xref: /sqlite-3.40.0/src/expr.c (revision 21b7d2a9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   s.z = zC;
89   s.n = sqlite3Strlen30(s.z);
90   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92 
93 /*
94 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99     if( ExprHasProperty(pExpr, EP_Unlikely) ){
100       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101       assert( pExpr->x.pList->nExpr>0 );
102       assert( pExpr->op==TK_FUNCTION );
103       pExpr = pExpr->x.pList->a[0].pExpr;
104     }else{
105       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
106       pExpr = pExpr->pLeft;
107     }
108   }
109   return pExpr;
110 }
111 
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence.  Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122   sqlite3 *db = pParse->db;
123   CollSeq *pColl = 0;
124   Expr *p = pExpr;
125   while( p ){
126     int op = p->op;
127     if( p->flags & EP_Generic ) break;
128     if( op==TK_CAST || op==TK_UPLUS ){
129       p = p->pLeft;
130       continue;
131     }
132     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134       break;
135     }
136     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138      && p->pTab!=0
139     ){
140       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141       ** a TK_COLUMN but was previously evaluated and cached in a register */
142       int j = p->iColumn;
143       if( j>=0 ){
144         const char *zColl = p->pTab->aCol[j].zColl;
145         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146       }
147       break;
148     }
149     if( p->flags & EP_Collate ){
150       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151         p = p->pLeft;
152       }else{
153         Expr *pNext  = p->pRight;
154         /* The Expr.x union is never used at the same time as Expr.pRight */
155         assert( p->x.pList==0 || p->pRight==0 );
156         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
157         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
158         ** least one EP_Collate. Thus the following two ALWAYS. */
159         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160           int i;
161           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163               pNext = p->x.pList->a[i].pExpr;
164               break;
165             }
166           }
167         }
168         p = pNext;
169       }
170     }else{
171       break;
172     }
173   }
174   if( sqlite3CheckCollSeq(pParse, pColl) ){
175     pColl = 0;
176   }
177   return pColl;
178 }
179 
180 /*
181 ** pExpr is an operand of a comparison operator.  aff2 is the
182 ** type affinity of the other operand.  This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186   char aff1 = sqlite3ExprAffinity(pExpr);
187   if( aff1 && aff2 ){
188     /* Both sides of the comparison are columns. If one has numeric
189     ** affinity, use that. Otherwise use no affinity.
190     */
191     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192       return SQLITE_AFF_NUMERIC;
193     }else{
194       return SQLITE_AFF_NONE;
195     }
196   }else if( !aff1 && !aff2 ){
197     /* Neither side of the comparison is a column.  Compare the
198     ** results directly.
199     */
200     return SQLITE_AFF_NONE;
201   }else{
202     /* One side is a column, the other is not. Use the columns affinity. */
203     assert( aff1==0 || aff2==0 );
204     return (aff1 + aff2);
205   }
206 }
207 
208 /*
209 ** pExpr is a comparison operator.  Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213   char aff;
214   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217   assert( pExpr->pLeft );
218   aff = sqlite3ExprAffinity(pExpr->pLeft);
219   if( pExpr->pRight ){
220     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223   }else if( !aff ){
224     aff = SQLITE_AFF_NONE;
225   }
226   return aff;
227 }
228 
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236   char aff = comparisonAffinity(pExpr);
237   switch( aff ){
238     case SQLITE_AFF_NONE:
239       return 1;
240     case SQLITE_AFF_TEXT:
241       return idx_affinity==SQLITE_AFF_TEXT;
242     default:
243       return sqlite3IsNumericAffinity(idx_affinity);
244   }
245 }
246 
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254   return aff;
255 }
256 
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270   Parse *pParse,
271   Expr *pLeft,
272   Expr *pRight
273 ){
274   CollSeq *pColl;
275   assert( pLeft );
276   if( pLeft->flags & EP_Collate ){
277     pColl = sqlite3ExprCollSeq(pParse, pLeft);
278   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279     pColl = sqlite3ExprCollSeq(pParse, pRight);
280   }else{
281     pColl = sqlite3ExprCollSeq(pParse, pLeft);
282     if( !pColl ){
283       pColl = sqlite3ExprCollSeq(pParse, pRight);
284     }
285   }
286   return pColl;
287 }
288 
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293   Parse *pParse,    /* The parsing (and code generating) context */
294   Expr *pLeft,      /* The left operand */
295   Expr *pRight,     /* The right operand */
296   int opcode,       /* The comparison opcode */
297   int in1, int in2, /* Register holding operands */
298   int dest,         /* Jump here if true.  */
299   int jumpIfNull    /* If true, jump if either operand is NULL */
300 ){
301   int p5;
302   int addr;
303   CollSeq *p4;
304 
305   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308                            (void*)p4, P4_COLLSEQ);
309   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310   return addr;
311 }
312 
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320   int rc = SQLITE_OK;
321   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322   if( nHeight>mxHeight ){
323     sqlite3ErrorMsg(pParse,
324        "Expression tree is too large (maximum depth %d)", mxHeight
325     );
326     rc = SQLITE_ERROR;
327   }
328   return rc;
329 }
330 
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341   if( p ){
342     if( p->nHeight>*pnHeight ){
343       *pnHeight = p->nHeight;
344     }
345   }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348   if( p ){
349     int i;
350     for(i=0; i<p->nExpr; i++){
351       heightOfExpr(p->a[i].pExpr, pnHeight);
352     }
353   }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356   if( p ){
357     heightOfExpr(p->pWhere, pnHeight);
358     heightOfExpr(p->pHaving, pnHeight);
359     heightOfExpr(p->pLimit, pnHeight);
360     heightOfExpr(p->pOffset, pnHeight);
361     heightOfExprList(p->pEList, pnHeight);
362     heightOfExprList(p->pGroupBy, pnHeight);
363     heightOfExprList(p->pOrderBy, pnHeight);
364     heightOfSelect(p->pPrior, pnHeight);
365   }
366 }
367 
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379   int nHeight = 0;
380   heightOfExpr(p->pLeft, &nHeight);
381   heightOfExpr(p->pRight, &nHeight);
382   if( ExprHasProperty(p, EP_xIsSelect) ){
383     heightOfSelect(p->x.pSelect, &nHeight);
384   }else if( p->x.pList ){
385     heightOfExprList(p->x.pList, &nHeight);
386     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387   }
388   p->nHeight = nHeight + 1;
389 }
390 
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400   if( pParse->nErr ) return;
401   exprSetHeight(p);
402   sqlite3ExprCheckHeight(pParse, p->nHeight);
403 }
404 
405 /*
406 ** Return the maximum height of any expression tree referenced
407 ** by the select statement passed as an argument.
408 */
409 int sqlite3SelectExprHeight(Select *p){
410   int nHeight = 0;
411   heightOfSelect(p, &nHeight);
412   return nHeight;
413 }
414 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
415 /*
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into
417 ** Expr.flags.
418 */
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
420   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
421     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
422   }
423 }
424 #define exprSetHeight(y)
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
426 
427 /*
428 ** This routine is the core allocator for Expr nodes.
429 **
430 ** Construct a new expression node and return a pointer to it.  Memory
431 ** for this node and for the pToken argument is a single allocation
432 ** obtained from sqlite3DbMalloc().  The calling function
433 ** is responsible for making sure the node eventually gets freed.
434 **
435 ** If dequote is true, then the token (if it exists) is dequoted.
436 ** If dequote is false, no dequoting is performance.  The deQuote
437 ** parameter is ignored if pToken is NULL or if the token does not
438 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
439 ** then the EP_DblQuoted flag is set on the expression node.
440 **
441 ** Special case:  If op==TK_INTEGER and pToken points to a string that
442 ** can be translated into a 32-bit integer, then the token is not
443 ** stored in u.zToken.  Instead, the integer values is written
444 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
445 ** is allocated to hold the integer text and the dequote flag is ignored.
446 */
447 Expr *sqlite3ExprAlloc(
448   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
449   int op,                 /* Expression opcode */
450   const Token *pToken,    /* Token argument.  Might be NULL */
451   int dequote             /* True to dequote */
452 ){
453   Expr *pNew;
454   int nExtra = 0;
455   int iValue = 0;
456 
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     pNew->op = (u8)op;
467     pNew->iAgg = -1;
468     if( pToken ){
469       if( nExtra==0 ){
470         pNew->flags |= EP_IntValue;
471         pNew->u.iValue = iValue;
472       }else{
473         int c;
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && nExtra>=3
479              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
480           sqlite3Dequote(pNew->u.zToken);
481           if( c=='"' ) pNew->flags |= EP_DblQuoted;
482         }
483       }
484     }
485 #if SQLITE_MAX_EXPR_DEPTH>0
486     pNew->nHeight = 1;
487 #endif
488   }
489   return pNew;
490 }
491 
492 /*
493 ** Allocate a new expression node from a zero-terminated token that has
494 ** already been dequoted.
495 */
496 Expr *sqlite3Expr(
497   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
498   int op,                 /* Expression opcode */
499   const char *zToken      /* Token argument.  Might be NULL */
500 ){
501   Token x;
502   x.z = zToken;
503   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
504   return sqlite3ExprAlloc(db, op, &x, 0);
505 }
506 
507 /*
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
509 **
510 ** If pRoot==NULL that means that a memory allocation error has occurred.
511 ** In that case, delete the subtrees pLeft and pRight.
512 */
513 void sqlite3ExprAttachSubtrees(
514   sqlite3 *db,
515   Expr *pRoot,
516   Expr *pLeft,
517   Expr *pRight
518 ){
519   if( pRoot==0 ){
520     assert( db->mallocFailed );
521     sqlite3ExprDelete(db, pLeft);
522     sqlite3ExprDelete(db, pRight);
523   }else{
524     if( pRight ){
525       pRoot->pRight = pRight;
526       pRoot->flags |= EP_Propagate & pRight->flags;
527     }
528     if( pLeft ){
529       pRoot->pLeft = pLeft;
530       pRoot->flags |= EP_Propagate & pLeft->flags;
531     }
532     exprSetHeight(pRoot);
533   }
534 }
535 
536 /*
537 ** Allocate an Expr node which joins as many as two subtrees.
538 **
539 ** One or both of the subtrees can be NULL.  Return a pointer to the new
540 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
541 ** free the subtrees and return NULL.
542 */
543 Expr *sqlite3PExpr(
544   Parse *pParse,          /* Parsing context */
545   int op,                 /* Expression opcode */
546   Expr *pLeft,            /* Left operand */
547   Expr *pRight,           /* Right operand */
548   const Token *pToken     /* Argument token */
549 ){
550   Expr *p;
551   if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){
552     /* Take advantage of short-circuit false optimization for AND */
553     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
554   }else{
555     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
556     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
557   }
558   if( p ) {
559     sqlite3ExprCheckHeight(pParse, p->nHeight);
560   }
561   return p;
562 }
563 
564 /*
565 ** If the expression is always either TRUE or FALSE (respectively),
566 ** then return 1.  If one cannot determine the truth value of the
567 ** expression at compile-time return 0.
568 **
569 ** This is an optimization.  If is OK to return 0 here even if
570 ** the expression really is always false or false (a false negative).
571 ** But it is a bug to return 1 if the expression might have different
572 ** boolean values in different circumstances (a false positive.)
573 **
574 ** Note that if the expression is part of conditional for a
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not
576 ** is it true or false, so always return 0.
577 */
578 static int exprAlwaysTrue(Expr *p){
579   int v = 0;
580   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
581   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
582   return v!=0;
583 }
584 static int exprAlwaysFalse(Expr *p){
585   int v = 0;
586   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
587   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
588   return v==0;
589 }
590 
591 /*
592 ** Join two expressions using an AND operator.  If either expression is
593 ** NULL, then just return the other expression.
594 **
595 ** If one side or the other of the AND is known to be false, then instead
596 ** of returning an AND expression, just return a constant expression with
597 ** a value of false.
598 */
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
600   if( pLeft==0 ){
601     return pRight;
602   }else if( pRight==0 ){
603     return pLeft;
604   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
605     sqlite3ExprDelete(db, pLeft);
606     sqlite3ExprDelete(db, pRight);
607     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
608   }else{
609     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
610     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
611     return pNew;
612   }
613 }
614 
615 /*
616 ** Construct a new expression node for a function with multiple
617 ** arguments.
618 */
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
620   Expr *pNew;
621   sqlite3 *db = pParse->db;
622   assert( pToken );
623   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
624   if( pNew==0 ){
625     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
626     return 0;
627   }
628   pNew->x.pList = pList;
629   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
630   sqlite3ExprSetHeightAndFlags(pParse, pNew);
631   return pNew;
632 }
633 
634 /*
635 ** Assign a variable number to an expression that encodes a wildcard
636 ** in the original SQL statement.
637 **
638 ** Wildcards consisting of a single "?" are assigned the next sequential
639 ** variable number.
640 **
641 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
642 ** sure "nnn" is not too be to avoid a denial of service attack when
643 ** the SQL statement comes from an external source.
644 **
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
646 ** as the previous instance of the same wildcard.  Or if this is the first
647 ** instance of the wildcard, the next sequential variable number is
648 ** assigned.
649 */
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
651   sqlite3 *db = pParse->db;
652   const char *z;
653 
654   if( pExpr==0 ) return;
655   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
656   z = pExpr->u.zToken;
657   assert( z!=0 );
658   assert( z[0]!=0 );
659   if( z[1]==0 ){
660     /* Wildcard of the form "?".  Assign the next variable number */
661     assert( z[0]=='?' );
662     pExpr->iColumn = (ynVar)(++pParse->nVar);
663   }else{
664     ynVar x = 0;
665     u32 n = sqlite3Strlen30(z);
666     if( z[0]=='?' ){
667       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
668       ** use it as the variable number */
669       i64 i;
670       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
671       pExpr->iColumn = x = (ynVar)i;
672       testcase( i==0 );
673       testcase( i==1 );
674       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
675       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
676       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
677         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
678             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
679         x = 0;
680       }
681       if( i>pParse->nVar ){
682         pParse->nVar = (int)i;
683       }
684     }else{
685       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
686       ** number as the prior appearance of the same name, or if the name
687       ** has never appeared before, reuse the same variable number
688       */
689       ynVar i;
690       for(i=0; i<pParse->nzVar; i++){
691         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
692           pExpr->iColumn = x = (ynVar)i+1;
693           break;
694         }
695       }
696       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
697     }
698     if( x>0 ){
699       if( x>pParse->nzVar ){
700         char **a;
701         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
702         if( a==0 ) return;  /* Error reported through db->mallocFailed */
703         pParse->azVar = a;
704         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
705         pParse->nzVar = x;
706       }
707       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
708         sqlite3DbFree(db, pParse->azVar[x-1]);
709         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
710       }
711     }
712   }
713   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
714     sqlite3ErrorMsg(pParse, "too many SQL variables");
715   }
716 }
717 
718 /*
719 ** Recursively delete an expression tree.
720 */
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
722   if( p==0 ) return;
723   /* Sanity check: Assert that the IntValue is non-negative if it exists */
724   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
725   if( !ExprHasProperty(p, EP_TokenOnly) ){
726     /* The Expr.x union is never used at the same time as Expr.pRight */
727     assert( p->x.pList==0 || p->pRight==0 );
728     sqlite3ExprDelete(db, p->pLeft);
729     sqlite3ExprDelete(db, p->pRight);
730     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
731     if( ExprHasProperty(p, EP_xIsSelect) ){
732       sqlite3SelectDelete(db, p->x.pSelect);
733     }else{
734       sqlite3ExprListDelete(db, p->x.pList);
735     }
736   }
737   if( !ExprHasProperty(p, EP_Static) ){
738     sqlite3DbFree(db, p);
739   }
740 }
741 
742 /*
743 ** Return the number of bytes allocated for the expression structure
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
746 */
747 static int exprStructSize(Expr *p){
748   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
749   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
750   return EXPR_FULLSIZE;
751 }
752 
753 /*
754 ** The dupedExpr*Size() routines each return the number of bytes required
755 ** to store a copy of an expression or expression tree.  They differ in
756 ** how much of the tree is measured.
