1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 if( op==TK_VECTOR ){ 74 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 75 } 76 return pExpr->affExpr; 77 } 78 79 /* 80 ** Set the collating sequence for expression pExpr to be the collating 81 ** sequence named by pToken. Return a pointer to a new Expr node that 82 ** implements the COLLATE operator. 83 ** 84 ** If a memory allocation error occurs, that fact is recorded in pParse->db 85 ** and the pExpr parameter is returned unchanged. 86 */ 87 Expr *sqlite3ExprAddCollateToken( 88 Parse *pParse, /* Parsing context */ 89 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 90 const Token *pCollName, /* Name of collating sequence */ 91 int dequote /* True to dequote pCollName */ 92 ){ 93 if( pCollName->n>0 ){ 94 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 95 if( pNew ){ 96 pNew->pLeft = pExpr; 97 pNew->flags |= EP_Collate|EP_Skip; 98 pExpr = pNew; 99 } 100 } 101 return pExpr; 102 } 103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 104 Token s; 105 assert( zC!=0 ); 106 sqlite3TokenInit(&s, (char*)zC); 107 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 108 } 109 110 /* 111 ** Skip over any TK_COLLATE operators. 112 */ 113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 114 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 115 assert( pExpr->op==TK_COLLATE ); 116 pExpr = pExpr->pLeft; 117 } 118 return pExpr; 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators and/or any unlikely() 123 ** or likelihood() or likely() functions at the root of an 124 ** expression. 125 */ 126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 127 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 128 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 129 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 130 assert( pExpr->x.pList->nExpr>0 ); 131 assert( pExpr->op==TK_FUNCTION ); 132 pExpr = pExpr->x.pList->a[0].pExpr; 133 }else{ 134 assert( pExpr->op==TK_COLLATE ); 135 pExpr = pExpr->pLeft; 136 } 137 } 138 return pExpr; 139 } 140 141 /* 142 ** Return the collation sequence for the expression pExpr. If 143 ** there is no defined collating sequence, return NULL. 144 ** 145 ** See also: sqlite3ExprNNCollSeq() 146 ** 147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 148 ** default collation if pExpr has no defined collation. 149 ** 150 ** The collating sequence might be determined by a COLLATE operator 151 ** or by the presence of a column with a defined collating sequence. 152 ** COLLATE operators take first precedence. Left operands take 153 ** precedence over right operands. 154 */ 155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 156 sqlite3 *db = pParse->db; 157 CollSeq *pColl = 0; 158 Expr *p = pExpr; 159 while( p ){ 160 int op = p->op; 161 if( op==TK_REGISTER ) op = p->op2; 162 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 163 && p->y.pTab!=0 164 ){ 165 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 166 ** a TK_COLUMN but was previously evaluated and cached in a register */ 167 int j = p->iColumn; 168 if( j>=0 ){ 169 const char *zColl = p->y.pTab->aCol[j].zColl; 170 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 171 } 172 break; 173 } 174 if( op==TK_CAST || op==TK_UPLUS ){ 175 p = p->pLeft; 176 continue; 177 } 178 if( op==TK_VECTOR ){ 179 p = p->x.pList->a[0].pExpr; 180 continue; 181 } 182 if( op==TK_COLLATE ){ 183 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 184 break; 185 } 186 if( p->flags & EP_Collate ){ 187 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 188 p = p->pLeft; 189 }else{ 190 Expr *pNext = p->pRight; 191 /* The Expr.x union is never used at the same time as Expr.pRight */ 192 assert( p->x.pList==0 || p->pRight==0 ); 193 if( p->x.pList!=0 194 && !db->mallocFailed 195 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 196 ){ 197 int i; 198 for(i=0; i<p->x.pList->nExpr; i++){ 199 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 200 pNext = p->x.pList->a[i].pExpr; 201 break; 202 } 203 } 204 } 205 p = pNext; 206 } 207 }else{ 208 break; 209 } 210 } 211 if( sqlite3CheckCollSeq(pParse, pColl) ){ 212 pColl = 0; 213 } 214 return pColl; 215 } 216 217 /* 218 ** Return the collation sequence for the expression pExpr. If 219 ** there is no defined collating sequence, return a pointer to the 220 ** defautl collation sequence. 221 ** 222 ** See also: sqlite3ExprCollSeq() 223 ** 224 ** The sqlite3ExprCollSeq() routine works the same except that it 225 ** returns NULL if there is no defined collation. 226 */ 227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 228 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 229 if( p==0 ) p = pParse->db->pDfltColl; 230 assert( p!=0 ); 231 return p; 232 } 233 234 /* 235 ** Return TRUE if the two expressions have equivalent collating sequences. 236 */ 237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 238 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 239 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 240 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 241 } 242 243 /* 244 ** pExpr is an operand of a comparison operator. aff2 is the 245 ** type affinity of the other operand. This routine returns the 246 ** type affinity that should be used for the comparison operator. 247 */ 248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 249 char aff1 = sqlite3ExprAffinity(pExpr); 250 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 251 /* Both sides of the comparison are columns. If one has numeric 252 ** affinity, use that. Otherwise use no affinity. 253 */ 254 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 255 return SQLITE_AFF_NUMERIC; 256 }else{ 257 return SQLITE_AFF_BLOB; 258 } 259 }else{ 260 /* One side is a column, the other is not. Use the columns affinity. */ 261 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 262 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 263 } 264 } 265 266 /* 267 ** pExpr is a comparison operator. Return the type affinity that should 268 ** be applied to both operands prior to doing the comparison. 269 */ 270 static char comparisonAffinity(Expr *pExpr){ 271 char aff; 272 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 273 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 274 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 275 assert( pExpr->pLeft ); 276 aff = sqlite3ExprAffinity(pExpr->pLeft); 277 if( pExpr->pRight ){ 278 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 279 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 280 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 281 }else if( aff==0 ){ 282 aff = SQLITE_AFF_BLOB; 283 } 284 return aff; 285 } 286 287 /* 288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 289 ** idx_affinity is the affinity of an indexed column. Return true 290 ** if the index with affinity idx_affinity may be used to implement 291 ** the comparison in pExpr. 292 */ 293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 294 char aff = comparisonAffinity(pExpr); 295 if( aff<SQLITE_AFF_TEXT ){ 296 return 1; 297 } 298 if( aff==SQLITE_AFF_TEXT ){ 299 return idx_affinity==SQLITE_AFF_TEXT; 300 } 301 return sqlite3IsNumericAffinity(idx_affinity); 302 } 303 304 /* 305 ** Return the P5 value that should be used for a binary comparison 306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 307 */ 308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 309 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 310 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 311 return aff; 312 } 313 314 /* 315 ** Return a pointer to the collation sequence that should be used by 316 ** a binary comparison operator comparing pLeft and pRight. 317 ** 318 ** If the left hand expression has a collating sequence type, then it is 319 ** used. Otherwise the collation sequence for the right hand expression 320 ** is used, or the default (BINARY) if neither expression has a collating 321 ** type. 322 ** 323 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 324 ** it is not considered. 325 */ 326 CollSeq *sqlite3BinaryCompareCollSeq( 327 Parse *pParse, 328 Expr *pLeft, 329 Expr *pRight 330 ){ 331 CollSeq *pColl; 332 assert( pLeft ); 333 if( pLeft->flags & EP_Collate ){ 334 pColl = sqlite3ExprCollSeq(pParse, pLeft); 335 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 336 pColl = sqlite3ExprCollSeq(pParse, pRight); 337 }else{ 338 pColl = sqlite3ExprCollSeq(pParse, pLeft); 339 if( !pColl ){ 340 pColl = sqlite3ExprCollSeq(pParse, pRight); 341 } 342 } 343 return pColl; 344 } 345 346 /* Expresssion p is a comparison operator. Return a collation sequence 347 ** appropriate for the comparison operator. 348 ** 349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 350 ** However, if the OP_Commuted flag is set, then the order of the operands 351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 352 ** correct collating sequence is found. 353 */ 354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){ 355 if( ExprHasProperty(p, EP_Commuted) ){ 356 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 357 }else{ 358 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 359 } 360 } 361 362 /* 363 ** Generate code for a comparison operator. 364 */ 365 static int codeCompare( 366 Parse *pParse, /* The parsing (and code generating) context */ 367 Expr *pLeft, /* The left operand */ 368 Expr *pRight, /* The right operand */ 369 int opcode, /* The comparison opcode */ 370 int in1, int in2, /* Register holding operands */ 371 int dest, /* Jump here if true. */ 372 int jumpIfNull, /* If true, jump if either operand is NULL */ 373 int isCommuted /* The comparison has been commuted */ 374 ){ 375 int p5; 376 int addr; 377 CollSeq *p4; 378 379 if( pParse->nErr ) return 0; 380 if( isCommuted ){ 381 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 382 }else{ 383 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 384 } 385 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 386 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 387 (void*)p4, P4_COLLSEQ); 388 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 389 return addr; 390 } 391 392 /* 393 ** Return true if expression pExpr is a vector, or false otherwise. 394 ** 395 ** A vector is defined as any expression that results in two or more 396 ** columns of result. Every TK_VECTOR node is an vector because the 397 ** parser will not generate a TK_VECTOR with fewer than two entries. 398 ** But a TK_SELECT might be either a vector or a scalar. It is only 399 ** considered a vector if it has two or more result columns. 400 */ 401 int sqlite3ExprIsVector(Expr *pExpr){ 402 return sqlite3ExprVectorSize(pExpr)>1; 403 } 404 405 /* 406 ** If the expression passed as the only argument is of type TK_VECTOR 407 ** return the number of expressions in the vector. Or, if the expression 408 ** is a sub-select, return the number of columns in the sub-select. For 409 ** any other type of expression, return 1. 410 */ 411 int sqlite3ExprVectorSize(Expr *pExpr){ 412 u8 op = pExpr->op; 413 if( op==TK_REGISTER ) op = pExpr->op2; 414 if( op==TK_VECTOR ){ 415 return pExpr->x.pList->nExpr; 416 }else if( op==TK_SELECT ){ 417 return pExpr->x.pSelect->pEList->nExpr; 418 }else{ 419 return 1; 420 } 421 } 422 423 /* 424 ** Return a pointer to a subexpression of pVector that is the i-th 425 ** column of the vector (numbered starting with 0). The caller must 426 ** ensure that i is within range. 427 ** 428 ** If pVector is really a scalar (and "scalar" here includes subqueries 429 ** that return a single column!) then return pVector unmodified. 430 ** 431 ** pVector retains ownership of the returned subexpression. 432 ** 433 ** If the vector is a (SELECT ...) then the expression returned is 434 ** just the expression for the i-th term of the result set, and may 435 ** not be ready for evaluation because the table cursor has not yet 436 ** been positioned. 437 */ 438 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 439 assert( i<sqlite3ExprVectorSize(pVector) ); 440 if( sqlite3ExprIsVector(pVector) ){ 441 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 442 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 443 return pVector->x.pSelect->pEList->a[i].pExpr; 444 }else{ 445 return pVector->x.pList->a[i].pExpr; 446 } 447 } 448 return pVector; 449 } 450 451 /* 452 ** Compute and return a new Expr object which when passed to 453 ** sqlite3ExprCode() will generate all necessary code to compute 454 ** the iField-th column of the vector expression pVector. 455 ** 456 ** It is ok for pVector to be a scalar (as long as iField==0). 457 ** In that case, this routine works like sqlite3ExprDup(). 458 ** 459 ** The caller owns the returned Expr object and is responsible for 460 ** ensuring that the returned value eventually gets freed. 461 ** 462 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 463 ** then the returned object will reference pVector and so pVector must remain 464 ** valid for the life of the returned object. If pVector is a TK_VECTOR 465 ** or a scalar expression, then it can be deleted as soon as this routine 466 ** returns. 467 ** 468 ** A trick to cause a TK_SELECT pVector to be deleted together with 469 ** the returned Expr object is to attach the pVector to the pRight field 470 ** of the returned TK_SELECT_COLUMN Expr object. 471 */ 472 Expr *sqlite3ExprForVectorField( 473 Parse *pParse, /* Parsing context */ 474 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 475 int iField /* Which column of the vector to return */ 476 ){ 477 Expr *pRet; 478 if( pVector->op==TK_SELECT ){ 479 assert( pVector->flags & EP_xIsSelect ); 480 /* The TK_SELECT_COLUMN Expr node: 481 ** 482 ** pLeft: pVector containing TK_SELECT. Not deleted. 483 ** pRight: not used. But recursively deleted. 484 ** iColumn: Index of a column in pVector 485 ** iTable: 0 or the number of columns on the LHS of an assignment 486 ** pLeft->iTable: First in an array of register holding result, or 0 487 ** if the result is not yet computed. 488 ** 489 ** sqlite3ExprDelete() specifically skips the recursive delete of 490 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 491 ** can be attached to pRight to cause this node to take ownership of 492 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 493 ** with the same pLeft pointer to the pVector, but only one of them 494 ** will own the pVector. 495 */ 496 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 497 if( pRet ){ 498 pRet->iColumn = iField; 499 pRet->pLeft = pVector; 500 } 501 assert( pRet==0 || pRet->iTable==0 ); 502 }else{ 503 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 504 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 505 sqlite3RenameTokenRemap(pParse, pRet, pVector); 506 } 507 return pRet; 508 } 509 510 /* 511 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 512 ** it. Return the register in which the result is stored (or, if the 513 ** sub-select returns more than one column, the first in an array 514 ** of registers in which the result is stored). 515 ** 516 ** If pExpr is not a TK_SELECT expression, return 0. 517 */ 518 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 519 int reg = 0; 520 #ifndef SQLITE_OMIT_SUBQUERY 521 if( pExpr->op==TK_SELECT ){ 522 reg = sqlite3CodeSubselect(pParse, pExpr); 523 } 524 #endif 525 return reg; 526 } 527 528 /* 529 ** Argument pVector points to a vector expression - either a TK_VECTOR 530 ** or TK_SELECT that returns more than one column. This function returns 531 ** the register number of a register that contains the value of 532 ** element iField of the vector. 533 ** 534 ** If pVector is a TK_SELECT expression, then code for it must have 535 ** already been generated using the exprCodeSubselect() routine. In this 536 ** case parameter regSelect should be the first in an array of registers 537 ** containing the results of the sub-select. 538 ** 539 ** If pVector is of type TK_VECTOR, then code for the requested field 540 ** is generated. In this case (*pRegFree) may be set to the number of 541 ** a temporary register to be freed by the caller before returning. 542 ** 543 ** Before returning, output parameter (*ppExpr) is set to point to the 544 ** Expr object corresponding to element iElem of the vector. 545 */ 546 static int exprVectorRegister( 547 Parse *pParse, /* Parse context */ 548 Expr *pVector, /* Vector to extract element from */ 549 int iField, /* Field to extract from pVector */ 550 int regSelect, /* First in array of registers */ 551 Expr **ppExpr, /* OUT: Expression element */ 552 int *pRegFree /* OUT: Temp register to free */ 553 ){ 554 u8 op = pVector->op; 555 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 556 if( op==TK_REGISTER ){ 557 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 558 return pVector->iTable+iField; 559 } 560 if( op==TK_SELECT ){ 561 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 562 return regSelect+iField; 563 } 564 *ppExpr = pVector->x.pList->a[iField].pExpr; 565 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 566 } 567 568 /* 569 ** Expression pExpr is a comparison between two vector values. Compute 570 ** the result of the comparison (1, 0, or NULL) and write that 571 ** result into register dest. 572 ** 573 ** The caller must satisfy the following preconditions: 574 ** 575 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 576 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 577 ** otherwise: op==pExpr->op and p5==0 578 */ 579 static void codeVectorCompare( 580 Parse *pParse, /* Code generator context */ 581 Expr *pExpr, /* The comparison operation */ 582 int dest, /* Write results into this register */ 583 u8 op, /* Comparison operator */ 584 u8 p5 /* SQLITE_NULLEQ or zero */ 585 ){ 586 Vdbe *v = pParse->pVdbe; 587 Expr *pLeft = pExpr->pLeft; 588 Expr *pRight = pExpr->pRight; 589 int nLeft = sqlite3ExprVectorSize(pLeft); 590 int i; 591 int regLeft = 0; 592 int regRight = 0; 593 u8 opx = op; 594 int addrDone = sqlite3VdbeMakeLabel(pParse); 595 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 596 597 if( pParse->nErr ) return; 598 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 599 sqlite3ErrorMsg(pParse, "row value misused"); 600 return; 601 } 602 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 603 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 604 || pExpr->op==TK_LT || pExpr->op==TK_GT 605 || pExpr->op==TK_LE || pExpr->op==TK_GE 606 ); 607 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 608 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 609 assert( p5==0 || pExpr->op!=op ); 610 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 611 612 p5 |= SQLITE_STOREP2; 613 if( opx==TK_LE ) opx = TK_LT; 614 if( opx==TK_GE ) opx = TK_GT; 615 616 regLeft = exprCodeSubselect(pParse, pLeft); 617 regRight = exprCodeSubselect(pParse, pRight); 618 619 for(i=0; 1 /*Loop exits by "break"*/; i++){ 620 int regFree1 = 0, regFree2 = 0; 621 Expr *pL, *pR; 622 int r1, r2; 623 assert( i>=0 && i<nLeft ); 624 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 625 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 626 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 627 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 628 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 629 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 630 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 631 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 632 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 633 sqlite3ReleaseTempReg(pParse, regFree1); 634 sqlite3ReleaseTempReg(pParse, regFree2); 635 if( i==nLeft-1 ){ 636 break; 637 } 638 if( opx==TK_EQ ){ 639 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 640 p5 |= SQLITE_KEEPNULL; 641 }else if( opx==TK_NE ){ 642 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 643 p5 |= SQLITE_KEEPNULL; 644 }else{ 645 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 646 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 647 VdbeCoverageIf(v, op==TK_LT); 648 VdbeCoverageIf(v, op==TK_GT); 649 VdbeCoverageIf(v, op==TK_LE); 650 VdbeCoverageIf(v, op==TK_GE); 651 if( i==nLeft-2 ) opx = op; 652 } 653 } 654 sqlite3VdbeResolveLabel(v, addrDone); 655 } 656 657 #if SQLITE_MAX_EXPR_DEPTH>0 658 /* 659 ** Check that argument nHeight is less than or equal to the maximum 660 ** expression depth allowed. If it is not, leave an error message in 661 ** pParse. 662 */ 663 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 664 int rc = SQLITE_OK; 665 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 666 if( nHeight>mxHeight ){ 667 sqlite3ErrorMsg(pParse, 668 "Expression tree is too large (maximum depth %d)", mxHeight 669 ); 670 rc = SQLITE_ERROR; 671 } 672 return rc; 673 } 674 675 /* The following three functions, heightOfExpr(), heightOfExprList() 676 ** and heightOfSelect(), are used to determine the maximum height 677 ** of any expression tree referenced by the structure passed as the 678 ** first argument. 679 ** 680 ** If this maximum height is greater than the current value pointed 681 ** to by pnHeight, the second parameter, then set *pnHeight to that 682 ** value. 683 */ 684 static void heightOfExpr(Expr *p, int *pnHeight){ 685 if( p ){ 686 if( p->nHeight>*pnHeight ){ 687 *pnHeight = p->nHeight; 688 } 689 } 690 } 691 static void heightOfExprList(ExprList *p, int *pnHeight){ 692 if( p ){ 693 int i; 694 for(i=0; i<p->nExpr; i++){ 695 heightOfExpr(p->a[i].pExpr, pnHeight); 696 } 697 } 698 } 699 static void heightOfSelect(Select *pSelect, int *pnHeight){ 700 Select *p; 701 for(p=pSelect; p; p=p->pPrior){ 702 heightOfExpr(p->pWhere, pnHeight); 703 heightOfExpr(p->pHaving, pnHeight); 704 heightOfExpr(p->pLimit, pnHeight); 705 heightOfExprList(p->pEList, pnHeight); 706 heightOfExprList(p->pGroupBy, pnHeight); 707 heightOfExprList(p->pOrderBy, pnHeight); 708 } 709 } 710 711 /* 712 ** Set the Expr.nHeight variable in the structure passed as an 713 ** argument. An expression with no children, Expr.pList or 714 ** Expr.pSelect member has a height of 1. Any other expression 715 ** has a height equal to the maximum height of any other 716 ** referenced Expr plus one. 717 ** 718 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 719 ** if appropriate. 720 */ 721 static void exprSetHeight(Expr *p){ 722 int nHeight = 0; 723 heightOfExpr(p->pLeft, &nHeight); 724 heightOfExpr(p->pRight, &nHeight); 725 if( ExprHasProperty(p, EP_xIsSelect) ){ 726 heightOfSelect(p->x.pSelect, &nHeight); 727 }else if( p->x.pList ){ 728 heightOfExprList(p->x.pList, &nHeight); 729 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 730 } 731 p->nHeight = nHeight + 1; 732 } 733 734 /* 735 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 736 ** the height is greater than the maximum allowed expression depth, 737 ** leave an error in pParse. 738 ** 739 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 740 ** Expr.flags. 741 */ 742 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 743 if( pParse->nErr ) return; 744 exprSetHeight(p); 745 sqlite3ExprCheckHeight(pParse, p->nHeight); 746 } 747 748 /* 749 ** Return the maximum height of any expression tree referenced 750 ** by the select statement passed as an argument. 751 */ 752 int sqlite3SelectExprHeight(Select *p){ 753 int nHeight = 0; 754 heightOfSelect(p, &nHeight); 755 return nHeight; 756 } 757 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 758 /* 759 ** Propagate all EP_Propagate flags from the Expr.x.pList into 760 ** Expr.flags. 761 */ 762 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 763 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 764 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 765 } 766 } 767 #define exprSetHeight(y) 768 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 769 770 /* 771 ** This routine is the core allocator for Expr nodes. 772 ** 773 ** Construct a new expression node and return a pointer to it. Memory 774 ** for this node and for the pToken argument is a single allocation 775 ** obtained from sqlite3DbMalloc(). The calling function 776 ** is responsible for making sure the node eventually gets freed. 777 ** 778 ** If dequote is true, then the token (if it exists) is dequoted. 779 ** If dequote is false, no dequoting is performed. The deQuote 780 ** parameter is ignored if pToken is NULL or if the token does not 781 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 782 ** then the EP_DblQuoted flag is set on the expression node. 783 ** 784 ** Special case: If op==TK_INTEGER and pToken points to a string that 785 ** can be translated into a 32-bit integer, then the token is not 786 ** stored in u.zToken. Instead, the integer values is written 787 ** into u.iValue and the EP_IntValue flag is set. No extra storage 788 ** is allocated to hold the integer text and the dequote flag is ignored. 789 */ 790 Expr *sqlite3ExprAlloc( 791 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 792 int op, /* Expression opcode */ 793 const Token *pToken, /* Token argument. Might be NULL */ 794 int dequote /* True to dequote */ 795 ){ 796 Expr *pNew; 797 int nExtra = 0; 798 int iValue = 0; 799 800 assert( db!