1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.434 2009/05/11 20:53:29 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Return the 'affinity' of the expression pExpr if any. 21 ** 22 ** If pExpr is a column, a reference to a column via an 'AS' alias, 23 ** or a sub-select with a column as the return value, then the 24 ** affinity of that column is returned. Otherwise, 0x00 is returned, 25 ** indicating no affinity for the expression. 26 ** 27 ** i.e. the WHERE clause expresssions in the following statements all 28 ** have an affinity: 29 ** 30 ** CREATE TABLE t1(a); 31 ** SELECT * FROM t1 WHERE a; 32 ** SELECT a AS b FROM t1 WHERE b; 33 ** SELECT * FROM t1 WHERE (select a from t1); 34 */ 35 char sqlite3ExprAffinity(Expr *pExpr){ 36 int op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 47 && pExpr->pTab!=0 48 ){ 49 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 50 ** a TK_COLUMN but was previously evaluated and cached in a register */ 51 int j = pExpr->iColumn; 52 if( j<0 ) return SQLITE_AFF_INTEGER; 53 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 54 return pExpr->pTab->aCol[j].affinity; 55 } 56 return pExpr->affinity; 57 } 58 59 /* 60 ** Set the collating sequence for expression pExpr to be the collating 61 ** sequence named by pToken. Return a pointer to the revised expression. 62 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 63 ** flag. An explicit collating sequence will override implicit 64 ** collating sequences. 65 */ 66 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){ 67 char *zColl = 0; /* Dequoted name of collation sequence */ 68 CollSeq *pColl; 69 sqlite3 *db = pParse->db; 70 zColl = sqlite3NameFromToken(db, pCollName); 71 if( pExpr && zColl ){ 72 pColl = sqlite3LocateCollSeq(pParse, zColl); 73 if( pColl ){ 74 pExpr->pColl = pColl; 75 pExpr->flags |= EP_ExpCollate; 76 } 77 } 78 sqlite3DbFree(db, zColl); 79 return pExpr; 80 } 81 82 /* 83 ** Return the default collation sequence for the expression pExpr. If 84 ** there is no default collation type, return 0. 85 */ 86 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 87 CollSeq *pColl = 0; 88 Expr *p = pExpr; 89 while( p ){ 90 int op; 91 pColl = p->pColl; 92 if( pColl ) break; 93 op = p->op; 94 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){ 95 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 96 ** a TK_COLUMN but was previously evaluated and cached in a register */ 97 const char *zColl; 98 int j = p->iColumn; 99 if( j>=0 ){ 100 sqlite3 *db = pParse->db; 101 zColl = p->pTab->aCol[j].zColl; 102 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 103 pExpr->pColl = pColl; 104 } 105 break; 106 } 107 if( op!=TK_CAST && op!=TK_UPLUS ){ 108 break; 109 } 110 p = p->pLeft; 111 } 112 if( sqlite3CheckCollSeq(pParse, pColl) ){ 113 pColl = 0; 114 } 115 return pColl; 116 } 117 118 /* 119 ** pExpr is an operand of a comparison operator. aff2 is the 120 ** type affinity of the other operand. This routine returns the 121 ** type affinity that should be used for the comparison operator. 122 */ 123 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 124 char aff1 = sqlite3ExprAffinity(pExpr); 125 if( aff1 && aff2 ){ 126 /* Both sides of the comparison are columns. If one has numeric 127 ** affinity, use that. Otherwise use no affinity. 128 */ 129 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 130 return SQLITE_AFF_NUMERIC; 131 }else{ 132 return SQLITE_AFF_NONE; 133 } 134 }else if( !aff1 && !aff2 ){ 135 /* Neither side of the comparison is a column. Compare the 136 ** results directly. 137 */ 138 return SQLITE_AFF_NONE; 139 }else{ 140 /* One side is a column, the other is not. Use the columns affinity. */ 141 assert( aff1==0 || aff2==0 ); 142 return (aff1 + aff2); 143 } 144 } 145 146 /* 147 ** pExpr is a comparison operator. Return the type affinity that should 148 ** be applied to both operands prior to doing the comparison. 149 */ 150 static char comparisonAffinity(Expr *pExpr){ 151 char aff; 152 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 153 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 154 pExpr->op==TK_NE ); 155 assert( pExpr->pLeft ); 156 aff = sqlite3ExprAffinity(pExpr->pLeft); 157 if( pExpr->pRight ){ 158 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 159 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 160 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 161 }else if( !aff ){ 162 aff = SQLITE_AFF_NONE; 163 } 164 return aff; 165 } 166 167 /* 168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 169 ** idx_affinity is the affinity of an indexed column. Return true 170 ** if the index with affinity idx_affinity may be used to implement 171 ** the comparison in pExpr. 172 */ 173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 174 char aff = comparisonAffinity(pExpr); 175 switch( aff ){ 176 case SQLITE_AFF_NONE: 177 return 1; 178 case SQLITE_AFF_TEXT: 179 return idx_affinity==SQLITE_AFF_TEXT; 180 default: 181 return sqlite3IsNumericAffinity(idx_affinity); 182 } 183 } 184 185 /* 186 ** Return the P5 value that should be used for a binary comparison 187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 188 */ 189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 190 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 191 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 192 return aff; 193 } 194 195 /* 196 ** Return a pointer to the collation sequence that should be used by 197 ** a binary comparison operator comparing pLeft and pRight. 198 ** 199 ** If the left hand expression has a collating sequence type, then it is 200 ** used. Otherwise the collation sequence for the right hand expression 201 ** is used, or the default (BINARY) if neither expression has a collating 202 ** type. 203 ** 204 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 205 ** it is not considered. 206 */ 207 CollSeq *sqlite3BinaryCompareCollSeq( 208 Parse *pParse, 209 Expr *pLeft, 210 Expr *pRight 211 ){ 212 CollSeq *pColl; 213 assert( pLeft ); 214 if( pLeft->flags & EP_ExpCollate ){ 215 assert( pLeft->pColl ); 216 pColl = pLeft->pColl; 217 }else if( pRight && pRight->flags & EP_ExpCollate ){ 218 assert( pRight->pColl ); 219 pColl = pRight->pColl; 220 }else{ 221 pColl = sqlite3ExprCollSeq(pParse, pLeft); 222 if( !pColl ){ 223 pColl = sqlite3ExprCollSeq(pParse, pRight); 224 } 225 } 226 return pColl; 227 } 228 229 /* 230 ** Generate the operands for a comparison operation. Before 231 ** generating the code for each operand, set the EP_AnyAff 232 ** flag on the expression so that it will be able to used a 233 ** cached column value that has previously undergone an 234 ** affinity change. 235 */ 236 static void codeCompareOperands( 237 Parse *pParse, /* Parsing and code generating context */ 238 Expr *pLeft, /* The left operand */ 239 int *pRegLeft, /* Register where left operand is stored */ 240 int *pFreeLeft, /* Free this register when done */ 241 Expr *pRight, /* The right operand */ 242 int *pRegRight, /* Register where right operand is stored */ 243 int *pFreeRight /* Write temp register for right operand there */ 244 ){ 245 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 246 pLeft->flags |= EP_AnyAff; 247 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 248 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 249 pRight->flags |= EP_AnyAff; 250 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 251 } 252 253 /* 254 ** Generate code for a comparison operator. 255 */ 256 static int codeCompare( 257 Parse *pParse, /* The parsing (and code generating) context */ 258 Expr *pLeft, /* The left operand */ 259 Expr *pRight, /* The right operand */ 260 int opcode, /* The comparison opcode */ 261 int in1, int in2, /* Register holding operands */ 262 int dest, /* Jump here if true. */ 263 int jumpIfNull /* If true, jump if either operand is NULL */ 264 ){ 265 int p5; 266 int addr; 267 CollSeq *p4; 268 269 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 270 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 271 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 272 (void*)p4, P4_COLLSEQ); 273 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 274 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ 275 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 276 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 277 } 278 return addr; 279 } 280 281 #if SQLITE_MAX_EXPR_DEPTH>0 282 /* 283 ** Check that argument nHeight is less than or equal to the maximum 284 ** expression depth allowed. If it is not, leave an error message in 285 ** pParse. 286 */ 287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 288 int rc = SQLITE_OK; 289 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 290 if( nHeight>mxHeight ){ 291 sqlite3ErrorMsg(pParse, 292 "Expression tree is too large (maximum depth %d)", mxHeight 293 ); 294 rc = SQLITE_ERROR; 295 } 296 return rc; 297 } 298 299 /* The following three functions, heightOfExpr(), heightOfExprList() 300 ** and heightOfSelect(), are used to determine the maximum height 301 ** of any expression tree referenced by the structure passed as the 302 ** first argument. 303 ** 304 ** If this maximum height is greater than the current value pointed 305 ** to by pnHeight, the second parameter, then set *pnHeight to that 306 ** value. 307 */ 308 static void heightOfExpr(Expr *p, int *pnHeight){ 309 if( p ){ 310 if( p->nHeight>*pnHeight ){ 311 *pnHeight = p->nHeight; 312 } 313 } 314 } 315 static void heightOfExprList(ExprList *p, int *pnHeight){ 316 if( p ){ 317 int i; 318 for(i=0; i<p->nExpr; i++){ 319 heightOfExpr(p->a[i].pExpr, pnHeight); 320 } 321 } 322 } 323 static void heightOfSelect(Select *p, int *pnHeight){ 324 if( p ){ 325 heightOfExpr(p->pWhere, pnHeight); 326 heightOfExpr(p->pHaving, pnHeight); 327 heightOfExpr(p->pLimit, pnHeight); 328 heightOfExpr(p->pOffset, pnHeight); 329 heightOfExprList(p->pEList, pnHeight); 330 heightOfExprList(p->pGroupBy, pnHeight); 331 heightOfExprList(p->pOrderBy, pnHeight); 332 heightOfSelect(p->pPrior, pnHeight); 333 } 334 } 335 336 /* 337 ** Set the Expr.nHeight variable in the structure passed as an 338 ** argument. An expression with no children, Expr.pList or 339 ** Expr.pSelect member has a height of 1. Any other expression 340 ** has a height equal to the maximum height of any other 341 ** referenced Expr plus one. 342 */ 343 static void exprSetHeight(Expr *p){ 344 int nHeight = 0; 345 heightOfExpr(p->pLeft, &nHeight); 346 heightOfExpr(p->pRight, &nHeight); 347 if( ExprHasProperty(p, EP_xIsSelect) ){ 348 heightOfSelect(p->x.pSelect, &nHeight); 349 }else{ 350 heightOfExprList(p->x.pList, &nHeight); 351 } 352 p->nHeight = nHeight + 1; 353 } 354 355 /* 356 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 357 ** the height is greater than the maximum allowed expression depth, 358 ** leave an error in pParse. 359 */ 360 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 361 exprSetHeight(p); 362 sqlite3ExprCheckHeight(pParse, p->nHeight); 363 } 364 365 /* 366 ** Return the maximum height of any expression tree referenced 367 ** by the select statement passed as an argument. 368 */ 369 int sqlite3SelectExprHeight(Select *p){ 370 int nHeight = 0; 371 heightOfSelect(p, &nHeight); 372 return nHeight; 373 } 374 #else 375 #define exprSetHeight(y) 376 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 377 378 /* 379 ** Construct a new expression node and return a pointer to it. Memory 380 ** for this node is obtained from sqlite3_malloc(). The calling function 381 ** is responsible for making sure the node eventually gets freed. 382 */ 383 Expr *sqlite3Expr( 384 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 385 int op, /* Expression opcode */ 386 Expr *pLeft, /* Left operand */ 387 Expr *pRight, /* Right operand */ 388 const Token *pToken /* Argument token */ 389 ){ 390 Expr *pNew; 391 pNew = sqlite3DbMallocZero(db, sizeof(Expr)); 392 if( pNew==0 ){ 393 /* When malloc fails, delete pLeft and pRight. Expressions passed to 394 ** this function must always be allocated with sqlite3Expr() for this 395 ** reason. 396 */ 397 sqlite3ExprDelete(db, pLeft); 398 sqlite3ExprDelete(db, pRight); 399 return 0; 400 } 401 pNew->op = (u8)op; 402 pNew->pLeft = pLeft; 403 pNew->pRight = pRight; 404 pNew->iAgg = -1; 405 pNew->span.z = (u8*)""; 406 if( pToken ){ 407 int c; 408 assert( pToken->dyn==0 ); 409 pNew->span = *pToken; 410 if( pToken->n>=2 411 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 412 sqlite3TokenCopy(db, &pNew->token, pToken); 413 if( pNew->token.z ){ 414 pNew->token.n = sqlite3Dequote((char*)pNew->token.z); 415 assert( pNew->token.n==(unsigned)sqlite3Strlen30((char*)pNew->token.z) ); 416 } 417 if( c=='"' ) pNew->flags |= EP_DblQuoted; 418 }else{ 419 pNew->token = *pToken; 420 } 421 pNew->token.quoted = 0; 422 }else if( pLeft ){ 423 if( pRight ){ 424 if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){ 425 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 426 } 427 if( pRight->flags & EP_ExpCollate ){ 428 pNew->flags |= EP_ExpCollate; 429 pNew->pColl = pRight->pColl; 430 } 431 } 432 if( pLeft->flags & EP_ExpCollate ){ 433 pNew->flags |= EP_ExpCollate; 434 pNew->pColl = pLeft->pColl; 435 } 436 } 437 438 exprSetHeight(pNew); 439 return pNew; 440 } 441 442 /* 443 ** Works like sqlite3Expr() except that it takes an extra Parse* 444 ** argument and notifies the associated connection object if malloc fails. 445 */ 446 Expr *sqlite3PExpr( 447 Parse *pParse, /* Parsing context */ 448 int op, /* Expression opcode */ 449 Expr *pLeft, /* Left operand */ 450 Expr *pRight, /* Right operand */ 451 const Token *pToken /* Argument token */ 452 ){ 453 Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 454 if( p ){ 455 sqlite3ExprCheckHeight(pParse, p->nHeight); 456 } 457 return p; 458 } 459 460 /* 461 ** When doing a nested parse, you can include terms in an expression 462 ** that look like this: #1 #2 ... These terms refer to registers 463 ** in the virtual machine. #N is the N-th register. 