757 **
758 **     dupedExprStructSize()     Size of only the Expr structure
759 **     dupedExprNodeSize()       Size of Expr + space for token
760 **     dupedExprSize()           Expr + token + subtree components
761 **
762 ***************************************************************************
763 **
764 ** The dupedExprStructSize() function returns two values OR-ed together:
765 ** (1) the space required for a copy of the Expr structure only and
766 ** (2) the EP_xxx flags that indicate what the structure size should be.
767 ** The return values is always one of:
768 **
769 **      EXPR_FULLSIZE
770 **      EXPR_REDUCEDSIZE   | EP_Reduced
771 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
772 **
773 ** The size of the structure can be found by masking the return value
774 ** of this routine with 0xfff.  The flags can be found by masking the
775 ** return value with EP_Reduced|EP_TokenOnly.
776 **
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
778 ** (unreduced) Expr objects as they or originally constructed by the parser.
779 ** During expression analysis, extra information is computed and moved into
780 ** later parts of teh Expr object and that extra information might get chopped
781 ** off if the expression is reduced.  Note also that it does not work to
782 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
783 ** to reduce a pristine expression tree from the parser.  The implementation
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt
785 ** to enforce this constraint.
786 */
787 static int dupedExprStructSize(Expr *p, int flags){
788   int nSize;
789   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
790   assert( EXPR_FULLSIZE<=0xfff );
791   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
792   if( 0==(flags&EXPRDUP_REDUCE) ){
793     nSize = EXPR_FULLSIZE;
794   }else{
795     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
796     assert( !ExprHasProperty(p, EP_FromJoin) );
797     assert( !ExprHasProperty(p, EP_MemToken) );
798     assert( !ExprHasProperty(p, EP_NoReduce) );
799     if( p->pLeft || p->x.pList ){
800       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
801     }else{
802       assert( p->pRight==0 );
803       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
804     }
805   }
806   return nSize;
807 }
808 
809 /*
810 ** This function returns the space in bytes required to store the copy
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
812 ** string is defined.)
813 */
814 static int dupedExprNodeSize(Expr *p, int flags){
815   int nByte = dupedExprStructSize(p, flags) & 0xfff;
816   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
817     nByte += sqlite3Strlen30(p->u.zToken)+1;
818   }
819   return ROUND8(nByte);
820 }
821 
822 /*
823 ** Return the number of bytes required to create a duplicate of the
824 ** expression passed as the first argument. The second argument is a
825 ** mask containing EXPRDUP_XXX flags.
826 **
827 ** The value returned includes space to create a copy of the Expr struct
828 ** itself and the buffer referred to by Expr.u.zToken, if any.
829 **
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
832 ** and Expr.pRight variables (but not for any structures pointed to or
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
834 */
835 static int dupedExprSize(Expr *p, int flags){
836   int nByte = 0;
837   if( p ){
838     nByte = dupedExprNodeSize(p, flags);
839     if( flags&EXPRDUP_REDUCE ){
840       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
841     }
842   }
843   return nByte;
844 }
845 
846 /*
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
849 ** to store the copy of expression p, the copies of p->u.zToken
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
851 ** if any. Before returning, *pzBuffer is set to the first byte past the
852 ** portion of the buffer copied into by this function.
853 */
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
855   Expr *pNew = 0;                      /* Value to return */
856   if( p ){
857     const int isReduced = (flags&EXPRDUP_REDUCE);
858     u8 *zAlloc;
859     u32 staticFlag = 0;
860 
861     assert( pzBuffer==0 || isReduced );
862 
863     /* Figure out where to write the new Expr structure. */
864     if( pzBuffer ){
865       zAlloc = *pzBuffer;
866       staticFlag = EP_Static;
867     }else{
868       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
869     }
870     pNew = (Expr *)zAlloc;
871 
872     if( pNew ){
873       /* Set nNewSize to the size allocated for the structure pointed to
874       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
875       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
876       ** by the copy of the p->u.zToken string (if any).
877       */
878       const unsigned nStructSize = dupedExprStructSize(p, flags);
879       const int nNewSize = nStructSize & 0xfff;
880       int nToken;
881       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
882         nToken = sqlite3Strlen30(p->u.zToken) + 1;
883       }else{
884         nToken = 0;
885       }
886       if( isReduced ){
887         assert( ExprHasProperty(p, EP_Reduced)==0 );
888         memcpy(zAlloc, p, nNewSize);
889       }else{
890         int nSize = exprStructSize(p);
891         memcpy(zAlloc, p, nSize);
892         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
893       }
894 
895       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
896       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
897       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
898       pNew->flags |= staticFlag;
899 
900       /* Copy the p->u.zToken string, if any. */
901       if( nToken ){
902         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
903         memcpy(zToken, p->u.zToken, nToken);
904       }
905 
906       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
907         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
908         if( ExprHasProperty(p, EP_xIsSelect) ){
909           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
910         }else{
911           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
912         }
913       }
914 
915       /* Fill in pNew->pLeft and pNew->pRight. */
916       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
917         zAlloc += dupedExprNodeSize(p, flags);
918         if( ExprHasProperty(pNew, EP_Reduced) ){
919           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
920           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
921         }
922         if( pzBuffer ){
923           *pzBuffer = zAlloc;
924         }
925       }else{
926         if( !ExprHasProperty(p, EP_TokenOnly) ){
927           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
928           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
929         }
930       }
931 
932     }
933   }
934   return pNew;
935 }
936 
937 /*
938 ** Create and return a deep copy of the object passed as the second
939 ** argument. If an OOM condition is encountered, NULL is returned
940 ** and the db->mallocFailed flag set.
941 */
942 #ifndef SQLITE_OMIT_CTE
943 static With *withDup(sqlite3 *db, With *p){
944   With *pRet = 0;
945   if( p ){
946     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
947     pRet = sqlite3DbMallocZero(db, nByte);
948     if( pRet ){
949       int i;
950       pRet->nCte = p->nCte;
951       for(i=0; i<p->nCte; i++){
952         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
953         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
954         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
955       }
956     }
957   }
958   return pRet;
959 }
960 #else
961 # define withDup(x,y) 0
962 #endif
963 
964 /*
965 ** The following group of routines make deep copies of expressions,
966 ** expression lists, ID lists, and select statements.  The copies can
967 ** be deleted (by being passed to their respective ...Delete() routines)
968 ** without effecting the originals.
969 **
970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
972 ** by subsequent calls to sqlite*ListAppend() routines.
973 **
974 ** Any tables that the SrcList might point to are not duplicated.
975 **
976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
978 ** truncated version of the usual Expr structure that will be stored as
979 ** part of the in-memory representation of the database schema.
980 */
981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
982   return exprDup(db, p, flags, 0);
983 }
984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
985   ExprList *pNew;
986   struct ExprList_item *pItem, *pOldItem;
987   int i;
988   if( p==0 ) return 0;
989   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
990   if( pNew==0 ) return 0;
991   pNew->nExpr = i = p->nExpr;
992   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
993   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
994   if( pItem==0 ){
995     sqlite3DbFree(db, pNew);
996     return 0;
997   }
998   pOldItem = p->a;
999   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1000     Expr *pOldExpr = pOldItem->pExpr;
1001     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1002     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1004     pItem->sortOrder = pOldItem->sortOrder;
1005     pItem->done = 0;
1006     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1007     pItem->u = pOldItem->u;
1008   }
1009   return pNew;
1010 }
1011 
1012 /*
1013 ** If cursors, triggers, views and subqueries are all omitted from
1014 ** the build, then none of the following routines, except for
1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1016 ** called with a NULL argument.
1017 */
1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1019  || !defined(SQLITE_OMIT_SUBQUERY)
1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1021   SrcList *pNew;
1022   int i;
1023   int nByte;
1024   if( p==0 ) return 0;
1025   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1026   pNew = sqlite3DbMallocRaw(db, nByte );
1027   if( pNew==0 ) return 0;
1028   pNew->nSrc = pNew->nAlloc = p->nSrc;
1029   for(i=0; i<p->nSrc; i++){
1030     struct SrcList_item *pNewItem = &pNew->a[i];
1031     struct SrcList_item *pOldItem = &p->a[i];
1032     Table *pTab;
1033     pNewItem->pSchema = pOldItem->pSchema;
1034     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1035     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1036     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1037     pNewItem->jointype = pOldItem->jointype;
1038     pNewItem->iCursor = pOldItem->iCursor;
1039     pNewItem->addrFillSub = pOldItem->addrFillSub;
1040     pNewItem->regReturn = pOldItem->regReturn;
1041     pNewItem->isCorrelated = pOldItem->isCorrelated;
1042     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1043     pNewItem->isRecursive = pOldItem->isRecursive;
1044     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1045     pNewItem->notIndexed = pOldItem->notIndexed;
1046     pNewItem->pIndex = pOldItem->pIndex;
1047     pTab = pNewItem->pTab = pOldItem->pTab;
1048     if( pTab ){
1049       pTab->nRef++;
1050     }
1051     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1052     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1053     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1054     pNewItem->colUsed = pOldItem->colUsed;
1055   }
1056   return pNew;
1057 }
1058 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1059   IdList *pNew;
1060   int i;
1061   if( p==0 ) return 0;
1062   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1063   if( pNew==0 ) return 0;
1064   pNew->nId = p->nId;
1065   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1066   if( pNew->a==0 ){
1067     sqlite3DbFree(db, pNew);
1068     return 0;
1069   }
1070   /* Note that because the size of the allocation for p->a[] is not
1071   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1072   ** on the duplicate created by this function. */
1073   for(i=0; i<p->nId; i++){
1074     struct IdList_item *pNewItem = &pNew->a[i];
1075     struct IdList_item *pOldItem = &p->a[i];
1076     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1077     pNewItem->idx = pOldItem->idx;
1078   }
1079   return pNew;
1080 }
1081 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1082   Select *pNew, *pPrior;
1083   if( p==0 ) return 0;
1084   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1085   if( pNew==0 ) return 0;
1086   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1087   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1088   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1089   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1090   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1091   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1092   pNew->op = p->op;
1093   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1094   if( pPrior ) pPrior->pNext = pNew;
1095   pNew->pNext = 0;
1096   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1097   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1098   pNew->iLimit = 0;
1099   pNew->iOffset = 0;
1100   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1101   pNew->addrOpenEphm[0] = -1;
1102   pNew->addrOpenEphm[1] = -1;
1103   pNew->nSelectRow = p->nSelectRow;
1104   pNew->pWith = withDup(db, p->pWith);
1105   sqlite3SelectSetName(pNew, p->zSelName);
1106   return pNew;
1107 }
1108 #else
1109 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1110   assert( p==0 );
1111   return 0;
1112 }
1113 #endif
1114 
1115 
1116 /*
1117 ** Add a new element to the end of an expression list.  If pList is
1118 ** initially NULL, then create a new expression list.
1119 **
1120 ** If a memory allocation error occurs, the entire list is freed and
1121 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1122 ** that the new entry was successfully appended.
1123 */
1124 ExprList *sqlite3ExprListAppend(
1125   Parse *pParse,          /* Parsing context */
1126   ExprList *pList,        /* List to which to append. Might be NULL */
1127   Expr *pExpr             /* Expression to be appended. Might be NULL */
1128 ){
1129   sqlite3 *db = pParse->db;
1130   if( pList==0 ){
1131     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1132     if( pList==0 ){
1133       goto no_mem;
1134     }
1135     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1136     if( pList->a==0 ) goto no_mem;
1137   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1138     struct ExprList_item *a;
1139     assert( pList->nExpr>0 );
1140     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1141     if( a==0 ){
1142       goto no_mem;
1143     }
1144     pList->a = a;
1145   }
1146   assert( pList->a!=0 );
1147   if( 1 ){
1148     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1149     memset(pItem, 0, sizeof(*pItem));
1150     pItem->pExpr = pExpr;
1151   }
1152   return pList;
1153 
1154 no_mem:
1155   /* Avoid leaking memory if malloc has failed. */
1156   sqlite3ExprDelete(db, pExpr);
1157   sqlite3ExprListDelete(db, pList);
1158   return 0;
1159 }
1160 
1161 /*
1162 ** Set the ExprList.a[].zName element of the most recently added item
1163 ** on the expression list.
1164 **
1165 ** pList might be NULL following an OOM error.  But pName should never be
1166 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1167 ** is set.
1168 */
1169 void sqlite3ExprListSetName(
1170   Parse *pParse,          /* Parsing context */
1171   ExprList *pList,        /* List to which to add the span. */
1172   Token *pName,           /* Name to be added */
1173   int dequote             /* True to cause the name to be dequoted */
1174 ){
1175   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1176   if( pList ){
1177     struct ExprList_item *pItem;
1178     assert( pList->nExpr>0 );
1179     pItem = &pList->a[pList->nExpr-1];
1180     assert( pItem->zName==0 );
1181     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1182     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1183   }
1184 }
1185 
1186 /*
1187 ** Set the ExprList.a[].zSpan element of the most recently added item
1188 ** on the expression list.
1189 **
1190 ** pList might be NULL following an OOM error.  But pSpan should never be
1191 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1192 ** is set.
1193 */
1194 void sqlite3ExprListSetSpan(
1195   Parse *pParse,          /* Parsing context */
1196   ExprList *pList,        /* List to which to add the span. */
1197   ExprSpan *pSpan         /* The span to be added */
1198 ){
1199   sqlite3 *db = pParse->db;
1200   assert( pList!=0 || db->mallocFailed!=0 );
1201   if( pList ){
1202     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1203     assert( pList->nExpr>0 );
1204     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1205     sqlite3DbFree(db, pItem->zSpan);
1206     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1207                                     (int)(pSpan->zEnd - pSpan->zStart));
1208   }
1209 }
1210 
1211 /*
1212 ** If the expression list pEList contains more than iLimit elements,
1213 ** leave an error message in pParse.
1214 */
1215 void sqlite3ExprListCheckLength(
1216   Parse *pParse,
1217   ExprList *pEList,
1218   const char *zObject
1219 ){
1220   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1221   testcase( pEList && pEList->nExpr==mx );
1222   testcase( pEList && pEList->nExpr==mx+1 );
1223   if( pEList && pEList->nExpr>mx ){
1224     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1225   }
1226 }
1227 
1228 /*
1229 ** Delete an entire expression list.
1230 */
1231 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1232   int i;
1233   struct ExprList_item *pItem;
1234   if( pList==0 ) return;
1235   assert( pList->a!=0 || pList->nExpr==0 );
1236   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1237     sqlite3ExprDelete(db, pItem->pExpr);
1238     sqlite3DbFree(db, pItem->zName);
1239     sqlite3DbFree(db, pItem->zSpan);
1240   }
1241   sqlite3DbFree(db, pList->a);
1242   sqlite3DbFree(db, pList);
1243 }
1244 
1245 /*
1246 ** Return the bitwise-OR of all Expr.flags fields in the given
1247 ** ExprList.
1248 */
1249 u32 sqlite3ExprListFlags(const ExprList *pList){
1250   int i;
1251   u32 m = 0;
1252   if( pList ){
1253     for(i=0; i<pList->nExpr; i++){
1254        Expr *pExpr = pList->a[i].pExpr;
1255        if( ALWAYS(pExpr) ) m |= pExpr->flags;
1256     }
1257   }
1258   return m;
1259 }
1260 
1261 /*
1262 ** These routines are Walker callbacks used to check expressions to
1263 ** see if they are "constant" for some definition of constant.  The
1264 ** Walker.eCode value determines the type of "constant" we are looking
1265 ** for.
1266 **
1267 ** These callback routines are used to implement the following:
1268 **
1269 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1270 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1271 **     sqlite3ExprRefOneTableOnly()             pWalker->eCode==3
1272 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1273 **
1274 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1275 ** is found to not be a constant.
1276 **
1277 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1278 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1279 ** an existing schema and 4 when processing a new statement.  A bound
1280 ** parameter raises an error for new statements, but is silently converted
1281 ** to NULL for existing schemas.  This allows sqlite_master tables that
1282 ** contain a bound parameter because they were generated by older versions
1283 ** of SQLite to be parsed by newer versions of SQLite without raising a
1284 ** malformed schema error.
