1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( p ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 assert( iValue>=0 ); 393 } 394 } 395 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 396 if( pNew ){ 397 pNew->op = (u8)op; 398 pNew->iAgg = -1; 399 if( pToken ){ 400 if( nExtra==0 ){ 401 pNew->flags |= EP_IntValue; 402 pNew->u.iValue = iValue; 403 }else{ 404 int c; 405 pNew->u.zToken = (char*)&pNew[1]; 406 assert( pToken->z!=0 || pToken->n==0 ); 407 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 408 pNew->u.zToken[pToken->n] = 0; 409 if( dequote && nExtra>=3 410 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 411 sqlite3Dequote(pNew->u.zToken); 412 if( c=='"' ) pNew->flags |= EP_DblQuoted; 413 } 414 } 415 } 416 #if SQLITE_MAX_EXPR_DEPTH>0 417 pNew->nHeight = 1; 418 #endif 419 } 420 return pNew; 421 } 422 423 /* 424 ** Allocate a new expression node from a zero-terminated token that has 425 ** already been dequoted. 426 */ 427 Expr *sqlite3Expr( 428 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 429 int op, /* Expression opcode */ 430 const char *zToken /* Token argument. Might be NULL */ 431 ){ 432 Token x; 433 x.z = zToken; 434 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 435 return sqlite3ExprAlloc(db, op, &x, 0); 436 } 437 438 /* 439 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 440 ** 441 ** If pRoot==NULL that means that a memory allocation error has occurred. 442 ** In that case, delete the subtrees pLeft and pRight. 443 */ 444 void sqlite3ExprAttachSubtrees( 445 sqlite3 *db, 446 Expr *pRoot, 447 Expr *pLeft, 448 Expr *pRight 449 ){ 450 if( pRoot==0 ){ 451 assert( db->mallocFailed ); 452 sqlite3ExprDelete(db, pLeft); 453 sqlite3ExprDelete(db, pRight); 454 }else{ 455 if( pRight ){ 456 pRoot->pRight = pRight; 457 if( pRight->flags & EP_ExpCollate ){ 458 pRoot->flags |= EP_ExpCollate; 459 pRoot->pColl = pRight->pColl; 460 } 461 } 462 if( pLeft ){ 463 pRoot->pLeft = pLeft; 464 if( pLeft->flags & EP_ExpCollate ){ 465 pRoot->flags |= EP_ExpCollate; 466 pRoot->pColl = pLeft->pColl; 467 } 468 } 469 exprSetHeight(pRoot); 470 } 471 } 472 473 /* 474 ** Allocate a Expr node which joins as many as two subtrees. 475 ** 476 ** One or both of the subtrees can be NULL. Return a pointer to the new 477 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 478 ** free the subtrees and return NULL. 479 */ 480 Expr *sqlite3PExpr( 481 Parse *pParse, /* Parsing context */ 482 int op, /* Expression opcode */ 483 Expr *pLeft, /* Left operand */ 484 Expr *pRight, /* Right operand */ 485 const Token *pToken /* Argument token */ 486 ){ 487 Expr *p; 488 if( op==TK_AND && pLeft && pRight ){ 489 /* Take advantage of short-circuit false optimization for AND */ 490 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 491 }else{ 492 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 493 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 494 } 495 if( p ) { 496 sqlite3ExprCheckHeight(pParse, p->nHeight); 497 } 498 return p; 499 } 500 501 /* 502 ** Return 1 if an expression must be FALSE in all cases and 0 if the 503 ** expression might be true. This is an optimization. If is OK to 504 ** return 0 here even if the expression really is always false (a 505 ** false negative). But it is a bug to return 1 if the expression 506 ** might be true in some rare circumstances (a false positive.) 507 ** 508 ** Note that if the expression is part of conditional for a 509 ** LEFT JOIN, then we cannot determine at compile-time whether or not 510 ** is it true or false, so always return 0. 511 */ 512 static int exprAlwaysFalse(Expr *p){ 513 int v = 0; 514 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 515 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 516 return v==0; 517 } 518 519 /* 520 ** Join two expressions using an AND operator. If either expression is 521 ** NULL, then just return the other expression. 522 ** 523 ** If one side or the other of the AND is known to be false, then instead 524 ** of returning an AND expression, just return a constant expression with 525 ** a value of false. 526 */ 527 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 528 if( pLeft==0 ){ 529 return pRight; 530 }else if( pRight==0 ){ 531 return pLeft; 532 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 533 sqlite3ExprDelete(db, pLeft); 534 sqlite3ExprDelete(db, pRight); 535 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 536 }else{ 537 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 538 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 539 return pNew; 540 } 541 } 542 543 /* 544 ** Construct a new expression node for a function with multiple 545 ** arguments. 546 */ 547 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 548 Expr *pNew; 549 sqlite3 *db = pParse->db; 550 assert( pToken ); 551 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 552 if( pNew==0 ){ 553 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 554 return 0; 555 } 556 pNew->x.pList = pList; 557 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 558 sqlite3ExprSetHeight(pParse, pNew); 559 return pNew; 560 } 561 562 /* 563 ** Assign a variable number to an expression that encodes a wildcard 564 ** in the original SQL statement. 565 ** 566 ** Wildcards consisting of a single "?" are assigned the next sequential 567 ** variable number. 568 ** 569 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 570 ** sure "nnn" is not too be to avoid a denial of service attack when 571 ** the SQL statement comes from an external source. 572 ** 573 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 574 ** as the previous instance of the same wildcard. Or if this is the first 575 ** instance of the wildcard, the next sequenial variable number is 576 ** assigned. 577 */ 578 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 579 sqlite3 *db = pParse->db; 580 const char *z; 581 582 if( pExpr==0 ) return; 583 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 584 z = pExpr->u.zToken; 585 assert( z!=0 ); 586 assert( z[0]!=0 ); 587 if( z[1]==0 ){ 588 /* Wildcard of the form "?". Assign the next variable number */ 589 assert( z[0]=='?' ); 590 pExpr->iColumn = (ynVar)(++pParse->nVar); 591 }else{ 592 ynVar x = 0; 593 u32 n = sqlite3Strlen30(z); 594 if( z[0]=='?' ){ 595 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 596 ** use it as the variable number */ 597 i64 i; 598 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 599 pExpr->iColumn = x = (ynVar)i; 600 testcase( i==0 ); 601 testcase( i==1 ); 602 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 603 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 604 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 605 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 606 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 607 x = 0; 608 } 609 if( i>pParse->nVar ){ 610 pParse->nVar = (int)i; 611 } 612 }else{ 613 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 614 ** number as the prior appearance of the same name, or if the name 615 ** has never appeared before, reuse the same variable number 616 */ 617 ynVar i; 618 for(i=0; i<pParse->nzVar; i++){ 619 if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){ 620 pExpr->iColumn = x = (ynVar)i+1; 621 break; 622 } 623 } 624 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 625 } 626 if( x>0 ){ 627 if( x>pParse->nzVar ){ 628 char **a; 629 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 630 if( a==0 ) return; /* Error reported through db->mallocFailed */ 631 pParse->azVar = a; 632 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 633 pParse->nzVar = x; 634 } 635 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 636 sqlite3DbFree(db, pParse->azVar[x-1]); 637 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 638 } 639 } 640 } 641 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 642 sqlite3ErrorMsg(pParse, "too many SQL variables"); 643 } 644 } 645 646 /* 647 ** Recursively delete an expression tree. 648 */ 649 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 650 if( p==0 ) return; 651 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 652 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 653 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 654 sqlite3ExprDelete(db, p->pLeft); 655 sqlite3ExprDelete(db, p->pRight); 656 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 657 sqlite3DbFree(db, p->u.zToken); 658 } 659 if( ExprHasProperty(p, EP_xIsSelect) ){ 660 sqlite3SelectDelete(db, p->x.pSelect); 661 }else{ 662 sqlite3ExprListDelete(db, p->x.pList); 663 } 664 } 665 if( !ExprHasProperty(p, EP_Static) ){ 666 sqlite3DbFree(db, p); 667 } 668 } 669 670 /* 671 ** Return the number of bytes allocated for the expression structure 672 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 673 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 674 */ 675 static int exprStructSize(Expr *p){ 676 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 677 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 678 return EXPR_FULLSIZE; 679 } 680 681 /* 682 ** The dupedExpr*Size() routines each return the number of bytes required 683 ** to store a copy of an expression or expression tree. They differ in 684 ** how much of the tree is measured. 685 ** 686 ** dupedExprStructSize() Size of only the Expr structure 687 ** dupedExprNodeSize() Size of Expr + space for token 688 ** dupedExprSize() Expr + token + subtree components 689 ** 690 *************************************************************************** 691 ** 692 ** The dupedExprStructSize() function returns two values OR-ed together: 693 ** (1) the space required for a copy of the Expr structure only and 694 ** (2) the EP_xxx flags that indicate what the structure size should be. 695 ** The return values is always one of: 696 ** 697 ** EXPR_FULLSIZE 698 ** EXPR_REDUCEDSIZE | EP_Reduced 699 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 700 ** 701 ** The size of the structure can be found by masking the return value 702 ** of this routine with 0xfff. The flags can be found by masking the 703 ** return value with EP_Reduced|EP_TokenOnly. 704 ** 705 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 706 ** (unreduced) Expr objects as they or originally constructed by the parser. 707 ** During expression analysis, extra information is computed and moved into 708 ** later parts of teh Expr object and that extra information might get chopped 709 ** off if the expression is reduced. Note also that it does not work to 710 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 711 ** to reduce a pristine expression tree from the parser. The implementation 712 ** of dupedExprStructSize() contain multiple assert() statements that attempt 713 ** to enforce this constraint. 714 */ 715 static int dupedExprStructSize(Expr *p, int flags){ 716 int nSize; 717 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 718 if( 0==(flags&EXPRDUP_REDUCE) ){ 719 nSize = EXPR_FULLSIZE; 720 }else{ 721 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 722 assert( !ExprHasProperty(p, EP_FromJoin) ); 723 assert( (p->flags2 & EP2_MallocedToken)==0 ); 724 assert( (p->flags2 & EP2_Irreducible)==0 ); 725 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 726 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 727 }else{ 728 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 729 } 730 } 731 return nSize; 732 } 733 734 /* 735 ** This function returns the space in bytes required to store the copy 736 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 737 ** string is defined.) 738 */ 739 static int dupedExprNodeSize(Expr *p, int flags){ 740 int nByte = dupedExprStructSize(p, flags) & 0xfff; 741 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 742 nByte += sqlite3Strlen30(p->u.zToken)+1; 743 } 744 return ROUND8(nByte); 745 } 746 747 /* 748 ** Return the number of bytes required to create a duplicate of the 749 ** expression passed as the first argument. The second argument is a 750 ** mask containing EXPRDUP_XXX flags. 751 ** 752 ** The value returned includes space to create a copy of the Expr struct 753 ** itself and the buffer referred to by Expr.u.zToken, if any. 754 ** 755 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 756 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 757 ** and Expr.pRight variables (but not for any structures pointed to or 758 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 759 */ 760 static int dupedExprSize(Expr *p, int flags){ 761 int nByte = 0; 762 if( p ){ 763 nByte = dupedExprNodeSize(p, flags); 764 if( flags&EXPRDUP_REDUCE ){ 765 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 766 } 767 } 768 return nByte; 769 } 770 771 /* 772 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 773 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 774 ** to store the copy of expression p, the copies of p->u.zToken 775 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 776 ** if any. Before returning, *pzBuffer is set to the first byte passed the 777 ** portion of the buffer copied into by this function. 778 */ 779 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 780 Expr *pNew = 0; /* Value to return */ 781 if( p ){ 782 const int isReduced = (flags&EXPRDUP_REDUCE); 783 u8 *zAlloc; 784 u32 staticFlag = 0; 785 786 assert( pzBuffer==0 || isReduced ); 787 788 /* Figure out where to write the new Expr structure. */ 789 if( pzBuffer ){ 790 zAlloc = *pzBuffer; 791 staticFlag = EP_Static; 792 }else{ 793 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 794 } 795 pNew = (Expr *)zAlloc; 796 797 if( pNew ){ 798 /* Set nNewSize to the size allocated for the structure pointed to 799 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 800 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 801 ** by the copy of the p->u.zToken string (if any). 802 */ 803 const unsigned nStructSize = dupedExprStructSize(p, flags); 804 const int nNewSize = nStructSize & 0xfff; 805 int nToken; 806 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 807 nToken = sqlite3Strlen30(p->u.zToken) + 1; 808 }else{ 809 nToken = 0; 810 } 811 if( isReduced ){ 812 assert( ExprHasProperty(p, EP_Reduced)==0 ); 813 memcpy(zAlloc, p, nNewSize); 814 }else{ 815 int nSize = exprStructSize(p); 816 memcpy(zAlloc, p, nSize); 817 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 818 } 819 820 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 821 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 822 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 823 pNew->flags |= staticFlag; 824 825 /* Copy the p->u.zToken string, if any. */ 826 if( nToken ){ 827 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 828 memcpy(zToken, p->u.zToken, nToken); 829 } 830 831 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 832 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 833 if( ExprHasProperty(p, EP_xIsSelect) ){ 834 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 835 }else{ 836 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 837 } 838 } 839 840 /* Fill in pNew->pLeft and pNew->pRight. */ 841 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 842 zAlloc += dupedExprNodeSize(p, flags); 843 if( ExprHasProperty(pNew, EP_Reduced) ){ 844 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 845 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 846 } 847 if( pzBuffer ){ 848 *pzBuffer = zAlloc; 849 } 850 }else{ 851 pNew->flags2 = 0; 852 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 853 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 854 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 855 } 856 } 857 858 } 859 } 860 return pNew; 861 } 862 863 /* 864 ** The following group of routines make deep copies of expressions, 865 ** expression lists, ID lists, and select statements. The copies can 866 ** be deleted (by being passed to their respective ...Delete() routines) 867 ** without effecting the originals. 