464 ** 465 ** This routine is called by the parser to deal with on of those terms. 466 ** It immediately generates code to store the value in a memory location. 467 ** The returns an expression that will code to extract the value from 468 ** that memory location as needed. 469 */ 470 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 471 Vdbe *v = pParse->pVdbe; 472 Expr *p; 473 if( pParse->nested==0 ){ 474 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 475 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 476 } 477 if( v==0 ) return 0; 478 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 479 if( p==0 ){ 480 return 0; /* Malloc failed */ 481 } 482 p->iTable = atoi((char*)&pToken->z[1]); 483 return p; 484 } 485 486 /* 487 ** Join two expressions using an AND operator. If either expression is 488 ** NULL, then just return the other expression. 489 */ 490 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 491 if( pLeft==0 ){ 492 return pRight; 493 }else if( pRight==0 ){ 494 return pLeft; 495 }else{ 496 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 497 } 498 } 499 500 /* 501 ** Set the Expr.span field of the given expression to span all 502 ** text between the two given tokens. Both tokens must be pointing 503 ** at the same string. 504 */ 505 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 506 assert( pRight!=0 ); 507 assert( pLeft!=0 ); 508 if( pExpr ){ 509 pExpr->span.z = pLeft->z; 510 /* The following assert() may fail when this is called 511 ** via sqlite3PExpr()/sqlite3Expr() from addWhereTerm(). */ 512 /* assert(pRight->z >= pLeft->z); */ 513 pExpr->span.n = pRight->n + (unsigned)(pRight->z - pLeft->z); 514 } 515 } 516 517 /* 518 ** Construct a new expression node for a function with multiple 519 ** arguments. 520 */ 521 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 522 Expr *pNew; 523 sqlite3 *db = pParse->db; 524 assert( pToken ); 525 pNew = sqlite3DbMallocZero(db, sizeof(Expr) ); 526 if( pNew==0 ){ 527 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 528 return 0; 529 } 530 pNew->op = TK_FUNCTION; 531 pNew->x.pList = pList; 532 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 533 assert( pToken->dyn==0 ); 534 pNew->span = *pToken; 535 sqlite3TokenCopy(db, &pNew->token, pToken); 536 sqlite3ExprSetHeight(pParse, pNew); 537 return pNew; 538 } 539 540 /* 541 ** Assign a variable number to an expression that encodes a wildcard 542 ** in the original SQL statement. 543 ** 544 ** Wildcards consisting of a single "?" are assigned the next sequential 545 ** variable number. 546 ** 547 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 548 ** sure "nnn" is not too be to avoid a denial of service attack when 549 ** the SQL statement comes from an external source. 550 ** 551 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 552 ** as the previous instance of the same wildcard. Or if this is the first 553 ** instance of the wildcard, the next sequenial variable number is 554 ** assigned. 555 */ 556 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 557 Token *pToken; 558 sqlite3 *db = pParse->db; 559 560 if( pExpr==0 ) return; 561 pToken = &pExpr->token; 562 assert( pToken->n>=1 ); 563 assert( pToken->z!=0 ); 564 assert( pToken->z[0]!=0 ); 565 if( pToken->n==1 ){ 566 /* Wildcard of the form "?". Assign the next variable number */ 567 pExpr->iTable = ++pParse->nVar; 568 }else if( pToken->z[0]=='?' ){ 569 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 570 ** use it as the variable number */ 571 int i; 572 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 573 testcase( i==0 ); 574 testcase( i==1 ); 575 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 576 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 577 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 578 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 579 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 580 } 581 if( i>pParse->nVar ){ 582 pParse->nVar = i; 583 } 584 }else{ 585 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 586 ** number as the prior appearance of the same name, or if the name 587 ** has never appeared before, reuse the same variable number 588 */ 589 int i; 590 u32 n; 591 n = pToken->n; 592 for(i=0; i<pParse->nVarExpr; i++){ 593 Expr *pE; 594 if( (pE = pParse->apVarExpr[i])!=0 595 && pE->token.n==n 596 && memcmp(pE->token.z, pToken->z, n)==0 ){ 597 pExpr->iTable = pE->iTable; 598 break; 599 } 600 } 601 if( i>=pParse->nVarExpr ){ 602 pExpr->iTable = ++pParse->nVar; 603 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 604 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 605 pParse->apVarExpr = 606 sqlite3DbReallocOrFree( 607 db, 608 pParse->apVarExpr, 609 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 610 ); 611 } 612 if( !db->mallocFailed ){ 613 assert( pParse->apVarExpr!=0 ); 614 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 615 } 616 } 617 } 618 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 619 sqlite3ErrorMsg(pParse, "too many SQL variables"); 620 } 621 } 622 623 /* 624 ** Clear an expression structure without deleting the structure itself. 625 ** Substructure is deleted. 626 */ 627 void sqlite3ExprClear(sqlite3 *db, Expr *p){ 628 if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z); 629 if( !ExprHasAnyProperty(p, EP_TokenOnly|EP_SpanToken) ){ 630 if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z); 631 if( ExprHasProperty(p, EP_Reduced) ){ 632 /* Subtrees are part of the same memory allocation when EP_Reduced set */ 633 if( p->pLeft ) sqlite3ExprClear(db, p->pLeft); 634 if( p->pRight ) sqlite3ExprClear(db, p->pRight); 635 }else{ 636 /* Subtrees are separate allocations when EP_Reduced is clear */ 637 sqlite3ExprDelete(db, p->pLeft); 638 sqlite3ExprDelete(db, p->pRight); 639 } 640 /* x.pSelect and x.pList are always separately allocated */ 641 if( ExprHasProperty(p, EP_xIsSelect) ){ 642 sqlite3SelectDelete(db, p->x.pSelect); 643 }else{ 644 sqlite3ExprListDelete(db, p->x.pList); 645 } 646 } 647 } 648 649 /* 650 ** Recursively delete an expression tree. 651 */ 652 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 653 if( p==0 ) return; 654 sqlite3ExprClear(db, p); 655 sqlite3DbFree(db, p); 656 } 657 658 /* 659 ** Return the number of bytes allocated for the expression structure 660 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 661 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 662 */ 663 static int exprStructSize(Expr *p){ 664 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 665 if( ExprHasProperty(p, EP_SpanToken) ) return EXPR_SPANTOKENSIZE; 666 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 667 return EXPR_FULLSIZE; 668 } 669 670 /* 671 ** sqlite3ExprDup() has been called to create a copy of expression p with 672 ** the EXPRDUP_XXX flags passed as the second argument. This function 673 ** returns the space required for the copy of the Expr structure only. 674 ** This is always one of EXPR_FULLSIZE, EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 675 */ 676 static int dupedExprStructSize(Expr *p, int flags){ 677 int nSize; 678 if( 0==(flags&EXPRDUP_REDUCE) ){ 679 nSize = EXPR_FULLSIZE; 680 }else if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 681 nSize = EXPR_REDUCEDSIZE; 682 }else if( flags&EXPRDUP_SPAN ){ 683 nSize = EXPR_SPANTOKENSIZE; 684 }else{ 685 nSize = EXPR_TOKENONLYSIZE; 686 } 687 return nSize; 688 } 689 690 /* 691 ** sqlite3ExprDup() has been called to create a copy of expression p with 692 ** the EXPRDUP_XXX passed as the second argument. This function returns 693 ** the space in bytes required to store the copy of the Expr structure 694 ** and the copies of the Expr.token.z and Expr.span.z (if applicable) 695 ** string buffers. 696 */ 697 static int dupedExprNodeSize(Expr *p, int flags){ 698 int nByte = dupedExprStructSize(p, flags) + (p->token.z ? p->token.n + 1 : 0); 699 if( (flags&EXPRDUP_SPAN)!=0 700 && (p->token.z!=p->span.z || p->token.n!=p->span.n) 701 ){ 702 nByte += p->span.n; 703 } 704 return ROUND8(nByte); 705 } 706 707 /* 708 ** Return the number of bytes required to create a duplicate of the 709 ** expression passed as the first argument. The second argument is a 710 ** mask containing EXPRDUP_XXX flags. 711 ** 712 ** The value returned includes space to create a copy of the Expr struct 713 ** itself and the buffer referred to by Expr.token, if any. If the 714 ** EXPRDUP_SPAN flag is set, then space to create a copy of the buffer 715 ** refered to by Expr.span is also included. 716 ** 717 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 718 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 719 ** and Expr.pRight variables (but not for any structures pointed to or 720 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 721 */ 722 static int dupedExprSize(Expr *p, int flags){ 723 int nByte = 0; 724 if( p ){ 725 nByte = dupedExprNodeSize(p, flags); 726 if( flags&EXPRDUP_REDUCE ){ 727 int f = flags&(~EXPRDUP_SPAN); 728 nByte += dupedExprSize(p->pLeft, f) + dupedExprSize(p->pRight, f); 729 } 730 } 731 return nByte; 732 } 733 734 /* 735 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 736 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 737 ** to store the copy of expression p, the copies of p->token and p->span 738 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 739 ** if any. Before returning, *pzBuffer is set to the first byte passed the 740 ** portion of the buffer copied into by this function. 741 */ 742 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 743 Expr *pNew = 0; /* Value to return */ 744 if( p ){ 745 const int isRequireSpan = (flags&EXPRDUP_SPAN); 746 const int isReduced = (flags&EXPRDUP_REDUCE); 747 u8 *zAlloc; 748 749 assert( pzBuffer==0 || isReduced ); 750 751 /* Figure out where to write the new Expr structure. */ 752 if( pzBuffer ){ 753 zAlloc = *pzBuffer; 754 }else{ 755 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 756 } 757 pNew = (Expr *)zAlloc; 758 759 if( pNew ){ 760 /* Set nNewSize to the size allocated for the structure pointed to 761 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 762 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 763 ** by the copy of the p->token.z string (if any). 764 */ 765 const int nNewSize = dupedExprStructSize(p, flags); 766 const int nToken = (p->token.z ? p->token.n + 1 : 0); 767 if( isReduced ){ 768 assert( ExprHasProperty(p, EP_Reduced)==0 ); 769 memcpy(zAlloc, p, nNewSize); 770 }else{ 771 int nSize = exprStructSize(p); 772 memcpy(zAlloc, p, nSize); 773 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 774 } 775 776 /* Set the EP_Reduced and EP_TokenOnly flags appropriately. */ 777 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_SpanToken); 778 switch( nNewSize ){ 779 case EXPR_REDUCEDSIZE: pNew->flags |= EP_Reduced; break; 780 case EXPR_TOKENONLYSIZE: pNew->flags |= EP_TokenOnly; break; 781 case EXPR_SPANTOKENSIZE: pNew->flags |= EP_SpanToken; break; 782 } 783 784 /* Copy the p->token string, if any. */ 785 if( nToken ){ 786 unsigned char *zToken = &zAlloc[nNewSize]; 787 memcpy(zToken, p->token.z, nToken-1); 788 zToken[nToken-1] = '\0'; 789 pNew->token.dyn = 0; 790 pNew->token.z = zToken; 791 } 792 793 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 794 /* Fill in the pNew->span token, if required. */ 795 if( isRequireSpan ){ 796 if( p->token.z!=p->span.z || p->token.n!=p->span.n ){ 797 pNew->span.z = &zAlloc[nNewSize+nToken]; 798 memcpy((char *)pNew->span.z, p->span.z, p->span.n); 799 pNew->span.dyn = 0; 800 }else{ 801 pNew->span.z = pNew->token.z; 802 pNew->span.n = pNew->token.n; 803 } 804 }else{ 805 pNew->span.z = 0; 806 pNew->span.n = 0; 807 } 808 } 809 810 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_SpanToken)) ){ 811 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 812 if( ExprHasProperty(p, EP_xIsSelect) ){ 813 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 814 }else{ 815 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 816 } 817 } 818 819 /* Fill in pNew->pLeft and pNew->pRight. */ 820 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly|EP_SpanToken) ){ 821 zAlloc += dupedExprNodeSize(p, flags); 822 if( ExprHasProperty(pNew, EP_Reduced) ){ 823 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 824 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 825 } 826 if( pzBuffer ){ 827 *pzBuffer = zAlloc; 828 } 829 }else if( !ExprHasAnyProperty(p, EP_TokenOnly|EP_SpanToken) ){ 830 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 831 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 832 } 833 } 834 } 835 return pNew; 836 } 837 838 /* 839 ** The following group of routines make deep copies of expressions, 840 ** expression lists, ID lists, and select statements. The copies can 841 ** be deleted (by being passed to their respective ...Delete() routines) 842 ** without effecting the originals. 843 ** 844 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 845 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 846 ** by subsequent calls to sqlite*ListAppend() routines. 847 ** 848 ** Any tables that the SrcList might point to are not duplicated. 849 ** 850 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. If 851 ** the EXPRDUP_SPAN flag is set in the argument parameter, then the 852 ** Expr.span field of the input expression is copied. If EXPRDUP_SPAN is 853 ** clear, then the Expr.span field of the returned expression structure 854 ** is zeroed. 855 ** 856 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 857 ** truncated version of the usual Expr structure that will be stored as 858 ** part of the in-memory representation of the database schema. 