xref: /sqlite-3.40.0/src/expr.c (revision 19125aaf)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op = pExpr->op;
35   if( op==TK_SELECT ){
36     assert( pExpr->flags&EP_xIsSelect );
37     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38   }
39 #ifndef SQLITE_OMIT_CAST
40   if( op==TK_CAST ){
41     assert( !ExprHasProperty(pExpr, EP_IntValue) );
42     return sqlite3AffinityType(pExpr->u.zToken);
43   }
44 #endif
45   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46    && pExpr->pTab!=0
47   ){
48     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49     ** a TK_COLUMN but was previously evaluated and cached in a register */
50     int j = pExpr->iColumn;
51     if( j<0 ) return SQLITE_AFF_INTEGER;
52     assert( pExpr->pTab && j<pExpr->pTab->nCol );
53     return pExpr->pTab->aCol[j].affinity;
54   }
55   return pExpr->affinity;
56 }
57 
58 /*
59 ** Set the collating sequence for expression pExpr to be the collating
60 ** sequence named by pToken.   Return a pointer to the revised expression.
61 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
62 ** flag.  An explicit collating sequence will override implicit
63 ** collating sequences.
64 */
65 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
66   char *zColl = 0;            /* Dequoted name of collation sequence */
67   CollSeq *pColl;
68   sqlite3 *db = pParse->db;
69   zColl = sqlite3NameFromToken(db, pCollName);
70   if( pExpr && zColl ){
71     pColl = sqlite3LocateCollSeq(pParse, zColl);
72     if( pColl ){
73       pExpr->pColl = pColl;
74       pExpr->flags |= EP_ExpCollate;
75     }
76   }
77   sqlite3DbFree(db, zColl);
78   return pExpr;
79 }
80 
81 /*
82 ** Return the default collation sequence for the expression pExpr. If
83 ** there is no default collation type, return 0.
84 */
85 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
86   CollSeq *pColl = 0;
87   Expr *p = pExpr;
88   while( ALWAYS(p) ){
89     int op;
90     pColl = p->pColl;
91     if( pColl ) break;
92     op = p->op;
93     if( p->pTab!=0 && (
94         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
95     )){
96       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
97       ** a TK_COLUMN but was previously evaluated and cached in a register */
98       const char *zColl;
99       int j = p->iColumn;
100       if( j>=0 ){
101         sqlite3 *db = pParse->db;
102         zColl = p->pTab->aCol[j].zColl;
103         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
104         pExpr->pColl = pColl;
105       }
106       break;
107     }
108     if( op!=TK_CAST && op!=TK_UPLUS ){
109       break;
110     }
111     p = p->pLeft;
112   }
113   if( sqlite3CheckCollSeq(pParse, pColl) ){
114     pColl = 0;
115   }
116   return pColl;
117 }
118 
119 /*
120 ** pExpr is an operand of a comparison operator.  aff2 is the
121 ** type affinity of the other operand.  This routine returns the
122 ** type affinity that should be used for the comparison operator.
123 */
124 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
125   char aff1 = sqlite3ExprAffinity(pExpr);
126   if( aff1 && aff2 ){
127     /* Both sides of the comparison are columns. If one has numeric
128     ** affinity, use that. Otherwise use no affinity.
129     */
130     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
131       return SQLITE_AFF_NUMERIC;
132     }else{
133       return SQLITE_AFF_NONE;
134     }
135   }else if( !aff1 && !aff2 ){
136     /* Neither side of the comparison is a column.  Compare the
137     ** results directly.
138     */
139     return SQLITE_AFF_NONE;
140   }else{
141     /* One side is a column, the other is not. Use the columns affinity. */
142     assert( aff1==0 || aff2==0 );
143     return (aff1 + aff2);
144   }
145 }
146 
147 /*
148 ** pExpr is a comparison operator.  Return the type affinity that should
149 ** be applied to both operands prior to doing the comparison.
150 */
151 static char comparisonAffinity(Expr *pExpr){
152   char aff;
153   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
154           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
155           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
156   assert( pExpr->pLeft );
157   aff = sqlite3ExprAffinity(pExpr->pLeft);
158   if( pExpr->pRight ){
159     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
160   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
161     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
162   }else if( !aff ){
163     aff = SQLITE_AFF_NONE;
164   }
165   return aff;
166 }
167 
168 /*
169 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
170 ** idx_affinity is the affinity of an indexed column. Return true
171 ** if the index with affinity idx_affinity may be used to implement
172 ** the comparison in pExpr.
173 */
174 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
175   char aff = comparisonAffinity(pExpr);
176   switch( aff ){
177     case SQLITE_AFF_NONE:
178       return 1;
179     case SQLITE_AFF_TEXT:
180       return idx_affinity==SQLITE_AFF_TEXT;
181     default:
182       return sqlite3IsNumericAffinity(idx_affinity);
183   }
184 }
185 
186 /*
187 ** Return the P5 value that should be used for a binary comparison
188 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
189 */
190 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
191   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
192   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
193   return aff;
194 }
195 
196 /*
197 ** Return a pointer to the collation sequence that should be used by
198 ** a binary comparison operator comparing pLeft and pRight.
199 **
200 ** If the left hand expression has a collating sequence type, then it is
201 ** used. Otherwise the collation sequence for the right hand expression
202 ** is used, or the default (BINARY) if neither expression has a collating
203 ** type.
204 **
205 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
206 ** it is not considered.
207 */
208 CollSeq *sqlite3BinaryCompareCollSeq(
209   Parse *pParse,
210   Expr *pLeft,
211   Expr *pRight
212 ){
213   CollSeq *pColl;
214   assert( pLeft );
215   if( pLeft->flags & EP_ExpCollate ){
216     assert( pLeft->pColl );
217     pColl = pLeft->pColl;
218   }else if( pRight && pRight->flags & EP_ExpCollate ){
219     assert( pRight->pColl );
220     pColl = pRight->pColl;
221   }else{
222     pColl = sqlite3ExprCollSeq(pParse, pLeft);
223     if( !pColl ){
224       pColl = sqlite3ExprCollSeq(pParse, pRight);
225     }
226   }
227   return pColl;
228 }
229 
230 /*
231 ** Generate the operands for a comparison operation.  Before
232 ** generating the code for each operand, set the EP_AnyAff
233 ** flag on the expression so that it will be able to used a
234 ** cached column value that has previously undergone an
235 ** affinity change.
236 */
237 static void codeCompareOperands(
238   Parse *pParse,    /* Parsing and code generating context */
239   Expr *pLeft,      /* The left operand */
240   int *pRegLeft,    /* Register where left operand is stored */
241   int *pFreeLeft,   /* Free this register when done */
242   Expr *pRight,     /* The right operand */
243   int *pRegRight,   /* Register where right operand is stored */
244   int *pFreeRight   /* Write temp register for right operand there */
245 ){
246   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
247   pLeft->flags |= EP_AnyAff;
248   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
249   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
250   pRight->flags |= EP_AnyAff;
251   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
252 }
253 
254 /*
255 ** Generate code for a comparison operator.
256 */
257 static int codeCompare(
258   Parse *pParse,    /* The parsing (and code generating) context */
259   Expr *pLeft,      /* The left operand */
260   Expr *pRight,     /* The right operand */
261   int opcode,       /* The comparison opcode */
262   int in1, int in2, /* Register holding operands */
263   int dest,         /* Jump here if true.  */
264   int jumpIfNull    /* If true, jump if either operand is NULL */
265 ){
266   int p5;
267   int addr;
268   CollSeq *p4;
269 
270   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
271   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
272   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
273                            (void*)p4, P4_COLLSEQ);
274   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
275   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
276     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
277     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
278   }
279   return addr;
280 }
281 
282 #if SQLITE_MAX_EXPR_DEPTH>0
283 /*
284 ** Check that argument nHeight is less than or equal to the maximum
285 ** expression depth allowed. If it is not, leave an error message in
286 ** pParse.
287 */
288 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
289   int rc = SQLITE_OK;
290   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
291   if( nHeight>mxHeight ){
292     sqlite3ErrorMsg(pParse,
293        "Expression tree is too large (maximum depth %d)", mxHeight
294     );
295     rc = SQLITE_ERROR;
296   }
297   return rc;
298 }
299 
300 /* The following three functions, heightOfExpr(), heightOfExprList()
301 ** and heightOfSelect(), are used to determine the maximum height
302 ** of any expression tree referenced by the structure passed as the
303 ** first argument.
304 **
305 ** If this maximum height is greater than the current value pointed
306 ** to by pnHeight, the second parameter, then set *pnHeight to that
307 ** value.
308 */
309 static void heightOfExpr(Expr *p, int *pnHeight){
310   if( p ){
311     if( p->nHeight>*pnHeight ){
312       *pnHeight = p->nHeight;
313     }
314   }
315 }
316 static void heightOfExprList(ExprList *p, int *pnHeight){
317   if( p ){
318     int i;
319     for(i=0; i<p->nExpr; i++){
320       heightOfExpr(p->a[i].pExpr, pnHeight);
321     }
322   }
323 }
324 static void heightOfSelect(Select *p, int *pnHeight){
325   if( p ){
326     heightOfExpr(p->pWhere, pnHeight);
327     heightOfExpr(p->pHaving, pnHeight);
328     heightOfExpr(p->pLimit, pnHeight);
329     heightOfExpr(p->pOffset, pnHeight);
330     heightOfExprList(p->pEList, pnHeight);
331     heightOfExprList(p->pGroupBy, pnHeight);
332     heightOfExprList(p->pOrderBy, pnHeight);
333     heightOfSelect(p->pPrior, pnHeight);
334   }
335 }
336 
337 /*
338 ** Set the Expr.nHeight variable in the structure passed as an
339 ** argument. An expression with no children, Expr.pList or
340 ** Expr.pSelect member has a height of 1. Any other expression
341 ** has a height equal to the maximum height of any other
342 ** referenced Expr plus one.
343 */
344 static void exprSetHeight(Expr *p){
345   int nHeight = 0;
346   heightOfExpr(p->pLeft, &nHeight);
347   heightOfExpr(p->pRight, &nHeight);
348   if( ExprHasProperty(p, EP_xIsSelect) ){
349     heightOfSelect(p->x.pSelect, &nHeight);
350   }else{
351     heightOfExprList(p->x.pList, &nHeight);
352   }
353   p->nHeight = nHeight + 1;
354 }
355 
356 /*
357 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
358 ** the height is greater than the maximum allowed expression depth,
359 ** leave an error in pParse.
360 */
361 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
362   exprSetHeight(p);
363   sqlite3ExprCheckHeight(pParse, p->nHeight);
364 }
365 
366 /*
367 ** Return the maximum height of any expression tree referenced
368 ** by the select statement passed as an argument.
369 */
370 int sqlite3SelectExprHeight(Select *p){
371   int nHeight = 0;
372   heightOfSelect(p, &nHeight);
373   return nHeight;
374 }
375 #else
376   #define exprSetHeight(y)
377 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
378 
379 /*
380 ** This routine is the core allocator for Expr nodes.
381 **
382 ** Construct a new expression node and return a pointer to it.  Memory
383 ** for this node and for the pToken argument is a single allocation
384 ** obtained from sqlite3DbMalloc().  The calling function
385 ** is responsible for making sure the node eventually gets freed.
386 **
387 ** If dequote is true, then the token (if it exists) is dequoted.
388 ** If dequote is false, no dequoting is performance.  The deQuote
389 ** parameter is ignored if pToken is NULL or if the token does not
390 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
391 ** then the EP_DblQuoted flag is set on the expression node.
392 **
393 ** Special case:  If op==TK_INTEGER and pToken points to a string that
394 ** can be translated into a 32-bit integer, then the token is not
395 ** stored in u.zToken.  Instead, the integer values is written
396 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
397 ** is allocated to hold the integer text and the dequote flag is ignored.
398 */
399 Expr *sqlite3ExprAlloc(
400   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
401   int op,                 /* Expression opcode */
402   const Token *pToken,    /* Token argument.  Might be NULL */
403   int dequote             /* True to dequote */
404 ){
405   Expr *pNew;
406   int nExtra = 0;
407   int iValue = 0;
408 
409   if( pToken ){
410     if( op!=TK_INTEGER || pToken->z==0
411           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
412       nExtra = pToken->n+1;
413     }
414   }
415   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
416   if( pNew ){
417     pNew->op = (u8)op;
418     pNew->iAgg = -1;
419     if( pToken ){
420       if( nExtra==0 ){
421         pNew->flags |= EP_IntValue;
422         pNew->u.iValue = iValue;
423       }else{
424         int c;
425         pNew->u.zToken = (char*)&pNew[1];
426         memcpy(pNew->u.zToken, pToken->z, pToken->n);
427         pNew->u.zToken[pToken->n] = 0;
428         if( dequote && nExtra>=3
429              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
430           sqlite3Dequote(pNew->u.zToken);
431           if( c=='"' ) pNew->flags |= EP_DblQuoted;
432         }
433       }
434     }
435 #if SQLITE_MAX_EXPR_DEPTH>0
436     pNew->nHeight = 1;
437 #endif
438   }
439   return pNew;
440 }
441 
442 /*
443 ** Allocate a new expression node from a zero-terminated token that has
444 ** already been dequoted.
445 */
446 Expr *sqlite3Expr(
447   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
448   int op,                 /* Expression opcode */
449   const char *zToken      /* Token argument.  Might be NULL */
450 ){
451   Token x;
452   x.z = zToken;
453   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
454   return sqlite3ExprAlloc(db, op, &x, 0);
455 }
456 
457 /*
458 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
459 **
460 ** If pRoot==NULL that means that a memory allocation error has occurred.
461 ** In that case, delete the subtrees pLeft and pRight.
462 */
463 void sqlite3ExprAttachSubtrees(
464   sqlite3 *db,
465   Expr *pRoot,
466   Expr *pLeft,
467   Expr *pRight
468 ){
469   if( pRoot==0 ){
470     assert( db->mallocFailed );
471     sqlite3ExprDelete(db, pLeft);
472     sqlite3ExprDelete(db, pRight);
473   }else{
474     if( pRight ){
475       pRoot->pRight = pRight;
476       if( pRight->flags & EP_ExpCollate ){
477         pRoot->flags |= EP_ExpCollate;
478         pRoot->pColl = pRight->pColl;
479       }
480     }
481     if( pLeft ){
482       pRoot->pLeft = pLeft;
483       if( pLeft->flags & EP_ExpCollate ){
484         pRoot->flags |= EP_ExpCollate;
485         pRoot->pColl = pLeft->pColl;
486       }
487     }
488     exprSetHeight(pRoot);
489   }
490 }
491 
492 /*
493 ** Allocate a Expr node which joins as many as two subtrees.