868 ** 869 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 870 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 871 ** by subsequent calls to sqlite*ListAppend() routines. 872 ** 873 ** Any tables that the SrcList might point to are not duplicated. 874 ** 875 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 876 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 877 ** truncated version of the usual Expr structure that will be stored as 878 ** part of the in-memory representation of the database schema. 879 */ 880 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 881 return exprDup(db, p, flags, 0); 882 } 883 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 884 ExprList *pNew; 885 struct ExprList_item *pItem, *pOldItem; 886 int i; 887 if( p==0 ) return 0; 888 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 889 if( pNew==0 ) return 0; 890 pNew->iECursor = 0; 891 pNew->nExpr = i = p->nExpr; 892 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 893 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 894 if( pItem==0 ){ 895 sqlite3DbFree(db, pNew); 896 return 0; 897 } 898 pOldItem = p->a; 899 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 900 Expr *pOldExpr = pOldItem->pExpr; 901 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 902 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 903 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 904 pItem->sortOrder = pOldItem->sortOrder; 905 pItem->done = 0; 906 pItem->iOrderByCol = pOldItem->iOrderByCol; 907 pItem->iAlias = pOldItem->iAlias; 908 } 909 return pNew; 910 } 911 912 /* 913 ** If cursors, triggers, views and subqueries are all omitted from 914 ** the build, then none of the following routines, except for 915 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 916 ** called with a NULL argument. 917 */ 918 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 919 || !defined(SQLITE_OMIT_SUBQUERY) 920 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 921 SrcList *pNew; 922 int i; 923 int nByte; 924 if( p==0 ) return 0; 925 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 926 pNew = sqlite3DbMallocRaw(db, nByte ); 927 if( pNew==0 ) return 0; 928 pNew->nSrc = pNew->nAlloc = p->nSrc; 929 for(i=0; i<p->nSrc; i++){ 930 struct SrcList_item *pNewItem = &pNew->a[i]; 931 struct SrcList_item *pOldItem = &p->a[i]; 932 Table *pTab; 933 pNewItem->pSchema = pOldItem->pSchema; 934 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 935 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 936 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 937 pNewItem->jointype = pOldItem->jointype; 938 pNewItem->iCursor = pOldItem->iCursor; 939 pNewItem->addrFillSub = pOldItem->addrFillSub; 940 pNewItem->regReturn = pOldItem->regReturn; 941 pNewItem->isCorrelated = pOldItem->isCorrelated; 942 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 943 pNewItem->notIndexed = pOldItem->notIndexed; 944 pNewItem->pIndex = pOldItem->pIndex; 945 pTab = pNewItem->pTab = pOldItem->pTab; 946 if( pTab ){ 947 pTab->nRef++; 948 } 949 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 950 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 951 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 952 pNewItem->colUsed = pOldItem->colUsed; 953 } 954 return pNew; 955 } 956 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 957 IdList *pNew; 958 int i; 959 if( p==0 ) return 0; 960 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 961 if( pNew==0 ) return 0; 962 pNew->nId = p->nId; 963 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 964 if( pNew->a==0 ){ 965 sqlite3DbFree(db, pNew); 966 return 0; 967 } 968 /* Note that because the size of the allocation for p->a[] is not 969 ** necessarily a power of two, sqlite3IdListAppend() may not be called 970 ** on the duplicate created by this function. */ 971 for(i=0; i<p->nId; i++){ 972 struct IdList_item *pNewItem = &pNew->a[i]; 973 struct IdList_item *pOldItem = &p->a[i]; 974 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 975 pNewItem->idx = pOldItem->idx; 976 } 977 return pNew; 978 } 979 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 980 Select *pNew, *pPrior; 981 if( p==0 ) return 0; 982 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 983 if( pNew==0 ) return 0; 984 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 985 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 986 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 987 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 988 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 989 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 990 pNew->op = p->op; 991 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 992 if( pPrior ) pPrior->pNext = pNew; 993 pNew->pNext = 0; 994 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 995 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 996 pNew->iLimit = 0; 997 pNew->iOffset = 0; 998 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 999 pNew->pRightmost = 0; 1000 pNew->addrOpenEphm[0] = -1; 1001 pNew->addrOpenEphm[1] = -1; 1002 pNew->addrOpenEphm[2] = -1; 1003 return pNew; 1004 } 1005 #else 1006 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1007 assert( p==0 ); 1008 return 0; 1009 } 1010 #endif 1011 1012 1013 /* 1014 ** Add a new element to the end of an expression list. If pList is 1015 ** initially NULL, then create a new expression list. 1016 ** 1017 ** If a memory allocation error occurs, the entire list is freed and 1018 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1019 ** that the new entry was successfully appended. 1020 */ 1021 ExprList *sqlite3ExprListAppend( 1022 Parse *pParse, /* Parsing context */ 1023 ExprList *pList, /* List to which to append. Might be NULL */ 1024 Expr *pExpr /* Expression to be appended. Might be NULL */ 1025 ){ 1026 sqlite3 *db = pParse->db; 1027 if( pList==0 ){ 1028 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1029 if( pList==0 ){ 1030 goto no_mem; 1031 } 1032 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1033 if( pList->a==0 ) goto no_mem; 1034 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1035 struct ExprList_item *a; 1036 assert( pList->nExpr>0 ); 1037 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1038 if( a==0 ){ 1039 goto no_mem; 1040 } 1041 pList->a = a; 1042 } 1043 assert( pList->a!=0 ); 1044 if( 1 ){ 1045 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1046 memset(pItem, 0, sizeof(*pItem)); 1047 pItem->pExpr = pExpr; 1048 } 1049 return pList; 1050 1051 no_mem: 1052 /* Avoid leaking memory if malloc has failed. */ 1053 sqlite3ExprDelete(db, pExpr); 1054 sqlite3ExprListDelete(db, pList); 1055 return 0; 1056 } 1057 1058 /* 1059 ** Set the ExprList.a[].zName element of the most recently added item 1060 ** on the expression list. 1061 ** 1062 ** pList might be NULL following an OOM error. But pName should never be 1063 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1064 ** is set. 1065 */ 1066 void sqlite3ExprListSetName( 1067 Parse *pParse, /* Parsing context */ 1068 ExprList *pList, /* List to which to add the span. */ 1069 Token *pName, /* Name to be added */ 1070 int dequote /* True to cause the name to be dequoted */ 1071 ){ 1072 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1073 if( pList ){ 1074 struct ExprList_item *pItem; 1075 assert( pList->nExpr>0 ); 1076 pItem = &pList->a[pList->nExpr-1]; 1077 assert( pItem->zName==0 ); 1078 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1079 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1080 } 1081 } 1082 1083 /* 1084 ** Set the ExprList.a[].zSpan element of the most recently added item 1085 ** on the expression list. 1086 ** 1087 ** pList might be NULL following an OOM error. But pSpan should never be 1088 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1089 ** is set. 1090 */ 1091 void sqlite3ExprListSetSpan( 1092 Parse *pParse, /* Parsing context */ 1093 ExprList *pList, /* List to which to add the span. */ 1094 ExprSpan *pSpan /* The span to be added */ 1095 ){ 1096 sqlite3 *db = pParse->db; 1097 assert( pList!=0 || db->mallocFailed!=0 ); 1098 if( pList ){ 1099 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1100 assert( pList->nExpr>0 ); 1101 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1102 sqlite3DbFree(db, pItem->zSpan); 1103 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1104 (int)(pSpan->zEnd - pSpan->zStart)); 1105 } 1106 } 1107 1108 /* 1109 ** If the expression list pEList contains more than iLimit elements, 1110 ** leave an error message in pParse. 1111 */ 1112 void sqlite3ExprListCheckLength( 1113 Parse *pParse, 1114 ExprList *pEList, 1115 const char *zObject 1116 ){ 1117 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1118 testcase( pEList && pEList->nExpr==mx ); 1119 testcase( pEList && pEList->nExpr==mx+1 ); 1120 if( pEList && pEList->nExpr>mx ){ 1121 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1122 } 1123 } 1124 1125 /* 1126 ** Delete an entire expression list. 1127 */ 1128 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1129 int i; 1130 struct ExprList_item *pItem; 1131 if( pList==0 ) return; 1132 assert( pList->a!=0 || pList->nExpr==0 ); 1133 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1134 sqlite3ExprDelete(db, pItem->pExpr); 1135 sqlite3DbFree(db, pItem->zName); 1136 sqlite3DbFree(db, pItem->zSpan); 1137 } 1138 sqlite3DbFree(db, pList->a); 1139 sqlite3DbFree(db, pList); 1140 } 1141 1142 /* 1143 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1144 ** to an integer. These routines are checking an expression to see 1145 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1146 ** not constant. 1147 ** 1148 ** These callback routines are used to implement the following: 1149 ** 1150 ** sqlite3ExprIsConstant() 1151 ** sqlite3ExprIsConstantNotJoin() 1152 ** sqlite3ExprIsConstantOrFunction() 1153 ** 1154 */ 1155 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1156 1157 /* If pWalker->u.i is 3 then any term of the expression that comes from 1158 ** the ON or USING clauses of a join disqualifies the expression 1159 ** from being considered constant. */ 1160 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1161 pWalker->u.i = 0; 1162 return WRC_Abort; 1163 } 1164 1165 switch( pExpr->op ){ 1166 /* Consider functions to be constant if all their arguments are constant 1167 ** and pWalker->u.i==2 */ 1168 case TK_FUNCTION: 1169 if( pWalker->u.i==2 ) return 0; 1170 /* Fall through */ 1171 case TK_ID: 1172 case TK_COLUMN: 1173 case TK_AGG_FUNCTION: 1174 case TK_AGG_COLUMN: 1175 testcase( pExpr->op==TK_ID ); 1176 testcase( pExpr->op==TK_COLUMN ); 1177 testcase( pExpr->op==TK_AGG_FUNCTION ); 1178 testcase( pExpr->op==TK_AGG_COLUMN ); 1179 pWalker->u.i = 0; 1180 return WRC_Abort; 1181 default: 1182 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1183 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1184 return WRC_Continue; 1185 } 1186 } 1187 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1188 UNUSED_PARAMETER(NotUsed); 1189 pWalker->u.i = 0; 1190 return WRC_Abort; 1191 } 1192 static int exprIsConst(Expr *p, int initFlag){ 1193 Walker w; 1194 w.u.i = initFlag; 1195 w.xExprCallback = exprNodeIsConstant; 1196 w.xSelectCallback = selectNodeIsConstant; 1197 sqlite3WalkExpr(&w, p); 1198 return w.u.i; 1199 } 1200 1201 /* 1202 ** Walk an expression tree. Return 1 if the expression is constant 1203 ** and 0 if it involves variables or function calls. 1204 ** 1205 ** For the purposes of this function, a double-quoted string (ex: "abc") 1206 ** is considered a variable but a single-quoted string (ex: 'abc') is 1207 ** a constant. 1208 */ 1209 int sqlite3ExprIsConstant(Expr *p){ 1210 return exprIsConst(p, 1); 1211 } 1212 1213 /* 1214 ** Walk an expression tree. Return 1 if the expression is constant 1215 ** that does no originate from the ON or USING clauses of a join. 1216 ** Return 0 if it involves variables or function calls or terms from 1217 ** an ON or USING clause. 1218 */ 1219 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1220 return exprIsConst(p, 3); 1221 } 1222 1223 /* 1224 ** Walk an expression tree. Return 1 if the expression is constant 1225 ** or a function call with constant arguments. Return and 0 if there 1226 ** are any variables. 1227 ** 1228 ** For the purposes of this function, a double-quoted string (ex: "abc") 1229 ** is considered a variable but a single-quoted string (ex: 'abc') is 1230 ** a constant. 1231 */ 1232 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1233 return exprIsConst(p, 2); 1234 } 1235 1236 /* 1237 ** If the expression p codes a constant integer that is small enough 1238 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1239 ** in *pValue. If the expression is not an integer or if it is too big 1240 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1241 */ 1242 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1243 int rc = 0; 1244 1245 /* If an expression is an integer literal that fits in a signed 32-bit 1246 ** integer, then the EP_IntValue flag will have already been set */ 1247 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1248 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1249 1250 if( p->flags & EP_IntValue ){ 1251 *pValue = p->u.iValue; 1252 return 1; 1253 } 1254 switch( p->op ){ 1255 case TK_UPLUS: { 1256 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1257 break; 1258 } 1259 case TK_UMINUS: { 1260 int v; 1261 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1262 *pValue = -v; 1263 rc = 1; 1264 } 1265 break; 1266 } 1267 default: break; 1268 } 1269 return rc; 1270 } 1271 1272 /* 1273 ** Return FALSE if there is no chance that the expression can be NULL. 1274 ** 1275 ** If the expression might be NULL or if the expression is too complex 1276 ** to tell return TRUE. 1277 ** 1278 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1279 ** when we know that a value cannot be NULL. Hence, a false positive 1280 ** (returning TRUE when in fact the expression can never be NULL) might 1281 ** be a small performance hit but is otherwise harmless. On the other 1282 ** hand, a false negative (returning FALSE when the result could be NULL) 1283 ** will likely result in an incorrect answer. So when in doubt, return 1284 ** TRUE. 1285 */ 1286 int sqlite3ExprCanBeNull(const Expr *p){ 1287 u8 op; 1288 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1289 op = p->op; 1290 if( op==TK_REGISTER ) op = p->op2; 1291 switch( op ){ 1292 case TK_INTEGER: 1293 case TK_STRING: 1294 case TK_FLOAT: 1295 case TK_BLOB: 1296 return 0; 1297 default: 1298 return 1; 1299 } 1300 } 1301 1302 /* 1303 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1304 ** to location iDest if the value in iReg is NULL. The value in iReg 1305 ** was computed by pExpr. If we can look at pExpr at compile-time and 1306 ** determine that it can never generate a NULL, then the OP_IsNull operation 1307 ** can be omitted. 1308 */ 1309 void sqlite3ExprCodeIsNullJump( 1310 Vdbe *v, /* The VDBE under construction */ 1311 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1312 int iReg, /* Test the value in this register for NULL */ 1313 int iDest /* Jump here if the value is null */ 1314 ){ 1315 if( sqlite3ExprCanBeNull(pExpr) ){ 1316 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1317 } 1318 } 1319 1320 /* 1321 ** Return TRUE if the given expression is a constant which would be 1322 ** unchanged by OP_Affinity with the affinity given in the second 1323 ** argument. 1324 ** 1325 ** This routine is used to determine if the OP_Affinity operation 1326 ** can be omitted. When in doubt return FALSE. A false negative 1327 ** is harmless. A false positive, however, can result in the wrong 1328 ** answer. 