859 */ 860 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 861 return exprDup(db, p, flags, 0); 862 } 863 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, const Token *pFrom){ 864 if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z); 865 if( pFrom->z ){ 866 pTo->n = pFrom->n; 867 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 868 pTo->dyn = 1; 869 pTo->quoted = pFrom->quoted; 870 }else{ 871 pTo->z = 0; 872 } 873 } 874 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 875 ExprList *pNew; 876 struct ExprList_item *pItem, *pOldItem; 877 int i; 878 if( p==0 ) return 0; 879 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 880 if( pNew==0 ) return 0; 881 pNew->iECursor = 0; 882 pNew->nExpr = pNew->nAlloc = p->nExpr; 883 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 884 if( pItem==0 ){ 885 sqlite3DbFree(db, pNew); 886 return 0; 887 } 888 pOldItem = p->a; 889 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 890 Expr *pNewExpr; 891 Expr *pOldExpr = pOldItem->pExpr; 892 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr, flags); 893 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 894 pItem->sortOrder = pOldItem->sortOrder; 895 pItem->done = 0; 896 pItem->iCol = pOldItem->iCol; 897 pItem->iAlias = pOldItem->iAlias; 898 } 899 return pNew; 900 } 901 902 /* 903 ** If cursors, triggers, views and subqueries are all omitted from 904 ** the build, then none of the following routines, except for 905 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 906 ** called with a NULL argument. 907 */ 908 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 909 || !defined(SQLITE_OMIT_SUBQUERY) 910 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 911 SrcList *pNew; 912 int i; 913 int nByte; 914 if( p==0 ) return 0; 915 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 916 pNew = sqlite3DbMallocRaw(db, nByte ); 917 if( pNew==0 ) return 0; 918 pNew->nSrc = pNew->nAlloc = p->nSrc; 919 for(i=0; i<p->nSrc; i++){ 920 struct SrcList_item *pNewItem = &pNew->a[i]; 921 struct SrcList_item *pOldItem = &p->a[i]; 922 Table *pTab; 923 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 924 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 925 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 926 pNewItem->jointype = pOldItem->jointype; 927 pNewItem->iCursor = pOldItem->iCursor; 928 pNewItem->isPopulated = pOldItem->isPopulated; 929 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 930 pNewItem->notIndexed = pOldItem->notIndexed; 931 pNewItem->pIndex = pOldItem->pIndex; 932 pTab = pNewItem->pTab = pOldItem->pTab; 933 if( pTab ){ 934 pTab->nRef++; 935 } 936 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 937 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 938 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 939 pNewItem->colUsed = pOldItem->colUsed; 940 } 941 return pNew; 942 } 943 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 944 IdList *pNew; 945 int i; 946 if( p==0 ) return 0; 947 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 948 if( pNew==0 ) return 0; 949 pNew->nId = pNew->nAlloc = p->nId; 950 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 951 if( pNew->a==0 ){ 952 sqlite3DbFree(db, pNew); 953 return 0; 954 } 955 for(i=0; i<p->nId; i++){ 956 struct IdList_item *pNewItem = &pNew->a[i]; 957 struct IdList_item *pOldItem = &p->a[i]; 958 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 959 pNewItem->idx = pOldItem->idx; 960 } 961 return pNew; 962 } 963 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 964 Select *pNew; 965 if( p==0 ) return 0; 966 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 967 if( pNew==0 ) return 0; 968 /* Always make a copy of the span for top-level expressions in the 969 ** expression list. The logic in SELECT processing that determines 970 ** the names of columns in the result set needs this information */ 971 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags|EXPRDUP_SPAN); 972 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 973 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 974 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 975 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 976 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 977 pNew->op = p->op; 978 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 979 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 980 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 981 pNew->iLimit = 0; 982 pNew->iOffset = 0; 983 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 984 pNew->pRightmost = 0; 985 pNew->addrOpenEphm[0] = -1; 986 pNew->addrOpenEphm[1] = -1; 987 pNew->addrOpenEphm[2] = -1; 988 return pNew; 989 } 990 #else 991 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 992 assert( p==0 ); 993 return 0; 994 } 995 #endif 996 997 998 /* 999 ** Add a new element to the end of an expression list. If pList is 1000 ** initially NULL, then create a new expression list. 1001 */ 1002 ExprList *sqlite3ExprListAppend( 1003 Parse *pParse, /* Parsing context */ 1004 ExprList *pList, /* List to which to append. Might be NULL */ 1005 Expr *pExpr, /* Expression to be appended */ 1006 Token *pName /* AS keyword for the expression */ 1007 ){ 1008 sqlite3 *db = pParse->db; 1009 if( pList==0 ){ 1010 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1011 if( pList==0 ){ 1012 goto no_mem; 1013 } 1014 assert( pList->nAlloc==0 ); 1015 } 1016 if( pList->nAlloc<=pList->nExpr ){ 1017 struct ExprList_item *a; 1018 int n = pList->nAlloc*2 + 4; 1019 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1020 if( a==0 ){ 1021 goto no_mem; 1022 } 1023 pList->a = a; 1024 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 1025 } 1026 assert( pList->a!=0 ); 1027 if( pExpr || pName ){ 1028 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1029 memset(pItem, 0, sizeof(*pItem)); 1030 pItem->zName = sqlite3NameFromToken(db, pName); 1031 pItem->pExpr = pExpr; 1032 pItem->iAlias = 0; 1033 } 1034 return pList; 1035 1036 no_mem: 1037 /* Avoid leaking memory if malloc has failed. */ 1038 sqlite3ExprDelete(db, pExpr); 1039 sqlite3ExprListDelete(db, pList); 1040 return 0; 1041 } 1042 1043 /* 1044 ** If the expression list pEList contains more than iLimit elements, 1045 ** leave an error message in pParse. 1046 */ 1047 void sqlite3ExprListCheckLength( 1048 Parse *pParse, 1049 ExprList *pEList, 1050 const char *zObject 1051 ){ 1052 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1053 testcase( pEList && pEList->nExpr==mx ); 1054 testcase( pEList && pEList->nExpr==mx+1 ); 1055 if( pEList && pEList->nExpr>mx ){ 1056 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1057 } 1058 } 1059 1060 /* 1061 ** Delete an entire expression list. 1062 */ 1063 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1064 int i; 1065 struct ExprList_item *pItem; 1066 if( pList==0 ) return; 1067 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1068 assert( pList->nExpr<=pList->nAlloc ); 1069 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1070 sqlite3ExprDelete(db, pItem->pExpr); 1071 sqlite3DbFree(db, pItem->zName); 1072 } 1073 sqlite3DbFree(db, pList->a); 1074 sqlite3DbFree(db, pList); 1075 } 1076 1077 /* 1078 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1079 ** to an integer. These routines are checking an expression to see 1080 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1081 ** not constant. 1082 ** 1083 ** These callback routines are used to implement the following: 1084 ** 1085 ** sqlite3ExprIsConstant() 1086 ** sqlite3ExprIsConstantNotJoin() 1087 ** sqlite3ExprIsConstantOrFunction() 1088 ** 1089 */ 1090 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1091 1092 /* If pWalker->u.i is 3 then any term of the expression that comes from 1093 ** the ON or USING clauses of a join disqualifies the expression 1094 ** from being considered constant. */ 1095 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1096 pWalker->u.i = 0; 1097 return WRC_Abort; 1098 } 1099 1100 switch( pExpr->op ){ 1101 /* Consider functions to be constant if all their arguments are constant 1102 ** and pWalker->u.i==2 */ 1103 case TK_FUNCTION: 1104 if( pWalker->u.i==2 ) return 0; 1105 /* Fall through */ 1106 case TK_ID: 1107 case TK_COLUMN: 1108 case TK_AGG_FUNCTION: 1109 case TK_AGG_COLUMN: 1110 #ifndef SQLITE_OMIT_SUBQUERY 1111 case TK_SELECT: 1112 case TK_EXISTS: 1113 testcase( pExpr->op==TK_SELECT ); 1114 testcase( pExpr->op==TK_EXISTS ); 1115 #endif 1116 testcase( pExpr->op==TK_ID ); 1117 testcase( pExpr->op==TK_COLUMN ); 1118 testcase( pExpr->op==TK_AGG_FUNCTION ); 1119 testcase( pExpr->op==TK_AGG_COLUMN ); 1120 pWalker->u.i = 0; 1121 return WRC_Abort; 1122 default: 1123 return WRC_Continue; 1124 } 1125 } 1126 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1127 UNUSED_PARAMETER(NotUsed); 1128 pWalker->u.i = 0; 1129 return WRC_Abort; 1130 } 1131 static int exprIsConst(Expr *p, int initFlag){ 1132 Walker w; 1133 w.u.i = initFlag; 1134 w.xExprCallback = exprNodeIsConstant; 1135 w.xSelectCallback = selectNodeIsConstant; 1136 sqlite3WalkExpr(&w, p); 1137 return w.u.i; 1138 } 1139 1140 /* 1141 ** Walk an expression tree. Return 1 if the expression is constant 1142 ** and 0 if it involves variables or function calls. 1143 ** 1144 ** For the purposes of this function, a double-quoted string (ex: "abc") 1145 ** is considered a variable but a single-quoted string (ex: 'abc') is 1146 ** a constant. 1147 */ 1148 int sqlite3ExprIsConstant(Expr *p){ 1149 return exprIsConst(p, 1); 1150 } 1151 1152 /* 1153 ** Walk an expression tree. Return 1 if the expression is constant 1154 ** that does no originate from the ON or USING clauses of a join. 1155 ** Return 0 if it involves variables or function calls or terms from 1156 ** an ON or USING clause. 1157 */ 1158 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1159 return exprIsConst(p, 3); 1160 } 1161 1162 /* 1163 ** Walk an expression tree. Return 1 if the expression is constant 1164 ** or a function call with constant arguments. Return and 0 if there 1165 ** are any variables. 1166 ** 1167 ** For the purposes of this function, a double-quoted string (ex: "abc") 1168 ** is considered a variable but a single-quoted string (ex: 'abc') is 1169 ** a constant. 1170 */ 1171 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1172 return exprIsConst(p, 2); 1173 } 1174 1175 /* 1176 ** If the expression p codes a constant integer that is small enough 1177 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1178 ** in *pValue. If the expression is not an integer or if it is too big 1179 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1180 */ 1181 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1182 int rc = 0; 1183 if( p->flags & EP_IntValue ){ 1184 *pValue = p->iTable; 1185 return 1; 1186 } 1187 switch( p->op ){ 1188 case TK_INTEGER: { 1189 rc = sqlite3GetInt32((char*)p->token.z, pValue); 1190 break; 1191 } 1192 case TK_UPLUS: { 1193 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1194 break; 1195 } 1196 case TK_UMINUS: { 1197 int v; 1198 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1199 *pValue = -v; 1200 rc = 1; 1201 } 1202 break; 1203 } 1204 default: break; 1205 } 1206 if( rc ){ 1207 p->op = TK_INTEGER; 1208 p->flags |= EP_IntValue; 1209 p->iTable = *pValue; 1210 } 1211 return rc; 1212 } 1213 1214 /* 1215 ** Return TRUE if the given string is a row-id column name. 1216 */ 1217 int sqlite3IsRowid(const char *z){ 1218 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1219 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1220 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1221 return 0; 1222 } 1223 1224 /* 1225 ** Return true if the IN operator optimization is enabled and 1226 ** the SELECT statement p exists and is of the 1227 ** simple form: 1228 ** 1229 ** SELECT <column> FROM <table> 1230 ** 1231 ** If this is the case, it may be possible to use an existing table 1232 ** or index instead of generating an epheremal table. 1233 */ 1234 #ifndef SQLITE_OMIT_SUBQUERY 1235 static int isCandidateForInOpt(Select *p){ 1236 SrcList *pSrc; 1237 ExprList *pEList; 1238 Table *pTab; 1239 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1240 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1241 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1242 return 0; /* No DISTINCT keyword and no aggregate functions */ 1243 } 1244 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ 1245 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1246 if( p->pOffset ) return 0; 1247 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1248 pSrc = p->pSrc; 1249 assert( pSrc!=0 ); 1250 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1251 if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */ 1252 pTab = pSrc->a[0].pTab; 1253 if( pTab==0 ) return 0; 1254 if( pTab->pSelect ) return 0; /* FROM clause is not a view */ 1255 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1256 pEList = p->pEList; 1257 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1258 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1259 return 1; 1260 } 1261 #endif /* SQLITE_OMIT_SUBQUERY */ 1262 1263 /* 1264 ** This function is used by the implementation of the IN (...) operator. 1265 ** It's job is to find or create a b-tree structure that may be used 1266 ** either to test for membership of the (...) set or to iterate through 1267 ** its members, skipping duplicates. 1268 ** 1269 ** The cursor opened on the structure (database table, database index 1270 ** or ephermal table) is stored in pX->iTable before this function returns. 1271 ** The returned value indicates the structure type, as follows: 1272 ** 1273 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1274 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1275 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1276 ** populated epheremal table. 