1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 s.z = zC; 89 s.n = sqlite3Strlen30(s.z); 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 91 } 92 93 /* 94 ** Skip over any TK_COLLATE operators and any unlikely() 95 ** or likelihood() function at the root of an expression. 96 */ 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 101 assert( pExpr->x.pList->nExpr>0 ); 102 assert( pExpr->op==TK_FUNCTION ); 103 pExpr = pExpr->x.pList->a[0].pExpr; 104 }else{ 105 assert( pExpr->op==TK_COLLATE ); 106 pExpr = pExpr->pLeft; 107 } 108 } 109 return pExpr; 110 } 111 112 /* 113 ** Return the collation sequence for the expression pExpr. If 114 ** there is no defined collating sequence, return NULL. 115 ** 116 ** The collating sequence might be determined by a COLLATE operator 117 ** or by the presence of a column with a defined collating sequence. 118 ** COLLATE operators take first precedence. Left operands take 119 ** precedence over right operands. 120 */ 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 122 sqlite3 *db = pParse->db; 123 CollSeq *pColl = 0; 124 Expr *p = pExpr; 125 while( p ){ 126 int op = p->op; 127 if( p->flags & EP_Generic ) break; 128 if( op==TK_CAST || op==TK_UPLUS ){ 129 p = p->pLeft; 130 continue; 131 } 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 134 break; 135 } 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 && p->pTab!=0 139 ){ 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ 142 int j = p->iColumn; 143 if( j>=0 ){ 144 const char *zColl = p->pTab->aCol[j].zColl; 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 146 } 147 break; 148 } 149 if( p->flags & EP_Collate ){ 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 151 p = p->pLeft; 152 }else{ 153 Expr *pNext = p->pRight; 154 /* The Expr.x union is never used at the same time as Expr.pRight */ 155 assert( p->x.pList==0 || p->pRight==0 ); 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 158 ** least one EP_Collate. Thus the following two ALWAYS. */ 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 160 int i; 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 163 pNext = p->x.pList->a[i].pExpr; 164 break; 165 } 166 } 167 } 168 p = pNext; 169 } 170 }else{ 171 break; 172 } 173 } 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ 175 pColl = 0; 176 } 177 return pColl; 178 } 179 180 /* 181 ** pExpr is an operand of a comparison operator. aff2 is the 182 ** type affinity of the other operand. This routine returns the 183 ** type affinity that should be used for the comparison operator. 184 */ 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 186 char aff1 = sqlite3ExprAffinity(pExpr); 187 if( aff1 && aff2 ){ 188 /* Both sides of the comparison are columns. If one has numeric 189 ** affinity, use that. Otherwise use no affinity. 190 */ 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 192 return SQLITE_AFF_NUMERIC; 193 }else{ 194 return SQLITE_AFF_BLOB; 195 } 196 }else if( !aff1 && !aff2 ){ 197 /* Neither side of the comparison is a column. Compare the 198 ** results directly. 199 */ 200 return SQLITE_AFF_BLOB; 201 }else{ 202 /* One side is a column, the other is not. Use the columns affinity. */ 203 assert( aff1==0 || aff2==0 ); 204 return (aff1 + aff2); 205 } 206 } 207 208 /* 209 ** pExpr is a comparison operator. Return the type affinity that should 210 ** be applied to both operands prior to doing the comparison. 211 */ 212 static char comparisonAffinity(Expr *pExpr){ 213 char aff; 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 217 assert( pExpr->pLeft ); 218 aff = sqlite3ExprAffinity(pExpr->pLeft); 219 if( pExpr->pRight ){ 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 223 }else if( !aff ){ 224 aff = SQLITE_AFF_BLOB; 225 } 226 return aff; 227 } 228 229 /* 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 231 ** idx_affinity is the affinity of an indexed column. Return true 232 ** if the index with affinity idx_affinity may be used to implement 233 ** the comparison in pExpr. 234 */ 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 236 char aff = comparisonAffinity(pExpr); 237 switch( aff ){ 238 case SQLITE_AFF_BLOB: 239 return 1; 240 case SQLITE_AFF_TEXT: 241 return idx_affinity==SQLITE_AFF_TEXT; 242 default: 243 return sqlite3IsNumericAffinity(idx_affinity); 244 } 245 } 246 247 /* 248 ** Return the P5 value that should be used for a binary comparison 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 250 */ 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 254 return aff; 255 } 256 257 /* 258 ** Return a pointer to the collation sequence that should be used by 259 ** a binary comparison operator comparing pLeft and pRight. 260 ** 261 ** If the left hand expression has a collating sequence type, then it is 262 ** used. Otherwise the collation sequence for the right hand expression 263 ** is used, or the default (BINARY) if neither expression has a collating 264 ** type. 265 ** 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 267 ** it is not considered. 268 */ 269 CollSeq *sqlite3BinaryCompareCollSeq( 270 Parse *pParse, 271 Expr *pLeft, 272 Expr *pRight 273 ){ 274 CollSeq *pColl; 275 assert( pLeft ); 276 if( pLeft->flags & EP_Collate ){ 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 279 pColl = sqlite3ExprCollSeq(pParse, pRight); 280 }else{ 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); 282 if( !pColl ){ 283 pColl = sqlite3ExprCollSeq(pParse, pRight); 284 } 285 } 286 return pColl; 287 } 288 289 /* 290 ** Generate code for a comparison operator. 291 */ 292 static int codeCompare( 293 Parse *pParse, /* The parsing (and code generating) context */ 294 Expr *pLeft, /* The left operand */ 295 Expr *pRight, /* The right operand */ 296 int opcode, /* The comparison opcode */ 297 int in1, int in2, /* Register holding operands */ 298 int dest, /* Jump here if true. */ 299 int jumpIfNull /* If true, jump if either operand is NULL */ 300 ){ 301 int p5; 302 int addr; 303 CollSeq *p4; 304 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 308 (void*)p4, P4_COLLSEQ); 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 310 return addr; 311 } 312 313 #if SQLITE_MAX_EXPR_DEPTH>0 314 /* 315 ** Check that argument nHeight is less than or equal to the maximum 316 ** expression depth allowed. If it is not, leave an error message in 317 ** pParse. 318 */ 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 320 int rc = SQLITE_OK; 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 322 if( nHeight>mxHeight ){ 323 sqlite3ErrorMsg(pParse, 324 "Expression tree is too large (maximum depth %d)", mxHeight 325 ); 326 rc = SQLITE_ERROR; 327 } 328 return rc; 329 } 330 331 /* The following three functions, heightOfExpr(), heightOfExprList() 332 ** and heightOfSelect(), are used to determine the maximum height 333 ** of any expression tree referenced by the structure passed as the 334 ** first argument. 335 ** 336 ** If this maximum height is greater than the current value pointed 337 ** to by pnHeight, the second parameter, then set *pnHeight to that 338 ** value. 339 */ 340 static void heightOfExpr(Expr *p, int *pnHeight){ 341 if( p ){ 342 if( p->nHeight>*pnHeight ){ 343 *pnHeight = p->nHeight; 344 } 345 } 346 } 347 static void heightOfExprList(ExprList *p, int *pnHeight){ 348 if( p ){ 349 int i; 350 for(i=0; i<p->nExpr; i++){ 351 heightOfExpr(p->a[i].pExpr, pnHeight); 352 } 353 } 354 } 355 static void heightOfSelect(Select *p, int *pnHeight){ 356 if( p ){ 357 heightOfExpr(p->pWhere, pnHeight); 358 heightOfExpr(p->pHaving, pnHeight); 359 heightOfExpr(p->pLimit, pnHeight); 360 heightOfExpr(p->pOffset, pnHeight); 361 heightOfExprList(p->pEList, pnHeight); 362 heightOfExprList(p->pGroupBy, pnHeight); 363 heightOfExprList(p->pOrderBy, pnHeight); 364 heightOfSelect(p->pPrior, pnHeight); 365 } 366 } 367 368 /* 369 ** Set the Expr.nHeight variable in the structure passed as an 370 ** argument. An expression with no children, Expr.pList or 371 ** Expr.pSelect member has a height of 1. Any other expression 372 ** has a height equal to the maximum height of any other 373 ** referenced Expr plus one. 374 ** 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 376 ** if appropriate. 377 */ 378 static void exprSetHeight(Expr *p){ 379 int nHeight = 0; 380 heightOfExpr(p->pLeft, &nHeight); 381 heightOfExpr(p->pRight, &nHeight); 382 if( ExprHasProperty(p, EP_xIsSelect) ){ 383 heightOfSelect(p->x.pSelect, &nHeight); 384 }else if( p->x.pList ){ 385 heightOfExprList(p->x.pList, &nHeight); 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 387 } 388 p->nHeight = nHeight + 1; 389 } 390 391 /* 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 393 ** the height is greater than the maximum allowed expression depth, 394 ** leave an error in pParse. 395 ** 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 397 ** Expr.flags. 398 */ 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 400 if( pParse->nErr ) return; 401 exprSetHeight(p); 402 sqlite3ExprCheckHeight(pParse, p->nHeight); 403 } 404 405 /* 406 ** Return the maximum height of any expression tree referenced 407 ** by the select statement passed as an argument. 408 */ 409 int sqlite3SelectExprHeight(Select *p){ 410 int nHeight = 0; 411 heightOfSelect(p, &nHeight); 412 return nHeight; 413 } 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 415 /* 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into 417 ** Expr.flags. 418 */ 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 422 } 423 } 424 #define exprSetHeight(y) 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 426 427 /* 428 ** This routine is the core allocator for Expr nodes. 429 ** 430 ** Construct a new expression node and return a pointer to it. Memory 431 ** for this node and for the pToken argument is a single allocation 432 ** obtained from sqlite3DbMalloc(). The calling function 433 ** is responsible for making sure the node eventually gets freed. 434 ** 435 ** If dequote is true, then the token (if it exists) is dequoted. 436 ** If dequote is false, no dequoting is performed. The deQuote 437 ** parameter is ignored if pToken is NULL or if the token does not 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 439 ** then the EP_DblQuoted flag is set on the expression node. 440 ** 441 ** Special case: If op==TK_INTEGER and pToken points to a string that 442 ** can be translated into a 32-bit integer, then the token is not 443 ** stored in u.zToken. Instead, the integer values is written 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage 445 ** is allocated to hold the integer text and the dequote flag is ignored. 446 */ 447 Expr *sqlite3ExprAlloc( 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 449 int op, /* Expression opcode */ 450 const Token *pToken, /* Token argument. Might be NULL */ 451 int dequote /* True to dequote */ 452 ){ 453 Expr *pNew; 454 int nExtra = 0; 455 int iValue = 0; 456 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 pNew->op = (u8)op; 467 pNew->iAgg = -1; 468 if( pToken ){ 469 if( nExtra==0 ){ 470 pNew->flags |= EP_IntValue; 471 pNew->u.iValue = iValue; 472 }else{ 473 int c; 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && nExtra>=3 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 480 sqlite3Dequote(pNew->u.zToken); 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; 482 } 483 } 484 } 485 #if SQLITE_MAX_EXPR_DEPTH>0 486 pNew->nHeight = 1; 487 #endif 488 } 489 return pNew; 490 } 491 492 /* 493 ** Allocate a new expression node from a zero-terminated token that has 494 ** already been dequoted. 495 */ 496 Expr *sqlite3Expr( 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 498 int op, /* Expression opcode */ 499 const char *zToken /* Token argument. Might be NULL */ 500 ){ 501 Token x; 502 x.z = zToken; 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 504 return sqlite3ExprAlloc(db, op, &x, 0); 505 } 506 507 /* 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 509 ** 510 ** If pRoot==NULL that means that a memory allocation error has occurred. 511 ** In that case, delete the subtrees pLeft and pRight. 512 */ 513 void sqlite3ExprAttachSubtrees( 514 sqlite3 *db, 515 Expr *pRoot, 516 Expr *pLeft, 517 Expr *pRight 518 ){ 519 if( pRoot==0 ){ 520 assert( db->mallocFailed ); 521 sqlite3ExprDelete(db, pLeft); 522 sqlite3ExprDelete(db, pRight); 523 }else{ 524 if( pRight ){ 525 pRoot->pRight = pRight; 526 pRoot->flags |= EP_Propagate & pRight->flags; 527 } 528 if( pLeft ){ 529 pRoot->pLeft = pLeft; 530 pRoot->flags |= EP_Propagate & pLeft->flags; 531 } 532 exprSetHeight(pRoot); 533 } 534 } 535 536 /* 537 ** Allocate an Expr node which joins as many as two subtrees. 538 ** 539 ** One or both of the subtrees can be NULL. Return a pointer to the new 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 541 ** free the subtrees and return NULL. 542 */ 543 Expr *sqlite3PExpr( 544 Parse *pParse, /* Parsing context */ 545 int op, /* Expression opcode */ 546 Expr *pLeft, /* Left operand */ 547 Expr *pRight, /* Right operand */ 548 const Token *pToken /* Argument token */ 549 ){ 550 Expr *p; 551 if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){ 552 /* Take advantage of short-circuit false optimization for AND */ 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 554 }else{ 555 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 557 } 558 if( p ) { 559 sqlite3ExprCheckHeight(pParse, p->nHeight); 560 } 561 return p; 562 } 563 564 /* 565 ** If the expression is always either TRUE or FALSE (respectively), 566 ** then return 1. If one cannot determine the truth value of the 567 ** expression at compile-time return 0. 568 ** 569 ** This is an optimization. If is OK to return 0 here even if 570 ** the expression really is always false or false (a false negative). 571 ** But it is a bug to return 1 if the expression might have different 572 ** boolean values in different circumstances (a false positive.) 573 ** 574 ** Note that if the expression is part of conditional for a 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not 576 ** is it true or false, so always return 0. 577 */ 578 static int exprAlwaysTrue(Expr *p){ 579 int v = 0; 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 582 return v!=0; 583 } 584 static int exprAlwaysFalse(Expr *p){ 585 int v = 0; 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 588 return v==0; 589 } 590 591 /* 592 ** Join two expressions using an AND operator. If either expression is 593 ** NULL, then just return the other expression. 594 ** 595 ** If one side or the other of the AND is known to be false, then instead 596 ** of returning an AND expression, just return a constant expression with 597 ** a value of false. 598 */ 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 600 if( pLeft==0 ){ 601 return pRight; 602 }else if( pRight==0 ){ 603 return pLeft; 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 605 sqlite3ExprDelete(db, pLeft); 606 sqlite3ExprDelete(db, pRight); 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 608 }else{ 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 611 return pNew; 612 } 613 } 614 615 /* 616 ** Construct a new expression node for a function with multiple 617 ** arguments. 618 */ 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 620 Expr *pNew; 621 sqlite3 *db = pParse->db; 622 assert( pToken ); 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 624 if( pNew==0 ){ 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 626 return 0; 627 } 628 pNew->x.pList = pList; 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); 631 return pNew; 632 } 633 634 /* 635 ** Assign a variable number to an expression that encodes a wildcard 636 ** in the original SQL statement. 637 ** 638 ** Wildcards consisting of a single "?" are assigned the next sequential 639 ** variable number. 640 ** 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 642 ** sure "nnn" is not too be to avoid a denial of service attack when 643 ** the SQL statement comes from an external source. 644 ** 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 646 ** as the previous instance of the same wildcard. Or if this is the first 647 ** instance of the wildcard, the next sequential variable number is 648 ** assigned. 649 */ 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 651 sqlite3 *db = pParse->db; 652 const char *z; 653 654 if( pExpr==0 ) return; 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 656 z = pExpr->u.zToken; 657 assert( z!=0 ); 658 assert( z[0]!