1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 s.z = zC; 89 s.n = sqlite3Strlen30(s.z); 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 91 } 92 93 /* 94 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 95 ** or likelihood() function at the root of an expression. 96 */ 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 101 assert( pExpr->x.pList->nExpr>0 ); 102 assert( pExpr->op==TK_FUNCTION ); 103 pExpr = pExpr->x.pList->a[0].pExpr; 104 }else{ 105 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 106 pExpr = pExpr->pLeft; 107 } 108 } 109 return pExpr; 110 } 111 112 /* 113 ** Return the collation sequence for the expression pExpr. If 114 ** there is no defined collating sequence, return NULL. 115 ** 116 ** The collating sequence might be determined by a COLLATE operator 117 ** or by the presence of a column with a defined collating sequence. 118 ** COLLATE operators take first precedence. Left operands take 119 ** precedence over right operands. 120 */ 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 122 sqlite3 *db = pParse->db; 123 CollSeq *pColl = 0; 124 Expr *p = pExpr; 125 while( p ){ 126 int op = p->op; 127 if( p->flags & EP_Generic ) break; 128 if( op==TK_CAST || op==TK_UPLUS ){ 129 p = p->pLeft; 130 continue; 131 } 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 134 break; 135 } 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 && p->pTab!=0 139 ){ 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ 142 int j = p->iColumn; 143 if( j>=0 ){ 144 const char *zColl = p->pTab->aCol[j].zColl; 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 146 } 147 break; 148 } 149 if( p->flags & EP_Collate ){ 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 151 p = p->pLeft; 152 }else{ 153 Expr *pNext = p->pRight; 154 /* The Expr.x union is never used at the same time as Expr.pRight */ 155 assert( p->x.pList==0 || p->pRight==0 ); 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 158 ** least one EP_Collate. Thus the following two ALWAYS. */ 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 160 int i; 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 163 pNext = p->x.pList->a[i].pExpr; 164 break; 165 } 166 } 167 } 168 p = pNext; 169 } 170 }else{ 171 break; 172 } 173 } 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ 175 pColl = 0; 176 } 177 return pColl; 178 } 179 180 /* 181 ** pExpr is an operand of a comparison operator. aff2 is the 182 ** type affinity of the other operand. This routine returns the 183 ** type affinity that should be used for the comparison operator. 184 */ 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 186 char aff1 = sqlite3ExprAffinity(pExpr); 187 if( aff1 && aff2 ){ 188 /* Both sides of the comparison are columns. If one has numeric 189 ** affinity, use that. Otherwise use no affinity. 190 */ 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 192 return SQLITE_AFF_NUMERIC; 193 }else{ 194 return SQLITE_AFF_NONE; 195 } 196 }else if( !aff1 && !aff2 ){ 197 /* Neither side of the comparison is a column. Compare the 198 ** results directly. 199 */ 200 return SQLITE_AFF_NONE; 201 }else{ 202 /* One side is a column, the other is not. Use the columns affinity. */ 203 assert( aff1==0 || aff2==0 ); 204 return (aff1 + aff2); 205 } 206 } 207 208 /* 209 ** pExpr is a comparison operator. Return the type affinity that should 210 ** be applied to both operands prior to doing the comparison. 211 */ 212 static char comparisonAffinity(Expr *pExpr){ 213 char aff; 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 217 assert( pExpr->pLeft ); 218 aff = sqlite3ExprAffinity(pExpr->pLeft); 219 if( pExpr->pRight ){ 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 223 }else if( !aff ){ 224 aff = SQLITE_AFF_NONE; 225 } 226 return aff; 227 } 228 229 /* 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 231 ** idx_affinity is the affinity of an indexed column. Return true 232 ** if the index with affinity idx_affinity may be used to implement 233 ** the comparison in pExpr. 234 */ 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 236 char aff = comparisonAffinity(pExpr); 237 switch( aff ){ 238 case SQLITE_AFF_NONE: 239 return 1; 240 case SQLITE_AFF_TEXT: 241 return idx_affinity==SQLITE_AFF_TEXT; 242 default: 243 return sqlite3IsNumericAffinity(idx_affinity); 244 } 245 } 246 247 /* 248 ** Return the P5 value that should be used for a binary comparison 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 250 */ 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 254 return aff; 255 } 256 257 /* 258 ** Return a pointer to the collation sequence that should be used by 259 ** a binary comparison operator comparing pLeft and pRight. 260 ** 261 ** If the left hand expression has a collating sequence type, then it is 262 ** used. Otherwise the collation sequence for the right hand expression 263 ** is used, or the default (BINARY) if neither expression has a collating 264 ** type. 265 ** 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 267 ** it is not considered. 268 */ 269 CollSeq *sqlite3BinaryCompareCollSeq( 270 Parse *pParse, 271 Expr *pLeft, 272 Expr *pRight 273 ){ 274 CollSeq *pColl; 275 assert( pLeft ); 276 if( pLeft->flags & EP_Collate ){ 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 279 pColl = sqlite3ExprCollSeq(pParse, pRight); 280 }else{ 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); 282 if( !pColl ){ 283 pColl = sqlite3ExprCollSeq(pParse, pRight); 284 } 285 } 286 return pColl; 287 } 288 289 /* 290 ** Generate code for a comparison operator. 291 */ 292 static int codeCompare( 293 Parse *pParse, /* The parsing (and code generating) context */ 294 Expr *pLeft, /* The left operand */ 295 Expr *pRight, /* The right operand */ 296 int opcode, /* The comparison opcode */ 297 int in1, int in2, /* Register holding operands */ 298 int dest, /* Jump here if true. */ 299 int jumpIfNull /* If true, jump if either operand is NULL */ 300 ){ 301 int p5; 302 int addr; 303 CollSeq *p4; 304 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 308 (void*)p4, P4_COLLSEQ); 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 310 return addr; 311 } 312 313 #if SQLITE_MAX_EXPR_DEPTH>0 314 /* 315 ** Check that argument nHeight is less than or equal to the maximum 316 ** expression depth allowed. If it is not, leave an error message in 317 ** pParse. 318 */ 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 320 int rc = SQLITE_OK; 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 322 if( nHeight>mxHeight ){ 323 sqlite3ErrorMsg(pParse, 324 "Expression tree is too large (maximum depth %d)", mxHeight 325 ); 326 rc = SQLITE_ERROR; 327 } 328 return rc; 329 } 330 331 /* The following three functions, heightOfExpr(), heightOfExprList() 332 ** and heightOfSelect(), are used to determine the maximum height 333 ** of any expression tree referenced by the structure passed as the 334 ** first argument. 335 ** 336 ** If this maximum height is greater than the current value pointed 337 ** to by pnHeight, the second parameter, then set *pnHeight to that 338 ** value. 339 */ 340 static void heightOfExpr(Expr *p, int *pnHeight){ 341 if( p ){ 342 if( p->nHeight>*pnHeight ){ 343 *pnHeight = p->nHeight; 344 } 345 } 346 } 347 static void heightOfExprList(ExprList *p, int *pnHeight){ 348 if( p ){ 349 int i; 350 for(i=0; i<p->nExpr; i++){ 351 heightOfExpr(p->a[i].pExpr, pnHeight); 352 } 353 } 354 } 355 static void heightOfSelect(Select *p, int *pnHeight){ 356 if( p ){ 357 heightOfExpr(p->pWhere, pnHeight); 358 heightOfExpr(p->pHaving, pnHeight); 359 heightOfExpr(p->pLimit, pnHeight); 360 heightOfExpr(p->pOffset, pnHeight); 361 heightOfExprList(p->pEList, pnHeight); 362 heightOfExprList(p->pGroupBy, pnHeight); 363 heightOfExprList(p->pOrderBy, pnHeight); 364 heightOfSelect(p->pPrior, pnHeight); 365 } 366 } 367 368 /* 369 ** Set the Expr.nHeight variable in the structure passed as an 370 ** argument. An expression with no children, Expr.pList or 371 ** Expr.pSelect member has a height of 1. Any other expression 372 ** has a height equal to the maximum height of any other 373 ** referenced Expr plus one. 374 ** 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 376 ** if appropriate. 377 */ 378 static void exprSetHeight(Expr *p){ 379 int nHeight = 0; 380 heightOfExpr(p->pLeft, &nHeight); 381 heightOfExpr(p->pRight, &nHeight); 382 if( ExprHasProperty(p, EP_xIsSelect) ){ 383 heightOfSelect(p->x.pSelect, &nHeight); 384 }else if( p->x.pList ){ 385 heightOfExprList(p->x.pList, &nHeight); 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 387 } 388 p->nHeight = nHeight + 1; 389 } 390 391 /* 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 393 ** the height is greater than the maximum allowed expression depth, 394 ** leave an error in pParse. 395 ** 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 397 ** Expr.flags. 398 */ 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 400 if( pParse->nErr ) return; 401 exprSetHeight(p); 402 sqlite3ExprCheckHeight(pParse, p->nHeight); 403 } 404 405 /* 406 ** Return the maximum height of any expression tree referenced 407 ** by the select statement passed as an argument. 408 */ 409 int sqlite3SelectExprHeight(Select *p){ 410 int nHeight = 0; 411 heightOfSelect(p, &nHeight); 412 return nHeight; 413 } 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 415 /* 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into 417 ** Expr.flags. 418 */ 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 422 } 423 } 424 #define exprSetHeight(y) 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 426 427 /* 428 ** This routine is the core allocator for Expr nodes. 429 ** 430 ** Construct a new expression node and return a pointer to it. Memory 431 ** for this node and for the pToken argument is a single allocation 432 ** obtained from sqlite3DbMalloc(). The calling function 433 ** is responsible for making sure the node eventually gets freed. 434 ** 435 ** If dequote is true, then the token (if it exists) is dequoted. 436 ** If dequote is false, no dequoting is performance. The deQuote 437 ** parameter is ignored if pToken is NULL or if the token does not 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 439 ** then the EP_DblQuoted flag is set on the expression node. 440 ** 441 ** Special case: If op==TK_INTEGER and pToken points to a string that 442 ** can be translated into a 32-bit integer, then the token is not 443 ** stored in u.zToken. Instead, the integer values is written 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage 445 ** is allocated to hold the integer text and the dequote flag is ignored. 446 */ 447 Expr *sqlite3ExprAlloc( 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 449 int op, /* Expression opcode */ 450 const Token *pToken, /* Token argument. Might be NULL */ 451 int dequote /* True to dequote */ 452 ){ 453 Expr *pNew; 454 int nExtra = 0; 455 int iValue = 0; 456 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 pNew->op = (u8)op; 467 pNew->iAgg = -1; 468 if( pToken ){ 469 if( nExtra==0 ){ 470 pNew->flags |= EP_IntValue; 471 pNew->u.iValue = iValue; 472 }else{ 473 int c; 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && nExtra>=3 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 480 sqlite3Dequote(pNew->u.zToken); 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; 482 } 483 } 484 } 485 #if SQLITE_MAX_EXPR_DEPTH>0 486 pNew->nHeight = 1; 487 #endif 488 } 489 return pNew; 490 } 491 492 /* 493 ** Allocate a new expression node from a zero-terminated token that has 494 ** already been dequoted. 495 */ 496 Expr *sqlite3Expr( 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 498 int op, /* Expression opcode */ 499 const char *zToken /* Token argument. Might be NULL */ 500 ){ 501 Token x; 502 x.z = zToken; 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 504 return sqlite3ExprAlloc(db, op, &x, 0); 505 } 506 507 /* 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 509 ** 510 ** If pRoot==NULL that means that a memory allocation error has occurred. 511 ** In that case, delete the subtrees pLeft and pRight. 512 */ 513 void sqlite3ExprAttachSubtrees( 514 sqlite3 *db, 515 Expr *pRoot, 516 Expr *pLeft, 517 Expr *pRight 518 ){ 519 if( pRoot==0 ){ 520 assert( db->mallocFailed ); 521 sqlite3ExprDelete(db, pLeft); 522 sqlite3ExprDelete(db, pRight); 523 }else{ 524 if( pRight ){ 525 pRoot->pRight = pRight; 526 pRoot->flags |= EP_Propagate & pRight->flags; 527 } 528 if( pLeft ){ 529 pRoot->pLeft = pLeft; 530 pRoot->flags |= EP_Propagate & pLeft->flags; 531 } 532 exprSetHeight(pRoot); 533 } 534 } 535 536 /* 537 ** Allocate an Expr node which joins as many as two subtrees. 538 ** 539 ** One or both of the subtrees can be NULL. Return a pointer to the new 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 541 ** free the subtrees and return NULL. 542 */ 543 Expr *sqlite3PExpr( 544 Parse *pParse, /* Parsing context */ 545 int op, /* Expression opcode */ 546 Expr *pLeft, /* Left operand */ 547 Expr *pRight, /* Right operand */ 548 const Token *pToken /* Argument token */ 549 ){ 550 Expr *p; 551 if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){ 552 /* Take advantage of short-circuit false optimization for AND */ 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 554 }else{ 555 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 557 } 558 if( p ) { 559 sqlite3ExprCheckHeight(pParse, p->nHeight); 560 } 561 return p; 562 } 563 564 /* 565 ** If the expression is always either TRUE or FALSE (respectively), 566 ** then return 1. If one cannot determine the truth value of the 567 ** expression at compile-time return 0. 568 ** 569 ** This is an optimization. If is OK to return 0 here even if 570 ** the expression really is always false or false (a false negative). 571 ** But it is a bug to return 1 if the expression might have different 572 ** boolean values in different circumstances (a false positive.) 573 ** 574 ** Note that if the expression is part of conditional for a 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not 576 ** is it true or false, so always return 0. 577 */ 578 static int exprAlwaysTrue(Expr *p){ 579 int v = 0; 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 582 return v!=0; 583 } 584 static int exprAlwaysFalse(Expr *p){ 585 int v = 0; 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 588 return v==0; 589 } 590 591 /* 592 ** Join two expressions using an AND operator. If either expression is 593 ** NULL, then just return the other expression. 594 ** 595 ** If one side or the other of the AND is known to be false, then instead 596 ** of returning an AND expression, just return a constant expression with 597 ** a value of false. 598 */ 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 600 if( pLeft==0 ){ 601 return pRight; 602 }else if( pRight==0 ){ 603 return pLeft; 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 605 sqlite3ExprDelete(db, pLeft); 606 sqlite3ExprDelete(db, pRight); 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 608 }else{ 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 611 return pNew; 612 } 613 } 614 615 /* 616 ** Construct a new expression node for a function with multiple 617 ** arguments. 618 */ 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 620 Expr *pNew; 621 sqlite3 *db = pParse->db; 622 assert( pToken ); 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 624 if( pNew==0 ){ 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 626 return 0; 627 } 628 pNew->x.pList = pList; 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); 631 return pNew; 632 } 633 634 /* 635 ** Assign a variable number to an expression that encodes a wildcard 636 ** in the original SQL statement. 637 ** 638 ** Wildcards consisting of a single "?" are assigned the next sequential 639 ** variable number. 640 ** 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 642 ** sure "nnn" is not too be to avoid a denial of service attack when 643 ** the SQL statement comes from an external source. 644 ** 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 646 ** as the previous instance of the same wildcard. Or if this is the first 647 ** instance of the wildcard, the next sequential variable number is 648 ** assigned. 649 */ 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 651 sqlite3 *db = pParse->db; 652 const char *z; 653 654 if( pExpr==0 ) return; 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 656 z = pExpr->u.zToken; 657 assert( z!=0 ); 658 assert( z[0]!=0 ); 659 if( z[1]==0 ){ 660 /* Wildcard of the form "?". Assign the next variable number */ 661 assert( z[0]=='?' ); 662 pExpr->iColumn = (ynVar)(++pParse->nVar); 663 }else{ 664 ynVar x = 0; 665 u32 n = sqlite3Strlen30(z); 666 if( z[0]=='?' ){ 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 668 ** use it as the variable number */ 669 i64 i; 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 671 pExpr->iColumn = x = (ynVar)i; 672 testcase( i==0 ); 673 testcase( i==1 ); 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 679 x = 0; 680 } 681 if( i>pParse->nVar ){ 682 pParse->nVar = (int)i; 683 } 684 }else{ 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 686 ** number as the prior appearance of the same name, or if the name 687 ** has never appeared before, reuse the same variable number 688 */ 689 ynVar i; 690 for(i=0; i<pParse->nzVar; i++){ 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 692 pExpr->iColumn = x = (ynVar)i+1; 693 break; 694 } 695 } 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 697 } 698 if( x>0 ){ 699 if( x>pParse->nzVar ){ 700 char **a; 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ 703 pParse->azVar = a; 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 705 pParse->nzVar = x; 706 } 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 708 sqlite3DbFree(db, pParse->azVar[x-1]); 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 710 } 711 } 712 } 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); 715 } 716 } 717 718 /* 719 ** Recursively delete an expression tree. 720 */ 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 722 if( p==0 ) return; 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ 726 /* The Expr.x union is never used at the same time as Expr.pRight */ 727 assert( p->x.pList==0 || p->pRight==0 ); 728 sqlite3ExprDelete(db, p->pLeft); 729 sqlite3ExprDelete(db, p->pRight); 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 731 if( ExprHasProperty(p, EP_xIsSelect) ){ 732 sqlite3SelectDelete(db, p->x.pSelect); 733 }else{ 734 sqlite3ExprListDelete(db, p->x.pList); 735 } 736 } 737 if( !ExprHasProperty(p, EP_Static) ){ 738 sqlite3DbFree(db, p); 739 } 740 } 741 742 /* 743 ** Return the number of bytes allocated for the expression structure 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 746 */ 747 static int exprStructSize(Expr *p){ 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 750 return EXPR_FULLSIZE; 751 } 752 753 /* 754 ** The dupedExpr*Size() routines each return the number of bytes required 755 ** to store a copy of an expression or expression tree. They differ in 756 ** how much of the tree is measured. 