1277 ** 1278 ** An existing structure may only be used if the SELECT is of the simple 1279 ** form: 1280 ** 1281 ** SELECT <column> FROM <table> 1282 ** 1283 ** If prNotFound parameter is 0, then the structure will be used to iterate 1284 ** through the set members, skipping any duplicates. In this case an 1285 ** epheremal table must be used unless the selected <column> is guaranteed 1286 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1287 ** is unique by virtue of a constraint or implicit index. 1288 ** 1289 ** If the prNotFound parameter is not 0, then the structure will be used 1290 ** for fast set membership tests. In this case an epheremal table must 1291 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1292 ** be found with <column> as its left-most column. 1293 ** 1294 ** When the structure is being used for set membership tests, the user 1295 ** needs to know whether or not the structure contains an SQL NULL 1296 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1297 ** If there is a chance that the structure may contain a NULL value at 1298 ** runtime, then a register is allocated and the register number written 1299 ** to *prNotFound. If there is no chance that the structure contains a 1300 ** NULL value, then *prNotFound is left unchanged. 1301 ** 1302 ** If a register is allocated and its location stored in *prNotFound, then 1303 ** its initial value is NULL. If the structure does not remain constant 1304 ** for the duration of the query (i.e. the set is a correlated sub-select), 1305 ** the value of the allocated register is reset to NULL each time the 1306 ** structure is repopulated. This allows the caller to use vdbe code 1307 ** equivalent to the following: 1308 ** 1309 ** if( register==NULL ){ 1310 ** has_null = <test if data structure contains null> 1311 ** register = 1 1312 ** } 1313 ** 1314 ** in order to avoid running the <test if data structure contains null> 1315 ** test more often than is necessary. 1316 */ 1317 #ifndef SQLITE_OMIT_SUBQUERY 1318 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1319 Select *p; 1320 int eType = 0; 1321 int iTab = pParse->nTab++; 1322 int mustBeUnique = !prNotFound; 1323 1324 /* The follwing if(...) expression is true if the SELECT is of the 1325 ** simple form: 1326 ** 1327 ** SELECT <column> FROM <table> 1328 ** 1329 ** If this is the case, it may be possible to use an existing table 1330 ** or index instead of generating an epheremal table. 1331 */ 1332 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1333 if( isCandidateForInOpt(p) ){ 1334 sqlite3 *db = pParse->db; /* Database connection */ 1335 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1336 int iCol = pExpr->iColumn; /* Index of column <column> */ 1337 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1338 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1339 int iDb; /* Database idx for pTab */ 1340 1341 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1342 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1343 sqlite3CodeVerifySchema(pParse, iDb); 1344 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1345 1346 /* This function is only called from two places. In both cases the vdbe 1347 ** has already been allocated. So assume sqlite3GetVdbe() is always 1348 ** successful here. 1349 */ 1350 assert(v); 1351 if( iCol<0 ){ 1352 int iMem = ++pParse->nMem; 1353 int iAddr; 1354 sqlite3VdbeUsesBtree(v, iDb); 1355 1356 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1357 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1358 1359 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1360 eType = IN_INDEX_ROWID; 1361 1362 sqlite3VdbeJumpHere(v, iAddr); 1363 }else{ 1364 Index *pIdx; /* Iterator variable */ 1365 1366 /* The collation sequence used by the comparison. If an index is to 1367 ** be used in place of a temp-table, it must be ordered according 1368 ** to this collation sequence. */ 1369 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1370 1371 /* Check that the affinity that will be used to perform the 1372 ** comparison is the same as the affinity of the column. If 1373 ** it is not, it is not possible to use any index. 1374 */ 1375 char aff = comparisonAffinity(pX); 1376 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1377 1378 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1379 if( (pIdx->aiColumn[0]==iCol) 1380 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)) 1381 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1382 ){ 1383 int iMem = ++pParse->nMem; 1384 int iAddr; 1385 char *pKey; 1386 1387 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1388 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1389 sqlite3VdbeUsesBtree(v, iDb); 1390 1391 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1392 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1393 1394 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1395 pKey,P4_KEYINFO_HANDOFF); 1396 VdbeComment((v, "%s", pIdx->zName)); 1397 eType = IN_INDEX_INDEX; 1398 1399 sqlite3VdbeJumpHere(v, iAddr); 1400 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1401 *prNotFound = ++pParse->nMem; 1402 } 1403 } 1404 } 1405 } 1406 } 1407 1408 if( eType==0 ){ 1409 int rMayHaveNull = 0; 1410 eType = IN_INDEX_EPH; 1411 if( prNotFound ){ 1412 *prNotFound = rMayHaveNull = ++pParse->nMem; 1413 }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1414 eType = IN_INDEX_ROWID; 1415 } 1416 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1417 }else{ 1418 pX->iTable = iTab; 1419 } 1420 return eType; 1421 } 1422 #endif 1423 1424 /* 1425 ** Generate code for scalar subqueries used as an expression 1426 ** and IN operators. Examples: 1427 ** 1428 ** (SELECT a FROM b) -- subquery 1429 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1430 ** x IN (4,5,11) -- IN operator with list on right-hand side 1431 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1432 ** 1433 ** The pExpr parameter describes the expression that contains the IN 1434 ** operator or subquery. 1435 ** 1436 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1437 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1438 ** to some integer key column of a table B-Tree. In this case, use an 1439 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1440 ** (slower) variable length keys B-Tree. 1441 */ 1442 #ifndef SQLITE_OMIT_SUBQUERY 1443 void sqlite3CodeSubselect( 1444 Parse *pParse, 1445 Expr *pExpr, 1446 int rMayHaveNull, 1447 int isRowid 1448 ){ 1449 int testAddr = 0; /* One-time test address */ 1450 Vdbe *v = sqlite3GetVdbe(pParse); 1451 if( v==0 ) return; 1452 sqlite3ExprCachePush(pParse); 1453 1454 /* This code must be run in its entirety every time it is encountered 1455 ** if any of the following is true: 1456 ** 1457 ** * The right-hand side is a correlated subquery 1458 ** * The right-hand side is an expression list containing variables 1459 ** * We are inside a trigger 1460 ** 1461 ** If all of the above are false, then we can run this code just once 1462 ** save the results, and reuse the same result on subsequent invocations. 1463 */ 1464 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1465 int mem = ++pParse->nMem; 1466 sqlite3VdbeAddOp1(v, OP_If, mem); 1467 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1468 assert( testAddr>0 || pParse->db->mallocFailed ); 1469 } 1470 1471 switch( pExpr->op ){ 1472 case TK_IN: { 1473 char affinity; 1474 KeyInfo keyInfo; 1475 int addr; /* Address of OP_OpenEphemeral instruction */ 1476 Expr *pLeft = pExpr->pLeft; 1477 1478 if( rMayHaveNull ){ 1479 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1480 } 1481 1482 affinity = sqlite3ExprAffinity(pLeft); 1483 1484 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1485 ** expression it is handled the same way. A virtual table is 1486 ** filled with single-field index keys representing the results 1487 ** from the SELECT or the <exprlist>. 1488 ** 1489 ** If the 'x' expression is a column value, or the SELECT... 1490 ** statement returns a column value, then the affinity of that 1491 ** column is used to build the index keys. If both 'x' and the 1492 ** SELECT... statement are columns, then numeric affinity is used 1493 ** if either column has NUMERIC or INTEGER affinity. If neither 1494 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1495 ** is used. 1496 */ 1497 pExpr->iTable = pParse->nTab++; 1498 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1499 memset(&keyInfo, 0, sizeof(keyInfo)); 1500 keyInfo.nField = 1; 1501 1502 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1503 /* Case 1: expr IN (SELECT ...) 1504 ** 1505 ** Generate code to write the results of the select into the temporary 1506 ** table allocated and opened above. 1507 */ 1508 SelectDest dest; 1509 ExprList *pEList; 1510 1511 assert( !isRowid ); 1512 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1513 dest.affinity = (u8)affinity; 1514 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1515 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1516 return; 1517 } 1518 pEList = pExpr->x.pSelect->pEList; 1519 if( pEList && pEList->nExpr>0 ){ 1520 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1521 pEList->a[0].pExpr); 1522 } 1523 }else if( pExpr->x.pList ){ 1524 /* Case 2: expr IN (exprlist) 1525 ** 1526 ** For each expression, build an index key from the evaluation and 1527 ** store it in the temporary table. If <expr> is a column, then use 1528 ** that columns affinity when building index keys. If <expr> is not 1529 ** a column, use numeric affinity. 1530 */ 1531 int i; 1532 ExprList *pList = pExpr->x.pList; 1533 struct ExprList_item *pItem; 1534 int r1, r2, r3; 1535 1536 if( !affinity ){ 1537 affinity = SQLITE_AFF_NONE; 1538 } 1539 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1540 1541 /* Loop through each expression in <exprlist>. */ 1542 r1 = sqlite3GetTempReg(pParse); 1543 r2 = sqlite3GetTempReg(pParse); 1544 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1545 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1546 Expr *pE2 = pItem->pExpr; 1547 1548 /* If the expression is not constant then we will need to 1549 ** disable the test that was generated above that makes sure 1550 ** this code only executes once. Because for a non-constant 1551 ** expression we need to rerun this code each time. 1552 */ 1553 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1554 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1555 testAddr = 0; 1556 } 1557 1558 /* Evaluate the expression and insert it into the temp table */ 1559 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1560 if( isRowid ){ 1561 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); 1562 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1563 }else{ 1564 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1565 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1566 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1567 } 1568 } 1569 sqlite3ReleaseTempReg(pParse, r1); 1570 sqlite3ReleaseTempReg(pParse, r2); 1571 } 1572 if( !isRowid ){ 1573 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1574 } 1575 break; 1576 } 1577 1578 case TK_EXISTS: 1579 case TK_SELECT: { 1580 /* This has to be a scalar SELECT. Generate code to put the 1581 ** value of this select in a memory cell and record the number 1582 ** of the memory cell in iColumn. 1583 */ 1584 static const Token one = { (u8*)"1", 0, 0, 1 }; 1585 Select *pSel; 1586 SelectDest dest; 1587 1588 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1589 pSel = pExpr->x.pSelect; 1590 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1591 if( pExpr->op==TK_SELECT ){ 1592 dest.eDest = SRT_Mem; 1593 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1594 VdbeComment((v, "Init subquery result")); 1595 }else{ 1596 dest.eDest = SRT_Exists; 1597 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1598 VdbeComment((v, "Init EXISTS result")); 1599 } 1600 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1601 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1602 if( sqlite3Select(pParse, pSel, &dest) ){ 1603 return; 1604 } 1605 pExpr->iColumn = dest.iParm; 1606 break; 1607 } 1608 } 1609 1610 if( testAddr ){ 1611 sqlite3VdbeJumpHere(v, testAddr-1); 1612 } 1613 sqlite3ExprCachePop(pParse, 1); 1614 1615 return; 1616 } 1617 #endif /* SQLITE_OMIT_SUBQUERY */ 1618 1619 /* 1620 ** Duplicate an 8-byte value 1621 */ 1622 static char *dup8bytes(Vdbe *v, const char *in){ 1623 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1624 if( out ){ 1625 memcpy(out, in, 8); 1626 } 1627 return out; 1628 } 1629 1630 /* 1631 ** Generate an instruction that will put the floating point 1632 ** value described by z[0..n-1] into register iMem. 1633 ** 1634 ** The z[] string will probably not be zero-terminated. But the 1635 ** z[n] character is guaranteed to be something that does not look 1636 ** like the continuation of the number. 1637 */ 1638 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ 1639 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1640 assert( !z || !sqlite3Isdigit(z[n]) ); 1641 UNUSED_PARAMETER(n); 1642 if( z ){ 1643 double value; 1644 char *zV; 1645 sqlite3AtoF(z, &value); 1646 if( sqlite3IsNaN(value) ){ 1647 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem); 1648 }else{ 1649 if( negateFlag ) value = -value; 1650 zV = dup8bytes(v, (char*)&value); 1651 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1652 } 1653 } 1654 } 1655 1656 1657 /* 1658 ** Generate an instruction that will put the integer describe by 1659 ** text z[0..n-1] into register iMem. 1660 ** 1661 ** The z[] string will probably not be zero-terminated. But the 1662 ** z[n] character is guaranteed to be something that does not look 1663 ** like the continuation of the number. 1664 */ 1665 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ 1666 const char *z; 1667 if( pExpr->flags & EP_IntValue ){ 1668 int i = pExpr->iTable; 1669 if( negFlag ) i = -i; 1670 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1671 }else if( (z = (char*)pExpr->token.z)!