1329 */ 1330 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1331 u8 op; 1332 if( aff==SQLITE_AFF_NONE ) return 1; 1333 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1334 op = p->op; 1335 if( op==TK_REGISTER ) op = p->op2; 1336 switch( op ){ 1337 case TK_INTEGER: { 1338 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1339 } 1340 case TK_FLOAT: { 1341 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1342 } 1343 case TK_STRING: { 1344 return aff==SQLITE_AFF_TEXT; 1345 } 1346 case TK_BLOB: { 1347 return 1; 1348 } 1349 case TK_COLUMN: { 1350 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1351 return p->iColumn<0 1352 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1353 } 1354 default: { 1355 return 0; 1356 } 1357 } 1358 } 1359 1360 /* 1361 ** Return TRUE if the given string is a row-id column name. 1362 */ 1363 int sqlite3IsRowid(const char *z){ 1364 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1365 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1366 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1367 return 0; 1368 } 1369 1370 /* 1371 ** Return true if we are able to the IN operator optimization on a 1372 ** query of the form 1373 ** 1374 ** x IN (SELECT ...) 1375 ** 1376 ** Where the SELECT... clause is as specified by the parameter to this 1377 ** routine. 1378 ** 1379 ** The Select object passed in has already been preprocessed and no 1380 ** errors have been found. 1381 */ 1382 #ifndef SQLITE_OMIT_SUBQUERY 1383 static int isCandidateForInOpt(Select *p){ 1384 SrcList *pSrc; 1385 ExprList *pEList; 1386 Table *pTab; 1387 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1388 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1389 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1390 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1391 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1392 return 0; /* No DISTINCT keyword and no aggregate functions */ 1393 } 1394 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1395 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1396 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1397 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1398 pSrc = p->pSrc; 1399 assert( pSrc!=0 ); 1400 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1401 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1402 pTab = pSrc->a[0].pTab; 1403 if( NEVER(pTab==0) ) return 0; 1404 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1405 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1406 pEList = p->pEList; 1407 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1408 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1409 return 1; 1410 } 1411 #endif /* SQLITE_OMIT_SUBQUERY */ 1412 1413 /* 1414 ** Code an OP_Once instruction and allocate space for its flag. Return the 1415 ** address of the new instruction. 1416 */ 1417 int sqlite3CodeOnce(Parse *pParse){ 1418 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1419 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1420 } 1421 1422 /* 1423 ** This function is used by the implementation of the IN (...) operator. 1424 ** The pX parameter is the expression on the RHS of the IN operator, which 1425 ** might be either a list of expressions or a subquery. 1426 ** 1427 ** The job of this routine is to find or create a b-tree object that can 1428 ** be used either to test for membership in the RHS set or to iterate through 1429 ** all members of the RHS set, skipping duplicates. 1430 ** 1431 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1432 ** and pX->iTable is set to the index of that cursor. 1433 ** 1434 ** The returned value of this function indicates the b-tree type, as follows: 1435 ** 1436 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1437 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1438 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1439 ** populated epheremal table. 1440 ** 1441 ** An existing b-tree might be used if the RHS expression pX is a simple 1442 ** subquery such as: 1443 ** 1444 ** SELECT <column> FROM <table> 1445 ** 1446 ** If the RHS of the IN operator is a list or a more complex subquery, then 1447 ** an ephemeral table might need to be generated from the RHS and then 1448 ** pX->iTable made to point to the ephermeral table instead of an 1449 ** existing table. 1450 ** 1451 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1452 ** through the set members, skipping any duplicates. In this case an 1453 ** epheremal table must be used unless the selected <column> is guaranteed 1454 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1455 ** has a UNIQUE constraint or UNIQUE index. 1456 ** 1457 ** If the prNotFound parameter is not 0, then the b-tree will be used 1458 ** for fast set membership tests. In this case an epheremal table must 1459 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1460 ** be found with <column> as its left-most column. 1461 ** 1462 ** When the b-tree is being used for membership tests, the calling function 1463 ** needs to know whether or not the structure contains an SQL NULL 1464 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1465 ** If there is any chance that the (...) might contain a NULL value at 1466 ** runtime, then a register is allocated and the register number written 1467 ** to *prNotFound. If there is no chance that the (...) contains a 1468 ** NULL value, then *prNotFound is left unchanged. 1469 ** 1470 ** If a register is allocated and its location stored in *prNotFound, then 1471 ** its initial value is NULL. If the (...) does not remain constant 1472 ** for the duration of the query (i.e. the SELECT within the (...) 1473 ** is a correlated subquery) then the value of the allocated register is 1474 ** reset to NULL each time the subquery is rerun. This allows the 1475 ** caller to use vdbe code equivalent to the following: 1476 ** 1477 ** if( register==NULL ){ 1478 ** has_null = <test if data structure contains null> 1479 ** register = 1 1480 ** } 1481 ** 1482 ** in order to avoid running the <test if data structure contains null> 1483 ** test more often than is necessary. 1484 */ 1485 #ifndef SQLITE_OMIT_SUBQUERY 1486 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1487 Select *p; /* SELECT to the right of IN operator */ 1488 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1489 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1490 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1491 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1492 1493 assert( pX->op==TK_IN ); 1494 1495 /* Check to see if an existing table or index can be used to 1496 ** satisfy the query. This is preferable to generating a new 1497 ** ephemeral table. 1498 */ 1499 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1500 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1501 sqlite3 *db = pParse->db; /* Database connection */ 1502 Table *pTab; /* Table <table>. */ 1503 Expr *pExpr; /* Expression <column> */ 1504 int iCol; /* Index of column <column> */ 1505 int iDb; /* Database idx for pTab */ 1506 1507 assert( p ); /* Because of isCandidateForInOpt(p) */ 1508 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1509 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1510 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1511 pTab = p->pSrc->a[0].pTab; 1512 pExpr = p->pEList->a[0].pExpr; 1513 iCol = pExpr->iColumn; 1514 1515 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1516 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1517 sqlite3CodeVerifySchema(pParse, iDb); 1518 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1519 1520 /* This function is only called from two places. In both cases the vdbe 1521 ** has already been allocated. So assume sqlite3GetVdbe() is always 1522 ** successful here. 1523 */ 1524 assert(v); 1525 if( iCol<0 ){ 1526 int iAddr; 1527 1528 iAddr = sqlite3CodeOnce(pParse); 1529 1530 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1531 eType = IN_INDEX_ROWID; 1532 1533 sqlite3VdbeJumpHere(v, iAddr); 1534 }else{ 1535 Index *pIdx; /* Iterator variable */ 1536 1537 /* The collation sequence used by the comparison. If an index is to 1538 ** be used in place of a temp-table, it must be ordered according 1539 ** to this collation sequence. */ 1540 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1541 1542 /* Check that the affinity that will be used to perform the 1543 ** comparison is the same as the affinity of the column. If 1544 ** it is not, it is not possible to use any index. 1545 */ 1546 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1547 1548 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1549 if( (pIdx->aiColumn[0]==iCol) 1550 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1551 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1552 ){ 1553 int iAddr; 1554 char *pKey; 1555 1556 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1557 iAddr = sqlite3CodeOnce(pParse); 1558 1559 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1560 pKey,P4_KEYINFO_HANDOFF); 1561 VdbeComment((v, "%s", pIdx->zName)); 1562 eType = IN_INDEX_INDEX; 1563 1564 sqlite3VdbeJumpHere(v, iAddr); 1565 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1566 *prNotFound = ++pParse->nMem; 1567 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1568 } 1569 } 1570 } 1571 } 1572 } 1573 1574 if( eType==0 ){ 1575 /* Could not found an existing table or index to use as the RHS b-tree. 1576 ** We will have to generate an ephemeral table to do the job. 1577 */ 1578 double savedNQueryLoop = pParse->nQueryLoop; 1579 int rMayHaveNull = 0; 1580 eType = IN_INDEX_EPH; 1581 if( prNotFound ){ 1582 *prNotFound = rMayHaveNull = ++pParse->nMem; 1583 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1584 }else{ 1585 testcase( pParse->nQueryLoop>(double)1 ); 1586 pParse->nQueryLoop = (double)1; 1587 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1588 eType = IN_INDEX_ROWID; 1589 } 1590 } 1591 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1592 pParse->nQueryLoop = savedNQueryLoop; 1593 }else{ 1594 pX->iTable = iTab; 1595 } 1596 return eType; 1597 } 1598 #endif 1599 1600 /* 1601 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1602 ** or IN operators. Examples: 1603 ** 1604 ** (SELECT a FROM b) -- subquery 1605 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1606 ** x IN (4,5,11) -- IN operator with list on right-hand side 1607 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1608 ** 1609 ** The pExpr parameter describes the expression that contains the IN 1610 ** operator or subquery. 1611 ** 1612 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1613 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1614 ** to some integer key column of a table B-Tree. In this case, use an 1615 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1616 ** (slower) variable length keys B-Tree. 1617 ** 1618 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1619 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1620 ** Furthermore, the IN is in a WHERE clause and that we really want 1621 ** to iterate over the RHS of the IN operator in order to quickly locate 1622 ** all corresponding LHS elements. All this routine does is initialize 1623 ** the register given by rMayHaveNull to NULL. Calling routines will take 1624 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1625 ** 1626 ** If rMayHaveNull is zero, that means that the subquery is being used 1627 ** for membership testing only. There is no need to initialize any 1628 ** registers to indicate the presense or absence of NULLs on the RHS. 1629 ** 1630 ** For a SELECT or EXISTS operator, return the register that holds the 1631 ** result. For IN operators or if an error occurs, the return value is 0. 1632 */ 1633 #ifndef SQLITE_OMIT_SUBQUERY 1634 int sqlite3CodeSubselect( 1635 Parse *pParse, /* Parsing context */ 1636 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1637 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1638 int isRowid /* If true, LHS of IN operator is a rowid */ 1639 ){ 1640 int testAddr = -1; /* One-time test address */ 1641 int rReg = 0; /* Register storing resulting */ 1642 Vdbe *v = sqlite3GetVdbe(pParse); 1643 if( NEVER(v==0) ) return 0; 1644 sqlite3ExprCachePush(pParse); 1645 1646 /* This code must be run in its entirety every time it is encountered 1647 ** if any of the following is true: 1648 ** 1649 ** * The right-hand side is a correlated subquery 1650 ** * The right-hand side is an expression list containing variables 1651 ** * We are inside a trigger 1652 ** 1653 ** If all of the above are false, then we can run this code just once 1654 ** save the results, and reuse the same result on subsequent invocations. 1655 */ 1656 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1657 testAddr = sqlite3CodeOnce(pParse); 1658 } 1659 1660 #ifndef SQLITE_OMIT_EXPLAIN 1661 if( pParse->explain==2 ){ 1662 char *zMsg = sqlite3MPrintf( 1663 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1664 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1665 ); 1666 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1667 } 1668 #endif 1669 1670 switch( pExpr->op ){ 1671 case TK_IN: { 1672 char affinity; /* Affinity of the LHS of the IN */ 1673 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1674 static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ 1675 int addr; /* Address of OP_OpenEphemeral instruction */ 1676 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1677 1678 if( rMayHaveNull ){ 1679 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1680 } 1681 1682 affinity = sqlite3ExprAffinity(pLeft); 1683 1684 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1685 ** expression it is handled the same way. An ephemeral table is 1686 ** filled with single-field index keys representing the results 1687 ** from the SELECT or the <exprlist>. 1688 ** 1689 ** If the 'x' expression is a column value, or the SELECT... 1690 ** statement returns a column value, then the affinity of that 1691 ** column is used to build the index keys. If both 'x' and the 1692 ** SELECT... statement are columns, then numeric affinity is used 1693 ** if either column has NUMERIC or INTEGER affinity. If neither 1694 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1695 ** is used. 1696 */ 1697 pExpr->iTable = pParse->nTab++; 1698 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1699 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1700 memset(&keyInfo, 0, sizeof(keyInfo)); 1701 keyInfo.nField = 1; 1702 keyInfo.aSortOrder = &sortOrder; 1703 1704 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1705 /* Case 1: expr IN (SELECT ...) 1706 ** 1707 ** Generate code to write the results of the select into the temporary 1708 ** table allocated and opened above. 1709 */ 1710 SelectDest dest; 1711 ExprList *pEList; 1712 1713 assert( !isRowid ); 1714 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1715 dest.affSdst = (u8)affinity; 1716 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1717 pExpr->x.pSelect->iLimit = 0; 1718 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1719 return 0; 1720 } 1721 pEList = pExpr->x.pSelect->pEList; 1722 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1723 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1724 pEList->a[0].pExpr); 1725 } 1726 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1727 /* Case 2: expr IN (exprlist) 1728 ** 1729 ** For each expression, build an index key from the evaluation and 1730 ** store it in the temporary table. If <expr> is a column, then use 1731 ** that columns affinity when building index keys. If <expr> is not 1732 ** a column, use numeric affinity. 