757 ** 758 ** dupedExprStructSize() Size of only the Expr structure 759 ** dupedExprNodeSize() Size of Expr + space for token 760 ** dupedExprSize() Expr + token + subtree components 761 ** 762 *************************************************************************** 763 ** 764 ** The dupedExprStructSize() function returns two values OR-ed together: 765 ** (1) the space required for a copy of the Expr structure only and 766 ** (2) the EP_xxx flags that indicate what the structure size should be. 767 ** The return values is always one of: 768 ** 769 ** EXPR_FULLSIZE 770 ** EXPR_REDUCEDSIZE | EP_Reduced 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 772 ** 773 ** The size of the structure can be found by masking the return value 774 ** of this routine with 0xfff. The flags can be found by masking the 775 ** return value with EP_Reduced|EP_TokenOnly. 776 ** 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 778 ** (unreduced) Expr objects as they or originally constructed by the parser. 779 ** During expression analysis, extra information is computed and moved into 780 ** later parts of teh Expr object and that extra information might get chopped 781 ** off if the expression is reduced. Note also that it does not work to 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 783 ** to reduce a pristine expression tree from the parser. The implementation 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt 785 ** to enforce this constraint. 786 */ 787 static int dupedExprStructSize(Expr *p, int flags){ 788 int nSize; 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 790 assert( EXPR_FULLSIZE<=0xfff ); 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 792 if( 0==(flags&EXPRDUP_REDUCE) ){ 793 nSize = EXPR_FULLSIZE; 794 }else{ 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 796 assert( !ExprHasProperty(p, EP_FromJoin) ); 797 assert( !ExprHasProperty(p, EP_MemToken) ); 798 assert( !ExprHasProperty(p, EP_NoReduce) ); 799 if( p->pLeft || p->x.pList ){ 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 801 }else{ 802 assert( p->pRight==0 ); 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 804 } 805 } 806 return nSize; 807 } 808 809 /* 810 ** This function returns the space in bytes required to store the copy 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 812 ** string is defined.) 813 */ 814 static int dupedExprNodeSize(Expr *p, int flags){ 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 817 nByte += sqlite3Strlen30(p->u.zToken)+1; 818 } 819 return ROUND8(nByte); 820 } 821 822 /* 823 ** Return the number of bytes required to create a duplicate of the 824 ** expression passed as the first argument. The second argument is a 825 ** mask containing EXPRDUP_XXX flags. 826 ** 827 ** The value returned includes space to create a copy of the Expr struct 828 ** itself and the buffer referred to by Expr.u.zToken, if any. 829 ** 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 832 ** and Expr.pRight variables (but not for any structures pointed to or 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 834 */ 835 static int dupedExprSize(Expr *p, int flags){ 836 int nByte = 0; 837 if( p ){ 838 nByte = dupedExprNodeSize(p, flags); 839 if( flags&EXPRDUP_REDUCE ){ 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 841 } 842 } 843 return nByte; 844 } 845 846 /* 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 849 ** to store the copy of expression p, the copies of p->u.zToken 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 851 ** if any. Before returning, *pzBuffer is set to the first byte past the 852 ** portion of the buffer copied into by this function. 853 */ 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 855 Expr *pNew = 0; /* Value to return */ 856 if( p ){ 857 const int isReduced = (flags&EXPRDUP_REDUCE); 858 u8 *zAlloc; 859 u32 staticFlag = 0; 860 861 assert( pzBuffer==0 || isReduced ); 862 863 /* Figure out where to write the new Expr structure. */ 864 if( pzBuffer ){ 865 zAlloc = *pzBuffer; 866 staticFlag = EP_Static; 867 }else{ 868 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 869 } 870 pNew = (Expr *)zAlloc; 871 872 if( pNew ){ 873 /* Set nNewSize to the size allocated for the structure pointed to 874 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 875 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 876 ** by the copy of the p->u.zToken string (if any). 877 */ 878 const unsigned nStructSize = dupedExprStructSize(p, flags); 879 const int nNewSize = nStructSize & 0xfff; 880 int nToken; 881 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 882 nToken = sqlite3Strlen30(p->u.zToken) + 1; 883 }else{ 884 nToken = 0; 885 } 886 if( isReduced ){ 887 assert( ExprHasProperty(p, EP_Reduced)==0 ); 888 memcpy(zAlloc, p, nNewSize); 889 }else{ 890 int nSize = exprStructSize(p); 891 memcpy(zAlloc, p, nSize); 892 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 893 } 894 895 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 896 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 897 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 898 pNew->flags |= staticFlag; 899 900 /* Copy the p->u.zToken string, if any. */ 901 if( nToken ){ 902 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 903 memcpy(zToken, p->u.zToken, nToken); 904 } 905 906 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 907 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 908 if( ExprHasProperty(p, EP_xIsSelect) ){ 909 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 910 }else{ 911 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 912 } 913 } 914 915 /* Fill in pNew->pLeft and pNew->pRight. */ 916 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 917 zAlloc += dupedExprNodeSize(p, flags); 918 if( ExprHasProperty(pNew, EP_Reduced) ){ 919 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 920 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 921 } 922 if( pzBuffer ){ 923 *pzBuffer = zAlloc; 924 } 925 }else{ 926 if( !ExprHasProperty(p, EP_TokenOnly) ){ 927 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 928 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 929 } 930 } 931 932 } 933 } 934 return pNew; 935 } 936 937 /* 938 ** Create and return a deep copy of the object passed as the second 939 ** argument. If an OOM condition is encountered, NULL is returned 940 ** and the db->mallocFailed flag set. 941 */ 942 #ifndef SQLITE_OMIT_CTE 943 static With *withDup(sqlite3 *db, With *p){ 944 With *pRet = 0; 945 if( p ){ 946 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 947 pRet = sqlite3DbMallocZero(db, nByte); 948 if( pRet ){ 949 int i; 950 pRet->nCte = p->nCte; 951 for(i=0; i<p->nCte; i++){ 952 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 953 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 954 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 955 } 956 } 957 } 958 return pRet; 959 } 960 #else 961 # define withDup(x,y) 0 962 #endif 963 964 /* 965 ** The following group of routines make deep copies of expressions, 966 ** expression lists, ID lists, and select statements. The copies can 967 ** be deleted (by being passed to their respective ...Delete() routines) 968 ** without effecting the originals. 969 ** 970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 972 ** by subsequent calls to sqlite*ListAppend() routines. 973 ** 974 ** Any tables that the SrcList might point to are not duplicated. 975 ** 976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 978 ** truncated version of the usual Expr structure that will be stored as 979 ** part of the in-memory representation of the database schema. 980 */ 981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 982 return exprDup(db, p, flags, 0); 983 } 984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 985 ExprList *pNew; 986 struct ExprList_item *pItem, *pOldItem; 987 int i; 988 if( p==0 ) return 0; 989 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 990 if( pNew==0 ) return 0; 991 pNew->nExpr = i = p->nExpr; 992 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 993 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 994 if( pItem==0 ){ 995 sqlite3DbFree(db, pNew); 996 return 0; 997 } 998 pOldItem = p->a; 999 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1000 Expr *pOldExpr = pOldItem->pExpr; 1001 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1002 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1004 pItem->sortOrder = pOldItem->sortOrder; 1005 pItem->done = 0; 1006 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1007 pItem->u = pOldItem->u; 1008 } 1009 return pNew; 1010 } 1011 1012 /* 1013 ** If cursors, triggers, views and subqueries are all omitted from 1014 ** the build, then none of the following routines, except for 1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1016 ** called with a NULL argument. 1017 */ 1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1019 || !defined(SQLITE_OMIT_SUBQUERY) 1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1021 SrcList *pNew; 1022 int i; 1023 int nByte; 1024 if( p==0 ) return 0; 1025 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1026 pNew = sqlite3DbMallocRaw(db, nByte ); 1027 if( pNew==0 ) return 0; 1028 pNew->nSrc = pNew->nAlloc = p->nSrc; 1029 for(i=0; i<p->nSrc; i++){ 1030 struct SrcList_item *pNewItem = &pNew->a[i]; 1031 struct SrcList_item *pOldItem = &p->a[i]; 1032 Table *pTab; 1033 pNewItem->pSchema = pOldItem->pSchema; 1034 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1035 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1036 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1037 pNewItem->jointype = pOldItem->jointype; 1038 pNewItem->iCursor = pOldItem->iCursor; 1039 pNewItem->addrFillSub = pOldItem->addrFillSub; 1040 pNewItem->regReturn = pOldItem->regReturn; 1041 pNewItem->isCorrelated = pOldItem->isCorrelated; 1042 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1043 pNewItem->isRecursive = pOldItem->isRecursive; 1044 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1045 pNewItem->notIndexed = pOldItem->notIndexed; 1046 pNewItem->pIndex = pOldItem->pIndex; 1047 pTab = pNewItem->pTab = pOldItem->pTab; 1048 if( pTab ){ 1049 pTab->nRef++; 1050 } 1051 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1052 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1053 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1054 pNewItem->colUsed = pOldItem->colUsed; 1055 } 1056 return pNew; 1057 } 1058 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1059 IdList *pNew; 1060 int i; 1061 if( p==0 ) return 0; 1062 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1063 if( pNew==0 ) return 0; 1064 pNew->nId = p->nId; 1065 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1066 if( pNew->a==0 ){ 1067 sqlite3DbFree(db, pNew); 1068 return 0; 1069 } 1070 /* Note that because the size of the allocation for p->a[] is not 1071 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1072 ** on the duplicate created by this function. */ 1073 for(i=0; i<p->nId; i++){ 1074 struct IdList_item *pNewItem = &pNew->a[i]; 1075 struct IdList_item *pOldItem = &p->a[i]; 1076 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1077 pNewItem->idx = pOldItem->idx; 1078 } 1079 return pNew; 1080 } 1081 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1082 Select *pNew, *pPrior; 1083 if( p==0 ) return 0; 1084 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1085 if( pNew==0 ) return 0; 1086 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1087 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1088 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1089 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1090 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1091 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1092 pNew->op = p->op; 1093 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1094 if( pPrior ) pPrior->pNext = pNew; 1095 pNew->pNext = 0; 1096 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1097 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1098 pNew->iLimit = 0; 1099 pNew->iOffset = 0; 1100 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1101 pNew->addrOpenEphm[0] = -1; 1102 pNew->addrOpenEphm[1] = -1; 1103 pNew->nSelectRow = p->nSelectRow; 1104 pNew->pWith = withDup(db, p->pWith); 1105 sqlite3SelectSetName(pNew, p->zSelName); 1106 return pNew; 1107 } 1108 #else 1109 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1110 assert( p==0 ); 1111 return 0; 1112 } 1113 #endif 1114 1115 1116 /* 1117 ** Add a new element to the end of an expression list. If pList is 1118 ** initially NULL, then create a new expression list. 1119 ** 1120 ** If a memory allocation error occurs, the entire list is freed and 1121 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1122 ** that the new entry was successfully appended. 1123 */ 1124 ExprList *sqlite3ExprListAppend( 1125 Parse *pParse, /* Parsing context */ 1126 ExprList *pList, /* List to which to append. Might be NULL */ 1127 Expr *pExpr /* Expression to be appended. Might be NULL */ 1128 ){ 1129 sqlite3 *db = pParse->db; 1130 if( pList==0 ){ 1131 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1132 if( pList==0 ){ 1133 goto no_mem; 1134 } 1135 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1136 if( pList->a==0 ) goto no_mem; 1137 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1138 struct ExprList_item *a; 1139 assert( pList->nExpr>0 ); 1140 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1141 if( a==0 ){ 1142 goto no_mem; 1143 } 1144 pList->a = a; 1145 } 1146 assert( pList->a!=0 ); 1147 if( 1 ){ 1148 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1149 memset(pItem, 0, sizeof(*pItem)); 1150 pItem->pExpr = pExpr; 1151 } 1152 return pList; 1153 1154 no_mem: 1155 /* Avoid leaking memory if malloc has failed. */ 1156 sqlite3ExprDelete(db, pExpr); 1157 sqlite3ExprListDelete(db, pList); 1158 return 0; 1159 } 1160 1161 /* 1162 ** Set the ExprList.a[].zName element of the most recently added item 1163 ** on the expression list. 1164 ** 1165 ** pList might be NULL following an OOM error. But pName should never be 1166 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1167 ** is set. 1168 */ 1169 void sqlite3ExprListSetName( 1170 Parse *pParse, /* Parsing context */ 1171 ExprList *pList, /* List to which to add the span. */ 1172 Token *pName, /* Name to be added */ 1173 int dequote /* True to cause the name to be dequoted */ 1174 ){ 1175 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1176 if( pList ){ 1177 struct ExprList_item *pItem; 1178 assert( pList->nExpr>0 ); 1179 pItem = &pList->a[pList->nExpr-1]; 1180 assert( pItem->zName==0 ); 1181 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1182 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1183 } 1184 } 1185 1186 /* 1187 ** Set the ExprList.a[].zSpan element of the most recently added item 1188 ** on the expression list. 1189 ** 1190 ** pList might be NULL following an OOM error. But pSpan should never be 1191 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1192 ** is set. 1193 */ 1194 void sqlite3ExprListSetSpan( 1195 Parse *pParse, /* Parsing context */ 1196 ExprList *pList, /* List to which to add the span. */ 1197 ExprSpan *pSpan /* The span to be added */ 1198 ){ 1199 sqlite3 *db = pParse->db; 1200 assert( pList!=0 || db->mallocFailed!=0 ); 1201 if( pList ){ 1202 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1203 assert( pList->nExpr>0 ); 1204 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1205 sqlite3DbFree(db, pItem->zSpan); 1206 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1207 (int)(pSpan->zEnd - pSpan->zStart)); 1208 } 1209 } 1210 1211 /* 1212 ** If the expression list pEList contains more than iLimit elements, 1213 ** leave an error message in pParse. 1214 */ 1215 void sqlite3ExprListCheckLength( 1216 Parse *pParse, 1217 ExprList *pEList, 1218 const char *zObject 1219 ){ 1220 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1221 testcase( pEList && pEList->nExpr==mx ); 1222 testcase( pEList && pEList->nExpr==mx+1 ); 1223 if( pEList && pEList->nExpr>mx ){ 1224 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1225 } 1226 } 1227 1228 /* 1229 ** Delete an entire expression list. 1230 */ 1231 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1232 int i; 1233 struct ExprList_item *pItem; 1234 if( pList==0 ) return; 1235 assert( pList->a!=0 || pList->nExpr==0 ); 1236 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1237 sqlite3ExprDelete(db, pItem->pExpr); 1238 sqlite3DbFree(db, pItem->zName); 1239 sqlite3DbFree(db, pItem->zSpan); 1240 } 1241 sqlite3DbFree(db, pList->a); 1242 sqlite3DbFree(db, pList); 1243 } 1244 1245 /* 1246 ** Return the bitwise-OR of all Expr.flags fields in the given 1247 ** ExprList. 