=0 ){ 1672 int i; 1673 int n = pExpr->token.n; 1674 assert( !sqlite3Isdigit(z[n]) ); 1675 if( sqlite3GetInt32(z, &i) ){ 1676 if( negFlag ) i = -i; 1677 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1678 }else if( sqlite3FitsIn64Bits(z, negFlag) ){ 1679 i64 value; 1680 char *zV; 1681 sqlite3Atoi64(z, &value); 1682 if( negFlag ) value = -value; 1683 zV = dup8bytes(v, (char*)&value); 1684 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1685 }else{ 1686 codeReal(v, z, n, negFlag, iMem); 1687 } 1688 } 1689 } 1690 1691 /* 1692 ** Clear a cache entry. 1693 */ 1694 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1695 if( p->tempReg ){ 1696 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1697 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1698 } 1699 p->tempReg = 0; 1700 } 1701 } 1702 1703 1704 /* 1705 ** Record in the column cache that a particular column from a 1706 ** particular table is stored in a particular register. 1707 */ 1708 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1709 int i; 1710 int minLru; 1711 int idxLru; 1712 struct yColCache *p; 1713 1714 /* First replace any existing entry */ 1715 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1716 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 1717 cacheEntryClear(pParse, p); 1718 p->iLevel = pParse->iCacheLevel; 1719 p->iReg = iReg; 1720 p->affChange = 0; 1721 p->lru = pParse->iCacheCnt++; 1722 return; 1723 } 1724 } 1725 if( iReg<=0 ) return; 1726 1727 /* Find an empty slot and replace it */ 1728 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1729 if( p->iReg==0 ){ 1730 p->iLevel = pParse->iCacheLevel; 1731 p->iTable = iTab; 1732 p->iColumn = iCol; 1733 p->iReg = iReg; 1734 p->affChange = 0; 1735 p->tempReg = 0; 1736 p->lru = pParse->iCacheCnt++; 1737 return; 1738 } 1739 } 1740 1741 /* Replace the last recently used */ 1742 minLru = 0x7fffffff; 1743 idxLru = -1; 1744 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1745 if( p->lru<minLru ){ 1746 idxLru = i; 1747 minLru = p->lru; 1748 } 1749 } 1750 if( idxLru>=0 ){ 1751 p = &pParse->aColCache[idxLru]; 1752 p->iLevel = pParse->iCacheLevel; 1753 p->iTable = iTab; 1754 p->iColumn = iCol; 1755 p->iReg = iReg; 1756 p->affChange = 0; 1757 p->tempReg = 0; 1758 p->lru = pParse->iCacheCnt++; 1759 return; 1760 } 1761 } 1762 1763 /* 1764 ** Indicate that a register is being overwritten. Purge the register 1765 ** from the column cache. 1766 */ 1767 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){ 1768 int i; 1769 struct yColCache *p; 1770 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1771 if( p->iReg==iReg ){ 1772 cacheEntryClear(pParse, p); 1773 p->iReg = 0; 1774 } 1775 } 1776 } 1777 1778 /* 1779 ** Remember the current column cache context. Any new entries added 1780 ** added to the column cache after this call are removed when the 1781 ** corresponding pop occurs. 1782 */ 1783 void sqlite3ExprCachePush(Parse *pParse){ 1784 pParse->iCacheLevel++; 1785 } 1786 1787 /* 1788 ** Remove from the column cache any entries that were added since the 1789 ** the previous N Push operations. In other words, restore the cache 1790 ** to the state it was in N Pushes ago. 1791 */ 1792 void sqlite3ExprCachePop(Parse *pParse, int N){ 1793 int i; 1794 struct yColCache *p; 1795 assert( N>0 ); 1796 assert( pParse->iCacheLevel>=N ); 1797 pParse->iCacheLevel -= N; 1798 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1799 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 1800 cacheEntryClear(pParse, p); 1801 p->iReg = 0; 1802 } 1803 } 1804 } 1805 1806 /* 1807 ** Generate code that will extract the iColumn-th column from 1808 ** table pTab and store the column value in a register. An effort 1809 ** is made to store the column value in register iReg, but this is 1810 ** not guaranteed. The location of the column value is returned. 1811 ** 1812 ** There must be an open cursor to pTab in iTable when this routine 1813 ** is called. If iColumn<0 then code is generated that extracts the rowid. 1814 ** 1815 ** This routine might attempt to reuse the value of the column that 1816 ** has already been loaded into a register. The value will always 1817 ** be used if it has not undergone any affinity changes. But if 1818 ** an affinity change has occurred, then the cached value will only be 1819 ** used if allowAffChng is true. 1820 */ 1821 int sqlite3ExprCodeGetColumn( 1822 Parse *pParse, /* Parsing and code generating context */ 1823 Table *pTab, /* Description of the table we are reading from */ 1824 int iColumn, /* Index of the table column */ 1825 int iTable, /* The cursor pointing to the table */ 1826 int iReg, /* Store results here */ 1827 int allowAffChng /* True if prior affinity changes are OK */ 1828 ){ 1829 Vdbe *v = pParse->pVdbe; 1830 int i; 1831 struct yColCache *p; 1832 1833 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1834 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn 1835 && (!p->affChange || allowAffChng) ){ 1836 #if 0 1837 sqlite3VdbeAddOp0(v, OP_Noop); 1838 VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); 1839 #endif 1840 p->lru = pParse->iCacheCnt++; 1841 p->tempReg = 0; /* This pins the register, but also leaks it */ 1842 return p->iReg; 1843 } 1844 } 1845 assert( v!=0 ); 1846 if( iColumn<0 ){ 1847 sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg); 1848 }else if( pTab==0 ){ 1849 sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); 1850 }else{ 1851 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1852 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 1853 sqlite3ColumnDefault(v, pTab, iColumn); 1854 #ifndef SQLITE_OMIT_FLOATING_POINT 1855 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1856 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 1857 } 1858 #endif 1859 } 1860 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 1861 return iReg; 1862 } 1863 1864 /* 1865 ** Clear all column cache entries. 1866 */ 1867 void sqlite3ExprCacheClear(Parse *pParse){ 1868 int i; 1869 struct yColCache *p; 1870 1871 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1872 if( p->iReg ){ 1873 cacheEntryClear(pParse, p); 1874 p->iReg = 0; 1875 } 1876 } 1877 } 1878 1879 /* 1880 ** Record the fact that an affinity change has occurred on iCount 1881 ** registers starting with iStart. 1882 */ 1883 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 1884 int iEnd = iStart + iCount - 1; 1885 int i; 1886 struct yColCache *p; 1887 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1888 int r = p->iReg; 1889 if( r>=iStart && r<=iEnd ){ 1890 p->affChange = 1; 1891 } 1892 } 1893 } 1894 1895 /* 1896 ** Generate code to move content from registers iFrom...iFrom+nReg-1 1897 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 1898 */ 1899 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 1900 int i; 1901 struct yColCache *p; 1902 if( iFrom==iTo ) return; 1903 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 1904 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1905 int x = p->iReg; 1906 if( x>=iFrom && x<iFrom+nReg ){ 1907 p->iReg += iTo-iFrom; 1908 } 1909 } 1910 } 1911 1912 /* 1913 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 1914 ** over to iTo..iTo+nReg-1. 1915 */ 1916 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 1917 int i; 1918 if( iFrom==iTo ) return; 1919 for(i=0; i<nReg; i++){ 1920 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 1921 } 1922 } 1923 1924 /* 1925 ** Return true if any register in the range iFrom..iTo (inclusive) 1926 ** is used as part of the column cache. 1927 */ 1928 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 1929 int i; 1930 struct yColCache *p; 1931 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1932 int r = p->iReg; 1933 if( r>=iFrom && r<=iTo ) return 1; 1934 } 1935 return 0; 1936 } 1937 1938 /* 1939 ** If the last instruction coded is an ephemeral copy of any of 1940 ** the registers in the nReg registers beginning with iReg, then 1941 ** convert the last instruction from OP_SCopy to OP_Copy. 1942 */ 1943 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 1944 int addr; 1945 VdbeOp *pOp; 1946 Vdbe *v; 1947 1948 v = pParse->pVdbe; 1949 addr = sqlite3VdbeCurrentAddr(v); 1950 pOp = sqlite3VdbeGetOp(v, addr-1); 1951 assert( pOp || pParse->db->mallocFailed ); 1952 if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 1953 pOp->opcode = OP_Copy; 1954 } 1955 } 1956 1957 /* 1958 ** Generate code to store the value of the iAlias-th alias in register 1959 ** target. The first time this is called, pExpr is evaluated to compute 1960 ** the value of the alias. The value is stored in an auxiliary register 1961 ** and the number of that register is returned. On subsequent calls, 1962 ** the register number is returned without generating any code. 1963 ** 1964 ** Note that in order for this to work, code must be generated in the 1965 ** same order that it is executed. 1966 ** 1967 ** Aliases are numbered starting with 1. So iAlias is in the range 1968 ** of 1 to pParse->nAlias inclusive. 1969 ** 1970 ** pParse->aAlias[iAlias-1] records the register number where the value 1971 ** of the iAlias-th alias is stored. If zero, that means that the 1972 ** alias has not yet been computed. 1973 */ 1974 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 1975 #if 0 1976 sqlite3 *db = pParse->db; 1977 int iReg; 1978 if( pParse->nAliasAlloc<pParse->nAlias ){ 1979 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 1980 sizeof(pParse->aAlias[0])*pParse->nAlias ); 1981 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 1982 if( db->mallocFailed ) return 0; 1983 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 1984 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 1985 pParse->nAliasAlloc = pParse->nAlias; 1986 } 1987 assert( iAlias>0 && iAlias<=pParse->nAlias ); 1988 iReg = pParse->aAlias[iAlias-1]; 1989 if( iReg==0 ){ 1990 if( pParse->iCacheLevel>0 ){ 1991 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 1992 }else{ 1993 iReg = ++pParse->nMem; 1994 sqlite3ExprCode(pParse, pExpr, iReg); 1995 pParse->aAlias[iAlias-1] = iReg; 1996 } 1997 } 1998 return iReg; 1999 #else 2000 UNUSED_PARAMETER(iAlias); 2001 return sqlite3ExprCodeTarget(pParse, pExpr, target); 2002 #endif 2003 } 2004 2005 /* 2006 ** Generate code into the current Vdbe to evaluate the given 2007 ** expression. Attempt to store the results in register "target". 2008 ** Return the register where results are stored. 2009 ** 2010 ** With this routine, there is no guarantee that results will 2011 ** be stored in target. The result might be stored in some other 2012 ** register if it is convenient to do so. The calling function 2013 ** must check the return code and move the results to the desired 2014 ** register. 2015 */ 2016 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2017 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2018 int op; /* The opcode being coded */ 2019 int inReg = target; /* Results stored in register inReg */ 2020 int regFree1 = 0; /* If non-zero free this temporary register */ 2021 int regFree2 = 0; /* If non-zero free this temporary register */ 2022 int r1, r2, r3, r4; /* Various register numbers */ 2023 sqlite3 *db; 2024 2025 db = pParse->db; 2026 assert( v!=0 || db->mallocFailed ); 2027 assert( target>0 && target<=pParse->nMem ); 2028 if( v==0 ) return 0; 2029 2030 if( pExpr==0 ){ 2031 op = TK_NULL; 2032 }else{ 2033 op = pExpr->op; 2034 } 2035 switch( op ){ 2036 case TK_AGG_COLUMN: { 2037 AggInfo *pAggInfo = pExpr->pAggInfo; 2038 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2039 if( !pAggInfo->directMode ){ 2040 assert( pCol->iMem>0 ); 2041 inReg = pCol->iMem; 2042 break; 2043 }else if( pAggInfo->useSortingIdx ){ 2044 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2045 pCol->iSorterColumn, target); 2046 break; 2047 } 2048 /* Otherwise, fall thru into the TK_COLUMN case */ 2049 } 2050 case TK_COLUMN: { 2051 if( pExpr->iTable<0 ){ 2052 /* This only happens when coding check constraints */ 2053 assert( pParse->ckBase>0 ); 2054 inReg = pExpr->iColumn + pParse->ckBase; 2055 }else{ 2056 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 2057 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2058 pExpr->iColumn, pExpr->iTable, target, 2059 pExpr->flags & EP_AnyAff); 2060 } 2061 break; 2062 } 2063 case TK_INTEGER: { 2064 codeInteger(v, pExpr, 0, target); 2065 break; 2066 } 2067 case TK_FLOAT: { 2068 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); 2069 break; 2070 } 2071 case TK_STRING: { 2072 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, 2073 (char*)pExpr->token.z, pExpr->token.n); 2074 break; 2075 } 2076 case TK_NULL: { 2077 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2078 break; 2079 } 2080 #ifndef SQLITE_OMIT_BLOB_LITERAL 2081 case TK_BLOB: { 2082 int n; 2083 const char *z; 2084 char *zBlob; 2085 assert( pExpr->token.n>=3 ); 2086 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); 2087 assert( pExpr->token.z[1]=='\'' ); 2088 assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); 2089 n = pExpr->token.n - 3; 2090 z = (char*)pExpr->token.z + 2; 2091 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2092 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2093 break; 2094 } 2095 #endif 2096 case TK_VARIABLE: { 2097 int iPrior; 2098 VdbeOp *pOp; 2099 if( pExpr->token.n<=1 2100 && (iPrior = sqlite3VdbeCurrentAddr(v)-1)>=0 2101 && (pOp = sqlite3VdbeGetOp(v, iPrior))->opcode==OP_Variable 2102 && pOp->p1+pOp->p3==pExpr->iTable 2103 && pOp->p2+pOp->p3==target 2104 && pOp->p4.z==0 2105 ){ 2106 /* If the previous instruction was a copy of the previous unnamed 2107 ** parameter into the previous register, then simply increment the 2108 ** repeat count on the prior instruction rather than making a new 2109 ** instruction. 