1285 */
1286 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1287 
1288   /* If pWalker->eCode is 2 then any term of the expression that comes from
1289   ** the ON or USING clauses of a left join disqualifies the expression
1290   ** from being considered constant. */
1291   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1292     pWalker->eCode = 0;
1293     return WRC_Abort;
1294   }
1295 
1296   switch( pExpr->op ){
1297     /* Consider functions to be constant if all their arguments are constant
1298     ** and either pWalker->eCode==4 or 5 or the function has the
1299     ** SQLITE_FUNC_CONST flag. */
1300     case TK_FUNCTION:
1301       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1302         return WRC_Continue;
1303       }else{
1304         pWalker->eCode = 0;
1305         return WRC_Abort;
1306       }
1307     case TK_ID:
1308     case TK_COLUMN:
1309     case TK_AGG_FUNCTION:
1310     case TK_AGG_COLUMN:
1311       testcase( pExpr->op==TK_ID );
1312       testcase( pExpr->op==TK_COLUMN );
1313       testcase( pExpr->op==TK_AGG_FUNCTION );
1314       testcase( pExpr->op==TK_AGG_COLUMN );
1315       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1316         return WRC_Continue;
1317       }else{
1318         pWalker->eCode = 0;
1319         return WRC_Abort;
1320       }
1321     case TK_VARIABLE:
1322       if( pWalker->eCode==5 ){
1323         /* Silently convert bound parameters that appear inside of CREATE
1324         ** statements into a NULL when parsing the CREATE statement text out
1325         ** of the sqlite_master table */
1326         pExpr->op = TK_NULL;
1327       }else if( pWalker->eCode==4 ){
1328         /* A bound parameter in a CREATE statement that originates from
1329         ** sqlite3_prepare() causes an error */
1330         pWalker->eCode = 0;
1331         return WRC_Abort;
1332       }
1333       /* Fall through */
1334     default:
1335       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1336       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1337       return WRC_Continue;
1338   }
1339 }
1340 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1341   UNUSED_PARAMETER(NotUsed);
1342   pWalker->eCode = 0;
1343   return WRC_Abort;
1344 }
1345 static int exprIsConst(Expr *p, int initFlag, int iCur){
1346   Walker w;
1347   memset(&w, 0, sizeof(w));
1348   w.eCode = initFlag;
1349   w.xExprCallback = exprNodeIsConstant;
1350   w.xSelectCallback = selectNodeIsConstant;
1351   w.u.iCur = iCur;
1352   sqlite3WalkExpr(&w, p);
1353   return w.eCode;
1354 }
1355 
1356 /*
1357 ** Walk an expression tree.  Return non-zero if the expression is constant
1358 ** and 0 if it involves variables or function calls.
1359 **
1360 ** For the purposes of this function, a double-quoted string (ex: "abc")
1361 ** is considered a variable but a single-quoted string (ex: 'abc') is
1362 ** a constant.
1363 */
1364 int sqlite3ExprIsConstant(Expr *p){
1365   return exprIsConst(p, 1, 0);
1366 }
1367 
1368 /*
1369 ** Walk an expression tree.  Return non-zero if the expression is constant
1370 ** that does no originate from the ON or USING clauses of a join.
1371 ** Return 0 if it involves variables or function calls or terms from
1372 ** an ON or USING clause.
1373 */
1374 int sqlite3ExprIsConstantNotJoin(Expr *p){
1375   return exprIsConst(p, 2, 0);
1376 }
1377 
1378 /*
1379 ** Walk an expression tree.  Return non-zero if the expression constant
1380 ** for any single row of the table with cursor iCur.  In other words, the
1381 ** expression must not refer to any non-deterministic function nor any
1382 ** table other than iCur.
1383 */
1384 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1385   return exprIsConst(p, 3, iCur);
1386 }
1387 
1388 /*
1389 ** Walk an expression tree.  Return non-zero if the expression is constant
1390 ** or a function call with constant arguments.  Return and 0 if there
1391 ** are any variables.
1392 **
1393 ** For the purposes of this function, a double-quoted string (ex: "abc")
1394 ** is considered a variable but a single-quoted string (ex: 'abc') is
1395 ** a constant.
1396 */
1397 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1398   assert( isInit==0 || isInit==1 );
1399   return exprIsConst(p, 4+isInit, 0);
1400 }
1401 
1402 /*
1403 ** If the expression p codes a constant integer that is small enough
1404 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1405 ** in *pValue.  If the expression is not an integer or if it is too big
1406 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1407 */
1408 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1409   int rc = 0;
1410 
1411   /* If an expression is an integer literal that fits in a signed 32-bit
1412   ** integer, then the EP_IntValue flag will have already been set */
1413   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1414            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1415 
1416   if( p->flags & EP_IntValue ){
1417     *pValue = p->u.iValue;
1418     return 1;
1419   }
1420   switch( p->op ){
1421     case TK_UPLUS: {
1422       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1423       break;
1424     }
1425     case TK_UMINUS: {
1426       int v;
1427       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1428         assert( v!=(-2147483647-1) );
1429         *pValue = -v;
1430         rc = 1;
1431       }
1432       break;
1433     }
1434     default: break;
1435   }
1436   return rc;
1437 }
1438 
1439 /*
1440 ** Return FALSE if there is no chance that the expression can be NULL.
1441 **
1442 ** If the expression might be NULL or if the expression is too complex
1443 ** to tell return TRUE.
1444 **
1445 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1446 ** when we know that a value cannot be NULL.  Hence, a false positive
1447 ** (returning TRUE when in fact the expression can never be NULL) might
1448 ** be a small performance hit but is otherwise harmless.  On the other
1449 ** hand, a false negative (returning FALSE when the result could be NULL)
1450 ** will likely result in an incorrect answer.  So when in doubt, return
1451 ** TRUE.
1452 */
1453 int sqlite3ExprCanBeNull(const Expr *p){
1454   u8 op;
1455   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1456   op = p->op;
1457   if( op==TK_REGISTER ) op = p->op2;
1458   switch( op ){
1459     case TK_INTEGER:
1460     case TK_STRING:
1461     case TK_FLOAT:
1462     case TK_BLOB:
1463       return 0;
1464     case TK_COLUMN:
1465       assert( p->pTab!=0 );
1466       return ExprHasProperty(p, EP_CanBeNull) ||
1467              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1468     default:
1469       return 1;
1470   }
1471 }
1472 
1473 /*
1474 ** Return TRUE if the given expression is a constant which would be
1475 ** unchanged by OP_Affinity with the affinity given in the second
1476 ** argument.
1477 **
1478 ** This routine is used to determine if the OP_Affinity operation
1479 ** can be omitted.  When in doubt return FALSE.  A false negative
1480 ** is harmless.  A false positive, however, can result in the wrong
1481 ** answer.
1482 */
1483 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1484   u8 op;
1485   if( aff==SQLITE_AFF_NONE ) return 1;
1486   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1487   op = p->op;
1488   if( op==TK_REGISTER ) op = p->op2;
1489   switch( op ){
1490     case TK_INTEGER: {
1491       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1492     }
1493     case TK_FLOAT: {
1494       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1495     }
1496     case TK_STRING: {
1497       return aff==SQLITE_AFF_TEXT;
1498     }
1499     case TK_BLOB: {
1500       return 1;
1501     }
1502     case TK_COLUMN: {
1503       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1504       return p->iColumn<0
1505           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1506     }
1507     default: {
1508       return 0;
1509     }
1510   }
1511 }
1512 
1513 /*
1514 ** Return TRUE if the given string is a row-id column name.
1515 */
1516 int sqlite3IsRowid(const char *z){
1517   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1518   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1519   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1520   return 0;
1521 }
1522 
1523 /*
1524 ** Return true if we are able to the IN operator optimization on a
1525 ** query of the form
1526 **
1527 **       x IN (SELECT ...)
1528 **
1529 ** Where the SELECT... clause is as specified by the parameter to this
1530 ** routine.
1531 **
1532 ** The Select object passed in has already been preprocessed and no
1533 ** errors have been found.
1534 */
1535 #ifndef SQLITE_OMIT_SUBQUERY
1536 static int isCandidateForInOpt(Select *p){
1537   SrcList *pSrc;
1538   ExprList *pEList;
1539   Table *pTab;
1540   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1541   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1542   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1543     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1544     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1545     return 0; /* No DISTINCT keyword and no aggregate functions */
1546   }
1547   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1548   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1549   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1550   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1551   pSrc = p->pSrc;
1552   assert( pSrc!=0 );
1553   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1554   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1555   pTab = pSrc->a[0].pTab;
1556   if( NEVER(pTab==0) ) return 0;
1557   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1558   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1559   pEList = p->pEList;
1560   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1561   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1562   return 1;
1563 }
1564 #endif /* SQLITE_OMIT_SUBQUERY */
1565 
1566 /*
1567 ** Code an OP_Once instruction and allocate space for its flag. Return the
1568 ** address of the new instruction.
1569 */
1570 int sqlite3CodeOnce(Parse *pParse){
1571   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1572   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1573 }
1574 
1575 /*
1576 ** Generate code that checks the left-most column of index table iCur to see if
1577 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1578 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1579 ** to be set to NULL if iCur contains one or more NULL values.
1580 */
1581 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1582   int j1;
1583   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1584   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1585   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1586   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1587   VdbeComment((v, "first_entry_in(%d)", iCur));
1588   sqlite3VdbeJumpHere(v, j1);
1589 }
1590 
1591 
1592 #ifndef SQLITE_OMIT_SUBQUERY
1593 /*
1594 ** The argument is an IN operator with a list (not a subquery) on the
1595 ** right-hand side.  Return TRUE if that list is constant.
1596 */
1597 static int sqlite3InRhsIsConstant(Expr *pIn){
1598   Expr *pLHS;
1599   int res;
1600   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1601   pLHS = pIn->pLeft;
1602   pIn->pLeft = 0;
1603   res = sqlite3ExprIsConstant(pIn);
1604   pIn->pLeft = pLHS;
1605   return res;
1606 }
1607 #endif
1608 
1609 /*
1610 ** This function is used by the implementation of the IN (...) operator.
1611 ** The pX parameter is the expression on the RHS of the IN operator, which
1612 ** might be either a list of expressions or a subquery.
1613 **
1614 ** The job of this routine is to find or create a b-tree object that can
1615 ** be used either to test for membership in the RHS set or to iterate through
1616 ** all members of the RHS set, skipping duplicates.
1617 **
1618 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1619 ** and pX->iTable is set to the index of that cursor.
1620 **
1621 ** The returned value of this function indicates the b-tree type, as follows:
1622 **
1623 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1624 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1625 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1626 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1627 **                         populated epheremal table.
1628 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1629 **                         implemented as a sequence of comparisons.
1630 **
1631 ** An existing b-tree might be used if the RHS expression pX is a simple
1632 ** subquery such as:
1633 **
1634 **     SELECT <column> FROM <table>
1635 **
1636 ** If the RHS of the IN operator is a list or a more complex subquery, then
1637 ** an ephemeral table might need to be generated from the RHS and then
1638 ** pX->iTable made to point to the ephemeral table instead of an
1639 ** existing table.
1640 **
1641 ** The inFlags parameter must contain exactly one of the bits
1642 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1643 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1644 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1645 ** IN index will be used to loop over all values of the RHS of the
1646 ** IN operator.
1647 **
1648 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1649 ** through the set members) then the b-tree must not contain duplicates.
1650 ** An epheremal table must be used unless the selected <column> is guaranteed
1651 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1652 ** has a UNIQUE constraint or UNIQUE index.
1653 **
1654 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1655 ** for fast set membership tests) then an epheremal table must
1656 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1657 ** be found with <column> as its left-most column.
1658 **
1659 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1660 ** if the RHS of the IN operator is a list (not a subquery) then this
1661 ** routine might decide that creating an ephemeral b-tree for membership
1662 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1663 ** calling routine should implement the IN operator using a sequence
1664 ** of Eq or Ne comparison operations.
1665 **
1666 ** When the b-tree is being used for membership tests, the calling function
1667 ** might need to know whether or not the RHS side of the IN operator
1668 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1669 ** if there is any chance that the (...) might contain a NULL value at
1670 ** runtime, then a register is allocated and the register number written
1671 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1672 ** NULL value, then *prRhsHasNull is left unchanged.
1673 **
1674 ** If a register is allocated and its location stored in *prRhsHasNull, then
1675 ** the value in that register will be NULL if the b-tree contains one or more
1676 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1677 ** NULL values.
1678 */
1679 #ifndef SQLITE_OMIT_SUBQUERY
1680 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1681   Select *p;                            /* SELECT to the right of IN operator */
1682   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1683   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1684   int mustBeUnique;                     /* True if RHS must be unique */
1685   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1686 
1687   assert( pX->op==TK_IN );
1688   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1689 
1690   /* Check to see if an existing table or index can be used to
1691   ** satisfy the query.  This is preferable to generating a new
1692   ** ephemeral table.
1693   */
1694   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1695   if( pParse->nErr==0 && isCandidateForInOpt(p) ){
1696     sqlite3 *db = pParse->db;              /* Database connection */
1697     Table *pTab;                           /* Table <table>. */
1698     Expr *pExpr;                           /* Expression <column> */
1699     i16 iCol;                              /* Index of column <column> */
1700     i16 iDb;                               /* Database idx for pTab */
1701 
1702     assert( p );                        /* Because of isCandidateForInOpt(p) */
1703     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1704     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1705     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1706     pTab = p->pSrc->a[0].pTab;
1707     pExpr = p->pEList->a[0].pExpr;
1708     iCol = (i16)pExpr->iColumn;
1709 
1710     /* Code an OP_Transaction and OP_TableLock for <table>. */
1711     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1712     sqlite3CodeVerifySchema(pParse, iDb);
1713     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1714 
1715     /* This function is only called from two places. In both cases the vdbe
1716     ** has already been allocated. So assume sqlite3GetVdbe() is always
1717     ** successful here.
1718     */
1719     assert(v);
1720     if( iCol<0 ){
1721       int iAddr = sqlite3CodeOnce(pParse);
1722       VdbeCoverage(v);
1723 
1724       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1725       eType = IN_INDEX_ROWID;
1726 
1727       sqlite3VdbeJumpHere(v, iAddr);
1728     }else{
1729       Index *pIdx;                         /* Iterator variable */
1730 
1731       /* The collation sequence used by the comparison. If an index is to
1732       ** be used in place of a temp-table, it must be ordered according
1733       ** to this collation sequence.  */
1734       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1735 
1736       /* Check that the affinity that will be used to perform the
1737       ** comparison is the same as the affinity of the column. If
1738       ** it is not, it is not possible to use any index.
1739       */
1740       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1741 
1742       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1743         if( (pIdx->aiColumn[0]==iCol)
1744          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1745          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1746         ){
1747           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1748           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1749           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1750           VdbeComment((v, "%s", pIdx->zName));
1751           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1752           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1753 
1754           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1755             *prRhsHasNull = ++pParse->nMem;
1756             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1757           }
1758           sqlite3VdbeJumpHere(v, iAddr);
1759         }
1760       }
1761     }
1762   }
1763 
1764   /* If no preexisting index is available for the IN clause
1765   ** and IN_INDEX_NOOP is an allowed reply
1766   ** and the RHS of the IN operator is a list, not a subquery
1767   ** and the RHS is not contant or has two or fewer terms,
1768   ** then it is not worth creating an ephemeral table to evaluate
1769   ** the IN operator so return IN_INDEX_NOOP.
1770   */
1771   if( eType==0
1772    && (inFlags & IN_INDEX_NOOP_OK)
1773    && !ExprHasProperty(pX, EP_xIsSelect)
1774    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1775   ){
1776     eType = IN_INDEX_NOOP;
1777   }
1778 
1779 
1780   if( eType==0 ){
1781     /* Could not find an existing table or index to use as the RHS b-tree.
1782     ** We will have to generate an ephemeral table to do the job.
