
651   sqlite3 *db = pParse->db;
652   const char *z;
653 
654   if( pExpr==0 ) return;
655   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
656   z = pExpr->u.zToken;
657   assert( z!=0 );
658   assert( z[0]!=0 );
659   if( z[1]==0 ){
660     /* Wildcard of the form "?".  Assign the next variable number */
661     assert( z[0]=='?' );
662     pExpr->iColumn = (ynVar)(++pParse->nVar);
663   }else{
664     ynVar x = 0;
665     u32 n = sqlite3Strlen30(z);
666     if( z[0]=='?' ){
667       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
668       ** use it as the variable number */
669       i64 i;
670       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
671       pExpr->iColumn = x = (ynVar)i;
672       testcase( i==0 );
673       testcase( i==1 );
674       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
675       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
676       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
677         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
678             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
679         x = 0;
680       }
681       if( i>pParse->nVar ){
682         pParse->nVar = (int)i;
683       }
684     }else{
685       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
686       ** number as the prior appearance of the same name, or if the name
687       ** has never appeared before, reuse the same variable number
688       */
689       ynVar i;
690       for(i=0; i<pParse->nzVar; i++){
691         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
692           pExpr->iColumn = x = (ynVar)i+1;
693           break;
694         }
695       }
696       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
697     }
698     if( x>0 ){
699       if( x>pParse->nzVar ){
700         char **a;
701         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
702         if( a==0 ) return;  /* Error reported through db->mallocFailed */
703         pParse->azVar = a;
704         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
705         pParse->nzVar = x;
706       }
707       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
708         sqlite3DbFree(db, pParse->azVar[x-1]);
709         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
710       }
711     }
712   }
713   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
714     sqlite3ErrorMsg(pParse, "too many SQL variables");
715   }
716 }
717 
718 /*
719 ** Recursively delete an expression tree.
720 */
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
722   if( p==0 ) return;
723   /* Sanity check: Assert that the IntValue is non-negative if it exists */
724   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
725   if( !ExprHasProperty(p, EP_TokenOnly) ){
726     /* The Expr.x union is never used at the same time as Expr.pRight */
727     assert( p->x.pList==0 || p->pRight==0 );
728     sqlite3ExprDelete(db, p->pLeft);
729     sqlite3ExprDelete(db, p->pRight);
730     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
731     if( ExprHasProperty(p, EP_xIsSelect) ){
732       sqlite3SelectDelete(db, p->x.pSelect);
733     }else{
734       sqlite3ExprListDelete(db, p->x.pList);
735     }
736   }
737   if( !ExprHasProperty(p, EP_Static) ){
738     sqlite3DbFree(db, p);
739   }
740 }
741 
742 /*
743 ** Return the number of bytes allocated for the expression structure
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
746 */
747 static int exprStructSize(Expr *p){
748   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
749   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
750   return EXPR_FULLSIZE;
751 }
752 
753 /*
754 ** The dupedExpr*Size() routines each return the number of bytes required
755 ** to store a copy of an expression or expression tree.  They differ in
756 ** how much of the tree is measured.
757 **
758 **     dupedExprStructSize()     Size of only the Expr structure
759 **     dupedExprNodeSize()       Size of Expr + space for token
760 **     dupedExprSize()           Expr + token + subtree components
761 **
762 ***************************************************************************
763 **
764 ** The dupedExprStructSize() function returns two values OR-ed together:
765 ** (1) the space required for a copy of the Expr structure only and
766 ** (2) the EP_xxx flags that indicate what the structure size should be.
767 ** The return values is always one of:
768 **
769 **      EXPR_FULLSIZE
770 **      EXPR_REDUCEDSIZE   | EP_Reduced
771 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
772 **
773 ** The size of the structure can be found by masking the return value
774 ** of this routine with 0xfff.  The flags can be found by masking the
775 ** return value with EP_Reduced|EP_TokenOnly.
776 **
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
778 ** (unreduced) Expr objects as they or originally constructed by the parser.
779 ** During expression analysis, extra information is computed and moved into
780 ** later parts of teh Expr object and that extra information might get chopped
781 ** off if the expression is reduced.  Note also that it does not work to
782 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
783 ** to reduce a pristine expression tree from the parser.  The implementation
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt
785 ** to enforce this constraint.
786 */
787 static int dupedExprStructSize(Expr *p, int flags){
788   int nSize;
789   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
790   assert( EXPR_FULLSIZE<=0xfff );
791   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
792   if( 0==(flags&EXPRDUP_REDUCE) ){
793     nSize = EXPR_FULLSIZE;
794   }else{
795     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
796     assert( !ExprHasProperty(p, EP_FromJoin) );
797     assert( !ExprHasProperty(p, EP_MemToken) );
798     assert( !ExprHasProperty(p, EP_NoReduce) );
799     if( p->pLeft || p->x.pList ){
800       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
801     }else{
802       assert( p->pRight==0 );
803       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
804     }
805   }
806   return nSize;
807 }
808 
809 /*
810 ** This function returns the space in bytes required to store the copy
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
812 ** string is defined.)
813 */
814 static int dupedExprNodeSize(Expr *p, int flags){
815   int nByte = dupedExprStructSize(p, flags) & 0xfff;
816   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
817     nByte += sqlite3Strlen30(p->u.zToken)+1;
818   }
819   return ROUND8(nByte);
820 }
821 
822 /*
823 ** Return the number of bytes required to create a duplicate of the
824 ** expression passed as the first argument. The second argument is a
825 ** mask containing EXPRDUP_XXX flags.
826 **
827 ** The value returned includes space to create a copy of the Expr struct
828 ** itself and the buffer referred to by Expr.u.zToken, if any.
829 **
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
832 ** and Expr.pRight variables (but not for any structures pointed to or
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
834 */
835 static int dupedExprSize(Expr *p, int flags){
836   int nByte = 0;
837   if( p ){
838     nByte = dupedExprNodeSize(p, flags);
839     if( flags&EXPRDUP_REDUCE ){
840       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
841     }
842   }
843   return nByte;
844 }
845 
846 /*
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
849 ** to store the copy of expression p, the copies of p->u.zToken
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
851 ** if any. Before returning, *pzBuffer is set to the first byte past the
852 ** portion of the buffer copied into by this function.
853 */
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
855   Expr *pNew = 0;                      /* Value to return */
856   if( p ){
857     const int isReduced = (flags&EXPRDUP_REDUCE);
858     u8 *zAlloc;
859     u32 staticFlag = 0;
860 
861     assert( pzBuffer==0 || isReduced );
862 
863     /* Figure out where to write the new Expr structure. */
864     if( pzBuffer ){
865       zAlloc = *pzBuffer;
866       staticFlag = EP_Static;
867     }else{
868       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
869     }
870     pNew = (Expr *)zAlloc;
871 
872     if( pNew ){
873       /* Set nNewSize to the size allocated for the structure pointed to
874       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
875       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
876       ** by the copy of the p->u.zToken string (if any).
877       */
878       const unsigned nStructSize = dupedExprStructSize(p, flags);
879       const int nNewSize = nStructSize & 0xfff;
880       int nToken;
881       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
882         nToken = sqlite3Strlen30(p->u.zToken) + 1;
883       }else{
884         nToken = 0;
885       }
886       if( isReduced ){
887         assert( ExprHasProperty(p, EP_Reduced)==0 );
888         memcpy(zAlloc, p, nNewSize);
889       }else{
890         int nSize = exprStructSize(p);
891         memcpy(zAlloc, p, nSize);
892         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
893       }
894 
895       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
896       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
897       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
898       pNew->flags |= staticFlag;
899 
900       /* Copy the p->u.zToken string, if any. */
901       if( nToken ){
902         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
903         memcpy(zToken, p->u.zToken, nToken);
904       }
905 
906       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
907         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
908         if( ExprHasProperty(p, EP_xIsSelect) ){
909           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
910         }else{
911           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
912         }
913       }
914 
915       /* Fill in pNew->pLeft and pNew->pRight. */
916       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
917         zAlloc += dupedExprNodeSize(p, flags);
918         if( ExprHasProperty(pNew, EP_Reduced) ){
919           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
920           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
921         }
922         if( pzBuffer ){
923           *pzBuffer = zAlloc;
924         }
925       }else{
926         if( !ExprHasProperty(p, EP_TokenOnly) ){
927           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
928           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
929         }
930       }
931 
932     }
933   }
934   return pNew;
935 }
936 
937 /*
938 ** Create and return a deep copy of the object passed as the second
939 ** argument. If an OOM condition is encountered, NULL is returned
940 ** and the db->mallocFailed flag set.
941 */
942 #ifndef SQLITE_OMIT_CTE
943 static With *withDup(sqlite3 *db, With *p){
944   With *pRet = 0;
945   if( p ){
946     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
947     pRet = sqlite3DbMallocZero(db, nByte);
948     if( pRet ){
949       int i;
950       pRet->nCte = p->nCte;
951       for(i=0; i<p->nCte; i++){
952         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
953         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
954         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
955       }
956     }
957   }
958   return pRet;
959 }
960 #else
961 # define withDup(x,y) 0
962 #endif
963 
964 /*
965 ** The following group of routines make deep copies of expressions,
966 ** expression lists, ID lists, and select statements.  The copies can
967 ** be deleted (by being passed to their respective ...Delete() routines)
968 ** without effecting the originals.
969 **
970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
972 ** by subsequent calls to sqlite*ListAppend() routines.
973 **
974 ** Any tables that the SrcList might point to are not duplicated.
975 **
976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
978 ** truncated version of the usual Expr structure that will be stored as
979 ** part of the in-memory representation of the database schema.
980 */
981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
982   return exprDup(db, p, flags, 0);
983 }
984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
985   ExprList *pNew;
986   struct ExprList_item *pItem, *pOldItem;
987   int i;
988   if( p==0 ) return 0;
989   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
990   if( pNew==0 ) return 0;
991   pNew->nExpr = i = p->nExpr;
992   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
993   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
994   if( pItem==0 ){
995     sqlite3DbFree(db, pNew);
996     return 0;
997   }
998   pOldItem = p->a;
999   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1000     Expr *pOldExpr = pOldItem->pExpr;
1001     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1002     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1004     pItem->sortOrder = pOldItem->sortOrder;
1005     pItem->done = 0;
1006     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1007     pItem->u = pOldItem->u;
1008   }
1009   return pNew;
1010 }
1011 
1012 /*
1013 ** If cursors, triggers, views and subqueries are all omitted from
1014 ** the build, then none of the following routines, except for
1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1016 ** called with a NULL argument.
1017 */
1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1019  || !defined(SQLITE_OMIT_SUBQUERY)
1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1021   SrcList *pNew;
1022   int i;
1023   int nByte;
1024   if( p==0 ) return 0;
1025   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1026   pNew = sqlite3DbMallocRaw(db, nByte );
1027   if( pNew==0 ) return 0;
1028   pNew->nSrc = pNew->nAlloc = p->nSrc;
1029   for(i=0; i<p->nSrc; i++){
1030     struct SrcList_item *pNewItem = &pNew->a[i];
1031     struct SrcList_item *pOldItem = &p->a[i];
1032     Table *pTab;
1033     pNewItem->pSchema = pOldItem->pSchema;
1034     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1035     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1036     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1037     pNewItem->fg = pOldItem->fg;
1038     pNewItem->iCursor = pOldItem->iCursor;
1039     pNewItem->addrFillSub = pOldItem->addrFillSub;
1040     pNewItem->regReturn = pOldItem->regReturn;
1041     if( pNewItem->fg.isIndexedBy ){
1042       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1043     }
1044     pNewItem->pIBIndex = pOldItem->pIBIndex;
1045     if( pNewItem->fg.isTabFunc ){
1046       pNewItem->u1.pFuncArg =
1047           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1048     }
1049     pTab = pNewItem->pTab = pOldItem->pTab;
1050     if( pTab ){
1051       pTab->nRef++;
1052     }
1053     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1054     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1055     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1056     pNewItem->colUsed = pOldItem->colUsed;
1057   }
1058   return pNew;
1059 }
1060 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1061   IdList *pNew;
1062   int i;
1063   if( p==0 ) return 0;
1064   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1065   if( pNew==0 ) return 0;
1066   pNew->nId = p->nId;
1067   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1068   if( pNew->a==0 ){
1069     sqlite3DbFree(db, pNew);
1070     return 0;
1071   }
1072   /* Note that because the size of the allocation for p->a[] is not
1073   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1074   ** on the duplicate created by this function. */
1075   for(i=0; i<p->nId; i++){
1076     struct IdList_item *pNewItem = &pNew->a[i];
1077     struct IdList_item *pOldItem = &p->a[i];
1078     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1079     pNewItem->idx = pOldItem->idx;
1080   }
1081   return pNew;
1082 }
1083 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1084   Select *pNew, *pPrior;
1085   if( p==0 ) return 0;
1086   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1087   if( pNew==0 ) return 0;
1088   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1089   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1090   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1091   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1092   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1093   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1094   pNew->op = p->op;
1095   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1096   if( pPrior ) pPrior->pNext = pNew;
1097   pNew->pNext = 0;
1098   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1099   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1100   pNew->iLimit = 0;
1101   pNew->iOffset = 0;
1102   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1103   pNew->addrOpenEphm[0] = -1;
1104   pNew->addrOpenEphm[1] = -1;
1105   pNew->nSelectRow = p->nSelectRow;
1106   pNew->pWith = withDup(db, p->pWith);
1107   sqlite3SelectSetName(pNew, p->zSelName);
1108   return pNew;
1109 }
1110 #else
1111 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1112   assert( p==0 );
1113   return 0;
1114 }
1115 #endif
1116 
1117 
1118 /*
1119 ** Add a new element to the end of an expression list.  If pList is
1120 ** initially NULL, then create a new expression list.
