xref: /sqlite-3.40.0/src/expr.c (revision 29368eab)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip) ){
48     assert( pExpr->op==TK_COLLATE );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
56   }
57   if( op==TK_REGISTER ) op = pExpr->op2;
58 #ifndef SQLITE_OMIT_CAST
59   if( op==TK_CAST ){
60     assert( !ExprHasProperty(pExpr, EP_IntValue) );
61     return sqlite3AffinityType(pExpr->u.zToken, 0);
62   }
63 #endif
64   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
65     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
66   }
67   if( op==TK_SELECT_COLUMN ){
68     assert( pExpr->pLeft->flags&EP_xIsSelect );
69     return sqlite3ExprAffinity(
70         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
71     );
72   }
73   if( op==TK_VECTOR ){
74     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
75   }
76   return pExpr->affExpr;
77 }
78 
79 /*
80 ** Set the collating sequence for expression pExpr to be the collating
81 ** sequence named by pToken.   Return a pointer to a new Expr node that
82 ** implements the COLLATE operator.
83 **
84 ** If a memory allocation error occurs, that fact is recorded in pParse->db
85 ** and the pExpr parameter is returned unchanged.
86 */
87 Expr *sqlite3ExprAddCollateToken(
88   Parse *pParse,           /* Parsing context */
89   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
90   const Token *pCollName,  /* Name of collating sequence */
91   int dequote              /* True to dequote pCollName */
92 ){
93   if( pCollName->n>0 ){
94     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
95     if( pNew ){
96       pNew->pLeft = pExpr;
97       pNew->flags |= EP_Collate|EP_Skip;
98       pExpr = pNew;
99     }
100   }
101   return pExpr;
102 }
103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
104   Token s;
105   assert( zC!=0 );
106   sqlite3TokenInit(&s, (char*)zC);
107   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
108 }
109 
110 /*
111 ** Skip over any TK_COLLATE operators.
112 */
113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
114   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
115     assert( pExpr->op==TK_COLLATE );
116     pExpr = pExpr->pLeft;
117   }
118   return pExpr;
119 }
120 
121 /*
122 ** Skip over any TK_COLLATE operators and/or any unlikely()
123 ** or likelihood() or likely() functions at the root of an
124 ** expression.
125 */
126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
127   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
128     if( ExprHasProperty(pExpr, EP_Unlikely) ){
129       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
130       assert( pExpr->x.pList->nExpr>0 );
131       assert( pExpr->op==TK_FUNCTION );
132       pExpr = pExpr->x.pList->a[0].pExpr;
133     }else{
134       assert( pExpr->op==TK_COLLATE );
135       pExpr = pExpr->pLeft;
136     }
137   }
138   return pExpr;
139 }
140 
141 /*
142 ** Return the collation sequence for the expression pExpr. If
143 ** there is no defined collating sequence, return NULL.
144 **
145 ** See also: sqlite3ExprNNCollSeq()
146 **
147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
148 ** default collation if pExpr has no defined collation.
149 **
150 ** The collating sequence might be determined by a COLLATE operator
151 ** or by the presence of a column with a defined collating sequence.
152 ** COLLATE operators take first precedence.  Left operands take
153 ** precedence over right operands.
154 */
155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
156   sqlite3 *db = pParse->db;
157   CollSeq *pColl = 0;
158   Expr *p = pExpr;
159   while( p ){
160     int op = p->op;
161     if( op==TK_REGISTER ) op = p->op2;
162     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
163      && p->y.pTab!=0
164     ){
165       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
166       ** a TK_COLUMN but was previously evaluated and cached in a register */
167       int j = p->iColumn;
168       if( j>=0 ){
169         const char *zColl = p->y.pTab->aCol[j].zColl;
170         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
171       }
172       break;
173     }
174     if( op==TK_CAST || op==TK_UPLUS ){
175       p = p->pLeft;
176       continue;
177     }
178     if( op==TK_VECTOR ){
179       p = p->x.pList->a[0].pExpr;
180       continue;
181     }
182     if( op==TK_COLLATE ){
183       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
184       break;
185     }
186     if( p->flags & EP_Collate ){
187       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
188         p = p->pLeft;
189       }else{
190         Expr *pNext  = p->pRight;
191         /* The Expr.x union is never used at the same time as Expr.pRight */
192         assert( p->x.pList==0 || p->pRight==0 );
193         if( p->x.pList!=0
194          && !db->mallocFailed
195          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
196         ){
197           int i;
198           for(i=0; i<p->x.pList->nExpr; i++){
199             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
200               pNext = p->x.pList->a[i].pExpr;
201               break;
202             }
203           }
204         }
205         p = pNext;
206       }
207     }else{
208       break;
209     }
210   }
211   if( sqlite3CheckCollSeq(pParse, pColl) ){
212     pColl = 0;
213   }
214   return pColl;
215 }
216 
217 /*
218 ** Return the collation sequence for the expression pExpr. If
219 ** there is no defined collating sequence, return a pointer to the
220 ** defautl collation sequence.
221 **
222 ** See also: sqlite3ExprCollSeq()
223 **
224 ** The sqlite3ExprCollSeq() routine works the same except that it
225 ** returns NULL if there is no defined collation.
226 */
227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
228   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
229   if( p==0 ) p = pParse->db->pDfltColl;
230   assert( p!=0 );
231   return p;
232 }
233 
234 /*
235 ** Return TRUE if the two expressions have equivalent collating sequences.
236 */
237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
238   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
239   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
240   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
241 }
242 
243 /*
244 ** pExpr is an operand of a comparison operator.  aff2 is the
245 ** type affinity of the other operand.  This routine returns the
246 ** type affinity that should be used for the comparison operator.
247 */
248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
249   char aff1 = sqlite3ExprAffinity(pExpr);
250   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
251     /* Both sides of the comparison are columns. If one has numeric
252     ** affinity, use that. Otherwise use no affinity.
253     */
254     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
255       return SQLITE_AFF_NUMERIC;
256     }else{
257       return SQLITE_AFF_BLOB;
258     }
259   }else{
260     /* One side is a column, the other is not. Use the columns affinity. */
261     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
262     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
263   }
264 }
265 
266 /*
267 ** pExpr is a comparison operator.  Return the type affinity that should
268 ** be applied to both operands prior to doing the comparison.
269 */
270 static char comparisonAffinity(Expr *pExpr){
271   char aff;
272   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
273           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
274           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
275   assert( pExpr->pLeft );
276   aff = sqlite3ExprAffinity(pExpr->pLeft);
277   if( pExpr->pRight ){
278     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
279   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
280     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
281   }else if( aff==0 ){
282     aff = SQLITE_AFF_BLOB;
283   }
284   return aff;
285 }
286 
287 /*
288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
289 ** idx_affinity is the affinity of an indexed column. Return true
290 ** if the index with affinity idx_affinity may be used to implement
291 ** the comparison in pExpr.
292 */
293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
294   char aff = comparisonAffinity(pExpr);
295   if( aff<SQLITE_AFF_TEXT ){
296     return 1;
297   }
298   if( aff==SQLITE_AFF_TEXT ){
299     return idx_affinity==SQLITE_AFF_TEXT;
300   }
301   return sqlite3IsNumericAffinity(idx_affinity);
302 }
303 
304 /*
305 ** Return the P5 value that should be used for a binary comparison
306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
307 */
308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
309   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
310   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
311   return aff;
312 }
313 
314 /*
315 ** Return a pointer to the collation sequence that should be used by
316 ** a binary comparison operator comparing pLeft and pRight.
317 **
318 ** If the left hand expression has a collating sequence type, then it is
319 ** used. Otherwise the collation sequence for the right hand expression
320 ** is used, or the default (BINARY) if neither expression has a collating
321 ** type.
322 **
323 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
324 ** it is not considered.
325 */
326 CollSeq *sqlite3BinaryCompareCollSeq(
327   Parse *pParse,
328   Expr *pLeft,
329   Expr *pRight
330 ){
331   CollSeq *pColl;
332   assert( pLeft );
333   if( pLeft->flags & EP_Collate ){
334     pColl = sqlite3ExprCollSeq(pParse, pLeft);
335   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
336     pColl = sqlite3ExprCollSeq(pParse, pRight);
337   }else{
338     pColl = sqlite3ExprCollSeq(pParse, pLeft);
339     if( !pColl ){
340       pColl = sqlite3ExprCollSeq(pParse, pRight);
341     }
342   }
343   return pColl;
344 }
345 
346 /* Expresssion p is a comparison operator.  Return a collation sequence
347 ** appropriate for the comparison operator.
348 **
349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
350 ** However, if the OP_Commuted flag is set, then the order of the operands
351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
352 ** correct collating sequence is found.
353 */
354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){
355   if( ExprHasProperty(p, EP_Commuted) ){
356     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
357   }else{
358     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
359   }
360 }
361 
362 /*
363 ** Generate code for a comparison operator.
364 */
365 static int codeCompare(
366   Parse *pParse,    /* The parsing (and code generating) context */
367   Expr *pLeft,      /* The left operand */
368   Expr *pRight,     /* The right operand */
369   int opcode,       /* The comparison opcode */
370   int in1, int in2, /* Register holding operands */
371   int dest,         /* Jump here if true.  */
372   int jumpIfNull,   /* If true, jump if either operand is NULL */
373   int isCommuted    /* The comparison has been commuted */
374 ){
375   int p5;
376   int addr;
377   CollSeq *p4;
378 
379   if( pParse->nErr ) return 0;
380   if( isCommuted ){
381     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
382   }else{
383     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
384   }
385   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
386   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
387                            (void*)p4, P4_COLLSEQ);
388   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
389   return addr;
390 }
391 
392 /*
393 ** Return true if expression pExpr is a vector, or false otherwise.
394 **
395 ** A vector is defined as any expression that results in two or more
396 ** columns of result.  Every TK_VECTOR node is an vector because the
397 ** parser will not generate a TK_VECTOR with fewer than two entries.
398 ** But a TK_SELECT might be either a vector or a scalar. It is only
399 ** considered a vector if it has two or more result columns.
400 */
401 int sqlite3ExprIsVector(Expr *pExpr){
402   return sqlite3ExprVectorSize(pExpr)>1;
403 }
404 
405 /*
406 ** If the expression passed as the only argument is of type TK_VECTOR
407 ** return the number of expressions in the vector. Or, if the expression
408 ** is a sub-select, return the number of columns in the sub-select. For
409 ** any other type of expression, return 1.
410 */
411 int sqlite3ExprVectorSize(Expr *pExpr){
412   u8 op = pExpr->op;
413   if( op==TK_REGISTER ) op = pExpr->op2;
414   if( op==TK_VECTOR ){
415     return pExpr->x.pList->nExpr;
416   }else if( op==TK_SELECT ){
417     return pExpr->x.pSelect->pEList->nExpr;
418   }else{
419     return 1;
420   }
421 }
422 
423 /*
424 ** Return a pointer to a subexpression of pVector that is the i-th
425 ** column of the vector (numbered starting with 0).  The caller must
426 ** ensure that i is within range.
427 **
428 ** If pVector is really a scalar (and "scalar" here includes subqueries
429 ** that return a single column!) then return pVector unmodified.
430 **
431 ** pVector retains ownership of the returned subexpression.
432 **
433 ** If the vector is a (SELECT ...) then the expression returned is
434 ** just the expression for the i-th term of the result set, and may
435 ** not be ready for evaluation because the table cursor has not yet
436 ** been positioned.
437 */
438 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
439   assert( i<sqlite3ExprVectorSize(pVector) );
440   if( sqlite3ExprIsVector(pVector) ){
441     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
442     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
443       return pVector->x.pSelect->pEList->a[i].pExpr;
444     }else{
445       return pVector->x.pList->a[i].pExpr;
446     }
447   }
448   return pVector;
449 }
450 
451 /*
452 ** Compute and return a new Expr object which when passed to
453 ** sqlite3ExprCode() will generate all necessary code to compute
454 ** the iField-th column of the vector expression pVector.
455 **
456 ** It is ok for pVector to be a scalar (as long as iField==0).
457 ** In that case, this routine works like sqlite3ExprDup().
458 **
459 ** The caller owns the returned Expr object and is responsible for
460 ** ensuring that the returned value eventually gets freed.
461 **
462 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
463 ** then the returned object will reference pVector and so pVector must remain
464 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
465 ** or a scalar expression, then it can be deleted as soon as this routine
466 ** returns.
467 **
468 ** A trick to cause a TK_SELECT pVector to be deleted together with
469 ** the returned Expr object is to attach the pVector to the pRight field
470 ** of the returned TK_SELECT_COLUMN Expr object.
471 */
472 Expr *sqlite3ExprForVectorField(
473   Parse *pParse,       /* Parsing context */
474   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
475   int iField           /* Which column of the vector to return */
476 ){
477   Expr *pRet;
478   if( pVector->op==TK_SELECT ){
479     assert( pVector->flags & EP_xIsSelect );
480     /* The TK_SELECT_COLUMN Expr node:
481     **
482     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
483     ** pRight:          not used.  But recursively deleted.
484     ** iColumn:         Index of a column in pVector
485     ** iTable:          0 or the number of columns on the LHS of an assignment
486     ** pLeft->iTable:   First in an array of register holding result, or 0
487     **                  if the result is not yet computed.
488     **
489     ** sqlite3ExprDelete() specifically skips the recursive delete of
490     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
491     ** can be attached to pRight to cause this node to take ownership of
492     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
493     ** with the same pLeft pointer to the pVector, but only one of them
494     ** will own the pVector.
495     */
496     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
497     if( pRet ){
498       pRet->iColumn = iField;
499       pRet->pLeft = pVector;
500     }
501     assert( pRet==0 || pRet->iTable==0 );
502   }else{
503     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
504     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
505     sqlite3RenameTokenRemap(pParse, pRet, pVector);
506   }
507   return pRet;
508 }
509 
510 /*
511 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
512 ** it. Return the register in which the result is stored (or, if the
513 ** sub-select returns more than one column, the first in an array
514 ** of registers in which the result is stored).
515 **
516 ** If pExpr is not a TK_SELECT expression, return 0.
517 */
518 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
519   int reg = 0;
520 #ifndef SQLITE_OMIT_SUBQUERY
521   if( pExpr->op==TK_SELECT ){
522     reg = sqlite3CodeSubselect(pParse, pExpr);
523   }
524 #endif
525   return reg;
526 }
527 
528 /*
529 ** Argument pVector points to a vector expression - either a TK_VECTOR
530 ** or TK_SELECT that returns more than one column. This function returns
531 ** the register number of a register that contains the value of
532 ** element iField of the vector.
533 **
534 ** If pVector is a TK_SELECT expression, then code for it must have
535 ** already been generated using the exprCodeSubselect() routine. In this
536 ** case parameter regSelect should be the first in an array of registers
537 ** containing the results of the sub-select.
538 **
539 ** If pVector is of type TK_VECTOR, then code for the requested field
540 ** is generated. In this case (*pRegFree) may be set to the number of
541 ** a temporary register to be freed by the caller before returning.
542 **
543 ** Before returning, output parameter (*ppExpr) is set to point to the
544 ** Expr object corresponding to element iElem of the vector.
545 */
546 static int exprVectorRegister(
547   Parse *pParse,                  /* Parse context */
548   Expr *pVector,                  /* Vector to extract element from */
549   int iField,                     /* Field to extract from pVector */
550   int regSelect,                  /* First in array of registers */
551   Expr **ppExpr,                  /* OUT: Expression element */
552   int *pRegFree                   /* OUT: Temp register to free */
553 ){
554   u8 op = pVector->op;
555   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
556   if( op==TK_REGISTER ){
557     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
558     return pVector->iTable+iField;
559   }
560   if( op==TK_SELECT ){
561     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
562      return regSelect+iField;
563   }
564   *ppExpr = pVector->x.pList->a[iField].pExpr;
565   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
566 }
567 
568 /*
569 ** Expression pExpr is a comparison between two vector values. Compute
570 ** the result of the comparison (1, 0, or NULL) and write that
571 ** result into register dest.
572 **
573 ** The caller must satisfy the following preconditions:
574 **
575 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
576 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
577 **    otherwise:                op==pExpr->op and p5==0
578 */
579 static void codeVectorCompare(
580   Parse *pParse,        /* Code generator context */
581   Expr *pExpr,          /* The comparison operation */
582   int dest,             /* Write results into this register */
583   u8 op,                /* Comparison operator */
584   u8 p5                 /* SQLITE_NULLEQ or zero */
585 ){
586   Vdbe *v = pParse->pVdbe;
587   Expr *pLeft = pExpr->pLeft;
588   Expr *pRight = pExpr->pRight;
589   int nLeft = sqlite3ExprVectorSize(pLeft);
590   int i;
591   int regLeft = 0;
592   int regRight = 0;
593   u8 opx = op;
594   int addrDone = sqlite3VdbeMakeLabel(pParse);
595   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
596 
597   if( pParse->nErr ) return;
598   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
599     sqlite3ErrorMsg(pParse, "row value misused");
600     return;
601   }
602   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
603        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
604        || pExpr->op==TK_LT || pExpr->op==TK_GT
605        || pExpr->op==TK_LE || pExpr->op==TK_GE
606   );
607   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
608             || (pExpr->op==TK_ISNOT && op==TK_NE) );
609   assert( p5==0 || pExpr->op!=op );
610   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
611 
612   p5 |= SQLITE_STOREP2;
613   if( opx==TK_LE ) opx = TK_LT;
614   if( opx==TK_GE ) opx = TK_GT;
615 
616   regLeft = exprCodeSubselect(pParse, pLeft);
617   regRight = exprCodeSubselect(pParse, pRight);
618 
619   for(i=0; 1 /*Loop exits by "break"*/; i++){
620     int regFree1 = 0, regFree2 = 0;
621     Expr *pL, *pR;
622     int r1, r2;
623     assert( i>=0 && i<nLeft );
624     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
625     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
626     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
627     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
628     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
629     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
630     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
631     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
632     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
633     sqlite3ReleaseTempReg(pParse, regFree1);
634     sqlite3ReleaseTempReg(pParse, regFree2);
635     if( i==nLeft-1 ){
636       break;
637     }
638     if( opx==TK_EQ ){
639       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
640       p5 |= SQLITE_KEEPNULL;
641     }else if( opx==TK_NE ){
642       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
643       p5 |= SQLITE_KEEPNULL;
644     }else{
645       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
646       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
647       VdbeCoverageIf(v, op==TK_LT);
648       VdbeCoverageIf(v, op==TK_GT);
649       VdbeCoverageIf(v, op==TK_LE);
650       VdbeCoverageIf(v, op==TK_GE);
651       if( i==nLeft-2 ) opx = op;
652     }
653   }
654   sqlite3VdbeResolveLabel(v, addrDone);
655 }
656 
657 #if SQLITE_MAX_EXPR_DEPTH>0
658 /*
659 ** Check that argument nHeight is less than or equal to the maximum
660 ** expression depth allowed. If it is not, leave an error message in
661 ** pParse.
662 */
663 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
664   int rc = SQLITE_OK;
665   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
666   if( nHeight>mxHeight ){
667     sqlite3ErrorMsg(pParse,
668        "Expression tree is too large (maximum depth %d)", mxHeight
669     );
670     rc = SQLITE_ERROR;
671   }
672   return rc;
673 }
674 
675 /* The following three functions, heightOfExpr(), heightOfExprList()
676 ** and heightOfSelect(), are used to determine the maximum height
677 ** of any expression tree referenced by the structure passed as the
678 ** first argument.
679 **
680 ** If this maximum height is greater than the current value pointed
681 ** to by pnHeight, the second parameter, then set *pnHeight to that
682 ** value.
683 */
684 static void heightOfExpr(Expr *p, int *pnHeight){
685   if( p ){
686     if( p->nHeight>*pnHeight ){
687       *pnHeight = p->nHeight;
688     }
689   }
690 }
691 static void heightOfExprList(ExprList *p, int *pnHeight){
692   if( p ){
693     int i;
694     for(i=0; i<p->nExpr; i++){
695       heightOfExpr(p->a[i].pExpr, pnHeight);
696     }
697   }
698 }
699 static void heightOfSelect(Select *pSelect, int *pnHeight){
700   Select *p;
701   for(p=pSelect; p; p=p->pPrior){
702     heightOfExpr(p->pWhere, pnHeight);
703     heightOfExpr(p->pHaving, pnHeight);
704     heightOfExpr(p->pLimit, pnHeight);
705     heightOfExprList(p->pEList, pnHeight);
706     heightOfExprList(p->pGroupBy, pnHeight);
707     heightOfExprList(p->pOrderBy, pnHeight);
708   }
709 }
710 
711 /*
712 ** Set the Expr.nHeight variable in the structure passed as an
713 ** argument. An expression with no children, Expr.pList or
714 ** Expr.pSelect member has a height of 1. Any other expression
715 ** has a height equal to the maximum height of any other
716 ** referenced Expr plus one.
717 **
718 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
719 ** if appropriate.
720 */
721 static void exprSetHeight(Expr *p){
722   int nHeight = 0;
723   heightOfExpr(p->pLeft, &nHeight);
724   heightOfExpr(p->pRight, &nHeight);
725   if( ExprHasProperty(p, EP_xIsSelect) ){
726     heightOfSelect(p->x.pSelect, &nHeight);
727   }else if( p->x.pList ){
728     heightOfExprList(p->x.pList, &nHeight);
729     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
730   }
731   p->nHeight = nHeight + 1;
732 }
733 
734 /*
735 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
736 ** the height is greater than the maximum allowed expression depth,
737 ** leave an error in pParse.
738 **
739 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
740 ** Expr.flags.
741 */
742 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
743   if( pParse->nErr ) return;
744   exprSetHeight(p);
745   sqlite3ExprCheckHeight(pParse, p->nHeight);
746 }
747 
748 /*
749 ** Return the maximum height of any expression tree referenced
750 ** by the select statement passed as an argument.
751 */
752 int sqlite3SelectExprHeight(Select *p){
753   int nHeight = 0;
754   heightOfSelect(p, &nHeight);
755   return nHeight;
756 }
757 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
758 /*
759 ** Propagate all EP_Propagate flags from the Expr.x.pList into
760 ** Expr.flags.
761 */
762 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
763   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
764     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
765   }
766 }
767 #define exprSetHeight(y)
768 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
769 
770 /*
771 ** This routine is the core allocator for Expr nodes.
772 **
773 ** Construct a new expression node and return a pointer to it.  Memory
774 ** for this node and for the pToken argument is a single allocation
775 ** obtained from sqlite3DbMalloc().  The calling function
776 ** is responsible for making sure the node eventually gets freed.