494 **
495 ** One or both of the subtrees can be NULL.  Return a pointer to the new
496 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
497 ** free the subtrees and return NULL.
498 */
499 Expr *sqlite3PExpr(
500   Parse *pParse,          /* Parsing context */
501   int op,                 /* Expression opcode */
502   Expr *pLeft,            /* Left operand */
503   Expr *pRight,           /* Right operand */
504   const Token *pToken     /* Argument token */
505 ){
506   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
507   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
508   return p;
509 }
510 
511 /*
512 ** Join two expressions using an AND operator.  If either expression is
513 ** NULL, then just return the other expression.
514 */
515 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
516   if( pLeft==0 ){
517     return pRight;
518   }else if( pRight==0 ){
519     return pLeft;
520   }else{
521     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
522     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
523     return pNew;
524   }
525 }
526 
527 /*
528 ** Construct a new expression node for a function with multiple
529 ** arguments.
530 */
531 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
532   Expr *pNew;
533   sqlite3 *db = pParse->db;
534   assert( pToken );
535   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
536   if( pNew==0 ){
537     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
538     return 0;
539   }
540   pNew->x.pList = pList;
541   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
542   sqlite3ExprSetHeight(pParse, pNew);
543   return pNew;
544 }
545 
546 /*
547 ** Assign a variable number to an expression that encodes a wildcard
548 ** in the original SQL statement.
549 **
550 ** Wildcards consisting of a single "?" are assigned the next sequential
551 ** variable number.
552 **
553 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
554 ** sure "nnn" is not too be to avoid a denial of service attack when
555 ** the SQL statement comes from an external source.
556 **
557 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
558 ** as the previous instance of the same wildcard.  Or if this is the first
559 ** instance of the wildcard, the next sequenial variable number is
560 ** assigned.
561 */
562 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
563   sqlite3 *db = pParse->db;
564   const char *z;
565 
566   if( pExpr==0 ) return;
567   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
568   z = pExpr->u.zToken;
569   assert( z!=0 );
570   assert( z[0]!=0 );
571   if( z[1]==0 ){
572     /* Wildcard of the form "?".  Assign the next variable number */
573     assert( z[0]=='?' );
574     pExpr->iColumn = (ynVar)(++pParse->nVar);
575   }else if( z[0]=='?' ){
576     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
577     ** use it as the variable number */
578     int i = atoi((char*)&z[1]);
579     pExpr->iColumn = (ynVar)i;
580     testcase( i==0 );
581     testcase( i==1 );
582     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
583     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
584     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
585       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
586           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
587     }
588     if( i>pParse->nVar ){
589       pParse->nVar = i;
590     }
591   }else{
592     /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
593     ** number as the prior appearance of the same name, or if the name
594     ** has never appeared before, reuse the same variable number
595     */
596     int i;
597     u32 n;
598     n = sqlite3Strlen30(z);
599     for(i=0; i<pParse->nVarExpr; i++){
600       Expr *pE = pParse->apVarExpr[i];
601       assert( pE!=0 );
602       if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
603         pExpr->iColumn = pE->iColumn;
604         break;
605       }
606     }
607     if( i>=pParse->nVarExpr ){
608       pExpr->iColumn = (ynVar)(++pParse->nVar);
609       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
610         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
611         pParse->apVarExpr =
612             sqlite3DbReallocOrFree(
613               db,
614               pParse->apVarExpr,
615               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
616             );
617       }
618       if( !db->mallocFailed ){
619         assert( pParse->apVarExpr!=0 );
620         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
621       }
622     }
623   }
624   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
625     sqlite3ErrorMsg(pParse, "too many SQL variables");
626   }
627 }
628 
629 /*
630 ** Recursively delete an expression tree.
631 */
632 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
633   if( p==0 ) return;
634   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
635     sqlite3ExprDelete(db, p->pLeft);
636     sqlite3ExprDelete(db, p->pRight);
637     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
638       sqlite3DbFree(db, p->u.zToken);
639     }
640     if( ExprHasProperty(p, EP_xIsSelect) ){
641       sqlite3SelectDelete(db, p->x.pSelect);
642     }else{
643       sqlite3ExprListDelete(db, p->x.pList);
644     }
645   }
646   if( !ExprHasProperty(p, EP_Static) ){
647     sqlite3DbFree(db, p);
648   }
649 }
650 
651 /*
652 ** Return the number of bytes allocated for the expression structure
653 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
654 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
655 */
656 static int exprStructSize(Expr *p){
657   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
658   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
659   return EXPR_FULLSIZE;
660 }
661 
662 /*
663 ** The dupedExpr*Size() routines each return the number of bytes required
664 ** to store a copy of an expression or expression tree.  They differ in
665 ** how much of the tree is measured.
666 **
667 **     dupedExprStructSize()     Size of only the Expr structure
668 **     dupedExprNodeSize()       Size of Expr + space for token
669 **     dupedExprSize()           Expr + token + subtree components
670 **
671 ***************************************************************************
672 **
673 ** The dupedExprStructSize() function returns two values OR-ed together:
674 ** (1) the space required for a copy of the Expr structure only and
675 ** (2) the EP_xxx flags that indicate what the structure size should be.
676 ** The return values is always one of:
677 **
678 **      EXPR_FULLSIZE
679 **      EXPR_REDUCEDSIZE   | EP_Reduced
680 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
681 **
682 ** The size of the structure can be found by masking the return value
683 ** of this routine with 0xfff.  The flags can be found by masking the
684 ** return value with EP_Reduced|EP_TokenOnly.
685 **
686 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
687 ** (unreduced) Expr objects as they or originally constructed by the parser.
688 ** During expression analysis, extra information is computed and moved into
689 ** later parts of teh Expr object and that extra information might get chopped
690 ** off if the expression is reduced.  Note also that it does not work to
691 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
692 ** to reduce a pristine expression tree from the parser.  The implementation
693 ** of dupedExprStructSize() contain multiple assert() statements that attempt
694 ** to enforce this constraint.
695 */
696 static int dupedExprStructSize(Expr *p, int flags){
697   int nSize;
698   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
699   if( 0==(flags&EXPRDUP_REDUCE) ){
700     nSize = EXPR_FULLSIZE;
701   }else{
702     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
703     assert( !ExprHasProperty(p, EP_FromJoin) );
704     assert( (p->flags2 & EP2_MallocedToken)==0 );
705     assert( (p->flags2 & EP2_Irreducible)==0 );
706     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
707       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
708     }else{
709       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
710     }
711   }
712   return nSize;
713 }
714 
715 /*
716 ** This function returns the space in bytes required to store the copy
717 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
718 ** string is defined.)
719 */
720 static int dupedExprNodeSize(Expr *p, int flags){
721   int nByte = dupedExprStructSize(p, flags) & 0xfff;
722   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
723     nByte += sqlite3Strlen30(p->u.zToken)+1;
724   }
725   return ROUND8(nByte);
726 }
727 
728 /*
729 ** Return the number of bytes required to create a duplicate of the
730 ** expression passed as the first argument. The second argument is a
731 ** mask containing EXPRDUP_XXX flags.
732 **
733 ** The value returned includes space to create a copy of the Expr struct
734 ** itself and the buffer referred to by Expr.u.zToken, if any.
735 **
736 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
737 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
738 ** and Expr.pRight variables (but not for any structures pointed to or
739 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
740 */
741 static int dupedExprSize(Expr *p, int flags){
742   int nByte = 0;
743   if( p ){
744     nByte = dupedExprNodeSize(p, flags);
745     if( flags&EXPRDUP_REDUCE ){
746       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
747     }
748   }
749   return nByte;
750 }
751 
752 /*
753 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
754 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
755 ** to store the copy of expression p, the copies of p->u.zToken
756 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
757 ** if any. Before returning, *pzBuffer is set to the first byte passed the
758 ** portion of the buffer copied into by this function.
759 */
760 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
761   Expr *pNew = 0;                      /* Value to return */
762   if( p ){
763     const int isReduced = (flags&EXPRDUP_REDUCE);
764     u8 *zAlloc;
765     u32 staticFlag = 0;
766 
767     assert( pzBuffer==0 || isReduced );
768 
769     /* Figure out where to write the new Expr structure. */
770     if( pzBuffer ){
771       zAlloc = *pzBuffer;
772       staticFlag = EP_Static;
773     }else{
774       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
775     }
776     pNew = (Expr *)zAlloc;
777 
778     if( pNew ){
779       /* Set nNewSize to the size allocated for the structure pointed to
780       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
781       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
782       ** by the copy of the p->u.zToken string (if any).
783       */
784       const unsigned nStructSize = dupedExprStructSize(p, flags);
785       const int nNewSize = nStructSize & 0xfff;
786       int nToken;
787       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
788         nToken = sqlite3Strlen30(p->u.zToken) + 1;
789       }else{
790         nToken = 0;
791       }
792       if( isReduced ){
793         assert( ExprHasProperty(p, EP_Reduced)==0 );
794         memcpy(zAlloc, p, nNewSize);
795       }else{
796         int nSize = exprStructSize(p);
797         memcpy(zAlloc, p, nSize);
798         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
799       }
800 
801       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
802       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
803       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
804       pNew->flags |= staticFlag;
805 
806       /* Copy the p->u.zToken string, if any. */
807       if( nToken ){
808         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
809         memcpy(zToken, p->u.zToken, nToken);
810       }
811 
812       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
813         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
814         if( ExprHasProperty(p, EP_xIsSelect) ){
815           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
816         }else{
817           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
818         }
819       }
820 
821       /* Fill in pNew->pLeft and pNew->pRight. */
822       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
823         zAlloc += dupedExprNodeSize(p, flags);
824         if( ExprHasProperty(pNew, EP_Reduced) ){
825           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
826           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
827         }
828         if( pzBuffer ){
829           *pzBuffer = zAlloc;
830         }
831       }else{
832         pNew->flags2 = 0;
833         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
834           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
835           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
836         }
837       }
838 
839     }
840   }
841   return pNew;
842 }
843 
844 /*
845 ** The following group of routines make deep copies of expressions,
846 ** expression lists, ID lists, and select statements.  The copies can
847 ** be deleted (by being passed to their respective ...Delete() routines)
848 ** without effecting the originals.
849 **
850 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
851 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
852 ** by subsequent calls to sqlite*ListAppend() routines.
853 **
854 ** Any tables that the SrcList might point to are not duplicated.
855 **
856 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
857 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
858 ** truncated version of the usual Expr structure that will be stored as
859 ** part of the in-memory representation of the database schema.
860 */
861 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
862   return exprDup(db, p, flags, 0);
863 }
864 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
865   ExprList *pNew;
866   struct ExprList_item *pItem, *pOldItem;
867   int i;
868   if( p==0 ) return 0;
869   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
870   if( pNew==0 ) return 0;
871   pNew->iECursor = 0;
872   pNew->nExpr = pNew->nAlloc = p->nExpr;
873   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
874   if( pItem==0 ){
875     sqlite3DbFree(db, pNew);
876     return 0;
877   }
878   pOldItem = p->a;
879   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
880     Expr *pOldExpr = pOldItem->pExpr;
881     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
882     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
883     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
884     pItem->sortOrder = pOldItem->sortOrder;
885     pItem->done = 0;
886     pItem->iCol = pOldItem->iCol;
887     pItem->iAlias = pOldItem->iAlias;
888   }
889   return pNew;
890 }
891 
892 /*
893 ** If cursors, triggers, views and subqueries are all omitted from
894 ** the build, then none of the following routines, except for
895 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
896 ** called with a NULL argument.
897 */
898 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
899  || !defined(SQLITE_OMIT_SUBQUERY)
900 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
901   SrcList *pNew;
902   int i;
903   int nByte;
904   if( p==0 ) return 0;
905   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
906   pNew = sqlite3DbMallocRaw(db, nByte );
907   if( pNew==0 ) return 0;
908   pNew->nSrc = pNew->nAlloc = p->nSrc;
909   for(i=0; i<p->nSrc; i++){
910     struct SrcList_item *pNewItem = &pNew->a[i];
911     struct SrcList_item *pOldItem = &p->a[i];
912     Table *pTab;
913     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
914     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
915     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
916     pNewItem->jointype = pOldItem->jointype;
917     pNewItem->iCursor = pOldItem->iCursor;
918     pNewItem->isPopulated = pOldItem->isPopulated;
919     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
920     pNewItem->notIndexed = pOldItem->notIndexed;
921     pNewItem->pIndex = pOldItem->pIndex;
922     pTab = pNewItem->pTab = pOldItem->pTab;
923     if( pTab ){
924       pTab->nRef++;
925     }
926     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
927     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
928     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
929     pNewItem->colUsed = pOldItem->colUsed;
930   }
931   return pNew;
932 }
933 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
934   IdList *pNew;
935   int i;
936   if( p==0 ) return 0;
937   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
938   if( pNew==0 ) return 0;
939   pNew->nId = pNew->nAlloc = p->nId;
940   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
941   if( pNew->a==0 ){
942     sqlite3DbFree(db, pNew);
943     return 0;
944   }
945   for(i=0; i<p->nId; i++){
946     struct IdList_item *pNewItem = &pNew->a[i];
947     struct IdList_item *pOldItem = &p->a[i];
948     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
949     pNewItem->idx = pOldItem->idx;
950   }
951   return pNew;
952 }
953 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
954   Select *pNew;
955   if( p==0 ) return 0;
956   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
957   if( pNew==0 ) return 0;
958   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
959   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
960   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
961   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
962   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
963   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
964   pNew->op = p->op;
965   pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
966   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
967   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
968   pNew->iLimit = 0;
969   pNew->iOffset = 0;
970   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
971   pNew->pRightmost = 0;
972   pNew->addrOpenEphm[0] = -1;
973   pNew->addrOpenEphm[1] = -1;
974   pNew->addrOpenEphm[2] = -1;
975   return pNew;
976 }
977 #else
978 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
979   assert( p==0 );
980   return 0;
981 }
982 #endif
983 
984 
985 /*
986 ** Add a new element to the end of an expression list.  If pList is
987 ** initially NULL, then create a new expression list.
988 **
989 ** If a memory allocation error occurs, the entire list is freed and
990 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
991 ** that the new entry was successfully appended.