1121 **
1122 ** If a memory allocation error occurs, the entire list is freed and
1123 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1124 ** that the new entry was successfully appended.
1125 */
1126 ExprList *sqlite3ExprListAppend(
1127   Parse *pParse,          /* Parsing context */
1128   ExprList *pList,        /* List to which to append. Might be NULL */
1129   Expr *pExpr             /* Expression to be appended. Might be NULL */
1130 ){
1131   sqlite3 *db = pParse->db;
1132   if( pList==0 ){
1133     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1134     if( pList==0 ){
1135       goto no_mem;
1136     }
1137     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1138     if( pList->a==0 ) goto no_mem;
1139   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1140     struct ExprList_item *a;
1141     assert( pList->nExpr>0 );
1142     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1143     if( a==0 ){
1144       goto no_mem;
1145     }
1146     pList->a = a;
1147   }
1148   assert( pList->a!=0 );
1149   if( 1 ){
1150     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1151     memset(pItem, 0, sizeof(*pItem));
1152     pItem->pExpr = pExpr;
1153   }
1154   return pList;
1155 
1156 no_mem:
1157   /* Avoid leaking memory if malloc has failed. */
1158   sqlite3ExprDelete(db, pExpr);
1159   sqlite3ExprListDelete(db, pList);
1160   return 0;
1161 }
1162 
1163 /*
1164 ** Set the sort order for the last element on the given ExprList.
1165 */
1166 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1167   if( p==0 ) return;
1168   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1169   assert( p->nExpr>0 );
1170   if( iSortOrder<0 ){
1171     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1172     return;
1173   }
1174   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1175 }
1176 
1177 /*
1178 ** Set the ExprList.a[].zName element of the most recently added item
1179 ** on the expression list.
1180 **
1181 ** pList might be NULL following an OOM error.  But pName should never be
1182 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1183 ** is set.
1184 */
1185 void sqlite3ExprListSetName(
1186   Parse *pParse,          /* Parsing context */
1187   ExprList *pList,        /* List to which to add the span. */
1188   Token *pName,           /* Name to be added */
1189   int dequote             /* True to cause the name to be dequoted */
1190 ){
1191   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1192   if( pList ){
1193     struct ExprList_item *pItem;
1194     assert( pList->nExpr>0 );
1195     pItem = &pList->a[pList->nExpr-1];
1196     assert( pItem->zName==0 );
1197     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1198     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1199   }
1200 }
1201 
1202 /*
1203 ** Set the ExprList.a[].zSpan element of the most recently added item
1204 ** on the expression list.
1205 **
1206 ** pList might be NULL following an OOM error.  But pSpan should never be
1207 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1208 ** is set.
1209 */
1210 void sqlite3ExprListSetSpan(
1211   Parse *pParse,          /* Parsing context */
1212   ExprList *pList,        /* List to which to add the span. */
1213   ExprSpan *pSpan         /* The span to be added */
1214 ){
1215   sqlite3 *db = pParse->db;
1216   assert( pList!=0 || db->mallocFailed!=0 );
1217   if( pList ){
1218     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1219     assert( pList->nExpr>0 );
1220     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1221     sqlite3DbFree(db, pItem->zSpan);
1222     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1223                                     (int)(pSpan->zEnd - pSpan->zStart));
1224   }
1225 }
1226 
1227 /*
1228 ** If the expression list pEList contains more than iLimit elements,
1229 ** leave an error message in pParse.
1230 */
1231 void sqlite3ExprListCheckLength(
1232   Parse *pParse,
1233   ExprList *pEList,
1234   const char *zObject
1235 ){
1236   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1237   testcase( pEList && pEList->nExpr==mx );
1238   testcase( pEList && pEList->nExpr==mx+1 );
1239   if( pEList && pEList->nExpr>mx ){
1240     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1241   }
1242 }
1243 
1244 /*
1245 ** Delete an entire expression list.
1246 */
1247 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1248   int i;
1249   struct ExprList_item *pItem;
1250   if( pList==0 ) return;
1251   assert( pList->a!=0 || pList->nExpr==0 );
1252   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1253     sqlite3ExprDelete(db, pItem->pExpr);
1254     sqlite3DbFree(db, pItem->zName);
1255     sqlite3DbFree(db, pItem->zSpan);
1256   }
1257   sqlite3DbFree(db, pList->a);
1258   sqlite3DbFree(db, pList);
1259 }
1260 
1261 /*
1262 ** Return the bitwise-OR of all Expr.flags fields in the given
1263 ** ExprList.
1264 */
1265 u32 sqlite3ExprListFlags(const ExprList *pList){
1266   int i;
1267   u32 m = 0;
1268   if( pList ){
1269     for(i=0; i<pList->nExpr; i++){
1270        Expr *pExpr = pList->a[i].pExpr;
1271        if( ALWAYS(pExpr) ) m |= pExpr->flags;
1272     }
1273   }
1274   return m;
1275 }
1276 
1277 /*
1278 ** These routines are Walker callbacks used to check expressions to
1279 ** see if they are "constant" for some definition of constant.  The
1280 ** Walker.eCode value determines the type of "constant" we are looking
1281 ** for.
1282 **
1283 ** These callback routines are used to implement the following:
1284 **
1285 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1286 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1287 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1288 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1289 **
1290 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1291 ** is found to not be a constant.
1292 **
1293 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1294 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1295 ** an existing schema and 4 when processing a new statement.  A bound
1296 ** parameter raises an error for new statements, but is silently converted
1297 ** to NULL for existing schemas.  This allows sqlite_master tables that
1298 ** contain a bound parameter because they were generated by older versions
1299 ** of SQLite to be parsed by newer versions of SQLite without raising a
1300 ** malformed schema error.
1301 */
1302 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1303 
1304   /* If pWalker->eCode is 2 then any term of the expression that comes from
1305   ** the ON or USING clauses of a left join disqualifies the expression
1306   ** from being considered constant. */
1307   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1308     pWalker->eCode = 0;
1309     return WRC_Abort;
1310   }
1311 
1312   switch( pExpr->op ){
1313     /* Consider functions to be constant if all their arguments are constant
1314     ** and either pWalker->eCode==4 or 5 or the function has the
1315     ** SQLITE_FUNC_CONST flag. */
1316     case TK_FUNCTION:
1317       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1318         return WRC_Continue;
1319       }else{
1320         pWalker->eCode = 0;
1321         return WRC_Abort;
1322       }
1323     case TK_ID:
1324     case TK_COLUMN:
1325     case TK_AGG_FUNCTION:
1326     case TK_AGG_COLUMN:
1327       testcase( pExpr->op==TK_ID );
1328       testcase( pExpr->op==TK_COLUMN );
1329       testcase( pExpr->op==TK_AGG_FUNCTION );
1330       testcase( pExpr->op==TK_AGG_COLUMN );
1331       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1332         return WRC_Continue;
1333       }else{
1334         pWalker->eCode = 0;
1335         return WRC_Abort;
1336       }
1337     case TK_VARIABLE:
1338       if( pWalker->eCode==5 ){
1339         /* Silently convert bound parameters that appear inside of CREATE
1340         ** statements into a NULL when parsing the CREATE statement text out
1341         ** of the sqlite_master table */
1342         pExpr->op = TK_NULL;
1343       }else if( pWalker->eCode==4 ){
1344         /* A bound parameter in a CREATE statement that originates from
1345         ** sqlite3_prepare() causes an error */
1346         pWalker->eCode = 0;
1347         return WRC_Abort;
1348       }
1349       /* Fall through */
1350     default:
1351       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1352       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1353       return WRC_Continue;
1354   }
1355 }
1356 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1357   UNUSED_PARAMETER(NotUsed);
1358   pWalker->eCode = 0;
1359   return WRC_Abort;
1360 }
1361 static int exprIsConst(Expr *p, int initFlag, int iCur){
1362   Walker w;
1363   memset(&w, 0, sizeof(w));
1364   w.eCode = initFlag;
1365   w.xExprCallback = exprNodeIsConstant;
1366   w.xSelectCallback = selectNodeIsConstant;
1367   w.u.iCur = iCur;
1368   sqlite3WalkExpr(&w, p);
1369   return w.eCode;
1370 }
1371 
1372 /*
1373 ** Walk an expression tree.  Return non-zero if the expression is constant
1374 ** and 0 if it involves variables or function calls.
1375 **
1376 ** For the purposes of this function, a double-quoted string (ex: "abc")
1377 ** is considered a variable but a single-quoted string (ex: 'abc') is
1378 ** a constant.
1379 */
1380 int sqlite3ExprIsConstant(Expr *p){
1381   return exprIsConst(p, 1, 0);
1382 }
1383 
1384 /*
1385 ** Walk an expression tree.  Return non-zero if the expression is constant
1386 ** that does no originate from the ON or USING clauses of a join.
1387 ** Return 0 if it involves variables or function calls or terms from
1388 ** an ON or USING clause.
1389 */
1390 int sqlite3ExprIsConstantNotJoin(Expr *p){
1391   return exprIsConst(p, 2, 0);
1392 }
1393 
1394 /*
1395 ** Walk an expression tree.  Return non-zero if the expression is constant
1396 ** for any single row of the table with cursor iCur.  In other words, the
1397 ** expression must not refer to any non-deterministic function nor any
1398 ** table other than iCur.
1399 */
1400 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1401   return exprIsConst(p, 3, iCur);
1402 }
1403 
1404 /*
1405 ** Walk an expression tree.  Return non-zero if the expression is constant
1406 ** or a function call with constant arguments.  Return and 0 if there
1407 ** are any variables.
1408 **
1409 ** For the purposes of this function, a double-quoted string (ex: "abc")
1410 ** is considered a variable but a single-quoted string (ex: 'abc') is
1411 ** a constant.
1412 */
1413 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1414   assert( isInit==0 || isInit==1 );
1415   return exprIsConst(p, 4+isInit, 0);
1416 }
1417 
1418 /*
1419 ** If the expression p codes a constant integer that is small enough
1420 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1421 ** in *pValue.  If the expression is not an integer or if it is too big
1422 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1423 */
1424 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1425   int rc = 0;
1426 
1427   /* If an expression is an integer literal that fits in a signed 32-bit
1428   ** integer, then the EP_IntValue flag will have already been set */
1429   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1430            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1431 
1432   if( p->flags & EP_IntValue ){
1433     *pValue = p->u.iValue;
1434     return 1;
1435   }
1436   switch( p->op ){
1437     case TK_UPLUS: {
1438       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1439       break;
1440     }
1441     case TK_UMINUS: {
1442       int v;
1443       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1444         assert( v!=(-2147483647-1) );
1445         *pValue = -v;
1446         rc = 1;
1447       }
1448       break;
1449     }
1450     default: break;
1451   }
1452   return rc;
1453 }
1454 
1455 /*
1456 ** Return FALSE if there is no chance that the expression can be NULL.
1457 **
1458 ** If the expression might be NULL or if the expression is too complex
1459 ** to tell return TRUE.
1460 **
1461 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1462 ** when we know that a value cannot be NULL.  Hence, a false positive
1463 ** (returning TRUE when in fact the expression can never be NULL) might
1464 ** be a small performance hit but is otherwise harmless.  On the other
1465 ** hand, a false negative (returning FALSE when the result could be NULL)
1466 ** will likely result in an incorrect answer.  So when in doubt, return
1467 ** TRUE.
1468 */
1469 int sqlite3ExprCanBeNull(const Expr *p){
1470   u8 op;
1471   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1472   op = p->op;
1473   if( op==TK_REGISTER ) op = p->op2;
1474   switch( op ){
1475     case TK_INTEGER:
1476     case TK_STRING:
1477     case TK_FLOAT:
1478     case TK_BLOB:
1479       return 0;
1480     case TK_COLUMN:
1481       assert( p->pTab!=0 );
1482       return ExprHasProperty(p, EP_CanBeNull) ||
1483              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1484     default:
1485       return 1;
1486   }
1487 }
1488 
1489 /*
1490 ** Return TRUE if the given expression is a constant which would be
1491 ** unchanged by OP_Affinity with the affinity given in the second
1492 ** argument.
1493 **
1494 ** This routine is used to determine if the OP_Affinity operation
1495 ** can be omitted.  When in doubt return FALSE.  A false negative
1496 ** is harmless.  A false positive, however, can result in the wrong
1497 ** answer.
1498 */
1499 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1500   u8 op;
1501   if( aff==SQLITE_AFF_BLOB ) return 1;
1502   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1503   op = p->op;
1504   if( op==TK_REGISTER ) op = p->op2;
1505   switch( op ){
1506     case TK_INTEGER: {
1507       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1508     }
1509     case TK_FLOAT: {
1510       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1511     }
1512     case TK_STRING: {
1513       return aff==SQLITE_AFF_TEXT;
1514     }
1515     case TK_BLOB: {
1516       return 1;
1517     }
1518     case TK_COLUMN: {
1519       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1520       return p->iColumn<0
1521           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1522     }
1523     default: {
1524       return 0;
1525     }
1526   }
1527 }
1528 
1529 /*
1530 ** Return TRUE if the given string is a row-id column name.
1531 */
1532 int sqlite3IsRowid(const char *z){
1533   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1534   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1535   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1536   return 0;
1537 }
1538 
1539 /*
1540 ** Return true if we are able to the IN operator optimization on a
1541 ** query of the form
1542 **
1543 **       x IN (SELECT ...)
1544 **
1545 ** Where the SELECT... clause is as specified by the parameter to this
1546 ** routine.
1547 **
1548 ** The Select object passed in has already been preprocessed and no
1549 ** errors have been found.