=0 ); 659 if( z[1]==0 ){ 660 /* Wildcard of the form "?". Assign the next variable number */ 661 assert( z[0]=='?' ); 662 pExpr->iColumn = (ynVar)(++pParse->nVar); 663 }else{ 664 ynVar x = 0; 665 u32 n = sqlite3Strlen30(z); 666 if( z[0]=='?' ){ 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 668 ** use it as the variable number */ 669 i64 i; 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 671 pExpr->iColumn = x = (ynVar)i; 672 testcase( i==0 ); 673 testcase( i==1 ); 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 679 x = 0; 680 } 681 if( i>pParse->nVar ){ 682 pParse->nVar = (int)i; 683 } 684 }else{ 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 686 ** number as the prior appearance of the same name, or if the name 687 ** has never appeared before, reuse the same variable number 688 */ 689 ynVar i; 690 for(i=0; i<pParse->nzVar; i++){ 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 692 pExpr->iColumn = x = (ynVar)i+1; 693 break; 694 } 695 } 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 697 } 698 if( x>0 ){ 699 if( x>pParse->nzVar ){ 700 char **a; 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ 703 pParse->azVar = a; 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 705 pParse->nzVar = x; 706 } 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 708 sqlite3DbFree(db, pParse->azVar[x-1]); 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 710 } 711 } 712 } 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); 715 } 716 } 717 718 /* 719 ** Recursively delete an expression tree. 720 */ 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 722 if( p==0 ) return; 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ 726 /* The Expr.x union is never used at the same time as Expr.pRight */ 727 assert( p->x.pList==0 || p->pRight==0 ); 728 sqlite3ExprDelete(db, p->pLeft); 729 sqlite3ExprDelete(db, p->pRight); 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 731 if( ExprHasProperty(p, EP_xIsSelect) ){ 732 sqlite3SelectDelete(db, p->x.pSelect); 733 }else{ 734 sqlite3ExprListDelete(db, p->x.pList); 735 } 736 } 737 if( !ExprHasProperty(p, EP_Static) ){ 738 sqlite3DbFree(db, p); 739 } 740 } 741 742 /* 743 ** Return the number of bytes allocated for the expression structure 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 746 */ 747 static int exprStructSize(Expr *p){ 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 750 return EXPR_FULLSIZE; 751 } 752 753 /* 754 ** The dupedExpr*Size() routines each return the number of bytes required 755 ** to store a copy of an expression or expression tree. They differ in 756 ** how much of the tree is measured. 757 ** 758 ** dupedExprStructSize() Size of only the Expr structure 759 ** dupedExprNodeSize() Size of Expr + space for token 760 ** dupedExprSize() Expr + token + subtree components 761 ** 762 *************************************************************************** 763 ** 764 ** The dupedExprStructSize() function returns two values OR-ed together: 765 ** (1) the space required for a copy of the Expr structure only and 766 ** (2) the EP_xxx flags that indicate what the structure size should be. 767 ** The return values is always one of: 768 ** 769 ** EXPR_FULLSIZE 770 ** EXPR_REDUCEDSIZE | EP_Reduced 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 772 ** 773 ** The size of the structure can be found by masking the return value 774 ** of this routine with 0xfff. The flags can be found by masking the 775 ** return value with EP_Reduced|EP_TokenOnly. 776 ** 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 778 ** (unreduced) Expr objects as they or originally constructed by the parser. 779 ** During expression analysis, extra information is computed and moved into 780 ** later parts of teh Expr object and that extra information might get chopped 781 ** off if the expression is reduced. Note also that it does not work to 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 783 ** to reduce a pristine expression tree from the parser. The implementation 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt 785 ** to enforce this constraint. 786 */ 787 static int dupedExprStructSize(Expr *p, int flags){ 788 int nSize; 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 790 assert( EXPR_FULLSIZE<=0xfff ); 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 792 if( 0==(flags&EXPRDUP_REDUCE) ){ 793 nSize = EXPR_FULLSIZE; 794 }else{ 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 796 assert( !ExprHasProperty(p, EP_FromJoin) ); 797 assert( !ExprHasProperty(p, EP_MemToken) ); 798 assert( !ExprHasProperty(p, EP_NoReduce) ); 799 if( p->pLeft || p->x.pList ){ 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 801 }else{ 802 assert( p->pRight==0 ); 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 804 } 805 } 806 return nSize; 807 } 808 809 /* 810 ** This function returns the space in bytes required to store the copy 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 812 ** string is defined.) 813 */ 814 static int dupedExprNodeSize(Expr *p, int flags){ 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 817 nByte += sqlite3Strlen30(p->u.zToken)+1; 818 } 819 return ROUND8(nByte); 820 } 821 822 /* 823 ** Return the number of bytes required to create a duplicate of the 824 ** expression passed as the first argument. The second argument is a 825 ** mask containing EXPRDUP_XXX flags. 826 ** 827 ** The value returned includes space to create a copy of the Expr struct 828 ** itself and the buffer referred to by Expr.u.zToken, if any. 829 ** 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 832 ** and Expr.pRight variables (but not for any structures pointed to or 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 834 */ 835 static int dupedExprSize(Expr *p, int flags){ 836 int nByte = 0; 837 if( p ){ 838 nByte = dupedExprNodeSize(p, flags); 839 if( flags&EXPRDUP_REDUCE ){ 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 841 } 842 } 843 return nByte; 844 } 845 846 /* 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 849 ** to store the copy of expression p, the copies of p->u.zToken 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 851 ** if any. Before returning, *pzBuffer is set to the first byte past the 852 ** portion of the buffer copied into by this function. 853 */ 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 855 Expr *pNew = 0; /* Value to return */ 856 if( p ){ 857 const int isReduced = (flags&EXPRDUP_REDUCE); 858 u8 *zAlloc; 859 u32 staticFlag = 0; 860 861 assert( pzBuffer==0 || isReduced ); 862 863 /* Figure out where to write the new Expr structure. */ 864 if( pzBuffer ){ 865 zAlloc = *pzBuffer; 866 staticFlag = EP_Static; 867 }else{ 868 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 869 } 870 pNew = (Expr *)zAlloc; 871 872 if( pNew ){ 873 /* Set nNewSize to the size allocated for the structure pointed to 874 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 875 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 876 ** by the copy of the p->u.zToken string (if any). 877 */ 878 const unsigned nStructSize = dupedExprStructSize(p, flags); 879 const int nNewSize = nStructSize & 0xfff; 880 int nToken; 881 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 882 nToken = sqlite3Strlen30(p->u.zToken) + 1; 883 }else{ 884 nToken = 0; 885 } 886 if( isReduced ){ 887 assert( ExprHasProperty(p, EP_Reduced)==0 ); 888 memcpy(zAlloc, p, nNewSize); 889 }else{ 890 int nSize = exprStructSize(p); 891 memcpy(zAlloc, p, nSize); 892 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 893 } 894 895 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 896 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 897 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 898 pNew->flags |= staticFlag; 899 900 /* Copy the p->u.zToken string, if any. */ 901 if( nToken ){ 902 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 903 memcpy(zToken, p->u.zToken, nToken); 904 } 905 906 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 907 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 908 if( ExprHasProperty(p, EP_xIsSelect) ){ 909 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 910 }else{ 911 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 912 } 913 } 914 915 /* Fill in pNew->pLeft and pNew->pRight. */ 916 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 917 zAlloc += dupedExprNodeSize(p, flags); 918 if( ExprHasProperty(pNew, EP_Reduced) ){ 919 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 920 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 921 } 922 if( pzBuffer ){ 923 *pzBuffer = zAlloc; 924 } 925 }else{ 926 if( !ExprHasProperty(p, EP_TokenOnly) ){ 927 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 928 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 929 } 930 } 931 932 } 933 } 934 return pNew; 935 } 936 937 /* 938 ** Create and return a deep copy of the object passed as the second 939 ** argument. If an OOM condition is encountered, NULL is returned 940 ** and the db->mallocFailed flag set. 941 */ 942 #ifndef SQLITE_OMIT_CTE 943 static With *withDup(sqlite3 *db, With *p){ 944 With *pRet = 0; 945 if( p ){ 946 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 947 pRet = sqlite3DbMallocZero(db, nByte); 948 if( pRet ){ 949 int i; 950 pRet->nCte = p->nCte; 951 for(i=0; i<p->nCte; i++){ 952 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 953 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 954 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 955 } 956 } 957 } 958 return pRet; 959 } 960 #else 961 # define withDup(x,y) 0 962 #endif 963 964 /* 965 ** The following group of routines make deep copies of expressions, 966 ** expression lists, ID lists, and select statements. The copies can 967 ** be deleted (by being passed to their respective ...Delete() routines) 968 ** without effecting the originals. 969 ** 970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 972 ** by subsequent calls to sqlite*ListAppend() routines. 973 ** 974 ** Any tables that the SrcList might point to are not duplicated. 975 ** 976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 978 ** truncated version of the usual Expr structure that will be stored as 979 ** part of the in-memory representation of the database schema. 980 */ 981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 982 return exprDup(db, p, flags, 0); 983 } 984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 985 ExprList *pNew; 986 struct ExprList_item *pItem, *pOldItem; 987 int i; 988 if( p==0 ) return 0; 989 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 990 if( pNew==0 ) return 0; 991 pNew->nExpr = i = p->nExpr; 992 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 993 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 994 if( pItem==0 ){ 995 sqlite3DbFree(db, pNew); 996 return 0; 997 } 998 pOldItem = p->a; 999 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1000 Expr *pOldExpr = pOldItem->pExpr; 1001 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1002 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1004 pItem->sortOrder = pOldItem->sortOrder; 1005 pItem->done = 0; 1006 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1007 pItem->u = pOldItem->u; 1008 } 1009 return pNew; 1010 } 1011 1012 /* 1013 ** If cursors, triggers, views and subqueries are all omitted from 1014 ** the build, then none of the following routines, except for 1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1016 ** called with a NULL argument. 1017 */ 1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1019 || !defined(SQLITE_OMIT_SUBQUERY) 1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1021 SrcList *pNew; 1022 int i; 1023 int nByte; 1024 if( p==0 ) return 0; 1025 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1026 pNew = sqlite3DbMallocRaw(db, nByte ); 1027 if( pNew==0 ) return 0; 1028 pNew->nSrc = pNew->nAlloc = p->nSrc; 1029 for(i=0; i<p->nSrc; i++){ 1030 struct SrcList_item *pNewItem = &pNew->a[i]; 1031 struct SrcList_item *pOldItem = &p->a[i]; 1032 Table *pTab; 1033 pNewItem->pSchema = pOldItem->pSchema; 1034 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1035 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1036 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1037 pNewItem->fg = pOldItem->fg; 1038 pNewItem->iCursor = pOldItem->iCursor; 1039 pNewItem->addrFillSub = pOldItem->addrFillSub; 1040 pNewItem->regReturn = pOldItem->regReturn; 1041 if( pNewItem->fg.isIndexedBy ){ 1042 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1043 } 1044 pNewItem->pIBIndex = pOldItem->pIBIndex; 1045 if( pNewItem->fg.isTabFunc ){ 1046 pNewItem->u1.pFuncArg = 1047 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1048 } 1049 pTab = pNewItem->pTab = pOldItem->pTab; 1050 if( pTab ){ 1051 pTab->nRef++; 1052 } 1053 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1054 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1055 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1056 pNewItem->colUsed = pOldItem->colUsed; 1057 } 1058 return pNew; 1059 } 1060 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1061 IdList *pNew; 1062 int i; 1063 if( p==0 ) return 0; 1064 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1065 if( pNew==0 ) return 0; 1066 pNew->nId = p->nId; 1067 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1068 if( pNew->a==0 ){ 1069 sqlite3DbFree(db, pNew); 1070 return 0; 1071 } 1072 /* Note that because the size of the allocation for p->a[] is not 1073 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1074 ** on the duplicate created by this function. */ 1075 for(i=0; i<p->nId; i++){ 1076 struct IdList_item *pNewItem = &pNew->a[i]; 1077 struct IdList_item *pOldItem = &p->a[i]; 1078 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1079 pNewItem->idx = pOldItem->idx; 1080 } 1081 return pNew; 1082 } 1083 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1084 Select *pNew, *pPrior; 1085 if( p==0 ) return 0; 1086 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1087 if( pNew==0 ) return 0; 1088 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1089 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1090 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1091 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1092 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1093 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1094 pNew->op = p->op; 1095 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1096 if( pPrior ) pPrior->pNext = pNew; 1097 pNew->pNext = 0; 1098 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1099 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1100 pNew->iLimit = 0; 1101 pNew->iOffset = 0; 1102 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1103 pNew->addrOpenEphm[0] = -1; 1104 pNew->addrOpenEphm[1] = -1; 1105 pNew->nSelectRow = p->nSelectRow; 1106 pNew->pWith = withDup(db, p->pWith); 1107 sqlite3SelectSetName(pNew, p->zSelName); 1108 return pNew; 1109 } 1110 #else 1111 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1112 assert( p==0 ); 1113 return 0; 1114 } 1115 #endif 1116 1117 1118 /* 1119 ** Add a new element to the end of an expression list. If pList is 1120 ** initially NULL, then create a new expression list. 1121 ** 1122 ** If a memory allocation error occurs, the entire list is freed and 1123 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1124 ** that the new entry was successfully appended. 1125 */ 1126 ExprList *sqlite3ExprListAppend( 1127 Parse *pParse, /* Parsing context */ 1128 ExprList *pList, /* List to which to append. Might be NULL */ 1129 Expr *pExpr /* Expression to be appended. Might be NULL */ 1130 ){ 1131 sqlite3 *db = pParse->db; 1132 if( pList==0 ){ 1133 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1134 if( pList==0 ){ 1135 goto no_mem; 1136 } 1137 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1138 if( pList->a==0 ) goto no_mem; 1139 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1140 struct ExprList_item *a; 1141 assert( pList->nExpr>0 ); 1142 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1143 if( a==0 ){ 1144 goto no_mem; 1145 } 1146 pList->a = a; 1147 } 1148 assert( pList->a!=0 ); 1149 if( 1 ){ 1150 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1151 memset(pItem, 0, sizeof(*pItem)); 1152 pItem->pExpr = pExpr; 1153 } 1154 return pList; 1155 1156 no_mem: 1157 /* Avoid leaking memory if malloc has failed. */ 1158 sqlite3ExprDelete(db, pExpr); 1159 sqlite3ExprListDelete(db, pList); 1160 return 0; 1161 } 1162 1163 /* 1164 ** Set the sort order for the last element on the given ExprList. 1165 */ 1166 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1167 if( p==0 ) return; 1168 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1169 assert( p->nExpr>0 ); 1170 if( iSortOrder<0 ){ 1171 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1172 return; 1173 } 1174 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1175 } 1176 1177 /* 1178 ** Set the ExprList.a[].zName element of the most recently added item 1179 ** on the expression list. 1180 ** 1181 ** pList might be NULL following an OOM error. But pName should never be 1182 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1183 ** is set. 1184 */ 1185 void sqlite3ExprListSetName( 1186 Parse *pParse, /* Parsing context */ 1187 ExprList *pList, /* List to which to add the span. */ 1188 Token *pName, /* Name to be added */ 1189 int dequote /* True to cause the name to be dequoted */ 1190 ){ 1191 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1192 if( pList ){ 1193 struct ExprList_item *pItem; 1194 assert( pList->nExpr>0 ); 1195 pItem = &pList->a[pList->nExpr-1]; 1196 assert( pItem->zName==0 ); 1197 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1198 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1199 } 1200 } 1201 1202 /* 1203 ** Set the ExprList.a[].zSpan element of the most recently added item 1204 ** on the expression list. 1205 ** 1206 ** pList might be NULL following an OOM error. But pSpan should never be 1207 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1208 ** is set. 1209 */ 1210 void sqlite3ExprListSetSpan( 1211 Parse *pParse, /* Parsing context */ 1212 ExprList *pList, /* List to which to add the span. */ 1213 ExprSpan *pSpan /* The span to be added */ 1214 ){ 1215 sqlite3 *db = pParse->db; 1216 assert( pList!