777 **
778 ** If dequote is true, then the token (if it exists) is dequoted.
779 ** If dequote is false, no dequoting is performed.  The deQuote
780 ** parameter is ignored if pToken is NULL or if the token does not
781 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
782 ** then the EP_DblQuoted flag is set on the expression node.
783 **
784 ** Special case:  If op==TK_INTEGER and pToken points to a string that
785 ** can be translated into a 32-bit integer, then the token is not
786 ** stored in u.zToken.  Instead, the integer values is written
787 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
788 ** is allocated to hold the integer text and the dequote flag is ignored.
789 */
790 Expr *sqlite3ExprAlloc(
791   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
792   int op,                 /* Expression opcode */
793   const Token *pToken,    /* Token argument.  Might be NULL */
794   int dequote             /* True to dequote */
795 ){
796   Expr *pNew;
797   int nExtra = 0;
798   int iValue = 0;
799 
800   assert( db!=0 );
801   if( pToken ){
802     if( op!=TK_INTEGER || pToken->z==0
803           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
804       nExtra = pToken->n+1;
805       assert( iValue>=0 );
806     }
807   }
808   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
809   if( pNew ){
810     memset(pNew, 0, sizeof(Expr));
811     pNew->op = (u8)op;
812     pNew->iAgg = -1;
813     if( pToken ){
814       if( nExtra==0 ){
815         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
816         pNew->u.iValue = iValue;
817       }else{
818         pNew->u.zToken = (char*)&pNew[1];
819         assert( pToken->z!=0 || pToken->n==0 );
820         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
821         pNew->u.zToken[pToken->n] = 0;
822         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
823           sqlite3DequoteExpr(pNew);
824         }
825       }
826     }
827 #if SQLITE_MAX_EXPR_DEPTH>0
828     pNew->nHeight = 1;
829 #endif
830   }
831   return pNew;
832 }
833 
834 /*
835 ** Allocate a new expression node from a zero-terminated token that has
836 ** already been dequoted.
837 */
838 Expr *sqlite3Expr(
839   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
840   int op,                 /* Expression opcode */
841   const char *zToken      /* Token argument.  Might be NULL */
842 ){
843   Token x;
844   x.z = zToken;
845   x.n = sqlite3Strlen30(zToken);
846   return sqlite3ExprAlloc(db, op, &x, 0);
847 }
848 
849 /*
850 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
851 **
852 ** If pRoot==NULL that means that a memory allocation error has occurred.
853 ** In that case, delete the subtrees pLeft and pRight.
854 */
855 void sqlite3ExprAttachSubtrees(
856   sqlite3 *db,
857   Expr *pRoot,
858   Expr *pLeft,
859   Expr *pRight
860 ){
861   if( pRoot==0 ){
862     assert( db->mallocFailed );
863     sqlite3ExprDelete(db, pLeft);
864     sqlite3ExprDelete(db, pRight);
865   }else{
866     if( pRight ){
867       pRoot->pRight = pRight;
868       pRoot->flags |= EP_Propagate & pRight->flags;
869     }
870     if( pLeft ){
871       pRoot->pLeft = pLeft;
872       pRoot->flags |= EP_Propagate & pLeft->flags;
873     }
874     exprSetHeight(pRoot);
875   }
876 }
877 
878 /*
879 ** Allocate an Expr node which joins as many as two subtrees.
880 **
881 ** One or both of the subtrees can be NULL.  Return a pointer to the new
882 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
883 ** free the subtrees and return NULL.
884 */
885 Expr *sqlite3PExpr(
886   Parse *pParse,          /* Parsing context */
887   int op,                 /* Expression opcode */
888   Expr *pLeft,            /* Left operand */
889   Expr *pRight            /* Right operand */
890 ){
891   Expr *p;
892   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
893   if( p ){
894     memset(p, 0, sizeof(Expr));
895     p->op = op & 0xff;
896     p->iAgg = -1;
897     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
898     sqlite3ExprCheckHeight(pParse, p->nHeight);
899   }else{
900     sqlite3ExprDelete(pParse->db, pLeft);
901     sqlite3ExprDelete(pParse->db, pRight);
902   }
903   return p;
904 }
905 
906 /*
907 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
908 ** do a memory allocation failure) then delete the pSelect object.
909 */
910 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
911   if( pExpr ){
912     pExpr->x.pSelect = pSelect;
913     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
914     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
915   }else{
916     assert( pParse->db->mallocFailed );
917     sqlite3SelectDelete(pParse->db, pSelect);
918   }
919 }
920 
921 
922 /*
923 ** Join two expressions using an AND operator.  If either expression is
924 ** NULL, then just return the other expression.
925 **
926 ** If one side or the other of the AND is known to be false, then instead
927 ** of returning an AND expression, just return a constant expression with
928 ** a value of false.
929 */
930 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
931   sqlite3 *db = pParse->db;
932   if( pLeft==0  ){
933     return pRight;
934   }else if( pRight==0 ){
935     return pLeft;
936   }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){
937     sqlite3ExprUnmapAndDelete(pParse, pLeft);
938     sqlite3ExprUnmapAndDelete(pParse, pRight);
939     return sqlite3Expr(db, TK_INTEGER, "0");
940   }else{
941     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
942   }
943 }
944 
945 /*
946 ** Construct a new expression node for a function with multiple
947 ** arguments.
948 */
949 Expr *sqlite3ExprFunction(
950   Parse *pParse,        /* Parsing context */
951   ExprList *pList,      /* Argument list */
952   Token *pToken,        /* Name of the function */
953   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
954 ){
955   Expr *pNew;
956   sqlite3 *db = pParse->db;
957   assert( pToken );
958   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
959   if( pNew==0 ){
960     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
961     return 0;
962   }
963   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
964     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
965   }
966   pNew->x.pList = pList;
967   ExprSetProperty(pNew, EP_HasFunc);
968   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
969   sqlite3ExprSetHeightAndFlags(pParse, pNew);
970   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
971   return pNew;
972 }
973 
974 /*
975 ** Assign a variable number to an expression that encodes a wildcard
976 ** in the original SQL statement.
977 **
978 ** Wildcards consisting of a single "?" are assigned the next sequential
979 ** variable number.
980 **
981 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
982 ** sure "nnn" is not too big to avoid a denial of service attack when
983 ** the SQL statement comes from an external source.
984 **
985 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
986 ** as the previous instance of the same wildcard.  Or if this is the first
987 ** instance of the wildcard, the next sequential variable number is
988 ** assigned.
989 */
990 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
991   sqlite3 *db = pParse->db;
992   const char *z;
993   ynVar x;
994 
995   if( pExpr==0 ) return;
996   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
997   z = pExpr->u.zToken;
998   assert( z!=0 );
999   assert( z[0]!=0 );
1000   assert( n==(u32)sqlite3Strlen30(z) );
1001   if( z[1]==0 ){
1002     /* Wildcard of the form "?".  Assign the next variable number */
1003     assert( z[0]=='?' );
1004     x = (ynVar)(++pParse->nVar);
1005   }else{
1006     int doAdd = 0;
1007     if( z[0]=='?' ){
1008       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1009       ** use it as the variable number */
1010       i64 i;
1011       int bOk;
1012       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1013         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1014         bOk = 1;
1015       }else{
1016         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1017       }
1018       testcase( i==0 );
1019       testcase( i==1 );
1020       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1021       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1022       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1023         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1024             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1025         return;
1026       }
1027       x = (ynVar)i;
1028       if( x>pParse->nVar ){
1029         pParse->nVar = (int)x;
1030         doAdd = 1;
1031       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1032         doAdd = 1;
1033       }
1034     }else{
1035       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1036       ** number as the prior appearance of the same name, or if the name
1037       ** has never appeared before, reuse the same variable number
1038       */
1039       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1040       if( x==0 ){
1041         x = (ynVar)(++pParse->nVar);
1042         doAdd = 1;
1043       }
1044     }
1045     if( doAdd ){
1046       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1047     }
1048   }
1049   pExpr->iColumn = x;
1050   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1051     sqlite3ErrorMsg(pParse, "too many SQL variables");
1052   }
1053 }
1054 
1055 /*
1056 ** Recursively delete an expression tree.
1057 */
1058 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1059   assert( p!=0 );
1060   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1061   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1062 
1063   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1064   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1065           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1066 #ifdef SQLITE_DEBUG
1067   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1068     assert( p->pLeft==0 );
1069     assert( p->pRight==0 );
1070     assert( p->x.pSelect==0 );
1071   }
1072 #endif
1073   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1074     /* The Expr.x union is never used at the same time as Expr.pRight */
1075     assert( p->x.pList==0 || p->pRight==0 );
1076     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1077     if( p->pRight ){
1078       assert( !ExprHasProperty(p, EP_WinFunc) );
1079       sqlite3ExprDeleteNN(db, p->pRight);
1080     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1081       assert( !ExprHasProperty(p, EP_WinFunc) );
1082       sqlite3SelectDelete(db, p->x.pSelect);
1083     }else{
1084       sqlite3ExprListDelete(db, p->x.pList);
1085 #ifndef SQLITE_OMIT_WINDOWFUNC
1086       if( ExprHasProperty(p, EP_WinFunc) ){
1087         sqlite3WindowDelete(db, p->y.pWin);
1088       }
1089 #endif
1090     }
1091   }
1092   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1093   if( !ExprHasProperty(p, EP_Static) ){
1094     sqlite3DbFreeNN(db, p);
1095   }
1096 }
1097 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1098   if( p ) sqlite3ExprDeleteNN(db, p);
1099 }
1100 
1101 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1102 ** expression.
1103 */
1104 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1105   if( p ){
1106     if( IN_RENAME_OBJECT ){
1107       sqlite3RenameExprUnmap(pParse, p);
1108     }
1109     sqlite3ExprDeleteNN(pParse->db, p);
1110   }
1111 }
1112 
1113 /*
1114 ** Return the number of bytes allocated for the expression structure
1115 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1116 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1117 */
1118 static int exprStructSize(Expr *p){
1119   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1120   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1121   return EXPR_FULLSIZE;
1122 }
1123 
1124 /*
1125 ** The dupedExpr*Size() routines each return the number of bytes required
1126 ** to store a copy of an expression or expression tree.  They differ in
1127 ** how much of the tree is measured.
1128 **
1129 **     dupedExprStructSize()     Size of only the Expr structure
1130 **     dupedExprNodeSize()       Size of Expr + space for token
1131 **     dupedExprSize()           Expr + token + subtree components
1132 **
1133 ***************************************************************************
1134 **
1135 ** The dupedExprStructSize() function returns two values OR-ed together:
1136 ** (1) the space required for a copy of the Expr structure only and
1137 ** (2) the EP_xxx flags that indicate what the structure size should be.
1138 ** The return values is always one of:
1139 **
1140 **      EXPR_FULLSIZE
1141 **      EXPR_REDUCEDSIZE   | EP_Reduced
1142 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1143 **
1144 ** The size of the structure can be found by masking the return value
1145 ** of this routine with 0xfff.  The flags can be found by masking the
1146 ** return value with EP_Reduced|EP_TokenOnly.
1147 **
1148 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1149 ** (unreduced) Expr objects as they or originally constructed by the parser.
1150 ** During expression analysis, extra information is computed and moved into
1151 ** later parts of the Expr object and that extra information might get chopped
1152 ** off if the expression is reduced.  Note also that it does not work to
1153 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1154 ** to reduce a pristine expression tree from the parser.  The implementation
1155 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1156 ** to enforce this constraint.
1157 */
1158 static int dupedExprStructSize(Expr *p, int flags){
1159   int nSize;
1160   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1161   assert( EXPR_FULLSIZE<=0xfff );
1162   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1163   if( 0==flags || p->op==TK_SELECT_COLUMN
1164 #ifndef SQLITE_OMIT_WINDOWFUNC
1165    || ExprHasProperty(p, EP_WinFunc)
1166 #endif
1167   ){
1168     nSize = EXPR_FULLSIZE;
1169   }else{
1170     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1171     assert( !ExprHasProperty(p, EP_FromJoin) );
1172     assert( !ExprHasProperty(p, EP_MemToken) );
1173     assert( !ExprHasProperty(p, EP_NoReduce) );
1174     if( p->pLeft || p->x.pList ){
1175       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1176     }else{
1177       assert( p->pRight==0 );
1178       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1179     }
1180   }
1181   return nSize;
1182 }
1183 
1184 /*
1185 ** This function returns the space in bytes required to store the copy
1186 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1187 ** string is defined.)
1188 */
1189 static int dupedExprNodeSize(Expr *p, int flags){
1190   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1191   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1192     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1193   }
1194   return ROUND8(nByte);
1195 }
1196 
1197 /*
1198 ** Return the number of bytes required to create a duplicate of the
1199 ** expression passed as the first argument. The second argument is a
1200 ** mask containing EXPRDUP_XXX flags.
1201 **
1202 ** The value returned includes space to create a copy of the Expr struct
1203 ** itself and the buffer referred to by Expr.u.zToken, if any.
1204 **
1205 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1206 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1207 ** and Expr.pRight variables (but not for any structures pointed to or
1208 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1209 */
1210 static int dupedExprSize(Expr *p, int flags){
1211   int nByte = 0;
1212   if( p ){
1213     nByte = dupedExprNodeSize(p, flags);
1214     if( flags&EXPRDUP_REDUCE ){
1215       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1216     }
1217   }
1218   return nByte;
1219 }
1220 
1221 /*
1222 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1223 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1224 ** to store the copy of expression p, the copies of p->u.zToken
1225 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1226 ** if any. Before returning, *pzBuffer is set to the first byte past the
1227 ** portion of the buffer copied into by this function.
1228 */
1229 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1230   Expr *pNew;           /* Value to return */
1231   u8 *zAlloc;           /* Memory space from which to build Expr object */
1232   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1233 
1234   assert( db!=0 );
1235   assert( p );
1236   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1237   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1238 
1239   /* Figure out where to write the new Expr structure. */
1240   if( pzBuffer ){
1241     zAlloc = *pzBuffer;
1242     staticFlag = EP_Static;
1243   }else{
1244     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1245     staticFlag = 0;
1246   }
1247   pNew = (Expr *)zAlloc;
1248 
1249   if( pNew ){
1250     /* Set nNewSize to the size allocated for the structure pointed to
1251     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1252     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1253     ** by the copy of the p->u.zToken string (if any).
1254     */
1255     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1256     const int nNewSize = nStructSize & 0xfff;
1257     int nToken;
1258     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1259       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1260     }else{
1261       nToken = 0;
1262     }
1263     if( dupFlags ){
1264       assert( ExprHasProperty(p, EP_Reduced)==0 );
1265       memcpy(zAlloc, p, nNewSize);
1266     }else{
1267       u32 nSize = (u32)exprStructSize(p);
1268       memcpy(zAlloc, p, nSize);
1269       if( nSize<EXPR_FULLSIZE ){
1270         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1271       }
1272     }
1273 
1274     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1275     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1276     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1277     pNew->flags |= staticFlag;
1278 
1279     /* Copy the p->u.zToken string, if any. */
1280     if( nToken ){
1281       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1282       memcpy(zToken, p->u.zToken, nToken);
1283     }
1284 
1285     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1286       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1287       if( ExprHasProperty(p, EP_xIsSelect) ){
1288         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1289       }else{
1290         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1291       }
1292     }
1293 
1294     /* Fill in pNew->pLeft and pNew->pRight. */
1295     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1296       zAlloc += dupedExprNodeSize(p, dupFlags);
1297       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1298         pNew->pLeft = p->pLeft ?
1299                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1300         pNew->pRight = p->pRight ?
1301                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1302       }
1303 #ifndef SQLITE_OMIT_WINDOWFUNC
1304       if( ExprHasProperty(p, EP_WinFunc) ){
1305         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1306         assert( ExprHasProperty(pNew, EP_WinFunc) );
1307       }
1308 #endif /* SQLITE_OMIT_WINDOWFUNC */
1309       if( pzBuffer ){
1310         *pzBuffer = zAlloc;
1311       }
1312     }else{
1313       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1314         if( pNew->op==TK_SELECT_COLUMN ){
1315           pNew->pLeft = p->pLeft;
1316           assert( p->iColumn==0 || p->pRight==0 );
1317           assert( p->pRight==0  || p->pRight==p->pLeft );
1318         }else{
1319           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1320         }
1321         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1322       }
1323     }
1324   }
1325   return pNew;
1326 }
1327 
1328 /*
1329 ** Create and return a deep copy of the object passed as the second
1330 ** argument. If an OOM condition is encountered, NULL is returned
1331 ** and the db->mallocFailed flag set.
1332 */
1333 #ifndef SQLITE_OMIT_CTE
1334 static With *withDup(sqlite3 *db, With *p){
1335   With *pRet = 0;
1336   if( p ){
1337     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1338     pRet = sqlite3DbMallocZero(db, nByte);
1339     if( pRet ){
1340       int i;
1341       pRet->nCte = p->nCte;
1342       for(i=0; i<p->nCte; i++){
1343         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1344         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1345         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1346       }
1347     }
1348   }
1349   return pRet;
1350 }
1351 #else
1352 # define withDup(x,y) 0
1353 #endif
1354 
1355 #ifndef SQLITE_OMIT_WINDOWFUNC
1356 /*
1357 ** The gatherSelectWindows() procedure and its helper routine
1358 ** gatherSelectWindowsCallback() are used to scan all the expressions
1359 ** an a newly duplicated SELECT statement and gather all of the Window
1360 ** objects found there, assembling them onto the linked list at Select->pWin.
1361 */
1362 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1363   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1364     Select *pSelect = pWalker->u.pSelect;
1365     Window *pWin = pExpr->y.pWin;
1366     assert( pWin );
1367     assert( IsWindowFunc(pExpr) );
1368     assert( pWin->ppThis==0 );
1369     sqlite3WindowLink(pSelect, pWin);
1370   }
1371   return WRC_Continue;
1372 }
1373 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1374   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1375 }
1376 static void gatherSelectWindows(Select *p){
1377   Walker w;
1378   w.xExprCallback = gatherSelectWindowsCallback;
1379   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1380   w.xSelectCallback2 = 0;
1381   w.pParse = 0;
1382   w.u.pSelect = p;
1383   sqlite3WalkSelect(&w, p);
1384 }
1385 #endif
1386 
1387 
1388 /*
1389 ** The following group of routines make deep copies of expressions,
1390 ** expression lists, ID lists, and select statements.  The copies can
1391 ** be deleted (by being passed to their respective ...Delete() routines)
1392 ** without effecting the originals.
1393 **
1394 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1395 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1396 ** by subsequent calls to sqlite*ListAppend() routines.
1397 **
1398 ** Any tables that the SrcList might point to are not duplicated.
1399 **
1400 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1401 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1402 ** truncated version of the usual Expr structure that will be stored as
1403 ** part of the in-memory representation of the database schema.
1404 */
1405 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1406   assert( flags==0 || flags==EXPRDUP_REDUCE );
1407   return p ? exprDup(db, p, flags, 0) : 0;
1408 }
1409 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1410   ExprList *pNew;
1411   struct ExprList_item *pItem, *pOldItem;
1412   int i;
1413   Expr *pPriorSelectCol = 0;
1414   assert( db!=0 );
1415   if( p==0 ) return 0;
1416   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1417   if( pNew==0 ) return 0;
1418   pNew->nExpr = p->nExpr;
1419   pItem = pNew->a;
1420   pOldItem = p->a;
1421   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1422     Expr *pOldExpr = pOldItem->pExpr;
1423     Expr *pNewExpr;
1424     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1425     if( pOldExpr
1426      && pOldExpr->op==TK_SELECT_COLUMN
1427      && (pNewExpr = pItem->pExpr)!=0
1428     ){
1429       assert( pNewExpr->iColumn==0 || i>0 );
1430       if( pNewExpr->iColumn==0 ){
1431         assert( pOldExpr->pLeft==pOldExpr->pRight );
1432         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1433       }else{
1434         assert( i>0 );
1435         assert( pItem[-1].pExpr!=0 );
1436         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1437         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1438         pNewExpr->pLeft = pPriorSelectCol;
1439       }
1440     }
1441     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1442     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1443     pItem->sortFlags = pOldItem->sortFlags;
1444     pItem->done = 0;
1445     pItem->bNulls = pOldItem->bNulls;
1446     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1447     pItem->bSorterRef = pOldItem->bSorterRef;
1448     pItem->u = pOldItem->u;
1449   }
1450   return pNew;
1451 }
1452 
1453 /*
1454 ** If cursors, triggers, views and subqueries are all omitted from
1455 ** the build, then none of the following routines, except for
1456 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1457 ** called with a NULL argument.
1458 */
1459 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1460  || !defined(SQLITE_OMIT_SUBQUERY)
1461 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1462   SrcList *pNew;
1463   int i;
1464   int nByte;
1465   assert( db!=0 );
1466   if( p==0 ) return 0;
1467   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1468   pNew = sqlite3DbMallocRawNN(db, nByte );
1469   if( pNew==0 ) return 0;
1470   pNew->nSrc = pNew->nAlloc = p->nSrc;
1471   for(i=0; i<p->nSrc; i++){
1472     struct SrcList_item *pNewItem = &pNew->a[i];
1473     struct SrcList_item *pOldItem = &p->a[i];
1474     Table *pTab;
1475     pNewItem->pSchema = pOldItem->pSchema;
1476     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1477     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1478     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1479     pNewItem->fg = pOldItem->fg;
1480     pNewItem->iCursor = pOldItem->iCursor;
1481     pNewItem->addrFillSub = pOldItem->addrFillSub;
1482     pNewItem->regReturn = pOldItem->regReturn;
1483     if( pNewItem->fg.isIndexedBy ){
1484       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1485     }
1486     pNewItem->pIBIndex = pOldItem->pIBIndex;
1487     if( pNewItem->fg.isTabFunc ){
1488       pNewItem->u1.pFuncArg =
1489           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1490     }
1491     pTab = pNewItem->pTab = pOldItem->pTab;
1492     if( pTab ){
1493       pTab->nTabRef++;
1494     }
1495     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1496     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1497     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1498     pNewItem->colUsed = pOldItem->colUsed;
1499   }
1500   return pNew;
1501 }
1502 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1503   IdList *pNew;
1504   int i;
1505   assert( db!=0 );
1506   if( p==0 ) return 0;
1507   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1508   if( pNew==0 ) return 0;
1509   pNew->nId = p->nId;
1510   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1511   if( pNew->a==0 ){
1512     sqlite3DbFreeNN(db, pNew);
1513     return 0;
1514   }
1515   /* Note that because the size of the allocation for p->a[] is not
1516   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1517   ** on the duplicate created by this function. */
1518   for(i=0; i<p->nId; i++){
1519     struct IdList_item *pNewItem = &pNew->a[i];
1520     struct IdList_item *pOldItem = &p->a[i];
1521     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1522     pNewItem->idx = pOldItem->idx;
1523   }
1524   return pNew;
1525 }
1526 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1527   Select *pRet = 0;
1528   Select *pNext = 0;
1529   Select **pp = &pRet;
1530   Select *p;
1531 
1532   assert( db!=0 );
1533   for(p=pDup; p; p=p->pPrior){
1534     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1535     if( pNew==0 ) break;
1536     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1537     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1538     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1539     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1540     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1541     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1542     pNew->op = p->op;
1543     pNew->pNext = pNext;
1544     pNew->pPrior = 0;
1545     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1546     pNew->iLimit = 0;
1547     pNew->iOffset = 0;
1548     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1549     pNew->addrOpenEphm[0] = -1;
1550     pNew->addrOpenEphm[1] = -1;
1551     pNew->nSelectRow = p->nSelectRow;
1552     pNew->pWith = withDup(db, p->pWith);
1553 #ifndef SQLITE_OMIT_WINDOWFUNC
1554     pNew->pWin = 0;
1555     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1556     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1557 #endif
1558     pNew->selId = p->selId;
1559     *pp = pNew;
1560     pp = &pNew->pPrior;
1561     pNext = pNew;
1562   }
1563 
1564   return pRet;
1565 }
1566 #else
1567 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1568   assert( p==0 );
1569   return 0;
1570 }
1571 #endif
1572 
1573 
1574 /*
1575 ** Add a new element to the end of an expression list.  If pList is
1576 ** initially NULL, then create a new expression list.
