xref: /sqlite-3.40.0/src/expr.c (revision 1182e2ac)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     if( pExpr->y.pTab ){
59       return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60     }
61   }
62   if( op==TK_SELECT ){
63     assert( ExprUseXSelect(pExpr) );
64     assert( pExpr->x.pSelect!=0 );
65     assert( pExpr->x.pSelect->pEList!=0 );
66     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
68   }
69 #ifndef SQLITE_OMIT_CAST
70   if( op==TK_CAST ){
71     assert( !ExprHasProperty(pExpr, EP_IntValue) );
72     return sqlite3AffinityType(pExpr->u.zToken, 0);
73   }
74 #endif
75   if( op==TK_SELECT_COLUMN ){
76     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77     assert( pExpr->iColumn < pExpr->iTable );
78     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79     return sqlite3ExprAffinity(
80         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
81     );
82   }
83   if( op==TK_VECTOR ){
84     assert( ExprUseXList(pExpr) );
85     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
86   }
87   return pExpr->affExpr;
88 }
89 
90 /*
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken.   Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
94 **
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
97 */
98 Expr *sqlite3ExprAddCollateToken(
99   const Parse *pParse,     /* Parsing context */
100   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
101   const Token *pCollName,  /* Name of collating sequence */
102   int dequote              /* True to dequote pCollName */
103 ){
104   if( pCollName->n>0 ){
105     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106     if( pNew ){
107       pNew->pLeft = pExpr;
108       pNew->flags |= EP_Collate|EP_Skip;
109       pExpr = pNew;
110     }
111   }
112   return pExpr;
113 }
114 Expr *sqlite3ExprAddCollateString(
115   const Parse *pParse,  /* Parsing context */
116   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
117   const char *zC        /* The collating sequence name */
118 ){
119   Token s;
120   assert( zC!=0 );
121   sqlite3TokenInit(&s, (char*)zC);
122   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
123 }
124 
125 /*
126 ** Skip over any TK_COLLATE operators.
127 */
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130     assert( pExpr->op==TK_COLLATE );
131     pExpr = pExpr->pLeft;
132   }
133   return pExpr;
134 }
135 
136 /*
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
140 */
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143     if( ExprHasProperty(pExpr, EP_Unlikely) ){
144       assert( ExprUseXList(pExpr) );
145       assert( pExpr->x.pList->nExpr>0 );
146       assert( pExpr->op==TK_FUNCTION );
147       pExpr = pExpr->x.pList->a[0].pExpr;
148     }else{
149       assert( pExpr->op==TK_COLLATE );
150       pExpr = pExpr->pLeft;
151     }
152   }
153   return pExpr;
154 }
155 
156 /*
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
159 **
160 ** See also: sqlite3ExprNNCollSeq()
161 **
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
164 **
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence.  Left operands take
168 ** precedence over right operands.
169 */
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171   sqlite3 *db = pParse->db;
172   CollSeq *pColl = 0;
173   const Expr *p = pExpr;
174   while( p ){
175     int op = p->op;
176     if( op==TK_REGISTER ) op = p->op2;
177     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178       assert( ExprUseYTab(p) );
179       if( p->y.pTab!=0 ){
180         /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181         ** a TK_COLUMN but was previously evaluated and cached in a register */
182         int j = p->iColumn;
183         if( j>=0 ){
184           const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185           pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
186         }
187         break;
188       }
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       assert( ExprUseXList(p) );
196       p = p->x.pList->a[0].pExpr;
197       continue;
198     }
199     if( op==TK_COLLATE ){
200       assert( !ExprHasProperty(p, EP_IntValue) );
201       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202       break;
203     }
204     if( p->flags & EP_Collate ){
205       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206         p = p->pLeft;
207       }else{
208         Expr *pNext  = p->pRight;
209         /* The Expr.x union is never used at the same time as Expr.pRight */
210         assert( ExprUseXList(p) );
211         assert( p->x.pList==0 || p->pRight==0 );
212         if( p->x.pList!=0 && !db->mallocFailed ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprUseXSelect(pExpr) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(const Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     assert( ExprUseXList(pExpr) );
436     return pExpr->x.pList->nExpr;
437   }else if( op==TK_SELECT ){
438     assert( ExprUseXSelect(pExpr) );
439     return pExpr->x.pSelect->pEList->nExpr;
440   }else{
441     return 1;
442   }
443 }
444 
445 /*
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0).  The caller must
448 ** ensure that i is within range.
449 **
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
452 **
453 ** pVector retains ownership of the returned subexpression.
454 **
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
459 */
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462   if( sqlite3ExprIsVector(pVector) ){
463     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465       assert( ExprUseXSelect(pVector) );
466       return pVector->x.pSelect->pEList->a[i].pExpr;
467     }else{
468       assert( ExprUseXList(pVector) );
469       return pVector->x.pList->a[i].pExpr;
470     }
471   }
472   return pVector;
473 }
474 
475 /*
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
479 **
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
482 **
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
485 **
486 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
491 **
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
495 */
496 Expr *sqlite3ExprForVectorField(
497   Parse *pParse,       /* Parsing context */
498   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
499   int iField,          /* Which column of the vector to return */
500   int nField           /* Total number of columns in the vector */
501 ){
502   Expr *pRet;
503   if( pVector->op==TK_SELECT ){
504     assert( ExprUseXSelect(pVector) );
505     /* The TK_SELECT_COLUMN Expr node:
506     **
507     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
508     ** pRight:          not used.  But recursively deleted.
509     ** iColumn:         Index of a column in pVector
510     ** iTable:          0 or the number of columns on the LHS of an assignment
511     ** pLeft->iTable:   First in an array of register holding result, or 0
512     **                  if the result is not yet computed.
513     **
514     ** sqlite3ExprDelete() specifically skips the recursive delete of
515     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
516     ** can be attached to pRight to cause this node to take ownership of
517     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
518     ** with the same pLeft pointer to the pVector, but only one of them
519     ** will own the pVector.
520     */
521     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522     if( pRet ){
523       pRet->iTable = nField;
524       pRet->iColumn = iField;
525       pRet->pLeft = pVector;
526     }
527   }else{
528     if( pVector->op==TK_VECTOR ){
529       Expr **ppVector;
530       assert( ExprUseXList(pVector) );
531       ppVector = &pVector->x.pList->a[iField].pExpr;
532       pVector = *ppVector;
533       if( IN_RENAME_OBJECT ){
534         /* This must be a vector UPDATE inside a trigger */
535         *ppVector = 0;
536         return pVector;
537       }
538     }
539     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
540   }
541   return pRet;
542 }
543 
544 /*
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
549 **
550 ** If pExpr is not a TK_SELECT expression, return 0.
551 */
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553   int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555   if( pExpr->op==TK_SELECT ){
556     reg = sqlite3CodeSubselect(pParse, pExpr);
557   }
558 #endif
559   return reg;
560 }
561 
562 /*
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
567 **
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
572 **
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
576 **
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
579 */
580 static int exprVectorRegister(
581   Parse *pParse,                  /* Parse context */
582   Expr *pVector,                  /* Vector to extract element from */
583   int iField,                     /* Field to extract from pVector */
584   int regSelect,                  /* First in array of registers */
585   Expr **ppExpr,                  /* OUT: Expression element */
586   int *pRegFree                   /* OUT: Temp register to free */
587 ){
588   u8 op = pVector->op;
589   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590   if( op==TK_REGISTER ){
591     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592     return pVector->iTable+iField;
593   }
594   if( op==TK_SELECT ){
595     assert( ExprUseXSelect(pVector) );
596     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597      return regSelect+iField;
598   }
599   if( op==TK_VECTOR ){
600     assert( ExprUseXList(pVector) );
601     *ppExpr = pVector->x.pList->a[iField].pExpr;
602     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
603   }
604   return 0;
605 }
606 
607 /*
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
611 **
612 ** The caller must satisfy the following preconditions:
613 **
614 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
615 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
616 **    otherwise:                op==pExpr->op and p5==0
617 */
618 static void codeVectorCompare(
619   Parse *pParse,        /* Code generator context */
620   Expr *pExpr,          /* The comparison operation */
621   int dest,             /* Write results into this register */
622   u8 op,                /* Comparison operator */
623   u8 p5                 /* SQLITE_NULLEQ or zero */
624 ){
625   Vdbe *v = pParse->pVdbe;
626   Expr *pLeft = pExpr->pLeft;
627   Expr *pRight = pExpr->pRight;
628   int nLeft = sqlite3ExprVectorSize(pLeft);
629   int i;
630   int regLeft = 0;
631   int regRight = 0;
632   u8 opx = op;
633   int addrCmp = 0;
634   int addrDone = sqlite3VdbeMakeLabel(pParse);
635   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
636 
637   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638   if( pParse->nErr ) return;
639   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640     sqlite3ErrorMsg(pParse, "row value misused");
641     return;
642   }
643   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645        || pExpr->op==TK_LT || pExpr->op==TK_GT
646        || pExpr->op==TK_LE || pExpr->op==TK_GE
647   );
648   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649             || (pExpr->op==TK_ISNOT && op==TK_NE) );
650   assert( p5==0 || pExpr->op!=op );
651   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
652 
653   if( op==TK_LE ) opx = TK_LT;
654   if( op==TK_GE ) opx = TK_GT;
655   if( op==TK_NE ) opx = TK_EQ;
656 
657   regLeft = exprCodeSubselect(pParse, pLeft);
658   regRight = exprCodeSubselect(pParse, pRight);
659 
660   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661   for(i=0; 1 /*Loop exits by "break"*/; i++){
662     int regFree1 = 0, regFree2 = 0;
663     Expr *pL = 0, *pR = 0;
664     int r1, r2;
665     assert( i>=0 && i<nLeft );
666     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669     addrCmp = sqlite3VdbeCurrentAddr(v);
670     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677     sqlite3ReleaseTempReg(pParse, regFree1);
678     sqlite3ReleaseTempReg(pParse, regFree2);
679     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
683     }
684     if( p5==SQLITE_NULLEQ ){
685       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686     }else{
687       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
688     }
689     if( i==nLeft-1 ){
690       break;
691     }
692     if( opx==TK_EQ ){
693       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694     }else{
695       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697       if( i==nLeft-2 ) opx = op;
698     }
699   }
700   sqlite3VdbeJumpHere(v, addrCmp);
701   sqlite3VdbeResolveLabel(v, addrDone);
702   if( op==TK_NE ){
703     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
704   }
705 }
706 
707 #if SQLITE_MAX_EXPR_DEPTH>0
708 /*
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
712 */
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714   int rc = SQLITE_OK;
715   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716   if( nHeight>mxHeight ){
717     sqlite3ErrorMsg(pParse,
718        "Expression tree is too large (maximum depth %d)", mxHeight
719     );
720     rc = SQLITE_ERROR;
721   }
722   return rc;
723 }
724 
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
729 **
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
733 */
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735   if( p ){
736     if( p->nHeight>*pnHeight ){
737       *pnHeight = p->nHeight;
738     }
739   }
740 }
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742   if( p ){
743     int i;
744     for(i=0; i<p->nExpr; i++){
745       heightOfExpr(p->a[i].pExpr, pnHeight);
746     }
747   }
748 }
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750   const Select *p;
751   for(p=pSelect; p; p=p->pPrior){
752     heightOfExpr(p->pWhere, pnHeight);
753     heightOfExpr(p->pHaving, pnHeight);
754     heightOfExpr(p->pLimit, pnHeight);
755     heightOfExprList(p->pEList, pnHeight);
756     heightOfExprList(p->pGroupBy, pnHeight);
757     heightOfExprList(p->pOrderBy, pnHeight);
758   }
759 }
760 
761 /*
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
767 **
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
770 */
771 static void exprSetHeight(Expr *p){
772   int nHeight = 0;
773   heightOfExpr(p->pLeft, &nHeight);
774   heightOfExpr(p->pRight, &nHeight);
775   if( ExprUseXSelect(p) ){
776     heightOfSelect(p->x.pSelect, &nHeight);
777   }else if( p->x.pList ){
778     heightOfExprList(p->x.pList, &nHeight);
779     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
780   }
781   p->nHeight = nHeight + 1;
782 }
783 
784 /*
785 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
786 ** the height is greater than the maximum allowed expression depth,
787 ** leave an error in pParse.
788 **
789 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
790 ** Expr.flags.
791 */
792 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
793   if( pParse->nErr ) return;
794   exprSetHeight(p);
795   sqlite3ExprCheckHeight(pParse, p->nHeight);
796 }
797 
798 /*
799 ** Return the maximum height of any expression tree referenced
800 ** by the select statement passed as an argument.
801 */
802 int sqlite3SelectExprHeight(const Select *p){
803   int nHeight = 0;
804   heightOfSelect(p, &nHeight);
805   return nHeight;
806 }
807 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
808 /*
809 ** Propagate all EP_Propagate flags from the Expr.x.pList into
810 ** Expr.flags.
811 */
812 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
813   if( pParse->nErr ) return;
814   if( p && ExprUseXList(p) && p->x.pList ){
815     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
816   }
817 }
818 #define exprSetHeight(y)
819 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
820 
821 /*
822 ** This routine is the core allocator for Expr nodes.
823 **
824 ** Construct a new expression node and return a pointer to it.  Memory
825 ** for this node and for the pToken argument is a single allocation
826 ** obtained from sqlite3DbMalloc().  The calling function
827 ** is responsible for making sure the node eventually gets freed.
828 **
829 ** If dequote is true, then the token (if it exists) is dequoted.
830 ** If dequote is false, no dequoting is performed.  The deQuote
831 ** parameter is ignored if pToken is NULL or if the token does not
832 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
833 ** then the EP_DblQuoted flag is set on the expression node.
834 **
835 ** Special case:  If op==TK_INTEGER and pToken points to a string that
836 ** can be translated into a 32-bit integer, then the token is not
837 ** stored in u.zToken.  Instead, the integer values is written
838 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
839 ** is allocated to hold the integer text and the dequote flag is ignored.
840 */
841 Expr *sqlite3ExprAlloc(
842   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
843   int op,                 /* Expression opcode */
844   const Token *pToken,    /* Token argument.  Might be NULL */
845   int dequote             /* True to dequote */
846 ){
847   Expr *pNew;
848   int nExtra = 0;
849   int iValue = 0;
850 
851   assert( db!=0 );
852   if( pToken ){
853     if( op!=TK_INTEGER || pToken->z==0
854           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
855       nExtra = pToken->n+1;
856       assert( iValue>=0 );
857     }
858   }
859   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
860   if( pNew ){
861     memset(pNew, 0, sizeof(Expr));
862     pNew->op = (u8)op;
863     pNew->iAgg = -1;
864     if( pToken ){
865       if( nExtra==0 ){
866         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
867         pNew->u.iValue = iValue;
868       }else{
869         pNew->u.zToken = (char*)&pNew[1];
870         assert( pToken->z!=0 || pToken->n==0 );
871         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
872         pNew->u.zToken[pToken->n] = 0;
873         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
874           sqlite3DequoteExpr(pNew);
875         }
876       }
877     }
878 #if SQLITE_MAX_EXPR_DEPTH>0
879     pNew->nHeight = 1;
880 #endif
881   }
882   return pNew;
883 }
884 
885 /*
886 ** Allocate a new expression node from a zero-terminated token that has
887 ** already been dequoted.
888 */
889 Expr *sqlite3Expr(
890   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
891   int op,                 /* Expression opcode */
892   const char *zToken      /* Token argument.  Might be NULL */
893 ){
894   Token x;
895   x.z = zToken;
896   x.n = sqlite3Strlen30(zToken);
897   return sqlite3ExprAlloc(db, op, &x, 0);
898 }
899 
900 /*
901 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
902 **
903 ** If pRoot==NULL that means that a memory allocation error has occurred.
904 ** In that case, delete the subtrees pLeft and pRight.
905 */
906 void sqlite3ExprAttachSubtrees(
907   sqlite3 *db,
908   Expr *pRoot,
909   Expr *pLeft,
910   Expr *pRight
911 ){
912   if( pRoot==0 ){
913     assert( db->mallocFailed );
914     sqlite3ExprDelete(db, pLeft);
915     sqlite3ExprDelete(db, pRight);
916   }else{
917     if( pRight ){
918       pRoot->pRight = pRight;
919       pRoot->flags |= EP_Propagate & pRight->flags;
920     }
921     if( pLeft ){
922       pRoot->pLeft = pLeft;
923       pRoot->flags |= EP_Propagate & pLeft->flags;
924     }
925     exprSetHeight(pRoot);
926   }
927 }
928 
929 /*
930 ** Allocate an Expr node which joins as many as two subtrees.
931 **
932 ** One or both of the subtrees can be NULL.  Return a pointer to the new
933 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
934 ** free the subtrees and return NULL.
935 */
936 Expr *sqlite3PExpr(
937   Parse *pParse,          /* Parsing context */
938   int op,                 /* Expression opcode */
939   Expr *pLeft,            /* Left operand */
940   Expr *pRight            /* Right operand */
941 ){
942   Expr *p;
943   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
944   if( p ){
945     memset(p, 0, sizeof(Expr));
946     p->op = op & 0xff;
947     p->iAgg = -1;
948     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
949     sqlite3ExprCheckHeight(pParse, p->nHeight);
950   }else{
951     sqlite3ExprDelete(pParse->db, pLeft);
952     sqlite3ExprDelete(pParse->db, pRight);
953   }
954   return p;
955 }
956 
957 /*
958 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
959 ** do a memory allocation failure) then delete the pSelect object.
960 */
961 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
962   if( pExpr ){
963     pExpr->x.pSelect = pSelect;
964     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
965     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
966   }else{
967     assert( pParse->db->mallocFailed );
968     sqlite3SelectDelete(pParse->db, pSelect);
969   }
970 }
971 
972 /*
973 ** Expression list pEList is a list of vector values. This function
974 ** converts the contents of pEList to a VALUES(...) Select statement
975 ** returning 1 row for each element of the list. For example, the
976 ** expression list:
977 **
978 **   ( (1,2), (3,4) (5,6) )
979 **
980 ** is translated to the equivalent of:
981 **
982 **   VALUES(1,2), (3,4), (5,6)
983 **
984 ** Each of the vector values in pEList must contain exactly nElem terms.
985 ** If a list element that is not a vector or does not contain nElem terms,
986 ** an error message is left in pParse.
987 **
988 ** This is used as part of processing IN(...) expressions with a list
989 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
990 */
991 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
992   int ii;
993   Select *pRet = 0;
994   assert( nElem>1 );
995   for(ii=0; ii<pEList->nExpr; ii++){
996     Select *pSel;
997     Expr *pExpr = pEList->a[ii].pExpr;
998     int nExprElem;
999     if( pExpr->op==TK_VECTOR ){
1000       assert( ExprUseXList(pExpr) );
1001       nExprElem = pExpr->x.pList->nExpr;
1002     }else{
1003       nExprElem = 1;
1004     }
1005     if( nExprElem!=nElem ){
1006       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1007           nExprElem, nExprElem>1?"s":"", nElem
1008       );
1009       break;
1010     }
1011     assert( ExprUseXList(pExpr) );
1012     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1013     pExpr->x.pList = 0;
1014     if( pSel ){
1015       if( pRet ){
1016         pSel->op = TK_ALL;
1017         pSel->pPrior = pRet;
1018       }
1019       pRet = pSel;
1020     }
1021   }
1022 
1023   if( pRet && pRet->pPrior ){
1024     pRet->selFlags |= SF_MultiValue;
1025   }
1026   sqlite3ExprListDelete(pParse->db, pEList);
1027   return pRet;
1028 }
1029 
1030 /*
1031 ** Join two expressions using an AND operator.  If either expression is
1032 ** NULL, then just return the other expression.
1033 **
1034 ** If one side or the other of the AND is known to be false, then instead
1035 ** of returning an AND expression, just return a constant expression with
1036 ** a value of false.
1037 */
1038 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1039   sqlite3 *db = pParse->db;
1040   if( pLeft==0  ){
1041     return pRight;
1042   }else if( pRight==0 ){
1043     return pLeft;
1044   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1045          && !IN_RENAME_OBJECT
1046   ){
1047     sqlite3ExprDeferredDelete(pParse, pLeft);
1048     sqlite3ExprDeferredDelete(pParse, pRight);
1049     return sqlite3Expr(db, TK_INTEGER, "0");
1050   }else{
1051     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1052   }
1053 }
1054 
1055 /*
1056 ** Construct a new expression node for a function with multiple
1057 ** arguments.
1058 */
1059 Expr *sqlite3ExprFunction(
1060   Parse *pParse,        /* Parsing context */
1061   ExprList *pList,      /* Argument list */
1062   const Token *pToken,  /* Name of the function */
1063   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1064 ){
1065   Expr *pNew;
1066   sqlite3 *db = pParse->db;
1067   assert( pToken );
1068   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1069   if( pNew==0 ){
1070     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1071     return 0;
1072   }
1073   if( pList
1074    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1075    && !pParse->nested
1076   ){
1077     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1078   }
1079   pNew->x.pList = pList;
1080   ExprSetProperty(pNew, EP_HasFunc);
1081   assert( ExprUseXList(pNew) );
1082   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1083   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1084   return pNew;
1085 }
1086 
1087 /*
1088 ** Check to see if a function is usable according to current access
1089 ** rules:
1090 **
1091 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1092 **
1093 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1094 **                                top-level SQL
1095 **
1096 ** If the function is not usable, create an error.
1097 */
1098 void sqlite3ExprFunctionUsable(
1099   Parse *pParse,         /* Parsing and code generating context */
1100   const Expr *pExpr,     /* The function invocation */
1101   const FuncDef *pDef    /* The function being invoked */
1102 ){
1103   assert( !IN_RENAME_OBJECT );
1104   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1105   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1106     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1107      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1108     ){
1109       /* Functions prohibited in triggers and views if:
1110       **     (1) tagged with SQLITE_DIRECTONLY
1111       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1112       **         is tagged with SQLITE_FUNC_UNSAFE) and
1113       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1114       **         that the schema is possibly tainted).
1115       */
1116       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1117     }
1118   }
1119 }
1120 
1121 /*
1122 ** Assign a variable number to an expression that encodes a wildcard
1123 ** in the original SQL statement.
1124 **
1125 ** Wildcards consisting of a single "?" are assigned the next sequential
1126 ** variable number.
1127 **
1128 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1129 ** sure "nnn" is not too big to avoid a denial of service attack when
1130 ** the SQL statement comes from an external source.
1131 **
1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1133 ** as the previous instance of the same wildcard.  Or if this is the first
1134 ** instance of the wildcard, the next sequential variable number is
1135 ** assigned.