=0 ); 801 if( pToken ){ 802 if( op!=TK_INTEGER || pToken->z==0 803 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 804 nExtra = pToken->n+1; 805 assert( iValue>=0 ); 806 } 807 } 808 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 809 if( pNew ){ 810 memset(pNew, 0, sizeof(Expr)); 811 pNew->op = (u8)op; 812 pNew->iAgg = -1; 813 if( pToken ){ 814 if( nExtra==0 ){ 815 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 816 pNew->u.iValue = iValue; 817 }else{ 818 pNew->u.zToken = (char*)&pNew[1]; 819 assert( pToken->z!=0 || pToken->n==0 ); 820 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 821 pNew->u.zToken[pToken->n] = 0; 822 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 823 sqlite3DequoteExpr(pNew); 824 } 825 } 826 } 827 #if SQLITE_MAX_EXPR_DEPTH>0 828 pNew->nHeight = 1; 829 #endif 830 } 831 return pNew; 832 } 833 834 /* 835 ** Allocate a new expression node from a zero-terminated token that has 836 ** already been dequoted. 837 */ 838 Expr *sqlite3Expr( 839 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 840 int op, /* Expression opcode */ 841 const char *zToken /* Token argument. Might be NULL */ 842 ){ 843 Token x; 844 x.z = zToken; 845 x.n = sqlite3Strlen30(zToken); 846 return sqlite3ExprAlloc(db, op, &x, 0); 847 } 848 849 /* 850 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 851 ** 852 ** If pRoot==NULL that means that a memory allocation error has occurred. 853 ** In that case, delete the subtrees pLeft and pRight. 854 */ 855 void sqlite3ExprAttachSubtrees( 856 sqlite3 *db, 857 Expr *pRoot, 858 Expr *pLeft, 859 Expr *pRight 860 ){ 861 if( pRoot==0 ){ 862 assert( db->mallocFailed ); 863 sqlite3ExprDelete(db, pLeft); 864 sqlite3ExprDelete(db, pRight); 865 }else{ 866 if( pRight ){ 867 pRoot->pRight = pRight; 868 pRoot->flags |= EP_Propagate & pRight->flags; 869 } 870 if( pLeft ){ 871 pRoot->pLeft = pLeft; 872 pRoot->flags |= EP_Propagate & pLeft->flags; 873 } 874 exprSetHeight(pRoot); 875 } 876 } 877 878 /* 879 ** Allocate an Expr node which joins as many as two subtrees. 880 ** 881 ** One or both of the subtrees can be NULL. Return a pointer to the new 882 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 883 ** free the subtrees and return NULL. 884 */ 885 Expr *sqlite3PExpr( 886 Parse *pParse, /* Parsing context */ 887 int op, /* Expression opcode */ 888 Expr *pLeft, /* Left operand */ 889 Expr *pRight /* Right operand */ 890 ){ 891 Expr *p; 892 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 893 if( p ){ 894 memset(p, 0, sizeof(Expr)); 895 p->op = op & 0xff; 896 p->iAgg = -1; 897 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 898 sqlite3ExprCheckHeight(pParse, p->nHeight); 899 }else{ 900 sqlite3ExprDelete(pParse->db, pLeft); 901 sqlite3ExprDelete(pParse->db, pRight); 902 } 903 return p; 904 } 905 906 /* 907 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 908 ** do a memory allocation failure) then delete the pSelect object. 909 */ 910 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 911 if( pExpr ){ 912 pExpr->x.pSelect = pSelect; 913 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 914 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 915 }else{ 916 assert( pParse->db->mallocFailed ); 917 sqlite3SelectDelete(pParse->db, pSelect); 918 } 919 } 920 921 922 /* 923 ** Join two expressions using an AND operator. If either expression is 924 ** NULL, then just return the other expression. 925 ** 926 ** If one side or the other of the AND is known to be false, then instead 927 ** of returning an AND expression, just return a constant expression with 928 ** a value of false. 929 */ 930 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 931 sqlite3 *db = pParse->db; 932 if( pLeft==0 ){ 933 return pRight; 934 }else if( pRight==0 ){ 935 return pLeft; 936 }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){ 937 sqlite3ExprUnmapAndDelete(pParse, pLeft); 938 sqlite3ExprUnmapAndDelete(pParse, pRight); 939 return sqlite3Expr(db, TK_INTEGER, "0"); 940 }else{ 941 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 942 } 943 } 944 945 /* 946 ** Construct a new expression node for a function with multiple 947 ** arguments. 948 */ 949 Expr *sqlite3ExprFunction( 950 Parse *pParse, /* Parsing context */ 951 ExprList *pList, /* Argument list */ 952 Token *pToken, /* Name of the function */ 953 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 954 ){ 955 Expr *pNew; 956 sqlite3 *db = pParse->db; 957 assert( pToken ); 958 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 959 if( pNew==0 ){ 960 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 961 return 0; 962 } 963 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 964 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 965 } 966 pNew->x.pList = pList; 967 ExprSetProperty(pNew, EP_HasFunc); 968 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 969 sqlite3ExprSetHeightAndFlags(pParse, pNew); 970 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 971 return pNew; 972 } 973 974 /* 975 ** Assign a variable number to an expression that encodes a wildcard 976 ** in the original SQL statement. 977 ** 978 ** Wildcards consisting of a single "?" are assigned the next sequential 979 ** variable number. 980 ** 981 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 982 ** sure "nnn" is not too big to avoid a denial of service attack when 983 ** the SQL statement comes from an external source. 984 ** 985 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 986 ** as the previous instance of the same wildcard. Or if this is the first 987 ** instance of the wildcard, the next sequential variable number is 988 ** assigned. 989 */ 990 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 991 sqlite3 *db = pParse->db; 992 const char *z; 993 ynVar x; 994 995 if( pExpr==0 ) return; 996 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 997 z = pExpr->u.zToken; 998 assert( z!=0 ); 999 assert( z[0]!=0 ); 1000 assert( n==(u32)sqlite3Strlen30(z) ); 1001 if( z[1]==0 ){ 1002 /* Wildcard of the form "?". Assign the next variable number */ 1003 assert( z[0]=='?' ); 1004 x = (ynVar)(++pParse->nVar); 1005 }else{ 1006 int doAdd = 0; 1007 if( z[0]=='?' ){ 1008 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1009 ** use it as the variable number */ 1010 i64 i; 1011 int bOk; 1012 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1013 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1014 bOk = 1; 1015 }else{ 1016 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1017 } 1018 testcase( i==0 ); 1019 testcase( i==1 ); 1020 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1021 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1022 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1023 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1024 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1025 return; 1026 } 1027 x = (ynVar)i; 1028 if( x>pParse->nVar ){ 1029 pParse->nVar = (int)x; 1030 doAdd = 1; 1031 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1032 doAdd = 1; 1033 } 1034 }else{ 1035 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1036 ** number as the prior appearance of the same name, or if the name 1037 ** has never appeared before, reuse the same variable number 1038 */ 1039 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1040 if( x==0 ){ 1041 x = (ynVar)(++pParse->nVar); 1042 doAdd = 1; 1043 } 1044 } 1045 if( doAdd ){ 1046 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1047 } 1048 } 1049 pExpr->iColumn = x; 1050 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1051 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1052 } 1053 } 1054 1055 /* 1056 ** Recursively delete an expression tree. 1057 */ 1058 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1059 assert( p!=0 ); 1060 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1061 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1062 1063 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1064 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1065 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1066 #ifdef SQLITE_DEBUG 1067 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1068 assert( p->pLeft==0 ); 1069 assert( p->pRight==0 ); 1070 assert( p->x.pSelect==0 ); 1071 } 1072 #endif 1073 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1074 /* The Expr.x union is never used at the same time as Expr.pRight */ 1075 assert( p->x.pList==0 || p->pRight==0 ); 1076 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1077 if( p->pRight ){ 1078 assert( !ExprHasProperty(p, EP_WinFunc) ); 1079 sqlite3ExprDeleteNN(db, p->pRight); 1080 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1081 assert( !ExprHasProperty(p, EP_WinFunc) ); 1082 sqlite3SelectDelete(db, p->x.pSelect); 1083 }else{ 1084 sqlite3ExprListDelete(db, p->x.pList); 1085 #ifndef SQLITE_OMIT_WINDOWFUNC 1086 if( ExprHasProperty(p, EP_WinFunc) ){ 1087 sqlite3WindowDelete(db, p->y.pWin); 1088 } 1089 #endif 1090 } 1091 } 1092 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1093 if( !ExprHasProperty(p, EP_Static) ){ 1094 sqlite3DbFreeNN(db, p); 1095 } 1096 } 1097 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1098 if( p ) sqlite3ExprDeleteNN(db, p); 1099 } 1100 1101 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1102 ** expression. 1103 */ 1104 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1105 if( p ){ 1106 if( IN_RENAME_OBJECT ){ 1107 sqlite3RenameExprUnmap(pParse, p); 1108 } 1109 sqlite3ExprDeleteNN(pParse->db, p); 1110 } 1111 } 1112 1113 /* 1114 ** Return the number of bytes allocated for the expression structure 1115 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1116 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1117 */ 1118 static int exprStructSize(Expr *p){ 1119 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1120 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1121 return EXPR_FULLSIZE; 1122 } 1123 1124 /* 1125 ** The dupedExpr*Size() routines each return the number of bytes required 1126 ** to store a copy of an expression or expression tree. They differ in 1127 ** how much of the tree is measured. 1128 ** 1129 ** dupedExprStructSize() Size of only the Expr structure 1130 ** dupedExprNodeSize() Size of Expr + space for token 1131 ** dupedExprSize() Expr + token + subtree components 1132 ** 1133 *************************************************************************** 1134 ** 1135 ** The dupedExprStructSize() function returns two values OR-ed together: 1136 ** (1) the space required for a copy of the Expr structure only and 1137 ** (2) the EP_xxx flags that indicate what the structure size should be. 1138 ** The return values is always one of: 1139 ** 1140 ** EXPR_FULLSIZE 1141 ** EXPR_REDUCEDSIZE | EP_Reduced 1142 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1143 ** 1144 ** The size of the structure can be found by masking the return value 1145 ** of this routine with 0xfff. The flags can be found by masking the 1146 ** return value with EP_Reduced|EP_TokenOnly. 1147 ** 1148 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1149 ** (unreduced) Expr objects as they or originally constructed by the parser. 1150 ** During expression analysis, extra information is computed and moved into 1151 ** later parts of the Expr object and that extra information might get chopped 1152 ** off if the expression is reduced. Note also that it does not work to 1153 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1154 ** to reduce a pristine expression tree from the parser. The implementation 1155 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1156 ** to enforce this constraint. 1157 */ 1158 static int dupedExprStructSize(Expr *p, int flags){ 1159 int nSize; 1160 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1161 assert( EXPR_FULLSIZE<=0xfff ); 1162 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1163 if( 0==flags || p->op==TK_SELECT_COLUMN 1164 #ifndef SQLITE_OMIT_WINDOWFUNC 1165 || ExprHasProperty(p, EP_WinFunc) 1166 #endif 1167 ){ 1168 nSize = EXPR_FULLSIZE; 1169 }else{ 1170 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1171 assert( !ExprHasProperty(p, EP_FromJoin) ); 1172 assert( !ExprHasProperty(p, EP_MemToken) ); 1173 assert( !ExprHasProperty(p, EP_NoReduce) ); 1174 if( p->pLeft || p->x.pList ){ 1175 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1176 }else{ 1177 assert( p->pRight==0 ); 1178 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1179 } 1180 } 1181 return nSize; 1182 } 1183 1184 /* 1185 ** This function returns the space in bytes required to store the copy 1186 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1187 ** string is defined.) 1188 */ 1189 static int dupedExprNodeSize(Expr *p, int flags){ 1190 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1191 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1192 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1193 } 1194 return ROUND8(nByte); 1195 } 1196 1197 /* 1198 ** Return the number of bytes required to create a duplicate of the 1199 ** expression passed as the first argument. The second argument is a 1200 ** mask containing EXPRDUP_XXX flags. 1201 ** 1202 ** The value returned includes space to create a copy of the Expr struct 1203 ** itself and the buffer referred to by Expr.u.zToken, if any. 1204 ** 1205 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1206 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1207 ** and Expr.pRight variables (but not for any structures pointed to or 1208 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1209 */ 1210 static int dupedExprSize(Expr *p, int flags){ 1211 int nByte = 0; 1212 if( p ){ 1213 nByte = dupedExprNodeSize(p, flags); 1214 if( flags&EXPRDUP_REDUCE ){ 1215 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1216 } 1217 } 1218 return nByte; 1219 } 1220 1221 /* 1222 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1223 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1224 ** to store the copy of expression p, the copies of p->u.zToken 1225 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1226 ** if any. Before returning, *pzBuffer is set to the first byte past the 1227 ** portion of the buffer copied into by this function. 1228 */ 1229 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1230 Expr *pNew; /* Value to return */ 1231 u8 *zAlloc; /* Memory space from which to build Expr object */ 1232 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1233 1234 assert( db!=0 ); 1235 assert( p ); 1236 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1237 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1238 1239 /* Figure out where to write the new Expr structure. */ 1240 if( pzBuffer ){ 1241 zAlloc = *pzBuffer; 1242 staticFlag = EP_Static; 1243 }else{ 1244 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1245 staticFlag = 0; 1246 } 1247 pNew = (Expr *)zAlloc; 1248 1249 if( pNew ){ 1250 /* Set nNewSize to the size allocated for the structure pointed to 1251 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1252 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1253 ** by the copy of the p->u.zToken string (if any). 1254 */ 1255 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1256 const int nNewSize = nStructSize & 0xfff; 1257 int nToken; 1258 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1259 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1260 }else{ 1261 nToken = 0; 1262 } 1263 if( dupFlags ){ 1264 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1265 memcpy(zAlloc, p, nNewSize); 1266 }else{ 1267 u32 nSize = (u32)exprStructSize(p); 1268 memcpy(zAlloc, p, nSize); 1269 if( nSize<EXPR_FULLSIZE ){ 1270 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1271 } 1272 } 1273 1274 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1275 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1276 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1277 pNew->flags |= staticFlag; 1278 1279 /* Copy the p->u.zToken string, if any. */ 1280 if( nToken ){ 1281 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1282 memcpy(zToken, p->u.zToken, nToken); 1283 } 1284 1285 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1286 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1287 if( ExprHasProperty(p, EP_xIsSelect) ){ 1288 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1289 }else{ 1290 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1291 } 1292 } 1293 1294 /* Fill in pNew->pLeft and pNew->pRight. */ 1295 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1296 zAlloc += dupedExprNodeSize(p, dupFlags); 1297 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1298 pNew->pLeft = p->pLeft ? 1299 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1300 pNew->pRight = p->pRight ? 1301 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1302 } 1303 #ifndef SQLITE_OMIT_WINDOWFUNC 1304 if( ExprHasProperty(p, EP_WinFunc) ){ 1305 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1306 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1307 } 1308 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1309 if( pzBuffer ){ 1310 *pzBuffer = zAlloc; 1311 } 1312 }else{ 1313 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1314 if( pNew->op==TK_SELECT_COLUMN ){ 1315 pNew->pLeft = p->pLeft; 1316 assert( p->iColumn==0 || p->pRight==0 ); 1317 assert( p->pRight==0 || p->pRight==p->pLeft ); 1318 }else{ 1319 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1320 } 1321 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1322 } 1323 } 1324 } 1325 return pNew; 1326 } 1327 1328 /* 1329 ** Create and return a deep copy of the object passed as the second 1330 ** argument. If an OOM condition is encountered, NULL is returned 1331 ** and the db->mallocFailed flag set. 1332 */ 1333 #ifndef SQLITE_OMIT_CTE 1334 static With *withDup(sqlite3 *db, With *p){ 1335 With *pRet = 0; 1336 if( p ){ 1337 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1338 pRet = sqlite3DbMallocZero(db, nByte); 1339 if( pRet ){ 1340 int i; 1341 pRet->nCte = p->nCte; 1342 for(i=0; i<p->nCte; i++){ 1343 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1344 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1345 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1346 } 1347 } 1348 } 1349 return pRet; 1350 } 1351 #else 1352 # define withDup(x,y) 0 1353 #endif 1354 1355 #ifndef SQLITE_OMIT_WINDOWFUNC 1356 /* 1357 ** The gatherSelectWindows() procedure and its helper routine 1358 ** gatherSelectWindowsCallback() are used to scan all the expressions 1359 ** an a newly duplicated SELECT statement and gather all of the Window 1360 ** objects found there, assembling them onto the linked list at Select->pWin. 1361 */ 1362 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1363 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1364 Select *pSelect = pWalker->u.pSelect; 1365 Window *pWin = pExpr->y.pWin; 1366 assert( pWin ); 1367 assert( IsWindowFunc(pExpr) ); 1368 assert( pWin->ppThis==0 ); 1369 sqlite3WindowLink(pSelect, pWin); 1370 } 1371 return WRC_Continue; 1372 } 1373 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1374 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1375 } 1376 static void gatherSelectWindows(Select *p){ 1377 Walker w; 1378 w.xExprCallback = gatherSelectWindowsCallback; 1379 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1380 w.xSelectCallback2 = 0; 1381 w.pParse = 0; 1382 w.u.pSelect = p; 1383 sqlite3WalkSelect(&w, p); 1384 } 1385 #endif 1386 1387 1388 /* 1389 ** The following group of routines make deep copies of expressions, 1390 ** expression lists, ID lists, and select statements. The copies can 1391 ** be deleted (by being passed to their respective ...Delete() routines) 1392 ** without effecting the originals. 1393 ** 1394 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1395 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1396 ** by subsequent calls to sqlite*ListAppend() routines. 1397 ** 1398 ** Any tables that the SrcList might point to are not duplicated. 1399 ** 1400 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1401 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1402 ** truncated version of the usual Expr structure that will be stored as 1403 ** part of the in-memory representation of the database schema. 1404 */ 1405 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1406 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1407 return p ? exprDup(db, p, flags, 0) : 0; 1408 } 1409 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1410 ExprList *pNew; 1411 struct ExprList_item *pItem, *pOldItem; 1412 int i; 1413 Expr *pPriorSelectCol = 0; 1414 assert( db!=0 ); 1415 if( p==0 ) return 0; 1416 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1417 if( pNew==0 ) return 0; 1418 pNew->nExpr = p->nExpr; 1419 pItem = pNew->a; 1420 pOldItem = p->a; 1421 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1422 Expr *pOldExpr = pOldItem->pExpr; 1423 Expr *pNewExpr; 1424 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1425 if( pOldExpr 1426 && pOldExpr->op==TK_SELECT_COLUMN 1427 && (pNewExpr = pItem->pExpr)!=0 1428 ){ 1429 assert( pNewExpr->iColumn==0 || i>0 ); 1430 if( pNewExpr->iColumn==0 ){ 1431 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1432 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1433 }else{ 1434 assert( i>0 ); 1435 assert( pItem[-1].pExpr!=0 ); 1436 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1437 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1438 pNewExpr->pLeft = pPriorSelectCol; 1439 } 1440 } 1441 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1442 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1443 pItem->sortFlags = pOldItem->sortFlags; 1444 pItem->done = 0; 1445 pItem->bNulls = pOldItem->bNulls; 1446 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1447 pItem->bSorterRef = pOldItem->bSorterRef; 1448 pItem->u = pOldItem->u; 1449 } 1450 return pNew; 1451 } 1452 1453 /* 1454 ** If cursors, triggers, views and subqueries are all omitted from 1455 ** the build, then none of the following routines, except for 1456 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1457 ** called with a NULL argument. 1458 */ 1459 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1460 || !defined(SQLITE_OMIT_SUBQUERY) 1461 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1462 SrcList *pNew; 1463 int i; 1464 int nByte; 1465 assert( db!=0 ); 1466 if( p==0 ) return 0; 1467 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1468 pNew = sqlite3DbMallocRawNN(db, nByte ); 1469 if( pNew==0 ) return 0; 1470 pNew->nSrc = pNew->nAlloc = p->nSrc; 1471 for(i=0; i<p->nSrc; i++){ 1472 struct SrcList_item *pNewItem = &pNew->a[i]; 1473 struct SrcList_item *pOldItem = &p->a[i]; 1474 Table *pTab; 1475 pNewItem->pSchema = pOldItem->pSchema; 1476 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1477 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1478 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1479 pNewItem->fg = pOldItem->fg; 1480 pNewItem->iCursor = pOldItem->iCursor; 1481 pNewItem->addrFillSub = pOldItem->addrFillSub; 1482 pNewItem->regReturn = pOldItem->regReturn; 1483 if( pNewItem->fg.isIndexedBy ){ 1484 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1485 } 1486 pNewItem->pIBIndex = pOldItem->pIBIndex; 1487 if( pNewItem->fg.isTabFunc ){ 1488 pNewItem->u1.pFuncArg = 1489 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1490 } 1491 pTab = pNewItem->pTab = pOldItem->pTab; 1492 if( pTab ){ 1493 pTab->nTabRef++; 1494 } 1495 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1496 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1497 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1498 pNewItem->colUsed = pOldItem->colUsed; 1499 } 1500 return pNew; 1501 } 1502 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1503 IdList *pNew; 1504 int i; 1505 assert( db!=0 ); 1506 if( p==0 ) return 0; 1507 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1508 if( pNew==0 ) return 0; 1509 pNew->nId = p->nId; 1510 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1511 if( pNew->a==0 ){ 1512 sqlite3DbFreeNN(db, pNew); 1513 return 0; 1514 } 1515 /* Note that because the size of the allocation for p->a[] is not 1516 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1517 ** on the duplicate created by this function. */ 1518 for(i=0; i<p->nId; i++){ 1519 struct IdList_item *pNewItem = &pNew->a[i]; 1520 struct IdList_item *pOldItem = &p->a[i]; 1521 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1522 pNewItem->idx = pOldItem->idx; 1523 } 1524 return pNew; 1525 } 1526 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1527 Select *pRet = 0; 1528 Select *pNext = 0; 1529 Select **pp = &pRet; 1530 Select *p; 1531 1532 assert( db!