1577 **
1578 ** The pList argument must be either NULL or a pointer to an ExprList
1579 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1580 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1581 ** Reason:  This routine assumes that the number of slots in pList->a[]
1582 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1583 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1584 **
1585 ** If a memory allocation error occurs, the entire list is freed and
1586 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1587 ** that the new entry was successfully appended.
1588 */
1589 ExprList *sqlite3ExprListAppend(
1590   Parse *pParse,          /* Parsing context */
1591   ExprList *pList,        /* List to which to append. Might be NULL */
1592   Expr *pExpr             /* Expression to be appended. Might be NULL */
1593 ){
1594   struct ExprList_item *pItem;
1595   sqlite3 *db = pParse->db;
1596   assert( db!=0 );
1597   if( pList==0 ){
1598     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1599     if( pList==0 ){
1600       goto no_mem;
1601     }
1602     pList->nExpr = 0;
1603   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1604     ExprList *pNew;
1605     pNew = sqlite3DbRealloc(db, pList,
1606          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1607     if( pNew==0 ){
1608       goto no_mem;
1609     }
1610     pList = pNew;
1611   }
1612   pItem = &pList->a[pList->nExpr++];
1613   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1614   assert( offsetof(struct ExprList_item,pExpr)==0 );
1615   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1616   pItem->pExpr = pExpr;
1617   return pList;
1618 
1619 no_mem:
1620   /* Avoid leaking memory if malloc has failed. */
1621   sqlite3ExprDelete(db, pExpr);
1622   sqlite3ExprListDelete(db, pList);
1623   return 0;
1624 }
1625 
1626 /*
1627 ** pColumns and pExpr form a vector assignment which is part of the SET
1628 ** clause of an UPDATE statement.  Like this:
1629 **
1630 **        (a,b,c) = (expr1,expr2,expr3)
1631 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1632 **
1633 ** For each term of the vector assignment, append new entries to the
1634 ** expression list pList.  In the case of a subquery on the RHS, append
1635 ** TK_SELECT_COLUMN expressions.
1636 */
1637 ExprList *sqlite3ExprListAppendVector(
1638   Parse *pParse,         /* Parsing context */
1639   ExprList *pList,       /* List to which to append. Might be NULL */
1640   IdList *pColumns,      /* List of names of LHS of the assignment */
1641   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1642 ){
1643   sqlite3 *db = pParse->db;
1644   int n;
1645   int i;
1646   int iFirst = pList ? pList->nExpr : 0;
1647   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1648   ** exit prior to this routine being invoked */
1649   if( NEVER(pColumns==0) ) goto vector_append_error;
1650   if( pExpr==0 ) goto vector_append_error;
1651 
1652   /* If the RHS is a vector, then we can immediately check to see that
1653   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1654   ** wildcards ("*") in the result set of the SELECT must be expanded before
1655   ** we can do the size check, so defer the size check until code generation.
1656   */
1657   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1658     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1659                     pColumns->nId, n);
1660     goto vector_append_error;
1661   }
1662 
1663   for(i=0; i<pColumns->nId; i++){
1664     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1665     assert( pSubExpr!=0 || db->mallocFailed );
1666     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1667     if( pSubExpr==0 ) continue;
1668     pSubExpr->iTable = pColumns->nId;
1669     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1670     if( pList ){
1671       assert( pList->nExpr==iFirst+i+1 );
1672       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1673       pColumns->a[i].zName = 0;
1674     }
1675   }
1676 
1677   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1678     Expr *pFirst = pList->a[iFirst].pExpr;
1679     assert( pFirst!=0 );
1680     assert( pFirst->op==TK_SELECT_COLUMN );
1681 
1682     /* Store the SELECT statement in pRight so it will be deleted when
1683     ** sqlite3ExprListDelete() is called */
1684     pFirst->pRight = pExpr;
1685     pExpr = 0;
1686 
1687     /* Remember the size of the LHS in iTable so that we can check that
1688     ** the RHS and LHS sizes match during code generation. */
1689     pFirst->iTable = pColumns->nId;
1690   }
1691 
1692 vector_append_error:
1693   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1694   sqlite3IdListDelete(db, pColumns);
1695   return pList;
1696 }
1697 
1698 /*
1699 ** Set the sort order for the last element on the given ExprList.
1700 */
1701 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1702   struct ExprList_item *pItem;
1703   if( p==0 ) return;
1704   assert( p->nExpr>0 );
1705 
1706   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1707   assert( iSortOrder==SQLITE_SO_UNDEFINED
1708        || iSortOrder==SQLITE_SO_ASC
1709        || iSortOrder==SQLITE_SO_DESC
1710   );
1711   assert( eNulls==SQLITE_SO_UNDEFINED
1712        || eNulls==SQLITE_SO_ASC
1713        || eNulls==SQLITE_SO_DESC
1714   );
1715 
1716   pItem = &p->a[p->nExpr-1];
1717   assert( pItem->bNulls==0 );
1718   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1719     iSortOrder = SQLITE_SO_ASC;
1720   }
1721   pItem->sortFlags = (u8)iSortOrder;
1722 
1723   if( eNulls!=SQLITE_SO_UNDEFINED ){
1724     pItem->bNulls = 1;
1725     if( iSortOrder!=eNulls ){
1726       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1727     }
1728   }
1729 }
1730 
1731 /*
1732 ** Set the ExprList.a[].zName element of the most recently added item
1733 ** on the expression list.
1734 **
1735 ** pList might be NULL following an OOM error.  But pName should never be
1736 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1737 ** is set.
1738 */
1739 void sqlite3ExprListSetName(
1740   Parse *pParse,          /* Parsing context */
1741   ExprList *pList,        /* List to which to add the span. */
1742   Token *pName,           /* Name to be added */
1743   int dequote             /* True to cause the name to be dequoted */
1744 ){
1745   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1746   if( pList ){
1747     struct ExprList_item *pItem;
1748     assert( pList->nExpr>0 );
1749     pItem = &pList->a[pList->nExpr-1];
1750     assert( pItem->zName==0 );
1751     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1752     if( dequote ) sqlite3Dequote(pItem->zName);
1753     if( IN_RENAME_OBJECT ){
1754       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1755     }
1756   }
1757 }
1758 
1759 /*
1760 ** Set the ExprList.a[].zSpan element of the most recently added item
1761 ** on the expression list.
1762 **
1763 ** pList might be NULL following an OOM error.  But pSpan should never be
1764 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1765 ** is set.
1766 */
1767 void sqlite3ExprListSetSpan(
1768   Parse *pParse,          /* Parsing context */
1769   ExprList *pList,        /* List to which to add the span. */
1770   const char *zStart,     /* Start of the span */
1771   const char *zEnd        /* End of the span */
1772 ){
1773   sqlite3 *db = pParse->db;
1774   assert( pList!=0 || db->mallocFailed!=0 );
1775   if( pList ){
1776     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1777     assert( pList->nExpr>0 );
1778     sqlite3DbFree(db, pItem->zSpan);
1779     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1780   }
1781 }
1782 
1783 /*
1784 ** If the expression list pEList contains more than iLimit elements,
1785 ** leave an error message in pParse.
1786 */
1787 void sqlite3ExprListCheckLength(
1788   Parse *pParse,
1789   ExprList *pEList,
1790   const char *zObject
1791 ){
1792   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1793   testcase( pEList && pEList->nExpr==mx );
1794   testcase( pEList && pEList->nExpr==mx+1 );
1795   if( pEList && pEList->nExpr>mx ){
1796     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1797   }
1798 }
1799 
1800 /*
1801 ** Delete an entire expression list.
1802 */
1803 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1804   int i = pList->nExpr;
1805   struct ExprList_item *pItem =  pList->a;
1806   assert( pList->nExpr>0 );
1807   do{
1808     sqlite3ExprDelete(db, pItem->pExpr);
1809     sqlite3DbFree(db, pItem->zName);
1810     sqlite3DbFree(db, pItem->zSpan);
1811     pItem++;
1812   }while( --i>0 );
1813   sqlite3DbFreeNN(db, pList);
1814 }
1815 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1816   if( pList ) exprListDeleteNN(db, pList);
1817 }
1818 
1819 /*
1820 ** Return the bitwise-OR of all Expr.flags fields in the given
1821 ** ExprList.
1822 */
1823 u32 sqlite3ExprListFlags(const ExprList *pList){
1824   int i;
1825   u32 m = 0;
1826   assert( pList!=0 );
1827   for(i=0; i<pList->nExpr; i++){
1828      Expr *pExpr = pList->a[i].pExpr;
1829      assert( pExpr!=0 );
1830      m |= pExpr->flags;
1831   }
1832   return m;
1833 }
1834 
1835 /*
1836 ** This is a SELECT-node callback for the expression walker that
1837 ** always "fails".  By "fail" in this case, we mean set
1838 ** pWalker->eCode to zero and abort.
1839 **
1840 ** This callback is used by multiple expression walkers.
1841 */
1842 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1843   UNUSED_PARAMETER(NotUsed);
1844   pWalker->eCode = 0;
1845   return WRC_Abort;
1846 }
1847 
1848 /*
1849 ** If the input expression is an ID with the name "true" or "false"
1850 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1851 ** the conversion happened, and zero if the expression is unaltered.
1852 */
1853 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1854   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1855   if( !ExprHasProperty(pExpr, EP_Quoted)
1856    && (sqlite3StrICmp(pExpr->u.zToken, "true")==0
1857        || sqlite3StrICmp(pExpr->u.zToken, "false")==0)
1858   ){
1859     pExpr->op = TK_TRUEFALSE;
1860     ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse);
1861     return 1;
1862   }
1863   return 0;
1864 }
1865 
1866 /*
1867 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1868 ** and 0 if it is FALSE.
1869 */
1870 int sqlite3ExprTruthValue(const Expr *pExpr){
1871   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1872   assert( pExpr->op==TK_TRUEFALSE );
1873   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1874        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1875   return pExpr->u.zToken[4]==0;
1876 }
1877 
1878 /*
1879 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1880 ** terms that are always true or false.  Return the simplified expression.
1881 ** Or return the original expression if no simplification is possible.
1882 **
1883 ** Examples:
1884 **
1885 **     (x<10) AND true                =>   (x<10)
1886 **     (x<10) AND false               =>   false
1887 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1888 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1889 **     (y=22) OR true                 =>   true
1890 */
1891 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1892   assert( pExpr!=0 );
1893   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1894     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1895     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1896     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1897       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1898     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1899       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1900     }
1901   }
1902   return pExpr;
1903 }
1904 
1905 
1906 /*
1907 ** These routines are Walker callbacks used to check expressions to
1908 ** see if they are "constant" for some definition of constant.  The
1909 ** Walker.eCode value determines the type of "constant" we are looking
1910 ** for.
1911 **
1912 ** These callback routines are used to implement the following:
1913 **
1914 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1915 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1916 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1917 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1918 **
1919 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1920 ** is found to not be a constant.
1921 **
1922 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1923 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1924 ** an existing schema and 4 when processing a new statement.  A bound
1925 ** parameter raises an error for new statements, but is silently converted
1926 ** to NULL for existing schemas.  This allows sqlite_master tables that
1927 ** contain a bound parameter because they were generated by older versions
1928 ** of SQLite to be parsed by newer versions of SQLite without raising a
1929 ** malformed schema error.
1930 */
1931 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1932 
1933   /* If pWalker->eCode is 2 then any term of the expression that comes from
1934   ** the ON or USING clauses of a left join disqualifies the expression
1935   ** from being considered constant. */
1936   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1937     pWalker->eCode = 0;
1938     return WRC_Abort;
1939   }
1940 
1941   switch( pExpr->op ){
1942     /* Consider functions to be constant if all their arguments are constant
1943     ** and either pWalker->eCode==4 or 5 or the function has the
1944     ** SQLITE_FUNC_CONST flag. */
1945     case TK_FUNCTION:
1946       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
1947        && !ExprHasProperty(pExpr, EP_WinFunc)
1948       ){
1949         return WRC_Continue;
1950       }else{
1951         pWalker->eCode = 0;
1952         return WRC_Abort;
1953       }
1954     case TK_ID:
1955       /* Convert "true" or "false" in a DEFAULT clause into the
1956       ** appropriate TK_TRUEFALSE operator */
1957       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1958         return WRC_Prune;
1959       }
1960       /* Fall thru */
1961     case TK_COLUMN:
1962     case TK_AGG_FUNCTION:
1963     case TK_AGG_COLUMN:
1964       testcase( pExpr->op==TK_ID );
1965       testcase( pExpr->op==TK_COLUMN );
1966       testcase( pExpr->op==TK_AGG_FUNCTION );
1967       testcase( pExpr->op==TK_AGG_COLUMN );
1968       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1969         return WRC_Continue;
1970       }
1971       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1972         return WRC_Continue;
1973       }
1974       /* Fall through */
1975     case TK_IF_NULL_ROW:
1976     case TK_REGISTER:
1977       testcase( pExpr->op==TK_REGISTER );
1978       testcase( pExpr->op==TK_IF_NULL_ROW );
1979       pWalker->eCode = 0;
1980       return WRC_Abort;
1981     case TK_VARIABLE:
1982       if( pWalker->eCode==5 ){
1983         /* Silently convert bound parameters that appear inside of CREATE
1984         ** statements into a NULL when parsing the CREATE statement text out
1985         ** of the sqlite_master table */
1986         pExpr->op = TK_NULL;
1987       }else if( pWalker->eCode==4 ){
1988         /* A bound parameter in a CREATE statement that originates from
1989         ** sqlite3_prepare() causes an error */
1990         pWalker->eCode = 0;
1991         return WRC_Abort;
1992       }
1993       /* Fall through */
1994     default:
1995       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1996       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1997       return WRC_Continue;
1998   }
1999 }
2000 static int exprIsConst(Expr *p, int initFlag, int iCur){
2001   Walker w;
2002   w.eCode = initFlag;
2003   w.xExprCallback = exprNodeIsConstant;
2004   w.xSelectCallback = sqlite3SelectWalkFail;
2005 #ifdef SQLITE_DEBUG
2006   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2007 #endif
2008   w.u.iCur = iCur;
2009   sqlite3WalkExpr(&w, p);
2010   return w.eCode;
2011 }
2012 
2013 /*
2014 ** Walk an expression tree.  Return non-zero if the expression is constant
2015 ** and 0 if it involves variables or function calls.
2016 **
2017 ** For the purposes of this function, a double-quoted string (ex: "abc")
2018 ** is considered a variable but a single-quoted string (ex: 'abc') is
2019 ** a constant.
2020 */
2021 int sqlite3ExprIsConstant(Expr *p){
2022   return exprIsConst(p, 1, 0);
2023 }
2024 
2025 /*
2026 ** Walk an expression tree.  Return non-zero if
2027 **
2028 **   (1) the expression is constant, and
2029 **   (2) the expression does originate in the ON or USING clause
2030 **       of a LEFT JOIN, and
2031 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2032 **       operands created by the constant propagation optimization.
2033 **
2034 ** When this routine returns true, it indicates that the expression
2035 ** can be added to the pParse->pConstExpr list and evaluated once when
2036 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
2037 */
2038 int sqlite3ExprIsConstantNotJoin(Expr *p){
2039   return exprIsConst(p, 2, 0);
2040 }
2041 
2042 /*
2043 ** Walk an expression tree.  Return non-zero if the expression is constant
2044 ** for any single row of the table with cursor iCur.  In other words, the
2045 ** expression must not refer to any non-deterministic function nor any
2046 ** table other than iCur.
2047 */
2048 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2049   return exprIsConst(p, 3, iCur);
2050 }
2051 
2052 
2053 /*
2054 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2055 */
2056 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2057   ExprList *pGroupBy = pWalker->u.pGroupBy;
2058   int i;
2059 
2060   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2061   ** it constant.  */
2062   for(i=0; i<pGroupBy->nExpr; i++){
2063     Expr *p = pGroupBy->a[i].pExpr;
2064     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2065       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2066       if( sqlite3IsBinary(pColl) ){
2067         return WRC_Prune;
2068       }
2069     }
2070   }
2071 
2072   /* Check if pExpr is a sub-select. If so, consider it variable. */
2073   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2074     pWalker->eCode = 0;
2075     return WRC_Abort;
2076   }
2077 
2078   return exprNodeIsConstant(pWalker, pExpr);
2079 }
2080 
2081 /*
2082 ** Walk the expression tree passed as the first argument. Return non-zero
2083 ** if the expression consists entirely of constants or copies of terms
2084 ** in pGroupBy that sort with the BINARY collation sequence.
2085 **
2086 ** This routine is used to determine if a term of the HAVING clause can
2087 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2088 ** the value of the HAVING clause term must be the same for all members of
2089 ** a "group".  The requirement that the GROUP BY term must be BINARY
2090 ** assumes that no other collating sequence will have a finer-grained
2091 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2092 ** A=B in every other collating sequence.  The requirement that the
2093 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2094 ** to promote HAVING clauses that use the same alternative collating
2095 ** sequence as the GROUP BY term, but that is much harder to check,
2096 ** alternative collating sequences are uncommon, and this is only an
2097 ** optimization, so we take the easy way out and simply require the
2098 ** GROUP BY to use the BINARY collating sequence.
2099 */
2100 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2101   Walker w;
2102   w.eCode = 1;
2103   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2104   w.xSelectCallback = 0;
2105   w.u.pGroupBy = pGroupBy;
2106   w.pParse = pParse;
2107   sqlite3WalkExpr(&w, p);
2108   return w.eCode;
2109 }
2110 
2111 /*
2112 ** Walk an expression tree.  Return non-zero if the expression is constant
2113 ** or a function call with constant arguments.  Return and 0 if there
2114 ** are any variables.
2115 **
2116 ** For the purposes of this function, a double-quoted string (ex: "abc")
2117 ** is considered a variable but a single-quoted string (ex: 'abc') is
2118 ** a constant.
2119 */
2120 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2121   assert( isInit==0 || isInit==1 );
2122   return exprIsConst(p, 4+isInit, 0);
2123 }
2124 
2125 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2126 /*
2127 ** Walk an expression tree.  Return 1 if the expression contains a
2128 ** subquery of some kind.  Return 0 if there are no subqueries.
2129 */
2130 int sqlite3ExprContainsSubquery(Expr *p){
2131   Walker w;
2132   w.eCode = 1;
2133   w.xExprCallback = sqlite3ExprWalkNoop;
2134   w.xSelectCallback = sqlite3SelectWalkFail;
2135 #ifdef SQLITE_DEBUG
2136   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2137 #endif
2138   sqlite3WalkExpr(&w, p);
2139   return w.eCode==0;
2140 }
2141 #endif
2142 
2143 /*
2144 ** If the expression p codes a constant integer that is small enough
2145 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2146 ** in *pValue.  If the expression is not an integer or if it is too big
2147 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2148 */
2149 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2150   int rc = 0;
2151   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2152 
2153   /* If an expression is an integer literal that fits in a signed 32-bit
2154   ** integer, then the EP_IntValue flag will have already been set */
2155   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2156            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2157 
2158   if( p->flags & EP_IntValue ){
2159     *pValue = p->u.iValue;
2160     return 1;
2161   }
2162   switch( p->op ){
2163     case TK_UPLUS: {
2164       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2165       break;
2166     }
2167     case TK_UMINUS: {
2168       int v;
2169       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2170         assert( v!=(-2147483647-1) );
2171         *pValue = -v;
2172         rc = 1;
2173       }
2174       break;
2175     }
2176     default: break;
2177   }
2178   return rc;
2179 }
2180 
2181 /*
2182 ** Return FALSE if there is no chance that the expression can be NULL.
2183 **
2184 ** If the expression might be NULL or if the expression is too complex
2185 ** to tell return TRUE.
2186 **
2187 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2188 ** when we know that a value cannot be NULL.  Hence, a false positive
2189 ** (returning TRUE when in fact the expression can never be NULL) might
2190 ** be a small performance hit but is otherwise harmless.  On the other
2191 ** hand, a false negative (returning FALSE when the result could be NULL)
2192 ** will likely result in an incorrect answer.  So when in doubt, return
2193 ** TRUE.
2194 */
2195 int sqlite3ExprCanBeNull(const Expr *p){
2196   u8 op;
2197   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2198     p = p->pLeft;
2199   }
2200   op = p->op;
2201   if( op==TK_REGISTER ) op = p->op2;
2202   switch( op ){
2203     case TK_INTEGER:
2204     case TK_STRING:
2205     case TK_FLOAT:
2206     case TK_BLOB:
2207       return 0;
2208     case TK_COLUMN:
2209       return ExprHasProperty(p, EP_CanBeNull) ||
2210              p->y.pTab==0 ||  /* Reference to column of index on expression */
2211              (p->iColumn>=0
2212               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2213               && p->y.pTab->aCol[p->iColumn].notNull==0);
2214     default:
2215       return 1;
2216   }
2217 }
2218 
2219 /*
2220 ** Return TRUE if the given expression is a constant which would be
2221 ** unchanged by OP_Affinity with the affinity given in the second
2222 ** argument.