1783     */
1784     u32 savedNQueryLoop = pParse->nQueryLoop;
1785     int rMayHaveNull = 0;
1786     eType = IN_INDEX_EPH;
1787     if( inFlags & IN_INDEX_LOOP ){
1788       pParse->nQueryLoop = 0;
1789       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1790         eType = IN_INDEX_ROWID;
1791       }
1792     }else if( prRhsHasNull ){
1793       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1794     }
1795     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1796     pParse->nQueryLoop = savedNQueryLoop;
1797   }else{
1798     pX->iTable = iTab;
1799   }
1800   return eType;
1801 }
1802 #endif
1803 
1804 /*
1805 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1806 ** or IN operators.  Examples:
1807 **
1808 **     (SELECT a FROM b)          -- subquery
1809 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1810 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1811 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1812 **
1813 ** The pExpr parameter describes the expression that contains the IN
1814 ** operator or subquery.
1815 **
1816 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1817 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1818 ** to some integer key column of a table B-Tree. In this case, use an
1819 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1820 ** (slower) variable length keys B-Tree.
1821 **
1822 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1823 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1824 ** All this routine does is initialize the register given by rMayHaveNull
1825 ** to NULL.  Calling routines will take care of changing this register
1826 ** value to non-NULL if the RHS is NULL-free.
1827 **
1828 ** For a SELECT or EXISTS operator, return the register that holds the
1829 ** result.  For IN operators or if an error occurs, the return value is 0.
1830 */
1831 #ifndef SQLITE_OMIT_SUBQUERY
1832 int sqlite3CodeSubselect(
1833   Parse *pParse,          /* Parsing context */
1834   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1835   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1836   int isRowid             /* If true, LHS of IN operator is a rowid */
1837 ){
1838   int jmpIfDynamic = -1;                      /* One-time test address */
1839   int rReg = 0;                           /* Register storing resulting */
1840   Vdbe *v = sqlite3GetVdbe(pParse);
1841   if( NEVER(v==0) ) return 0;
1842   sqlite3ExprCachePush(pParse);
1843 
1844   /* This code must be run in its entirety every time it is encountered
1845   ** if any of the following is true:
1846   **
1847   **    *  The right-hand side is a correlated subquery
1848   **    *  The right-hand side is an expression list containing variables
1849   **    *  We are inside a trigger
1850   **
1851   ** If all of the above are false, then we can run this code just once
1852   ** save the results, and reuse the same result on subsequent invocations.
1853   */
1854   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1855     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1856   }
1857 
1858 #ifndef SQLITE_OMIT_EXPLAIN
1859   if( pParse->explain==2 ){
1860     char *zMsg = sqlite3MPrintf(
1861         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1862         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1863     );
1864     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1865   }
1866 #endif
1867 
1868   switch( pExpr->op ){
1869     case TK_IN: {
1870       char affinity;              /* Affinity of the LHS of the IN */
1871       int addr;                   /* Address of OP_OpenEphemeral instruction */
1872       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1873       KeyInfo *pKeyInfo = 0;      /* Key information */
1874 
1875       affinity = sqlite3ExprAffinity(pLeft);
1876 
1877       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1878       ** expression it is handled the same way.  An ephemeral table is
1879       ** filled with single-field index keys representing the results
1880       ** from the SELECT or the <exprlist>.
1881       **
1882       ** If the 'x' expression is a column value, or the SELECT...
1883       ** statement returns a column value, then the affinity of that
1884       ** column is used to build the index keys. If both 'x' and the
1885       ** SELECT... statement are columns, then numeric affinity is used
1886       ** if either column has NUMERIC or INTEGER affinity. If neither
1887       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1888       ** is used.
1889       */
1890       pExpr->iTable = pParse->nTab++;
1891       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1892       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1893 
1894       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1895         /* Case 1:     expr IN (SELECT ...)
1896         **
1897         ** Generate code to write the results of the select into the temporary
1898         ** table allocated and opened above.
1899         */
1900         Select *pSelect = pExpr->x.pSelect;
1901         SelectDest dest;
1902         ExprList *pEList;
1903 
1904         assert( !isRowid );
1905         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1906         dest.affSdst = (u8)affinity;
1907         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1908         pSelect->iLimit = 0;
1909         testcase( pSelect->selFlags & SF_Distinct );
1910         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1911         if( sqlite3Select(pParse, pSelect, &dest) ){
1912           sqlite3KeyInfoUnref(pKeyInfo);
1913           return 0;
1914         }
1915         pEList = pSelect->pEList;
1916         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1917         assert( pEList!=0 );
1918         assert( pEList->nExpr>0 );
1919         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1920         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1921                                                          pEList->a[0].pExpr);
1922       }else if( ALWAYS(pExpr->x.pList!=0) ){
1923         /* Case 2:     expr IN (exprlist)
1924         **
1925         ** For each expression, build an index key from the evaluation and
1926         ** store it in the temporary table. If <expr> is a column, then use
1927         ** that columns affinity when building index keys. If <expr> is not
1928         ** a column, use numeric affinity.
1929         */
1930         int i;
1931         ExprList *pList = pExpr->x.pList;
1932         struct ExprList_item *pItem;
1933         int r1, r2, r3;
1934 
1935         if( !affinity ){
1936           affinity = SQLITE_AFF_NONE;
1937         }
1938         if( pKeyInfo ){
1939           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1940           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1941         }
1942 
1943         /* Loop through each expression in <exprlist>. */
1944         r1 = sqlite3GetTempReg(pParse);
1945         r2 = sqlite3GetTempReg(pParse);
1946         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1947         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1948           Expr *pE2 = pItem->pExpr;
1949           int iValToIns;
1950 
1951           /* If the expression is not constant then we will need to
1952           ** disable the test that was generated above that makes sure
1953           ** this code only executes once.  Because for a non-constant
1954           ** expression we need to rerun this code each time.
1955           */
1956           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1957             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1958             jmpIfDynamic = -1;
1959           }
1960 
1961           /* Evaluate the expression and insert it into the temp table */
1962           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1963             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1964           }else{
1965             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1966             if( isRowid ){
1967               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1968                                 sqlite3VdbeCurrentAddr(v)+2);
1969               VdbeCoverage(v);
1970               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1971             }else{
1972               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1973               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1974               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1975             }
1976           }
1977         }
1978         sqlite3ReleaseTempReg(pParse, r1);
1979         sqlite3ReleaseTempReg(pParse, r2);
1980       }
1981       if( pKeyInfo ){
1982         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1983       }
1984       break;
1985     }
1986 
1987     case TK_EXISTS:
1988     case TK_SELECT:
1989     default: {
1990       /* If this has to be a scalar SELECT.  Generate code to put the
1991       ** value of this select in a memory cell and record the number
1992       ** of the memory cell in iColumn.  If this is an EXISTS, write
1993       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1994       ** and record that memory cell in iColumn.
1995       */
1996       Select *pSel;                         /* SELECT statement to encode */
1997       SelectDest dest;                      /* How to deal with SELECt result */
1998 
1999       testcase( pExpr->op==TK_EXISTS );
2000       testcase( pExpr->op==TK_SELECT );
2001       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2002 
2003       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2004       pSel = pExpr->x.pSelect;
2005       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2006       if( pExpr->op==TK_SELECT ){
2007         dest.eDest = SRT_Mem;
2008         dest.iSdst = dest.iSDParm;
2009         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2010         VdbeComment((v, "Init subquery result"));
2011       }else{
2012         dest.eDest = SRT_Exists;
2013         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2014         VdbeComment((v, "Init EXISTS result"));
2015       }
2016       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2017       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2018                                   &sqlite3IntTokens[1]);
2019       pSel->iLimit = 0;
2020       pSel->selFlags &= ~SF_MultiValue;
2021       if( sqlite3Select(pParse, pSel, &dest) ){
2022         return 0;
2023       }
2024       rReg = dest.iSDParm;
2025       ExprSetVVAProperty(pExpr, EP_NoReduce);
2026       break;
2027     }
2028   }
2029 
2030   if( rHasNullFlag ){
2031     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2032   }
2033 
2034   if( jmpIfDynamic>=0 ){
2035     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2036   }
2037   sqlite3ExprCachePop(pParse);
2038 
2039   return rReg;
2040 }
2041 #endif /* SQLITE_OMIT_SUBQUERY */
2042 
2043 #ifndef SQLITE_OMIT_SUBQUERY
2044 /*
2045 ** Generate code for an IN expression.
2046 **
2047 **      x IN (SELECT ...)
2048 **      x IN (value, value, ...)
2049 **
2050 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2051 ** is an array of zero or more values.  The expression is true if the LHS is
2052 ** contained within the RHS.  The value of the expression is unknown (NULL)
2053 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2054 ** RHS contains one or more NULL values.
2055 **
2056 ** This routine generates code that jumps to destIfFalse if the LHS is not
2057 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2058 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2059 ** within the RHS then fall through.
2060 */
2061 static void sqlite3ExprCodeIN(
2062   Parse *pParse,        /* Parsing and code generating context */
2063   Expr *pExpr,          /* The IN expression */
2064   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2065   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2066 ){
2067   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2068   char affinity;        /* Comparison affinity to use */
2069   int eType;            /* Type of the RHS */
2070   int r1;               /* Temporary use register */
2071   Vdbe *v;              /* Statement under construction */
2072 
2073   /* Compute the RHS.   After this step, the table with cursor
2074   ** pExpr->iTable will contains the values that make up the RHS.
2075   */
2076   v = pParse->pVdbe;
2077   assert( v!=0 );       /* OOM detected prior to this routine */
2078   VdbeNoopComment((v, "begin IN expr"));
2079   eType = sqlite3FindInIndex(pParse, pExpr,
2080                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2081                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2082 
2083   /* Figure out the affinity to use to create a key from the results
2084   ** of the expression. affinityStr stores a static string suitable for
2085   ** P4 of OP_MakeRecord.
2086   */
2087   affinity = comparisonAffinity(pExpr);
2088 
2089   /* Code the LHS, the <expr> from "<expr> IN (...)".
2090   */
2091   sqlite3ExprCachePush(pParse);
2092   r1 = sqlite3GetTempReg(pParse);
2093   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2094 
2095   /* If sqlite3FindInIndex() did not find or create an index that is
2096   ** suitable for evaluating the IN operator, then evaluate using a
2097   ** sequence of comparisons.
2098   */
2099   if( eType==IN_INDEX_NOOP ){
2100     ExprList *pList = pExpr->x.pList;
2101     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2102     int labelOk = sqlite3VdbeMakeLabel(v);
2103     int r2, regToFree;
2104     int regCkNull = 0;
2105     int ii;
2106     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2107     if( destIfNull!=destIfFalse ){
2108       regCkNull = sqlite3GetTempReg(pParse);
2109       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2110     }
2111     for(ii=0; ii<pList->nExpr; ii++){
2112       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2113       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2114         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2115       }
2116       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2117         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2118                           (void*)pColl, P4_COLLSEQ);
2119         VdbeCoverageIf(v, ii<pList->nExpr-1);
2120         VdbeCoverageIf(v, ii==pList->nExpr-1);
2121         sqlite3VdbeChangeP5(v, affinity);
2122       }else{
2123         assert( destIfNull==destIfFalse );
2124         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2125                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2126         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2127       }
2128       sqlite3ReleaseTempReg(pParse, regToFree);
2129     }
2130     if( regCkNull ){
2131       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2132       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2133     }
2134     sqlite3VdbeResolveLabel(v, labelOk);
2135     sqlite3ReleaseTempReg(pParse, regCkNull);
2136   }else{
2137 
2138     /* If the LHS is NULL, then the result is either false or NULL depending
2139     ** on whether the RHS is empty or not, respectively.
2140     */
2141     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2142       if( destIfNull==destIfFalse ){
2143         /* Shortcut for the common case where the false and NULL outcomes are
2144         ** the same. */
2145         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2146       }else{
2147         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2148         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2149         VdbeCoverage(v);
2150         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2151         sqlite3VdbeJumpHere(v, addr1);
2152       }
2153     }
2154 
2155     if( eType==IN_INDEX_ROWID ){
2156       /* In this case, the RHS is the ROWID of table b-tree
2157       */
2158       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2159       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2160       VdbeCoverage(v);
2161     }else{
2162       /* In this case, the RHS is an index b-tree.
2163       */
2164       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2165 
2166       /* If the set membership test fails, then the result of the
2167       ** "x IN (...)" expression must be either 0 or NULL. If the set
2168       ** contains no NULL values, then the result is 0. If the set
2169       ** contains one or more NULL values, then the result of the
2170       ** expression is also NULL.
2171       */
2172       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2173       if( rRhsHasNull==0 ){
2174         /* This branch runs if it is known at compile time that the RHS
2175         ** cannot contain NULL values. This happens as the result
2176         ** of a "NOT NULL" constraint in the database schema.
2177         **
2178         ** Also run this branch if NULL is equivalent to FALSE
2179         ** for this particular IN operator.
2180         */
2181         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2182         VdbeCoverage(v);
2183       }else{
2184         /* In this branch, the RHS of the IN might contain a NULL and
2185         ** the presence of a NULL on the RHS makes a difference in the
2186         ** outcome.
2187         */
2188         int j1;
2189 
2190         /* First check to see if the LHS is contained in the RHS.  If so,
2191         ** then the answer is TRUE the presence of NULLs in the RHS does
2192         ** not matter.  If the LHS is not contained in the RHS, then the
2193         ** answer is NULL if the RHS contains NULLs and the answer is
2194         ** FALSE if the RHS is NULL-free.
2195         */
2196         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2197         VdbeCoverage(v);
2198         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2199         VdbeCoverage(v);
2200         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2201         sqlite3VdbeJumpHere(v, j1);
2202       }
2203     }
2204   }
2205   sqlite3ReleaseTempReg(pParse, r1);
2206   sqlite3ExprCachePop(pParse);
2207   VdbeComment((v, "end IN expr"));
2208 }
2209 #endif /* SQLITE_OMIT_SUBQUERY */
2210 
2211 /*
2212 ** Duplicate an 8-byte value
2213 */
2214 static char *dup8bytes(Vdbe *v, const char *in){
2215   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2216   if( out ){
2217     memcpy(out, in, 8);
2218   }
2219   return out;
2220 }
2221 
2222 #ifndef SQLITE_OMIT_FLOATING_POINT
2223 /*
2224 ** Generate an instruction that will put the floating point
2225 ** value described by z[0..n-1] into register iMem.
2226 **
2227 ** The z[] string will probably not be zero-terminated.  But the
2228 ** z[n] character is guaranteed to be something that does not look
2229 ** like the continuation of the number.
2230 */
2231 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2232   if( ALWAYS(z!=0) ){
2233     double value;
2234     char *zV;
2235     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2236     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2237     if( negateFlag ) value = -value;
2238     zV = dup8bytes(v, (char*)&value);
2239     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2240   }
2241 }
2242 #endif
2243 
2244 
2245 /*
2246 ** Generate an instruction that will put the integer describe by
2247 ** text z[0..n-1] into register iMem.
2248 **
2249 ** Expr.u.zToken is always UTF8 and zero-terminated.
2250 */
2251 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2252   Vdbe *v = pParse->pVdbe;
2253   if( pExpr->flags & EP_IntValue ){
2254     int i = pExpr->u.iValue;
2255     assert( i>=0 );
2256     if( negFlag ) i = -i;
2257     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2258   }else{
2259     int c;
2260     i64 value;
2261     const char *z = pExpr->u.zToken;
2262     assert( z!=0 );
2263     c = sqlite3DecOrHexToI64(z, &value);
2264     if( c==0 || (c==2 && negFlag) ){
2265       char *zV;
2266       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2267       zV = dup8bytes(v, (char*)&value);
2268       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2269     }else{
2270 #ifdef SQLITE_OMIT_FLOATING_POINT
2271       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2272 #else
2273 #ifndef SQLITE_OMIT_HEX_INTEGER
2274       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2275         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2276       }else
2277 #endif
2278       {
2279         codeReal(v, z, negFlag, iMem);
2280       }
2281 #endif
2282     }
2283   }
2284 }
2285 
2286 /*
2287 ** Clear a cache entry.
2288 */
2289 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2290   if( p->tempReg ){
2291     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2292       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2293     }
2294     p->tempReg = 0;
2295   }
2296 }
2297 
2298 
2299 /*
2300 ** Record in the column cache that a particular column from a
2301 ** particular table is stored in a particular register.