1550 */
1551 #ifndef SQLITE_OMIT_SUBQUERY
1552 static int isCandidateForInOpt(Select *p){
1553   SrcList *pSrc;
1554   ExprList *pEList;
1555   Table *pTab;
1556   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1557   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1558   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1559     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1560     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1561     return 0; /* No DISTINCT keyword and no aggregate functions */
1562   }
1563   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1564   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1565   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1566   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1567   pSrc = p->pSrc;
1568   assert( pSrc!=0 );
1569   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1570   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1571   pTab = pSrc->a[0].pTab;
1572   if( NEVER(pTab==0) ) return 0;
1573   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1574   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1575   pEList = p->pEList;
1576   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1577   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1578   return 1;
1579 }
1580 #endif /* SQLITE_OMIT_SUBQUERY */
1581 
1582 /*
1583 ** Code an OP_Once instruction and allocate space for its flag. Return the
1584 ** address of the new instruction.
1585 */
1586 int sqlite3CodeOnce(Parse *pParse){
1587   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1588   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1589 }
1590 
1591 /*
1592 ** Generate code that checks the left-most column of index table iCur to see if
1593 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1594 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1595 ** to be set to NULL if iCur contains one or more NULL values.
1596 */
1597 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1598   int j1;
1599   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1600   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1601   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1602   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1603   VdbeComment((v, "first_entry_in(%d)", iCur));
1604   sqlite3VdbeJumpHere(v, j1);
1605 }
1606 
1607 
1608 #ifndef SQLITE_OMIT_SUBQUERY
1609 /*
1610 ** The argument is an IN operator with a list (not a subquery) on the
1611 ** right-hand side.  Return TRUE if that list is constant.
1612 */
1613 static int sqlite3InRhsIsConstant(Expr *pIn){
1614   Expr *pLHS;
1615   int res;
1616   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1617   pLHS = pIn->pLeft;
1618   pIn->pLeft = 0;
1619   res = sqlite3ExprIsConstant(pIn);
1620   pIn->pLeft = pLHS;
1621   return res;
1622 }
1623 #endif
1624 
1625 /*
1626 ** This function is used by the implementation of the IN (...) operator.
1627 ** The pX parameter is the expression on the RHS of the IN operator, which
1628 ** might be either a list of expressions or a subquery.
1629 **
1630 ** The job of this routine is to find or create a b-tree object that can
1631 ** be used either to test for membership in the RHS set or to iterate through
1632 ** all members of the RHS set, skipping duplicates.
1633 **
1634 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1635 ** and pX->iTable is set to the index of that cursor.
1636 **
1637 ** The returned value of this function indicates the b-tree type, as follows:
1638 **
1639 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1640 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1641 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1642 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1643 **                         populated epheremal table.
1644 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1645 **                         implemented as a sequence of comparisons.
1646 **
1647 ** An existing b-tree might be used if the RHS expression pX is a simple
1648 ** subquery such as:
1649 **
1650 **     SELECT <column> FROM <table>
1651 **
1652 ** If the RHS of the IN operator is a list or a more complex subquery, then
1653 ** an ephemeral table might need to be generated from the RHS and then
1654 ** pX->iTable made to point to the ephemeral table instead of an
1655 ** existing table.
1656 **
1657 ** The inFlags parameter must contain exactly one of the bits
1658 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1659 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1660 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1661 ** IN index will be used to loop over all values of the RHS of the
1662 ** IN operator.
1663 **
1664 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1665 ** through the set members) then the b-tree must not contain duplicates.
1666 ** An epheremal table must be used unless the selected <column> is guaranteed
1667 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1668 ** has a UNIQUE constraint or UNIQUE index.
1669 **
1670 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1671 ** for fast set membership tests) then an epheremal table must
1672 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1673 ** be found with <column> as its left-most column.
1674 **
1675 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1676 ** if the RHS of the IN operator is a list (not a subquery) then this
1677 ** routine might decide that creating an ephemeral b-tree for membership
1678 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1679 ** calling routine should implement the IN operator using a sequence
1680 ** of Eq or Ne comparison operations.
1681 **
1682 ** When the b-tree is being used for membership tests, the calling function
1683 ** might need to know whether or not the RHS side of the IN operator
1684 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1685 ** if there is any chance that the (...) might contain a NULL value at
1686 ** runtime, then a register is allocated and the register number written
1687 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1688 ** NULL value, then *prRhsHasNull is left unchanged.
1689 **
1690 ** If a register is allocated and its location stored in *prRhsHasNull, then
1691 ** the value in that register will be NULL if the b-tree contains one or more
1692 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1693 ** NULL values.
1694 */
1695 #ifndef SQLITE_OMIT_SUBQUERY
1696 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1697   Select *p;                            /* SELECT to the right of IN operator */
1698   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1699   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1700   int mustBeUnique;                     /* True if RHS must be unique */
1701   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1702 
1703   assert( pX->op==TK_IN );
1704   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1705 
1706   /* Check to see if an existing table or index can be used to
1707   ** satisfy the query.  This is preferable to generating a new
1708   ** ephemeral table.
1709   */
1710   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1711   if( pParse->nErr==0 && isCandidateForInOpt(p) ){
1712     sqlite3 *db = pParse->db;              /* Database connection */
1713     Table *pTab;                           /* Table <table>. */
1714     Expr *pExpr;                           /* Expression <column> */
1715     i16 iCol;                              /* Index of column <column> */
1716     i16 iDb;                               /* Database idx for pTab */
1717 
1718     assert( p );                        /* Because of isCandidateForInOpt(p) */
1719     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1720     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1721     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1722     pTab = p->pSrc->a[0].pTab;
1723     pExpr = p->pEList->a[0].pExpr;
1724     iCol = (i16)pExpr->iColumn;
1725 
1726     /* Code an OP_Transaction and OP_TableLock for <table>. */
1727     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1728     sqlite3CodeVerifySchema(pParse, iDb);
1729     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1730 
1731     /* This function is only called from two places. In both cases the vdbe
1732     ** has already been allocated. So assume sqlite3GetVdbe() is always
1733     ** successful here.
1734     */
1735     assert(v);
1736     if( iCol<0 ){
1737       int iAddr = sqlite3CodeOnce(pParse);
1738       VdbeCoverage(v);
1739 
1740       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1741       eType = IN_INDEX_ROWID;
1742 
1743       sqlite3VdbeJumpHere(v, iAddr);
1744     }else{
1745       Index *pIdx;                         /* Iterator variable */
1746 
1747       /* The collation sequence used by the comparison. If an index is to
1748       ** be used in place of a temp-table, it must be ordered according
1749       ** to this collation sequence.  */
1750       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1751 
1752       /* Check that the affinity that will be used to perform the
1753       ** comparison is the same as the affinity of the column. If
1754       ** it is not, it is not possible to use any index.
1755       */
1756       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1757 
1758       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1759         if( (pIdx->aiColumn[0]==iCol)
1760          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1761          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1762         ){
1763           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1764           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1765           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1766           VdbeComment((v, "%s", pIdx->zName));
1767           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1768           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1769 
1770           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1771             *prRhsHasNull = ++pParse->nMem;
1772             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1773           }
1774           sqlite3VdbeJumpHere(v, iAddr);
1775         }
1776       }
1777     }
1778   }
1779 
1780   /* If no preexisting index is available for the IN clause
1781   ** and IN_INDEX_NOOP is an allowed reply
1782   ** and the RHS of the IN operator is a list, not a subquery
1783   ** and the RHS is not contant or has two or fewer terms,
1784   ** then it is not worth creating an ephemeral table to evaluate
1785   ** the IN operator so return IN_INDEX_NOOP.
1786   */
1787   if( eType==0
1788    && (inFlags & IN_INDEX_NOOP_OK)
1789    && !ExprHasProperty(pX, EP_xIsSelect)
1790    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1791   ){
1792     eType = IN_INDEX_NOOP;
1793   }
1794 
1795 
1796   if( eType==0 ){
1797     /* Could not find an existing table or index to use as the RHS b-tree.
1798     ** We will have to generate an ephemeral table to do the job.
1799     */
1800     u32 savedNQueryLoop = pParse->nQueryLoop;
1801     int rMayHaveNull = 0;
1802     eType = IN_INDEX_EPH;
1803     if( inFlags & IN_INDEX_LOOP ){
1804       pParse->nQueryLoop = 0;
1805       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1806         eType = IN_INDEX_ROWID;
1807       }
1808     }else if( prRhsHasNull ){
1809       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1810     }
1811     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1812     pParse->nQueryLoop = savedNQueryLoop;
1813   }else{
1814     pX->iTable = iTab;
1815   }
1816   return eType;
1817 }
1818 #endif
1819 
1820 /*
1821 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1822 ** or IN operators.  Examples:
1823 **
1824 **     (SELECT a FROM b)          -- subquery
1825 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1826 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1827 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1828 **
1829 ** The pExpr parameter describes the expression that contains the IN
1830 ** operator or subquery.
1831 **
1832 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1833 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1834 ** to some integer key column of a table B-Tree. In this case, use an
1835 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1836 ** (slower) variable length keys B-Tree.
1837 **
1838 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1839 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1840 ** All this routine does is initialize the register given by rMayHaveNull
1841 ** to NULL.  Calling routines will take care of changing this register
1842 ** value to non-NULL if the RHS is NULL-free.
1843 **
1844 ** For a SELECT or EXISTS operator, return the register that holds the
1845 ** result.  For IN operators or if an error occurs, the return value is 0.
1846 */
1847 #ifndef SQLITE_OMIT_SUBQUERY
1848 int sqlite3CodeSubselect(
1849   Parse *pParse,          /* Parsing context */
1850   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1851   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1852   int isRowid             /* If true, LHS of IN operator is a rowid */
1853 ){
1854   int jmpIfDynamic = -1;                      /* One-time test address */
1855   int rReg = 0;                           /* Register storing resulting */
1856   Vdbe *v = sqlite3GetVdbe(pParse);
1857   if( NEVER(v==0) ) return 0;
1858   sqlite3ExprCachePush(pParse);
1859 
1860   /* This code must be run in its entirety every time it is encountered
1861   ** if any of the following is true:
1862   **
1863   **    *  The right-hand side is a correlated subquery
1864   **    *  The right-hand side is an expression list containing variables
1865   **    *  We are inside a trigger
1866   **
1867   ** If all of the above are false, then we can run this code just once
1868   ** save the results, and reuse the same result on subsequent invocations.
1869   */
1870   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1871     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1872   }
1873 
1874 #ifndef SQLITE_OMIT_EXPLAIN
1875   if( pParse->explain==2 ){
1876     char *zMsg = sqlite3MPrintf(
1877         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1878         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1879     );
1880     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1881   }
1882 #endif
1883 
1884   switch( pExpr->op ){
1885     case TK_IN: {
1886       char affinity;              /* Affinity of the LHS of the IN */
1887       int addr;                   /* Address of OP_OpenEphemeral instruction */
1888       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1889       KeyInfo *pKeyInfo = 0;      /* Key information */
1890 
1891       affinity = sqlite3ExprAffinity(pLeft);
1892 
1893       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1894       ** expression it is handled the same way.  An ephemeral table is
1895       ** filled with single-field index keys representing the results
1896       ** from the SELECT or the <exprlist>.
1897       **
1898       ** If the 'x' expression is a column value, or the SELECT...
1899       ** statement returns a column value, then the affinity of that
1900       ** column is used to build the index keys. If both 'x' and the
1901       ** SELECT... statement are columns, then numeric affinity is used
1902       ** if either column has NUMERIC or INTEGER affinity. If neither
1903       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1904       ** is used.
1905       */
1906       pExpr->iTable = pParse->nTab++;
1907       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1908       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1909 
1910       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1911         /* Case 1:     expr IN (SELECT ...)
1912         **
1913         ** Generate code to write the results of the select into the temporary
1914         ** table allocated and opened above.
1915         */
1916         Select *pSelect = pExpr->x.pSelect;
1917         SelectDest dest;
1918         ExprList *pEList;
1919 
1920         assert( !isRowid );
1921         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1922         dest.affSdst = (u8)affinity;
1923         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1924         pSelect->iLimit = 0;
1925         testcase( pSelect->selFlags & SF_Distinct );
1926         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1927         if( sqlite3Select(pParse, pSelect, &dest) ){
1928           sqlite3KeyInfoUnref(pKeyInfo);
1929           return 0;
1930         }
1931         pEList = pSelect->pEList;
1932         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1933         assert( pEList!=0 );
1934         assert( pEList->nExpr>0 );
1935         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1936         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1937                                                          pEList->a[0].pExpr);
1938       }else if( ALWAYS(pExpr->x.pList!=0) ){
1939         /* Case 2:     expr IN (exprlist)
1940         **
1941         ** For each expression, build an index key from the evaluation and
1942         ** store it in the temporary table. If <expr> is a column, then use
1943         ** that columns affinity when building index keys. If <expr> is not
1944         ** a column, use numeric affinity.
1945         */
1946         int i;
1947         ExprList *pList = pExpr->x.pList;
1948         struct ExprList_item *pItem;
1949         int r1, r2, r3;
1950 
1951         if( !affinity ){
1952           affinity = SQLITE_AFF_BLOB;
1953         }
1954         if( pKeyInfo ){
1955           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1956           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1957         }
1958 
1959         /* Loop through each expression in <exprlist>. */
1960         r1 = sqlite3GetTempReg(pParse);
1961         r2 = sqlite3GetTempReg(pParse);
1962         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1963         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1964           Expr *pE2 = pItem->pExpr;
1965           int iValToIns;
1966 
1967           /* If the expression is not constant then we will need to
1968           ** disable the test that was generated above that makes sure
1969           ** this code only executes once.  Because for a non-constant
1970           ** expression we need to rerun this code each time.