=0 || db->mallocFailed!=0 ); 1217 if( pList ){ 1218 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1219 assert( pList->nExpr>0 ); 1220 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1221 sqlite3DbFree(db, pItem->zSpan); 1222 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1223 (int)(pSpan->zEnd - pSpan->zStart)); 1224 } 1225 } 1226 1227 /* 1228 ** If the expression list pEList contains more than iLimit elements, 1229 ** leave an error message in pParse. 1230 */ 1231 void sqlite3ExprListCheckLength( 1232 Parse *pParse, 1233 ExprList *pEList, 1234 const char *zObject 1235 ){ 1236 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1237 testcase( pEList && pEList->nExpr==mx ); 1238 testcase( pEList && pEList->nExpr==mx+1 ); 1239 if( pEList && pEList->nExpr>mx ){ 1240 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1241 } 1242 } 1243 1244 /* 1245 ** Delete an entire expression list. 1246 */ 1247 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1248 int i; 1249 struct ExprList_item *pItem; 1250 if( pList==0 ) return; 1251 assert( pList->a!=0 || pList->nExpr==0 ); 1252 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1253 sqlite3ExprDelete(db, pItem->pExpr); 1254 sqlite3DbFree(db, pItem->zName); 1255 sqlite3DbFree(db, pItem->zSpan); 1256 } 1257 sqlite3DbFree(db, pList->a); 1258 sqlite3DbFree(db, pList); 1259 } 1260 1261 /* 1262 ** Return the bitwise-OR of all Expr.flags fields in the given 1263 ** ExprList. 1264 */ 1265 u32 sqlite3ExprListFlags(const ExprList *pList){ 1266 int i; 1267 u32 m = 0; 1268 if( pList ){ 1269 for(i=0; i<pList->nExpr; i++){ 1270 Expr *pExpr = pList->a[i].pExpr; 1271 if( ALWAYS(pExpr) ) m |= pExpr->flags; 1272 } 1273 } 1274 return m; 1275 } 1276 1277 /* 1278 ** These routines are Walker callbacks used to check expressions to 1279 ** see if they are "constant" for some definition of constant. The 1280 ** Walker.eCode value determines the type of "constant" we are looking 1281 ** for. 1282 ** 1283 ** These callback routines are used to implement the following: 1284 ** 1285 ** sqlite3ExprIsConstant() pWalker->eCode==1 1286 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1287 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1288 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1289 ** 1290 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1291 ** is found to not be a constant. 1292 ** 1293 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1294 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1295 ** an existing schema and 4 when processing a new statement. A bound 1296 ** parameter raises an error for new statements, but is silently converted 1297 ** to NULL for existing schemas. This allows sqlite_master tables that 1298 ** contain a bound parameter because they were generated by older versions 1299 ** of SQLite to be parsed by newer versions of SQLite without raising a 1300 ** malformed schema error. 1301 */ 1302 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1303 1304 /* If pWalker->eCode is 2 then any term of the expression that comes from 1305 ** the ON or USING clauses of a left join disqualifies the expression 1306 ** from being considered constant. */ 1307 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1308 pWalker->eCode = 0; 1309 return WRC_Abort; 1310 } 1311 1312 switch( pExpr->op ){ 1313 /* Consider functions to be constant if all their arguments are constant 1314 ** and either pWalker->eCode==4 or 5 or the function has the 1315 ** SQLITE_FUNC_CONST flag. */ 1316 case TK_FUNCTION: 1317 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1318 return WRC_Continue; 1319 }else{ 1320 pWalker->eCode = 0; 1321 return WRC_Abort; 1322 } 1323 case TK_ID: 1324 case TK_COLUMN: 1325 case TK_AGG_FUNCTION: 1326 case TK_AGG_COLUMN: 1327 testcase( pExpr->op==TK_ID ); 1328 testcase( pExpr->op==TK_COLUMN ); 1329 testcase( pExpr->op==TK_AGG_FUNCTION ); 1330 testcase( pExpr->op==TK_AGG_COLUMN ); 1331 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1332 return WRC_Continue; 1333 }else{ 1334 pWalker->eCode = 0; 1335 return WRC_Abort; 1336 } 1337 case TK_VARIABLE: 1338 if( pWalker->eCode==5 ){ 1339 /* Silently convert bound parameters that appear inside of CREATE 1340 ** statements into a NULL when parsing the CREATE statement text out 1341 ** of the sqlite_master table */ 1342 pExpr->op = TK_NULL; 1343 }else if( pWalker->eCode==4 ){ 1344 /* A bound parameter in a CREATE statement that originates from 1345 ** sqlite3_prepare() causes an error */ 1346 pWalker->eCode = 0; 1347 return WRC_Abort; 1348 } 1349 /* Fall through */ 1350 default: 1351 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1352 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1353 return WRC_Continue; 1354 } 1355 } 1356 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1357 UNUSED_PARAMETER(NotUsed); 1358 pWalker->eCode = 0; 1359 return WRC_Abort; 1360 } 1361 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1362 Walker w; 1363 memset(&w, 0, sizeof(w)); 1364 w.eCode = initFlag; 1365 w.xExprCallback = exprNodeIsConstant; 1366 w.xSelectCallback = selectNodeIsConstant; 1367 w.u.iCur = iCur; 1368 sqlite3WalkExpr(&w, p); 1369 return w.eCode; 1370 } 1371 1372 /* 1373 ** Walk an expression tree. Return non-zero if the expression is constant 1374 ** and 0 if it involves variables or function calls. 1375 ** 1376 ** For the purposes of this function, a double-quoted string (ex: "abc") 1377 ** is considered a variable but a single-quoted string (ex: 'abc') is 1378 ** a constant. 1379 */ 1380 int sqlite3ExprIsConstant(Expr *p){ 1381 return exprIsConst(p, 1, 0); 1382 } 1383 1384 /* 1385 ** Walk an expression tree. Return non-zero if the expression is constant 1386 ** that does no originate from the ON or USING clauses of a join. 1387 ** Return 0 if it involves variables or function calls or terms from 1388 ** an ON or USING clause. 1389 */ 1390 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1391 return exprIsConst(p, 2, 0); 1392 } 1393 1394 /* 1395 ** Walk an expression tree. Return non-zero if the expression is constant 1396 ** for any single row of the table with cursor iCur. In other words, the 1397 ** expression must not refer to any non-deterministic function nor any 1398 ** table other than iCur. 1399 */ 1400 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1401 return exprIsConst(p, 3, iCur); 1402 } 1403 1404 /* 1405 ** Walk an expression tree. Return non-zero if the expression is constant 1406 ** or a function call with constant arguments. Return and 0 if there 1407 ** are any variables. 1408 ** 1409 ** For the purposes of this function, a double-quoted string (ex: "abc") 1410 ** is considered a variable but a single-quoted string (ex: 'abc') is 1411 ** a constant. 1412 */ 1413 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1414 assert( isInit==0 || isInit==1 ); 1415 return exprIsConst(p, 4+isInit, 0); 1416 } 1417 1418 /* 1419 ** If the expression p codes a constant integer that is small enough 1420 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1421 ** in *pValue. If the expression is not an integer or if it is too big 1422 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1423 */ 1424 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1425 int rc = 0; 1426 1427 /* If an expression is an integer literal that fits in a signed 32-bit 1428 ** integer, then the EP_IntValue flag will have already been set */ 1429 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1430 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1431 1432 if( p->flags & EP_IntValue ){ 1433 *pValue = p->u.iValue; 1434 return 1; 1435 } 1436 switch( p->op ){ 1437 case TK_UPLUS: { 1438 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1439 break; 1440 } 1441 case TK_UMINUS: { 1442 int v; 1443 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1444 assert( v!=(-2147483647-1) ); 1445 *pValue = -v; 1446 rc = 1; 1447 } 1448 break; 1449 } 1450 default: break; 1451 } 1452 return rc; 1453 } 1454 1455 /* 1456 ** Return FALSE if there is no chance that the expression can be NULL. 1457 ** 1458 ** If the expression might be NULL or if the expression is too complex 1459 ** to tell return TRUE. 1460 ** 1461 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1462 ** when we know that a value cannot be NULL. Hence, a false positive 1463 ** (returning TRUE when in fact the expression can never be NULL) might 1464 ** be a small performance hit but is otherwise harmless. On the other 1465 ** hand, a false negative (returning FALSE when the result could be NULL) 1466 ** will likely result in an incorrect answer. So when in doubt, return 1467 ** TRUE. 1468 */ 1469 int sqlite3ExprCanBeNull(const Expr *p){ 1470 u8 op; 1471 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1472 op = p->op; 1473 if( op==TK_REGISTER ) op = p->op2; 1474 switch( op ){ 1475 case TK_INTEGER: 1476 case TK_STRING: 1477 case TK_FLOAT: 1478 case TK_BLOB: 1479 return 0; 1480 case TK_COLUMN: 1481 assert( p->pTab!=0 ); 1482 return ExprHasProperty(p, EP_CanBeNull) || 1483 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1484 default: 1485 return 1; 1486 } 1487 } 1488 1489 /* 1490 ** Return TRUE if the given expression is a constant which would be 1491 ** unchanged by OP_Affinity with the affinity given in the second 1492 ** argument. 1493 ** 1494 ** This routine is used to determine if the OP_Affinity operation 1495 ** can be omitted. When in doubt return FALSE. A false negative 1496 ** is harmless. A false positive, however, can result in the wrong 1497 ** answer. 1498 */ 1499 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1500 u8 op; 1501 if( aff==SQLITE_AFF_BLOB ) return 1; 1502 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1503 op = p->op; 1504 if( op==TK_REGISTER ) op = p->op2; 1505 switch( op ){ 1506 case TK_INTEGER: { 1507 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1508 } 1509 case TK_FLOAT: { 1510 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1511 } 1512 case TK_STRING: { 1513 return aff==SQLITE_AFF_TEXT; 1514 } 1515 case TK_BLOB: { 1516 return 1; 1517 } 1518 case TK_COLUMN: { 1519 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1520 return p->iColumn<0 1521 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1522 } 1523 default: { 1524 return 0; 1525 } 1526 } 1527 } 1528 1529 /* 1530 ** Return TRUE if the given string is a row-id column name. 1531 */ 1532 int sqlite3IsRowid(const char *z){ 1533 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1534 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1535 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1536 return 0; 1537 } 1538 1539 /* 1540 ** Return true if we are able to the IN operator optimization on a 1541 ** query of the form 1542 ** 1543 ** x IN (SELECT ...) 1544 ** 1545 ** Where the SELECT... clause is as specified by the parameter to this 1546 ** routine. 1547 ** 1548 ** The Select object passed in has already been preprocessed and no 1549 ** errors have been found. 1550 */ 1551 #ifndef SQLITE_OMIT_SUBQUERY 1552 static int isCandidateForInOpt(Select *p){ 1553 SrcList *pSrc; 1554 ExprList *pEList; 1555 Table *pTab; 1556 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1557 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1558 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1559 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1560 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1561 return 0; /* No DISTINCT keyword and no aggregate functions */ 1562 } 1563 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1564 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1565 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1566 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1567 pSrc = p->pSrc; 1568 assert( pSrc!=0 ); 1569 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1570 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1571 pTab = pSrc->a[0].pTab; 1572 if( NEVER(pTab==0) ) return 0; 1573 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1574 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1575 pEList = p->pEList; 1576 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1577 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1578 return 1; 1579 } 1580 #endif /* SQLITE_OMIT_SUBQUERY */ 1581 1582 /* 1583 ** Code an OP_Once instruction and allocate space for its flag. Return the 1584 ** address of the new instruction. 1585 */ 1586 int sqlite3CodeOnce(Parse *pParse){ 1587 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1588 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1589 } 1590 1591 /* 1592 ** Generate code that checks the left-most column of index table iCur to see if 1593 ** it contains any NULL entries. Cause the register at regHasNull to be set 1594 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1595 ** to be set to NULL if iCur contains one or more NULL values. 1596 */ 1597 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1598 int j1; 1599 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1600 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1601 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1602 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1603 VdbeComment((v, "first_entry_in(%d)", iCur)); 1604 sqlite3VdbeJumpHere(v, j1); 1605 } 1606 1607 1608 #ifndef SQLITE_OMIT_SUBQUERY 1609 /* 1610 ** The argument is an IN operator with a list (not a subquery) on the 1611 ** right-hand side. Return TRUE if that list is constant. 1612 */ 1613 static int sqlite3InRhsIsConstant(Expr *pIn){ 1614 Expr *pLHS; 1615 int res; 1616 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1617 pLHS = pIn->pLeft; 1618 pIn->pLeft = 0; 1619 res = sqlite3ExprIsConstant(pIn); 1620 pIn->pLeft = pLHS; 1621 return res; 1622 } 1623 #endif 1624 1625 /* 1626 ** This function is used by the implementation of the IN (...) operator. 1627 ** The pX parameter is the expression on the RHS of the IN operator, which 1628 ** might be either a list of expressions or a subquery. 1629 ** 1630 ** The job of this routine is to find or create a b-tree object that can 1631 ** be used either to test for membership in the RHS set or to iterate through 1632 ** all members of the RHS set, skipping duplicates. 1633 ** 1634 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1635 ** and pX->iTable is set to the index of that cursor. 1636 ** 1637 ** The returned value of this function indicates the b-tree type, as follows: 1638 ** 1639 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1640 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1641 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1642 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1643 ** populated epheremal table. 1644 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1645 ** implemented as a sequence of comparisons. 1646 ** 1647 ** An existing b-tree might be used if the RHS expression pX is a simple 1648 ** subquery such as: 1649 ** 1650 ** SELECT <column> FROM <table> 1651 ** 1652 ** If the RHS of the IN operator is a list or a more complex subquery, then 1653 ** an ephemeral table might need to be generated from the RHS and then 1654 ** pX->iTable made to point to the ephemeral table instead of an 1655 ** existing table. 1656 ** 1657 ** The inFlags parameter must contain exactly one of the bits 1658 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1659 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1660 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1661 ** IN index will be used to loop over all values of the RHS of the 1662 ** IN operator. 1663 ** 1664 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1665 ** through the set members) then the b-tree must not contain duplicates. 1666 ** An epheremal table must be used unless the selected <column> is guaranteed 1667 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1668 ** has a UNIQUE constraint or UNIQUE index. 1669 ** 1670 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1671 ** for fast set membership tests) then an epheremal table must 1672 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1673 ** be found with <column> as its left-most column. 1674 ** 1675 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1676 ** if the RHS of the IN operator is a list (not a subquery) then this 1677 ** routine might decide that creating an ephemeral b-tree for membership 1678 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1679 ** calling routine should implement the IN operator using a sequence 1680 ** of Eq or Ne comparison operations. 1681 ** 1682 ** When the b-tree is being used for membership tests, the calling function 1683 ** might need to know whether or not the RHS side of the IN operator 1684 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1685 ** if there is any chance that the (...) might contain a NULL value at 1686 ** runtime, then a register is allocated and the register number written 1687 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1688 ** NULL value, then *prRhsHasNull is left unchanged. 