2302 */
2303 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2304   int i;
2305   int minLru;
2306   int idxLru;
2307   struct yColCache *p;
2308 
2309   /* Unless an error has occurred, register numbers are always positive. */
2310   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2311   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2312 
2313   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2314   ** for testing only - to verify that SQLite always gets the same answer
2315   ** with and without the column cache.
2316   */
2317   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2318 
2319   /* First replace any existing entry.
2320   **
2321   ** Actually, the way the column cache is currently used, we are guaranteed
2322   ** that the object will never already be in cache.  Verify this guarantee.
2323   */
2324 #ifndef NDEBUG
2325   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2326     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2327   }
2328 #endif
2329 
2330   /* Find an empty slot and replace it */
2331   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2332     if( p->iReg==0 ){
2333       p->iLevel = pParse->iCacheLevel;
2334       p->iTable = iTab;
2335       p->iColumn = iCol;
2336       p->iReg = iReg;
2337       p->tempReg = 0;
2338       p->lru = pParse->iCacheCnt++;
2339       return;
2340     }
2341   }
2342 
2343   /* Replace the last recently used */
2344   minLru = 0x7fffffff;
2345   idxLru = -1;
2346   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2347     if( p->lru<minLru ){
2348       idxLru = i;
2349       minLru = p->lru;
2350     }
2351   }
2352   if( ALWAYS(idxLru>=0) ){
2353     p = &pParse->aColCache[idxLru];
2354     p->iLevel = pParse->iCacheLevel;
2355     p->iTable = iTab;
2356     p->iColumn = iCol;
2357     p->iReg = iReg;
2358     p->tempReg = 0;
2359     p->lru = pParse->iCacheCnt++;
2360     return;
2361   }
2362 }
2363 
2364 /*
2365 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2366 ** Purge the range of registers from the column cache.
2367 */
2368 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2369   int i;
2370   int iLast = iReg + nReg - 1;
2371   struct yColCache *p;
2372   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2373     int r = p->iReg;
2374     if( r>=iReg && r<=iLast ){
2375       cacheEntryClear(pParse, p);
2376       p->iReg = 0;
2377     }
2378   }
2379 }
2380 
2381 /*
2382 ** Remember the current column cache context.  Any new entries added
2383 ** added to the column cache after this call are removed when the
2384 ** corresponding pop occurs.
2385 */
2386 void sqlite3ExprCachePush(Parse *pParse){
2387   pParse->iCacheLevel++;
2388 #ifdef SQLITE_DEBUG
2389   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2390     printf("PUSH to %d\n", pParse->iCacheLevel);
2391   }
2392 #endif
2393 }
2394 
2395 /*
2396 ** Remove from the column cache any entries that were added since the
2397 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2398 ** the cache to the state it was in prior the most recent Push.
2399 */
2400 void sqlite3ExprCachePop(Parse *pParse){
2401   int i;
2402   struct yColCache *p;
2403   assert( pParse->iCacheLevel>=1 );
2404   pParse->iCacheLevel--;
2405 #ifdef SQLITE_DEBUG
2406   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2407     printf("POP  to %d\n", pParse->iCacheLevel);
2408   }
2409 #endif
2410   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2411     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2412       cacheEntryClear(pParse, p);
2413       p->iReg = 0;
2414     }
2415   }
2416 }
2417 
2418 /*
2419 ** When a cached column is reused, make sure that its register is
2420 ** no longer available as a temp register.  ticket #3879:  that same
2421 ** register might be in the cache in multiple places, so be sure to
2422 ** get them all.
2423 */
2424 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2425   int i;
2426   struct yColCache *p;
2427   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2428     if( p->iReg==iReg ){
2429       p->tempReg = 0;
2430     }
2431   }
2432 }
2433 
2434 /*
2435 ** Generate code to extract the value of the iCol-th column of a table.
2436 */
2437 void sqlite3ExprCodeGetColumnOfTable(
2438   Vdbe *v,        /* The VDBE under construction */
2439   Table *pTab,    /* The table containing the value */
2440   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2441   int iCol,       /* Index of the column to extract */
2442   int regOut      /* Extract the value into this register */
2443 ){
2444   if( iCol<0 || iCol==pTab->iPKey ){
2445     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2446   }else{
2447     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2448     int x = iCol;
2449     if( !HasRowid(pTab) ){
2450       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2451     }
2452     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2453   }
2454   if( iCol>=0 ){
2455     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2456   }
2457 }
2458 
2459 /*
2460 ** Generate code that will extract the iColumn-th column from
2461 ** table pTab and store the column value in a register.  An effort
2462 ** is made to store the column value in register iReg, but this is
2463 ** not guaranteed.  The location of the column value is returned.
2464 **
2465 ** There must be an open cursor to pTab in iTable when this routine
2466 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2467 */
2468 int sqlite3ExprCodeGetColumn(
2469   Parse *pParse,   /* Parsing and code generating context */
2470   Table *pTab,     /* Description of the table we are reading from */
2471   int iColumn,     /* Index of the table column */
2472   int iTable,      /* The cursor pointing to the table */
2473   int iReg,        /* Store results here */
2474   u8 p5            /* P5 value for OP_Column */
2475 ){
2476   Vdbe *v = pParse->pVdbe;
2477   int i;
2478   struct yColCache *p;
2479 
2480   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2481     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2482       p->lru = pParse->iCacheCnt++;
2483       sqlite3ExprCachePinRegister(pParse, p->iReg);
2484       return p->iReg;
2485     }
2486   }
2487   assert( v!=0 );
2488   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2489   if( p5 ){
2490     sqlite3VdbeChangeP5(v, p5);
2491   }else{
2492     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2493   }
2494   return iReg;
2495 }
2496 
2497 /*
2498 ** Clear all column cache entries.
2499 */
2500 void sqlite3ExprCacheClear(Parse *pParse){
2501   int i;
2502   struct yColCache *p;
2503 
2504 #if SQLITE_DEBUG
2505   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2506     printf("CLEAR\n");
2507   }
2508 #endif
2509   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2510     if( p->iReg ){
2511       cacheEntryClear(pParse, p);
2512       p->iReg = 0;
2513     }
2514   }
2515 }
2516 
2517 /*
2518 ** Record the fact that an affinity change has occurred on iCount
2519 ** registers starting with iStart.
2520 */
2521 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2522   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2523 }
2524 
2525 /*
2526 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2527 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2528 */
2529 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2530   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2531   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2532   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2533 }
2534 
2535 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2536 /*
2537 ** Return true if any register in the range iFrom..iTo (inclusive)
2538 ** is used as part of the column cache.
2539 **
2540 ** This routine is used within assert() and testcase() macros only
2541 ** and does not appear in a normal build.
2542 */
2543 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2544   int i;
2545   struct yColCache *p;
2546   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2547     int r = p->iReg;
2548     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2549   }
2550   return 0;
2551 }
2552 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2553 
2554 /*
2555 ** Convert an expression node to a TK_REGISTER
2556 */
2557 static void exprToRegister(Expr *p, int iReg){
2558   p->op2 = p->op;
2559   p->op = TK_REGISTER;
2560   p->iTable = iReg;
2561   ExprClearProperty(p, EP_Skip);
2562 }
2563 
2564 /*
2565 ** Generate code into the current Vdbe to evaluate the given
2566 ** expression.  Attempt to store the results in register "target".
2567 ** Return the register where results are stored.
2568 **
2569 ** With this routine, there is no guarantee that results will
2570 ** be stored in target.  The result might be stored in some other
2571 ** register if it is convenient to do so.  The calling function
2572 ** must check the return code and move the results to the desired
2573 ** register.
2574 */
2575 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2576   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2577   int op;                   /* The opcode being coded */
2578   int inReg = target;       /* Results stored in register inReg */
2579   int regFree1 = 0;         /* If non-zero free this temporary register */
2580   int regFree2 = 0;         /* If non-zero free this temporary register */
2581   int r1, r2, r3, r4;       /* Various register numbers */
2582   sqlite3 *db = pParse->db; /* The database connection */
2583   Expr tempX;               /* Temporary expression node */
2584 
2585   assert( target>0 && target<=pParse->nMem );
2586   if( v==0 ){
2587     assert( pParse->db->mallocFailed );
2588     return 0;
2589   }
2590 
2591   if( pExpr==0 ){
2592     op = TK_NULL;
2593   }else{
2594     op = pExpr->op;
2595   }
2596   switch( op ){
2597     case TK_AGG_COLUMN: {
2598       AggInfo *pAggInfo = pExpr->pAggInfo;
2599       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2600       if( !pAggInfo->directMode ){
2601         assert( pCol->iMem>0 );
2602         inReg = pCol->iMem;
2603         break;
2604       }else if( pAggInfo->useSortingIdx ){
2605         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2606                               pCol->iSorterColumn, target);
2607         break;
2608       }
2609       /* Otherwise, fall thru into the TK_COLUMN case */
2610     }
2611     case TK_COLUMN: {
2612       int iTab = pExpr->iTable;
2613       if( iTab<0 ){
2614         if( pParse->ckBase>0 ){
2615           /* Generating CHECK constraints or inserting into partial index */
2616           inReg = pExpr->iColumn + pParse->ckBase;
2617           break;
2618         }else{
2619           /* Deleting from a partial index */
2620           iTab = pParse->iPartIdxTab;
2621         }
2622       }
2623       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2624                                pExpr->iColumn, iTab, target,
2625                                pExpr->op2);
2626       break;
2627     }
2628     case TK_INTEGER: {
2629       codeInteger(pParse, pExpr, 0, target);
2630       break;
2631     }
2632 #ifndef SQLITE_OMIT_FLOATING_POINT
2633     case TK_FLOAT: {
2634       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2635       codeReal(v, pExpr->u.zToken, 0, target);
2636       break;
2637     }
2638 #endif
2639     case TK_STRING: {
2640       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2641       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2642       break;
2643     }
2644     case TK_NULL: {
2645       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2646       break;
2647     }
2648 #ifndef SQLITE_OMIT_BLOB_LITERAL
2649     case TK_BLOB: {
2650       int n;
2651       const char *z;
2652       char *zBlob;
2653       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2654       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2655       assert( pExpr->u.zToken[1]=='\'' );
2656       z = &pExpr->u.zToken[2];
2657       n = sqlite3Strlen30(z) - 1;
2658       assert( z[n]=='\'' );
2659       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2660       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2661       break;
2662     }
2663 #endif
2664     case TK_VARIABLE: {
2665       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2666       assert( pExpr->u.zToken!=0 );
2667       assert( pExpr->u.zToken[0]!=0 );
2668       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2669       if( pExpr->u.zToken[1]!=0 ){
2670         assert( pExpr->u.zToken[0]=='?'
2671              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2672         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2673       }
2674       break;
2675     }
2676     case TK_REGISTER: {
2677       inReg = pExpr->iTable;
2678       break;
2679     }
2680     case TK_AS: {
2681       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2682       break;
2683     }
2684 #ifndef SQLITE_OMIT_CAST
2685     case TK_CAST: {
2686       /* Expressions of the form:   CAST(pLeft AS token) */
2687       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2688       if( inReg!=target ){
2689         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2690         inReg = target;
2691       }
2692       sqlite3VdbeAddOp2(v, OP_Cast, target,
2693                         sqlite3AffinityType(pExpr->u.zToken, 0));
2694       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2695       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2696       break;
2697     }
2698 #endif /* SQLITE_OMIT_CAST */
2699     case TK_LT:
2700     case TK_LE:
2701     case TK_GT:
2702     case TK_GE:
2703     case TK_NE:
2704     case TK_EQ: {
2705       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2706       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2707       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2708                   r1, r2, inReg, SQLITE_STOREP2);
2709       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2710       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2711       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2712       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2713       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2714       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2715       testcase( regFree1==0 );
2716       testcase( regFree2==0 );
2717       break;
2718     }
2719     case TK_IS:
2720     case TK_ISNOT: {
2721       testcase( op==TK_IS );
2722       testcase( op==TK_ISNOT );
2723       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2724       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2725       op = (op==TK_IS) ? TK_EQ : TK_NE;
2726       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2727                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2728       VdbeCoverageIf(v, op==TK_EQ);
2729       VdbeCoverageIf(v, op==TK_NE);
2730       testcase( regFree1==0 );
2731       testcase( regFree2==0 );
2732       break;
2733     }
2734     case TK_AND:
2735     case TK_OR:
2736     case TK_PLUS:
2737     case TK_STAR:
2738     case TK_MINUS:
2739     case TK_REM:
2740     case TK_BITAND:
2741     case TK_BITOR:
2742     case TK_SLASH:
2743     case TK_LSHIFT:
2744     case TK_RSHIFT:
2745     case TK_CONCAT: {
2746       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2747       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2748       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2749       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2750       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2751       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2752       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2753       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2754       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2755       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2756       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2757       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2758       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2759       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2760       testcase( regFree1==0 );
2761       testcase( regFree2==0 );
2762       break;
2763     }
2764     case TK_UMINUS: {
2765       Expr *pLeft = pExpr->pLeft;
2766       assert( pLeft );
2767       if( pLeft->op==TK_INTEGER ){
2768         codeInteger(pParse, pLeft, 1, target);
2769 #ifndef SQLITE_OMIT_FLOATING_POINT
2770       }else if( pLeft->op==TK_FLOAT ){
2771         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2772         codeReal(v, pLeft->u.zToken, 1, target);
2773 #endif
2774       }else{
2775         tempX.op = TK_INTEGER;
2776         tempX.flags = EP_IntValue|EP_TokenOnly;
2777         tempX.u.iValue = 0;
2778         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2779         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2780         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2781         testcase( regFree2==0 );
2782       }
2783       inReg = target;
2784       break;
2785     }
2786     case TK_BITNOT:
2787     case TK_NOT: {
2788       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2789       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2790       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2791       testcase( regFree1==0 );
2792       inReg = target;
2793       sqlite3VdbeAddOp2(v, op, r1, inReg);
2794       break;
2795     }
2796     case TK_ISNULL:
2797     case TK_NOTNULL: {
2798       int addr;
2799       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2800       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2801       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2802       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2803       testcase( regFree1==0 );
2804       addr = sqlite3VdbeAddOp1(v, op, r1);
2805       VdbeCoverageIf(v, op==TK_ISNULL);
2806       VdbeCoverageIf(v, op==TK_NOTNULL);
2807       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2808       sqlite3VdbeJumpHere(v, addr);
2809       break;
2810     }
2811     case TK_AGG_FUNCTION: {
2812       AggInfo *pInfo = pExpr->pAggInfo;
2813       if( pInfo==0 ){
2814         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2815         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2816       }else{
2817         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2818       }
2819       break;
2820     }
2821     case TK_FUNCTION: {
2822       ExprList *pFarg;       /* List of function arguments */
2823       int nFarg;             /* Number of function arguments */
2824       FuncDef *pDef;         /* The function definition object */
2825       int nId;               /* Length of the function name in bytes */
2826       const char *zId;       /* The function name */
2827       u32 constMask = 0;     /* Mask of function arguments that are constant */
2828       int i;                 /* Loop counter */
2829       u8 enc = ENC(db);      /* The text encoding used by this database */
2830       CollSeq *pColl = 0;    /* A collating sequence */
2831 
2832       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2833       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2834         pFarg = 0;
2835       }else{
2836         pFarg = pExpr->x.pList;
2837       }
2838       nFarg = pFarg ? pFarg->nExpr : 0;
2839       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2840       zId = pExpr->u.zToken;
2841       nId = sqlite3Strlen30(zId);
2842       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2843       if( pDef==0 || pDef->xFunc==0 ){
2844         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2845         break;
2846       }
2847 
2848       /* Attempt a direct implementation of the built-in COALESCE() and
2849       ** IFNULL() functions.  This avoids unnecessary evaluation of
2850       ** arguments past the first non-NULL argument.
2851       */
2852       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2853         int endCoalesce = sqlite3VdbeMakeLabel(v);
2854         assert( nFarg>=2 );
2855         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2856         for(i=1; i<nFarg; i++){
2857           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2858           VdbeCoverage(v);
2859           sqlite3ExprCacheRemove(pParse, target, 1);
2860           sqlite3ExprCachePush(pParse);
2861           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2862           sqlite3ExprCachePop(pParse);
2863         }
2864         sqlite3VdbeResolveLabel(v, endCoalesce);
2865         break;
2866       }
2867 
2868       /* The UNLIKELY() function is a no-op.  The result is the value
2869       ** of the first argument.