1248 */ 1249 u32 sqlite3ExprListFlags(const ExprList *pList){ 1250 int i; 1251 u32 m = 0; 1252 if( pList ){ 1253 for(i=0; i<pList->nExpr; i++){ 1254 Expr *pExpr = pList->a[i].pExpr; 1255 if( ALWAYS(pExpr) ) m |= pExpr->flags; 1256 } 1257 } 1258 return m; 1259 } 1260 1261 /* 1262 ** These routines are Walker callbacks used to check expressions to 1263 ** see if they are "constant" for some definition of constant. The 1264 ** Walker.eCode value determines the type of "constant" we are looking 1265 ** for. 1266 ** 1267 ** These callback routines are used to implement the following: 1268 ** 1269 ** sqlite3ExprIsConstant() pWalker->eCode==1 1270 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1271 ** sqlite3ExprRefOneTableOnly() pWalker->eCode==3 1272 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1273 ** 1274 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1275 ** is found to not be a constant. 1276 ** 1277 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1278 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1279 ** an existing schema and 4 when processing a new statement. A bound 1280 ** parameter raises an error for new statements, but is silently converted 1281 ** to NULL for existing schemas. This allows sqlite_master tables that 1282 ** contain a bound parameter because they were generated by older versions 1283 ** of SQLite to be parsed by newer versions of SQLite without raising a 1284 ** malformed schema error. 1285 */ 1286 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1287 1288 /* If pWalker->eCode is 2 then any term of the expression that comes from 1289 ** the ON or USING clauses of a left join disqualifies the expression 1290 ** from being considered constant. */ 1291 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1292 pWalker->eCode = 0; 1293 return WRC_Abort; 1294 } 1295 1296 switch( pExpr->op ){ 1297 /* Consider functions to be constant if all their arguments are constant 1298 ** and either pWalker->eCode==4 or 5 or the function has the 1299 ** SQLITE_FUNC_CONST flag. */ 1300 case TK_FUNCTION: 1301 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1302 return WRC_Continue; 1303 }else{ 1304 pWalker->eCode = 0; 1305 return WRC_Abort; 1306 } 1307 case TK_ID: 1308 case TK_COLUMN: 1309 case TK_AGG_FUNCTION: 1310 case TK_AGG_COLUMN: 1311 testcase( pExpr->op==TK_ID ); 1312 testcase( pExpr->op==TK_COLUMN ); 1313 testcase( pExpr->op==TK_AGG_FUNCTION ); 1314 testcase( pExpr->op==TK_AGG_COLUMN ); 1315 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1316 return WRC_Continue; 1317 }else{ 1318 pWalker->eCode = 0; 1319 return WRC_Abort; 1320 } 1321 case TK_VARIABLE: 1322 if( pWalker->eCode==5 ){ 1323 /* Silently convert bound parameters that appear inside of CREATE 1324 ** statements into a NULL when parsing the CREATE statement text out 1325 ** of the sqlite_master table */ 1326 pExpr->op = TK_NULL; 1327 }else if( pWalker->eCode==4 ){ 1328 /* A bound parameter in a CREATE statement that originates from 1329 ** sqlite3_prepare() causes an error */ 1330 pWalker->eCode = 0; 1331 return WRC_Abort; 1332 } 1333 /* Fall through */ 1334 default: 1335 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1336 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1337 return WRC_Continue; 1338 } 1339 } 1340 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1341 UNUSED_PARAMETER(NotUsed); 1342 pWalker->eCode = 0; 1343 return WRC_Abort; 1344 } 1345 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1346 Walker w; 1347 memset(&w, 0, sizeof(w)); 1348 w.eCode = initFlag; 1349 w.xExprCallback = exprNodeIsConstant; 1350 w.xSelectCallback = selectNodeIsConstant; 1351 w.u.iCur = iCur; 1352 sqlite3WalkExpr(&w, p); 1353 return w.eCode; 1354 } 1355 1356 /* 1357 ** Walk an expression tree. Return non-zero if the expression is constant 1358 ** and 0 if it involves variables or function calls. 1359 ** 1360 ** For the purposes of this function, a double-quoted string (ex: "abc") 1361 ** is considered a variable but a single-quoted string (ex: 'abc') is 1362 ** a constant. 1363 */ 1364 int sqlite3ExprIsConstant(Expr *p){ 1365 return exprIsConst(p, 1, 0); 1366 } 1367 1368 /* 1369 ** Walk an expression tree. Return non-zero if the expression is constant 1370 ** that does no originate from the ON or USING clauses of a join. 1371 ** Return 0 if it involves variables or function calls or terms from 1372 ** an ON or USING clause. 1373 */ 1374 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1375 return exprIsConst(p, 2, 0); 1376 } 1377 1378 /* 1379 ** Walk an expression tree. Return non-zero if the expression constant 1380 ** for any single row of the table with cursor iCur. In other words, the 1381 ** expression must not refer to any non-deterministic function nor any 1382 ** table other than iCur. 1383 */ 1384 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1385 return exprIsConst(p, 3, iCur); 1386 } 1387 1388 /* 1389 ** Walk an expression tree. Return non-zero if the expression is constant 1390 ** or a function call with constant arguments. Return and 0 if there 1391 ** are any variables. 1392 ** 1393 ** For the purposes of this function, a double-quoted string (ex: "abc") 1394 ** is considered a variable but a single-quoted string (ex: 'abc') is 1395 ** a constant. 1396 */ 1397 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1398 assert( isInit==0 || isInit==1 ); 1399 return exprIsConst(p, 4+isInit, 0); 1400 } 1401 1402 /* 1403 ** If the expression p codes a constant integer that is small enough 1404 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1405 ** in *pValue. If the expression is not an integer or if it is too big 1406 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1407 */ 1408 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1409 int rc = 0; 1410 1411 /* If an expression is an integer literal that fits in a signed 32-bit 1412 ** integer, then the EP_IntValue flag will have already been set */ 1413 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1414 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1415 1416 if( p->flags & EP_IntValue ){ 1417 *pValue = p->u.iValue; 1418 return 1; 1419 } 1420 switch( p->op ){ 1421 case TK_UPLUS: { 1422 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1423 break; 1424 } 1425 case TK_UMINUS: { 1426 int v; 1427 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1428 assert( v!=(-2147483647-1) ); 1429 *pValue = -v; 1430 rc = 1; 1431 } 1432 break; 1433 } 1434 default: break; 1435 } 1436 return rc; 1437 } 1438 1439 /* 1440 ** Return FALSE if there is no chance that the expression can be NULL. 1441 ** 1442 ** If the expression might be NULL or if the expression is too complex 1443 ** to tell return TRUE. 1444 ** 1445 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1446 ** when we know that a value cannot be NULL. Hence, a false positive 1447 ** (returning TRUE when in fact the expression can never be NULL) might 1448 ** be a small performance hit but is otherwise harmless. On the other 1449 ** hand, a false negative (returning FALSE when the result could be NULL) 1450 ** will likely result in an incorrect answer. So when in doubt, return 1451 ** TRUE. 1452 */ 1453 int sqlite3ExprCanBeNull(const Expr *p){ 1454 u8 op; 1455 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1456 op = p->op; 1457 if( op==TK_REGISTER ) op = p->op2; 1458 switch( op ){ 1459 case TK_INTEGER: 1460 case TK_STRING: 1461 case TK_FLOAT: 1462 case TK_BLOB: 1463 return 0; 1464 case TK_COLUMN: 1465 assert( p->pTab!=0 ); 1466 return ExprHasProperty(p, EP_CanBeNull) || 1467 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1468 default: 1469 return 1; 1470 } 1471 } 1472 1473 /* 1474 ** Return TRUE if the given expression is a constant which would be 1475 ** unchanged by OP_Affinity with the affinity given in the second 1476 ** argument. 1477 ** 1478 ** This routine is used to determine if the OP_Affinity operation 1479 ** can be omitted. When in doubt return FALSE. A false negative 1480 ** is harmless. A false positive, however, can result in the wrong 1481 ** answer. 1482 */ 1483 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1484 u8 op; 1485 if( aff==SQLITE_AFF_NONE ) return 1; 1486 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1487 op = p->op; 1488 if( op==TK_REGISTER ) op = p->op2; 1489 switch( op ){ 1490 case TK_INTEGER: { 1491 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1492 } 1493 case TK_FLOAT: { 1494 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1495 } 1496 case TK_STRING: { 1497 return aff==SQLITE_AFF_TEXT; 1498 } 1499 case TK_BLOB: { 1500 return 1; 1501 } 1502 case TK_COLUMN: { 1503 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1504 return p->iColumn<0 1505 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1506 } 1507 default: { 1508 return 0; 1509 } 1510 } 1511 } 1512 1513 /* 1514 ** Return TRUE if the given string is a row-id column name. 1515 */ 1516 int sqlite3IsRowid(const char *z){ 1517 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1518 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1519 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1520 return 0; 1521 } 1522 1523 /* 1524 ** Return true if we are able to the IN operator optimization on a 1525 ** query of the form 1526 ** 1527 ** x IN (SELECT ...) 1528 ** 1529 ** Where the SELECT... clause is as specified by the parameter to this 1530 ** routine. 1531 ** 1532 ** The Select object passed in has already been preprocessed and no 1533 ** errors have been found. 1534 */ 1535 #ifndef SQLITE_OMIT_SUBQUERY 1536 static int isCandidateForInOpt(Select *p){ 1537 SrcList *pSrc; 1538 ExprList *pEList; 1539 Table *pTab; 1540 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1541 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1542 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1543 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1544 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1545 return 0; /* No DISTINCT keyword and no aggregate functions */ 1546 } 1547 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1548 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1549 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1550 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1551 pSrc = p->pSrc; 1552 assert( pSrc!=0 ); 1553 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1554 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1555 pTab = pSrc->a[0].pTab; 1556 if( NEVER(pTab==0) ) return 0; 1557 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1558 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1559 pEList = p->pEList; 1560 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1561 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1562 return 1; 1563 } 1564 #endif /* SQLITE_OMIT_SUBQUERY */ 1565 1566 /* 1567 ** Code an OP_Once instruction and allocate space for its flag. Return the 1568 ** address of the new instruction. 1569 */ 1570 int sqlite3CodeOnce(Parse *pParse){ 1571 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1572 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1573 } 1574 1575 /* 1576 ** Generate code that checks the left-most column of index table iCur to see if 1577 ** it contains any NULL entries. Cause the register at regHasNull to be set 1578 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1579 ** to be set to NULL if iCur contains one or more NULL values. 1580 */ 1581 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1582 int j1; 1583 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1584 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1585 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1586 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1587 VdbeComment((v, "first_entry_in(%d)", iCur)); 1588 sqlite3VdbeJumpHere(v, j1); 1589 } 1590 1591 1592 #ifndef SQLITE_OMIT_SUBQUERY 1593 /* 1594 ** The argument is an IN operator with a list (not a subquery) on the 1595 ** right-hand side. Return TRUE if that list is constant. 1596 */ 1597 static int sqlite3InRhsIsConstant(Expr *pIn){ 1598 Expr *pLHS; 1599 int res; 1600 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1601 pLHS = pIn->pLeft; 1602 pIn->pLeft = 0; 1603 res = sqlite3ExprIsConstant(pIn); 1604 pIn->pLeft = pLHS; 1605 return res; 1606 } 1607 #endif 1608 1609 /* 1610 ** This function is used by the implementation of the IN (...) operator. 1611 ** The pX parameter is the expression on the RHS of the IN operator, which 1612 ** might be either a list of expressions or a subquery. 1613 ** 1614 ** The job of this routine is to find or create a b-tree object that can 1615 ** be used either to test for membership in the RHS set or to iterate through 1616 ** all members of the RHS set, skipping duplicates. 1617 ** 1618 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1619 ** and pX->iTable is set to the index of that cursor. 1620 ** 1621 ** The returned value of this function indicates the b-tree type, as follows: 1622 ** 1623 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1624 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1625 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1626 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1627 ** populated epheremal table. 1628 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1629 ** implemented as a sequence of comparisons. 1630 ** 1631 ** An existing b-tree might be used if the RHS expression pX is a simple 1632 ** subquery such as: 1633 ** 1634 ** SELECT <column> FROM <table> 1635 ** 1636 ** If the RHS of the IN operator is a list or a more complex subquery, then 1637 ** an ephemeral table might need to be generated from the RHS and then 1638 ** pX->iTable made to point to the ephemeral table instead of an 1639 ** existing table. 1640 ** 1641 ** The inFlags parameter must contain exactly one of the bits 1642 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1643 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1644 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1645 ** IN index will be used to loop over all values of the RHS of the 1646 ** IN operator. 1647 ** 1648 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1649 ** through the set members) then the b-tree must not contain duplicates. 1650 ** An epheremal table must be used unless the selected <column> is guaranteed 1651 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1652 ** has a UNIQUE constraint or UNIQUE index. 1653 ** 1654 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1655 ** for fast set membership tests) then an epheremal table must 1656 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1657 ** be found with <column> as its left-most column. 1658 ** 1659 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1660 ** if the RHS of the IN operator is a list (not a subquery) then this 1661 ** routine might decide that creating an ephemeral b-tree for membership 1662 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1663 ** calling routine should implement the IN operator using a sequence 1664 ** of Eq or Ne comparison operations. 1665 ** 1666 ** When the b-tree is being used for membership tests, the calling function 1667 ** might need to know whether or not the RHS side of the IN operator 1668 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1669 ** if there is any chance that the (...) might contain a NULL value at 1670 ** runtime, then a register is allocated and the register number written 1671 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1672 ** NULL value, then *prRhsHasNull is left unchanged. 1673 ** 1674 ** If a register is allocated and its location stored in *prRhsHasNull, then 1675 ** the value in that register will be NULL if the b-tree contains one or more 1676 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1677 ** NULL values. 1678 */ 1679 #ifndef SQLITE_OMIT_SUBQUERY 1680 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1681 Select *p; /* SELECT to the right of IN operator */ 1682 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1683 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1684 int mustBeUnique; /* True if RHS must be unique */ 1685 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1686 1687 assert( pX->op==TK_IN ); 1688 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1689 1690 /* Check to see if an existing table or index can be used to 1691 ** satisfy the query. This is preferable to generating a new 1692 ** ephemeral table. 1693 */ 1694 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1695 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ 1696 sqlite3 *db = pParse->db; /* Database connection */ 1697 Table *pTab; /* Table <table>. */ 1698 Expr *pExpr; /* Expression <column> */ 1699 i16 iCol; /* Index of column <column> */ 1700 i16 iDb; /* Database idx for pTab */ 1701 1702 assert( p ); /* Because of isCandidateForInOpt(p) */ 1703 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1704 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1705 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1706 pTab = p->pSrc->a[0].pTab; 1707 pExpr = p->pEList->a[0].pExpr; 1708 iCol = (i16)pExpr->iColumn; 1709 1710 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1711 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1712 sqlite3CodeVerifySchema(pParse, iDb); 1713 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1714 1715 /* This function is only called from two places. In both cases the vdbe 1716 ** has already been allocated. So assume sqlite3GetVdbe() is always 1717 ** successful here. 1718 */ 1719 assert(v); 1720 if( iCol<0 ){ 1721 int iAddr = sqlite3CodeOnce(pParse); 1722 VdbeCoverage(v); 1723 1724 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1725 eType = IN_INDEX_ROWID; 1726 1727 sqlite3VdbeJumpHere(v, iAddr); 1728 }else{ 1729 Index *pIdx; /* Iterator variable */ 1730 1731 /* The collation sequence used by the comparison. If an index is to 1732 ** be used in place of a temp-table, it must be ordered according 1733 ** to this collation sequence. */ 1734 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1735 1736 /* Check that the affinity that will be used to perform the 1737 ** comparison is the same as the affinity of the column. If 1738 ** it is not, it is not possible to use any index. 