2223 **
2224 ** This routine is used to determine if the OP_Affinity operation
2225 ** can be omitted.  When in doubt return FALSE.  A false negative
2226 ** is harmless.  A false positive, however, can result in the wrong
2227 ** answer.
2228 */
2229 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2230   u8 op;
2231   int unaryMinus = 0;
2232   if( aff==SQLITE_AFF_BLOB ) return 1;
2233   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2234     if( p->op==TK_UMINUS ) unaryMinus = 1;
2235     p = p->pLeft;
2236   }
2237   op = p->op;
2238   if( op==TK_REGISTER ) op = p->op2;
2239   switch( op ){
2240     case TK_INTEGER: {
2241       return aff>=SQLITE_AFF_NUMERIC;
2242     }
2243     case TK_FLOAT: {
2244       return aff>=SQLITE_AFF_NUMERIC;
2245     }
2246     case TK_STRING: {
2247       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2248     }
2249     case TK_BLOB: {
2250       return !unaryMinus;
2251     }
2252     case TK_COLUMN: {
2253       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2254       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2255     }
2256     default: {
2257       return 0;
2258     }
2259   }
2260 }
2261 
2262 /*
2263 ** Return TRUE if the given string is a row-id column name.
2264 */
2265 int sqlite3IsRowid(const char *z){
2266   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2267   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2268   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2269   return 0;
2270 }
2271 
2272 /*
2273 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2274 ** that can be simplified to a direct table access, then return
2275 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2276 ** or if the SELECT statement needs to be manifested into a transient
2277 ** table, then return NULL.
2278 */
2279 #ifndef SQLITE_OMIT_SUBQUERY
2280 static Select *isCandidateForInOpt(Expr *pX){
2281   Select *p;
2282   SrcList *pSrc;
2283   ExprList *pEList;
2284   Table *pTab;
2285   int i;
2286   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2287   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2288   p = pX->x.pSelect;
2289   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2290   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2291     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2292     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2293     return 0; /* No DISTINCT keyword and no aggregate functions */
2294   }
2295   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
2296   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2297   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2298   pSrc = p->pSrc;
2299   assert( pSrc!=0 );
2300   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2301   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2302   pTab = pSrc->a[0].pTab;
2303   assert( pTab!=0 );
2304   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2305   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2306   pEList = p->pEList;
2307   assert( pEList!=0 );
2308   /* All SELECT results must be columns. */
2309   for(i=0; i<pEList->nExpr; i++){
2310     Expr *pRes = pEList->a[i].pExpr;
2311     if( pRes->op!=TK_COLUMN ) return 0;
2312     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2313   }
2314   return p;
2315 }
2316 #endif /* SQLITE_OMIT_SUBQUERY */
2317 
2318 #ifndef SQLITE_OMIT_SUBQUERY
2319 /*
2320 ** Generate code that checks the left-most column of index table iCur to see if
2321 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2322 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2323 ** to be set to NULL if iCur contains one or more NULL values.
2324 */
2325 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2326   int addr1;
2327   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2328   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2329   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2330   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2331   VdbeComment((v, "first_entry_in(%d)", iCur));
2332   sqlite3VdbeJumpHere(v, addr1);
2333 }
2334 #endif
2335 
2336 
2337 #ifndef SQLITE_OMIT_SUBQUERY
2338 /*
2339 ** The argument is an IN operator with a list (not a subquery) on the
2340 ** right-hand side.  Return TRUE if that list is constant.
2341 */
2342 static int sqlite3InRhsIsConstant(Expr *pIn){
2343   Expr *pLHS;
2344   int res;
2345   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2346   pLHS = pIn->pLeft;
2347   pIn->pLeft = 0;
2348   res = sqlite3ExprIsConstant(pIn);
2349   pIn->pLeft = pLHS;
2350   return res;
2351 }
2352 #endif
2353 
2354 /*
2355 ** This function is used by the implementation of the IN (...) operator.
2356 ** The pX parameter is the expression on the RHS of the IN operator, which
2357 ** might be either a list of expressions or a subquery.
2358 **
2359 ** The job of this routine is to find or create a b-tree object that can
2360 ** be used either to test for membership in the RHS set or to iterate through
2361 ** all members of the RHS set, skipping duplicates.
2362 **
2363 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2364 ** and pX->iTable is set to the index of that cursor.
2365 **
2366 ** The returned value of this function indicates the b-tree type, as follows:
2367 **
2368 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2369 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2370 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2371 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2372 **                         populated epheremal table.
2373 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2374 **                         implemented as a sequence of comparisons.
2375 **
2376 ** An existing b-tree might be used if the RHS expression pX is a simple
2377 ** subquery such as:
2378 **
2379 **     SELECT <column1>, <column2>... FROM <table>
2380 **
2381 ** If the RHS of the IN operator is a list or a more complex subquery, then
2382 ** an ephemeral table might need to be generated from the RHS and then
2383 ** pX->iTable made to point to the ephemeral table instead of an
2384 ** existing table.
2385 **
2386 ** The inFlags parameter must contain, at a minimum, one of the bits
2387 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2388 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2389 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2390 ** be used to loop over all values of the RHS of the IN operator.
2391 **
2392 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2393 ** through the set members) then the b-tree must not contain duplicates.
2394 ** An epheremal table will be created unless the selected columns are guaranteed
2395 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2396 ** a UNIQUE constraint or index.
2397 **
2398 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2399 ** for fast set membership tests) then an epheremal table must
2400 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2401 ** index can be found with the specified <columns> as its left-most.
2402 **
2403 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2404 ** if the RHS of the IN operator is a list (not a subquery) then this
2405 ** routine might decide that creating an ephemeral b-tree for membership
2406 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2407 ** calling routine should implement the IN operator using a sequence
2408 ** of Eq or Ne comparison operations.
2409 **
2410 ** When the b-tree is being used for membership tests, the calling function
2411 ** might need to know whether or not the RHS side of the IN operator
2412 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2413 ** if there is any chance that the (...) might contain a NULL value at
2414 ** runtime, then a register is allocated and the register number written
2415 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2416 ** NULL value, then *prRhsHasNull is left unchanged.
2417 **
2418 ** If a register is allocated and its location stored in *prRhsHasNull, then
2419 ** the value in that register will be NULL if the b-tree contains one or more
2420 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2421 ** NULL values.
2422 **
2423 ** If the aiMap parameter is not NULL, it must point to an array containing
2424 ** one element for each column returned by the SELECT statement on the RHS
2425 ** of the IN(...) operator. The i'th entry of the array is populated with the
2426 ** offset of the index column that matches the i'th column returned by the
2427 ** SELECT. For example, if the expression and selected index are:
2428 **
2429 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2430 **   CREATE INDEX i1 ON t1(b, c, a);
2431 **
2432 ** then aiMap[] is populated with {2, 0, 1}.
2433 */
2434 #ifndef SQLITE_OMIT_SUBQUERY
2435 int sqlite3FindInIndex(
2436   Parse *pParse,             /* Parsing context */
2437   Expr *pX,                  /* The IN expression */
2438   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2439   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2440   int *aiMap,                /* Mapping from Index fields to RHS fields */
2441   int *piTab                 /* OUT: index to use */
2442 ){
2443   Select *p;                            /* SELECT to the right of IN operator */
2444   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2445   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2446   int mustBeUnique;                     /* True if RHS must be unique */
2447   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2448 
2449   assert( pX->op==TK_IN );
2450   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2451 
2452   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2453   ** whether or not the SELECT result contains NULL values, check whether
2454   ** or not NULL is actually possible (it may not be, for example, due
2455   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2456   ** set prRhsHasNull to 0 before continuing.  */
2457   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2458     int i;
2459     ExprList *pEList = pX->x.pSelect->pEList;
2460     for(i=0; i<pEList->nExpr; i++){
2461       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2462     }
2463     if( i==pEList->nExpr ){
2464       prRhsHasNull = 0;
2465     }
2466   }
2467 
2468   /* Check to see if an existing table or index can be used to
2469   ** satisfy the query.  This is preferable to generating a new
2470   ** ephemeral table.  */
2471   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2472     sqlite3 *db = pParse->db;              /* Database connection */
2473     Table *pTab;                           /* Table <table>. */
2474     i16 iDb;                               /* Database idx for pTab */
2475     ExprList *pEList = p->pEList;
2476     int nExpr = pEList->nExpr;
2477 
2478     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2479     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2480     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2481     pTab = p->pSrc->a[0].pTab;
2482 
2483     /* Code an OP_Transaction and OP_TableLock for <table>. */
2484     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2485     sqlite3CodeVerifySchema(pParse, iDb);
2486     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2487 
2488     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2489     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2490       /* The "x IN (SELECT rowid FROM table)" case */
2491       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2492       VdbeCoverage(v);
2493 
2494       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2495       eType = IN_INDEX_ROWID;
2496       ExplainQueryPlan((pParse, 0,
2497             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2498       sqlite3VdbeJumpHere(v, iAddr);
2499     }else{
2500       Index *pIdx;                         /* Iterator variable */
2501       int affinity_ok = 1;
2502       int i;
2503 
2504       /* Check that the affinity that will be used to perform each
2505       ** comparison is the same as the affinity of each column in table
2506       ** on the RHS of the IN operator.  If it not, it is not possible to
2507       ** use any index of the RHS table.  */
2508       for(i=0; i<nExpr && affinity_ok; i++){
2509         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2510         int iCol = pEList->a[i].pExpr->iColumn;
2511         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2512         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2513         testcase( cmpaff==SQLITE_AFF_BLOB );
2514         testcase( cmpaff==SQLITE_AFF_TEXT );
2515         switch( cmpaff ){
2516           case SQLITE_AFF_BLOB:
2517             break;
2518           case SQLITE_AFF_TEXT:
2519             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2520             ** other has no affinity and the other side is TEXT.  Hence,
2521             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2522             ** and for the term on the LHS of the IN to have no affinity. */
2523             assert( idxaff==SQLITE_AFF_TEXT );
2524             break;
2525           default:
2526             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2527         }
2528       }
2529 
2530       if( affinity_ok ){
2531         /* Search for an existing index that will work for this IN operator */
2532         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2533           Bitmask colUsed;      /* Columns of the index used */
2534           Bitmask mCol;         /* Mask for the current column */
2535           if( pIdx->nColumn<nExpr ) continue;
2536           if( pIdx->pPartIdxWhere!=0 ) continue;
2537           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2538           ** BITMASK(nExpr) without overflowing */
2539           testcase( pIdx->nColumn==BMS-2 );
2540           testcase( pIdx->nColumn==BMS-1 );
2541           if( pIdx->nColumn>=BMS-1 ) continue;
2542           if( mustBeUnique ){
2543             if( pIdx->nKeyCol>nExpr
2544              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2545             ){
2546               continue;  /* This index is not unique over the IN RHS columns */
2547             }
2548           }
2549 
2550           colUsed = 0;   /* Columns of index used so far */
2551           for(i=0; i<nExpr; i++){
2552             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2553             Expr *pRhs = pEList->a[i].pExpr;
2554             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2555             int j;
2556 
2557             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2558             for(j=0; j<nExpr; j++){
2559               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2560               assert( pIdx->azColl[j] );
2561               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2562                 continue;
2563               }
2564               break;
2565             }
2566             if( j==nExpr ) break;
2567             mCol = MASKBIT(j);
2568             if( mCol & colUsed ) break; /* Each column used only once */
2569             colUsed |= mCol;
2570             if( aiMap ) aiMap[i] = j;
2571           }
2572 
2573           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2574           if( colUsed==(MASKBIT(nExpr)-1) ){
2575             /* If we reach this point, that means the index pIdx is usable */
2576             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2577             ExplainQueryPlan((pParse, 0,
2578                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2579             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2580             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2581             VdbeComment((v, "%s", pIdx->zName));
2582             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2583             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2584 
2585             if( prRhsHasNull ){
2586 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2587               i64 mask = (1<<nExpr)-1;
2588               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2589                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2590 #endif
2591               *prRhsHasNull = ++pParse->nMem;
2592               if( nExpr==1 ){
2593                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2594               }
2595             }
2596             sqlite3VdbeJumpHere(v, iAddr);
2597           }
2598         } /* End loop over indexes */
2599       } /* End if( affinity_ok ) */
2600     } /* End if not an rowid index */
2601   } /* End attempt to optimize using an index */
2602 
2603   /* If no preexisting index is available for the IN clause
2604   ** and IN_INDEX_NOOP is an allowed reply
2605   ** and the RHS of the IN operator is a list, not a subquery
2606   ** and the RHS is not constant or has two or fewer terms,
2607   ** then it is not worth creating an ephemeral table to evaluate
2608   ** the IN operator so return IN_INDEX_NOOP.
2609   */
2610   if( eType==0
2611    && (inFlags & IN_INDEX_NOOP_OK)
2612    && !ExprHasProperty(pX, EP_xIsSelect)
2613    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2614   ){
2615     eType = IN_INDEX_NOOP;
2616   }
2617 
2618   if( eType==0 ){
2619     /* Could not find an existing table or index to use as the RHS b-tree.
2620     ** We will have to generate an ephemeral table to do the job.
2621     */
2622     u32 savedNQueryLoop = pParse->nQueryLoop;
2623     int rMayHaveNull = 0;
2624     eType = IN_INDEX_EPH;
2625     if( inFlags & IN_INDEX_LOOP ){
2626       pParse->nQueryLoop = 0;
2627     }else if( prRhsHasNull ){
2628       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2629     }
2630     assert( pX->op==TK_IN );
2631     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2632     if( rMayHaveNull ){
2633       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2634     }
2635     pParse->nQueryLoop = savedNQueryLoop;
2636   }
2637 
2638   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2639     int i, n;
2640     n = sqlite3ExprVectorSize(pX->pLeft);
2641     for(i=0; i<n; i++) aiMap[i] = i;
2642   }
2643   *piTab = iTab;
2644   return eType;
2645 }
2646 #endif
2647 
2648 #ifndef SQLITE_OMIT_SUBQUERY
2649 /*
2650 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2651 ** function allocates and returns a nul-terminated string containing
2652 ** the affinities to be used for each column of the comparison.
2653 **
2654 ** It is the responsibility of the caller to ensure that the returned
2655 ** string is eventually freed using sqlite3DbFree().
2656 */
2657 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2658   Expr *pLeft = pExpr->pLeft;
2659   int nVal = sqlite3ExprVectorSize(pLeft);
2660   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2661   char *zRet;
2662 
2663   assert( pExpr->op==TK_IN );
2664   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2665   if( zRet ){
2666     int i;
2667     for(i=0; i<nVal; i++){
2668       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2669       char a = sqlite3ExprAffinity(pA);
2670       if( pSelect ){
2671         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2672       }else{
2673         zRet[i] = a;
2674       }
2675     }
2676     zRet[nVal] = '\0';
2677   }
2678   return zRet;
2679 }
2680 #endif
2681 
2682 #ifndef SQLITE_OMIT_SUBQUERY
2683 /*
2684 ** Load the Parse object passed as the first argument with an error
2685 ** message of the form:
2686 **
2687 **   "sub-select returns N columns - expected M"
2688 */
2689 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2690   if( pParse->nErr==0 ){
2691     const char *zFmt = "sub-select returns %d columns - expected %d";
2692     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2693   }
2694 }
2695 #endif
2696 
2697 /*
2698 ** Expression pExpr is a vector that has been used in a context where
2699 ** it is not permitted. If pExpr is a sub-select vector, this routine
2700 ** loads the Parse object with a message of the form:
2701 **
2702 **   "sub-select returns N columns - expected 1"
2703 **
2704 ** Or, if it is a regular scalar vector:
2705 **
2706 **   "row value misused"
2707 */
2708 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2709 #ifndef SQLITE_OMIT_SUBQUERY
2710   if( pExpr->flags & EP_xIsSelect ){
2711     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2712   }else
2713 #endif
2714   {
2715     sqlite3ErrorMsg(pParse, "row value misused");
2716   }
2717 }
2718 
2719 #ifndef SQLITE_OMIT_SUBQUERY
2720 /*
2721 ** Generate code that will construct an ephemeral table containing all terms
2722 ** in the RHS of an IN operator.  The IN operator can be in either of two
2723 ** forms:
2724 **
2725 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2726 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2727 **
2728 ** The pExpr parameter is the IN operator.  The cursor number for the
2729 ** constructed ephermeral table is returned.  The first time the ephemeral
2730 ** table is computed, the cursor number is also stored in pExpr->iTable,
2731 ** however the cursor number returned might not be the same, as it might
2732 ** have been duplicated using OP_OpenDup.
2733 **
2734 ** If the LHS expression ("x" in the examples) is a column value, or
2735 ** the SELECT statement returns a column value, then the affinity of that
2736 ** column is used to build the index keys. If both 'x' and the
2737 ** SELECT... statement are columns, then numeric affinity is used
2738 ** if either column has NUMERIC or INTEGER affinity. If neither
2739 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2740 ** is used.
2741 */
2742 void sqlite3CodeRhsOfIN(
2743   Parse *pParse,          /* Parsing context */
2744   Expr *pExpr,            /* The IN operator */
2745   int iTab                /* Use this cursor number */
2746 ){
2747   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2748   int addr;                   /* Address of OP_OpenEphemeral instruction */
2749   Expr *pLeft;                /* the LHS of the IN operator */
2750   KeyInfo *pKeyInfo = 0;      /* Key information */
2751   int nVal;                   /* Size of vector pLeft */
2752   Vdbe *v;                    /* The prepared statement under construction */
2753 
2754   v = pParse->pVdbe;
2755   assert( v!=0 );
2756 
2757   /* The evaluation of the IN must be repeated every time it
2758   ** is encountered if any of the following is true:
2759   **
2760   **    *  The right-hand side is a correlated subquery
2761   **    *  The right-hand side is an expression list containing variables
2762   **    *  We are inside a trigger
2763   **
2764   ** If all of the above are false, then we can compute the RHS just once
2765   ** and reuse it many names.
2766   */
2767   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2768     /* Reuse of the RHS is allowed */
2769     /* If this routine has already been coded, but the previous code
2770     ** might not have been invoked yet, so invoke it now as a subroutine.
2771     */
2772     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2773       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2774       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2775         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2776               pExpr->x.pSelect->selId));
2777       }
2778       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2779                         pExpr->y.sub.iAddr);
2780       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2781       sqlite3VdbeJumpHere(v, addrOnce);
2782       return;
2783     }
2784 
2785     /* Begin coding the subroutine */
2786     ExprSetProperty(pExpr, EP_Subrtn);
2787     pExpr->y.sub.regReturn = ++pParse->nMem;
2788     pExpr->y.sub.iAddr =
2789       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2790     VdbeComment((v, "return address"));
2791 
2792     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2793   }
2794 
2795   /* Check to see if this is a vector IN operator */
2796   pLeft = pExpr->pLeft;
2797   nVal = sqlite3ExprVectorSize(pLeft);
2798 
2799   /* Construct the ephemeral table that will contain the content of
2800   ** RHS of the IN operator.
2801   */
2802   pExpr->iTable = iTab;
2803   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2804 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2805   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2806     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2807   }else{
2808     VdbeComment((v, "RHS of IN operator"));
2809   }
2810 #endif
2811   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2812 
2813   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2814     /* Case 1:     expr IN (SELECT ...)
2815     **
2816     ** Generate code to write the results of the select into the temporary
2817     ** table allocated and opened above.
2818     */
2819     Select *pSelect = pExpr->x.pSelect;
2820     ExprList *pEList = pSelect->pEList;
2821 
2822     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2823         addrOnce?"":"CORRELATED ", pSelect->selId
2824     ));
2825     /* If the LHS and RHS of the IN operator do not match, that
2826     ** error will have been caught long before we reach this point. */
2827     if( ALWAYS(pEList->nExpr==nVal) ){
2828       SelectDest dest;
2829       int i;
2830       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2831       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2832       pSelect->iLimit = 0;
2833       testcase( pSelect->selFlags & SF_Distinct );
2834       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2835       if( sqlite3Select(pParse, pSelect, &dest) ){
2836         sqlite3DbFree(pParse->db, dest.zAffSdst);
2837         sqlite3KeyInfoUnref(pKeyInfo);
2838         return;
2839       }
2840       sqlite3DbFree(pParse->db, dest.zAffSdst);
2841       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2842       assert( pEList!=0 );
2843       assert( pEList->nExpr>0 );
2844       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2845       for(i=0; i<nVal; i++){
2846         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2847         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2848             pParse, p, pEList->a[i].pExpr
2849         );
2850       }
2851     }
2852   }else if( ALWAYS(pExpr->x.pList!=0) ){
2853     /* Case 2:     expr IN (exprlist)
2854     **
2855     ** For each expression, build an index key from the evaluation and
2856     ** store it in the temporary table. If <expr> is a column, then use
2857     ** that columns affinity when building index keys. If <expr> is not
2858     ** a column, use numeric affinity.
2859     */
2860     char affinity;            /* Affinity of the LHS of the IN */
2861     int i;
2862     ExprList *pList = pExpr->x.pList;
2863     struct ExprList_item *pItem;
2864     int r1, r2;
2865     affinity = sqlite3ExprAffinity(pLeft);
2866     if( affinity<=SQLITE_AFF_NONE ){
2867       affinity = SQLITE_AFF_BLOB;
2868     }
2869     if( pKeyInfo ){
2870       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2871       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2872     }
2873 
2874     /* Loop through each expression in <exprlist>. */
2875     r1 = sqlite3GetTempReg(pParse);
2876     r2 = sqlite3GetTempReg(pParse);
2877     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2878       Expr *pE2 = pItem->pExpr;
2879 
2880       /* If the expression is not constant then we will need to
2881       ** disable the test that was generated above that makes sure
2882       ** this code only executes once.  Because for a non-constant
2883       ** expression we need to rerun this code each time.