2870       */
2871       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2872         assert( nFarg>=1 );
2873         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2874         break;
2875       }
2876 
2877       for(i=0; i<nFarg; i++){
2878         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2879           testcase( i==31 );
2880           constMask |= MASKBIT32(i);
2881         }
2882         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2883           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2884         }
2885       }
2886       if( pFarg ){
2887         if( constMask ){
2888           r1 = pParse->nMem+1;
2889           pParse->nMem += nFarg;
2890         }else{
2891           r1 = sqlite3GetTempRange(pParse, nFarg);
2892         }
2893 
2894         /* For length() and typeof() functions with a column argument,
2895         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2896         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2897         ** loading.
2898         */
2899         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2900           u8 exprOp;
2901           assert( nFarg==1 );
2902           assert( pFarg->a[0].pExpr!=0 );
2903           exprOp = pFarg->a[0].pExpr->op;
2904           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2905             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2906             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2907             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2908             pFarg->a[0].pExpr->op2 =
2909                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2910           }
2911         }
2912 
2913         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2914         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2915                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2916         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2917       }else{
2918         r1 = 0;
2919       }
2920 #ifndef SQLITE_OMIT_VIRTUALTABLE
2921       /* Possibly overload the function if the first argument is
2922       ** a virtual table column.
2923       **
2924       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2925       ** second argument, not the first, as the argument to test to
2926       ** see if it is a column in a virtual table.  This is done because
2927       ** the left operand of infix functions (the operand we want to
2928       ** control overloading) ends up as the second argument to the
2929       ** function.  The expression "A glob B" is equivalent to
2930       ** "glob(B,A).  We want to use the A in "A glob B" to test
2931       ** for function overloading.  But we use the B term in "glob(B,A)".
2932       */
2933       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2934         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2935       }else if( nFarg>0 ){
2936         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2937       }
2938 #endif
2939       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2940         if( !pColl ) pColl = db->pDfltColl;
2941         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2942       }
2943       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2944                         (char*)pDef, P4_FUNCDEF);
2945       sqlite3VdbeChangeP5(v, (u8)nFarg);
2946       if( nFarg && constMask==0 ){
2947         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2948       }
2949       break;
2950     }
2951 #ifndef SQLITE_OMIT_SUBQUERY
2952     case TK_EXISTS:
2953     case TK_SELECT: {
2954       testcase( op==TK_EXISTS );
2955       testcase( op==TK_SELECT );
2956       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2957       break;
2958     }
2959     case TK_IN: {
2960       int destIfFalse = sqlite3VdbeMakeLabel(v);
2961       int destIfNull = sqlite3VdbeMakeLabel(v);
2962       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2963       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2964       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2965       sqlite3VdbeResolveLabel(v, destIfFalse);
2966       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2967       sqlite3VdbeResolveLabel(v, destIfNull);
2968       break;
2969     }
2970 #endif /* SQLITE_OMIT_SUBQUERY */
2971 
2972 
2973     /*
2974     **    x BETWEEN y AND z
2975     **
2976     ** This is equivalent to
2977     **
2978     **    x>=y AND x<=z
2979     **
2980     ** X is stored in pExpr->pLeft.
2981     ** Y is stored in pExpr->pList->a[0].pExpr.
2982     ** Z is stored in pExpr->pList->a[1].pExpr.
2983     */
2984     case TK_BETWEEN: {
2985       Expr *pLeft = pExpr->pLeft;
2986       struct ExprList_item *pLItem = pExpr->x.pList->a;
2987       Expr *pRight = pLItem->pExpr;
2988 
2989       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2990       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2991       testcase( regFree1==0 );
2992       testcase( regFree2==0 );
2993       r3 = sqlite3GetTempReg(pParse);
2994       r4 = sqlite3GetTempReg(pParse);
2995       codeCompare(pParse, pLeft, pRight, OP_Ge,
2996                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2997       pLItem++;
2998       pRight = pLItem->pExpr;
2999       sqlite3ReleaseTempReg(pParse, regFree2);
3000       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3001       testcase( regFree2==0 );
3002       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3003       VdbeCoverage(v);
3004       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3005       sqlite3ReleaseTempReg(pParse, r3);
3006       sqlite3ReleaseTempReg(pParse, r4);
3007       break;
3008     }
3009     case TK_COLLATE:
3010     case TK_UPLUS: {
3011       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3012       break;
3013     }
3014 
3015     case TK_TRIGGER: {
3016       /* If the opcode is TK_TRIGGER, then the expression is a reference
3017       ** to a column in the new.* or old.* pseudo-tables available to
3018       ** trigger programs. In this case Expr.iTable is set to 1 for the
3019       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3020       ** is set to the column of the pseudo-table to read, or to -1 to
3021       ** read the rowid field.
3022       **
3023       ** The expression is implemented using an OP_Param opcode. The p1
3024       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3025       ** to reference another column of the old.* pseudo-table, where
3026       ** i is the index of the column. For a new.rowid reference, p1 is
3027       ** set to (n+1), where n is the number of columns in each pseudo-table.
3028       ** For a reference to any other column in the new.* pseudo-table, p1
3029       ** is set to (n+2+i), where n and i are as defined previously. For
3030       ** example, if the table on which triggers are being fired is
3031       ** declared as:
3032       **
3033       **   CREATE TABLE t1(a, b);
3034       **
3035       ** Then p1 is interpreted as follows:
3036       **
3037       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3038       **   p1==1   ->    old.a         p1==4   ->    new.a
3039       **   p1==2   ->    old.b         p1==5   ->    new.b
3040       */
3041       Table *pTab = pExpr->pTab;
3042       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3043 
3044       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3045       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3046       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3047       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3048 
3049       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3050       VdbeComment((v, "%s.%s -> $%d",
3051         (pExpr->iTable ? "new" : "old"),
3052         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3053         target
3054       ));
3055 
3056 #ifndef SQLITE_OMIT_FLOATING_POINT
3057       /* If the column has REAL affinity, it may currently be stored as an
3058       ** integer. Use OP_RealAffinity to make sure it is really real.
3059       **
3060       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3061       ** floating point when extracting it from the record.  */
3062       if( pExpr->iColumn>=0
3063        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3064       ){
3065         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3066       }
3067 #endif
3068       break;
3069     }
3070 
3071 
3072     /*
3073     ** Form A:
3074     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3075     **
3076     ** Form B:
3077     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3078     **
3079     ** Form A is can be transformed into the equivalent form B as follows:
3080     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3081     **        WHEN x=eN THEN rN ELSE y END
3082     **
3083     ** X (if it exists) is in pExpr->pLeft.
3084     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3085     ** odd.  The Y is also optional.  If the number of elements in x.pList
3086     ** is even, then Y is omitted and the "otherwise" result is NULL.
3087     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3088     **
3089     ** The result of the expression is the Ri for the first matching Ei,
3090     ** or if there is no matching Ei, the ELSE term Y, or if there is
3091     ** no ELSE term, NULL.
3092     */
3093     default: assert( op==TK_CASE ); {
3094       int endLabel;                     /* GOTO label for end of CASE stmt */
3095       int nextCase;                     /* GOTO label for next WHEN clause */
3096       int nExpr;                        /* 2x number of WHEN terms */
3097       int i;                            /* Loop counter */
3098       ExprList *pEList;                 /* List of WHEN terms */
3099       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3100       Expr opCompare;                   /* The X==Ei expression */
3101       Expr *pX;                         /* The X expression */
3102       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3103       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3104 
3105       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3106       assert(pExpr->x.pList->nExpr > 0);
3107       pEList = pExpr->x.pList;
3108       aListelem = pEList->a;
3109       nExpr = pEList->nExpr;
3110       endLabel = sqlite3VdbeMakeLabel(v);
3111       if( (pX = pExpr->pLeft)!=0 ){
3112         tempX = *pX;
3113         testcase( pX->op==TK_COLUMN );
3114         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3115         testcase( regFree1==0 );
3116         opCompare.op = TK_EQ;
3117         opCompare.pLeft = &tempX;
3118         pTest = &opCompare;
3119         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3120         ** The value in regFree1 might get SCopy-ed into the file result.
3121         ** So make sure that the regFree1 register is not reused for other
3122         ** purposes and possibly overwritten.  */
3123         regFree1 = 0;
3124       }
3125       for(i=0; i<nExpr-1; i=i+2){
3126         sqlite3ExprCachePush(pParse);
3127         if( pX ){
3128           assert( pTest!=0 );
3129           opCompare.pRight = aListelem[i].pExpr;
3130         }else{
3131           pTest = aListelem[i].pExpr;
3132         }
3133         nextCase = sqlite3VdbeMakeLabel(v);
3134         testcase( pTest->op==TK_COLUMN );
3135         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3136         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3137         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3138         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3139         sqlite3ExprCachePop(pParse);
3140         sqlite3VdbeResolveLabel(v, nextCase);
3141       }
3142       if( (nExpr&1)!=0 ){
3143         sqlite3ExprCachePush(pParse);
3144         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3145         sqlite3ExprCachePop(pParse);
3146       }else{
3147         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3148       }
3149       assert( db->mallocFailed || pParse->nErr>0
3150            || pParse->iCacheLevel==iCacheLevel );
3151       sqlite3VdbeResolveLabel(v, endLabel);
3152       break;
3153     }
3154 #ifndef SQLITE_OMIT_TRIGGER
3155     case TK_RAISE: {
3156       assert( pExpr->affinity==OE_Rollback
3157            || pExpr->affinity==OE_Abort
3158            || pExpr->affinity==OE_Fail
3159            || pExpr->affinity==OE_Ignore
3160       );
3161       if( !pParse->pTriggerTab ){
3162         sqlite3ErrorMsg(pParse,
3163                        "RAISE() may only be used within a trigger-program");
3164         return 0;
3165       }
3166       if( pExpr->affinity==OE_Abort ){
3167         sqlite3MayAbort(pParse);
3168       }
3169       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3170       if( pExpr->affinity==OE_Ignore ){
3171         sqlite3VdbeAddOp4(
3172             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3173         VdbeCoverage(v);
3174       }else{
3175         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3176                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3177       }
3178 
3179       break;
3180     }
3181 #endif
3182   }
3183   sqlite3ReleaseTempReg(pParse, regFree1);
3184   sqlite3ReleaseTempReg(pParse, regFree2);
3185   return inReg;
3186 }
3187 
3188 /*
3189 ** Factor out the code of the given expression to initialization time.
3190 */
3191 void sqlite3ExprCodeAtInit(
3192   Parse *pParse,    /* Parsing context */
3193   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3194   int regDest,      /* Store the value in this register */
3195   u8 reusable       /* True if this expression is reusable */
3196 ){
3197   ExprList *p;
3198   assert( ConstFactorOk(pParse) );
3199   p = pParse->pConstExpr;
3200   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3201   p = sqlite3ExprListAppend(pParse, p, pExpr);
3202   if( p ){
3203      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3204      pItem->u.iConstExprReg = regDest;
3205      pItem->reusable = reusable;
3206   }
3207   pParse->pConstExpr = p;
3208 }
3209 
3210 /*
3211 ** Generate code to evaluate an expression and store the results
3212 ** into a register.  Return the register number where the results
3213 ** are stored.
3214 **
3215 ** If the register is a temporary register that can be deallocated,
3216 ** then write its number into *pReg.  If the result register is not
3217 ** a temporary, then set *pReg to zero.
3218 **
3219 ** If pExpr is a constant, then this routine might generate this
3220 ** code to fill the register in the initialization section of the
3221 ** VDBE program, in order to factor it out of the evaluation loop.
3222 */
3223 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3224   int r2;
3225   pExpr = sqlite3ExprSkipCollate(pExpr);
3226   if( ConstFactorOk(pParse)
3227    && pExpr->op!=TK_REGISTER
3228    && sqlite3ExprIsConstantNotJoin(pExpr)
3229   ){
3230     ExprList *p = pParse->pConstExpr;
3231     int i;
3232     *pReg  = 0;
3233     if( p ){
3234       struct ExprList_item *pItem;
3235       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3236         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3237           return pItem->u.iConstExprReg;
3238         }
3239       }
3240     }
3241     r2 = ++pParse->nMem;
3242     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3243   }else{
3244     int r1 = sqlite3GetTempReg(pParse);
3245     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3246     if( r2==r1 ){
3247       *pReg = r1;
3248     }else{
3249       sqlite3ReleaseTempReg(pParse, r1);
3250       *pReg = 0;
3251     }
3252   }
3253   return r2;
3254 }
3255 
3256 /*
3257 ** Generate code that will evaluate expression pExpr and store the
3258 ** results in register target.  The results are guaranteed to appear
3259 ** in register target.
3260 */
3261 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3262   int inReg;
3263 
3264   assert( target>0 && target<=pParse->nMem );
3265   if( pExpr && pExpr->op==TK_REGISTER ){
3266     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3267   }else{
3268     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3269     assert( pParse->pVdbe || pParse->db->mallocFailed );
3270     if( inReg!=target && pParse->pVdbe ){
3271       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3272     }
3273   }
3274 }
3275 
3276 /*
3277 ** Generate code that will evaluate expression pExpr and store the
3278 ** results in register target.  The results are guaranteed to appear
3279 ** in register target.  If the expression is constant, then this routine
3280 ** might choose to code the expression at initialization time.
3281 */
3282 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3283   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3284     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3285   }else{
3286     sqlite3ExprCode(pParse, pExpr, target);
3287   }
3288 }
3289 
3290 /*
3291 ** Generate code that evaluates the given expression and puts the result
3292 ** in register target.
3293 **
3294 ** Also make a copy of the expression results into another "cache" register
3295 ** and modify the expression so that the next time it is evaluated,
3296 ** the result is a copy of the cache register.
3297 **
3298 ** This routine is used for expressions that are used multiple
3299 ** times.  They are evaluated once and the results of the expression
3300 ** are reused.
3301 */
3302 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3303   Vdbe *v = pParse->pVdbe;
3304   int iMem;
3305 
3306   assert( target>0 );
3307   assert( pExpr->op!=TK_REGISTER );
3308   sqlite3ExprCode(pParse, pExpr, target);
3309   iMem = ++pParse->nMem;
3310   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3311   exprToRegister(pExpr, iMem);
3312 }
3313 
3314 #ifdef SQLITE_DEBUG
3315 /*
3316 ** Generate a human-readable explanation of an expression tree.