992 */
993 ExprList *sqlite3ExprListAppend(
994   Parse *pParse,          /* Parsing context */
995   ExprList *pList,        /* List to which to append. Might be NULL */
996   Expr *pExpr             /* Expression to be appended. Might be NULL */
997 ){
998   sqlite3 *db = pParse->db;
999   if( pList==0 ){
1000     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1001     if( pList==0 ){
1002       goto no_mem;
1003     }
1004     assert( pList->nAlloc==0 );
1005   }
1006   if( pList->nAlloc<=pList->nExpr ){
1007     struct ExprList_item *a;
1008     int n = pList->nAlloc*2 + 4;
1009     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
1010     if( a==0 ){
1011       goto no_mem;
1012     }
1013     pList->a = a;
1014     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1015   }
1016   assert( pList->a!=0 );
1017   if( 1 ){
1018     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1019     memset(pItem, 0, sizeof(*pItem));
1020     pItem->pExpr = pExpr;
1021   }
1022   return pList;
1023 
1024 no_mem:
1025   /* Avoid leaking memory if malloc has failed. */
1026   sqlite3ExprDelete(db, pExpr);
1027   sqlite3ExprListDelete(db, pList);
1028   return 0;
1029 }
1030 
1031 /*
1032 ** Set the ExprList.a[].zName element of the most recently added item
1033 ** on the expression list.
1034 **
1035 ** pList might be NULL following an OOM error.  But pName should never be
1036 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1037 ** is set.
1038 */
1039 void sqlite3ExprListSetName(
1040   Parse *pParse,          /* Parsing context */
1041   ExprList *pList,        /* List to which to add the span. */
1042   Token *pName,           /* Name to be added */
1043   int dequote             /* True to cause the name to be dequoted */
1044 ){
1045   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1046   if( pList ){
1047     struct ExprList_item *pItem;
1048     assert( pList->nExpr>0 );
1049     pItem = &pList->a[pList->nExpr-1];
1050     assert( pItem->zName==0 );
1051     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1052     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1053   }
1054 }
1055 
1056 /*
1057 ** Set the ExprList.a[].zSpan element of the most recently added item
1058 ** on the expression list.
1059 **
1060 ** pList might be NULL following an OOM error.  But pSpan should never be
1061 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1062 ** is set.
1063 */
1064 void sqlite3ExprListSetSpan(
1065   Parse *pParse,          /* Parsing context */
1066   ExprList *pList,        /* List to which to add the span. */
1067   ExprSpan *pSpan         /* The span to be added */
1068 ){
1069   sqlite3 *db = pParse->db;
1070   assert( pList!=0 || db->mallocFailed!=0 );
1071   if( pList ){
1072     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1073     assert( pList->nExpr>0 );
1074     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1075     sqlite3DbFree(db, pItem->zSpan);
1076     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1077                                     (int)(pSpan->zEnd - pSpan->zStart));
1078   }
1079 }
1080 
1081 /*
1082 ** If the expression list pEList contains more than iLimit elements,
1083 ** leave an error message in pParse.
1084 */
1085 void sqlite3ExprListCheckLength(
1086   Parse *pParse,
1087   ExprList *pEList,
1088   const char *zObject
1089 ){
1090   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1091   testcase( pEList && pEList->nExpr==mx );
1092   testcase( pEList && pEList->nExpr==mx+1 );
1093   if( pEList && pEList->nExpr>mx ){
1094     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1095   }
1096 }
1097 
1098 /*
1099 ** Delete an entire expression list.
1100 */
1101 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1102   int i;
1103   struct ExprList_item *pItem;
1104   if( pList==0 ) return;
1105   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1106   assert( pList->nExpr<=pList->nAlloc );
1107   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1108     sqlite3ExprDelete(db, pItem->pExpr);
1109     sqlite3DbFree(db, pItem->zName);
1110     sqlite3DbFree(db, pItem->zSpan);
1111   }
1112   sqlite3DbFree(db, pList->a);
1113   sqlite3DbFree(db, pList);
1114 }
1115 
1116 /*
1117 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1118 ** to an integer.  These routines are checking an expression to see
1119 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1120 ** not constant.
1121 **
1122 ** These callback routines are used to implement the following:
1123 **
1124 **     sqlite3ExprIsConstant()
1125 **     sqlite3ExprIsConstantNotJoin()
1126 **     sqlite3ExprIsConstantOrFunction()
1127 **
1128 */
1129 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1130 
1131   /* If pWalker->u.i is 3 then any term of the expression that comes from
1132   ** the ON or USING clauses of a join disqualifies the expression
1133   ** from being considered constant. */
1134   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1135     pWalker->u.i = 0;
1136     return WRC_Abort;
1137   }
1138 
1139   switch( pExpr->op ){
1140     /* Consider functions to be constant if all their arguments are constant
1141     ** and pWalker->u.i==2 */
1142     case TK_FUNCTION:
1143       if( pWalker->u.i==2 ) return 0;
1144       /* Fall through */
1145     case TK_ID:
1146     case TK_COLUMN:
1147     case TK_AGG_FUNCTION:
1148     case TK_AGG_COLUMN:
1149       testcase( pExpr->op==TK_ID );
1150       testcase( pExpr->op==TK_COLUMN );
1151       testcase( pExpr->op==TK_AGG_FUNCTION );
1152       testcase( pExpr->op==TK_AGG_COLUMN );
1153       pWalker->u.i = 0;
1154       return WRC_Abort;
1155     default:
1156       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1157       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1158       return WRC_Continue;
1159   }
1160 }
1161 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1162   UNUSED_PARAMETER(NotUsed);
1163   pWalker->u.i = 0;
1164   return WRC_Abort;
1165 }
1166 static int exprIsConst(Expr *p, int initFlag){
1167   Walker w;
1168   w.u.i = initFlag;
1169   w.xExprCallback = exprNodeIsConstant;
1170   w.xSelectCallback = selectNodeIsConstant;
1171   sqlite3WalkExpr(&w, p);
1172   return w.u.i;
1173 }
1174 
1175 /*
1176 ** Walk an expression tree.  Return 1 if the expression is constant
1177 ** and 0 if it involves variables or function calls.
1178 **
1179 ** For the purposes of this function, a double-quoted string (ex: "abc")
1180 ** is considered a variable but a single-quoted string (ex: 'abc') is
1181 ** a constant.
1182 */
1183 int sqlite3ExprIsConstant(Expr *p){
1184   return exprIsConst(p, 1);
1185 }
1186 
1187 /*
1188 ** Walk an expression tree.  Return 1 if the expression is constant
1189 ** that does no originate from the ON or USING clauses of a join.
1190 ** Return 0 if it involves variables or function calls or terms from
1191 ** an ON or USING clause.
1192 */
1193 int sqlite3ExprIsConstantNotJoin(Expr *p){
1194   return exprIsConst(p, 3);
1195 }
1196 
1197 /*
1198 ** Walk an expression tree.  Return 1 if the expression is constant
1199 ** or a function call with constant arguments.  Return and 0 if there
1200 ** are any variables.
1201 **
1202 ** For the purposes of this function, a double-quoted string (ex: "abc")
1203 ** is considered a variable but a single-quoted string (ex: 'abc') is
1204 ** a constant.
1205 */
1206 int sqlite3ExprIsConstantOrFunction(Expr *p){
1207   return exprIsConst(p, 2);
1208 }
1209 
1210 /*
1211 ** If the expression p codes a constant integer that is small enough
1212 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1213 ** in *pValue.  If the expression is not an integer or if it is too big
1214 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1215 */
1216 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1217   int rc = 0;
1218   if( p->flags & EP_IntValue ){
1219     *pValue = p->u.iValue;
1220     return 1;
1221   }
1222   switch( p->op ){
1223     case TK_INTEGER: {
1224       rc = sqlite3GetInt32(p->u.zToken, pValue);
1225       assert( rc==0 );
1226       break;
1227     }
1228     case TK_UPLUS: {
1229       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1230       break;
1231     }
1232     case TK_UMINUS: {
1233       int v;
1234       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1235         *pValue = -v;
1236         rc = 1;
1237       }
1238       break;
1239     }
1240     default: break;
1241   }
1242   if( rc ){
1243     assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
1244                || (p->flags2 & EP2_MallocedToken)==0 );
1245     p->op = TK_INTEGER;
1246     p->flags |= EP_IntValue;
1247     p->u.iValue = *pValue;
1248   }
1249   return rc;
1250 }
1251 
1252 /*
1253 ** Return FALSE if there is no chance that the expression can be NULL.
1254 **
1255 ** If the expression might be NULL or if the expression is too complex
1256 ** to tell return TRUE.
1257 **
1258 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1259 ** when we know that a value cannot be NULL.  Hence, a false positive
1260 ** (returning TRUE when in fact the expression can never be NULL) might
1261 ** be a small performance hit but is otherwise harmless.  On the other
1262 ** hand, a false negative (returning FALSE when the result could be NULL)
1263 ** will likely result in an incorrect answer.  So when in doubt, return
1264 ** TRUE.
1265 */
1266 int sqlite3ExprCanBeNull(const Expr *p){
1267   u8 op;
1268   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1269   op = p->op;
1270   if( op==TK_REGISTER ) op = p->op2;
1271   switch( op ){
1272     case TK_INTEGER:
1273     case TK_STRING:
1274     case TK_FLOAT:
1275     case TK_BLOB:
1276       return 0;
1277     default:
1278       return 1;
1279   }
1280 }
1281 
1282 /*
1283 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1284 ** to location iDest if the value in iReg is NULL.  The value in iReg
1285 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1286 ** determine that it can never generate a NULL, then the OP_IsNull operation
1287 ** can be omitted.
1288 */
1289 void sqlite3ExprCodeIsNullJump(
1290   Vdbe *v,            /* The VDBE under construction */
1291   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1292   int iReg,           /* Test the value in this register for NULL */
1293   int iDest           /* Jump here if the value is null */
1294 ){
1295   if( sqlite3ExprCanBeNull(pExpr) ){
1296     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1297   }
1298 }
1299 
1300 /*
1301 ** Return TRUE if the given expression is a constant which would be
1302 ** unchanged by OP_Affinity with the affinity given in the second
1303 ** argument.
1304 **
1305 ** This routine is used to determine if the OP_Affinity operation
1306 ** can be omitted.  When in doubt return FALSE.  A false negative
1307 ** is harmless.  A false positive, however, can result in the wrong
1308 ** answer.
1309 */
1310 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1311   u8 op;
1312   if( aff==SQLITE_AFF_NONE ) return 1;
1313   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1314   op = p->op;
1315   if( op==TK_REGISTER ) op = p->op2;
1316   switch( op ){
1317     case TK_INTEGER: {
1318       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1319     }
1320     case TK_FLOAT: {
1321       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1322     }
1323     case TK_STRING: {
1324       return aff==SQLITE_AFF_TEXT;
1325     }
1326     case TK_BLOB: {
1327       return 1;
1328     }
1329     case TK_COLUMN: {
1330       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1331       return p->iColumn<0
1332           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1333     }
1334     default: {
1335       return 0;
1336     }
1337   }
1338 }
1339 
1340 /*
1341 ** Return TRUE if the given string is a row-id column name.
1342 */
1343 int sqlite3IsRowid(const char *z){
1344   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1345   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1346   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1347   return 0;
1348 }
1349 
1350 /*
1351 ** Return true if we are able to the IN operator optimization on a
1352 ** query of the form
1353 **
1354 **       x IN (SELECT ...)
1355 **
1356 ** Where the SELECT... clause is as specified by the parameter to this
1357 ** routine.
1358 **
1359 ** The Select object passed in has already been preprocessed and no
1360 ** errors have been found.
1361 */
1362 #ifndef SQLITE_OMIT_SUBQUERY
1363 static int isCandidateForInOpt(Select *p){
1364   SrcList *pSrc;
1365   ExprList *pEList;
1366   Table *pTab;
1367   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1368   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1369   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1370     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1371     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1372     return 0; /* No DISTINCT keyword and no aggregate functions */
1373   }
1374   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1375   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1376   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1377   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1378   pSrc = p->pSrc;
1379   assert( pSrc!=0 );
1380   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1381   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1382   pTab = pSrc->a[0].pTab;
1383   if( NEVER(pTab==0) ) return 0;
1384   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1385   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1386   pEList = p->pEList;
1387   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1388   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1389   return 1;
1390 }
1391 #endif /* SQLITE_OMIT_SUBQUERY */
1392 
1393 /*
1394 ** This function is used by the implementation of the IN (...) operator.
1395 ** It's job is to find or create a b-tree structure that may be used
1396 ** either to test for membership of the (...) set or to iterate through
1397 ** its members, skipping duplicates.
1398 **
1399 ** The index of the cursor opened on the b-tree (database table, database index
1400 ** or ephermal table) is stored in pX->iTable before this function returns.
1401 ** The returned value of this function indicates the b-tree type, as follows:
1402 **
1403 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1404 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1405 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1406 **                    populated epheremal table.
1407 **
1408 ** An existing b-tree may only be used if the SELECT is of the simple
1409 ** form:
1410 **
1411 **     SELECT <column> FROM <table>
1412 **
1413 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1414 ** through the set members, skipping any duplicates. In this case an
1415 ** epheremal table must be used unless the selected <column> is guaranteed
1416 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1417 ** has a UNIQUE constraint or UNIQUE index.
1418 **
1419 ** If the prNotFound parameter is not 0, then the b-tree will be used
1420 ** for fast set membership tests. In this case an epheremal table must
1421 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1422 ** be found with <column> as its left-most column.
1423 **
1424 ** When the b-tree is being used for membership tests, the calling function
1425 ** needs to know whether or not the structure contains an SQL NULL
1426 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1427 ** If there is any chance that the (...) might contain a NULL value at
1428 ** runtime, then a register is allocated and the register number written
1429 ** to *prNotFound. If there is no chance that the (...) contains a
1430 ** NULL value, then *prNotFound is left unchanged.
1431 **
1432 ** If a register is allocated and its location stored in *prNotFound, then
1433 ** its initial value is NULL.  If the (...) does not remain constant
1434 ** for the duration of the query (i.e. the SELECT within the (...)
1435 ** is a correlated subquery) then the value of the allocated register is
1436 ** reset to NULL each time the subquery is rerun. This allows the
1437 ** caller to use vdbe code equivalent to the following:
1438 **
1439 **   if( register==NULL ){
1440 **     has_null = <test if data structure contains null>
1441 **     register = 1
1442 **   }
1443 **
1444 ** in order to avoid running the <test if data structure contains null>
1445 ** test more often than is necessary.
1446 */
1447 #ifndef SQLITE_OMIT_SUBQUERY
1448 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1449   Select *p;                            /* SELECT to the right of IN operator */
1450   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1451   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1452   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1453 
1454   assert( pX->op==TK_IN );
1455 
1456   /* Check to see if an existing table or index can be used to
1457   ** satisfy the query.  This is preferable to generating a new
1458   ** ephemeral table.
1459   */
1460   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1461   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1462     sqlite3 *db = pParse->db;              /* Database connection */
1463     Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
1464     int iCol = pExpr->iColumn;             /* Index of column <column> */
1465     Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1466     Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
1467     int iDb;                               /* Database idx for pTab */
1468 
1469     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1470     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1471     sqlite3CodeVerifySchema(pParse, iDb);
1472     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1473 
1474     /* This function is only called from two places. In both cases the vdbe
1475     ** has already been allocated. So assume sqlite3GetVdbe() is always
1476     ** successful here.