=0 ); 1533 for(p=pDup; p; p=p->pPrior){ 1534 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1535 if( pNew==0 ) break; 1536 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1537 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1538 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1539 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1540 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1541 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1542 pNew->op = p->op; 1543 pNew->pNext = pNext; 1544 pNew->pPrior = 0; 1545 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1546 pNew->iLimit = 0; 1547 pNew->iOffset = 0; 1548 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1549 pNew->addrOpenEphm[0] = -1; 1550 pNew->addrOpenEphm[1] = -1; 1551 pNew->nSelectRow = p->nSelectRow; 1552 pNew->pWith = withDup(db, p->pWith); 1553 #ifndef SQLITE_OMIT_WINDOWFUNC 1554 pNew->pWin = 0; 1555 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1556 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1557 #endif 1558 pNew->selId = p->selId; 1559 *pp = pNew; 1560 pp = &pNew->pPrior; 1561 pNext = pNew; 1562 } 1563 1564 return pRet; 1565 } 1566 #else 1567 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1568 assert( p==0 ); 1569 return 0; 1570 } 1571 #endif 1572 1573 1574 /* 1575 ** Add a new element to the end of an expression list. If pList is 1576 ** initially NULL, then create a new expression list. 1577 ** 1578 ** The pList argument must be either NULL or a pointer to an ExprList 1579 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1580 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1581 ** Reason: This routine assumes that the number of slots in pList->a[] 1582 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1583 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1584 ** 1585 ** If a memory allocation error occurs, the entire list is freed and 1586 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1587 ** that the new entry was successfully appended. 1588 */ 1589 ExprList *sqlite3ExprListAppend( 1590 Parse *pParse, /* Parsing context */ 1591 ExprList *pList, /* List to which to append. Might be NULL */ 1592 Expr *pExpr /* Expression to be appended. Might be NULL */ 1593 ){ 1594 struct ExprList_item *pItem; 1595 sqlite3 *db = pParse->db; 1596 assert( db!=0 ); 1597 if( pList==0 ){ 1598 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1599 if( pList==0 ){ 1600 goto no_mem; 1601 } 1602 pList->nExpr = 0; 1603 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1604 ExprList *pNew; 1605 pNew = sqlite3DbRealloc(db, pList, 1606 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1607 if( pNew==0 ){ 1608 goto no_mem; 1609 } 1610 pList = pNew; 1611 } 1612 pItem = &pList->a[pList->nExpr++]; 1613 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1614 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1615 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1616 pItem->pExpr = pExpr; 1617 return pList; 1618 1619 no_mem: 1620 /* Avoid leaking memory if malloc has failed. */ 1621 sqlite3ExprDelete(db, pExpr); 1622 sqlite3ExprListDelete(db, pList); 1623 return 0; 1624 } 1625 1626 /* 1627 ** pColumns and pExpr form a vector assignment which is part of the SET 1628 ** clause of an UPDATE statement. Like this: 1629 ** 1630 ** (a,b,c) = (expr1,expr2,expr3) 1631 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1632 ** 1633 ** For each term of the vector assignment, append new entries to the 1634 ** expression list pList. In the case of a subquery on the RHS, append 1635 ** TK_SELECT_COLUMN expressions. 1636 */ 1637 ExprList *sqlite3ExprListAppendVector( 1638 Parse *pParse, /* Parsing context */ 1639 ExprList *pList, /* List to which to append. Might be NULL */ 1640 IdList *pColumns, /* List of names of LHS of the assignment */ 1641 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1642 ){ 1643 sqlite3 *db = pParse->db; 1644 int n; 1645 int i; 1646 int iFirst = pList ? pList->nExpr : 0; 1647 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1648 ** exit prior to this routine being invoked */ 1649 if( NEVER(pColumns==0) ) goto vector_append_error; 1650 if( pExpr==0 ) goto vector_append_error; 1651 1652 /* If the RHS is a vector, then we can immediately check to see that 1653 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1654 ** wildcards ("*") in the result set of the SELECT must be expanded before 1655 ** we can do the size check, so defer the size check until code generation. 1656 */ 1657 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1658 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1659 pColumns->nId, n); 1660 goto vector_append_error; 1661 } 1662 1663 for(i=0; i<pColumns->nId; i++){ 1664 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1665 assert( pSubExpr!=0 || db->mallocFailed ); 1666 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1667 if( pSubExpr==0 ) continue; 1668 pSubExpr->iTable = pColumns->nId; 1669 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1670 if( pList ){ 1671 assert( pList->nExpr==iFirst+i+1 ); 1672 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1673 pColumns->a[i].zName = 0; 1674 } 1675 } 1676 1677 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1678 Expr *pFirst = pList->a[iFirst].pExpr; 1679 assert( pFirst!=0 ); 1680 assert( pFirst->op==TK_SELECT_COLUMN ); 1681 1682 /* Store the SELECT statement in pRight so it will be deleted when 1683 ** sqlite3ExprListDelete() is called */ 1684 pFirst->pRight = pExpr; 1685 pExpr = 0; 1686 1687 /* Remember the size of the LHS in iTable so that we can check that 1688 ** the RHS and LHS sizes match during code generation. */ 1689 pFirst->iTable = pColumns->nId; 1690 } 1691 1692 vector_append_error: 1693 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1694 sqlite3IdListDelete(db, pColumns); 1695 return pList; 1696 } 1697 1698 /* 1699 ** Set the sort order for the last element on the given ExprList. 1700 */ 1701 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1702 struct ExprList_item *pItem; 1703 if( p==0 ) return; 1704 assert( p->nExpr>0 ); 1705 1706 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1707 assert( iSortOrder==SQLITE_SO_UNDEFINED 1708 || iSortOrder==SQLITE_SO_ASC 1709 || iSortOrder==SQLITE_SO_DESC 1710 ); 1711 assert( eNulls==SQLITE_SO_UNDEFINED 1712 || eNulls==SQLITE_SO_ASC 1713 || eNulls==SQLITE_SO_DESC 1714 ); 1715 1716 pItem = &p->a[p->nExpr-1]; 1717 assert( pItem->bNulls==0 ); 1718 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1719 iSortOrder = SQLITE_SO_ASC; 1720 } 1721 pItem->sortFlags = (u8)iSortOrder; 1722 1723 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1724 pItem->bNulls = 1; 1725 if( iSortOrder!=eNulls ){ 1726 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1727 } 1728 } 1729 } 1730 1731 /* 1732 ** Set the ExprList.a[].zName element of the most recently added item 1733 ** on the expression list. 1734 ** 1735 ** pList might be NULL following an OOM error. But pName should never be 1736 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1737 ** is set. 1738 */ 1739 void sqlite3ExprListSetName( 1740 Parse *pParse, /* Parsing context */ 1741 ExprList *pList, /* List to which to add the span. */ 1742 Token *pName, /* Name to be added */ 1743 int dequote /* True to cause the name to be dequoted */ 1744 ){ 1745 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1746 if( pList ){ 1747 struct ExprList_item *pItem; 1748 assert( pList->nExpr>0 ); 1749 pItem = &pList->a[pList->nExpr-1]; 1750 assert( pItem->zName==0 ); 1751 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1752 if( dequote ) sqlite3Dequote(pItem->zName); 1753 if( IN_RENAME_OBJECT ){ 1754 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1755 } 1756 } 1757 } 1758 1759 /* 1760 ** Set the ExprList.a[].zSpan element of the most recently added item 1761 ** on the expression list. 1762 ** 1763 ** pList might be NULL following an OOM error. But pSpan should never be 1764 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1765 ** is set. 1766 */ 1767 void sqlite3ExprListSetSpan( 1768 Parse *pParse, /* Parsing context */ 1769 ExprList *pList, /* List to which to add the span. */ 1770 const char *zStart, /* Start of the span */ 1771 const char *zEnd /* End of the span */ 1772 ){ 1773 sqlite3 *db = pParse->db; 1774 assert( pList!=0 || db->mallocFailed!=0 ); 1775 if( pList ){ 1776 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1777 assert( pList->nExpr>0 ); 1778 sqlite3DbFree(db, pItem->zSpan); 1779 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1780 } 1781 } 1782 1783 /* 1784 ** If the expression list pEList contains more than iLimit elements, 1785 ** leave an error message in pParse. 1786 */ 1787 void sqlite3ExprListCheckLength( 1788 Parse *pParse, 1789 ExprList *pEList, 1790 const char *zObject 1791 ){ 1792 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1793 testcase( pEList && pEList->nExpr==mx ); 1794 testcase( pEList && pEList->nExpr==mx+1 ); 1795 if( pEList && pEList->nExpr>mx ){ 1796 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1797 } 1798 } 1799 1800 /* 1801 ** Delete an entire expression list. 1802 */ 1803 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1804 int i = pList->nExpr; 1805 struct ExprList_item *pItem = pList->a; 1806 assert( pList->nExpr>0 ); 1807 do{ 1808 sqlite3ExprDelete(db, pItem->pExpr); 1809 sqlite3DbFree(db, pItem->zName); 1810 sqlite3DbFree(db, pItem->zSpan); 1811 pItem++; 1812 }while( --i>0 ); 1813 sqlite3DbFreeNN(db, pList); 1814 } 1815 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1816 if( pList ) exprListDeleteNN(db, pList); 1817 } 1818 1819 /* 1820 ** Return the bitwise-OR of all Expr.flags fields in the given 1821 ** ExprList. 1822 */ 1823 u32 sqlite3ExprListFlags(const ExprList *pList){ 1824 int i; 1825 u32 m = 0; 1826 assert( pList!=0 ); 1827 for(i=0; i<pList->nExpr; i++){ 1828 Expr *pExpr = pList->a[i].pExpr; 1829 assert( pExpr!=0 ); 1830 m |= pExpr->flags; 1831 } 1832 return m; 1833 } 1834 1835 /* 1836 ** This is a SELECT-node callback for the expression walker that 1837 ** always "fails". By "fail" in this case, we mean set 1838 ** pWalker->eCode to zero and abort. 1839 ** 1840 ** This callback is used by multiple expression walkers. 1841 */ 1842 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1843 UNUSED_PARAMETER(NotUsed); 1844 pWalker->eCode = 0; 1845 return WRC_Abort; 1846 } 1847 1848 /* 1849 ** If the input expression is an ID with the name "true" or "false" 1850 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1851 ** the conversion happened, and zero if the expression is unaltered. 1852 */ 1853 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1854 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1855 if( !ExprHasProperty(pExpr, EP_Quoted) 1856 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1857 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1858 ){ 1859 pExpr->op = TK_TRUEFALSE; 1860 ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse); 1861 return 1; 1862 } 1863 return 0; 1864 } 1865 1866 /* 1867 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1868 ** and 0 if it is FALSE. 1869 */ 1870 int sqlite3ExprTruthValue(const Expr *pExpr){ 1871 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1872 assert( pExpr->op==TK_TRUEFALSE ); 1873 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1874 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1875 return pExpr->u.zToken[4]==0; 1876 } 1877 1878 /* 1879 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1880 ** terms that are always true or false. Return the simplified expression. 1881 ** Or return the original expression if no simplification is possible. 1882 ** 1883 ** Examples: 1884 ** 1885 ** (x<10) AND true => (x<10) 1886 ** (x<10) AND false => false 1887 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1888 ** (x<10) AND (y=22 OR true) => (x<10) 1889 ** (y=22) OR true => true 1890 */ 1891 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1892 assert( pExpr!=0 ); 1893 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1894 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1895 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1896 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1897 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1898 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1899 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1900 } 1901 } 1902 return pExpr; 1903 } 1904 1905 1906 /* 1907 ** These routines are Walker callbacks used to check expressions to 1908 ** see if they are "constant" for some definition of constant. The 1909 ** Walker.eCode value determines the type of "constant" we are looking 1910 ** for. 1911 ** 1912 ** These callback routines are used to implement the following: 1913 ** 1914 ** sqlite3ExprIsConstant() pWalker->eCode==1 1915 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1916 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1917 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1918 ** 1919 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1920 ** is found to not be a constant. 1921 ** 1922 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1923 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1924 ** an existing schema and 4 when processing a new statement. A bound 1925 ** parameter raises an error for new statements, but is silently converted 1926 ** to NULL for existing schemas. This allows sqlite_master tables that 1927 ** contain a bound parameter because they were generated by older versions 1928 ** of SQLite to be parsed by newer versions of SQLite without raising a 1929 ** malformed schema error. 1930 */ 1931 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1932 1933 /* If pWalker->eCode is 2 then any term of the expression that comes from 1934 ** the ON or USING clauses of a left join disqualifies the expression 1935 ** from being considered constant. */ 1936 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1937 pWalker->eCode = 0; 1938 return WRC_Abort; 1939 } 1940 1941 switch( pExpr->op ){ 1942 /* Consider functions to be constant if all their arguments are constant 1943 ** and either pWalker->eCode==4 or 5 or the function has the 1944 ** SQLITE_FUNC_CONST flag. */ 1945 case TK_FUNCTION: 1946 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 1947 && !ExprHasProperty(pExpr, EP_WinFunc) 1948 ){ 1949 return WRC_Continue; 1950 }else{ 1951 pWalker->eCode = 0; 1952 return WRC_Abort; 1953 } 1954 case TK_ID: 1955 /* Convert "true" or "false" in a DEFAULT clause into the 1956 ** appropriate TK_TRUEFALSE operator */ 1957 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1958 return WRC_Prune; 1959 } 1960 /* Fall thru */ 1961 case TK_COLUMN: 1962 case TK_AGG_FUNCTION: 1963 case TK_AGG_COLUMN: 1964 testcase( pExpr->op==TK_ID ); 1965 testcase( pExpr->op==TK_COLUMN ); 1966 testcase( pExpr->op==TK_AGG_FUNCTION ); 1967 testcase( pExpr->op==TK_AGG_COLUMN ); 1968 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1969 return WRC_Continue; 1970 } 1971 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1972 return WRC_Continue; 1973 } 1974 /* Fall through */ 1975 case TK_IF_NULL_ROW: 1976 case TK_REGISTER: 1977 testcase( pExpr->op==TK_REGISTER ); 1978 testcase( pExpr->op==TK_IF_NULL_ROW ); 1979 pWalker->eCode = 0; 1980 return WRC_Abort; 1981 case TK_VARIABLE: 1982 if( pWalker->eCode==5 ){ 1983 /* Silently convert bound parameters that appear inside of CREATE 1984 ** statements into a NULL when parsing the CREATE statement text out 1985 ** of the sqlite_master table */ 1986 pExpr->op = TK_NULL; 1987 }else if( pWalker->eCode==4 ){ 1988 /* A bound parameter in a CREATE statement that originates from 1989 ** sqlite3_prepare() causes an error */ 1990 pWalker->eCode = 0; 1991 return WRC_Abort; 1992 } 1993 /* Fall through */ 1994 default: 1995 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1996 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1997 return WRC_Continue; 1998 } 1999 } 2000 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2001 Walker w; 2002 w.eCode = initFlag; 2003 w.xExprCallback = exprNodeIsConstant; 2004 w.xSelectCallback = sqlite3SelectWalkFail; 2005 #ifdef SQLITE_DEBUG 2006 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2007 #endif 2008 w.u.iCur = iCur; 2009 sqlite3WalkExpr(&w, p); 2010 return w.eCode; 2011 } 2012 2013 /* 2014 ** Walk an expression tree. Return non-zero if the expression is constant 2015 ** and 0 if it involves variables or function calls. 2016 ** 2017 ** For the purposes of this function, a double-quoted string (ex: "abc") 2018 ** is considered a variable but a single-quoted string (ex: 'abc') is 2019 ** a constant. 2020 */ 2021 int sqlite3ExprIsConstant(Expr *p){ 2022 return exprIsConst(p, 1, 0); 2023 } 2024 2025 /* 2026 ** Walk an expression tree. Return non-zero if 2027 ** 2028 ** (1) the expression is constant, and 2029 ** (2) the expression does originate in the ON or USING clause 2030 ** of a LEFT JOIN, and 2031 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2032 ** operands created by the constant propagation optimization. 2033 ** 2034 ** When this routine returns true, it indicates that the expression 2035 ** can be added to the pParse->pConstExpr list and evaluated once when 2036 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 2037 */ 2038 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2039 return exprIsConst(p, 2, 0); 2040 } 2041 2042 /* 2043 ** Walk an expression tree. Return non-zero if the expression is constant 2044 ** for any single row of the table with cursor iCur. In other words, the 2045 ** expression must not refer to any non-deterministic function nor any 2046 ** table other than iCur. 2047 */ 2048 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2049 return exprIsConst(p, 3, iCur); 2050 } 2051 2052 2053 /* 2054 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2055 */ 2056 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2057 ExprList *pGroupBy = pWalker->u.pGroupBy; 2058 int i; 2059 2060 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2061 ** it constant. */ 2062 for(i=0; i<pGroupBy->nExpr; i++){ 2063 Expr *p = pGroupBy->a[i].pExpr; 2064 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2065 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2066 if( sqlite3IsBinary(pColl) ){ 2067 return WRC_Prune; 2068 } 2069 } 2070 } 2071 2072 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2073 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2074 pWalker->eCode = 0; 2075 return WRC_Abort; 2076 } 2077 2078 return exprNodeIsConstant(pWalker, pExpr); 2079 } 2080 2081 /* 2082 ** Walk the expression tree passed as the first argument. Return non-zero 2083 ** if the expression consists entirely of constants or copies of terms 2084 ** in pGroupBy that sort with the BINARY collation sequence. 2085 ** 2086 ** This routine is used to determine if a term of the HAVING clause can 2087 ** be promoted into the WHERE clause. In order for such a promotion to work, 2088 ** the value of the HAVING clause term must be the same for all members of 2089 ** a "group". The requirement that the GROUP BY term must be BINARY 2090 ** assumes that no other collating sequence will have a finer-grained 2091 ** grouping than binary. In other words (A=B COLLATE binary) implies 2092 ** A=B in every other collating sequence. The requirement that the 2093 ** GROUP BY be BINARY is stricter than necessary. It would also work 2094 ** to promote HAVING clauses that use the same alternative collating 2095 ** sequence as the GROUP BY term, but that is much harder to check, 2096 ** alternative collating sequences are uncommon, and this is only an 2097 ** optimization, so we take the easy way out and simply require the 2098 ** GROUP BY to use the BINARY collating sequence. 2099 */ 2100 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2101 Walker w; 2102 w.eCode = 1; 2103 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2104 w.xSelectCallback = 0; 2105 w.u.pGroupBy = pGroupBy; 2106 w.pParse = pParse; 2107 sqlite3WalkExpr(&w, p); 2108 return w.eCode; 2109 } 2110 2111 /* 2112 ** Walk an expression tree. Return non-zero if the expression is constant 2113 ** or a function call with constant arguments. Return and 0 if there 2114 ** are any variables. 2115 ** 2116 ** For the purposes of this function, a double-quoted string (ex: "abc") 2117 ** is considered a variable but a single-quoted string (ex: 'abc') is 2118 ** a constant. 2119 */ 2120 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2121 assert( isInit==0 || isInit==1 ); 2122 return exprIsConst(p, 4+isInit, 0); 2123 } 2124 2125 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2126 /* 2127 ** Walk an expression tree. Return 1 if the expression contains a 2128 ** subquery of some kind. Return 0 if there are no subqueries. 2129 */ 2130 int sqlite3ExprContainsSubquery(Expr *p){ 2131 Walker w; 2132 w.eCode = 1; 2133 w.xExprCallback = sqlite3ExprWalkNoop; 2134 w.xSelectCallback = sqlite3SelectWalkFail; 2135 #ifdef SQLITE_DEBUG 2136 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2137 #endif 2138 sqlite3WalkExpr(&w, p); 2139 return w.eCode==0; 2140 } 2141 #endif 2142 2143 /* 2144 ** If the expression p codes a constant integer that is small enough 2145 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2146 ** in *pValue. If the expression is not an integer or if it is too big 2147 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2148 */ 2149 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2150 int rc = 0; 2151 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2152 2153 /* If an expression is an integer literal that fits in a signed 32-bit 2154 ** integer, then the EP_IntValue flag will have already been set */ 2155 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2156 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2157 2158 if( p->flags & EP_IntValue ){ 2159 *pValue = p->u.iValue; 2160 return 1; 2161 } 2162 switch( p->op ){ 2163 case TK_UPLUS: { 2164 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2165 break; 2166 } 2167 case TK_UMINUS: { 2168 int v; 2169 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2170 assert( v!=(-2147483647-1) ); 2171 *pValue = -v; 2172 rc = 1; 2173 } 2174 break; 2175 } 2176 default: break; 2177 } 2178 return rc; 2179 } 2180 2181 /* 2182 ** Return FALSE if there is no chance that the expression can be NULL. 2183 ** 2184 ** If the expression might be NULL or if the expression is too complex 2185 ** to tell return TRUE. 2186 ** 2187 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2188 ** when we know that a value cannot be NULL. Hence, a false positive 2189 ** (returning TRUE when in fact the expression can never be NULL) might 2190 ** be a small performance hit but is otherwise harmless. On the other 2191 ** hand, a false negative (returning FALSE when the result could be NULL) 2192 ** will likely result in an incorrect answer. So when in doubt, return 2193 ** TRUE. 2194 */ 2195 int sqlite3ExprCanBeNull(const Expr *p){ 2196 u8 op; 2197 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2198 p = p->pLeft; 2199 } 2200 op = p->op; 2201 if( op==TK_REGISTER ) op = p->op2; 2202 switch( op ){ 2203 case TK_INTEGER: 2204 case TK_STRING: 2205 case TK_FLOAT: 2206 case TK_BLOB: 2207 return 0; 2208 case TK_COLUMN: 2209 return ExprHasProperty(p, EP_CanBeNull) || 2210 p->y.pTab==0 || /* Reference to column of index on expression */ 2211 (p->iColumn>=0 2212 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2213 && p->y.pTab->aCol[p->iColumn].notNull==0); 2214 default: 2215 return 1; 2216 } 2217 } 2218 2219 /* 2220 ** Return TRUE if the given expression is a constant which would be 2221 ** unchanged by OP_Affinity with the affinity given in the second 2222 ** argument. 2223 ** 2224 ** This routine is used to determine if the OP_Affinity operation 2225 ** can be omitted. When in doubt return FALSE. A false negative 2226 ** is harmless. A false positive, however, can result in the wrong 2227 ** answer. 