2110 */ 2111 pOp->p3++; 2112 }else{ 2113 sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1); 2114 if( pExpr->token.n>1 ){ 2115 sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); 2116 } 2117 } 2118 break; 2119 } 2120 case TK_REGISTER: { 2121 inReg = pExpr->iTable; 2122 break; 2123 } 2124 case TK_AS: { 2125 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2126 break; 2127 } 2128 #ifndef SQLITE_OMIT_CAST 2129 case TK_CAST: { 2130 /* Expressions of the form: CAST(pLeft AS token) */ 2131 int aff, to_op; 2132 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2133 aff = sqlite3AffinityType(&pExpr->token); 2134 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2135 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2136 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2137 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2138 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2139 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2140 testcase( to_op==OP_ToText ); 2141 testcase( to_op==OP_ToBlob ); 2142 testcase( to_op==OP_ToNumeric ); 2143 testcase( to_op==OP_ToInt ); 2144 testcase( to_op==OP_ToReal ); 2145 if( inReg!=target ){ 2146 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2147 inReg = target; 2148 } 2149 sqlite3VdbeAddOp1(v, to_op, inReg); 2150 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2151 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2152 break; 2153 } 2154 #endif /* SQLITE_OMIT_CAST */ 2155 case TK_LT: 2156 case TK_LE: 2157 case TK_GT: 2158 case TK_GE: 2159 case TK_NE: 2160 case TK_EQ: { 2161 assert( TK_LT==OP_Lt ); 2162 assert( TK_LE==OP_Le ); 2163 assert( TK_GT==OP_Gt ); 2164 assert( TK_GE==OP_Ge ); 2165 assert( TK_EQ==OP_Eq ); 2166 assert( TK_NE==OP_Ne ); 2167 testcase( op==TK_LT ); 2168 testcase( op==TK_LE ); 2169 testcase( op==TK_GT ); 2170 testcase( op==TK_GE ); 2171 testcase( op==TK_EQ ); 2172 testcase( op==TK_NE ); 2173 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2174 pExpr->pRight, &r2, ®Free2); 2175 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2176 r1, r2, inReg, SQLITE_STOREP2); 2177 testcase( regFree1==0 ); 2178 testcase( regFree2==0 ); 2179 break; 2180 } 2181 case TK_AND: 2182 case TK_OR: 2183 case TK_PLUS: 2184 case TK_STAR: 2185 case TK_MINUS: 2186 case TK_REM: 2187 case TK_BITAND: 2188 case TK_BITOR: 2189 case TK_SLASH: 2190 case TK_LSHIFT: 2191 case TK_RSHIFT: 2192 case TK_CONCAT: { 2193 assert( TK_AND==OP_And ); 2194 assert( TK_OR==OP_Or ); 2195 assert( TK_PLUS==OP_Add ); 2196 assert( TK_MINUS==OP_Subtract ); 2197 assert( TK_REM==OP_Remainder ); 2198 assert( TK_BITAND==OP_BitAnd ); 2199 assert( TK_BITOR==OP_BitOr ); 2200 assert( TK_SLASH==OP_Divide ); 2201 assert( TK_LSHIFT==OP_ShiftLeft ); 2202 assert( TK_RSHIFT==OP_ShiftRight ); 2203 assert( TK_CONCAT==OP_Concat ); 2204 testcase( op==TK_AND ); 2205 testcase( op==TK_OR ); 2206 testcase( op==TK_PLUS ); 2207 testcase( op==TK_MINUS ); 2208 testcase( op==TK_REM ); 2209 testcase( op==TK_BITAND ); 2210 testcase( op==TK_BITOR ); 2211 testcase( op==TK_SLASH ); 2212 testcase( op==TK_LSHIFT ); 2213 testcase( op==TK_RSHIFT ); 2214 testcase( op==TK_CONCAT ); 2215 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2216 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2217 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2218 testcase( regFree1==0 ); 2219 testcase( regFree2==0 ); 2220 break; 2221 } 2222 case TK_UMINUS: { 2223 Expr *pLeft = pExpr->pLeft; 2224 assert( pLeft ); 2225 if( pLeft->op==TK_FLOAT ){ 2226 codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target); 2227 }else if( pLeft->op==TK_INTEGER ){ 2228 codeInteger(v, pLeft, 1, target); 2229 }else{ 2230 regFree1 = r1 = sqlite3GetTempReg(pParse); 2231 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2232 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2233 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2234 testcase( regFree2==0 ); 2235 } 2236 inReg = target; 2237 break; 2238 } 2239 case TK_BITNOT: 2240 case TK_NOT: { 2241 assert( TK_BITNOT==OP_BitNot ); 2242 assert( TK_NOT==OP_Not ); 2243 testcase( op==TK_BITNOT ); 2244 testcase( op==TK_NOT ); 2245 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2246 testcase( regFree1==0 ); 2247 inReg = target; 2248 sqlite3VdbeAddOp2(v, op, r1, inReg); 2249 break; 2250 } 2251 case TK_ISNULL: 2252 case TK_NOTNULL: { 2253 int addr; 2254 assert( TK_ISNULL==OP_IsNull ); 2255 assert( TK_NOTNULL==OP_NotNull ); 2256 testcase( op==TK_ISNULL ); 2257 testcase( op==TK_NOTNULL ); 2258 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2259 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2260 testcase( regFree1==0 ); 2261 addr = sqlite3VdbeAddOp1(v, op, r1); 2262 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2263 sqlite3VdbeJumpHere(v, addr); 2264 break; 2265 } 2266 case TK_AGG_FUNCTION: { 2267 AggInfo *pInfo = pExpr->pAggInfo; 2268 if( pInfo==0 ){ 2269 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 2270 &pExpr->span); 2271 }else{ 2272 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2273 } 2274 break; 2275 } 2276 case TK_CONST_FUNC: 2277 case TK_FUNCTION: { 2278 ExprList *pFarg; /* List of function arguments */ 2279 int nFarg; /* Number of function arguments */ 2280 FuncDef *pDef; /* The function definition object */ 2281 int nId; /* Length of the function name in bytes */ 2282 const char *zId; /* The function name */ 2283 int constMask = 0; /* Mask of function arguments that are constant */ 2284 int i; /* Loop counter */ 2285 u8 enc = ENC(db); /* The text encoding used by this database */ 2286 CollSeq *pColl = 0; /* A collating sequence */ 2287 2288 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2289 testcase( op==TK_CONST_FUNC ); 2290 testcase( op==TK_FUNCTION ); 2291 if( ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_SpanToken) ){ 2292 pFarg = 0; 2293 }else{ 2294 pFarg = pExpr->x.pList; 2295 } 2296 nFarg = pFarg ? pFarg->nExpr : 0; 2297 zId = (char*)pExpr->token.z; 2298 nId = pExpr->token.n; 2299 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2300 assert( pDef!=0 ); 2301 if( pFarg ){ 2302 r1 = sqlite3GetTempRange(pParse, nFarg); 2303 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2304 }else{ 2305 r1 = 0; 2306 } 2307 #ifndef SQLITE_OMIT_VIRTUALTABLE 2308 /* Possibly overload the function if the first argument is 2309 ** a virtual table column. 2310 ** 2311 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2312 ** second argument, not the first, as the argument to test to 2313 ** see if it is a column in a virtual table. This is done because 2314 ** the left operand of infix functions (the operand we want to 2315 ** control overloading) ends up as the second argument to the 2316 ** function. The expression "A glob B" is equivalent to 2317 ** "glob(B,A). We want to use the A in "A glob B" to test 2318 ** for function overloading. But we use the B term in "glob(B,A)". 2319 */ 2320 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2321 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2322 }else if( nFarg>0 ){ 2323 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2324 } 2325 #endif 2326 for(i=0; i<nFarg && i<32; i++){ 2327 if( sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2328 constMask |= (1<<i); 2329 } 2330 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2331 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2332 } 2333 } 2334 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2335 if( !pColl ) pColl = db->pDfltColl; 2336 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2337 } 2338 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2339 (char*)pDef, P4_FUNCDEF); 2340 sqlite3VdbeChangeP5(v, (u8)nFarg); 2341 if( nFarg ){ 2342 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2343 } 2344 sqlite3ExprCacheAffinityChange(pParse, r1, nFarg); 2345 break; 2346 } 2347 #ifndef SQLITE_OMIT_SUBQUERY 2348 case TK_EXISTS: 2349 case TK_SELECT: { 2350 testcase( op==TK_EXISTS ); 2351 testcase( op==TK_SELECT ); 2352 if( pExpr->iColumn==0 ){ 2353 sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2354 } 2355 inReg = pExpr->iColumn; 2356 break; 2357 } 2358 case TK_IN: { 2359 int rNotFound = 0; 2360 int rMayHaveNull = 0; 2361 int j2, j3, j4, j5; 2362 char affinity; 2363 int eType; 2364 2365 VdbeNoopComment((v, "begin IN expr r%d", target)); 2366 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); 2367 if( rMayHaveNull ){ 2368 rNotFound = ++pParse->nMem; 2369 } 2370 2371 /* Figure out the affinity to use to create a key from the results 2372 ** of the expression. affinityStr stores a static string suitable for 2373 ** P4 of OP_MakeRecord. 2374 */ 2375 affinity = comparisonAffinity(pExpr); 2376 2377 2378 /* Code the <expr> from "<expr> IN (...)". The temporary table 2379 ** pExpr->iTable contains the values that make up the (...) set. 2380 */ 2381 sqlite3ExprCachePush(pParse); 2382 sqlite3ExprCode(pParse, pExpr->pLeft, target); 2383 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); 2384 if( eType==IN_INDEX_ROWID ){ 2385 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); 2386 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); 2387 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2388 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 2389 sqlite3VdbeJumpHere(v, j3); 2390 sqlite3VdbeJumpHere(v, j4); 2391 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2392 }else{ 2393 r2 = regFree2 = sqlite3GetTempReg(pParse); 2394 2395 /* Create a record and test for set membership. If the set contains 2396 ** the value, then jump to the end of the test code. The target 2397 ** register still contains the true (1) value written to it earlier. 2398 */ 2399 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); 2400 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2401 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); 2402 2403 /* If the set membership test fails, then the result of the 2404 ** "x IN (...)" expression must be either 0 or NULL. If the set 2405 ** contains no NULL values, then the result is 0. If the set 2406 ** contains one or more NULL values, then the result of the 2407 ** expression is also NULL. 2408 */ 2409 if( rNotFound==0 ){ 2410 /* This branch runs if it is known at compile time (now) that 2411 ** the set contains no NULL values. This happens as the result 2412 ** of a "NOT NULL" constraint in the database schema. No need 2413 ** to test the data structure at runtime in this case. 2414 */ 2415 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2416 }else{ 2417 /* This block populates the rNotFound register with either NULL 2418 ** or 0 (an integer value). If the data structure contains one 2419 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it 2420 ** to 0. If register rMayHaveNull is already set to some value 2421 ** other than NULL, then the test has already been run and 2422 ** rNotFound is already populated. 2423 */ 2424 static const char nullRecord[] = { 0x02, 0x00 }; 2425 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); 2426 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); 2427 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 2428 nullRecord, P4_STATIC); 2429 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); 2430 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); 2431 sqlite3VdbeJumpHere(v, j4); 2432 sqlite3VdbeJumpHere(v, j3); 2433 2434 /* Copy the value of register rNotFound (which is either NULL or 0) 2435 ** into the target register. This will be the result of the 2436 ** expression. 2437 */ 2438 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); 2439 } 2440 } 2441 sqlite3VdbeJumpHere(v, j2); 2442 sqlite3VdbeJumpHere(v, j5); 2443 sqlite3ExprCachePop(pParse, 1); 2444 VdbeComment((v, "end IN expr r%d", target)); 2445 break; 2446 } 2447 #endif 2448 /* 2449 ** x BETWEEN y AND z 2450 ** 2451 ** This is equivalent to 2452 ** 2453 ** x>=y AND x<=z 2454 ** 2455 ** X is stored in pExpr->pLeft. 2456 ** Y is stored in pExpr->pList->a[0].pExpr. 2457 ** Z is stored in pExpr->pList->a[1].pExpr. 2458 */ 2459 case TK_BETWEEN: { 2460 Expr *pLeft = pExpr->pLeft; 2461 struct ExprList_item *pLItem = pExpr->x.pList->a; 2462 Expr *pRight = pLItem->pExpr; 2463 2464 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2465 pRight, &r2, ®Free2); 2466 testcase( regFree1==0 ); 2467 testcase( regFree2==0 ); 2468 r3 = sqlite3GetTempReg(pParse); 2469 r4 = sqlite3GetTempReg(pParse); 2470 codeCompare(pParse, pLeft, pRight, OP_Ge, 2471 r1, r2, r3, SQLITE_STOREP2); 2472 pLItem++; 2473 pRight = pLItem->pExpr; 2474 sqlite3ReleaseTempReg(pParse, regFree2); 2475 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2476 testcase( regFree2==0 ); 2477 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2478 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2479 sqlite3ReleaseTempReg(pParse, r3); 2480 sqlite3ReleaseTempReg(pParse, r4); 2481 break; 2482 } 2483 case TK_UPLUS: { 2484 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2485 break; 2486 } 2487 2488 /* 2489 ** Form A: 2490 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2491 ** 2492 ** Form B: 2493 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2494 ** 2495 ** Form A is can be transformed into the equivalent form B as follows: 2496 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2497 ** WHEN x=eN THEN rN ELSE y END 2498 ** 2499 ** X (if it exists) is in pExpr->pLeft. 