1477     */
1478     assert(v);
1479     if( iCol<0 ){
1480       int iMem = ++pParse->nMem;
1481       int iAddr;
1482 
1483       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1484       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1485 
1486       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1487       eType = IN_INDEX_ROWID;
1488 
1489       sqlite3VdbeJumpHere(v, iAddr);
1490     }else{
1491       Index *pIdx;                         /* Iterator variable */
1492 
1493       /* The collation sequence used by the comparison. If an index is to
1494       ** be used in place of a temp-table, it must be ordered according
1495       ** to this collation sequence.  */
1496       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1497 
1498       /* Check that the affinity that will be used to perform the
1499       ** comparison is the same as the affinity of the column. If
1500       ** it is not, it is not possible to use any index.
1501       */
1502       char aff = comparisonAffinity(pX);
1503       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1504 
1505       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1506         if( (pIdx->aiColumn[0]==iCol)
1507          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1508          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1509         ){
1510           int iMem = ++pParse->nMem;
1511           int iAddr;
1512           char *pKey;
1513 
1514           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1515           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1516           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1517 
1518           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1519                                pKey,P4_KEYINFO_HANDOFF);
1520           VdbeComment((v, "%s", pIdx->zName));
1521           eType = IN_INDEX_INDEX;
1522 
1523           sqlite3VdbeJumpHere(v, iAddr);
1524           if( prNotFound && !pTab->aCol[iCol].notNull ){
1525             *prNotFound = ++pParse->nMem;
1526           }
1527         }
1528       }
1529     }
1530   }
1531 
1532   if( eType==0 ){
1533     /* Could not found an existing table or index to use as the RHS b-tree.
1534     ** We will have to generate an ephemeral table to do the job.
1535     */
1536     int rMayHaveNull = 0;
1537     eType = IN_INDEX_EPH;
1538     if( prNotFound ){
1539       *prNotFound = rMayHaveNull = ++pParse->nMem;
1540     }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1541       eType = IN_INDEX_ROWID;
1542     }
1543     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1544   }else{
1545     pX->iTable = iTab;
1546   }
1547   return eType;
1548 }
1549 #endif
1550 
1551 /*
1552 ** Generate code for scalar subqueries used as an expression
1553 ** and IN operators.  Examples:
1554 **
1555 **     (SELECT a FROM b)          -- subquery
1556 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1557 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1558 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1559 **
1560 ** The pExpr parameter describes the expression that contains the IN
1561 ** operator or subquery.
1562 **
1563 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1564 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1565 ** to some integer key column of a table B-Tree. In this case, use an
1566 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1567 ** (slower) variable length keys B-Tree.
1568 **
1569 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1570 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1571 ** Furthermore, the IN is in a WHERE clause and that we really want
1572 ** to iterate over the RHS of the IN operator in order to quickly locate
1573 ** all corresponding LHS elements.  All this routine does is initialize
1574 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1575 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1576 **
1577 ** If rMayHaveNull is zero, that means that the subquery is being used
1578 ** for membership testing only.  There is no need to initialize any
1579 ** registers to indicate the presense or absence of NULLs on the RHS.
1580 **
1581 ** For a SELECT or EXISTS operator, return the register that holds the
1582 ** result.  For IN operators or if an error occurs, the return value is 0.
1583 */
1584 #ifndef SQLITE_OMIT_SUBQUERY
1585 int sqlite3CodeSubselect(
1586   Parse *pParse,          /* Parsing context */
1587   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1588   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1589   int isRowid             /* If true, LHS of IN operator is a rowid */
1590 ){
1591   int testAddr = 0;                       /* One-time test address */
1592   int rReg = 0;                           /* Register storing resulting */
1593   Vdbe *v = sqlite3GetVdbe(pParse);
1594   if( NEVER(v==0) ) return 0;
1595   sqlite3ExprCachePush(pParse);
1596 
1597   /* This code must be run in its entirety every time it is encountered
1598   ** if any of the following is true:
1599   **
1600   **    *  The right-hand side is a correlated subquery
1601   **    *  The right-hand side is an expression list containing variables
1602   **    *  We are inside a trigger
1603   **
1604   ** If all of the above are false, then we can run this code just once
1605   ** save the results, and reuse the same result on subsequent invocations.
1606   */
1607   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1608     int mem = ++pParse->nMem;
1609     sqlite3VdbeAddOp1(v, OP_If, mem);
1610     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1611     assert( testAddr>0 || pParse->db->mallocFailed );
1612   }
1613 
1614   switch( pExpr->op ){
1615     case TK_IN: {
1616       char affinity;
1617       KeyInfo keyInfo;
1618       int addr;        /* Address of OP_OpenEphemeral instruction */
1619       Expr *pLeft = pExpr->pLeft;
1620 
1621       if( rMayHaveNull ){
1622         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1623       }
1624 
1625       affinity = sqlite3ExprAffinity(pLeft);
1626 
1627       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1628       ** expression it is handled the same way.  An ephemeral table is
1629       ** filled with single-field index keys representing the results
1630       ** from the SELECT or the <exprlist>.
1631       **
1632       ** If the 'x' expression is a column value, or the SELECT...
1633       ** statement returns a column value, then the affinity of that
1634       ** column is used to build the index keys. If both 'x' and the
1635       ** SELECT... statement are columns, then numeric affinity is used
1636       ** if either column has NUMERIC or INTEGER affinity. If neither
1637       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1638       ** is used.
1639       */
1640       pExpr->iTable = pParse->nTab++;
1641       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1642       memset(&keyInfo, 0, sizeof(keyInfo));
1643       keyInfo.nField = 1;
1644 
1645       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1646         /* Case 1:     expr IN (SELECT ...)
1647         **
1648         ** Generate code to write the results of the select into the temporary
1649         ** table allocated and opened above.
1650         */
1651         SelectDest dest;
1652         ExprList *pEList;
1653 
1654         assert( !isRowid );
1655         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1656         dest.affinity = (u8)affinity;
1657         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1658         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1659           return 0;
1660         }
1661         pEList = pExpr->x.pSelect->pEList;
1662         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1663           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1664               pEList->a[0].pExpr);
1665         }
1666       }else if( pExpr->x.pList!=0 ){
1667         /* Case 2:     expr IN (exprlist)
1668         **
1669         ** For each expression, build an index key from the evaluation and
1670         ** store it in the temporary table. If <expr> is a column, then use
1671         ** that columns affinity when building index keys. If <expr> is not
1672         ** a column, use numeric affinity.
1673         */
1674         int i;
1675         ExprList *pList = pExpr->x.pList;
1676         struct ExprList_item *pItem;
1677         int r1, r2, r3;
1678 
1679         if( !affinity ){
1680           affinity = SQLITE_AFF_NONE;
1681         }
1682         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1683 
1684         /* Loop through each expression in <exprlist>. */
1685         r1 = sqlite3GetTempReg(pParse);
1686         r2 = sqlite3GetTempReg(pParse);
1687         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1688         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1689           Expr *pE2 = pItem->pExpr;
1690           int iValToIns;
1691 
1692           /* If the expression is not constant then we will need to
1693           ** disable the test that was generated above that makes sure
1694           ** this code only executes once.  Because for a non-constant
1695           ** expression we need to rerun this code each time.
1696           */
1697           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1698             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1699             testAddr = 0;
1700           }
1701 
1702           /* Evaluate the expression and insert it into the temp table */
1703           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1704             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1705           }else{
1706             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1707             if( isRowid ){
1708               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1709                                 sqlite3VdbeCurrentAddr(v)+2);
1710               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1711             }else{
1712               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1713               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1714               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1715             }
1716           }
1717         }
1718         sqlite3ReleaseTempReg(pParse, r1);
1719         sqlite3ReleaseTempReg(pParse, r2);
1720       }
1721       if( !isRowid ){
1722         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1723       }
1724       break;
1725     }
1726 
1727     case TK_EXISTS:
1728     case TK_SELECT:
1729     default: {
1730       /* If this has to be a scalar SELECT.  Generate code to put the
1731       ** value of this select in a memory cell and record the number
1732       ** of the memory cell in iColumn.  If this is an EXISTS, write
1733       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1734       ** and record that memory cell in iColumn.
1735       */
1736       static const Token one = { "1", 1 };  /* Token for literal value 1 */
1737       Select *pSel;                         /* SELECT statement to encode */
1738       SelectDest dest;                      /* How to deal with SELECt result */
1739 
1740       testcase( pExpr->op==TK_EXISTS );
1741       testcase( pExpr->op==TK_SELECT );
1742       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1743 
1744       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1745       pSel = pExpr->x.pSelect;
1746       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1747       if( pExpr->op==TK_SELECT ){
1748         dest.eDest = SRT_Mem;
1749         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1750         VdbeComment((v, "Init subquery result"));
1751       }else{
1752         dest.eDest = SRT_Exists;
1753         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1754         VdbeComment((v, "Init EXISTS result"));
1755       }
1756       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1757       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1758       if( sqlite3Select(pParse, pSel, &dest) ){
1759         return 0;
1760       }
1761       rReg = dest.iParm;
1762       ExprSetIrreducible(pExpr);
1763       break;
1764     }
1765   }
1766 
1767   if( testAddr ){
1768     sqlite3VdbeJumpHere(v, testAddr-1);
1769   }
1770   sqlite3ExprCachePop(pParse, 1);
1771 
1772   return rReg;
1773 }
1774 #endif /* SQLITE_OMIT_SUBQUERY */
1775 
1776 #ifndef SQLITE_OMIT_SUBQUERY
1777 /*
1778 ** Generate code for an IN expression.
1779 **
1780 **      x IN (SELECT ...)
1781 **      x IN (value, value, ...)
1782 **
1783 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1784 ** is an array of zero or more values.  The expression is true if the LHS is
1785 ** contained within the RHS.  The value of the expression is unknown (NULL)
1786 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1787 ** RHS contains one or more NULL values.
1788 **
1789 ** This routine generates code will jump to destIfFalse if the LHS is not
1790 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1791 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1792 ** within the RHS then fall through.
1793 */
1794 static void sqlite3ExprCodeIN(
1795   Parse *pParse,        /* Parsing and code generating context */
1796   Expr *pExpr,          /* The IN expression */
1797   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1798   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1799 ){
1800   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1801   char affinity;        /* Comparison affinity to use */
1802   int eType;            /* Type of the RHS */
1803   int r1;               /* Temporary use register */
1804   Vdbe *v;              /* Statement under construction */
1805 
1806   /* Compute the RHS.   After this step, the table with cursor
1807   ** pExpr->iTable will contains the values that make up the RHS.
1808   */
1809   v = pParse->pVdbe;
1810   assert( v!=0 );       /* OOM detected prior to this routine */
1811   VdbeNoopComment((v, "begin IN expr"));
1812   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1813 
1814   /* Figure out the affinity to use to create a key from the results
1815   ** of the expression. affinityStr stores a static string suitable for
1816   ** P4 of OP_MakeRecord.
1817   */
1818   affinity = comparisonAffinity(pExpr);
1819 
1820   /* Code the LHS, the <expr> from "<expr> IN (...)".
1821   */
1822   sqlite3ExprCachePush(pParse);
1823   r1 = sqlite3GetTempReg(pParse);
1824   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1825   sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1826 
1827 
1828   if( eType==IN_INDEX_ROWID ){
1829     /* In this case, the RHS is the ROWID of table b-tree
1830     */
1831     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1832     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1833   }else{
1834     /* In this case, the RHS is an index b-tree.
1835     */
1836     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1837 
1838     /* If the set membership test fails, then the result of the
1839     ** "x IN (...)" expression must be either 0 or NULL. If the set
1840     ** contains no NULL values, then the result is 0. If the set
1841     ** contains one or more NULL values, then the result of the
1842     ** expression is also NULL.
1843     */
1844     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1845       /* This branch runs if it is known at compile time that the RHS
1846       ** cannot contain NULL values. This happens as the result
1847       ** of a "NOT NULL" constraint in the database schema.
1848       **
1849       ** Also run this branch if NULL is equivalent to FALSE
1850       ** for this particular IN operator.
1851       */
1852       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1853 
1854     }else{
1855       /* In this branch, the RHS of the IN might contain a NULL and
1856       ** the presence of a NULL on the RHS makes a difference in the
1857       ** outcome.
1858       */
1859       int j1, j2, j3;
1860 
1861       /* First check to see if the LHS is contained in the RHS.  If so,
1862       ** then the presence of NULLs in the RHS does not matter, so jump
1863       ** over all of the code that follows.
1864       */
1865       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1866 
1867       /* Here we begin generating code that runs if the LHS is not
1868       ** contained within the RHS.  Generate additional code that
1869       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1870       ** jump to destIfNull.  If there are no NULLs in the RHS then
1871       ** jump to destIfFalse.
1872       */
1873       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1874       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1875       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1876       sqlite3VdbeJumpHere(v, j3);
1877       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1878       sqlite3VdbeJumpHere(v, j2);
1879 
1880       /* Jump to the appropriate target depending on whether or not
1881       ** the RHS contains a NULL
1882       */
1883       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1884       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1885 
1886       /* The OP_Found at the top of this branch jumps here when true,
1887       ** causing the overall IN expression evaluation to fall through.
1888       */
1889       sqlite3VdbeJumpHere(v, j1);
1890     }
1891   }
1892   sqlite3ReleaseTempReg(pParse, r1);
1893   sqlite3ExprCachePop(pParse, 1);
1894   VdbeComment((v, "end IN expr"));
1895 }
1896 #endif /* SQLITE_OMIT_SUBQUERY */
1897 
1898 /*
1899 ** Duplicate an 8-byte value
1900 */
1901 static char *dup8bytes(Vdbe *v, const char *in){
1902   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1903   if( out ){
1904     memcpy(out, in, 8);
1905   }
1906   return out;
1907 }
1908 
1909 /*
1910 ** Generate an instruction that will put the floating point
1911 ** value described by z[0..n-1] into register iMem.
1912 **
1913 ** The z[] string will probably not be zero-terminated.  But the
1914 ** z[n] character is guaranteed to be something that does not look
1915 ** like the continuation of the number.
1916 */
1917 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1918   if( ALWAYS(z!=0) ){
1919     double value;
1920     char *zV;
1921     sqlite3AtoF(z, &value);
1922     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1923     if( negateFlag ) value = -value;
1924     zV = dup8bytes(v, (char*)&value);
1925     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1926   }
1927 }
1928 
1929 
1930 /*
1931 ** Generate an instruction that will put the integer describe by
1932 ** text z[0..n-1] into register iMem.