2228 */ 2229 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2230 u8 op; 2231 int unaryMinus = 0; 2232 if( aff==SQLITE_AFF_BLOB ) return 1; 2233 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2234 if( p->op==TK_UMINUS ) unaryMinus = 1; 2235 p = p->pLeft; 2236 } 2237 op = p->op; 2238 if( op==TK_REGISTER ) op = p->op2; 2239 switch( op ){ 2240 case TK_INTEGER: { 2241 return aff>=SQLITE_AFF_NUMERIC; 2242 } 2243 case TK_FLOAT: { 2244 return aff>=SQLITE_AFF_NUMERIC; 2245 } 2246 case TK_STRING: { 2247 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2248 } 2249 case TK_BLOB: { 2250 return !unaryMinus; 2251 } 2252 case TK_COLUMN: { 2253 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2254 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2255 } 2256 default: { 2257 return 0; 2258 } 2259 } 2260 } 2261 2262 /* 2263 ** Return TRUE if the given string is a row-id column name. 2264 */ 2265 int sqlite3IsRowid(const char *z){ 2266 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2267 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2268 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2269 return 0; 2270 } 2271 2272 /* 2273 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2274 ** that can be simplified to a direct table access, then return 2275 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2276 ** or if the SELECT statement needs to be manifested into a transient 2277 ** table, then return NULL. 2278 */ 2279 #ifndef SQLITE_OMIT_SUBQUERY 2280 static Select *isCandidateForInOpt(Expr *pX){ 2281 Select *p; 2282 SrcList *pSrc; 2283 ExprList *pEList; 2284 Table *pTab; 2285 int i; 2286 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2287 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2288 p = pX->x.pSelect; 2289 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2290 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2291 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2292 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2293 return 0; /* No DISTINCT keyword and no aggregate functions */ 2294 } 2295 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ 2296 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2297 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2298 pSrc = p->pSrc; 2299 assert( pSrc!=0 ); 2300 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2301 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2302 pTab = pSrc->a[0].pTab; 2303 assert( pTab!=0 ); 2304 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2305 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2306 pEList = p->pEList; 2307 assert( pEList!=0 ); 2308 /* All SELECT results must be columns. */ 2309 for(i=0; i<pEList->nExpr; i++){ 2310 Expr *pRes = pEList->a[i].pExpr; 2311 if( pRes->op!=TK_COLUMN ) return 0; 2312 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2313 } 2314 return p; 2315 } 2316 #endif /* SQLITE_OMIT_SUBQUERY */ 2317 2318 #ifndef SQLITE_OMIT_SUBQUERY 2319 /* 2320 ** Generate code that checks the left-most column of index table iCur to see if 2321 ** it contains any NULL entries. Cause the register at regHasNull to be set 2322 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2323 ** to be set to NULL if iCur contains one or more NULL values. 2324 */ 2325 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2326 int addr1; 2327 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2328 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2329 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2330 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2331 VdbeComment((v, "first_entry_in(%d)", iCur)); 2332 sqlite3VdbeJumpHere(v, addr1); 2333 } 2334 #endif 2335 2336 2337 #ifndef SQLITE_OMIT_SUBQUERY 2338 /* 2339 ** The argument is an IN operator with a list (not a subquery) on the 2340 ** right-hand side. Return TRUE if that list is constant. 2341 */ 2342 static int sqlite3InRhsIsConstant(Expr *pIn){ 2343 Expr *pLHS; 2344 int res; 2345 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2346 pLHS = pIn->pLeft; 2347 pIn->pLeft = 0; 2348 res = sqlite3ExprIsConstant(pIn); 2349 pIn->pLeft = pLHS; 2350 return res; 2351 } 2352 #endif 2353 2354 /* 2355 ** This function is used by the implementation of the IN (...) operator. 2356 ** The pX parameter is the expression on the RHS of the IN operator, which 2357 ** might be either a list of expressions or a subquery. 2358 ** 2359 ** The job of this routine is to find or create a b-tree object that can 2360 ** be used either to test for membership in the RHS set or to iterate through 2361 ** all members of the RHS set, skipping duplicates. 2362 ** 2363 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2364 ** and pX->iTable is set to the index of that cursor. 2365 ** 2366 ** The returned value of this function indicates the b-tree type, as follows: 2367 ** 2368 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2369 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2370 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2371 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2372 ** populated epheremal table. 2373 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2374 ** implemented as a sequence of comparisons. 2375 ** 2376 ** An existing b-tree might be used if the RHS expression pX is a simple 2377 ** subquery such as: 2378 ** 2379 ** SELECT <column1>, <column2>... FROM <table> 2380 ** 2381 ** If the RHS of the IN operator is a list or a more complex subquery, then 2382 ** an ephemeral table might need to be generated from the RHS and then 2383 ** pX->iTable made to point to the ephemeral table instead of an 2384 ** existing table. 2385 ** 2386 ** The inFlags parameter must contain, at a minimum, one of the bits 2387 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2388 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2389 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2390 ** be used to loop over all values of the RHS of the IN operator. 2391 ** 2392 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2393 ** through the set members) then the b-tree must not contain duplicates. 2394 ** An epheremal table will be created unless the selected columns are guaranteed 2395 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2396 ** a UNIQUE constraint or index. 2397 ** 2398 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2399 ** for fast set membership tests) then an epheremal table must 2400 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2401 ** index can be found with the specified <columns> as its left-most. 2402 ** 2403 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2404 ** if the RHS of the IN operator is a list (not a subquery) then this 2405 ** routine might decide that creating an ephemeral b-tree for membership 2406 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2407 ** calling routine should implement the IN operator using a sequence 2408 ** of Eq or Ne comparison operations. 2409 ** 2410 ** When the b-tree is being used for membership tests, the calling function 2411 ** might need to know whether or not the RHS side of the IN operator 2412 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2413 ** if there is any chance that the (...) might contain a NULL value at 2414 ** runtime, then a register is allocated and the register number written 2415 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2416 ** NULL value, then *prRhsHasNull is left unchanged. 2417 ** 2418 ** If a register is allocated and its location stored in *prRhsHasNull, then 2419 ** the value in that register will be NULL if the b-tree contains one or more 2420 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2421 ** NULL values. 2422 ** 2423 ** If the aiMap parameter is not NULL, it must point to an array containing 2424 ** one element for each column returned by the SELECT statement on the RHS 2425 ** of the IN(...) operator. The i'th entry of the array is populated with the 2426 ** offset of the index column that matches the i'th column returned by the 2427 ** SELECT. For example, if the expression and selected index are: 2428 ** 2429 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2430 ** CREATE INDEX i1 ON t1(b, c, a); 2431 ** 2432 ** then aiMap[] is populated with {2, 0, 1}. 2433 */ 2434 #ifndef SQLITE_OMIT_SUBQUERY 2435 int sqlite3FindInIndex( 2436 Parse *pParse, /* Parsing context */ 2437 Expr *pX, /* The IN expression */ 2438 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2439 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2440 int *aiMap, /* Mapping from Index fields to RHS fields */ 2441 int *piTab /* OUT: index to use */ 2442 ){ 2443 Select *p; /* SELECT to the right of IN operator */ 2444 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2445 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2446 int mustBeUnique; /* True if RHS must be unique */ 2447 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2448 2449 assert( pX->op==TK_IN ); 2450 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2451 2452 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2453 ** whether or not the SELECT result contains NULL values, check whether 2454 ** or not NULL is actually possible (it may not be, for example, due 2455 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2456 ** set prRhsHasNull to 0 before continuing. */ 2457 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2458 int i; 2459 ExprList *pEList = pX->x.pSelect->pEList; 2460 for(i=0; i<pEList->nExpr; i++){ 2461 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2462 } 2463 if( i==pEList->nExpr ){ 2464 prRhsHasNull = 0; 2465 } 2466 } 2467 2468 /* Check to see if an existing table or index can be used to 2469 ** satisfy the query. This is preferable to generating a new 2470 ** ephemeral table. */ 2471 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2472 sqlite3 *db = pParse->db; /* Database connection */ 2473 Table *pTab; /* Table <table>. */ 2474 i16 iDb; /* Database idx for pTab */ 2475 ExprList *pEList = p->pEList; 2476 int nExpr = pEList->nExpr; 2477 2478 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2479 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2480 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2481 pTab = p->pSrc->a[0].pTab; 2482 2483 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2484 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2485 sqlite3CodeVerifySchema(pParse, iDb); 2486 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2487 2488 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2489 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2490 /* The "x IN (SELECT rowid FROM table)" case */ 2491 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2492 VdbeCoverage(v); 2493 2494 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2495 eType = IN_INDEX_ROWID; 2496 ExplainQueryPlan((pParse, 0, 2497 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2498 sqlite3VdbeJumpHere(v, iAddr); 2499 }else{ 2500 Index *pIdx; /* Iterator variable */ 2501 int affinity_ok = 1; 2502 int i; 2503 2504 /* Check that the affinity that will be used to perform each 2505 ** comparison is the same as the affinity of each column in table 2506 ** on the RHS of the IN operator. If it not, it is not possible to 2507 ** use any index of the RHS table. */ 2508 for(i=0; i<nExpr && affinity_ok; i++){ 2509 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2510 int iCol = pEList->a[i].pExpr->iColumn; 2511 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2512 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2513 testcase( cmpaff==SQLITE_AFF_BLOB ); 2514 testcase( cmpaff==SQLITE_AFF_TEXT ); 2515 switch( cmpaff ){ 2516 case SQLITE_AFF_BLOB: 2517 break; 2518 case SQLITE_AFF_TEXT: 2519 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2520 ** other has no affinity and the other side is TEXT. Hence, 2521 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2522 ** and for the term on the LHS of the IN to have no affinity. */ 2523 assert( idxaff==SQLITE_AFF_TEXT ); 2524 break; 2525 default: 2526 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2527 } 2528 } 2529 2530 if( affinity_ok ){ 2531 /* Search for an existing index that will work for this IN operator */ 2532 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2533 Bitmask colUsed; /* Columns of the index used */ 2534 Bitmask mCol; /* Mask for the current column */ 2535 if( pIdx->nColumn<nExpr ) continue; 2536 if( pIdx->pPartIdxWhere!=0 ) continue; 2537 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2538 ** BITMASK(nExpr) without overflowing */ 2539 testcase( pIdx->nColumn==BMS-2 ); 2540 testcase( pIdx->nColumn==BMS-1 ); 2541 if( pIdx->nColumn>=BMS-1 ) continue; 2542 if( mustBeUnique ){ 2543 if( pIdx->nKeyCol>nExpr 2544 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2545 ){ 2546 continue; /* This index is not unique over the IN RHS columns */ 2547 } 2548 } 2549 2550 colUsed = 0; /* Columns of index used so far */ 2551 for(i=0; i<nExpr; i++){ 2552 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2553 Expr *pRhs = pEList->a[i].pExpr; 2554 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2555 int j; 2556 2557 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2558 for(j=0; j<nExpr; j++){ 2559 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2560 assert( pIdx->azColl[j] ); 2561 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2562 continue; 2563 } 2564 break; 2565 } 2566 if( j==nExpr ) break; 2567 mCol = MASKBIT(j); 2568 if( mCol & colUsed ) break; /* Each column used only once */ 2569 colUsed |= mCol; 2570 if( aiMap ) aiMap[i] = j; 2571 } 2572 2573 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2574 if( colUsed==(MASKBIT(nExpr)-1) ){ 2575 /* If we reach this point, that means the index pIdx is usable */ 2576 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2577 ExplainQueryPlan((pParse, 0, 2578 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2579 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2580 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2581 VdbeComment((v, "%s", pIdx->zName)); 2582 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2583 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2584 2585 if( prRhsHasNull ){ 2586 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2587 i64 mask = (1<<nExpr)-1; 2588 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2589 iTab, 0, 0, (u8*)&mask, P4_INT64); 2590 #endif 2591 *prRhsHasNull = ++pParse->nMem; 2592 if( nExpr==1 ){ 2593 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2594 } 2595 } 2596 sqlite3VdbeJumpHere(v, iAddr); 2597 } 2598 } /* End loop over indexes */ 2599 } /* End if( affinity_ok ) */ 2600 } /* End if not an rowid index */ 2601 } /* End attempt to optimize using an index */ 2602 2603 /* If no preexisting index is available for the IN clause 2604 ** and IN_INDEX_NOOP is an allowed reply 2605 ** and the RHS of the IN operator is a list, not a subquery 2606 ** and the RHS is not constant or has two or fewer terms, 2607 ** then it is not worth creating an ephemeral table to evaluate 2608 ** the IN operator so return IN_INDEX_NOOP. 2609 */ 2610 if( eType==0 2611 && (inFlags & IN_INDEX_NOOP_OK) 2612 && !ExprHasProperty(pX, EP_xIsSelect) 2613 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2614 ){ 2615 eType = IN_INDEX_NOOP; 2616 } 2617 2618 if( eType==0 ){ 2619 /* Could not find an existing table or index to use as the RHS b-tree. 2620 ** We will have to generate an ephemeral table to do the job. 2621 */ 2622 u32 savedNQueryLoop = pParse->nQueryLoop; 2623 int rMayHaveNull = 0; 2624 eType = IN_INDEX_EPH; 2625 if( inFlags & IN_INDEX_LOOP ){ 2626 pParse->nQueryLoop = 0; 2627 }else if( prRhsHasNull ){ 2628 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2629 } 2630 assert( pX->op==TK_IN ); 2631 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2632 if( rMayHaveNull ){ 2633 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2634 } 2635 pParse->nQueryLoop = savedNQueryLoop; 2636 } 2637 2638 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2639 int i, n; 2640 n = sqlite3ExprVectorSize(pX->pLeft); 2641 for(i=0; i<n; i++) aiMap[i] = i; 2642 } 2643 *piTab = iTab; 2644 return eType; 2645 } 2646 #endif 2647 2648 #ifndef SQLITE_OMIT_SUBQUERY 2649 /* 2650 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2651 ** function allocates and returns a nul-terminated string containing 2652 ** the affinities to be used for each column of the comparison. 2653 ** 2654 ** It is the responsibility of the caller to ensure that the returned 2655 ** string is eventually freed using sqlite3DbFree(). 2656 */ 2657 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2658 Expr *pLeft = pExpr->pLeft; 2659 int nVal = sqlite3ExprVectorSize(pLeft); 2660 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2661 char *zRet; 2662 2663 assert( pExpr->op==TK_IN ); 2664 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2665 if( zRet ){ 2666 int i; 2667 for(i=0; i<nVal; i++){ 2668 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2669 char a = sqlite3ExprAffinity(pA); 2670 if( pSelect ){ 2671 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2672 }else{ 2673 zRet[i] = a; 2674 } 2675 } 2676 zRet[nVal] = '\0'; 2677 } 2678 return zRet; 2679 } 2680 #endif 2681 2682 #ifndef SQLITE_OMIT_SUBQUERY 2683 /* 2684 ** Load the Parse object passed as the first argument with an error 2685 ** message of the form: 2686 ** 2687 ** "sub-select returns N columns - expected M" 2688 */ 2689 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2690 if( pParse->nErr==0 ){ 2691 const char *zFmt = "sub-select returns %d columns - expected %d"; 2692 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2693 } 2694 } 2695 #endif 2696 2697 /* 2698 ** Expression pExpr is a vector that has been used in a context where 2699 ** it is not permitted. If pExpr is a sub-select vector, this routine 2700 ** loads the Parse object with a message of the form: 2701 ** 2702 ** "sub-select returns N columns - expected 1" 2703 ** 2704 ** Or, if it is a regular scalar vector: 2705 ** 2706 ** "row value misused" 2707 */ 2708 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2709 #ifndef SQLITE_OMIT_SUBQUERY 2710 if( pExpr->flags & EP_xIsSelect ){ 2711 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2712 }else 2713 #endif 2714 { 2715 sqlite3ErrorMsg(pParse, "row value misused"); 2716 } 2717 } 2718 2719 #ifndef SQLITE_OMIT_SUBQUERY 2720 /* 2721 ** Generate code that will construct an ephemeral table containing all terms 2722 ** in the RHS of an IN operator. The IN operator can be in either of two 2723 ** forms: 2724 ** 2725 ** x IN (4,5,11) -- IN operator with list on right-hand side 2726 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2727 ** 2728 ** The pExpr parameter is the IN operator. The cursor number for the 2729 ** constructed ephermeral table is returned. The first time the ephemeral 2730 ** table is computed, the cursor number is also stored in pExpr->iTable, 2731 ** however the cursor number returned might not be the same, as it might 2732 ** have been duplicated using OP_OpenDup. 2733 ** 2734 ** If the LHS expression ("x" in the examples) is a column value, or 2735 ** the SELECT statement returns a column value, then the affinity of that 2736 ** column is used to build the index keys. If both 'x' and the 2737 ** SELECT... statement are columns, then numeric affinity is used 2738 ** if either column has NUMERIC or INTEGER affinity. If neither 2739 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2740 ** is used. 2741 */ 2742 void sqlite3CodeRhsOfIN( 2743 Parse *pParse, /* Parsing context */ 2744 Expr *pExpr, /* The IN operator */ 2745 int iTab /* Use this cursor number */ 2746 ){ 2747 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2748 int addr; /* Address of OP_OpenEphemeral instruction */ 2749 Expr *pLeft; /* the LHS of the IN operator */ 2750 KeyInfo *pKeyInfo = 0; /* Key information */ 2751 int nVal; /* Size of vector pLeft */ 2752 Vdbe *v; /* The prepared statement under construction */ 2753 2754 v = pParse->pVdbe; 2755 assert( v!=0 ); 2756 2757 /* The evaluation of the IN must be repeated every time it 2758 ** is encountered if any of the following is true: 2759 ** 2760 ** * The right-hand side is a correlated subquery 2761 ** * The right-hand side is an expression list containing variables 2762 ** * We are inside a trigger 2763 ** 2764 ** If all of the above are false, then we can compute the RHS just once 2765 ** and reuse it many names. 2766 */ 2767 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2768 /* Reuse of the RHS is allowed */ 2769 /* If this routine has already been coded, but the previous code 2770 ** might not have been invoked yet, so invoke it now as a subroutine. 2771 */ 2772 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2773 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2774 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2775 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2776 pExpr->x.pSelect->selId)); 2777 } 2778 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2779 pExpr->y.sub.iAddr); 2780 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2781 sqlite3VdbeJumpHere(v, addrOnce); 2782 return; 2783 } 2784 2785 /* Begin coding the subroutine */ 2786 ExprSetProperty(pExpr, EP_Subrtn); 2787 pExpr->y.sub.regReturn = ++pParse->nMem; 2788 pExpr->y.sub.iAddr = 2789 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2790 VdbeComment((v, "return address")); 2791 2792 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2793 } 2794 2795 /* Check to see if this is a vector IN operator */ 2796 pLeft = pExpr->pLeft; 2797 nVal = sqlite3ExprVectorSize(pLeft); 2798 2799 /* Construct the ephemeral table that will contain the content of 2800 ** RHS of the IN operator. 2801 */ 2802 pExpr->iTable = iTab; 2803 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2804 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2805 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2806 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2807 }else{ 2808 VdbeComment((v, "RHS of IN operator")); 2809 } 2810 #endif 2811 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2812 2813 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2814 /* Case 1: expr IN (SELECT ...) 2815 ** 2816 ** Generate code to write the results of the select into the temporary 2817 ** table allocated and opened above. 2818 */ 2819 Select *pSelect = pExpr->x.pSelect; 2820 ExprList *pEList = pSelect->pEList; 2821 2822 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2823 addrOnce?"":"CORRELATED ", pSelect->selId 2824 )); 2825 /* If the LHS and RHS of the IN operator do not match, that 2826 ** error will have been caught long before we reach this point. */ 2827 if( ALWAYS(pEList->nExpr==nVal) ){ 2828 SelectDest dest; 2829 int i; 2830 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2831 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2832 pSelect->iLimit = 0; 2833 testcase( pSelect->selFlags & SF_Distinct ); 2834 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2835 if( sqlite3Select(pParse, pSelect, &dest) ){ 2836 sqlite3DbFree(pParse->db, dest.zAffSdst); 2837 sqlite3KeyInfoUnref(pKeyInfo); 2838 return; 2839 } 2840 sqlite3DbFree(pParse->db, dest.zAffSdst); 2841 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2842 assert( pEList!=0 ); 2843 assert( pEList->nExpr>0 ); 2844 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2845 for(i=0; i<nVal; i++){ 2846 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2847 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2848 pParse, p, pEList->a[i].pExpr 2849 ); 2850 } 2851 } 2852 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2853 /* Case 2: expr IN (exprlist) 2854 ** 2855 ** For each expression, build an index key from the evaluation and 2856 ** store it in the temporary table. If <expr> is a column, then use 2857 ** that columns affinity when building index keys. If <expr> is not 2858 ** a column, use numeric affinity. 2859 */ 2860 char affinity; /* Affinity of the LHS of the IN */ 2861 int i; 2862 ExprList *pList = pExpr->x.pList; 2863 struct ExprList_item *pItem; 2864 int r1, r2; 2865 affinity = sqlite3ExprAffinity(pLeft); 2866 if( affinity<=SQLITE_AFF_NONE ){ 2867 affinity = SQLITE_AFF_BLOB; 2868 } 2869 if( pKeyInfo ){ 2870 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2871 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2872 } 2873 2874 /* Loop through each expression in <exprlist>. */ 2875 r1 = sqlite3GetTempReg(pParse); 2876 r2 = sqlite3GetTempReg(pParse); 2877 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2878 Expr *pE2 = pItem->pExpr; 2879 2880 /* If the expression is not constant then we will need to 2881 ** disable the test that was generated above that makes sure 2882 ** this code only executes once. Because for a non-constant 2883 ** expression we need to rerun this code each time. 2884 */ 2885 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2886 sqlite3VdbeChangeToNoop(v, addrOnce); 2887 ExprClearProperty(pExpr, EP_Subrtn); 2888 addrOnce = 0; 2889 } 2890 2891 /* Evaluate the expression and insert it into the temp table */ 2892 sqlite3ExprCode(pParse, pE2, r1); 2893 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2894 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2895 } 2896 sqlite3ReleaseTempReg(pParse, r1); 2897 sqlite3ReleaseTempReg(pParse, r2); 2898 } 2899 if( pKeyInfo ){ 2900 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2901 } 2902 if( addrOnce ){ 2903 sqlite3VdbeJumpHere(v, addrOnce); 2904 /* Subroutine return */ 2905 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2906 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2907 sqlite3ClearTempRegCache(pParse); 2908 } 2909 } 2910 #endif /* SQLITE_OMIT_SUBQUERY */ 2911 2912 /* 2913 ** Generate code for scalar subqueries used as a subquery expression 2914 ** or EXISTS operator: 2915 ** 2916 ** (SELECT a FROM b) -- subquery 2917 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2918 ** 2919 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2920 ** 2921 ** Return the register that holds the result. For a multi-column SELECT, 2922 ** the result is stored in a contiguous array of registers and the 2923 ** return value is the register of the left-most result column. 