2500 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2501 ** ELSE clause and no other term matches, then the result of the 2502 ** exprssion is NULL. 2503 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2504 ** 2505 ** The result of the expression is the Ri for the first matching Ei, 2506 ** or if there is no matching Ei, the ELSE term Y, or if there is 2507 ** no ELSE term, NULL. 2508 */ 2509 case TK_CASE: { 2510 int endLabel; /* GOTO label for end of CASE stmt */ 2511 int nextCase; /* GOTO label for next WHEN clause */ 2512 int nExpr; /* 2x number of WHEN terms */ 2513 int i; /* Loop counter */ 2514 ExprList *pEList; /* List of WHEN terms */ 2515 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2516 Expr opCompare; /* The X==Ei expression */ 2517 Expr cacheX; /* Cached expression X */ 2518 Expr *pX; /* The X expression */ 2519 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2520 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2521 2522 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2523 assert((pExpr->x.pList->nExpr % 2) == 0); 2524 assert(pExpr->x.pList->nExpr > 0); 2525 pEList = pExpr->x.pList; 2526 aListelem = pEList->a; 2527 nExpr = pEList->nExpr; 2528 endLabel = sqlite3VdbeMakeLabel(v); 2529 if( (pX = pExpr->pLeft)!=0 ){ 2530 cacheX = *pX; 2531 testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); 2532 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2533 testcase( regFree1==0 ); 2534 cacheX.op = TK_REGISTER; 2535 opCompare.op = TK_EQ; 2536 opCompare.pLeft = &cacheX; 2537 pTest = &opCompare; 2538 } 2539 for(i=0; i<nExpr; i=i+2){ 2540 sqlite3ExprCachePush(pParse); 2541 if( pX ){ 2542 assert( pTest!=0 ); 2543 opCompare.pRight = aListelem[i].pExpr; 2544 }else{ 2545 pTest = aListelem[i].pExpr; 2546 } 2547 nextCase = sqlite3VdbeMakeLabel(v); 2548 testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER ); 2549 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2550 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2551 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2552 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2553 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2554 sqlite3ExprCachePop(pParse, 1); 2555 sqlite3VdbeResolveLabel(v, nextCase); 2556 } 2557 if( pExpr->pRight ){ 2558 sqlite3ExprCachePush(pParse); 2559 sqlite3ExprCode(pParse, pExpr->pRight, target); 2560 sqlite3ExprCachePop(pParse, 1); 2561 }else{ 2562 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2563 } 2564 assert( db->mallocFailed || pParse->nErr>0 2565 || pParse->iCacheLevel==iCacheLevel ); 2566 sqlite3VdbeResolveLabel(v, endLabel); 2567 break; 2568 } 2569 #ifndef SQLITE_OMIT_TRIGGER 2570 case TK_RAISE: { 2571 if( !pParse->trigStack ){ 2572 sqlite3ErrorMsg(pParse, 2573 "RAISE() may only be used within a trigger-program"); 2574 return 0; 2575 } 2576 if( pExpr->affinity!=OE_Ignore ){ 2577 assert( pExpr->affinity==OE_Rollback || 2578 pExpr->affinity == OE_Abort || 2579 pExpr->affinity == OE_Fail ); 2580 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->affinity, 0, 2581 (char*)pExpr->token.z, pExpr->token.n); 2582 } else { 2583 assert( pExpr->affinity == OE_Ignore ); 2584 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); 2585 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2586 VdbeComment((v, "raise(IGNORE)")); 2587 } 2588 break; 2589 } 2590 #endif 2591 } 2592 sqlite3ReleaseTempReg(pParse, regFree1); 2593 sqlite3ReleaseTempReg(pParse, regFree2); 2594 return inReg; 2595 } 2596 2597 /* 2598 ** Generate code to evaluate an expression and store the results 2599 ** into a register. Return the register number where the results 2600 ** are stored. 2601 ** 2602 ** If the register is a temporary register that can be deallocated, 2603 ** then write its number into *pReg. If the result register is not 2604 ** a temporary, then set *pReg to zero. 2605 */ 2606 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2607 int r1 = sqlite3GetTempReg(pParse); 2608 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2609 if( r2==r1 ){ 2610 *pReg = r1; 2611 }else{ 2612 sqlite3ReleaseTempReg(pParse, r1); 2613 *pReg = 0; 2614 } 2615 return r2; 2616 } 2617 2618 /* 2619 ** Generate code that will evaluate expression pExpr and store the 2620 ** results in register target. The results are guaranteed to appear 2621 ** in register target. 2622 */ 2623 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2624 int inReg; 2625 2626 assert( target>0 && target<=pParse->nMem ); 2627 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2628 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2629 if( inReg!=target && pParse->pVdbe ){ 2630 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2631 } 2632 return target; 2633 } 2634 2635 /* 2636 ** Generate code that evalutes the given expression and puts the result 2637 ** in register target. 2638 ** 2639 ** Also make a copy of the expression results into another "cache" register 2640 ** and modify the expression so that the next time it is evaluated, 2641 ** the result is a copy of the cache register. 2642 ** 2643 ** This routine is used for expressions that are used multiple 2644 ** times. They are evaluated once and the results of the expression 2645 ** are reused. 2646 */ 2647 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2648 Vdbe *v = pParse->pVdbe; 2649 int inReg; 2650 inReg = sqlite3ExprCode(pParse, pExpr, target); 2651 assert( target>0 ); 2652 if( pExpr->op!=TK_REGISTER ){ 2653 int iMem; 2654 iMem = ++pParse->nMem; 2655 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2656 pExpr->iTable = iMem; 2657 pExpr->op = TK_REGISTER; 2658 } 2659 return inReg; 2660 } 2661 2662 /* 2663 ** Return TRUE if pExpr is an constant expression that is appropriate 2664 ** for factoring out of a loop. Appropriate expressions are: 2665 ** 2666 ** * Any expression that evaluates to two or more opcodes. 2667 ** 2668 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2669 ** or OP_Variable that does not need to be placed in a 2670 ** specific register. 2671 ** 2672 ** There is no point in factoring out single-instruction constant 2673 ** expressions that need to be placed in a particular register. 2674 ** We could factor them out, but then we would end up adding an 2675 ** OP_SCopy instruction to move the value into the correct register 2676 ** later. We might as well just use the original instruction and 2677 ** avoid the OP_SCopy. 2678 */ 2679 static int isAppropriateForFactoring(Expr *p){ 2680 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2681 return 0; /* Only constant expressions are appropriate for factoring */ 2682 } 2683 if( (p->flags & EP_FixedDest)==0 ){ 2684 return 1; /* Any constant without a fixed destination is appropriate */ 2685 } 2686 while( p->op==TK_UPLUS ) p = p->pLeft; 2687 switch( p->op ){ 2688 #ifndef SQLITE_OMIT_BLOB_LITERAL 2689 case TK_BLOB: 2690 #endif 2691 case TK_VARIABLE: 2692 case TK_INTEGER: 2693 case TK_FLOAT: 2694 case TK_NULL: 2695 case TK_STRING: { 2696 testcase( p->op==TK_BLOB ); 2697 testcase( p->op==TK_VARIABLE ); 2698 testcase( p->op==TK_INTEGER ); 2699 testcase( p->op==TK_FLOAT ); 2700 testcase( p->op==TK_NULL ); 2701 testcase( p->op==TK_STRING ); 2702 /* Single-instruction constants with a fixed destination are 2703 ** better done in-line. If we factor them, they will just end 2704 ** up generating an OP_SCopy to move the value to the destination 2705 ** register. */ 2706 return 0; 2707 } 2708 case TK_UMINUS: { 2709 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2710 return 0; 2711 } 2712 break; 2713 } 2714 default: { 2715 break; 2716 } 2717 } 2718 return 1; 2719 } 2720 2721 /* 2722 ** If pExpr is a constant expression that is appropriate for 2723 ** factoring out of a loop, then evaluate the expression 2724 ** into a register and convert the expression into a TK_REGISTER 2725 ** expression. 2726 */ 2727 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 2728 Parse *pParse = pWalker->pParse; 2729 switch( pExpr->op ){ 2730 case TK_REGISTER: { 2731 return 1; 2732 } 2733 case TK_FUNCTION: 2734 case TK_AGG_FUNCTION: 2735 case TK_CONST_FUNC: { 2736 /* The arguments to a function have a fixed destination. 2737 ** Mark them this way to avoid generated unneeded OP_SCopy 2738 ** instructions. 2739 */ 2740 ExprList *pList = pExpr->x.pList; 2741 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2742 if( pList ){ 2743 int i = pList->nExpr; 2744 struct ExprList_item *pItem = pList->a; 2745 for(; i>0; i--, pItem++){ 2746 if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; 2747 } 2748 } 2749 break; 2750 } 2751 } 2752 if( isAppropriateForFactoring(pExpr) ){ 2753 int r1 = ++pParse->nMem; 2754 int r2; 2755 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2756 if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); 2757 pExpr->op = TK_REGISTER; 2758 pExpr->iTable = r2; 2759 return WRC_Prune; 2760 } 2761 return WRC_Continue; 2762 } 2763 2764 /* 2765 ** Preevaluate constant subexpressions within pExpr and store the 2766 ** results in registers. Modify pExpr so that the constant subexpresions 2767 ** are TK_REGISTER opcodes that refer to the precomputed values. 2768 */ 2769 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 2770 Walker w; 2771 w.xExprCallback = evalConstExpr; 2772 w.xSelectCallback = 0; 2773 w.pParse = pParse; 2774 sqlite3WalkExpr(&w, pExpr); 2775 } 2776 2777 2778 /* 2779 ** Generate code that pushes the value of every element of the given 2780 ** expression list into a sequence of registers beginning at target. 2781 ** 2782 ** Return the number of elements evaluated. 2783 */ 2784 int sqlite3ExprCodeExprList( 2785 Parse *pParse, /* Parsing context */ 2786 ExprList *pList, /* The expression list to be coded */ 2787 int target, /* Where to write results */ 2788 int doHardCopy /* Make a hard copy of every element */ 2789 ){ 2790 struct ExprList_item *pItem; 2791 int i, n; 2792 assert( pList!=0 ); 2793 assert( target>0 ); 2794 n = pList->nExpr; 2795 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 2796 if( pItem->iAlias ){ 2797 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 2798 Vdbe *v = sqlite3GetVdbe(pParse); 2799 if( iReg!=target+i ){ 2800 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 2801 } 2802 }else{ 2803 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 2804 } 2805 if( doHardCopy ){ 2806 sqlite3ExprHardCopy(pParse, target, n); 2807 } 2808 } 2809 return n; 2810 } 2811 2812 /* 2813 ** Generate code for a boolean expression such that a jump is made 2814 ** to the label "dest" if the expression is true but execution 2815 ** continues straight thru if the expression is false. 2816 ** 2817 ** If the expression evaluates to NULL (neither true nor false), then 2818 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 2819 ** 2820 ** This code depends on the fact that certain token values (ex: TK_EQ) 2821 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2822 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2823 ** the make process cause these values to align. Assert()s in the code 2824 ** below verify that the numbers are aligned correctly. 2825 */ 2826 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2827 Vdbe *v = pParse->pVdbe; 2828 int op = 0; 2829 int regFree1 = 0; 2830 int regFree2 = 0; 2831 int r1, r2; 2832 2833 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2834 if( v==0 || pExpr==0 ) return; 2835 op = pExpr->op; 2836 switch( op ){ 2837 case TK_AND: { 2838 int d2 = sqlite3VdbeMakeLabel(v); 2839 testcase( jumpIfNull==0 ); 2840 sqlite3ExprCachePush(pParse); 2841 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 2842 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2843 sqlite3VdbeResolveLabel(v, d2); 2844 sqlite3ExprCachePop(pParse, 1); 2845 break; 2846 } 2847 case TK_OR: { 2848 testcase( jumpIfNull==0 ); 2849 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2850 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2851 break; 2852 } 2853 case TK_NOT: { 2854 testcase( jumpIfNull==0 ); 2855 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2856 break; 2857 } 2858 case TK_LT: 2859 case TK_LE: 2860 case TK_GT: 2861 case TK_GE: 2862 case TK_NE: 2863 case TK_EQ: { 2864 assert( TK_LT==OP_Lt ); 2865 assert( TK_LE==OP_Le ); 2866 assert( TK_GT==OP_Gt ); 2867 assert( TK_GE==OP_Ge ); 2868 assert( TK_EQ==OP_Eq ); 2869 assert( TK_NE==OP_Ne ); 2870 testcase( op==TK_LT ); 2871 testcase( op==TK_LE ); 2872 testcase( op==TK_GT ); 2873 testcase( op==TK_GE ); 2874 testcase( op==TK_EQ ); 2875 testcase( op==TK_NE ); 2876 testcase( jumpIfNull==0 ); 2877 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2878 pExpr->pRight, &r2, ®Free2); 2879 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2880 r1, r2, dest, jumpIfNull); 2881 testcase( regFree1==0 ); 2882 testcase( regFree2==0 ); 2883 break; 2884 } 2885 case TK_ISNULL: 2886 case TK_NOTNULL: { 2887 assert( TK_ISNULL==OP_IsNull ); 2888 assert( TK_NOTNULL==OP_NotNull ); 2889 testcase( op==TK_ISNULL ); 2890 testcase( op==TK_NOTNULL ); 2891 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2892 sqlite3VdbeAddOp2(v, op, r1, dest); 2893 testcase( regFree1==0 ); 2894 break; 2895 } 2896 case TK_BETWEEN: { 2897 /* x BETWEEN y AND z 2898 ** 2899 ** Is equivalent to 2900 ** 2901 ** x>=y AND x<=z 2902 ** 2903 ** Code it as such, taking care to do the common subexpression 2904 ** elementation of x. 2905 */ 2906 Expr exprAnd; 2907 Expr compLeft; 2908 Expr compRight; 2909 Expr exprX; 2910 2911 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2912 exprX = *pExpr->pLeft; 2913 exprAnd.op = TK_AND; 2914 exprAnd.pLeft = &compLeft; 2915 exprAnd.pRight = &compRight; 2916 compLeft.op = TK_GE; 2917 compLeft.pLeft = &exprX; 2918 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 2919 compRight.op = TK_LE; 2920 compRight.pLeft = &exprX; 2921 compRight.pRight = pExpr->x.pList->a[1].pExpr; 2922 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 2923 testcase( regFree1==0 ); 2924 exprX.op = TK_REGISTER; 2925 testcase( jumpIfNull==0 ); 2926 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 2927 break; 2928 } 2929 default: { 2930 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 2931 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 2932 testcase( regFree1==0 ); 2933 testcase( jumpIfNull==0 ); 2934 break; 2935 } 2936 } 2937 sqlite3ReleaseTempReg(pParse, regFree1); 2938 sqlite3ReleaseTempReg(pParse, regFree2); 2939 } 2940 2941 /* 2942 ** Generate code for a boolean expression such that a jump is made 2943 ** to the label "dest" if the expression is false but execution 2944 ** continues straight thru if the expression is true. 2945 ** 2946 ** If the expression evaluates to NULL (neither true nor false) then 2947 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 2948 ** is 0. 