2884       */
2885       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2886         sqlite3VdbeChangeToNoop(v, addrOnce);
2887         ExprClearProperty(pExpr, EP_Subrtn);
2888         addrOnce = 0;
2889       }
2890 
2891       /* Evaluate the expression and insert it into the temp table */
2892       sqlite3ExprCode(pParse, pE2, r1);
2893       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2894       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2895     }
2896     sqlite3ReleaseTempReg(pParse, r1);
2897     sqlite3ReleaseTempReg(pParse, r2);
2898   }
2899   if( pKeyInfo ){
2900     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2901   }
2902   if( addrOnce ){
2903     sqlite3VdbeJumpHere(v, addrOnce);
2904     /* Subroutine return */
2905     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2906     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2907     sqlite3ClearTempRegCache(pParse);
2908   }
2909 }
2910 #endif /* SQLITE_OMIT_SUBQUERY */
2911 
2912 /*
2913 ** Generate code for scalar subqueries used as a subquery expression
2914 ** or EXISTS operator:
2915 **
2916 **     (SELECT a FROM b)          -- subquery
2917 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2918 **
2919 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2920 **
2921 ** Return the register that holds the result.  For a multi-column SELECT,
2922 ** the result is stored in a contiguous array of registers and the
2923 ** return value is the register of the left-most result column.
2924 ** Return 0 if an error occurs.
2925 */
2926 #ifndef SQLITE_OMIT_SUBQUERY
2927 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2928   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2929   int rReg = 0;               /* Register storing resulting */
2930   Select *pSel;               /* SELECT statement to encode */
2931   SelectDest dest;            /* How to deal with SELECT result */
2932   int nReg;                   /* Registers to allocate */
2933   Expr *pLimit;               /* New limit expression */
2934 
2935   Vdbe *v = pParse->pVdbe;
2936   assert( v!=0 );
2937   testcase( pExpr->op==TK_EXISTS );
2938   testcase( pExpr->op==TK_SELECT );
2939   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2940   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2941   pSel = pExpr->x.pSelect;
2942 
2943   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2944   ** is encountered if any of the following is true:
2945   **
2946   **    *  The right-hand side is a correlated subquery
2947   **    *  The right-hand side is an expression list containing variables
2948   **    *  We are inside a trigger
2949   **
2950   ** If all of the above are false, then we can run this code just once
2951   ** save the results, and reuse the same result on subsequent invocations.
2952   */
2953   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2954     /* If this routine has already been coded, then invoke it as a
2955     ** subroutine. */
2956     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2957       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2958       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2959                         pExpr->y.sub.iAddr);
2960       return pExpr->iTable;
2961     }
2962 
2963     /* Begin coding the subroutine */
2964     ExprSetProperty(pExpr, EP_Subrtn);
2965     pExpr->y.sub.regReturn = ++pParse->nMem;
2966     pExpr->y.sub.iAddr =
2967       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2968     VdbeComment((v, "return address"));
2969 
2970     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2971   }
2972 
2973   /* For a SELECT, generate code to put the values for all columns of
2974   ** the first row into an array of registers and return the index of
2975   ** the first register.
2976   **
2977   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2978   ** into a register and return that register number.
2979   **
2980   ** In both cases, the query is augmented with "LIMIT 1".  Any
2981   ** preexisting limit is discarded in place of the new LIMIT 1.
2982   */
2983   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
2984         addrOnce?"":"CORRELATED ", pSel->selId));
2985   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2986   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2987   pParse->nMem += nReg;
2988   if( pExpr->op==TK_SELECT ){
2989     dest.eDest = SRT_Mem;
2990     dest.iSdst = dest.iSDParm;
2991     dest.nSdst = nReg;
2992     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2993     VdbeComment((v, "Init subquery result"));
2994   }else{
2995     dest.eDest = SRT_Exists;
2996     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2997     VdbeComment((v, "Init EXISTS result"));
2998   }
2999   if( pSel->pLimit ){
3000     /* The subquery already has a limit.  If the pre-existing limit is X
3001     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3002     sqlite3 *db = pParse->db;
3003     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3004     if( pLimit ){
3005       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3006       pLimit = sqlite3PExpr(pParse, TK_NE,
3007                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3008     }
3009     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3010     pSel->pLimit->pLeft = pLimit;
3011   }else{
3012     /* If there is no pre-existing limit add a limit of 1 */
3013     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3014     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3015   }
3016   pSel->iLimit = 0;
3017   if( sqlite3Select(pParse, pSel, &dest) ){
3018     return 0;
3019   }
3020   pExpr->iTable = rReg = dest.iSDParm;
3021   ExprSetVVAProperty(pExpr, EP_NoReduce);
3022   if( addrOnce ){
3023     sqlite3VdbeJumpHere(v, addrOnce);
3024 
3025     /* Subroutine return */
3026     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3027     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3028     sqlite3ClearTempRegCache(pParse);
3029   }
3030 
3031   return rReg;
3032 }
3033 #endif /* SQLITE_OMIT_SUBQUERY */
3034 
3035 #ifndef SQLITE_OMIT_SUBQUERY
3036 /*
3037 ** Expr pIn is an IN(...) expression. This function checks that the
3038 ** sub-select on the RHS of the IN() operator has the same number of
3039 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3040 ** a sub-query, that the LHS is a vector of size 1.
3041 */
3042 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3043   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3044   if( (pIn->flags & EP_xIsSelect) ){
3045     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3046       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3047       return 1;
3048     }
3049   }else if( nVector!=1 ){
3050     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3051     return 1;
3052   }
3053   return 0;
3054 }
3055 #endif
3056 
3057 #ifndef SQLITE_OMIT_SUBQUERY
3058 /*
3059 ** Generate code for an IN expression.
3060 **
3061 **      x IN (SELECT ...)
3062 **      x IN (value, value, ...)
3063 **
3064 ** The left-hand side (LHS) is a scalar or vector expression.  The
3065 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3066 ** subquery.  If the RHS is a subquery, the number of result columns must
3067 ** match the number of columns in the vector on the LHS.  If the RHS is
3068 ** a list of values, the LHS must be a scalar.
3069 **
3070 ** The IN operator is true if the LHS value is contained within the RHS.
3071 ** The result is false if the LHS is definitely not in the RHS.  The
3072 ** result is NULL if the presence of the LHS in the RHS cannot be
3073 ** determined due to NULLs.
3074 **
3075 ** This routine generates code that jumps to destIfFalse if the LHS is not
3076 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3077 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3078 ** within the RHS then fall through.
3079 **
3080 ** See the separate in-operator.md documentation file in the canonical
3081 ** SQLite source tree for additional information.
3082 */
3083 static void sqlite3ExprCodeIN(
3084   Parse *pParse,        /* Parsing and code generating context */
3085   Expr *pExpr,          /* The IN expression */
3086   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3087   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3088 ){
3089   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3090   int eType;            /* Type of the RHS */
3091   int rLhs;             /* Register(s) holding the LHS values */
3092   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3093   Vdbe *v;              /* Statement under construction */
3094   int *aiMap = 0;       /* Map from vector field to index column */
3095   char *zAff = 0;       /* Affinity string for comparisons */
3096   int nVector;          /* Size of vectors for this IN operator */
3097   int iDummy;           /* Dummy parameter to exprCodeVector() */
3098   Expr *pLeft;          /* The LHS of the IN operator */
3099   int i;                /* loop counter */
3100   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3101   int destStep6 = 0;    /* Start of code for Step 6 */
3102   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3103   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3104   int addrTop;          /* Top of the step-6 loop */
3105   int iTab = 0;         /* Index to use */
3106 
3107   pLeft = pExpr->pLeft;
3108   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3109   zAff = exprINAffinity(pParse, pExpr);
3110   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3111   aiMap = (int*)sqlite3DbMallocZero(
3112       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3113   );
3114   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3115 
3116   /* Attempt to compute the RHS. After this step, if anything other than
3117   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3118   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3119   ** the RHS has not yet been coded.  */
3120   v = pParse->pVdbe;
3121   assert( v!=0 );       /* OOM detected prior to this routine */
3122   VdbeNoopComment((v, "begin IN expr"));
3123   eType = sqlite3FindInIndex(pParse, pExpr,
3124                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3125                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3126                              aiMap, &iTab);
3127 
3128   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3129        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3130   );
3131 #ifdef SQLITE_DEBUG
3132   /* Confirm that aiMap[] contains nVector integer values between 0 and
3133   ** nVector-1. */
3134   for(i=0; i<nVector; i++){
3135     int j, cnt;
3136     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3137     assert( cnt==1 );
3138   }
3139 #endif
3140 
3141   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3142   ** vector, then it is stored in an array of nVector registers starting
3143   ** at r1.
3144   **
3145   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3146   ** so that the fields are in the same order as an existing index.   The
3147   ** aiMap[] array contains a mapping from the original LHS field order to
3148   ** the field order that matches the RHS index.
3149   */
3150   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3151   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3152   if( i==nVector ){
3153     /* LHS fields are not reordered */
3154     rLhs = rLhsOrig;
3155   }else{
3156     /* Need to reorder the LHS fields according to aiMap */
3157     rLhs = sqlite3GetTempRange(pParse, nVector);
3158     for(i=0; i<nVector; i++){
3159       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3160     }
3161   }
3162 
3163   /* If sqlite3FindInIndex() did not find or create an index that is
3164   ** suitable for evaluating the IN operator, then evaluate using a
3165   ** sequence of comparisons.
3166   **
3167   ** This is step (1) in the in-operator.md optimized algorithm.
3168   */
3169   if( eType==IN_INDEX_NOOP ){
3170     ExprList *pList = pExpr->x.pList;
3171     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3172     int labelOk = sqlite3VdbeMakeLabel(pParse);
3173     int r2, regToFree;
3174     int regCkNull = 0;
3175     int ii;
3176     int bLhsReal;  /* True if the LHS of the IN has REAL affinity */
3177     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3178     if( destIfNull!=destIfFalse ){
3179       regCkNull = sqlite3GetTempReg(pParse);
3180       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3181     }
3182     bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL;
3183     for(ii=0; ii<pList->nExpr; ii++){
3184       if( bLhsReal ){
3185         r2 = regToFree = sqlite3GetTempReg(pParse);
3186         sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2);
3187         sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC);
3188       }else{
3189         r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3190       }
3191       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3192         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3193       }
3194       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3195         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3196         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3197                           (void*)pColl, P4_COLLSEQ);
3198         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3199         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3200         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3201         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3202         sqlite3VdbeChangeP5(v, zAff[0]);
3203       }else{
3204         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3205         assert( destIfNull==destIfFalse );
3206         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3207                           (void*)pColl, P4_COLLSEQ);
3208         VdbeCoverageIf(v, op==OP_Ne);
3209         VdbeCoverageIf(v, op==OP_IsNull);
3210         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3211       }
3212       sqlite3ReleaseTempReg(pParse, regToFree);
3213     }
3214     if( regCkNull ){
3215       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3216       sqlite3VdbeGoto(v, destIfFalse);
3217     }
3218     sqlite3VdbeResolveLabel(v, labelOk);
3219     sqlite3ReleaseTempReg(pParse, regCkNull);
3220     goto sqlite3ExprCodeIN_finished;
3221   }
3222 
3223   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3224   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3225   ** We will then skip the binary search of the RHS.
3226   */
3227   if( destIfNull==destIfFalse ){
3228     destStep2 = destIfFalse;
3229   }else{
3230     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3231   }
3232   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3233   for(i=0; i<nVector; i++){
3234     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3235     if( sqlite3ExprCanBeNull(p) ){
3236       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3237       VdbeCoverage(v);
3238     }
3239   }
3240 
3241   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3242   ** of the RHS using the LHS as a probe.  If found, the result is
3243   ** true.
3244   */
3245   if( eType==IN_INDEX_ROWID ){
3246     /* In this case, the RHS is the ROWID of table b-tree and so we also
3247     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3248     ** into a single opcode. */
3249     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3250     VdbeCoverage(v);
3251     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3252   }else{
3253     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3254     if( destIfFalse==destIfNull ){
3255       /* Combine Step 3 and Step 5 into a single opcode */
3256       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3257                            rLhs, nVector); VdbeCoverage(v);
3258       goto sqlite3ExprCodeIN_finished;
3259     }
3260     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3261     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3262                                       rLhs, nVector); VdbeCoverage(v);
3263   }
3264 
3265   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3266   ** an match on the search above, then the result must be FALSE.
3267   */
3268   if( rRhsHasNull && nVector==1 ){
3269     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3270     VdbeCoverage(v);
3271   }
3272 
3273   /* Step 5.  If we do not care about the difference between NULL and
3274   ** FALSE, then just return false.
3275   */
3276   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3277 
3278   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3279   ** If any comparison is NULL, then the result is NULL.  If all
3280   ** comparisons are FALSE then the final result is FALSE.
3281   **
3282   ** For a scalar LHS, it is sufficient to check just the first row
3283   ** of the RHS.
3284   */
3285   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3286   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3287   VdbeCoverage(v);
3288   if( nVector>1 ){
3289     destNotNull = sqlite3VdbeMakeLabel(pParse);
3290   }else{
3291     /* For nVector==1, combine steps 6 and 7 by immediately returning
3292     ** FALSE if the first comparison is not NULL */
3293     destNotNull = destIfFalse;
3294   }
3295   for(i=0; i<nVector; i++){
3296     Expr *p;
3297     CollSeq *pColl;
3298     int r3 = sqlite3GetTempReg(pParse);
3299     p = sqlite3VectorFieldSubexpr(pLeft, i);
3300     pColl = sqlite3ExprCollSeq(pParse, p);
3301     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3302     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3303                       (void*)pColl, P4_COLLSEQ);
3304     VdbeCoverage(v);
3305     sqlite3ReleaseTempReg(pParse, r3);
3306   }
3307   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3308   if( nVector>1 ){
3309     sqlite3VdbeResolveLabel(v, destNotNull);
3310     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3311     VdbeCoverage(v);
3312 
3313     /* Step 7:  If we reach this point, we know that the result must
3314     ** be false. */
3315     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3316   }
3317 
3318   /* Jumps here in order to return true. */
3319   sqlite3VdbeJumpHere(v, addrTruthOp);
3320 
3321 sqlite3ExprCodeIN_finished:
3322   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3323   VdbeComment((v, "end IN expr"));
3324 sqlite3ExprCodeIN_oom_error:
3325   sqlite3DbFree(pParse->db, aiMap);
3326   sqlite3DbFree(pParse->db, zAff);
3327 }
3328 #endif /* SQLITE_OMIT_SUBQUERY */
3329 
3330 #ifndef SQLITE_OMIT_FLOATING_POINT
3331 /*
3332 ** Generate an instruction that will put the floating point
3333 ** value described by z[0..n-1] into register iMem.
3334 **
3335 ** The z[] string will probably not be zero-terminated.  But the
3336 ** z[n] character is guaranteed to be something that does not look
3337 ** like the continuation of the number.
3338 */
3339 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3340   if( ALWAYS(z!=0) ){
3341     double value;
3342     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3343     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3344     if( negateFlag ) value = -value;
3345     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3346   }
3347 }
3348 #endif
3349 
3350 
3351 /*
3352 ** Generate an instruction that will put the integer describe by
3353 ** text z[0..n-1] into register iMem.
3354 **
3355 ** Expr.u.zToken is always UTF8 and zero-terminated.
3356 */
3357 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3358   Vdbe *v = pParse->pVdbe;
3359   if( pExpr->flags & EP_IntValue ){
3360     int i = pExpr->u.iValue;
3361     assert( i>=0 );
3362     if( negFlag ) i = -i;
3363     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3364   }else{
3365     int c;
3366     i64 value;
3367     const char *z = pExpr->u.zToken;
3368     assert( z!=0 );
3369     c = sqlite3DecOrHexToI64(z, &value);
3370     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3371 #ifdef SQLITE_OMIT_FLOATING_POINT
3372       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3373 #else
3374 #ifndef SQLITE_OMIT_HEX_INTEGER
3375       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3376         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3377       }else
3378 #endif
3379       {
3380         codeReal(v, z, negFlag, iMem);
3381       }
3382 #endif
3383     }else{
3384       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3385       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3386     }
3387   }
3388 }
3389 
3390 
3391 /* Generate code that will load into register regOut a value that is
3392 ** appropriate for the iIdxCol-th column of index pIdx.
3393 */
3394 void sqlite3ExprCodeLoadIndexColumn(
3395   Parse *pParse,  /* The parsing context */
3396   Index *pIdx,    /* The index whose column is to be loaded */
3397   int iTabCur,    /* Cursor pointing to a table row */
3398   int iIdxCol,    /* The column of the index to be loaded */
3399   int regOut      /* Store the index column value in this register */
3400 ){
3401   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3402   if( iTabCol==XN_EXPR ){
3403     assert( pIdx->aColExpr );
3404     assert( pIdx->aColExpr->nExpr>iIdxCol );
3405     pParse->iSelfTab = iTabCur + 1;
3406     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3407     pParse->iSelfTab = 0;
3408   }else{
3409     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3410                                     iTabCol, regOut);
3411   }
3412 }
3413 
3414 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3415 /*
3416 ** Generate code that will compute the value of generated column pCol
3417 ** and store the result in register regOut
3418 */
3419 void sqlite3ExprCodeGeneratedColumn(
3420   Parse *pParse,
3421   Column *pCol,
3422   int regOut
3423 ){
3424   int iAddr;
3425   Vdbe *v = pParse->pVdbe;
3426   assert( v!=0 );
3427   assert( pParse->iSelfTab!=0 );
3428   if( pParse->iSelfTab>0 ){
3429     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3430   }else{
3431     iAddr = 0;
3432   }
3433   sqlite3ExprCode(pParse, pCol->pDflt, regOut);
3434   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3435     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3436   }
3437   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3438 }
3439 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3440 
3441 /*
3442 ** Generate code to extract the value of the iCol-th column of a table.
3443 */
3444 void sqlite3ExprCodeGetColumnOfTable(
3445   Vdbe *v,        /* Parsing context */
3446   Table *pTab,    /* The table containing the value */
3447   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3448   int iCol,       /* Index of the column to extract */
3449   int regOut      /* Extract the value into this register */
3450 ){
3451   Column *pCol;
3452   assert( v!=0 );
3453   if( pTab==0 ){
3454     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3455     return;
3456   }
3457   if( iCol<0 || iCol==pTab->iPKey ){
3458     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3459   }else{
3460     int op;
3461     int x;
3462     if( IsVirtual(pTab) ){
3463       op = OP_VColumn;
3464       x = iCol;
3465 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3466     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3467       Parse *pParse = sqlite3VdbeParser(v);
3468       if( pCol->colFlags & COLFLAG_BUSY ){
3469         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3470       }else{
3471         int savedSelfTab = pParse->iSelfTab;
3472         pCol->colFlags |= COLFLAG_BUSY;
3473         pParse->iSelfTab = iTabCur+1;
3474         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3475         pParse->iSelfTab = savedSelfTab;
3476         pCol->colFlags &= ~COLFLAG_BUSY;
3477       }
3478       return;
3479 #endif
3480     }else if( !HasRowid(pTab) ){
3481       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3482       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3483       op = OP_Column;
3484     }else{
3485       x = sqlite3TableColumnToStorage(pTab,iCol);
3486       testcase( x!=iCol );
3487       op = OP_Column;
3488     }
3489     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3490     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3491   }
3492 }
3493 
3494 /*
3495 ** Generate code that will extract the iColumn-th column from
3496 ** table pTab and store the column value in register iReg.
3497 **
3498 ** There must be an open cursor to pTab in iTable when this routine
3499 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3500 */
3501 int sqlite3ExprCodeGetColumn(
3502   Parse *pParse,   /* Parsing and code generating context */
3503   Table *pTab,     /* Description of the table we are reading from */
3504   int iColumn,     /* Index of the table column */
3505   int iTable,      /* The cursor pointing to the table */
3506   int iReg,        /* Store results here */
3507   u8 p5            /* P5 value for OP_Column + FLAGS */
3508 ){
3509   assert( pParse->pVdbe!=0 );
3510   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3511   if( p5 ){
3512     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3513     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3514   }
3515   return iReg;
3516 }
3517 
3518 /*
3519 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3520 ** over to iTo..iTo+nReg-1.
3521 */
3522 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3523   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3524 }
3525 
3526 /*
3527 ** Convert a scalar expression node to a TK_REGISTER referencing
3528 ** register iReg.  The caller must ensure that iReg already contains
3529 ** the correct value for the expression.
3530 */
3531 static void exprToRegister(Expr *pExpr, int iReg){
3532   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3533   p->op2 = p->op;
3534   p->op = TK_REGISTER;
3535   p->iTable = iReg;
3536   ExprClearProperty(p, EP_Skip);
3537 }
3538 
3539 /*
3540 ** Evaluate an expression (either a vector or a scalar expression) and store
3541 ** the result in continguous temporary registers.  Return the index of
3542 ** the first register used to store the result.
3543 **
3544 ** If the returned result register is a temporary scalar, then also write
3545 ** that register number into *piFreeable.  If the returned result register
3546 ** is not a temporary or if the expression is a vector set *piFreeable
3547 ** to 0.
3548 */
3549 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3550   int iResult;
3551   int nResult = sqlite3ExprVectorSize(p);
3552   if( nResult==1 ){
3553     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3554   }else{
3555     *piFreeable = 0;
3556     if( p->op==TK_SELECT ){
3557 #if SQLITE_OMIT_SUBQUERY
3558       iResult = 0;
3559 #else
3560       iResult = sqlite3CodeSubselect(pParse, p);
3561 #endif
3562     }else{
3563       int i;
3564       iResult = pParse->nMem+1;
3565       pParse->nMem += nResult;
3566       for(i=0; i<nResult; i++){
3567         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3568       }
3569     }
3570   }
3571   return iResult;
3572 }
3573 
3574 
3575 /*
3576 ** Generate code into the current Vdbe to evaluate the given
3577 ** expression.  Attempt to store the results in register "target".
3578 ** Return the register where results are stored.
3579 **
3580 ** With this routine, there is no guarantee that results will
3581 ** be stored in target.  The result might be stored in some other
3582 ** register if it is convenient to do so.  The calling function
3583 ** must check the return code and move the results to the desired
3584 ** register.