2924 ** Return 0 if an error occurs. 2925 */ 2926 #ifndef SQLITE_OMIT_SUBQUERY 2927 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2928 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2929 int rReg = 0; /* Register storing resulting */ 2930 Select *pSel; /* SELECT statement to encode */ 2931 SelectDest dest; /* How to deal with SELECT result */ 2932 int nReg; /* Registers to allocate */ 2933 Expr *pLimit; /* New limit expression */ 2934 2935 Vdbe *v = pParse->pVdbe; 2936 assert( v!=0 ); 2937 testcase( pExpr->op==TK_EXISTS ); 2938 testcase( pExpr->op==TK_SELECT ); 2939 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2940 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2941 pSel = pExpr->x.pSelect; 2942 2943 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2944 ** is encountered if any of the following is true: 2945 ** 2946 ** * The right-hand side is a correlated subquery 2947 ** * The right-hand side is an expression list containing variables 2948 ** * We are inside a trigger 2949 ** 2950 ** If all of the above are false, then we can run this code just once 2951 ** save the results, and reuse the same result on subsequent invocations. 2952 */ 2953 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2954 /* If this routine has already been coded, then invoke it as a 2955 ** subroutine. */ 2956 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2957 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2958 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2959 pExpr->y.sub.iAddr); 2960 return pExpr->iTable; 2961 } 2962 2963 /* Begin coding the subroutine */ 2964 ExprSetProperty(pExpr, EP_Subrtn); 2965 pExpr->y.sub.regReturn = ++pParse->nMem; 2966 pExpr->y.sub.iAddr = 2967 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2968 VdbeComment((v, "return address")); 2969 2970 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2971 } 2972 2973 /* For a SELECT, generate code to put the values for all columns of 2974 ** the first row into an array of registers and return the index of 2975 ** the first register. 2976 ** 2977 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2978 ** into a register and return that register number. 2979 ** 2980 ** In both cases, the query is augmented with "LIMIT 1". Any 2981 ** preexisting limit is discarded in place of the new LIMIT 1. 2982 */ 2983 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2984 addrOnce?"":"CORRELATED ", pSel->selId)); 2985 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2986 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2987 pParse->nMem += nReg; 2988 if( pExpr->op==TK_SELECT ){ 2989 dest.eDest = SRT_Mem; 2990 dest.iSdst = dest.iSDParm; 2991 dest.nSdst = nReg; 2992 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2993 VdbeComment((v, "Init subquery result")); 2994 }else{ 2995 dest.eDest = SRT_Exists; 2996 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2997 VdbeComment((v, "Init EXISTS result")); 2998 } 2999 if( pSel->pLimit ){ 3000 /* The subquery already has a limit. If the pre-existing limit is X 3001 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3002 sqlite3 *db = pParse->db; 3003 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3004 if( pLimit ){ 3005 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3006 pLimit = sqlite3PExpr(pParse, TK_NE, 3007 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3008 } 3009 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3010 pSel->pLimit->pLeft = pLimit; 3011 }else{ 3012 /* If there is no pre-existing limit add a limit of 1 */ 3013 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3014 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3015 } 3016 pSel->iLimit = 0; 3017 if( sqlite3Select(pParse, pSel, &dest) ){ 3018 return 0; 3019 } 3020 pExpr->iTable = rReg = dest.iSDParm; 3021 ExprSetVVAProperty(pExpr, EP_NoReduce); 3022 if( addrOnce ){ 3023 sqlite3VdbeJumpHere(v, addrOnce); 3024 3025 /* Subroutine return */ 3026 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3027 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3028 sqlite3ClearTempRegCache(pParse); 3029 } 3030 3031 return rReg; 3032 } 3033 #endif /* SQLITE_OMIT_SUBQUERY */ 3034 3035 #ifndef SQLITE_OMIT_SUBQUERY 3036 /* 3037 ** Expr pIn is an IN(...) expression. This function checks that the 3038 ** sub-select on the RHS of the IN() operator has the same number of 3039 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3040 ** a sub-query, that the LHS is a vector of size 1. 3041 */ 3042 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3043 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3044 if( (pIn->flags & EP_xIsSelect) ){ 3045 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3046 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3047 return 1; 3048 } 3049 }else if( nVector!=1 ){ 3050 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3051 return 1; 3052 } 3053 return 0; 3054 } 3055 #endif 3056 3057 #ifndef SQLITE_OMIT_SUBQUERY 3058 /* 3059 ** Generate code for an IN expression. 3060 ** 3061 ** x IN (SELECT ...) 3062 ** x IN (value, value, ...) 3063 ** 3064 ** The left-hand side (LHS) is a scalar or vector expression. The 3065 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3066 ** subquery. If the RHS is a subquery, the number of result columns must 3067 ** match the number of columns in the vector on the LHS. If the RHS is 3068 ** a list of values, the LHS must be a scalar. 3069 ** 3070 ** The IN operator is true if the LHS value is contained within the RHS. 3071 ** The result is false if the LHS is definitely not in the RHS. The 3072 ** result is NULL if the presence of the LHS in the RHS cannot be 3073 ** determined due to NULLs. 3074 ** 3075 ** This routine generates code that jumps to destIfFalse if the LHS is not 3076 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3077 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3078 ** within the RHS then fall through. 3079 ** 3080 ** See the separate in-operator.md documentation file in the canonical 3081 ** SQLite source tree for additional information. 3082 */ 3083 static void sqlite3ExprCodeIN( 3084 Parse *pParse, /* Parsing and code generating context */ 3085 Expr *pExpr, /* The IN expression */ 3086 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3087 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3088 ){ 3089 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3090 int eType; /* Type of the RHS */ 3091 int rLhs; /* Register(s) holding the LHS values */ 3092 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3093 Vdbe *v; /* Statement under construction */ 3094 int *aiMap = 0; /* Map from vector field to index column */ 3095 char *zAff = 0; /* Affinity string for comparisons */ 3096 int nVector; /* Size of vectors for this IN operator */ 3097 int iDummy; /* Dummy parameter to exprCodeVector() */ 3098 Expr *pLeft; /* The LHS of the IN operator */ 3099 int i; /* loop counter */ 3100 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3101 int destStep6 = 0; /* Start of code for Step 6 */ 3102 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3103 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3104 int addrTop; /* Top of the step-6 loop */ 3105 int iTab = 0; /* Index to use */ 3106 3107 pLeft = pExpr->pLeft; 3108 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3109 zAff = exprINAffinity(pParse, pExpr); 3110 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3111 aiMap = (int*)sqlite3DbMallocZero( 3112 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3113 ); 3114 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3115 3116 /* Attempt to compute the RHS. After this step, if anything other than 3117 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3118 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3119 ** the RHS has not yet been coded. */ 3120 v = pParse->pVdbe; 3121 assert( v!=0 ); /* OOM detected prior to this routine */ 3122 VdbeNoopComment((v, "begin IN expr")); 3123 eType = sqlite3FindInIndex(pParse, pExpr, 3124 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3125 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3126 aiMap, &iTab); 3127 3128 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3129 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3130 ); 3131 #ifdef SQLITE_DEBUG 3132 /* Confirm that aiMap[] contains nVector integer values between 0 and 3133 ** nVector-1. */ 3134 for(i=0; i<nVector; i++){ 3135 int j, cnt; 3136 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3137 assert( cnt==1 ); 3138 } 3139 #endif 3140 3141 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3142 ** vector, then it is stored in an array of nVector registers starting 3143 ** at r1. 3144 ** 3145 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3146 ** so that the fields are in the same order as an existing index. The 3147 ** aiMap[] array contains a mapping from the original LHS field order to 3148 ** the field order that matches the RHS index. 3149 */ 3150 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3151 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3152 if( i==nVector ){ 3153 /* LHS fields are not reordered */ 3154 rLhs = rLhsOrig; 3155 }else{ 3156 /* Need to reorder the LHS fields according to aiMap */ 3157 rLhs = sqlite3GetTempRange(pParse, nVector); 3158 for(i=0; i<nVector; i++){ 3159 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3160 } 3161 } 3162 3163 /* If sqlite3FindInIndex() did not find or create an index that is 3164 ** suitable for evaluating the IN operator, then evaluate using a 3165 ** sequence of comparisons. 3166 ** 3167 ** This is step (1) in the in-operator.md optimized algorithm. 3168 */ 3169 if( eType==IN_INDEX_NOOP ){ 3170 ExprList *pList = pExpr->x.pList; 3171 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3172 int labelOk = sqlite3VdbeMakeLabel(pParse); 3173 int r2, regToFree; 3174 int regCkNull = 0; 3175 int ii; 3176 int bLhsReal; /* True if the LHS of the IN has REAL affinity */ 3177 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3178 if( destIfNull!=destIfFalse ){ 3179 regCkNull = sqlite3GetTempReg(pParse); 3180 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3181 } 3182 bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL; 3183 for(ii=0; ii<pList->nExpr; ii++){ 3184 if( bLhsReal ){ 3185 r2 = regToFree = sqlite3GetTempReg(pParse); 3186 sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2); 3187 sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC); 3188 }else{ 3189 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3190 } 3191 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3192 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3193 } 3194 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3195 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3196 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3197 (void*)pColl, P4_COLLSEQ); 3198 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3199 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3200 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3201 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3202 sqlite3VdbeChangeP5(v, zAff[0]); 3203 }else{ 3204 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3205 assert( destIfNull==destIfFalse ); 3206 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3207 (void*)pColl, P4_COLLSEQ); 3208 VdbeCoverageIf(v, op==OP_Ne); 3209 VdbeCoverageIf(v, op==OP_IsNull); 3210 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3211 } 3212 sqlite3ReleaseTempReg(pParse, regToFree); 3213 } 3214 if( regCkNull ){ 3215 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3216 sqlite3VdbeGoto(v, destIfFalse); 3217 } 3218 sqlite3VdbeResolveLabel(v, labelOk); 3219 sqlite3ReleaseTempReg(pParse, regCkNull); 3220 goto sqlite3ExprCodeIN_finished; 3221 } 3222 3223 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3224 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3225 ** We will then skip the binary search of the RHS. 3226 */ 3227 if( destIfNull==destIfFalse ){ 3228 destStep2 = destIfFalse; 3229 }else{ 3230 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3231 } 3232 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3233 for(i=0; i<nVector; i++){ 3234 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3235 if( sqlite3ExprCanBeNull(p) ){ 3236 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3237 VdbeCoverage(v); 3238 } 3239 } 3240 3241 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3242 ** of the RHS using the LHS as a probe. If found, the result is 3243 ** true. 3244 */ 3245 if( eType==IN_INDEX_ROWID ){ 3246 /* In this case, the RHS is the ROWID of table b-tree and so we also 3247 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3248 ** into a single opcode. */ 3249 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3250 VdbeCoverage(v); 3251 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3252 }else{ 3253 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3254 if( destIfFalse==destIfNull ){ 3255 /* Combine Step 3 and Step 5 into a single opcode */ 3256 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3257 rLhs, nVector); VdbeCoverage(v); 3258 goto sqlite3ExprCodeIN_finished; 3259 } 3260 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3261 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3262 rLhs, nVector); VdbeCoverage(v); 3263 } 3264 3265 /* Step 4. If the RHS is known to be non-NULL and we did not find 3266 ** an match on the search above, then the result must be FALSE. 3267 */ 3268 if( rRhsHasNull && nVector==1 ){ 3269 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3270 VdbeCoverage(v); 3271 } 3272 3273 /* Step 5. If we do not care about the difference between NULL and 3274 ** FALSE, then just return false. 3275 */ 3276 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3277 3278 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3279 ** If any comparison is NULL, then the result is NULL. If all 3280 ** comparisons are FALSE then the final result is FALSE. 3281 ** 3282 ** For a scalar LHS, it is sufficient to check just the first row 3283 ** of the RHS. 3284 */ 3285 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3286 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3287 VdbeCoverage(v); 3288 if( nVector>1 ){ 3289 destNotNull = sqlite3VdbeMakeLabel(pParse); 3290 }else{ 3291 /* For nVector==1, combine steps 6 and 7 by immediately returning 3292 ** FALSE if the first comparison is not NULL */ 3293 destNotNull = destIfFalse; 3294 } 3295 for(i=0; i<nVector; i++){ 3296 Expr *p; 3297 CollSeq *pColl; 3298 int r3 = sqlite3GetTempReg(pParse); 3299 p = sqlite3VectorFieldSubexpr(pLeft, i); 3300 pColl = sqlite3ExprCollSeq(pParse, p); 3301 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3302 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3303 (void*)pColl, P4_COLLSEQ); 3304 VdbeCoverage(v); 3305 sqlite3ReleaseTempReg(pParse, r3); 3306 } 3307 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3308 if( nVector>1 ){ 3309 sqlite3VdbeResolveLabel(v, destNotNull); 3310 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3311 VdbeCoverage(v); 3312 3313 /* Step 7: If we reach this point, we know that the result must 3314 ** be false. */ 3315 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3316 } 3317 3318 /* Jumps here in order to return true. */ 3319 sqlite3VdbeJumpHere(v, addrTruthOp); 3320 3321 sqlite3ExprCodeIN_finished: 3322 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3323 VdbeComment((v, "end IN expr")); 3324 sqlite3ExprCodeIN_oom_error: 3325 sqlite3DbFree(pParse->db, aiMap); 3326 sqlite3DbFree(pParse->db, zAff); 3327 } 3328 #endif /* SQLITE_OMIT_SUBQUERY */ 3329 3330 #ifndef SQLITE_OMIT_FLOATING_POINT 3331 /* 3332 ** Generate an instruction that will put the floating point 3333 ** value described by z[0..n-1] into register iMem. 3334 ** 3335 ** The z[] string will probably not be zero-terminated. But the 3336 ** z[n] character is guaranteed to be something that does not look 3337 ** like the continuation of the number. 3338 */ 3339 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3340 if( ALWAYS(z!=0) ){ 3341 double value; 3342 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3343 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3344 if( negateFlag ) value = -value; 3345 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3346 } 3347 } 3348 #endif 3349 3350 3351 /* 3352 ** Generate an instruction that will put the integer describe by 3353 ** text z[0..n-1] into register iMem. 3354 ** 3355 ** Expr.u.zToken is always UTF8 and zero-terminated. 3356 */ 3357 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3358 Vdbe *v = pParse->pVdbe; 3359 if( pExpr->flags & EP_IntValue ){ 3360 int i = pExpr->u.iValue; 3361 assert( i>=0 ); 3362 if( negFlag ) i = -i; 3363 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3364 }else{ 3365 int c; 3366 i64 value; 3367 const char *z = pExpr->u.zToken; 3368 assert( z!=0 ); 3369 c = sqlite3DecOrHexToI64(z, &value); 3370 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3371 #ifdef SQLITE_OMIT_FLOATING_POINT 3372 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3373 #else 3374 #ifndef SQLITE_OMIT_HEX_INTEGER 3375 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3376 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3377 }else 3378 #endif 3379 { 3380 codeReal(v, z, negFlag, iMem); 3381 } 3382 #endif 3383 }else{ 3384 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3385 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3386 } 3387 } 3388 } 3389 3390 3391 /* Generate code that will load into register regOut a value that is 3392 ** appropriate for the iIdxCol-th column of index pIdx. 3393 */ 3394 void sqlite3ExprCodeLoadIndexColumn( 3395 Parse *pParse, /* The parsing context */ 3396 Index *pIdx, /* The index whose column is to be loaded */ 3397 int iTabCur, /* Cursor pointing to a table row */ 3398 int iIdxCol, /* The column of the index to be loaded */ 3399 int regOut /* Store the index column value in this register */ 3400 ){ 3401 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3402 if( iTabCol==XN_EXPR ){ 3403 assert( pIdx->aColExpr ); 3404 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3405 pParse->iSelfTab = iTabCur + 1; 3406 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3407 pParse->iSelfTab = 0; 3408 }else{ 3409 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3410 iTabCol, regOut); 3411 } 3412 } 3413 3414 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3415 /* 3416 ** Generate code that will compute the value of generated column pCol 3417 ** and store the result in register regOut 3418 */ 3419 void sqlite3ExprCodeGeneratedColumn( 3420 Parse *pParse, 3421 Column *pCol, 3422 int regOut 3423 ){ 3424 int iAddr; 3425 Vdbe *v = pParse->pVdbe; 3426 assert( v!=0 ); 3427 assert( pParse->iSelfTab!=0 ); 3428 if( pParse->iSelfTab>0 ){ 3429 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3430 }else{ 3431 iAddr = 0; 3432 } 3433 sqlite3ExprCode(pParse, pCol->pDflt, regOut); 3434 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3435 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3436 } 3437 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3438 } 3439 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3440 3441 /* 3442 ** Generate code to extract the value of the iCol-th column of a table. 3443 */ 3444 void sqlite3ExprCodeGetColumnOfTable( 3445 Vdbe *v, /* Parsing context */ 3446 Table *pTab, /* The table containing the value */ 3447 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3448 int iCol, /* Index of the column to extract */ 3449 int regOut /* Extract the value into this register */ 3450 ){ 3451 Column *pCol; 3452 assert( v!=0 ); 3453 if( pTab==0 ){ 3454 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3455 return; 3456 } 3457 if( iCol<0 || iCol==pTab->iPKey ){ 3458 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3459 }else{ 3460 int op; 3461 int x; 3462 if( IsVirtual(pTab) ){ 3463 op = OP_VColumn; 3464 x = iCol; 3465 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3466 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3467 Parse *pParse = sqlite3VdbeParser(v); 3468 if( pCol->colFlags & COLFLAG_BUSY ){ 3469 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3470 }else{ 3471 int savedSelfTab = pParse->iSelfTab; 3472 pCol->colFlags |= COLFLAG_BUSY; 3473 pParse->iSelfTab = iTabCur+1; 3474 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3475 pParse->iSelfTab = savedSelfTab; 3476 pCol->colFlags &= ~COLFLAG_BUSY; 3477 } 3478 return; 3479 #endif 3480 }else if( !HasRowid(pTab) ){ 3481 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3482 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3483 op = OP_Column; 3484 }else{ 3485 x = sqlite3TableColumnToStorage(pTab,iCol); 3486 testcase( x!=iCol ); 3487 op = OP_Column; 3488 } 3489 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3490 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3491 } 3492 } 3493 3494 /* 3495 ** Generate code that will extract the iColumn-th column from 3496 ** table pTab and store the column value in register iReg. 3497 ** 3498 ** There must be an open cursor to pTab in iTable when this routine 3499 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3500 */ 3501 int sqlite3ExprCodeGetColumn( 3502 Parse *pParse, /* Parsing and code generating context */ 3503 Table *pTab, /* Description of the table we are reading from */ 3504 int iColumn, /* Index of the table column */ 3505 int iTable, /* The cursor pointing to the table */ 3506 int iReg, /* Store results here */ 3507 u8 p5 /* P5 value for OP_Column + FLAGS */ 3508 ){ 3509 assert( pParse->pVdbe!=0 ); 3510 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3511 if( p5 ){ 3512 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3513 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3514 } 3515 return iReg; 3516 } 3517 3518 /* 3519 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3520 ** over to iTo..iTo+nReg-1. 3521 */ 3522 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3523 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3524 } 3525 3526 /* 3527 ** Convert a scalar expression node to a TK_REGISTER referencing 3528 ** register iReg. The caller must ensure that iReg already contains 3529 ** the correct value for the expression. 3530 */ 3531 static void exprToRegister(Expr *pExpr, int iReg){ 3532 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3533 p->op2 = p->op; 3534 p->op = TK_REGISTER; 3535 p->iTable = iReg; 3536 ExprClearProperty(p, EP_Skip); 3537 } 3538 3539 /* 3540 ** Evaluate an expression (either a vector or a scalar expression) and store 3541 ** the result in continguous temporary registers. Return the index of 3542 ** the first register used to store the result. 3543 ** 3544 ** If the returned result register is a temporary scalar, then also write 3545 ** that register number into *piFreeable. If the returned result register 3546 ** is not a temporary or if the expression is a vector set *piFreeable 3547 ** to 0. 3548 */ 3549 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3550 int iResult; 3551 int nResult = sqlite3ExprVectorSize(p); 3552 if( nResult==1 ){ 3553 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3554 }else{ 3555 *piFreeable = 0; 3556 if( p->op==TK_SELECT ){ 3557 #if SQLITE_OMIT_SUBQUERY 3558 iResult = 0; 3559 #else 3560 iResult = sqlite3CodeSubselect(pParse, p); 3561 #endif 3562 }else{ 3563 int i; 3564 iResult = pParse->nMem+1; 3565 pParse->nMem += nResult; 3566 for(i=0; i<nResult; i++){ 3567 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3568 } 3569 } 3570 } 3571 return iResult; 3572 } 3573 3574 3575 /* 3576 ** Generate code into the current Vdbe to evaluate the given 3577 ** expression. Attempt to store the results in register "target". 3578 ** Return the register where results are stored. 3579 ** 3580 ** With this routine, there is no guarantee that results will 3581 ** be stored in target. The result might be stored in some other 3582 ** register if it is convenient to do so. The calling function 3583 ** must check the return code and move the results to the desired 3584 ** register. 