1689 ** 1690 ** If a register is allocated and its location stored in *prRhsHasNull, then 1691 ** the value in that register will be NULL if the b-tree contains one or more 1692 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1693 ** NULL values. 1694 */ 1695 #ifndef SQLITE_OMIT_SUBQUERY 1696 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1697 Select *p; /* SELECT to the right of IN operator */ 1698 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1699 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1700 int mustBeUnique; /* True if RHS must be unique */ 1701 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1702 1703 assert( pX->op==TK_IN ); 1704 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1705 1706 /* Check to see if an existing table or index can be used to 1707 ** satisfy the query. This is preferable to generating a new 1708 ** ephemeral table. 1709 */ 1710 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1711 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ 1712 sqlite3 *db = pParse->db; /* Database connection */ 1713 Table *pTab; /* Table <table>. */ 1714 Expr *pExpr; /* Expression <column> */ 1715 i16 iCol; /* Index of column <column> */ 1716 i16 iDb; /* Database idx for pTab */ 1717 1718 assert( p ); /* Because of isCandidateForInOpt(p) */ 1719 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1720 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1721 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1722 pTab = p->pSrc->a[0].pTab; 1723 pExpr = p->pEList->a[0].pExpr; 1724 iCol = (i16)pExpr->iColumn; 1725 1726 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1727 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1728 sqlite3CodeVerifySchema(pParse, iDb); 1729 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1730 1731 /* This function is only called from two places. In both cases the vdbe 1732 ** has already been allocated. So assume sqlite3GetVdbe() is always 1733 ** successful here. 1734 */ 1735 assert(v); 1736 if( iCol<0 ){ 1737 int iAddr = sqlite3CodeOnce(pParse); 1738 VdbeCoverage(v); 1739 1740 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1741 eType = IN_INDEX_ROWID; 1742 1743 sqlite3VdbeJumpHere(v, iAddr); 1744 }else{ 1745 Index *pIdx; /* Iterator variable */ 1746 1747 /* The collation sequence used by the comparison. If an index is to 1748 ** be used in place of a temp-table, it must be ordered according 1749 ** to this collation sequence. */ 1750 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1751 1752 /* Check that the affinity that will be used to perform the 1753 ** comparison is the same as the affinity of the column. If 1754 ** it is not, it is not possible to use any index. 1755 */ 1756 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1757 1758 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1759 if( (pIdx->aiColumn[0]==iCol) 1760 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1761 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1762 ){ 1763 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1764 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1765 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1766 VdbeComment((v, "%s", pIdx->zName)); 1767 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1768 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1769 1770 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1771 *prRhsHasNull = ++pParse->nMem; 1772 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1773 } 1774 sqlite3VdbeJumpHere(v, iAddr); 1775 } 1776 } 1777 } 1778 } 1779 1780 /* If no preexisting index is available for the IN clause 1781 ** and IN_INDEX_NOOP is an allowed reply 1782 ** and the RHS of the IN operator is a list, not a subquery 1783 ** and the RHS is not contant or has two or fewer terms, 1784 ** then it is not worth creating an ephemeral table to evaluate 1785 ** the IN operator so return IN_INDEX_NOOP. 1786 */ 1787 if( eType==0 1788 && (inFlags & IN_INDEX_NOOP_OK) 1789 && !ExprHasProperty(pX, EP_xIsSelect) 1790 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1791 ){ 1792 eType = IN_INDEX_NOOP; 1793 } 1794 1795 1796 if( eType==0 ){ 1797 /* Could not find an existing table or index to use as the RHS b-tree. 1798 ** We will have to generate an ephemeral table to do the job. 1799 */ 1800 u32 savedNQueryLoop = pParse->nQueryLoop; 1801 int rMayHaveNull = 0; 1802 eType = IN_INDEX_EPH; 1803 if( inFlags & IN_INDEX_LOOP ){ 1804 pParse->nQueryLoop = 0; 1805 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1806 eType = IN_INDEX_ROWID; 1807 } 1808 }else if( prRhsHasNull ){ 1809 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1810 } 1811 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1812 pParse->nQueryLoop = savedNQueryLoop; 1813 }else{ 1814 pX->iTable = iTab; 1815 } 1816 return eType; 1817 } 1818 #endif 1819 1820 /* 1821 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1822 ** or IN operators. Examples: 1823 ** 1824 ** (SELECT a FROM b) -- subquery 1825 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1826 ** x IN (4,5,11) -- IN operator with list on right-hand side 1827 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1828 ** 1829 ** The pExpr parameter describes the expression that contains the IN 1830 ** operator or subquery. 1831 ** 1832 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1833 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1834 ** to some integer key column of a table B-Tree. In this case, use an 1835 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1836 ** (slower) variable length keys B-Tree. 1837 ** 1838 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1839 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1840 ** All this routine does is initialize the register given by rMayHaveNull 1841 ** to NULL. Calling routines will take care of changing this register 1842 ** value to non-NULL if the RHS is NULL-free. 1843 ** 1844 ** For a SELECT or EXISTS operator, return the register that holds the 1845 ** result. For IN operators or if an error occurs, the return value is 0. 1846 */ 1847 #ifndef SQLITE_OMIT_SUBQUERY 1848 int sqlite3CodeSubselect( 1849 Parse *pParse, /* Parsing context */ 1850 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1851 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1852 int isRowid /* If true, LHS of IN operator is a rowid */ 1853 ){ 1854 int jmpIfDynamic = -1; /* One-time test address */ 1855 int rReg = 0; /* Register storing resulting */ 1856 Vdbe *v = sqlite3GetVdbe(pParse); 1857 if( NEVER(v==0) ) return 0; 1858 sqlite3ExprCachePush(pParse); 1859 1860 /* This code must be run in its entirety every time it is encountered 1861 ** if any of the following is true: 1862 ** 1863 ** * The right-hand side is a correlated subquery 1864 ** * The right-hand side is an expression list containing variables 1865 ** * We are inside a trigger 1866 ** 1867 ** If all of the above are false, then we can run this code just once 1868 ** save the results, and reuse the same result on subsequent invocations. 1869 */ 1870 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1871 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1872 } 1873 1874 #ifndef SQLITE_OMIT_EXPLAIN 1875 if( pParse->explain==2 ){ 1876 char *zMsg = sqlite3MPrintf( 1877 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1878 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1879 ); 1880 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1881 } 1882 #endif 1883 1884 switch( pExpr->op ){ 1885 case TK_IN: { 1886 char affinity; /* Affinity of the LHS of the IN */ 1887 int addr; /* Address of OP_OpenEphemeral instruction */ 1888 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1889 KeyInfo *pKeyInfo = 0; /* Key information */ 1890 1891 affinity = sqlite3ExprAffinity(pLeft); 1892 1893 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1894 ** expression it is handled the same way. An ephemeral table is 1895 ** filled with single-field index keys representing the results 1896 ** from the SELECT or the <exprlist>. 1897 ** 1898 ** If the 'x' expression is a column value, or the SELECT... 1899 ** statement returns a column value, then the affinity of that 1900 ** column is used to build the index keys. If both 'x' and the 1901 ** SELECT... statement are columns, then numeric affinity is used 1902 ** if either column has NUMERIC or INTEGER affinity. If neither 1903 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1904 ** is used. 1905 */ 1906 pExpr->iTable = pParse->nTab++; 1907 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1908 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1909 1910 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1911 /* Case 1: expr IN (SELECT ...) 1912 ** 1913 ** Generate code to write the results of the select into the temporary 1914 ** table allocated and opened above. 1915 */ 1916 Select *pSelect = pExpr->x.pSelect; 1917 SelectDest dest; 1918 ExprList *pEList; 1919 1920 assert( !isRowid ); 1921 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1922 dest.affSdst = (u8)affinity; 1923 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1924 pSelect->iLimit = 0; 1925 testcase( pSelect->selFlags & SF_Distinct ); 1926 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1927 if( sqlite3Select(pParse, pSelect, &dest) ){ 1928 sqlite3KeyInfoUnref(pKeyInfo); 1929 return 0; 1930 } 1931 pEList = pSelect->pEList; 1932 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1933 assert( pEList!=0 ); 1934 assert( pEList->nExpr>0 ); 1935 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1936 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1937 pEList->a[0].pExpr); 1938 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1939 /* Case 2: expr IN (exprlist) 1940 ** 1941 ** For each expression, build an index key from the evaluation and 1942 ** store it in the temporary table. If <expr> is a column, then use 1943 ** that columns affinity when building index keys. If <expr> is not 1944 ** a column, use numeric affinity. 1945 */ 1946 int i; 1947 ExprList *pList = pExpr->x.pList; 1948 struct ExprList_item *pItem; 1949 int r1, r2, r3; 1950 1951 if( !affinity ){ 1952 affinity = SQLITE_AFF_BLOB; 1953 } 1954 if( pKeyInfo ){ 1955 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1956 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1957 } 1958 1959 /* Loop through each expression in <exprlist>. */ 1960 r1 = sqlite3GetTempReg(pParse); 1961 r2 = sqlite3GetTempReg(pParse); 1962 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1963 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1964 Expr *pE2 = pItem->pExpr; 1965 int iValToIns; 1966 1967 /* If the expression is not constant then we will need to 1968 ** disable the test that was generated above that makes sure 1969 ** this code only executes once. Because for a non-constant 1970 ** expression we need to rerun this code each time. 1971 */ 1972 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1973 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1974 jmpIfDynamic = -1; 1975 } 1976 1977 /* Evaluate the expression and insert it into the temp table */ 1978 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1979 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1980 }else{ 1981 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1982 if( isRowid ){ 1983 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1984 sqlite3VdbeCurrentAddr(v)+2); 1985 VdbeCoverage(v); 1986 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1987 }else{ 1988 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1989 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1990 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1991 } 1992 } 1993 } 1994 sqlite3ReleaseTempReg(pParse, r1); 1995 sqlite3ReleaseTempReg(pParse, r2); 1996 } 1997 if( pKeyInfo ){ 1998 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1999 } 2000 break; 2001 } 2002 2003 case TK_EXISTS: 2004 case TK_SELECT: 2005 default: { 2006 /* If this has to be a scalar SELECT. Generate code to put the 2007 ** value of this select in a memory cell and record the number 2008 ** of the memory cell in iColumn. If this is an EXISTS, write 2009 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2010 ** and record that memory cell in iColumn. 2011 */ 2012 Select *pSel; /* SELECT statement to encode */ 2013 SelectDest dest; /* How to deal with SELECt result */ 2014 2015 testcase( pExpr->op==TK_EXISTS ); 2016 testcase( pExpr->op==TK_SELECT ); 2017 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2018 2019 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2020 pSel = pExpr->x.pSelect; 2021 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2022 if( pExpr->op==TK_SELECT ){ 2023 dest.eDest = SRT_Mem; 2024 dest.iSdst = dest.iSDParm; 2025 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2026 VdbeComment((v, "Init subquery result")); 2027 }else{ 2028 dest.eDest = SRT_Exists; 2029 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2030 VdbeComment((v, "Init EXISTS result")); 2031 } 2032 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2033 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2034 &sqlite3IntTokens[1]); 2035 pSel->iLimit = 0; 2036 pSel->selFlags &= ~SF_MultiValue; 2037 if( sqlite3Select(pParse, pSel, &dest) ){ 2038 return 0; 2039 } 2040 rReg = dest.iSDParm; 2041 ExprSetVVAProperty(pExpr, EP_NoReduce); 2042 break; 2043 } 2044 } 2045 2046 if( rHasNullFlag ){ 2047 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2048 } 2049 2050 if( jmpIfDynamic>=0 ){ 2051 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2052 } 2053 sqlite3ExprCachePop(pParse); 2054 2055 return rReg; 2056 } 2057 #endif /* SQLITE_OMIT_SUBQUERY */ 2058 2059 #ifndef SQLITE_OMIT_SUBQUERY 2060 /* 2061 ** Generate code for an IN expression. 2062 ** 2063 ** x IN (SELECT ...) 2064 ** x IN (value, value, ...) 2065 ** 2066 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2067 ** is an array of zero or more values. The expression is true if the LHS is 2068 ** contained within the RHS. The value of the expression is unknown (NULL) 2069 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2070 ** RHS contains one or more NULL values. 2071 ** 2072 ** This routine generates code that jumps to destIfFalse if the LHS is not 2073 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2074 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2075 ** within the RHS then fall through. 2076 */ 2077 static void sqlite3ExprCodeIN( 2078 Parse *pParse, /* Parsing and code generating context */ 2079 Expr *pExpr, /* The IN expression */ 2080 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2081 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2082 ){ 2083 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2084 char affinity; /* Comparison affinity to use */ 2085 int eType; /* Type of the RHS */ 2086 int r1; /* Temporary use register */ 2087 Vdbe *v; /* Statement under construction */ 2088 2089 /* Compute the RHS. After this step, the table with cursor 2090 ** pExpr->iTable will contains the values that make up the RHS. 2091 */ 2092 v = pParse->pVdbe; 2093 assert( v!=0 ); /* OOM detected prior to this routine */ 2094 VdbeNoopComment((v, "begin IN expr")); 2095 eType = sqlite3FindInIndex(pParse, pExpr, 2096 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2097 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2098 2099 /* Figure out the affinity to use to create a key from the results 2100 ** of the expression. affinityStr stores a static string suitable for 2101 ** P4 of OP_MakeRecord. 2102 */ 2103 affinity = comparisonAffinity(pExpr); 2104 2105 /* Code the LHS, the <expr> from "<expr> IN (...)". 2106 */ 2107 sqlite3ExprCachePush(pParse); 2108 r1 = sqlite3GetTempReg(pParse); 2109 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2110 2111 /* If sqlite3FindInIndex() did not find or create an index that is 2112 ** suitable for evaluating the IN operator, then evaluate using a 2113 ** sequence of comparisons. 2114 */ 2115 if( eType==IN_INDEX_NOOP ){ 2116 ExprList *pList = pExpr->x.pList; 2117 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2118 int labelOk = sqlite3VdbeMakeLabel(v); 2119 int r2, regToFree; 2120 int regCkNull = 0; 2121 int ii; 2122 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2123 if( destIfNull!=destIfFalse ){ 2124 regCkNull = sqlite3GetTempReg(pParse); 2125 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2126 } 2127 for(ii=0; ii<pList->nExpr; ii++){ 2128 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2129 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2130 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2131 } 2132 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2133 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2134 (void*)pColl, P4_COLLSEQ); 2135 VdbeCoverageIf(v, ii<pList->nExpr-1); 2136 VdbeCoverageIf(v, ii==pList->nExpr-1); 2137 sqlite3VdbeChangeP5(v, affinity); 2138 }else{ 2139 assert( destIfNull==destIfFalse ); 2140 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2141 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2142 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2143 } 2144 sqlite3ReleaseTempReg(pParse, regToFree); 2145 } 2146 if( regCkNull ){ 2147 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2148 sqlite3VdbeGoto(v, destIfFalse); 2149 } 2150 sqlite3VdbeResolveLabel(v, labelOk); 2151 sqlite3ReleaseTempReg(pParse, regCkNull); 2152 }else{ 2153 2154 /* If the LHS is NULL, then the result is either false or NULL depending 2155 ** on whether the RHS is empty or not, respectively. 