xref: /sqlite-3.40.0/src/expr.c (revision 27a770e0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.308 2007/08/22 20:18:22 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <ctype.h>
19 
20 /*
21 ** Return the 'affinity' of the expression pExpr if any.
22 **
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
27 **
28 ** i.e. the WHERE clause expresssions in the following statements all
29 ** have an affinity:
30 **
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
35 */
36 char sqlite3ExprAffinity(Expr *pExpr){
37   int op = pExpr->op;
38   if( op==TK_SELECT ){
39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     return sqlite3AffinityType(&pExpr->token);
44   }
45 #endif
46   return pExpr->affinity;
47 }
48 
49 /*
50 ** Set the collating sequence for expression pExpr to be the collating
51 ** sequence named by pToken.   Return a pointer to the revised expression.
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
53 ** flag.  An explicit collating sequence will override implicit
54 ** collating sequences.
55 */
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
57   CollSeq *pColl;
58   if( pExpr==0 ) return 0;
59   pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n);
60   if( pColl ){
61     pExpr->pColl = pColl;
62     pExpr->flags |= EP_ExpCollate;
63   }
64   return pExpr;
65 }
66 
67 /*
68 ** Return the default collation sequence for the expression pExpr. If
69 ** there is no default collation type, return 0.
70 */
71 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
72   CollSeq *pColl = 0;
73   if( pExpr ){
74     int op;
75     pColl = pExpr->pColl;
76     op = pExpr->op;
77     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
78       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
79     }
80   }
81   if( sqlite3CheckCollSeq(pParse, pColl) ){
82     pColl = 0;
83   }
84   return pColl;
85 }
86 
87 /*
88 ** pExpr is an operand of a comparison operator.  aff2 is the
89 ** type affinity of the other operand.  This routine returns the
90 ** type affinity that should be used for the comparison operator.
91 */
92 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
93   char aff1 = sqlite3ExprAffinity(pExpr);
94   if( aff1 && aff2 ){
95     /* Both sides of the comparison are columns. If one has numeric
96     ** affinity, use that. Otherwise use no affinity.
97     */
98     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
99       return SQLITE_AFF_NUMERIC;
100     }else{
101       return SQLITE_AFF_NONE;
102     }
103   }else if( !aff1 && !aff2 ){
104     /* Neither side of the comparison is a column.  Compare the
105     ** results directly.
106     */
107     return SQLITE_AFF_NONE;
108   }else{
109     /* One side is a column, the other is not. Use the columns affinity. */
110     assert( aff1==0 || aff2==0 );
111     return (aff1 + aff2);
112   }
113 }
114 
115 /*
116 ** pExpr is a comparison operator.  Return the type affinity that should
117 ** be applied to both operands prior to doing the comparison.
118 */
119 static char comparisonAffinity(Expr *pExpr){
120   char aff;
121   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
122           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
123           pExpr->op==TK_NE );
124   assert( pExpr->pLeft );
125   aff = sqlite3ExprAffinity(pExpr->pLeft);
126   if( pExpr->pRight ){
127     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
128   }
129   else if( pExpr->pSelect ){
130     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
131   }
132   else if( !aff ){
133     aff = SQLITE_AFF_NONE;
134   }
135   return aff;
136 }
137 
138 /*
139 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
140 ** idx_affinity is the affinity of an indexed column. Return true
141 ** if the index with affinity idx_affinity may be used to implement
142 ** the comparison in pExpr.
143 */
144 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
145   char aff = comparisonAffinity(pExpr);
146   switch( aff ){
147     case SQLITE_AFF_NONE:
148       return 1;
149     case SQLITE_AFF_TEXT:
150       return idx_affinity==SQLITE_AFF_TEXT;
151     default:
152       return sqlite3IsNumericAffinity(idx_affinity);
153   }
154 }
155 
156 /*
157 ** Return the P1 value that should be used for a binary comparison
158 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
159 ** If jumpIfNull is true, then set the low byte of the returned
160 ** P1 value to tell the opcode to jump if either expression
161 ** evaluates to NULL.
162 */
163 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
164   char aff = sqlite3ExprAffinity(pExpr2);
165   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
166 }
167 
168 /*
169 ** Return a pointer to the collation sequence that should be used by
170 ** a binary comparison operator comparing pLeft and pRight.
171 **
172 ** If the left hand expression has a collating sequence type, then it is
173 ** used. Otherwise the collation sequence for the right hand expression
174 ** is used, or the default (BINARY) if neither expression has a collating
175 ** type.
176 **
177 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
178 ** it is not considered.
179 */
180 CollSeq *sqlite3BinaryCompareCollSeq(
181   Parse *pParse,
182   Expr *pLeft,
183   Expr *pRight
184 ){
185   CollSeq *pColl;
186   assert( pLeft );
187   if( pLeft->flags & EP_ExpCollate ){
188     assert( pLeft->pColl );
189     pColl = pLeft->pColl;
190   }else if( pRight && pRight->flags & EP_ExpCollate ){
191     assert( pRight->pColl );
192     pColl = pRight->pColl;
193   }else{
194     pColl = sqlite3ExprCollSeq(pParse, pLeft);
195     if( !pColl ){
196       pColl = sqlite3ExprCollSeq(pParse, pRight);
197     }
198   }
199   return pColl;
200 }
201 
202 /*
203 ** Generate code for a comparison operator.
204 */
205 static int codeCompare(
206   Parse *pParse,    /* The parsing (and code generating) context */
207   Expr *pLeft,      /* The left operand */
208   Expr *pRight,     /* The right operand */
209   int opcode,       /* The comparison opcode */
210   int dest,         /* Jump here if true.  */
211   int jumpIfNull    /* If true, jump if either operand is NULL */
212 ){
213   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
214   CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
215   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
216 }
217 
218 /*
219 ** Construct a new expression node and return a pointer to it.  Memory
220 ** for this node is obtained from sqlite3_malloc().  The calling function
221 ** is responsible for making sure the node eventually gets freed.
222 */
223 Expr *sqlite3Expr(
224   int op,                 /* Expression opcode */
225   Expr *pLeft,            /* Left operand */
226   Expr *pRight,           /* Right operand */
227   const Token *pToken     /* Argument token */
228 ){
229   Expr *pNew;
230   pNew = sqlite3MallocZero( sizeof(Expr) );
231   if( pNew==0 ){
232     /* When malloc fails, delete pLeft and pRight. Expressions passed to
233     ** this function must always be allocated with sqlite3Expr() for this
234     ** reason.
235     */
236     sqlite3ExprDelete(pLeft);
237     sqlite3ExprDelete(pRight);
238     return 0;
239   }
240   pNew->op = op;
241   pNew->pLeft = pLeft;
242   pNew->pRight = pRight;
243   pNew->iAgg = -1;
244   if( pToken ){
245     assert( pToken->dyn==0 );
246     pNew->span = pNew->token = *pToken;
247   }else if( pLeft ){
248     if( pRight ){
249       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
250       if( pRight->flags & EP_ExpCollate ){
251         pNew->flags |= EP_ExpCollate;
252         pNew->pColl = pRight->pColl;
253       }
254     }
255     if( pLeft->flags & EP_ExpCollate ){
256       pNew->flags |= EP_ExpCollate;
257       pNew->pColl = pLeft->pColl;
258     }
259   }
260 
261   sqlite3ExprSetHeight(pNew);
262   return pNew;
263 }
264 
265 /*
266 ** Works like sqlite3Expr() except that it takes an extra Parse*
267 ** argument and notifies the associated connection object if malloc fails.
268 */
269 Expr *sqlite3PExpr(
270   Parse *pParse,          /* Parsing context */
271   int op,                 /* Expression opcode */
272   Expr *pLeft,            /* Left operand */
273   Expr *pRight,           /* Right operand */
274   const Token *pToken     /* Argument token */
275 ){
276   Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
277   if( pNew==0 ){
278     pParse->db->mallocFailed = 1;
279   }
280   return pNew;
281 }
282 
283 /*
284 ** When doing a nested parse, you can include terms in an expression
285 ** that look like this:   #0 #1 #2 ...  These terms refer to elements
286 ** on the stack.  "#0" means the top of the stack.
287 ** "#1" means the next down on the stack.  And so forth.
288 **
289 ** This routine is called by the parser to deal with on of those terms.
290 ** It immediately generates code to store the value in a memory location.
291 ** The returns an expression that will code to extract the value from
292 ** that memory location as needed.
293 */
294 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
295   Vdbe *v = pParse->pVdbe;
296   Expr *p;
297   int depth;
298   if( pParse->nested==0 ){
299     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
300     return sqlite3Expr(TK_NULL, 0, 0, 0);
301   }
302   if( v==0 ) return 0;
303   p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
304   if( p==0 ){
305     pParse->db->mallocFailed = 1;
306     return 0;  /* Malloc failed */
307   }
308   depth = atoi((char*)&pToken->z[1]);
309   p->iTable = pParse->nMem++;
310   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
311   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
312   return p;
313 }
314 
315 /*
316 ** Join two expressions using an AND operator.  If either expression is
317 ** NULL, then just return the other expression.
318 */
319 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
320   if( pLeft==0 ){
321     return pRight;
322   }else if( pRight==0 ){
323     return pLeft;
324   }else{
325     Expr *p = sqlite3Expr(TK_AND, pLeft, pRight, 0);
326     if( p==0 ){
327       db->mallocFailed = 1;
328     }
329     return p;
330   }
331 }
332 
333 /*
334 ** Set the Expr.span field of the given expression to span all
335 ** text between the two given tokens.
336 */
337 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
338   assert( pRight!=0 );
339   assert( pLeft!=0 );
340   if( pExpr && pRight->z && pLeft->z ){
341     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
342     if( pLeft->dyn==0 && pRight->dyn==0 ){
343       pExpr->span.z = pLeft->z;
344       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
345     }else{
346       pExpr->span.z = 0;
347     }
348   }
349 }
350 
351 /*
352 ** Construct a new expression node for a function with multiple
353 ** arguments.
354 */
355 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
356   Expr *pNew;
357   assert( pToken );
358   pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
359   if( pNew==0 ){
360     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
361     return 0;
362   }
363   pNew->op = TK_FUNCTION;
364   pNew->pList = pList;
365   assert( pToken->dyn==0 );
366   pNew->token = *pToken;
367   pNew->span = pNew->token;
368 
369   sqlite3ExprSetHeight(pNew);
370   return pNew;
371 }
372 
373 /*
374 ** Assign a variable number to an expression that encodes a wildcard
375 ** in the original SQL statement.
376 **
377 ** Wildcards consisting of a single "?" are assigned the next sequential
378 ** variable number.