3585 */ 3586 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3587 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3588 int op; /* The opcode being coded */ 3589 int inReg = target; /* Results stored in register inReg */ 3590 int regFree1 = 0; /* If non-zero free this temporary register */ 3591 int regFree2 = 0; /* If non-zero free this temporary register */ 3592 int r1, r2; /* Various register numbers */ 3593 Expr tempX; /* Temporary expression node */ 3594 int p5 = 0; 3595 3596 assert( target>0 && target<=pParse->nMem ); 3597 if( v==0 ){ 3598 assert( pParse->db->mallocFailed ); 3599 return 0; 3600 } 3601 3602 expr_code_doover: 3603 if( pExpr==0 ){ 3604 op = TK_NULL; 3605 }else{ 3606 op = pExpr->op; 3607 } 3608 switch( op ){ 3609 case TK_AGG_COLUMN: { 3610 AggInfo *pAggInfo = pExpr->pAggInfo; 3611 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3612 if( !pAggInfo->directMode ){ 3613 assert( pCol->iMem>0 ); 3614 return pCol->iMem; 3615 }else if( pAggInfo->useSortingIdx ){ 3616 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3617 pCol->iSorterColumn, target); 3618 return target; 3619 } 3620 /* Otherwise, fall thru into the TK_COLUMN case */ 3621 } 3622 case TK_COLUMN: { 3623 int iTab = pExpr->iTable; 3624 int iReg; 3625 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3626 /* This COLUMN expression is really a constant due to WHERE clause 3627 ** constraints, and that constant is coded by the pExpr->pLeft 3628 ** expresssion. However, make sure the constant has the correct 3629 ** datatype by applying the Affinity of the table column to the 3630 ** constant. 3631 */ 3632 int aff; 3633 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3634 if( pExpr->y.pTab ){ 3635 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3636 }else{ 3637 aff = pExpr->affExpr; 3638 } 3639 if( aff>SQLITE_AFF_BLOB ){ 3640 static const char zAff[] = "B\000C\000D\000E"; 3641 assert( SQLITE_AFF_BLOB=='A' ); 3642 assert( SQLITE_AFF_TEXT=='B' ); 3643 if( iReg!=target ){ 3644 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3645 iReg = target; 3646 } 3647 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3648 &zAff[(aff-'B')*2], P4_STATIC); 3649 } 3650 return iReg; 3651 } 3652 if( iTab<0 ){ 3653 if( pParse->iSelfTab<0 ){ 3654 /* Other columns in the same row for CHECK constraints or 3655 ** generated columns or for inserting into partial index. 3656 ** The row is unpacked into registers beginning at 3657 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3658 ** immediately prior to the first column. 3659 */ 3660 Column *pCol; 3661 Table *pTab = pExpr->y.pTab; 3662 int iSrc; 3663 int iCol = pExpr->iColumn; 3664 assert( pTab!=0 ); 3665 assert( iCol>=XN_ROWID ); 3666 assert( iCol<pTab->nCol ); 3667 if( iCol<0 ){ 3668 return -1-pParse->iSelfTab; 3669 } 3670 pCol = pTab->aCol + iCol; 3671 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3672 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3673 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3674 if( pCol->colFlags & COLFLAG_GENERATED ){ 3675 if( pCol->colFlags & COLFLAG_BUSY ){ 3676 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3677 pCol->zName); 3678 return 0; 3679 } 3680 pCol->colFlags |= COLFLAG_BUSY; 3681 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3682 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3683 } 3684 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3685 return iSrc; 3686 }else 3687 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3688 if( pCol->affinity==SQLITE_AFF_REAL ){ 3689 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3690 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3691 return target; 3692 }else{ 3693 return iSrc; 3694 } 3695 }else{ 3696 /* Coding an expression that is part of an index where column names 3697 ** in the index refer to the table to which the index belongs */ 3698 iTab = pParse->iSelfTab - 1; 3699 } 3700 } 3701 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3702 pExpr->iColumn, iTab, target, 3703 pExpr->op2); 3704 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3705 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3706 } 3707 return iReg; 3708 } 3709 case TK_INTEGER: { 3710 codeInteger(pParse, pExpr, 0, target); 3711 return target; 3712 } 3713 case TK_TRUEFALSE: { 3714 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3715 return target; 3716 } 3717 #ifndef SQLITE_OMIT_FLOATING_POINT 3718 case TK_FLOAT: { 3719 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3720 codeReal(v, pExpr->u.zToken, 0, target); 3721 return target; 3722 } 3723 #endif 3724 case TK_STRING: { 3725 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3726 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3727 return target; 3728 } 3729 default: { 3730 /* Make NULL the default case so that if a bug causes an illegal 3731 ** Expr node to be passed into this function, it will be handled 3732 ** sanely and not crash. But keep the assert() to bring the problem 3733 ** to the attention of the developers. */ 3734 assert( op==TK_NULL ); 3735 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3736 return target; 3737 } 3738 #ifndef SQLITE_OMIT_BLOB_LITERAL 3739 case TK_BLOB: { 3740 int n; 3741 const char *z; 3742 char *zBlob; 3743 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3744 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3745 assert( pExpr->u.zToken[1]=='\'' ); 3746 z = &pExpr->u.zToken[2]; 3747 n = sqlite3Strlen30(z) - 1; 3748 assert( z[n]=='\'' ); 3749 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3750 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3751 return target; 3752 } 3753 #endif 3754 case TK_VARIABLE: { 3755 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3756 assert( pExpr->u.zToken!=0 ); 3757 assert( pExpr->u.zToken[0]!=0 ); 3758 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3759 if( pExpr->u.zToken[1]!=0 ){ 3760 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3761 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3762 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3763 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3764 } 3765 return target; 3766 } 3767 case TK_REGISTER: { 3768 return pExpr->iTable; 3769 } 3770 #ifndef SQLITE_OMIT_CAST 3771 case TK_CAST: { 3772 /* Expressions of the form: CAST(pLeft AS token) */ 3773 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3774 if( inReg!=target ){ 3775 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3776 inReg = target; 3777 } 3778 sqlite3VdbeAddOp2(v, OP_Cast, target, 3779 sqlite3AffinityType(pExpr->u.zToken, 0)); 3780 return inReg; 3781 } 3782 #endif /* SQLITE_OMIT_CAST */ 3783 case TK_IS: 3784 case TK_ISNOT: 3785 op = (op==TK_IS) ? TK_EQ : TK_NE; 3786 p5 = SQLITE_NULLEQ; 3787 /* fall-through */ 3788 case TK_LT: 3789 case TK_LE: 3790 case TK_GT: 3791 case TK_GE: 3792 case TK_NE: 3793 case TK_EQ: { 3794 Expr *pLeft = pExpr->pLeft; 3795 if( sqlite3ExprIsVector(pLeft) ){ 3796 codeVectorCompare(pParse, pExpr, target, op, p5); 3797 }else{ 3798 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3799 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3800 codeCompare(pParse, pLeft, pExpr->pRight, op, 3801 r1, r2, inReg, SQLITE_STOREP2 | p5, 3802 ExprHasProperty(pExpr,EP_Commuted)); 3803 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3804 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3805 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3806 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3807 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3808 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3809 testcase( regFree1==0 ); 3810 testcase( regFree2==0 ); 3811 } 3812 break; 3813 } 3814 case TK_AND: 3815 case TK_OR: 3816 case TK_PLUS: 3817 case TK_STAR: 3818 case TK_MINUS: 3819 case TK_REM: 3820 case TK_BITAND: 3821 case TK_BITOR: 3822 case TK_SLASH: 3823 case TK_LSHIFT: 3824 case TK_RSHIFT: 3825 case TK_CONCAT: { 3826 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3827 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3828 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3829 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3830 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3831 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3832 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3833 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3834 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3835 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3836 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3837 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3838 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3839 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3840 testcase( regFree1==0 ); 3841 testcase( regFree2==0 ); 3842 break; 3843 } 3844 case TK_UMINUS: { 3845 Expr *pLeft = pExpr->pLeft; 3846 assert( pLeft ); 3847 if( pLeft->op==TK_INTEGER ){ 3848 codeInteger(pParse, pLeft, 1, target); 3849 return target; 3850 #ifndef SQLITE_OMIT_FLOATING_POINT 3851 }else if( pLeft->op==TK_FLOAT ){ 3852 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3853 codeReal(v, pLeft->u.zToken, 1, target); 3854 return target; 3855 #endif 3856 }else{ 3857 tempX.op = TK_INTEGER; 3858 tempX.flags = EP_IntValue|EP_TokenOnly; 3859 tempX.u.iValue = 0; 3860 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3861 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3862 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3863 testcase( regFree2==0 ); 3864 } 3865 break; 3866 } 3867 case TK_BITNOT: 3868 case TK_NOT: { 3869 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3870 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3871 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3872 testcase( regFree1==0 ); 3873 sqlite3VdbeAddOp2(v, op, r1, inReg); 3874 break; 3875 } 3876 case TK_TRUTH: { 3877 int isTrue; /* IS TRUE or IS NOT TRUE */ 3878 int bNormal; /* IS TRUE or IS FALSE */ 3879 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3880 testcase( regFree1==0 ); 3881 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3882 bNormal = pExpr->op2==TK_IS; 3883 testcase( isTrue && bNormal); 3884 testcase( !isTrue && bNormal); 3885 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3886 break; 3887 } 3888 case TK_ISNULL: 3889 case TK_NOTNULL: { 3890 int addr; 3891 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3892 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3893 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3894 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3895 testcase( regFree1==0 ); 3896 addr = sqlite3VdbeAddOp1(v, op, r1); 3897 VdbeCoverageIf(v, op==TK_ISNULL); 3898 VdbeCoverageIf(v, op==TK_NOTNULL); 3899 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3900 sqlite3VdbeJumpHere(v, addr); 3901 break; 3902 } 3903 case TK_AGG_FUNCTION: { 3904 AggInfo *pInfo = pExpr->pAggInfo; 3905 if( pInfo==0 ){ 3906 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3907 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3908 }else{ 3909 return pInfo->aFunc[pExpr->iAgg].iMem; 3910 } 3911 break; 3912 } 3913 case TK_FUNCTION: { 3914 ExprList *pFarg; /* List of function arguments */ 3915 int nFarg; /* Number of function arguments */ 3916 FuncDef *pDef; /* The function definition object */ 3917 const char *zId; /* The function name */ 3918 u32 constMask = 0; /* Mask of function arguments that are constant */ 3919 int i; /* Loop counter */ 3920 sqlite3 *db = pParse->db; /* The database connection */ 3921 u8 enc = ENC(db); /* The text encoding used by this database */ 3922 CollSeq *pColl = 0; /* A collating sequence */ 3923 3924 #ifndef SQLITE_OMIT_WINDOWFUNC 3925 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3926 return pExpr->y.pWin->regResult; 3927 } 3928 #endif 3929 3930 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3931 /* SQL functions can be expensive. So try to move constant functions 3932 ** out of the inner loop, even if that means an extra OP_Copy. */ 3933 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3934 } 3935 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3936 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3937 pFarg = 0; 3938 }else{ 3939 pFarg = pExpr->x.pList; 3940 } 3941 nFarg = pFarg ? pFarg->nExpr : 0; 3942 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3943 zId = pExpr->u.zToken; 3944 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3945 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3946 if( pDef==0 && pParse->explain ){ 3947 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3948 } 3949 #endif 3950 if( pDef==0 || pDef->xFinalize!=0 ){ 3951 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3952 break; 3953 } 3954 3955 /* Attempt a direct implementation of the built-in COALESCE() and 3956 ** IFNULL() functions. This avoids unnecessary evaluation of 3957 ** arguments past the first non-NULL argument. 3958 */ 3959 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3960 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3961 assert( nFarg>=2 ); 3962 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3963 for(i=1; i<nFarg; i++){ 3964 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3965 VdbeCoverage(v); 3966 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3967 } 3968 sqlite3VdbeResolveLabel(v, endCoalesce); 3969 break; 3970 } 3971 3972 /* The UNLIKELY() function is a no-op. The result is the value 3973 ** of the first argument. 3974 */ 3975 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3976 assert( nFarg>=1 ); 3977 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3978 } 3979 3980 #ifdef SQLITE_DEBUG 3981 /* The AFFINITY() function evaluates to a string that describes 3982 ** the type affinity of the argument. This is used for testing of 3983 ** the SQLite type logic. 3984 */ 3985 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3986 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3987 char aff; 3988 assert( nFarg==1 ); 3989 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3990 sqlite3VdbeLoadString(v, target, 3991 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3992 return target; 3993 } 3994 #endif 3995 3996 for(i=0; i<nFarg; i++){ 3997 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3998 testcase( i==31 ); 3999 constMask |= MASKBIT32(i); 4000 } 4001 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4002 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4003 } 4004 } 4005 if( pFarg ){ 4006 if( constMask ){ 4007 r1 = pParse->nMem+1; 4008 pParse->nMem += nFarg; 4009 }else{ 4010 r1 = sqlite3GetTempRange(pParse, nFarg); 4011 } 4012 4013 /* For length() and typeof() functions with a column argument, 4014 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4015 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4016 ** loading. 4017 */ 4018 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4019 u8 exprOp; 4020 assert( nFarg==1 ); 4021 assert( pFarg->a[0].pExpr!=0 ); 4022 exprOp = pFarg->a[0].pExpr->op; 4023 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4024 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4025 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4026 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4027 pFarg->a[0].pExpr->op2 = 4028 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4029 } 4030 } 4031 4032 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4033 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4034 }else{ 4035 r1 = 0; 4036 } 4037 #ifndef SQLITE_OMIT_VIRTUALTABLE 4038 /* Possibly overload the function if the first argument is 4039 ** a virtual table column. 4040 ** 4041 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4042 ** second argument, not the first, as the argument to test to 4043 ** see if it is a column in a virtual table. This is done because 4044 ** the left operand of infix functions (the operand we want to 4045 ** control overloading) ends up as the second argument to the 4046 ** function. The expression "A glob B" is equivalent to 4047 ** "glob(B,A). We want to use the A in "A glob B" to test 4048 ** for function overloading. But we use the B term in "glob(B,A)". 4049 */ 4050 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4051 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4052 }else if( nFarg>0 ){ 4053 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4054 } 4055 #endif 4056 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4057 if( !pColl ) pColl = db->pDfltColl; 4058 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4059 } 4060 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4061 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4062 Expr *pArg = pFarg->a[0].pExpr; 4063 if( pArg->op==TK_COLUMN ){ 4064 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4065 }else{ 4066 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4067 } 4068 }else 4069 #endif 4070 { 4071 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4072 pDef, pExpr->op2); 4073 } 4074 if( nFarg ){ 4075 if( constMask==0 ){ 4076 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4077 }else{ 4078 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask); 4079 } 4080 } 4081 return target; 4082 } 4083 #ifndef SQLITE_OMIT_SUBQUERY 4084 case TK_EXISTS: 4085 case TK_SELECT: { 4086 int nCol; 4087 testcase( op==TK_EXISTS ); 4088 testcase( op==TK_SELECT ); 4089 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4090 sqlite3SubselectError(pParse, nCol, 1); 4091 }else{ 4092 return sqlite3CodeSubselect(pParse, pExpr); 4093 } 4094 break; 4095 } 4096 case TK_SELECT_COLUMN: { 4097 int n; 4098 if( pExpr->pLeft->iTable==0 ){ 4099 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4100 } 4101 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4102 if( pExpr->iTable!=0 4103 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4104 ){ 4105 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4106 pExpr->iTable, n); 4107 } 4108 return pExpr->pLeft->iTable + pExpr->iColumn; 4109 } 4110 case TK_IN: { 4111 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4112 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4113 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4114 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4115 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4116 sqlite3VdbeResolveLabel(v, destIfFalse); 4117 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4118 sqlite3VdbeResolveLabel(v, destIfNull); 4119 return target; 4120 } 4121 #endif /* SQLITE_OMIT_SUBQUERY */ 4122 4123 4124 /* 4125 ** x BETWEEN y AND z 4126 ** 4127 ** This is equivalent to 4128 ** 4129 ** x>=y AND x<=z 4130 ** 4131 ** X is stored in pExpr->pLeft. 4132 ** Y is stored in pExpr->pList->a[0].pExpr. 4133 ** Z is stored in pExpr->pList->a[1].pExpr. 4134 */ 4135 case TK_BETWEEN: { 4136 exprCodeBetween(pParse, pExpr, target, 0, 0); 4137 return target; 4138 } 4139 case TK_SPAN: 4140 case TK_COLLATE: 4141 case TK_UPLUS: { 4142 pExpr = pExpr->pLeft; 4143 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4144 } 4145 4146 case TK_TRIGGER: { 4147 /* If the opcode is TK_TRIGGER, then the expression is a reference 4148 ** to a column in the new.* or old.* pseudo-tables available to 4149 ** trigger programs. In this case Expr.iTable is set to 1 for the 4150 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4151 ** is set to the column of the pseudo-table to read, or to -1 to 4152 ** read the rowid field. 4153 ** 4154 ** The expression is implemented using an OP_Param opcode. The p1 4155 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4156 ** to reference another column of the old.* pseudo-table, where 4157 ** i is the index of the column. For a new.rowid reference, p1 is 4158 ** set to (n+1), where n is the number of columns in each pseudo-table. 4159 ** For a reference to any other column in the new.* pseudo-table, p1 4160 ** is set to (n+2+i), where n and i are as defined previously. For 4161 ** example, if the table on which triggers are being fired is 4162 ** declared as: 4163 ** 4164 ** CREATE TABLE t1(a, b); 4165 ** 4166 ** Then p1 is interpreted as follows: 4167 ** 4168 ** p1==0 -> old.rowid p1==3 -> new.rowid 4169 ** p1==1 -> old.a p1==4 -> new.a 4170 ** p1==2 -> old.b p1==5 -> new.b 4171 */ 4172 Table *pTab = pExpr->y.pTab; 4173 int iCol = pExpr->iColumn; 4174 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4175 + sqlite3TableColumnToStorage(pTab, iCol); 4176 4177 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4178 assert( iCol>=-1 && iCol<pTab->nCol ); 4179 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4180 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4181 4182 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4183 VdbeComment((v, "r[%d]=%s.%s", target, 4184 (pExpr->iTable ? "new" : "old"), 4185 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4186 )); 4187 4188 #ifndef SQLITE_OMIT_FLOATING_POINT 4189 /* If the column has REAL affinity, it may currently be stored as an 4190 ** integer. Use OP_RealAffinity to make sure it is really real. 4191 ** 4192 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4193 ** floating point when extracting it from the record. */ 4194 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4195 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4196 } 4197 #endif 4198 break; 4199 } 4200 4201 case TK_VECTOR: { 4202 sqlite3ErrorMsg(pParse, "row value misused"); 4203 break; 4204 } 4205 4206 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4207 ** that derive from the right-hand table of a LEFT JOIN. The 4208 ** Expr.iTable value is the table number for the right-hand table. 4209 ** The expression is only evaluated if that table is not currently 4210 ** on a LEFT JOIN NULL row. 4211 */ 4212 case TK_IF_NULL_ROW: { 4213 int addrINR; 4214 u8 okConstFactor = pParse->okConstFactor; 4215 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4216 /* Temporarily disable factoring of constant expressions, since 4217 ** even though expressions may appear to be constant, they are not 4218 ** really constant because they originate from the right-hand side 4219 ** of a LEFT JOIN. */ 4220 pParse->okConstFactor = 0; 4221 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4222 pParse->okConstFactor = okConstFactor; 4223 sqlite3VdbeJumpHere(v, addrINR); 4224 sqlite3VdbeChangeP3(v, addrINR, inReg); 4225 break; 4226 } 4227 4228 /* 4229 ** Form A: 4230 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4231 ** 4232 ** Form B: 4233 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4234 ** 4235 ** Form A is can be transformed into the equivalent form B as follows: 4236 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4237 ** WHEN x=eN THEN rN ELSE y END 4238 ** 4239 ** X (if it exists) is in pExpr->pLeft. 4240 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4241 ** odd. The Y is also optional. If the number of elements in x.pList 4242 ** is even, then Y is omitted and the "otherwise" result is NULL. 4243 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4244 ** 4245 ** The result of the expression is the Ri for the first matching Ei, 4246 ** or if there is no matching Ei, the ELSE term Y, or if there is 4247 ** no ELSE term, NULL. 4248 */ 4249 case TK_CASE: { 4250 int endLabel; /* GOTO label for end of CASE stmt */ 4251 int nextCase; /* GOTO label for next WHEN clause */ 4252 int nExpr; /* 2x number of WHEN terms */ 4253 int i; /* Loop counter */ 4254 ExprList *pEList; /* List of WHEN terms */ 4255 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4256 Expr opCompare; /* The X==Ei expression */ 4257 Expr *pX; /* The X expression */ 4258 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4259 Expr *pDel = 0; 4260 sqlite3 *db = pParse->db; 4261 4262 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4263 assert(pExpr->x.pList->nExpr > 0); 4264 pEList = pExpr->x.pList; 4265 aListelem = pEList->a; 4266 nExpr = pEList->nExpr; 4267 endLabel = sqlite3VdbeMakeLabel(pParse); 4268 if( (pX = pExpr->pLeft)!=0 ){ 4269 pDel = sqlite3ExprDup(db, pX, 0); 4270 if( db->mallocFailed ){ 4271 sqlite3ExprDelete(db, pDel); 4272 break; 4273 } 4274 testcase( pX->op==TK_COLUMN ); 4275 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4276 testcase( regFree1==0 ); 4277 memset(&opCompare, 0, sizeof(opCompare)); 4278 opCompare.op = TK_EQ; 4279 opCompare.pLeft = pDel; 4280 pTest = &opCompare; 4281 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4282 ** The value in regFree1 might get SCopy-ed into the file result. 4283 ** So make sure that the regFree1 register is not reused for other 4284 ** purposes and possibly overwritten. */ 4285 regFree1 = 0; 4286 } 4287 for(i=0; i<nExpr-1; i=i+2){ 4288 if( pX ){ 4289 assert( pTest!=0 ); 4290 opCompare.pRight = aListelem[i].pExpr; 4291 }else{ 4292 pTest = aListelem[i].pExpr; 4293 } 4294 nextCase = sqlite3VdbeMakeLabel(pParse); 4295 testcase( pTest->op==TK_COLUMN ); 4296 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4297 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4298 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4299 sqlite3VdbeGoto(v, endLabel); 4300 sqlite3VdbeResolveLabel(v, nextCase); 4301 } 4302 if( (nExpr&1)!