2156 */ 2157 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2158 if( destIfNull==destIfFalse ){ 2159 /* Shortcut for the common case where the false and NULL outcomes are 2160 ** the same. */ 2161 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2162 }else{ 2163 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2164 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2165 VdbeCoverage(v); 2166 sqlite3VdbeGoto(v, destIfNull); 2167 sqlite3VdbeJumpHere(v, addr1); 2168 } 2169 } 2170 2171 if( eType==IN_INDEX_ROWID ){ 2172 /* In this case, the RHS is the ROWID of table b-tree 2173 */ 2174 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2175 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2176 VdbeCoverage(v); 2177 }else{ 2178 /* In this case, the RHS is an index b-tree. 2179 */ 2180 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2181 2182 /* If the set membership test fails, then the result of the 2183 ** "x IN (...)" expression must be either 0 or NULL. If the set 2184 ** contains no NULL values, then the result is 0. If the set 2185 ** contains one or more NULL values, then the result of the 2186 ** expression is also NULL. 2187 */ 2188 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2189 if( rRhsHasNull==0 ){ 2190 /* This branch runs if it is known at compile time that the RHS 2191 ** cannot contain NULL values. This happens as the result 2192 ** of a "NOT NULL" constraint in the database schema. 2193 ** 2194 ** Also run this branch if NULL is equivalent to FALSE 2195 ** for this particular IN operator. 2196 */ 2197 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2198 VdbeCoverage(v); 2199 }else{ 2200 /* In this branch, the RHS of the IN might contain a NULL and 2201 ** the presence of a NULL on the RHS makes a difference in the 2202 ** outcome. 2203 */ 2204 int j1; 2205 2206 /* First check to see if the LHS is contained in the RHS. If so, 2207 ** then the answer is TRUE the presence of NULLs in the RHS does 2208 ** not matter. If the LHS is not contained in the RHS, then the 2209 ** answer is NULL if the RHS contains NULLs and the answer is 2210 ** FALSE if the RHS is NULL-free. 2211 */ 2212 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2213 VdbeCoverage(v); 2214 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2215 VdbeCoverage(v); 2216 sqlite3VdbeGoto(v, destIfFalse); 2217 sqlite3VdbeJumpHere(v, j1); 2218 } 2219 } 2220 } 2221 sqlite3ReleaseTempReg(pParse, r1); 2222 sqlite3ExprCachePop(pParse); 2223 VdbeComment((v, "end IN expr")); 2224 } 2225 #endif /* SQLITE_OMIT_SUBQUERY */ 2226 2227 #ifndef SQLITE_OMIT_FLOATING_POINT 2228 /* 2229 ** Generate an instruction that will put the floating point 2230 ** value described by z[0..n-1] into register iMem. 2231 ** 2232 ** The z[] string will probably not be zero-terminated. But the 2233 ** z[n] character is guaranteed to be something that does not look 2234 ** like the continuation of the number. 2235 */ 2236 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2237 if( ALWAYS(z!=0) ){ 2238 double value; 2239 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2240 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2241 if( negateFlag ) value = -value; 2242 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2243 } 2244 } 2245 #endif 2246 2247 2248 /* 2249 ** Generate an instruction that will put the integer describe by 2250 ** text z[0..n-1] into register iMem. 2251 ** 2252 ** Expr.u.zToken is always UTF8 and zero-terminated. 2253 */ 2254 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2255 Vdbe *v = pParse->pVdbe; 2256 if( pExpr->flags & EP_IntValue ){ 2257 int i = pExpr->u.iValue; 2258 assert( i>=0 ); 2259 if( negFlag ) i = -i; 2260 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2261 }else{ 2262 int c; 2263 i64 value; 2264 const char *z = pExpr->u.zToken; 2265 assert( z!=0 ); 2266 c = sqlite3DecOrHexToI64(z, &value); 2267 if( c==0 || (c==2 && negFlag) ){ 2268 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2269 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2270 }else{ 2271 #ifdef SQLITE_OMIT_FLOATING_POINT 2272 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2273 #else 2274 #ifndef SQLITE_OMIT_HEX_INTEGER 2275 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2276 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2277 }else 2278 #endif 2279 { 2280 codeReal(v, z, negFlag, iMem); 2281 } 2282 #endif 2283 } 2284 } 2285 } 2286 2287 /* 2288 ** Clear a cache entry. 2289 */ 2290 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2291 if( p->tempReg ){ 2292 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2293 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2294 } 2295 p->tempReg = 0; 2296 } 2297 } 2298 2299 2300 /* 2301 ** Record in the column cache that a particular column from a 2302 ** particular table is stored in a particular register. 2303 */ 2304 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2305 int i; 2306 int minLru; 2307 int idxLru; 2308 struct yColCache *p; 2309 2310 /* Unless an error has occurred, register numbers are always positive. */ 2311 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2312 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2313 2314 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2315 ** for testing only - to verify that SQLite always gets the same answer 2316 ** with and without the column cache. 2317 */ 2318 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2319 2320 /* First replace any existing entry. 2321 ** 2322 ** Actually, the way the column cache is currently used, we are guaranteed 2323 ** that the object will never already be in cache. Verify this guarantee. 2324 */ 2325 #ifndef NDEBUG 2326 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2327 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2328 } 2329 #endif 2330 2331 /* Find an empty slot and replace it */ 2332 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2333 if( p->iReg==0 ){ 2334 p->iLevel = pParse->iCacheLevel; 2335 p->iTable = iTab; 2336 p->iColumn = iCol; 2337 p->iReg = iReg; 2338 p->tempReg = 0; 2339 p->lru = pParse->iCacheCnt++; 2340 return; 2341 } 2342 } 2343 2344 /* Replace the last recently used */ 2345 minLru = 0x7fffffff; 2346 idxLru = -1; 2347 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2348 if( p->lru<minLru ){ 2349 idxLru = i; 2350 minLru = p->lru; 2351 } 2352 } 2353 if( ALWAYS(idxLru>=0) ){ 2354 p = &pParse->aColCache[idxLru]; 2355 p->iLevel = pParse->iCacheLevel; 2356 p->iTable = iTab; 2357 p->iColumn = iCol; 2358 p->iReg = iReg; 2359 p->tempReg = 0; 2360 p->lru = pParse->iCacheCnt++; 2361 return; 2362 } 2363 } 2364 2365 /* 2366 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2367 ** Purge the range of registers from the column cache. 2368 */ 2369 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2370 int i; 2371 int iLast = iReg + nReg - 1; 2372 struct yColCache *p; 2373 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2374 int r = p->iReg; 2375 if( r>=iReg && r<=iLast ){ 2376 cacheEntryClear(pParse, p); 2377 p->iReg = 0; 2378 } 2379 } 2380 } 2381 2382 /* 2383 ** Remember the current column cache context. Any new entries added 2384 ** added to the column cache after this call are removed when the 2385 ** corresponding pop occurs. 2386 */ 2387 void sqlite3ExprCachePush(Parse *pParse){ 2388 pParse->iCacheLevel++; 2389 #ifdef SQLITE_DEBUG 2390 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2391 printf("PUSH to %d\n", pParse->iCacheLevel); 2392 } 2393 #endif 2394 } 2395 2396 /* 2397 ** Remove from the column cache any entries that were added since the 2398 ** the previous sqlite3ExprCachePush operation. In other words, restore 2399 ** the cache to the state it was in prior the most recent Push. 2400 */ 2401 void sqlite3ExprCachePop(Parse *pParse){ 2402 int i; 2403 struct yColCache *p; 2404 assert( pParse->iCacheLevel>=1 ); 2405 pParse->iCacheLevel--; 2406 #ifdef SQLITE_DEBUG 2407 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2408 printf("POP to %d\n", pParse->iCacheLevel); 2409 } 2410 #endif 2411 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2412 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2413 cacheEntryClear(pParse, p); 2414 p->iReg = 0; 2415 } 2416 } 2417 } 2418 2419 /* 2420 ** When a cached column is reused, make sure that its register is 2421 ** no longer available as a temp register. ticket #3879: that same 2422 ** register might be in the cache in multiple places, so be sure to 2423 ** get them all. 2424 */ 2425 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2426 int i; 2427 struct yColCache *p; 2428 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2429 if( p->iReg==iReg ){ 2430 p->tempReg = 0; 2431 } 2432 } 2433 } 2434 2435 /* Generate code that will load into register regOut a value that is 2436 ** appropriate for the iIdxCol-th column of index pIdx. 2437 */ 2438 void sqlite3ExprCodeLoadIndexColumn( 2439 Parse *pParse, /* The parsing context */ 2440 Index *pIdx, /* The index whose column is to be loaded */ 2441 int iTabCur, /* Cursor pointing to a table row */ 2442 int iIdxCol, /* The column of the index to be loaded */ 2443 int regOut /* Store the index column value in this register */ 2444 ){ 2445 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2446 if( iTabCol==XN_EXPR ){ 2447 assert( pIdx->aColExpr ); 2448 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2449 pParse->iSelfTab = iTabCur; 2450 sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2451 }else{ 2452 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2453 iTabCol, regOut); 2454 } 2455 } 2456 2457 /* 2458 ** Generate code to extract the value of the iCol-th column of a table. 2459 */ 2460 void sqlite3ExprCodeGetColumnOfTable( 2461 Vdbe *v, /* The VDBE under construction */ 2462 Table *pTab, /* The table containing the value */ 2463 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2464 int iCol, /* Index of the column to extract */ 2465 int regOut /* Extract the value into this register */ 2466 ){ 2467 if( iCol<0 || iCol==pTab->iPKey ){ 2468 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2469 }else{ 2470 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2471 int x = iCol; 2472 if( !HasRowid(pTab) ){ 2473 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2474 } 2475 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2476 } 2477 if( iCol>=0 ){ 2478 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2479 } 2480 } 2481 2482 /* 2483 ** Generate code that will extract the iColumn-th column from 2484 ** table pTab and store the column value in a register. An effort 2485 ** is made to store the column value in register iReg, but this is 2486 ** not guaranteed. The location of the column value is returned. 2487 ** 2488 ** There must be an open cursor to pTab in iTable when this routine 2489 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2490 */ 2491 int sqlite3ExprCodeGetColumn( 2492 Parse *pParse, /* Parsing and code generating context */ 2493 Table *pTab, /* Description of the table we are reading from */ 2494 int iColumn, /* Index of the table column */ 2495 int iTable, /* The cursor pointing to the table */ 2496 int iReg, /* Store results here */ 2497 u8 p5 /* P5 value for OP_Column */ 2498 ){ 2499 Vdbe *v = pParse->pVdbe; 2500 int i; 2501 struct yColCache *p; 2502 2503 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2504 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2505 p->lru = pParse->iCacheCnt++; 2506 sqlite3ExprCachePinRegister(pParse, p->iReg); 2507 return p->iReg; 2508 } 2509 } 2510 assert( v!=0 ); 2511 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2512 if( p5 ){ 2513 sqlite3VdbeChangeP5(v, p5); 2514 }else{ 2515 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2516 } 2517 return iReg; 2518 } 2519 2520 /* 2521 ** Clear all column cache entries. 2522 */ 2523 void sqlite3ExprCacheClear(Parse *pParse){ 2524 int i; 2525 struct yColCache *p; 2526 2527 #if SQLITE_DEBUG 2528 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2529 printf("CLEAR\n"); 2530 } 2531 #endif 2532 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2533 if( p->iReg ){ 2534 cacheEntryClear(pParse, p); 2535 p->iReg = 0; 2536 } 2537 } 2538 } 2539 2540 /* 2541 ** Record the fact that an affinity change has occurred on iCount 2542 ** registers starting with iStart. 2543 */ 2544 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2545 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2546 } 2547 2548 /* 2549 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2550 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2551 */ 2552 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2553 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2554 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2555 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2556 } 2557 2558 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2559 /* 2560 ** Return true if any register in the range iFrom..iTo (inclusive) 2561 ** is used as part of the column cache. 2562 ** 2563 ** This routine is used within assert() and testcase() macros only 2564 ** and does not appear in a normal build. 2565 */ 2566 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2567 int i; 2568 struct yColCache *p; 2569 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2570 int r = p->iReg; 2571 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2572 } 2573 return 0; 2574 } 2575 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2576 2577 /* 2578 ** Convert an expression node to a TK_REGISTER 2579 */ 2580 static void exprToRegister(Expr *p, int iReg){ 2581 p->op2 = p->op; 2582 p->op = TK_REGISTER; 2583 p->iTable = iReg; 2584 ExprClearProperty(p, EP_Skip); 2585 } 2586 2587 /* 2588 ** Generate code into the current Vdbe to evaluate the given 2589 ** expression. Attempt to store the results in register "target". 2590 ** Return the register where results are stored. 2591 ** 2592 ** With this routine, there is no guarantee that results will 2593 ** be stored in target. The result might be stored in some other 2594 ** register if it is convenient to do so. The calling function 2595 ** must check the return code and move the results to the desired 2596 ** register. 2597 */ 2598 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2599 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2600 int op; /* The opcode being coded */ 2601 int inReg = target; /* Results stored in register inReg */ 2602 int regFree1 = 0; /* If non-zero free this temporary register */ 2603 int regFree2 = 0; /* If non-zero free this temporary register */ 2604 int r1, r2, r3, r4; /* Various register numbers */ 2605 sqlite3 *db = pParse->db; /* The database connection */ 2606 Expr tempX; /* Temporary expression node */ 2607 2608 assert( target>0 && target<=pParse->nMem ); 2609 if( v==0 ){ 2610 assert( pParse->db->mallocFailed ); 2611 return 0; 2612 } 2613 2614 if( pExpr==0 ){ 2615 op = TK_NULL; 2616 }else{ 2617 op = pExpr->op; 2618 } 2619 switch( op ){ 2620 case TK_AGG_COLUMN: { 2621 AggInfo *pAggInfo = pExpr->pAggInfo; 2622 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2623 if( !pAggInfo->directMode ){ 2624 assert( pCol->iMem>0 ); 2625 inReg = pCol->iMem; 2626 break; 2627 }else if( pAggInfo->useSortingIdx ){ 2628 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2629 pCol->iSorterColumn, target); 2630 break; 2631 } 2632 /* Otherwise, fall thru into the TK_COLUMN case */ 2633 } 2634 case TK_COLUMN: { 2635 int iTab = pExpr->iTable; 2636 if( iTab<0 ){ 2637 if( pParse->ckBase>0 ){ 2638 /* Generating CHECK constraints or inserting into partial index */ 2639 inReg = pExpr->iColumn + pParse->ckBase; 2640 break; 2641 }else{ 2642 /* Coding an expression that is part of an index where column names 2643 ** in the index refer to the table to which the index belongs */ 2644 iTab = pParse->iSelfTab; 2645 } 2646 } 2647 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2648 pExpr->iColumn, iTab, target, 2649 pExpr->op2); 2650 break; 2651 } 2652 case TK_INTEGER: { 2653 codeInteger(pParse, pExpr, 0, target); 2654 break; 2655 } 2656 #ifndef SQLITE_OMIT_FLOATING_POINT 2657 case TK_FLOAT: { 2658 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2659 codeReal(v, pExpr->u.zToken, 0, target); 2660 break; 2661 } 2662 #endif 2663 case TK_STRING: { 2664 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2665 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2666 break; 2667 } 2668 case TK_NULL: { 2669 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2670 break; 2671 } 2672 #ifndef SQLITE_OMIT_BLOB_LITERAL 2673 case TK_BLOB: { 2674 int n; 2675 const char *z; 2676 char *zBlob; 2677 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2678 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2679 assert( pExpr->u.zToken[1]=='\'' ); 2680 z = &pExpr->u.zToken[2]; 2681 n = sqlite3Strlen30(z) - 1; 2682 assert( z[n]=='\'' ); 2683 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2684 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2685 break; 2686 } 2687 #endif 2688 case TK_VARIABLE: { 2689 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2690 assert( pExpr->u.zToken!