379 **
380 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
381 ** sure "nnn" is not too be to avoid a denial of service attack when
382 ** the SQL statement comes from an external source.
383 **
384 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
385 ** as the previous instance of the same wildcard.  Or if this is the first
386 ** instance of the wildcard, the next sequenial variable number is
387 ** assigned.
388 */
389 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
390   Token *pToken;
391   sqlite3 *db = pParse->db;
392 
393   if( pExpr==0 ) return;
394   pToken = &pExpr->token;
395   assert( pToken->n>=1 );
396   assert( pToken->z!=0 );
397   assert( pToken->z[0]!=0 );
398   if( pToken->n==1 ){
399     /* Wildcard of the form "?".  Assign the next variable number */
400     pExpr->iTable = ++pParse->nVar;
401   }else if( pToken->z[0]=='?' ){
402     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
403     ** use it as the variable number */
404     int i;
405     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
406     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
407       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
408           SQLITE_MAX_VARIABLE_NUMBER);
409     }
410     if( i>pParse->nVar ){
411       pParse->nVar = i;
412     }
413   }else{
414     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
415     ** number as the prior appearance of the same name, or if the name
416     ** has never appeared before, reuse the same variable number
417     */
418     int i, n;
419     n = pToken->n;
420     for(i=0; i<pParse->nVarExpr; i++){
421       Expr *pE;
422       if( (pE = pParse->apVarExpr[i])!=0
423           && pE->token.n==n
424           && memcmp(pE->token.z, pToken->z, n)==0 ){
425         pExpr->iTable = pE->iTable;
426         break;
427       }
428     }
429     if( i>=pParse->nVarExpr ){
430       pExpr->iTable = ++pParse->nVar;
431       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
432         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
433         pParse->apVarExpr =
434             sqlite3DbReallocOrFree(
435               db,
436               pParse->apVarExpr,
437               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
438             );
439       }
440       if( !db->mallocFailed ){
441         assert( pParse->apVarExpr!=0 );
442         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
443       }
444     }
445   }
446   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
447     sqlite3ErrorMsg(pParse, "too many SQL variables");
448   }
449 }
450 
451 /*
452 ** Recursively delete an expression tree.
453 */
454 void sqlite3ExprDelete(Expr *p){
455   if( p==0 ) return;
456   if( p->span.dyn ) sqlite3_free((char*)p->span.z);
457   if( p->token.dyn ) sqlite3_free((char*)p->token.z);
458   sqlite3ExprDelete(p->pLeft);
459   sqlite3ExprDelete(p->pRight);
460   sqlite3ExprListDelete(p->pList);
461   sqlite3SelectDelete(p->pSelect);
462   sqlite3_free(p);
463 }
464 
465 /*
466 ** The Expr.token field might be a string literal that is quoted.
467 ** If so, remove the quotation marks.
468 */
469 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
470   if( ExprHasAnyProperty(p, EP_Dequoted) ){
471     return;
472   }
473   ExprSetProperty(p, EP_Dequoted);
474   if( p->token.dyn==0 ){
475     sqlite3TokenCopy(db, &p->token, &p->token);
476   }
477   sqlite3Dequote((char*)p->token.z);
478 }
479 
480 
481 /*
482 ** The following group of routines make deep copies of expressions,
483 ** expression lists, ID lists, and select statements.  The copies can
484 ** be deleted (by being passed to their respective ...Delete() routines)
485 ** without effecting the originals.
486 **
487 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
488 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
489 ** by subsequent calls to sqlite*ListAppend() routines.
490 **
491 ** Any tables that the SrcList might point to are not duplicated.
492 */
493 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
494   Expr *pNew;
495   if( p==0 ) return 0;
496   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
497   if( pNew==0 ) return 0;
498   memcpy(pNew, p, sizeof(*pNew));
499   if( p->token.z!=0 ){
500     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
501     pNew->token.dyn = 1;
502   }else{
503     assert( pNew->token.z==0 );
504   }
505   pNew->span.z = 0;
506   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
507   pNew->pRight = sqlite3ExprDup(db, p->pRight);
508   pNew->pList = sqlite3ExprListDup(db, p->pList);
509   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
510   return pNew;
511 }
512 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
513   if( pTo->dyn ) sqlite3_free((char*)pTo->z);
514   if( pFrom->z ){
515     pTo->n = pFrom->n;
516     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
517     pTo->dyn = 1;
518   }else{
519     pTo->z = 0;
520   }
521 }
522 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
523   ExprList *pNew;
524   struct ExprList_item *pItem, *pOldItem;
525   int i;
526   if( p==0 ) return 0;
527   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
528   if( pNew==0 ) return 0;
529   pNew->iECursor = 0;
530   pNew->nExpr = pNew->nAlloc = p->nExpr;
531   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
532   if( pItem==0 ){
533     sqlite3_free(pNew);
534     return 0;
535   }
536   pOldItem = p->a;
537   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
538     Expr *pNewExpr, *pOldExpr;
539     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
540     if( pOldExpr->span.z!=0 && pNewExpr ){
541       /* Always make a copy of the span for top-level expressions in the
542       ** expression list.  The logic in SELECT processing that determines
543       ** the names of columns in the result set needs this information */
544       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
545     }
546     assert( pNewExpr==0 || pNewExpr->span.z!=0
547             || pOldExpr->span.z==0
548             || db->mallocFailed );
549     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
550     pItem->sortOrder = pOldItem->sortOrder;
551     pItem->isAgg = pOldItem->isAgg;
552     pItem->done = 0;
553   }
554   return pNew;
555 }
556 
557 /*
558 ** If cursors, triggers, views and subqueries are all omitted from
559 ** the build, then none of the following routines, except for
560 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
561 ** called with a NULL argument.
562 */
563 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
564  || !defined(SQLITE_OMIT_SUBQUERY)
565 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
566   SrcList *pNew;
567   int i;
568   int nByte;
569   if( p==0 ) return 0;
570   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
571   pNew = sqlite3DbMallocRaw(db, nByte );
572   if( pNew==0 ) return 0;
573   pNew->nSrc = pNew->nAlloc = p->nSrc;
574   for(i=0; i<p->nSrc; i++){
575     struct SrcList_item *pNewItem = &pNew->a[i];
576     struct SrcList_item *pOldItem = &p->a[i];
577     Table *pTab;
578     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
579     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
580     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
581     pNewItem->jointype = pOldItem->jointype;
582     pNewItem->iCursor = pOldItem->iCursor;
583     pNewItem->isPopulated = pOldItem->isPopulated;
584     pTab = pNewItem->pTab = pOldItem->pTab;
585     if( pTab ){
586       pTab->nRef++;
587     }
588     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
589     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
590     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
591     pNewItem->colUsed = pOldItem->colUsed;
592   }
593   return pNew;
594 }
595 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
596   IdList *pNew;
597   int i;
598   if( p==0 ) return 0;
599   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
600   if( pNew==0 ) return 0;
601   pNew->nId = pNew->nAlloc = p->nId;
602   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
603   if( pNew->a==0 ){
604     sqlite3_free(pNew);
605     return 0;
606   }
607   for(i=0; i<p->nId; i++){
608     struct IdList_item *pNewItem = &pNew->a[i];
609     struct IdList_item *pOldItem = &p->a[i];
610     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
611     pNewItem->idx = pOldItem->idx;
612   }
613   return pNew;
614 }
615 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
616   Select *pNew;
617   if( p==0 ) return 0;
618   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
619   if( pNew==0 ) return 0;
620   pNew->isDistinct = p->isDistinct;
621   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
622   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
623   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
624   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
625   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
626   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
627   pNew->op = p->op;
628   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
629   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
630   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
631   pNew->iLimit = -1;
632   pNew->iOffset = -1;
633   pNew->isResolved = p->isResolved;
634   pNew->isAgg = p->isAgg;
635   pNew->usesEphm = 0;
636   pNew->disallowOrderBy = 0;
637   pNew->pRightmost = 0;
638   pNew->addrOpenEphm[0] = -1;
639   pNew->addrOpenEphm[1] = -1;
640   pNew->addrOpenEphm[2] = -1;
641   return pNew;
642 }
643 #else
644 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
645   assert( p==0 );
646   return 0;
647 }
648 #endif
649 
650 
651 /*
652 ** Add a new element to the end of an expression list.  If pList is
653 ** initially NULL, then create a new expression list.
654 */
655 ExprList *sqlite3ExprListAppend(
656   Parse *pParse,          /* Parsing context */
657   ExprList *pList,        /* List to which to append. Might be NULL */
658   Expr *pExpr,            /* Expression to be appended */
659   Token *pName            /* AS keyword for the expression */
660 ){
661   sqlite3 *db = pParse->db;
662   if( pList==0 ){
663     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
664     if( pList==0 ){
665       goto no_mem;
666     }
667     assert( pList->nAlloc==0 );
668   }
669   if( pList->nAlloc<=pList->nExpr ){
670     struct ExprList_item *a;
671     int n = pList->nAlloc*2 + 4;
672     a = sqlite3_realloc(pList->a, n*sizeof(pList->a[0]));
673     if( a==0 ){
674       goto no_mem;
675     }
676     pList->a = a;
677     pList->nAlloc = n;
678   }
679   assert( pList->a!=0 );
680   if( pExpr || pName ){
681     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
682     memset(pItem, 0, sizeof(*pItem));
683     pItem->zName = sqlite3NameFromToken(db, pName);
684     pItem->pExpr = pExpr;
685   }
686   return pList;
687 
688 no_mem:
689   /* Avoid leaking memory if malloc has failed. */
690   db->mallocFailed = 1;
691   sqlite3ExprDelete(pExpr);
692   sqlite3ExprListDelete(pList);
693   return 0;
694 }
695 
696 /*
697 ** If the expression list pEList contains more than iLimit elements,
698 ** leave an error message in pParse.
699 */
700 void sqlite3ExprListCheckLength(
701   Parse *pParse,
702   ExprList *pEList,
703   int iLimit,
704   const char *zObject
705 ){
706   if( pEList && pEList->nExpr>iLimit ){
707     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
708   }
709 }
710 
711 
712 #if SQLITE_MAX_EXPR_DEPTH>0
713 /* The following three functions, heightOfExpr(), heightOfExprList()
714 ** and heightOfSelect(), are used to determine the maximum height
715 ** of any expression tree referenced by the structure passed as the
716 ** first argument.
717 **
718 ** If this maximum height is greater than the current value pointed
719 ** to by pnHeight, the second parameter, then set *pnHeight to that
720 ** value.