=0 ){ 4303 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4304 }else{ 4305 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4306 } 4307 sqlite3ExprDelete(db, pDel); 4308 sqlite3VdbeResolveLabel(v, endLabel); 4309 break; 4310 } 4311 #ifndef SQLITE_OMIT_TRIGGER 4312 case TK_RAISE: { 4313 assert( pExpr->affExpr==OE_Rollback 4314 || pExpr->affExpr==OE_Abort 4315 || pExpr->affExpr==OE_Fail 4316 || pExpr->affExpr==OE_Ignore 4317 ); 4318 if( !pParse->pTriggerTab ){ 4319 sqlite3ErrorMsg(pParse, 4320 "RAISE() may only be used within a trigger-program"); 4321 return 0; 4322 } 4323 if( pExpr->affExpr==OE_Abort ){ 4324 sqlite3MayAbort(pParse); 4325 } 4326 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4327 if( pExpr->affExpr==OE_Ignore ){ 4328 sqlite3VdbeAddOp4( 4329 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4330 VdbeCoverage(v); 4331 }else{ 4332 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4333 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4334 } 4335 4336 break; 4337 } 4338 #endif 4339 } 4340 sqlite3ReleaseTempReg(pParse, regFree1); 4341 sqlite3ReleaseTempReg(pParse, regFree2); 4342 return inReg; 4343 } 4344 4345 /* 4346 ** Factor out the code of the given expression to initialization time. 4347 ** 4348 ** If regDest>=0 then the result is always stored in that register and the 4349 ** result is not reusable. If regDest<0 then this routine is free to 4350 ** store the value whereever it wants. The register where the expression 4351 ** is stored is returned. When regDest<0, two identical expressions will 4352 ** code to the same register. 4353 */ 4354 int sqlite3ExprCodeAtInit( 4355 Parse *pParse, /* Parsing context */ 4356 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4357 int regDest /* Store the value in this register */ 4358 ){ 4359 ExprList *p; 4360 assert( ConstFactorOk(pParse) ); 4361 p = pParse->pConstExpr; 4362 if( regDest<0 && p ){ 4363 struct ExprList_item *pItem; 4364 int i; 4365 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4366 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4367 return pItem->u.iConstExprReg; 4368 } 4369 } 4370 } 4371 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4372 p = sqlite3ExprListAppend(pParse, p, pExpr); 4373 if( p ){ 4374 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4375 pItem->reusable = regDest<0; 4376 if( regDest<0 ) regDest = ++pParse->nMem; 4377 pItem->u.iConstExprReg = regDest; 4378 } 4379 pParse->pConstExpr = p; 4380 return regDest; 4381 } 4382 4383 /* 4384 ** Generate code to evaluate an expression and store the results 4385 ** into a register. Return the register number where the results 4386 ** are stored. 4387 ** 4388 ** If the register is a temporary register that can be deallocated, 4389 ** then write its number into *pReg. If the result register is not 4390 ** a temporary, then set *pReg to zero. 4391 ** 4392 ** If pExpr is a constant, then this routine might generate this 4393 ** code to fill the register in the initialization section of the 4394 ** VDBE program, in order to factor it out of the evaluation loop. 4395 */ 4396 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4397 int r2; 4398 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4399 if( ConstFactorOk(pParse) 4400 && pExpr->op!=TK_REGISTER 4401 && sqlite3ExprIsConstantNotJoin(pExpr) 4402 ){ 4403 *pReg = 0; 4404 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4405 }else{ 4406 int r1 = sqlite3GetTempReg(pParse); 4407 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4408 if( r2==r1 ){ 4409 *pReg = r1; 4410 }else{ 4411 sqlite3ReleaseTempReg(pParse, r1); 4412 *pReg = 0; 4413 } 4414 } 4415 return r2; 4416 } 4417 4418 /* 4419 ** Generate code that will evaluate expression pExpr and store the 4420 ** results in register target. The results are guaranteed to appear 4421 ** in register target. 4422 */ 4423 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4424 int inReg; 4425 4426 assert( target>0 && target<=pParse->nMem ); 4427 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4428 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4429 if( inReg!=target && pParse->pVdbe ){ 4430 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4431 } 4432 } 4433 4434 /* 4435 ** Make a transient copy of expression pExpr and then code it using 4436 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4437 ** except that the input expression is guaranteed to be unchanged. 4438 */ 4439 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4440 sqlite3 *db = pParse->db; 4441 pExpr = sqlite3ExprDup(db, pExpr, 0); 4442 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4443 sqlite3ExprDelete(db, pExpr); 4444 } 4445 4446 /* 4447 ** Generate code that will evaluate expression pExpr and store the 4448 ** results in register target. The results are guaranteed to appear 4449 ** in register target. If the expression is constant, then this routine 4450 ** might choose to code the expression at initialization time. 4451 */ 4452 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4453 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4454 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4455 }else{ 4456 sqlite3ExprCode(pParse, pExpr, target); 4457 } 4458 } 4459 4460 /* 4461 ** Generate code that pushes the value of every element of the given 4462 ** expression list into a sequence of registers beginning at target. 4463 ** 4464 ** Return the number of elements evaluated. The number returned will 4465 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4466 ** is defined. 4467 ** 4468 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4469 ** filled using OP_SCopy. OP_Copy must be used instead. 4470 ** 4471 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4472 ** factored out into initialization code. 4473 ** 4474 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4475 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4476 ** in registers at srcReg, and so the value can be copied from there. 4477 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4478 ** are simply omitted rather than being copied from srcReg. 4479 */ 4480 int sqlite3ExprCodeExprList( 4481 Parse *pParse, /* Parsing context */ 4482 ExprList *pList, /* The expression list to be coded */ 4483 int target, /* Where to write results */ 4484 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4485 u8 flags /* SQLITE_ECEL_* flags */ 4486 ){ 4487 struct ExprList_item *pItem; 4488 int i, j, n; 4489 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4490 Vdbe *v = pParse->pVdbe; 4491 assert( pList!=0 ); 4492 assert( target>0 ); 4493 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4494 n = pList->nExpr; 4495 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4496 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4497 Expr *pExpr = pItem->pExpr; 4498 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4499 if( pItem->bSorterRef ){ 4500 i--; 4501 n--; 4502 }else 4503 #endif 4504 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4505 if( flags & SQLITE_ECEL_OMITREF ){ 4506 i--; 4507 n--; 4508 }else{ 4509 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4510 } 4511 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4512 && sqlite3ExprIsConstantNotJoin(pExpr) 4513 ){ 4514 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4515 }else{ 4516 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4517 if( inReg!=target+i ){ 4518 VdbeOp *pOp; 4519 if( copyOp==OP_Copy 4520 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4521 && pOp->p1+pOp->p3+1==inReg 4522 && pOp->p2+pOp->p3+1==target+i 4523 ){ 4524 pOp->p3++; 4525 }else{ 4526 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4527 } 4528 } 4529 } 4530 } 4531 return n; 4532 } 4533 4534 /* 4535 ** Generate code for a BETWEEN operator. 4536 ** 4537 ** x BETWEEN y AND z 4538 ** 4539 ** The above is equivalent to 4540 ** 4541 ** x>=y AND x<=z 4542 ** 4543 ** Code it as such, taking care to do the common subexpression 4544 ** elimination of x. 4545 ** 4546 ** The xJumpIf parameter determines details: 4547 ** 4548 ** NULL: Store the boolean result in reg[dest] 4549 ** sqlite3ExprIfTrue: Jump to dest if true 4550 ** sqlite3ExprIfFalse: Jump to dest if false 4551 ** 4552 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4553 */ 4554 static void exprCodeBetween( 4555 Parse *pParse, /* Parsing and code generating context */ 4556 Expr *pExpr, /* The BETWEEN expression */ 4557 int dest, /* Jump destination or storage location */ 4558 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4559 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4560 ){ 4561 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4562 Expr compLeft; /* The x>=y term */ 4563 Expr compRight; /* The x<=z term */ 4564 int regFree1 = 0; /* Temporary use register */ 4565 Expr *pDel = 0; 4566 sqlite3 *db = pParse->db; 4567 4568 memset(&compLeft, 0, sizeof(Expr)); 4569 memset(&compRight, 0, sizeof(Expr)); 4570 memset(&exprAnd, 0, sizeof(Expr)); 4571 4572 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4573 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4574 if( db->mallocFailed==0 ){ 4575 exprAnd.op = TK_AND; 4576 exprAnd.pLeft = &compLeft; 4577 exprAnd.pRight = &compRight; 4578 compLeft.op = TK_GE; 4579 compLeft.pLeft = pDel; 4580 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4581 compRight.op = TK_LE; 4582 compRight.pLeft = pDel; 4583 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4584 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4585 if( xJump ){ 4586 xJump(pParse, &exprAnd, dest, jumpIfNull); 4587 }else{ 4588 /* Mark the expression is being from the ON or USING clause of a join 4589 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4590 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4591 ** for clarity, but we are out of bits in the Expr.flags field so we 4592 ** have to reuse the EP_FromJoin bit. Bummer. */ 4593 pDel->flags |= EP_FromJoin; 4594 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4595 } 4596 sqlite3ReleaseTempReg(pParse, regFree1); 4597 } 4598 sqlite3ExprDelete(db, pDel); 4599 4600 /* Ensure adequate test coverage */ 4601 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4602 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4603 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4604 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4605 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4606 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4607 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4608 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4609 testcase( xJump==0 ); 4610 } 4611 4612 /* 4613 ** Generate code for a boolean expression such that a jump is made 4614 ** to the label "dest" if the expression is true but execution 4615 ** continues straight thru if the expression is false. 4616 ** 4617 ** If the expression evaluates to NULL (neither true nor false), then 4618 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4619 ** 4620 ** This code depends on the fact that certain token values (ex: TK_EQ) 4621 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4622 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4623 ** the make process cause these values to align. Assert()s in the code 4624 ** below verify that the numbers are aligned correctly. 4625 */ 4626 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4627 Vdbe *v = pParse->pVdbe; 4628 int op = 0; 4629 int regFree1 = 0; 4630 int regFree2 = 0; 4631 int r1, r2; 4632 4633 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4634 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4635 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4636 op = pExpr->op; 4637 switch( op ){ 4638 case TK_AND: 4639 case TK_OR: { 4640 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4641 if( pAlt!=pExpr ){ 4642 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4643 }else if( op==TK_AND ){ 4644 int d2 = sqlite3VdbeMakeLabel(pParse); 4645 testcase( jumpIfNull==0 ); 4646 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4647 jumpIfNull^SQLITE_JUMPIFNULL); 4648 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4649 sqlite3VdbeResolveLabel(v, d2); 4650 }else{ 4651 testcase( jumpIfNull==0 ); 4652 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4653 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4654 } 4655 break; 4656 } 4657 case TK_NOT: { 4658 testcase( jumpIfNull==0 ); 4659 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4660 break; 4661 } 4662 case TK_TRUTH: { 4663 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4664 int isTrue; /* IS TRUE or IS NOT TRUE */ 4665 testcase( jumpIfNull==0 ); 4666 isNot = pExpr->op2==TK_ISNOT; 4667 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4668 testcase( isTrue && isNot ); 4669 testcase( !isTrue && isNot ); 4670 if( isTrue ^ isNot ){ 4671 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4672 isNot ? SQLITE_JUMPIFNULL : 0); 4673 }else{ 4674 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4675 isNot ? SQLITE_JUMPIFNULL : 0); 4676 } 4677 break; 4678 } 4679 case TK_IS: 4680 case TK_ISNOT: 4681 testcase( op==TK_IS ); 4682 testcase( op==TK_ISNOT ); 4683 op = (op==TK_IS) ? TK_EQ : TK_NE; 4684 jumpIfNull = SQLITE_NULLEQ; 4685 /* Fall thru */ 4686 case TK_LT: 4687 case TK_LE: 4688 case TK_GT: 4689 case TK_GE: 4690 case TK_NE: 4691 case TK_EQ: { 4692 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4693 testcase( jumpIfNull==0 ); 4694 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4695 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4696 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4697 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4698 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4699 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4700 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4701 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4702 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4703 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4704 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4705 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4706 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4707 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4708 testcase( regFree1==0 ); 4709 testcase( regFree2==0 ); 4710 break; 4711 } 4712 case TK_ISNULL: 4713 case TK_NOTNULL: { 4714 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4715 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4716 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4717 sqlite3VdbeAddOp2(v, op, r1, dest); 4718 VdbeCoverageIf(v, op==TK_ISNULL); 4719 VdbeCoverageIf(v, op==TK_NOTNULL); 4720 testcase( regFree1==0 ); 4721 break; 4722 } 4723 case TK_BETWEEN: { 4724 testcase( jumpIfNull==0 ); 4725 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4726 break; 4727 } 4728 #ifndef SQLITE_OMIT_SUBQUERY 4729 case TK_IN: { 4730 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4731 int destIfNull = jumpIfNull ? dest : destIfFalse; 4732 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4733 sqlite3VdbeGoto(v, dest); 4734 sqlite3VdbeResolveLabel(v, destIfFalse); 4735 break; 4736 } 4737 #endif 4738 default: { 4739 default_expr: 4740 if( ExprAlwaysTrue(pExpr) ){ 4741 sqlite3VdbeGoto(v, dest); 4742 }else if( ExprAlwaysFalse(pExpr) ){ 4743 /* No-op */ 4744 }else{ 4745 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4746 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4747 VdbeCoverage(v); 4748 testcase( regFree1==0 ); 4749 testcase( jumpIfNull==0 ); 4750 } 4751 break; 4752 } 4753 } 4754 sqlite3ReleaseTempReg(pParse, regFree1); 4755 sqlite3ReleaseTempReg(pParse, regFree2); 4756 } 4757 4758 /* 4759 ** Generate code for a boolean expression such that a jump is made 4760 ** to the label "dest" if the expression is false but execution 4761 ** continues straight thru if the expression is true. 4762 ** 4763 ** If the expression evaluates to NULL (neither true nor false) then 4764 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4765 ** is 0. 4766 */ 4767 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4768 Vdbe *v = pParse->pVdbe; 4769 int op = 0; 4770 int regFree1 = 0; 4771 int regFree2 = 0; 4772 int r1, r2; 4773 4774 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4775 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4776 if( pExpr==0 ) return; 4777 4778 /* The value of pExpr->op and op are related as follows: 4779 ** 4780 ** pExpr->op op 4781 ** --------- ---------- 4782 ** TK_ISNULL OP_NotNull 4783 ** TK_NOTNULL OP_IsNull 4784 ** TK_NE OP_Eq 4785 ** TK_EQ OP_Ne 4786 ** TK_GT OP_Le 4787 ** TK_LE OP_Gt 4788 ** TK_GE OP_Lt 4789 ** TK_LT OP_Ge 4790 ** 4791 ** For other values of pExpr->op, op is undefined and unused. 4792 ** The value of TK_ and OP_ constants are arranged such that we 4793 ** can compute the mapping above using the following expression. 4794 ** Assert()s verify that the computation is correct. 4795 */ 4796 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4797 4798 /* Verify correct alignment of TK_ and OP_ constants 4799 */ 4800 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4801 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4802 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4803 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4804 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4805 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4806 assert( pExpr->op!=TK_GT || op==OP_Le ); 4807 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4808 4809 switch( pExpr->op ){ 4810 case TK_AND: 4811 case TK_OR: { 4812 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4813 if( pAlt!=pExpr ){ 4814 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4815 }else if( pExpr->op==TK_AND ){ 4816 testcase( jumpIfNull==0 ); 4817 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4818 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4819 }else{ 4820 int d2 = sqlite3VdbeMakeLabel(pParse); 4821 testcase( jumpIfNull==0 ); 4822 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4823 jumpIfNull^SQLITE_JUMPIFNULL); 4824 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4825 sqlite3VdbeResolveLabel(v, d2); 4826 } 4827 break; 4828 } 4829 case TK_NOT: { 4830 testcase( jumpIfNull==0 ); 4831 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4832 break; 4833 } 4834 case TK_TRUTH: { 4835 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4836 int isTrue; /* IS TRUE or IS NOT TRUE */ 4837 testcase( jumpIfNull==0 ); 4838 isNot = pExpr->op2==TK_ISNOT; 4839 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4840 testcase( isTrue && isNot ); 4841 testcase( !isTrue && isNot ); 4842 if( isTrue ^ isNot ){ 4843 /* IS TRUE and IS NOT FALSE */ 4844 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4845 isNot ? 0 : SQLITE_JUMPIFNULL); 4846 4847 }else{ 4848 /* IS FALSE and IS NOT TRUE */ 4849 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4850 isNot ? 0 : SQLITE_JUMPIFNULL); 4851 } 4852 break; 4853 } 4854 case TK_IS: 4855 case TK_ISNOT: 4856 testcase( pExpr->op==TK_IS ); 4857 testcase( pExpr->op==TK_ISNOT ); 4858 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4859 jumpIfNull = SQLITE_NULLEQ; 4860 /* Fall thru */ 4861 case TK_LT: 4862 case TK_LE: 4863 case TK_GT: 4864 case TK_GE: 4865 case TK_NE: 4866 case TK_EQ: { 4867 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4868 testcase( jumpIfNull==0 ); 4869 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4870 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4871 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4872 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 4873 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4874 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4875 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4876 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4877 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4878 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4879 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4880 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4881 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4882 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4883 testcase( regFree1==0 ); 4884 testcase( regFree2==0 ); 4885 break; 4886 } 4887 case TK_ISNULL: 4888 case TK_NOTNULL: { 4889 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4890 sqlite3VdbeAddOp2(v, op, r1, dest); 4891 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4892 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4893 testcase( regFree1==0 ); 4894 break; 4895 } 4896 case TK_BETWEEN: { 4897 testcase( jumpIfNull==0 ); 4898 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4899 break; 4900 } 4901 #ifndef SQLITE_OMIT_SUBQUERY 4902 case TK_IN: { 4903 if( jumpIfNull ){ 4904 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4905 }else{ 4906 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4907 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4908 sqlite3VdbeResolveLabel(v, destIfNull); 4909 } 4910 break; 4911 } 4912 #endif 4913 default: { 4914 default_expr: 4915 if( ExprAlwaysFalse(pExpr) ){ 4916 sqlite3VdbeGoto(v, dest); 4917 }else if( ExprAlwaysTrue(pExpr) ){ 4918 /* no-op */ 4919 }else{ 4920 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4921 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4922 VdbeCoverage(v); 4923 testcase( regFree1==0 ); 4924 testcase( jumpIfNull==0 ); 4925 } 4926 break; 4927 } 4928 } 4929 sqlite3ReleaseTempReg(pParse, regFree1); 4930 sqlite3ReleaseTempReg(pParse, regFree2); 4931 } 4932 4933 /* 4934 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4935 ** code generation, and that copy is deleted after code generation. This 4936 ** ensures that the original pExpr is unchanged. 4937 */ 4938 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4939 sqlite3 *db = pParse->db; 4940 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4941 if( db->mallocFailed==0 ){ 4942 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4943 } 4944 sqlite3ExprDelete(db, pCopy); 4945 } 4946 4947 /* 4948 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4949 ** type of expression. 4950 ** 4951 ** If pExpr is a simple SQL value - an integer, real, string, blob 4952 ** or NULL value - then the VDBE currently being prepared is configured 4953 ** to re-prepare each time a new value is bound to variable pVar. 4954 ** 4955 ** Additionally, if pExpr is a simple SQL value and the value is the 4956 ** same as that currently bound to variable pVar, non-zero is returned. 4957 ** Otherwise, if the values are not the same or if pExpr is not a simple 4958 ** SQL value, zero is returned. 4959 */ 4960 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4961 int res = 0; 4962 int iVar; 4963 sqlite3_value *pL, *pR = 0; 4964 4965 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4966 if( pR ){ 4967 iVar = pVar->iColumn; 4968 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4969 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4970 if( pL ){ 4971 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4972 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4973 } 4974 res = 0==sqlite3MemCompare(pL, pR, 0); 4975 } 4976 sqlite3ValueFree(pR); 4977 sqlite3ValueFree(pL); 4978 } 4979 4980 return res; 4981 } 4982 4983 /* 4984 ** Do a deep comparison of two expression trees. Return 0 if the two 4985 ** expressions are completely identical. Return 1 if they differ only 4986 ** by a COLLATE operator at the top level. Return 2 if there are differences 4987 ** other than the top-level COLLATE operator. 4988 ** 4989 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4990 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4991 ** 4992 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4993 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4994 ** 4995 ** Sometimes this routine will return 2 even if the two expressions 4996 ** really are equivalent. If we cannot prove that the expressions are 4997 ** identical, we return 2 just to be safe. So if this routine 4998 ** returns 2, then you do not really know for certain if the two 4999 ** expressions are the same. But if you get a 0 or 1 return, then you 5000 ** can be sure the expressions are the same. In the places where 5001 ** this routine is used, it does not hurt to get an extra 2 - that 5002 ** just might result in some slightly slower code. But returning 5003 ** an incorrect 0 or 1 could lead to a malfunction. 5004 ** 5005 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5006 ** pParse->pReprepare can be matched against literals in pB. The 5007 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5008 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5009 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5010 ** pB causes a return value of 2. 5011 */ 5012 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5013 u32 combinedFlags; 5014 if( pA==0 || pB==0 ){ 5015 return pB==pA ? 