=0 ); 2691 assert( pExpr->u.zToken[0]!=0 ); 2692 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2693 if( pExpr->u.zToken[1]!=0 ){ 2694 assert( pExpr->u.zToken[0]=='?' 2695 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2696 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2697 } 2698 break; 2699 } 2700 case TK_REGISTER: { 2701 inReg = pExpr->iTable; 2702 break; 2703 } 2704 #ifndef SQLITE_OMIT_CAST 2705 case TK_CAST: { 2706 /* Expressions of the form: CAST(pLeft AS token) */ 2707 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2708 if( inReg!=target ){ 2709 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2710 inReg = target; 2711 } 2712 sqlite3VdbeAddOp2(v, OP_Cast, target, 2713 sqlite3AffinityType(pExpr->u.zToken, 0)); 2714 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2715 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2716 break; 2717 } 2718 #endif /* SQLITE_OMIT_CAST */ 2719 case TK_LT: 2720 case TK_LE: 2721 case TK_GT: 2722 case TK_GE: 2723 case TK_NE: 2724 case TK_EQ: { 2725 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2726 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2727 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2728 r1, r2, inReg, SQLITE_STOREP2); 2729 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2730 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2731 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2732 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2733 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2734 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2735 testcase( regFree1==0 ); 2736 testcase( regFree2==0 ); 2737 break; 2738 } 2739 case TK_IS: 2740 case TK_ISNOT: { 2741 testcase( op==TK_IS ); 2742 testcase( op==TK_ISNOT ); 2743 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2744 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2745 op = (op==TK_IS) ? TK_EQ : TK_NE; 2746 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2747 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2748 VdbeCoverageIf(v, op==TK_EQ); 2749 VdbeCoverageIf(v, op==TK_NE); 2750 testcase( regFree1==0 ); 2751 testcase( regFree2==0 ); 2752 break; 2753 } 2754 case TK_AND: 2755 case TK_OR: 2756 case TK_PLUS: 2757 case TK_STAR: 2758 case TK_MINUS: 2759 case TK_REM: 2760 case TK_BITAND: 2761 case TK_BITOR: 2762 case TK_SLASH: 2763 case TK_LSHIFT: 2764 case TK_RSHIFT: 2765 case TK_CONCAT: { 2766 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2767 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2768 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2769 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2770 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2771 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2772 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2773 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2774 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2775 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2776 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2777 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2778 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2779 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2780 testcase( regFree1==0 ); 2781 testcase( regFree2==0 ); 2782 break; 2783 } 2784 case TK_UMINUS: { 2785 Expr *pLeft = pExpr->pLeft; 2786 assert( pLeft ); 2787 if( pLeft->op==TK_INTEGER ){ 2788 codeInteger(pParse, pLeft, 1, target); 2789 #ifndef SQLITE_OMIT_FLOATING_POINT 2790 }else if( pLeft->op==TK_FLOAT ){ 2791 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2792 codeReal(v, pLeft->u.zToken, 1, target); 2793 #endif 2794 }else{ 2795 tempX.op = TK_INTEGER; 2796 tempX.flags = EP_IntValue|EP_TokenOnly; 2797 tempX.u.iValue = 0; 2798 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2799 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2800 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2801 testcase( regFree2==0 ); 2802 } 2803 inReg = target; 2804 break; 2805 } 2806 case TK_BITNOT: 2807 case TK_NOT: { 2808 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2809 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2810 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2811 testcase( regFree1==0 ); 2812 inReg = target; 2813 sqlite3VdbeAddOp2(v, op, r1, inReg); 2814 break; 2815 } 2816 case TK_ISNULL: 2817 case TK_NOTNULL: { 2818 int addr; 2819 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2820 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2821 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2822 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2823 testcase( regFree1==0 ); 2824 addr = sqlite3VdbeAddOp1(v, op, r1); 2825 VdbeCoverageIf(v, op==TK_ISNULL); 2826 VdbeCoverageIf(v, op==TK_NOTNULL); 2827 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2828 sqlite3VdbeJumpHere(v, addr); 2829 break; 2830 } 2831 case TK_AGG_FUNCTION: { 2832 AggInfo *pInfo = pExpr->pAggInfo; 2833 if( pInfo==0 ){ 2834 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2835 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2836 }else{ 2837 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2838 } 2839 break; 2840 } 2841 case TK_FUNCTION: { 2842 ExprList *pFarg; /* List of function arguments */ 2843 int nFarg; /* Number of function arguments */ 2844 FuncDef *pDef; /* The function definition object */ 2845 int nId; /* Length of the function name in bytes */ 2846 const char *zId; /* The function name */ 2847 u32 constMask = 0; /* Mask of function arguments that are constant */ 2848 int i; /* Loop counter */ 2849 u8 enc = ENC(db); /* The text encoding used by this database */ 2850 CollSeq *pColl = 0; /* A collating sequence */ 2851 2852 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2853 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2854 pFarg = 0; 2855 }else{ 2856 pFarg = pExpr->x.pList; 2857 } 2858 nFarg = pFarg ? pFarg->nExpr : 0; 2859 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2860 zId = pExpr->u.zToken; 2861 nId = sqlite3Strlen30(zId); 2862 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2863 if( pDef==0 || pDef->xFunc==0 ){ 2864 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2865 break; 2866 } 2867 2868 /* Attempt a direct implementation of the built-in COALESCE() and 2869 ** IFNULL() functions. This avoids unnecessary evaluation of 2870 ** arguments past the first non-NULL argument. 2871 */ 2872 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2873 int endCoalesce = sqlite3VdbeMakeLabel(v); 2874 assert( nFarg>=2 ); 2875 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2876 for(i=1; i<nFarg; i++){ 2877 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2878 VdbeCoverage(v); 2879 sqlite3ExprCacheRemove(pParse, target, 1); 2880 sqlite3ExprCachePush(pParse); 2881 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2882 sqlite3ExprCachePop(pParse); 2883 } 2884 sqlite3VdbeResolveLabel(v, endCoalesce); 2885 break; 2886 } 2887 2888 /* The UNLIKELY() function is a no-op. The result is the value 2889 ** of the first argument. 2890 */ 2891 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2892 assert( nFarg>=1 ); 2893 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2894 break; 2895 } 2896 2897 for(i=0; i<nFarg; i++){ 2898 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2899 testcase( i==31 ); 2900 constMask |= MASKBIT32(i); 2901 } 2902 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2903 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2904 } 2905 } 2906 if( pFarg ){ 2907 if( constMask ){ 2908 r1 = pParse->nMem+1; 2909 pParse->nMem += nFarg; 2910 }else{ 2911 r1 = sqlite3GetTempRange(pParse, nFarg); 2912 } 2913 2914 /* For length() and typeof() functions with a column argument, 2915 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2916 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2917 ** loading. 2918 */ 2919 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2920 u8 exprOp; 2921 assert( nFarg==1 ); 2922 assert( pFarg->a[0].pExpr!=0 ); 2923 exprOp = pFarg->a[0].pExpr->op; 2924 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2925 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2926 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2927 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2928 pFarg->a[0].pExpr->op2 = 2929 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2930 } 2931 } 2932 2933 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2934 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 2935 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2936 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2937 }else{ 2938 r1 = 0; 2939 } 2940 #ifndef SQLITE_OMIT_VIRTUALTABLE 2941 /* Possibly overload the function if the first argument is 2942 ** a virtual table column. 2943 ** 2944 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2945 ** second argument, not the first, as the argument to test to 2946 ** see if it is a column in a virtual table. This is done because 2947 ** the left operand of infix functions (the operand we want to 2948 ** control overloading) ends up as the second argument to the 2949 ** function. The expression "A glob B" is equivalent to 2950 ** "glob(B,A). We want to use the A in "A glob B" to test 2951 ** for function overloading. But we use the B term in "glob(B,A)". 2952 */ 2953 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2954 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2955 }else if( nFarg>0 ){ 2956 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2957 } 2958 #endif 2959 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2960 if( !pColl ) pColl = db->pDfltColl; 2961 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2962 } 2963 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 2964 (char*)pDef, P4_FUNCDEF); 2965 sqlite3VdbeChangeP5(v, (u8)nFarg); 2966 if( nFarg && constMask==0 ){ 2967 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2968 } 2969 break; 2970 } 2971 #ifndef SQLITE_OMIT_SUBQUERY 2972 case TK_EXISTS: 2973 case TK_SELECT: { 2974 testcase( op==TK_EXISTS ); 2975 testcase( op==TK_SELECT ); 2976 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2977 break; 2978 } 2979 case TK_IN: { 2980 int destIfFalse = sqlite3VdbeMakeLabel(v); 2981 int destIfNull = sqlite3VdbeMakeLabel(v); 2982 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2983 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2984 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2985 sqlite3VdbeResolveLabel(v, destIfFalse); 2986 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2987 sqlite3VdbeResolveLabel(v, destIfNull); 2988 break; 2989 } 2990 #endif /* SQLITE_OMIT_SUBQUERY */ 2991 2992 2993 /* 2994 ** x BETWEEN y AND z 2995 ** 2996 ** This is equivalent to 2997 ** 2998 ** x>=y AND x<=z 2999 ** 3000 ** X is stored in pExpr->pLeft. 3001 ** Y is stored in pExpr->pList->a[0].pExpr. 3002 ** Z is stored in pExpr->pList->a[1].pExpr. 3003 */ 3004 case TK_BETWEEN: { 3005 Expr *pLeft = pExpr->pLeft; 3006 struct ExprList_item *pLItem = pExpr->x.pList->a; 3007 Expr *pRight = pLItem->pExpr; 3008 3009 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3010 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3011 testcase( regFree1==0 ); 3012 testcase( regFree2==0 ); 3013 r3 = sqlite3GetTempReg(pParse); 3014 r4 = sqlite3GetTempReg(pParse); 3015 codeCompare(pParse, pLeft, pRight, OP_Ge, 3016 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3017 pLItem++; 3018 pRight = pLItem->pExpr; 3019 sqlite3ReleaseTempReg(pParse, regFree2); 3020 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3021 testcase( regFree2==0 ); 3022 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3023 VdbeCoverage(v); 3024 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3025 sqlite3ReleaseTempReg(pParse, r3); 3026 sqlite3ReleaseTempReg(pParse, r4); 3027 break; 3028 } 3029 case TK_COLLATE: 3030 case TK_UPLUS: { 3031 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3032 break; 3033 } 3034 3035 case TK_TRIGGER: { 3036 /* If the opcode is TK_TRIGGER, then the expression is a reference 3037 ** to a column in the new.* or old.* pseudo-tables available to 3038 ** trigger programs. In this case Expr.iTable is set to 1 for the 3039 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3040 ** is set to the column of the pseudo-table to read, or to -1 to 3041 ** read the rowid field. 3042 ** 3043 ** The expression is implemented using an OP_Param opcode. The p1 3044 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3045 ** to reference another column of the old.* pseudo-table, where 3046 ** i is the index of the column. For a new.rowid reference, p1 is 3047 ** set to (n+1), where n is the number of columns in each pseudo-table. 3048 ** For a reference to any other column in the new.* pseudo-table, p1 3049 ** is set to (n+2+i), where n and i are as defined previously. For 3050 ** example, if the table on which triggers are being fired is 3051 ** declared as: 3052 ** 3053 ** CREATE TABLE t1(a, b); 3054 ** 3055 ** Then p1 is interpreted as follows: 3056 ** 3057 ** p1==0 -> old.rowid p1==3 -> new.rowid 3058 ** p1==1 -> old.a p1==4 -> new.a 3059 ** p1==2 -> old.b p1==5 -> new.b 3060 */ 3061 Table *pTab = pExpr->pTab; 3062 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3063 3064 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3065 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3066 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3067 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3068 3069 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3070 VdbeComment((v, "%s.%s -> $%d", 3071 (pExpr->iTable ? "new" : "old"), 3072 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3073 target 3074 )); 3075 3076 #ifndef SQLITE_OMIT_FLOATING_POINT 3077 /* If the column has REAL affinity, it may currently be stored as an 3078 ** integer. Use OP_RealAffinity to make sure it is really real. 3079 ** 3080 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3081 ** floating point when extracting it from the record. */ 3082 if( pExpr->iColumn>=0 3083 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3084 ){ 3085 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3086 } 3087 #endif 3088 break; 3089 } 3090 3091 3092 /* 3093 ** Form A: 3094 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3095 ** 3096 ** Form B: 3097 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3098 ** 3099 ** Form A is can be transformed into the equivalent form B as follows: 3100 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3101 ** WHEN x=eN THEN rN ELSE y END 3102 ** 3103 ** X (if it exists) is in pExpr->pLeft. 3104 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3105 ** odd. The Y is also optional. If the number of elements in x.pList 3106 ** is even, then Y is omitted and the "otherwise" result is NULL. 3107 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3108 ** 3109 ** The result of the expression is the Ri for the first matching Ei, 3110 ** or if there is no matching Ei, the ELSE term Y, or if there is 3111 ** no ELSE term, NULL. 3112 */ 3113 default: assert( op==TK_CASE ); { 3114 int endLabel; /* GOTO label for end of CASE stmt */ 3115 int nextCase; /* GOTO label for next WHEN clause */ 3116 int nExpr; /* 2x number of WHEN terms */ 3117 int i; /* Loop counter */ 3118 ExprList *pEList; /* List of WHEN terms */ 3119 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3120 Expr opCompare; /* The X==Ei expression */ 3121 Expr *pX; /* The X expression */ 3122 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3123 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3124 3125 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3126 assert(pExpr->x.pList->nExpr > 0); 3127 pEList = pExpr->x.pList; 3128 aListelem = pEList->a; 3129 nExpr = pEList->nExpr; 3130 endLabel = sqlite3VdbeMakeLabel(v); 3131 if( (pX = pExpr->pLeft)!=0 ){ 3132 tempX = *pX; 3133 testcase( pX->op==TK_COLUMN ); 3134 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3135 testcase( regFree1==0 ); 3136 opCompare.op = TK_EQ; 3137 opCompare.pLeft = &tempX; 3138 pTest = &opCompare; 3139 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3140 ** The value in regFree1 might get SCopy-ed into the file result. 3141 ** So make sure that the regFree1 register is not reused for other 3142 ** purposes and possibly overwritten. */ 3143 regFree1 = 0; 3144 } 3145 for(i=0; i<nExpr-1; i=i+2){ 3146 sqlite3ExprCachePush(pParse); 3147 if( pX ){ 3148 assert( pTest!=0 ); 3149 opCompare.pRight = aListelem[i].pExpr; 3150 }else{ 3151 pTest = aListelem[i].pExpr; 3152 } 3153 nextCase = sqlite3VdbeMakeLabel(v); 3154 testcase( pTest->op==TK_COLUMN ); 3155 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3156 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3157 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3158 sqlite3VdbeGoto(v, endLabel); 3159 sqlite3ExprCachePop(pParse); 3160 sqlite3VdbeResolveLabel(v, nextCase); 3161 } 3162 if( (nExpr&1)!