1733 */ 1734 int i; 1735 ExprList *pList = pExpr->x.pList; 1736 struct ExprList_item *pItem; 1737 int r1, r2, r3; 1738 1739 if( !affinity ){ 1740 affinity = SQLITE_AFF_NONE; 1741 } 1742 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1743 keyInfo.aSortOrder = &sortOrder; 1744 1745 /* Loop through each expression in <exprlist>. */ 1746 r1 = sqlite3GetTempReg(pParse); 1747 r2 = sqlite3GetTempReg(pParse); 1748 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1749 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1750 Expr *pE2 = pItem->pExpr; 1751 int iValToIns; 1752 1753 /* If the expression is not constant then we will need to 1754 ** disable the test that was generated above that makes sure 1755 ** this code only executes once. Because for a non-constant 1756 ** expression we need to rerun this code each time. 1757 */ 1758 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1759 sqlite3VdbeChangeToNoop(v, testAddr); 1760 testAddr = -1; 1761 } 1762 1763 /* Evaluate the expression and insert it into the temp table */ 1764 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1765 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1766 }else{ 1767 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1768 if( isRowid ){ 1769 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1770 sqlite3VdbeCurrentAddr(v)+2); 1771 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1772 }else{ 1773 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1774 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1775 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1776 } 1777 } 1778 } 1779 sqlite3ReleaseTempReg(pParse, r1); 1780 sqlite3ReleaseTempReg(pParse, r2); 1781 } 1782 if( !isRowid ){ 1783 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1784 } 1785 break; 1786 } 1787 1788 case TK_EXISTS: 1789 case TK_SELECT: 1790 default: { 1791 /* If this has to be a scalar SELECT. Generate code to put the 1792 ** value of this select in a memory cell and record the number 1793 ** of the memory cell in iColumn. If this is an EXISTS, write 1794 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1795 ** and record that memory cell in iColumn. 1796 */ 1797 Select *pSel; /* SELECT statement to encode */ 1798 SelectDest dest; /* How to deal with SELECt result */ 1799 1800 testcase( pExpr->op==TK_EXISTS ); 1801 testcase( pExpr->op==TK_SELECT ); 1802 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1803 1804 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1805 pSel = pExpr->x.pSelect; 1806 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1807 if( pExpr->op==TK_SELECT ){ 1808 dest.eDest = SRT_Mem; 1809 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1810 VdbeComment((v, "Init subquery result")); 1811 }else{ 1812 dest.eDest = SRT_Exists; 1813 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1814 VdbeComment((v, "Init EXISTS result")); 1815 } 1816 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1817 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1818 &sqlite3IntTokens[1]); 1819 pSel->iLimit = 0; 1820 if( sqlite3Select(pParse, pSel, &dest) ){ 1821 return 0; 1822 } 1823 rReg = dest.iSDParm; 1824 ExprSetIrreducible(pExpr); 1825 break; 1826 } 1827 } 1828 1829 if( testAddr>=0 ){ 1830 sqlite3VdbeJumpHere(v, testAddr); 1831 } 1832 sqlite3ExprCachePop(pParse, 1); 1833 1834 return rReg; 1835 } 1836 #endif /* SQLITE_OMIT_SUBQUERY */ 1837 1838 #ifndef SQLITE_OMIT_SUBQUERY 1839 /* 1840 ** Generate code for an IN expression. 1841 ** 1842 ** x IN (SELECT ...) 1843 ** x IN (value, value, ...) 1844 ** 1845 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1846 ** is an array of zero or more values. The expression is true if the LHS is 1847 ** contained within the RHS. The value of the expression is unknown (NULL) 1848 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1849 ** RHS contains one or more NULL values. 1850 ** 1851 ** This routine generates code will jump to destIfFalse if the LHS is not 1852 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1853 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1854 ** within the RHS then fall through. 1855 */ 1856 static void sqlite3ExprCodeIN( 1857 Parse *pParse, /* Parsing and code generating context */ 1858 Expr *pExpr, /* The IN expression */ 1859 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1860 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1861 ){ 1862 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1863 char affinity; /* Comparison affinity to use */ 1864 int eType; /* Type of the RHS */ 1865 int r1; /* Temporary use register */ 1866 Vdbe *v; /* Statement under construction */ 1867 1868 /* Compute the RHS. After this step, the table with cursor 1869 ** pExpr->iTable will contains the values that make up the RHS. 1870 */ 1871 v = pParse->pVdbe; 1872 assert( v!=0 ); /* OOM detected prior to this routine */ 1873 VdbeNoopComment((v, "begin IN expr")); 1874 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1875 1876 /* Figure out the affinity to use to create a key from the results 1877 ** of the expression. affinityStr stores a static string suitable for 1878 ** P4 of OP_MakeRecord. 1879 */ 1880 affinity = comparisonAffinity(pExpr); 1881 1882 /* Code the LHS, the <expr> from "<expr> IN (...)". 1883 */ 1884 sqlite3ExprCachePush(pParse); 1885 r1 = sqlite3GetTempReg(pParse); 1886 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1887 1888 /* If the LHS is NULL, then the result is either false or NULL depending 1889 ** on whether the RHS is empty or not, respectively. 1890 */ 1891 if( destIfNull==destIfFalse ){ 1892 /* Shortcut for the common case where the false and NULL outcomes are 1893 ** the same. */ 1894 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1895 }else{ 1896 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1897 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1898 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1899 sqlite3VdbeJumpHere(v, addr1); 1900 } 1901 1902 if( eType==IN_INDEX_ROWID ){ 1903 /* In this case, the RHS is the ROWID of table b-tree 1904 */ 1905 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1906 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1907 }else{ 1908 /* In this case, the RHS is an index b-tree. 1909 */ 1910 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1911 1912 /* If the set membership test fails, then the result of the 1913 ** "x IN (...)" expression must be either 0 or NULL. If the set 1914 ** contains no NULL values, then the result is 0. If the set 1915 ** contains one or more NULL values, then the result of the 1916 ** expression is also NULL. 1917 */ 1918 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1919 /* This branch runs if it is known at compile time that the RHS 1920 ** cannot contain NULL values. This happens as the result 1921 ** of a "NOT NULL" constraint in the database schema. 1922 ** 1923 ** Also run this branch if NULL is equivalent to FALSE 1924 ** for this particular IN operator. 1925 */ 1926 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1927 1928 }else{ 1929 /* In this branch, the RHS of the IN might contain a NULL and 1930 ** the presence of a NULL on the RHS makes a difference in the 1931 ** outcome. 1932 */ 1933 int j1, j2, j3; 1934 1935 /* First check to see if the LHS is contained in the RHS. If so, 1936 ** then the presence of NULLs in the RHS does not matter, so jump 1937 ** over all of the code that follows. 1938 */ 1939 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1940 1941 /* Here we begin generating code that runs if the LHS is not 1942 ** contained within the RHS. Generate additional code that 1943 ** tests the RHS for NULLs. If the RHS contains a NULL then 1944 ** jump to destIfNull. If there are no NULLs in the RHS then 1945 ** jump to destIfFalse. 1946 */ 1947 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1948 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1949 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1950 sqlite3VdbeJumpHere(v, j3); 1951 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1952 sqlite3VdbeJumpHere(v, j2); 1953 1954 /* Jump to the appropriate target depending on whether or not 1955 ** the RHS contains a NULL 1956 */ 1957 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1958 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1959 1960 /* The OP_Found at the top of this branch jumps here when true, 1961 ** causing the overall IN expression evaluation to fall through. 1962 */ 1963 sqlite3VdbeJumpHere(v, j1); 1964 } 1965 } 1966 sqlite3ReleaseTempReg(pParse, r1); 1967 sqlite3ExprCachePop(pParse, 1); 1968 VdbeComment((v, "end IN expr")); 1969 } 1970 #endif /* SQLITE_OMIT_SUBQUERY */ 1971 1972 /* 1973 ** Duplicate an 8-byte value 1974 */ 1975 static char *dup8bytes(Vdbe *v, const char *in){ 1976 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1977 if( out ){ 1978 memcpy(out, in, 8); 1979 } 1980 return out; 1981 } 1982 1983 #ifndef SQLITE_OMIT_FLOATING_POINT 1984 /* 1985 ** Generate an instruction that will put the floating point 1986 ** value described by z[0..n-1] into register iMem. 1987 ** 1988 ** The z[] string will probably not be zero-terminated. But the 1989 ** z[n] character is guaranteed to be something that does not look 1990 ** like the continuation of the number. 1991 */ 1992 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1993 if( ALWAYS(z!=0) ){ 1994 double value; 1995 char *zV; 1996 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1997 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1998 if( negateFlag ) value = -value; 1999 zV = dup8bytes(v, (char*)&value); 2000 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2001 } 2002 } 2003 #endif 2004 2005 2006 /* 2007 ** Generate an instruction that will put the integer describe by 2008 ** text z[0..n-1] into register iMem. 2009 ** 2010 ** Expr.u.zToken is always UTF8 and zero-terminated. 2011 */ 2012 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2013 Vdbe *v = pParse->pVdbe; 2014 if( pExpr->flags & EP_IntValue ){ 2015 int i = pExpr->u.iValue; 2016 assert( i>=0 ); 2017 if( negFlag ) i = -i; 2018 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2019 }else{ 2020 int c; 2021 i64 value; 2022 const char *z = pExpr->u.zToken; 2023 assert( z!=0 ); 2024 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2025 if( c==0 || (c==2 && negFlag) ){ 2026 char *zV; 2027 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2028 zV = dup8bytes(v, (char*)&value); 2029 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2030 }else{ 2031 #ifdef SQLITE_OMIT_FLOATING_POINT 2032 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2033 #else 2034 codeReal(v, z, negFlag, iMem); 2035 #endif 2036 } 2037 } 2038 } 2039 2040 /* 2041 ** Clear a cache entry. 2042 */ 2043 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2044 if( p->tempReg ){ 2045 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2046 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2047 } 2048 p->tempReg = 0; 2049 } 2050 } 2051 2052 2053 /* 2054 ** Record in the column cache that a particular column from a 2055 ** particular table is stored in a particular register. 2056 */ 2057 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2058 int i; 2059 int minLru; 2060 int idxLru; 2061 struct yColCache *p; 2062 2063 assert( iReg>0 ); /* Register numbers are always positive */ 2064 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2065 2066 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2067 ** for testing only - to verify that SQLite always gets the same answer 2068 ** with and without the column cache. 2069 */ 2070 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2071 2072 /* First replace any existing entry. 2073 ** 2074 ** Actually, the way the column cache is currently used, we are guaranteed 2075 ** that the object will never already be in cache. Verify this guarantee. 2076 */ 2077 #ifndef NDEBUG 2078 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2079 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2080 } 2081 #endif 2082 2083 /* Find an empty slot and replace it */ 2084 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2085 if( p->iReg==0 ){ 2086 p->iLevel = pParse->iCacheLevel; 2087 p->iTable = iTab; 2088 p->iColumn = iCol; 2089 p->iReg = iReg; 2090 p->tempReg = 0; 2091 p->lru = pParse->iCacheCnt++; 2092 return; 2093 } 2094 } 2095 2096 /* Replace the last recently used */ 2097 minLru = 0x7fffffff; 2098 idxLru = -1; 2099 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2100 if( p->lru<minLru ){ 2101 idxLru = i; 2102 minLru = p->lru; 2103 } 2104 } 2105 if( ALWAYS(idxLru>=0) ){ 2106 p = &pParse->aColCache[idxLru]; 2107 p->iLevel = pParse->iCacheLevel; 2108 p->iTable = iTab; 2109 p->iColumn = iCol; 2110 p->iReg = iReg; 2111 p->tempReg = 0; 2112 p->lru = pParse->iCacheCnt++; 2113 return; 2114 } 2115 } 2116 2117 /* 2118 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2119 ** Purge the range of registers from the column cache. 2120 */ 2121 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2122 int i; 2123 int iLast = iReg + nReg - 1; 2124 struct yColCache *p; 2125 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2126 int r = p->iReg; 2127 if( r>=iReg && r<=iLast ){ 2128 cacheEntryClear(pParse, p); 2129 p->iReg = 0; 2130 } 2131 } 2132 } 2133 2134 /* 2135 ** Remember the current column cache context. Any new entries added 2136 ** added to the column cache after this call are removed when the 2137 ** corresponding pop occurs. 2138 */ 2139 void sqlite3ExprCachePush(Parse *pParse){ 2140 pParse->iCacheLevel++; 2141 } 2142 2143 /* 2144 ** Remove from the column cache any entries that were added since the 2145 ** the previous N Push operations. In other words, restore the cache 2146 ** to the state it was in N Pushes ago. 2147 */ 2148 void sqlite3ExprCachePop(Parse *pParse, int N){ 2149 int i; 2150 struct yColCache *p; 2151 assert( N>0 ); 2152 assert( pParse->iCacheLevel>=N ); 2153 pParse->iCacheLevel -= N; 2154 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2155 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2156 cacheEntryClear(pParse, p); 2157 p->iReg = 0; 2158 } 2159 } 2160 } 2161 2162 /* 2163 ** When a cached column is reused, make sure that its register is 2164 ** no longer available as a temp register. ticket #3879: that same 2165 ** register might be in the cache in multiple places, so be sure to 2166 ** get them all. 2167 */ 2168 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2169 int i; 2170 struct yColCache *p; 2171 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2172 if( p->iReg==iReg ){ 2173 p->tempReg = 0; 2174 } 2175 } 2176 } 2177 2178 /* 2179 ** Generate code to extract the value of the iCol-th column of a table. 2180 */ 2181 void sqlite3ExprCodeGetColumnOfTable( 2182 Vdbe *v, /* The VDBE under construction */ 2183 Table *pTab, /* The table containing the value */ 2184 int iTabCur, /* The cursor for this table */ 2185 int iCol, /* Index of the column to extract */ 2186 int regOut /* Extract the valud into this register */ 2187 ){ 2188 if( iCol<0 || iCol==pTab->iPKey ){ 2189 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2190 }else{ 2191 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2192 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2193 } 2194 if( iCol>=0 ){ 2195 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2196 } 2197 } 2198 2199 /* 2200 ** Generate code that will extract the iColumn-th column from 2201 ** table pTab and store the column value in a register. An effort 2202 ** is made to store the column value in register iReg, but this is 2203 ** not guaranteed. The location of the column value is returned. 2204 ** 2205 ** There must be an open cursor to pTab in iTable when this routine 2206 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2207 */ 2208 int sqlite3ExprCodeGetColumn( 2209 Parse *pParse, /* Parsing and code generating context */ 2210 Table *pTab, /* Description of the table we are reading from */ 2211 int iColumn, /* Index of the table column */ 2212 int iTable, /* The cursor pointing to the table */ 2213 int iReg, /* Store results here */ 2214 u8 p5 /* P5 value for OP_Column */ 2215 ){ 2216 Vdbe *v = pParse->pVdbe; 2217 int i; 2218 struct yColCache *p; 2219 2220 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2221 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2222 p->lru = pParse->iCacheCnt++; 2223 sqlite3ExprCachePinRegister(pParse, p->iReg); 2224 return p->iReg; 2225 } 2226 } 2227 assert( v!