721 */
722 static void heightOfExpr(Expr *p, int *pnHeight){
723   if( p ){
724     if( p->nHeight>*pnHeight ){
725       *pnHeight = p->nHeight;
726     }
727   }
728 }
729 static void heightOfExprList(ExprList *p, int *pnHeight){
730   if( p ){
731     int i;
732     for(i=0; i<p->nExpr; i++){
733       heightOfExpr(p->a[i].pExpr, pnHeight);
734     }
735   }
736 }
737 static void heightOfSelect(Select *p, int *pnHeight){
738   if( p ){
739     heightOfExpr(p->pWhere, pnHeight);
740     heightOfExpr(p->pHaving, pnHeight);
741     heightOfExpr(p->pLimit, pnHeight);
742     heightOfExpr(p->pOffset, pnHeight);
743     heightOfExprList(p->pEList, pnHeight);
744     heightOfExprList(p->pGroupBy, pnHeight);
745     heightOfExprList(p->pOrderBy, pnHeight);
746     heightOfSelect(p->pPrior, pnHeight);
747   }
748 }
749 
750 /*
751 ** Set the Expr.nHeight variable in the structure passed as an
752 ** argument. An expression with no children, Expr.pList or
753 ** Expr.pSelect member has a height of 1. Any other expression
754 ** has a height equal to the maximum height of any other
755 ** referenced Expr plus one.
756 */
757 void sqlite3ExprSetHeight(Expr *p){
758   int nHeight = 0;
759   heightOfExpr(p->pLeft, &nHeight);
760   heightOfExpr(p->pRight, &nHeight);
761   heightOfExprList(p->pList, &nHeight);
762   heightOfSelect(p->pSelect, &nHeight);
763   p->nHeight = nHeight + 1;
764 }
765 
766 /*
767 ** Return the maximum height of any expression tree referenced
768 ** by the select statement passed as an argument.
769 */
770 int sqlite3SelectExprHeight(Select *p){
771   int nHeight = 0;
772   heightOfSelect(p, &nHeight);
773   return nHeight;
774 }
775 #endif
776 
777 /*
778 ** Delete an entire expression list.
779 */
780 void sqlite3ExprListDelete(ExprList *pList){
781   int i;
782   struct ExprList_item *pItem;
783   if( pList==0 ) return;
784   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
785   assert( pList->nExpr<=pList->nAlloc );
786   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
787     sqlite3ExprDelete(pItem->pExpr);
788     sqlite3_free(pItem->zName);
789   }
790   sqlite3_free(pList->a);
791   sqlite3_free(pList);
792 }
793 
794 /*
795 ** Walk an expression tree.  Call xFunc for each node visited.
796 **
797 ** The return value from xFunc determines whether the tree walk continues.
798 ** 0 means continue walking the tree.  1 means do not walk children
799 ** of the current node but continue with siblings.  2 means abandon
800 ** the tree walk completely.
801 **
802 ** The return value from this routine is 1 to abandon the tree walk
803 ** and 0 to continue.
804 **
805 ** NOTICE:  This routine does *not* descend into subqueries.
806 */
807 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
808 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
809   int rc;
810   if( pExpr==0 ) return 0;
811   rc = (*xFunc)(pArg, pExpr);
812   if( rc==0 ){
813     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
814     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
815     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
816   }
817   return rc>1;
818 }
819 
820 /*
821 ** Call walkExprTree() for every expression in list p.
822 */
823 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
824   int i;
825   struct ExprList_item *pItem;
826   if( !p ) return 0;
827   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
828     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
829   }
830   return 0;
831 }
832 
833 /*
834 ** Call walkExprTree() for every expression in Select p, not including
835 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
836 ** or OFFSET expressions..
837 */
838 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
839   walkExprList(p->pEList, xFunc, pArg);
840   walkExprTree(p->pWhere, xFunc, pArg);
841   walkExprList(p->pGroupBy, xFunc, pArg);
842   walkExprTree(p->pHaving, xFunc, pArg);
843   walkExprList(p->pOrderBy, xFunc, pArg);
844   if( p->pPrior ){
845     walkSelectExpr(p->pPrior, xFunc, pArg);
846   }
847   return 0;
848 }
849 
850 
851 /*
852 ** This routine is designed as an xFunc for walkExprTree().
853 **
854 ** pArg is really a pointer to an integer.  If we can tell by looking
855 ** at pExpr that the expression that contains pExpr is not a constant
856 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
857 ** If pExpr does does not disqualify the expression from being a constant
858 ** then do nothing.
859 **
860 ** After walking the whole tree, if no nodes are found that disqualify
861 ** the expression as constant, then we assume the whole expression
862 ** is constant.  See sqlite3ExprIsConstant() for additional information.
863 */
864 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
865   int *pN = (int*)pArg;
866 
867   /* If *pArg is 3 then any term of the expression that comes from
868   ** the ON or USING clauses of a join disqualifies the expression
869   ** from being considered constant. */
870   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
871     *pN = 0;
872     return 2;
873   }
874 
875   switch( pExpr->op ){
876     /* Consider functions to be constant if all their arguments are constant
877     ** and *pArg==2 */
878     case TK_FUNCTION:
879       if( (*pN)==2 ) return 0;
880       /* Fall through */
881     case TK_ID:
882     case TK_COLUMN:
883     case TK_DOT:
884     case TK_AGG_FUNCTION:
885     case TK_AGG_COLUMN:
886 #ifndef SQLITE_OMIT_SUBQUERY
887     case TK_SELECT:
888     case TK_EXISTS:
889 #endif
890       *pN = 0;
891       return 2;
892     case TK_IN:
893       if( pExpr->pSelect ){
894         *pN = 0;
895         return 2;
896       }
897     default:
898       return 0;
899   }
900 }
901 
902 /*
903 ** Walk an expression tree.  Return 1 if the expression is constant
904 ** and 0 if it involves variables or function calls.
905 **
906 ** For the purposes of this function, a double-quoted string (ex: "abc")
907 ** is considered a variable but a single-quoted string (ex: 'abc') is
908 ** a constant.
909 */
910 int sqlite3ExprIsConstant(Expr *p){
911   int isConst = 1;
912   walkExprTree(p, exprNodeIsConstant, &isConst);
913   return isConst;
914 }
915 
916 /*
917 ** Walk an expression tree.  Return 1 if the expression is constant
918 ** that does no originate from the ON or USING clauses of a join.
919 ** Return 0 if it involves variables or function calls or terms from
920 ** an ON or USING clause.
921 */
922 int sqlite3ExprIsConstantNotJoin(Expr *p){
923   int isConst = 3;
924   walkExprTree(p, exprNodeIsConstant, &isConst);
925   return isConst!=0;
926 }
927 
928 /*
929 ** Walk an expression tree.  Return 1 if the expression is constant
930 ** or a function call with constant arguments.  Return and 0 if there
931 ** are any variables.
932 **
933 ** For the purposes of this function, a double-quoted string (ex: "abc")
934 ** is considered a variable but a single-quoted string (ex: 'abc') is
935 ** a constant.
936 */
937 int sqlite3ExprIsConstantOrFunction(Expr *p){
938   int isConst = 2;
939   walkExprTree(p, exprNodeIsConstant, &isConst);
940   return isConst!=0;
941 }
942 
943 /*
944 ** If the expression p codes a constant integer that is small enough
945 ** to fit in a 32-bit integer, return 1 and put the value of the integer
946 ** in *pValue.  If the expression is not an integer or if it is too big
947 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
948 */
949 int sqlite3ExprIsInteger(Expr *p, int *pValue){
950   switch( p->op ){
951     case TK_INTEGER: {
952       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
953         return 1;
954       }
955       break;
956     }
957     case TK_UPLUS: {
958       return sqlite3ExprIsInteger(p->pLeft, pValue);
959     }
960     case TK_UMINUS: {
961       int v;
962       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
963         *pValue = -v;
964         return 1;
965       }
966       break;
967     }
968     default: break;
969   }
970   return 0;
971 }
972 
973 /*
974 ** Return TRUE if the given string is a row-id column name.
975 */
976 int sqlite3IsRowid(const char *z){
977   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
978   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
979   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
980   return 0;
981 }
982 
983 /*
984 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
985 ** that name in the set of source tables in pSrcList and make the pExpr
986 ** expression node refer back to that source column.  The following changes
987 ** are made to pExpr:
988 **
989 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
990 **                         the table.
991 **    pExpr->iTable        Set to the cursor number for the table obtained
992 **                         from pSrcList.
993 **    pExpr->iColumn       Set to the column number within the table.
994 **    pExpr->op            Set to TK_COLUMN.
995 **    pExpr->pLeft         Any expression this points to is deleted
996 **    pExpr->pRight        Any expression this points to is deleted.
997 **
998 ** The pDbToken is the name of the database (the "X").  This value may be
999 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
1000 ** can be used.  The pTableToken is the name of the table (the "Y").  This
1001 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
1002 ** means that the form of the name is Z and that columns from any table
1003 ** can be used.
1004 **
1005 ** If the name cannot be resolved unambiguously, leave an error message
1006 ** in pParse and return non-zero.  Return zero on success.