1971           */
1972           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1973             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1974             jmpIfDynamic = -1;
1975           }
1976 
1977           /* Evaluate the expression and insert it into the temp table */
1978           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1979             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1980           }else{
1981             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1982             if( isRowid ){
1983               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1984                                 sqlite3VdbeCurrentAddr(v)+2);
1985               VdbeCoverage(v);
1986               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1987             }else{
1988               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1989               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1990               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1991             }
1992           }
1993         }
1994         sqlite3ReleaseTempReg(pParse, r1);
1995         sqlite3ReleaseTempReg(pParse, r2);
1996       }
1997       if( pKeyInfo ){
1998         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1999       }
2000       break;
2001     }
2002 
2003     case TK_EXISTS:
2004     case TK_SELECT:
2005     default: {
2006       /* If this has to be a scalar SELECT.  Generate code to put the
2007       ** value of this select in a memory cell and record the number
2008       ** of the memory cell in iColumn.  If this is an EXISTS, write
2009       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2010       ** and record that memory cell in iColumn.
2011       */
2012       Select *pSel;                         /* SELECT statement to encode */
2013       SelectDest dest;                      /* How to deal with SELECt result */
2014 
2015       testcase( pExpr->op==TK_EXISTS );
2016       testcase( pExpr->op==TK_SELECT );
2017       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2018 
2019       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2020       pSel = pExpr->x.pSelect;
2021       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2022       if( pExpr->op==TK_SELECT ){
2023         dest.eDest = SRT_Mem;
2024         dest.iSdst = dest.iSDParm;
2025         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2026         VdbeComment((v, "Init subquery result"));
2027       }else{
2028         dest.eDest = SRT_Exists;
2029         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2030         VdbeComment((v, "Init EXISTS result"));
2031       }
2032       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2033       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2034                                   &sqlite3IntTokens[1]);
2035       pSel->iLimit = 0;
2036       pSel->selFlags &= ~SF_MultiValue;
2037       if( sqlite3Select(pParse, pSel, &dest) ){
2038         return 0;
2039       }
2040       rReg = dest.iSDParm;
2041       ExprSetVVAProperty(pExpr, EP_NoReduce);
2042       break;
2043     }
2044   }
2045 
2046   if( rHasNullFlag ){
2047     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2048   }
2049 
2050   if( jmpIfDynamic>=0 ){
2051     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2052   }
2053   sqlite3ExprCachePop(pParse);
2054 
2055   return rReg;
2056 }
2057 #endif /* SQLITE_OMIT_SUBQUERY */
2058 
2059 #ifndef SQLITE_OMIT_SUBQUERY
2060 /*
2061 ** Generate code for an IN expression.
2062 **
2063 **      x IN (SELECT ...)
2064 **      x IN (value, value, ...)
2065 **
2066 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2067 ** is an array of zero or more values.  The expression is true if the LHS is
2068 ** contained within the RHS.  The value of the expression is unknown (NULL)
2069 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2070 ** RHS contains one or more NULL values.
2071 **
2072 ** This routine generates code that jumps to destIfFalse if the LHS is not
2073 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2074 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2075 ** within the RHS then fall through.
2076 */
2077 static void sqlite3ExprCodeIN(
2078   Parse *pParse,        /* Parsing and code generating context */
2079   Expr *pExpr,          /* The IN expression */
2080   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2081   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2082 ){
2083   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2084   char affinity;        /* Comparison affinity to use */
2085   int eType;            /* Type of the RHS */
2086   int r1;               /* Temporary use register */
2087   Vdbe *v;              /* Statement under construction */
2088 
2089   /* Compute the RHS.   After this step, the table with cursor
2090   ** pExpr->iTable will contains the values that make up the RHS.
2091   */
2092   v = pParse->pVdbe;
2093   assert( v!=0 );       /* OOM detected prior to this routine */
2094   VdbeNoopComment((v, "begin IN expr"));
2095   eType = sqlite3FindInIndex(pParse, pExpr,
2096                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2097                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2098 
2099   /* Figure out the affinity to use to create a key from the results
2100   ** of the expression. affinityStr stores a static string suitable for
2101   ** P4 of OP_MakeRecord.
2102   */
2103   affinity = comparisonAffinity(pExpr);
2104 
2105   /* Code the LHS, the <expr> from "<expr> IN (...)".
2106   */
2107   sqlite3ExprCachePush(pParse);
2108   r1 = sqlite3GetTempReg(pParse);
2109   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2110 
2111   /* If sqlite3FindInIndex() did not find or create an index that is
2112   ** suitable for evaluating the IN operator, then evaluate using a
2113   ** sequence of comparisons.
2114   */
2115   if( eType==IN_INDEX_NOOP ){
2116     ExprList *pList = pExpr->x.pList;
2117     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2118     int labelOk = sqlite3VdbeMakeLabel(v);
2119     int r2, regToFree;
2120     int regCkNull = 0;
2121     int ii;
2122     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2123     if( destIfNull!=destIfFalse ){
2124       regCkNull = sqlite3GetTempReg(pParse);
2125       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2126     }
2127     for(ii=0; ii<pList->nExpr; ii++){
2128       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2129       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2130         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2131       }
2132       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2133         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2134                           (void*)pColl, P4_COLLSEQ);
2135         VdbeCoverageIf(v, ii<pList->nExpr-1);
2136         VdbeCoverageIf(v, ii==pList->nExpr-1);
2137         sqlite3VdbeChangeP5(v, affinity);
2138       }else{
2139         assert( destIfNull==destIfFalse );
2140         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2141                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2142         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2143       }
2144       sqlite3ReleaseTempReg(pParse, regToFree);
2145     }
2146     if( regCkNull ){
2147       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2148       sqlite3VdbeGoto(v, destIfFalse);
2149     }
2150     sqlite3VdbeResolveLabel(v, labelOk);
2151     sqlite3ReleaseTempReg(pParse, regCkNull);
2152   }else{
2153 
2154     /* If the LHS is NULL, then the result is either false or NULL depending
2155     ** on whether the RHS is empty or not, respectively.
2156     */
2157     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2158       if( destIfNull==destIfFalse ){
2159         /* Shortcut for the common case where the false and NULL outcomes are
2160         ** the same. */
2161         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2162       }else{
2163         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2164         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2165         VdbeCoverage(v);
2166         sqlite3VdbeGoto(v, destIfNull);
2167         sqlite3VdbeJumpHere(v, addr1);
2168       }
2169     }
2170 
2171     if( eType==IN_INDEX_ROWID ){
2172       /* In this case, the RHS is the ROWID of table b-tree
2173       */
2174       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2175       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2176       VdbeCoverage(v);
2177     }else{
2178       /* In this case, the RHS is an index b-tree.
2179       */
2180       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2181 
2182       /* If the set membership test fails, then the result of the
2183       ** "x IN (...)" expression must be either 0 or NULL. If the set
2184       ** contains no NULL values, then the result is 0. If the set
2185       ** contains one or more NULL values, then the result of the
2186       ** expression is also NULL.
2187       */
2188       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2189       if( rRhsHasNull==0 ){
2190         /* This branch runs if it is known at compile time that the RHS
2191         ** cannot contain NULL values. This happens as the result
2192         ** of a "NOT NULL" constraint in the database schema.
2193         **
2194         ** Also run this branch if NULL is equivalent to FALSE
2195         ** for this particular IN operator.
2196         */
2197         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2198         VdbeCoverage(v);
2199       }else{
2200         /* In this branch, the RHS of the IN might contain a NULL and
2201         ** the presence of a NULL on the RHS makes a difference in the
2202         ** outcome.
2203         */
2204         int j1;
2205 
2206         /* First check to see if the LHS is contained in the RHS.  If so,
2207         ** then the answer is TRUE the presence of NULLs in the RHS does
2208         ** not matter.  If the LHS is not contained in the RHS, then the
2209         ** answer is NULL if the RHS contains NULLs and the answer is
2210         ** FALSE if the RHS is NULL-free.
2211         */
2212         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2213         VdbeCoverage(v);
2214         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2215         VdbeCoverage(v);
2216         sqlite3VdbeGoto(v, destIfFalse);
2217         sqlite3VdbeJumpHere(v, j1);
2218       }
2219     }
2220   }
2221   sqlite3ReleaseTempReg(pParse, r1);
2222   sqlite3ExprCachePop(pParse);
2223   VdbeComment((v, "end IN expr"));
2224 }
2225 #endif /* SQLITE_OMIT_SUBQUERY */
2226 
2227 #ifndef SQLITE_OMIT_FLOATING_POINT
2228 /*
2229 ** Generate an instruction that will put the floating point
2230 ** value described by z[0..n-1] into register iMem.
2231 **
2232 ** The z[] string will probably not be zero-terminated.  But the
2233 ** z[n] character is guaranteed to be something that does not look
2234 ** like the continuation of the number.
2235 */
2236 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2237   if( ALWAYS(z!=0) ){
2238     double value;
2239     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2240     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2241     if( negateFlag ) value = -value;
2242     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2243   }
2244 }
2245 #endif
2246 
2247 
2248 /*
2249 ** Generate an instruction that will put the integer describe by
2250 ** text z[0..n-1] into register iMem.
2251 **
2252 ** Expr.u.zToken is always UTF8 and zero-terminated.
2253 */
2254 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2255   Vdbe *v = pParse->pVdbe;
2256   if( pExpr->flags & EP_IntValue ){
2257     int i = pExpr->u.iValue;
2258     assert( i>=0 );
2259     if( negFlag ) i = -i;
2260     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2261   }else{
2262     int c;
2263     i64 value;
2264     const char *z = pExpr->u.zToken;
2265     assert( z!=0 );
2266     c = sqlite3DecOrHexToI64(z, &value);
2267     if( c==0 || (c==2 && negFlag) ){
2268       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2269       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2270     }else{
2271 #ifdef SQLITE_OMIT_FLOATING_POINT
2272       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2273 #else
2274 #ifndef SQLITE_OMIT_HEX_INTEGER
2275       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2276         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2277       }else
2278 #endif
2279       {
2280         codeReal(v, z, negFlag, iMem);
2281       }
2282 #endif
2283     }
2284   }
2285 }
2286 
2287 /*
2288 ** Clear a cache entry.
2289 */
2290 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2291   if( p->tempReg ){
2292     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2293       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2294     }
2295     p->tempReg = 0;
2296   }
2297 }
2298 
2299 
2300 /*
2301 ** Record in the column cache that a particular column from a
2302 ** particular table is stored in a particular register.
2303 */
2304 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2305   int i;
2306   int minLru;
2307   int idxLru;
2308   struct yColCache *p;
2309 
2310   /* Unless an error has occurred, register numbers are always positive. */
2311   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2312   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2313 
2314   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2315   ** for testing only - to verify that SQLite always gets the same answer
2316   ** with and without the column cache.
2317   */
2318   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2319 
2320   /* First replace any existing entry.
2321   **
2322   ** Actually, the way the column cache is currently used, we are guaranteed
2323   ** that the object will never already be in cache.  Verify this guarantee.
2324   */
2325 #ifndef NDEBUG
2326   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2327     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2328   }
2329 #endif
2330 
2331   /* Find an empty slot and replace it */
2332   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2333     if( p->iReg==0 ){
2334       p->iLevel = pParse->iCacheLevel;
2335       p->iTable = iTab;
2336       p->iColumn = iCol;
2337       p->iReg = iReg;
2338       p->tempReg = 0;
2339       p->lru = pParse->iCacheCnt++;
2340       return;
2341     }
2342   }
2343 
2344   /* Replace the last recently used */
2345   minLru = 0x7fffffff;
2346   idxLru = -1;
2347   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2348     if( p->lru<minLru ){
2349       idxLru = i;
2350       minLru = p->lru;
2351     }
2352   }
2353   if( ALWAYS(idxLru>=0) ){
2354     p = &pParse->aColCache[idxLru];
2355     p->iLevel = pParse->iCacheLevel;
2356     p->iTable = iTab;
2357     p->iColumn = iCol;
2358     p->iReg = iReg;
2359     p->tempReg = 0;
2360     p->lru = pParse->iCacheCnt++;
2361     return;
2362   }
2363 }
2364 
2365 /*
2366 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2367 ** Purge the range of registers from the column cache.
2368 */
2369 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2370   int i;
2371   int iLast = iReg + nReg - 1;
2372   struct yColCache *p;
2373   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2374     int r = p->iReg;
2375     if( r>=iReg && r<=iLast ){
2376       cacheEntryClear(pParse, p);
2377       p->iReg = 0;
2378     }
2379   }
2380 }
2381 
2382 /*
2383 ** Remember the current column cache context.  Any new entries added
2384 ** added to the column cache after this call are removed when the
2385 ** corresponding pop occurs.
2386 */
2387 void sqlite3ExprCachePush(Parse *pParse){
2388   pParse->iCacheLevel++;
2389 #ifdef SQLITE_DEBUG
2390   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2391     printf("PUSH to %d\n", pParse->iCacheLevel);
2392   }
2393 #endif
2394 }
2395 
2396 /*
2397 ** Remove from the column cache any entries that were added since the
2398 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2399 ** the cache to the state it was in prior the most recent Push.
2400 */
2401 void sqlite3ExprCachePop(Parse *pParse){
2402   int i;
2403   struct yColCache *p;
2404   assert( pParse->iCacheLevel>=1 );
2405   pParse->iCacheLevel--;
2406 #ifdef SQLITE_DEBUG
2407   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2408     printf("POP  to %d\n", pParse->iCacheLevel);
2409   }
2410 #endif
2411   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2412     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2413       cacheEntryClear(pParse, p);
2414       p->iReg = 0;
2415     }
2416   }
2417 }
2418 
2419 /*
2420 ** When a cached column is reused, make sure that its register is
2421 ** no longer available as a temp register.  ticket #3879:  that same
2422 ** register might be in the cache in multiple places, so be sure to
2423 ** get them all.