=0 ); 2228 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2229 if( p5 ){ 2230 sqlite3VdbeChangeP5(v, p5); 2231 }else{ 2232 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2233 } 2234 return iReg; 2235 } 2236 2237 /* 2238 ** Clear all column cache entries. 2239 */ 2240 void sqlite3ExprCacheClear(Parse *pParse){ 2241 int i; 2242 struct yColCache *p; 2243 2244 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2245 if( p->iReg ){ 2246 cacheEntryClear(pParse, p); 2247 p->iReg = 0; 2248 } 2249 } 2250 } 2251 2252 /* 2253 ** Record the fact that an affinity change has occurred on iCount 2254 ** registers starting with iStart. 2255 */ 2256 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2257 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2258 } 2259 2260 /* 2261 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2262 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2263 */ 2264 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2265 int i; 2266 struct yColCache *p; 2267 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2268 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); 2269 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2270 int x = p->iReg; 2271 if( x>=iFrom && x<iFrom+nReg ){ 2272 p->iReg += iTo-iFrom; 2273 } 2274 } 2275 } 2276 2277 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2278 /* 2279 ** Return true if any register in the range iFrom..iTo (inclusive) 2280 ** is used as part of the column cache. 2281 ** 2282 ** This routine is used within assert() and testcase() macros only 2283 ** and does not appear in a normal build. 2284 */ 2285 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2286 int i; 2287 struct yColCache *p; 2288 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2289 int r = p->iReg; 2290 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2291 } 2292 return 0; 2293 } 2294 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2295 2296 /* 2297 ** Generate code into the current Vdbe to evaluate the given 2298 ** expression. Attempt to store the results in register "target". 2299 ** Return the register where results are stored. 2300 ** 2301 ** With this routine, there is no guarantee that results will 2302 ** be stored in target. The result might be stored in some other 2303 ** register if it is convenient to do so. The calling function 2304 ** must check the return code and move the results to the desired 2305 ** register. 2306 */ 2307 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2308 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2309 int op; /* The opcode being coded */ 2310 int inReg = target; /* Results stored in register inReg */ 2311 int regFree1 = 0; /* If non-zero free this temporary register */ 2312 int regFree2 = 0; /* If non-zero free this temporary register */ 2313 int r1, r2, r3, r4; /* Various register numbers */ 2314 sqlite3 *db = pParse->db; /* The database connection */ 2315 2316 assert( target>0 && target<=pParse->nMem ); 2317 if( v==0 ){ 2318 assert( pParse->db->mallocFailed ); 2319 return 0; 2320 } 2321 2322 if( pExpr==0 ){ 2323 op = TK_NULL; 2324 }else{ 2325 op = pExpr->op; 2326 } 2327 switch( op ){ 2328 case TK_AGG_COLUMN: { 2329 AggInfo *pAggInfo = pExpr->pAggInfo; 2330 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2331 if( !pAggInfo->directMode ){ 2332 assert( pCol->iMem>0 ); 2333 inReg = pCol->iMem; 2334 break; 2335 }else if( pAggInfo->useSortingIdx ){ 2336 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2337 pCol->iSorterColumn, target); 2338 break; 2339 } 2340 /* Otherwise, fall thru into the TK_COLUMN case */ 2341 } 2342 case TK_COLUMN: { 2343 if( pExpr->iTable<0 ){ 2344 /* This only happens when coding check constraints */ 2345 assert( pParse->ckBase>0 ); 2346 inReg = pExpr->iColumn + pParse->ckBase; 2347 }else{ 2348 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2349 pExpr->iColumn, pExpr->iTable, target, 2350 pExpr->op2); 2351 } 2352 break; 2353 } 2354 case TK_INTEGER: { 2355 codeInteger(pParse, pExpr, 0, target); 2356 break; 2357 } 2358 #ifndef SQLITE_OMIT_FLOATING_POINT 2359 case TK_FLOAT: { 2360 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2361 codeReal(v, pExpr->u.zToken, 0, target); 2362 break; 2363 } 2364 #endif 2365 case TK_STRING: { 2366 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2367 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2368 break; 2369 } 2370 case TK_NULL: { 2371 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2372 break; 2373 } 2374 #ifndef SQLITE_OMIT_BLOB_LITERAL 2375 case TK_BLOB: { 2376 int n; 2377 const char *z; 2378 char *zBlob; 2379 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2380 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2381 assert( pExpr->u.zToken[1]=='\'' ); 2382 z = &pExpr->u.zToken[2]; 2383 n = sqlite3Strlen30(z) - 1; 2384 assert( z[n]=='\'' ); 2385 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2386 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2387 break; 2388 } 2389 #endif 2390 case TK_VARIABLE: { 2391 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2392 assert( pExpr->u.zToken!=0 ); 2393 assert( pExpr->u.zToken[0]!=0 ); 2394 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2395 if( pExpr->u.zToken[1]!=0 ){ 2396 assert( pExpr->u.zToken[0]=='?' 2397 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2398 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2399 } 2400 break; 2401 } 2402 case TK_REGISTER: { 2403 inReg = pExpr->iTable; 2404 break; 2405 } 2406 case TK_AS: { 2407 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2408 break; 2409 } 2410 #ifndef SQLITE_OMIT_CAST 2411 case TK_CAST: { 2412 /* Expressions of the form: CAST(pLeft AS token) */ 2413 int aff, to_op; 2414 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2415 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2416 aff = sqlite3AffinityType(pExpr->u.zToken); 2417 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2418 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2419 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2420 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2421 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2422 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2423 testcase( to_op==OP_ToText ); 2424 testcase( to_op==OP_ToBlob ); 2425 testcase( to_op==OP_ToNumeric ); 2426 testcase( to_op==OP_ToInt ); 2427 testcase( to_op==OP_ToReal ); 2428 if( inReg!=target ){ 2429 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2430 inReg = target; 2431 } 2432 sqlite3VdbeAddOp1(v, to_op, inReg); 2433 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2434 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2435 break; 2436 } 2437 #endif /* SQLITE_OMIT_CAST */ 2438 case TK_LT: 2439 case TK_LE: 2440 case TK_GT: 2441 case TK_GE: 2442 case TK_NE: 2443 case TK_EQ: { 2444 assert( TK_LT==OP_Lt ); 2445 assert( TK_LE==OP_Le ); 2446 assert( TK_GT==OP_Gt ); 2447 assert( TK_GE==OP_Ge ); 2448 assert( TK_EQ==OP_Eq ); 2449 assert( TK_NE==OP_Ne ); 2450 testcase( op==TK_LT ); 2451 testcase( op==TK_LE ); 2452 testcase( op==TK_GT ); 2453 testcase( op==TK_GE ); 2454 testcase( op==TK_EQ ); 2455 testcase( op==TK_NE ); 2456 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2457 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2458 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2459 r1, r2, inReg, SQLITE_STOREP2); 2460 testcase( regFree1==0 ); 2461 testcase( regFree2==0 ); 2462 break; 2463 } 2464 case TK_IS: 2465 case TK_ISNOT: { 2466 testcase( op==TK_IS ); 2467 testcase( op==TK_ISNOT ); 2468 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2469 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2470 op = (op==TK_IS) ? TK_EQ : TK_NE; 2471 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2472 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2473 testcase( regFree1==0 ); 2474 testcase( regFree2==0 ); 2475 break; 2476 } 2477 case TK_AND: 2478 case TK_OR: 2479 case TK_PLUS: 2480 case TK_STAR: 2481 case TK_MINUS: 2482 case TK_REM: 2483 case TK_BITAND: 2484 case TK_BITOR: 2485 case TK_SLASH: 2486 case TK_LSHIFT: 2487 case TK_RSHIFT: 2488 case TK_CONCAT: { 2489 assert( TK_AND==OP_And ); 2490 assert( TK_OR==OP_Or ); 2491 assert( TK_PLUS==OP_Add ); 2492 assert( TK_MINUS==OP_Subtract ); 2493 assert( TK_REM==OP_Remainder ); 2494 assert( TK_BITAND==OP_BitAnd ); 2495 assert( TK_BITOR==OP_BitOr ); 2496 assert( TK_SLASH==OP_Divide ); 2497 assert( TK_LSHIFT==OP_ShiftLeft ); 2498 assert( TK_RSHIFT==OP_ShiftRight ); 2499 assert( TK_CONCAT==OP_Concat ); 2500 testcase( op==TK_AND ); 2501 testcase( op==TK_OR ); 2502 testcase( op==TK_PLUS ); 2503 testcase( op==TK_MINUS ); 2504 testcase( op==TK_REM ); 2505 testcase( op==TK_BITAND ); 2506 testcase( op==TK_BITOR ); 2507 testcase( op==TK_SLASH ); 2508 testcase( op==TK_LSHIFT ); 2509 testcase( op==TK_RSHIFT ); 2510 testcase( op==TK_CONCAT ); 2511 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2512 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2513 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2514 testcase( regFree1==0 ); 2515 testcase( regFree2==0 ); 2516 break; 2517 } 2518 case TK_UMINUS: { 2519 Expr *pLeft = pExpr->pLeft; 2520 assert( pLeft ); 2521 if( pLeft->op==TK_INTEGER ){ 2522 codeInteger(pParse, pLeft, 1, target); 2523 #ifndef SQLITE_OMIT_FLOATING_POINT 2524 }else if( pLeft->op==TK_FLOAT ){ 2525 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2526 codeReal(v, pLeft->u.zToken, 1, target); 2527 #endif 2528 }else{ 2529 regFree1 = r1 = sqlite3GetTempReg(pParse); 2530 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2531 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2532 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2533 testcase( regFree2==0 ); 2534 } 2535 inReg = target; 2536 break; 2537 } 2538 case TK_BITNOT: 2539 case TK_NOT: { 2540 assert( TK_BITNOT==OP_BitNot ); 2541 assert( TK_NOT==OP_Not ); 2542 testcase( op==TK_BITNOT ); 2543 testcase( op==TK_NOT ); 2544 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2545 testcase( regFree1==0 ); 2546 inReg = target; 2547 sqlite3VdbeAddOp2(v, op, r1, inReg); 2548 break; 2549 } 2550 case TK_ISNULL: 2551 case TK_NOTNULL: { 2552 int addr; 2553 assert( TK_ISNULL==OP_IsNull ); 2554 assert( TK_NOTNULL==OP_NotNull ); 2555 testcase( op==TK_ISNULL ); 2556 testcase( op==TK_NOTNULL ); 2557 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2558 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2559 testcase( regFree1==0 ); 2560 addr = sqlite3VdbeAddOp1(v, op, r1); 2561 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2562 sqlite3VdbeJumpHere(v, addr); 2563 break; 2564 } 2565 case TK_AGG_FUNCTION: { 2566 AggInfo *pInfo = pExpr->pAggInfo; 2567 if( pInfo==0 ){ 2568 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2569 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2570 }else{ 2571 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2572 } 2573 break; 2574 } 2575 case TK_CONST_FUNC: 2576 case TK_FUNCTION: { 2577 ExprList *pFarg; /* List of function arguments */ 2578 int nFarg; /* Number of function arguments */ 2579 FuncDef *pDef; /* The function definition object */ 2580 int nId; /* Length of the function name in bytes */ 2581 const char *zId; /* The function name */ 2582 int constMask = 0; /* Mask of function arguments that are constant */ 2583 int i; /* Loop counter */ 2584 u8 enc = ENC(db); /* The text encoding used by this database */ 2585 CollSeq *pColl = 0; /* A collating sequence */ 2586 2587 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2588 testcase( op==TK_CONST_FUNC ); 2589 testcase( op==TK_FUNCTION ); 2590 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2591 pFarg = 0; 2592 }else{ 2593 pFarg = pExpr->x.pList; 2594 } 2595 nFarg = pFarg ? pFarg->nExpr : 0; 2596 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2597 zId = pExpr->u.zToken; 2598 nId = sqlite3Strlen30(zId); 2599 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2600 if( pDef==0 ){ 2601 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2602 break; 2603 } 2604 2605 /* Attempt a direct implementation of the built-in COALESCE() and 2606 ** IFNULL() functions. This avoids unnecessary evalation of 2607 ** arguments past the first non-NULL argument. 2608 */ 2609 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2610 int endCoalesce = sqlite3VdbeMakeLabel(v); 2611 assert( nFarg>=2 ); 2612 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2613 for(i=1; i<nFarg; i++){ 2614 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2615 sqlite3ExprCacheRemove(pParse, target, 1); 2616 sqlite3ExprCachePush(pParse); 2617 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2618 sqlite3ExprCachePop(pParse, 1); 2619 } 2620 sqlite3VdbeResolveLabel(v, endCoalesce); 2621 break; 2622 } 2623 2624 2625 if( pFarg ){ 2626 r1 = sqlite3GetTempRange(pParse, nFarg); 2627 2628 /* For length() and typeof() functions with a column argument, 2629 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2630 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2631 ** loading. 2632 */ 2633 if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2634 u8 exprOp; 2635 assert( nFarg==1 ); 2636 assert( pFarg->a[0].pExpr!=0 ); 2637 exprOp = pFarg->a[0].pExpr->op; 2638 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2639 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2640 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2641 testcase( pDef->flags==SQLITE_FUNC_LENGTH ); 2642 pFarg->a[0].pExpr->op2 = pDef->flags; 2643 } 2644 } 2645 2646 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2647 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2648 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2649 }else{ 2650 r1 = 0; 2651 } 2652 #ifndef SQLITE_OMIT_VIRTUALTABLE 2653 /* Possibly overload the function if the first argument is 2654 ** a virtual table column. 2655 ** 2656 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2657 ** second argument, not the first, as the argument to test to 2658 ** see if it is a column in a virtual table. This is done because 2659 ** the left operand of infix functions (the operand we want to 2660 ** control overloading) ends up as the second argument to the 2661 ** function. The expression "A glob B" is equivalent to 2662 ** "glob(B,A). We want to use the A in "A glob B" to test 2663 ** for function overloading. But we use the B term in "glob(B,A)". 2664 */ 2665 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2666 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2667 }else if( nFarg>0 ){ 2668 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2669 } 2670 #endif 2671 for(i=0; i<nFarg; i++){ 2672 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2673 constMask |= (1<<i); 2674 } 2675 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2676 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2677 } 2678 } 2679 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2680 if( !pColl ) pColl = db->pDfltColl; 2681 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2682 } 2683 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2684 (char*)pDef, P4_FUNCDEF); 2685 sqlite3VdbeChangeP5(v, (u8)nFarg); 2686 if( nFarg ){ 2687 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2688 } 2689 break; 2690 } 2691 #ifndef SQLITE_OMIT_SUBQUERY 2692 case TK_EXISTS: 2693 case TK_SELECT: { 2694 testcase( op==TK_EXISTS ); 2695 testcase( op==TK_SELECT ); 2696 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2697 break; 2698 } 2699 case TK_IN: { 2700 int destIfFalse = sqlite3VdbeMakeLabel(v); 2701 int destIfNull = sqlite3VdbeMakeLabel(v); 2702 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2703 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2704 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2705 sqlite3VdbeResolveLabel(v, destIfFalse); 2706 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2707 sqlite3VdbeResolveLabel(v, destIfNull); 2708 break; 2709 } 2710 #endif /* SQLITE_OMIT_SUBQUERY */ 2711 2712 2713 /* 2714 ** x BETWEEN y AND z 2715 ** 2716 ** This is equivalent to 2717 ** 2718 ** x>=y AND x<=z 2719 ** 2720 ** X is stored in pExpr->pLeft. 