1007 */
1008 static int lookupName(
1009   Parse *pParse,       /* The parsing context */
1010   Token *pDbToken,     /* Name of the database containing table, or NULL */
1011   Token *pTableToken,  /* Name of table containing column, or NULL */
1012   Token *pColumnToken, /* Name of the column. */
1013   NameContext *pNC,    /* The name context used to resolve the name */
1014   Expr *pExpr          /* Make this EXPR node point to the selected column */
1015 ){
1016   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
1017   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
1018   char *zCol = 0;      /* Name of the column.  The "Z" */
1019   int i, j;            /* Loop counters */
1020   int cnt = 0;         /* Number of matching column names */
1021   int cntTab = 0;      /* Number of matching table names */
1022   sqlite3 *db = pParse->db;  /* The database */
1023   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
1024   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
1025   NameContext *pTopNC = pNC;        /* First namecontext in the list */
1026 
1027   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
1028   zDb = sqlite3NameFromToken(db, pDbToken);
1029   zTab = sqlite3NameFromToken(db, pTableToken);
1030   zCol = sqlite3NameFromToken(db, pColumnToken);
1031   if( db->mallocFailed ){
1032     goto lookupname_end;
1033   }
1034 
1035   pExpr->iTable = -1;
1036   while( pNC && cnt==0 ){
1037     ExprList *pEList;
1038     SrcList *pSrcList = pNC->pSrcList;
1039 
1040     if( pSrcList ){
1041       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
1042         Table *pTab;
1043         int iDb;
1044         Column *pCol;
1045 
1046         pTab = pItem->pTab;
1047         assert( pTab!=0 );
1048         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1049         assert( pTab->nCol>0 );
1050         if( zTab ){
1051           if( pItem->zAlias ){
1052             char *zTabName = pItem->zAlias;
1053             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1054           }else{
1055             char *zTabName = pTab->zName;
1056             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1057             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
1058               continue;
1059             }
1060           }
1061         }
1062         if( 0==(cntTab++) ){
1063           pExpr->iTable = pItem->iCursor;
1064           pExpr->pSchema = pTab->pSchema;
1065           pMatch = pItem;
1066         }
1067         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
1068           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1069             const char *zColl = pTab->aCol[j].zColl;
1070             IdList *pUsing;
1071             cnt++;
1072             pExpr->iTable = pItem->iCursor;
1073             pMatch = pItem;
1074             pExpr->pSchema = pTab->pSchema;
1075             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
1076             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
1077             pExpr->affinity = pTab->aCol[j].affinity;
1078             if( (pExpr->flags & EP_ExpCollate)==0 ){
1079               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1080             }
1081             if( i<pSrcList->nSrc-1 ){
1082               if( pItem[1].jointype & JT_NATURAL ){
1083                 /* If this match occurred in the left table of a natural join,
1084                 ** then skip the right table to avoid a duplicate match */
1085                 pItem++;
1086                 i++;
1087               }else if( (pUsing = pItem[1].pUsing)!=0 ){
1088                 /* If this match occurs on a column that is in the USING clause
1089                 ** of a join, skip the search of the right table of the join
1090                 ** to avoid a duplicate match there. */
1091                 int k;
1092                 for(k=0; k<pUsing->nId; k++){
1093                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
1094                     pItem++;
1095                     i++;
1096                     break;
1097                   }
1098                 }
1099               }
1100             }
1101             break;
1102           }
1103         }
1104       }
1105     }
1106 
1107 #ifndef SQLITE_OMIT_TRIGGER
1108     /* If we have not already resolved the name, then maybe
1109     ** it is a new.* or old.* trigger argument reference
1110     */
1111     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
1112       TriggerStack *pTriggerStack = pParse->trigStack;
1113       Table *pTab = 0;
1114       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
1115         pExpr->iTable = pTriggerStack->newIdx;
1116         assert( pTriggerStack->pTab );
1117         pTab = pTriggerStack->pTab;
1118       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
1119         pExpr->iTable = pTriggerStack->oldIdx;
1120         assert( pTriggerStack->pTab );
1121         pTab = pTriggerStack->pTab;
1122       }
1123 
1124       if( pTab ){
1125         int iCol;
1126         Column *pCol = pTab->aCol;
1127 
1128         pExpr->pSchema = pTab->pSchema;
1129         cntTab++;
1130         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
1131           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1132             const char *zColl = pTab->aCol[iCol].zColl;
1133             cnt++;
1134             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
1135             pExpr->affinity = pTab->aCol[iCol].affinity;
1136             if( (pExpr->flags & EP_ExpCollate)==0 ){
1137               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1138             }
1139             pExpr->pTab = pTab;
1140             break;
1141           }
1142         }
1143       }
1144     }
1145 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1146 
1147     /*
1148     ** Perhaps the name is a reference to the ROWID
1149     */
1150     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
1151       cnt = 1;
1152       pExpr->iColumn = -1;
1153       pExpr->affinity = SQLITE_AFF_INTEGER;
1154     }
1155 
1156     /*
1157     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
1158     ** might refer to an result-set alias.  This happens, for example, when
1159     ** we are resolving names in the WHERE clause of the following command:
1160     **
1161     **     SELECT a+b AS x FROM table WHERE x<10;
1162     **
1163     ** In cases like this, replace pExpr with a copy of the expression that
1164     ** forms the result set entry ("a+b" in the example) and return immediately.
1165     ** Note that the expression in the result set should have already been
1166     ** resolved by the time the WHERE clause is resolved.
1167     */
1168     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
1169       for(j=0; j<pEList->nExpr; j++){
1170         char *zAs = pEList->a[j].zName;
1171         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1172           Expr *pDup, *pOrig;
1173           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
1174           assert( pExpr->pList==0 );
1175           assert( pExpr->pSelect==0 );
1176           pOrig = pEList->a[j].pExpr;
1177           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
1178             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
1179             sqlite3_free(zCol);
1180             return 2;
1181           }
1182           pDup = sqlite3ExprDup(db, pOrig);
1183           if( pExpr->flags & EP_ExpCollate ){
1184             pDup->pColl = pExpr->pColl;
1185             pDup->flags |= EP_ExpCollate;
1186           }
1187           if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
1188           if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
1189           memcpy(pExpr, pDup, sizeof(*pExpr));
1190           sqlite3_free(pDup);
1191           cnt = 1;
1192           pMatch = 0;
1193           assert( zTab==0 && zDb==0 );
1194           goto lookupname_end_2;
1195         }
1196       }
1197     }
1198 
1199     /* Advance to the next name context.  The loop will exit when either
1200     ** we have a match (cnt>0) or when we run out of name contexts.
1201     */
1202     if( cnt==0 ){
1203       pNC = pNC->pNext;
1204     }
1205   }
1206 
1207   /*
1208   ** If X and Y are NULL (in other words if only the column name Z is
1209   ** supplied) and the value of Z is enclosed in double-quotes, then
1210   ** Z is a string literal if it doesn't match any column names.  In that
1211   ** case, we need to return right away and not make any changes to
1212   ** pExpr.
1213   **
1214   ** Because no reference was made to outer contexts, the pNC->nRef
1215   ** fields are not changed in any context.
1216   */
1217   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1218     sqlite3_free(zCol);
1219     return 0;
1220   }
1221 
1222   /*
1223   ** cnt==0 means there was not match.  cnt>1 means there were two or
1224   ** more matches.  Either way, we have an error.
1225   */
1226   if( cnt!=1 ){
1227     char *z = 0;
1228     char *zErr;
1229     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
1230     if( zDb ){
1231       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
1232     }else if( zTab ){
1233       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
1234     }else{
1235       z = sqlite3StrDup(zCol);
1236     }
1237     sqlite3ErrorMsg(pParse, zErr, z);
1238     sqlite3_free(z);
1239     pTopNC->nErr++;
1240   }
1241 
1242   /* If a column from a table in pSrcList is referenced, then record
1243   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
1244   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
1245   ** column number is greater than the number of bits in the bitmask
1246   ** then set the high-order bit of the bitmask.
1247   */
1248   if( pExpr->iColumn>=0 && pMatch!=0 ){
1249     int n = pExpr->iColumn;
1250     if( n>=sizeof(Bitmask)*8 ){
1251       n = sizeof(Bitmask)*8-1;
1252     }
1253     assert( pMatch->iCursor==pExpr->iTable );
1254     pMatch->colUsed |= ((Bitmask)1)<<n;
1255   }
1256 
1257 lookupname_end:
1258   /* Clean up and return
1259   */
1260   sqlite3_free(zDb);
1261   sqlite3_free(zTab);
1262   sqlite3ExprDelete(pExpr->pLeft);
1263   pExpr->pLeft = 0;
1264   sqlite3ExprDelete(pExpr->pRight);
1265   pExpr->pRight = 0;
1266   pExpr->op = TK_COLUMN;
1267 lookupname_end_2:
1268   sqlite3_free(zCol);
1269   if( cnt==1 ){
1270     assert( pNC!=0 );
1271     sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
1272     if( pMatch && !pMatch->pSelect ){
1273       pExpr->pTab = pMatch->pTab;
1274     }
1275     /* Increment the nRef value on all name contexts from TopNC up to
1276     ** the point where the name matched. */
1277     for(;;){
1278       assert( pTopNC!=0 );
1279       pTopNC->nRef++;
1280       if( pTopNC==pNC ) break;
1281       pTopNC = pTopNC->pNext;
1282     }
1283     return 0;
1284   } else {
1285     return 1;
1286   }
1287 }
1288 
1289 /*
1290 ** This routine is designed as an xFunc for walkExprTree().
1291 **
1292 ** Resolve symbolic names into TK_COLUMN operators for the current
1293 ** node in the expression tree.  Return 0 to continue the search down
1294 ** the tree or 2 to abort the tree walk.
1295 **
1296 ** This routine also does error checking and name resolution for
1297 ** function names.  The operator for aggregate functions is changed
1298 ** to TK_AGG_FUNCTION.
1299 */
1300 static int nameResolverStep(void *pArg, Expr *pExpr){
1301   NameContext *pNC = (NameContext*)pArg;
1302   Parse *pParse;
1303 
1304   if( pExpr==0 ) return 1;
1305   assert( pNC!=0 );
1306   pParse = pNC->pParse;
1307 
1308   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1309   ExprSetProperty(pExpr, EP_Resolved);
1310 #ifndef NDEBUG
1311   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1312     SrcList *pSrcList = pNC->pSrcList;
1313     int i;
1314     for(i=0; i<pNC->pSrcList->nSrc; i++){
1315       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1316     }
1317   }
1318 #endif
1319   switch( pExpr->op ){
1320     /* Double-quoted strings (ex: "abc") are used as identifiers if
1321     ** possible.  Otherwise they remain as strings.  Single-quoted
1322     ** strings (ex: 'abc') are always string literals.
1323     */
1324     case TK_STRING: {
1325       if( pExpr->token.z[0]=='\'' ) break;
1326       /* Fall thru into the TK_ID case if this is a double-quoted string */
1327     }
1328     /* A lone identifier is the name of a column.
