1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( ALWAYS(p) ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 } 393 } 394 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 395 if( pNew ){ 396 pNew->op = (u8)op; 397 pNew->iAgg = -1; 398 if( pToken ){ 399 if( nExtra==0 ){ 400 pNew->flags |= EP_IntValue; 401 pNew->u.iValue = iValue; 402 }else{ 403 int c; 404 pNew->u.zToken = (char*)&pNew[1]; 405 memcpy(pNew->u.zToken, pToken->z, pToken->n); 406 pNew->u.zToken[pToken->n] = 0; 407 if( dequote && nExtra>=3 408 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 409 sqlite3Dequote(pNew->u.zToken); 410 if( c=='"' ) pNew->flags |= EP_DblQuoted; 411 } 412 } 413 } 414 #if SQLITE_MAX_EXPR_DEPTH>0 415 pNew->nHeight = 1; 416 #endif 417 } 418 return pNew; 419 } 420 421 /* 422 ** Allocate a new expression node from a zero-terminated token that has 423 ** already been dequoted. 424 */ 425 Expr *sqlite3Expr( 426 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 427 int op, /* Expression opcode */ 428 const char *zToken /* Token argument. Might be NULL */ 429 ){ 430 Token x; 431 x.z = zToken; 432 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 433 return sqlite3ExprAlloc(db, op, &x, 0); 434 } 435 436 /* 437 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 438 ** 439 ** If pRoot==NULL that means that a memory allocation error has occurred. 440 ** In that case, delete the subtrees pLeft and pRight. 441 */ 442 void sqlite3ExprAttachSubtrees( 443 sqlite3 *db, 444 Expr *pRoot, 445 Expr *pLeft, 446 Expr *pRight 447 ){ 448 if( pRoot==0 ){ 449 assert( db->mallocFailed ); 450 sqlite3ExprDelete(db, pLeft); 451 sqlite3ExprDelete(db, pRight); 452 }else{ 453 if( pRight ){ 454 pRoot->pRight = pRight; 455 if( pRight->flags & EP_ExpCollate ){ 456 pRoot->flags |= EP_ExpCollate; 457 pRoot->pColl = pRight->pColl; 458 } 459 } 460 if( pLeft ){ 461 pRoot->pLeft = pLeft; 462 if( pLeft->flags & EP_ExpCollate ){ 463 pRoot->flags |= EP_ExpCollate; 464 pRoot->pColl = pLeft->pColl; 465 } 466 } 467 exprSetHeight(pRoot); 468 } 469 } 470 471 /* 472 ** Allocate a Expr node which joins as many as two subtrees. 473 ** 474 ** One or both of the subtrees can be NULL. Return a pointer to the new 475 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 476 ** free the subtrees and return NULL. 477 */ 478 Expr *sqlite3PExpr( 479 Parse *pParse, /* Parsing context */ 480 int op, /* Expression opcode */ 481 Expr *pLeft, /* Left operand */ 482 Expr *pRight, /* Right operand */ 483 const Token *pToken /* Argument token */ 484 ){ 485 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 486 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 487 return p; 488 } 489 490 /* 491 ** Join two expressions using an AND operator. If either expression is 492 ** NULL, then just return the other expression. 493 */ 494 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 495 if( pLeft==0 ){ 496 return pRight; 497 }else if( pRight==0 ){ 498 return pLeft; 499 }else{ 500 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 501 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 502 return pNew; 503 } 504 } 505 506 /* 507 ** Construct a new expression node for a function with multiple 508 ** arguments. 509 */ 510 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 511 Expr *pNew; 512 sqlite3 *db = pParse->db; 513 assert( pToken ); 514 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 515 if( pNew==0 ){ 516 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 517 return 0; 518 } 519 pNew->x.pList = pList; 520 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 521 sqlite3ExprSetHeight(pParse, pNew); 522 return pNew; 523 } 524 525 /* 526 ** Assign a variable number to an expression that encodes a wildcard 527 ** in the original SQL statement. 528 ** 529 ** Wildcards consisting of a single "?" are assigned the next sequential 530 ** variable number. 531 ** 532 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 533 ** sure "nnn" is not too be to avoid a denial of service attack when 534 ** the SQL statement comes from an external source. 535 ** 536 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 537 ** as the previous instance of the same wildcard. Or if this is the first 538 ** instance of the wildcard, the next sequenial variable number is 539 ** assigned. 540 */ 541 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 542 sqlite3 *db = pParse->db; 543 const char *z; 544 545 if( pExpr==0 ) return; 546 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 547 z = pExpr->u.zToken; 548 assert( z!=0 ); 549 assert( z[0]!