3585 */
3586 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3587   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3588   int op;                   /* The opcode being coded */
3589   int inReg = target;       /* Results stored in register inReg */
3590   int regFree1 = 0;         /* If non-zero free this temporary register */
3591   int regFree2 = 0;         /* If non-zero free this temporary register */
3592   int r1, r2;               /* Various register numbers */
3593   Expr tempX;               /* Temporary expression node */
3594   int p5 = 0;
3595 
3596   assert( target>0 && target<=pParse->nMem );
3597   if( v==0 ){
3598     assert( pParse->db->mallocFailed );
3599     return 0;
3600   }
3601 
3602 expr_code_doover:
3603   if( pExpr==0 ){
3604     op = TK_NULL;
3605   }else{
3606     op = pExpr->op;
3607   }
3608   switch( op ){
3609     case TK_AGG_COLUMN: {
3610       AggInfo *pAggInfo = pExpr->pAggInfo;
3611       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3612       if( !pAggInfo->directMode ){
3613         assert( pCol->iMem>0 );
3614         return pCol->iMem;
3615       }else if( pAggInfo->useSortingIdx ){
3616         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3617                               pCol->iSorterColumn, target);
3618         return target;
3619       }
3620       /* Otherwise, fall thru into the TK_COLUMN case */
3621     }
3622     case TK_COLUMN: {
3623       int iTab = pExpr->iTable;
3624       int iReg;
3625       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3626         /* This COLUMN expression is really a constant due to WHERE clause
3627         ** constraints, and that constant is coded by the pExpr->pLeft
3628         ** expresssion.  However, make sure the constant has the correct
3629         ** datatype by applying the Affinity of the table column to the
3630         ** constant.
3631         */
3632         int aff;
3633         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3634         if( pExpr->y.pTab ){
3635           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3636         }else{
3637           aff = pExpr->affExpr;
3638         }
3639         if( aff>SQLITE_AFF_BLOB ){
3640           static const char zAff[] = "B\000C\000D\000E";
3641           assert( SQLITE_AFF_BLOB=='A' );
3642           assert( SQLITE_AFF_TEXT=='B' );
3643           if( iReg!=target ){
3644             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3645             iReg = target;
3646           }
3647           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3648                             &zAff[(aff-'B')*2], P4_STATIC);
3649         }
3650         return iReg;
3651       }
3652       if( iTab<0 ){
3653         if( pParse->iSelfTab<0 ){
3654           /* Other columns in the same row for CHECK constraints or
3655           ** generated columns or for inserting into partial index.
3656           ** The row is unpacked into registers beginning at
3657           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3658           ** immediately prior to the first column.
3659           */
3660           Column *pCol;
3661           Table *pTab = pExpr->y.pTab;
3662           int iSrc;
3663           int iCol = pExpr->iColumn;
3664           assert( pTab!=0 );
3665           assert( iCol>=XN_ROWID );
3666           assert( iCol<pTab->nCol );
3667           if( iCol<0 ){
3668             return -1-pParse->iSelfTab;
3669           }
3670           pCol = pTab->aCol + iCol;
3671           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3672           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3673 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3674           if( pCol->colFlags & COLFLAG_GENERATED ){
3675             if( pCol->colFlags & COLFLAG_BUSY ){
3676               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3677                               pCol->zName);
3678               return 0;
3679             }
3680             pCol->colFlags |= COLFLAG_BUSY;
3681             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3682               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3683             }
3684             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3685             return iSrc;
3686           }else
3687 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3688           if( pCol->affinity==SQLITE_AFF_REAL ){
3689             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3690             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3691             return target;
3692           }else{
3693             return iSrc;
3694           }
3695         }else{
3696           /* Coding an expression that is part of an index where column names
3697           ** in the index refer to the table to which the index belongs */
3698           iTab = pParse->iSelfTab - 1;
3699         }
3700       }
3701       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3702                                pExpr->iColumn, iTab, target,
3703                                pExpr->op2);
3704       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3705         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3706       }
3707       return iReg;
3708     }
3709     case TK_INTEGER: {
3710       codeInteger(pParse, pExpr, 0, target);
3711       return target;
3712     }
3713     case TK_TRUEFALSE: {
3714       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3715       return target;
3716     }
3717 #ifndef SQLITE_OMIT_FLOATING_POINT
3718     case TK_FLOAT: {
3719       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3720       codeReal(v, pExpr->u.zToken, 0, target);
3721       return target;
3722     }
3723 #endif
3724     case TK_STRING: {
3725       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3726       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3727       return target;
3728     }
3729     default: {
3730       /* Make NULL the default case so that if a bug causes an illegal
3731       ** Expr node to be passed into this function, it will be handled
3732       ** sanely and not crash.  But keep the assert() to bring the problem
3733       ** to the attention of the developers. */
3734       assert( op==TK_NULL );
3735       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3736       return target;
3737     }
3738 #ifndef SQLITE_OMIT_BLOB_LITERAL
3739     case TK_BLOB: {
3740       int n;
3741       const char *z;
3742       char *zBlob;
3743       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3744       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3745       assert( pExpr->u.zToken[1]=='\'' );
3746       z = &pExpr->u.zToken[2];
3747       n = sqlite3Strlen30(z) - 1;
3748       assert( z[n]=='\'' );
3749       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3750       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3751       return target;
3752     }
3753 #endif
3754     case TK_VARIABLE: {
3755       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3756       assert( pExpr->u.zToken!=0 );
3757       assert( pExpr->u.zToken[0]!=0 );
3758       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3759       if( pExpr->u.zToken[1]!=0 ){
3760         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3761         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
3762         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3763         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3764       }
3765       return target;
3766     }
3767     case TK_REGISTER: {
3768       return pExpr->iTable;
3769     }
3770 #ifndef SQLITE_OMIT_CAST
3771     case TK_CAST: {
3772       /* Expressions of the form:   CAST(pLeft AS token) */
3773       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3774       if( inReg!=target ){
3775         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3776         inReg = target;
3777       }
3778       sqlite3VdbeAddOp2(v, OP_Cast, target,
3779                         sqlite3AffinityType(pExpr->u.zToken, 0));
3780       return inReg;
3781     }
3782 #endif /* SQLITE_OMIT_CAST */
3783     case TK_IS:
3784     case TK_ISNOT:
3785       op = (op==TK_IS) ? TK_EQ : TK_NE;
3786       p5 = SQLITE_NULLEQ;
3787       /* fall-through */
3788     case TK_LT:
3789     case TK_LE:
3790     case TK_GT:
3791     case TK_GE:
3792     case TK_NE:
3793     case TK_EQ: {
3794       Expr *pLeft = pExpr->pLeft;
3795       if( sqlite3ExprIsVector(pLeft) ){
3796         codeVectorCompare(pParse, pExpr, target, op, p5);
3797       }else{
3798         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3799         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3800         codeCompare(pParse, pLeft, pExpr->pRight, op,
3801             r1, r2, inReg, SQLITE_STOREP2 | p5,
3802             ExprHasProperty(pExpr,EP_Commuted));
3803         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3804         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3805         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3806         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3807         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3808         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3809         testcase( regFree1==0 );
3810         testcase( regFree2==0 );
3811       }
3812       break;
3813     }
3814     case TK_AND:
3815     case TK_OR:
3816     case TK_PLUS:
3817     case TK_STAR:
3818     case TK_MINUS:
3819     case TK_REM:
3820     case TK_BITAND:
3821     case TK_BITOR:
3822     case TK_SLASH:
3823     case TK_LSHIFT:
3824     case TK_RSHIFT:
3825     case TK_CONCAT: {
3826       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3827       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3828       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3829       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3830       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3831       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3832       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3833       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3834       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3835       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3836       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3837       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3838       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3839       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3840       testcase( regFree1==0 );
3841       testcase( regFree2==0 );
3842       break;
3843     }
3844     case TK_UMINUS: {
3845       Expr *pLeft = pExpr->pLeft;
3846       assert( pLeft );
3847       if( pLeft->op==TK_INTEGER ){
3848         codeInteger(pParse, pLeft, 1, target);
3849         return target;
3850 #ifndef SQLITE_OMIT_FLOATING_POINT
3851       }else if( pLeft->op==TK_FLOAT ){
3852         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3853         codeReal(v, pLeft->u.zToken, 1, target);
3854         return target;
3855 #endif
3856       }else{
3857         tempX.op = TK_INTEGER;
3858         tempX.flags = EP_IntValue|EP_TokenOnly;
3859         tempX.u.iValue = 0;
3860         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3861         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3862         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3863         testcase( regFree2==0 );
3864       }
3865       break;
3866     }
3867     case TK_BITNOT:
3868     case TK_NOT: {
3869       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3870       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3871       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3872       testcase( regFree1==0 );
3873       sqlite3VdbeAddOp2(v, op, r1, inReg);
3874       break;
3875     }
3876     case TK_TRUTH: {
3877       int isTrue;    /* IS TRUE or IS NOT TRUE */
3878       int bNormal;   /* IS TRUE or IS FALSE */
3879       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3880       testcase( regFree1==0 );
3881       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3882       bNormal = pExpr->op2==TK_IS;
3883       testcase( isTrue && bNormal);
3884       testcase( !isTrue && bNormal);
3885       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3886       break;
3887     }
3888     case TK_ISNULL:
3889     case TK_NOTNULL: {
3890       int addr;
3891       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3892       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3893       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3894       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3895       testcase( regFree1==0 );
3896       addr = sqlite3VdbeAddOp1(v, op, r1);
3897       VdbeCoverageIf(v, op==TK_ISNULL);
3898       VdbeCoverageIf(v, op==TK_NOTNULL);
3899       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3900       sqlite3VdbeJumpHere(v, addr);
3901       break;
3902     }
3903     case TK_AGG_FUNCTION: {
3904       AggInfo *pInfo = pExpr->pAggInfo;
3905       if( pInfo==0 ){
3906         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3907         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3908       }else{
3909         return pInfo->aFunc[pExpr->iAgg].iMem;
3910       }
3911       break;
3912     }
3913     case TK_FUNCTION: {
3914       ExprList *pFarg;       /* List of function arguments */
3915       int nFarg;             /* Number of function arguments */
3916       FuncDef *pDef;         /* The function definition object */
3917       const char *zId;       /* The function name */
3918       u32 constMask = 0;     /* Mask of function arguments that are constant */
3919       int i;                 /* Loop counter */
3920       sqlite3 *db = pParse->db;  /* The database connection */
3921       u8 enc = ENC(db);      /* The text encoding used by this database */
3922       CollSeq *pColl = 0;    /* A collating sequence */
3923 
3924 #ifndef SQLITE_OMIT_WINDOWFUNC
3925       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3926         return pExpr->y.pWin->regResult;
3927       }
3928 #endif
3929 
3930       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3931         /* SQL functions can be expensive. So try to move constant functions
3932         ** out of the inner loop, even if that means an extra OP_Copy. */
3933         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3934       }
3935       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3936       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3937         pFarg = 0;
3938       }else{
3939         pFarg = pExpr->x.pList;
3940       }
3941       nFarg = pFarg ? pFarg->nExpr : 0;
3942       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3943       zId = pExpr->u.zToken;
3944       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3945 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3946       if( pDef==0 && pParse->explain ){
3947         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3948       }
3949 #endif
3950       if( pDef==0 || pDef->xFinalize!=0 ){
3951         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3952         break;
3953       }
3954 
3955       /* Attempt a direct implementation of the built-in COALESCE() and
3956       ** IFNULL() functions.  This avoids unnecessary evaluation of
3957       ** arguments past the first non-NULL argument.
3958       */
3959       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3960         int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3961         assert( nFarg>=2 );
3962         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3963         for(i=1; i<nFarg; i++){
3964           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3965           VdbeCoverage(v);
3966           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3967         }
3968         sqlite3VdbeResolveLabel(v, endCoalesce);
3969         break;
3970       }
3971 
3972       /* The UNLIKELY() function is a no-op.  The result is the value
3973       ** of the first argument.
3974       */
3975       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3976         assert( nFarg>=1 );
3977         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3978       }
3979 
3980 #ifdef SQLITE_DEBUG
3981       /* The AFFINITY() function evaluates to a string that describes
3982       ** the type affinity of the argument.  This is used for testing of
3983       ** the SQLite type logic.
3984       */
3985       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3986         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3987         char aff;
3988         assert( nFarg==1 );
3989         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3990         sqlite3VdbeLoadString(v, target,
3991                 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3992         return target;
3993       }
3994 #endif
3995 
3996       for(i=0; i<nFarg; i++){
3997         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3998           testcase( i==31 );
3999           constMask |= MASKBIT32(i);
4000         }
4001         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4002           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4003         }
4004       }
4005       if( pFarg ){
4006         if( constMask ){
4007           r1 = pParse->nMem+1;
4008           pParse->nMem += nFarg;
4009         }else{
4010           r1 = sqlite3GetTempRange(pParse, nFarg);
4011         }
4012 
4013         /* For length() and typeof() functions with a column argument,
4014         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4015         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4016         ** loading.
4017         */
4018         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4019           u8 exprOp;
4020           assert( nFarg==1 );
4021           assert( pFarg->a[0].pExpr!=0 );
4022           exprOp = pFarg->a[0].pExpr->op;
4023           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4024             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4025             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4026             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4027             pFarg->a[0].pExpr->op2 =
4028                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4029           }
4030         }
4031 
4032         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4033                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4034       }else{
4035         r1 = 0;
4036       }
4037 #ifndef SQLITE_OMIT_VIRTUALTABLE
4038       /* Possibly overload the function if the first argument is
4039       ** a virtual table column.
4040       **
4041       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4042       ** second argument, not the first, as the argument to test to
4043       ** see if it is a column in a virtual table.  This is done because
4044       ** the left operand of infix functions (the operand we want to
4045       ** control overloading) ends up as the second argument to the
4046       ** function.  The expression "A glob B" is equivalent to
4047       ** "glob(B,A).  We want to use the A in "A glob B" to test
4048       ** for function overloading.  But we use the B term in "glob(B,A)".
4049       */
4050       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4051         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4052       }else if( nFarg>0 ){
4053         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4054       }
4055 #endif
4056       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4057         if( !pColl ) pColl = db->pDfltColl;
4058         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4059       }
4060 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4061       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4062         Expr *pArg = pFarg->a[0].pExpr;
4063         if( pArg->op==TK_COLUMN ){
4064           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4065         }else{
4066           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4067         }
4068       }else
4069 #endif
4070       {
4071         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4072                                    pDef, pExpr->op2);
4073       }
4074       if( nFarg ){
4075         if( constMask==0 ){
4076           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4077         }else{
4078           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask);
4079         }
4080       }
4081       return target;
4082     }
4083 #ifndef SQLITE_OMIT_SUBQUERY
4084     case TK_EXISTS:
4085     case TK_SELECT: {
4086       int nCol;
4087       testcase( op==TK_EXISTS );
4088       testcase( op==TK_SELECT );
4089       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4090         sqlite3SubselectError(pParse, nCol, 1);
4091       }else{
4092         return sqlite3CodeSubselect(pParse, pExpr);
4093       }
4094       break;
4095     }
4096     case TK_SELECT_COLUMN: {
4097       int n;
4098       if( pExpr->pLeft->iTable==0 ){
4099         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4100       }
4101       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4102       if( pExpr->iTable!=0
4103        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4104       ){
4105         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4106                                 pExpr->iTable, n);
4107       }
4108       return pExpr->pLeft->iTable + pExpr->iColumn;
4109     }
4110     case TK_IN: {
4111       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4112       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4113       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4114       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4115       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4116       sqlite3VdbeResolveLabel(v, destIfFalse);
4117       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4118       sqlite3VdbeResolveLabel(v, destIfNull);
4119       return target;
4120     }
4121 #endif /* SQLITE_OMIT_SUBQUERY */
4122 
4123 
4124     /*
4125     **    x BETWEEN y AND z
4126     **
4127     ** This is equivalent to
4128     **
4129     **    x>=y AND x<=z
4130     **
4131     ** X is stored in pExpr->pLeft.
4132     ** Y is stored in pExpr->pList->a[0].pExpr.
4133     ** Z is stored in pExpr->pList->a[1].pExpr.
4134     */
4135     case TK_BETWEEN: {
4136       exprCodeBetween(pParse, pExpr, target, 0, 0);
4137       return target;
4138     }
4139     case TK_SPAN:
4140     case TK_COLLATE:
4141     case TK_UPLUS: {
4142       pExpr = pExpr->pLeft;
4143       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4144     }
4145 
4146     case TK_TRIGGER: {
4147       /* If the opcode is TK_TRIGGER, then the expression is a reference
4148       ** to a column in the new.* or old.* pseudo-tables available to
4149       ** trigger programs. In this case Expr.iTable is set to 1 for the
4150       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4151       ** is set to the column of the pseudo-table to read, or to -1 to
4152       ** read the rowid field.
4153       **
4154       ** The expression is implemented using an OP_Param opcode. The p1
4155       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4156       ** to reference another column of the old.* pseudo-table, where
4157       ** i is the index of the column. For a new.rowid reference, p1 is
4158       ** set to (n+1), where n is the number of columns in each pseudo-table.
4159       ** For a reference to any other column in the new.* pseudo-table, p1
4160       ** is set to (n+2+i), where n and i are as defined previously. For
4161       ** example, if the table on which triggers are being fired is
4162       ** declared as:
4163       **
4164       **   CREATE TABLE t1(a, b);
4165       **
4166       ** Then p1 is interpreted as follows:
4167       **
4168       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4169       **   p1==1   ->    old.a         p1==4   ->    new.a
4170       **   p1==2   ->    old.b         p1==5   ->    new.b
4171       */
4172       Table *pTab = pExpr->y.pTab;
4173       int iCol = pExpr->iColumn;
4174       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4175                      + sqlite3TableColumnToStorage(pTab, iCol);
4176 
4177       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4178       assert( iCol>=-1 && iCol<pTab->nCol );
4179       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4180       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4181 
4182       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4183       VdbeComment((v, "r[%d]=%s.%s", target,
4184         (pExpr->iTable ? "new" : "old"),
4185         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4186       ));
4187 
4188 #ifndef SQLITE_OMIT_FLOATING_POINT
4189       /* If the column has REAL affinity, it may currently be stored as an
4190       ** integer. Use OP_RealAffinity to make sure it is really real.
4191       **
4192       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4193       ** floating point when extracting it from the record.  */
4194       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4195         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4196       }
4197 #endif
4198       break;
4199     }
4200 
4201     case TK_VECTOR: {
4202       sqlite3ErrorMsg(pParse, "row value misused");
4203       break;
4204     }
4205 
4206     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4207     ** that derive from the right-hand table of a LEFT JOIN.  The
4208     ** Expr.iTable value is the table number for the right-hand table.
4209     ** The expression is only evaluated if that table is not currently
4210     ** on a LEFT JOIN NULL row.
4211     */
4212     case TK_IF_NULL_ROW: {
4213       int addrINR;
4214       u8 okConstFactor = pParse->okConstFactor;
4215       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4216       /* Temporarily disable factoring of constant expressions, since
4217       ** even though expressions may appear to be constant, they are not
4218       ** really constant because they originate from the right-hand side
4219       ** of a LEFT JOIN. */
4220       pParse->okConstFactor = 0;
4221       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4222       pParse->okConstFactor = okConstFactor;
4223       sqlite3VdbeJumpHere(v, addrINR);
4224       sqlite3VdbeChangeP3(v, addrINR, inReg);
4225       break;
4226     }
4227 
4228     /*
4229     ** Form A:
4230     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4231     **
4232     ** Form B:
4233     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4234     **
4235     ** Form A is can be transformed into the equivalent form B as follows:
4236     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4237     **        WHEN x=eN THEN rN ELSE y END
4238     **
4239     ** X (if it exists) is in pExpr->pLeft.
4240     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4241     ** odd.  The Y is also optional.  If the number of elements in x.pList
4242     ** is even, then Y is omitted and the "otherwise" result is NULL.
4243     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4244     **
4245     ** The result of the expression is the Ri for the first matching Ei,
4246     ** or if there is no matching Ei, the ELSE term Y, or if there is
4247     ** no ELSE term, NULL.
4248     */
4249     case TK_CASE: {
4250       int endLabel;                     /* GOTO label for end of CASE stmt */
4251       int nextCase;                     /* GOTO label for next WHEN clause */
4252       int nExpr;                        /* 2x number of WHEN terms */
4253       int i;                            /* Loop counter */
4254       ExprList *pEList;                 /* List of WHEN terms */
4255       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4256       Expr opCompare;                   /* The X==Ei expression */
4257       Expr *pX;                         /* The X expression */
4258       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4259       Expr *pDel = 0;
4260       sqlite3 *db = pParse->db;
4261 
4262       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4263       assert(pExpr->x.pList->nExpr > 0);
4264       pEList = pExpr->x.pList;
4265       aListelem = pEList->a;
4266       nExpr = pEList->nExpr;
4267       endLabel = sqlite3VdbeMakeLabel(pParse);
4268       if( (pX = pExpr->pLeft)!=0 ){
4269         pDel = sqlite3ExprDup(db, pX, 0);
4270         if( db->mallocFailed ){
4271           sqlite3ExprDelete(db, pDel);
4272           break;
4273         }
4274         testcase( pX->op==TK_COLUMN );
4275         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4276         testcase( regFree1==0 );
4277         memset(&opCompare, 0, sizeof(opCompare));
4278         opCompare.op = TK_EQ;
4279         opCompare.pLeft = pDel;
4280         pTest = &opCompare;
4281         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4282         ** The value in regFree1 might get SCopy-ed into the file result.
4283         ** So make sure that the regFree1 register is not reused for other
4284         ** purposes and possibly overwritten.  */
4285         regFree1 = 0;
4286       }
4287       for(i=0; i<nExpr-1; i=i+2){
4288         if( pX ){
4289           assert( pTest!=0 );
4290           opCompare.pRight = aListelem[i].pExpr;
4291         }else{
4292           pTest = aListelem[i].pExpr;
4293         }
4294         nextCase = sqlite3VdbeMakeLabel(pParse);
4295         testcase( pTest->op==TK_COLUMN );
4296         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4297         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4298         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4299         sqlite3VdbeGoto(v, endLabel);
4300         sqlite3VdbeResolveLabel(v, nextCase);
4301       }
4302       if( (nExpr&1)!=0 ){
4303         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4304       }else{
4305         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4306       }
4307       sqlite3ExprDelete(db, pDel);
4308       sqlite3VdbeResolveLabel(v, endLabel);
4309       break;
4310     }
4311 #ifndef SQLITE_OMIT_TRIGGER
4312     case TK_RAISE: {
4313       assert( pExpr->affExpr==OE_Rollback
4314            || pExpr->affExpr==OE_Abort
4315            || pExpr->affExpr==OE_Fail
4316            || pExpr->affExpr==OE_Ignore
4317       );
4318       if( !pParse->pTriggerTab ){
4319         sqlite3ErrorMsg(pParse,
4320                        "RAISE() may only be used within a trigger-program");
4321         return 0;
4322       }
4323       if( pExpr->affExpr==OE_Abort ){
4324         sqlite3MayAbort(pParse);
4325       }
4326       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4327       if( pExpr->affExpr==OE_Ignore ){
4328         sqlite3VdbeAddOp4(
4329             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4330         VdbeCoverage(v);
4331       }else{
4332         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4333                               pExpr->affExpr, pExpr->u.zToken, 0, 0);
4334       }
4335 
4336       break;
4337     }
4338 #endif
4339   }
4340   sqlite3ReleaseTempReg(pParse, regFree1);
4341   sqlite3ReleaseTempReg(pParse, regFree2);
4342   return inReg;
4343 }
4344 
4345 /*
4346 ** Factor out the code of the given expression to initialization time.