2424 */
2425 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2426   int i;
2427   struct yColCache *p;
2428   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2429     if( p->iReg==iReg ){
2430       p->tempReg = 0;
2431     }
2432   }
2433 }
2434 
2435 /* Generate code that will load into register regOut a value that is
2436 ** appropriate for the iIdxCol-th column of index pIdx.
2437 */
2438 void sqlite3ExprCodeLoadIndexColumn(
2439   Parse *pParse,  /* The parsing context */
2440   Index *pIdx,    /* The index whose column is to be loaded */
2441   int iTabCur,    /* Cursor pointing to a table row */
2442   int iIdxCol,    /* The column of the index to be loaded */
2443   int regOut      /* Store the index column value in this register */
2444 ){
2445   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2446   if( iTabCol==XN_EXPR ){
2447     assert( pIdx->aColExpr );
2448     assert( pIdx->aColExpr->nExpr>iIdxCol );
2449     pParse->iSelfTab = iTabCur;
2450     sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2451   }else{
2452     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2453                                     iTabCol, regOut);
2454   }
2455 }
2456 
2457 /*
2458 ** Generate code to extract the value of the iCol-th column of a table.
2459 */
2460 void sqlite3ExprCodeGetColumnOfTable(
2461   Vdbe *v,        /* The VDBE under construction */
2462   Table *pTab,    /* The table containing the value */
2463   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2464   int iCol,       /* Index of the column to extract */
2465   int regOut      /* Extract the value into this register */
2466 ){
2467   if( iCol<0 || iCol==pTab->iPKey ){
2468     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2469   }else{
2470     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2471     int x = iCol;
2472     if( !HasRowid(pTab) ){
2473       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2474     }
2475     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2476   }
2477   if( iCol>=0 ){
2478     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2479   }
2480 }
2481 
2482 /*
2483 ** Generate code that will extract the iColumn-th column from
2484 ** table pTab and store the column value in a register.  An effort
2485 ** is made to store the column value in register iReg, but this is
2486 ** not guaranteed.  The location of the column value is returned.
2487 **
2488 ** There must be an open cursor to pTab in iTable when this routine
2489 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2490 */
2491 int sqlite3ExprCodeGetColumn(
2492   Parse *pParse,   /* Parsing and code generating context */
2493   Table *pTab,     /* Description of the table we are reading from */
2494   int iColumn,     /* Index of the table column */
2495   int iTable,      /* The cursor pointing to the table */
2496   int iReg,        /* Store results here */
2497   u8 p5            /* P5 value for OP_Column */
2498 ){
2499   Vdbe *v = pParse->pVdbe;
2500   int i;
2501   struct yColCache *p;
2502 
2503   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2504     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2505       p->lru = pParse->iCacheCnt++;
2506       sqlite3ExprCachePinRegister(pParse, p->iReg);
2507       return p->iReg;
2508     }
2509   }
2510   assert( v!=0 );
2511   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2512   if( p5 ){
2513     sqlite3VdbeChangeP5(v, p5);
2514   }else{
2515     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2516   }
2517   return iReg;
2518 }
2519 
2520 /*
2521 ** Clear all column cache entries.
2522 */
2523 void sqlite3ExprCacheClear(Parse *pParse){
2524   int i;
2525   struct yColCache *p;
2526 
2527 #if SQLITE_DEBUG
2528   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2529     printf("CLEAR\n");
2530   }
2531 #endif
2532   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2533     if( p->iReg ){
2534       cacheEntryClear(pParse, p);
2535       p->iReg = 0;
2536     }
2537   }
2538 }
2539 
2540 /*
2541 ** Record the fact that an affinity change has occurred on iCount
2542 ** registers starting with iStart.
2543 */
2544 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2545   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2546 }
2547 
2548 /*
2549 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2550 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2551 */
2552 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2553   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2554   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2555   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2556 }
2557 
2558 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2559 /*
2560 ** Return true if any register in the range iFrom..iTo (inclusive)
2561 ** is used as part of the column cache.
2562 **
2563 ** This routine is used within assert() and testcase() macros only
2564 ** and does not appear in a normal build.
2565 */
2566 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2567   int i;
2568   struct yColCache *p;
2569   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2570     int r = p->iReg;
2571     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2572   }
2573   return 0;
2574 }
2575 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2576 
2577 /*
2578 ** Convert an expression node to a TK_REGISTER
2579 */
2580 static void exprToRegister(Expr *p, int iReg){
2581   p->op2 = p->op;
2582   p->op = TK_REGISTER;
2583   p->iTable = iReg;
2584   ExprClearProperty(p, EP_Skip);
2585 }
2586 
2587 /*
2588 ** Generate code into the current Vdbe to evaluate the given
2589 ** expression.  Attempt to store the results in register "target".
2590 ** Return the register where results are stored.
2591 **
2592 ** With this routine, there is no guarantee that results will
2593 ** be stored in target.  The result might be stored in some other
2594 ** register if it is convenient to do so.  The calling function
2595 ** must check the return code and move the results to the desired
2596 ** register.
2597 */
2598 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2599   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2600   int op;                   /* The opcode being coded */
2601   int inReg = target;       /* Results stored in register inReg */
2602   int regFree1 = 0;         /* If non-zero free this temporary register */
2603   int regFree2 = 0;         /* If non-zero free this temporary register */
2604   int r1, r2, r3, r4;       /* Various register numbers */
2605   sqlite3 *db = pParse->db; /* The database connection */
2606   Expr tempX;               /* Temporary expression node */
2607 
2608   assert( target>0 && target<=pParse->nMem );
2609   if( v==0 ){
2610     assert( pParse->db->mallocFailed );
2611     return 0;
2612   }
2613 
2614   if( pExpr==0 ){
2615     op = TK_NULL;
2616   }else{
2617     op = pExpr->op;
2618   }
2619   switch( op ){
2620     case TK_AGG_COLUMN: {
2621       AggInfo *pAggInfo = pExpr->pAggInfo;
2622       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2623       if( !pAggInfo->directMode ){
2624         assert( pCol->iMem>0 );
2625         inReg = pCol->iMem;
2626         break;
2627       }else if( pAggInfo->useSortingIdx ){
2628         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2629                               pCol->iSorterColumn, target);
2630         break;
2631       }
2632       /* Otherwise, fall thru into the TK_COLUMN case */
2633     }
2634     case TK_COLUMN: {
2635       int iTab = pExpr->iTable;
2636       if( iTab<0 ){
2637         if( pParse->ckBase>0 ){
2638           /* Generating CHECK constraints or inserting into partial index */
2639           inReg = pExpr->iColumn + pParse->ckBase;
2640           break;
2641         }else{
2642           /* Coding an expression that is part of an index where column names
2643           ** in the index refer to the table to which the index belongs */
2644           iTab = pParse->iSelfTab;
2645         }
2646       }
2647       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2648                                pExpr->iColumn, iTab, target,
2649                                pExpr->op2);
2650       break;
2651     }
2652     case TK_INTEGER: {
2653       codeInteger(pParse, pExpr, 0, target);
2654       break;
2655     }
2656 #ifndef SQLITE_OMIT_FLOATING_POINT
2657     case TK_FLOAT: {
2658       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2659       codeReal(v, pExpr->u.zToken, 0, target);
2660       break;
2661     }
2662 #endif
2663     case TK_STRING: {
2664       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2665       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2666       break;
2667     }
2668     case TK_NULL: {
2669       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2670       break;
2671     }
2672 #ifndef SQLITE_OMIT_BLOB_LITERAL
2673     case TK_BLOB: {
2674       int n;
2675       const char *z;
2676       char *zBlob;
2677       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2678       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2679       assert( pExpr->u.zToken[1]=='\'' );
2680       z = &pExpr->u.zToken[2];
2681       n = sqlite3Strlen30(z) - 1;
2682       assert( z[n]=='\'' );
2683       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2684       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2685       break;
2686     }
2687 #endif
2688     case TK_VARIABLE: {
2689       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2690       assert( pExpr->u.zToken!=0 );
2691       assert( pExpr->u.zToken[0]!=0 );
2692       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2693       if( pExpr->u.zToken[1]!=0 ){
2694         assert( pExpr->u.zToken[0]=='?'
2695              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2696         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2697       }
2698       break;
2699     }
2700     case TK_REGISTER: {
2701       inReg = pExpr->iTable;
2702       break;
2703     }
2704 #ifndef SQLITE_OMIT_CAST
2705     case TK_CAST: {
2706       /* Expressions of the form:   CAST(pLeft AS token) */
2707       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2708       if( inReg!=target ){
2709         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2710         inReg = target;
2711       }
2712       sqlite3VdbeAddOp2(v, OP_Cast, target,
2713                         sqlite3AffinityType(pExpr->u.zToken, 0));
2714       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2715       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2716       break;
2717     }
2718 #endif /* SQLITE_OMIT_CAST */
2719     case TK_LT:
2720     case TK_LE:
2721     case TK_GT:
2722     case TK_GE:
2723     case TK_NE:
2724     case TK_EQ: {
2725       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2726       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2727       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2728                   r1, r2, inReg, SQLITE_STOREP2);
2729       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2730       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2731       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2732       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2733       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2734       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2735       testcase( regFree1==0 );
2736       testcase( regFree2==0 );
2737       break;
2738     }
2739     case TK_IS:
2740     case TK_ISNOT: {
2741       testcase( op==TK_IS );
2742       testcase( op==TK_ISNOT );
2743       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2744       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2745       op = (op==TK_IS) ? TK_EQ : TK_NE;
2746       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2747                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2748       VdbeCoverageIf(v, op==TK_EQ);
2749       VdbeCoverageIf(v, op==TK_NE);
2750       testcase( regFree1==0 );
2751       testcase( regFree2==0 );
2752       break;
2753     }
2754     case TK_AND:
2755     case TK_OR:
2756     case TK_PLUS:
2757     case TK_STAR:
2758     case TK_MINUS:
2759     case TK_REM:
2760     case TK_BITAND:
2761     case TK_BITOR:
2762     case TK_SLASH:
2763     case TK_LSHIFT:
2764     case TK_RSHIFT:
2765     case TK_CONCAT: {
2766       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2767       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2768       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2769       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2770       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2771       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2772       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2773       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2774       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2775       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2776       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2777       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2778       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2779       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2780       testcase( regFree1==0 );
2781       testcase( regFree2==0 );
2782       break;
2783     }
2784     case TK_UMINUS: {
2785       Expr *pLeft = pExpr->pLeft;
2786       assert( pLeft );
2787       if( pLeft->op==TK_INTEGER ){
2788         codeInteger(pParse, pLeft, 1, target);
2789 #ifndef SQLITE_OMIT_FLOATING_POINT
2790       }else if( pLeft->op==TK_FLOAT ){
2791         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2792         codeReal(v, pLeft->u.zToken, 1, target);
2793 #endif
2794       }else{
2795         tempX.op = TK_INTEGER;
2796         tempX.flags = EP_IntValue|EP_TokenOnly;
2797         tempX.u.iValue = 0;
2798         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2799         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2800         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2801         testcase( regFree2==0 );
2802       }
2803       inReg = target;
2804       break;
2805     }
2806     case TK_BITNOT:
2807     case TK_NOT: {
2808       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2809       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2810       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2811       testcase( regFree1==0 );
2812       inReg = target;
2813       sqlite3VdbeAddOp2(v, op, r1, inReg);
2814       break;
2815     }
2816     case TK_ISNULL:
2817     case TK_NOTNULL: {
2818       int addr;
2819       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2820       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2821       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2822       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2823       testcase( regFree1==0 );
2824       addr = sqlite3VdbeAddOp1(v, op, r1);
2825       VdbeCoverageIf(v, op==TK_ISNULL);
2826       VdbeCoverageIf(v, op==TK_NOTNULL);
2827       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2828       sqlite3VdbeJumpHere(v, addr);
2829       break;
2830     }
2831     case TK_AGG_FUNCTION: {
2832       AggInfo *pInfo = pExpr->pAggInfo;
2833       if( pInfo==0 ){
2834         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2835         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2836       }else{
2837         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2838       }
2839       break;
2840     }
2841     case TK_FUNCTION: {
2842       ExprList *pFarg;       /* List of function arguments */
2843       int nFarg;             /* Number of function arguments */
2844       FuncDef *pDef;         /* The function definition object */
2845       int nId;               /* Length of the function name in bytes */
2846       const char *zId;       /* The function name */
2847       u32 constMask = 0;     /* Mask of function arguments that are constant */
2848       int i;                 /* Loop counter */
2849       u8 enc = ENC(db);      /* The text encoding used by this database */
2850       CollSeq *pColl = 0;    /* A collating sequence */
2851 
2852       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2853       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2854         pFarg = 0;
2855       }else{
2856         pFarg = pExpr->x.pList;
2857       }
2858       nFarg = pFarg ? pFarg->nExpr : 0;
2859       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2860       zId = pExpr->u.zToken;
2861       nId = sqlite3Strlen30(zId);
2862       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2863       if( pDef==0 || pDef->xFunc==0 ){
2864         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2865         break;
2866       }
2867 
2868       /* Attempt a direct implementation of the built-in COALESCE() and
2869       ** IFNULL() functions.  This avoids unnecessary evaluation of
2870       ** arguments past the first non-NULL argument.