2721 ** Y is stored in pExpr->pList->a[0].pExpr. 2722 ** Z is stored in pExpr->pList->a[1].pExpr. 2723 */ 2724 case TK_BETWEEN: { 2725 Expr *pLeft = pExpr->pLeft; 2726 struct ExprList_item *pLItem = pExpr->x.pList->a; 2727 Expr *pRight = pLItem->pExpr; 2728 2729 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2730 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2731 testcase( regFree1==0 ); 2732 testcase( regFree2==0 ); 2733 r3 = sqlite3GetTempReg(pParse); 2734 r4 = sqlite3GetTempReg(pParse); 2735 codeCompare(pParse, pLeft, pRight, OP_Ge, 2736 r1, r2, r3, SQLITE_STOREP2); 2737 pLItem++; 2738 pRight = pLItem->pExpr; 2739 sqlite3ReleaseTempReg(pParse, regFree2); 2740 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2741 testcase( regFree2==0 ); 2742 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2743 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2744 sqlite3ReleaseTempReg(pParse, r3); 2745 sqlite3ReleaseTempReg(pParse, r4); 2746 break; 2747 } 2748 case TK_UPLUS: { 2749 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2750 break; 2751 } 2752 2753 case TK_TRIGGER: { 2754 /* If the opcode is TK_TRIGGER, then the expression is a reference 2755 ** to a column in the new.* or old.* pseudo-tables available to 2756 ** trigger programs. In this case Expr.iTable is set to 1 for the 2757 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2758 ** is set to the column of the pseudo-table to read, or to -1 to 2759 ** read the rowid field. 2760 ** 2761 ** The expression is implemented using an OP_Param opcode. The p1 2762 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2763 ** to reference another column of the old.* pseudo-table, where 2764 ** i is the index of the column. For a new.rowid reference, p1 is 2765 ** set to (n+1), where n is the number of columns in each pseudo-table. 2766 ** For a reference to any other column in the new.* pseudo-table, p1 2767 ** is set to (n+2+i), where n and i are as defined previously. For 2768 ** example, if the table on which triggers are being fired is 2769 ** declared as: 2770 ** 2771 ** CREATE TABLE t1(a, b); 2772 ** 2773 ** Then p1 is interpreted as follows: 2774 ** 2775 ** p1==0 -> old.rowid p1==3 -> new.rowid 2776 ** p1==1 -> old.a p1==4 -> new.a 2777 ** p1==2 -> old.b p1==5 -> new.b 2778 */ 2779 Table *pTab = pExpr->pTab; 2780 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2781 2782 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2783 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2784 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2785 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2786 2787 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2788 VdbeComment((v, "%s.%s -> $%d", 2789 (pExpr->iTable ? "new" : "old"), 2790 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2791 target 2792 )); 2793 2794 #ifndef SQLITE_OMIT_FLOATING_POINT 2795 /* If the column has REAL affinity, it may currently be stored as an 2796 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2797 if( pExpr->iColumn>=0 2798 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2799 ){ 2800 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2801 } 2802 #endif 2803 break; 2804 } 2805 2806 2807 /* 2808 ** Form A: 2809 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2810 ** 2811 ** Form B: 2812 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2813 ** 2814 ** Form A is can be transformed into the equivalent form B as follows: 2815 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2816 ** WHEN x=eN THEN rN ELSE y END 2817 ** 2818 ** X (if it exists) is in pExpr->pLeft. 2819 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2820 ** ELSE clause and no other term matches, then the result of the 2821 ** exprssion is NULL. 2822 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2823 ** 2824 ** The result of the expression is the Ri for the first matching Ei, 2825 ** or if there is no matching Ei, the ELSE term Y, or if there is 2826 ** no ELSE term, NULL. 2827 */ 2828 default: assert( op==TK_CASE ); { 2829 int endLabel; /* GOTO label for end of CASE stmt */ 2830 int nextCase; /* GOTO label for next WHEN clause */ 2831 int nExpr; /* 2x number of WHEN terms */ 2832 int i; /* Loop counter */ 2833 ExprList *pEList; /* List of WHEN terms */ 2834 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2835 Expr opCompare; /* The X==Ei expression */ 2836 Expr cacheX; /* Cached expression X */ 2837 Expr *pX; /* The X expression */ 2838 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2839 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2840 2841 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2842 assert((pExpr->x.pList->nExpr % 2) == 0); 2843 assert(pExpr->x.pList->nExpr > 0); 2844 pEList = pExpr->x.pList; 2845 aListelem = pEList->a; 2846 nExpr = pEList->nExpr; 2847 endLabel = sqlite3VdbeMakeLabel(v); 2848 if( (pX = pExpr->pLeft)!=0 ){ 2849 cacheX = *pX; 2850 testcase( pX->op==TK_COLUMN ); 2851 testcase( pX->op==TK_REGISTER ); 2852 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2853 testcase( regFree1==0 ); 2854 cacheX.op = TK_REGISTER; 2855 opCompare.op = TK_EQ; 2856 opCompare.pLeft = &cacheX; 2857 pTest = &opCompare; 2858 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2859 ** The value in regFree1 might get SCopy-ed into the file result. 2860 ** So make sure that the regFree1 register is not reused for other 2861 ** purposes and possibly overwritten. */ 2862 regFree1 = 0; 2863 } 2864 for(i=0; i<nExpr; i=i+2){ 2865 sqlite3ExprCachePush(pParse); 2866 if( pX ){ 2867 assert( pTest!=0 ); 2868 opCompare.pRight = aListelem[i].pExpr; 2869 }else{ 2870 pTest = aListelem[i].pExpr; 2871 } 2872 nextCase = sqlite3VdbeMakeLabel(v); 2873 testcase( pTest->op==TK_COLUMN ); 2874 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2875 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2876 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2877 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2878 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2879 sqlite3ExprCachePop(pParse, 1); 2880 sqlite3VdbeResolveLabel(v, nextCase); 2881 } 2882 if( pExpr->pRight ){ 2883 sqlite3ExprCachePush(pParse); 2884 sqlite3ExprCode(pParse, pExpr->pRight, target); 2885 sqlite3ExprCachePop(pParse, 1); 2886 }else{ 2887 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2888 } 2889 assert( db->mallocFailed || pParse->nErr>0 2890 || pParse->iCacheLevel==iCacheLevel ); 2891 sqlite3VdbeResolveLabel(v, endLabel); 2892 break; 2893 } 2894 #ifndef SQLITE_OMIT_TRIGGER 2895 case TK_RAISE: { 2896 assert( pExpr->affinity==OE_Rollback 2897 || pExpr->affinity==OE_Abort 2898 || pExpr->affinity==OE_Fail 2899 || pExpr->affinity==OE_Ignore 2900 ); 2901 if( !pParse->pTriggerTab ){ 2902 sqlite3ErrorMsg(pParse, 2903 "RAISE() may only be used within a trigger-program"); 2904 return 0; 2905 } 2906 if( pExpr->affinity==OE_Abort ){ 2907 sqlite3MayAbort(pParse); 2908 } 2909 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2910 if( pExpr->affinity==OE_Ignore ){ 2911 sqlite3VdbeAddOp4( 2912 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2913 }else{ 2914 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2915 } 2916 2917 break; 2918 } 2919 #endif 2920 } 2921 sqlite3ReleaseTempReg(pParse, regFree1); 2922 sqlite3ReleaseTempReg(pParse, regFree2); 2923 return inReg; 2924 } 2925 2926 /* 2927 ** Generate code to evaluate an expression and store the results 2928 ** into a register. Return the register number where the results 2929 ** are stored. 2930 ** 2931 ** If the register is a temporary register that can be deallocated, 2932 ** then write its number into *pReg. If the result register is not 2933 ** a temporary, then set *pReg to zero. 2934 */ 2935 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2936 int r1 = sqlite3GetTempReg(pParse); 2937 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2938 if( r2==r1 ){ 2939 *pReg = r1; 2940 }else{ 2941 sqlite3ReleaseTempReg(pParse, r1); 2942 *pReg = 0; 2943 } 2944 return r2; 2945 } 2946 2947 /* 2948 ** Generate code that will evaluate expression pExpr and store the 2949 ** results in register target. The results are guaranteed to appear 2950 ** in register target. 2951 */ 2952 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2953 int inReg; 2954 2955 assert( target>0 && target<=pParse->nMem ); 2956 if( pExpr && pExpr->op==TK_REGISTER ){ 2957 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2958 }else{ 2959 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2960 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2961 if( inReg!=target && pParse->pVdbe ){ 2962 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2963 } 2964 } 2965 return target; 2966 } 2967 2968 /* 2969 ** Generate code that evalutes the given expression and puts the result 2970 ** in register target. 2971 ** 2972 ** Also make a copy of the expression results into another "cache" register 2973 ** and modify the expression so that the next time it is evaluated, 2974 ** the result is a copy of the cache register. 2975 ** 2976 ** This routine is used for expressions that are used multiple 2977 ** times. They are evaluated once and the results of the expression 2978 ** are reused. 2979 */ 2980 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2981 Vdbe *v = pParse->pVdbe; 2982 int inReg; 2983 inReg = sqlite3ExprCode(pParse, pExpr, target); 2984 assert( target>0 ); 2985 /* This routine is called for terms to INSERT or UPDATE. And the only 2986 ** other place where expressions can be converted into TK_REGISTER is 2987 ** in WHERE clause processing. So as currently implemented, there is 2988 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2989 ** keep the ALWAYS() in case the conditions above change with future 2990 ** modifications or enhancements. */ 2991 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2992 int iMem; 2993 iMem = ++pParse->nMem; 2994 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2995 pExpr->iTable = iMem; 2996 pExpr->op2 = pExpr->op; 2997 pExpr->op = TK_REGISTER; 2998 } 2999 return inReg; 3000 } 3001 3002 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3003 /* 3004 ** Generate a human-readable explanation of an expression tree. 3005 */ 3006 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3007 int op; /* The opcode being coded */ 3008 const char *zBinOp = 0; /* Binary operator */ 3009 const char *zUniOp = 0; /* Unary operator */ 3010 if( pExpr==0 ){ 3011 op = TK_NULL; 3012 }else{ 3013 op = pExpr->op; 3014 } 3015 switch( op ){ 3016 case TK_AGG_COLUMN: { 3017 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3018 pExpr->iTable, pExpr->iColumn); 3019 break; 3020 } 3021 case TK_COLUMN: { 3022 if( pExpr->iTable<0 ){ 3023 /* This only happens when coding check constraints */ 3024 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3025 }else{ 3026 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3027 pExpr->iTable, pExpr->iColumn); 3028 } 3029 break; 3030 } 3031 case TK_INTEGER: { 3032 if( pExpr->flags & EP_IntValue ){ 3033 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3034 }else{ 3035 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3036 } 3037 break; 3038 } 3039 #ifndef SQLITE_OMIT_FLOATING_POINT 3040 case TK_FLOAT: { 3041 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3042 break; 3043 } 3044 #endif 3045 case TK_STRING: { 3046 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3047 break; 3048 } 3049 case TK_NULL: { 3050 sqlite3ExplainPrintf(pOut,"NULL"); 3051 break; 3052 } 3053 #ifndef SQLITE_OMIT_BLOB_LITERAL 3054 case TK_BLOB: { 3055 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3056 break; 3057 } 3058 #endif 3059 case TK_VARIABLE: { 3060 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3061 pExpr->u.zToken, pExpr->iColumn); 3062 break; 3063 } 3064 case TK_REGISTER: { 3065 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3066 break; 3067 } 3068 case TK_AS: { 3069 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3070 break; 3071 } 3072 #ifndef SQLITE_OMIT_CAST 3073 case TK_CAST: { 3074 /* Expressions of the form: CAST(pLeft AS token) */ 3075 const char *zAff = "unk"; 3076 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3077 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3078 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3079 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3080 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3081 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3082 } 3083 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3084 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3085 sqlite3ExplainPrintf(pOut, ")"); 3086 break; 3087 } 3088 #endif /* SQLITE_OMIT_CAST */ 3089 case TK_LT: zBinOp = "LT"; break; 3090 case TK_LE: zBinOp = "LE"; break; 3091 case TK_GT: zBinOp = "GT"; break; 3092 case TK_GE: zBinOp = "GE"; break; 3093 case TK_NE: zBinOp = "NE"; break; 3094 case TK_EQ: zBinOp = "EQ"; break; 3095 case TK_IS: zBinOp = "IS"; break; 3096 case TK_ISNOT: zBinOp = "ISNOT"; break; 3097 case TK_AND: zBinOp = "AND"; break; 3098 case TK_OR: zBinOp = "OR"; break; 3099 case TK_PLUS: zBinOp = "ADD"; break; 3100 case TK_STAR: zBinOp = "MUL"; break; 3101 case TK_MINUS: zBinOp = "SUB"; break; 3102 case TK_REM: zBinOp = "REM"; break; 3103 case TK_BITAND: zBinOp = "BITAND"; break; 3104 case TK_BITOR: zBinOp = "BITOR"; break; 3105 case TK_SLASH: zBinOp = "DIV"; break; 3106 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3107 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3108 case TK_CONCAT: zBinOp = "CONCAT"; break; 3109 3110 case TK_UMINUS: zUniOp = "UMINUS"; break; 3111 case TK_UPLUS: zUniOp = "UPLUS"; break; 3112 case TK_BITNOT: zUniOp = "BITNOT"; break; 3113 case TK_NOT: zUniOp = "NOT"; break; 3114 case TK_ISNULL: zUniOp = "ISNULL"; break; 3115 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3116 3117 case TK_AGG_FUNCTION: 3118 case TK_CONST_FUNC: 3119 case TK_FUNCTION: { 3120 ExprList *pFarg; /* List of function arguments */ 3121 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3122 pFarg = 0; 3123 }else{ 3124 pFarg = pExpr->x.pList; 3125 } 3126 if( op==TK_AGG_FUNCTION ){ 3127 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3128 pExpr->op2, pExpr->u.zToken); 3129 }else{ 3130 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3131 } 3132 if( pFarg ){ 3133 sqlite3ExplainExprList(pOut, pFarg); 3134 } 3135 sqlite3ExplainPrintf(pOut, ")"); 3136 break; 3137 } 3138 #ifndef SQLITE_OMIT_SUBQUERY 3139 case TK_EXISTS: { 3140 sqlite3ExplainPrintf(pOut, "EXISTS("); 3141 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3142 sqlite3ExplainPrintf(pOut,")"); 3143 break; 3144 } 3145 case TK_SELECT: { 3146 sqlite3ExplainPrintf(pOut, "("); 3147 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3148 sqlite3ExplainPrintf(pOut, ")"); 3149 break; 3150 } 3151 case TK_IN: { 3152 sqlite3ExplainPrintf(pOut, "IN("); 3153 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3154 sqlite3ExplainPrintf(pOut, ","); 3155 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3156 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3157 }else{ 3158 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3159 } 3160 sqlite3ExplainPrintf(pOut, ")"); 3161 break; 3162 } 3163 #endif /* SQLITE_OMIT_SUBQUERY */ 3164 3165 /* 3166 ** x BETWEEN y AND z 3167 ** 3168 ** This is equivalent to 3169 ** 3170 ** x>=y AND x<=z 3171 ** 3172 ** X is stored in pExpr->pLeft. 3173 ** Y is stored in pExpr->pList->a[0].pExpr. 3174 ** Z is stored in pExpr->pList->a[1].pExpr. 