1329     */
1330     case TK_ID: {
1331       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1332       return 1;
1333     }
1334 
1335     /* A table name and column name:     ID.ID
1336     ** Or a database, table and column:  ID.ID.ID
1337     */
1338     case TK_DOT: {
1339       Token *pColumn;
1340       Token *pTable;
1341       Token *pDb;
1342       Expr *pRight;
1343 
1344       /* if( pSrcList==0 ) break; */
1345       pRight = pExpr->pRight;
1346       if( pRight->op==TK_ID ){
1347         pDb = 0;
1348         pTable = &pExpr->pLeft->token;
1349         pColumn = &pRight->token;
1350       }else{
1351         assert( pRight->op==TK_DOT );
1352         pDb = &pExpr->pLeft->token;
1353         pTable = &pRight->pLeft->token;
1354         pColumn = &pRight->pRight->token;
1355       }
1356       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1357       return 1;
1358     }
1359 
1360     /* Resolve function names
1361     */
1362     case TK_CONST_FUNC:
1363     case TK_FUNCTION: {
1364       ExprList *pList = pExpr->pList;    /* The argument list */
1365       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
1366       int no_such_func = 0;       /* True if no such function exists */
1367       int wrong_num_args = 0;     /* True if wrong number of arguments */
1368       int is_agg = 0;             /* True if is an aggregate function */
1369       int i;
1370       int auth;                   /* Authorization to use the function */
1371       int nId;                    /* Number of characters in function name */
1372       const char *zId;            /* The function name. */
1373       FuncDef *pDef;              /* Information about the function */
1374       int enc = ENC(pParse->db);  /* The database encoding */
1375 
1376       zId = (char*)pExpr->token.z;
1377       nId = pExpr->token.n;
1378       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1379       if( pDef==0 ){
1380         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1381         if( pDef==0 ){
1382           no_such_func = 1;
1383         }else{
1384           wrong_num_args = 1;
1385         }
1386       }else{
1387         is_agg = pDef->xFunc==0;
1388       }
1389 #ifndef SQLITE_OMIT_AUTHORIZATION
1390       if( pDef ){
1391         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1392         if( auth!=SQLITE_OK ){
1393           if( auth==SQLITE_DENY ){
1394             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1395                                     pDef->zName);
1396             pNC->nErr++;
1397           }
1398           pExpr->op = TK_NULL;
1399           return 1;
1400         }
1401       }
1402 #endif
1403       if( is_agg && !pNC->allowAgg ){
1404         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1405         pNC->nErr++;
1406         is_agg = 0;
1407       }else if( no_such_func ){
1408         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1409         pNC->nErr++;
1410       }else if( wrong_num_args ){
1411         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1412              nId, zId);
1413         pNC->nErr++;
1414       }
1415       if( is_agg ){
1416         pExpr->op = TK_AGG_FUNCTION;
1417         pNC->hasAgg = 1;
1418       }
1419       if( is_agg ) pNC->allowAgg = 0;
1420       for(i=0; pNC->nErr==0 && i<n; i++){
1421         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1422       }
1423       if( is_agg ) pNC->allowAgg = 1;
1424       /* FIX ME:  Compute pExpr->affinity based on the expected return
1425       ** type of the function
1426       */
1427       return is_agg;
1428     }
1429 #ifndef SQLITE_OMIT_SUBQUERY
1430     case TK_SELECT:
1431     case TK_EXISTS:
1432 #endif
1433     case TK_IN: {
1434       if( pExpr->pSelect ){
1435         int nRef = pNC->nRef;
1436 #ifndef SQLITE_OMIT_CHECK
1437         if( pNC->isCheck ){
1438           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1439         }
1440 #endif
1441         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1442         assert( pNC->nRef>=nRef );
1443         if( nRef!=pNC->nRef ){
1444           ExprSetProperty(pExpr, EP_VarSelect);
1445         }
1446       }
1447       break;
1448     }
1449 #ifndef SQLITE_OMIT_CHECK
1450     case TK_VARIABLE: {
1451       if( pNC->isCheck ){
1452         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1453       }
1454       break;
1455     }
1456 #endif
1457   }
1458   return 0;
1459 }
1460 
1461 /*
1462 ** This routine walks an expression tree and resolves references to
1463 ** table columns.  Nodes of the form ID.ID or ID resolve into an
1464 ** index to the table in the table list and a column offset.  The
1465 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
1466 ** value is changed to the index of the referenced table in pTabList
1467 ** plus the "base" value.  The base value will ultimately become the
1468 ** VDBE cursor number for a cursor that is pointing into the referenced
1469 ** table.  The Expr.iColumn value is changed to the index of the column
1470 ** of the referenced table.  The Expr.iColumn value for the special
1471 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
1472 ** alias for ROWID.
1473 **
1474 ** Also resolve function names and check the functions for proper
1475 ** usage.  Make sure all function names are recognized and all functions
1476 ** have the correct number of arguments.  Leave an error message
1477 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
1478 **
1479 ** If the expression contains aggregate functions then set the EP_Agg
1480 ** property on the expression.
1481 */
1482 int sqlite3ExprResolveNames(
1483   NameContext *pNC,       /* Namespace to resolve expressions in. */
1484   Expr *pExpr             /* The expression to be analyzed. */
1485 ){
1486   int savedHasAgg;
1487   if( pExpr==0 ) return 0;
1488 #if SQLITE_MAX_EXPR_DEPTH>0
1489   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
1490     sqlite3ErrorMsg(pNC->pParse,
1491        "Expression tree is too large (maximum depth %d)",
1492        SQLITE_MAX_EXPR_DEPTH
1493     );
1494     return 1;
1495   }
1496   pNC->pParse->nHeight += pExpr->nHeight;
1497 #endif
1498   savedHasAgg = pNC->hasAgg;
1499   pNC->hasAgg = 0;
1500   walkExprTree(pExpr, nameResolverStep, pNC);
1501 #if SQLITE_MAX_EXPR_DEPTH>0
1502   pNC->pParse->nHeight -= pExpr->nHeight;
1503 #endif
1504   if( pNC->nErr>0 ){
1505     ExprSetProperty(pExpr, EP_Error);
1506   }
1507   if( pNC->hasAgg ){
1508     ExprSetProperty(pExpr, EP_Agg);
1509   }else if( savedHasAgg ){
1510     pNC->hasAgg = 1;
1511   }
1512   return ExprHasProperty(pExpr, EP_Error);
1513 }
1514 
1515 /*
1516 ** A pointer instance of this structure is used to pass information
1517 ** through walkExprTree into codeSubqueryStep().
1518 */
1519 typedef struct QueryCoder QueryCoder;
1520 struct QueryCoder {
1521   Parse *pParse;       /* The parsing context */
1522   NameContext *pNC;    /* Namespace of first enclosing query */
1523 };
1524 
1525 
1526 /*
1527 ** Generate code for scalar subqueries used as an expression
1528 ** and IN operators.  Examples:
1529 **
1530 **     (SELECT a FROM b)          -- subquery
1531 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1532 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1533 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1534 **
1535 ** The pExpr parameter describes the expression that contains the IN
1536 ** operator or subquery.
1537 */
1538 #ifndef SQLITE_OMIT_SUBQUERY
1539 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
1540   int testAddr = 0;                       /* One-time test address */
1541   Vdbe *v = sqlite3GetVdbe(pParse);
1542   if( v==0 ) return;
1543 
1544 
1545   /* This code must be run in its entirety every time it is encountered
1546   ** if any of the following is true:
1547   **
1548   **    *  The right-hand side is a correlated subquery
1549   **    *  The right-hand side is an expression list containing variables
1550   **    *  We are inside a trigger
1551   **
1552   ** If all of the above are false, then we can run this code just once
1553   ** save the results, and reuse the same result on subsequent invocations.
1554   */
1555   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1556     int mem = pParse->nMem++;
1557     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
1558     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
1559     assert( testAddr>0 || pParse->db->mallocFailed );
1560     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
1561   }
1562 
1563   switch( pExpr->op ){
1564     case TK_IN: {
1565       char affinity;
1566       KeyInfo keyInfo;
1567       int addr;        /* Address of OP_OpenEphemeral instruction */
1568 
1569       affinity = sqlite3ExprAffinity(pExpr->pLeft);
1570 
1571       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1572       ** expression it is handled the same way. A virtual table is
1573       ** filled with single-field index keys representing the results
1574       ** from the SELECT or the <exprlist>.
1575       **
1576       ** If the 'x' expression is a column value, or the SELECT...
1577       ** statement returns a column value, then the affinity of that
1578       ** column is used to build the index keys. If both 'x' and the
1579       ** SELECT... statement are columns, then numeric affinity is used
1580       ** if either column has NUMERIC or INTEGER affinity. If neither
1581       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1582       ** is used.
1583       */
1584       pExpr->iTable = pParse->nTab++;
1585       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
1586       memset(&keyInfo, 0, sizeof(keyInfo));
1587       keyInfo.nField = 1;
1588       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
1589 
1590       if( pExpr->pSelect ){
1591         /* Case 1:     expr IN (SELECT ...)
1592         **
1593         ** Generate code to write the results of the select into the temporary
1594         ** table allocated and opened above.
1595         */
1596         int iParm = pExpr->iTable +  (((int)affinity)<<16);
1597         ExprList *pEList;
1598         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1599         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
1600           return;
1601         }
1602         pEList = pExpr->pSelect->pEList;
1603         if( pEList && pEList->nExpr>0 ){
1604           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1605               pEList->a[0].pExpr);
1606         }
1607       }else if( pExpr->pList ){
1608         /* Case 2:     expr IN (exprlist)
1609         **
1610         ** For each expression, build an index key from the evaluation and
1611         ** store it in the temporary table. If <expr> is a column, then use
1612         ** that columns affinity when building index keys. If <expr> is not
1613         ** a column, use numeric affinity.
1614         */
1615         int i;
1616         ExprList *pList = pExpr->pList;
1617         struct ExprList_item *pItem;
1618 
1619         if( !affinity ){
1620           affinity = SQLITE_AFF_NONE;
1621         }
1622         keyInfo.aColl[0] = pExpr->pLeft->pColl;
1623 
1624         /* Loop through each expression in <exprlist>. */
1625         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1626           Expr *pE2 = pItem->pExpr;
1627 
1628           /* If the expression is not constant then we will need to
1629           ** disable the test that was generated above that makes sure
1630           ** this code only executes once.  Because for a non-constant
1631           ** expression we need to rerun this code each time.
1632           */
1633           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
1634             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
1635             testAddr = 0;
1636           }
1637 
1638           /* Evaluate the expression and insert it into the temp table */
1639           sqlite3ExprCode(pParse, pE2);
1640           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
1641           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
1642         }
1643       }
1644       sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
1645       break;
1646     }
1647 
1648     case TK_EXISTS:
1649     case TK_SELECT: {
1650       /* This has to be a scalar SELECT.  Generate code to put the
1651       ** value of this select in a memory cell and record the number
1652       ** of the memory cell in iColumn.
1653       */
1654       static const Token one = { (u8*)"1", 0, 1 };
1655       Select *pSel;
1656       int iMem;
1657       int sop;
1658 
1659       pExpr->iColumn = iMem = pParse->nMem++;
1660       pSel = pExpr->pSelect;
1661       if( pExpr->op==TK_SELECT ){
1662         sop = SRT_Mem;
1663         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
1664         VdbeComment((v, "# Init subquery result"));
1665       }else{
1666         sop = SRT_Exists;
1667         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
1668         VdbeComment((v, "# Init EXISTS result"));
1669       }
1670       sqlite3ExprDelete(pSel->pLimit);
1671       pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one);
1672       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
1673         return;
1674       }
1675       break;
1676     }
1677   }
1678 
1679   if( testAddr ){
1680     sqlite3VdbeJumpHere(v, testAddr);
1681   }
1682 
1683   return;
1684 }
1685 #endif /* SQLITE_OMIT_SUBQUERY */
1686 
1687 /*
1688 ** Generate an instruction that will put the integer describe by
1689 ** text z[0..n-1] on the stack.