3317 */
3318 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
3319   const char *zBinOp = 0;   /* Binary operator */
3320   const char *zUniOp = 0;   /* Unary operator */
3321   pView = sqlite3TreeViewPush(pView, moreToFollow);
3322   if( pExpr==0 ){
3323     sqlite3TreeViewLine(pView, "nil");
3324     sqlite3TreeViewPop(pView);
3325     return;
3326   }
3327   switch( pExpr->op ){
3328     case TK_AGG_COLUMN: {
3329       sqlite3TreeViewLine(pView, "AGG{%d:%d}",
3330             pExpr->iTable, pExpr->iColumn);
3331       break;
3332     }
3333     case TK_COLUMN: {
3334       if( pExpr->iTable<0 ){
3335         /* This only happens when coding check constraints */
3336         sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
3337       }else{
3338         sqlite3TreeViewLine(pView, "{%d:%d}",
3339                              pExpr->iTable, pExpr->iColumn);
3340       }
3341       break;
3342     }
3343     case TK_INTEGER: {
3344       if( pExpr->flags & EP_IntValue ){
3345         sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
3346       }else{
3347         sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
3348       }
3349       break;
3350     }
3351 #ifndef SQLITE_OMIT_FLOATING_POINT
3352     case TK_FLOAT: {
3353       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3354       break;
3355     }
3356 #endif
3357     case TK_STRING: {
3358       sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
3359       break;
3360     }
3361     case TK_NULL: {
3362       sqlite3TreeViewLine(pView,"NULL");
3363       break;
3364     }
3365 #ifndef SQLITE_OMIT_BLOB_LITERAL
3366     case TK_BLOB: {
3367       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3368       break;
3369     }
3370 #endif
3371     case TK_VARIABLE: {
3372       sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
3373                           pExpr->u.zToken, pExpr->iColumn);
3374       break;
3375     }
3376     case TK_REGISTER: {
3377       sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
3378       break;
3379     }
3380     case TK_AS: {
3381       sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
3382       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3383       break;
3384     }
3385     case TK_ID: {
3386       sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken);
3387       break;
3388     }
3389 #ifndef SQLITE_OMIT_CAST
3390     case TK_CAST: {
3391       /* Expressions of the form:   CAST(pLeft AS token) */
3392       sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
3393       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3394       break;
3395     }
3396 #endif /* SQLITE_OMIT_CAST */
3397     case TK_LT:      zBinOp = "LT";     break;
3398     case TK_LE:      zBinOp = "LE";     break;
3399     case TK_GT:      zBinOp = "GT";     break;
3400     case TK_GE:      zBinOp = "GE";     break;
3401     case TK_NE:      zBinOp = "NE";     break;
3402     case TK_EQ:      zBinOp = "EQ";     break;
3403     case TK_IS:      zBinOp = "IS";     break;
3404     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3405     case TK_AND:     zBinOp = "AND";    break;
3406     case TK_OR:      zBinOp = "OR";     break;
3407     case TK_PLUS:    zBinOp = "ADD";    break;
3408     case TK_STAR:    zBinOp = "MUL";    break;
3409     case TK_MINUS:   zBinOp = "SUB";    break;
3410     case TK_REM:     zBinOp = "REM";    break;
3411     case TK_BITAND:  zBinOp = "BITAND"; break;
3412     case TK_BITOR:   zBinOp = "BITOR";  break;
3413     case TK_SLASH:   zBinOp = "DIV";    break;
3414     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3415     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3416     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3417     case TK_DOT:     zBinOp = "DOT";    break;
3418 
3419     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3420     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3421     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3422     case TK_NOT:     zUniOp = "NOT";    break;
3423     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3424     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3425 
3426     case TK_COLLATE: {
3427       sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
3428       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3429       break;
3430     }
3431 
3432     case TK_AGG_FUNCTION:
3433     case TK_FUNCTION: {
3434       ExprList *pFarg;       /* List of function arguments */
3435       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3436         pFarg = 0;
3437       }else{
3438         pFarg = pExpr->x.pList;
3439       }
3440       if( pExpr->op==TK_AGG_FUNCTION ){
3441         sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
3442                              pExpr->op2, pExpr->u.zToken);
3443       }else{
3444         sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
3445       }
3446       if( pFarg ){
3447         sqlite3TreeViewExprList(pView, pFarg, 0, 0);
3448       }
3449       break;
3450     }
3451 #ifndef SQLITE_OMIT_SUBQUERY
3452     case TK_EXISTS: {
3453       sqlite3TreeViewLine(pView, "EXISTS-expr");
3454       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3455       break;
3456     }
3457     case TK_SELECT: {
3458       sqlite3TreeViewLine(pView, "SELECT-expr");
3459       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3460       break;
3461     }
3462     case TK_IN: {
3463       sqlite3TreeViewLine(pView, "IN");
3464       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3465       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3466         sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3467       }else{
3468         sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3469       }
3470       break;
3471     }
3472 #endif /* SQLITE_OMIT_SUBQUERY */
3473 
3474     /*
3475     **    x BETWEEN y AND z
3476     **
3477     ** This is equivalent to
3478     **
3479     **    x>=y AND x<=z
3480     **
3481     ** X is stored in pExpr->pLeft.
3482     ** Y is stored in pExpr->pList->a[0].pExpr.
3483     ** Z is stored in pExpr->pList->a[1].pExpr.
3484     */
3485     case TK_BETWEEN: {
3486       Expr *pX = pExpr->pLeft;
3487       Expr *pY = pExpr->x.pList->a[0].pExpr;
3488       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3489       sqlite3TreeViewLine(pView, "BETWEEN");
3490       sqlite3TreeViewExpr(pView, pX, 1);
3491       sqlite3TreeViewExpr(pView, pY, 1);
3492       sqlite3TreeViewExpr(pView, pZ, 0);
3493       break;
3494     }
3495     case TK_TRIGGER: {
3496       /* If the opcode is TK_TRIGGER, then the expression is a reference
3497       ** to a column in the new.* or old.* pseudo-tables available to
3498       ** trigger programs. In this case Expr.iTable is set to 1 for the
3499       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3500       ** is set to the column of the pseudo-table to read, or to -1 to
3501       ** read the rowid field.
3502       */
3503       sqlite3TreeViewLine(pView, "%s(%d)",
3504           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3505       break;
3506     }
3507     case TK_CASE: {
3508       sqlite3TreeViewLine(pView, "CASE");
3509       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3510       sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3511       break;
3512     }
3513 #ifndef SQLITE_OMIT_TRIGGER
3514     case TK_RAISE: {
3515       const char *zType = "unk";
3516       switch( pExpr->affinity ){
3517         case OE_Rollback:   zType = "rollback";  break;
3518         case OE_Abort:      zType = "abort";     break;
3519         case OE_Fail:       zType = "fail";      break;
3520         case OE_Ignore:     zType = "ignore";    break;
3521       }
3522       sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
3523       break;
3524     }
3525 #endif
3526     default: {
3527       sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
3528       break;
3529     }
3530   }
3531   if( zBinOp ){
3532     sqlite3TreeViewLine(pView, "%s", zBinOp);
3533     sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3534     sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
3535   }else if( zUniOp ){
3536     sqlite3TreeViewLine(pView, "%s", zUniOp);
3537     sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3538   }
3539   sqlite3TreeViewPop(pView);
3540 }
3541 #endif /* SQLITE_DEBUG */
3542 
3543 #ifdef SQLITE_DEBUG
3544 /*
3545 ** Generate a human-readable explanation of an expression list.
3546 */
3547 void sqlite3TreeViewExprList(
3548   TreeView *pView,
3549   const ExprList *pList,
3550   u8 moreToFollow,
3551   const char *zLabel
3552 ){
3553   int i;
3554   pView = sqlite3TreeViewPush(pView, moreToFollow);
3555   if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
3556   if( pList==0 ){
3557     sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
3558   }else{
3559     sqlite3TreeViewLine(pView, "%s", zLabel);
3560     for(i=0; i<pList->nExpr; i++){
3561       sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
3562 #if 0
3563      if( pList->a[i].zName ){
3564         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3565       }
3566       if( pList->a[i].bSpanIsTab ){
3567         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3568       }
3569 #endif
3570     }
3571   }
3572   sqlite3TreeViewPop(pView);
3573 }
3574 #endif /* SQLITE_DEBUG */
3575 
3576 /*
3577 ** Generate code that pushes the value of every element of the given
3578 ** expression list into a sequence of registers beginning at target.
3579 **
3580 ** Return the number of elements evaluated.
3581 **
3582 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3583 ** filled using OP_SCopy.  OP_Copy must be used instead.
3584 **
3585 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3586 ** factored out into initialization code.
3587 */
3588 int sqlite3ExprCodeExprList(
3589   Parse *pParse,     /* Parsing context */
3590   ExprList *pList,   /* The expression list to be coded */
3591   int target,        /* Where to write results */
3592   u8 flags           /* SQLITE_ECEL_* flags */
3593 ){
3594   struct ExprList_item *pItem;
3595   int i, n;
3596   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3597   assert( pList!=0 );
3598   assert( target>0 );
3599   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3600   n = pList->nExpr;
3601   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3602   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3603     Expr *pExpr = pItem->pExpr;
3604     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3605       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3606     }else{
3607       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3608       if( inReg!=target+i ){
3609         VdbeOp *pOp;
3610         Vdbe *v = pParse->pVdbe;
3611         if( copyOp==OP_Copy
3612          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3613          && pOp->p1+pOp->p3+1==inReg
3614          && pOp->p2+pOp->p3+1==target+i
3615         ){
3616           pOp->p3++;
3617         }else{
3618           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3619         }
3620       }
3621     }
3622   }
3623   return n;
3624 }
3625 
3626 /*
3627 ** Generate code for a BETWEEN operator.
3628 **
3629 **    x BETWEEN y AND z
3630 **
3631 ** The above is equivalent to
3632 **
3633 **    x>=y AND x<=z
3634 **
3635 ** Code it as such, taking care to do the common subexpression
3636 ** elimination of x.
3637 */
3638 static void exprCodeBetween(
3639   Parse *pParse,    /* Parsing and code generating context */
3640   Expr *pExpr,      /* The BETWEEN expression */
3641   int dest,         /* Jump here if the jump is taken */
3642   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3643   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3644 ){
3645   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3646   Expr compLeft;    /* The  x>=y  term */
3647   Expr compRight;   /* The  x<=z  term */
3648   Expr exprX;       /* The  x  subexpression */
3649   int regFree1 = 0; /* Temporary use register */
3650 
3651   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3652   exprX = *pExpr->pLeft;
3653   exprAnd.op = TK_AND;
3654   exprAnd.pLeft = &compLeft;
3655   exprAnd.pRight = &compRight;
3656   compLeft.op = TK_GE;
3657   compLeft.pLeft = &exprX;
3658   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3659   compRight.op = TK_LE;
3660   compRight.pLeft = &exprX;
3661   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3662   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3663   if( jumpIfTrue ){
3664     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3665   }else{
3666     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3667   }
3668   sqlite3ReleaseTempReg(pParse, regFree1);
3669 
3670   /* Ensure adequate test coverage */
3671   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3672   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3673   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3674   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3675   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3676   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3677   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3678   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3679 }
3680 
3681 /*
3682 ** Generate code for a boolean expression such that a jump is made
3683 ** to the label "dest" if the expression is true but execution
3684 ** continues straight thru if the expression is false.
3685 **
3686 ** If the expression evaluates to NULL (neither true nor false), then
3687 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3688 **
3689 ** This code depends on the fact that certain token values (ex: TK_EQ)
3690 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3691 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3692 ** the make process cause these values to align.  Assert()s in the code
3693 ** below verify that the numbers are aligned correctly.
3694 */
3695 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3696   Vdbe *v = pParse->pVdbe;
3697   int op = 0;
3698   int regFree1 = 0;
3699   int regFree2 = 0;
3700   int r1, r2;
3701 
3702   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3703   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3704   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3705   op = pExpr->op;
3706   switch( op ){
3707     case TK_AND: {
3708       int d2 = sqlite3VdbeMakeLabel(v);
3709       testcase( jumpIfNull==0 );
3710       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3711       sqlite3ExprCachePush(pParse);
3712       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3713       sqlite3VdbeResolveLabel(v, d2);
3714       sqlite3ExprCachePop(pParse);
3715       break;
3716     }
3717     case TK_OR: {
3718       testcase( jumpIfNull==0 );
3719       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3720       sqlite3ExprCachePush(pParse);
3721       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3722       sqlite3ExprCachePop(pParse);
3723       break;
3724     }
3725     case TK_NOT: {
3726       testcase( jumpIfNull==0 );
3727       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3728       break;
3729     }
3730     case TK_LT:
3731     case TK_LE:
3732     case TK_GT:
3733     case TK_GE:
3734     case TK_NE:
3735     case TK_EQ: {
3736       testcase( jumpIfNull==0 );
3737       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3738       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3739       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3740                   r1, r2, dest, jumpIfNull);
3741       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3742       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3743       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3744       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3745       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3746       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3747       testcase( regFree1==0 );
3748       testcase( regFree2==0 );
3749       break;
3750     }
3751     case TK_IS:
3752     case TK_ISNOT: {
3753       testcase( op==TK_IS );
3754       testcase( op==TK_ISNOT );
3755       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3756       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3757       op = (op==TK_IS) ? TK_EQ : TK_NE;
3758       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3759                   r1, r2, dest, SQLITE_NULLEQ);
3760       VdbeCoverageIf(v, op==TK_EQ);
3761       VdbeCoverageIf(v, op==TK_NE);
3762       testcase( regFree1==0 );
3763       testcase( regFree2==0 );
3764       break;
3765     }
3766     case TK_ISNULL:
3767     case TK_NOTNULL: {
3768       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3769       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3770       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3771       sqlite3VdbeAddOp2(v, op, r1, dest);
3772       VdbeCoverageIf(v, op==TK_ISNULL);
3773       VdbeCoverageIf(v, op==TK_NOTNULL);
3774       testcase( regFree1==0 );
3775       break;
3776     }
3777     case TK_BETWEEN: {
3778       testcase( jumpIfNull==0 );
3779       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3780       break;
3781     }
3782 #ifndef SQLITE_OMIT_SUBQUERY
3783     case TK_IN: {
3784       int destIfFalse = sqlite3VdbeMakeLabel(v);
3785       int destIfNull = jumpIfNull ? dest : destIfFalse;
3786       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3787       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3788       sqlite3VdbeResolveLabel(v, destIfFalse);
3789       break;
3790     }
3791 #endif
3792     default: {
3793       if( exprAlwaysTrue(pExpr) ){
3794         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3795       }else if( exprAlwaysFalse(pExpr) ){
3796         /* No-op */
3797       }else{
3798         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3799         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3800         VdbeCoverage(v);
3801         testcase( regFree1==0 );
3802         testcase( jumpIfNull==0 );
3803       }
3804       break;
3805     }
3806   }
3807   sqlite3ReleaseTempReg(pParse, regFree1);
3808   sqlite3ReleaseTempReg(pParse, regFree2);
3809 }
3810 
3811 /*
3812 ** Generate code for a boolean expression such that a jump is made
3813 ** to the label "dest" if the expression is false but execution
3814 ** continues straight thru if the expression is true.
3815 **
3816 ** If the expression evaluates to NULL (neither true nor false) then
3817 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3818 ** is 0.
3819 */
3820 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3821   Vdbe *v = pParse->pVdbe;
3822   int op = 0;
3823   int regFree1 = 0;
3824   int regFree2 = 0;
3825   int r1, r2;
3826 
3827   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3828   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3829   if( pExpr==0 )    return;
3830 
3831   /* The value of pExpr->op and op are related as follows:
3832   **
3833   **       pExpr->op            op
3834   **       ---------          ----------
3835   **       TK_ISNULL          OP_NotNull
3836   **       TK_NOTNULL         OP_IsNull
3837   **       TK_NE              OP_Eq
3838   **       TK_EQ              OP_Ne
3839   **       TK_GT              OP_Le
3840   **       TK_LE              OP_Gt
3841   **       TK_GE              OP_Lt
3842   **       TK_LT              OP_Ge
3843   **
3844   ** For other values of pExpr->op, op is undefined and unused.
3845   ** The value of TK_ and OP_ constants are arranged such that we
3846   ** can compute the mapping above using the following expression.
3847   ** Assert()s verify that the computation is correct.