2871       */
2872       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2873         int endCoalesce = sqlite3VdbeMakeLabel(v);
2874         assert( nFarg>=2 );
2875         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2876         for(i=1; i<nFarg; i++){
2877           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2878           VdbeCoverage(v);
2879           sqlite3ExprCacheRemove(pParse, target, 1);
2880           sqlite3ExprCachePush(pParse);
2881           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2882           sqlite3ExprCachePop(pParse);
2883         }
2884         sqlite3VdbeResolveLabel(v, endCoalesce);
2885         break;
2886       }
2887 
2888       /* The UNLIKELY() function is a no-op.  The result is the value
2889       ** of the first argument.
2890       */
2891       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2892         assert( nFarg>=1 );
2893         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2894         break;
2895       }
2896 
2897       for(i=0; i<nFarg; i++){
2898         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2899           testcase( i==31 );
2900           constMask |= MASKBIT32(i);
2901         }
2902         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2903           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2904         }
2905       }
2906       if( pFarg ){
2907         if( constMask ){
2908           r1 = pParse->nMem+1;
2909           pParse->nMem += nFarg;
2910         }else{
2911           r1 = sqlite3GetTempRange(pParse, nFarg);
2912         }
2913 
2914         /* For length() and typeof() functions with a column argument,
2915         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2916         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2917         ** loading.
2918         */
2919         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2920           u8 exprOp;
2921           assert( nFarg==1 );
2922           assert( pFarg->a[0].pExpr!=0 );
2923           exprOp = pFarg->a[0].pExpr->op;
2924           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2925             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2926             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2927             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2928             pFarg->a[0].pExpr->op2 =
2929                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2930           }
2931         }
2932 
2933         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2934         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
2935                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2936         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2937       }else{
2938         r1 = 0;
2939       }
2940 #ifndef SQLITE_OMIT_VIRTUALTABLE
2941       /* Possibly overload the function if the first argument is
2942       ** a virtual table column.
2943       **
2944       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2945       ** second argument, not the first, as the argument to test to
2946       ** see if it is a column in a virtual table.  This is done because
2947       ** the left operand of infix functions (the operand we want to
2948       ** control overloading) ends up as the second argument to the
2949       ** function.  The expression "A glob B" is equivalent to
2950       ** "glob(B,A).  We want to use the A in "A glob B" to test
2951       ** for function overloading.  But we use the B term in "glob(B,A)".
2952       */
2953       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2954         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2955       }else if( nFarg>0 ){
2956         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2957       }
2958 #endif
2959       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2960         if( !pColl ) pColl = db->pDfltColl;
2961         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2962       }
2963       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
2964                         (char*)pDef, P4_FUNCDEF);
2965       sqlite3VdbeChangeP5(v, (u8)nFarg);
2966       if( nFarg && constMask==0 ){
2967         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2968       }
2969       break;
2970     }
2971 #ifndef SQLITE_OMIT_SUBQUERY
2972     case TK_EXISTS:
2973     case TK_SELECT: {
2974       testcase( op==TK_EXISTS );
2975       testcase( op==TK_SELECT );
2976       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2977       break;
2978     }
2979     case TK_IN: {
2980       int destIfFalse = sqlite3VdbeMakeLabel(v);
2981       int destIfNull = sqlite3VdbeMakeLabel(v);
2982       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2983       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2984       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2985       sqlite3VdbeResolveLabel(v, destIfFalse);
2986       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2987       sqlite3VdbeResolveLabel(v, destIfNull);
2988       break;
2989     }
2990 #endif /* SQLITE_OMIT_SUBQUERY */
2991 
2992 
2993     /*
2994     **    x BETWEEN y AND z
2995     **
2996     ** This is equivalent to
2997     **
2998     **    x>=y AND x<=z
2999     **
3000     ** X is stored in pExpr->pLeft.
3001     ** Y is stored in pExpr->pList->a[0].pExpr.
3002     ** Z is stored in pExpr->pList->a[1].pExpr.
3003     */
3004     case TK_BETWEEN: {
3005       Expr *pLeft = pExpr->pLeft;
3006       struct ExprList_item *pLItem = pExpr->x.pList->a;
3007       Expr *pRight = pLItem->pExpr;
3008 
3009       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3010       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3011       testcase( regFree1==0 );
3012       testcase( regFree2==0 );
3013       r3 = sqlite3GetTempReg(pParse);
3014       r4 = sqlite3GetTempReg(pParse);
3015       codeCompare(pParse, pLeft, pRight, OP_Ge,
3016                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3017       pLItem++;
3018       pRight = pLItem->pExpr;
3019       sqlite3ReleaseTempReg(pParse, regFree2);
3020       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3021       testcase( regFree2==0 );
3022       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3023       VdbeCoverage(v);
3024       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3025       sqlite3ReleaseTempReg(pParse, r3);
3026       sqlite3ReleaseTempReg(pParse, r4);
3027       break;
3028     }
3029     case TK_COLLATE:
3030     case TK_UPLUS: {
3031       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3032       break;
3033     }
3034 
3035     case TK_TRIGGER: {
3036       /* If the opcode is TK_TRIGGER, then the expression is a reference
3037       ** to a column in the new.* or old.* pseudo-tables available to
3038       ** trigger programs. In this case Expr.iTable is set to 1 for the
3039       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3040       ** is set to the column of the pseudo-table to read, or to -1 to
3041       ** read the rowid field.
3042       **
3043       ** The expression is implemented using an OP_Param opcode. The p1
3044       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3045       ** to reference another column of the old.* pseudo-table, where
3046       ** i is the index of the column. For a new.rowid reference, p1 is
3047       ** set to (n+1), where n is the number of columns in each pseudo-table.
3048       ** For a reference to any other column in the new.* pseudo-table, p1
3049       ** is set to (n+2+i), where n and i are as defined previously. For
3050       ** example, if the table on which triggers are being fired is
3051       ** declared as:
3052       **
3053       **   CREATE TABLE t1(a, b);
3054       **
3055       ** Then p1 is interpreted as follows:
3056       **
3057       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3058       **   p1==1   ->    old.a         p1==4   ->    new.a
3059       **   p1==2   ->    old.b         p1==5   ->    new.b
3060       */
3061       Table *pTab = pExpr->pTab;
3062       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3063 
3064       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3065       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3066       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3067       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3068 
3069       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3070       VdbeComment((v, "%s.%s -> $%d",
3071         (pExpr->iTable ? "new" : "old"),
3072         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3073         target
3074       ));
3075 
3076 #ifndef SQLITE_OMIT_FLOATING_POINT
3077       /* If the column has REAL affinity, it may currently be stored as an
3078       ** integer. Use OP_RealAffinity to make sure it is really real.
3079       **
3080       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3081       ** floating point when extracting it from the record.  */
3082       if( pExpr->iColumn>=0
3083        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3084       ){
3085         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3086       }
3087 #endif
3088       break;
3089     }
3090 
3091 
3092     /*
3093     ** Form A:
3094     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3095     **
3096     ** Form B:
3097     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3098     **
3099     ** Form A is can be transformed into the equivalent form B as follows:
3100     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3101     **        WHEN x=eN THEN rN ELSE y END
3102     **
3103     ** X (if it exists) is in pExpr->pLeft.
3104     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3105     ** odd.  The Y is also optional.  If the number of elements in x.pList
3106     ** is even, then Y is omitted and the "otherwise" result is NULL.
3107     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3108     **
3109     ** The result of the expression is the Ri for the first matching Ei,
3110     ** or if there is no matching Ei, the ELSE term Y, or if there is
3111     ** no ELSE term, NULL.
3112     */
3113     default: assert( op==TK_CASE ); {
3114       int endLabel;                     /* GOTO label for end of CASE stmt */
3115       int nextCase;                     /* GOTO label for next WHEN clause */
3116       int nExpr;                        /* 2x number of WHEN terms */
3117       int i;                            /* Loop counter */
3118       ExprList *pEList;                 /* List of WHEN terms */
3119       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3120       Expr opCompare;                   /* The X==Ei expression */
3121       Expr *pX;                         /* The X expression */
3122       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3123       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3124 
3125       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3126       assert(pExpr->x.pList->nExpr > 0);
3127       pEList = pExpr->x.pList;
3128       aListelem = pEList->a;
3129       nExpr = pEList->nExpr;
3130       endLabel = sqlite3VdbeMakeLabel(v);
3131       if( (pX = pExpr->pLeft)!=0 ){
3132         tempX = *pX;
3133         testcase( pX->op==TK_COLUMN );
3134         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3135         testcase( regFree1==0 );
3136         opCompare.op = TK_EQ;
3137         opCompare.pLeft = &tempX;
3138         pTest = &opCompare;
3139         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3140         ** The value in regFree1 might get SCopy-ed into the file result.
3141         ** So make sure that the regFree1 register is not reused for other
3142         ** purposes and possibly overwritten.  */
3143         regFree1 = 0;
3144       }
3145       for(i=0; i<nExpr-1; i=i+2){
3146         sqlite3ExprCachePush(pParse);
3147         if( pX ){
3148           assert( pTest!=0 );
3149           opCompare.pRight = aListelem[i].pExpr;
3150         }else{
3151           pTest = aListelem[i].pExpr;
3152         }
3153         nextCase = sqlite3VdbeMakeLabel(v);
3154         testcase( pTest->op==TK_COLUMN );
3155         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3156         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3157         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3158         sqlite3VdbeGoto(v, endLabel);
3159         sqlite3ExprCachePop(pParse);
3160         sqlite3VdbeResolveLabel(v, nextCase);
3161       }
3162       if( (nExpr&1)!=0 ){
3163         sqlite3ExprCachePush(pParse);
3164         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3165         sqlite3ExprCachePop(pParse);
3166       }else{
3167         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3168       }
3169       assert( db->mallocFailed || pParse->nErr>0
3170            || pParse->iCacheLevel==iCacheLevel );
3171       sqlite3VdbeResolveLabel(v, endLabel);
3172       break;
3173     }
3174 #ifndef SQLITE_OMIT_TRIGGER
3175     case TK_RAISE: {
3176       assert( pExpr->affinity==OE_Rollback
3177            || pExpr->affinity==OE_Abort
3178            || pExpr->affinity==OE_Fail
3179            || pExpr->affinity==OE_Ignore
3180       );
3181       if( !pParse->pTriggerTab ){
3182         sqlite3ErrorMsg(pParse,
3183                        "RAISE() may only be used within a trigger-program");
3184         return 0;
3185       }
3186       if( pExpr->affinity==OE_Abort ){
3187         sqlite3MayAbort(pParse);
3188       }
3189       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3190       if( pExpr->affinity==OE_Ignore ){
3191         sqlite3VdbeAddOp4(
3192             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3193         VdbeCoverage(v);
3194       }else{
3195         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3196                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3197       }
3198 
3199       break;
3200     }
3201 #endif
3202   }
3203   sqlite3ReleaseTempReg(pParse, regFree1);
3204   sqlite3ReleaseTempReg(pParse, regFree2);
3205   return inReg;
3206 }
3207 
3208 /*
3209 ** Factor out the code of the given expression to initialization time.
3210 */
3211 void sqlite3ExprCodeAtInit(
3212   Parse *pParse,    /* Parsing context */
3213   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3214   int regDest,      /* Store the value in this register */
3215   u8 reusable       /* True if this expression is reusable */
3216 ){
3217   ExprList *p;
3218   assert( ConstFactorOk(pParse) );
3219   p = pParse->pConstExpr;
3220   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3221   p = sqlite3ExprListAppend(pParse, p, pExpr);
3222   if( p ){
3223      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3224      pItem->u.iConstExprReg = regDest;
3225      pItem->reusable = reusable;
3226   }
3227   pParse->pConstExpr = p;
3228 }
3229 
3230 /*
3231 ** Generate code to evaluate an expression and store the results
3232 ** into a register.  Return the register number where the results
3233 ** are stored.
3234 **
3235 ** If the register is a temporary register that can be deallocated,
3236 ** then write its number into *pReg.  If the result register is not
3237 ** a temporary, then set *pReg to zero.
3238 **
3239 ** If pExpr is a constant, then this routine might generate this
3240 ** code to fill the register in the initialization section of the
3241 ** VDBE program, in order to factor it out of the evaluation loop.
3242 */
3243 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3244   int r2;
3245   pExpr = sqlite3ExprSkipCollate(pExpr);
3246   if( ConstFactorOk(pParse)
3247    && pExpr->op!=TK_REGISTER
3248    && sqlite3ExprIsConstantNotJoin(pExpr)
3249   ){
3250     ExprList *p = pParse->pConstExpr;
3251     int i;
3252     *pReg  = 0;
3253     if( p ){
3254       struct ExprList_item *pItem;
3255       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3256         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3257           return pItem->u.iConstExprReg;
3258         }
3259       }
3260     }
3261     r2 = ++pParse->nMem;
3262     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3263   }else{
3264     int r1 = sqlite3GetTempReg(pParse);
3265     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3266     if( r2==r1 ){
3267       *pReg = r1;
3268     }else{
3269       sqlite3ReleaseTempReg(pParse, r1);
3270       *pReg = 0;
3271     }
3272   }
3273   return r2;
3274 }
3275 
3276 /*
3277 ** Generate code that will evaluate expression pExpr and store the
3278 ** results in register target.  The results are guaranteed to appear
3279 ** in register target.
3280 */
3281 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3282   int inReg;
3283 
3284   assert( target>0 && target<=pParse->nMem );
3285   if( pExpr && pExpr->op==TK_REGISTER ){
3286     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3287   }else{
3288     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3289     assert( pParse->pVdbe || pParse->db->mallocFailed );
3290     if( inReg!=target && pParse->pVdbe ){
3291       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3292     }
3293   }
3294 }
3295 
3296 /*
3297 ** Generate code that will evaluate expression pExpr and store the
3298 ** results in register target.  The results are guaranteed to appear
3299 ** in register target.  If the expression is constant, then this routine
3300 ** might choose to code the expression at initialization time.