1690 */
1691 static void codeInteger(Vdbe *v, const char *z, int n){
1692   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
1693   if( z ){
1694     int i;
1695     if( sqlite3GetInt32(z, &i) ){
1696       sqlite3VdbeAddOp(v, OP_Integer, i, 0);
1697     }else if( sqlite3FitsIn64Bits(z) ){
1698       sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
1699     }else{
1700       sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
1701     }
1702   }
1703 }
1704 
1705 
1706 /*
1707 ** Generate code that will extract the iColumn-th column from
1708 ** table pTab and push that column value on the stack.  There
1709 ** is an open cursor to pTab in iTable.  If iColumn<0 then
1710 ** code is generated that extracts the rowid.
1711 */
1712 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
1713   if( iColumn<0 ){
1714     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1715     sqlite3VdbeAddOp(v, op, iTable, 0);
1716   }else if( pTab==0 ){
1717     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
1718   }else{
1719     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1720     sqlite3VdbeAddOp(v, op, iTable, iColumn);
1721     sqlite3ColumnDefault(v, pTab, iColumn);
1722 #ifndef SQLITE_OMIT_FLOATING_POINT
1723     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1724       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
1725     }
1726 #endif
1727   }
1728 }
1729 
1730 /*
1731 ** Generate code into the current Vdbe to evaluate the given
1732 ** expression and leave the result on the top of stack.
1733 **
1734 ** This code depends on the fact that certain token values (ex: TK_EQ)
1735 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
1736 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
1737 ** the make process cause these values to align.  Assert()s in the code
1738 ** below verify that the numbers are aligned correctly.
1739 */
1740 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
1741   Vdbe *v = pParse->pVdbe;
1742   int op;
1743   int stackChng = 1;    /* Amount of change to stack depth */
1744 
1745   if( v==0 ) return;
1746   if( pExpr==0 ){
1747     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1748     return;
1749   }
1750   op = pExpr->op;
1751   switch( op ){
1752     case TK_AGG_COLUMN: {
1753       AggInfo *pAggInfo = pExpr->pAggInfo;
1754       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1755       if( !pAggInfo->directMode ){
1756         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
1757         break;
1758       }else if( pAggInfo->useSortingIdx ){
1759         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
1760                               pCol->iSorterColumn);
1761         break;
1762       }
1763       /* Otherwise, fall thru into the TK_COLUMN case */
1764     }
1765     case TK_COLUMN: {
1766       if( pExpr->iTable<0 ){
1767         /* This only happens when coding check constraints */
1768         assert( pParse->ckOffset>0 );
1769         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
1770       }else{
1771         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
1772       }
1773       break;
1774     }
1775     case TK_INTEGER: {
1776       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
1777       break;
1778     }
1779     case TK_FLOAT:
1780     case TK_STRING: {
1781       assert( TK_FLOAT==OP_Real );
1782       assert( TK_STRING==OP_String8 );
1783       sqlite3DequoteExpr(pParse->db, pExpr);
1784       sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
1785       break;
1786     }
1787     case TK_NULL: {
1788       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1789       break;
1790     }
1791 #ifndef SQLITE_OMIT_BLOB_LITERAL
1792     case TK_BLOB: {
1793       int n;
1794       const char *z;
1795       assert( TK_BLOB==OP_HexBlob );
1796       n = pExpr->token.n - 3;
1797       z = (char*)pExpr->token.z + 2;
1798       assert( n>=0 );
1799       if( n==0 ){
1800         z = "";
1801       }
1802       sqlite3VdbeOp3(v, op, 0, 0, z, n);
1803       break;
1804     }
1805 #endif
1806     case TK_VARIABLE: {
1807       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
1808       if( pExpr->token.n>1 ){
1809         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
1810       }
1811       break;
1812     }
1813     case TK_REGISTER: {
1814       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
1815       break;
1816     }
1817 #ifndef SQLITE_OMIT_CAST
1818     case TK_CAST: {
1819       /* Expressions of the form:   CAST(pLeft AS token) */
1820       int aff, to_op;
1821       sqlite3ExprCode(pParse, pExpr->pLeft);
1822       aff = sqlite3AffinityType(&pExpr->token);
1823       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
1824       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
1825       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
1826       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
1827       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
1828       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
1829       sqlite3VdbeAddOp(v, to_op, 0, 0);
1830       stackChng = 0;
1831       break;
1832     }
1833 #endif /* SQLITE_OMIT_CAST */
1834     case TK_LT:
1835     case TK_LE:
1836     case TK_GT:
1837     case TK_GE:
1838     case TK_NE:
1839     case TK_EQ: {
1840       assert( TK_LT==OP_Lt );
1841       assert( TK_LE==OP_Le );
1842       assert( TK_GT==OP_Gt );
1843       assert( TK_GE==OP_Ge );
1844       assert( TK_EQ==OP_Eq );
1845       assert( TK_NE==OP_Ne );
1846       sqlite3ExprCode(pParse, pExpr->pLeft);
1847       sqlite3ExprCode(pParse, pExpr->pRight);
1848       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
1849       stackChng = -1;
1850       break;
1851     }
1852     case TK_AND:
1853     case TK_OR:
1854     case TK_PLUS:
1855     case TK_STAR:
1856     case TK_MINUS:
1857     case TK_REM:
1858     case TK_BITAND:
1859     case TK_BITOR:
1860     case TK_SLASH:
1861     case TK_LSHIFT:
1862     case TK_RSHIFT:
1863     case TK_CONCAT: {
1864       assert( TK_AND==OP_And );
1865       assert( TK_OR==OP_Or );
1866       assert( TK_PLUS==OP_Add );
1867       assert( TK_MINUS==OP_Subtract );
1868       assert( TK_REM==OP_Remainder );
1869       assert( TK_BITAND==OP_BitAnd );
1870       assert( TK_BITOR==OP_BitOr );
1871       assert( TK_SLASH==OP_Divide );
1872       assert( TK_LSHIFT==OP_ShiftLeft );
1873       assert( TK_RSHIFT==OP_ShiftRight );
1874       assert( TK_CONCAT==OP_Concat );
1875       sqlite3ExprCode(pParse, pExpr->pLeft);
1876       sqlite3ExprCode(pParse, pExpr->pRight);
1877       sqlite3VdbeAddOp(v, op, 0, 0);
1878       stackChng = -1;
1879       break;
1880     }
1881     case TK_UMINUS: {
1882       Expr *pLeft = pExpr->pLeft;
1883       assert( pLeft );
1884       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
1885         Token *p = &pLeft->token;
1886         char *z = sqlite3MPrintf(pParse->db, "-%.*s", p->n, p->z);
1887         if( pLeft->op==TK_FLOAT ){
1888           sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
1889         }else{
1890           codeInteger(v, z, p->n+1);
1891         }
1892         sqlite3_free(z);
1893         break;
1894       }
1895       /* Fall through into TK_NOT */
1896     }
1897     case TK_BITNOT:
1898     case TK_NOT: {
1899       assert( TK_BITNOT==OP_BitNot );
1900       assert( TK_NOT==OP_Not );
1901       sqlite3ExprCode(pParse, pExpr->pLeft);
1902       sqlite3VdbeAddOp(v, op, 0, 0);
1903       stackChng = 0;
1904       break;
1905     }
1906     case TK_ISNULL:
1907     case TK_NOTNULL: {
1908       int dest;
1909       assert( TK_ISNULL==OP_IsNull );
1910       assert( TK_NOTNULL==OP_NotNull );
1911       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1912       sqlite3ExprCode(pParse, pExpr->pLeft);
1913       dest = sqlite3VdbeCurrentAddr(v) + 2;
1914       sqlite3VdbeAddOp(v, op, 1, dest);
1915       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
1916       stackChng = 0;
1917       break;
1918     }
1919     case TK_AGG_FUNCTION: {
1920       AggInfo *pInfo = pExpr->pAggInfo;
1921       if( pInfo==0 ){
1922         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
1923             &pExpr->span);
1924       }else{
1925         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
1926       }
1927       break;
1928     }
1929     case TK_CONST_FUNC:
1930     case TK_FUNCTION: {
1931       ExprList *pList = pExpr->pList;
1932       int nExpr = pList ? pList->nExpr : 0;
1933       FuncDef *pDef;
1934       int nId;
1935       const char *zId;
1936       int constMask = 0;
1937       int i;
1938       sqlite3 *db = pParse->db;
1939       u8 enc = ENC(db);
1940       CollSeq *pColl = 0;
1941 
1942       zId = (char*)pExpr->token.z;
1943       nId = pExpr->token.n;
1944       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
1945       assert( pDef!=0 );
1946       nExpr = sqlite3ExprCodeExprList(pParse, pList);
1947 #ifndef SQLITE_OMIT_VIRTUALTABLE
1948       /* Possibly overload the function if the first argument is
1949       ** a virtual table column.
1950       **
1951       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
1952       ** second argument, not the first, as the argument to test to
1953       ** see if it is a column in a virtual table.  This is done because
1954       ** the left operand of infix functions (the operand we want to
1955       ** control overloading) ends up as the second argument to the
1956       ** function.  The expression "A glob B" is equivalent to
1957       ** "glob(B,A).  We want to use the A in "A glob B" to test
1958       ** for function overloading.  But we use the B term in "glob(B,A)".
1959       */
1960       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
1961         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
1962       }else if( nExpr>0 ){
1963         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
1964       }
1965 #endif
1966       for(i=0; i<nExpr && i<32; i++){
1967         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
1968           constMask |= (1<<i);
1969         }
1970         if( pDef->needCollSeq && !pColl ){
1971           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
1972         }
1973       }
1974       if( pDef->needCollSeq ){
1975         if( !pColl ) pColl = pParse->db->pDfltColl;
1976         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
1977       }
1978       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
1979       stackChng = 1-nExpr;
1980       break;
1981     }
1982 #ifndef SQLITE_OMIT_SUBQUERY
1983     case TK_EXISTS:
1984     case TK_SELECT: {
1985       if( pExpr->iColumn==0 ){
1986         sqlite3CodeSubselect(pParse, pExpr);
1987       }
1988       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
1989       VdbeComment((v, "# load subquery result"));
1990       break;
1991     }
1992     case TK_IN: {
1993       int addr;
1994       char affinity;
1995       int ckOffset = pParse->ckOffset;
1996       sqlite3CodeSubselect(pParse, pExpr);
1997 
1998       /* Figure out the affinity to use to create a key from the results
1999       ** of the expression. affinityStr stores a static string suitable for
2000       ** P3 of OP_MakeRecord.