=0 ){ 3163 sqlite3ExprCachePush(pParse); 3164 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3165 sqlite3ExprCachePop(pParse); 3166 }else{ 3167 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3168 } 3169 assert( db->mallocFailed || pParse->nErr>0 3170 || pParse->iCacheLevel==iCacheLevel ); 3171 sqlite3VdbeResolveLabel(v, endLabel); 3172 break; 3173 } 3174 #ifndef SQLITE_OMIT_TRIGGER 3175 case TK_RAISE: { 3176 assert( pExpr->affinity==OE_Rollback 3177 || pExpr->affinity==OE_Abort 3178 || pExpr->affinity==OE_Fail 3179 || pExpr->affinity==OE_Ignore 3180 ); 3181 if( !pParse->pTriggerTab ){ 3182 sqlite3ErrorMsg(pParse, 3183 "RAISE() may only be used within a trigger-program"); 3184 return 0; 3185 } 3186 if( pExpr->affinity==OE_Abort ){ 3187 sqlite3MayAbort(pParse); 3188 } 3189 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3190 if( pExpr->affinity==OE_Ignore ){ 3191 sqlite3VdbeAddOp4( 3192 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3193 VdbeCoverage(v); 3194 }else{ 3195 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3196 pExpr->affinity, pExpr->u.zToken, 0, 0); 3197 } 3198 3199 break; 3200 } 3201 #endif 3202 } 3203 sqlite3ReleaseTempReg(pParse, regFree1); 3204 sqlite3ReleaseTempReg(pParse, regFree2); 3205 return inReg; 3206 } 3207 3208 /* 3209 ** Factor out the code of the given expression to initialization time. 3210 */ 3211 void sqlite3ExprCodeAtInit( 3212 Parse *pParse, /* Parsing context */ 3213 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3214 int regDest, /* Store the value in this register */ 3215 u8 reusable /* True if this expression is reusable */ 3216 ){ 3217 ExprList *p; 3218 assert( ConstFactorOk(pParse) ); 3219 p = pParse->pConstExpr; 3220 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3221 p = sqlite3ExprListAppend(pParse, p, pExpr); 3222 if( p ){ 3223 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3224 pItem->u.iConstExprReg = regDest; 3225 pItem->reusable = reusable; 3226 } 3227 pParse->pConstExpr = p; 3228 } 3229 3230 /* 3231 ** Generate code to evaluate an expression and store the results 3232 ** into a register. Return the register number where the results 3233 ** are stored. 3234 ** 3235 ** If the register is a temporary register that can be deallocated, 3236 ** then write its number into *pReg. If the result register is not 3237 ** a temporary, then set *pReg to zero. 3238 ** 3239 ** If pExpr is a constant, then this routine might generate this 3240 ** code to fill the register in the initialization section of the 3241 ** VDBE program, in order to factor it out of the evaluation loop. 3242 */ 3243 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3244 int r2; 3245 pExpr = sqlite3ExprSkipCollate(pExpr); 3246 if( ConstFactorOk(pParse) 3247 && pExpr->op!=TK_REGISTER 3248 && sqlite3ExprIsConstantNotJoin(pExpr) 3249 ){ 3250 ExprList *p = pParse->pConstExpr; 3251 int i; 3252 *pReg = 0; 3253 if( p ){ 3254 struct ExprList_item *pItem; 3255 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3256 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3257 return pItem->u.iConstExprReg; 3258 } 3259 } 3260 } 3261 r2 = ++pParse->nMem; 3262 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3263 }else{ 3264 int r1 = sqlite3GetTempReg(pParse); 3265 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3266 if( r2==r1 ){ 3267 *pReg = r1; 3268 }else{ 3269 sqlite3ReleaseTempReg(pParse, r1); 3270 *pReg = 0; 3271 } 3272 } 3273 return r2; 3274 } 3275 3276 /* 3277 ** Generate code that will evaluate expression pExpr and store the 3278 ** results in register target. The results are guaranteed to appear 3279 ** in register target. 3280 */ 3281 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3282 int inReg; 3283 3284 assert( target>0 && target<=pParse->nMem ); 3285 if( pExpr && pExpr->op==TK_REGISTER ){ 3286 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3287 }else{ 3288 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3289 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3290 if( inReg!=target && pParse->pVdbe ){ 3291 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3292 } 3293 } 3294 } 3295 3296 /* 3297 ** Generate code that will evaluate expression pExpr and store the 3298 ** results in register target. The results are guaranteed to appear 3299 ** in register target. If the expression is constant, then this routine 3300 ** might choose to code the expression at initialization time. 3301 */ 3302 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3303 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3304 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3305 }else{ 3306 sqlite3ExprCode(pParse, pExpr, target); 3307 } 3308 } 3309 3310 /* 3311 ** Generate code that evaluates the given expression and puts the result 3312 ** in register target. 3313 ** 3314 ** Also make a copy of the expression results into another "cache" register 3315 ** and modify the expression so that the next time it is evaluated, 3316 ** the result is a copy of the cache register. 3317 ** 3318 ** This routine is used for expressions that are used multiple 3319 ** times. They are evaluated once and the results of the expression 3320 ** are reused. 3321 */ 3322 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3323 Vdbe *v = pParse->pVdbe; 3324 int iMem; 3325 3326 assert( target>0 ); 3327 assert( pExpr->op!=TK_REGISTER ); 3328 sqlite3ExprCode(pParse, pExpr, target); 3329 iMem = ++pParse->nMem; 3330 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3331 exprToRegister(pExpr, iMem); 3332 } 3333 3334 /* 3335 ** Generate code that pushes the value of every element of the given 3336 ** expression list into a sequence of registers beginning at target. 3337 ** 3338 ** Return the number of elements evaluated. 3339 ** 3340 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3341 ** filled using OP_SCopy. OP_Copy must be used instead. 3342 ** 3343 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3344 ** factored out into initialization code. 3345 */ 3346 int sqlite3ExprCodeExprList( 3347 Parse *pParse, /* Parsing context */ 3348 ExprList *pList, /* The expression list to be coded */ 3349 int target, /* Where to write results */ 3350 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3351 u8 flags /* SQLITE_ECEL_* flags */ 3352 ){ 3353 struct ExprList_item *pItem; 3354 int i, j, n; 3355 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3356 Vdbe *v = pParse->pVdbe; 3357 assert( pList!=0 ); 3358 assert( target>0 ); 3359 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3360 n = pList->nExpr; 3361 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3362 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3363 Expr *pExpr = pItem->pExpr; 3364 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3365 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3366 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3367 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3368 }else{ 3369 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3370 if( inReg!=target+i ){ 3371 VdbeOp *pOp; 3372 if( copyOp==OP_Copy 3373 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3374 && pOp->p1+pOp->p3+1==inReg 3375 && pOp->p2+pOp->p3+1==target+i 3376 ){ 3377 pOp->p3++; 3378 }else{ 3379 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3380 } 3381 } 3382 } 3383 } 3384 return n; 3385 } 3386 3387 /* 3388 ** Generate code for a BETWEEN operator. 3389 ** 3390 ** x BETWEEN y AND z 3391 ** 3392 ** The above is equivalent to 3393 ** 3394 ** x>=y AND x<=z 3395 ** 3396 ** Code it as such, taking care to do the common subexpression 3397 ** elimination of x. 3398 */ 3399 static void exprCodeBetween( 3400 Parse *pParse, /* Parsing and code generating context */ 3401 Expr *pExpr, /* The BETWEEN expression */ 3402 int dest, /* Jump here if the jump is taken */ 3403 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3404 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3405 ){ 3406 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3407 Expr compLeft; /* The x>=y term */ 3408 Expr compRight; /* The x<=z term */ 3409 Expr exprX; /* The x subexpression */ 3410 int regFree1 = 0; /* Temporary use register */ 3411 3412 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3413 exprX = *pExpr->pLeft; 3414 exprAnd.op = TK_AND; 3415 exprAnd.pLeft = &compLeft; 3416 exprAnd.pRight = &compRight; 3417 compLeft.op = TK_GE; 3418 compLeft.pLeft = &exprX; 3419 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3420 compRight.op = TK_LE; 3421 compRight.pLeft = &exprX; 3422 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3423 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3424 if( jumpIfTrue ){ 3425 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3426 }else{ 3427 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3428 } 3429 sqlite3ReleaseTempReg(pParse, regFree1); 3430 3431 /* Ensure adequate test coverage */ 3432 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3433 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3434 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3435 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3436 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3437 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3438 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3439 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3440 } 3441 3442 /* 3443 ** Generate code for a boolean expression such that a jump is made 3444 ** to the label "dest" if the expression is true but execution 3445 ** continues straight thru if the expression is false. 3446 ** 3447 ** If the expression evaluates to NULL (neither true nor false), then 3448 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3449 ** 3450 ** This code depends on the fact that certain token values (ex: TK_EQ) 3451 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3452 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3453 ** the make process cause these values to align. Assert()s in the code 3454 ** below verify that the numbers are aligned correctly. 3455 */ 3456 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3457 Vdbe *v = pParse->pVdbe; 3458 int op = 0; 3459 int regFree1 = 0; 3460 int regFree2 = 0; 3461 int r1, r2; 3462 3463 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3464 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3465 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3466 op = pExpr->op; 3467 switch( op ){ 3468 case TK_AND: { 3469 int d2 = sqlite3VdbeMakeLabel(v); 3470 testcase( jumpIfNull==0 ); 3471 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3472 sqlite3ExprCachePush(pParse); 3473 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3474 sqlite3VdbeResolveLabel(v, d2); 3475 sqlite3ExprCachePop(pParse); 3476 break; 3477 } 3478 case TK_OR: { 3479 testcase( jumpIfNull==0 ); 3480 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3481 sqlite3ExprCachePush(pParse); 3482 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3483 sqlite3ExprCachePop(pParse); 3484 break; 3485 } 3486 case TK_NOT: { 3487 testcase( jumpIfNull==0 ); 3488 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3489 break; 3490 } 3491 case TK_LT: 3492 case TK_LE: 3493 case TK_GT: 3494 case TK_GE: 3495 case TK_NE: 3496 case TK_EQ: { 3497 testcase( jumpIfNull==0 ); 3498 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3499 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3500 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3501 r1, r2, dest, jumpIfNull); 3502 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3503 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3504 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3505 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3506 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3507 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3508 testcase( regFree1==0 ); 3509 testcase( regFree2==0 ); 3510 break; 3511 } 3512 case TK_IS: 3513 case TK_ISNOT: { 3514 testcase( op==TK_IS ); 3515 testcase( op==TK_ISNOT ); 3516 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3517 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3518 op = (op==TK_IS) ? TK_EQ : TK_NE; 3519 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3520 r1, r2, dest, SQLITE_NULLEQ); 3521 VdbeCoverageIf(v, op==TK_EQ); 3522 VdbeCoverageIf(v, op==TK_NE); 3523 testcase( regFree1==0 ); 3524 testcase( regFree2==0 ); 3525 break; 3526 } 3527 case TK_ISNULL: 3528 case TK_NOTNULL: { 3529 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3530 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3531 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3532 sqlite3VdbeAddOp2(v, op, r1, dest); 3533 VdbeCoverageIf(v, op==TK_ISNULL); 3534 VdbeCoverageIf(v, op==TK_NOTNULL); 3535 testcase( regFree1==0 ); 3536 break; 3537 } 3538 case TK_BETWEEN: { 3539 testcase( jumpIfNull==0 ); 3540 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3541 break; 3542 } 3543 #ifndef SQLITE_OMIT_SUBQUERY 3544 case TK_IN: { 3545 int destIfFalse = sqlite3VdbeMakeLabel(v); 3546 int destIfNull = jumpIfNull ? dest : destIfFalse; 3547 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3548 sqlite3VdbeGoto(v, dest); 3549 sqlite3VdbeResolveLabel(v, destIfFalse); 3550 break; 3551 } 3552 #endif 3553 default: { 3554 if( exprAlwaysTrue(pExpr) ){ 3555 sqlite3VdbeGoto(v, dest); 3556 }else if( exprAlwaysFalse(pExpr) ){ 3557 /* No-op */ 3558 }else{ 3559 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3560 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3561 VdbeCoverage(v); 3562 testcase( regFree1==0 ); 3563 testcase( jumpIfNull==0 ); 3564 } 3565 break; 3566 } 3567 } 3568 sqlite3ReleaseTempReg(pParse, regFree1); 3569 sqlite3ReleaseTempReg(pParse, regFree2); 3570 } 3571 3572 /* 3573 ** Generate code for a boolean expression such that a jump is made 3574 ** to the label "dest" if the expression is false but execution 3575 ** continues straight thru if the expression is true. 3576 ** 3577 ** If the expression evaluates to NULL (neither true nor false) then 3578 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3579 ** is 0. 3580 */ 3581 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3582 Vdbe *v = pParse->pVdbe; 3583 int op = 0; 3584 int regFree1 = 0; 3585 int regFree2 = 0; 3586 int r1, r2; 3587 3588 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3589 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3590 if( pExpr==0 ) return; 3591 3592 /* The value of pExpr->op and op are related as follows: 3593 ** 3594 ** pExpr->op op 3595 ** --------- ---------- 3596 ** TK_ISNULL OP_NotNull 3597 ** TK_NOTNULL OP_IsNull 3598 ** TK_NE OP_Eq 3599 ** TK_EQ OP_Ne 3600 ** TK_GT OP_Le 3601 ** TK_LE OP_Gt 3602 ** TK_GE OP_Lt 3603 ** TK_LT OP_Ge 3604 ** 3605 ** For other values of pExpr->op, op is undefined and unused. 3606 ** The value of TK_ and OP_ constants are arranged such that we 3607 ** can compute the mapping above using the following expression. 3608 ** Assert()s verify that the computation is correct. 3609 */ 3610 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3611 3612 /* Verify correct alignment of TK_ and OP_ constants 3613 */ 3614 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3615 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3616 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3617 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3618 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3619 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3620 assert( pExpr->op!