1739 */ 1740 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1741 1742 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1743 if( (pIdx->aiColumn[0]==iCol) 1744 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1745 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1746 ){ 1747 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1748 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1749 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1750 VdbeComment((v, "%s", pIdx->zName)); 1751 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1752 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1753 1754 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1755 *prRhsHasNull = ++pParse->nMem; 1756 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1757 } 1758 sqlite3VdbeJumpHere(v, iAddr); 1759 } 1760 } 1761 } 1762 } 1763 1764 /* If no preexisting index is available for the IN clause 1765 ** and IN_INDEX_NOOP is an allowed reply 1766 ** and the RHS of the IN operator is a list, not a subquery 1767 ** and the RHS is not contant or has two or fewer terms, 1768 ** then it is not worth creating an ephemeral table to evaluate 1769 ** the IN operator so return IN_INDEX_NOOP. 1770 */ 1771 if( eType==0 1772 && (inFlags & IN_INDEX_NOOP_OK) 1773 && !ExprHasProperty(pX, EP_xIsSelect) 1774 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1775 ){ 1776 eType = IN_INDEX_NOOP; 1777 } 1778 1779 1780 if( eType==0 ){ 1781 /* Could not find an existing table or index to use as the RHS b-tree. 1782 ** We will have to generate an ephemeral table to do the job. 1783 */ 1784 u32 savedNQueryLoop = pParse->nQueryLoop; 1785 int rMayHaveNull = 0; 1786 eType = IN_INDEX_EPH; 1787 if( inFlags & IN_INDEX_LOOP ){ 1788 pParse->nQueryLoop = 0; 1789 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1790 eType = IN_INDEX_ROWID; 1791 } 1792 }else if( prRhsHasNull ){ 1793 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1794 } 1795 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1796 pParse->nQueryLoop = savedNQueryLoop; 1797 }else{ 1798 pX->iTable = iTab; 1799 } 1800 return eType; 1801 } 1802 #endif 1803 1804 /* 1805 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1806 ** or IN operators. Examples: 1807 ** 1808 ** (SELECT a FROM b) -- subquery 1809 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1810 ** x IN (4,5,11) -- IN operator with list on right-hand side 1811 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1812 ** 1813 ** The pExpr parameter describes the expression that contains the IN 1814 ** operator or subquery. 1815 ** 1816 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1817 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1818 ** to some integer key column of a table B-Tree. In this case, use an 1819 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1820 ** (slower) variable length keys B-Tree. 1821 ** 1822 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1823 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1824 ** All this routine does is initialize the register given by rMayHaveNull 1825 ** to NULL. Calling routines will take care of changing this register 1826 ** value to non-NULL if the RHS is NULL-free. 1827 ** 1828 ** For a SELECT or EXISTS operator, return the register that holds the 1829 ** result. For IN operators or if an error occurs, the return value is 0. 1830 */ 1831 #ifndef SQLITE_OMIT_SUBQUERY 1832 int sqlite3CodeSubselect( 1833 Parse *pParse, /* Parsing context */ 1834 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1835 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1836 int isRowid /* If true, LHS of IN operator is a rowid */ 1837 ){ 1838 int jmpIfDynamic = -1; /* One-time test address */ 1839 int rReg = 0; /* Register storing resulting */ 1840 Vdbe *v = sqlite3GetVdbe(pParse); 1841 if( NEVER(v==0) ) return 0; 1842 sqlite3ExprCachePush(pParse); 1843 1844 /* This code must be run in its entirety every time it is encountered 1845 ** if any of the following is true: 1846 ** 1847 ** * The right-hand side is a correlated subquery 1848 ** * The right-hand side is an expression list containing variables 1849 ** * We are inside a trigger 1850 ** 1851 ** If all of the above are false, then we can run this code just once 1852 ** save the results, and reuse the same result on subsequent invocations. 1853 */ 1854 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1855 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1856 } 1857 1858 #ifndef SQLITE_OMIT_EXPLAIN 1859 if( pParse->explain==2 ){ 1860 char *zMsg = sqlite3MPrintf( 1861 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1862 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1863 ); 1864 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1865 } 1866 #endif 1867 1868 switch( pExpr->op ){ 1869 case TK_IN: { 1870 char affinity; /* Affinity of the LHS of the IN */ 1871 int addr; /* Address of OP_OpenEphemeral instruction */ 1872 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1873 KeyInfo *pKeyInfo = 0; /* Key information */ 1874 1875 affinity = sqlite3ExprAffinity(pLeft); 1876 1877 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1878 ** expression it is handled the same way. An ephemeral table is 1879 ** filled with single-field index keys representing the results 1880 ** from the SELECT or the <exprlist>. 1881 ** 1882 ** If the 'x' expression is a column value, or the SELECT... 1883 ** statement returns a column value, then the affinity of that 1884 ** column is used to build the index keys. If both 'x' and the 1885 ** SELECT... statement are columns, then numeric affinity is used 1886 ** if either column has NUMERIC or INTEGER affinity. If neither 1887 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1888 ** is used. 1889 */ 1890 pExpr->iTable = pParse->nTab++; 1891 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1892 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1893 1894 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1895 /* Case 1: expr IN (SELECT ...) 1896 ** 1897 ** Generate code to write the results of the select into the temporary 1898 ** table allocated and opened above. 1899 */ 1900 Select *pSelect = pExpr->x.pSelect; 1901 SelectDest dest; 1902 ExprList *pEList; 1903 1904 assert( !isRowid ); 1905 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1906 dest.affSdst = (u8)affinity; 1907 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1908 pSelect->iLimit = 0; 1909 testcase( pSelect->selFlags & SF_Distinct ); 1910 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1911 if( sqlite3Select(pParse, pSelect, &dest) ){ 1912 sqlite3KeyInfoUnref(pKeyInfo); 1913 return 0; 1914 } 1915 pEList = pSelect->pEList; 1916 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1917 assert( pEList!=0 ); 1918 assert( pEList->nExpr>0 ); 1919 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1920 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1921 pEList->a[0].pExpr); 1922 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1923 /* Case 2: expr IN (exprlist) 1924 ** 1925 ** For each expression, build an index key from the evaluation and 1926 ** store it in the temporary table. If <expr> is a column, then use 1927 ** that columns affinity when building index keys. If <expr> is not 1928 ** a column, use numeric affinity. 1929 */ 1930 int i; 1931 ExprList *pList = pExpr->x.pList; 1932 struct ExprList_item *pItem; 1933 int r1, r2, r3; 1934 1935 if( !affinity ){ 1936 affinity = SQLITE_AFF_NONE; 1937 } 1938 if( pKeyInfo ){ 1939 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1940 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1941 } 1942 1943 /* Loop through each expression in <exprlist>. */ 1944 r1 = sqlite3GetTempReg(pParse); 1945 r2 = sqlite3GetTempReg(pParse); 1946 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1947 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1948 Expr *pE2 = pItem->pExpr; 1949 int iValToIns; 1950 1951 /* If the expression is not constant then we will need to 1952 ** disable the test that was generated above that makes sure 1953 ** this code only executes once. Because for a non-constant 1954 ** expression we need to rerun this code each time. 1955 */ 1956 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1957 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1958 jmpIfDynamic = -1; 1959 } 1960 1961 /* Evaluate the expression and insert it into the temp table */ 1962 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1963 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1964 }else{ 1965 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1966 if( isRowid ){ 1967 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1968 sqlite3VdbeCurrentAddr(v)+2); 1969 VdbeCoverage(v); 1970 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1971 }else{ 1972 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1973 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1974 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1975 } 1976 } 1977 } 1978 sqlite3ReleaseTempReg(pParse, r1); 1979 sqlite3ReleaseTempReg(pParse, r2); 1980 } 1981 if( pKeyInfo ){ 1982 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1983 } 1984 break; 1985 } 1986 1987 case TK_EXISTS: 1988 case TK_SELECT: 1989 default: { 1990 /* If this has to be a scalar SELECT. Generate code to put the 1991 ** value of this select in a memory cell and record the number 1992 ** of the memory cell in iColumn. If this is an EXISTS, write 1993 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1994 ** and record that memory cell in iColumn. 1995 */ 1996 Select *pSel; /* SELECT statement to encode */ 1997 SelectDest dest; /* How to deal with SELECt result */ 1998 1999 testcase( pExpr->op==TK_EXISTS ); 2000 testcase( pExpr->op==TK_SELECT ); 2001 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2002 2003 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2004 pSel = pExpr->x.pSelect; 2005 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2006 if( pExpr->op==TK_SELECT ){ 2007 dest.eDest = SRT_Mem; 2008 dest.iSdst = dest.iSDParm; 2009 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2010 VdbeComment((v, "Init subquery result")); 2011 }else{ 2012 dest.eDest = SRT_Exists; 2013 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2014 VdbeComment((v, "Init EXISTS result")); 2015 } 2016 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2017 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2018 &sqlite3IntTokens[1]); 2019 pSel->iLimit = 0; 2020 pSel->selFlags &= ~SF_MultiValue; 2021 if( sqlite3Select(pParse, pSel, &dest) ){ 2022 return 0; 2023 } 2024 rReg = dest.iSDParm; 2025 ExprSetVVAProperty(pExpr, EP_NoReduce); 2026 break; 2027 } 2028 } 2029 2030 if( rHasNullFlag ){ 2031 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2032 } 2033 2034 if( jmpIfDynamic>=0 ){ 2035 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2036 } 2037 sqlite3ExprCachePop(pParse); 2038 2039 return rReg; 2040 } 2041 #endif /* SQLITE_OMIT_SUBQUERY */ 2042 2043 #ifndef SQLITE_OMIT_SUBQUERY 2044 /* 2045 ** Generate code for an IN expression. 2046 ** 2047 ** x IN (SELECT ...) 2048 ** x IN (value, value, ...) 2049 ** 2050 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2051 ** is an array of zero or more values. The expression is true if the LHS is 2052 ** contained within the RHS. The value of the expression is unknown (NULL) 2053 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2054 ** RHS contains one or more NULL values. 2055 ** 2056 ** This routine generates code that jumps to destIfFalse if the LHS is not 2057 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2058 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2059 ** within the RHS then fall through. 2060 */ 2061 static void sqlite3ExprCodeIN( 2062 Parse *pParse, /* Parsing and code generating context */ 2063 Expr *pExpr, /* The IN expression */ 2064 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2065 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2066 ){ 2067 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2068 char affinity; /* Comparison affinity to use */ 2069 int eType; /* Type of the RHS */ 2070 int r1; /* Temporary use register */ 2071 Vdbe *v; /* Statement under construction */ 2072 2073 /* Compute the RHS. After this step, the table with cursor 2074 ** pExpr->iTable will contains the values that make up the RHS. 2075 */ 2076 v = pParse->pVdbe; 2077 assert( v!=0 ); /* OOM detected prior to this routine */ 2078 VdbeNoopComment((v, "begin IN expr")); 2079 eType = sqlite3FindInIndex(pParse, pExpr, 2080 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2081 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2082 2083 /* Figure out the affinity to use to create a key from the results 2084 ** of the expression. affinityStr stores a static string suitable for 2085 ** P4 of OP_MakeRecord. 2086 */ 2087 affinity = comparisonAffinity(pExpr); 2088 2089 /* Code the LHS, the <expr> from "<expr> IN (...)". 2090 */ 2091 sqlite3ExprCachePush(pParse); 2092 r1 = sqlite3GetTempReg(pParse); 2093 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2094 2095 /* If sqlite3FindInIndex() did not find or create an index that is 2096 ** suitable for evaluating the IN operator, then evaluate using a 2097 ** sequence of comparisons. 2098 */ 2099 if( eType==IN_INDEX_NOOP ){ 2100 ExprList *pList = pExpr->x.pList; 2101 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2102 int labelOk = sqlite3VdbeMakeLabel(v); 2103 int r2, regToFree; 2104 int regCkNull = 0; 2105 int ii; 2106 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2107 if( destIfNull!=destIfFalse ){ 2108 regCkNull = sqlite3GetTempReg(pParse); 2109 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2110 } 2111 for(ii=0; ii<pList->nExpr; ii++){ 2112 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2113 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2114 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2115 } 2116 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2117 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2118 (void*)pColl, P4_COLLSEQ); 2119 VdbeCoverageIf(v, ii<pList->nExpr-1); 2120 VdbeCoverageIf(v, ii==pList->nExpr-1); 2121 sqlite3VdbeChangeP5(v, affinity); 2122 }else{ 2123 assert( destIfNull==destIfFalse ); 2124 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2125 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2126 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2127 } 2128 sqlite3ReleaseTempReg(pParse, regToFree); 2129 } 2130 if( regCkNull ){ 2131 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2132 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2133 } 2134 sqlite3VdbeResolveLabel(v, labelOk); 2135 sqlite3ReleaseTempReg(pParse, regCkNull); 2136 }else{ 2137 2138 /* If the LHS is NULL, then the result is either false or NULL depending 2139 ** on whether the RHS is empty or not, respectively. 2140 */ 2141 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2142 if( destIfNull==destIfFalse ){ 2143 /* Shortcut for the common case where the false and NULL outcomes are 2144 ** the same. */ 2145 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2146 }else{ 2147 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2148 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2149 VdbeCoverage(v); 2150 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2151 sqlite3VdbeJumpHere(v, addr1); 2152 } 2153 } 2154 2155 if( eType==IN_INDEX_ROWID ){ 2156 /* In this case, the RHS is the ROWID of table b-tree 2157 */ 2158 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2159 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2160 VdbeCoverage(v); 2161 }else{ 2162 /* In this case, the RHS is an index b-tree. 2163 */ 2164 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2165 2166 /* If the set membership test fails, then the result of the 2167 ** "x IN (...)" expression must be either 0 or NULL. If the set 2168 ** contains no NULL values, then the result is 0. If the set 2169 ** contains one or more NULL values, then the result of the 2170 ** expression is also NULL. 2171 */ 2172 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2173 if( rRhsHasNull==0 ){ 2174 /* This branch runs if it is known at compile time that the RHS 2175 ** cannot contain NULL values. This happens as the result 2176 ** of a "NOT NULL" constraint in the database schema. 2177 ** 2178 ** Also run this branch if NULL is equivalent to FALSE 2179 ** for this particular IN operator. 2180 */ 2181 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2182 VdbeCoverage(v); 2183 }else{ 2184 /* In this branch, the RHS of the IN might contain a NULL and 2185 ** the presence of a NULL on the RHS makes a difference in the 2186 ** outcome. 2187 */ 2188 int j1; 2189 2190 /* First check to see if the LHS is contained in the RHS. If so, 2191 ** then the answer is TRUE the presence of NULLs in the RHS does 2192 ** not matter. If the LHS is not contained in the RHS, then the 2193 ** answer is NULL if the RHS contains NULLs and the answer is 2194 ** FALSE if the RHS is NULL-free. 2195 */ 2196 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2197 VdbeCoverage(v); 2198 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2199 VdbeCoverage(v); 2200 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2201 sqlite3VdbeJumpHere(v, j1); 2202 } 2203 } 2204 } 2205 sqlite3ReleaseTempReg(pParse, r1); 2206 sqlite3ExprCachePop(pParse); 2207 VdbeComment((v, "end IN expr")); 2208 } 2209 #endif /* SQLITE_OMIT_SUBQUERY */ 2210 2211 /* 2212 ** Duplicate an 8-byte value 2213 */ 2214 static char *dup8bytes(Vdbe *v, const char *in){ 2215 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2216 if( out ){ 2217 memcpy(out, in, 8); 2218 } 2219 return out; 2220 } 2221 2222 #ifndef SQLITE_OMIT_FLOATING_POINT 2223 /* 2224 ** Generate an instruction that will put the floating point 2225 ** value described by z[0..n-1] into register iMem. 2226 ** 2227 ** The z[] string will probably not be zero-terminated. But the 2228 ** z[n] character is guaranteed to be something that does not look 2229 ** like the continuation of the number. 2230 */ 2231 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2232 if( ALWAYS(z!