1136 */
1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1138   sqlite3 *db = pParse->db;
1139   const char *z;
1140   ynVar x;
1141 
1142   if( pExpr==0 ) return;
1143   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1144   z = pExpr->u.zToken;
1145   assert( z!=0 );
1146   assert( z[0]!=0 );
1147   assert( n==(u32)sqlite3Strlen30(z) );
1148   if( z[1]==0 ){
1149     /* Wildcard of the form "?".  Assign the next variable number */
1150     assert( z[0]=='?' );
1151     x = (ynVar)(++pParse->nVar);
1152   }else{
1153     int doAdd = 0;
1154     if( z[0]=='?' ){
1155       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1156       ** use it as the variable number */
1157       i64 i;
1158       int bOk;
1159       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1160         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1161         bOk = 1;
1162       }else{
1163         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1164       }
1165       testcase( i==0 );
1166       testcase( i==1 );
1167       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1168       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1169       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1170         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1171             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1172         return;
1173       }
1174       x = (ynVar)i;
1175       if( x>pParse->nVar ){
1176         pParse->nVar = (int)x;
1177         doAdd = 1;
1178       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1179         doAdd = 1;
1180       }
1181     }else{
1182       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1183       ** number as the prior appearance of the same name, or if the name
1184       ** has never appeared before, reuse the same variable number
1185       */
1186       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1187       if( x==0 ){
1188         x = (ynVar)(++pParse->nVar);
1189         doAdd = 1;
1190       }
1191     }
1192     if( doAdd ){
1193       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1194     }
1195   }
1196   pExpr->iColumn = x;
1197   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1198     sqlite3ErrorMsg(pParse, "too many SQL variables");
1199   }
1200 }
1201 
1202 /*
1203 ** Recursively delete an expression tree.
1204 */
1205 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1206   assert( p!=0 );
1207   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1208   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1209   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1210   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1211 #ifdef SQLITE_DEBUG
1212   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1213     assert( p->pLeft==0 );
1214     assert( p->pRight==0 );
1215     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1216     assert( !ExprUseXList(p) || p->x.pList==0 );
1217   }
1218 #endif
1219   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1220     /* The Expr.x union is never used at the same time as Expr.pRight */
1221     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1222     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1223     if( p->pRight ){
1224       assert( !ExprHasProperty(p, EP_WinFunc) );
1225       sqlite3ExprDeleteNN(db, p->pRight);
1226     }else if( ExprUseXSelect(p) ){
1227       assert( !ExprHasProperty(p, EP_WinFunc) );
1228       sqlite3SelectDelete(db, p->x.pSelect);
1229     }else{
1230       sqlite3ExprListDelete(db, p->x.pList);
1231 #ifndef SQLITE_OMIT_WINDOWFUNC
1232       if( ExprHasProperty(p, EP_WinFunc) ){
1233         sqlite3WindowDelete(db, p->y.pWin);
1234       }
1235 #endif
1236     }
1237   }
1238   if( ExprHasProperty(p, EP_MemToken) ){
1239     assert( !ExprHasProperty(p, EP_IntValue) );
1240     sqlite3DbFree(db, p->u.zToken);
1241   }
1242   if( !ExprHasProperty(p, EP_Static) ){
1243     sqlite3DbFreeNN(db, p);
1244   }
1245 }
1246 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1247   if( p ) sqlite3ExprDeleteNN(db, p);
1248 }
1249 
1250 
1251 /*
1252 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1253 ** This is similar to sqlite3ExprDelete() except that the delete is
1254 ** deferred untilthe pParse is deleted.
1255 **
1256 ** The pExpr might be deleted immediately on an OOM error.
1257 **
1258 ** The deferred delete is (currently) implemented by adding the
1259 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1260 */
1261 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1262   pParse->pConstExpr =
1263       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1264 }
1265 
1266 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1267 ** expression.
1268 */
1269 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1270   if( p ){
1271     if( IN_RENAME_OBJECT ){
1272       sqlite3RenameExprUnmap(pParse, p);
1273     }
1274     sqlite3ExprDeleteNN(pParse->db, p);
1275   }
1276 }
1277 
1278 /*
1279 ** Return the number of bytes allocated for the expression structure
1280 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1281 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1282 */
1283 static int exprStructSize(const Expr *p){
1284   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1285   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1286   return EXPR_FULLSIZE;
1287 }
1288 
1289 /*
1290 ** The dupedExpr*Size() routines each return the number of bytes required
1291 ** to store a copy of an expression or expression tree.  They differ in
1292 ** how much of the tree is measured.
1293 **
1294 **     dupedExprStructSize()     Size of only the Expr structure
1295 **     dupedExprNodeSize()       Size of Expr + space for token
1296 **     dupedExprSize()           Expr + token + subtree components
1297 **
1298 ***************************************************************************
1299 **
1300 ** The dupedExprStructSize() function returns two values OR-ed together:
1301 ** (1) the space required for a copy of the Expr structure only and
1302 ** (2) the EP_xxx flags that indicate what the structure size should be.
1303 ** The return values is always one of:
1304 **
1305 **      EXPR_FULLSIZE
1306 **      EXPR_REDUCEDSIZE   | EP_Reduced
1307 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1308 **
1309 ** The size of the structure can be found by masking the return value
1310 ** of this routine with 0xfff.  The flags can be found by masking the
1311 ** return value with EP_Reduced|EP_TokenOnly.
1312 **
1313 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1314 ** (unreduced) Expr objects as they or originally constructed by the parser.
1315 ** During expression analysis, extra information is computed and moved into
1316 ** later parts of the Expr object and that extra information might get chopped
1317 ** off if the expression is reduced.  Note also that it does not work to
1318 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1319 ** to reduce a pristine expression tree from the parser.  The implementation
1320 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1321 ** to enforce this constraint.
1322 */
1323 static int dupedExprStructSize(const Expr *p, int flags){
1324   int nSize;
1325   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1326   assert( EXPR_FULLSIZE<=0xfff );
1327   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1328   if( 0==flags || p->op==TK_SELECT_COLUMN
1329 #ifndef SQLITE_OMIT_WINDOWFUNC
1330    || ExprHasProperty(p, EP_WinFunc)
1331 #endif
1332   ){
1333     nSize = EXPR_FULLSIZE;
1334   }else{
1335     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1336     assert( !ExprHasProperty(p, EP_FromJoin) );
1337     assert( !ExprHasProperty(p, EP_MemToken) );
1338     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1339     if( p->pLeft || p->x.pList ){
1340       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1341     }else{
1342       assert( p->pRight==0 );
1343       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1344     }
1345   }
1346   return nSize;
1347 }
1348 
1349 /*
1350 ** This function returns the space in bytes required to store the copy
1351 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1352 ** string is defined.)
1353 */
1354 static int dupedExprNodeSize(const Expr *p, int flags){
1355   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1356   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1357     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1358   }
1359   return ROUND8(nByte);
1360 }
1361 
1362 /*
1363 ** Return the number of bytes required to create a duplicate of the
1364 ** expression passed as the first argument. The second argument is a
1365 ** mask containing EXPRDUP_XXX flags.
1366 **
1367 ** The value returned includes space to create a copy of the Expr struct
1368 ** itself and the buffer referred to by Expr.u.zToken, if any.
1369 **
1370 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1371 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1372 ** and Expr.pRight variables (but not for any structures pointed to or
1373 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1374 */
1375 static int dupedExprSize(const Expr *p, int flags){
1376   int nByte = 0;
1377   if( p ){
1378     nByte = dupedExprNodeSize(p, flags);
1379     if( flags&EXPRDUP_REDUCE ){
1380       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1381     }
1382   }
1383   return nByte;
1384 }
1385 
1386 /*
1387 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1388 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1389 ** to store the copy of expression p, the copies of p->u.zToken
1390 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1391 ** if any. Before returning, *pzBuffer is set to the first byte past the
1392 ** portion of the buffer copied into by this function.
1393 */
1394 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1395   Expr *pNew;           /* Value to return */
1396   u8 *zAlloc;           /* Memory space from which to build Expr object */
1397   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1398 
1399   assert( db!=0 );
1400   assert( p );
1401   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1402   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1403 
1404   /* Figure out where to write the new Expr structure. */
1405   if( pzBuffer ){
1406     zAlloc = *pzBuffer;
1407     staticFlag = EP_Static;
1408     assert( zAlloc!=0 );
1409   }else{
1410     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1411     staticFlag = 0;
1412   }
1413   pNew = (Expr *)zAlloc;
1414 
1415   if( pNew ){
1416     /* Set nNewSize to the size allocated for the structure pointed to
1417     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1418     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1419     ** by the copy of the p->u.zToken string (if any).
1420     */
1421     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1422     const int nNewSize = nStructSize & 0xfff;
1423     int nToken;
1424     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1425       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1426     }else{
1427       nToken = 0;
1428     }
1429     if( dupFlags ){
1430       assert( ExprHasProperty(p, EP_Reduced)==0 );
1431       memcpy(zAlloc, p, nNewSize);
1432     }else{
1433       u32 nSize = (u32)exprStructSize(p);
1434       memcpy(zAlloc, p, nSize);
1435       if( nSize<EXPR_FULLSIZE ){
1436         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1437       }
1438     }
1439 
1440     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1441     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1442     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1443     pNew->flags |= staticFlag;
1444     ExprClearVVAProperties(pNew);
1445     if( dupFlags ){
1446       ExprSetVVAProperty(pNew, EP_Immutable);
1447     }
1448 
1449     /* Copy the p->u.zToken string, if any. */
1450     if( nToken ){
1451       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1452       memcpy(zToken, p->u.zToken, nToken);
1453     }
1454 
1455     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1456       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1457       if( ExprUseXSelect(p) ){
1458         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1459       }else{
1460         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1461       }
1462     }
1463 
1464     /* Fill in pNew->pLeft and pNew->pRight. */
1465     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1466       zAlloc += dupedExprNodeSize(p, dupFlags);
1467       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1468         pNew->pLeft = p->pLeft ?
1469                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1470         pNew->pRight = p->pRight ?
1471                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1472       }
1473 #ifndef SQLITE_OMIT_WINDOWFUNC
1474       if( ExprHasProperty(p, EP_WinFunc) ){
1475         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1476         assert( ExprHasProperty(pNew, EP_WinFunc) );
1477       }
1478 #endif /* SQLITE_OMIT_WINDOWFUNC */
1479       if( pzBuffer ){
1480         *pzBuffer = zAlloc;
1481       }
1482     }else{
1483       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1484         if( pNew->op==TK_SELECT_COLUMN ){
1485           pNew->pLeft = p->pLeft;
1486           assert( p->pRight==0  || p->pRight==p->pLeft
1487                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1488         }else{
1489           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1490         }
1491         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1492       }
1493     }
1494   }
1495   return pNew;
1496 }
1497 
1498 /*
1499 ** Create and return a deep copy of the object passed as the second
1500 ** argument. If an OOM condition is encountered, NULL is returned
1501 ** and the db->mallocFailed flag set.
1502 */
1503 #ifndef SQLITE_OMIT_CTE
1504 With *sqlite3WithDup(sqlite3 *db, With *p){
1505   With *pRet = 0;
1506   if( p ){
1507     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1508     pRet = sqlite3DbMallocZero(db, nByte);
1509     if( pRet ){
1510       int i;
1511       pRet->nCte = p->nCte;
1512       for(i=0; i<p->nCte; i++){
1513         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1514         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1515         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1516       }
1517     }
1518   }
1519   return pRet;
1520 }
1521 #else
1522 # define sqlite3WithDup(x,y) 0
1523 #endif
1524 
1525 #ifndef SQLITE_OMIT_WINDOWFUNC
1526 /*
1527 ** The gatherSelectWindows() procedure and its helper routine
1528 ** gatherSelectWindowsCallback() are used to scan all the expressions
1529 ** an a newly duplicated SELECT statement and gather all of the Window
1530 ** objects found there, assembling them onto the linked list at Select->pWin.
1531 */
1532 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1533   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1534     Select *pSelect = pWalker->u.pSelect;
1535     Window *pWin = pExpr->y.pWin;
1536     assert( pWin );
1537     assert( IsWindowFunc(pExpr) );
1538     assert( pWin->ppThis==0 );
1539     sqlite3WindowLink(pSelect, pWin);
1540   }
1541   return WRC_Continue;
1542 }
1543 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1544   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1545 }
1546 static void gatherSelectWindows(Select *p){
1547   Walker w;
1548   w.xExprCallback = gatherSelectWindowsCallback;
1549   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1550   w.xSelectCallback2 = 0;
1551   w.pParse = 0;
1552   w.u.pSelect = p;
1553   sqlite3WalkSelect(&w, p);
1554 }
1555 #endif
1556 
1557 
1558 /*
1559 ** The following group of routines make deep copies of expressions,
1560 ** expression lists, ID lists, and select statements.  The copies can
1561 ** be deleted (by being passed to their respective ...Delete() routines)
1562 ** without effecting the originals.
1563 **
1564 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1565 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1566 ** by subsequent calls to sqlite*ListAppend() routines.
1567 **
1568 ** Any tables that the SrcList might point to are not duplicated.
1569 **
1570 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1571 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1572 ** truncated version of the usual Expr structure that will be stored as
1573 ** part of the in-memory representation of the database schema.
1574 */
1575 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1576   assert( flags==0 || flags==EXPRDUP_REDUCE );
1577   return p ? exprDup(db, p, flags, 0) : 0;
1578 }
1579 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1580   ExprList *pNew;
1581   struct ExprList_item *pItem;
1582   const struct ExprList_item *pOldItem;
1583   int i;
1584   Expr *pPriorSelectColOld = 0;
1585   Expr *pPriorSelectColNew = 0;
1586   assert( db!=0 );
1587   if( p==0 ) return 0;
1588   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1589   if( pNew==0 ) return 0;
1590   pNew->nExpr = p->nExpr;
1591   pNew->nAlloc = p->nAlloc;
1592   pItem = pNew->a;
1593   pOldItem = p->a;
1594   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1595     Expr *pOldExpr = pOldItem->pExpr;
1596     Expr *pNewExpr;
1597     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1598     if( pOldExpr
1599      && pOldExpr->op==TK_SELECT_COLUMN
1600      && (pNewExpr = pItem->pExpr)!=0
1601     ){
1602       if( pNewExpr->pRight ){
1603         pPriorSelectColOld = pOldExpr->pRight;
1604         pPriorSelectColNew = pNewExpr->pRight;
1605         pNewExpr->pLeft = pNewExpr->pRight;
1606       }else{
1607         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1608           pPriorSelectColOld = pOldExpr->pLeft;
1609           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1610           pNewExpr->pRight = pPriorSelectColNew;
1611         }
1612         pNewExpr->pLeft = pPriorSelectColNew;
1613       }
1614     }
1615     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1616     pItem->sortFlags = pOldItem->sortFlags;
1617     pItem->eEName = pOldItem->eEName;
1618     pItem->done = 0;
1619     pItem->bNulls = pOldItem->bNulls;
1620     pItem->bSorterRef = pOldItem->bSorterRef;
1621     pItem->u = pOldItem->u;
1622   }
1623   return pNew;
1624 }
1625 
1626 /*
1627 ** If cursors, triggers, views and subqueries are all omitted from
1628 ** the build, then none of the following routines, except for
1629 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1630 ** called with a NULL argument.
1631 */
1632 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1633  || !defined(SQLITE_OMIT_SUBQUERY)
1634 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1635   SrcList *pNew;
1636   int i;
1637   int nByte;
1638   assert( db!=0 );
1639   if( p==0 ) return 0;
1640   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1641   pNew = sqlite3DbMallocRawNN(db, nByte );
1642   if( pNew==0 ) return 0;
1643   pNew->nSrc = pNew->nAlloc = p->nSrc;
1644   for(i=0; i<p->nSrc; i++){
1645     SrcItem *pNewItem = &pNew->a[i];
1646     const SrcItem *pOldItem = &p->a[i];
1647     Table *pTab;
1648     pNewItem->pSchema = pOldItem->pSchema;
1649     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1650     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1651     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1652     pNewItem->fg = pOldItem->fg;
1653     pNewItem->iCursor = pOldItem->iCursor;
1654     pNewItem->addrFillSub = pOldItem->addrFillSub;
1655     pNewItem->regReturn = pOldItem->regReturn;
1656     if( pNewItem->fg.isIndexedBy ){
1657       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1658     }
1659     pNewItem->u2 = pOldItem->u2;
1660     if( pNewItem->fg.isCte ){
1661       pNewItem->u2.pCteUse->nUse++;
1662     }
1663     if( pNewItem->fg.isTabFunc ){
1664       pNewItem->u1.pFuncArg =
1665           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1666     }
1667     pTab = pNewItem->pTab = pOldItem->pTab;
1668     if( pTab ){
1669       pTab->nTabRef++;
1670     }
1671     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1672     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1673     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1674     pNewItem->colUsed = pOldItem->colUsed;
1675   }
1676   return pNew;
1677 }
1678 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1679   IdList *pNew;
1680   int i;
1681   assert( db!=0 );
1682   if( p==0 ) return 0;
1683   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1684   if( pNew==0 ) return 0;
1685   pNew->nId = p->nId;
1686   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1687   if( pNew->a==0 ){
1688     sqlite3DbFreeNN(db, pNew);
1689     return 0;
1690   }
1691   /* Note that because the size of the allocation for p->a[] is not
1692   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1693   ** on the duplicate created by this function. */
1694   for(i=0; i<p->nId; i++){
1695     struct IdList_item *pNewItem = &pNew->a[i];
1696     struct IdList_item *pOldItem = &p->a[i];
1697     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1698     pNewItem->idx = pOldItem->idx;
1699   }
1700   return pNew;
1701 }
1702 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1703   Select *pRet = 0;
1704   Select *pNext = 0;
1705   Select **pp = &pRet;
1706   const Select *p;
1707 
1708   assert( db!=0 );
1709   for(p=pDup; p; p=p->pPrior){
1710     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1711     if( pNew==0 ) break;
1712     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1713     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1714     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1715     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1716     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1717     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1718     pNew->op = p->op;
1719     pNew->pNext = pNext;
1720     pNew->pPrior = 0;
1721     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1722     pNew->iLimit = 0;
1723     pNew->iOffset = 0;
1724     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1725     pNew->addrOpenEphm[0] = -1;
1726     pNew->addrOpenEphm[1] = -1;
1727     pNew->nSelectRow = p->nSelectRow;
1728     pNew->pWith = sqlite3WithDup(db, p->pWith);
1729 #ifndef SQLITE_OMIT_WINDOWFUNC
1730     pNew->pWin = 0;
1731     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1732     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1733 #endif
1734     pNew->selId = p->selId;
1735     if( db->mallocFailed ){
1736       /* Any prior OOM might have left the Select object incomplete.
1737       ** Delete the whole thing rather than allow an incomplete Select
1738       ** to be used by the code generator. */
1739       pNew->pNext = 0;
1740       sqlite3SelectDelete(db, pNew);
1741       break;
1742     }
1743     *pp = pNew;
1744     pp = &pNew->pPrior;
1745     pNext = pNew;
1746   }
1747 
1748   return pRet;
1749 }
1750 #else
1751 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1752   assert( p==0 );
1753   return 0;
1754 }
1755 #endif
1756 
1757 
1758 /*
1759 ** Add a new element to the end of an expression list.  If pList is
1760 ** initially NULL, then create a new expression list.
1761 **
1762 ** The pList argument must be either NULL or a pointer to an ExprList
1763 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1764 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1765 ** Reason:  This routine assumes that the number of slots in pList->a[]
1766 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1767 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1768 **
1769 ** If a memory allocation error occurs, the entire list is freed and
1770 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1771 ** that the new entry was successfully appended.
1772 */
1773 static const struct ExprList_item zeroItem = {0};
1774 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1775   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1776   Expr *pExpr             /* Expression to be appended. Might be NULL */
1777 ){
1778   struct ExprList_item *pItem;
1779   ExprList *pList;
1780 
1781   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1782   if( pList==0 ){
1783     sqlite3ExprDelete(db, pExpr);
1784     return 0;
1785   }
1786   pList->nAlloc = 4;
1787   pList->nExpr = 1;
1788   pItem = &pList->a[0];
1789   *pItem = zeroItem;
1790   pItem->pExpr = pExpr;
1791   return pList;
1792 }
1793 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1794   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1795   ExprList *pList,        /* List to which to append. Might be NULL */
1796   Expr *pExpr             /* Expression to be appended. Might be NULL */
1797 ){
1798   struct ExprList_item *pItem;
1799   ExprList *pNew;
1800   pList->nAlloc *= 2;
1801   pNew = sqlite3DbRealloc(db, pList,
1802        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1803   if( pNew==0 ){
1804     sqlite3ExprListDelete(db, pList);
1805     sqlite3ExprDelete(db, pExpr);
1806     return 0;
1807   }else{
1808     pList = pNew;
1809   }
1810   pItem = &pList->a[pList->nExpr++];
1811   *pItem = zeroItem;
1812   pItem->pExpr = pExpr;
1813   return pList;
1814 }
1815 ExprList *sqlite3ExprListAppend(
1816   Parse *pParse,          /* Parsing context */
1817   ExprList *pList,        /* List to which to append. Might be NULL */
1818   Expr *pExpr             /* Expression to be appended. Might be NULL */
1819 ){
1820   struct ExprList_item *pItem;
1821   if( pList==0 ){
1822     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1823   }
1824   if( pList->nAlloc<pList->nExpr+1 ){
1825     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1826   }
1827   pItem = &pList->a[pList->nExpr++];
1828   *pItem = zeroItem;
1829   pItem->pExpr = pExpr;
1830   return pList;
1831 }
1832 
1833 /*
1834 ** pColumns and pExpr form a vector assignment which is part of the SET
1835 ** clause of an UPDATE statement.  Like this:
1836 **
1837 **        (a,b,c) = (expr1,expr2,expr3)
1838 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1839 **
1840 ** For each term of the vector assignment, append new entries to the
1841 ** expression list pList.  In the case of a subquery on the RHS, append
1842 ** TK_SELECT_COLUMN expressions.
1843 */
1844 ExprList *sqlite3ExprListAppendVector(
1845   Parse *pParse,         /* Parsing context */
1846   ExprList *pList,       /* List to which to append. Might be NULL */
1847   IdList *pColumns,      /* List of names of LHS of the assignment */
1848   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1849 ){
1850   sqlite3 *db = pParse->db;
1851   int n;
1852   int i;
1853   int iFirst = pList ? pList->nExpr : 0;
1854   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1855   ** exit prior to this routine being invoked */
1856   if( NEVER(pColumns==0) ) goto vector_append_error;
1857   if( pExpr==0 ) goto vector_append_error;
1858 
1859   /* If the RHS is a vector, then we can immediately check to see that
1860   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1861   ** wildcards ("*") in the result set of the SELECT must be expanded before
1862   ** we can do the size check, so defer the size check until code generation.
1863   */
1864   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1865     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1866                     pColumns->nId, n);
1867     goto vector_append_error;
1868   }
1869 
1870   for(i=0; i<pColumns->nId; i++){
1871     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1872     assert( pSubExpr!=0 || db->mallocFailed );
1873     if( pSubExpr==0 ) continue;
1874     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1875     if( pList ){
1876       assert( pList->nExpr==iFirst+i+1 );
1877       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1878       pColumns->a[i].zName = 0;
1879     }
1880   }
1881 
1882   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1883     Expr *pFirst = pList->a[iFirst].pExpr;
1884     assert( pFirst!=0 );
1885     assert( pFirst->op==TK_SELECT_COLUMN );
1886 
1887     /* Store the SELECT statement in pRight so it will be deleted when
1888     ** sqlite3ExprListDelete() is called */
1889     pFirst->pRight = pExpr;
1890     pExpr = 0;
1891 
1892     /* Remember the size of the LHS in iTable so that we can check that
1893     ** the RHS and LHS sizes match during code generation. */
1894     pFirst->iTable = pColumns->nId;
1895   }
1896 
1897 vector_append_error:
1898   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1899   sqlite3IdListDelete(db, pColumns);
1900   return pList;
1901 }
1902 
1903 /*
1904 ** Set the sort order for the last element on the given ExprList.