3301 */
3302 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3303   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3304     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3305   }else{
3306     sqlite3ExprCode(pParse, pExpr, target);
3307   }
3308 }
3309 
3310 /*
3311 ** Generate code that evaluates the given expression and puts the result
3312 ** in register target.
3313 **
3314 ** Also make a copy of the expression results into another "cache" register
3315 ** and modify the expression so that the next time it is evaluated,
3316 ** the result is a copy of the cache register.
3317 **
3318 ** This routine is used for expressions that are used multiple
3319 ** times.  They are evaluated once and the results of the expression
3320 ** are reused.
3321 */
3322 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3323   Vdbe *v = pParse->pVdbe;
3324   int iMem;
3325 
3326   assert( target>0 );
3327   assert( pExpr->op!=TK_REGISTER );
3328   sqlite3ExprCode(pParse, pExpr, target);
3329   iMem = ++pParse->nMem;
3330   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3331   exprToRegister(pExpr, iMem);
3332 }
3333 
3334 /*
3335 ** Generate code that pushes the value of every element of the given
3336 ** expression list into a sequence of registers beginning at target.
3337 **
3338 ** Return the number of elements evaluated.
3339 **
3340 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3341 ** filled using OP_SCopy.  OP_Copy must be used instead.
3342 **
3343 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3344 ** factored out into initialization code.
3345 */
3346 int sqlite3ExprCodeExprList(
3347   Parse *pParse,     /* Parsing context */
3348   ExprList *pList,   /* The expression list to be coded */
3349   int target,        /* Where to write results */
3350   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3351   u8 flags           /* SQLITE_ECEL_* flags */
3352 ){
3353   struct ExprList_item *pItem;
3354   int i, j, n;
3355   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3356   Vdbe *v = pParse->pVdbe;
3357   assert( pList!=0 );
3358   assert( target>0 );
3359   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3360   n = pList->nExpr;
3361   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3362   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3363     Expr *pExpr = pItem->pExpr;
3364     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3365       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3366     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3367       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3368     }else{
3369       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3370       if( inReg!=target+i ){
3371         VdbeOp *pOp;
3372         if( copyOp==OP_Copy
3373          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3374          && pOp->p1+pOp->p3+1==inReg
3375          && pOp->p2+pOp->p3+1==target+i
3376         ){
3377           pOp->p3++;
3378         }else{
3379           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3380         }
3381       }
3382     }
3383   }
3384   return n;
3385 }
3386 
3387 /*
3388 ** Generate code for a BETWEEN operator.
3389 **
3390 **    x BETWEEN y AND z
3391 **
3392 ** The above is equivalent to
3393 **
3394 **    x>=y AND x<=z
3395 **
3396 ** Code it as such, taking care to do the common subexpression
3397 ** elimination of x.
3398 */
3399 static void exprCodeBetween(
3400   Parse *pParse,    /* Parsing and code generating context */
3401   Expr *pExpr,      /* The BETWEEN expression */
3402   int dest,         /* Jump here if the jump is taken */
3403   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3404   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3405 ){
3406   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3407   Expr compLeft;    /* The  x>=y  term */
3408   Expr compRight;   /* The  x<=z  term */
3409   Expr exprX;       /* The  x  subexpression */
3410   int regFree1 = 0; /* Temporary use register */
3411 
3412   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3413   exprX = *pExpr->pLeft;
3414   exprAnd.op = TK_AND;
3415   exprAnd.pLeft = &compLeft;
3416   exprAnd.pRight = &compRight;
3417   compLeft.op = TK_GE;
3418   compLeft.pLeft = &exprX;
3419   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3420   compRight.op = TK_LE;
3421   compRight.pLeft = &exprX;
3422   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3423   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3424   if( jumpIfTrue ){
3425     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3426   }else{
3427     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3428   }
3429   sqlite3ReleaseTempReg(pParse, regFree1);
3430 
3431   /* Ensure adequate test coverage */
3432   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3433   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3434   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3435   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3436   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3437   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3438   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3439   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3440 }
3441 
3442 /*
3443 ** Generate code for a boolean expression such that a jump is made
3444 ** to the label "dest" if the expression is true but execution
3445 ** continues straight thru if the expression is false.
3446 **
3447 ** If the expression evaluates to NULL (neither true nor false), then
3448 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3449 **
3450 ** This code depends on the fact that certain token values (ex: TK_EQ)
3451 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3452 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3453 ** the make process cause these values to align.  Assert()s in the code
3454 ** below verify that the numbers are aligned correctly.
3455 */
3456 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3457   Vdbe *v = pParse->pVdbe;
3458   int op = 0;
3459   int regFree1 = 0;
3460   int regFree2 = 0;
3461   int r1, r2;
3462 
3463   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3464   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3465   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3466   op = pExpr->op;
3467   switch( op ){
3468     case TK_AND: {
3469       int d2 = sqlite3VdbeMakeLabel(v);
3470       testcase( jumpIfNull==0 );
3471       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3472       sqlite3ExprCachePush(pParse);
3473       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3474       sqlite3VdbeResolveLabel(v, d2);
3475       sqlite3ExprCachePop(pParse);
3476       break;
3477     }
3478     case TK_OR: {
3479       testcase( jumpIfNull==0 );
3480       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3481       sqlite3ExprCachePush(pParse);
3482       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3483       sqlite3ExprCachePop(pParse);
3484       break;
3485     }
3486     case TK_NOT: {
3487       testcase( jumpIfNull==0 );
3488       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3489       break;
3490     }
3491     case TK_LT:
3492     case TK_LE:
3493     case TK_GT:
3494     case TK_GE:
3495     case TK_NE:
3496     case TK_EQ: {
3497       testcase( jumpIfNull==0 );
3498       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3499       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3500       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3501                   r1, r2, dest, jumpIfNull);
3502       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3503       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3504       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3505       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3506       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3507       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3508       testcase( regFree1==0 );
3509       testcase( regFree2==0 );
3510       break;
3511     }
3512     case TK_IS:
3513     case TK_ISNOT: {
3514       testcase( op==TK_IS );
3515       testcase( op==TK_ISNOT );
3516       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3517       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3518       op = (op==TK_IS) ? TK_EQ : TK_NE;
3519       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3520                   r1, r2, dest, SQLITE_NULLEQ);
3521       VdbeCoverageIf(v, op==TK_EQ);
3522       VdbeCoverageIf(v, op==TK_NE);
3523       testcase( regFree1==0 );
3524       testcase( regFree2==0 );
3525       break;
3526     }
3527     case TK_ISNULL:
3528     case TK_NOTNULL: {
3529       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3530       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3531       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3532       sqlite3VdbeAddOp2(v, op, r1, dest);
3533       VdbeCoverageIf(v, op==TK_ISNULL);
3534       VdbeCoverageIf(v, op==TK_NOTNULL);
3535       testcase( regFree1==0 );
3536       break;
3537     }
3538     case TK_BETWEEN: {
3539       testcase( jumpIfNull==0 );
3540       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3541       break;
3542     }
3543 #ifndef SQLITE_OMIT_SUBQUERY
3544     case TK_IN: {
3545       int destIfFalse = sqlite3VdbeMakeLabel(v);
3546       int destIfNull = jumpIfNull ? dest : destIfFalse;
3547       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3548       sqlite3VdbeGoto(v, dest);
3549       sqlite3VdbeResolveLabel(v, destIfFalse);
3550       break;
3551     }
3552 #endif
3553     default: {
3554       if( exprAlwaysTrue(pExpr) ){
3555         sqlite3VdbeGoto(v, dest);
3556       }else if( exprAlwaysFalse(pExpr) ){
3557         /* No-op */
3558       }else{
3559         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3560         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3561         VdbeCoverage(v);
3562         testcase( regFree1==0 );
3563         testcase( jumpIfNull==0 );
3564       }
3565       break;
3566     }
3567   }
3568   sqlite3ReleaseTempReg(pParse, regFree1);
3569   sqlite3ReleaseTempReg(pParse, regFree2);
3570 }
3571 
3572 /*
3573 ** Generate code for a boolean expression such that a jump is made
3574 ** to the label "dest" if the expression is false but execution
3575 ** continues straight thru if the expression is true.
3576 **
3577 ** If the expression evaluates to NULL (neither true nor false) then
3578 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3579 ** is 0.
3580 */
3581 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3582   Vdbe *v = pParse->pVdbe;
3583   int op = 0;
3584   int regFree1 = 0;
3585   int regFree2 = 0;
3586   int r1, r2;
3587 
3588   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3589   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3590   if( pExpr==0 )    return;
3591 
3592   /* The value of pExpr->op and op are related as follows:
3593   **
3594   **       pExpr->op            op
3595   **       ---------          ----------
3596   **       TK_ISNULL          OP_NotNull
3597   **       TK_NOTNULL         OP_IsNull
3598   **       TK_NE              OP_Eq
3599   **       TK_EQ              OP_Ne
3600   **       TK_GT              OP_Le
3601   **       TK_LE              OP_Gt
3602   **       TK_GE              OP_Lt
3603   **       TK_LT              OP_Ge
3604   **
3605   ** For other values of pExpr->op, op is undefined and unused.
3606   ** The value of TK_ and OP_ constants are arranged such that we
3607   ** can compute the mapping above using the following expression.
3608   ** Assert()s verify that the computation is correct.
3609   */
3610   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3611 
3612   /* Verify correct alignment of TK_ and OP_ constants
3613   */
3614   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3615   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3616   assert( pExpr->op!=TK_NE || op==OP_Eq );
3617   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3618   assert( pExpr->op!=TK_LT || op==OP_Ge );
3619   assert( pExpr->op!=TK_LE || op==OP_Gt );
3620   assert( pExpr->op!=TK_GT || op==OP_Le );
3621   assert( pExpr->op!=TK_GE || op==OP_Lt );
3622 
3623   switch( pExpr->op ){
3624     case TK_AND: {
3625       testcase( jumpIfNull==0 );
3626       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3627       sqlite3ExprCachePush(pParse);
3628       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3629       sqlite3ExprCachePop(pParse);
3630       break;
3631     }
3632     case TK_OR: {
3633       int d2 = sqlite3VdbeMakeLabel(v);
3634       testcase( jumpIfNull==0 );
3635       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3636       sqlite3ExprCachePush(pParse);
3637       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3638       sqlite3VdbeResolveLabel(v, d2);
3639       sqlite3ExprCachePop(pParse);
3640       break;
3641     }
3642     case TK_NOT: {
3643       testcase( jumpIfNull==0 );
3644       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3645       break;
3646     }
3647     case TK_LT:
3648     case TK_LE:
3649     case TK_GT:
3650     case TK_GE:
3651     case TK_NE:
3652     case TK_EQ: {
3653       testcase( jumpIfNull==0 );
3654       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3655       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3656       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3657                   r1, r2, dest, jumpIfNull);
3658       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3659       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3660       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3661       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3662       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3663       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3664       testcase( regFree1==0 );
3665       testcase( regFree2==0 );
3666       break;
3667     }
3668     case TK_IS:
3669     case TK_ISNOT: {
3670       testcase( pExpr->op==TK_IS );
3671       testcase( pExpr->op==TK_ISNOT );
3672       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3673       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3674       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3675       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3676                   r1, r2, dest, SQLITE_NULLEQ);
3677       VdbeCoverageIf(v, op==TK_EQ);
3678       VdbeCoverageIf(v, op==TK_NE);
3679       testcase( regFree1==0 );
3680       testcase( regFree2==0 );
3681       break;
3682     }
3683     case TK_ISNULL:
3684     case TK_NOTNULL: {
3685       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3686       sqlite3VdbeAddOp2(v, op, r1, dest);
3687       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3688       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3689       testcase( regFree1==0 );
3690       break;
3691     }
3692     case TK_BETWEEN: {
3693       testcase( jumpIfNull==0 );
3694       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3695       break;
3696     }
3697 #ifndef SQLITE_OMIT_SUBQUERY
3698     case TK_IN: {
3699       if( jumpIfNull ){
3700         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3701       }else{
3702         int destIfNull = sqlite3VdbeMakeLabel(v);
3703         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3704         sqlite3VdbeResolveLabel(v, destIfNull);
3705       }
3706       break;
3707     }
3708 #endif
3709     default: {
3710       if( exprAlwaysFalse(pExpr) ){
3711         sqlite3VdbeGoto(v, dest);
3712       }else if( exprAlwaysTrue(pExpr) ){
3713         /* no-op */
3714       }else{
3715         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3716         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3717         VdbeCoverage(v);
3718         testcase( regFree1==0 );
3719         testcase( jumpIfNull==0 );
3720       }
3721       break;
3722     }
3723   }
3724   sqlite3ReleaseTempReg(pParse, regFree1);
3725   sqlite3ReleaseTempReg(pParse, regFree2);
3726 }
3727 
3728 /*
3729 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3730 ** code generation, and that copy is deleted after code generation. This
3731 ** ensures that the original pExpr is unchanged.
3732 */
3733 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3734   sqlite3 *db = pParse->db;
3735   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3736   if( db->mallocFailed==0 ){
3737     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3738   }
3739   sqlite3ExprDelete(db, pCopy);
3740 }
3741 
3742 
3743 /*
3744 ** Do a deep comparison of two expression trees.  Return 0 if the two
3745 ** expressions are completely identical.  Return 1 if they differ only
3746 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3747 ** other than the top-level COLLATE operator.