=0) ){ 2233 double value; 2234 char *zV; 2235 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2236 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2237 if( negateFlag ) value = -value; 2238 zV = dup8bytes(v, (char*)&value); 2239 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2240 } 2241 } 2242 #endif 2243 2244 2245 /* 2246 ** Generate an instruction that will put the integer describe by 2247 ** text z[0..n-1] into register iMem. 2248 ** 2249 ** Expr.u.zToken is always UTF8 and zero-terminated. 2250 */ 2251 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2252 Vdbe *v = pParse->pVdbe; 2253 if( pExpr->flags & EP_IntValue ){ 2254 int i = pExpr->u.iValue; 2255 assert( i>=0 ); 2256 if( negFlag ) i = -i; 2257 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2258 }else{ 2259 int c; 2260 i64 value; 2261 const char *z = pExpr->u.zToken; 2262 assert( z!=0 ); 2263 c = sqlite3DecOrHexToI64(z, &value); 2264 if( c==0 || (c==2 && negFlag) ){ 2265 char *zV; 2266 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2267 zV = dup8bytes(v, (char*)&value); 2268 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2269 }else{ 2270 #ifdef SQLITE_OMIT_FLOATING_POINT 2271 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2272 #else 2273 #ifndef SQLITE_OMIT_HEX_INTEGER 2274 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2275 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2276 }else 2277 #endif 2278 { 2279 codeReal(v, z, negFlag, iMem); 2280 } 2281 #endif 2282 } 2283 } 2284 } 2285 2286 /* 2287 ** Clear a cache entry. 2288 */ 2289 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2290 if( p->tempReg ){ 2291 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2292 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2293 } 2294 p->tempReg = 0; 2295 } 2296 } 2297 2298 2299 /* 2300 ** Record in the column cache that a particular column from a 2301 ** particular table is stored in a particular register. 2302 */ 2303 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2304 int i; 2305 int minLru; 2306 int idxLru; 2307 struct yColCache *p; 2308 2309 /* Unless an error has occurred, register numbers are always positive. */ 2310 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2311 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2312 2313 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2314 ** for testing only - to verify that SQLite always gets the same answer 2315 ** with and without the column cache. 2316 */ 2317 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2318 2319 /* First replace any existing entry. 2320 ** 2321 ** Actually, the way the column cache is currently used, we are guaranteed 2322 ** that the object will never already be in cache. Verify this guarantee. 2323 */ 2324 #ifndef NDEBUG 2325 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2326 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2327 } 2328 #endif 2329 2330 /* Find an empty slot and replace it */ 2331 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2332 if( p->iReg==0 ){ 2333 p->iLevel = pParse->iCacheLevel; 2334 p->iTable = iTab; 2335 p->iColumn = iCol; 2336 p->iReg = iReg; 2337 p->tempReg = 0; 2338 p->lru = pParse->iCacheCnt++; 2339 return; 2340 } 2341 } 2342 2343 /* Replace the last recently used */ 2344 minLru = 0x7fffffff; 2345 idxLru = -1; 2346 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2347 if( p->lru<minLru ){ 2348 idxLru = i; 2349 minLru = p->lru; 2350 } 2351 } 2352 if( ALWAYS(idxLru>=0) ){ 2353 p = &pParse->aColCache[idxLru]; 2354 p->iLevel = pParse->iCacheLevel; 2355 p->iTable = iTab; 2356 p->iColumn = iCol; 2357 p->iReg = iReg; 2358 p->tempReg = 0; 2359 p->lru = pParse->iCacheCnt++; 2360 return; 2361 } 2362 } 2363 2364 /* 2365 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2366 ** Purge the range of registers from the column cache. 2367 */ 2368 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2369 int i; 2370 int iLast = iReg + nReg - 1; 2371 struct yColCache *p; 2372 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2373 int r = p->iReg; 2374 if( r>=iReg && r<=iLast ){ 2375 cacheEntryClear(pParse, p); 2376 p->iReg = 0; 2377 } 2378 } 2379 } 2380 2381 /* 2382 ** Remember the current column cache context. Any new entries added 2383 ** added to the column cache after this call are removed when the 2384 ** corresponding pop occurs. 2385 */ 2386 void sqlite3ExprCachePush(Parse *pParse){ 2387 pParse->iCacheLevel++; 2388 #ifdef SQLITE_DEBUG 2389 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2390 printf("PUSH to %d\n", pParse->iCacheLevel); 2391 } 2392 #endif 2393 } 2394 2395 /* 2396 ** Remove from the column cache any entries that were added since the 2397 ** the previous sqlite3ExprCachePush operation. In other words, restore 2398 ** the cache to the state it was in prior the most recent Push. 2399 */ 2400 void sqlite3ExprCachePop(Parse *pParse){ 2401 int i; 2402 struct yColCache *p; 2403 assert( pParse->iCacheLevel>=1 ); 2404 pParse->iCacheLevel--; 2405 #ifdef SQLITE_DEBUG 2406 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2407 printf("POP to %d\n", pParse->iCacheLevel); 2408 } 2409 #endif 2410 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2411 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2412 cacheEntryClear(pParse, p); 2413 p->iReg = 0; 2414 } 2415 } 2416 } 2417 2418 /* 2419 ** When a cached column is reused, make sure that its register is 2420 ** no longer available as a temp register. ticket #3879: that same 2421 ** register might be in the cache in multiple places, so be sure to 2422 ** get them all. 2423 */ 2424 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2425 int i; 2426 struct yColCache *p; 2427 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2428 if( p->iReg==iReg ){ 2429 p->tempReg = 0; 2430 } 2431 } 2432 } 2433 2434 /* 2435 ** Generate code to extract the value of the iCol-th column of a table. 2436 */ 2437 void sqlite3ExprCodeGetColumnOfTable( 2438 Vdbe *v, /* The VDBE under construction */ 2439 Table *pTab, /* The table containing the value */ 2440 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2441 int iCol, /* Index of the column to extract */ 2442 int regOut /* Extract the value into this register */ 2443 ){ 2444 if( iCol<0 || iCol==pTab->iPKey ){ 2445 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2446 }else{ 2447 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2448 int x = iCol; 2449 if( !HasRowid(pTab) ){ 2450 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2451 } 2452 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2453 } 2454 if( iCol>=0 ){ 2455 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2456 } 2457 } 2458 2459 /* 2460 ** Generate code that will extract the iColumn-th column from 2461 ** table pTab and store the column value in a register. An effort 2462 ** is made to store the column value in register iReg, but this is 2463 ** not guaranteed. The location of the column value is returned. 2464 ** 2465 ** There must be an open cursor to pTab in iTable when this routine 2466 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2467 */ 2468 int sqlite3ExprCodeGetColumn( 2469 Parse *pParse, /* Parsing and code generating context */ 2470 Table *pTab, /* Description of the table we are reading from */ 2471 int iColumn, /* Index of the table column */ 2472 int iTable, /* The cursor pointing to the table */ 2473 int iReg, /* Store results here */ 2474 u8 p5 /* P5 value for OP_Column */ 2475 ){ 2476 Vdbe *v = pParse->pVdbe; 2477 int i; 2478 struct yColCache *p; 2479 2480 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2481 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2482 p->lru = pParse->iCacheCnt++; 2483 sqlite3ExprCachePinRegister(pParse, p->iReg); 2484 return p->iReg; 2485 } 2486 } 2487 assert( v!=0 ); 2488 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2489 if( p5 ){ 2490 sqlite3VdbeChangeP5(v, p5); 2491 }else{ 2492 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2493 } 2494 return iReg; 2495 } 2496 2497 /* 2498 ** Clear all column cache entries. 2499 */ 2500 void sqlite3ExprCacheClear(Parse *pParse){ 2501 int i; 2502 struct yColCache *p; 2503 2504 #if SQLITE_DEBUG 2505 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2506 printf("CLEAR\n"); 2507 } 2508 #endif 2509 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2510 if( p->iReg ){ 2511 cacheEntryClear(pParse, p); 2512 p->iReg = 0; 2513 } 2514 } 2515 } 2516 2517 /* 2518 ** Record the fact that an affinity change has occurred on iCount 2519 ** registers starting with iStart. 2520 */ 2521 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2522 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2523 } 2524 2525 /* 2526 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2527 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2528 */ 2529 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2530 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2531 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2532 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2533 } 2534 2535 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2536 /* 2537 ** Return true if any register in the range iFrom..iTo (inclusive) 2538 ** is used as part of the column cache. 2539 ** 2540 ** This routine is used within assert() and testcase() macros only 2541 ** and does not appear in a normal build. 2542 */ 2543 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2544 int i; 2545 struct yColCache *p; 2546 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2547 int r = p->iReg; 2548 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2549 } 2550 return 0; 2551 } 2552 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2553 2554 /* 2555 ** Convert an expression node to a TK_REGISTER 2556 */ 2557 static void exprToRegister(Expr *p, int iReg){ 2558 p->op2 = p->op; 2559 p->op = TK_REGISTER; 2560 p->iTable = iReg; 2561 ExprClearProperty(p, EP_Skip); 2562 } 2563 2564 /* 2565 ** Generate code into the current Vdbe to evaluate the given 2566 ** expression. Attempt to store the results in register "target". 2567 ** Return the register where results are stored. 2568 ** 2569 ** With this routine, there is no guarantee that results will 2570 ** be stored in target. The result might be stored in some other 2571 ** register if it is convenient to do so. The calling function 2572 ** must check the return code and move the results to the desired 2573 ** register. 2574 */ 2575 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2576 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2577 int op; /* The opcode being coded */ 2578 int inReg = target; /* Results stored in register inReg */ 2579 int regFree1 = 0; /* If non-zero free this temporary register */ 2580 int regFree2 = 0; /* If non-zero free this temporary register */ 2581 int r1, r2, r3, r4; /* Various register numbers */ 2582 sqlite3 *db = pParse->db; /* The database connection */ 2583 Expr tempX; /* Temporary expression node */ 2584 2585 assert( target>0 && target<=pParse->nMem ); 2586 if( v==0 ){ 2587 assert( pParse->db->mallocFailed ); 2588 return 0; 2589 } 2590 2591 if( pExpr==0 ){ 2592 op = TK_NULL; 2593 }else{ 2594 op = pExpr->op; 2595 } 2596 switch( op ){ 2597 case TK_AGG_COLUMN: { 2598 AggInfo *pAggInfo = pExpr->pAggInfo; 2599 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2600 if( !pAggInfo->directMode ){ 2601 assert( pCol->iMem>0 ); 2602 inReg = pCol->iMem; 2603 break; 2604 }else if( pAggInfo->useSortingIdx ){ 2605 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2606 pCol->iSorterColumn, target); 2607 break; 2608 } 2609 /* Otherwise, fall thru into the TK_COLUMN case */ 2610 } 2611 case TK_COLUMN: { 2612 int iTab = pExpr->iTable; 2613 if( iTab<0 ){ 2614 if( pParse->ckBase>0 ){ 2615 /* Generating CHECK constraints or inserting into partial index */ 2616 inReg = pExpr->iColumn + pParse->ckBase; 2617 break; 2618 }else{ 2619 /* Deleting from a partial index */ 2620 iTab = pParse->iPartIdxTab; 2621 } 2622 } 2623 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2624 pExpr->iColumn, iTab, target, 2625 pExpr->op2); 2626 break; 2627 } 2628 case TK_INTEGER: { 2629 codeInteger(pParse, pExpr, 0, target); 2630 break; 2631 } 2632 #ifndef SQLITE_OMIT_FLOATING_POINT 2633 case TK_FLOAT: { 2634 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2635 codeReal(v, pExpr->u.zToken, 0, target); 2636 break; 2637 } 2638 #endif 2639 case TK_STRING: { 2640 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2641 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2642 break; 2643 } 2644 case TK_NULL: { 2645 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2646 break; 2647 } 2648 #ifndef SQLITE_OMIT_BLOB_LITERAL 2649 case TK_BLOB: { 2650 int n; 2651 const char *z; 2652 char *zBlob; 2653 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2654 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2655 assert( pExpr->u.zToken[1]=='\'' ); 2656 z = &pExpr->u.zToken[2]; 2657 n = sqlite3Strlen30(z) - 1; 2658 assert( z[n]=='\'' ); 2659 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2660 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2661 break; 2662 } 2663 #endif 2664 case TK_VARIABLE: { 2665 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2666 assert( pExpr->u.zToken!=0 ); 2667 assert( pExpr->u.zToken[0]!=0 ); 2668 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2669 if( pExpr->u.zToken[1]!=0 ){ 2670 assert( pExpr->u.zToken[0]=='?' 2671 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2672 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2673 } 2674 break; 2675 } 2676 case TK_REGISTER: { 2677 inReg = pExpr->iTable; 2678 break; 2679 } 2680 case TK_AS: { 2681 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2682 break; 2683 } 2684 #ifndef SQLITE_OMIT_CAST 2685 case TK_CAST: { 2686 /* Expressions of the form: CAST(pLeft AS token) */ 2687 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2688 if( inReg!=target ){ 2689 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2690 inReg = target; 2691 } 2692 sqlite3VdbeAddOp2(v, OP_Cast, target, 2693 sqlite3AffinityType(pExpr->u.zToken, 0)); 2694 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2695 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2696 break; 2697 } 2698 #endif /* SQLITE_OMIT_CAST */ 2699 case TK_LT: 2700 case TK_LE: 2701 case TK_GT: 2702 case TK_GE: 2703 case TK_NE: 2704 case TK_EQ: { 2705 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2706 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2707 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2708 r1, r2, inReg, SQLITE_STOREP2); 2709 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2710 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2711 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2712 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2713 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2714 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2715 testcase( regFree1==0 ); 2716 testcase( regFree2==0 ); 2717 break; 2718 } 2719 case TK_IS: 2720 case TK_ISNOT: { 2721 testcase( op==TK_IS ); 2722 testcase( op==TK_ISNOT ); 2723 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2724 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2725 op = (op==TK_IS) ? TK_EQ : TK_NE; 2726 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2727 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2728 VdbeCoverageIf(v, op==TK_EQ); 2729 VdbeCoverageIf(v, op==TK_NE); 2730 testcase( regFree1==0 ); 2731 testcase( regFree2==0 ); 2732 break; 2733 } 2734 case TK_AND: 2735 case TK_OR: 2736 case TK_PLUS: 2737 case TK_STAR: 2738 case TK_MINUS: 2739 case TK_REM: 2740 case TK_BITAND: 2741 case TK_BITOR: 2742 case TK_SLASH: 2743 case TK_LSHIFT: 2744 case TK_RSHIFT: 2745 case TK_CONCAT: { 2746 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2747 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2748 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2749 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2750 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2751 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2752 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2753 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2754 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2755 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2756 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2757 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2758 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2759 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2760 testcase( regFree1==0 ); 2761 testcase( regFree2==0 ); 2762 break; 2763 } 2764 case TK_UMINUS: { 2765 Expr *pLeft = pExpr->pLeft; 2766 assert( pLeft ); 2767 if( pLeft->op==TK_INTEGER ){ 2768 codeInteger(pParse, pLeft, 1, target); 2769 #ifndef SQLITE_OMIT_FLOATING_POINT 2770 }else if( pLeft->op==TK_FLOAT ){ 2771 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2772 codeReal(v, pLeft->u.zToken, 1, target); 2773 #endif 2774 }else{ 2775 tempX.op = TK_INTEGER; 2776 tempX.flags = EP_IntValue|EP_TokenOnly; 2777 tempX.u.iValue = 0; 2778 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2779 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2780 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2781 testcase( regFree2==0 ); 2782 } 2783 inReg = target; 2784 break; 2785 } 2786 case TK_BITNOT: 2787 case TK_NOT: { 2788 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2789 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2790 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2791 testcase( regFree1==0 ); 2792 inReg = target; 2793 sqlite3VdbeAddOp2(v, op, r1, inReg); 2794 break; 2795 } 2796 case TK_ISNULL: 2797 case TK_NOTNULL: { 2798 int addr; 2799 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2800 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2801 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2802 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2803 testcase( regFree1==0 ); 2804 addr = sqlite3VdbeAddOp1(v, op, r1); 2805 VdbeCoverageIf(v, op==TK_ISNULL); 2806 VdbeCoverageIf(v, op==TK_NOTNULL); 2807 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2808 sqlite3VdbeJumpHere(v, addr); 2809 break; 2810 } 2811 case TK_AGG_FUNCTION: { 2812 AggInfo *pInfo = pExpr->pAggInfo; 2813 if( pInfo==0 ){ 2814 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2815 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2816 }else{ 2817 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2818 } 2819 break; 2820 } 2821 case TK_FUNCTION: { 2822 ExprList *pFarg; /* List of function arguments */ 2823 int nFarg; /* Number of function arguments */ 2824 FuncDef *pDef; /* The function definition object */ 2825 int nId; /* Length of the function name in bytes */ 2826 const char *zId; /* The function name */ 2827 u32 constMask = 0; /* Mask of function arguments that are constant */ 2828 int i; /* Loop counter */ 2829 u8 enc = ENC(db); /* The text encoding used by this database */ 2830 CollSeq *pColl = 0; /* A collating sequence */ 2831 2832 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2833 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2834 pFarg = 0; 2835 }else{ 2836 pFarg = pExpr->x.pList; 2837 } 2838 nFarg = pFarg ? pFarg->nExpr : 0; 2839 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2840 zId = pExpr->u.zToken; 2841 nId = sqlite3Strlen30(zId); 2842 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2843 if( pDef==0 || pDef->xFunc==0 ){ 2844 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2845 break; 2846 } 2847 2848 /* Attempt a direct implementation of the built-in COALESCE() and 2849 ** IFNULL() functions. This avoids unnecessary evaluation of 2850 ** arguments past the first non-NULL argument. 