1905 */
1906 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1907   struct ExprList_item *pItem;
1908   if( p==0 ) return;
1909   assert( p->nExpr>0 );
1910 
1911   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1912   assert( iSortOrder==SQLITE_SO_UNDEFINED
1913        || iSortOrder==SQLITE_SO_ASC
1914        || iSortOrder==SQLITE_SO_DESC
1915   );
1916   assert( eNulls==SQLITE_SO_UNDEFINED
1917        || eNulls==SQLITE_SO_ASC
1918        || eNulls==SQLITE_SO_DESC
1919   );
1920 
1921   pItem = &p->a[p->nExpr-1];
1922   assert( pItem->bNulls==0 );
1923   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1924     iSortOrder = SQLITE_SO_ASC;
1925   }
1926   pItem->sortFlags = (u8)iSortOrder;
1927 
1928   if( eNulls!=SQLITE_SO_UNDEFINED ){
1929     pItem->bNulls = 1;
1930     if( iSortOrder!=eNulls ){
1931       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1932     }
1933   }
1934 }
1935 
1936 /*
1937 ** Set the ExprList.a[].zEName element of the most recently added item
1938 ** on the expression list.
1939 **
1940 ** pList might be NULL following an OOM error.  But pName should never be
1941 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1942 ** is set.
1943 */
1944 void sqlite3ExprListSetName(
1945   Parse *pParse,          /* Parsing context */
1946   ExprList *pList,        /* List to which to add the span. */
1947   const Token *pName,     /* Name to be added */
1948   int dequote             /* True to cause the name to be dequoted */
1949 ){
1950   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1951   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1952   if( pList ){
1953     struct ExprList_item *pItem;
1954     assert( pList->nExpr>0 );
1955     pItem = &pList->a[pList->nExpr-1];
1956     assert( pItem->zEName==0 );
1957     assert( pItem->eEName==ENAME_NAME );
1958     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1959     if( dequote ){
1960       /* If dequote==0, then pName->z does not point to part of a DDL
1961       ** statement handled by the parser. And so no token need be added
1962       ** to the token-map.  */
1963       sqlite3Dequote(pItem->zEName);
1964       if( IN_RENAME_OBJECT ){
1965         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1966       }
1967     }
1968   }
1969 }
1970 
1971 /*
1972 ** Set the ExprList.a[].zSpan element of the most recently added item
1973 ** on the expression list.
1974 **
1975 ** pList might be NULL following an OOM error.  But pSpan should never be
1976 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1977 ** is set.
1978 */
1979 void sqlite3ExprListSetSpan(
1980   Parse *pParse,          /* Parsing context */
1981   ExprList *pList,        /* List to which to add the span. */
1982   const char *zStart,     /* Start of the span */
1983   const char *zEnd        /* End of the span */
1984 ){
1985   sqlite3 *db = pParse->db;
1986   assert( pList!=0 || db->mallocFailed!=0 );
1987   if( pList ){
1988     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1989     assert( pList->nExpr>0 );
1990     if( pItem->zEName==0 ){
1991       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1992       pItem->eEName = ENAME_SPAN;
1993     }
1994   }
1995 }
1996 
1997 /*
1998 ** If the expression list pEList contains more than iLimit elements,
1999 ** leave an error message in pParse.
2000 */
2001 void sqlite3ExprListCheckLength(
2002   Parse *pParse,
2003   ExprList *pEList,
2004   const char *zObject
2005 ){
2006   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2007   testcase( pEList && pEList->nExpr==mx );
2008   testcase( pEList && pEList->nExpr==mx+1 );
2009   if( pEList && pEList->nExpr>mx ){
2010     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2011   }
2012 }
2013 
2014 /*
2015 ** Delete an entire expression list.
2016 */
2017 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2018   int i = pList->nExpr;
2019   struct ExprList_item *pItem =  pList->a;
2020   assert( pList->nExpr>0 );
2021   do{
2022     sqlite3ExprDelete(db, pItem->pExpr);
2023     sqlite3DbFree(db, pItem->zEName);
2024     pItem++;
2025   }while( --i>0 );
2026   sqlite3DbFreeNN(db, pList);
2027 }
2028 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2029   if( pList ) exprListDeleteNN(db, pList);
2030 }
2031 
2032 /*
2033 ** Return the bitwise-OR of all Expr.flags fields in the given
2034 ** ExprList.
2035 */
2036 u32 sqlite3ExprListFlags(const ExprList *pList){
2037   int i;
2038   u32 m = 0;
2039   assert( pList!=0 );
2040   for(i=0; i<pList->nExpr; i++){
2041      Expr *pExpr = pList->a[i].pExpr;
2042      assert( pExpr!=0 );
2043      m |= pExpr->flags;
2044   }
2045   return m;
2046 }
2047 
2048 /*
2049 ** This is a SELECT-node callback for the expression walker that
2050 ** always "fails".  By "fail" in this case, we mean set
2051 ** pWalker->eCode to zero and abort.
2052 **
2053 ** This callback is used by multiple expression walkers.
2054 */
2055 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2056   UNUSED_PARAMETER(NotUsed);
2057   pWalker->eCode = 0;
2058   return WRC_Abort;
2059 }
2060 
2061 /*
2062 ** Check the input string to see if it is "true" or "false" (in any case).
2063 **
2064 **       If the string is....           Return
2065 **         "true"                         EP_IsTrue
2066 **         "false"                        EP_IsFalse
2067 **         anything else                  0
2068 */
2069 u32 sqlite3IsTrueOrFalse(const char *zIn){
2070   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2071   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2072   return 0;
2073 }
2074 
2075 
2076 /*
2077 ** If the input expression is an ID with the name "true" or "false"
2078 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2079 ** the conversion happened, and zero if the expression is unaltered.
2080 */
2081 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2082   u32 v;
2083   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2084   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2085    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2086   ){
2087     pExpr->op = TK_TRUEFALSE;
2088     ExprSetProperty(pExpr, v);
2089     return 1;
2090   }
2091   return 0;
2092 }
2093 
2094 /*
2095 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2096 ** and 0 if it is FALSE.
2097 */
2098 int sqlite3ExprTruthValue(const Expr *pExpr){
2099   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2100   assert( pExpr->op==TK_TRUEFALSE );
2101   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2102   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2103        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2104   return pExpr->u.zToken[4]==0;
2105 }
2106 
2107 /*
2108 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2109 ** terms that are always true or false.  Return the simplified expression.
2110 ** Or return the original expression if no simplification is possible.
2111 **
2112 ** Examples:
2113 **
2114 **     (x<10) AND true                =>   (x<10)
2115 **     (x<10) AND false               =>   false
2116 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2117 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2118 **     (y=22) OR true                 =>   true
2119 */
2120 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2121   assert( pExpr!=0 );
2122   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2123     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2124     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2125     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2126       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2127     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2128       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2129     }
2130   }
2131   return pExpr;
2132 }
2133 
2134 
2135 /*
2136 ** These routines are Walker callbacks used to check expressions to
2137 ** see if they are "constant" for some definition of constant.  The
2138 ** Walker.eCode value determines the type of "constant" we are looking
2139 ** for.
2140 **
2141 ** These callback routines are used to implement the following:
2142 **
2143 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2144 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2145 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2146 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2147 **
2148 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2149 ** is found to not be a constant.
2150 **
2151 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2152 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2153 ** when parsing an existing schema out of the sqlite_schema table and 4
2154 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2155 ** an error for new statements, but is silently converted
2156 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2157 ** contain a bound parameter because they were generated by older versions
2158 ** of SQLite to be parsed by newer versions of SQLite without raising a
2159 ** malformed schema error.
2160 */
2161 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2162 
2163   /* If pWalker->eCode is 2 then any term of the expression that comes from
2164   ** the ON or USING clauses of a left join disqualifies the expression
2165   ** from being considered constant. */
2166   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2167     pWalker->eCode = 0;
2168     return WRC_Abort;
2169   }
2170 
2171   switch( pExpr->op ){
2172     /* Consider functions to be constant if all their arguments are constant
2173     ** and either pWalker->eCode==4 or 5 or the function has the
2174     ** SQLITE_FUNC_CONST flag. */
2175     case TK_FUNCTION:
2176       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2177        && !ExprHasProperty(pExpr, EP_WinFunc)
2178       ){
2179         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2180         return WRC_Continue;
2181       }else{
2182         pWalker->eCode = 0;
2183         return WRC_Abort;
2184       }
2185     case TK_ID:
2186       /* Convert "true" or "false" in a DEFAULT clause into the
2187       ** appropriate TK_TRUEFALSE operator */
2188       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2189         return WRC_Prune;
2190       }
2191       /* no break */ deliberate_fall_through
2192     case TK_COLUMN:
2193     case TK_AGG_FUNCTION:
2194     case TK_AGG_COLUMN:
2195       testcase( pExpr->op==TK_ID );
2196       testcase( pExpr->op==TK_COLUMN );
2197       testcase( pExpr->op==TK_AGG_FUNCTION );
2198       testcase( pExpr->op==TK_AGG_COLUMN );
2199       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2200         return WRC_Continue;
2201       }
2202       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2203         return WRC_Continue;
2204       }
2205       /* no break */ deliberate_fall_through
2206     case TK_IF_NULL_ROW:
2207     case TK_REGISTER:
2208     case TK_DOT:
2209       testcase( pExpr->op==TK_REGISTER );
2210       testcase( pExpr->op==TK_IF_NULL_ROW );
2211       testcase( pExpr->op==TK_DOT );
2212       pWalker->eCode = 0;
2213       return WRC_Abort;
2214     case TK_VARIABLE:
2215       if( pWalker->eCode==5 ){
2216         /* Silently convert bound parameters that appear inside of CREATE
2217         ** statements into a NULL when parsing the CREATE statement text out
2218         ** of the sqlite_schema table */
2219         pExpr->op = TK_NULL;
2220       }else if( pWalker->eCode==4 ){
2221         /* A bound parameter in a CREATE statement that originates from
2222         ** sqlite3_prepare() causes an error */
2223         pWalker->eCode = 0;
2224         return WRC_Abort;
2225       }
2226       /* no break */ deliberate_fall_through
2227     default:
2228       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2229       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2230       return WRC_Continue;
2231   }
2232 }
2233 static int exprIsConst(Expr *p, int initFlag, int iCur){
2234   Walker w;
2235   w.eCode = initFlag;
2236   w.xExprCallback = exprNodeIsConstant;
2237   w.xSelectCallback = sqlite3SelectWalkFail;
2238 #ifdef SQLITE_DEBUG
2239   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2240 #endif
2241   w.u.iCur = iCur;
2242   sqlite3WalkExpr(&w, p);
2243   return w.eCode;
2244 }
2245 
2246 /*
2247 ** Walk an expression tree.  Return non-zero if the expression is constant
2248 ** and 0 if it involves variables or function calls.
2249 **
2250 ** For the purposes of this function, a double-quoted string (ex: "abc")
2251 ** is considered a variable but a single-quoted string (ex: 'abc') is
2252 ** a constant.
2253 */
2254 int sqlite3ExprIsConstant(Expr *p){
2255   return exprIsConst(p, 1, 0);
2256 }
2257 
2258 /*
2259 ** Walk an expression tree.  Return non-zero if
2260 **
2261 **   (1) the expression is constant, and
2262 **   (2) the expression does originate in the ON or USING clause
2263 **       of a LEFT JOIN, and
2264 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2265 **       operands created by the constant propagation optimization.
2266 **
2267 ** When this routine returns true, it indicates that the expression
2268 ** can be added to the pParse->pConstExpr list and evaluated once when
2269 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2270 */
2271 int sqlite3ExprIsConstantNotJoin(Expr *p){
2272   return exprIsConst(p, 2, 0);
2273 }
2274 
2275 /*
2276 ** Walk an expression tree.  Return non-zero if the expression is constant
2277 ** for any single row of the table with cursor iCur.  In other words, the
2278 ** expression must not refer to any non-deterministic function nor any
2279 ** table other than iCur.
2280 */
2281 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2282   return exprIsConst(p, 3, iCur);
2283 }
2284 
2285 
2286 /*
2287 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2288 */
2289 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2290   ExprList *pGroupBy = pWalker->u.pGroupBy;
2291   int i;
2292 
2293   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2294   ** it constant.  */
2295   for(i=0; i<pGroupBy->nExpr; i++){
2296     Expr *p = pGroupBy->a[i].pExpr;
2297     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2298       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2299       if( sqlite3IsBinary(pColl) ){
2300         return WRC_Prune;
2301       }
2302     }
2303   }
2304 
2305   /* Check if pExpr is a sub-select. If so, consider it variable. */
2306   if( ExprUseXSelect(pExpr) ){
2307     pWalker->eCode = 0;
2308     return WRC_Abort;
2309   }
2310 
2311   return exprNodeIsConstant(pWalker, pExpr);
2312 }
2313 
2314 /*
2315 ** Walk the expression tree passed as the first argument. Return non-zero
2316 ** if the expression consists entirely of constants or copies of terms
2317 ** in pGroupBy that sort with the BINARY collation sequence.
2318 **
2319 ** This routine is used to determine if a term of the HAVING clause can
2320 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2321 ** the value of the HAVING clause term must be the same for all members of
2322 ** a "group".  The requirement that the GROUP BY term must be BINARY
2323 ** assumes that no other collating sequence will have a finer-grained
2324 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2325 ** A=B in every other collating sequence.  The requirement that the
2326 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2327 ** to promote HAVING clauses that use the same alternative collating
2328 ** sequence as the GROUP BY term, but that is much harder to check,
2329 ** alternative collating sequences are uncommon, and this is only an
2330 ** optimization, so we take the easy way out and simply require the
2331 ** GROUP BY to use the BINARY collating sequence.
2332 */
2333 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2334   Walker w;
2335   w.eCode = 1;
2336   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2337   w.xSelectCallback = 0;
2338   w.u.pGroupBy = pGroupBy;
2339   w.pParse = pParse;
2340   sqlite3WalkExpr(&w, p);
2341   return w.eCode;
2342 }
2343 
2344 /*
2345 ** Walk an expression tree for the DEFAULT field of a column definition
2346 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2347 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2348 ** the expression is constant or a function call with constant arguments.
2349 ** Return and 0 if there are any variables.
2350 **
2351 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2352 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2353 ** (such as ? or $abc) in the expression are converted into NULL.  When
2354 ** isInit is false, parameters raise an error.  Parameters should not be
2355 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2356 ** allowed it, so we need to support it when reading sqlite_schema for
2357 ** backwards compatibility.
2358 **
2359 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2360 **
2361 ** For the purposes of this function, a double-quoted string (ex: "abc")
2362 ** is considered a variable but a single-quoted string (ex: 'abc') is
2363 ** a constant.
2364 */
2365 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2366   assert( isInit==0 || isInit==1 );
2367   return exprIsConst(p, 4+isInit, 0);
2368 }
2369 
2370 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2371 /*
2372 ** Walk an expression tree.  Return 1 if the expression contains a
2373 ** subquery of some kind.  Return 0 if there are no subqueries.
2374 */
2375 int sqlite3ExprContainsSubquery(Expr *p){
2376   Walker w;
2377   w.eCode = 1;
2378   w.xExprCallback = sqlite3ExprWalkNoop;
2379   w.xSelectCallback = sqlite3SelectWalkFail;
2380 #ifdef SQLITE_DEBUG
2381   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2382 #endif
2383   sqlite3WalkExpr(&w, p);
2384   return w.eCode==0;
2385 }
2386 #endif
2387 
2388 /*
2389 ** If the expression p codes a constant integer that is small enough
2390 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2391 ** in *pValue.  If the expression is not an integer or if it is too big
2392 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2393 */
2394 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2395   int rc = 0;
2396   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2397 
2398   /* If an expression is an integer literal that fits in a signed 32-bit
2399   ** integer, then the EP_IntValue flag will have already been set */
2400   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2401            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2402 
2403   if( p->flags & EP_IntValue ){
2404     *pValue = p->u.iValue;
2405     return 1;
2406   }
2407   switch( p->op ){
2408     case TK_UPLUS: {
2409       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2410       break;
2411     }
2412     case TK_UMINUS: {
2413       int v = 0;
2414       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2415         assert( ((unsigned int)v)!=0x80000000 );
2416         *pValue = -v;
2417         rc = 1;
2418       }
2419       break;
2420     }
2421     default: break;
2422   }
2423   return rc;
2424 }
2425 
2426 /*
2427 ** Return FALSE if there is no chance that the expression can be NULL.
2428 **
2429 ** If the expression might be NULL or if the expression is too complex
2430 ** to tell return TRUE.
2431 **
2432 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2433 ** when we know that a value cannot be NULL.  Hence, a false positive
2434 ** (returning TRUE when in fact the expression can never be NULL) might
2435 ** be a small performance hit but is otherwise harmless.  On the other
2436 ** hand, a false negative (returning FALSE when the result could be NULL)
2437 ** will likely result in an incorrect answer.  So when in doubt, return
2438 ** TRUE.
2439 */
2440 int sqlite3ExprCanBeNull(const Expr *p){
2441   u8 op;
2442   assert( p!=0 );
2443   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2444     p = p->pLeft;
2445     assert( p!=0 );
2446   }
2447   op = p->op;
2448   if( op==TK_REGISTER ) op = p->op2;
2449   switch( op ){
2450     case TK_INTEGER:
2451     case TK_STRING:
2452     case TK_FLOAT:
2453     case TK_BLOB:
2454       return 0;
2455     case TK_COLUMN:
2456       assert( ExprUseYTab(p) );
2457       return ExprHasProperty(p, EP_CanBeNull) ||
2458              p->y.pTab==0 ||  /* Reference to column of index on expression */
2459              (p->iColumn>=0
2460               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2461               && p->y.pTab->aCol[p->iColumn].notNull==0);
2462     default:
2463       return 1;
2464   }
2465 }
2466 
2467 /*
2468 ** Return TRUE if the given expression is a constant which would be
2469 ** unchanged by OP_Affinity with the affinity given in the second
2470 ** argument.
2471 **
2472 ** This routine is used to determine if the OP_Affinity operation
2473 ** can be omitted.  When in doubt return FALSE.  A false negative
2474 ** is harmless.  A false positive, however, can result in the wrong
2475 ** answer.
2476 */
2477 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2478   u8 op;
2479   int unaryMinus = 0;
2480   if( aff==SQLITE_AFF_BLOB ) return 1;
2481   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2482     if( p->op==TK_UMINUS ) unaryMinus = 1;
2483     p = p->pLeft;
2484   }
2485   op = p->op;
2486   if( op==TK_REGISTER ) op = p->op2;
2487   switch( op ){
2488     case TK_INTEGER: {
2489       return aff>=SQLITE_AFF_NUMERIC;
2490     }
2491     case TK_FLOAT: {
2492       return aff>=SQLITE_AFF_NUMERIC;
2493     }
2494     case TK_STRING: {
2495       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2496     }
2497     case TK_BLOB: {
2498       return !unaryMinus;
2499     }
2500     case TK_COLUMN: {
2501       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2502       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2503     }
2504     default: {
2505       return 0;
2506     }
2507   }
2508 }
2509 
2510 /*
2511 ** Return TRUE if the given string is a row-id column name.
2512 */
2513 int sqlite3IsRowid(const char *z){
2514   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2515   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2516   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2517   return 0;
2518 }
2519 
2520 /*
2521 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2522 ** that can be simplified to a direct table access, then return
2523 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2524 ** or if the SELECT statement needs to be manifested into a transient
2525 ** table, then return NULL.
2526 */
2527 #ifndef SQLITE_OMIT_SUBQUERY
2528 static Select *isCandidateForInOpt(const Expr *pX){
2529   Select *p;
2530   SrcList *pSrc;
2531   ExprList *pEList;
2532   Table *pTab;
2533   int i;
2534   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2535   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2536   p = pX->x.pSelect;
2537   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2538   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2539     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2540     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2541     return 0; /* No DISTINCT keyword and no aggregate functions */
2542   }
2543   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2544   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2545   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2546   pSrc = p->pSrc;
2547   assert( pSrc!=0 );
2548   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2549   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2550   pTab = pSrc->a[0].pTab;
2551   assert( pTab!=0 );
2552   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2553   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2554   pEList = p->pEList;
2555   assert( pEList!=0 );
2556   /* All SELECT results must be columns. */
2557   for(i=0; i<pEList->nExpr; i++){
2558     Expr *pRes = pEList->a[i].pExpr;
2559     if( pRes->op!=TK_COLUMN ) return 0;
2560     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2561   }
2562   return p;
2563 }
2564 #endif /* SQLITE_OMIT_SUBQUERY */
2565 
2566 #ifndef SQLITE_OMIT_SUBQUERY
2567 /*
2568 ** Generate code that checks the left-most column of index table iCur to see if
2569 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2570 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2571 ** to be set to NULL if iCur contains one or more NULL values.
2572 */
2573 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2574   int addr1;
2575   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2576   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2577   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2578   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2579   VdbeComment((v, "first_entry_in(%d)", iCur));
2580   sqlite3VdbeJumpHere(v, addr1);
2581 }
2582 #endif
2583 
2584 
2585 #ifndef SQLITE_OMIT_SUBQUERY
2586 /*
2587 ** The argument is an IN operator with a list (not a subquery) on the
2588 ** right-hand side.  Return TRUE if that list is constant.
2589 */
2590 static int sqlite3InRhsIsConstant(Expr *pIn){
2591   Expr *pLHS;
2592   int res;
2593   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2594   pLHS = pIn->pLeft;
2595   pIn->pLeft = 0;
2596   res = sqlite3ExprIsConstant(pIn);
2597   pIn->pLeft = pLHS;
2598   return res;
2599 }
2600 #endif
2601 
2602 /*
2603 ** This function is used by the implementation of the IN (...) operator.
2604 ** The pX parameter is the expression on the RHS of the IN operator, which
2605 ** might be either a list of expressions or a subquery.
2606 **
2607 ** The job of this routine is to find or create a b-tree object that can
2608 ** be used either to test for membership in the RHS set or to iterate through
2609 ** all members of the RHS set, skipping duplicates.
2610 **
2611 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2612 ** and pX->iTable is set to the index of that cursor.
2613 **
2614 ** The returned value of this function indicates the b-tree type, as follows:
2615 **
2616 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2617 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2618 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2619 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2620 **                         populated epheremal table.
2621 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2622 **                         implemented as a sequence of comparisons.
2623 **
2624 ** An existing b-tree might be used if the RHS expression pX is a simple
2625 ** subquery such as:
2626 **
2627 **     SELECT <column1>, <column2>... FROM <table>
2628 **
2629 ** If the RHS of the IN operator is a list or a more complex subquery, then
2630 ** an ephemeral table might need to be generated from the RHS and then
2631 ** pX->iTable made to point to the ephemeral table instead of an
2632 ** existing table.
2633 **
2634 ** The inFlags parameter must contain, at a minimum, one of the bits
2635 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2636 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2637 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2638 ** be used to loop over all values of the RHS of the IN operator.