4347 **
4348 ** If regDest>=0 then the result is always stored in that register and the
4349 ** result is not reusable.  If regDest<0 then this routine is free to
4350 ** store the value whereever it wants.  The register where the expression
4351 ** is stored is returned.  When regDest<0, two identical expressions will
4352 ** code to the same register.
4353 */
4354 int sqlite3ExprCodeAtInit(
4355   Parse *pParse,    /* Parsing context */
4356   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4357   int regDest       /* Store the value in this register */
4358 ){
4359   ExprList *p;
4360   assert( ConstFactorOk(pParse) );
4361   p = pParse->pConstExpr;
4362   if( regDest<0 && p ){
4363     struct ExprList_item *pItem;
4364     int i;
4365     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4366       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4367         return pItem->u.iConstExprReg;
4368       }
4369     }
4370   }
4371   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4372   p = sqlite3ExprListAppend(pParse, p, pExpr);
4373   if( p ){
4374      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4375      pItem->reusable = regDest<0;
4376      if( regDest<0 ) regDest = ++pParse->nMem;
4377      pItem->u.iConstExprReg = regDest;
4378   }
4379   pParse->pConstExpr = p;
4380   return regDest;
4381 }
4382 
4383 /*
4384 ** Generate code to evaluate an expression and store the results
4385 ** into a register.  Return the register number where the results
4386 ** are stored.
4387 **
4388 ** If the register is a temporary register that can be deallocated,
4389 ** then write its number into *pReg.  If the result register is not
4390 ** a temporary, then set *pReg to zero.
4391 **
4392 ** If pExpr is a constant, then this routine might generate this
4393 ** code to fill the register in the initialization section of the
4394 ** VDBE program, in order to factor it out of the evaluation loop.
4395 */
4396 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4397   int r2;
4398   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4399   if( ConstFactorOk(pParse)
4400    && pExpr->op!=TK_REGISTER
4401    && sqlite3ExprIsConstantNotJoin(pExpr)
4402   ){
4403     *pReg  = 0;
4404     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4405   }else{
4406     int r1 = sqlite3GetTempReg(pParse);
4407     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4408     if( r2==r1 ){
4409       *pReg = r1;
4410     }else{
4411       sqlite3ReleaseTempReg(pParse, r1);
4412       *pReg = 0;
4413     }
4414   }
4415   return r2;
4416 }
4417 
4418 /*
4419 ** Generate code that will evaluate expression pExpr and store the
4420 ** results in register target.  The results are guaranteed to appear
4421 ** in register target.
4422 */
4423 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4424   int inReg;
4425 
4426   assert( target>0 && target<=pParse->nMem );
4427   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4428   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4429   if( inReg!=target && pParse->pVdbe ){
4430     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4431   }
4432 }
4433 
4434 /*
4435 ** Make a transient copy of expression pExpr and then code it using
4436 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4437 ** except that the input expression is guaranteed to be unchanged.
4438 */
4439 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4440   sqlite3 *db = pParse->db;
4441   pExpr = sqlite3ExprDup(db, pExpr, 0);
4442   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4443   sqlite3ExprDelete(db, pExpr);
4444 }
4445 
4446 /*
4447 ** Generate code that will evaluate expression pExpr and store the
4448 ** results in register target.  The results are guaranteed to appear
4449 ** in register target.  If the expression is constant, then this routine
4450 ** might choose to code the expression at initialization time.
4451 */
4452 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4453   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4454     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4455   }else{
4456     sqlite3ExprCode(pParse, pExpr, target);
4457   }
4458 }
4459 
4460 /*
4461 ** Generate code that pushes the value of every element of the given
4462 ** expression list into a sequence of registers beginning at target.
4463 **
4464 ** Return the number of elements evaluated.  The number returned will
4465 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4466 ** is defined.
4467 **
4468 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4469 ** filled using OP_SCopy.  OP_Copy must be used instead.
4470 **
4471 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4472 ** factored out into initialization code.
4473 **
4474 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4475 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4476 ** in registers at srcReg, and so the value can be copied from there.
4477 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4478 ** are simply omitted rather than being copied from srcReg.
4479 */
4480 int sqlite3ExprCodeExprList(
4481   Parse *pParse,     /* Parsing context */
4482   ExprList *pList,   /* The expression list to be coded */
4483   int target,        /* Where to write results */
4484   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4485   u8 flags           /* SQLITE_ECEL_* flags */
4486 ){
4487   struct ExprList_item *pItem;
4488   int i, j, n;
4489   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4490   Vdbe *v = pParse->pVdbe;
4491   assert( pList!=0 );
4492   assert( target>0 );
4493   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4494   n = pList->nExpr;
4495   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4496   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4497     Expr *pExpr = pItem->pExpr;
4498 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4499     if( pItem->bSorterRef ){
4500       i--;
4501       n--;
4502     }else
4503 #endif
4504     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4505       if( flags & SQLITE_ECEL_OMITREF ){
4506         i--;
4507         n--;
4508       }else{
4509         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4510       }
4511     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4512            && sqlite3ExprIsConstantNotJoin(pExpr)
4513     ){
4514       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4515     }else{
4516       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4517       if( inReg!=target+i ){
4518         VdbeOp *pOp;
4519         if( copyOp==OP_Copy
4520          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4521          && pOp->p1+pOp->p3+1==inReg
4522          && pOp->p2+pOp->p3+1==target+i
4523         ){
4524           pOp->p3++;
4525         }else{
4526           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4527         }
4528       }
4529     }
4530   }
4531   return n;
4532 }
4533 
4534 /*
4535 ** Generate code for a BETWEEN operator.
4536 **
4537 **    x BETWEEN y AND z
4538 **
4539 ** The above is equivalent to
4540 **
4541 **    x>=y AND x<=z
4542 **
4543 ** Code it as such, taking care to do the common subexpression
4544 ** elimination of x.
4545 **
4546 ** The xJumpIf parameter determines details:
4547 **
4548 **    NULL:                   Store the boolean result in reg[dest]
4549 **    sqlite3ExprIfTrue:      Jump to dest if true
4550 **    sqlite3ExprIfFalse:     Jump to dest if false
4551 **
4552 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4553 */
4554 static void exprCodeBetween(
4555   Parse *pParse,    /* Parsing and code generating context */
4556   Expr *pExpr,      /* The BETWEEN expression */
4557   int dest,         /* Jump destination or storage location */
4558   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4559   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4560 ){
4561   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4562   Expr compLeft;    /* The  x>=y  term */
4563   Expr compRight;   /* The  x<=z  term */
4564   int regFree1 = 0; /* Temporary use register */
4565   Expr *pDel = 0;
4566   sqlite3 *db = pParse->db;
4567 
4568   memset(&compLeft, 0, sizeof(Expr));
4569   memset(&compRight, 0, sizeof(Expr));
4570   memset(&exprAnd, 0, sizeof(Expr));
4571 
4572   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4573   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4574   if( db->mallocFailed==0 ){
4575     exprAnd.op = TK_AND;
4576     exprAnd.pLeft = &compLeft;
4577     exprAnd.pRight = &compRight;
4578     compLeft.op = TK_GE;
4579     compLeft.pLeft = pDel;
4580     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4581     compRight.op = TK_LE;
4582     compRight.pLeft = pDel;
4583     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4584     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4585     if( xJump ){
4586       xJump(pParse, &exprAnd, dest, jumpIfNull);
4587     }else{
4588       /* Mark the expression is being from the ON or USING clause of a join
4589       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4590       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4591       ** for clarity, but we are out of bits in the Expr.flags field so we
4592       ** have to reuse the EP_FromJoin bit.  Bummer. */
4593       pDel->flags |= EP_FromJoin;
4594       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4595     }
4596     sqlite3ReleaseTempReg(pParse, regFree1);
4597   }
4598   sqlite3ExprDelete(db, pDel);
4599 
4600   /* Ensure adequate test coverage */
4601   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4602   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4603   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4604   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4605   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4606   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4607   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4608   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4609   testcase( xJump==0 );
4610 }
4611 
4612 /*
4613 ** Generate code for a boolean expression such that a jump is made
4614 ** to the label "dest" if the expression is true but execution
4615 ** continues straight thru if the expression is false.
4616 **
4617 ** If the expression evaluates to NULL (neither true nor false), then
4618 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4619 **
4620 ** This code depends on the fact that certain token values (ex: TK_EQ)
4621 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4622 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4623 ** the make process cause these values to align.  Assert()s in the code
4624 ** below verify that the numbers are aligned correctly.
4625 */
4626 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4627   Vdbe *v = pParse->pVdbe;
4628   int op = 0;
4629   int regFree1 = 0;
4630   int regFree2 = 0;
4631   int r1, r2;
4632 
4633   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4634   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4635   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4636   op = pExpr->op;
4637   switch( op ){
4638     case TK_AND:
4639     case TK_OR: {
4640       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4641       if( pAlt!=pExpr ){
4642         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4643       }else if( op==TK_AND ){
4644         int d2 = sqlite3VdbeMakeLabel(pParse);
4645         testcase( jumpIfNull==0 );
4646         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4647                            jumpIfNull^SQLITE_JUMPIFNULL);
4648         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4649         sqlite3VdbeResolveLabel(v, d2);
4650       }else{
4651         testcase( jumpIfNull==0 );
4652         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4653         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4654       }
4655       break;
4656     }
4657     case TK_NOT: {
4658       testcase( jumpIfNull==0 );
4659       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4660       break;
4661     }
4662     case TK_TRUTH: {
4663       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4664       int isTrue;     /* IS TRUE or IS NOT TRUE */
4665       testcase( jumpIfNull==0 );
4666       isNot = pExpr->op2==TK_ISNOT;
4667       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4668       testcase( isTrue && isNot );
4669       testcase( !isTrue && isNot );
4670       if( isTrue ^ isNot ){
4671         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4672                           isNot ? SQLITE_JUMPIFNULL : 0);
4673       }else{
4674         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4675                            isNot ? SQLITE_JUMPIFNULL : 0);
4676       }
4677       break;
4678     }
4679     case TK_IS:
4680     case TK_ISNOT:
4681       testcase( op==TK_IS );
4682       testcase( op==TK_ISNOT );
4683       op = (op==TK_IS) ? TK_EQ : TK_NE;
4684       jumpIfNull = SQLITE_NULLEQ;
4685       /* Fall thru */
4686     case TK_LT:
4687     case TK_LE:
4688     case TK_GT:
4689     case TK_GE:
4690     case TK_NE:
4691     case TK_EQ: {
4692       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4693       testcase( jumpIfNull==0 );
4694       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4695       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4696       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4697                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4698       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4699       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4700       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4701       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4702       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4703       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4704       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4705       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4706       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4707       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4708       testcase( regFree1==0 );
4709       testcase( regFree2==0 );
4710       break;
4711     }
4712     case TK_ISNULL:
4713     case TK_NOTNULL: {
4714       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4715       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4716       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4717       sqlite3VdbeAddOp2(v, op, r1, dest);
4718       VdbeCoverageIf(v, op==TK_ISNULL);
4719       VdbeCoverageIf(v, op==TK_NOTNULL);
4720       testcase( regFree1==0 );
4721       break;
4722     }
4723     case TK_BETWEEN: {
4724       testcase( jumpIfNull==0 );
4725       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4726       break;
4727     }
4728 #ifndef SQLITE_OMIT_SUBQUERY
4729     case TK_IN: {
4730       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4731       int destIfNull = jumpIfNull ? dest : destIfFalse;
4732       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4733       sqlite3VdbeGoto(v, dest);
4734       sqlite3VdbeResolveLabel(v, destIfFalse);
4735       break;
4736     }
4737 #endif
4738     default: {
4739     default_expr:
4740       if( ExprAlwaysTrue(pExpr) ){
4741         sqlite3VdbeGoto(v, dest);
4742       }else if( ExprAlwaysFalse(pExpr) ){
4743         /* No-op */
4744       }else{
4745         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4746         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4747         VdbeCoverage(v);
4748         testcase( regFree1==0 );
4749         testcase( jumpIfNull==0 );
4750       }
4751       break;
4752     }
4753   }
4754   sqlite3ReleaseTempReg(pParse, regFree1);
4755   sqlite3ReleaseTempReg(pParse, regFree2);
4756 }
4757 
4758 /*
4759 ** Generate code for a boolean expression such that a jump is made
4760 ** to the label "dest" if the expression is false but execution
4761 ** continues straight thru if the expression is true.
4762 **
4763 ** If the expression evaluates to NULL (neither true nor false) then
4764 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4765 ** is 0.
4766 */
4767 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4768   Vdbe *v = pParse->pVdbe;
4769   int op = 0;
4770   int regFree1 = 0;
4771   int regFree2 = 0;
4772   int r1, r2;
4773 
4774   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4775   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4776   if( pExpr==0 )    return;
4777 
4778   /* The value of pExpr->op and op are related as follows:
4779   **
4780   **       pExpr->op            op
4781   **       ---------          ----------
4782   **       TK_ISNULL          OP_NotNull
4783   **       TK_NOTNULL         OP_IsNull
4784   **       TK_NE              OP_Eq
4785   **       TK_EQ              OP_Ne
4786   **       TK_GT              OP_Le
4787   **       TK_LE              OP_Gt
4788   **       TK_GE              OP_Lt
4789   **       TK_LT              OP_Ge
4790   **
4791   ** For other values of pExpr->op, op is undefined and unused.
4792   ** The value of TK_ and OP_ constants are arranged such that we
4793   ** can compute the mapping above using the following expression.
4794   ** Assert()s verify that the computation is correct.
4795   */
4796   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4797 
4798   /* Verify correct alignment of TK_ and OP_ constants
4799   */
4800   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4801   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4802   assert( pExpr->op!=TK_NE || op==OP_Eq );
4803   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4804   assert( pExpr->op!=TK_LT || op==OP_Ge );
4805   assert( pExpr->op!=TK_LE || op==OP_Gt );
4806   assert( pExpr->op!=TK_GT || op==OP_Le );
4807   assert( pExpr->op!=TK_GE || op==OP_Lt );
4808 
4809   switch( pExpr->op ){
4810     case TK_AND:
4811     case TK_OR: {
4812       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4813       if( pAlt!=pExpr ){
4814         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
4815       }else if( pExpr->op==TK_AND ){
4816         testcase( jumpIfNull==0 );
4817         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4818         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4819       }else{
4820         int d2 = sqlite3VdbeMakeLabel(pParse);
4821         testcase( jumpIfNull==0 );
4822         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
4823                           jumpIfNull^SQLITE_JUMPIFNULL);
4824         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4825         sqlite3VdbeResolveLabel(v, d2);
4826       }
4827       break;
4828     }
4829     case TK_NOT: {
4830       testcase( jumpIfNull==0 );
4831       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4832       break;
4833     }
4834     case TK_TRUTH: {
4835       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4836       int isTrue;  /* IS TRUE or IS NOT TRUE */
4837       testcase( jumpIfNull==0 );
4838       isNot = pExpr->op2==TK_ISNOT;
4839       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4840       testcase( isTrue && isNot );
4841       testcase( !isTrue && isNot );
4842       if( isTrue ^ isNot ){
4843         /* IS TRUE and IS NOT FALSE */
4844         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4845                            isNot ? 0 : SQLITE_JUMPIFNULL);
4846 
4847       }else{
4848         /* IS FALSE and IS NOT TRUE */
4849         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4850                           isNot ? 0 : SQLITE_JUMPIFNULL);
4851       }
4852       break;
4853     }
4854     case TK_IS:
4855     case TK_ISNOT:
4856       testcase( pExpr->op==TK_IS );
4857       testcase( pExpr->op==TK_ISNOT );
4858       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4859       jumpIfNull = SQLITE_NULLEQ;
4860       /* Fall thru */
4861     case TK_LT:
4862     case TK_LE:
4863     case TK_GT:
4864     case TK_GE:
4865     case TK_NE:
4866     case TK_EQ: {
4867       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4868       testcase( jumpIfNull==0 );
4869       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4870       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4871       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4872                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
4873       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4874       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4875       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4876       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4877       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4878       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4879       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4880       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4881       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4882       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4883       testcase( regFree1==0 );
4884       testcase( regFree2==0 );
4885       break;
4886     }
4887     case TK_ISNULL:
4888     case TK_NOTNULL: {
4889       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4890       sqlite3VdbeAddOp2(v, op, r1, dest);
4891       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4892       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4893       testcase( regFree1==0 );
4894       break;
4895     }
4896     case TK_BETWEEN: {
4897       testcase( jumpIfNull==0 );
4898       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4899       break;
4900     }
4901 #ifndef SQLITE_OMIT_SUBQUERY
4902     case TK_IN: {
4903       if( jumpIfNull ){
4904         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4905       }else{
4906         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4907         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4908         sqlite3VdbeResolveLabel(v, destIfNull);
4909       }
4910       break;
4911     }
4912 #endif
4913     default: {
4914     default_expr:
4915       if( ExprAlwaysFalse(pExpr) ){
4916         sqlite3VdbeGoto(v, dest);
4917       }else if( ExprAlwaysTrue(pExpr) ){
4918         /* no-op */
4919       }else{
4920         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4921         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4922         VdbeCoverage(v);
4923         testcase( regFree1==0 );
4924         testcase( jumpIfNull==0 );
4925       }
4926       break;
4927     }
4928   }
4929   sqlite3ReleaseTempReg(pParse, regFree1);
4930   sqlite3ReleaseTempReg(pParse, regFree2);
4931 }
4932 
4933 /*
4934 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4935 ** code generation, and that copy is deleted after code generation. This
4936 ** ensures that the original pExpr is unchanged.
4937 */
4938 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4939   sqlite3 *db = pParse->db;
4940   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4941   if( db->mallocFailed==0 ){
4942     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4943   }
4944   sqlite3ExprDelete(db, pCopy);
4945 }
4946 
4947 /*
4948 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4949 ** type of expression.
4950 **
4951 ** If pExpr is a simple SQL value - an integer, real, string, blob
4952 ** or NULL value - then the VDBE currently being prepared is configured
4953 ** to re-prepare each time a new value is bound to variable pVar.
4954 **
4955 ** Additionally, if pExpr is a simple SQL value and the value is the
4956 ** same as that currently bound to variable pVar, non-zero is returned.
4957 ** Otherwise, if the values are not the same or if pExpr is not a simple
4958 ** SQL value, zero is returned.
4959 */
4960 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4961   int res = 0;
4962   int iVar;
4963   sqlite3_value *pL, *pR = 0;
4964 
4965   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4966   if( pR ){
4967     iVar = pVar->iColumn;
4968     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4969     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4970     if( pL ){
4971       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4972         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4973       }
4974       res =  0==sqlite3MemCompare(pL, pR, 0);
4975     }
4976     sqlite3ValueFree(pR);
4977     sqlite3ValueFree(pL);
4978   }
4979 
4980   return res;
4981 }
4982 
4983 /*
4984 ** Do a deep comparison of two expression trees.  Return 0 if the two
4985 ** expressions are completely identical.  Return 1 if they differ only
4986 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4987 ** other than the top-level COLLATE operator.
4988 **
4989 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4990 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4991 **
4992 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4993 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4994 **
4995 ** Sometimes this routine will return 2 even if the two expressions
4996 ** really are equivalent.  If we cannot prove that the expressions are
4997 ** identical, we return 2 just to be safe.  So if this routine
4998 ** returns 2, then you do not really know for certain if the two
4999 ** expressions are the same.  But if you get a 0 or 1 return, then you
5000 ** can be sure the expressions are the same.  In the places where
5001 ** this routine is used, it does not hurt to get an extra 2 - that
5002 ** just might result in some slightly slower code.  But returning
5003 ** an incorrect 0 or 1 could lead to a malfunction.
5004 **
5005 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5006 ** pParse->pReprepare can be matched against literals in pB.  The
5007 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5008 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5009 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5010 ** pB causes a return value of 2.
5011 */
5012 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5013   u32 combinedFlags;
5014   if( pA==0 || pB==0 ){
5015     return pB==pA ? 0 : 2;
5016   }
5017   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5018     return 0;
5019   }
5020   combinedFlags = pA->flags | pB->flags;
5021   if( combinedFlags & EP_IntValue ){
5022     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5023       return 0;
5024     }
5025     return 2;
5026   }
5027   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5028     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5029       return 1;
5030     }
5031     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5032       return 1;
5033     }
5034     return 2;
5035   }
5036   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5037     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5038       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5039 #ifndef SQLITE_OMIT_WINDOWFUNC
5040       assert( pA->op==pB->op );
5041       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5042         return 2;
5043       }
5044       if( ExprHasProperty(pA,EP_WinFunc) ){
5045         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5046           return 2;
5047         }
5048       }
5049 #endif
5050     }else if( pA->op==TK_NULL ){
5051       return 0;
5052     }else if( pA->op==TK_COLLATE ){
5053       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5054     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5055       return 2;
5056     }
5057   }
5058   if( (pA->flags & (EP_Distinct|EP_Commuted))
5059      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5060   if( (combinedFlags & EP_TokenOnly)==0 ){
5061     if( combinedFlags & EP_xIsSelect ) return 2;
5062     if( (combinedFlags & EP_FixedCol)==0
5063      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5064     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5065     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5066     if( pA->op!=TK_STRING
5067      && pA->op!=TK_TRUEFALSE
5068      && (combinedFlags & EP_Reduced)==0
5069     ){
5070       if( pA->iColumn!=pB->iColumn ) return 2;
5071       if( pA->op2!=pB->op2 ){
5072         if( pA->op==TK_TRUTH ) return 2;
5073         if( pA->op==TK_FUNCTION && iTab<0 ){
5074           /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') ));
5075           **     INSERT INTO t1(a) VALUES(julianday('now')+10);
5076           ** Without this test, sqlite3ExprCodeAtInit() will run on the
5077           ** the julianday() of INSERT first, and remember that expression.
5078           ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK
5079           ** constraint as redundant, reusing the one from the INSERT, even
5080           ** though the julianday() in INSERT lacks the critical NC_IsCheck
5081           ** flag.  See ticket [830277d9db6c3ba1] (2019-10-30)
5082           */
5083           return 2;
5084         }
5085       }
5086       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5087         return 2;
5088       }
5089     }
5090   }
5091   return 0;
5092 }
5093 
5094 /*
5095 ** Compare two ExprList objects.  Return 0 if they are identical and
5096 ** non-zero if they differ in any way.