1933 **
1934 ** The z[] string will probably not be zero-terminated.  But the
1935 ** z[n] character is guaranteed to be something that does not look
1936 ** like the continuation of the number.
1937 */
1938 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
1939   if( pExpr->flags & EP_IntValue ){
1940     int i = pExpr->u.iValue;
1941     if( negFlag ) i = -i;
1942     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1943   }else{
1944     const char *z = pExpr->u.zToken;
1945     assert( z!=0 );
1946     if( sqlite3FitsIn64Bits(z, negFlag) ){
1947       i64 value;
1948       char *zV;
1949       sqlite3Atoi64(z, &value);
1950       if( negFlag ) value = -value;
1951       zV = dup8bytes(v, (char*)&value);
1952       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1953     }else{
1954       codeReal(v, z, negFlag, iMem);
1955     }
1956   }
1957 }
1958 
1959 /*
1960 ** Clear a cache entry.
1961 */
1962 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1963   if( p->tempReg ){
1964     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1965       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1966     }
1967     p->tempReg = 0;
1968   }
1969 }
1970 
1971 
1972 /*
1973 ** Record in the column cache that a particular column from a
1974 ** particular table is stored in a particular register.
1975 */
1976 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1977   int i;
1978   int minLru;
1979   int idxLru;
1980   struct yColCache *p;
1981 
1982   assert( iReg>0 );  /* Register numbers are always positive */
1983   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
1984 
1985   /* First replace any existing entry */
1986   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1987     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
1988       cacheEntryClear(pParse, p);
1989       p->iLevel = pParse->iCacheLevel;
1990       p->iReg = iReg;
1991       p->affChange = 0;
1992       p->lru = pParse->iCacheCnt++;
1993       return;
1994     }
1995   }
1996 
1997   /* Find an empty slot and replace it */
1998   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1999     if( p->iReg==0 ){
2000       p->iLevel = pParse->iCacheLevel;
2001       p->iTable = iTab;
2002       p->iColumn = iCol;
2003       p->iReg = iReg;
2004       p->affChange = 0;
2005       p->tempReg = 0;
2006       p->lru = pParse->iCacheCnt++;
2007       return;
2008     }
2009   }
2010 
2011   /* Replace the last recently used */
2012   minLru = 0x7fffffff;
2013   idxLru = -1;
2014   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2015     if( p->lru<minLru ){
2016       idxLru = i;
2017       minLru = p->lru;
2018     }
2019   }
2020   if( ALWAYS(idxLru>=0) ){
2021     p = &pParse->aColCache[idxLru];
2022     p->iLevel = pParse->iCacheLevel;
2023     p->iTable = iTab;
2024     p->iColumn = iCol;
2025     p->iReg = iReg;
2026     p->affChange = 0;
2027     p->tempReg = 0;
2028     p->lru = pParse->iCacheCnt++;
2029     return;
2030   }
2031 }
2032 
2033 /*
2034 ** Indicate that a register is being overwritten.  Purge the register
2035 ** from the column cache.
2036 */
2037 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){
2038   int i;
2039   struct yColCache *p;
2040   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2041     if( p->iReg==iReg ){
2042       cacheEntryClear(pParse, p);
2043       p->iReg = 0;
2044     }
2045   }
2046 }
2047 
2048 /*
2049 ** Remember the current column cache context.  Any new entries added
2050 ** added to the column cache after this call are removed when the
2051 ** corresponding pop occurs.
2052 */
2053 void sqlite3ExprCachePush(Parse *pParse){
2054   pParse->iCacheLevel++;
2055 }
2056 
2057 /*
2058 ** Remove from the column cache any entries that were added since the
2059 ** the previous N Push operations.  In other words, restore the cache
2060 ** to the state it was in N Pushes ago.
2061 */
2062 void sqlite3ExprCachePop(Parse *pParse, int N){
2063   int i;
2064   struct yColCache *p;
2065   assert( N>0 );
2066   assert( pParse->iCacheLevel>=N );
2067   pParse->iCacheLevel -= N;
2068   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2069     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2070       cacheEntryClear(pParse, p);
2071       p->iReg = 0;
2072     }
2073   }
2074 }
2075 
2076 /*
2077 ** When a cached column is reused, make sure that its register is
2078 ** no longer available as a temp register.  ticket #3879:  that same
2079 ** register might be in the cache in multiple places, so be sure to
2080 ** get them all.
2081 */
2082 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2083   int i;
2084   struct yColCache *p;
2085   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2086     if( p->iReg==iReg ){
2087       p->tempReg = 0;
2088     }
2089   }
2090 }
2091 
2092 /*
2093 ** Generate code that will extract the iColumn-th column from
2094 ** table pTab and store the column value in a register.  An effort
2095 ** is made to store the column value in register iReg, but this is
2096 ** not guaranteed.  The location of the column value is returned.
2097 **
2098 ** There must be an open cursor to pTab in iTable when this routine
2099 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2100 **
2101 ** This routine might attempt to reuse the value of the column that
2102 ** has already been loaded into a register.  The value will always
2103 ** be used if it has not undergone any affinity changes.  But if
2104 ** an affinity change has occurred, then the cached value will only be
2105 ** used if allowAffChng is true.
2106 */
2107 int sqlite3ExprCodeGetColumn(
2108   Parse *pParse,   /* Parsing and code generating context */
2109   Table *pTab,     /* Description of the table we are reading from */
2110   int iColumn,     /* Index of the table column */
2111   int iTable,      /* The cursor pointing to the table */
2112   int iReg,        /* Store results here */
2113   int allowAffChng /* True if prior affinity changes are OK */
2114 ){
2115   Vdbe *v = pParse->pVdbe;
2116   int i;
2117   struct yColCache *p;
2118 
2119   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2120     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn
2121            && (!p->affChange || allowAffChng) ){
2122       p->lru = pParse->iCacheCnt++;
2123       sqlite3ExprCachePinRegister(pParse, p->iReg);
2124       return p->iReg;
2125     }
2126   }
2127   assert( v!=0 );
2128   if( iColumn<0 ){
2129     sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg);
2130   }else if( ALWAYS(pTab!=0) ){
2131     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2132     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
2133     sqlite3ColumnDefault(v, pTab, iColumn, iReg);
2134   }
2135   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2136   return iReg;
2137 }
2138 
2139 /*
2140 ** Clear all column cache entries.
2141 */
2142 void sqlite3ExprCacheClear(Parse *pParse){
2143   int i;
2144   struct yColCache *p;
2145 
2146   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2147     if( p->iReg ){
2148       cacheEntryClear(pParse, p);
2149       p->iReg = 0;
2150     }
2151   }
2152 }
2153 
2154 /*
2155 ** Record the fact that an affinity change has occurred on iCount
2156 ** registers starting with iStart.
2157 */
2158 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2159   int iEnd = iStart + iCount - 1;
2160   int i;
2161   struct yColCache *p;
2162   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2163     int r = p->iReg;
2164     if( r>=iStart && r<=iEnd ){
2165       p->affChange = 1;
2166     }
2167   }
2168 }
2169 
2170 /*
2171 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2172 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2173 */
2174 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2175   int i;
2176   struct yColCache *p;
2177   if( NEVER(iFrom==iTo) ) return;
2178   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2179   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2180     int x = p->iReg;
2181     if( x>=iFrom && x<iFrom+nReg ){
2182       p->iReg += iTo-iFrom;
2183     }
2184   }
2185 }
2186 
2187 /*
2188 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2189 ** over to iTo..iTo+nReg-1.
2190 */
2191 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2192   int i;
2193   if( NEVER(iFrom==iTo) ) return;
2194   for(i=0; i<nReg; i++){
2195     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2196   }
2197 }
2198 
2199 /*
2200 ** Return true if any register in the range iFrom..iTo (inclusive)
2201 ** is used as part of the column cache.
2202 */
2203 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2204   int i;
2205   struct yColCache *p;
2206   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2207     int r = p->iReg;
2208     if( r>=iFrom && r<=iTo ) return 1;
2209   }
2210   return 0;
2211 }
2212 
2213 /*
2214 ** If the last instruction coded is an ephemeral copy of any of
2215 ** the registers in the nReg registers beginning with iReg, then
2216 ** convert the last instruction from OP_SCopy to OP_Copy.
2217 */
2218 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2219   VdbeOp *pOp;
2220   Vdbe *v;
2221 
2222   assert( pParse->db->mallocFailed==0 );
2223   v = pParse->pVdbe;
2224   assert( v!=0 );
2225   pOp = sqlite3VdbeGetOp(v, -1);
2226   assert( pOp!=0 );
2227   if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2228     pOp->opcode = OP_Copy;
2229   }
2230 }
2231 
2232 /*
2233 ** Generate code to store the value of the iAlias-th alias in register
2234 ** target.  The first time this is called, pExpr is evaluated to compute
2235 ** the value of the alias.  The value is stored in an auxiliary register
2236 ** and the number of that register is returned.  On subsequent calls,
2237 ** the register number is returned without generating any code.
2238 **
2239 ** Note that in order for this to work, code must be generated in the
2240 ** same order that it is executed.
2241 **
2242 ** Aliases are numbered starting with 1.  So iAlias is in the range
2243 ** of 1 to pParse->nAlias inclusive.
2244 **
2245 ** pParse->aAlias[iAlias-1] records the register number where the value
2246 ** of the iAlias-th alias is stored.  If zero, that means that the
2247 ** alias has not yet been computed.
2248 */
2249 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
2250 #if 0
2251   sqlite3 *db = pParse->db;
2252   int iReg;
2253   if( pParse->nAliasAlloc<pParse->nAlias ){
2254     pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
2255                                  sizeof(pParse->aAlias[0])*pParse->nAlias );
2256     testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
2257     if( db->mallocFailed ) return 0;
2258     memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
2259            (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
2260     pParse->nAliasAlloc = pParse->nAlias;
2261   }
2262   assert( iAlias>0 && iAlias<=pParse->nAlias );
2263   iReg = pParse->aAlias[iAlias-1];
2264   if( iReg==0 ){
2265     if( pParse->iCacheLevel>0 ){
2266       iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2267     }else{
2268       iReg = ++pParse->nMem;
2269       sqlite3ExprCode(pParse, pExpr, iReg);
2270       pParse->aAlias[iAlias-1] = iReg;
2271     }
2272   }
2273   return iReg;
2274 #else
2275   UNUSED_PARAMETER(iAlias);
2276   return sqlite3ExprCodeTarget(pParse, pExpr, target);
2277 #endif
2278 }
2279 
2280 /*
2281 ** Generate code into the current Vdbe to evaluate the given
2282 ** expression.  Attempt to store the results in register "target".
2283 ** Return the register where results are stored.
2284 **
2285 ** With this routine, there is no guarantee that results will
2286 ** be stored in target.  The result might be stored in some other
2287 ** register if it is convenient to do so.  The calling function
2288 ** must check the return code and move the results to the desired
2289 ** register.
2290 */
2291 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2292   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2293   int op;                   /* The opcode being coded */
2294   int inReg = target;       /* Results stored in register inReg */
2295   int regFree1 = 0;         /* If non-zero free this temporary register */
2296   int regFree2 = 0;         /* If non-zero free this temporary register */
2297   int r1, r2, r3, r4;       /* Various register numbers */
2298   sqlite3 *db = pParse->db; /* The database connection */
2299 
2300   assert( target>0 && target<=pParse->nMem );
2301   if( v==0 ){
2302     assert( pParse->db->mallocFailed );
2303     return 0;
2304   }
2305 
2306   if( pExpr==0 ){
2307     op = TK_NULL;
2308   }else{
2309     op = pExpr->op;
2310   }
2311   switch( op ){
2312     case TK_AGG_COLUMN: {
2313       AggInfo *pAggInfo = pExpr->pAggInfo;
2314       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2315       if( !pAggInfo->directMode ){
2316         assert( pCol->iMem>0 );
2317         inReg = pCol->iMem;
2318         break;
2319       }else if( pAggInfo->useSortingIdx ){
2320         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2321                               pCol->iSorterColumn, target);
2322         break;
2323       }
2324       /* Otherwise, fall thru into the TK_COLUMN case */
2325     }
2326     case TK_COLUMN: {
2327       if( pExpr->iTable<0 ){
2328         /* This only happens when coding check constraints */
2329         assert( pParse->ckBase>0 );
2330         inReg = pExpr->iColumn + pParse->ckBase;
2331       }else{
2332         testcase( (pExpr->flags & EP_AnyAff)!=0 );
2333         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2334                                  pExpr->iColumn, pExpr->iTable, target,
2335                                  pExpr->flags & EP_AnyAff);
2336       }
2337       break;
2338     }
2339     case TK_INTEGER: {
2340       codeInteger(v, pExpr, 0, target);
2341       break;
2342     }
2343     case TK_FLOAT: {
2344       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2345       codeReal(v, pExpr->u.zToken, 0, target);
2346       break;
2347     }
2348     case TK_STRING: {
2349       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2350       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2351       break;
2352     }
2353     case TK_NULL: {
2354       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2355       break;
2356     }
2357 #ifndef SQLITE_OMIT_BLOB_LITERAL
2358     case TK_BLOB: {
2359       int n;
2360       const char *z;
2361       char *zBlob;
2362       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2363       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2364       assert( pExpr->u.zToken[1]=='\'' );
2365       z = &pExpr->u.zToken[2];
2366       n = sqlite3Strlen30(z) - 1;
2367       assert( z[n]=='\'' );
2368       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2369       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2370       break;
2371     }
2372 #endif
2373     case TK_VARIABLE: {
2374       VdbeOp *pOp;
2375       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2376       assert( pExpr->u.zToken!=0 );
2377       assert( pExpr->u.zToken[0]!=0 );
2378       if( pExpr->u.zToken[1]==0
2379          && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable
2380          && pOp->p1+pOp->p3==pExpr->iColumn
2381          && pOp->p2+pOp->p3==target
2382          && pOp->p4.z==0
2383       ){
2384         /* If the previous instruction was a copy of the previous unnamed
2385         ** parameter into the previous register, then simply increment the
2386         ** repeat count on the prior instruction rather than making a new
2387         ** instruction.