0 : 2; 5016 } 5017 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5018 return 0; 5019 } 5020 combinedFlags = pA->flags | pB->flags; 5021 if( combinedFlags & EP_IntValue ){ 5022 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5023 return 0; 5024 } 5025 return 2; 5026 } 5027 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5028 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5029 return 1; 5030 } 5031 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5032 return 1; 5033 } 5034 return 2; 5035 } 5036 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5037 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5038 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5039 #ifndef SQLITE_OMIT_WINDOWFUNC 5040 assert( pA->op==pB->op ); 5041 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5042 return 2; 5043 } 5044 if( ExprHasProperty(pA,EP_WinFunc) ){ 5045 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5046 return 2; 5047 } 5048 } 5049 #endif 5050 }else if( pA->op==TK_NULL ){ 5051 return 0; 5052 }else if( pA->op==TK_COLLATE ){ 5053 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5054 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5055 return 2; 5056 } 5057 } 5058 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5059 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5060 if( (combinedFlags & EP_TokenOnly)==0 ){ 5061 if( combinedFlags & EP_xIsSelect ) return 2; 5062 if( (combinedFlags & EP_FixedCol)==0 5063 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5064 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5065 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5066 if( pA->op!=TK_STRING 5067 && pA->op!=TK_TRUEFALSE 5068 && (combinedFlags & EP_Reduced)==0 5069 ){ 5070 if( pA->iColumn!=pB->iColumn ) return 2; 5071 if( pA->op2!=pB->op2 ){ 5072 if( pA->op==TK_TRUTH ) return 2; 5073 if( pA->op==TK_FUNCTION && iTab<0 ){ 5074 /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') )); 5075 ** INSERT INTO t1(a) VALUES(julianday('now')+10); 5076 ** Without this test, sqlite3ExprCodeAtInit() will run on the 5077 ** the julianday() of INSERT first, and remember that expression. 5078 ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK 5079 ** constraint as redundant, reusing the one from the INSERT, even 5080 ** though the julianday() in INSERT lacks the critical NC_IsCheck 5081 ** flag. See ticket [830277d9db6c3ba1] (2019-10-30) 5082 */ 5083 return 2; 5084 } 5085 } 5086 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5087 return 2; 5088 } 5089 } 5090 } 5091 return 0; 5092 } 5093 5094 /* 5095 ** Compare two ExprList objects. Return 0 if they are identical and 5096 ** non-zero if they differ in any way. 5097 ** 5098 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5099 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5100 ** 5101 ** This routine might return non-zero for equivalent ExprLists. The 5102 ** only consequence will be disabled optimizations. But this routine 5103 ** must never return 0 if the two ExprList objects are different, or 5104 ** a malfunction will result. 5105 ** 5106 ** Two NULL pointers are considered to be the same. But a NULL pointer 5107 ** always differs from a non-NULL pointer. 5108 */ 5109 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5110 int i; 5111 if( pA==0 && pB==0 ) return 0; 5112 if( pA==0 || pB==0 ) return 1; 5113 if( pA->nExpr!=pB->nExpr ) return 1; 5114 for(i=0; i<pA->nExpr; i++){ 5115 Expr *pExprA = pA->a[i].pExpr; 5116 Expr *pExprB = pB->a[i].pExpr; 5117 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5118 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 5119 } 5120 return 0; 5121 } 5122 5123 /* 5124 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5125 ** are ignored. 5126 */ 5127 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5128 return sqlite3ExprCompare(0, 5129 sqlite3ExprSkipCollateAndLikely(pA), 5130 sqlite3ExprSkipCollateAndLikely(pB), 5131 iTab); 5132 } 5133 5134 /* 5135 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5136 ** 5137 ** Or if seenNot is true, return non-zero if Expr p can only be 5138 ** non-NULL if pNN is not NULL 5139 */ 5140 static int exprImpliesNotNull( 5141 Parse *pParse, /* Parsing context */ 5142 Expr *p, /* The expression to be checked */ 5143 Expr *pNN, /* The expression that is NOT NULL */ 5144 int iTab, /* Table being evaluated */ 5145 int seenNot /* Return true only if p can be any non-NULL value */ 5146 ){ 5147 assert( p ); 5148 assert( pNN ); 5149 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5150 return pNN->op!=TK_NULL; 5151 } 5152 switch( p->op ){ 5153 case TK_IN: { 5154 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5155 assert( ExprHasProperty(p,EP_xIsSelect) 5156 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5157 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5158 } 5159 case TK_BETWEEN: { 5160 ExprList *pList = p->x.pList; 5161 assert( pList!=0 ); 5162 assert( pList->nExpr==2 ); 5163 if( seenNot ) return 0; 5164 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5165 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5166 ){ 5167 return 1; 5168 } 5169 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5170 } 5171 case TK_EQ: 5172 case TK_NE: 5173 case TK_LT: 5174 case TK_LE: 5175 case TK_GT: 5176 case TK_GE: 5177 case TK_PLUS: 5178 case TK_MINUS: 5179 case TK_BITOR: 5180 case TK_LSHIFT: 5181 case TK_RSHIFT: 5182 case TK_CONCAT: 5183 seenNot = 1; 5184 /* Fall thru */ 5185 case TK_STAR: 5186 case TK_REM: 5187 case TK_BITAND: 5188 case TK_SLASH: { 5189 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5190 /* Fall thru into the next case */ 5191 } 5192 case TK_SPAN: 5193 case TK_COLLATE: 5194 case TK_UPLUS: 5195 case TK_UMINUS: { 5196 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5197 } 5198 case TK_TRUTH: { 5199 if( seenNot ) return 0; 5200 if( p->op2!=TK_IS ) return 0; 5201 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5202 } 5203 case TK_BITNOT: 5204 case TK_NOT: { 5205 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5206 } 5207 } 5208 return 0; 5209 } 5210 5211 /* 5212 ** Return true if we can prove the pE2 will always be true if pE1 is 5213 ** true. Return false if we cannot complete the proof or if pE2 might 5214 ** be false. Examples: 5215 ** 5216 ** pE1: x==5 pE2: x==5 Result: true 5217 ** pE1: x>0 pE2: x==5 Result: false 5218 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5219 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5220 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5221 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5222 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5223 ** 5224 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5225 ** Expr.iTable<0 then assume a table number given by iTab. 5226 ** 5227 ** If pParse is not NULL, then the values of bound variables in pE1 are 5228 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5229 ** modified to record which bound variables are referenced. If pParse 5230 ** is NULL, then false will be returned if pE1 contains any bound variables. 5231 ** 5232 ** When in doubt, return false. Returning true might give a performance 5233 ** improvement. Returning false might cause a performance reduction, but 5234 ** it will always give the correct answer and is hence always safe. 5235 */ 5236 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5237 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5238 return 1; 5239 } 5240 if( pE2->op==TK_OR 5241 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5242 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5243 ){ 5244 return 1; 5245 } 5246 if( pE2->op==TK_NOTNULL 5247 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5248 ){ 5249 return 1; 5250 } 5251 return 0; 5252 } 5253 5254 /* 5255 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5256 ** If the expression node requires that the table at pWalker->iCur 5257 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5258 ** 5259 ** This routine controls an optimization. False positives (setting 5260 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5261 ** (never setting pWalker->eCode) is a harmless missed optimization. 5262 */ 5263 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5264 testcase( pExpr->op==TK_AGG_COLUMN ); 5265 testcase( pExpr->op==TK_AGG_FUNCTION ); 5266 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5267 switch( pExpr->op ){ 5268 case TK_ISNOT: 5269 case TK_ISNULL: 5270 case TK_NOTNULL: 5271 case TK_IS: 5272 case TK_OR: 5273 case TK_VECTOR: 5274 case TK_CASE: 5275 case TK_IN: 5276 case TK_FUNCTION: 5277 case TK_TRUTH: 5278 testcase( pExpr->op==TK_ISNOT ); 5279 testcase( pExpr->op==TK_ISNULL ); 5280 testcase( pExpr->op==TK_NOTNULL ); 5281 testcase( pExpr->op==TK_IS ); 5282 testcase( pExpr->op==TK_OR ); 5283 testcase( pExpr->op==TK_VECTOR ); 5284 testcase( pExpr->op==TK_CASE ); 5285 testcase( pExpr->op==TK_IN ); 5286 testcase( pExpr->op==TK_FUNCTION ); 5287 testcase( pExpr->op==TK_TRUTH ); 5288 return WRC_Prune; 5289 case TK_COLUMN: 5290 if( pWalker->u.iCur==pExpr->iTable ){ 5291 pWalker->eCode = 1; 5292 return WRC_Abort; 5293 } 5294 return WRC_Prune; 5295 5296 case TK_AND: 5297 assert( pWalker->eCode==0 ); 5298 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5299 if( pWalker->eCode ){ 5300 pWalker->eCode = 0; 5301 sqlite3WalkExpr(pWalker, pExpr->pRight); 5302 } 5303 return WRC_Prune; 5304 5305 case TK_BETWEEN: 5306 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5307 assert( pWalker->eCode ); 5308 return WRC_Abort; 5309 } 5310 return WRC_Prune; 5311 5312 /* Virtual tables are allowed to use constraints like x=NULL. So 5313 ** a term of the form x=y does not prove that y is not null if x 5314 ** is the column of a virtual table */ 5315 case TK_EQ: 5316 case TK_NE: 5317 case TK_LT: 5318 case TK_LE: 5319 case TK_GT: 5320 case TK_GE: 5321 testcase( pExpr->op==TK_EQ ); 5322 testcase( pExpr->op==TK_NE ); 5323 testcase( pExpr->op==TK_LT ); 5324 testcase( pExpr->op==TK_LE ); 5325 testcase( pExpr->op==TK_GT ); 5326 testcase( pExpr->op==TK_GE ); 5327 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5328 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5329 ){ 5330 return WRC_Prune; 5331 } 5332 5333 default: 5334 return WRC_Continue; 5335 } 5336 } 5337 5338 /* 5339 ** Return true (non-zero) if expression p can only be true if at least 5340 ** one column of table iTab is non-null. In other words, return true 5341 ** if expression p will always be NULL or false if every column of iTab 5342 ** is NULL. 5343 ** 5344 ** False negatives are acceptable. In other words, it is ok to return 5345 ** zero even if expression p will never be true of every column of iTab 5346 ** is NULL. A false negative is merely a missed optimization opportunity. 5347 ** 5348 ** False positives are not allowed, however. A false positive may result 5349 ** in an incorrect answer. 5350 ** 5351 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5352 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5353 ** 5354 ** This routine is used to check if a LEFT JOIN can be converted into 5355 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5356 ** clause requires that some column of the right table of the LEFT JOIN 5357 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5358 ** ordinary join. 5359 */ 5360 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5361 Walker w; 5362 p = sqlite3ExprSkipCollateAndLikely(p); 5363 if( p==0 ) return 0; 5364 if( p->op==TK_NOTNULL ){ 5365 p = p->pLeft; 5366 }else{ 5367 while( p->op==TK_AND ){ 5368 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5369 p = p->pRight; 5370 } 5371 } 5372 w.xExprCallback = impliesNotNullRow; 5373 w.xSelectCallback = 0; 5374 w.xSelectCallback2 = 0; 5375 w.eCode = 0; 5376 w.u.iCur = iTab; 5377 sqlite3WalkExpr(&w, p); 5378 return w.eCode; 5379 } 5380 5381 /* 5382 ** An instance of the following structure is used by the tree walker 5383 ** to determine if an expression can be evaluated by reference to the 5384 ** index only, without having to do a search for the corresponding 5385 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5386 ** is the cursor for the table. 5387 */ 5388 struct IdxCover { 5389 Index *pIdx; /* The index to be tested for coverage */ 5390 int iCur; /* Cursor number for the table corresponding to the index */ 5391 }; 5392 5393 /* 5394 ** Check to see if there are references to columns in table 5395 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5396 ** pWalker->u.pIdxCover->pIdx. 5397 */ 5398 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5399 if( pExpr->op==TK_COLUMN 5400 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5401 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5402 ){ 5403 pWalker->eCode = 1; 5404 return WRC_Abort; 5405 } 5406 return WRC_Continue; 5407 } 5408 5409 /* 5410 ** Determine if an index pIdx on table with cursor iCur contains will 5411 ** the expression pExpr. Return true if the index does cover the 5412 ** expression and false if the pExpr expression references table columns 5413 ** that are not found in the index pIdx. 5414 ** 5415 ** An index covering an expression means that the expression can be 5416 ** evaluated using only the index and without having to lookup the 5417 ** corresponding table entry. 5418 */ 5419 int sqlite3ExprCoveredByIndex( 5420 Expr *pExpr, /* The index to be tested */ 5421 int iCur, /* The cursor number for the corresponding table */ 5422 Index *pIdx /* The index that might be used for coverage */ 5423 ){ 5424 Walker w; 5425 struct IdxCover xcov; 5426 memset(&w, 0, sizeof(w)); 5427 xcov.iCur = iCur; 5428 xcov.pIdx = pIdx; 5429 w.xExprCallback = exprIdxCover; 5430 w.u.pIdxCover = &xcov; 5431 sqlite3WalkExpr(&w, pExpr); 5432 return !w.eCode; 5433 } 5434 5435 5436 /* 5437 ** An instance of the following structure is used by the tree walker 5438 ** to count references to table columns in the arguments of an 5439 ** aggregate function, in order to implement the 5440 ** sqlite3FunctionThisSrc() routine. 5441 */ 5442 struct SrcCount { 5443 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5444 int nThis; /* Number of references to columns in pSrcList */ 5445 int nOther; /* Number of references to columns in other FROM clauses */ 5446 }; 5447 5448 /* 5449 ** Count the number of references to columns. 5450 */ 5451 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5452 /* There was once a NEVER() on the second term on the grounds that 5453 ** sqlite3FunctionUsesThisSrc() was always called before 5454 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5455 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5456 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5457 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5458 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5459 int i; 5460 struct SrcCount *p = pWalker->u.pSrcCount; 5461 SrcList *pSrc = p->pSrc; 5462 int nSrc = pSrc ? pSrc->nSrc : 0; 5463 for(i=0; i<nSrc; i++){ 5464 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5465 } 5466 if( i<nSrc ){ 5467 p->nThis++; 5468 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5469 /* In a well-formed parse tree (no name resolution errors), 5470 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5471 ** outer context. Those are the only ones to count as "other" */ 5472 p->nOther++; 5473 } 5474 } 5475 return WRC_Continue; 5476 } 5477 5478 /* 5479 ** Determine if any of the arguments to the pExpr Function reference 5480 ** pSrcList. Return true if they do. Also return true if the function 5481 ** has no arguments or has only constant arguments. Return false if pExpr 5482 ** references columns but not columns of tables found in pSrcList. 5483 */ 5484 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5485 Walker w; 5486 struct SrcCount cnt; 5487 assert( pExpr->op==TK_AGG_FUNCTION ); 5488 memset(&w, 0, sizeof(w)); 5489 w.xExprCallback = exprSrcCount; 5490 w.xSelectCallback = sqlite3SelectWalkNoop; 5491 w.u.pSrcCount = &cnt; 5492 cnt.pSrc = pSrcList; 5493 cnt.nThis = 0; 5494 cnt.nOther = 0; 5495 sqlite3WalkExprList(&w, pExpr->x.pList); 5496 #ifndef SQLITE_OMIT_WINDOWFUNC 5497 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5498 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5499 } 5500 #endif 5501 return cnt.nThis>0 || cnt.nOther==0; 5502 } 5503 5504 /* 5505 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5506 ** the new element. Return a negative number if malloc fails. 5507 */ 5508 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5509 int i; 5510 pInfo->aCol = sqlite3ArrayAllocate( 5511 db, 5512 pInfo->aCol, 5513 sizeof(pInfo->aCol[0]), 5514 &pInfo->nColumn, 5515 &i 5516 ); 5517 return i; 5518 } 5519 5520 /* 5521 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5522 ** the new element. Return a negative number if malloc fails. 5523 */ 5524 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5525 int i; 5526 pInfo->aFunc = sqlite3ArrayAllocate( 5527 db, 5528 pInfo->aFunc, 5529 sizeof(pInfo->aFunc[0]), 5530 &pInfo->nFunc, 5531 &i 5532 ); 5533 return i; 5534 } 5535 5536 /* 5537 ** This is the xExprCallback for a tree walker. It is used to 5538 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5539 ** for additional information. 5540 */ 5541 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5542 int i; 5543 NameContext *pNC = pWalker->u.pNC; 5544 Parse *pParse = pNC->pParse; 5545 SrcList *pSrcList = pNC->pSrcList; 5546 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5547 5548 assert( pNC->ncFlags & NC_UAggInfo ); 5549 switch( pExpr->op ){ 5550 case TK_AGG_COLUMN: 5551 case TK_COLUMN: { 5552 testcase( pExpr->op==TK_AGG_COLUMN ); 5553 testcase( pExpr->op==TK_COLUMN ); 5554 /* Check to see if the column is in one of the tables in the FROM 5555 ** clause of the aggregate query */ 5556 if( ALWAYS(pSrcList!=0) ){ 5557 struct SrcList_item *pItem = pSrcList->a; 5558 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5559 struct AggInfo_col *pCol; 5560 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5561 if( pExpr->iTable==pItem->iCursor ){ 5562 /* If we reach this point, it means that pExpr refers to a table 5563 ** that is in the FROM clause of the aggregate query. 5564 ** 5565 ** Make an entry for the column in pAggInfo->aCol[] if there 5566 ** is not an entry there already. 5567 */ 5568 int k; 5569 pCol = pAggInfo->aCol; 5570 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5571 if( pCol->iTable==pExpr->iTable && 5572 pCol->iColumn==pExpr->iColumn ){ 5573 break; 5574 } 5575 } 5576 if( (k>=pAggInfo->nColumn) 5577 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5578 ){ 5579 pCol = &pAggInfo->aCol[k]; 5580 pCol->pTab = pExpr->y.pTab; 5581 pCol->iTable = pExpr->iTable; 5582 pCol->iColumn = pExpr->iColumn; 5583 pCol->iMem = ++pParse->nMem; 5584 pCol->iSorterColumn = -1; 5585 pCol->pExpr = pExpr; 5586 if( pAggInfo->pGroupBy ){ 5587 int j, n; 5588 ExprList *pGB = pAggInfo->pGroupBy; 5589 struct ExprList_item *pTerm = pGB->a; 5590 n = pGB->nExpr; 5591 for(j=0; j<n; j++, pTerm++){ 5592 Expr *pE = pTerm->pExpr; 5593 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5594 pE->iColumn==pExpr->iColumn ){ 5595 pCol->iSorterColumn = j; 5596 break; 5597 } 5598 } 5599 } 5600 if( pCol->iSorterColumn<0 ){ 5601 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5602 } 5603 } 5604 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5605 ** because it was there before or because we just created it). 5606 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5607 ** pAggInfo->aCol[] entry. 5608 */ 5609 ExprSetVVAProperty(pExpr, EP_NoReduce); 5610 pExpr->pAggInfo = pAggInfo; 5611 pExpr->op = TK_AGG_COLUMN; 5612 pExpr->iAgg = (i16)k; 5613 break; 5614 } /* endif pExpr->iTable==pItem->iCursor */ 5615 } /* end loop over pSrcList */ 5616 } 5617 return WRC_Prune; 5618 } 5619 case TK_AGG_FUNCTION: { 5620 if( (pNC->ncFlags & NC_InAggFunc)==0 5621 && pWalker->walkerDepth==pExpr->op2 5622 ){ 5623 /* Check to see if pExpr is a duplicate of another aggregate 5624 ** function that is already in the pAggInfo structure 5625 */ 5626 struct AggInfo_func *pItem = pAggInfo->aFunc; 5627 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5628 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5629 break; 5630 } 5631 } 5632 if( i>=pAggInfo->nFunc ){ 5633 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5634 */ 5635 u8 enc = ENC(pParse->db); 5636 i = addAggInfoFunc(pParse->db, pAggInfo); 5637 if( i>=0 ){ 5638 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5639 pItem = &pAggInfo->aFunc[i]; 5640 pItem->pExpr = pExpr; 5641 pItem->iMem = ++pParse->nMem; 5642 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5643 pItem->pFunc = sqlite3FindFunction(pParse->db, 5644 pExpr->u.zToken, 5645 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5646 if( pExpr->flags & EP_Distinct ){ 5647 pItem->iDistinct = pParse->nTab++; 5648 }else{ 5649 pItem->iDistinct = -1; 5650 } 5651 } 5652 } 5653 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5654 */ 5655 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5656 ExprSetVVAProperty(pExpr, EP_NoReduce); 5657 pExpr->iAgg = (i16)i; 5658 pExpr->pAggInfo = pAggInfo; 5659 return WRC_Prune; 5660 }else{ 5661 return WRC_Continue; 5662 } 5663 } 5664 } 5665 return WRC_Continue; 5666 } 5667 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5668 UNUSED_PARAMETER(pSelect); 5669 pWalker->walkerDepth++; 5670 return WRC_Continue; 5671 } 5672 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5673 UNUSED_PARAMETER(pSelect); 5674 pWalker->walkerDepth--; 5675 } 5676 5677 /* 5678 ** Analyze the pExpr expression looking for aggregate functions and 5679 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5680 ** points to. Additional entries are made on the AggInfo object as 5681 ** necessary. 5682 ** 5683 ** This routine should only be called after the expression has been 5684 ** analyzed by sqlite3ResolveExprNames(). 5685 */ 5686 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5687 Walker w; 5688 w.xExprCallback = analyzeAggregate; 5689 w.xSelectCallback = analyzeAggregatesInSelect; 5690 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5691 w.walkerDepth = 0; 5692 w.u.pNC = pNC; 5693 w.pParse = 0; 5694 assert( pNC->pSrcList!=0 ); 5695 sqlite3WalkExpr(&w, pExpr); 5696 } 5697 5698 /* 5699 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5700 ** expression list. Return the number of errors. 5701 ** 5702 ** If an error is found, the analysis is cut short. 5703 */ 5704 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5705 struct ExprList_item *pItem; 5706 int i; 5707 if( pList ){ 5708 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5709 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5710 } 5711 } 5712 } 5713 5714 /* 5715 ** Allocate a single new register for use to hold some intermediate result. 5716 */ 5717 int sqlite3GetTempReg(Parse *pParse){ 5718 if( pParse->nTempReg==0 ){ 5719 return ++pParse->nMem; 5720 } 5721 return pParse->aTempReg[--pParse->nTempReg]; 5722 } 5723 5724 /* 5725 ** Deallocate a register, making available for reuse for some other 5726 ** purpose. 5727 */ 5728 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5729 if( iReg ){ 5730 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0); 5731 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5732 pParse->aTempReg[pParse->nTempReg++] = iReg; 5733 } 5734 } 5735 } 5736 5737 /* 5738 ** Allocate or deallocate a block of nReg consecutive registers. 5739 */ 5740 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5741 int i, n; 5742 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5743 i = pParse->iRangeReg; 5744 n = pParse->nRangeReg; 5745 if( nReg<=n ){ 5746 pParse->iRangeReg += nReg; 5747 pParse->nRangeReg -= nReg; 5748 }else{ 5749 i = pParse->nMem+1; 5750 pParse->nMem += nReg; 5751 } 5752 return i; 5753 } 5754 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5755 if( nReg==1 ){ 5756 sqlite3ReleaseTempReg(pParse, iReg); 5757 return; 5758 } 5759 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0); 5760 if( nReg>pParse->nRangeReg ){ 5761 pParse->nRangeReg = nReg; 5762 pParse->iRangeReg = iReg; 5763 } 5764 } 5765 5766 /* 5767 ** Mark all temporary registers as being unavailable for reuse. 5768 ** 5769 ** Always invoke this procedure after coding a subroutine or co-routine 5770 ** that might be invoked from other parts of the code, to ensure that 5771 ** the sub/co-routine does not use registers in common with the code that 5772 ** invokes the sub/co-routine. 5773 */ 5774 void sqlite3ClearTempRegCache(Parse *pParse){ 5775 pParse->nTempReg = 0; 5776 pParse->nRangeReg = 0; 5777 } 5778 5779 /* 5780 ** Validate that no temporary register falls within the range of 5781 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5782 ** statements. 5783 */ 5784 #ifdef SQLITE_DEBUG 5785 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5786 int i; 5787 if( pParse->nRangeReg>0 5788 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5789 && pParse->iRangeReg <= iLast 5790 ){ 5791 return 0; 5792 } 5793 for(i=0; i<pParse->nTempReg; i++){ 5794 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5795 return 0; 5796 } 5797 } 5798 return 1; 5799 } 5800 #endif /* SQLITE_DEBUG */ 5801