5097 **
5098 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5099 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5100 **
5101 ** This routine might return non-zero for equivalent ExprLists.  The
5102 ** only consequence will be disabled optimizations.  But this routine
5103 ** must never return 0 if the two ExprList objects are different, or
5104 ** a malfunction will result.
5105 **
5106 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5107 ** always differs from a non-NULL pointer.
5108 */
5109 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5110   int i;
5111   if( pA==0 && pB==0 ) return 0;
5112   if( pA==0 || pB==0 ) return 1;
5113   if( pA->nExpr!=pB->nExpr ) return 1;
5114   for(i=0; i<pA->nExpr; i++){
5115     Expr *pExprA = pA->a[i].pExpr;
5116     Expr *pExprB = pB->a[i].pExpr;
5117     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5118     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
5119   }
5120   return 0;
5121 }
5122 
5123 /*
5124 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5125 ** are ignored.
5126 */
5127 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5128   return sqlite3ExprCompare(0,
5129              sqlite3ExprSkipCollateAndLikely(pA),
5130              sqlite3ExprSkipCollateAndLikely(pB),
5131              iTab);
5132 }
5133 
5134 /*
5135 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5136 **
5137 ** Or if seenNot is true, return non-zero if Expr p can only be
5138 ** non-NULL if pNN is not NULL
5139 */
5140 static int exprImpliesNotNull(
5141   Parse *pParse,      /* Parsing context */
5142   Expr *p,            /* The expression to be checked */
5143   Expr *pNN,          /* The expression that is NOT NULL */
5144   int iTab,           /* Table being evaluated */
5145   int seenNot         /* Return true only if p can be any non-NULL value */
5146 ){
5147   assert( p );
5148   assert( pNN );
5149   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5150     return pNN->op!=TK_NULL;
5151   }
5152   switch( p->op ){
5153     case TK_IN: {
5154       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5155       assert( ExprHasProperty(p,EP_xIsSelect)
5156            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5157       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5158     }
5159     case TK_BETWEEN: {
5160       ExprList *pList = p->x.pList;
5161       assert( pList!=0 );
5162       assert( pList->nExpr==2 );
5163       if( seenNot ) return 0;
5164       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5165        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5166       ){
5167         return 1;
5168       }
5169       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5170     }
5171     case TK_EQ:
5172     case TK_NE:
5173     case TK_LT:
5174     case TK_LE:
5175     case TK_GT:
5176     case TK_GE:
5177     case TK_PLUS:
5178     case TK_MINUS:
5179     case TK_BITOR:
5180     case TK_LSHIFT:
5181     case TK_RSHIFT:
5182     case TK_CONCAT:
5183       seenNot = 1;
5184       /* Fall thru */
5185     case TK_STAR:
5186     case TK_REM:
5187     case TK_BITAND:
5188     case TK_SLASH: {
5189       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5190       /* Fall thru into the next case */
5191     }
5192     case TK_SPAN:
5193     case TK_COLLATE:
5194     case TK_UPLUS:
5195     case TK_UMINUS: {
5196       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5197     }
5198     case TK_TRUTH: {
5199       if( seenNot ) return 0;
5200       if( p->op2!=TK_IS ) return 0;
5201       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5202     }
5203     case TK_BITNOT:
5204     case TK_NOT: {
5205       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5206     }
5207   }
5208   return 0;
5209 }
5210 
5211 /*
5212 ** Return true if we can prove the pE2 will always be true if pE1 is
5213 ** true.  Return false if we cannot complete the proof or if pE2 might
5214 ** be false.  Examples:
5215 **
5216 **     pE1: x==5       pE2: x==5             Result: true
5217 **     pE1: x>0        pE2: x==5             Result: false
5218 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5219 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5220 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5221 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5222 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5223 **
5224 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5225 ** Expr.iTable<0 then assume a table number given by iTab.
5226 **
5227 ** If pParse is not NULL, then the values of bound variables in pE1 are
5228 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5229 ** modified to record which bound variables are referenced.  If pParse
5230 ** is NULL, then false will be returned if pE1 contains any bound variables.
5231 **
5232 ** When in doubt, return false.  Returning true might give a performance
5233 ** improvement.  Returning false might cause a performance reduction, but
5234 ** it will always give the correct answer and is hence always safe.
5235 */
5236 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5237   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5238     return 1;
5239   }
5240   if( pE2->op==TK_OR
5241    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5242              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5243   ){
5244     return 1;
5245   }
5246   if( pE2->op==TK_NOTNULL
5247    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5248   ){
5249     return 1;
5250   }
5251   return 0;
5252 }
5253 
5254 /*
5255 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5256 ** If the expression node requires that the table at pWalker->iCur
5257 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5258 **
5259 ** This routine controls an optimization.  False positives (setting
5260 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5261 ** (never setting pWalker->eCode) is a harmless missed optimization.
5262 */
5263 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5264   testcase( pExpr->op==TK_AGG_COLUMN );
5265   testcase( pExpr->op==TK_AGG_FUNCTION );
5266   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5267   switch( pExpr->op ){
5268     case TK_ISNOT:
5269     case TK_ISNULL:
5270     case TK_NOTNULL:
5271     case TK_IS:
5272     case TK_OR:
5273     case TK_VECTOR:
5274     case TK_CASE:
5275     case TK_IN:
5276     case TK_FUNCTION:
5277     case TK_TRUTH:
5278       testcase( pExpr->op==TK_ISNOT );
5279       testcase( pExpr->op==TK_ISNULL );
5280       testcase( pExpr->op==TK_NOTNULL );
5281       testcase( pExpr->op==TK_IS );
5282       testcase( pExpr->op==TK_OR );
5283       testcase( pExpr->op==TK_VECTOR );
5284       testcase( pExpr->op==TK_CASE );
5285       testcase( pExpr->op==TK_IN );
5286       testcase( pExpr->op==TK_FUNCTION );
5287       testcase( pExpr->op==TK_TRUTH );
5288       return WRC_Prune;
5289     case TK_COLUMN:
5290       if( pWalker->u.iCur==pExpr->iTable ){
5291         pWalker->eCode = 1;
5292         return WRC_Abort;
5293       }
5294       return WRC_Prune;
5295 
5296     case TK_AND:
5297       assert( pWalker->eCode==0 );
5298       sqlite3WalkExpr(pWalker, pExpr->pLeft);
5299       if( pWalker->eCode ){
5300         pWalker->eCode = 0;
5301         sqlite3WalkExpr(pWalker, pExpr->pRight);
5302       }
5303       return WRC_Prune;
5304 
5305     case TK_BETWEEN:
5306       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5307         assert( pWalker->eCode );
5308         return WRC_Abort;
5309       }
5310       return WRC_Prune;
5311 
5312     /* Virtual tables are allowed to use constraints like x=NULL.  So
5313     ** a term of the form x=y does not prove that y is not null if x
5314     ** is the column of a virtual table */
5315     case TK_EQ:
5316     case TK_NE:
5317     case TK_LT:
5318     case TK_LE:
5319     case TK_GT:
5320     case TK_GE:
5321       testcase( pExpr->op==TK_EQ );
5322       testcase( pExpr->op==TK_NE );
5323       testcase( pExpr->op==TK_LT );
5324       testcase( pExpr->op==TK_LE );
5325       testcase( pExpr->op==TK_GT );
5326       testcase( pExpr->op==TK_GE );
5327       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5328        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5329       ){
5330        return WRC_Prune;
5331       }
5332 
5333     default:
5334       return WRC_Continue;
5335   }
5336 }
5337 
5338 /*
5339 ** Return true (non-zero) if expression p can only be true if at least
5340 ** one column of table iTab is non-null.  In other words, return true
5341 ** if expression p will always be NULL or false if every column of iTab
5342 ** is NULL.
5343 **
5344 ** False negatives are acceptable.  In other words, it is ok to return
5345 ** zero even if expression p will never be true of every column of iTab
5346 ** is NULL.  A false negative is merely a missed optimization opportunity.
5347 **
5348 ** False positives are not allowed, however.  A false positive may result
5349 ** in an incorrect answer.
5350 **
5351 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5352 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5353 **
5354 ** This routine is used to check if a LEFT JOIN can be converted into
5355 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5356 ** clause requires that some column of the right table of the LEFT JOIN
5357 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5358 ** ordinary join.
5359 */
5360 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5361   Walker w;
5362   p = sqlite3ExprSkipCollateAndLikely(p);
5363   if( p==0 ) return 0;
5364   if( p->op==TK_NOTNULL ){
5365     p = p->pLeft;
5366   }else{
5367     while( p->op==TK_AND ){
5368       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5369       p = p->pRight;
5370     }
5371   }
5372   w.xExprCallback = impliesNotNullRow;
5373   w.xSelectCallback = 0;
5374   w.xSelectCallback2 = 0;
5375   w.eCode = 0;
5376   w.u.iCur = iTab;
5377   sqlite3WalkExpr(&w, p);
5378   return w.eCode;
5379 }
5380 
5381 /*
5382 ** An instance of the following structure is used by the tree walker
5383 ** to determine if an expression can be evaluated by reference to the
5384 ** index only, without having to do a search for the corresponding
5385 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5386 ** is the cursor for the table.
5387 */
5388 struct IdxCover {
5389   Index *pIdx;     /* The index to be tested for coverage */
5390   int iCur;        /* Cursor number for the table corresponding to the index */
5391 };
5392 
5393 /*
5394 ** Check to see if there are references to columns in table
5395 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5396 ** pWalker->u.pIdxCover->pIdx.
5397 */
5398 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5399   if( pExpr->op==TK_COLUMN
5400    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5401    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5402   ){
5403     pWalker->eCode = 1;
5404     return WRC_Abort;
5405   }
5406   return WRC_Continue;
5407 }
5408 
5409 /*
5410 ** Determine if an index pIdx on table with cursor iCur contains will
5411 ** the expression pExpr.  Return true if the index does cover the
5412 ** expression and false if the pExpr expression references table columns
5413 ** that are not found in the index pIdx.
5414 **
5415 ** An index covering an expression means that the expression can be
5416 ** evaluated using only the index and without having to lookup the
5417 ** corresponding table entry.
5418 */
5419 int sqlite3ExprCoveredByIndex(
5420   Expr *pExpr,        /* The index to be tested */
5421   int iCur,           /* The cursor number for the corresponding table */
5422   Index *pIdx         /* The index that might be used for coverage */
5423 ){
5424   Walker w;
5425   struct IdxCover xcov;
5426   memset(&w, 0, sizeof(w));
5427   xcov.iCur = iCur;
5428   xcov.pIdx = pIdx;
5429   w.xExprCallback = exprIdxCover;
5430   w.u.pIdxCover = &xcov;
5431   sqlite3WalkExpr(&w, pExpr);
5432   return !w.eCode;
5433 }
5434 
5435 
5436 /*
5437 ** An instance of the following structure is used by the tree walker
5438 ** to count references to table columns in the arguments of an
5439 ** aggregate function, in order to implement the
5440 ** sqlite3FunctionThisSrc() routine.
5441 */
5442 struct SrcCount {
5443   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5444   int nThis;       /* Number of references to columns in pSrcList */
5445   int nOther;      /* Number of references to columns in other FROM clauses */
5446 };
5447 
5448 /*
5449 ** Count the number of references to columns.
5450 */
5451 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5452   /* There was once a NEVER() on the second term on the grounds that
5453   ** sqlite3FunctionUsesThisSrc() was always called before
5454   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5455   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5456   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5457   ** FunctionUsesThisSrc() when creating a new sub-select. */
5458   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5459     int i;
5460     struct SrcCount *p = pWalker->u.pSrcCount;
5461     SrcList *pSrc = p->pSrc;
5462     int nSrc = pSrc ? pSrc->nSrc : 0;
5463     for(i=0; i<nSrc; i++){
5464       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5465     }
5466     if( i<nSrc ){
5467       p->nThis++;
5468     }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){
5469       /* In a well-formed parse tree (no name resolution errors),
5470       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5471       ** outer context.  Those are the only ones to count as "other" */
5472       p->nOther++;
5473     }
5474   }
5475   return WRC_Continue;
5476 }
5477 
5478 /*
5479 ** Determine if any of the arguments to the pExpr Function reference
5480 ** pSrcList.  Return true if they do.  Also return true if the function
5481 ** has no arguments or has only constant arguments.  Return false if pExpr
5482 ** references columns but not columns of tables found in pSrcList.
5483 */
5484 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5485   Walker w;
5486   struct SrcCount cnt;
5487   assert( pExpr->op==TK_AGG_FUNCTION );
5488   memset(&w, 0, sizeof(w));
5489   w.xExprCallback = exprSrcCount;
5490   w.xSelectCallback = sqlite3SelectWalkNoop;
5491   w.u.pSrcCount = &cnt;
5492   cnt.pSrc = pSrcList;
5493   cnt.nThis = 0;
5494   cnt.nOther = 0;
5495   sqlite3WalkExprList(&w, pExpr->x.pList);
5496 #ifndef SQLITE_OMIT_WINDOWFUNC
5497   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5498     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5499   }
5500 #endif
5501   return cnt.nThis>0 || cnt.nOther==0;
5502 }
5503 
5504 /*
5505 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5506 ** the new element.  Return a negative number if malloc fails.
5507 */
5508 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5509   int i;
5510   pInfo->aCol = sqlite3ArrayAllocate(
5511        db,
5512        pInfo->aCol,
5513        sizeof(pInfo->aCol[0]),
5514        &pInfo->nColumn,
5515        &i
5516   );
5517   return i;
5518 }
5519 
5520 /*
5521 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5522 ** the new element.  Return a negative number if malloc fails.
5523 */
5524 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5525   int i;
5526   pInfo->aFunc = sqlite3ArrayAllocate(
5527        db,
5528        pInfo->aFunc,
5529        sizeof(pInfo->aFunc[0]),
5530        &pInfo->nFunc,
5531        &i
5532   );
5533   return i;
5534 }
5535 
5536 /*
5537 ** This is the xExprCallback for a tree walker.  It is used to
5538 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5539 ** for additional information.
5540 */
5541 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5542   int i;
5543   NameContext *pNC = pWalker->u.pNC;
5544   Parse *pParse = pNC->pParse;
5545   SrcList *pSrcList = pNC->pSrcList;
5546   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5547 
5548   assert( pNC->ncFlags & NC_UAggInfo );
5549   switch( pExpr->op ){
5550     case TK_AGG_COLUMN:
5551     case TK_COLUMN: {
5552       testcase( pExpr->op==TK_AGG_COLUMN );
5553       testcase( pExpr->op==TK_COLUMN );
5554       /* Check to see if the column is in one of the tables in the FROM
5555       ** clause of the aggregate query */
5556       if( ALWAYS(pSrcList!=0) ){
5557         struct SrcList_item *pItem = pSrcList->a;
5558         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5559           struct AggInfo_col *pCol;
5560           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5561           if( pExpr->iTable==pItem->iCursor ){
5562             /* If we reach this point, it means that pExpr refers to a table
5563             ** that is in the FROM clause of the aggregate query.
5564             **
5565             ** Make an entry for the column in pAggInfo->aCol[] if there
5566             ** is not an entry there already.
5567             */
5568             int k;
5569             pCol = pAggInfo->aCol;
5570             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5571               if( pCol->iTable==pExpr->iTable &&
5572                   pCol->iColumn==pExpr->iColumn ){
5573                 break;
5574               }
5575             }
5576             if( (k>=pAggInfo->nColumn)
5577              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5578             ){
5579               pCol = &pAggInfo->aCol[k];
5580               pCol->pTab = pExpr->y.pTab;
5581               pCol->iTable = pExpr->iTable;
5582               pCol->iColumn = pExpr->iColumn;
5583               pCol->iMem = ++pParse->nMem;
5584               pCol->iSorterColumn = -1;
5585               pCol->pExpr = pExpr;
5586               if( pAggInfo->pGroupBy ){
5587                 int j, n;
5588                 ExprList *pGB = pAggInfo->pGroupBy;
5589                 struct ExprList_item *pTerm = pGB->a;
5590                 n = pGB->nExpr;
5591                 for(j=0; j<n; j++, pTerm++){
5592                   Expr *pE = pTerm->pExpr;
5593                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5594                       pE->iColumn==pExpr->iColumn ){
5595                     pCol->iSorterColumn = j;
5596                     break;
5597                   }
5598                 }
5599               }
5600               if( pCol->iSorterColumn<0 ){
5601                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5602               }
5603             }
5604             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5605             ** because it was there before or because we just created it).
5606             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5607             ** pAggInfo->aCol[] entry.
5608             */
5609             ExprSetVVAProperty(pExpr, EP_NoReduce);
5610             pExpr->pAggInfo = pAggInfo;
5611             pExpr->op = TK_AGG_COLUMN;
5612             pExpr->iAgg = (i16)k;
5613             break;
5614           } /* endif pExpr->iTable==pItem->iCursor */
5615         } /* end loop over pSrcList */
5616       }
5617       return WRC_Prune;
5618     }
5619     case TK_AGG_FUNCTION: {
5620       if( (pNC->ncFlags & NC_InAggFunc)==0
5621        && pWalker->walkerDepth==pExpr->op2
5622       ){
5623         /* Check to see if pExpr is a duplicate of another aggregate
5624         ** function that is already in the pAggInfo structure
5625         */
5626         struct AggInfo_func *pItem = pAggInfo->aFunc;
5627         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5628           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5629             break;
5630           }
5631         }
5632         if( i>=pAggInfo->nFunc ){
5633           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5634           */
5635           u8 enc = ENC(pParse->db);
5636           i = addAggInfoFunc(pParse->db, pAggInfo);
5637           if( i>=0 ){
5638             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5639             pItem = &pAggInfo->aFunc[i];
5640             pItem->pExpr = pExpr;
5641             pItem->iMem = ++pParse->nMem;
5642             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5643             pItem->pFunc = sqlite3FindFunction(pParse->db,
5644                    pExpr->u.zToken,
5645                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5646             if( pExpr->flags & EP_Distinct ){
5647               pItem->iDistinct = pParse->nTab++;
5648             }else{
5649               pItem->iDistinct = -1;
5650             }
5651           }
5652         }
5653         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5654         */
5655         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5656         ExprSetVVAProperty(pExpr, EP_NoReduce);
5657         pExpr->iAgg = (i16)i;
5658         pExpr->pAggInfo = pAggInfo;
5659         return WRC_Prune;
5660       }else{
5661         return WRC_Continue;
5662       }
5663     }
5664   }
5665   return WRC_Continue;
5666 }
5667 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5668   UNUSED_PARAMETER(pSelect);
5669   pWalker->walkerDepth++;
5670   return WRC_Continue;
5671 }
5672 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5673   UNUSED_PARAMETER(pSelect);
5674   pWalker->walkerDepth--;
5675 }
5676 
5677 /*
5678 ** Analyze the pExpr expression looking for aggregate functions and
5679 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5680 ** points to.  Additional entries are made on the AggInfo object as
5681 ** necessary.
5682 **
5683 ** This routine should only be called after the expression has been
5684 ** analyzed by sqlite3ResolveExprNames().
5685 */
5686 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5687   Walker w;
5688   w.xExprCallback = analyzeAggregate;
5689   w.xSelectCallback = analyzeAggregatesInSelect;
5690   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5691   w.walkerDepth = 0;
5692   w.u.pNC = pNC;
5693   w.pParse = 0;
5694   assert( pNC->pSrcList!=0 );
5695   sqlite3WalkExpr(&w, pExpr);
5696 }
5697 
5698 /*
5699 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5700 ** expression list.  Return the number of errors.
5701 **
5702 ** If an error is found, the analysis is cut short.
5703 */
5704 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5705   struct ExprList_item *pItem;
5706   int i;
5707   if( pList ){
5708     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5709       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5710     }
5711   }
5712 }
5713 
5714 /*
5715 ** Allocate a single new register for use to hold some intermediate result.
5716 */
5717 int sqlite3GetTempReg(Parse *pParse){
5718   if( pParse->nTempReg==0 ){
5719     return ++pParse->nMem;
5720   }
5721   return pParse->aTempReg[--pParse->nTempReg];
5722 }
5723 
5724 /*
5725 ** Deallocate a register, making available for reuse for some other
5726 ** purpose.
5727 */
5728 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5729   if( iReg ){
5730     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0);
5731     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5732       pParse->aTempReg[pParse->nTempReg++] = iReg;
5733     }
5734   }
5735 }
5736 
5737 /*
5738 ** Allocate or deallocate a block of nReg consecutive registers.
5739 */
5740 int sqlite3GetTempRange(Parse *pParse, int nReg){
5741   int i, n;
5742   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5743   i = pParse->iRangeReg;
5744   n = pParse->nRangeReg;
5745   if( nReg<=n ){
5746     pParse->iRangeReg += nReg;
5747     pParse->nRangeReg -= nReg;
5748   }else{
5749     i = pParse->nMem+1;
5750     pParse->nMem += nReg;
5751   }
5752   return i;
5753 }
5754 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5755   if( nReg==1 ){
5756     sqlite3ReleaseTempReg(pParse, iReg);
5757     return;
5758   }
5759   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0);
5760   if( nReg>pParse->nRangeReg ){
5761     pParse->nRangeReg = nReg;
5762     pParse->iRangeReg = iReg;
5763   }
5764 }
5765 
5766 /*
5767 ** Mark all temporary registers as being unavailable for reuse.
5768 **
5769 ** Always invoke this procedure after coding a subroutine or co-routine
5770 ** that might be invoked from other parts of the code, to ensure that
5771 ** the sub/co-routine does not use registers in common with the code that
5772 ** invokes the sub/co-routine.
5773 */
5774 void sqlite3ClearTempRegCache(Parse *pParse){
5775   pParse->nTempReg = 0;
5776   pParse->nRangeReg = 0;
5777 }
5778 
5779 /*
5780 ** Validate that no temporary register falls within the range of
5781 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5782 ** statements.
5783 */
5784 #ifdef SQLITE_DEBUG
5785 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5786   int i;
5787   if( pParse->nRangeReg>0
5788    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5789    && pParse->iRangeReg <= iLast
5790   ){
5791      return 0;
5792   }
5793   for(i=0; i<pParse->nTempReg; i++){
5794     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5795       return 0;
5796     }
5797   }
5798   return 1;
5799 }
5800 #endif /* SQLITE_DEBUG */
5801