=0 ); 550 if( z[1]==0 ){ 551 /* Wildcard of the form "?". Assign the next variable number */ 552 assert( z[0]=='?' ); 553 pExpr->iColumn = (ynVar)(++pParse->nVar); 554 }else if( z[0]=='?' ){ 555 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 556 ** use it as the variable number */ 557 i64 i; 558 int bOk = sqlite3Atoi64(&z[1], &i); 559 pExpr->iColumn = (ynVar)i; 560 testcase( i==0 ); 561 testcase( i==1 ); 562 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 563 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 564 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 565 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 566 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 567 } 568 if( i>pParse->nVar ){ 569 pParse->nVar = (int)i; 570 } 571 }else{ 572 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 573 ** number as the prior appearance of the same name, or if the name 574 ** has never appeared before, reuse the same variable number 575 */ 576 int i; 577 u32 n; 578 n = sqlite3Strlen30(z); 579 for(i=0; i<pParse->nVarExpr; i++){ 580 Expr *pE = pParse->apVarExpr[i]; 581 assert( pE!=0 ); 582 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ 583 pExpr->iColumn = pE->iColumn; 584 break; 585 } 586 } 587 if( i>=pParse->nVarExpr ){ 588 pExpr->iColumn = (ynVar)(++pParse->nVar); 589 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 590 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 591 pParse->apVarExpr = 592 sqlite3DbReallocOrFree( 593 db, 594 pParse->apVarExpr, 595 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 596 ); 597 } 598 if( !db->mallocFailed ){ 599 assert( pParse->apVarExpr!=0 ); 600 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 601 } 602 } 603 } 604 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 605 sqlite3ErrorMsg(pParse, "too many SQL variables"); 606 } 607 } 608 609 /* 610 ** Recursively delete an expression tree. 611 */ 612 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 613 if( p==0 ) return; 614 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 615 sqlite3ExprDelete(db, p->pLeft); 616 sqlite3ExprDelete(db, p->pRight); 617 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 618 sqlite3DbFree(db, p->u.zToken); 619 } 620 if( ExprHasProperty(p, EP_xIsSelect) ){ 621 sqlite3SelectDelete(db, p->x.pSelect); 622 }else{ 623 sqlite3ExprListDelete(db, p->x.pList); 624 } 625 } 626 if( !ExprHasProperty(p, EP_Static) ){ 627 sqlite3DbFree(db, p); 628 } 629 } 630 631 /* 632 ** Return the number of bytes allocated for the expression structure 633 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 634 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 635 */ 636 static int exprStructSize(Expr *p){ 637 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 638 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 639 return EXPR_FULLSIZE; 640 } 641 642 /* 643 ** The dupedExpr*Size() routines each return the number of bytes required 644 ** to store a copy of an expression or expression tree. They differ in 645 ** how much of the tree is measured. 646 ** 647 ** dupedExprStructSize() Size of only the Expr structure 648 ** dupedExprNodeSize() Size of Expr + space for token 649 ** dupedExprSize() Expr + token + subtree components 650 ** 651 *************************************************************************** 652 ** 653 ** The dupedExprStructSize() function returns two values OR-ed together: 654 ** (1) the space required for a copy of the Expr structure only and 655 ** (2) the EP_xxx flags that indicate what the structure size should be. 656 ** The return values is always one of: 657 ** 658 ** EXPR_FULLSIZE 659 ** EXPR_REDUCEDSIZE | EP_Reduced 660 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 661 ** 662 ** The size of the structure can be found by masking the return value 663 ** of this routine with 0xfff. The flags can be found by masking the 664 ** return value with EP_Reduced|EP_TokenOnly. 665 ** 666 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 667 ** (unreduced) Expr objects as they or originally constructed by the parser. 668 ** During expression analysis, extra information is computed and moved into 669 ** later parts of teh Expr object and that extra information might get chopped 670 ** off if the expression is reduced. Note also that it does not work to 671 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 672 ** to reduce a pristine expression tree from the parser. The implementation 673 ** of dupedExprStructSize() contain multiple assert() statements that attempt 674 ** to enforce this constraint. 675 */ 676 static int dupedExprStructSize(Expr *p, int flags){ 677 int nSize; 678 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 679 if( 0==(flags&EXPRDUP_REDUCE) ){ 680 nSize = EXPR_FULLSIZE; 681 }else{ 682 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 683 assert( !ExprHasProperty(p, EP_FromJoin) ); 684 assert( (p->flags2 & EP2_MallocedToken)==0 ); 685 assert( (p->flags2 & EP2_Irreducible)==0 ); 686 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 687 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 688 }else{ 689 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 690 } 691 } 692 return nSize; 693 } 694 695 /* 696 ** This function returns the space in bytes required to store the copy 697 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 698 ** string is defined.) 