2639 **
2640 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2641 ** through the set members) then the b-tree must not contain duplicates.
2642 ** An epheremal table will be created unless the selected columns are guaranteed
2643 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2644 ** a UNIQUE constraint or index.
2645 **
2646 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2647 ** for fast set membership tests) then an epheremal table must
2648 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2649 ** index can be found with the specified <columns> as its left-most.
2650 **
2651 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2652 ** if the RHS of the IN operator is a list (not a subquery) then this
2653 ** routine might decide that creating an ephemeral b-tree for membership
2654 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2655 ** calling routine should implement the IN operator using a sequence
2656 ** of Eq or Ne comparison operations.
2657 **
2658 ** When the b-tree is being used for membership tests, the calling function
2659 ** might need to know whether or not the RHS side of the IN operator
2660 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2661 ** if there is any chance that the (...) might contain a NULL value at
2662 ** runtime, then a register is allocated and the register number written
2663 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2664 ** NULL value, then *prRhsHasNull is left unchanged.
2665 **
2666 ** If a register is allocated and its location stored in *prRhsHasNull, then
2667 ** the value in that register will be NULL if the b-tree contains one or more
2668 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2669 ** NULL values.
2670 **
2671 ** If the aiMap parameter is not NULL, it must point to an array containing
2672 ** one element for each column returned by the SELECT statement on the RHS
2673 ** of the IN(...) operator. The i'th entry of the array is populated with the
2674 ** offset of the index column that matches the i'th column returned by the
2675 ** SELECT. For example, if the expression and selected index are:
2676 **
2677 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2678 **   CREATE INDEX i1 ON t1(b, c, a);
2679 **
2680 ** then aiMap[] is populated with {2, 0, 1}.
2681 */
2682 #ifndef SQLITE_OMIT_SUBQUERY
2683 int sqlite3FindInIndex(
2684   Parse *pParse,             /* Parsing context */
2685   Expr *pX,                  /* The IN expression */
2686   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2687   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2688   int *aiMap,                /* Mapping from Index fields to RHS fields */
2689   int *piTab                 /* OUT: index to use */
2690 ){
2691   Select *p;                            /* SELECT to the right of IN operator */
2692   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2693   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2694   int mustBeUnique;                     /* True if RHS must be unique */
2695   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2696 
2697   assert( pX->op==TK_IN );
2698   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2699 
2700   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2701   ** whether or not the SELECT result contains NULL values, check whether
2702   ** or not NULL is actually possible (it may not be, for example, due
2703   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2704   ** set prRhsHasNull to 0 before continuing.  */
2705   if( prRhsHasNull && ExprUseXSelect(pX) ){
2706     int i;
2707     ExprList *pEList = pX->x.pSelect->pEList;
2708     for(i=0; i<pEList->nExpr; i++){
2709       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2710     }
2711     if( i==pEList->nExpr ){
2712       prRhsHasNull = 0;
2713     }
2714   }
2715 
2716   /* Check to see if an existing table or index can be used to
2717   ** satisfy the query.  This is preferable to generating a new
2718   ** ephemeral table.  */
2719   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2720     sqlite3 *db = pParse->db;              /* Database connection */
2721     Table *pTab;                           /* Table <table>. */
2722     int iDb;                               /* Database idx for pTab */
2723     ExprList *pEList = p->pEList;
2724     int nExpr = pEList->nExpr;
2725 
2726     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2727     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2728     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2729     pTab = p->pSrc->a[0].pTab;
2730 
2731     /* Code an OP_Transaction and OP_TableLock for <table>. */
2732     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2733     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2734     sqlite3CodeVerifySchema(pParse, iDb);
2735     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2736 
2737     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2738     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2739       /* The "x IN (SELECT rowid FROM table)" case */
2740       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2741       VdbeCoverage(v);
2742 
2743       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2744       eType = IN_INDEX_ROWID;
2745       ExplainQueryPlan((pParse, 0,
2746             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2747       sqlite3VdbeJumpHere(v, iAddr);
2748     }else{
2749       Index *pIdx;                         /* Iterator variable */
2750       int affinity_ok = 1;
2751       int i;
2752 
2753       /* Check that the affinity that will be used to perform each
2754       ** comparison is the same as the affinity of each column in table
2755       ** on the RHS of the IN operator.  If it not, it is not possible to
2756       ** use any index of the RHS table.  */
2757       for(i=0; i<nExpr && affinity_ok; i++){
2758         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2759         int iCol = pEList->a[i].pExpr->iColumn;
2760         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2761         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2762         testcase( cmpaff==SQLITE_AFF_BLOB );
2763         testcase( cmpaff==SQLITE_AFF_TEXT );
2764         switch( cmpaff ){
2765           case SQLITE_AFF_BLOB:
2766             break;
2767           case SQLITE_AFF_TEXT:
2768             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2769             ** other has no affinity and the other side is TEXT.  Hence,
2770             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2771             ** and for the term on the LHS of the IN to have no affinity. */
2772             assert( idxaff==SQLITE_AFF_TEXT );
2773             break;
2774           default:
2775             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2776         }
2777       }
2778 
2779       if( affinity_ok ){
2780         /* Search for an existing index that will work for this IN operator */
2781         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2782           Bitmask colUsed;      /* Columns of the index used */
2783           Bitmask mCol;         /* Mask for the current column */
2784           if( pIdx->nColumn<nExpr ) continue;
2785           if( pIdx->pPartIdxWhere!=0 ) continue;
2786           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2787           ** BITMASK(nExpr) without overflowing */
2788           testcase( pIdx->nColumn==BMS-2 );
2789           testcase( pIdx->nColumn==BMS-1 );
2790           if( pIdx->nColumn>=BMS-1 ) continue;
2791           if( mustBeUnique ){
2792             if( pIdx->nKeyCol>nExpr
2793              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2794             ){
2795               continue;  /* This index is not unique over the IN RHS columns */
2796             }
2797           }
2798 
2799           colUsed = 0;   /* Columns of index used so far */
2800           for(i=0; i<nExpr; i++){
2801             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2802             Expr *pRhs = pEList->a[i].pExpr;
2803             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2804             int j;
2805 
2806             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2807             for(j=0; j<nExpr; j++){
2808               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2809               assert( pIdx->azColl[j] );
2810               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2811                 continue;
2812               }
2813               break;
2814             }
2815             if( j==nExpr ) break;
2816             mCol = MASKBIT(j);
2817             if( mCol & colUsed ) break; /* Each column used only once */
2818             colUsed |= mCol;
2819             if( aiMap ) aiMap[i] = j;
2820           }
2821 
2822           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2823           if( colUsed==(MASKBIT(nExpr)-1) ){
2824             /* If we reach this point, that means the index pIdx is usable */
2825             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2826             ExplainQueryPlan((pParse, 0,
2827                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2828             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2829             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2830             VdbeComment((v, "%s", pIdx->zName));
2831             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2832             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2833 
2834             if( prRhsHasNull ){
2835 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2836               i64 mask = (1<<nExpr)-1;
2837               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2838                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2839 #endif
2840               *prRhsHasNull = ++pParse->nMem;
2841               if( nExpr==1 ){
2842                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2843               }
2844             }
2845             sqlite3VdbeJumpHere(v, iAddr);
2846           }
2847         } /* End loop over indexes */
2848       } /* End if( affinity_ok ) */
2849     } /* End if not an rowid index */
2850   } /* End attempt to optimize using an index */
2851 
2852   /* If no preexisting index is available for the IN clause
2853   ** and IN_INDEX_NOOP is an allowed reply
2854   ** and the RHS of the IN operator is a list, not a subquery
2855   ** and the RHS is not constant or has two or fewer terms,
2856   ** then it is not worth creating an ephemeral table to evaluate
2857   ** the IN operator so return IN_INDEX_NOOP.
2858   */
2859   if( eType==0
2860    && (inFlags & IN_INDEX_NOOP_OK)
2861    && ExprUseXList(pX)
2862    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2863   ){
2864     eType = IN_INDEX_NOOP;
2865   }
2866 
2867   if( eType==0 ){
2868     /* Could not find an existing table or index to use as the RHS b-tree.
2869     ** We will have to generate an ephemeral table to do the job.
2870     */
2871     u32 savedNQueryLoop = pParse->nQueryLoop;
2872     int rMayHaveNull = 0;
2873     eType = IN_INDEX_EPH;
2874     if( inFlags & IN_INDEX_LOOP ){
2875       pParse->nQueryLoop = 0;
2876     }else if( prRhsHasNull ){
2877       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2878     }
2879     assert( pX->op==TK_IN );
2880     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2881     if( rMayHaveNull ){
2882       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2883     }
2884     pParse->nQueryLoop = savedNQueryLoop;
2885   }
2886 
2887   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2888     int i, n;
2889     n = sqlite3ExprVectorSize(pX->pLeft);
2890     for(i=0; i<n; i++) aiMap[i] = i;
2891   }
2892   *piTab = iTab;
2893   return eType;
2894 }
2895 #endif
2896 
2897 #ifndef SQLITE_OMIT_SUBQUERY
2898 /*
2899 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2900 ** function allocates and returns a nul-terminated string containing
2901 ** the affinities to be used for each column of the comparison.
2902 **
2903 ** It is the responsibility of the caller to ensure that the returned
2904 ** string is eventually freed using sqlite3DbFree().
2905 */
2906 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2907   Expr *pLeft = pExpr->pLeft;
2908   int nVal = sqlite3ExprVectorSize(pLeft);
2909   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2910   char *zRet;
2911 
2912   assert( pExpr->op==TK_IN );
2913   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2914   if( zRet ){
2915     int i;
2916     for(i=0; i<nVal; i++){
2917       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2918       char a = sqlite3ExprAffinity(pA);
2919       if( pSelect ){
2920         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2921       }else{
2922         zRet[i] = a;
2923       }
2924     }
2925     zRet[nVal] = '\0';
2926   }
2927   return zRet;
2928 }
2929 #endif
2930 
2931 #ifndef SQLITE_OMIT_SUBQUERY
2932 /*
2933 ** Load the Parse object passed as the first argument with an error
2934 ** message of the form:
2935 **
2936 **   "sub-select returns N columns - expected M"
2937 */
2938 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2939   if( pParse->nErr==0 ){
2940     const char *zFmt = "sub-select returns %d columns - expected %d";
2941     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2942   }
2943 }
2944 #endif
2945 
2946 /*
2947 ** Expression pExpr is a vector that has been used in a context where
2948 ** it is not permitted. If pExpr is a sub-select vector, this routine
2949 ** loads the Parse object with a message of the form:
2950 **
2951 **   "sub-select returns N columns - expected 1"
2952 **
2953 ** Or, if it is a regular scalar vector:
2954 **
2955 **   "row value misused"
2956 */
2957 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2958 #ifndef SQLITE_OMIT_SUBQUERY
2959   if( ExprUseXSelect(pExpr) ){
2960     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2961   }else
2962 #endif
2963   {
2964     sqlite3ErrorMsg(pParse, "row value misused");
2965   }
2966 }
2967 
2968 #ifndef SQLITE_OMIT_SUBQUERY
2969 /*
2970 ** Generate code that will construct an ephemeral table containing all terms
2971 ** in the RHS of an IN operator.  The IN operator can be in either of two
2972 ** forms:
2973 **
2974 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2975 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2976 **
2977 ** The pExpr parameter is the IN operator.  The cursor number for the
2978 ** constructed ephermeral table is returned.  The first time the ephemeral
2979 ** table is computed, the cursor number is also stored in pExpr->iTable,
2980 ** however the cursor number returned might not be the same, as it might
2981 ** have been duplicated using OP_OpenDup.
2982 **
2983 ** If the LHS expression ("x" in the examples) is a column value, or
2984 ** the SELECT statement returns a column value, then the affinity of that
2985 ** column is used to build the index keys. If both 'x' and the
2986 ** SELECT... statement are columns, then numeric affinity is used
2987 ** if either column has NUMERIC or INTEGER affinity. If neither
2988 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2989 ** is used.
2990 */
2991 void sqlite3CodeRhsOfIN(
2992   Parse *pParse,          /* Parsing context */
2993   Expr *pExpr,            /* The IN operator */
2994   int iTab                /* Use this cursor number */
2995 ){
2996   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2997   int addr;                   /* Address of OP_OpenEphemeral instruction */
2998   Expr *pLeft;                /* the LHS of the IN operator */
2999   KeyInfo *pKeyInfo = 0;      /* Key information */
3000   int nVal;                   /* Size of vector pLeft */
3001   Vdbe *v;                    /* The prepared statement under construction */
3002 
3003   v = pParse->pVdbe;
3004   assert( v!=0 );
3005 
3006   /* The evaluation of the IN must be repeated every time it
3007   ** is encountered if any of the following is true:
3008   **
3009   **    *  The right-hand side is a correlated subquery
3010   **    *  The right-hand side is an expression list containing variables
3011   **    *  We are inside a trigger
3012   **
3013   ** If all of the above are false, then we can compute the RHS just once
3014   ** and reuse it many names.
3015   */
3016   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3017     /* Reuse of the RHS is allowed */
3018     /* If this routine has already been coded, but the previous code
3019     ** might not have been invoked yet, so invoke it now as a subroutine.
3020     */
3021     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3022       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3023       if( ExprUseXSelect(pExpr) ){
3024         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3025               pExpr->x.pSelect->selId));
3026       }
3027       assert( ExprUseYSub(pExpr) );
3028       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3029                         pExpr->y.sub.iAddr);
3030       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3031       sqlite3VdbeJumpHere(v, addrOnce);
3032       return;
3033     }
3034 
3035     /* Begin coding the subroutine */
3036     assert( !ExprUseYWin(pExpr) );
3037     ExprSetProperty(pExpr, EP_Subrtn);
3038     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3039     pExpr->y.sub.regReturn = ++pParse->nMem;
3040     pExpr->y.sub.iAddr =
3041       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3042     VdbeComment((v, "return address"));
3043 
3044     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3045   }
3046 
3047   /* Check to see if this is a vector IN operator */
3048   pLeft = pExpr->pLeft;
3049   nVal = sqlite3ExprVectorSize(pLeft);
3050 
3051   /* Construct the ephemeral table that will contain the content of
3052   ** RHS of the IN operator.
3053   */
3054   pExpr->iTable = iTab;
3055   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3056 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3057   if( ExprUseXSelect(pExpr) ){
3058     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3059   }else{
3060     VdbeComment((v, "RHS of IN operator"));
3061   }
3062 #endif
3063   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3064 
3065   if( ExprUseXSelect(pExpr) ){
3066     /* Case 1:     expr IN (SELECT ...)
3067     **
3068     ** Generate code to write the results of the select into the temporary
3069     ** table allocated and opened above.
3070     */
3071     Select *pSelect = pExpr->x.pSelect;
3072     ExprList *pEList = pSelect->pEList;
3073 
3074     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3075         addrOnce?"":"CORRELATED ", pSelect->selId
3076     ));
3077     /* If the LHS and RHS of the IN operator do not match, that
3078     ** error will have been caught long before we reach this point. */
3079     if( ALWAYS(pEList->nExpr==nVal) ){
3080       Select *pCopy;
3081       SelectDest dest;
3082       int i;
3083       int rc;
3084       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3085       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3086       pSelect->iLimit = 0;
3087       testcase( pSelect->selFlags & SF_Distinct );
3088       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3089       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3090       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3091       sqlite3SelectDelete(pParse->db, pCopy);
3092       sqlite3DbFree(pParse->db, dest.zAffSdst);
3093       if( rc ){
3094         sqlite3KeyInfoUnref(pKeyInfo);
3095         return;
3096       }
3097       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3098       assert( pEList!=0 );
3099       assert( pEList->nExpr>0 );
3100       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3101       for(i=0; i<nVal; i++){
3102         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3103         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3104             pParse, p, pEList->a[i].pExpr
3105         );
3106       }
3107     }
3108   }else if( ALWAYS(pExpr->x.pList!=0) ){
3109     /* Case 2:     expr IN (exprlist)
3110     **
3111     ** For each expression, build an index key from the evaluation and
3112     ** store it in the temporary table. If <expr> is a column, then use
3113     ** that columns affinity when building index keys. If <expr> is not
3114     ** a column, use numeric affinity.
3115     */
3116     char affinity;            /* Affinity of the LHS of the IN */
3117     int i;
3118     ExprList *pList = pExpr->x.pList;
3119     struct ExprList_item *pItem;
3120     int r1, r2;
3121     affinity = sqlite3ExprAffinity(pLeft);
3122     if( affinity<=SQLITE_AFF_NONE ){
3123       affinity = SQLITE_AFF_BLOB;
3124     }else if( affinity==SQLITE_AFF_REAL ){
3125       affinity = SQLITE_AFF_NUMERIC;
3126     }
3127     if( pKeyInfo ){
3128       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3129       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3130     }
3131 
3132     /* Loop through each expression in <exprlist>. */
3133     r1 = sqlite3GetTempReg(pParse);
3134     r2 = sqlite3GetTempReg(pParse);
3135     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3136       Expr *pE2 = pItem->pExpr;
3137 
3138       /* If the expression is not constant then we will need to
3139       ** disable the test that was generated above that makes sure
3140       ** this code only executes once.  Because for a non-constant
3141       ** expression we need to rerun this code each time.
3142       */
3143       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3144         sqlite3VdbeChangeToNoop(v, addrOnce);
3145         ExprClearProperty(pExpr, EP_Subrtn);
3146         addrOnce = 0;
3147       }
3148 
3149       /* Evaluate the expression and insert it into the temp table */
3150       sqlite3ExprCode(pParse, pE2, r1);
3151       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3152       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3153     }
3154     sqlite3ReleaseTempReg(pParse, r1);
3155     sqlite3ReleaseTempReg(pParse, r2);
3156   }
3157   if( pKeyInfo ){
3158     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3159   }
3160   if( addrOnce ){
3161     sqlite3VdbeJumpHere(v, addrOnce);
3162     /* Subroutine return */
3163     assert( ExprUseYSub(pExpr) );
3164     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3165     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3166     sqlite3ClearTempRegCache(pParse);
3167   }
3168 }
3169 #endif /* SQLITE_OMIT_SUBQUERY */
3170 
3171 /*
3172 ** Generate code for scalar subqueries used as a subquery expression
3173 ** or EXISTS operator:
3174 **
3175 **     (SELECT a FROM b)          -- subquery
3176 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3177 **
3178 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3179 **
3180 ** Return the register that holds the result.  For a multi-column SELECT,
3181 ** the result is stored in a contiguous array of registers and the
3182 ** return value is the register of the left-most result column.
3183 ** Return 0 if an error occurs.
3184 */
3185 #ifndef SQLITE_OMIT_SUBQUERY
3186 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3187   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3188   int rReg = 0;               /* Register storing resulting */
3189   Select *pSel;               /* SELECT statement to encode */
3190   SelectDest dest;            /* How to deal with SELECT result */
3191   int nReg;                   /* Registers to allocate */
3192   Expr *pLimit;               /* New limit expression */
3193 
3194   Vdbe *v = pParse->pVdbe;
3195   assert( v!=0 );
3196   if( pParse->nErr ) return 0;
3197   testcase( pExpr->op==TK_EXISTS );
3198   testcase( pExpr->op==TK_SELECT );
3199   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3200   assert( ExprUseXSelect(pExpr) );
3201   pSel = pExpr->x.pSelect;
3202 
3203   /* If this routine has already been coded, then invoke it as a
3204   ** subroutine. */
3205   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3206     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3207     assert( ExprUseYSub(pExpr) );
3208     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3209                       pExpr->y.sub.iAddr);
3210     return pExpr->iTable;
3211   }
3212 
3213   /* Begin coding the subroutine */
3214   assert( !ExprUseYWin(pExpr) );
3215   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3216   ExprSetProperty(pExpr, EP_Subrtn);
3217   pExpr->y.sub.regReturn = ++pParse->nMem;
3218   pExpr->y.sub.iAddr =
3219     sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3220   VdbeComment((v, "return address"));
3221 
3222 
3223   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3224   ** is encountered if any of the following is true:
3225   **
3226   **    *  The right-hand side is a correlated subquery
3227   **    *  The right-hand side is an expression list containing variables
3228   **    *  We are inside a trigger
3229   **
3230   ** If all of the above are false, then we can run this code just once
3231   ** save the results, and reuse the same result on subsequent invocations.
3232   */
3233   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3234     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3235   }
3236 
3237   /* For a SELECT, generate code to put the values for all columns of
3238   ** the first row into an array of registers and return the index of
3239   ** the first register.
3240   **
3241   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3242   ** into a register and return that register number.
3243   **
3244   ** In both cases, the query is augmented with "LIMIT 1".  Any
3245   ** preexisting limit is discarded in place of the new LIMIT 1.
3246   */
3247   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3248         addrOnce?"":"CORRELATED ", pSel->selId));
3249   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3250   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3251   pParse->nMem += nReg;
3252   if( pExpr->op==TK_SELECT ){
3253     dest.eDest = SRT_Mem;
3254     dest.iSdst = dest.iSDParm;
3255     dest.nSdst = nReg;
3256     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3257     VdbeComment((v, "Init subquery result"));
3258   }else{
3259     dest.eDest = SRT_Exists;
3260     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3261     VdbeComment((v, "Init EXISTS result"));
3262   }
3263   if( pSel->pLimit ){
3264     /* The subquery already has a limit.  If the pre-existing limit is X
3265     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3266     sqlite3 *db = pParse->db;
3267     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3268     if( pLimit ){
3269       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3270       pLimit = sqlite3PExpr(pParse, TK_NE,
3271                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3272     }
3273     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3274     pSel->pLimit->pLeft = pLimit;
3275   }else{
3276     /* If there is no pre-existing limit add a limit of 1 */
3277     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3278     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3279   }
3280   pSel->iLimit = 0;
3281   if( sqlite3Select(pParse, pSel, &dest) ){
3282     if( pParse->nErr ){
3283       pExpr->op2 = pExpr->op;
3284       pExpr->op = TK_ERROR;
3285     }
3286     return 0;
3287   }
3288   pExpr->iTable = rReg = dest.iSDParm;
3289   ExprSetVVAProperty(pExpr, EP_NoReduce);
3290   if( addrOnce ){
3291     sqlite3VdbeJumpHere(v, addrOnce);
3292   }
3293 
3294   /* Subroutine return */
3295   assert( ExprUseYSub(pExpr) );
3296   sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3297   sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3298   sqlite3ClearTempRegCache(pParse);
3299   return rReg;
3300 }
3301 #endif /* SQLITE_OMIT_SUBQUERY */
3302 
3303 #ifndef SQLITE_OMIT_SUBQUERY
3304 /*
3305 ** Expr pIn is an IN(...) expression. This function checks that the
3306 ** sub-select on the RHS of the IN() operator has the same number of
3307 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3308 ** a sub-query, that the LHS is a vector of size 1.
3309 */
3310 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3311   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3312   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3313     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3314       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3315       return 1;
3316     }
3317   }else if( nVector!=1 ){
3318     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3319     return 1;
3320   }
3321   return 0;
3322 }
3323 #endif
3324 
3325 #ifndef SQLITE_OMIT_SUBQUERY
3326 /*
3327 ** Generate code for an IN expression.