2001       */
2002       affinity = comparisonAffinity(pExpr);
2003 
2004       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
2005       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
2006 
2007       /* Code the <expr> from "<expr> IN (...)". The temporary table
2008       ** pExpr->iTable contains the values that make up the (...) set.
2009       */
2010       sqlite3ExprCode(pParse, pExpr->pLeft);
2011       addr = sqlite3VdbeCurrentAddr(v);
2012       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
2013       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
2014       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2015       sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
2016       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
2017       sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
2018       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
2019 
2020       break;
2021     }
2022 #endif
2023     case TK_BETWEEN: {
2024       Expr *pLeft = pExpr->pLeft;
2025       struct ExprList_item *pLItem = pExpr->pList->a;
2026       Expr *pRight = pLItem->pExpr;
2027       sqlite3ExprCode(pParse, pLeft);
2028       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2029       sqlite3ExprCode(pParse, pRight);
2030       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
2031       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
2032       pLItem++;
2033       pRight = pLItem->pExpr;
2034       sqlite3ExprCode(pParse, pRight);
2035       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
2036       sqlite3VdbeAddOp(v, OP_And, 0, 0);
2037       break;
2038     }
2039     case TK_UPLUS: {
2040       sqlite3ExprCode(pParse, pExpr->pLeft);
2041       stackChng = 0;
2042       break;
2043     }
2044     case TK_CASE: {
2045       int expr_end_label;
2046       int jumpInst;
2047       int nExpr;
2048       int i;
2049       ExprList *pEList;
2050       struct ExprList_item *aListelem;
2051 
2052       assert(pExpr->pList);
2053       assert((pExpr->pList->nExpr % 2) == 0);
2054       assert(pExpr->pList->nExpr > 0);
2055       pEList = pExpr->pList;
2056       aListelem = pEList->a;
2057       nExpr = pEList->nExpr;
2058       expr_end_label = sqlite3VdbeMakeLabel(v);
2059       if( pExpr->pLeft ){
2060         sqlite3ExprCode(pParse, pExpr->pLeft);
2061       }
2062       for(i=0; i<nExpr; i=i+2){
2063         sqlite3ExprCode(pParse, aListelem[i].pExpr);
2064         if( pExpr->pLeft ){
2065           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
2066           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
2067                                  OP_Ne, 0, 1);
2068           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2069         }else{
2070           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
2071         }
2072         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
2073         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
2074         sqlite3VdbeJumpHere(v, jumpInst);
2075       }
2076       if( pExpr->pLeft ){
2077         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2078       }
2079       if( pExpr->pRight ){
2080         sqlite3ExprCode(pParse, pExpr->pRight);
2081       }else{
2082         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2083       }
2084       sqlite3VdbeResolveLabel(v, expr_end_label);
2085       break;
2086     }
2087 #ifndef SQLITE_OMIT_TRIGGER
2088     case TK_RAISE: {
2089       if( !pParse->trigStack ){
2090         sqlite3ErrorMsg(pParse,
2091                        "RAISE() may only be used within a trigger-program");
2092         return;
2093       }
2094       if( pExpr->iColumn!=OE_Ignore ){
2095          assert( pExpr->iColumn==OE_Rollback ||
2096                  pExpr->iColumn == OE_Abort ||
2097                  pExpr->iColumn == OE_Fail );
2098          sqlite3DequoteExpr(pParse->db, pExpr);
2099          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
2100                         (char*)pExpr->token.z, pExpr->token.n);
2101       } else {
2102          assert( pExpr->iColumn == OE_Ignore );
2103          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
2104          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2105          VdbeComment((v, "# raise(IGNORE)"));
2106       }
2107       stackChng = 0;
2108       break;
2109     }
2110 #endif
2111   }
2112 
2113   if( pParse->ckOffset ){
2114     pParse->ckOffset += stackChng;
2115     assert( pParse->ckOffset );
2116   }
2117 }
2118 
2119 #ifndef SQLITE_OMIT_TRIGGER
2120 /*
2121 ** Generate code that evalutes the given expression and leaves the result
2122 ** on the stack.  See also sqlite3ExprCode().
2123 **
2124 ** This routine might also cache the result and modify the pExpr tree
2125 ** so that it will make use of the cached result on subsequent evaluations
2126 ** rather than evaluate the whole expression again.  Trivial expressions are
2127 ** not cached.  If the expression is cached, its result is stored in a
2128 ** memory location.
2129 */
2130 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
2131   Vdbe *v = pParse->pVdbe;
2132   int iMem;
2133   int addr1, addr2;
2134   if( v==0 ) return;
2135   addr1 = sqlite3VdbeCurrentAddr(v);
2136   sqlite3ExprCode(pParse, pExpr);
2137   addr2 = sqlite3VdbeCurrentAddr(v);
2138   if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
2139     iMem = pExpr->iTable = pParse->nMem++;
2140     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
2141     pExpr->op = TK_REGISTER;
2142   }
2143 }
2144 #endif
2145 
2146 /*
2147 ** Generate code that pushes the value of every element of the given
2148 ** expression list onto the stack.
2149 **
2150 ** Return the number of elements pushed onto the stack.
2151 */
2152 int sqlite3ExprCodeExprList(
2153   Parse *pParse,     /* Parsing context */
2154   ExprList *pList    /* The expression list to be coded */
2155 ){
2156   struct ExprList_item *pItem;
2157   int i, n;
2158   if( pList==0 ) return 0;
2159   n = pList->nExpr;
2160   for(pItem=pList->a, i=n; i>0; i--, pItem++){
2161     sqlite3ExprCode(pParse, pItem->pExpr);
2162   }
2163   return n;
2164 }
2165 
2166 /*
2167 ** Generate code for a boolean expression such that a jump is made
2168 ** to the label "dest" if the expression is true but execution
2169 ** continues straight thru if the expression is false.
2170 **
2171 ** If the expression evaluates to NULL (neither true nor false), then
2172 ** take the jump if the jumpIfNull flag is true.
2173 **
2174 ** This code depends on the fact that certain token values (ex: TK_EQ)
2175 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2176 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
2177 ** the make process cause these values to align.  Assert()s in the code
2178 ** below verify that the numbers are aligned correctly.
2179 */
2180 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2181   Vdbe *v = pParse->pVdbe;
2182   int op = 0;
2183   int ckOffset = pParse->ckOffset;
2184   if( v==0 || pExpr==0 ) return;
2185   op = pExpr->op;
2186   switch( op ){
2187     case TK_AND: {
2188       int d2 = sqlite3VdbeMakeLabel(v);
2189       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
2190       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2191       sqlite3VdbeResolveLabel(v, d2);
2192       break;
2193     }
2194     case TK_OR: {
2195       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2196       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2197       break;
2198     }
2199     case TK_NOT: {
2200       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2201       break;
2202     }
2203     case TK_LT:
2204     case TK_LE:
2205     case TK_GT:
2206     case TK_GE:
2207     case TK_NE:
2208     case TK_EQ: {
2209       assert( TK_LT==OP_Lt );
2210       assert( TK_LE==OP_Le );
2211       assert( TK_GT==OP_Gt );
2212       assert( TK_GE==OP_Ge );
2213       assert( TK_EQ==OP_Eq );
2214       assert( TK_NE==OP_Ne );
2215       sqlite3ExprCode(pParse, pExpr->pLeft);
2216       sqlite3ExprCode(pParse, pExpr->pRight);
2217       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2218       break;
2219     }
2220     case TK_ISNULL:
2221     case TK_NOTNULL: {
2222       assert( TK_ISNULL==OP_IsNull );
2223       assert( TK_NOTNULL==OP_NotNull );
2224       sqlite3ExprCode(pParse, pExpr->pLeft);
2225       sqlite3VdbeAddOp(v, op, 1, dest);
2226       break;
2227     }
2228     case TK_BETWEEN: {
2229       /* The expression "x BETWEEN y AND z" is implemented as:
2230       **
2231       ** 1 IF (x < y) GOTO 3
2232       ** 2 IF (x <= z) GOTO <dest>
2233       ** 3 ...
2234       */
2235       int addr;
2236       Expr *pLeft = pExpr->pLeft;
2237       Expr *pRight = pExpr->pList->a[0].pExpr;
2238       sqlite3ExprCode(pParse, pLeft);
2239       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2240       sqlite3ExprCode(pParse, pRight);
2241       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
2242 
2243       pRight = pExpr->pList->a[1].pExpr;
2244       sqlite3ExprCode(pParse, pRight);
2245       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
2246 
2247       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
2248       sqlite3VdbeJumpHere(v, addr);
2249       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2250       break;
2251     }
2252     default: {
2253       sqlite3ExprCode(pParse, pExpr);
2254       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
2255       break;
2256     }
2257   }
2258   pParse->ckOffset = ckOffset;
2259 }
2260 
2261 /*
2262 ** Generate code for a boolean expression such that a jump is made
2263 ** to the label "dest" if the expression is false but execution
2264 ** continues straight thru if the expression is true.
2265 **
2266 ** If the expression evaluates to NULL (neither true nor false) then
2267 ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
2268 */
2269 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2270   Vdbe *v = pParse->pVdbe;
2271   int op = 0;
2272   int ckOffset = pParse->ckOffset;
2273   if( v==0 || pExpr==0 ) return;
2274 
2275   /* The value of pExpr->op and op are related as follows:
2276   **
2277   **       pExpr->op            op
2278   **       ---------          ----------
2279   **       TK_ISNULL          OP_NotNull
2280   **       TK_NOTNULL         OP_IsNull
2281   **       TK_NE              OP_Eq
2282   **       TK_EQ              OP_Ne
2283   **       TK_GT              OP_Le
2284   **       TK_LE              OP_Gt
2285   **       TK_GE              OP_Lt
2286   **       TK_LT              OP_Ge
2287   **
2288   ** For other values of pExpr->op, op is undefined and unused.
2289   ** The value of TK_ and OP_ constants are arranged such that we
2290   ** can compute the mapping above using the following expression.
2291   ** Assert()s verify that the computation is correct.