2388         */
2389         pOp->p3++;
2390       }else{
2391         sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iColumn, target, 1);
2392         if( pExpr->u.zToken[1]!=0 ){
2393           sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
2394         }
2395       }
2396       break;
2397     }
2398     case TK_REGISTER: {
2399       inReg = pExpr->iTable;
2400       break;
2401     }
2402     case TK_AS: {
2403       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
2404       break;
2405     }
2406 #ifndef SQLITE_OMIT_CAST
2407     case TK_CAST: {
2408       /* Expressions of the form:   CAST(pLeft AS token) */
2409       int aff, to_op;
2410       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2411       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2412       aff = sqlite3AffinityType(pExpr->u.zToken);
2413       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2414       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2415       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2416       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2417       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2418       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2419       testcase( to_op==OP_ToText );
2420       testcase( to_op==OP_ToBlob );
2421       testcase( to_op==OP_ToNumeric );
2422       testcase( to_op==OP_ToInt );
2423       testcase( to_op==OP_ToReal );
2424       if( inReg!=target ){
2425         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2426         inReg = target;
2427       }
2428       sqlite3VdbeAddOp1(v, to_op, inReg);
2429       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2430       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2431       break;
2432     }
2433 #endif /* SQLITE_OMIT_CAST */
2434     case TK_LT:
2435     case TK_LE:
2436     case TK_GT:
2437     case TK_GE:
2438     case TK_NE:
2439     case TK_EQ: {
2440       assert( TK_LT==OP_Lt );
2441       assert( TK_LE==OP_Le );
2442       assert( TK_GT==OP_Gt );
2443       assert( TK_GE==OP_Ge );
2444       assert( TK_EQ==OP_Eq );
2445       assert( TK_NE==OP_Ne );
2446       testcase( op==TK_LT );
2447       testcase( op==TK_LE );
2448       testcase( op==TK_GT );
2449       testcase( op==TK_GE );
2450       testcase( op==TK_EQ );
2451       testcase( op==TK_NE );
2452       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2453                                   pExpr->pRight, &r2, &regFree2);
2454       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2455                   r1, r2, inReg, SQLITE_STOREP2);
2456       testcase( regFree1==0 );
2457       testcase( regFree2==0 );
2458       break;
2459     }
2460     case TK_IS:
2461     case TK_ISNOT: {
2462       testcase( op==TK_IS );
2463       testcase( op==TK_ISNOT );
2464       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2465                                   pExpr->pRight, &r2, &regFree2);
2466       op = (op==TK_IS) ? TK_EQ : TK_NE;
2467       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2468                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2469       testcase( regFree1==0 );
2470       testcase( regFree2==0 );
2471       break;
2472     }
2473     case TK_AND:
2474     case TK_OR:
2475     case TK_PLUS:
2476     case TK_STAR:
2477     case TK_MINUS:
2478     case TK_REM:
2479     case TK_BITAND:
2480     case TK_BITOR:
2481     case TK_SLASH:
2482     case TK_LSHIFT:
2483     case TK_RSHIFT:
2484     case TK_CONCAT: {
2485       assert( TK_AND==OP_And );
2486       assert( TK_OR==OP_Or );
2487       assert( TK_PLUS==OP_Add );
2488       assert( TK_MINUS==OP_Subtract );
2489       assert( TK_REM==OP_Remainder );
2490       assert( TK_BITAND==OP_BitAnd );
2491       assert( TK_BITOR==OP_BitOr );
2492       assert( TK_SLASH==OP_Divide );
2493       assert( TK_LSHIFT==OP_ShiftLeft );
2494       assert( TK_RSHIFT==OP_ShiftRight );
2495       assert( TK_CONCAT==OP_Concat );
2496       testcase( op==TK_AND );
2497       testcase( op==TK_OR );
2498       testcase( op==TK_PLUS );
2499       testcase( op==TK_MINUS );
2500       testcase( op==TK_REM );
2501       testcase( op==TK_BITAND );
2502       testcase( op==TK_BITOR );
2503       testcase( op==TK_SLASH );
2504       testcase( op==TK_LSHIFT );
2505       testcase( op==TK_RSHIFT );
2506       testcase( op==TK_CONCAT );
2507       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2508       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2509       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2510       testcase( regFree1==0 );
2511       testcase( regFree2==0 );
2512       break;
2513     }
2514     case TK_UMINUS: {
2515       Expr *pLeft = pExpr->pLeft;
2516       assert( pLeft );
2517       if( pLeft->op==TK_FLOAT ){
2518         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2519         codeReal(v, pLeft->u.zToken, 1, target);
2520       }else if( pLeft->op==TK_INTEGER ){
2521         codeInteger(v, pLeft, 1, target);
2522       }else{
2523         regFree1 = r1 = sqlite3GetTempReg(pParse);
2524         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2525         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2526         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2527         testcase( regFree2==0 );
2528       }
2529       inReg = target;
2530       break;
2531     }
2532     case TK_BITNOT:
2533     case TK_NOT: {
2534       assert( TK_BITNOT==OP_BitNot );
2535       assert( TK_NOT==OP_Not );
2536       testcase( op==TK_BITNOT );
2537       testcase( op==TK_NOT );
2538       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2539       testcase( regFree1==0 );
2540       inReg = target;
2541       sqlite3VdbeAddOp2(v, op, r1, inReg);
2542       break;
2543     }
2544     case TK_ISNULL:
2545     case TK_NOTNULL: {
2546       int addr;
2547       assert( TK_ISNULL==OP_IsNull );
2548       assert( TK_NOTNULL==OP_NotNull );
2549       testcase( op==TK_ISNULL );
2550       testcase( op==TK_NOTNULL );
2551       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2552       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2553       testcase( regFree1==0 );
2554       addr = sqlite3VdbeAddOp1(v, op, r1);
2555       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2556       sqlite3VdbeJumpHere(v, addr);
2557       break;
2558     }
2559     case TK_AGG_FUNCTION: {
2560       AggInfo *pInfo = pExpr->pAggInfo;
2561       if( pInfo==0 ){
2562         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2563         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2564       }else{
2565         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2566       }
2567       break;
2568     }
2569     case TK_CONST_FUNC:
2570     case TK_FUNCTION: {
2571       ExprList *pFarg;       /* List of function arguments */
2572       int nFarg;             /* Number of function arguments */
2573       FuncDef *pDef;         /* The function definition object */
2574       int nId;               /* Length of the function name in bytes */
2575       const char *zId;       /* The function name */
2576       int constMask = 0;     /* Mask of function arguments that are constant */
2577       int i;                 /* Loop counter */
2578       u8 enc = ENC(db);      /* The text encoding used by this database */
2579       CollSeq *pColl = 0;    /* A collating sequence */
2580 
2581       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2582       testcase( op==TK_CONST_FUNC );
2583       testcase( op==TK_FUNCTION );
2584       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2585         pFarg = 0;
2586       }else{
2587         pFarg = pExpr->x.pList;
2588       }
2589       nFarg = pFarg ? pFarg->nExpr : 0;
2590       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2591       zId = pExpr->u.zToken;
2592       nId = sqlite3Strlen30(zId);
2593       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2594       if( pDef==0 ){
2595         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2596         break;
2597       }
2598 
2599       /* Attempt a direct implementation of the built-in COALESCE() and
2600       ** IFNULL() functions.  This avoids unnecessary evalation of
2601       ** arguments past the first non-NULL argument.
2602       */
2603       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2604         int endCoalesce = sqlite3VdbeMakeLabel(v);
2605         assert( nFarg>=2 );
2606         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2607         for(i=1; i<nFarg; i++){
2608           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2609           sqlite3ExprCacheRemove(pParse, target);
2610           sqlite3ExprCachePush(pParse);
2611           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2612           sqlite3ExprCachePop(pParse, 1);
2613         }
2614         sqlite3VdbeResolveLabel(v, endCoalesce);
2615         break;
2616       }
2617 
2618 
2619       if( pFarg ){
2620         r1 = sqlite3GetTempRange(pParse, nFarg);
2621         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2622         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2623         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2624       }else{
2625         r1 = 0;
2626       }
2627 #ifndef SQLITE_OMIT_VIRTUALTABLE
2628       /* Possibly overload the function if the first argument is
2629       ** a virtual table column.
2630       **
2631       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2632       ** second argument, not the first, as the argument to test to
2633       ** see if it is a column in a virtual table.  This is done because
2634       ** the left operand of infix functions (the operand we want to
2635       ** control overloading) ends up as the second argument to the
2636       ** function.  The expression "A glob B" is equivalent to
2637       ** "glob(B,A).  We want to use the A in "A glob B" to test
2638       ** for function overloading.  But we use the B term in "glob(B,A)".
2639       */
2640       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2641         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2642       }else if( nFarg>0 ){
2643         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2644       }
2645 #endif
2646       for(i=0; i<nFarg; i++){
2647         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2648           constMask |= (1<<i);
2649         }
2650         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2651           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2652         }
2653       }
2654       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2655         if( !pColl ) pColl = db->pDfltColl;
2656         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2657       }
2658       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2659                         (char*)pDef, P4_FUNCDEF);
2660       sqlite3VdbeChangeP5(v, (u8)nFarg);
2661       if( nFarg ){
2662         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2663       }
2664       sqlite3ExprCacheAffinityChange(pParse, r1, nFarg);
2665       break;
2666     }
2667 #ifndef SQLITE_OMIT_SUBQUERY
2668     case TK_EXISTS:
2669     case TK_SELECT: {
2670       testcase( op==TK_EXISTS );
2671       testcase( op==TK_SELECT );
2672       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2673       break;
2674     }
2675     case TK_IN: {
2676       int destIfFalse = sqlite3VdbeMakeLabel(v);
2677       int destIfNull = sqlite3VdbeMakeLabel(v);
2678       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2679       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2680       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2681       sqlite3VdbeResolveLabel(v, destIfFalse);
2682       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2683       sqlite3VdbeResolveLabel(v, destIfNull);
2684       break;
2685     }
2686 #endif /* SQLITE_OMIT_SUBQUERY */
2687 
2688 
2689     /*
2690     **    x BETWEEN y AND z
2691     **
2692     ** This is equivalent to
2693     **
2694     **    x>=y AND x<=z
2695     **
2696     ** X is stored in pExpr->pLeft.
2697     ** Y is stored in pExpr->pList->a[0].pExpr.
2698     ** Z is stored in pExpr->pList->a[1].pExpr.
2699     */
2700     case TK_BETWEEN: {
2701       Expr *pLeft = pExpr->pLeft;
2702       struct ExprList_item *pLItem = pExpr->x.pList->a;
2703       Expr *pRight = pLItem->pExpr;
2704 
2705       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
2706                                   pRight, &r2, &regFree2);
2707       testcase( regFree1==0 );
2708       testcase( regFree2==0 );
2709       r3 = sqlite3GetTempReg(pParse);
2710       r4 = sqlite3GetTempReg(pParse);
2711       codeCompare(pParse, pLeft, pRight, OP_Ge,
2712                   r1, r2, r3, SQLITE_STOREP2);
2713       pLItem++;
2714       pRight = pLItem->pExpr;
2715       sqlite3ReleaseTempReg(pParse, regFree2);
2716       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2717       testcase( regFree2==0 );
2718       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2719       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2720       sqlite3ReleaseTempReg(pParse, r3);
2721       sqlite3ReleaseTempReg(pParse, r4);
2722       break;
2723     }
2724     case TK_UPLUS: {
2725       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2726       break;
2727     }
2728 
2729     case TK_TRIGGER: {
2730       /* If the opcode is TK_TRIGGER, then the expression is a reference
2731       ** to a column in the new.* or old.* pseudo-tables available to
2732       ** trigger programs. In this case Expr.iTable is set to 1 for the
2733       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2734       ** is set to the column of the pseudo-table to read, or to -1 to
2735       ** read the rowid field.
2736       **
2737       ** The expression is implemented using an OP_Param opcode. The p1
2738       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2739       ** to reference another column of the old.* pseudo-table, where
2740       ** i is the index of the column. For a new.rowid reference, p1 is
2741       ** set to (n+1), where n is the number of columns in each pseudo-table.
2742       ** For a reference to any other column in the new.* pseudo-table, p1
2743       ** is set to (n+2+i), where n and i are as defined previously. For
2744       ** example, if the table on which triggers are being fired is
2745       ** declared as:
2746       **
2747       **   CREATE TABLE t1(a, b);
2748       **
2749       ** Then p1 is interpreted as follows:
2750       **
2751       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2752       **   p1==1   ->    old.a         p1==4   ->    new.a
2753       **   p1==2   ->    old.b         p1==5   ->    new.b
2754       */
2755       Table *pTab = pExpr->pTab;
2756       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2757 
2758       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2759       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2760       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2761       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2762 
2763       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2764       VdbeComment((v, "%s.%s -> $%d",
2765         (pExpr->iTable ? "new" : "old"),
2766         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2767         target
2768       ));
2769 
2770       /* If the column has REAL affinity, it may currently be stored as an
2771       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2772       if( pExpr->iColumn>=0
2773        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2774       ){
2775         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2776       }
2777       break;
2778     }
2779 
2780 
2781     /*
2782     ** Form A:
2783     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2784     **
2785     ** Form B:
2786     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2787     **
2788     ** Form A is can be transformed into the equivalent form B as follows:
2789     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2790     **        WHEN x=eN THEN rN ELSE y END
2791     **
2792     ** X (if it exists) is in pExpr->pLeft.
2793     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2794     ** ELSE clause and no other term matches, then the result of the
2795     ** exprssion is NULL.
2796     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2797     **
2798     ** The result of the expression is the Ri for the first matching Ei,
2799     ** or if there is no matching Ei, the ELSE term Y, or if there is
2800     ** no ELSE term, NULL.