3328 **
3329 **      x IN (SELECT ...)
3330 **      x IN (value, value, ...)
3331 **
3332 ** The left-hand side (LHS) is a scalar or vector expression.  The
3333 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3334 ** subquery.  If the RHS is a subquery, the number of result columns must
3335 ** match the number of columns in the vector on the LHS.  If the RHS is
3336 ** a list of values, the LHS must be a scalar.
3337 **
3338 ** The IN operator is true if the LHS value is contained within the RHS.
3339 ** The result is false if the LHS is definitely not in the RHS.  The
3340 ** result is NULL if the presence of the LHS in the RHS cannot be
3341 ** determined due to NULLs.
3342 **
3343 ** This routine generates code that jumps to destIfFalse if the LHS is not
3344 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3345 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3346 ** within the RHS then fall through.
3347 **
3348 ** See the separate in-operator.md documentation file in the canonical
3349 ** SQLite source tree for additional information.
3350 */
3351 static void sqlite3ExprCodeIN(
3352   Parse *pParse,        /* Parsing and code generating context */
3353   Expr *pExpr,          /* The IN expression */
3354   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3355   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3356 ){
3357   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3358   int eType;            /* Type of the RHS */
3359   int rLhs;             /* Register(s) holding the LHS values */
3360   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3361   Vdbe *v;              /* Statement under construction */
3362   int *aiMap = 0;       /* Map from vector field to index column */
3363   char *zAff = 0;       /* Affinity string for comparisons */
3364   int nVector;          /* Size of vectors for this IN operator */
3365   int iDummy;           /* Dummy parameter to exprCodeVector() */
3366   Expr *pLeft;          /* The LHS of the IN operator */
3367   int i;                /* loop counter */
3368   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3369   int destStep6 = 0;    /* Start of code for Step 6 */
3370   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3371   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3372   int addrTop;          /* Top of the step-6 loop */
3373   int iTab = 0;         /* Index to use */
3374   u8 okConstFactor = pParse->okConstFactor;
3375 
3376   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3377   pLeft = pExpr->pLeft;
3378   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3379   zAff = exprINAffinity(pParse, pExpr);
3380   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3381   aiMap = (int*)sqlite3DbMallocZero(
3382       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3383   );
3384   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3385 
3386   /* Attempt to compute the RHS. After this step, if anything other than
3387   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3388   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3389   ** the RHS has not yet been coded.  */
3390   v = pParse->pVdbe;
3391   assert( v!=0 );       /* OOM detected prior to this routine */
3392   VdbeNoopComment((v, "begin IN expr"));
3393   eType = sqlite3FindInIndex(pParse, pExpr,
3394                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3395                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3396                              aiMap, &iTab);
3397 
3398   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3399        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3400   );
3401 #ifdef SQLITE_DEBUG
3402   /* Confirm that aiMap[] contains nVector integer values between 0 and
3403   ** nVector-1. */
3404   for(i=0; i<nVector; i++){
3405     int j, cnt;
3406     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3407     assert( cnt==1 );
3408   }
3409 #endif
3410 
3411   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3412   ** vector, then it is stored in an array of nVector registers starting
3413   ** at r1.
3414   **
3415   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3416   ** so that the fields are in the same order as an existing index.   The
3417   ** aiMap[] array contains a mapping from the original LHS field order to
3418   ** the field order that matches the RHS index.
3419   **
3420   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3421   ** even if it is constant, as OP_Affinity may be used on the register
3422   ** by code generated below.  */
3423   assert( pParse->okConstFactor==okConstFactor );
3424   pParse->okConstFactor = 0;
3425   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3426   pParse->okConstFactor = okConstFactor;
3427   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3428   if( i==nVector ){
3429     /* LHS fields are not reordered */
3430     rLhs = rLhsOrig;
3431   }else{
3432     /* Need to reorder the LHS fields according to aiMap */
3433     rLhs = sqlite3GetTempRange(pParse, nVector);
3434     for(i=0; i<nVector; i++){
3435       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3436     }
3437   }
3438 
3439   /* If sqlite3FindInIndex() did not find or create an index that is
3440   ** suitable for evaluating the IN operator, then evaluate using a
3441   ** sequence of comparisons.
3442   **
3443   ** This is step (1) in the in-operator.md optimized algorithm.
3444   */
3445   if( eType==IN_INDEX_NOOP ){
3446     ExprList *pList;
3447     CollSeq *pColl;
3448     int labelOk = sqlite3VdbeMakeLabel(pParse);
3449     int r2, regToFree;
3450     int regCkNull = 0;
3451     int ii;
3452     assert( ExprUseXList(pExpr) );
3453     pList = pExpr->x.pList;
3454     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3455     if( destIfNull!=destIfFalse ){
3456       regCkNull = sqlite3GetTempReg(pParse);
3457       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3458     }
3459     for(ii=0; ii<pList->nExpr; ii++){
3460       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3461       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3462         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3463       }
3464       sqlite3ReleaseTempReg(pParse, regToFree);
3465       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3466         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3467         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3468                           (void*)pColl, P4_COLLSEQ);
3469         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3470         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3471         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3472         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3473         sqlite3VdbeChangeP5(v, zAff[0]);
3474       }else{
3475         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3476         assert( destIfNull==destIfFalse );
3477         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3478                           (void*)pColl, P4_COLLSEQ);
3479         VdbeCoverageIf(v, op==OP_Ne);
3480         VdbeCoverageIf(v, op==OP_IsNull);
3481         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3482       }
3483     }
3484     if( regCkNull ){
3485       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3486       sqlite3VdbeGoto(v, destIfFalse);
3487     }
3488     sqlite3VdbeResolveLabel(v, labelOk);
3489     sqlite3ReleaseTempReg(pParse, regCkNull);
3490     goto sqlite3ExprCodeIN_finished;
3491   }
3492 
3493   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3494   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3495   ** We will then skip the binary search of the RHS.
3496   */
3497   if( destIfNull==destIfFalse ){
3498     destStep2 = destIfFalse;
3499   }else{
3500     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3501   }
3502   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3503   for(i=0; i<nVector; i++){
3504     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3505     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3506     if( sqlite3ExprCanBeNull(p) ){
3507       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3508       VdbeCoverage(v);
3509     }
3510   }
3511 
3512   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3513   ** of the RHS using the LHS as a probe.  If found, the result is
3514   ** true.
3515   */
3516   if( eType==IN_INDEX_ROWID ){
3517     /* In this case, the RHS is the ROWID of table b-tree and so we also
3518     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3519     ** into a single opcode. */
3520     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3521     VdbeCoverage(v);
3522     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3523   }else{
3524     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3525     if( destIfFalse==destIfNull ){
3526       /* Combine Step 3 and Step 5 into a single opcode */
3527       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3528                            rLhs, nVector); VdbeCoverage(v);
3529       goto sqlite3ExprCodeIN_finished;
3530     }
3531     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3532     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3533                                       rLhs, nVector); VdbeCoverage(v);
3534   }
3535 
3536   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3537   ** an match on the search above, then the result must be FALSE.
3538   */
3539   if( rRhsHasNull && nVector==1 ){
3540     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3541     VdbeCoverage(v);
3542   }
3543 
3544   /* Step 5.  If we do not care about the difference between NULL and
3545   ** FALSE, then just return false.
3546   */
3547   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3548 
3549   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3550   ** If any comparison is NULL, then the result is NULL.  If all
3551   ** comparisons are FALSE then the final result is FALSE.
3552   **
3553   ** For a scalar LHS, it is sufficient to check just the first row
3554   ** of the RHS.
3555   */
3556   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3557   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3558   VdbeCoverage(v);
3559   if( nVector>1 ){
3560     destNotNull = sqlite3VdbeMakeLabel(pParse);
3561   }else{
3562     /* For nVector==1, combine steps 6 and 7 by immediately returning
3563     ** FALSE if the first comparison is not NULL */
3564     destNotNull = destIfFalse;
3565   }
3566   for(i=0; i<nVector; i++){
3567     Expr *p;
3568     CollSeq *pColl;
3569     int r3 = sqlite3GetTempReg(pParse);
3570     p = sqlite3VectorFieldSubexpr(pLeft, i);
3571     pColl = sqlite3ExprCollSeq(pParse, p);
3572     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3573     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3574                       (void*)pColl, P4_COLLSEQ);
3575     VdbeCoverage(v);
3576     sqlite3ReleaseTempReg(pParse, r3);
3577   }
3578   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3579   if( nVector>1 ){
3580     sqlite3VdbeResolveLabel(v, destNotNull);
3581     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3582     VdbeCoverage(v);
3583 
3584     /* Step 7:  If we reach this point, we know that the result must
3585     ** be false. */
3586     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3587   }
3588 
3589   /* Jumps here in order to return true. */
3590   sqlite3VdbeJumpHere(v, addrTruthOp);
3591 
3592 sqlite3ExprCodeIN_finished:
3593   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3594   VdbeComment((v, "end IN expr"));
3595 sqlite3ExprCodeIN_oom_error:
3596   sqlite3DbFree(pParse->db, aiMap);
3597   sqlite3DbFree(pParse->db, zAff);
3598 }
3599 #endif /* SQLITE_OMIT_SUBQUERY */
3600 
3601 #ifndef SQLITE_OMIT_FLOATING_POINT
3602 /*
3603 ** Generate an instruction that will put the floating point
3604 ** value described by z[0..n-1] into register iMem.
3605 **
3606 ** The z[] string will probably not be zero-terminated.  But the
3607 ** z[n] character is guaranteed to be something that does not look
3608 ** like the continuation of the number.
3609 */
3610 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3611   if( ALWAYS(z!=0) ){
3612     double value;
3613     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3614     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3615     if( negateFlag ) value = -value;
3616     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3617   }
3618 }
3619 #endif
3620 
3621 
3622 /*
3623 ** Generate an instruction that will put the integer describe by
3624 ** text z[0..n-1] into register iMem.
3625 **
3626 ** Expr.u.zToken is always UTF8 and zero-terminated.
3627 */
3628 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3629   Vdbe *v = pParse->pVdbe;
3630   if( pExpr->flags & EP_IntValue ){
3631     int i = pExpr->u.iValue;
3632     assert( i>=0 );
3633     if( negFlag ) i = -i;
3634     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3635   }else{
3636     int c;
3637     i64 value;
3638     const char *z = pExpr->u.zToken;
3639     assert( z!=0 );
3640     c = sqlite3DecOrHexToI64(z, &value);
3641     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3642 #ifdef SQLITE_OMIT_FLOATING_POINT
3643       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3644 #else
3645 #ifndef SQLITE_OMIT_HEX_INTEGER
3646       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3647         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3648       }else
3649 #endif
3650       {
3651         codeReal(v, z, negFlag, iMem);
3652       }
3653 #endif
3654     }else{
3655       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3656       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3657     }
3658   }
3659 }
3660 
3661 
3662 /* Generate code that will load into register regOut a value that is
3663 ** appropriate for the iIdxCol-th column of index pIdx.
3664 */
3665 void sqlite3ExprCodeLoadIndexColumn(
3666   Parse *pParse,  /* The parsing context */
3667   Index *pIdx,    /* The index whose column is to be loaded */
3668   int iTabCur,    /* Cursor pointing to a table row */
3669   int iIdxCol,    /* The column of the index to be loaded */
3670   int regOut      /* Store the index column value in this register */
3671 ){
3672   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3673   if( iTabCol==XN_EXPR ){
3674     assert( pIdx->aColExpr );
3675     assert( pIdx->aColExpr->nExpr>iIdxCol );
3676     pParse->iSelfTab = iTabCur + 1;
3677     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3678     pParse->iSelfTab = 0;
3679   }else{
3680     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3681                                     iTabCol, regOut);
3682   }
3683 }
3684 
3685 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3686 /*
3687 ** Generate code that will compute the value of generated column pCol
3688 ** and store the result in register regOut
3689 */
3690 void sqlite3ExprCodeGeneratedColumn(
3691   Parse *pParse,     /* Parsing context */
3692   Table *pTab,       /* Table containing the generated column */
3693   Column *pCol,      /* The generated column */
3694   int regOut         /* Put the result in this register */
3695 ){
3696   int iAddr;
3697   Vdbe *v = pParse->pVdbe;
3698   assert( v!=0 );
3699   assert( pParse->iSelfTab!=0 );
3700   if( pParse->iSelfTab>0 ){
3701     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3702   }else{
3703     iAddr = 0;
3704   }
3705   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3706   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3707     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3708   }
3709   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3710 }
3711 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3712 
3713 /*
3714 ** Generate code to extract the value of the iCol-th column of a table.
3715 */
3716 void sqlite3ExprCodeGetColumnOfTable(
3717   Vdbe *v,        /* Parsing context */
3718   Table *pTab,    /* The table containing the value */
3719   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3720   int iCol,       /* Index of the column to extract */
3721   int regOut      /* Extract the value into this register */
3722 ){
3723   Column *pCol;
3724   assert( v!=0 );
3725   if( pTab==0 ){
3726     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3727     return;
3728   }
3729   if( iCol<0 || iCol==pTab->iPKey ){
3730     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3731   }else{
3732     int op;
3733     int x;
3734     if( IsVirtual(pTab) ){
3735       op = OP_VColumn;
3736       x = iCol;
3737 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3738     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3739       Parse *pParse = sqlite3VdbeParser(v);
3740       if( pCol->colFlags & COLFLAG_BUSY ){
3741         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3742                         pCol->zCnName);
3743       }else{
3744         int savedSelfTab = pParse->iSelfTab;
3745         pCol->colFlags |= COLFLAG_BUSY;
3746         pParse->iSelfTab = iTabCur+1;
3747         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3748         pParse->iSelfTab = savedSelfTab;
3749         pCol->colFlags &= ~COLFLAG_BUSY;
3750       }
3751       return;
3752 #endif
3753     }else if( !HasRowid(pTab) ){
3754       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3755       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3756       op = OP_Column;
3757     }else{
3758       x = sqlite3TableColumnToStorage(pTab,iCol);
3759       testcase( x!=iCol );
3760       op = OP_Column;
3761     }
3762     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3763     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3764   }
3765 }
3766 
3767 /*
3768 ** Generate code that will extract the iColumn-th column from
3769 ** table pTab and store the column value in register iReg.
3770 **
3771 ** There must be an open cursor to pTab in iTable when this routine
3772 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3773 */
3774 int sqlite3ExprCodeGetColumn(
3775   Parse *pParse,   /* Parsing and code generating context */
3776   Table *pTab,     /* Description of the table we are reading from */
3777   int iColumn,     /* Index of the table column */
3778   int iTable,      /* The cursor pointing to the table */
3779   int iReg,        /* Store results here */
3780   u8 p5            /* P5 value for OP_Column + FLAGS */
3781 ){
3782   assert( pParse->pVdbe!=0 );
3783   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3784   if( p5 ){
3785     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3786     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3787   }
3788   return iReg;
3789 }
3790 
3791 /*
3792 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3793 ** over to iTo..iTo+nReg-1.
3794 */
3795 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3796   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3797 }
3798 
3799 /*
3800 ** Convert a scalar expression node to a TK_REGISTER referencing
3801 ** register iReg.  The caller must ensure that iReg already contains
3802 ** the correct value for the expression.
3803 */
3804 static void exprToRegister(Expr *pExpr, int iReg){
3805   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3806   if( NEVER(p==0) ) return;
3807   p->op2 = p->op;
3808   p->op = TK_REGISTER;
3809   p->iTable = iReg;
3810   ExprClearProperty(p, EP_Skip);
3811 }
3812 
3813 /*
3814 ** Evaluate an expression (either a vector or a scalar expression) and store
3815 ** the result in continguous temporary registers.  Return the index of
3816 ** the first register used to store the result.
3817 **
3818 ** If the returned result register is a temporary scalar, then also write
3819 ** that register number into *piFreeable.  If the returned result register
3820 ** is not a temporary or if the expression is a vector set *piFreeable
3821 ** to 0.
3822 */
3823 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3824   int iResult;
3825   int nResult = sqlite3ExprVectorSize(p);
3826   if( nResult==1 ){
3827     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3828   }else{
3829     *piFreeable = 0;
3830     if( p->op==TK_SELECT ){
3831 #if SQLITE_OMIT_SUBQUERY
3832       iResult = 0;
3833 #else
3834       iResult = sqlite3CodeSubselect(pParse, p);
3835 #endif
3836     }else{
3837       int i;
3838       iResult = pParse->nMem+1;
3839       pParse->nMem += nResult;
3840       assert( ExprUseXList(p) );
3841       for(i=0; i<nResult; i++){
3842         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3843       }
3844     }
3845   }
3846   return iResult;
3847 }
3848 
3849 /*
3850 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3851 ** so that a subsequent copy will not be merged into this one.
3852 */
3853 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3854   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3855     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3856   }
3857 }
3858 
3859 /*
3860 ** Generate code to implement special SQL functions that are implemented
3861 ** in-line rather than by using the usual callbacks.
3862 */
3863 static int exprCodeInlineFunction(
3864   Parse *pParse,        /* Parsing context */
3865   ExprList *pFarg,      /* List of function arguments */
3866   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3867   int target            /* Store function result in this register */
3868 ){
3869   int nFarg;
3870   Vdbe *v = pParse->pVdbe;
3871   assert( v!=0 );
3872   assert( pFarg!=0 );
3873   nFarg = pFarg->nExpr;
3874   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3875   switch( iFuncId ){
3876     case INLINEFUNC_coalesce: {
3877       /* Attempt a direct implementation of the built-in COALESCE() and
3878       ** IFNULL() functions.  This avoids unnecessary evaluation of
3879       ** arguments past the first non-NULL argument.
3880       */
3881       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3882       int i;
3883       assert( nFarg>=2 );
3884       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3885       for(i=1; i<nFarg; i++){
3886         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3887         VdbeCoverage(v);
3888         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3889       }
3890       setDoNotMergeFlagOnCopy(v);
3891       sqlite3VdbeResolveLabel(v, endCoalesce);
3892       break;
3893     }
3894     case INLINEFUNC_iif: {
3895       Expr caseExpr;
3896       memset(&caseExpr, 0, sizeof(caseExpr));
3897       caseExpr.op = TK_CASE;
3898       caseExpr.x.pList = pFarg;
3899       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3900     }
3901 
3902     default: {
3903       /* The UNLIKELY() function is a no-op.  The result is the value
3904       ** of the first argument.
3905       */
3906       assert( nFarg==1 || nFarg==2 );
3907       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3908       break;
3909     }
3910 
3911   /***********************************************************************
3912   ** Test-only SQL functions that are only usable if enabled
3913   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3914   */
3915 #if !defined(SQLITE_UNTESTABLE)
3916     case INLINEFUNC_expr_compare: {
3917       /* Compare two expressions using sqlite3ExprCompare() */
3918       assert( nFarg==2 );
3919       sqlite3VdbeAddOp2(v, OP_Integer,
3920          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3921          target);
3922       break;
3923     }
3924 
3925     case INLINEFUNC_expr_implies_expr: {
3926       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3927       assert( nFarg==2 );
3928       sqlite3VdbeAddOp2(v, OP_Integer,
3929          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3930          target);
3931       break;
3932     }
3933 
3934     case INLINEFUNC_implies_nonnull_row: {
3935       /* REsult of sqlite3ExprImpliesNonNullRow() */
3936       Expr *pA1;
3937       assert( nFarg==2 );
3938       pA1 = pFarg->a[1].pExpr;
3939       if( pA1->op==TK_COLUMN ){
3940         sqlite3VdbeAddOp2(v, OP_Integer,
3941            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3942            target);
3943       }else{
3944         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3945       }
3946       break;
3947     }
3948 
3949     case INLINEFUNC_affinity: {
3950       /* The AFFINITY() function evaluates to a string that describes
3951       ** the type affinity of the argument.  This is used for testing of
3952       ** the SQLite type logic.
3953       */
3954       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3955       char aff;
3956       assert( nFarg==1 );
3957       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3958       sqlite3VdbeLoadString(v, target,
3959               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3960       break;
3961     }
3962 #endif /* !defined(SQLITE_UNTESTABLE) */
3963   }
3964   return target;
3965 }
3966 
3967 
3968 /*
3969 ** Generate code into the current Vdbe to evaluate the given
3970 ** expression.  Attempt to store the results in register "target".
3971 ** Return the register where results are stored.
3972 **
3973 ** With this routine, there is no guarantee that results will
3974 ** be stored in target.  The result might be stored in some other
3975 ** register if it is convenient to do so.  The calling function
3976 ** must check the return code and move the results to the desired
3977 ** register.
3978 */
3979 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3980   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3981   int op;                   /* The opcode being coded */
3982   int inReg = target;       /* Results stored in register inReg */
3983   int regFree1 = 0;         /* If non-zero free this temporary register */
3984   int regFree2 = 0;         /* If non-zero free this temporary register */
3985   int r1, r2;               /* Various register numbers */
3986   Expr tempX;               /* Temporary expression node */
3987   int p5 = 0;
3988 
3989   assert( target>0 && target<=pParse->nMem );
3990   assert( v!=0 );
3991 
3992 expr_code_doover:
3993   if( pExpr==0 ){
3994     op = TK_NULL;
3995   }else{
3996     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3997     op = pExpr->op;
3998   }
3999   switch( op ){
4000     case TK_AGG_COLUMN: {
4001       AggInfo *pAggInfo = pExpr->pAggInfo;
4002       struct AggInfo_col *pCol;
4003       assert( pAggInfo!=0 );
4004       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4005       pCol = &pAggInfo->aCol[pExpr->iAgg];
4006       if( !pAggInfo->directMode ){
4007         assert( pCol->iMem>0 );
4008         return pCol->iMem;
4009       }else if( pAggInfo->useSortingIdx ){
4010         Table *pTab = pCol->pTab;
4011         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4012                               pCol->iSorterColumn, target);
4013         if( pCol->iColumn<0 ){
4014           VdbeComment((v,"%s.rowid",pTab->zName));
4015         }else{
4016           VdbeComment((v,"%s.%s",
4017               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4018           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4019             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4020           }
4021         }
4022         return target;
4023       }
4024       /* Otherwise, fall thru into the TK_COLUMN case */
4025       /* no break */ deliberate_fall_through
4026     }
4027     case TK_COLUMN: {
4028       int iTab = pExpr->iTable;
4029       int iReg;
4030       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4031         /* This COLUMN expression is really a constant due to WHERE clause
4032         ** constraints, and that constant is coded by the pExpr->pLeft
4033         ** expresssion.  However, make sure the constant has the correct
4034         ** datatype by applying the Affinity of the table column to the
4035         ** constant.
4036         */
4037         int aff;
4038         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4039         assert( ExprUseYTab(pExpr) );
4040         if( pExpr->y.pTab ){
4041           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4042         }else{
4043           aff = pExpr->affExpr;
4044         }
4045         if( aff>SQLITE_AFF_BLOB ){
4046           static const char zAff[] = "B\000C\000D\000E";
4047           assert( SQLITE_AFF_BLOB=='A' );
4048           assert( SQLITE_AFF_TEXT=='B' );
4049           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4050                             &zAff[(aff-'B')*2], P4_STATIC);
4051         }
4052         return iReg;
4053       }
4054       if( iTab<0 ){
4055         if( pParse->iSelfTab<0 ){
4056           /* Other columns in the same row for CHECK constraints or
4057           ** generated columns or for inserting into partial index.