3175 */ 3176 case TK_BETWEEN: { 3177 Expr *pX = pExpr->pLeft; 3178 Expr *pY = pExpr->x.pList->a[0].pExpr; 3179 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3180 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3181 sqlite3ExplainExpr(pOut, pX); 3182 sqlite3ExplainPrintf(pOut, ","); 3183 sqlite3ExplainExpr(pOut, pY); 3184 sqlite3ExplainPrintf(pOut, ","); 3185 sqlite3ExplainExpr(pOut, pZ); 3186 sqlite3ExplainPrintf(pOut, ")"); 3187 break; 3188 } 3189 case TK_TRIGGER: { 3190 /* If the opcode is TK_TRIGGER, then the expression is a reference 3191 ** to a column in the new.* or old.* pseudo-tables available to 3192 ** trigger programs. In this case Expr.iTable is set to 1 for the 3193 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3194 ** is set to the column of the pseudo-table to read, or to -1 to 3195 ** read the rowid field. 3196 */ 3197 sqlite3ExplainPrintf(pOut, "%s(%d)", 3198 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3199 break; 3200 } 3201 case TK_CASE: { 3202 sqlite3ExplainPrintf(pOut, "CASE("); 3203 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3204 sqlite3ExplainPrintf(pOut, ","); 3205 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3206 break; 3207 } 3208 #ifndef SQLITE_OMIT_TRIGGER 3209 case TK_RAISE: { 3210 const char *zType = "unk"; 3211 switch( pExpr->affinity ){ 3212 case OE_Rollback: zType = "rollback"; break; 3213 case OE_Abort: zType = "abort"; break; 3214 case OE_Fail: zType = "fail"; break; 3215 case OE_Ignore: zType = "ignore"; break; 3216 } 3217 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3218 break; 3219 } 3220 #endif 3221 } 3222 if( zBinOp ){ 3223 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3224 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3225 sqlite3ExplainPrintf(pOut,","); 3226 sqlite3ExplainExpr(pOut, pExpr->pRight); 3227 sqlite3ExplainPrintf(pOut,")"); 3228 }else if( zUniOp ){ 3229 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3230 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3231 sqlite3ExplainPrintf(pOut,")"); 3232 } 3233 } 3234 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3235 3236 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3237 /* 3238 ** Generate a human-readable explanation of an expression list. 3239 */ 3240 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3241 int i; 3242 if( pList==0 || pList->nExpr==0 ){ 3243 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3244 return; 3245 }else if( pList->nExpr==1 ){ 3246 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3247 }else{ 3248 sqlite3ExplainPush(pOut); 3249 for(i=0; i<pList->nExpr; i++){ 3250 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3251 sqlite3ExplainPush(pOut); 3252 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3253 sqlite3ExplainPop(pOut); 3254 if( i<pList->nExpr-1 ){ 3255 sqlite3ExplainNL(pOut); 3256 } 3257 } 3258 sqlite3ExplainPop(pOut); 3259 } 3260 } 3261 #endif /* SQLITE_DEBUG */ 3262 3263 /* 3264 ** Return TRUE if pExpr is an constant expression that is appropriate 3265 ** for factoring out of a loop. Appropriate expressions are: 3266 ** 3267 ** * Any expression that evaluates to two or more opcodes. 3268 ** 3269 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3270 ** or OP_Variable that does not need to be placed in a 3271 ** specific register. 3272 ** 3273 ** There is no point in factoring out single-instruction constant 3274 ** expressions that need to be placed in a particular register. 3275 ** We could factor them out, but then we would end up adding an 3276 ** OP_SCopy instruction to move the value into the correct register 3277 ** later. We might as well just use the original instruction and 3278 ** avoid the OP_SCopy. 3279 */ 3280 static int isAppropriateForFactoring(Expr *p){ 3281 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3282 return 0; /* Only constant expressions are appropriate for factoring */ 3283 } 3284 if( (p->flags & EP_FixedDest)==0 ){ 3285 return 1; /* Any constant without a fixed destination is appropriate */ 3286 } 3287 while( p->op==TK_UPLUS ) p = p->pLeft; 3288 switch( p->op ){ 3289 #ifndef SQLITE_OMIT_BLOB_LITERAL 3290 case TK_BLOB: 3291 #endif 3292 case TK_VARIABLE: 3293 case TK_INTEGER: 3294 case TK_FLOAT: 3295 case TK_NULL: 3296 case TK_STRING: { 3297 testcase( p->op==TK_BLOB ); 3298 testcase( p->op==TK_VARIABLE ); 3299 testcase( p->op==TK_INTEGER ); 3300 testcase( p->op==TK_FLOAT ); 3301 testcase( p->op==TK_NULL ); 3302 testcase( p->op==TK_STRING ); 3303 /* Single-instruction constants with a fixed destination are 3304 ** better done in-line. If we factor them, they will just end 3305 ** up generating an OP_SCopy to move the value to the destination 3306 ** register. */ 3307 return 0; 3308 } 3309 case TK_UMINUS: { 3310 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3311 return 0; 3312 } 3313 break; 3314 } 3315 default: { 3316 break; 3317 } 3318 } 3319 return 1; 3320 } 3321 3322 /* 3323 ** If pExpr is a constant expression that is appropriate for 3324 ** factoring out of a loop, then evaluate the expression 3325 ** into a register and convert the expression into a TK_REGISTER 3326 ** expression. 3327 */ 3328 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3329 Parse *pParse = pWalker->pParse; 3330 switch( pExpr->op ){ 3331 case TK_IN: 3332 case TK_REGISTER: { 3333 return WRC_Prune; 3334 } 3335 case TK_FUNCTION: 3336 case TK_AGG_FUNCTION: 3337 case TK_CONST_FUNC: { 3338 /* The arguments to a function have a fixed destination. 3339 ** Mark them this way to avoid generated unneeded OP_SCopy 3340 ** instructions. 3341 */ 3342 ExprList *pList = pExpr->x.pList; 3343 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3344 if( pList ){ 3345 int i = pList->nExpr; 3346 struct ExprList_item *pItem = pList->a; 3347 for(; i>0; i--, pItem++){ 3348 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3349 } 3350 } 3351 break; 3352 } 3353 } 3354 if( isAppropriateForFactoring(pExpr) ){ 3355 int r1 = ++pParse->nMem; 3356 int r2; 3357 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3358 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3359 pExpr->op2 = pExpr->op; 3360 pExpr->op = TK_REGISTER; 3361 pExpr->iTable = r2; 3362 return WRC_Prune; 3363 } 3364 return WRC_Continue; 3365 } 3366 3367 /* 3368 ** Preevaluate constant subexpressions within pExpr and store the 3369 ** results in registers. Modify pExpr so that the constant subexpresions 3370 ** are TK_REGISTER opcodes that refer to the precomputed values. 3371 ** 3372 ** This routine is a no-op if the jump to the cookie-check code has 3373 ** already occur. Since the cookie-check jump is generated prior to 3374 ** any other serious processing, this check ensures that there is no 3375 ** way to accidently bypass the constant initializations. 3376 ** 3377 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3378 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3379 ** interface. This allows test logic to verify that the same answer is 3380 ** obtained for queries regardless of whether or not constants are 3381 ** precomputed into registers or if they are inserted in-line. 3382 */ 3383 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3384 Walker w; 3385 if( pParse->cookieGoto ) return; 3386 if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return; 3387 w.xExprCallback = evalConstExpr; 3388 w.xSelectCallback = 0; 3389 w.pParse = pParse; 3390 sqlite3WalkExpr(&w, pExpr); 3391 } 3392 3393 3394 /* 3395 ** Generate code that pushes the value of every element of the given 3396 ** expression list into a sequence of registers beginning at target. 3397 ** 3398 ** Return the number of elements evaluated. 3399 */ 3400 int sqlite3ExprCodeExprList( 3401 Parse *pParse, /* Parsing context */ 3402 ExprList *pList, /* The expression list to be coded */ 3403 int target, /* Where to write results */ 3404 int doHardCopy /* Make a hard copy of every element */ 3405 ){ 3406 struct ExprList_item *pItem; 3407 int i, n; 3408 assert( pList!=0 ); 3409 assert( target>0 ); 3410 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3411 n = pList->nExpr; 3412 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3413 Expr *pExpr = pItem->pExpr; 3414 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3415 if( inReg!=target+i ){ 3416 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3417 inReg, target+i); 3418 } 3419 } 3420 return n; 3421 } 3422 3423 /* 3424 ** Generate code for a BETWEEN operator. 3425 ** 3426 ** x BETWEEN y AND z 3427 ** 3428 ** The above is equivalent to 3429 ** 3430 ** x>=y AND x<=z 3431 ** 3432 ** Code it as such, taking care to do the common subexpression 3433 ** elementation of x. 3434 */ 3435 static void exprCodeBetween( 3436 Parse *pParse, /* Parsing and code generating context */ 3437 Expr *pExpr, /* The BETWEEN expression */ 3438 int dest, /* Jump here if the jump is taken */ 3439 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3440 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3441 ){ 3442 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3443 Expr compLeft; /* The x>=y term */ 3444 Expr compRight; /* The x<=z term */ 3445 Expr exprX; /* The x subexpression */ 3446 int regFree1 = 0; /* Temporary use register */ 3447 3448 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3449 exprX = *pExpr->pLeft; 3450 exprAnd.op = TK_AND; 3451 exprAnd.pLeft = &compLeft; 3452 exprAnd.pRight = &compRight; 3453 compLeft.op = TK_GE; 3454 compLeft.pLeft = &exprX; 3455 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3456 compRight.op = TK_LE; 3457 compRight.pLeft = &exprX; 3458 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3459 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3460 exprX.op = TK_REGISTER; 3461 if( jumpIfTrue ){ 3462 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3463 }else{ 3464 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3465 } 3466 sqlite3ReleaseTempReg(pParse, regFree1); 3467 3468 /* Ensure adequate test coverage */ 3469 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3470 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3471 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3472 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3473 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3474 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3475 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3476 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3477 } 3478 3479 /* 3480 ** Generate code for a boolean expression such that a jump is made 3481 ** to the label "dest" if the expression is true but execution 3482 ** continues straight thru if the expression is false. 3483 ** 3484 ** If the expression evaluates to NULL (neither true nor false), then 3485 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3486 ** 3487 ** This code depends on the fact that certain token values (ex: TK_EQ) 3488 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3489 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3490 ** the make process cause these values to align. Assert()s in the code 3491 ** below verify that the numbers are aligned correctly. 3492 */ 3493 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3494 Vdbe *v = pParse->pVdbe; 3495 int op = 0; 3496 int regFree1 = 0; 3497 int regFree2 = 0; 3498 int r1, r2; 3499 3500 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3501 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3502 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3503 op = pExpr->op; 3504 switch( op ){ 3505 case TK_AND: { 3506 int d2 = sqlite3VdbeMakeLabel(v); 3507 testcase( jumpIfNull==0 ); 3508 sqlite3ExprCachePush(pParse); 3509 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3510 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3511 sqlite3VdbeResolveLabel(v, d2); 3512 sqlite3ExprCachePop(pParse, 1); 3513 break; 3514 } 3515 case TK_OR: { 3516 testcase( jumpIfNull==0 ); 3517 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3518 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3519 break; 3520 } 3521 case TK_NOT: { 3522 testcase( jumpIfNull==0 ); 3523 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3524 break; 3525 } 3526 case TK_LT: 3527 case TK_LE: 3528 case TK_GT: 3529 case TK_GE: 3530 case TK_NE: 3531 case TK_EQ: { 3532 assert( TK_LT==OP_Lt ); 3533 assert( TK_LE==OP_Le ); 3534 assert( TK_GT==OP_Gt ); 3535 assert( TK_GE==OP_Ge ); 3536 assert( TK_EQ==OP_Eq ); 3537 assert( TK_NE==OP_Ne ); 3538 testcase( op==TK_LT ); 3539 testcase( op==TK_LE ); 3540 testcase( op==TK_GT ); 3541 testcase( op==TK_GE ); 3542 testcase( op==TK_EQ ); 3543 testcase( op==TK_NE ); 3544 testcase( jumpIfNull==0 ); 3545 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3546 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3547 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3548 r1, r2, dest, jumpIfNull); 3549 testcase( regFree1==0 ); 3550 testcase( regFree2==0 ); 3551 break; 3552 } 3553 case TK_IS: 3554 case TK_ISNOT: { 3555 testcase( op==TK_IS ); 3556 testcase( op==TK_ISNOT ); 3557 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3558 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3559 op = (op==TK_IS) ? TK_EQ : TK_NE; 3560 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3561 r1, r2, dest, SQLITE_NULLEQ); 3562 testcase( regFree1==0 ); 3563 testcase( regFree2==0 ); 3564 break; 3565 } 3566 case TK_ISNULL: 3567 case TK_NOTNULL: { 3568 assert( TK_ISNULL==OP_IsNull ); 3569 assert( TK_NOTNULL==OP_NotNull ); 3570 testcase( op==TK_ISNULL ); 3571 testcase( op==TK_NOTNULL ); 3572 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3573 sqlite3VdbeAddOp2(v, op, r1, dest); 3574 testcase( regFree1==0 ); 3575 break; 3576 } 3577 case TK_BETWEEN: { 3578 testcase( jumpIfNull==0 ); 3579 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3580 break; 3581 } 3582 #ifndef SQLITE_OMIT_SUBQUERY 3583 case TK_IN: { 3584 int destIfFalse = sqlite3VdbeMakeLabel(v); 3585 int destIfNull = jumpIfNull ? dest : destIfFalse; 3586 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3587 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3588 sqlite3VdbeResolveLabel(v, destIfFalse); 3589 break; 3590 } 3591 #endif 3592 default: { 3593 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3594 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3595 testcase( regFree1==0 ); 3596 testcase( jumpIfNull==0 ); 3597 break; 3598 } 3599 } 3600 sqlite3ReleaseTempReg(pParse, regFree1); 3601 sqlite3ReleaseTempReg(pParse, regFree2); 3602 } 3603 3604 /* 3605 ** Generate code for a boolean expression such that a jump is made 3606 ** to the label "dest" if the expression is false but execution 3607 ** continues straight thru if the expression is true. 3608 ** 3609 ** If the expression evaluates to NULL (neither true nor false) then 3610 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3611 ** is 0. 3612 */ 3613 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3614 Vdbe *v = pParse->pVdbe; 3615 int op = 0; 3616 int regFree1 = 0; 3617 int regFree2 = 0; 3618 int r1, r2; 3619 3620 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3621 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3622 if( pExpr==0 ) return; 3623 3624 /* The value of pExpr->op and op are related as follows: 3625 ** 3626 ** pExpr->op op 3627 ** --------- ---------- 3628 ** TK_ISNULL OP_NotNull 3629 ** TK_NOTNULL OP_IsNull 3630 ** TK_NE OP_Eq 3631 ** TK_EQ OP_Ne 3632 ** TK_GT OP_Le 3633 ** TK_LE OP_Gt 3634 ** TK_GE OP_Lt 3635 ** TK_LT OP_Ge 3636 ** 3637 ** For other values of pExpr->op, op is undefined and unused. 3638 ** The value of TK_ and OP_ constants are arranged such that we 3639 ** can compute the mapping above using the following expression. 3640 ** Assert()s verify that the computation is correct. 3641 */ 3642 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3643 3644 /* Verify correct alignment of TK_ and OP_ constants 3645 */ 3646 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3647 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3648 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3649 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3650 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3651 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3652 assert( pExpr->op!