2851 */ 2852 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2853 int endCoalesce = sqlite3VdbeMakeLabel(v); 2854 assert( nFarg>=2 ); 2855 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2856 for(i=1; i<nFarg; i++){ 2857 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2858 VdbeCoverage(v); 2859 sqlite3ExprCacheRemove(pParse, target, 1); 2860 sqlite3ExprCachePush(pParse); 2861 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2862 sqlite3ExprCachePop(pParse); 2863 } 2864 sqlite3VdbeResolveLabel(v, endCoalesce); 2865 break; 2866 } 2867 2868 /* The UNLIKELY() function is a no-op. The result is the value 2869 ** of the first argument. 2870 */ 2871 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2872 assert( nFarg>=1 ); 2873 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2874 break; 2875 } 2876 2877 for(i=0; i<nFarg; i++){ 2878 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2879 testcase( i==31 ); 2880 constMask |= MASKBIT32(i); 2881 } 2882 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2883 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2884 } 2885 } 2886 if( pFarg ){ 2887 if( constMask ){ 2888 r1 = pParse->nMem+1; 2889 pParse->nMem += nFarg; 2890 }else{ 2891 r1 = sqlite3GetTempRange(pParse, nFarg); 2892 } 2893 2894 /* For length() and typeof() functions with a column argument, 2895 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2896 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2897 ** loading. 2898 */ 2899 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2900 u8 exprOp; 2901 assert( nFarg==1 ); 2902 assert( pFarg->a[0].pExpr!=0 ); 2903 exprOp = pFarg->a[0].pExpr->op; 2904 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2905 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2906 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2907 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2908 pFarg->a[0].pExpr->op2 = 2909 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2910 } 2911 } 2912 2913 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2914 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2915 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2916 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2917 }else{ 2918 r1 = 0; 2919 } 2920 #ifndef SQLITE_OMIT_VIRTUALTABLE 2921 /* Possibly overload the function if the first argument is 2922 ** a virtual table column. 2923 ** 2924 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2925 ** second argument, not the first, as the argument to test to 2926 ** see if it is a column in a virtual table. This is done because 2927 ** the left operand of infix functions (the operand we want to 2928 ** control overloading) ends up as the second argument to the 2929 ** function. The expression "A glob B" is equivalent to 2930 ** "glob(B,A). We want to use the A in "A glob B" to test 2931 ** for function overloading. But we use the B term in "glob(B,A)". 2932 */ 2933 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2934 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2935 }else if( nFarg>0 ){ 2936 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2937 } 2938 #endif 2939 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2940 if( !pColl ) pColl = db->pDfltColl; 2941 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2942 } 2943 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2944 (char*)pDef, P4_FUNCDEF); 2945 sqlite3VdbeChangeP5(v, (u8)nFarg); 2946 if( nFarg && constMask==0 ){ 2947 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2948 } 2949 break; 2950 } 2951 #ifndef SQLITE_OMIT_SUBQUERY 2952 case TK_EXISTS: 2953 case TK_SELECT: { 2954 testcase( op==TK_EXISTS ); 2955 testcase( op==TK_SELECT ); 2956 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2957 break; 2958 } 2959 case TK_IN: { 2960 int destIfFalse = sqlite3VdbeMakeLabel(v); 2961 int destIfNull = sqlite3VdbeMakeLabel(v); 2962 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2963 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2964 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2965 sqlite3VdbeResolveLabel(v, destIfFalse); 2966 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2967 sqlite3VdbeResolveLabel(v, destIfNull); 2968 break; 2969 } 2970 #endif /* SQLITE_OMIT_SUBQUERY */ 2971 2972 2973 /* 2974 ** x BETWEEN y AND z 2975 ** 2976 ** This is equivalent to 2977 ** 2978 ** x>=y AND x<=z 2979 ** 2980 ** X is stored in pExpr->pLeft. 2981 ** Y is stored in pExpr->pList->a[0].pExpr. 2982 ** Z is stored in pExpr->pList->a[1].pExpr. 2983 */ 2984 case TK_BETWEEN: { 2985 Expr *pLeft = pExpr->pLeft; 2986 struct ExprList_item *pLItem = pExpr->x.pList->a; 2987 Expr *pRight = pLItem->pExpr; 2988 2989 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2990 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2991 testcase( regFree1==0 ); 2992 testcase( regFree2==0 ); 2993 r3 = sqlite3GetTempReg(pParse); 2994 r4 = sqlite3GetTempReg(pParse); 2995 codeCompare(pParse, pLeft, pRight, OP_Ge, 2996 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 2997 pLItem++; 2998 pRight = pLItem->pExpr; 2999 sqlite3ReleaseTempReg(pParse, regFree2); 3000 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3001 testcase( regFree2==0 ); 3002 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3003 VdbeCoverage(v); 3004 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3005 sqlite3ReleaseTempReg(pParse, r3); 3006 sqlite3ReleaseTempReg(pParse, r4); 3007 break; 3008 } 3009 case TK_COLLATE: 3010 case TK_UPLUS: { 3011 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3012 break; 3013 } 3014 3015 case TK_TRIGGER: { 3016 /* If the opcode is TK_TRIGGER, then the expression is a reference 3017 ** to a column in the new.* or old.* pseudo-tables available to 3018 ** trigger programs. In this case Expr.iTable is set to 1 for the 3019 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3020 ** is set to the column of the pseudo-table to read, or to -1 to 3021 ** read the rowid field. 3022 ** 3023 ** The expression is implemented using an OP_Param opcode. The p1 3024 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3025 ** to reference another column of the old.* pseudo-table, where 3026 ** i is the index of the column. For a new.rowid reference, p1 is 3027 ** set to (n+1), where n is the number of columns in each pseudo-table. 3028 ** For a reference to any other column in the new.* pseudo-table, p1 3029 ** is set to (n+2+i), where n and i are as defined previously. For 3030 ** example, if the table on which triggers are being fired is 3031 ** declared as: 3032 ** 3033 ** CREATE TABLE t1(a, b); 3034 ** 3035 ** Then p1 is interpreted as follows: 3036 ** 3037 ** p1==0 -> old.rowid p1==3 -> new.rowid 3038 ** p1==1 -> old.a p1==4 -> new.a 3039 ** p1==2 -> old.b p1==5 -> new.b 3040 */ 3041 Table *pTab = pExpr->pTab; 3042 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3043 3044 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3045 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3046 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3047 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3048 3049 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3050 VdbeComment((v, "%s.%s -> $%d", 3051 (pExpr->iTable ? "new" : "old"), 3052 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3053 target 3054 )); 3055 3056 #ifndef SQLITE_OMIT_FLOATING_POINT 3057 /* If the column has REAL affinity, it may currently be stored as an 3058 ** integer. Use OP_RealAffinity to make sure it is really real. 3059 ** 3060 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3061 ** floating point when extracting it from the record. */ 3062 if( pExpr->iColumn>=0 3063 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3064 ){ 3065 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3066 } 3067 #endif 3068 break; 3069 } 3070 3071 3072 /* 3073 ** Form A: 3074 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3075 ** 3076 ** Form B: 3077 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3078 ** 3079 ** Form A is can be transformed into the equivalent form B as follows: 3080 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3081 ** WHEN x=eN THEN rN ELSE y END 3082 ** 3083 ** X (if it exists) is in pExpr->pLeft. 3084 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3085 ** odd. The Y is also optional. If the number of elements in x.pList 3086 ** is even, then Y is omitted and the "otherwise" result is NULL. 3087 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3088 ** 3089 ** The result of the expression is the Ri for the first matching Ei, 3090 ** or if there is no matching Ei, the ELSE term Y, or if there is 3091 ** no ELSE term, NULL. 3092 */ 3093 default: assert( op==TK_CASE ); { 3094 int endLabel; /* GOTO label for end of CASE stmt */ 3095 int nextCase; /* GOTO label for next WHEN clause */ 3096 int nExpr; /* 2x number of WHEN terms */ 3097 int i; /* Loop counter */ 3098 ExprList *pEList; /* List of WHEN terms */ 3099 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3100 Expr opCompare; /* The X==Ei expression */ 3101 Expr *pX; /* The X expression */ 3102 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3103 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3104 3105 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3106 assert(pExpr->x.pList->nExpr > 0); 3107 pEList = pExpr->x.pList; 3108 aListelem = pEList->a; 3109 nExpr = pEList->nExpr; 3110 endLabel = sqlite3VdbeMakeLabel(v); 3111 if( (pX = pExpr->pLeft)!=0 ){ 3112 tempX = *pX; 3113 testcase( pX->op==TK_COLUMN ); 3114 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3115 testcase( regFree1==0 ); 3116 opCompare.op = TK_EQ; 3117 opCompare.pLeft = &tempX; 3118 pTest = &opCompare; 3119 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3120 ** The value in regFree1 might get SCopy-ed into the file result. 3121 ** So make sure that the regFree1 register is not reused for other 3122 ** purposes and possibly overwritten. */ 3123 regFree1 = 0; 3124 } 3125 for(i=0; i<nExpr-1; i=i+2){ 3126 sqlite3ExprCachePush(pParse); 3127 if( pX ){ 3128 assert( pTest!=0 ); 3129 opCompare.pRight = aListelem[i].pExpr; 3130 }else{ 3131 pTest = aListelem[i].pExpr; 3132 } 3133 nextCase = sqlite3VdbeMakeLabel(v); 3134 testcase( pTest->op==TK_COLUMN ); 3135 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3136 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3137 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3138 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 3139 sqlite3ExprCachePop(pParse); 3140 sqlite3VdbeResolveLabel(v, nextCase); 3141 } 3142 if( (nExpr&1)!=0 ){ 3143 sqlite3ExprCachePush(pParse); 3144 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3145 sqlite3ExprCachePop(pParse); 3146 }else{ 3147 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3148 } 3149 assert( db->mallocFailed || pParse->nErr>0 3150 || pParse->iCacheLevel==iCacheLevel ); 3151 sqlite3VdbeResolveLabel(v, endLabel); 3152 break; 3153 } 3154 #ifndef SQLITE_OMIT_TRIGGER 3155 case TK_RAISE: { 3156 assert( pExpr->affinity==OE_Rollback 3157 || pExpr->affinity==OE_Abort 3158 || pExpr->affinity==OE_Fail 3159 || pExpr->affinity==OE_Ignore 3160 ); 3161 if( !pParse->pTriggerTab ){ 3162 sqlite3ErrorMsg(pParse, 3163 "RAISE() may only be used within a trigger-program"); 3164 return 0; 3165 } 3166 if( pExpr->affinity==OE_Abort ){ 3167 sqlite3MayAbort(pParse); 3168 } 3169 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3170 if( pExpr->affinity==OE_Ignore ){ 3171 sqlite3VdbeAddOp4( 3172 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3173 VdbeCoverage(v); 3174 }else{ 3175 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3176 pExpr->affinity, pExpr->u.zToken, 0, 0); 3177 } 3178 3179 break; 3180 } 3181 #endif 3182 } 3183 sqlite3ReleaseTempReg(pParse, regFree1); 3184 sqlite3ReleaseTempReg(pParse, regFree2); 3185 return inReg; 3186 } 3187 3188 /* 3189 ** Factor out the code of the given expression to initialization time. 3190 */ 3191 void sqlite3ExprCodeAtInit( 3192 Parse *pParse, /* Parsing context */ 3193 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3194 int regDest, /* Store the value in this register */ 3195 u8 reusable /* True if this expression is reusable */ 3196 ){ 3197 ExprList *p; 3198 assert( ConstFactorOk(pParse) ); 3199 p = pParse->pConstExpr; 3200 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3201 p = sqlite3ExprListAppend(pParse, p, pExpr); 3202 if( p ){ 3203 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3204 pItem->u.iConstExprReg = regDest; 3205 pItem->reusable = reusable; 3206 } 3207 pParse->pConstExpr = p; 3208 } 3209 3210 /* 3211 ** Generate code to evaluate an expression and store the results 3212 ** into a register. Return the register number where the results 3213 ** are stored. 3214 ** 3215 ** If the register is a temporary register that can be deallocated, 3216 ** then write its number into *pReg. If the result register is not 3217 ** a temporary, then set *pReg to zero. 3218 ** 3219 ** If pExpr is a constant, then this routine might generate this 3220 ** code to fill the register in the initialization section of the 3221 ** VDBE program, in order to factor it out of the evaluation loop. 3222 */ 3223 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3224 int r2; 3225 pExpr = sqlite3ExprSkipCollate(pExpr); 3226 if( ConstFactorOk(pParse) 3227 && pExpr->op!=TK_REGISTER 3228 && sqlite3ExprIsConstantNotJoin(pExpr) 3229 ){ 3230 ExprList *p = pParse->pConstExpr; 3231 int i; 3232 *pReg = 0; 3233 if( p ){ 3234 struct ExprList_item *pItem; 3235 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3236 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3237 return pItem->u.iConstExprReg; 3238 } 3239 } 3240 } 3241 r2 = ++pParse->nMem; 3242 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3243 }else{ 3244 int r1 = sqlite3GetTempReg(pParse); 3245 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3246 if( r2==r1 ){ 3247 *pReg = r1; 3248 }else{ 3249 sqlite3ReleaseTempReg(pParse, r1); 3250 *pReg = 0; 3251 } 3252 } 3253 return r2; 3254 } 3255 3256 /* 3257 ** Generate code that will evaluate expression pExpr and store the 3258 ** results in register target. The results are guaranteed to appear 3259 ** in register target. 3260 */ 3261 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3262 int inReg; 3263 3264 assert( target>0 && target<=pParse->nMem ); 3265 if( pExpr && pExpr->op==TK_REGISTER ){ 3266 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3267 }else{ 3268 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3269 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3270 if( inReg!=target && pParse->pVdbe ){ 3271 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3272 } 3273 } 3274 } 3275 3276 /* 3277 ** Generate code that will evaluate expression pExpr and store the 3278 ** results in register target. The results are guaranteed to appear 3279 ** in register target. If the expression is constant, then this routine 3280 ** might choose to code the expression at initialization time. 3281 */ 3282 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3283 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3284 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3285 }else{ 3286 sqlite3ExprCode(pParse, pExpr, target); 3287 } 3288 } 3289 3290 /* 3291 ** Generate code that evaluates the given expression and puts the result 3292 ** in register target. 3293 ** 3294 ** Also make a copy of the expression results into another "cache" register 3295 ** and modify the expression so that the next time it is evaluated, 3296 ** the result is a copy of the cache register. 3297 ** 3298 ** This routine is used for expressions that are used multiple 3299 ** times. They are evaluated once and the results of the expression 3300 ** are reused. 3301 */ 3302 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3303 Vdbe *v = pParse->pVdbe; 3304 int iMem; 3305 3306 assert( target>0 ); 3307 assert( pExpr->op!