4058           ** The row is unpacked into registers beginning at
4059           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4060           ** immediately prior to the first column.
4061           */
4062           Column *pCol;
4063           Table *pTab;
4064           int iSrc;
4065           int iCol = pExpr->iColumn;
4066           assert( ExprUseYTab(pExpr) );
4067           pTab = pExpr->y.pTab;
4068           assert( pTab!=0 );
4069           assert( iCol>=XN_ROWID );
4070           assert( iCol<pTab->nCol );
4071           if( iCol<0 ){
4072             return -1-pParse->iSelfTab;
4073           }
4074           pCol = pTab->aCol + iCol;
4075           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4076           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4077 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4078           if( pCol->colFlags & COLFLAG_GENERATED ){
4079             if( pCol->colFlags & COLFLAG_BUSY ){
4080               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4081                               pCol->zCnName);
4082               return 0;
4083             }
4084             pCol->colFlags |= COLFLAG_BUSY;
4085             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4086               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4087             }
4088             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4089             return iSrc;
4090           }else
4091 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4092           if( pCol->affinity==SQLITE_AFF_REAL ){
4093             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4094             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4095             return target;
4096           }else{
4097             return iSrc;
4098           }
4099         }else{
4100           /* Coding an expression that is part of an index where column names
4101           ** in the index refer to the table to which the index belongs */
4102           iTab = pParse->iSelfTab - 1;
4103         }
4104       }
4105       assert( ExprUseYTab(pExpr) );
4106       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4107                                pExpr->iColumn, iTab, target,
4108                                pExpr->op2);
4109       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4110         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4111       }
4112       return iReg;
4113     }
4114     case TK_INTEGER: {
4115       codeInteger(pParse, pExpr, 0, target);
4116       return target;
4117     }
4118     case TK_TRUEFALSE: {
4119       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4120       return target;
4121     }
4122 #ifndef SQLITE_OMIT_FLOATING_POINT
4123     case TK_FLOAT: {
4124       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4125       codeReal(v, pExpr->u.zToken, 0, target);
4126       return target;
4127     }
4128 #endif
4129     case TK_STRING: {
4130       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4131       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4132       return target;
4133     }
4134     default: {
4135       /* Make NULL the default case so that if a bug causes an illegal
4136       ** Expr node to be passed into this function, it will be handled
4137       ** sanely and not crash.  But keep the assert() to bring the problem
4138       ** to the attention of the developers. */
4139       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4140       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4141       return target;
4142     }
4143 #ifndef SQLITE_OMIT_BLOB_LITERAL
4144     case TK_BLOB: {
4145       int n;
4146       const char *z;
4147       char *zBlob;
4148       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4149       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4150       assert( pExpr->u.zToken[1]=='\'' );
4151       z = &pExpr->u.zToken[2];
4152       n = sqlite3Strlen30(z) - 1;
4153       assert( z[n]=='\'' );
4154       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4155       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4156       return target;
4157     }
4158 #endif
4159     case TK_VARIABLE: {
4160       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4161       assert( pExpr->u.zToken!=0 );
4162       assert( pExpr->u.zToken[0]!=0 );
4163       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4164       if( pExpr->u.zToken[1]!=0 ){
4165         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4166         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4167         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4168         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4169       }
4170       return target;
4171     }
4172     case TK_REGISTER: {
4173       return pExpr->iTable;
4174     }
4175 #ifndef SQLITE_OMIT_CAST
4176     case TK_CAST: {
4177       /* Expressions of the form:   CAST(pLeft AS token) */
4178       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4179       if( inReg!=target ){
4180         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4181         inReg = target;
4182       }
4183       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4184       sqlite3VdbeAddOp2(v, OP_Cast, target,
4185                         sqlite3AffinityType(pExpr->u.zToken, 0));
4186       return inReg;
4187     }
4188 #endif /* SQLITE_OMIT_CAST */
4189     case TK_IS:
4190     case TK_ISNOT:
4191       op = (op==TK_IS) ? TK_EQ : TK_NE;
4192       p5 = SQLITE_NULLEQ;
4193       /* fall-through */
4194     case TK_LT:
4195     case TK_LE:
4196     case TK_GT:
4197     case TK_GE:
4198     case TK_NE:
4199     case TK_EQ: {
4200       Expr *pLeft = pExpr->pLeft;
4201       if( sqlite3ExprIsVector(pLeft) ){
4202         codeVectorCompare(pParse, pExpr, target, op, p5);
4203       }else{
4204         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4205         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4206         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4207         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4208             sqlite3VdbeCurrentAddr(v)+2, p5,
4209             ExprHasProperty(pExpr,EP_Commuted));
4210         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4211         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4212         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4213         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4214         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4215         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4216         if( p5==SQLITE_NULLEQ ){
4217           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4218         }else{
4219           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4220         }
4221         testcase( regFree1==0 );
4222         testcase( regFree2==0 );
4223       }
4224       break;
4225     }
4226     case TK_AND:
4227     case TK_OR:
4228     case TK_PLUS:
4229     case TK_STAR:
4230     case TK_MINUS:
4231     case TK_REM:
4232     case TK_BITAND:
4233     case TK_BITOR:
4234     case TK_SLASH:
4235     case TK_LSHIFT:
4236     case TK_RSHIFT:
4237     case TK_CONCAT: {
4238       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4239       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4240       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4241       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4242       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4243       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4244       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4245       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4246       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4247       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4248       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4249       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4250       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4251       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4252       testcase( regFree1==0 );
4253       testcase( regFree2==0 );
4254       break;
4255     }
4256     case TK_UMINUS: {
4257       Expr *pLeft = pExpr->pLeft;
4258       assert( pLeft );
4259       if( pLeft->op==TK_INTEGER ){
4260         codeInteger(pParse, pLeft, 1, target);
4261         return target;
4262 #ifndef SQLITE_OMIT_FLOATING_POINT
4263       }else if( pLeft->op==TK_FLOAT ){
4264         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4265         codeReal(v, pLeft->u.zToken, 1, target);
4266         return target;
4267 #endif
4268       }else{
4269         tempX.op = TK_INTEGER;
4270         tempX.flags = EP_IntValue|EP_TokenOnly;
4271         tempX.u.iValue = 0;
4272         ExprClearVVAProperties(&tempX);
4273         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4274         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4275         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4276         testcase( regFree2==0 );
4277       }
4278       break;
4279     }
4280     case TK_BITNOT:
4281     case TK_NOT: {
4282       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4283       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4284       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4285       testcase( regFree1==0 );
4286       sqlite3VdbeAddOp2(v, op, r1, inReg);
4287       break;
4288     }
4289     case TK_TRUTH: {
4290       int isTrue;    /* IS TRUE or IS NOT TRUE */
4291       int bNormal;   /* IS TRUE or IS FALSE */
4292       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4293       testcase( regFree1==0 );
4294       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4295       bNormal = pExpr->op2==TK_IS;
4296       testcase( isTrue && bNormal);
4297       testcase( !isTrue && bNormal);
4298       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4299       break;
4300     }
4301     case TK_ISNULL:
4302     case TK_NOTNULL: {
4303       int addr;
4304       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4305       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4306       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4307       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4308       testcase( regFree1==0 );
4309       addr = sqlite3VdbeAddOp1(v, op, r1);
4310       VdbeCoverageIf(v, op==TK_ISNULL);
4311       VdbeCoverageIf(v, op==TK_NOTNULL);
4312       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4313       sqlite3VdbeJumpHere(v, addr);
4314       break;
4315     }
4316     case TK_AGG_FUNCTION: {
4317       AggInfo *pInfo = pExpr->pAggInfo;
4318       if( pInfo==0
4319        || NEVER(pExpr->iAgg<0)
4320        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4321       ){
4322         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4323         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4324       }else{
4325         return pInfo->aFunc[pExpr->iAgg].iMem;
4326       }
4327       break;
4328     }
4329     case TK_FUNCTION: {
4330       ExprList *pFarg;       /* List of function arguments */
4331       int nFarg;             /* Number of function arguments */
4332       FuncDef *pDef;         /* The function definition object */
4333       const char *zId;       /* The function name */
4334       u32 constMask = 0;     /* Mask of function arguments that are constant */
4335       int i;                 /* Loop counter */
4336       sqlite3 *db = pParse->db;  /* The database connection */
4337       u8 enc = ENC(db);      /* The text encoding used by this database */
4338       CollSeq *pColl = 0;    /* A collating sequence */
4339 
4340 #ifndef SQLITE_OMIT_WINDOWFUNC
4341       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4342         return pExpr->y.pWin->regResult;
4343       }
4344 #endif
4345 
4346       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4347         /* SQL functions can be expensive. So try to avoid running them
4348         ** multiple times if we know they always give the same result */
4349         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4350       }
4351       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4352       assert( ExprUseXList(pExpr) );
4353       pFarg = pExpr->x.pList;
4354       nFarg = pFarg ? pFarg->nExpr : 0;
4355       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4356       zId = pExpr->u.zToken;
4357       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4358 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4359       if( pDef==0 && pParse->explain ){
4360         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4361       }
4362 #endif
4363       if( pDef==0 || pDef->xFinalize!=0 ){
4364         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4365         break;
4366       }
4367       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4368         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4369         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4370         return exprCodeInlineFunction(pParse, pFarg,
4371              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4372       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4373         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4374       }
4375 
4376       for(i=0; i<nFarg; i++){
4377         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4378           testcase( i==31 );
4379           constMask |= MASKBIT32(i);
4380         }
4381         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4382           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4383         }
4384       }
4385       if( pFarg ){
4386         if( constMask ){
4387           r1 = pParse->nMem+1;
4388           pParse->nMem += nFarg;
4389         }else{
4390           r1 = sqlite3GetTempRange(pParse, nFarg);
4391         }
4392 
4393         /* For length() and typeof() functions with a column argument,
4394         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4395         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4396         ** loading.
4397         */
4398         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4399           u8 exprOp;
4400           assert( nFarg==1 );
4401           assert( pFarg->a[0].pExpr!=0 );
4402           exprOp = pFarg->a[0].pExpr->op;
4403           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4404             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4405             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4406             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4407             pFarg->a[0].pExpr->op2 =
4408                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4409           }
4410         }
4411 
4412         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4413                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4414       }else{
4415         r1 = 0;
4416       }
4417 #ifndef SQLITE_OMIT_VIRTUALTABLE
4418       /* Possibly overload the function if the first argument is
4419       ** a virtual table column.
4420       **
4421       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4422       ** second argument, not the first, as the argument to test to
4423       ** see if it is a column in a virtual table.  This is done because
4424       ** the left operand of infix functions (the operand we want to
4425       ** control overloading) ends up as the second argument to the
4426       ** function.  The expression "A glob B" is equivalent to
4427       ** "glob(B,A).  We want to use the A in "A glob B" to test
4428       ** for function overloading.  But we use the B term in "glob(B,A)".
4429       */
4430       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4431         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4432       }else if( nFarg>0 ){
4433         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4434       }
4435 #endif
4436       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4437         if( !pColl ) pColl = db->pDfltColl;
4438         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4439       }
4440 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4441       if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){
4442         Expr *pArg = pFarg->a[0].pExpr;
4443         if( pArg->op==TK_COLUMN ){
4444           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4445         }else{
4446           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4447         }
4448       }else
4449 #endif
4450       {
4451         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4452                                    pDef, pExpr->op2);
4453       }
4454       if( nFarg ){
4455         if( constMask==0 ){
4456           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4457         }else{
4458           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4459         }
4460       }
4461       return target;
4462     }
4463 #ifndef SQLITE_OMIT_SUBQUERY
4464     case TK_EXISTS:
4465     case TK_SELECT: {
4466       int nCol;
4467       testcase( op==TK_EXISTS );
4468       testcase( op==TK_SELECT );
4469       if( pParse->db->mallocFailed ){
4470         return 0;
4471       }else if( op==TK_SELECT
4472              && ALWAYS( ExprUseXSelect(pExpr) )
4473              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4474       ){
4475         sqlite3SubselectError(pParse, nCol, 1);
4476       }else{
4477         return sqlite3CodeSubselect(pParse, pExpr);
4478       }
4479       break;
4480     }
4481     case TK_SELECT_COLUMN: {
4482       int n;
4483       if( pExpr->pLeft->iTable==0 ){
4484         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4485       }
4486       assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR );
4487       n = sqlite3ExprVectorSize(pExpr->pLeft);
4488       if( pExpr->iTable!=n ){
4489         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4490                                 pExpr->iTable, n);
4491       }
4492       return pExpr->pLeft->iTable + pExpr->iColumn;
4493     }
4494     case TK_IN: {
4495       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4496       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4497       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4498       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4499       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4500       sqlite3VdbeResolveLabel(v, destIfFalse);
4501       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4502       sqlite3VdbeResolveLabel(v, destIfNull);
4503       return target;
4504     }
4505 #endif /* SQLITE_OMIT_SUBQUERY */
4506 
4507 
4508     /*
4509     **    x BETWEEN y AND z
4510     **
4511     ** This is equivalent to
4512     **
4513     **    x>=y AND x<=z
4514     **
4515     ** X is stored in pExpr->pLeft.
4516     ** Y is stored in pExpr->pList->a[0].pExpr.
4517     ** Z is stored in pExpr->pList->a[1].pExpr.
4518     */
4519     case TK_BETWEEN: {
4520       exprCodeBetween(pParse, pExpr, target, 0, 0);
4521       return target;
4522     }
4523     case TK_SPAN:
4524     case TK_COLLATE:
4525     case TK_UPLUS: {
4526       pExpr = pExpr->pLeft;
4527       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4528     }
4529 
4530     case TK_TRIGGER: {
4531       /* If the opcode is TK_TRIGGER, then the expression is a reference
4532       ** to a column in the new.* or old.* pseudo-tables available to
4533       ** trigger programs. In this case Expr.iTable is set to 1 for the
4534       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4535       ** is set to the column of the pseudo-table to read, or to -1 to
4536       ** read the rowid field.
4537       **
4538       ** The expression is implemented using an OP_Param opcode. The p1
4539       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4540       ** to reference another column of the old.* pseudo-table, where
4541       ** i is the index of the column. For a new.rowid reference, p1 is
4542       ** set to (n+1), where n is the number of columns in each pseudo-table.
4543       ** For a reference to any other column in the new.* pseudo-table, p1
4544       ** is set to (n+2+i), where n and i are as defined previously. For
4545       ** example, if the table on which triggers are being fired is
4546       ** declared as:
4547       **
4548       **   CREATE TABLE t1(a, b);
4549       **
4550       ** Then p1 is interpreted as follows:
4551       **
4552       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4553       **   p1==1   ->    old.a         p1==4   ->    new.a
4554       **   p1==2   ->    old.b         p1==5   ->    new.b
4555       */
4556       Table *pTab;
4557       int iCol;
4558       int p1;
4559 
4560       assert( ExprUseYTab(pExpr) );
4561       pTab = pExpr->y.pTab;
4562       iCol = pExpr->iColumn;
4563       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4564                      + sqlite3TableColumnToStorage(pTab, iCol);
4565 
4566       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4567       assert( iCol>=-1 && iCol<pTab->nCol );
4568       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4569       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4570 
4571       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4572       VdbeComment((v, "r[%d]=%s.%s", target,
4573         (pExpr->iTable ? "new" : "old"),
4574         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4575       ));
4576 
4577 #ifndef SQLITE_OMIT_FLOATING_POINT
4578       /* If the column has REAL affinity, it may currently be stored as an
4579       ** integer. Use OP_RealAffinity to make sure it is really real.
4580       **
4581       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4582       ** floating point when extracting it from the record.  */
4583       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4584         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4585       }
4586 #endif
4587       break;
4588     }
4589 
4590     case TK_VECTOR: {
4591       sqlite3ErrorMsg(pParse, "row value misused");
4592       break;
4593     }
4594 
4595     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4596     ** that derive from the right-hand table of a LEFT JOIN.  The
4597     ** Expr.iTable value is the table number for the right-hand table.
4598     ** The expression is only evaluated if that table is not currently
4599     ** on a LEFT JOIN NULL row.
4600     */
4601     case TK_IF_NULL_ROW: {
4602       int addrINR;
4603       u8 okConstFactor = pParse->okConstFactor;
4604       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4605       /* Temporarily disable factoring of constant expressions, since
4606       ** even though expressions may appear to be constant, they are not
4607       ** really constant because they originate from the right-hand side
4608       ** of a LEFT JOIN. */
4609       pParse->okConstFactor = 0;
4610       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4611       pParse->okConstFactor = okConstFactor;
4612       sqlite3VdbeJumpHere(v, addrINR);
4613       sqlite3VdbeChangeP3(v, addrINR, inReg);
4614       break;
4615     }
4616 
4617     /*
4618     ** Form A:
4619     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4620     **
4621     ** Form B:
4622     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4623     **
4624     ** Form A is can be transformed into the equivalent form B as follows:
4625     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4626     **        WHEN x=eN THEN rN ELSE y END
4627     **
4628     ** X (if it exists) is in pExpr->pLeft.
4629     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4630     ** odd.  The Y is also optional.  If the number of elements in x.pList
4631     ** is even, then Y is omitted and the "otherwise" result is NULL.
4632     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4633     **
4634     ** The result of the expression is the Ri for the first matching Ei,
4635     ** or if there is no matching Ei, the ELSE term Y, or if there is
4636     ** no ELSE term, NULL.
4637     */
4638     case TK_CASE: {
4639       int endLabel;                     /* GOTO label for end of CASE stmt */
4640       int nextCase;                     /* GOTO label for next WHEN clause */
4641       int nExpr;                        /* 2x number of WHEN terms */
4642       int i;                            /* Loop counter */
4643       ExprList *pEList;                 /* List of WHEN terms */
4644       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4645       Expr opCompare;                   /* The X==Ei expression */
4646       Expr *pX;                         /* The X expression */
4647       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4648       Expr *pDel = 0;
4649       sqlite3 *db = pParse->db;
4650 
4651       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4652       assert(pExpr->x.pList->nExpr > 0);
4653       pEList = pExpr->x.pList;
4654       aListelem = pEList->a;
4655       nExpr = pEList->nExpr;
4656       endLabel = sqlite3VdbeMakeLabel(pParse);
4657       if( (pX = pExpr->pLeft)!=0 ){
4658         pDel = sqlite3ExprDup(db, pX, 0);
4659         if( db->mallocFailed ){
4660           sqlite3ExprDelete(db, pDel);
4661           break;
4662         }
4663         testcase( pX->op==TK_COLUMN );
4664         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4665         testcase( regFree1==0 );
4666         memset(&opCompare, 0, sizeof(opCompare));
4667         opCompare.op = TK_EQ;
4668         opCompare.pLeft = pDel;
4669         pTest = &opCompare;
4670         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4671         ** The value in regFree1 might get SCopy-ed into the file result.
4672         ** So make sure that the regFree1 register is not reused for other
4673         ** purposes and possibly overwritten.  */
4674         regFree1 = 0;
4675       }
4676       for(i=0; i<nExpr-1; i=i+2){
4677         if( pX ){
4678           assert( pTest!=0 );
4679           opCompare.pRight = aListelem[i].pExpr;
4680         }else{
4681           pTest = aListelem[i].pExpr;
4682         }
4683         nextCase = sqlite3VdbeMakeLabel(pParse);
4684         testcase( pTest->op==TK_COLUMN );
4685         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4686         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4687         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4688         sqlite3VdbeGoto(v, endLabel);
4689         sqlite3VdbeResolveLabel(v, nextCase);
4690       }
4691       if( (nExpr&1)!=0 ){
4692         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4693       }else{
4694         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4695       }
4696       sqlite3ExprDelete(db, pDel);
4697       setDoNotMergeFlagOnCopy(v);
4698       sqlite3VdbeResolveLabel(v, endLabel);
4699       break;
4700     }
4701 #ifndef SQLITE_OMIT_TRIGGER
4702     case TK_RAISE: {
4703       assert( pExpr->affExpr==OE_Rollback
4704            || pExpr->affExpr==OE_Abort
4705            || pExpr->affExpr==OE_Fail
4706            || pExpr->affExpr==OE_Ignore
4707       );
4708       if( !pParse->pTriggerTab && !pParse->nested ){
4709         sqlite3ErrorMsg(pParse,
4710                        "RAISE() may only be used within a trigger-program");
4711         return 0;
4712       }
4713       if( pExpr->affExpr==OE_Abort ){
4714         sqlite3MayAbort(pParse);
4715       }
4716       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4717       if( pExpr->affExpr==OE_Ignore ){
4718         sqlite3VdbeAddOp4(
4719             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4720         VdbeCoverage(v);
4721       }else{
4722         sqlite3HaltConstraint(pParse,
4723              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4724              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4725       }
4726 
4727       break;
4728     }
4729 #endif
4730   }
4731   sqlite3ReleaseTempReg(pParse, regFree1);
4732   sqlite3ReleaseTempReg(pParse, regFree2);
4733   return inReg;
4734 }
4735 
4736 /*
4737 ** Generate code that will evaluate expression pExpr just one time
4738 ** per prepared statement execution.
4739 **
4740 ** If the expression uses functions (that might throw an exception) then
4741 ** guard them with an OP_Once opcode to ensure that the code is only executed
4742 ** once. If no functions are involved, then factor the code out and put it at
4743 ** the end of the prepared statement in the initialization section.
4744 **
4745 ** If regDest>=0 then the result is always stored in that register and the
4746 ** result is not reusable.  If regDest<0 then this routine is free to
4747 ** store the value whereever it wants.  The register where the expression
4748 ** is stored is returned.  When regDest<0, two identical expressions might
4749 ** code to the same register, if they do not contain function calls and hence
4750 ** are factored out into the initialization section at the end of the
4751 ** prepared statement.
4752 */
4753 int sqlite3ExprCodeRunJustOnce(
4754   Parse *pParse,    /* Parsing context */
4755   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4756   int regDest       /* Store the value in this register */
4757 ){
4758   ExprList *p;
4759   assert( ConstFactorOk(pParse) );
4760   p = pParse->pConstExpr;
4761   if( regDest<0 && p ){
4762     struct ExprList_item *pItem;
4763     int i;
4764     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4765       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4766         return pItem->u.iConstExprReg;
4767       }
4768     }
4769   }
4770   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4771   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4772     Vdbe *v = pParse->pVdbe;
4773     int addr;
4774     assert( v );
4775     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4776     pParse->okConstFactor = 0;
4777     if( !pParse->db->mallocFailed ){
4778       if( regDest<0 ) regDest = ++pParse->nMem;
4779       sqlite3ExprCode(pParse, pExpr, regDest);
4780     }
4781     pParse->okConstFactor = 1;
4782     sqlite3ExprDelete(pParse->db, pExpr);
4783     sqlite3VdbeJumpHere(v, addr);
4784   }else{
4785     p = sqlite3ExprListAppend(pParse, p, pExpr);
4786     if( p ){
4787        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4788        pItem->reusable = regDest<0;
4789        if( regDest<0 ) regDest = ++pParse->nMem;
4790        pItem->u.iConstExprReg = regDest;
4791     }
4792     pParse->pConstExpr = p;
4793   }
4794   return regDest;
4795 }
4796 
4797 /*
4798 ** Generate code to evaluate an expression and store the results
4799 ** into a register.  Return the register number where the results
4800 ** are stored.