3748 **
3749 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3750 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3751 **
3752 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3753 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3754 **
3755 ** Sometimes this routine will return 2 even if the two expressions
3756 ** really are equivalent.  If we cannot prove that the expressions are
3757 ** identical, we return 2 just to be safe.  So if this routine
3758 ** returns 2, then you do not really know for certain if the two
3759 ** expressions are the same.  But if you get a 0 or 1 return, then you
3760 ** can be sure the expressions are the same.  In the places where
3761 ** this routine is used, it does not hurt to get an extra 2 - that
3762 ** just might result in some slightly slower code.  But returning
3763 ** an incorrect 0 or 1 could lead to a malfunction.
3764 */
3765 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3766   u32 combinedFlags;
3767   if( pA==0 || pB==0 ){
3768     return pB==pA ? 0 : 2;
3769   }
3770   combinedFlags = pA->flags | pB->flags;
3771   if( combinedFlags & EP_IntValue ){
3772     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3773       return 0;
3774     }
3775     return 2;
3776   }
3777   if( pA->op!=pB->op ){
3778     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3779       return 1;
3780     }
3781     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3782       return 1;
3783     }
3784     return 2;
3785   }
3786   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3787     if( pA->op==TK_FUNCTION ){
3788       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3789     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3790       return pA->op==TK_COLLATE ? 1 : 2;
3791     }
3792   }
3793   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3794   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3795     if( combinedFlags & EP_xIsSelect ) return 2;
3796     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3797     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3798     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3799     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3800       if( pA->iColumn!=pB->iColumn ) return 2;
3801       if( pA->iTable!=pB->iTable
3802        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3803     }
3804   }
3805   return 0;
3806 }
3807 
3808 /*
3809 ** Compare two ExprList objects.  Return 0 if they are identical and
3810 ** non-zero if they differ in any way.
3811 **
3812 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3813 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3814 **
3815 ** This routine might return non-zero for equivalent ExprLists.  The
3816 ** only consequence will be disabled optimizations.  But this routine
3817 ** must never return 0 if the two ExprList objects are different, or
3818 ** a malfunction will result.
3819 **
3820 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3821 ** always differs from a non-NULL pointer.
3822 */
3823 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3824   int i;
3825   if( pA==0 && pB==0 ) return 0;
3826   if( pA==0 || pB==0 ) return 1;
3827   if( pA->nExpr!=pB->nExpr ) return 1;
3828   for(i=0; i<pA->nExpr; i++){
3829     Expr *pExprA = pA->a[i].pExpr;
3830     Expr *pExprB = pB->a[i].pExpr;
3831     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3832     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3833   }
3834   return 0;
3835 }
3836 
3837 /*
3838 ** Return true if we can prove the pE2 will always be true if pE1 is
3839 ** true.  Return false if we cannot complete the proof or if pE2 might
3840 ** be false.  Examples:
3841 **
3842 **     pE1: x==5       pE2: x==5             Result: true
3843 **     pE1: x>0        pE2: x==5             Result: false
3844 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3845 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3846 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3847 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3848 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3849 **
3850 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3851 ** Expr.iTable<0 then assume a table number given by iTab.
3852 **
3853 ** When in doubt, return false.  Returning true might give a performance
3854 ** improvement.  Returning false might cause a performance reduction, but
3855 ** it will always give the correct answer and is hence always safe.
3856 */
3857 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3858   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3859     return 1;
3860   }
3861   if( pE2->op==TK_OR
3862    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3863              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3864   ){
3865     return 1;
3866   }
3867   if( pE2->op==TK_NOTNULL
3868    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3869    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3870   ){
3871     return 1;
3872   }
3873   return 0;
3874 }
3875 
3876 /*
3877 ** An instance of the following structure is used by the tree walker
3878 ** to count references to table columns in the arguments of an
3879 ** aggregate function, in order to implement the
3880 ** sqlite3FunctionThisSrc() routine.
3881 */
3882 struct SrcCount {
3883   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3884   int nThis;       /* Number of references to columns in pSrcList */
3885   int nOther;      /* Number of references to columns in other FROM clauses */
3886 };
3887 
3888 /*
3889 ** Count the number of references to columns.
3890 */
3891 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3892   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3893   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3894   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3895   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3896   ** NEVER() will need to be removed. */
3897   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3898     int i;
3899     struct SrcCount *p = pWalker->u.pSrcCount;
3900     SrcList *pSrc = p->pSrc;
3901     int nSrc = pSrc ? pSrc->nSrc : 0;
3902     for(i=0; i<nSrc; i++){
3903       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3904     }
3905     if( i<nSrc ){
3906       p->nThis++;
3907     }else{
3908       p->nOther++;
3909     }
3910   }
3911   return WRC_Continue;
3912 }
3913 
3914 /*
3915 ** Determine if any of the arguments to the pExpr Function reference
3916 ** pSrcList.  Return true if they do.  Also return true if the function
3917 ** has no arguments or has only constant arguments.  Return false if pExpr
3918 ** references columns but not columns of tables found in pSrcList.
3919 */
3920 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3921   Walker w;
3922   struct SrcCount cnt;
3923   assert( pExpr->op==TK_AGG_FUNCTION );
3924   memset(&w, 0, sizeof(w));
3925   w.xExprCallback = exprSrcCount;
3926   w.u.pSrcCount = &cnt;
3927   cnt.pSrc = pSrcList;
3928   cnt.nThis = 0;
3929   cnt.nOther = 0;
3930   sqlite3WalkExprList(&w, pExpr->x.pList);
3931   return cnt.nThis>0 || cnt.nOther==0;
3932 }
3933 
3934 /*
3935 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3936 ** the new element.  Return a negative number if malloc fails.
3937 */
3938 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3939   int i;
3940   pInfo->aCol = sqlite3ArrayAllocate(
3941        db,
3942        pInfo->aCol,
3943        sizeof(pInfo->aCol[0]),
3944        &pInfo->nColumn,
3945        &i
3946   );
3947   return i;
3948 }
3949 
3950 /*
3951 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3952 ** the new element.  Return a negative number if malloc fails.
3953 */
3954 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3955   int i;
3956   pInfo->aFunc = sqlite3ArrayAllocate(
3957        db,
3958        pInfo->aFunc,
3959        sizeof(pInfo->aFunc[0]),
3960        &pInfo->nFunc,
3961        &i
3962   );
3963   return i;
3964 }
3965 
3966 /*
3967 ** This is the xExprCallback for a tree walker.  It is used to
3968 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3969 ** for additional information.
3970 */
3971 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3972   int i;
3973   NameContext *pNC = pWalker->u.pNC;
3974   Parse *pParse = pNC->pParse;
3975   SrcList *pSrcList = pNC->pSrcList;
3976   AggInfo *pAggInfo = pNC->pAggInfo;
3977 
3978   switch( pExpr->op ){
3979     case TK_AGG_COLUMN:
3980     case TK_COLUMN: {
3981       testcase( pExpr->op==TK_AGG_COLUMN );
3982       testcase( pExpr->op==TK_COLUMN );
3983       /* Check to see if the column is in one of the tables in the FROM
3984       ** clause of the aggregate query */
3985       if( ALWAYS(pSrcList!=0) ){
3986         struct SrcList_item *pItem = pSrcList->a;
3987         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3988           struct AggInfo_col *pCol;
3989           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3990           if( pExpr->iTable==pItem->iCursor ){
3991             /* If we reach this point, it means that pExpr refers to a table
3992             ** that is in the FROM clause of the aggregate query.
3993             **
3994             ** Make an entry for the column in pAggInfo->aCol[] if there
3995             ** is not an entry there already.
3996             */
3997             int k;
3998             pCol = pAggInfo->aCol;
3999             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4000               if( pCol->iTable==pExpr->iTable &&
4001                   pCol->iColumn==pExpr->iColumn ){
4002                 break;
4003               }
4004             }
4005             if( (k>=pAggInfo->nColumn)
4006              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4007             ){
4008               pCol = &pAggInfo->aCol[k];
4009               pCol->pTab = pExpr->pTab;
4010               pCol->iTable = pExpr->iTable;
4011               pCol->iColumn = pExpr->iColumn;
4012               pCol->iMem = ++pParse->nMem;
4013               pCol->iSorterColumn = -1;
4014               pCol->pExpr = pExpr;
4015               if( pAggInfo->pGroupBy ){
4016                 int j, n;
4017                 ExprList *pGB = pAggInfo->pGroupBy;
4018                 struct ExprList_item *pTerm = pGB->a;
4019                 n = pGB->nExpr;
4020                 for(j=0; j<n; j++, pTerm++){
4021                   Expr *pE = pTerm->pExpr;
4022                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4023                       pE->iColumn==pExpr->iColumn ){
4024                     pCol->iSorterColumn = j;
4025                     break;
4026                   }
4027                 }
4028               }
4029               if( pCol->iSorterColumn<0 ){
4030                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4031               }
4032             }
4033             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4034             ** because it was there before or because we just created it).
4035             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4036             ** pAggInfo->aCol[] entry.
4037             */
4038             ExprSetVVAProperty(pExpr, EP_NoReduce);
4039             pExpr->pAggInfo = pAggInfo;
4040             pExpr->op = TK_AGG_COLUMN;
4041             pExpr->iAgg = (i16)k;
4042             break;
4043           } /* endif pExpr->iTable==pItem->iCursor */
4044         } /* end loop over pSrcList */
4045       }
4046       return WRC_Prune;
4047     }
4048     case TK_AGG_FUNCTION: {
4049       if( (pNC->ncFlags & NC_InAggFunc)==0
4050        && pWalker->walkerDepth==pExpr->op2
4051       ){
4052         /* Check to see if pExpr is a duplicate of another aggregate
4053         ** function that is already in the pAggInfo structure
4054         */
4055         struct AggInfo_func *pItem = pAggInfo->aFunc;
4056         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4057           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4058             break;
4059           }
4060         }
4061         if( i>=pAggInfo->nFunc ){
4062           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4063           */
4064           u8 enc = ENC(pParse->db);
4065           i = addAggInfoFunc(pParse->db, pAggInfo);
4066           if( i>=0 ){
4067             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4068             pItem = &pAggInfo->aFunc[i];
4069             pItem->pExpr = pExpr;
4070             pItem->iMem = ++pParse->nMem;
4071             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4072             pItem->pFunc = sqlite3FindFunction(pParse->db,
4073                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4074                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4075             if( pExpr->flags & EP_Distinct ){
4076               pItem->iDistinct = pParse->nTab++;
4077             }else{
4078               pItem->iDistinct = -1;
4079             }
4080           }
4081         }
4082         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4083         */
4084         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4085         ExprSetVVAProperty(pExpr, EP_NoReduce);
4086         pExpr->iAgg = (i16)i;
4087         pExpr->pAggInfo = pAggInfo;
4088         return WRC_Prune;
4089       }else{
4090         return WRC_Continue;
4091       }
4092     }
4093   }
4094   return WRC_Continue;
4095 }
4096 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4097   UNUSED_PARAMETER(pWalker);
4098   UNUSED_PARAMETER(pSelect);
4099   return WRC_Continue;
4100 }
4101 
4102 /*
4103 ** Analyze the pExpr expression looking for aggregate functions and
4104 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4105 ** points to.  Additional entries are made on the AggInfo object as
4106 ** necessary.
4107 **
4108 ** This routine should only be called after the expression has been
4109 ** analyzed by sqlite3ResolveExprNames().
4110 */
4111 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4112   Walker w;
4113   memset(&w, 0, sizeof(w));
4114   w.xExprCallback = analyzeAggregate;
4115   w.xSelectCallback = analyzeAggregatesInSelect;
4116   w.u.pNC = pNC;
4117   assert( pNC->pSrcList!=0 );
4118   sqlite3WalkExpr(&w, pExpr);
4119 }
4120 
4121 /*
4122 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4123 ** expression list.  Return the number of errors.
4124 **
4125 ** If an error is found, the analysis is cut short.
4126 */
4127 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4128   struct ExprList_item *pItem;
4129   int i;
4130   if( pList ){
4131     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4132       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4133     }
4134   }
4135 }
4136 
4137 /*
4138 ** Allocate a single new register for use to hold some intermediate result.
4139 */
4140 int sqlite3GetTempReg(Parse *pParse){
4141   if( pParse->nTempReg==0 ){
4142     return ++pParse->nMem;
4143   }
4144   return pParse->aTempReg[--pParse->nTempReg];
4145 }
4146 
4147 /*
4148 ** Deallocate a register, making available for reuse for some other
4149 ** purpose.
4150 **
4151 ** If a register is currently being used by the column cache, then
4152 ** the deallocation is deferred until the column cache line that uses
4153 ** the register becomes stale.
4154 */
4155 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4156   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4157     int i;
4158     struct yColCache *p;
4159     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4160       if( p->iReg==iReg ){
4161         p->tempReg = 1;
4162         return;
4163       }
4164     }
4165     pParse->aTempReg[pParse->nTempReg++] = iReg;
4166   }
4167 }
4168 
4169 /*
4170 ** Allocate or deallocate a block of nReg consecutive registers
4171 */
4172 int sqlite3GetTempRange(Parse *pParse, int nReg){
4173   int i, n;
4174   i = pParse->iRangeReg;
4175   n = pParse->nRangeReg;
4176   if( nReg<=n ){
4177     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4178     pParse->iRangeReg += nReg;
4179     pParse->nRangeReg -= nReg;
4180   }else{
4181     i = pParse->nMem+1;
4182     pParse->nMem += nReg;
4183   }
4184   return i;
4185 }
4186 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4187   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4188   if( nReg>pParse->nRangeReg ){
4189     pParse->nRangeReg = nReg;
4190     pParse->iRangeReg = iReg;
4191   }
4192 }
4193 
4194 /*
4195 ** Mark all temporary registers as being unavailable for reuse.
4196 */
4197 void sqlite3ClearTempRegCache(Parse *pParse){
4198   pParse->nTempReg = 0;
4199   pParse->nRangeReg = 0;
4200 }
4201