2801     */
2802     default: assert( op==TK_CASE ); {
2803       int endLabel;                     /* GOTO label for end of CASE stmt */
2804       int nextCase;                     /* GOTO label for next WHEN clause */
2805       int nExpr;                        /* 2x number of WHEN terms */
2806       int i;                            /* Loop counter */
2807       ExprList *pEList;                 /* List of WHEN terms */
2808       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2809       Expr opCompare;                   /* The X==Ei expression */
2810       Expr cacheX;                      /* Cached expression X */
2811       Expr *pX;                         /* The X expression */
2812       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2813       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2814 
2815       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2816       assert((pExpr->x.pList->nExpr % 2) == 0);
2817       assert(pExpr->x.pList->nExpr > 0);
2818       pEList = pExpr->x.pList;
2819       aListelem = pEList->a;
2820       nExpr = pEList->nExpr;
2821       endLabel = sqlite3VdbeMakeLabel(v);
2822       if( (pX = pExpr->pLeft)!=0 ){
2823         cacheX = *pX;
2824         testcase( pX->op==TK_COLUMN );
2825         testcase( pX->op==TK_REGISTER );
2826         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2827         testcase( regFree1==0 );
2828         cacheX.op = TK_REGISTER;
2829         opCompare.op = TK_EQ;
2830         opCompare.pLeft = &cacheX;
2831         pTest = &opCompare;
2832       }
2833       for(i=0; i<nExpr; i=i+2){
2834         sqlite3ExprCachePush(pParse);
2835         if( pX ){
2836           assert( pTest!=0 );
2837           opCompare.pRight = aListelem[i].pExpr;
2838         }else{
2839           pTest = aListelem[i].pExpr;
2840         }
2841         nextCase = sqlite3VdbeMakeLabel(v);
2842         testcase( pTest->op==TK_COLUMN );
2843         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2844         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2845         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2846         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2847         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2848         sqlite3ExprCachePop(pParse, 1);
2849         sqlite3VdbeResolveLabel(v, nextCase);
2850       }
2851       if( pExpr->pRight ){
2852         sqlite3ExprCachePush(pParse);
2853         sqlite3ExprCode(pParse, pExpr->pRight, target);
2854         sqlite3ExprCachePop(pParse, 1);
2855       }else{
2856         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2857       }
2858       assert( db->mallocFailed || pParse->nErr>0
2859            || pParse->iCacheLevel==iCacheLevel );
2860       sqlite3VdbeResolveLabel(v, endLabel);
2861       break;
2862     }
2863 #ifndef SQLITE_OMIT_TRIGGER
2864     case TK_RAISE: {
2865       assert( pExpr->affinity==OE_Rollback
2866            || pExpr->affinity==OE_Abort
2867            || pExpr->affinity==OE_Fail
2868            || pExpr->affinity==OE_Ignore
2869       );
2870       if( !pParse->pTriggerTab ){
2871         sqlite3ErrorMsg(pParse,
2872                        "RAISE() may only be used within a trigger-program");
2873         return 0;
2874       }
2875       if( pExpr->affinity==OE_Abort ){
2876         sqlite3MayAbort(pParse);
2877       }
2878       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2879       if( pExpr->affinity==OE_Ignore ){
2880         sqlite3VdbeAddOp4(
2881             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2882       }else{
2883         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2884       }
2885 
2886       break;
2887     }
2888 #endif
2889   }
2890   sqlite3ReleaseTempReg(pParse, regFree1);
2891   sqlite3ReleaseTempReg(pParse, regFree2);
2892   return inReg;
2893 }
2894 
2895 /*
2896 ** Generate code to evaluate an expression and store the results
2897 ** into a register.  Return the register number where the results
2898 ** are stored.
2899 **
2900 ** If the register is a temporary register that can be deallocated,
2901 ** then write its number into *pReg.  If the result register is not
2902 ** a temporary, then set *pReg to zero.
2903 */
2904 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2905   int r1 = sqlite3GetTempReg(pParse);
2906   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2907   if( r2==r1 ){
2908     *pReg = r1;
2909   }else{
2910     sqlite3ReleaseTempReg(pParse, r1);
2911     *pReg = 0;
2912   }
2913   return r2;
2914 }
2915 
2916 /*
2917 ** Generate code that will evaluate expression pExpr and store the
2918 ** results in register target.  The results are guaranteed to appear
2919 ** in register target.
2920 */
2921 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2922   int inReg;
2923 
2924   assert( target>0 && target<=pParse->nMem );
2925   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2926   assert( pParse->pVdbe || pParse->db->mallocFailed );
2927   if( inReg!=target && pParse->pVdbe ){
2928     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2929   }
2930   return target;
2931 }
2932 
2933 /*
2934 ** Generate code that evalutes the given expression and puts the result
2935 ** in register target.
2936 **
2937 ** Also make a copy of the expression results into another "cache" register
2938 ** and modify the expression so that the next time it is evaluated,
2939 ** the result is a copy of the cache register.
2940 **
2941 ** This routine is used for expressions that are used multiple
2942 ** times.  They are evaluated once and the results of the expression
2943 ** are reused.
2944 */
2945 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2946   Vdbe *v = pParse->pVdbe;
2947   int inReg;
2948   inReg = sqlite3ExprCode(pParse, pExpr, target);
2949   assert( target>0 );
2950   /* This routine is called for terms to INSERT or UPDATE.  And the only
2951   ** other place where expressions can be converted into TK_REGISTER is
2952   ** in WHERE clause processing.  So as currently implemented, there is
2953   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2954   ** keep the ALWAYS() in case the conditions above change with future
2955   ** modifications or enhancements. */
2956   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2957     int iMem;
2958     iMem = ++pParse->nMem;
2959     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2960     pExpr->iTable = iMem;
2961     pExpr->op2 = pExpr->op;
2962     pExpr->op = TK_REGISTER;
2963   }
2964   return inReg;
2965 }
2966 
2967 /*
2968 ** Return TRUE if pExpr is an constant expression that is appropriate
2969 ** for factoring out of a loop.  Appropriate expressions are:
2970 **
2971 **    *  Any expression that evaluates to two or more opcodes.
2972 **
2973 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2974 **       or OP_Variable that does not need to be placed in a
2975 **       specific register.
2976 **
2977 ** There is no point in factoring out single-instruction constant
2978 ** expressions that need to be placed in a particular register.
2979 ** We could factor them out, but then we would end up adding an
2980 ** OP_SCopy instruction to move the value into the correct register
2981 ** later.  We might as well just use the original instruction and
2982 ** avoid the OP_SCopy.
2983 */
2984 static int isAppropriateForFactoring(Expr *p){
2985   if( !sqlite3ExprIsConstantNotJoin(p) ){
2986     return 0;  /* Only constant expressions are appropriate for factoring */
2987   }
2988   if( (p->flags & EP_FixedDest)==0 ){
2989     return 1;  /* Any constant without a fixed destination is appropriate */
2990   }
2991   while( p->op==TK_UPLUS ) p = p->pLeft;
2992   switch( p->op ){
2993 #ifndef SQLITE_OMIT_BLOB_LITERAL
2994     case TK_BLOB:
2995 #endif
2996     case TK_VARIABLE:
2997     case TK_INTEGER:
2998     case TK_FLOAT:
2999     case TK_NULL:
3000     case TK_STRING: {
3001       testcase( p->op==TK_BLOB );
3002       testcase( p->op==TK_VARIABLE );
3003       testcase( p->op==TK_INTEGER );
3004       testcase( p->op==TK_FLOAT );
3005       testcase( p->op==TK_NULL );
3006       testcase( p->op==TK_STRING );
3007       /* Single-instruction constants with a fixed destination are
3008       ** better done in-line.  If we factor them, they will just end
3009       ** up generating an OP_SCopy to move the value to the destination
3010       ** register. */
3011       return 0;
3012     }
3013     case TK_UMINUS: {
3014       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3015         return 0;
3016       }
3017       break;
3018     }
3019     default: {
3020       break;
3021     }
3022   }
3023   return 1;
3024 }
3025 
3026 /*
3027 ** If pExpr is a constant expression that is appropriate for
3028 ** factoring out of a loop, then evaluate the expression
3029 ** into a register and convert the expression into a TK_REGISTER
3030 ** expression.
3031 */
3032 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3033   Parse *pParse = pWalker->pParse;
3034   switch( pExpr->op ){
3035     case TK_IN:
3036     case TK_REGISTER: {
3037       return WRC_Prune;
3038     }
3039     case TK_FUNCTION:
3040     case TK_AGG_FUNCTION:
3041     case TK_CONST_FUNC: {
3042       /* The arguments to a function have a fixed destination.
3043       ** Mark them this way to avoid generated unneeded OP_SCopy
3044       ** instructions.
3045       */
3046       ExprList *pList = pExpr->x.pList;
3047       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3048       if( pList ){
3049         int i = pList->nExpr;
3050         struct ExprList_item *pItem = pList->a;
3051         for(; i>0; i--, pItem++){
3052           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3053         }
3054       }
3055       break;
3056     }
3057   }
3058   if( isAppropriateForFactoring(pExpr) ){
3059     int r1 = ++pParse->nMem;
3060     int r2;
3061     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3062     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3063     pExpr->op2 = pExpr->op;
3064     pExpr->op = TK_REGISTER;
3065     pExpr->iTable = r2;
3066     return WRC_Prune;
3067   }
3068   return WRC_Continue;
3069 }
3070 
3071 /*
3072 ** Preevaluate constant subexpressions within pExpr and store the
3073 ** results in registers.  Modify pExpr so that the constant subexpresions
3074 ** are TK_REGISTER opcodes that refer to the precomputed values.
3075 */
3076 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3077   Walker w;
3078   w.xExprCallback = evalConstExpr;
3079   w.xSelectCallback = 0;
3080   w.pParse = pParse;
3081   sqlite3WalkExpr(&w, pExpr);
3082 }
3083 
3084 
3085 /*
3086 ** Generate code that pushes the value of every element of the given
3087 ** expression list into a sequence of registers beginning at target.
3088 **
3089 ** Return the number of elements evaluated.
3090 */
3091 int sqlite3ExprCodeExprList(
3092   Parse *pParse,     /* Parsing context */
3093   ExprList *pList,   /* The expression list to be coded */
3094   int target,        /* Where to write results */
3095   int doHardCopy     /* Make a hard copy of every element */
3096 ){
3097   struct ExprList_item *pItem;
3098   int i, n;
3099   assert( pList!=0 );
3100   assert( target>0 );
3101   n = pList->nExpr;
3102   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3103     if( pItem->iAlias ){
3104       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
3105       Vdbe *v = sqlite3GetVdbe(pParse);
3106       if( iReg!=target+i ){
3107         sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
3108       }
3109     }else{
3110       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
3111     }
3112     if( doHardCopy && !pParse->db->mallocFailed ){
3113       sqlite3ExprHardCopy(pParse, target, n);
3114     }
3115   }
3116   return n;
3117 }
3118 
3119 /*
3120 ** Generate code for a BETWEEN operator.
3121 **
3122 **    x BETWEEN y AND z
3123 **
3124 ** The above is equivalent to
3125 **
3126 **    x>=y AND x<=z
3127 **
3128 ** Code it as such, taking care to do the common subexpression
3129 ** elementation of x.
3130 */
3131 static void exprCodeBetween(
3132   Parse *pParse,    /* Parsing and code generating context */
3133   Expr *pExpr,      /* The BETWEEN expression */
3134   int dest,         /* Jump here if the jump is taken */
3135   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3136   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3137 ){
3138   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3139   Expr compLeft;    /* The  x>=y  term */
3140   Expr compRight;   /* The  x<=z  term */
3141   Expr exprX;       /* The  x  subexpression */
3142   int regFree1 = 0; /* Temporary use register */
3143 
3144   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3145   exprX = *pExpr->pLeft;
3146   exprAnd.op = TK_AND;
3147   exprAnd.pLeft = &compLeft;
3148   exprAnd.pRight = &compRight;
3149   compLeft.op = TK_GE;
3150   compLeft.pLeft = &exprX;
3151   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3152   compRight.op = TK_LE;
3153   compRight.pLeft = &exprX;
3154   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3155   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3156   exprX.op = TK_REGISTER;
3157   if( jumpIfTrue ){
3158     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3159   }else{
3160     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3161   }
3162   sqlite3ReleaseTempReg(pParse, regFree1);
3163 
3164   /* Ensure adequate test coverage */
3165   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3166   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3167   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3168   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3169   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3170   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3171   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3172   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3173 }
3174 
3175 /*
3176 ** Generate code for a boolean expression such that a jump is made
3177 ** to the label "dest" if the expression is true but execution
3178 ** continues straight thru if the expression is false.
3179 **
3180 ** If the expression evaluates to NULL (neither true nor false), then
3181 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3182 **
3183 ** This code depends on the fact that certain token values (ex: TK_EQ)
3184 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3185 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3186 ** the make process cause these values to align.  Assert()s in the code
3187 ** below verify that the numbers are aligned correctly.
3188 */
3189 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3190   Vdbe *v = pParse->pVdbe;
3191   int op = 0;
3192   int regFree1 = 0;
3193   int regFree2 = 0;
3194   int r1, r2;
3195 
3196   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3197   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3198   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3199   op = pExpr->op;
3200   switch( op ){
3201     case TK_AND: {
3202       int d2 = sqlite3VdbeMakeLabel(v);
3203       testcase( jumpIfNull==0 );
3204       sqlite3ExprCachePush(pParse);
3205       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3206       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3207       sqlite3VdbeResolveLabel(v, d2);
3208       sqlite3ExprCachePop(pParse, 1);
3209       break;
3210     }
3211     case TK_OR: {
3212       testcase( jumpIfNull==0 );
3213       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3214       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3215       break;
3216     }
3217     case TK_NOT: {
3218       testcase( jumpIfNull==0 );
3219       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3220       break;
3221     }
3222     case TK_LT:
3223     case TK_LE:
3224     case TK_GT:
3225     case TK_GE:
3226     case TK_NE:
3227     case TK_EQ: {
3228       assert( TK_LT==OP_Lt );
3229       assert( TK_LE==OP_Le );
3230       assert( TK_GT==OP_Gt );
3231       assert( TK_GE==OP_Ge );
3232       assert( TK_EQ==OP_Eq );
3233       assert( TK_NE==OP_Ne );
3234       testcase( op==TK_LT );
3235       testcase( op==TK_LE );
3236       testcase( op==TK_GT );
3237       testcase( op==TK_GE );
3238       testcase( op==TK_EQ );
3239       testcase( op==TK_NE );
3240       testcase( jumpIfNull==0 );
3241       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3242                                   pExpr->pRight, &r2, &regFree2);
3243       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3244                   r1, r2, dest, jumpIfNull);
3245       testcase( regFree1==0 );
3246       testcase( regFree2==0 );
3247       break;
3248     }
3249     case TK_IS:
3250     case TK_ISNOT: {
3251       testcase( op==TK_IS );
3252       testcase( op==TK_ISNOT );
3253       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3254                                   pExpr->pRight, &r2, &regFree2);
3255       op = (op==TK_IS) ? TK_EQ : TK_NE;
3256       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3257                   r1, r2, dest, SQLITE_NULLEQ);
3258       testcase( regFree1==0 );
3259       testcase( regFree2==0 );
3260       break;
3261     }
3262     case TK_ISNULL:
3263     case TK_NOTNULL: {
3264       assert( TK_ISNULL==OP_IsNull );
3265       assert( TK_NOTNULL==OP_NotNull );
3266       testcase( op==TK_ISNULL );
3267       testcase( op==TK_NOTNULL );
3268       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3269       sqlite3VdbeAddOp2(v, op, r1, dest);
3270       testcase( regFree1==0 );
3271       break;
3272     }
3273     case TK_BETWEEN: {
3274       testcase( jumpIfNull==0 );
3275       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3276       break;
3277     }
3278     case TK_IN: {
3279       int destIfFalse = sqlite3VdbeMakeLabel(v);
3280       int destIfNull = jumpIfNull ? dest : destIfFalse;
3281       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3282       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3283       sqlite3VdbeResolveLabel(v, destIfFalse);
3284       break;
3285     }
3286     default: {
3287       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3288       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3289       testcase( regFree1==0 );
3290       testcase( jumpIfNull==0 );
3291       break;
3292     }
3293   }
3294   sqlite3ReleaseTempReg(pParse, regFree1);
3295   sqlite3ReleaseTempReg(pParse, regFree2);
3296 }
3297 
3298 /*
3299 ** Generate code for a boolean expression such that a jump is made
3300 ** to the label "dest" if the expression is false but execution
3301 ** continues straight thru if the expression is true.