=TK_GT || op==OP_Le ); 3621 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3622 3623 switch( pExpr->op ){ 3624 case TK_AND: { 3625 testcase( jumpIfNull==0 ); 3626 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3627 sqlite3ExprCachePush(pParse); 3628 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3629 sqlite3ExprCachePop(pParse); 3630 break; 3631 } 3632 case TK_OR: { 3633 int d2 = sqlite3VdbeMakeLabel(v); 3634 testcase( jumpIfNull==0 ); 3635 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3636 sqlite3ExprCachePush(pParse); 3637 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3638 sqlite3VdbeResolveLabel(v, d2); 3639 sqlite3ExprCachePop(pParse); 3640 break; 3641 } 3642 case TK_NOT: { 3643 testcase( jumpIfNull==0 ); 3644 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3645 break; 3646 } 3647 case TK_LT: 3648 case TK_LE: 3649 case TK_GT: 3650 case TK_GE: 3651 case TK_NE: 3652 case TK_EQ: { 3653 testcase( jumpIfNull==0 ); 3654 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3655 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3656 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3657 r1, r2, dest, jumpIfNull); 3658 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3659 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3660 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3661 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3662 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3663 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3664 testcase( regFree1==0 ); 3665 testcase( regFree2==0 ); 3666 break; 3667 } 3668 case TK_IS: 3669 case TK_ISNOT: { 3670 testcase( pExpr->op==TK_IS ); 3671 testcase( pExpr->op==TK_ISNOT ); 3672 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3673 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3674 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3675 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3676 r1, r2, dest, SQLITE_NULLEQ); 3677 VdbeCoverageIf(v, op==TK_EQ); 3678 VdbeCoverageIf(v, op==TK_NE); 3679 testcase( regFree1==0 ); 3680 testcase( regFree2==0 ); 3681 break; 3682 } 3683 case TK_ISNULL: 3684 case TK_NOTNULL: { 3685 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3686 sqlite3VdbeAddOp2(v, op, r1, dest); 3687 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3688 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3689 testcase( regFree1==0 ); 3690 break; 3691 } 3692 case TK_BETWEEN: { 3693 testcase( jumpIfNull==0 ); 3694 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3695 break; 3696 } 3697 #ifndef SQLITE_OMIT_SUBQUERY 3698 case TK_IN: { 3699 if( jumpIfNull ){ 3700 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3701 }else{ 3702 int destIfNull = sqlite3VdbeMakeLabel(v); 3703 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3704 sqlite3VdbeResolveLabel(v, destIfNull); 3705 } 3706 break; 3707 } 3708 #endif 3709 default: { 3710 if( exprAlwaysFalse(pExpr) ){ 3711 sqlite3VdbeGoto(v, dest); 3712 }else if( exprAlwaysTrue(pExpr) ){ 3713 /* no-op */ 3714 }else{ 3715 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3716 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3717 VdbeCoverage(v); 3718 testcase( regFree1==0 ); 3719 testcase( jumpIfNull==0 ); 3720 } 3721 break; 3722 } 3723 } 3724 sqlite3ReleaseTempReg(pParse, regFree1); 3725 sqlite3ReleaseTempReg(pParse, regFree2); 3726 } 3727 3728 /* 3729 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3730 ** code generation, and that copy is deleted after code generation. This 3731 ** ensures that the original pExpr is unchanged. 3732 */ 3733 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3734 sqlite3 *db = pParse->db; 3735 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3736 if( db->mallocFailed==0 ){ 3737 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3738 } 3739 sqlite3ExprDelete(db, pCopy); 3740 } 3741 3742 3743 /* 3744 ** Do a deep comparison of two expression trees. Return 0 if the two 3745 ** expressions are completely identical. Return 1 if they differ only 3746 ** by a COLLATE operator at the top level. Return 2 if there are differences 3747 ** other than the top-level COLLATE operator. 3748 ** 3749 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3750 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3751 ** 3752 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3753 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3754 ** 3755 ** Sometimes this routine will return 2 even if the two expressions 3756 ** really are equivalent. If we cannot prove that the expressions are 3757 ** identical, we return 2 just to be safe. So if this routine 3758 ** returns 2, then you do not really know for certain if the two 3759 ** expressions are the same. But if you get a 0 or 1 return, then you 3760 ** can be sure the expressions are the same. In the places where 3761 ** this routine is used, it does not hurt to get an extra 2 - that 3762 ** just might result in some slightly slower code. But returning 3763 ** an incorrect 0 or 1 could lead to a malfunction. 3764 */ 3765 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3766 u32 combinedFlags; 3767 if( pA==0 || pB==0 ){ 3768 return pB==pA ? 0 : 2; 3769 } 3770 combinedFlags = pA->flags | pB->flags; 3771 if( combinedFlags & EP_IntValue ){ 3772 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3773 return 0; 3774 } 3775 return 2; 3776 } 3777 if( pA->op!=pB->op ){ 3778 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3779 return 1; 3780 } 3781 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3782 return 1; 3783 } 3784 return 2; 3785 } 3786 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3787 if( pA->op==TK_FUNCTION ){ 3788 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3789 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3790 return pA->op==TK_COLLATE ? 1 : 2; 3791 } 3792 } 3793 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3794 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3795 if( combinedFlags & EP_xIsSelect ) return 2; 3796 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3797 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3798 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3799 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3800 if( pA->iColumn!=pB->iColumn ) return 2; 3801 if( pA->iTable!=pB->iTable 3802 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3803 } 3804 } 3805 return 0; 3806 } 3807 3808 /* 3809 ** Compare two ExprList objects. Return 0 if they are identical and 3810 ** non-zero if they differ in any way. 3811 ** 3812 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3813 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3814 ** 3815 ** This routine might return non-zero for equivalent ExprLists. The 3816 ** only consequence will be disabled optimizations. But this routine 3817 ** must never return 0 if the two ExprList objects are different, or 3818 ** a malfunction will result. 3819 ** 3820 ** Two NULL pointers are considered to be the same. But a NULL pointer 3821 ** always differs from a non-NULL pointer. 3822 */ 3823 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3824 int i; 3825 if( pA==0 && pB==0 ) return 0; 3826 if( pA==0 || pB==0 ) return 1; 3827 if( pA->nExpr!=pB->nExpr ) return 1; 3828 for(i=0; i<pA->nExpr; i++){ 3829 Expr *pExprA = pA->a[i].pExpr; 3830 Expr *pExprB = pB->a[i].pExpr; 3831 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3832 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3833 } 3834 return 0; 3835 } 3836 3837 /* 3838 ** Return true if we can prove the pE2 will always be true if pE1 is 3839 ** true. Return false if we cannot complete the proof or if pE2 might 3840 ** be false. Examples: 3841 ** 3842 ** pE1: x==5 pE2: x==5 Result: true 3843 ** pE1: x>0 pE2: x==5 Result: false 3844 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3845 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3846 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3847 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3848 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3849 ** 3850 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3851 ** Expr.iTable<0 then assume a table number given by iTab. 3852 ** 3853 ** When in doubt, return false. Returning true might give a performance 3854 ** improvement. Returning false might cause a performance reduction, but 3855 ** it will always give the correct answer and is hence always safe. 3856 */ 3857 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3858 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3859 return 1; 3860 } 3861 if( pE2->op==TK_OR 3862 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3863 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3864 ){ 3865 return 1; 3866 } 3867 if( pE2->op==TK_NOTNULL 3868 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3869 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3870 ){ 3871 return 1; 3872 } 3873 return 0; 3874 } 3875 3876 /* 3877 ** An instance of the following structure is used by the tree walker 3878 ** to count references to table columns in the arguments of an 3879 ** aggregate function, in order to implement the 3880 ** sqlite3FunctionThisSrc() routine. 3881 */ 3882 struct SrcCount { 3883 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3884 int nThis; /* Number of references to columns in pSrcList */ 3885 int nOther; /* Number of references to columns in other FROM clauses */ 3886 }; 3887 3888 /* 3889 ** Count the number of references to columns. 3890 */ 3891 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3892 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3893 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3894 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3895 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3896 ** NEVER() will need to be removed. */ 3897 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3898 int i; 3899 struct SrcCount *p = pWalker->u.pSrcCount; 3900 SrcList *pSrc = p->pSrc; 3901 int nSrc = pSrc ? pSrc->nSrc : 0; 3902 for(i=0; i<nSrc; i++){ 3903 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3904 } 3905 if( i<nSrc ){ 3906 p->nThis++; 3907 }else{ 3908 p->nOther++; 3909 } 3910 } 3911 return WRC_Continue; 3912 } 3913 3914 /* 3915 ** Determine if any of the arguments to the pExpr Function reference 3916 ** pSrcList. Return true if they do. Also return true if the function 3917 ** has no arguments or has only constant arguments. Return false if pExpr 3918 ** references columns but not columns of tables found in pSrcList. 3919 */ 3920 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3921 Walker w; 3922 struct SrcCount cnt; 3923 assert( pExpr->op==TK_AGG_FUNCTION ); 3924 memset(&w, 0, sizeof(w)); 3925 w.xExprCallback = exprSrcCount; 3926 w.u.pSrcCount = &cnt; 3927 cnt.pSrc = pSrcList; 3928 cnt.nThis = 0; 3929 cnt.nOther = 0; 3930 sqlite3WalkExprList(&w, pExpr->x.pList); 3931 return cnt.nThis>0 || cnt.nOther==0; 3932 } 3933 3934 /* 3935 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3936 ** the new element. Return a negative number if malloc fails. 3937 */ 3938 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3939 int i; 3940 pInfo->aCol = sqlite3ArrayAllocate( 3941 db, 3942 pInfo->aCol, 3943 sizeof(pInfo->aCol[0]), 3944 &pInfo->nColumn, 3945 &i 3946 ); 3947 return i; 3948 } 3949 3950 /* 3951 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3952 ** the new element. Return a negative number if malloc fails. 3953 */ 3954 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3955 int i; 3956 pInfo->aFunc = sqlite3ArrayAllocate( 3957 db, 3958 pInfo->aFunc, 3959 sizeof(pInfo->aFunc[0]), 3960 &pInfo->nFunc, 3961 &i 3962 ); 3963 return i; 3964 } 3965 3966 /* 3967 ** This is the xExprCallback for a tree walker. It is used to 3968 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3969 ** for additional information. 3970 */ 3971 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3972 int i; 3973 NameContext *pNC = pWalker->u.pNC; 3974 Parse *pParse = pNC->pParse; 3975 SrcList *pSrcList = pNC->pSrcList; 3976 AggInfo *pAggInfo = pNC->pAggInfo; 3977 3978 switch( pExpr->op ){ 3979 case TK_AGG_COLUMN: 3980 case TK_COLUMN: { 3981 testcase( pExpr->op==TK_AGG_COLUMN ); 3982 testcase( pExpr->op==TK_COLUMN ); 3983 /* Check to see if the column is in one of the tables in the FROM 3984 ** clause of the aggregate query */ 3985 if( ALWAYS(pSrcList!=0) ){ 3986 struct SrcList_item *pItem = pSrcList->a; 3987 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3988 struct AggInfo_col *pCol; 3989 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3990 if( pExpr->iTable==pItem->iCursor ){ 3991 /* If we reach this point, it means that pExpr refers to a table 3992 ** that is in the FROM clause of the aggregate query. 3993 ** 3994 ** Make an entry for the column in pAggInfo->aCol[] if there 3995 ** is not an entry there already. 3996 */ 3997 int k; 3998 pCol = pAggInfo->aCol; 3999 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4000 if( pCol->iTable==pExpr->iTable && 4001 pCol->iColumn==pExpr->iColumn ){ 4002 break; 4003 } 4004 } 4005 if( (k>=pAggInfo->nColumn) 4006 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4007 ){ 4008 pCol = &pAggInfo->aCol[k]; 4009 pCol->pTab = pExpr->pTab; 4010 pCol->iTable = pExpr->iTable; 4011 pCol->iColumn = pExpr->iColumn; 4012 pCol->iMem = ++pParse->nMem; 4013 pCol->iSorterColumn = -1; 4014 pCol->pExpr = pExpr; 4015 if( pAggInfo->pGroupBy ){ 4016 int j, n; 4017 ExprList *pGB = pAggInfo->pGroupBy; 4018 struct ExprList_item *pTerm = pGB->a; 4019 n = pGB->nExpr; 4020 for(j=0; j<n; j++, pTerm++){ 4021 Expr *pE = pTerm->pExpr; 4022 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4023 pE->iColumn==pExpr->iColumn ){ 4024 pCol->iSorterColumn = j; 4025 break; 4026 } 4027 } 4028 } 4029 if( pCol->iSorterColumn<0 ){ 4030 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4031 } 4032 } 4033 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4034 ** because it was there before or because we just created it). 4035 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4036 ** pAggInfo->aCol[] entry. 4037 */ 4038 ExprSetVVAProperty(pExpr, EP_NoReduce); 4039 pExpr->pAggInfo = pAggInfo; 4040 pExpr->op = TK_AGG_COLUMN; 4041 pExpr->iAgg = (i16)k; 4042 break; 4043 } /* endif pExpr->iTable==pItem->iCursor */ 4044 } /* end loop over pSrcList */ 4045 } 4046 return WRC_Prune; 4047 } 4048 case TK_AGG_FUNCTION: { 4049 if( (pNC->ncFlags & NC_InAggFunc)==0 4050 && pWalker->walkerDepth==pExpr->op2 4051 ){ 4052 /* Check to see if pExpr is a duplicate of another aggregate 4053 ** function that is already in the pAggInfo structure 4054 */ 4055 struct AggInfo_func *pItem = pAggInfo->aFunc; 4056 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4057 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4058 break; 4059 } 4060 } 4061 if( i>=pAggInfo->nFunc ){ 4062 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4063 */ 4064 u8 enc = ENC(pParse->db); 4065 i = addAggInfoFunc(pParse->db, pAggInfo); 4066 if( i>=0 ){ 4067 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4068 pItem = &pAggInfo->aFunc[i]; 4069 pItem->pExpr = pExpr; 4070 pItem->iMem = ++pParse->nMem; 4071 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4072 pItem->pFunc = sqlite3FindFunction(pParse->db, 4073 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4074 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4075 if( pExpr->flags & EP_Distinct ){ 4076 pItem->iDistinct = pParse->nTab++; 4077 }else{ 4078 pItem->iDistinct = -1; 4079 } 4080 } 4081 } 4082 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4083 */ 4084 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4085 ExprSetVVAProperty(pExpr, EP_NoReduce); 4086 pExpr->iAgg = (i16)i; 4087 pExpr->pAggInfo = pAggInfo; 4088 return WRC_Prune; 4089 }else{ 4090 return WRC_Continue; 4091 } 4092 } 4093 } 4094 return WRC_Continue; 4095 } 4096 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4097 UNUSED_PARAMETER(pWalker); 4098 UNUSED_PARAMETER(pSelect); 4099 return WRC_Continue; 4100 } 4101 4102 /* 4103 ** Analyze the pExpr expression looking for aggregate functions and 4104 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4105 ** points to. Additional entries are made on the AggInfo object as 4106 ** necessary. 4107 ** 4108 ** This routine should only be called after the expression has been 4109 ** analyzed by sqlite3ResolveExprNames(). 4110 */ 4111 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4112 Walker w; 4113 memset(&w, 0, sizeof(w)); 4114 w.xExprCallback = analyzeAggregate; 4115 w.xSelectCallback = analyzeAggregatesInSelect; 4116 w.u.pNC = pNC; 4117 assert( pNC->pSrcList!=0 ); 4118 sqlite3WalkExpr(&w, pExpr); 4119 } 4120 4121 /* 4122 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4123 ** expression list. Return the number of errors. 4124 ** 4125 ** If an error is found, the analysis is cut short. 4126 */ 4127 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4128 struct ExprList_item *pItem; 4129 int i; 4130 if( pList ){ 4131 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4132 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4133 } 4134 } 4135 } 4136 4137 /* 4138 ** Allocate a single new register for use to hold some intermediate result. 4139 */ 4140 int sqlite3GetTempReg(Parse *pParse){ 4141 if( pParse->nTempReg==0 ){ 4142 return ++pParse->nMem; 4143 } 4144 return pParse->aTempReg[--pParse->nTempReg]; 4145 } 4146 4147 /* 4148 ** Deallocate a register, making available for reuse for some other 4149 ** purpose. 4150 ** 4151 ** If a register is currently being used by the column cache, then 4152 ** the deallocation is deferred until the column cache line that uses 4153 ** the register becomes stale. 4154 */ 4155 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4156 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4157 int i; 4158 struct yColCache *p; 4159 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4160 if( p->iReg==iReg ){ 4161 p->tempReg = 1; 4162 return; 4163 } 4164 } 4165 pParse->aTempReg[pParse->nTempReg++] = iReg; 4166 } 4167 } 4168 4169 /* 4170 ** Allocate or deallocate a block of nReg consecutive registers 4171 */ 4172 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4173 int i, n; 4174 i = pParse->iRangeReg; 4175 n = pParse->nRangeReg; 4176 if( nReg<=n ){ 4177 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4178 pParse->iRangeReg += nReg; 4179 pParse->nRangeReg -= nReg; 4180 }else{ 4181 i = pParse->nMem+1; 4182 pParse->nMem += nReg; 4183 } 4184 return i; 4185 } 4186 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4187 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4188 if( nReg>pParse->nRangeReg ){ 4189 pParse->nRangeReg = nReg; 4190 pParse->iRangeReg = iReg; 4191 } 4192 } 4193 4194 /* 4195 ** Mark all temporary registers as being unavailable for reuse. 4196 */ 4197 void sqlite3ClearTempRegCache(Parse *pParse){ 4198 pParse->nTempReg = 0; 4199 pParse->nRangeReg = 0; 4200 } 4201