=TK_REGISTER ); 3308 sqlite3ExprCode(pParse, pExpr, target); 3309 iMem = ++pParse->nMem; 3310 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3311 exprToRegister(pExpr, iMem); 3312 } 3313 3314 #ifdef SQLITE_DEBUG 3315 /* 3316 ** Generate a human-readable explanation of an expression tree. 3317 */ 3318 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ 3319 const char *zBinOp = 0; /* Binary operator */ 3320 const char *zUniOp = 0; /* Unary operator */ 3321 pView = sqlite3TreeViewPush(pView, moreToFollow); 3322 if( pExpr==0 ){ 3323 sqlite3TreeViewLine(pView, "nil"); 3324 sqlite3TreeViewPop(pView); 3325 return; 3326 } 3327 switch( pExpr->op ){ 3328 case TK_AGG_COLUMN: { 3329 sqlite3TreeViewLine(pView, "AGG{%d:%d}", 3330 pExpr->iTable, pExpr->iColumn); 3331 break; 3332 } 3333 case TK_COLUMN: { 3334 if( pExpr->iTable<0 ){ 3335 /* This only happens when coding check constraints */ 3336 sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn); 3337 }else{ 3338 sqlite3TreeViewLine(pView, "{%d:%d}", 3339 pExpr->iTable, pExpr->iColumn); 3340 } 3341 break; 3342 } 3343 case TK_INTEGER: { 3344 if( pExpr->flags & EP_IntValue ){ 3345 sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); 3346 }else{ 3347 sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); 3348 } 3349 break; 3350 } 3351 #ifndef SQLITE_OMIT_FLOATING_POINT 3352 case TK_FLOAT: { 3353 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); 3354 break; 3355 } 3356 #endif 3357 case TK_STRING: { 3358 sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); 3359 break; 3360 } 3361 case TK_NULL: { 3362 sqlite3TreeViewLine(pView,"NULL"); 3363 break; 3364 } 3365 #ifndef SQLITE_OMIT_BLOB_LITERAL 3366 case TK_BLOB: { 3367 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); 3368 break; 3369 } 3370 #endif 3371 case TK_VARIABLE: { 3372 sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", 3373 pExpr->u.zToken, pExpr->iColumn); 3374 break; 3375 } 3376 case TK_REGISTER: { 3377 sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); 3378 break; 3379 } 3380 case TK_AS: { 3381 sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken); 3382 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3383 break; 3384 } 3385 case TK_ID: { 3386 sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken); 3387 break; 3388 } 3389 #ifndef SQLITE_OMIT_CAST 3390 case TK_CAST: { 3391 /* Expressions of the form: CAST(pLeft AS token) */ 3392 sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); 3393 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3394 break; 3395 } 3396 #endif /* SQLITE_OMIT_CAST */ 3397 case TK_LT: zBinOp = "LT"; break; 3398 case TK_LE: zBinOp = "LE"; break; 3399 case TK_GT: zBinOp = "GT"; break; 3400 case TK_GE: zBinOp = "GE"; break; 3401 case TK_NE: zBinOp = "NE"; break; 3402 case TK_EQ: zBinOp = "EQ"; break; 3403 case TK_IS: zBinOp = "IS"; break; 3404 case TK_ISNOT: zBinOp = "ISNOT"; break; 3405 case TK_AND: zBinOp = "AND"; break; 3406 case TK_OR: zBinOp = "OR"; break; 3407 case TK_PLUS: zBinOp = "ADD"; break; 3408 case TK_STAR: zBinOp = "MUL"; break; 3409 case TK_MINUS: zBinOp = "SUB"; break; 3410 case TK_REM: zBinOp = "REM"; break; 3411 case TK_BITAND: zBinOp = "BITAND"; break; 3412 case TK_BITOR: zBinOp = "BITOR"; break; 3413 case TK_SLASH: zBinOp = "DIV"; break; 3414 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3415 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3416 case TK_CONCAT: zBinOp = "CONCAT"; break; 3417 case TK_DOT: zBinOp = "DOT"; break; 3418 3419 case TK_UMINUS: zUniOp = "UMINUS"; break; 3420 case TK_UPLUS: zUniOp = "UPLUS"; break; 3421 case TK_BITNOT: zUniOp = "BITNOT"; break; 3422 case TK_NOT: zUniOp = "NOT"; break; 3423 case TK_ISNULL: zUniOp = "ISNULL"; break; 3424 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3425 3426 case TK_COLLATE: { 3427 sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken); 3428 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3429 break; 3430 } 3431 3432 case TK_AGG_FUNCTION: 3433 case TK_FUNCTION: { 3434 ExprList *pFarg; /* List of function arguments */ 3435 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3436 pFarg = 0; 3437 }else{ 3438 pFarg = pExpr->x.pList; 3439 } 3440 if( pExpr->op==TK_AGG_FUNCTION ){ 3441 sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", 3442 pExpr->op2, pExpr->u.zToken); 3443 }else{ 3444 sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken); 3445 } 3446 if( pFarg ){ 3447 sqlite3TreeViewExprList(pView, pFarg, 0, 0); 3448 } 3449 break; 3450 } 3451 #ifndef SQLITE_OMIT_SUBQUERY 3452 case TK_EXISTS: { 3453 sqlite3TreeViewLine(pView, "EXISTS-expr"); 3454 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3455 break; 3456 } 3457 case TK_SELECT: { 3458 sqlite3TreeViewLine(pView, "SELECT-expr"); 3459 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3460 break; 3461 } 3462 case TK_IN: { 3463 sqlite3TreeViewLine(pView, "IN"); 3464 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3465 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3466 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3467 }else{ 3468 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); 3469 } 3470 break; 3471 } 3472 #endif /* SQLITE_OMIT_SUBQUERY */ 3473 3474 /* 3475 ** x BETWEEN y AND z 3476 ** 3477 ** This is equivalent to 3478 ** 3479 ** x>=y AND x<=z 3480 ** 3481 ** X is stored in pExpr->pLeft. 3482 ** Y is stored in pExpr->pList->a[0].pExpr. 3483 ** Z is stored in pExpr->pList->a[1].pExpr. 3484 */ 3485 case TK_BETWEEN: { 3486 Expr *pX = pExpr->pLeft; 3487 Expr *pY = pExpr->x.pList->a[0].pExpr; 3488 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3489 sqlite3TreeViewLine(pView, "BETWEEN"); 3490 sqlite3TreeViewExpr(pView, pX, 1); 3491 sqlite3TreeViewExpr(pView, pY, 1); 3492 sqlite3TreeViewExpr(pView, pZ, 0); 3493 break; 3494 } 3495 case TK_TRIGGER: { 3496 /* If the opcode is TK_TRIGGER, then the expression is a reference 3497 ** to a column in the new.* or old.* pseudo-tables available to 3498 ** trigger programs. In this case Expr.iTable is set to 1 for the 3499 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3500 ** is set to the column of the pseudo-table to read, or to -1 to 3501 ** read the rowid field. 3502 */ 3503 sqlite3TreeViewLine(pView, "%s(%d)", 3504 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3505 break; 3506 } 3507 case TK_CASE: { 3508 sqlite3TreeViewLine(pView, "CASE"); 3509 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3510 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); 3511 break; 3512 } 3513 #ifndef SQLITE_OMIT_TRIGGER 3514 case TK_RAISE: { 3515 const char *zType = "unk"; 3516 switch( pExpr->affinity ){ 3517 case OE_Rollback: zType = "rollback"; break; 3518 case OE_Abort: zType = "abort"; break; 3519 case OE_Fail: zType = "fail"; break; 3520 case OE_Ignore: zType = "ignore"; break; 3521 } 3522 sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); 3523 break; 3524 } 3525 #endif 3526 default: { 3527 sqlite3TreeViewLine(pView, "op=%d", pExpr->op); 3528 break; 3529 } 3530 } 3531 if( zBinOp ){ 3532 sqlite3TreeViewLine(pView, "%s", zBinOp); 3533 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3534 sqlite3TreeViewExpr(pView, pExpr->pRight, 0); 3535 }else if( zUniOp ){ 3536 sqlite3TreeViewLine(pView, "%s", zUniOp); 3537 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3538 } 3539 sqlite3TreeViewPop(pView); 3540 } 3541 #endif /* SQLITE_DEBUG */ 3542 3543 #ifdef SQLITE_DEBUG 3544 /* 3545 ** Generate a human-readable explanation of an expression list. 3546 */ 3547 void sqlite3TreeViewExprList( 3548 TreeView *pView, 3549 const ExprList *pList, 3550 u8 moreToFollow, 3551 const char *zLabel 3552 ){ 3553 int i; 3554 pView = sqlite3TreeViewPush(pView, moreToFollow); 3555 if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; 3556 if( pList==0 ){ 3557 sqlite3TreeViewLine(pView, "%s (empty)", zLabel); 3558 }else{ 3559 sqlite3TreeViewLine(pView, "%s", zLabel); 3560 for(i=0; i<pList->nExpr; i++){ 3561 sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1); 3562 #if 0 3563 if( pList->a[i].zName ){ 3564 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3565 } 3566 if( pList->a[i].bSpanIsTab ){ 3567 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3568 } 3569 #endif 3570 } 3571 } 3572 sqlite3TreeViewPop(pView); 3573 } 3574 #endif /* SQLITE_DEBUG */ 3575 3576 /* 3577 ** Generate code that pushes the value of every element of the given 3578 ** expression list into a sequence of registers beginning at target. 3579 ** 3580 ** Return the number of elements evaluated. 3581 ** 3582 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3583 ** filled using OP_SCopy. OP_Copy must be used instead. 3584 ** 3585 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3586 ** factored out into initialization code. 3587 */ 3588 int sqlite3ExprCodeExprList( 3589 Parse *pParse, /* Parsing context */ 3590 ExprList *pList, /* The expression list to be coded */ 3591 int target, /* Where to write results */ 3592 u8 flags /* SQLITE_ECEL_* flags */ 3593 ){ 3594 struct ExprList_item *pItem; 3595 int i, n; 3596 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3597 assert( pList!=0 ); 3598 assert( target>0 ); 3599 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3600 n = pList->nExpr; 3601 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3602 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3603 Expr *pExpr = pItem->pExpr; 3604 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3605 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3606 }else{ 3607 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3608 if( inReg!=target+i ){ 3609 VdbeOp *pOp; 3610 Vdbe *v = pParse->pVdbe; 3611 if( copyOp==OP_Copy 3612 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3613 && pOp->p1+pOp->p3+1==inReg 3614 && pOp->p2+pOp->p3+1==target+i 3615 ){ 3616 pOp->p3++; 3617 }else{ 3618 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3619 } 3620 } 3621 } 3622 } 3623 return n; 3624 } 3625 3626 /* 3627 ** Generate code for a BETWEEN operator. 3628 ** 3629 ** x BETWEEN y AND z 3630 ** 3631 ** The above is equivalent to 3632 ** 3633 ** x>=y AND x<=z 3634 ** 3635 ** Code it as such, taking care to do the common subexpression 3636 ** elimination of x. 3637 */ 3638 static void exprCodeBetween( 3639 Parse *pParse, /* Parsing and code generating context */ 3640 Expr *pExpr, /* The BETWEEN expression */ 3641 int dest, /* Jump here if the jump is taken */ 3642 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3643 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3644 ){ 3645 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3646 Expr compLeft; /* The x>=y term */ 3647 Expr compRight; /* The x<=z term */ 3648 Expr exprX; /* The x subexpression */ 3649 int regFree1 = 0; /* Temporary use register */ 3650 3651 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3652 exprX = *pExpr->pLeft; 3653 exprAnd.op = TK_AND; 3654 exprAnd.pLeft = &compLeft; 3655 exprAnd.pRight = &compRight; 3656 compLeft.op = TK_GE; 3657 compLeft.pLeft = &exprX; 3658 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3659 compRight.op = TK_LE; 3660 compRight.pLeft = &exprX; 3661 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3662 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3663 if( jumpIfTrue ){ 3664 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3665 }else{ 3666 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3667 } 3668 sqlite3ReleaseTempReg(pParse, regFree1); 3669 3670 /* Ensure adequate test coverage */ 3671 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3672 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3673 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3674 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3675 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3676 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3677 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3678 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3679 } 3680 3681 /* 3682 ** Generate code for a boolean expression such that a jump is made 3683 ** to the label "dest" if the expression is true but execution 3684 ** continues straight thru if the expression is false. 3685 ** 3686 ** If the expression evaluates to NULL (neither true nor false), then 3687 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3688 ** 3689 ** This code depends on the fact that certain token values (ex: TK_EQ) 3690 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3691 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3692 ** the make process cause these values to align. Assert()s in the code 3693 ** below verify that the numbers are aligned correctly. 3694 */ 3695 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3696 Vdbe *v = pParse->pVdbe; 3697 int op = 0; 3698 int regFree1 = 0; 3699 int regFree2 = 0; 3700 int r1, r2; 3701 3702 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3703 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3704 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3705 op = pExpr->op; 3706 switch( op ){ 3707 case TK_AND: { 3708 int d2 = sqlite3VdbeMakeLabel(v); 3709 testcase( jumpIfNull==0 ); 3710 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3711 sqlite3ExprCachePush(pParse); 3712 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3713 sqlite3VdbeResolveLabel(v, d2); 3714 sqlite3ExprCachePop(pParse); 3715 break; 3716 } 3717 case TK_OR: { 3718 testcase( jumpIfNull==0 ); 3719 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3720 sqlite3ExprCachePush(pParse); 3721 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3722 sqlite3ExprCachePop(pParse); 3723 break; 3724 } 3725 case TK_NOT: { 3726 testcase( jumpIfNull==0 ); 3727 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3728 break; 3729 } 3730 case TK_LT: 3731 case TK_LE: 3732 case TK_GT: 3733 case TK_GE: 3734 case TK_NE: 3735 case TK_EQ: { 3736 testcase( jumpIfNull==0 ); 3737 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3738 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3739 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3740 r1, r2, dest, jumpIfNull); 3741 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3742 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3743 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3744 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3745 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3746 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3747 testcase( regFree1==0 ); 3748 testcase( regFree2==0 ); 3749 break; 3750 } 3751 case TK_IS: 3752 case TK_ISNOT: { 3753 testcase( op==TK_IS ); 3754 testcase( op==TK_ISNOT ); 3755 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3756 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3757 op = (op==TK_IS) ? TK_EQ : TK_NE; 3758 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3759 r1, r2, dest, SQLITE_NULLEQ); 3760 VdbeCoverageIf(v, op==TK_EQ); 3761 VdbeCoverageIf(v, op==TK_NE); 3762 testcase( regFree1==0 ); 3763 testcase( regFree2==0 ); 3764 break; 3765 } 3766 case TK_ISNULL: 3767 case TK_NOTNULL: { 3768 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3769 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3770 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3771 sqlite3VdbeAddOp2(v, op, r1, dest); 3772 VdbeCoverageIf(v, op==TK_ISNULL); 3773 VdbeCoverageIf(v, op==TK_NOTNULL); 3774 testcase( regFree1==0 ); 3775 break; 3776 } 3777 case TK_BETWEEN: { 3778 testcase( jumpIfNull==0 ); 3779 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3780 break; 3781 } 3782 #ifndef SQLITE_OMIT_SUBQUERY 3783 case TK_IN: { 3784 int destIfFalse = sqlite3VdbeMakeLabel(v); 3785 int destIfNull = jumpIfNull ? dest : destIfFalse; 3786 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3787 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3788 sqlite3VdbeResolveLabel(v, destIfFalse); 3789 break; 3790 } 3791 #endif 3792 default: { 3793 if( exprAlwaysTrue(pExpr) ){ 3794 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3795 }else if( exprAlwaysFalse(pExpr) ){ 3796 /* No-op */ 3797 }else{ 3798 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3799 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3800 VdbeCoverage(v); 3801 testcase( regFree1==0 ); 3802 testcase( jumpIfNull==0 ); 3803 } 3804 break; 3805 } 3806 } 3807 sqlite3ReleaseTempReg(pParse, regFree1); 3808 sqlite3ReleaseTempReg(pParse, regFree2); 3809 } 3810 3811 /* 3812 ** Generate code for a boolean expression such that a jump is made 3813 ** to the label "dest" if the expression is false but execution 3814 ** continues straight thru if the expression is true. 3815 ** 3816 ** If the expression evaluates to NULL (neither true nor false) then 3817 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3818 ** is 0. 3819 */ 3820 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3821 Vdbe *v = pParse->pVdbe; 3822 int op = 0; 3823 int regFree1 = 0; 3824 int regFree2 = 0; 3825 int r1, r2; 3826 3827 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3828 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3829 if( pExpr==0 ) return; 3830 3831 /* The value of pExpr->op and op are related as follows: 3832 ** 3833 ** pExpr->op op 3834 ** --------- ---------- 3835 ** TK_ISNULL OP_NotNull 3836 ** TK_NOTNULL OP_IsNull 3837 ** TK_NE OP_Eq 3838 ** TK_EQ OP_Ne 3839 ** TK_GT OP_Le 3840 ** TK_LE OP_Gt 3841 ** TK_GE OP_Lt 3842 ** TK_LT OP_Ge 3843 ** 3844 ** For other values of pExpr->op, op is undefined and unused. 3845 ** The value of TK_ and OP_ constants are arranged such that we 3846 ** can compute the mapping above using the following expression. 3847 ** Assert()s verify that the computation is correct. 3848 */ 3849 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3850 3851 /* Verify correct alignment of TK_ and OP_ constants 3852 */ 3853 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3854 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3855 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3856 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3857 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3858 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3859 assert( pExpr->op!