699 */ 700 static int dupedExprNodeSize(Expr *p, int flags){ 701 int nByte = dupedExprStructSize(p, flags) & 0xfff; 702 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 703 nByte += sqlite3Strlen30(p->u.zToken)+1; 704 } 705 return ROUND8(nByte); 706 } 707 708 /* 709 ** Return the number of bytes required to create a duplicate of the 710 ** expression passed as the first argument. The second argument is a 711 ** mask containing EXPRDUP_XXX flags. 712 ** 713 ** The value returned includes space to create a copy of the Expr struct 714 ** itself and the buffer referred to by Expr.u.zToken, if any. 715 ** 716 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 717 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 718 ** and Expr.pRight variables (but not for any structures pointed to or 719 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 720 */ 721 static int dupedExprSize(Expr *p, int flags){ 722 int nByte = 0; 723 if( p ){ 724 nByte = dupedExprNodeSize(p, flags); 725 if( flags&EXPRDUP_REDUCE ){ 726 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 727 } 728 } 729 return nByte; 730 } 731 732 /* 733 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 734 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 735 ** to store the copy of expression p, the copies of p->u.zToken 736 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 737 ** if any. Before returning, *pzBuffer is set to the first byte passed the 738 ** portion of the buffer copied into by this function. 739 */ 740 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 741 Expr *pNew = 0; /* Value to return */ 742 if( p ){ 743 const int isReduced = (flags&EXPRDUP_REDUCE); 744 u8 *zAlloc; 745 u32 staticFlag = 0; 746 747 assert( pzBuffer==0 || isReduced ); 748 749 /* Figure out where to write the new Expr structure. */ 750 if( pzBuffer ){ 751 zAlloc = *pzBuffer; 752 staticFlag = EP_Static; 753 }else{ 754 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 755 } 756 pNew = (Expr *)zAlloc; 757 758 if( pNew ){ 759 /* Set nNewSize to the size allocated for the structure pointed to 760 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 761 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 762 ** by the copy of the p->u.zToken string (if any). 763 */ 764 const unsigned nStructSize = dupedExprStructSize(p, flags); 765 const int nNewSize = nStructSize & 0xfff; 766 int nToken; 767 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 768 nToken = sqlite3Strlen30(p->u.zToken) + 1; 769 }else{ 770 nToken = 0; 771 } 772 if( isReduced ){ 773 assert( ExprHasProperty(p, EP_Reduced)==0 ); 774 memcpy(zAlloc, p, nNewSize); 775 }else{ 776 int nSize = exprStructSize(p); 777 memcpy(zAlloc, p, nSize); 778 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 779 } 780 781 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 782 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 783 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 784 pNew->flags |= staticFlag; 785 786 /* Copy the p->u.zToken string, if any. */ 787 if( nToken ){ 788 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 789 memcpy(zToken, p->u.zToken, nToken); 790 } 791 792 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 793 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 794 if( ExprHasProperty(p, EP_xIsSelect) ){ 795 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 796 }else{ 797 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 798 } 799 } 800 801 /* Fill in pNew->pLeft and pNew->pRight. */ 802 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 803 zAlloc += dupedExprNodeSize(p, flags); 804 if( ExprHasProperty(pNew, EP_Reduced) ){ 805 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 806 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 807 } 808 if( pzBuffer ){ 809 *pzBuffer = zAlloc; 810 } 811 }else{ 812 pNew->flags2 = 0; 813 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 814 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 815 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 816 } 817 } 818 819 } 820 } 821 return pNew; 822 } 823 824 /* 825 ** The following group of routines make deep copies of expressions, 826 ** expression lists, ID lists, and select statements. The copies can 827 ** be deleted (by being passed to their respective ...Delete() routines) 828 ** without effecting the originals. 829 ** 830 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 831 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 832 ** by subsequent calls to sqlite*ListAppend() routines. 833 ** 834 ** Any tables that the SrcList might point to are not duplicated. 835 ** 836 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 837 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 838 ** truncated version of the usual Expr structure that will be stored as 839 ** part of the in-memory representation of the database schema. 