4801 **
4802 ** If the register is a temporary register that can be deallocated,
4803 ** then write its number into *pReg.  If the result register is not
4804 ** a temporary, then set *pReg to zero.
4805 **
4806 ** If pExpr is a constant, then this routine might generate this
4807 ** code to fill the register in the initialization section of the
4808 ** VDBE program, in order to factor it out of the evaluation loop.
4809 */
4810 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4811   int r2;
4812   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4813   if( ConstFactorOk(pParse)
4814    && ALWAYS(pExpr!=0)
4815    && pExpr->op!=TK_REGISTER
4816    && sqlite3ExprIsConstantNotJoin(pExpr)
4817   ){
4818     *pReg  = 0;
4819     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4820   }else{
4821     int r1 = sqlite3GetTempReg(pParse);
4822     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4823     if( r2==r1 ){
4824       *pReg = r1;
4825     }else{
4826       sqlite3ReleaseTempReg(pParse, r1);
4827       *pReg = 0;
4828     }
4829   }
4830   return r2;
4831 }
4832 
4833 /*
4834 ** Generate code that will evaluate expression pExpr and store the
4835 ** results in register target.  The results are guaranteed to appear
4836 ** in register target.
4837 */
4838 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4839   int inReg;
4840 
4841   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4842   assert( target>0 && target<=pParse->nMem );
4843   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4844   if( pParse->pVdbe==0 ) return;
4845   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4846   if( inReg!=target ){
4847     u8 op;
4848     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4849       op = OP_Copy;
4850     }else{
4851       op = OP_SCopy;
4852     }
4853     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4854   }
4855 }
4856 
4857 /*
4858 ** Make a transient copy of expression pExpr and then code it using
4859 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4860 ** except that the input expression is guaranteed to be unchanged.
4861 */
4862 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4863   sqlite3 *db = pParse->db;
4864   pExpr = sqlite3ExprDup(db, pExpr, 0);
4865   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4866   sqlite3ExprDelete(db, pExpr);
4867 }
4868 
4869 /*
4870 ** Generate code that will evaluate expression pExpr and store the
4871 ** results in register target.  The results are guaranteed to appear
4872 ** in register target.  If the expression is constant, then this routine
4873 ** might choose to code the expression at initialization time.
4874 */
4875 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4876   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4877     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4878   }else{
4879     sqlite3ExprCodeCopy(pParse, pExpr, target);
4880   }
4881 }
4882 
4883 /*
4884 ** Generate code that pushes the value of every element of the given
4885 ** expression list into a sequence of registers beginning at target.
4886 **
4887 ** Return the number of elements evaluated.  The number returned will
4888 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4889 ** is defined.
4890 **
4891 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4892 ** filled using OP_SCopy.  OP_Copy must be used instead.
4893 **
4894 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4895 ** factored out into initialization code.
4896 **
4897 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4898 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4899 ** in registers at srcReg, and so the value can be copied from there.
4900 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4901 ** are simply omitted rather than being copied from srcReg.
4902 */
4903 int sqlite3ExprCodeExprList(
4904   Parse *pParse,     /* Parsing context */
4905   ExprList *pList,   /* The expression list to be coded */
4906   int target,        /* Where to write results */
4907   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4908   u8 flags           /* SQLITE_ECEL_* flags */
4909 ){
4910   struct ExprList_item *pItem;
4911   int i, j, n;
4912   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4913   Vdbe *v = pParse->pVdbe;
4914   assert( pList!=0 );
4915   assert( target>0 );
4916   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4917   n = pList->nExpr;
4918   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4919   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4920     Expr *pExpr = pItem->pExpr;
4921 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4922     if( pItem->bSorterRef ){
4923       i--;
4924       n--;
4925     }else
4926 #endif
4927     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4928       if( flags & SQLITE_ECEL_OMITREF ){
4929         i--;
4930         n--;
4931       }else{
4932         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4933       }
4934     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4935            && sqlite3ExprIsConstantNotJoin(pExpr)
4936     ){
4937       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4938     }else{
4939       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4940       if( inReg!=target+i ){
4941         VdbeOp *pOp;
4942         if( copyOp==OP_Copy
4943          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4944          && pOp->p1+pOp->p3+1==inReg
4945          && pOp->p2+pOp->p3+1==target+i
4946          && pOp->p5==0  /* The do-not-merge flag must be clear */
4947         ){
4948           pOp->p3++;
4949         }else{
4950           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4951         }
4952       }
4953     }
4954   }
4955   return n;
4956 }
4957 
4958 /*
4959 ** Generate code for a BETWEEN operator.
4960 **
4961 **    x BETWEEN y AND z
4962 **
4963 ** The above is equivalent to
4964 **
4965 **    x>=y AND x<=z
4966 **
4967 ** Code it as such, taking care to do the common subexpression
4968 ** elimination of x.
4969 **
4970 ** The xJumpIf parameter determines details:
4971 **
4972 **    NULL:                   Store the boolean result in reg[dest]
4973 **    sqlite3ExprIfTrue:      Jump to dest if true
4974 **    sqlite3ExprIfFalse:     Jump to dest if false
4975 **
4976 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4977 */
4978 static void exprCodeBetween(
4979   Parse *pParse,    /* Parsing and code generating context */
4980   Expr *pExpr,      /* The BETWEEN expression */
4981   int dest,         /* Jump destination or storage location */
4982   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4983   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4984 ){
4985   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4986   Expr compLeft;    /* The  x>=y  term */
4987   Expr compRight;   /* The  x<=z  term */
4988   int regFree1 = 0; /* Temporary use register */
4989   Expr *pDel = 0;
4990   sqlite3 *db = pParse->db;
4991 
4992   memset(&compLeft, 0, sizeof(Expr));
4993   memset(&compRight, 0, sizeof(Expr));
4994   memset(&exprAnd, 0, sizeof(Expr));
4995 
4996   assert( ExprUseXList(pExpr) );
4997   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4998   if( db->mallocFailed==0 ){
4999     exprAnd.op = TK_AND;
5000     exprAnd.pLeft = &compLeft;
5001     exprAnd.pRight = &compRight;
5002     compLeft.op = TK_GE;
5003     compLeft.pLeft = pDel;
5004     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5005     compRight.op = TK_LE;
5006     compRight.pLeft = pDel;
5007     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5008     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5009     if( xJump ){
5010       xJump(pParse, &exprAnd, dest, jumpIfNull);
5011     }else{
5012       /* Mark the expression is being from the ON or USING clause of a join
5013       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5014       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5015       ** for clarity, but we are out of bits in the Expr.flags field so we
5016       ** have to reuse the EP_FromJoin bit.  Bummer. */
5017       pDel->flags |= EP_FromJoin;
5018       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5019     }
5020     sqlite3ReleaseTempReg(pParse, regFree1);
5021   }
5022   sqlite3ExprDelete(db, pDel);
5023 
5024   /* Ensure adequate test coverage */
5025   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5026   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5027   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5028   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5029   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5030   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5031   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5032   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5033   testcase( xJump==0 );
5034 }
5035 
5036 /*
5037 ** Generate code for a boolean expression such that a jump is made
5038 ** to the label "dest" if the expression is true but execution
5039 ** continues straight thru if the expression is false.
5040 **
5041 ** If the expression evaluates to NULL (neither true nor false), then
5042 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5043 **
5044 ** This code depends on the fact that certain token values (ex: TK_EQ)
5045 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5046 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5047 ** the make process cause these values to align.  Assert()s in the code
5048 ** below verify that the numbers are aligned correctly.
5049 */
5050 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5051   Vdbe *v = pParse->pVdbe;
5052   int op = 0;
5053   int regFree1 = 0;
5054   int regFree2 = 0;
5055   int r1, r2;
5056 
5057   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5058   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5059   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5060   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5061   op = pExpr->op;
5062   switch( op ){
5063     case TK_AND:
5064     case TK_OR: {
5065       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5066       if( pAlt!=pExpr ){
5067         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5068       }else if( op==TK_AND ){
5069         int d2 = sqlite3VdbeMakeLabel(pParse);
5070         testcase( jumpIfNull==0 );
5071         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5072                            jumpIfNull^SQLITE_JUMPIFNULL);
5073         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5074         sqlite3VdbeResolveLabel(v, d2);
5075       }else{
5076         testcase( jumpIfNull==0 );
5077         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5078         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5079       }
5080       break;
5081     }
5082     case TK_NOT: {
5083       testcase( jumpIfNull==0 );
5084       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5085       break;
5086     }
5087     case TK_TRUTH: {
5088       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5089       int isTrue;     /* IS TRUE or IS NOT TRUE */
5090       testcase( jumpIfNull==0 );
5091       isNot = pExpr->op2==TK_ISNOT;
5092       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5093       testcase( isTrue && isNot );
5094       testcase( !isTrue && isNot );
5095       if( isTrue ^ isNot ){
5096         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5097                           isNot ? SQLITE_JUMPIFNULL : 0);
5098       }else{
5099         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5100                            isNot ? SQLITE_JUMPIFNULL : 0);
5101       }
5102       break;
5103     }
5104     case TK_IS:
5105     case TK_ISNOT:
5106       testcase( op==TK_IS );
5107       testcase( op==TK_ISNOT );
5108       op = (op==TK_IS) ? TK_EQ : TK_NE;
5109       jumpIfNull = SQLITE_NULLEQ;
5110       /* no break */ deliberate_fall_through
5111     case TK_LT:
5112     case TK_LE:
5113     case TK_GT:
5114     case TK_GE:
5115     case TK_NE:
5116     case TK_EQ: {
5117       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5118       testcase( jumpIfNull==0 );
5119       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5120       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5121       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5122                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5123       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5124       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5125       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5126       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5127       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5128       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5129       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5130       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5131       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5132       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5133       testcase( regFree1==0 );
5134       testcase( regFree2==0 );
5135       break;
5136     }
5137     case TK_ISNULL:
5138     case TK_NOTNULL: {
5139       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5140       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5141       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5142       sqlite3VdbeAddOp2(v, op, r1, dest);
5143       VdbeCoverageIf(v, op==TK_ISNULL);
5144       VdbeCoverageIf(v, op==TK_NOTNULL);
5145       testcase( regFree1==0 );
5146       break;
5147     }
5148     case TK_BETWEEN: {
5149       testcase( jumpIfNull==0 );
5150       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5151       break;
5152     }
5153 #ifndef SQLITE_OMIT_SUBQUERY
5154     case TK_IN: {
5155       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5156       int destIfNull = jumpIfNull ? dest : destIfFalse;
5157       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5158       sqlite3VdbeGoto(v, dest);
5159       sqlite3VdbeResolveLabel(v, destIfFalse);
5160       break;
5161     }
5162 #endif
5163     default: {
5164     default_expr:
5165       if( ExprAlwaysTrue(pExpr) ){
5166         sqlite3VdbeGoto(v, dest);
5167       }else if( ExprAlwaysFalse(pExpr) ){
5168         /* No-op */
5169       }else{
5170         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5171         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5172         VdbeCoverage(v);
5173         testcase( regFree1==0 );
5174         testcase( jumpIfNull==0 );
5175       }
5176       break;
5177     }
5178   }
5179   sqlite3ReleaseTempReg(pParse, regFree1);
5180   sqlite3ReleaseTempReg(pParse, regFree2);
5181 }
5182 
5183 /*
5184 ** Generate code for a boolean expression such that a jump is made
5185 ** to the label "dest" if the expression is false but execution
5186 ** continues straight thru if the expression is true.
5187 **
5188 ** If the expression evaluates to NULL (neither true nor false) then
5189 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5190 ** is 0.
5191 */
5192 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5193   Vdbe *v = pParse->pVdbe;
5194   int op = 0;
5195   int regFree1 = 0;
5196   int regFree2 = 0;
5197   int r1, r2;
5198 
5199   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5200   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5201   if( pExpr==0 )    return;
5202   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5203 
5204   /* The value of pExpr->op and op are related as follows:
5205   **
5206   **       pExpr->op            op
5207   **       ---------          ----------
5208   **       TK_ISNULL          OP_NotNull
5209   **       TK_NOTNULL         OP_IsNull
5210   **       TK_NE              OP_Eq
5211   **       TK_EQ              OP_Ne
5212   **       TK_GT              OP_Le
5213   **       TK_LE              OP_Gt
5214   **       TK_GE              OP_Lt
5215   **       TK_LT              OP_Ge
5216   **
5217   ** For other values of pExpr->op, op is undefined and unused.
5218   ** The value of TK_ and OP_ constants are arranged such that we
5219   ** can compute the mapping above using the following expression.
5220   ** Assert()s verify that the computation is correct.
5221   */
5222   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5223 
5224   /* Verify correct alignment of TK_ and OP_ constants
5225   */
5226   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5227   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5228   assert( pExpr->op!=TK_NE || op==OP_Eq );
5229   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5230   assert( pExpr->op!=TK_LT || op==OP_Ge );
5231   assert( pExpr->op!=TK_LE || op==OP_Gt );
5232   assert( pExpr->op!=TK_GT || op==OP_Le );
5233   assert( pExpr->op!=TK_GE || op==OP_Lt );
5234 
5235   switch( pExpr->op ){
5236     case TK_AND:
5237     case TK_OR: {
5238       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5239       if( pAlt!=pExpr ){
5240         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5241       }else if( pExpr->op==TK_AND ){
5242         testcase( jumpIfNull==0 );
5243         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5244         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5245       }else{
5246         int d2 = sqlite3VdbeMakeLabel(pParse);
5247         testcase( jumpIfNull==0 );
5248         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5249                           jumpIfNull^SQLITE_JUMPIFNULL);
5250         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5251         sqlite3VdbeResolveLabel(v, d2);
5252       }
5253       break;
5254     }
5255     case TK_NOT: {
5256       testcase( jumpIfNull==0 );
5257       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5258       break;
5259     }
5260     case TK_TRUTH: {
5261       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5262       int isTrue;  /* IS TRUE or IS NOT TRUE */
5263       testcase( jumpIfNull==0 );
5264       isNot = pExpr->op2==TK_ISNOT;
5265       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5266       testcase( isTrue && isNot );
5267       testcase( !isTrue && isNot );
5268       if( isTrue ^ isNot ){
5269         /* IS TRUE and IS NOT FALSE */
5270         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5271                            isNot ? 0 : SQLITE_JUMPIFNULL);
5272 
5273       }else{
5274         /* IS FALSE and IS NOT TRUE */
5275         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5276                           isNot ? 0 : SQLITE_JUMPIFNULL);
5277       }
5278       break;
5279     }
5280     case TK_IS:
5281     case TK_ISNOT:
5282       testcase( pExpr->op==TK_IS );
5283       testcase( pExpr->op==TK_ISNOT );
5284       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5285       jumpIfNull = SQLITE_NULLEQ;
5286       /* no break */ deliberate_fall_through
5287     case TK_LT:
5288     case TK_LE:
5289     case TK_GT:
5290     case TK_GE:
5291     case TK_NE:
5292     case TK_EQ: {
5293       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5294       testcase( jumpIfNull==0 );
5295       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5296       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5297       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5298                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5299       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5300       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5301       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5302       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5303       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5304       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5305       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5306       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5307       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5308       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5309       testcase( regFree1==0 );
5310       testcase( regFree2==0 );
5311       break;
5312     }
5313     case TK_ISNULL:
5314     case TK_NOTNULL: {
5315       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5316       sqlite3VdbeAddOp2(v, op, r1, dest);
5317       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5318       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5319       testcase( regFree1==0 );
5320       break;
5321     }
5322     case TK_BETWEEN: {
5323       testcase( jumpIfNull==0 );
5324       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5325       break;
5326     }
5327 #ifndef SQLITE_OMIT_SUBQUERY
5328     case TK_IN: {
5329       if( jumpIfNull ){
5330         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5331       }else{
5332         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5333         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5334         sqlite3VdbeResolveLabel(v, destIfNull);
5335       }
5336       break;
5337     }
5338 #endif
5339     default: {
5340     default_expr:
5341       if( ExprAlwaysFalse(pExpr) ){
5342         sqlite3VdbeGoto(v, dest);
5343       }else if( ExprAlwaysTrue(pExpr) ){
5344         /* no-op */
5345       }else{
5346         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5347         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5348         VdbeCoverage(v);
5349         testcase( regFree1==0 );
5350         testcase( jumpIfNull==0 );
5351       }
5352       break;
5353     }
5354   }
5355   sqlite3ReleaseTempReg(pParse, regFree1);
5356   sqlite3ReleaseTempReg(pParse, regFree2);
5357 }
5358 
5359 /*
5360 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5361 ** code generation, and that copy is deleted after code generation. This
5362 ** ensures that the original pExpr is unchanged.
5363 */
5364 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5365   sqlite3 *db = pParse->db;
5366   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5367   if( db->mallocFailed==0 ){
5368     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5369   }
5370   sqlite3ExprDelete(db, pCopy);
5371 }
5372 
5373 /*
5374 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5375 ** type of expression.
5376 **
5377 ** If pExpr is a simple SQL value - an integer, real, string, blob
5378 ** or NULL value - then the VDBE currently being prepared is configured
5379 ** to re-prepare each time a new value is bound to variable pVar.
5380 **
5381 ** Additionally, if pExpr is a simple SQL value and the value is the
5382 ** same as that currently bound to variable pVar, non-zero is returned.
5383 ** Otherwise, if the values are not the same or if pExpr is not a simple
5384 ** SQL value, zero is returned.
5385 */
5386 static int exprCompareVariable(
5387   const Parse *pParse,
5388   const Expr *pVar,
5389   const Expr *pExpr
5390 ){
5391   int res = 0;
5392   int iVar;
5393   sqlite3_value *pL, *pR = 0;
5394 
5395   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5396   if( pR ){
5397     iVar = pVar->iColumn;
5398     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5399     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5400     if( pL ){
5401       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5402         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5403       }
5404       res =  0==sqlite3MemCompare(pL, pR, 0);
5405     }
5406     sqlite3ValueFree(pR);
5407     sqlite3ValueFree(pL);
5408   }
5409 
5410   return res;
5411 }
5412 
5413 /*
5414 ** Do a deep comparison of two expression trees.  Return 0 if the two
5415 ** expressions are completely identical.  Return 1 if they differ only
5416 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5417 ** other than the top-level COLLATE operator.
5418 **
5419 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5420 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5421 **
5422 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5423 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5424 **
5425 ** Sometimes this routine will return 2 even if the two expressions
5426 ** really are equivalent.  If we cannot prove that the expressions are
5427 ** identical, we return 2 just to be safe.  So if this routine
5428 ** returns 2, then you do not really know for certain if the two
5429 ** expressions are the same.  But if you get a 0 or 1 return, then you
5430 ** can be sure the expressions are the same.  In the places where
5431 ** this routine is used, it does not hurt to get an extra 2 - that
5432 ** just might result in some slightly slower code.  But returning
5433 ** an incorrect 0 or 1 could lead to a malfunction.
5434 **
5435 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5436 ** pParse->pReprepare can be matched against literals in pB.  The
5437 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5438 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5439 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5440 ** pB causes a return value of 2.
5441 */
5442 int sqlite3ExprCompare(
5443   const Parse *pParse,
5444   const Expr *pA,
5445   const Expr *pB,
5446   int iTab
5447 ){
5448   u32 combinedFlags;
5449   if( pA==0 || pB==0 ){
5450     return pB==pA ? 0 : 2;
5451   }
5452   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5453     return 0;
5454   }
5455   combinedFlags = pA->flags | pB->flags;
5456   if( combinedFlags & EP_IntValue ){
5457     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5458       return 0;
5459     }
5460     return 2;
5461   }
5462   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5463     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5464       return 1;
5465     }
5466     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5467       return 1;
5468     }
5469     return 2;
5470   }
5471   if( pA->op!=TK_COLUMN
5472    && pA->op!=TK_AGG_COLUMN
5473    && ALWAYS(!ExprHasProperty(pA, EP_IntValue))
5474    && pA->u.zToken
5475   ){
5476     assert( !ExprHasProperty(pB, EP_IntValue) );
5477     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5478       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5479 #ifndef SQLITE_OMIT_WINDOWFUNC
5480       assert( pA->op==pB->op );
5481       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5482         return 2;
5483       }
5484       if( ExprHasProperty(pA,EP_WinFunc) ){
5485         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5486           return 2;
5487         }
5488       }
5489 #endif
5490     }else if( pA->op==TK_NULL ){
5491       return 0;
5492     }else if( pA->op==TK_COLLATE ){
5493       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5494     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5495       return 2;
5496     }
5497   }
5498   if( (pA->flags & (EP_Distinct|EP_Commuted))
5499      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5500   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5501     if( combinedFlags & EP_xIsSelect ) return 2;
5502     if( (combinedFlags & EP_FixedCol)==0
5503      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5504     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5505     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5506     if( pA->op!=TK_STRING
5507      && pA->op!=TK_TRUEFALSE
5508      && ALWAYS((combinedFlags & EP_Reduced)==0)
5509     ){
5510       if( pA->iColumn!=pB->iColumn ) return 2;
5511       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5512       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5513         return 2;
5514       }
5515     }
5516   }
5517   return 0;
5518 }
5519 
5520 /*
5521 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5522 ** if they are certainly different, or 2 if it is not possible to
5523 ** determine if they are identical or not.
5524 **
5525 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5526 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5527 **
5528 ** This routine might return non-zero for equivalent ExprLists.  The
5529 ** only consequence will be disabled optimizations.  But this routine
5530 ** must never return 0 if the two ExprList objects are different, or
5531 ** a malfunction will result.
5532 **
5533 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5534 ** always differs from a non-NULL pointer.
5535 */
5536 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5537   int i;
5538   if( pA==0 && pB==0 ) return 0;
5539   if( pA==0 || pB==0 ) return 1;
5540   if( pA->nExpr!=pB->nExpr ) return 1;
5541   for(i=0; i<pA->nExpr; i++){
5542     int res;
5543     Expr *pExprA = pA->a[i].pExpr;
5544     Expr *pExprB = pB->a[i].pExpr;
5545     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5546     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5547   }
5548   return 0;
5549 }
5550 
5551 /*
5552 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5553 ** are ignored.