=TK_GT || op==OP_Le ); 3653 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3654 3655 switch( pExpr->op ){ 3656 case TK_AND: { 3657 testcase( jumpIfNull==0 ); 3658 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3659 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3660 break; 3661 } 3662 case TK_OR: { 3663 int d2 = sqlite3VdbeMakeLabel(v); 3664 testcase( jumpIfNull==0 ); 3665 sqlite3ExprCachePush(pParse); 3666 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3667 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3668 sqlite3VdbeResolveLabel(v, d2); 3669 sqlite3ExprCachePop(pParse, 1); 3670 break; 3671 } 3672 case TK_NOT: { 3673 testcase( jumpIfNull==0 ); 3674 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3675 break; 3676 } 3677 case TK_LT: 3678 case TK_LE: 3679 case TK_GT: 3680 case TK_GE: 3681 case TK_NE: 3682 case TK_EQ: { 3683 testcase( op==TK_LT ); 3684 testcase( op==TK_LE ); 3685 testcase( op==TK_GT ); 3686 testcase( op==TK_GE ); 3687 testcase( op==TK_EQ ); 3688 testcase( op==TK_NE ); 3689 testcase( jumpIfNull==0 ); 3690 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3691 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3692 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3693 r1, r2, dest, jumpIfNull); 3694 testcase( regFree1==0 ); 3695 testcase( regFree2==0 ); 3696 break; 3697 } 3698 case TK_IS: 3699 case TK_ISNOT: { 3700 testcase( pExpr->op==TK_IS ); 3701 testcase( pExpr->op==TK_ISNOT ); 3702 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3703 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3704 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3705 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3706 r1, r2, dest, SQLITE_NULLEQ); 3707 testcase( regFree1==0 ); 3708 testcase( regFree2==0 ); 3709 break; 3710 } 3711 case TK_ISNULL: 3712 case TK_NOTNULL: { 3713 testcase( op==TK_ISNULL ); 3714 testcase( op==TK_NOTNULL ); 3715 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3716 sqlite3VdbeAddOp2(v, op, r1, dest); 3717 testcase( regFree1==0 ); 3718 break; 3719 } 3720 case TK_BETWEEN: { 3721 testcase( jumpIfNull==0 ); 3722 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3723 break; 3724 } 3725 #ifndef SQLITE_OMIT_SUBQUERY 3726 case TK_IN: { 3727 if( jumpIfNull ){ 3728 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3729 }else{ 3730 int destIfNull = sqlite3VdbeMakeLabel(v); 3731 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3732 sqlite3VdbeResolveLabel(v, destIfNull); 3733 } 3734 break; 3735 } 3736 #endif 3737 default: { 3738 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3739 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3740 testcase( regFree1==0 ); 3741 testcase( jumpIfNull==0 ); 3742 break; 3743 } 3744 } 3745 sqlite3ReleaseTempReg(pParse, regFree1); 3746 sqlite3ReleaseTempReg(pParse, regFree2); 3747 } 3748 3749 /* 3750 ** Do a deep comparison of two expression trees. Return 0 if the two 3751 ** expressions are completely identical. Return 1 if they differ only 3752 ** by a COLLATE operator at the top level. Return 2 if there are differences 3753 ** other than the top-level COLLATE operator. 3754 ** 3755 ** Sometimes this routine will return 2 even if the two expressions 3756 ** really are equivalent. If we cannot prove that the expressions are 3757 ** identical, we return 2 just to be safe. So if this routine 3758 ** returns 2, then you do not really know for certain if the two 3759 ** expressions are the same. But if you get a 0 or 1 return, then you 3760 ** can be sure the expressions are the same. In the places where 3761 ** this routine is used, it does not hurt to get an extra 2 - that 3762 ** just might result in some slightly slower code. But returning 3763 ** an incorrect 0 or 1 could lead to a malfunction. 3764 */ 3765 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3766 if( pA==0||pB==0 ){ 3767 return pB==pA ? 0 : 2; 3768 } 3769 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3770 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3771 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3772 return 2; 3773 } 3774 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3775 if( pA->op!=pB->op ) return 2; 3776 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3777 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3778 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3779 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3780 if( ExprHasProperty(pA, EP_IntValue) ){ 3781 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3782 return 2; 3783 } 3784 }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ 3785 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3786 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3787 return 2; 3788 } 3789 } 3790 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3791 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3792 return 0; 3793 } 3794 3795 /* 3796 ** Compare two ExprList objects. Return 0 if they are identical and 3797 ** non-zero if they differ in any way. 3798 ** 3799 ** This routine might return non-zero for equivalent ExprLists. The 3800 ** only consequence will be disabled optimizations. But this routine 3801 ** must never return 0 if the two ExprList objects are different, or 3802 ** a malfunction will result. 3803 ** 3804 ** Two NULL pointers are considered to be the same. But a NULL pointer 3805 ** always differs from a non-NULL pointer. 3806 */ 3807 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3808 int i; 3809 if( pA==0 && pB==0 ) return 0; 3810 if( pA==0 || pB==0 ) return 1; 3811 if( pA->nExpr!=pB->nExpr ) return 1; 3812 for(i=0; i<pA->nExpr; i++){ 3813 Expr *pExprA = pA->a[i].pExpr; 3814 Expr *pExprB = pB->a[i].pExpr; 3815 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3816 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3817 } 3818 return 0; 3819 } 3820 3821 /* 3822 ** An instance of the following structure is used by the tree walker 3823 ** to count references to table columns in the arguments of an 3824 ** aggregate function, in order to implement the 3825 ** sqlite3FunctionThisSrc() routine. 3826 */ 3827 struct SrcCount { 3828 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3829 int nThis; /* Number of references to columns in pSrcList */ 3830 int nOther; /* Number of references to columns in other FROM clauses */ 3831 }; 3832 3833 /* 3834 ** Count the number of references to columns. 3835 */ 3836 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3837 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3838 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3839 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3840 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3841 ** NEVER() will need to be removed. */ 3842 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3843 int i; 3844 struct SrcCount *p = pWalker->u.pSrcCount; 3845 SrcList *pSrc = p->pSrc; 3846 for(i=0; i<pSrc->nSrc; i++){ 3847 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3848 } 3849 if( i<pSrc->nSrc ){ 3850 p->nThis++; 3851 }else{ 3852 p->nOther++; 3853 } 3854 } 3855 return WRC_Continue; 3856 } 3857 3858 /* 3859 ** Determine if any of the arguments to the pExpr Function reference 3860 ** pSrcList. Return true if they do. Also return true if the function 3861 ** has no arguments or has only constant arguments. Return false if pExpr 3862 ** references columns but not columns of tables found in pSrcList. 3863 */ 3864 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3865 Walker w; 3866 struct SrcCount cnt; 3867 assert( pExpr->op==TK_AGG_FUNCTION ); 3868 memset(&w, 0, sizeof(w)); 3869 w.xExprCallback = exprSrcCount; 3870 w.u.pSrcCount = &cnt; 3871 cnt.pSrc = pSrcList; 3872 cnt.nThis = 0; 3873 cnt.nOther = 0; 3874 sqlite3WalkExprList(&w, pExpr->x.pList); 3875 return cnt.nThis>0 || cnt.nOther==0; 3876 } 3877 3878 /* 3879 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3880 ** the new element. Return a negative number if malloc fails. 3881 */ 3882 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3883 int i; 3884 pInfo->aCol = sqlite3ArrayAllocate( 3885 db, 3886 pInfo->aCol, 3887 sizeof(pInfo->aCol[0]), 3888 &pInfo->nColumn, 3889 &i 3890 ); 3891 return i; 3892 } 3893 3894 /* 3895 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3896 ** the new element. Return a negative number if malloc fails. 3897 */ 3898 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3899 int i; 3900 pInfo->aFunc = sqlite3ArrayAllocate( 3901 db, 3902 pInfo->aFunc, 3903 sizeof(pInfo->aFunc[0]), 3904 &pInfo->nFunc, 3905 &i 3906 ); 3907 return i; 3908 } 3909 3910 /* 3911 ** This is the xExprCallback for a tree walker. It is used to 3912 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3913 ** for additional information. 3914 */ 3915 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3916 int i; 3917 NameContext *pNC = pWalker->u.pNC; 3918 Parse *pParse = pNC->pParse; 3919 SrcList *pSrcList = pNC->pSrcList; 3920 AggInfo *pAggInfo = pNC->pAggInfo; 3921 3922 switch( pExpr->op ){ 3923 case TK_AGG_COLUMN: 3924 case TK_COLUMN: { 3925 testcase( pExpr->op==TK_AGG_COLUMN ); 3926 testcase( pExpr->op==TK_COLUMN ); 3927 /* Check to see if the column is in one of the tables in the FROM 3928 ** clause of the aggregate query */ 3929 if( ALWAYS(pSrcList!=0) ){ 3930 struct SrcList_item *pItem = pSrcList->a; 3931 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3932 struct AggInfo_col *pCol; 3933 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3934 if( pExpr->iTable==pItem->iCursor ){ 3935 /* If we reach this point, it means that pExpr refers to a table 3936 ** that is in the FROM clause of the aggregate query. 3937 ** 3938 ** Make an entry for the column in pAggInfo->aCol[] if there 3939 ** is not an entry there already. 3940 */ 3941 int k; 3942 pCol = pAggInfo->aCol; 3943 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3944 if( pCol->iTable==pExpr->iTable && 3945 pCol->iColumn==pExpr->iColumn ){ 3946 break; 3947 } 3948 } 3949 if( (k>=pAggInfo->nColumn) 3950 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3951 ){ 3952 pCol = &pAggInfo->aCol[k]; 3953 pCol->pTab = pExpr->pTab; 3954 pCol->iTable = pExpr->iTable; 3955 pCol->iColumn = pExpr->iColumn; 3956 pCol->iMem = ++pParse->nMem; 3957 pCol->iSorterColumn = -1; 3958 pCol->pExpr = pExpr; 3959 if( pAggInfo->pGroupBy ){ 3960 int j, n; 3961 ExprList *pGB = pAggInfo->pGroupBy; 3962 struct ExprList_item *pTerm = pGB->a; 3963 n = pGB->nExpr; 3964 for(j=0; j<n; j++, pTerm++){ 3965 Expr *pE = pTerm->pExpr; 3966 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3967 pE->iColumn==pExpr->iColumn ){ 3968 pCol->iSorterColumn = j; 3969 break; 3970 } 3971 } 3972 } 3973 if( pCol->iSorterColumn<0 ){ 3974 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3975 } 3976 } 3977 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3978 ** because it was there before or because we just created it). 3979 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3980 ** pAggInfo->aCol[] entry. 3981 */ 3982 ExprSetIrreducible(pExpr); 3983 pExpr->pAggInfo = pAggInfo; 3984 pExpr->op = TK_AGG_COLUMN; 3985 pExpr->iAgg = (i16)k; 3986 break; 3987 } /* endif pExpr->iTable==pItem->iCursor */ 3988 } /* end loop over pSrcList */ 3989 } 3990 return WRC_Prune; 3991 } 3992 case TK_AGG_FUNCTION: { 3993 if( (pNC->ncFlags & NC_InAggFunc)==0 3994 && pWalker->walkerDepth==pExpr->op2 3995 ){ 3996 /* Check to see if pExpr is a duplicate of another aggregate 3997 ** function that is already in the pAggInfo structure 3998 */ 3999 struct AggInfo_func *pItem = pAggInfo->aFunc; 4000 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4001 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 4002 break; 4003 } 4004 } 4005 if( i>=pAggInfo->nFunc ){ 4006 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4007 */ 4008 u8 enc = ENC(pParse->db); 4009 i = addAggInfoFunc(pParse->db, pAggInfo); 4010 if( i>=0 ){ 4011 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4012 pItem = &pAggInfo->aFunc[i]; 4013 pItem->pExpr = pExpr; 4014 pItem->iMem = ++pParse->nMem; 4015 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4016 pItem->pFunc = sqlite3FindFunction(pParse->db, 4017 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4018 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4019 if( pExpr->flags & EP_Distinct ){ 4020 pItem->iDistinct = pParse->nTab++; 4021 }else{ 4022 pItem->iDistinct = -1; 4023 } 4024 } 4025 } 4026 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4027 */ 4028 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4029 ExprSetIrreducible(pExpr); 4030 pExpr->iAgg = (i16)i; 4031 pExpr->pAggInfo = pAggInfo; 4032 } 4033 return WRC_Prune; 4034 } 4035 } 4036 return WRC_Continue; 4037 } 4038 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4039 UNUSED_PARAMETER(pWalker); 4040 UNUSED_PARAMETER(pSelect); 4041 return WRC_Continue; 4042 } 4043 4044 /* 4045 ** Analyze the given expression looking for aggregate functions and 4046 ** for variables that need to be added to the pParse->aAgg[] array. 4047 ** Make additional entries to the pParse->aAgg[] array as necessary. 4048 ** 4049 ** This routine should only be called after the expression has been 4050 ** analyzed by sqlite3ResolveExprNames(). 4051 */ 4052 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4053 Walker w; 4054 memset(&w, 0, sizeof(w)); 4055 w.xExprCallback = analyzeAggregate; 4056 w.xSelectCallback = analyzeAggregatesInSelect; 4057 w.u.pNC = pNC; 4058 assert( pNC->pSrcList!=0 ); 4059 sqlite3WalkExpr(&w, pExpr); 4060 } 4061 4062 /* 4063 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4064 ** expression list. Return the number of errors. 4065 ** 4066 ** If an error is found, the analysis is cut short. 4067 */ 4068 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4069 struct ExprList_item *pItem; 4070 int i; 4071 if( pList ){ 4072 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4073 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4074 } 4075 } 4076 } 4077 4078 /* 4079 ** Allocate a single new register for use to hold some intermediate result. 4080 */ 4081 int sqlite3GetTempReg(Parse *pParse){ 4082 if( pParse->nTempReg==0 ){ 4083 return ++pParse->nMem; 4084 } 4085 return pParse->aTempReg[--pParse->nTempReg]; 4086 } 4087 4088 /* 4089 ** Deallocate a register, making available for reuse for some other 4090 ** purpose. 4091 ** 4092 ** If a register is currently being used by the column cache, then 4093 ** the dallocation is deferred until the column cache line that uses 4094 ** the register becomes stale. 4095 */ 4096 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4097 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4098 int i; 4099 struct yColCache *p; 4100 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4101 if( p->iReg==iReg ){ 4102 p->tempReg = 1; 4103 return; 4104 } 4105 } 4106 pParse->aTempReg[pParse->nTempReg++] = iReg; 4107 } 4108 } 4109 4110 /* 4111 ** Allocate or deallocate a block of nReg consecutive registers 4112 */ 4113 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4114 int i, n; 4115 i = pParse->iRangeReg; 4116 n = pParse->nRangeReg; 4117 if( nReg<=n ){ 4118 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4119 pParse->iRangeReg += nReg; 4120 pParse->nRangeReg -= nReg; 4121 }else{ 4122 i = pParse->nMem+1; 4123 pParse->nMem += nReg; 4124 } 4125 return i; 4126 } 4127 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4128 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4129 if( nReg>pParse->nRangeReg ){ 4130 pParse->nRangeReg = nReg; 4131 pParse->iRangeReg = iReg; 4132 } 4133 } 4134 4135 /* 4136 ** Mark all temporary registers as being unavailable for reuse. 4137 */ 4138 void sqlite3ClearTempRegCache(Parse *pParse){ 4139 pParse->nTempReg = 0; 4140 pParse->nRangeReg = 0; 4141 } 4142