2949 */ 2950 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2951 Vdbe *v = pParse->pVdbe; 2952 int op = 0; 2953 int regFree1 = 0; 2954 int regFree2 = 0; 2955 int r1, r2; 2956 2957 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2958 if( v==0 || pExpr==0 ) return; 2959 2960 /* The value of pExpr->op and op are related as follows: 2961 ** 2962 ** pExpr->op op 2963 ** --------- ---------- 2964 ** TK_ISNULL OP_NotNull 2965 ** TK_NOTNULL OP_IsNull 2966 ** TK_NE OP_Eq 2967 ** TK_EQ OP_Ne 2968 ** TK_GT OP_Le 2969 ** TK_LE OP_Gt 2970 ** TK_GE OP_Lt 2971 ** TK_LT OP_Ge 2972 ** 2973 ** For other values of pExpr->op, op is undefined and unused. 2974 ** The value of TK_ and OP_ constants are arranged such that we 2975 ** can compute the mapping above using the following expression. 2976 ** Assert()s verify that the computation is correct. 2977 */ 2978 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2979 2980 /* Verify correct alignment of TK_ and OP_ constants 2981 */ 2982 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2983 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2984 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2985 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2986 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2987 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2988 assert( pExpr->op!=TK_GT || op==OP_Le ); 2989 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2990 2991 switch( pExpr->op ){ 2992 case TK_AND: { 2993 testcase( jumpIfNull==0 ); 2994 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2995 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2996 break; 2997 } 2998 case TK_OR: { 2999 int d2 = sqlite3VdbeMakeLabel(v); 3000 testcase( jumpIfNull==0 ); 3001 sqlite3ExprCachePush(pParse); 3002 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3003 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3004 sqlite3VdbeResolveLabel(v, d2); 3005 sqlite3ExprCachePop(pParse, 1); 3006 break; 3007 } 3008 case TK_NOT: { 3009 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3010 break; 3011 } 3012 case TK_LT: 3013 case TK_LE: 3014 case TK_GT: 3015 case TK_GE: 3016 case TK_NE: 3017 case TK_EQ: { 3018 testcase( op==TK_LT ); 3019 testcase( op==TK_LE ); 3020 testcase( op==TK_GT ); 3021 testcase( op==TK_GE ); 3022 testcase( op==TK_EQ ); 3023 testcase( op==TK_NE ); 3024 testcase( jumpIfNull==0 ); 3025 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3026 pExpr->pRight, &r2, ®Free2); 3027 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3028 r1, r2, dest, jumpIfNull); 3029 testcase( regFree1==0 ); 3030 testcase( regFree2==0 ); 3031 break; 3032 } 3033 case TK_ISNULL: 3034 case TK_NOTNULL: { 3035 testcase( op==TK_ISNULL ); 3036 testcase( op==TK_NOTNULL ); 3037 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3038 sqlite3VdbeAddOp2(v, op, r1, dest); 3039 testcase( regFree1==0 ); 3040 break; 3041 } 3042 case TK_BETWEEN: { 3043 /* x BETWEEN y AND z 3044 ** 3045 ** Is equivalent to 3046 ** 3047 ** x>=y AND x<=z 3048 ** 3049 ** Code it as such, taking care to do the common subexpression 3050 ** elementation of x. 3051 */ 3052 Expr exprAnd; 3053 Expr compLeft; 3054 Expr compRight; 3055 Expr exprX; 3056 3057 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3058 exprX = *pExpr->pLeft; 3059 exprAnd.op = TK_AND; 3060 exprAnd.pLeft = &compLeft; 3061 exprAnd.pRight = &compRight; 3062 compLeft.op = TK_GE; 3063 compLeft.pLeft = &exprX; 3064 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3065 compRight.op = TK_LE; 3066 compRight.pLeft = &exprX; 3067 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3068 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3069 testcase( regFree1==0 ); 3070 exprX.op = TK_REGISTER; 3071 testcase( jumpIfNull==0 ); 3072 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3073 break; 3074 } 3075 default: { 3076 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3077 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3078 testcase( regFree1==0 ); 3079 testcase( jumpIfNull==0 ); 3080 break; 3081 } 3082 } 3083 sqlite3ReleaseTempReg(pParse, regFree1); 3084 sqlite3ReleaseTempReg(pParse, regFree2); 3085 } 3086 3087 /* 3088 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3089 ** if they are identical and return FALSE if they differ in any way. 3090 ** 3091 ** Sometimes this routine will return FALSE even if the two expressions 3092 ** really are equivalent. If we cannot prove that the expressions are 3093 ** identical, we return FALSE just to be safe. So if this routine 3094 ** returns false, then you do not really know for certain if the two 3095 ** expressions are the same. But if you get a TRUE return, then you 3096 ** can be sure the expressions are the same. In the places where 3097 ** this routine is used, it does not hurt to get an extra FALSE - that 3098 ** just might result in some slightly slower code. But returning 3099 ** an incorrect TRUE could lead to a malfunction. 3100 */ 3101 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3102 int i; 3103 if( pA==0||pB==0 ){ 3104 return pB==pA; 3105 } 3106 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3107 return 0; 3108 } 3109 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3110 if( pA->op!=pB->op ) return 0; 3111 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3112 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3113 3114 if( pA->x.pList && pB->x.pList ){ 3115 if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0; 3116 for(i=0; i<pA->x.pList->nExpr; i++){ 3117 Expr *pExprA = pA->x.pList->a[i].pExpr; 3118 Expr *pExprB = pB->x.pList->a[i].pExpr; 3119 if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0; 3120 } 3121 }else if( pA->x.pList || pB->x.pList ){ 3122 return 0; 3123 } 3124 3125 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3126 if( pA->op!=TK_COLUMN && pA->token.z ){ 3127 if( pB->token.z==0 ) return 0; 3128 if( pB->token.n!=pA->token.n ) return 0; 3129 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 3130 return 0; 3131 } 3132 } 3133 return 1; 3134 } 3135 3136 3137 /* 3138 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3139 ** the new element. Return a negative number if malloc fails. 3140 */ 3141 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3142 int i; 3143 pInfo->aCol = sqlite3ArrayAllocate( 3144 db, 3145 pInfo->aCol, 3146 sizeof(pInfo->aCol[0]), 3147 3, 3148 &pInfo->nColumn, 3149 &pInfo->nColumnAlloc, 3150 &i 3151 ); 3152 return i; 3153 } 3154 3155 /* 3156 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3157 ** the new element. Return a negative number if malloc fails. 3158 */ 3159 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3160 int i; 3161 pInfo->aFunc = sqlite3ArrayAllocate( 3162 db, 3163 pInfo->aFunc, 3164 sizeof(pInfo->aFunc[0]), 3165 3, 3166 &pInfo->nFunc, 3167 &pInfo->nFuncAlloc, 3168 &i 3169 ); 3170 return i; 3171 } 3172 3173 /* 3174 ** This is the xExprCallback for a tree walker. It is used to 3175 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3176 ** for additional information. 3177 */ 3178 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3179 int i; 3180 NameContext *pNC = pWalker->u.pNC; 3181 Parse *pParse = pNC->pParse; 3182 SrcList *pSrcList = pNC->pSrcList; 3183 AggInfo *pAggInfo = pNC->pAggInfo; 3184 3185 switch( pExpr->op ){ 3186 case TK_AGG_COLUMN: 3187 case TK_COLUMN: { 3188 testcase( pExpr->op==TK_AGG_COLUMN ); 3189 testcase( pExpr->op==TK_COLUMN ); 3190 /* Check to see if the column is in one of the tables in the FROM 3191 ** clause of the aggregate query */ 3192 if( pSrcList ){ 3193 struct SrcList_item *pItem = pSrcList->a; 3194 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3195 struct AggInfo_col *pCol; 3196 if( pExpr->iTable==pItem->iCursor ){ 3197 /* If we reach this point, it means that pExpr refers to a table 3198 ** that is in the FROM clause of the aggregate query. 3199 ** 3200 ** Make an entry for the column in pAggInfo->aCol[] if there 3201 ** is not an entry there already. 3202 */ 3203 int k; 3204 pCol = pAggInfo->aCol; 3205 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3206 if( pCol->iTable==pExpr->iTable && 3207 pCol->iColumn==pExpr->iColumn ){ 3208 break; 3209 } 3210 } 3211 if( (k>=pAggInfo->nColumn) 3212 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3213 ){ 3214 pCol = &pAggInfo->aCol[k]; 3215 pCol->pTab = pExpr->pTab; 3216 pCol->iTable = pExpr->iTable; 3217 pCol->iColumn = pExpr->iColumn; 3218 pCol->iMem = ++pParse->nMem; 3219 pCol->iSorterColumn = -1; 3220 pCol->pExpr = pExpr; 3221 if( pAggInfo->pGroupBy ){ 3222 int j, n; 3223 ExprList *pGB = pAggInfo->pGroupBy; 3224 struct ExprList_item *pTerm = pGB->a; 3225 n = pGB->nExpr; 3226 for(j=0; j<n; j++, pTerm++){ 3227 Expr *pE = pTerm->pExpr; 3228 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3229 pE->iColumn==pExpr->iColumn ){ 3230 pCol->iSorterColumn = j; 3231 break; 3232 } 3233 } 3234 } 3235 if( pCol->iSorterColumn<0 ){ 3236 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3237 } 3238 } 3239 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3240 ** because it was there before or because we just created it). 3241 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3242 ** pAggInfo->aCol[] entry. 3243 */ 3244 pExpr->pAggInfo = pAggInfo; 3245 pExpr->op = TK_AGG_COLUMN; 3246 pExpr->iAgg = k; 3247 break; 3248 } /* endif pExpr->iTable==pItem->iCursor */ 3249 } /* end loop over pSrcList */ 3250 } 3251 return WRC_Prune; 3252 } 3253 case TK_AGG_FUNCTION: { 3254 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3255 ** to be ignored */ 3256 if( pNC->nDepth==0 ){ 3257 /* Check to see if pExpr is a duplicate of another aggregate 3258 ** function that is already in the pAggInfo structure 3259 */ 3260 struct AggInfo_func *pItem = pAggInfo->aFunc; 3261 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3262 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3263 break; 3264 } 3265 } 3266 if( i>=pAggInfo->nFunc ){ 3267 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3268 */ 3269 u8 enc = ENC(pParse->db); 3270 i = addAggInfoFunc(pParse->db, pAggInfo); 3271 if( i>=0 ){ 3272 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3273 pItem = &pAggInfo->aFunc[i]; 3274 pItem->pExpr = pExpr; 3275 pItem->iMem = ++pParse->nMem; 3276 pItem->pFunc = sqlite3FindFunction(pParse->db, 3277 (char*)pExpr->token.z, pExpr->token.n, 3278 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3279 if( pExpr->flags & EP_Distinct ){ 3280 pItem->iDistinct = pParse->nTab++; 3281 }else{ 3282 pItem->iDistinct = -1; 3283 } 3284 } 3285 } 3286 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3287 */ 3288 pExpr->iAgg = i; 3289 pExpr->pAggInfo = pAggInfo; 3290 return WRC_Prune; 3291 } 3292 } 3293 } 3294 return WRC_Continue; 3295 } 3296 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3297 NameContext *pNC = pWalker->u.pNC; 3298 if( pNC->nDepth==0 ){ 3299 pNC->nDepth++; 3300 sqlite3WalkSelect(pWalker, pSelect); 3301 pNC->nDepth--; 3302 return WRC_Prune; 3303 }else{ 3304 return WRC_Continue; 3305 } 3306 } 3307 3308 /* 3309 ** Analyze the given expression looking for aggregate functions and 3310 ** for variables that need to be added to the pParse->aAgg[] array. 3311 ** Make additional entries to the pParse->aAgg[] array as necessary. 3312 ** 3313 ** This routine should only be called after the expression has been 3314 ** analyzed by sqlite3ResolveExprNames(). 3315 */ 3316 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3317 Walker w; 3318 w.xExprCallback = analyzeAggregate; 3319 w.xSelectCallback = analyzeAggregatesInSelect; 3320 w.u.pNC = pNC; 3321 sqlite3WalkExpr(&w, pExpr); 3322 } 3323 3324 /* 3325 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3326 ** expression list. Return the number of errors. 3327 ** 3328 ** If an error is found, the analysis is cut short. 3329 */ 3330 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3331 struct ExprList_item *pItem; 3332 int i; 3333 if( pList ){ 3334 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3335 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3336 } 3337 } 3338 } 3339 3340 /* 3341 ** Allocate a single new register for use to hold some intermediate result. 3342 */ 3343 int sqlite3GetTempReg(Parse *pParse){ 3344 if( pParse->nTempReg==0 ){ 3345 return ++pParse->nMem; 3346 } 3347 return pParse->aTempReg[--pParse->nTempReg]; 3348 } 3349 3350 /* 3351 ** Deallocate a register, making available for reuse for some other 3352 ** purpose. 3353 ** 3354 ** If a register is currently being used by the column cache, then 3355 ** the dallocation is deferred until the column cache line that uses 3356 ** the register becomes stale. 3357 */ 3358 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3359 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3360 int i; 3361 struct yColCache *p; 3362 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3363 if( p->iReg==iReg ){ 3364 p->tempReg = 1; 3365 return; 3366 } 3367 } 3368 pParse->aTempReg[pParse->nTempReg++] = iReg; 3369 } 3370 } 3371 3372 /* 3373 ** Allocate or deallocate a block of nReg consecutive registers 3374 */ 3375 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3376 int i, n; 3377 i = pParse->iRangeReg; 3378 n = pParse->nRangeReg; 3379 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3380 pParse->iRangeReg += nReg; 3381 pParse->nRangeReg -= nReg; 3382 }else{ 3383 i = pParse->nMem+1; 3384 pParse->nMem += nReg; 3385 } 3386 return i; 3387 } 3388 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3389 if( nReg>pParse->nRangeReg ){ 3390 pParse->nRangeReg = nReg; 3391 pParse->iRangeReg = iReg; 3392 } 3393 } 3394