5554 */
5555 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5556   return sqlite3ExprCompare(0,
5557              sqlite3ExprSkipCollateAndLikely(pA),
5558              sqlite3ExprSkipCollateAndLikely(pB),
5559              iTab);
5560 }
5561 
5562 /*
5563 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5564 **
5565 ** Or if seenNot is true, return non-zero if Expr p can only be
5566 ** non-NULL if pNN is not NULL
5567 */
5568 static int exprImpliesNotNull(
5569   const Parse *pParse,/* Parsing context */
5570   const Expr *p,      /* The expression to be checked */
5571   const Expr *pNN,    /* The expression that is NOT NULL */
5572   int iTab,           /* Table being evaluated */
5573   int seenNot         /* Return true only if p can be any non-NULL value */
5574 ){
5575   assert( p );
5576   assert( pNN );
5577   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5578     return pNN->op!=TK_NULL;
5579   }
5580   switch( p->op ){
5581     case TK_IN: {
5582       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5583       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5584       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5585     }
5586     case TK_BETWEEN: {
5587       ExprList *pList;
5588       assert( ExprUseXList(p) );
5589       pList = p->x.pList;
5590       assert( pList!=0 );
5591       assert( pList->nExpr==2 );
5592       if( seenNot ) return 0;
5593       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5594        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5595       ){
5596         return 1;
5597       }
5598       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5599     }
5600     case TK_EQ:
5601     case TK_NE:
5602     case TK_LT:
5603     case TK_LE:
5604     case TK_GT:
5605     case TK_GE:
5606     case TK_PLUS:
5607     case TK_MINUS:
5608     case TK_BITOR:
5609     case TK_LSHIFT:
5610     case TK_RSHIFT:
5611     case TK_CONCAT:
5612       seenNot = 1;
5613       /* no break */ deliberate_fall_through
5614     case TK_STAR:
5615     case TK_REM:
5616     case TK_BITAND:
5617     case TK_SLASH: {
5618       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5619       /* no break */ deliberate_fall_through
5620     }
5621     case TK_SPAN:
5622     case TK_COLLATE:
5623     case TK_UPLUS:
5624     case TK_UMINUS: {
5625       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5626     }
5627     case TK_TRUTH: {
5628       if( seenNot ) return 0;
5629       if( p->op2!=TK_IS ) return 0;
5630       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5631     }
5632     case TK_BITNOT:
5633     case TK_NOT: {
5634       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5635     }
5636   }
5637   return 0;
5638 }
5639 
5640 /*
5641 ** Return true if we can prove the pE2 will always be true if pE1 is
5642 ** true.  Return false if we cannot complete the proof or if pE2 might
5643 ** be false.  Examples:
5644 **
5645 **     pE1: x==5       pE2: x==5             Result: true
5646 **     pE1: x>0        pE2: x==5             Result: false
5647 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5648 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5649 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5650 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5651 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5652 **
5653 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5654 ** Expr.iTable<0 then assume a table number given by iTab.
5655 **
5656 ** If pParse is not NULL, then the values of bound variables in pE1 are
5657 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5658 ** modified to record which bound variables are referenced.  If pParse
5659 ** is NULL, then false will be returned if pE1 contains any bound variables.
5660 **
5661 ** When in doubt, return false.  Returning true might give a performance
5662 ** improvement.  Returning false might cause a performance reduction, but
5663 ** it will always give the correct answer and is hence always safe.
5664 */
5665 int sqlite3ExprImpliesExpr(
5666   const Parse *pParse,
5667   const Expr *pE1,
5668   const Expr *pE2,
5669   int iTab
5670 ){
5671   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5672     return 1;
5673   }
5674   if( pE2->op==TK_OR
5675    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5676              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5677   ){
5678     return 1;
5679   }
5680   if( pE2->op==TK_NOTNULL
5681    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5682   ){
5683     return 1;
5684   }
5685   return 0;
5686 }
5687 
5688 /*
5689 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5690 ** If the expression node requires that the table at pWalker->iCur
5691 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5692 **
5693 ** This routine controls an optimization.  False positives (setting
5694 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5695 ** (never setting pWalker->eCode) is a harmless missed optimization.
5696 */
5697 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5698   testcase( pExpr->op==TK_AGG_COLUMN );
5699   testcase( pExpr->op==TK_AGG_FUNCTION );
5700   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5701   switch( pExpr->op ){
5702     case TK_ISNOT:
5703     case TK_ISNULL:
5704     case TK_NOTNULL:
5705     case TK_IS:
5706     case TK_OR:
5707     case TK_VECTOR:
5708     case TK_CASE:
5709     case TK_IN:
5710     case TK_FUNCTION:
5711     case TK_TRUTH:
5712       testcase( pExpr->op==TK_ISNOT );
5713       testcase( pExpr->op==TK_ISNULL );
5714       testcase( pExpr->op==TK_NOTNULL );
5715       testcase( pExpr->op==TK_IS );
5716       testcase( pExpr->op==TK_OR );
5717       testcase( pExpr->op==TK_VECTOR );
5718       testcase( pExpr->op==TK_CASE );
5719       testcase( pExpr->op==TK_IN );
5720       testcase( pExpr->op==TK_FUNCTION );
5721       testcase( pExpr->op==TK_TRUTH );
5722       return WRC_Prune;
5723     case TK_COLUMN:
5724       if( pWalker->u.iCur==pExpr->iTable ){
5725         pWalker->eCode = 1;
5726         return WRC_Abort;
5727       }
5728       return WRC_Prune;
5729 
5730     case TK_AND:
5731       if( pWalker->eCode==0 ){
5732         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5733         if( pWalker->eCode ){
5734           pWalker->eCode = 0;
5735           sqlite3WalkExpr(pWalker, pExpr->pRight);
5736         }
5737       }
5738       return WRC_Prune;
5739 
5740     case TK_BETWEEN:
5741       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5742         assert( pWalker->eCode );
5743         return WRC_Abort;
5744       }
5745       return WRC_Prune;
5746 
5747     /* Virtual tables are allowed to use constraints like x=NULL.  So
5748     ** a term of the form x=y does not prove that y is not null if x
5749     ** is the column of a virtual table */
5750     case TK_EQ:
5751     case TK_NE:
5752     case TK_LT:
5753     case TK_LE:
5754     case TK_GT:
5755     case TK_GE: {
5756       Expr *pLeft = pExpr->pLeft;
5757       Expr *pRight = pExpr->pRight;
5758       testcase( pExpr->op==TK_EQ );
5759       testcase( pExpr->op==TK_NE );
5760       testcase( pExpr->op==TK_LT );
5761       testcase( pExpr->op==TK_LE );
5762       testcase( pExpr->op==TK_GT );
5763       testcase( pExpr->op==TK_GE );
5764       /* The y.pTab=0 assignment in wherecode.c always happens after the
5765       ** impliesNotNullRow() test */
5766       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5767       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5768       if( (pLeft->op==TK_COLUMN
5769            && pLeft->y.pTab!=0
5770            && IsVirtual(pLeft->y.pTab))
5771        || (pRight->op==TK_COLUMN
5772            && pRight->y.pTab!=0
5773            && IsVirtual(pRight->y.pTab))
5774       ){
5775         return WRC_Prune;
5776       }
5777       /* no break */ deliberate_fall_through
5778     }
5779     default:
5780       return WRC_Continue;
5781   }
5782 }
5783 
5784 /*
5785 ** Return true (non-zero) if expression p can only be true if at least
5786 ** one column of table iTab is non-null.  In other words, return true
5787 ** if expression p will always be NULL or false if every column of iTab
5788 ** is NULL.
5789 **
5790 ** False negatives are acceptable.  In other words, it is ok to return
5791 ** zero even if expression p will never be true of every column of iTab
5792 ** is NULL.  A false negative is merely a missed optimization opportunity.
5793 **
5794 ** False positives are not allowed, however.  A false positive may result
5795 ** in an incorrect answer.
5796 **
5797 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5798 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5799 **
5800 ** This routine is used to check if a LEFT JOIN can be converted into
5801 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5802 ** clause requires that some column of the right table of the LEFT JOIN
5803 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5804 ** ordinary join.
5805 */
5806 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5807   Walker w;
5808   p = sqlite3ExprSkipCollateAndLikely(p);
5809   if( p==0 ) return 0;
5810   if( p->op==TK_NOTNULL ){
5811     p = p->pLeft;
5812   }else{
5813     while( p->op==TK_AND ){
5814       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5815       p = p->pRight;
5816     }
5817   }
5818   w.xExprCallback = impliesNotNullRow;
5819   w.xSelectCallback = 0;
5820   w.xSelectCallback2 = 0;
5821   w.eCode = 0;
5822   w.u.iCur = iTab;
5823   sqlite3WalkExpr(&w, p);
5824   return w.eCode;
5825 }
5826 
5827 /*
5828 ** An instance of the following structure is used by the tree walker
5829 ** to determine if an expression can be evaluated by reference to the
5830 ** index only, without having to do a search for the corresponding
5831 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5832 ** is the cursor for the table.
5833 */
5834 struct IdxCover {
5835   Index *pIdx;     /* The index to be tested for coverage */
5836   int iCur;        /* Cursor number for the table corresponding to the index */
5837 };
5838 
5839 /*
5840 ** Check to see if there are references to columns in table
5841 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5842 ** pWalker->u.pIdxCover->pIdx.
5843 */
5844 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5845   if( pExpr->op==TK_COLUMN
5846    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5847    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5848   ){
5849     pWalker->eCode = 1;
5850     return WRC_Abort;
5851   }
5852   return WRC_Continue;
5853 }
5854 
5855 /*
5856 ** Determine if an index pIdx on table with cursor iCur contains will
5857 ** the expression pExpr.  Return true if the index does cover the
5858 ** expression and false if the pExpr expression references table columns
5859 ** that are not found in the index pIdx.
5860 **
5861 ** An index covering an expression means that the expression can be
5862 ** evaluated using only the index and without having to lookup the
5863 ** corresponding table entry.
5864 */
5865 int sqlite3ExprCoveredByIndex(
5866   Expr *pExpr,        /* The index to be tested */
5867   int iCur,           /* The cursor number for the corresponding table */
5868   Index *pIdx         /* The index that might be used for coverage */
5869 ){
5870   Walker w;
5871   struct IdxCover xcov;
5872   memset(&w, 0, sizeof(w));
5873   xcov.iCur = iCur;
5874   xcov.pIdx = pIdx;
5875   w.xExprCallback = exprIdxCover;
5876   w.u.pIdxCover = &xcov;
5877   sqlite3WalkExpr(&w, pExpr);
5878   return !w.eCode;
5879 }
5880 
5881 
5882 /*
5883 ** An instance of the following structure is used by the tree walker
5884 ** to count references to table columns in the arguments of an
5885 ** aggregate function, in order to implement the
5886 ** sqlite3FunctionThisSrc() routine.
5887 */
5888 struct SrcCount {
5889   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5890   int iSrcInner;   /* Smallest cursor number in this context */
5891   int nThis;       /* Number of references to columns in pSrcList */
5892   int nOther;      /* Number of references to columns in other FROM clauses */
5893 };
5894 
5895 /*
5896 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5897 ** SELECT with a FROM clause encountered during this iteration, set
5898 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5899 ** the FROM cause.
5900 */
5901 static int selectSrcCount(Walker *pWalker, Select *pSel){
5902   struct SrcCount *p = pWalker->u.pSrcCount;
5903   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5904     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5905   }
5906   return WRC_Continue;
5907 }
5908 
5909 /*
5910 ** Count the number of references to columns.
5911 */
5912 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5913   /* There was once a NEVER() on the second term on the grounds that
5914   ** sqlite3FunctionUsesThisSrc() was always called before
5915   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5916   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5917   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5918   ** FunctionUsesThisSrc() when creating a new sub-select. */
5919   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5920     int i;
5921     struct SrcCount *p = pWalker->u.pSrcCount;
5922     SrcList *pSrc = p->pSrc;
5923     int nSrc = pSrc ? pSrc->nSrc : 0;
5924     for(i=0; i<nSrc; i++){
5925       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5926     }
5927     if( i<nSrc ){
5928       p->nThis++;
5929     }else if( pExpr->iTable<p->iSrcInner ){
5930       /* In a well-formed parse tree (no name resolution errors),
5931       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5932       ** outer context.  Those are the only ones to count as "other" */
5933       p->nOther++;
5934     }
5935   }
5936   return WRC_Continue;
5937 }
5938 
5939 /*
5940 ** Determine if any of the arguments to the pExpr Function reference
5941 ** pSrcList.  Return true if they do.  Also return true if the function
5942 ** has no arguments or has only constant arguments.  Return false if pExpr
5943 ** references columns but not columns of tables found in pSrcList.
5944 */
5945 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5946   Walker w;
5947   struct SrcCount cnt;
5948   assert( pExpr->op==TK_AGG_FUNCTION );
5949   memset(&w, 0, sizeof(w));
5950   w.xExprCallback = exprSrcCount;
5951   w.xSelectCallback = selectSrcCount;
5952   w.u.pSrcCount = &cnt;
5953   cnt.pSrc = pSrcList;
5954   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5955   cnt.nThis = 0;
5956   cnt.nOther = 0;
5957   assert( ExprUseXList(pExpr) );
5958   sqlite3WalkExprList(&w, pExpr->x.pList);
5959 #ifndef SQLITE_OMIT_WINDOWFUNC
5960   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5961     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5962   }
5963 #endif
5964   return cnt.nThis>0 || cnt.nOther==0;
5965 }
5966 
5967 /*
5968 ** This is a Walker expression node callback.
5969 **
5970 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5971 ** object that is referenced does not refer directly to the Expr.  If
5972 ** it does, make a copy.  This is done because the pExpr argument is
5973 ** subject to change.
5974 **
5975 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5976 ** This will cause the expression to be deleted automatically when the
5977 ** Parse object is destroyed, but the zero register number means that it
5978 ** will not generate any code in the preamble.
5979 */
5980 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5981   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5982    && pExpr->pAggInfo!=0
5983   ){
5984     AggInfo *pAggInfo = pExpr->pAggInfo;
5985     int iAgg = pExpr->iAgg;
5986     Parse *pParse = pWalker->pParse;
5987     sqlite3 *db = pParse->db;
5988     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5989     if( pExpr->op==TK_AGG_COLUMN ){
5990       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5991       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5992         pExpr = sqlite3ExprDup(db, pExpr, 0);
5993         if( pExpr ){
5994           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5995           sqlite3ExprDeferredDelete(pParse, pExpr);
5996         }
5997       }
5998     }else{
5999       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6000       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6001         pExpr = sqlite3ExprDup(db, pExpr, 0);
6002         if( pExpr ){
6003           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6004           sqlite3ExprDeferredDelete(pParse, pExpr);
6005         }
6006       }
6007     }
6008   }
6009   return WRC_Continue;
6010 }
6011 
6012 /*
6013 ** Initialize a Walker object so that will persist AggInfo entries referenced
6014 ** by the tree that is walked.
6015 */
6016 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6017   memset(pWalker, 0, sizeof(*pWalker));
6018   pWalker->pParse = pParse;
6019   pWalker->xExprCallback = agginfoPersistExprCb;
6020   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6021 }
6022 
6023 /*
6024 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6025 ** the new element.  Return a negative number if malloc fails.
6026 */
6027 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6028   int i;
6029   pInfo->aCol = sqlite3ArrayAllocate(
6030        db,
6031        pInfo->aCol,
6032        sizeof(pInfo->aCol[0]),
6033        &pInfo->nColumn,
6034        &i
6035   );
6036   return i;
6037 }
6038 
6039 /*
6040 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6041 ** the new element.  Return a negative number if malloc fails.
6042 */
6043 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6044   int i;
6045   pInfo->aFunc = sqlite3ArrayAllocate(
6046        db,
6047        pInfo->aFunc,
6048        sizeof(pInfo->aFunc[0]),
6049        &pInfo->nFunc,
6050        &i
6051   );
6052   return i;
6053 }
6054 
6055 /*
6056 ** This is the xExprCallback for a tree walker.  It is used to
6057 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6058 ** for additional information.
6059 */
6060 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6061   int i;
6062   NameContext *pNC = pWalker->u.pNC;
6063   Parse *pParse = pNC->pParse;
6064   SrcList *pSrcList = pNC->pSrcList;
6065   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6066 
6067   assert( pNC->ncFlags & NC_UAggInfo );
6068   switch( pExpr->op ){
6069     case TK_AGG_COLUMN:
6070     case TK_COLUMN: {
6071       testcase( pExpr->op==TK_AGG_COLUMN );
6072       testcase( pExpr->op==TK_COLUMN );
6073       /* Check to see if the column is in one of the tables in the FROM
6074       ** clause of the aggregate query */
6075       if( ALWAYS(pSrcList!=0) ){
6076         SrcItem *pItem = pSrcList->a;
6077         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6078           struct AggInfo_col *pCol;
6079           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6080           if( pExpr->iTable==pItem->iCursor ){
6081             /* If we reach this point, it means that pExpr refers to a table
6082             ** that is in the FROM clause of the aggregate query.
6083             **
6084             ** Make an entry for the column in pAggInfo->aCol[] if there
6085             ** is not an entry there already.
6086             */
6087             int k;
6088             pCol = pAggInfo->aCol;
6089             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6090               if( pCol->iTable==pExpr->iTable &&
6091                   pCol->iColumn==pExpr->iColumn ){
6092                 break;
6093               }
6094             }
6095             if( (k>=pAggInfo->nColumn)
6096              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6097             ){
6098               pCol = &pAggInfo->aCol[k];
6099               assert( ExprUseYTab(pExpr) );
6100               pCol->pTab = pExpr->y.pTab;
6101               pCol->iTable = pExpr->iTable;
6102               pCol->iColumn = pExpr->iColumn;
6103               pCol->iMem = ++pParse->nMem;
6104               pCol->iSorterColumn = -1;
6105               pCol->pCExpr = pExpr;
6106               if( pAggInfo->pGroupBy ){
6107                 int j, n;
6108                 ExprList *pGB = pAggInfo->pGroupBy;
6109                 struct ExprList_item *pTerm = pGB->a;
6110                 n = pGB->nExpr;
6111                 for(j=0; j<n; j++, pTerm++){
6112                   Expr *pE = pTerm->pExpr;
6113                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6114                       pE->iColumn==pExpr->iColumn ){
6115                     pCol->iSorterColumn = j;
6116                     break;
6117                   }
6118                 }
6119               }
6120               if( pCol->iSorterColumn<0 ){
6121                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6122               }
6123             }
6124             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6125             ** because it was there before or because we just created it).
6126             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6127             ** pAggInfo->aCol[] entry.
6128             */
6129             ExprSetVVAProperty(pExpr, EP_NoReduce);
6130             pExpr->pAggInfo = pAggInfo;
6131             pExpr->op = TK_AGG_COLUMN;
6132             pExpr->iAgg = (i16)k;
6133             break;
6134           } /* endif pExpr->iTable==pItem->iCursor */
6135         } /* end loop over pSrcList */
6136       }
6137       return WRC_Prune;
6138     }
6139     case TK_AGG_FUNCTION: {
6140       if( (pNC->ncFlags & NC_InAggFunc)==0
6141        && pWalker->walkerDepth==pExpr->op2
6142       ){
6143         /* Check to see if pExpr is a duplicate of another aggregate
6144         ** function that is already in the pAggInfo structure
6145         */
6146         struct AggInfo_func *pItem = pAggInfo->aFunc;
6147         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6148           if( pItem->pFExpr==pExpr ) break;
6149           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6150             break;
6151           }
6152         }
6153         if( i>=pAggInfo->nFunc ){
6154           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6155           */
6156           u8 enc = ENC(pParse->db);
6157           i = addAggInfoFunc(pParse->db, pAggInfo);
6158           if( i>=0 ){
6159             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6160             pItem = &pAggInfo->aFunc[i];
6161             pItem->pFExpr = pExpr;
6162             pItem->iMem = ++pParse->nMem;
6163             assert( ExprUseUToken(pExpr) );
6164             pItem->pFunc = sqlite3FindFunction(pParse->db,
6165                    pExpr->u.zToken,
6166                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6167             if( pExpr->flags & EP_Distinct ){
6168               pItem->iDistinct = pParse->nTab++;
6169             }else{
6170               pItem->iDistinct = -1;
6171             }
6172           }
6173         }
6174         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6175         */
6176         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6177         ExprSetVVAProperty(pExpr, EP_NoReduce);
6178         pExpr->iAgg = (i16)i;
6179         pExpr->pAggInfo = pAggInfo;
6180         return WRC_Prune;
6181       }else{
6182         return WRC_Continue;
6183       }
6184     }
6185   }
6186   return WRC_Continue;
6187 }
6188 
6189 /*
6190 ** Analyze the pExpr expression looking for aggregate functions and
6191 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6192 ** points to.  Additional entries are made on the AggInfo object as
6193 ** necessary.
6194 **
6195 ** This routine should only be called after the expression has been
6196 ** analyzed by sqlite3ResolveExprNames().
6197 */
6198 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6199   Walker w;
6200   w.xExprCallback = analyzeAggregate;
6201   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6202   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6203   w.walkerDepth = 0;
6204   w.u.pNC = pNC;
6205   w.pParse = 0;
6206   assert( pNC->pSrcList!=0 );
6207   sqlite3WalkExpr(&w, pExpr);
6208 }
6209 
6210 /*
6211 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6212 ** expression list.  Return the number of errors.
6213 **
6214 ** If an error is found, the analysis is cut short.
6215 */
6216 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6217   struct ExprList_item *pItem;
6218   int i;
6219   if( pList ){
6220     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6221       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6222     }
6223   }
6224 }
6225 
6226 /*
6227 ** Allocate a single new register for use to hold some intermediate result.
6228 */
6229 int sqlite3GetTempReg(Parse *pParse){
6230   if( pParse->nTempReg==0 ){
6231     return ++pParse->nMem;
6232   }
6233   return pParse->aTempReg[--pParse->nTempReg];
6234 }
6235 
6236 /*
6237 ** Deallocate a register, making available for reuse for some other
6238 ** purpose.
6239 */
6240 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6241   if( iReg ){
6242     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6243     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6244       pParse->aTempReg[pParse->nTempReg++] = iReg;
6245     }
6246   }
6247 }
6248 
6249 /*
6250 ** Allocate or deallocate a block of nReg consecutive registers.
6251 */
6252 int sqlite3GetTempRange(Parse *pParse, int nReg){
6253   int i, n;
6254   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6255   i = pParse->iRangeReg;
6256   n = pParse->nRangeReg;
6257   if( nReg<=n ){
6258     pParse->iRangeReg += nReg;
6259     pParse->nRangeReg -= nReg;
6260   }else{
6261     i = pParse->nMem+1;
6262     pParse->nMem += nReg;
6263   }
6264   return i;
6265 }
6266 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6267   if( nReg==1 ){
6268     sqlite3ReleaseTempReg(pParse, iReg);
6269     return;
6270   }
6271   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6272   if( nReg>pParse->nRangeReg ){
6273     pParse->nRangeReg = nReg;
6274     pParse->iRangeReg = iReg;
6275   }
6276 }
6277 
6278 /*
6279 ** Mark all temporary registers as being unavailable for reuse.
6280 **
6281 ** Always invoke this procedure after coding a subroutine or co-routine
6282 ** that might be invoked from other parts of the code, to ensure that
6283 ** the sub/co-routine does not use registers in common with the code that
6284 ** invokes the sub/co-routine.
6285 */
6286 void sqlite3ClearTempRegCache(Parse *pParse){
6287   pParse->nTempReg = 0;
6288   pParse->nRangeReg = 0;
6289 }
6290 
6291 /*
6292 ** Validate that no temporary register falls within the range of
6293 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6294 ** statements.
6295 */
6296 #ifdef SQLITE_DEBUG
6297 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6298   int i;
6299   if( pParse->nRangeReg>0
6300    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6301    && pParse->iRangeReg <= iLast
6302   ){
6303      return 0;
6304   }
6305   for(i=0; i<pParse->nTempReg; i++){
6306     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6307       return 0;
6308     }
6309   }
6310   return 1;
6311 }
6312 #endif /* SQLITE_DEBUG */
6313