3848   */
3849   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3850 
3851   /* Verify correct alignment of TK_ and OP_ constants
3852   */
3853   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3854   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3855   assert( pExpr->op!=TK_NE || op==OP_Eq );
3856   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3857   assert( pExpr->op!=TK_LT || op==OP_Ge );
3858   assert( pExpr->op!=TK_LE || op==OP_Gt );
3859   assert( pExpr->op!=TK_GT || op==OP_Le );
3860   assert( pExpr->op!=TK_GE || op==OP_Lt );
3861 
3862   switch( pExpr->op ){
3863     case TK_AND: {
3864       testcase( jumpIfNull==0 );
3865       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3866       sqlite3ExprCachePush(pParse);
3867       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3868       sqlite3ExprCachePop(pParse);
3869       break;
3870     }
3871     case TK_OR: {
3872       int d2 = sqlite3VdbeMakeLabel(v);
3873       testcase( jumpIfNull==0 );
3874       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3875       sqlite3ExprCachePush(pParse);
3876       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3877       sqlite3VdbeResolveLabel(v, d2);
3878       sqlite3ExprCachePop(pParse);
3879       break;
3880     }
3881     case TK_NOT: {
3882       testcase( jumpIfNull==0 );
3883       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3884       break;
3885     }
3886     case TK_LT:
3887     case TK_LE:
3888     case TK_GT:
3889     case TK_GE:
3890     case TK_NE:
3891     case TK_EQ: {
3892       testcase( jumpIfNull==0 );
3893       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3894       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3895       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3896                   r1, r2, dest, jumpIfNull);
3897       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3898       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3899       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3900       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3901       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3902       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3903       testcase( regFree1==0 );
3904       testcase( regFree2==0 );
3905       break;
3906     }
3907     case TK_IS:
3908     case TK_ISNOT: {
3909       testcase( pExpr->op==TK_IS );
3910       testcase( pExpr->op==TK_ISNOT );
3911       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3912       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3913       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3914       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3915                   r1, r2, dest, SQLITE_NULLEQ);
3916       VdbeCoverageIf(v, op==TK_EQ);
3917       VdbeCoverageIf(v, op==TK_NE);
3918       testcase( regFree1==0 );
3919       testcase( regFree2==0 );
3920       break;
3921     }
3922     case TK_ISNULL:
3923     case TK_NOTNULL: {
3924       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3925       sqlite3VdbeAddOp2(v, op, r1, dest);
3926       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3927       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3928       testcase( regFree1==0 );
3929       break;
3930     }
3931     case TK_BETWEEN: {
3932       testcase( jumpIfNull==0 );
3933       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3934       break;
3935     }
3936 #ifndef SQLITE_OMIT_SUBQUERY
3937     case TK_IN: {
3938       if( jumpIfNull ){
3939         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3940       }else{
3941         int destIfNull = sqlite3VdbeMakeLabel(v);
3942         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3943         sqlite3VdbeResolveLabel(v, destIfNull);
3944       }
3945       break;
3946     }
3947 #endif
3948     default: {
3949       if( exprAlwaysFalse(pExpr) ){
3950         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3951       }else if( exprAlwaysTrue(pExpr) ){
3952         /* no-op */
3953       }else{
3954         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3955         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3956         VdbeCoverage(v);
3957         testcase( regFree1==0 );
3958         testcase( jumpIfNull==0 );
3959       }
3960       break;
3961     }
3962   }
3963   sqlite3ReleaseTempReg(pParse, regFree1);
3964   sqlite3ReleaseTempReg(pParse, regFree2);
3965 }
3966 
3967 /*
3968 ** Do a deep comparison of two expression trees.  Return 0 if the two
3969 ** expressions are completely identical.  Return 1 if they differ only
3970 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3971 ** other than the top-level COLLATE operator.
3972 **
3973 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3974 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3975 **
3976 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3977 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3978 **
3979 ** Sometimes this routine will return 2 even if the two expressions
3980 ** really are equivalent.  If we cannot prove that the expressions are
3981 ** identical, we return 2 just to be safe.  So if this routine
3982 ** returns 2, then you do not really know for certain if the two
3983 ** expressions are the same.  But if you get a 0 or 1 return, then you
3984 ** can be sure the expressions are the same.  In the places where
3985 ** this routine is used, it does not hurt to get an extra 2 - that
3986 ** just might result in some slightly slower code.  But returning
3987 ** an incorrect 0 or 1 could lead to a malfunction.
3988 */
3989 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3990   u32 combinedFlags;
3991   if( pA==0 || pB==0 ){
3992     return pB==pA ? 0 : 2;
3993   }
3994   combinedFlags = pA->flags | pB->flags;
3995   if( combinedFlags & EP_IntValue ){
3996     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3997       return 0;
3998     }
3999     return 2;
4000   }
4001   if( pA->op!=pB->op ){
4002     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
4003       return 1;
4004     }
4005     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
4006       return 1;
4007     }
4008     return 2;
4009   }
4010   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
4011     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4012       return pA->op==TK_COLLATE ? 1 : 2;
4013     }
4014   }
4015   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4016   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4017     if( combinedFlags & EP_xIsSelect ) return 2;
4018     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
4019     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
4020     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4021     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4022       if( pA->iColumn!=pB->iColumn ) return 2;
4023       if( pA->iTable!=pB->iTable
4024        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4025     }
4026   }
4027   return 0;
4028 }
4029 
4030 /*
4031 ** Compare two ExprList objects.  Return 0 if they are identical and
4032 ** non-zero if they differ in any way.
4033 **
4034 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4035 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4036 **
4037 ** This routine might return non-zero for equivalent ExprLists.  The
4038 ** only consequence will be disabled optimizations.  But this routine
4039 ** must never return 0 if the two ExprList objects are different, or
4040 ** a malfunction will result.
4041 **
4042 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4043 ** always differs from a non-NULL pointer.
4044 */
4045 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4046   int i;
4047   if( pA==0 && pB==0 ) return 0;
4048   if( pA==0 || pB==0 ) return 1;
4049   if( pA->nExpr!=pB->nExpr ) return 1;
4050   for(i=0; i<pA->nExpr; i++){
4051     Expr *pExprA = pA->a[i].pExpr;
4052     Expr *pExprB = pB->a[i].pExpr;
4053     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4054     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4055   }
4056   return 0;
4057 }
4058 
4059 /*
4060 ** Return true if we can prove the pE2 will always be true if pE1 is
4061 ** true.  Return false if we cannot complete the proof or if pE2 might
4062 ** be false.  Examples:
4063 **
4064 **     pE1: x==5       pE2: x==5             Result: true
4065 **     pE1: x>0        pE2: x==5             Result: false
4066 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4067 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4068 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4069 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4070 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4071 **
4072 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4073 ** Expr.iTable<0 then assume a table number given by iTab.
4074 **
4075 ** When in doubt, return false.  Returning true might give a performance
4076 ** improvement.  Returning false might cause a performance reduction, but
4077 ** it will always give the correct answer and is hence always safe.
4078 */
4079 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4080   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4081     return 1;
4082   }
4083   if( pE2->op==TK_OR
4084    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4085              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4086   ){
4087     return 1;
4088   }
4089   if( pE2->op==TK_NOTNULL
4090    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4091    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4092   ){
4093     return 1;
4094   }
4095   return 0;
4096 }
4097 
4098 /*
4099 ** An instance of the following structure is used by the tree walker
4100 ** to count references to table columns in the arguments of an
4101 ** aggregate function, in order to implement the
4102 ** sqlite3FunctionThisSrc() routine.
4103 */
4104 struct SrcCount {
4105   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4106   int nThis;       /* Number of references to columns in pSrcList */
4107   int nOther;      /* Number of references to columns in other FROM clauses */
4108 };
4109 
4110 /*
4111 ** Count the number of references to columns.
4112 */
4113 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4114   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4115   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4116   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4117   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4118   ** NEVER() will need to be removed. */
4119   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4120     int i;
4121     struct SrcCount *p = pWalker->u.pSrcCount;
4122     SrcList *pSrc = p->pSrc;
4123     int nSrc = pSrc ? pSrc->nSrc : 0;
4124     for(i=0; i<nSrc; i++){
4125       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4126     }
4127     if( i<nSrc ){
4128       p->nThis++;
4129     }else{
4130       p->nOther++;
4131     }
4132   }
4133   return WRC_Continue;
4134 }
4135 
4136 /*
4137 ** Determine if any of the arguments to the pExpr Function reference
4138 ** pSrcList.  Return true if they do.  Also return true if the function
4139 ** has no arguments or has only constant arguments.  Return false if pExpr
4140 ** references columns but not columns of tables found in pSrcList.
4141 */
4142 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4143   Walker w;
4144   struct SrcCount cnt;
4145   assert( pExpr->op==TK_AGG_FUNCTION );
4146   memset(&w, 0, sizeof(w));
4147   w.xExprCallback = exprSrcCount;
4148   w.u.pSrcCount = &cnt;
4149   cnt.pSrc = pSrcList;
4150   cnt.nThis = 0;
4151   cnt.nOther = 0;
4152   sqlite3WalkExprList(&w, pExpr->x.pList);
4153   return cnt.nThis>0 || cnt.nOther==0;
4154 }
4155 
4156 /*
4157 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4158 ** the new element.  Return a negative number if malloc fails.
4159 */
4160 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4161   int i;
4162   pInfo->aCol = sqlite3ArrayAllocate(
4163        db,
4164        pInfo->aCol,
4165        sizeof(pInfo->aCol[0]),
4166        &pInfo->nColumn,
4167        &i
4168   );
4169   return i;
4170 }
4171 
4172 /*
4173 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4174 ** the new element.  Return a negative number if malloc fails.
4175 */
4176 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4177   int i;
4178   pInfo->aFunc = sqlite3ArrayAllocate(
4179        db,
4180        pInfo->aFunc,
4181        sizeof(pInfo->aFunc[0]),
4182        &pInfo->nFunc,
4183        &i
4184   );
4185   return i;
4186 }
4187 
4188 /*
4189 ** This is the xExprCallback for a tree walker.  It is used to
4190 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4191 ** for additional information.
4192 */
4193 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4194   int i;
4195   NameContext *pNC = pWalker->u.pNC;
4196   Parse *pParse = pNC->pParse;
4197   SrcList *pSrcList = pNC->pSrcList;
4198   AggInfo *pAggInfo = pNC->pAggInfo;
4199 
4200   switch( pExpr->op ){
4201     case TK_AGG_COLUMN:
4202     case TK_COLUMN: {
4203       testcase( pExpr->op==TK_AGG_COLUMN );
4204       testcase( pExpr->op==TK_COLUMN );
4205       /* Check to see if the column is in one of the tables in the FROM
4206       ** clause of the aggregate query */
4207       if( ALWAYS(pSrcList!=0) ){
4208         struct SrcList_item *pItem = pSrcList->a;
4209         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4210           struct AggInfo_col *pCol;
4211           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4212           if( pExpr->iTable==pItem->iCursor ){
4213             /* If we reach this point, it means that pExpr refers to a table
4214             ** that is in the FROM clause of the aggregate query.
4215             **
4216             ** Make an entry for the column in pAggInfo->aCol[] if there
4217             ** is not an entry there already.
4218             */
4219             int k;
4220             pCol = pAggInfo->aCol;
4221             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4222               if( pCol->iTable==pExpr->iTable &&
4223                   pCol->iColumn==pExpr->iColumn ){
4224                 break;
4225               }
4226             }
4227             if( (k>=pAggInfo->nColumn)
4228              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4229             ){
4230               pCol = &pAggInfo->aCol[k];
4231               pCol->pTab = pExpr->pTab;
4232               pCol->iTable = pExpr->iTable;
4233               pCol->iColumn = pExpr->iColumn;
4234               pCol->iMem = ++pParse->nMem;
4235               pCol->iSorterColumn = -1;
4236               pCol->pExpr = pExpr;
4237               if( pAggInfo->pGroupBy ){
4238                 int j, n;
4239                 ExprList *pGB = pAggInfo->pGroupBy;
4240                 struct ExprList_item *pTerm = pGB->a;
4241                 n = pGB->nExpr;
4242                 for(j=0; j<n; j++, pTerm++){
4243                   Expr *pE = pTerm->pExpr;
4244                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4245                       pE->iColumn==pExpr->iColumn ){
4246                     pCol->iSorterColumn = j;
4247                     break;
4248                   }
4249                 }
4250               }
4251               if( pCol->iSorterColumn<0 ){
4252                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4253               }
4254             }
4255             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4256             ** because it was there before or because we just created it).
4257             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4258             ** pAggInfo->aCol[] entry.
4259             */
4260             ExprSetVVAProperty(pExpr, EP_NoReduce);
4261             pExpr->pAggInfo = pAggInfo;
4262             pExpr->op = TK_AGG_COLUMN;
4263             pExpr->iAgg = (i16)k;
4264             break;
4265           } /* endif pExpr->iTable==pItem->iCursor */
4266         } /* end loop over pSrcList */
4267       }
4268       return WRC_Prune;
4269     }
4270     case TK_AGG_FUNCTION: {
4271       if( (pNC->ncFlags & NC_InAggFunc)==0
4272        && pWalker->walkerDepth==pExpr->op2
4273       ){
4274         /* Check to see if pExpr is a duplicate of another aggregate
4275         ** function that is already in the pAggInfo structure
4276         */
4277         struct AggInfo_func *pItem = pAggInfo->aFunc;
4278         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4279           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4280             break;
4281           }
4282         }
4283         if( i>=pAggInfo->nFunc ){
4284           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4285           */
4286           u8 enc = ENC(pParse->db);
4287           i = addAggInfoFunc(pParse->db, pAggInfo);
4288           if( i>=0 ){
4289             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4290             pItem = &pAggInfo->aFunc[i];
4291             pItem->pExpr = pExpr;
4292             pItem->iMem = ++pParse->nMem;
4293             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4294             pItem->pFunc = sqlite3FindFunction(pParse->db,
4295                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4296                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4297             if( pExpr->flags & EP_Distinct ){
4298               pItem->iDistinct = pParse->nTab++;
4299             }else{
4300               pItem->iDistinct = -1;
4301             }
4302           }
4303         }
4304         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4305         */
4306         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4307         ExprSetVVAProperty(pExpr, EP_NoReduce);
4308         pExpr->iAgg = (i16)i;
4309         pExpr->pAggInfo = pAggInfo;
4310         return WRC_Prune;
4311       }else{
4312         return WRC_Continue;
4313       }
4314     }
4315   }
4316   return WRC_Continue;
4317 }
4318 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4319   UNUSED_PARAMETER(pWalker);
4320   UNUSED_PARAMETER(pSelect);
4321   return WRC_Continue;
4322 }
4323 
4324 /*
4325 ** Analyze the pExpr expression looking for aggregate functions and
4326 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4327 ** points to.  Additional entries are made on the AggInfo object as
4328 ** necessary.
4329 **
4330 ** This routine should only be called after the expression has been
4331 ** analyzed by sqlite3ResolveExprNames().
4332 */
4333 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4334   Walker w;
4335   memset(&w, 0, sizeof(w));
4336   w.xExprCallback = analyzeAggregate;
4337   w.xSelectCallback = analyzeAggregatesInSelect;
4338   w.u.pNC = pNC;
4339   assert( pNC->pSrcList!=0 );
4340   sqlite3WalkExpr(&w, pExpr);
4341 }
4342 
4343 /*
4344 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4345 ** expression list.  Return the number of errors.
4346 **
4347 ** If an error is found, the analysis is cut short.
4348 */
4349 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4350   struct ExprList_item *pItem;
4351   int i;
4352   if( pList ){
4353     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4354       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4355     }
4356   }
4357 }
4358 
4359 /*
4360 ** Allocate a single new register for use to hold some intermediate result.
4361 */
4362 int sqlite3GetTempReg(Parse *pParse){
4363   if( pParse->nTempReg==0 ){
4364     return ++pParse->nMem;
4365   }
4366   return pParse->aTempReg[--pParse->nTempReg];
4367 }
4368 
4369 /*
4370 ** Deallocate a register, making available for reuse for some other
4371 ** purpose.
4372 **
4373 ** If a register is currently being used by the column cache, then
4374 ** the deallocation is deferred until the column cache line that uses
4375 ** the register becomes stale.
4376 */
4377 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4378   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4379     int i;
4380     struct yColCache *p;
4381     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4382       if( p->iReg==iReg ){
4383         p->tempReg = 1;
4384         return;
4385       }
4386     }
4387     pParse->aTempReg[pParse->nTempReg++] = iReg;
4388   }
4389 }
4390 
4391 /*
4392 ** Allocate or deallocate a block of nReg consecutive registers
4393 */
4394 int sqlite3GetTempRange(Parse *pParse, int nReg){
4395   int i, n;
4396   i = pParse->iRangeReg;
4397   n = pParse->nRangeReg;
4398   if( nReg<=n ){
4399     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4400     pParse->iRangeReg += nReg;
4401     pParse->nRangeReg -= nReg;
4402   }else{
4403     i = pParse->nMem+1;
4404     pParse->nMem += nReg;
4405   }
4406   return i;
4407 }
4408 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4409   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4410   if( nReg>pParse->nRangeReg ){
4411     pParse->nRangeReg = nReg;
4412     pParse->iRangeReg = iReg;
4413   }
4414 }
4415 
4416 /*
4417 ** Mark all temporary registers as being unavailable for reuse.
4418 */
4419 void sqlite3ClearTempRegCache(Parse *pParse){
4420   pParse->nTempReg = 0;
4421   pParse->nRangeReg = 0;
4422 }
4423