2292   */
2293   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2294 
2295   /* Verify correct alignment of TK_ and OP_ constants
2296   */
2297   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2298   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2299   assert( pExpr->op!=TK_NE || op==OP_Eq );
2300   assert( pExpr->op!=TK_EQ || op==OP_Ne );
2301   assert( pExpr->op!=TK_LT || op==OP_Ge );
2302   assert( pExpr->op!=TK_LE || op==OP_Gt );
2303   assert( pExpr->op!=TK_GT || op==OP_Le );
2304   assert( pExpr->op!=TK_GE || op==OP_Lt );
2305 
2306   switch( pExpr->op ){
2307     case TK_AND: {
2308       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2309       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2310       break;
2311     }
2312     case TK_OR: {
2313       int d2 = sqlite3VdbeMakeLabel(v);
2314       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
2315       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2316       sqlite3VdbeResolveLabel(v, d2);
2317       break;
2318     }
2319     case TK_NOT: {
2320       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2321       break;
2322     }
2323     case TK_LT:
2324     case TK_LE:
2325     case TK_GT:
2326     case TK_GE:
2327     case TK_NE:
2328     case TK_EQ: {
2329       sqlite3ExprCode(pParse, pExpr->pLeft);
2330       sqlite3ExprCode(pParse, pExpr->pRight);
2331       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2332       break;
2333     }
2334     case TK_ISNULL:
2335     case TK_NOTNULL: {
2336       sqlite3ExprCode(pParse, pExpr->pLeft);
2337       sqlite3VdbeAddOp(v, op, 1, dest);
2338       break;
2339     }
2340     case TK_BETWEEN: {
2341       /* The expression is "x BETWEEN y AND z". It is implemented as:
2342       **
2343       ** 1 IF (x >= y) GOTO 3
2344       ** 2 GOTO <dest>
2345       ** 3 IF (x > z) GOTO <dest>
2346       */
2347       int addr;
2348       Expr *pLeft = pExpr->pLeft;
2349       Expr *pRight = pExpr->pList->a[0].pExpr;
2350       sqlite3ExprCode(pParse, pLeft);
2351       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2352       sqlite3ExprCode(pParse, pRight);
2353       addr = sqlite3VdbeCurrentAddr(v);
2354       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
2355 
2356       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2357       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
2358       pRight = pExpr->pList->a[1].pExpr;
2359       sqlite3ExprCode(pParse, pRight);
2360       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
2361       break;
2362     }
2363     default: {
2364       sqlite3ExprCode(pParse, pExpr);
2365       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
2366       break;
2367     }
2368   }
2369   pParse->ckOffset = ckOffset;
2370 }
2371 
2372 /*
2373 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
2374 ** if they are identical and return FALSE if they differ in any way.
2375 **
2376 ** Sometimes this routine will return FALSE even if the two expressions
2377 ** really are equivalent.  If we cannot prove that the expressions are
2378 ** identical, we return FALSE just to be safe.  So if this routine
2379 ** returns false, then you do not really know for certain if the two
2380 ** expressions are the same.  But if you get a TRUE return, then you
2381 ** can be sure the expressions are the same.  In the places where
2382 ** this routine is used, it does not hurt to get an extra FALSE - that
2383 ** just might result in some slightly slower code.  But returning
2384 ** an incorrect TRUE could lead to a malfunction.
2385 */
2386 int sqlite3ExprCompare(Expr *pA, Expr *pB){
2387   int i;
2388   if( pA==0||pB==0 ){
2389     return pB==pA;
2390   }
2391   if( pA->op!=pB->op ) return 0;
2392   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
2393   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
2394   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
2395   if( pA->pList ){
2396     if( pB->pList==0 ) return 0;
2397     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
2398     for(i=0; i<pA->pList->nExpr; i++){
2399       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
2400         return 0;
2401       }
2402     }
2403   }else if( pB->pList ){
2404     return 0;
2405   }
2406   if( pA->pSelect || pB->pSelect ) return 0;
2407   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
2408   if( pA->op!=TK_COLUMN && pA->token.z ){
2409     if( pB->token.z==0 ) return 0;
2410     if( pB->token.n!=pA->token.n ) return 0;
2411     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
2412       return 0;
2413     }
2414   }
2415   return 1;
2416 }
2417 
2418 
2419 /*
2420 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
2421 ** the new element.  Return a negative number if malloc fails.
2422 */
2423 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
2424   int i;
2425   pInfo->aCol = sqlite3ArrayAllocate(
2426        db,
2427        pInfo->aCol,
2428        sizeof(pInfo->aCol[0]),
2429        3,
2430        &pInfo->nColumn,
2431        &pInfo->nColumnAlloc,
2432        &i
2433   );
2434   return i;
2435 }
2436 
2437 /*
2438 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
2439 ** the new element.  Return a negative number if malloc fails.
2440 */
2441 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
2442   int i;
2443   pInfo->aFunc = sqlite3ArrayAllocate(
2444        db,
2445        pInfo->aFunc,
2446        sizeof(pInfo->aFunc[0]),
2447        3,
2448        &pInfo->nFunc,
2449        &pInfo->nFuncAlloc,
2450        &i
2451   );
2452   return i;
2453 }
2454 
2455 /*
2456 ** This is an xFunc for walkExprTree() used to implement
2457 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
2458 ** for additional information.
2459 **
2460 ** This routine analyzes the aggregate function at pExpr.
2461 */
2462 static int analyzeAggregate(void *pArg, Expr *pExpr){
2463   int i;
2464   NameContext *pNC = (NameContext *)pArg;
2465   Parse *pParse = pNC->pParse;
2466   SrcList *pSrcList = pNC->pSrcList;
2467   AggInfo *pAggInfo = pNC->pAggInfo;
2468 
2469   switch( pExpr->op ){
2470     case TK_AGG_COLUMN:
2471     case TK_COLUMN: {
2472       /* Check to see if the column is in one of the tables in the FROM
2473       ** clause of the aggregate query */
2474       if( pSrcList ){
2475         struct SrcList_item *pItem = pSrcList->a;
2476         for(i=0; i<pSrcList->nSrc; i++, pItem++){
2477           struct AggInfo_col *pCol;
2478           if( pExpr->iTable==pItem->iCursor ){
2479             /* If we reach this point, it means that pExpr refers to a table
2480             ** that is in the FROM clause of the aggregate query.
2481             **
2482             ** Make an entry for the column in pAggInfo->aCol[] if there
2483             ** is not an entry there already.
2484             */
2485             int k;
2486             pCol = pAggInfo->aCol;
2487             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
2488               if( pCol->iTable==pExpr->iTable &&
2489                   pCol->iColumn==pExpr->iColumn ){
2490                 break;
2491               }
2492             }
2493             if( (k>=pAggInfo->nColumn)
2494              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
2495             ){
2496               pCol = &pAggInfo->aCol[k];
2497               pCol->pTab = pExpr->pTab;
2498               pCol->iTable = pExpr->iTable;
2499               pCol->iColumn = pExpr->iColumn;
2500               pCol->iMem = pParse->nMem++;
2501               pCol->iSorterColumn = -1;
2502               pCol->pExpr = pExpr;
2503               if( pAggInfo->pGroupBy ){
2504                 int j, n;
2505                 ExprList *pGB = pAggInfo->pGroupBy;
2506                 struct ExprList_item *pTerm = pGB->a;
2507                 n = pGB->nExpr;
2508                 for(j=0; j<n; j++, pTerm++){
2509                   Expr *pE = pTerm->pExpr;
2510                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
2511                       pE->iColumn==pExpr->iColumn ){
2512                     pCol->iSorterColumn = j;
2513                     break;
2514                   }
2515                 }
2516               }
2517               if( pCol->iSorterColumn<0 ){
2518                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
2519               }
2520             }
2521             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
2522             ** because it was there before or because we just created it).
2523             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
2524             ** pAggInfo->aCol[] entry.
2525             */
2526             pExpr->pAggInfo = pAggInfo;
2527             pExpr->op = TK_AGG_COLUMN;
2528             pExpr->iAgg = k;
2529             break;
2530           } /* endif pExpr->iTable==pItem->iCursor */
2531         } /* end loop over pSrcList */
2532       }
2533       return 1;
2534     }
2535     case TK_AGG_FUNCTION: {
2536       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
2537       ** to be ignored */
2538       if( pNC->nDepth==0 ){
2539         /* Check to see if pExpr is a duplicate of another aggregate
2540         ** function that is already in the pAggInfo structure
2541         */
2542         struct AggInfo_func *pItem = pAggInfo->aFunc;
2543         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
2544           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
2545             break;
2546           }
2547         }
2548         if( i>=pAggInfo->nFunc ){
2549           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
2550           */
2551           u8 enc = ENC(pParse->db);
2552           i = addAggInfoFunc(pParse->db, pAggInfo);
2553           if( i>=0 ){
2554             pItem = &pAggInfo->aFunc[i];
2555             pItem->pExpr = pExpr;
2556             pItem->iMem = pParse->nMem++;
2557             pItem->pFunc = sqlite3FindFunction(pParse->db,
2558                    (char*)pExpr->token.z, pExpr->token.n,
2559                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
2560             if( pExpr->flags & EP_Distinct ){
2561               pItem->iDistinct = pParse->nTab++;
2562             }else{
2563               pItem->iDistinct = -1;
2564             }
2565           }
2566         }
2567         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
2568         */
2569         pExpr->iAgg = i;
2570         pExpr->pAggInfo = pAggInfo;
2571         return 1;
2572       }
2573     }
2574   }
2575 
2576   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
2577   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
2578   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
2579   */
2580   if( pExpr->pSelect ){
2581     pNC->nDepth++;
2582     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
2583     pNC->nDepth--;
2584   }
2585   return 0;
2586 }
2587 
2588 /*
2589 ** Analyze the given expression looking for aggregate functions and
2590 ** for variables that need to be added to the pParse->aAgg[] array.
2591 ** Make additional entries to the pParse->aAgg[] array as necessary.
2592 **
2593 ** This routine should only be called after the expression has been
2594 ** analyzed by sqlite3ExprResolveNames().
2595 **
2596 ** If errors are seen, leave an error message in zErrMsg and return
2597 ** the number of errors.
2598 */
2599 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
2600   int nErr = pNC->pParse->nErr;
2601   walkExprTree(pExpr, analyzeAggregate, pNC);
2602   return pNC->pParse->nErr - nErr;
2603 }
2604 
2605 /*
2606 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
2607 ** expression list.  Return the number of errors.
2608 **
2609 ** If an error is found, the analysis is cut short.
2610 */
2611 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
2612   struct ExprList_item *pItem;
2613   int i;
2614   int nErr = 0;
2615   if( pList ){
2616     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
2617       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
2618     }
2619   }
2620   return nErr;
2621 }
2622