3302 **
3303 ** If the expression evaluates to NULL (neither true nor false) then
3304 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3305 ** is 0.
3306 */
3307 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3308   Vdbe *v = pParse->pVdbe;
3309   int op = 0;
3310   int regFree1 = 0;
3311   int regFree2 = 0;
3312   int r1, r2;
3313 
3314   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3315   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3316   if( pExpr==0 )    return;
3317 
3318   /* The value of pExpr->op and op are related as follows:
3319   **
3320   **       pExpr->op            op
3321   **       ---------          ----------
3322   **       TK_ISNULL          OP_NotNull
3323   **       TK_NOTNULL         OP_IsNull
3324   **       TK_NE              OP_Eq
3325   **       TK_EQ              OP_Ne
3326   **       TK_GT              OP_Le
3327   **       TK_LE              OP_Gt
3328   **       TK_GE              OP_Lt
3329   **       TK_LT              OP_Ge
3330   **
3331   ** For other values of pExpr->op, op is undefined and unused.
3332   ** The value of TK_ and OP_ constants are arranged such that we
3333   ** can compute the mapping above using the following expression.
3334   ** Assert()s verify that the computation is correct.
3335   */
3336   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3337 
3338   /* Verify correct alignment of TK_ and OP_ constants
3339   */
3340   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3341   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3342   assert( pExpr->op!=TK_NE || op==OP_Eq );
3343   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3344   assert( pExpr->op!=TK_LT || op==OP_Ge );
3345   assert( pExpr->op!=TK_LE || op==OP_Gt );
3346   assert( pExpr->op!=TK_GT || op==OP_Le );
3347   assert( pExpr->op!=TK_GE || op==OP_Lt );
3348 
3349   switch( pExpr->op ){
3350     case TK_AND: {
3351       testcase( jumpIfNull==0 );
3352       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3353       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3354       break;
3355     }
3356     case TK_OR: {
3357       int d2 = sqlite3VdbeMakeLabel(v);
3358       testcase( jumpIfNull==0 );
3359       sqlite3ExprCachePush(pParse);
3360       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3361       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3362       sqlite3VdbeResolveLabel(v, d2);
3363       sqlite3ExprCachePop(pParse, 1);
3364       break;
3365     }
3366     case TK_NOT: {
3367       testcase( jumpIfNull==0 );
3368       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3369       break;
3370     }
3371     case TK_LT:
3372     case TK_LE:
3373     case TK_GT:
3374     case TK_GE:
3375     case TK_NE:
3376     case TK_EQ: {
3377       testcase( op==TK_LT );
3378       testcase( op==TK_LE );
3379       testcase( op==TK_GT );
3380       testcase( op==TK_GE );
3381       testcase( op==TK_EQ );
3382       testcase( op==TK_NE );
3383       testcase( jumpIfNull==0 );
3384       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3385                                   pExpr->pRight, &r2, &regFree2);
3386       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3387                   r1, r2, dest, jumpIfNull);
3388       testcase( regFree1==0 );
3389       testcase( regFree2==0 );
3390       break;
3391     }
3392     case TK_IS:
3393     case TK_ISNOT: {
3394       testcase( pExpr->op==TK_IS );
3395       testcase( pExpr->op==TK_ISNOT );
3396       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3397                                   pExpr->pRight, &r2, &regFree2);
3398       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3399       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3400                   r1, r2, dest, SQLITE_NULLEQ);
3401       testcase( regFree1==0 );
3402       testcase( regFree2==0 );
3403       break;
3404     }
3405     case TK_ISNULL:
3406     case TK_NOTNULL: {
3407       testcase( op==TK_ISNULL );
3408       testcase( op==TK_NOTNULL );
3409       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3410       sqlite3VdbeAddOp2(v, op, r1, dest);
3411       testcase( regFree1==0 );
3412       break;
3413     }
3414     case TK_BETWEEN: {
3415       testcase( jumpIfNull==0 );
3416       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3417       break;
3418     }
3419     case TK_IN: {
3420       if( jumpIfNull ){
3421         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3422       }else{
3423         int destIfNull = sqlite3VdbeMakeLabel(v);
3424         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3425         sqlite3VdbeResolveLabel(v, destIfNull);
3426       }
3427       break;
3428     }
3429     default: {
3430       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3431       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3432       testcase( regFree1==0 );
3433       testcase( jumpIfNull==0 );
3434       break;
3435     }
3436   }
3437   sqlite3ReleaseTempReg(pParse, regFree1);
3438   sqlite3ReleaseTempReg(pParse, regFree2);
3439 }
3440 
3441 /*
3442 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
3443 ** if they are identical and return FALSE if they differ in any way.
3444 **
3445 ** Sometimes this routine will return FALSE even if the two expressions
3446 ** really are equivalent.  If we cannot prove that the expressions are
3447 ** identical, we return FALSE just to be safe.  So if this routine
3448 ** returns false, then you do not really know for certain if the two
3449 ** expressions are the same.  But if you get a TRUE return, then you
3450 ** can be sure the expressions are the same.  In the places where
3451 ** this routine is used, it does not hurt to get an extra FALSE - that
3452 ** just might result in some slightly slower code.  But returning
3453 ** an incorrect TRUE could lead to a malfunction.
3454 */
3455 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3456   int i;
3457   if( pA==0||pB==0 ){
3458     return pB==pA;
3459   }
3460   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3461   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3462   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3463     return 0;
3464   }
3465   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
3466   if( pA->op!=pB->op ) return 0;
3467   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
3468   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
3469 
3470   if( pA->x.pList && pB->x.pList ){
3471     if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0;
3472     for(i=0; i<pA->x.pList->nExpr; i++){
3473       Expr *pExprA = pA->x.pList->a[i].pExpr;
3474       Expr *pExprB = pB->x.pList->a[i].pExpr;
3475       if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0;
3476     }
3477   }else if( pA->x.pList || pB->x.pList ){
3478     return 0;
3479   }
3480 
3481   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
3482   if( ExprHasProperty(pA, EP_IntValue) ){
3483     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3484       return 0;
3485     }
3486   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3487     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0;
3488     if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3489       return 0;
3490     }
3491   }
3492   return 1;
3493 }
3494 
3495 
3496 /*
3497 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3498 ** the new element.  Return a negative number if malloc fails.
3499 */
3500 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3501   int i;
3502   pInfo->aCol = sqlite3ArrayAllocate(
3503        db,
3504        pInfo->aCol,
3505        sizeof(pInfo->aCol[0]),
3506        3,
3507        &pInfo->nColumn,
3508        &pInfo->nColumnAlloc,
3509        &i
3510   );
3511   return i;
3512 }
3513 
3514 /*
3515 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3516 ** the new element.  Return a negative number if malloc fails.
3517 */
3518 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3519   int i;
3520   pInfo->aFunc = sqlite3ArrayAllocate(
3521        db,
3522        pInfo->aFunc,
3523        sizeof(pInfo->aFunc[0]),
3524        3,
3525        &pInfo->nFunc,
3526        &pInfo->nFuncAlloc,
3527        &i
3528   );
3529   return i;
3530 }
3531 
3532 /*
3533 ** This is the xExprCallback for a tree walker.  It is used to
3534 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3535 ** for additional information.
3536 */
3537 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3538   int i;
3539   NameContext *pNC = pWalker->u.pNC;
3540   Parse *pParse = pNC->pParse;
3541   SrcList *pSrcList = pNC->pSrcList;
3542   AggInfo *pAggInfo = pNC->pAggInfo;
3543 
3544   switch( pExpr->op ){
3545     case TK_AGG_COLUMN:
3546     case TK_COLUMN: {
3547       testcase( pExpr->op==TK_AGG_COLUMN );
3548       testcase( pExpr->op==TK_COLUMN );
3549       /* Check to see if the column is in one of the tables in the FROM
3550       ** clause of the aggregate query */
3551       if( ALWAYS(pSrcList!=0) ){
3552         struct SrcList_item *pItem = pSrcList->a;
3553         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3554           struct AggInfo_col *pCol;
3555           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3556           if( pExpr->iTable==pItem->iCursor ){
3557             /* If we reach this point, it means that pExpr refers to a table
3558             ** that is in the FROM clause of the aggregate query.
3559             **
3560             ** Make an entry for the column in pAggInfo->aCol[] if there
3561             ** is not an entry there already.
3562             */
3563             int k;
3564             pCol = pAggInfo->aCol;
3565             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3566               if( pCol->iTable==pExpr->iTable &&
3567                   pCol->iColumn==pExpr->iColumn ){
3568                 break;
3569               }
3570             }
3571             if( (k>=pAggInfo->nColumn)
3572              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3573             ){
3574               pCol = &pAggInfo->aCol[k];
3575               pCol->pTab = pExpr->pTab;
3576               pCol->iTable = pExpr->iTable;
3577               pCol->iColumn = pExpr->iColumn;
3578               pCol->iMem = ++pParse->nMem;
3579               pCol->iSorterColumn = -1;
3580               pCol->pExpr = pExpr;
3581               if( pAggInfo->pGroupBy ){
3582                 int j, n;
3583                 ExprList *pGB = pAggInfo->pGroupBy;
3584                 struct ExprList_item *pTerm = pGB->a;
3585                 n = pGB->nExpr;
3586                 for(j=0; j<n; j++, pTerm++){
3587                   Expr *pE = pTerm->pExpr;
3588                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3589                       pE->iColumn==pExpr->iColumn ){
3590                     pCol->iSorterColumn = j;
3591                     break;
3592                   }
3593                 }
3594               }
3595               if( pCol->iSorterColumn<0 ){
3596                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3597               }
3598             }
3599             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3600             ** because it was there before or because we just created it).
3601             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3602             ** pAggInfo->aCol[] entry.
3603             */
3604             ExprSetIrreducible(pExpr);
3605             pExpr->pAggInfo = pAggInfo;
3606             pExpr->op = TK_AGG_COLUMN;
3607             pExpr->iAgg = (i16)k;
3608             break;
3609           } /* endif pExpr->iTable==pItem->iCursor */
3610         } /* end loop over pSrcList */
3611       }
3612       return WRC_Prune;
3613     }
3614     case TK_AGG_FUNCTION: {
3615       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3616       ** to be ignored */
3617       if( pNC->nDepth==0 ){
3618         /* Check to see if pExpr is a duplicate of another aggregate
3619         ** function that is already in the pAggInfo structure
3620         */
3621         struct AggInfo_func *pItem = pAggInfo->aFunc;
3622         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3623           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
3624             break;
3625           }
3626         }
3627         if( i>=pAggInfo->nFunc ){
3628           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3629           */
3630           u8 enc = ENC(pParse->db);
3631           i = addAggInfoFunc(pParse->db, pAggInfo);
3632           if( i>=0 ){
3633             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3634             pItem = &pAggInfo->aFunc[i];
3635             pItem->pExpr = pExpr;
3636             pItem->iMem = ++pParse->nMem;
3637             assert( !ExprHasProperty(pExpr, EP_IntValue) );
3638             pItem->pFunc = sqlite3FindFunction(pParse->db,
3639                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3640                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3641             if( pExpr->flags & EP_Distinct ){
3642               pItem->iDistinct = pParse->nTab++;
3643             }else{
3644               pItem->iDistinct = -1;
3645             }
3646           }
3647         }
3648         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3649         */
3650         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3651         ExprSetIrreducible(pExpr);
3652         pExpr->iAgg = (i16)i;
3653         pExpr->pAggInfo = pAggInfo;
3654         return WRC_Prune;
3655       }
3656     }
3657   }
3658   return WRC_Continue;
3659 }
3660 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3661   NameContext *pNC = pWalker->u.pNC;
3662   if( pNC->nDepth==0 ){
3663     pNC->nDepth++;
3664     sqlite3WalkSelect(pWalker, pSelect);
3665     pNC->nDepth--;
3666     return WRC_Prune;
3667   }else{
3668     return WRC_Continue;
3669   }
3670 }
3671 
3672 /*
3673 ** Analyze the given expression looking for aggregate functions and
3674 ** for variables that need to be added to the pParse->aAgg[] array.
3675 ** Make additional entries to the pParse->aAgg[] array as necessary.
3676 **
3677 ** This routine should only be called after the expression has been
3678 ** analyzed by sqlite3ResolveExprNames().
3679 */
3680 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3681   Walker w;
3682   w.xExprCallback = analyzeAggregate;
3683   w.xSelectCallback = analyzeAggregatesInSelect;
3684   w.u.pNC = pNC;
3685   assert( pNC->pSrcList!=0 );
3686   sqlite3WalkExpr(&w, pExpr);
3687 }
3688 
3689 /*
3690 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3691 ** expression list.  Return the number of errors.
3692 **
3693 ** If an error is found, the analysis is cut short.
3694 */
3695 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3696   struct ExprList_item *pItem;
3697   int i;
3698   if( pList ){
3699     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3700       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3701     }
3702   }
3703 }
3704 
3705 /*
3706 ** Allocate a single new register for use to hold some intermediate result.
3707 */
3708 int sqlite3GetTempReg(Parse *pParse){
3709   if( pParse->nTempReg==0 ){
3710     return ++pParse->nMem;
3711   }
3712   return pParse->aTempReg[--pParse->nTempReg];
3713 }
3714 
3715 /*
3716 ** Deallocate a register, making available for reuse for some other
3717 ** purpose.
3718 **
3719 ** If a register is currently being used by the column cache, then
3720 ** the dallocation is deferred until the column cache line that uses
3721 ** the register becomes stale.
3722 */
3723 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3724   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3725     int i;
3726     struct yColCache *p;
3727     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3728       if( p->iReg==iReg ){
3729         p->tempReg = 1;
3730         return;
3731       }
3732     }
3733     pParse->aTempReg[pParse->nTempReg++] = iReg;
3734   }
3735 }
3736 
3737 /*
3738 ** Allocate or deallocate a block of nReg consecutive registers
3739 */
3740 int sqlite3GetTempRange(Parse *pParse, int nReg){
3741   int i, n;
3742   i = pParse->iRangeReg;
3743   n = pParse->nRangeReg;
3744   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3745     pParse->iRangeReg += nReg;
3746     pParse->nRangeReg -= nReg;
3747   }else{
3748     i = pParse->nMem+1;
3749     pParse->nMem += nReg;
3750   }
3751   return i;
3752 }
3753 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3754   if( nReg>pParse->nRangeReg ){
3755     pParse->nRangeReg = nReg;
3756     pParse->iRangeReg = iReg;
3757   }
3758 }
3759