=TK_GT || op==OP_Le ); 3860 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3861 3862 switch( pExpr->op ){ 3863 case TK_AND: { 3864 testcase( jumpIfNull==0 ); 3865 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3866 sqlite3ExprCachePush(pParse); 3867 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3868 sqlite3ExprCachePop(pParse); 3869 break; 3870 } 3871 case TK_OR: { 3872 int d2 = sqlite3VdbeMakeLabel(v); 3873 testcase( jumpIfNull==0 ); 3874 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3875 sqlite3ExprCachePush(pParse); 3876 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3877 sqlite3VdbeResolveLabel(v, d2); 3878 sqlite3ExprCachePop(pParse); 3879 break; 3880 } 3881 case TK_NOT: { 3882 testcase( jumpIfNull==0 ); 3883 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3884 break; 3885 } 3886 case TK_LT: 3887 case TK_LE: 3888 case TK_GT: 3889 case TK_GE: 3890 case TK_NE: 3891 case TK_EQ: { 3892 testcase( jumpIfNull==0 ); 3893 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3894 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3895 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3896 r1, r2, dest, jumpIfNull); 3897 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3898 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3899 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3900 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3901 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3902 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3903 testcase( regFree1==0 ); 3904 testcase( regFree2==0 ); 3905 break; 3906 } 3907 case TK_IS: 3908 case TK_ISNOT: { 3909 testcase( pExpr->op==TK_IS ); 3910 testcase( pExpr->op==TK_ISNOT ); 3911 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3912 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3913 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3914 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3915 r1, r2, dest, SQLITE_NULLEQ); 3916 VdbeCoverageIf(v, op==TK_EQ); 3917 VdbeCoverageIf(v, op==TK_NE); 3918 testcase( regFree1==0 ); 3919 testcase( regFree2==0 ); 3920 break; 3921 } 3922 case TK_ISNULL: 3923 case TK_NOTNULL: { 3924 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3925 sqlite3VdbeAddOp2(v, op, r1, dest); 3926 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3927 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3928 testcase( regFree1==0 ); 3929 break; 3930 } 3931 case TK_BETWEEN: { 3932 testcase( jumpIfNull==0 ); 3933 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3934 break; 3935 } 3936 #ifndef SQLITE_OMIT_SUBQUERY 3937 case TK_IN: { 3938 if( jumpIfNull ){ 3939 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3940 }else{ 3941 int destIfNull = sqlite3VdbeMakeLabel(v); 3942 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3943 sqlite3VdbeResolveLabel(v, destIfNull); 3944 } 3945 break; 3946 } 3947 #endif 3948 default: { 3949 if( exprAlwaysFalse(pExpr) ){ 3950 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3951 }else if( exprAlwaysTrue(pExpr) ){ 3952 /* no-op */ 3953 }else{ 3954 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3955 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3956 VdbeCoverage(v); 3957 testcase( regFree1==0 ); 3958 testcase( jumpIfNull==0 ); 3959 } 3960 break; 3961 } 3962 } 3963 sqlite3ReleaseTempReg(pParse, regFree1); 3964 sqlite3ReleaseTempReg(pParse, regFree2); 3965 } 3966 3967 /* 3968 ** Do a deep comparison of two expression trees. Return 0 if the two 3969 ** expressions are completely identical. Return 1 if they differ only 3970 ** by a COLLATE operator at the top level. Return 2 if there are differences 3971 ** other than the top-level COLLATE operator. 3972 ** 3973 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3974 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3975 ** 3976 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3977 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3978 ** 3979 ** Sometimes this routine will return 2 even if the two expressions 3980 ** really are equivalent. If we cannot prove that the expressions are 3981 ** identical, we return 2 just to be safe. So if this routine 3982 ** returns 2, then you do not really know for certain if the two 3983 ** expressions are the same. But if you get a 0 or 1 return, then you 3984 ** can be sure the expressions are the same. In the places where 3985 ** this routine is used, it does not hurt to get an extra 2 - that 3986 ** just might result in some slightly slower code. But returning 3987 ** an incorrect 0 or 1 could lead to a malfunction. 3988 */ 3989 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3990 u32 combinedFlags; 3991 if( pA==0 || pB==0 ){ 3992 return pB==pA ? 0 : 2; 3993 } 3994 combinedFlags = pA->flags | pB->flags; 3995 if( combinedFlags & EP_IntValue ){ 3996 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3997 return 0; 3998 } 3999 return 2; 4000 } 4001 if( pA->op!=pB->op ){ 4002 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 4003 return 1; 4004 } 4005 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 4006 return 1; 4007 } 4008 return 2; 4009 } 4010 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 4011 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4012 return pA->op==TK_COLLATE ? 1 : 2; 4013 } 4014 } 4015 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4016 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4017 if( combinedFlags & EP_xIsSelect ) return 2; 4018 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 4019 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 4020 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4021 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4022 if( pA->iColumn!=pB->iColumn ) return 2; 4023 if( pA->iTable!=pB->iTable 4024 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4025 } 4026 } 4027 return 0; 4028 } 4029 4030 /* 4031 ** Compare two ExprList objects. Return 0 if they are identical and 4032 ** non-zero if they differ in any way. 4033 ** 4034 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4035 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4036 ** 4037 ** This routine might return non-zero for equivalent ExprLists. The 4038 ** only consequence will be disabled optimizations. But this routine 4039 ** must never return 0 if the two ExprList objects are different, or 4040 ** a malfunction will result. 4041 ** 4042 ** Two NULL pointers are considered to be the same. But a NULL pointer 4043 ** always differs from a non-NULL pointer. 4044 */ 4045 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4046 int i; 4047 if( pA==0 && pB==0 ) return 0; 4048 if( pA==0 || pB==0 ) return 1; 4049 if( pA->nExpr!=pB->nExpr ) return 1; 4050 for(i=0; i<pA->nExpr; i++){ 4051 Expr *pExprA = pA->a[i].pExpr; 4052 Expr *pExprB = pB->a[i].pExpr; 4053 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4054 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 4055 } 4056 return 0; 4057 } 4058 4059 /* 4060 ** Return true if we can prove the pE2 will always be true if pE1 is 4061 ** true. Return false if we cannot complete the proof or if pE2 might 4062 ** be false. Examples: 4063 ** 4064 ** pE1: x==5 pE2: x==5 Result: true 4065 ** pE1: x>0 pE2: x==5 Result: false 4066 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4067 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4068 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4069 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4070 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4071 ** 4072 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4073 ** Expr.iTable<0 then assume a table number given by iTab. 4074 ** 4075 ** When in doubt, return false. Returning true might give a performance 4076 ** improvement. Returning false might cause a performance reduction, but 4077 ** it will always give the correct answer and is hence always safe. 4078 */ 4079 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4080 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4081 return 1; 4082 } 4083 if( pE2->op==TK_OR 4084 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4085 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4086 ){ 4087 return 1; 4088 } 4089 if( pE2->op==TK_NOTNULL 4090 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 4091 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 4092 ){ 4093 return 1; 4094 } 4095 return 0; 4096 } 4097 4098 /* 4099 ** An instance of the following structure is used by the tree walker 4100 ** to count references to table columns in the arguments of an 4101 ** aggregate function, in order to implement the 4102 ** sqlite3FunctionThisSrc() routine. 4103 */ 4104 struct SrcCount { 4105 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4106 int nThis; /* Number of references to columns in pSrcList */ 4107 int nOther; /* Number of references to columns in other FROM clauses */ 4108 }; 4109 4110 /* 4111 ** Count the number of references to columns. 4112 */ 4113 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4114 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4115 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4116 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4117 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4118 ** NEVER() will need to be removed. */ 4119 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4120 int i; 4121 struct SrcCount *p = pWalker->u.pSrcCount; 4122 SrcList *pSrc = p->pSrc; 4123 int nSrc = pSrc ? pSrc->nSrc : 0; 4124 for(i=0; i<nSrc; i++){ 4125 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4126 } 4127 if( i<nSrc ){ 4128 p->nThis++; 4129 }else{ 4130 p->nOther++; 4131 } 4132 } 4133 return WRC_Continue; 4134 } 4135 4136 /* 4137 ** Determine if any of the arguments to the pExpr Function reference 4138 ** pSrcList. Return true if they do. Also return true if the function 4139 ** has no arguments or has only constant arguments. Return false if pExpr 4140 ** references columns but not columns of tables found in pSrcList. 4141 */ 4142 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4143 Walker w; 4144 struct SrcCount cnt; 4145 assert( pExpr->op==TK_AGG_FUNCTION ); 4146 memset(&w, 0, sizeof(w)); 4147 w.xExprCallback = exprSrcCount; 4148 w.u.pSrcCount = &cnt; 4149 cnt.pSrc = pSrcList; 4150 cnt.nThis = 0; 4151 cnt.nOther = 0; 4152 sqlite3WalkExprList(&w, pExpr->x.pList); 4153 return cnt.nThis>0 || cnt.nOther==0; 4154 } 4155 4156 /* 4157 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4158 ** the new element. Return a negative number if malloc fails. 4159 */ 4160 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4161 int i; 4162 pInfo->aCol = sqlite3ArrayAllocate( 4163 db, 4164 pInfo->aCol, 4165 sizeof(pInfo->aCol[0]), 4166 &pInfo->nColumn, 4167 &i 4168 ); 4169 return i; 4170 } 4171 4172 /* 4173 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4174 ** the new element. Return a negative number if malloc fails. 4175 */ 4176 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4177 int i; 4178 pInfo->aFunc = sqlite3ArrayAllocate( 4179 db, 4180 pInfo->aFunc, 4181 sizeof(pInfo->aFunc[0]), 4182 &pInfo->nFunc, 4183 &i 4184 ); 4185 return i; 4186 } 4187 4188 /* 4189 ** This is the xExprCallback for a tree walker. It is used to 4190 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4191 ** for additional information. 4192 */ 4193 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4194 int i; 4195 NameContext *pNC = pWalker->u.pNC; 4196 Parse *pParse = pNC->pParse; 4197 SrcList *pSrcList = pNC->pSrcList; 4198 AggInfo *pAggInfo = pNC->pAggInfo; 4199 4200 switch( pExpr->op ){ 4201 case TK_AGG_COLUMN: 4202 case TK_COLUMN: { 4203 testcase( pExpr->op==TK_AGG_COLUMN ); 4204 testcase( pExpr->op==TK_COLUMN ); 4205 /* Check to see if the column is in one of the tables in the FROM 4206 ** clause of the aggregate query */ 4207 if( ALWAYS(pSrcList!=0) ){ 4208 struct SrcList_item *pItem = pSrcList->a; 4209 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4210 struct AggInfo_col *pCol; 4211 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4212 if( pExpr->iTable==pItem->iCursor ){ 4213 /* If we reach this point, it means that pExpr refers to a table 4214 ** that is in the FROM clause of the aggregate query. 4215 ** 4216 ** Make an entry for the column in pAggInfo->aCol[] if there 4217 ** is not an entry there already. 4218 */ 4219 int k; 4220 pCol = pAggInfo->aCol; 4221 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4222 if( pCol->iTable==pExpr->iTable && 4223 pCol->iColumn==pExpr->iColumn ){ 4224 break; 4225 } 4226 } 4227 if( (k>=pAggInfo->nColumn) 4228 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4229 ){ 4230 pCol = &pAggInfo->aCol[k]; 4231 pCol->pTab = pExpr->pTab; 4232 pCol->iTable = pExpr->iTable; 4233 pCol->iColumn = pExpr->iColumn; 4234 pCol->iMem = ++pParse->nMem; 4235 pCol->iSorterColumn = -1; 4236 pCol->pExpr = pExpr; 4237 if( pAggInfo->pGroupBy ){ 4238 int j, n; 4239 ExprList *pGB = pAggInfo->pGroupBy; 4240 struct ExprList_item *pTerm = pGB->a; 4241 n = pGB->nExpr; 4242 for(j=0; j<n; j++, pTerm++){ 4243 Expr *pE = pTerm->pExpr; 4244 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4245 pE->iColumn==pExpr->iColumn ){ 4246 pCol->iSorterColumn = j; 4247 break; 4248 } 4249 } 4250 } 4251 if( pCol->iSorterColumn<0 ){ 4252 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4253 } 4254 } 4255 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4256 ** because it was there before or because we just created it). 4257 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4258 ** pAggInfo->aCol[] entry. 4259 */ 4260 ExprSetVVAProperty(pExpr, EP_NoReduce); 4261 pExpr->pAggInfo = pAggInfo; 4262 pExpr->op = TK_AGG_COLUMN; 4263 pExpr->iAgg = (i16)k; 4264 break; 4265 } /* endif pExpr->iTable==pItem->iCursor */ 4266 } /* end loop over pSrcList */ 4267 } 4268 return WRC_Prune; 4269 } 4270 case TK_AGG_FUNCTION: { 4271 if( (pNC->ncFlags & NC_InAggFunc)==0 4272 && pWalker->walkerDepth==pExpr->op2 4273 ){ 4274 /* Check to see if pExpr is a duplicate of another aggregate 4275 ** function that is already in the pAggInfo structure 4276 */ 4277 struct AggInfo_func *pItem = pAggInfo->aFunc; 4278 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4279 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4280 break; 4281 } 4282 } 4283 if( i>=pAggInfo->nFunc ){ 4284 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4285 */ 4286 u8 enc = ENC(pParse->db); 4287 i = addAggInfoFunc(pParse->db, pAggInfo); 4288 if( i>=0 ){ 4289 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4290 pItem = &pAggInfo->aFunc[i]; 4291 pItem->pExpr = pExpr; 4292 pItem->iMem = ++pParse->nMem; 4293 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4294 pItem->pFunc = sqlite3FindFunction(pParse->db, 4295 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4296 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4297 if( pExpr->flags & EP_Distinct ){ 4298 pItem->iDistinct = pParse->nTab++; 4299 }else{ 4300 pItem->iDistinct = -1; 4301 } 4302 } 4303 } 4304 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4305 */ 4306 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4307 ExprSetVVAProperty(pExpr, EP_NoReduce); 4308 pExpr->iAgg = (i16)i; 4309 pExpr->pAggInfo = pAggInfo; 4310 return WRC_Prune; 4311 }else{ 4312 return WRC_Continue; 4313 } 4314 } 4315 } 4316 return WRC_Continue; 4317 } 4318 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4319 UNUSED_PARAMETER(pWalker); 4320 UNUSED_PARAMETER(pSelect); 4321 return WRC_Continue; 4322 } 4323 4324 /* 4325 ** Analyze the pExpr expression looking for aggregate functions and 4326 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4327 ** points to. Additional entries are made on the AggInfo object as 4328 ** necessary. 4329 ** 4330 ** This routine should only be called after the expression has been 4331 ** analyzed by sqlite3ResolveExprNames(). 4332 */ 4333 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4334 Walker w; 4335 memset(&w, 0, sizeof(w)); 4336 w.xExprCallback = analyzeAggregate; 4337 w.xSelectCallback = analyzeAggregatesInSelect; 4338 w.u.pNC = pNC; 4339 assert( pNC->pSrcList!=0 ); 4340 sqlite3WalkExpr(&w, pExpr); 4341 } 4342 4343 /* 4344 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4345 ** expression list. Return the number of errors. 4346 ** 4347 ** If an error is found, the analysis is cut short. 4348 */ 4349 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4350 struct ExprList_item *pItem; 4351 int i; 4352 if( pList ){ 4353 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4354 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4355 } 4356 } 4357 } 4358 4359 /* 4360 ** Allocate a single new register for use to hold some intermediate result. 4361 */ 4362 int sqlite3GetTempReg(Parse *pParse){ 4363 if( pParse->nTempReg==0 ){ 4364 return ++pParse->nMem; 4365 } 4366 return pParse->aTempReg[--pParse->nTempReg]; 4367 } 4368 4369 /* 4370 ** Deallocate a register, making available for reuse for some other 4371 ** purpose. 4372 ** 4373 ** If a register is currently being used by the column cache, then 4374 ** the deallocation is deferred until the column cache line that uses 4375 ** the register becomes stale. 4376 */ 4377 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4378 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4379 int i; 4380 struct yColCache *p; 4381 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4382 if( p->iReg==iReg ){ 4383 p->tempReg = 1; 4384 return; 4385 } 4386 } 4387 pParse->aTempReg[pParse->nTempReg++] = iReg; 4388 } 4389 } 4390 4391 /* 4392 ** Allocate or deallocate a block of nReg consecutive registers 4393 */ 4394 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4395 int i, n; 4396 i = pParse->iRangeReg; 4397 n = pParse->nRangeReg; 4398 if( nReg<=n ){ 4399 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4400 pParse->iRangeReg += nReg; 4401 pParse->nRangeReg -= nReg; 4402 }else{ 4403 i = pParse->nMem+1; 4404 pParse->nMem += nReg; 4405 } 4406 return i; 4407 } 4408 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4409 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4410 if( nReg>pParse->nRangeReg ){ 4411 pParse->nRangeReg = nReg; 4412 pParse->iRangeReg = iReg; 4413 } 4414 } 4415 4416 /* 4417 ** Mark all temporary registers as being unavailable for reuse. 4418 */ 4419 void sqlite3ClearTempRegCache(Parse *pParse){ 4420 pParse->nTempReg = 0; 4421 pParse->nRangeReg = 0; 4422 } 4423