840 */ 841 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 842 return exprDup(db, p, flags, 0); 843 } 844 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 845 ExprList *pNew; 846 struct ExprList_item *pItem, *pOldItem; 847 int i; 848 if( p==0 ) return 0; 849 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 850 if( pNew==0 ) return 0; 851 pNew->iECursor = 0; 852 pNew->nExpr = pNew->nAlloc = p->nExpr; 853 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 854 if( pItem==0 ){ 855 sqlite3DbFree(db, pNew); 856 return 0; 857 } 858 pOldItem = p->a; 859 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 860 Expr *pOldExpr = pOldItem->pExpr; 861 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 862 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 863 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 864 pItem->sortOrder = pOldItem->sortOrder; 865 pItem->done = 0; 866 pItem->iCol = pOldItem->iCol; 867 pItem->iAlias = pOldItem->iAlias; 868 } 869 return pNew; 870 } 871 872 /* 873 ** If cursors, triggers, views and subqueries are all omitted from 874 ** the build, then none of the following routines, except for 875 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 876 ** called with a NULL argument. 877 */ 878 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 879 || !defined(SQLITE_OMIT_SUBQUERY) 880 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 881 SrcList *pNew; 882 int i; 883 int nByte; 884 if( p==0 ) return 0; 885 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 886 pNew = sqlite3DbMallocRaw(db, nByte ); 887 if( pNew==0 ) return 0; 888 pNew->nSrc = pNew->nAlloc = p->nSrc; 889 for(i=0; i<p->nSrc; i++){ 890 struct SrcList_item *pNewItem = &pNew->a[i]; 891 struct SrcList_item *pOldItem = &p->a[i]; 892 Table *pTab; 893 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 894 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 895 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 896 pNewItem->jointype = pOldItem->jointype; 897 pNewItem->iCursor = pOldItem->iCursor; 898 pNewItem->isPopulated = pOldItem->isPopulated; 899 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 900 pNewItem->notIndexed = pOldItem->notIndexed; 901 pNewItem->pIndex = pOldItem->pIndex; 902 pTab = pNewItem->pTab = pOldItem->pTab; 903 if( pTab ){ 904 pTab->nRef++; 905 } 906 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 907 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 908 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 909 pNewItem->colUsed = pOldItem->colUsed; 910 } 911 return pNew; 912 } 913 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 914 IdList *pNew; 915 int i; 916 if( p==0 ) return 0; 917 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 918 if( pNew==0 ) return 0; 919 pNew->nId = pNew->nAlloc = p->nId; 920 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 921 if( pNew->a==0 ){ 922 sqlite3DbFree(db, pNew); 923 return 0; 924 } 925 for(i=0; i<p->nId; i++){ 926 struct IdList_item *pNewItem = &pNew->a[i]; 927 struct IdList_item *pOldItem = &p->a[i]; 928 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 929 pNewItem->idx = pOldItem->idx; 930 } 931 return pNew; 932 } 933 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 934 Select *pNew; 935 if( p==0 ) return 0; 936 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 937 if( pNew==0 ) return 0; 938 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 939 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 940 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 941 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 942 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 943 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 944 pNew->op = p->op; 945 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 946 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 947 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 948 pNew->iLimit = 0; 949 pNew->iOffset = 0; 950 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 951 pNew->pRightmost = 0; 952 pNew->addrOpenEphm[0] = -1; 953 pNew->addrOpenEphm[1] = -1; 954 pNew->addrOpenEphm[2] = -1; 955 return pNew; 956 } 957 #else 958 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 959 assert( p==0 ); 960 return 0; 961 } 962 #endif 963 964 965 /* 966 ** Add a new element to the end of an expression list. If pList is 967 ** initially NULL, then create a new expression list. 968 ** 969 ** If a memory allocation error occurs, the entire list is freed and 970 ** NULL is returned. If non-NULL is returned, then it is guaranteed 971 ** that the new entry was successfully appended. 972 */ 973 ExprList *sqlite3ExprListAppend( 974 Parse *pParse, /* Parsing context */ 975 ExprList *pList, /* List to which to append. Might be NULL */ 976 Expr *pExpr /* Expression to be appended. Might be NULL */ 977 ){ 978 sqlite3 *db = pParse->db; 979 if( pList==0 ){ 980 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 981 if( pList==0 ){ 982 goto no_mem; 983 } 984 assert( pList->nAlloc==0 ); 985 } 986 if( pList->nAlloc<=pList->nExpr ){ 987 struct ExprList_item *a; 988 int n = pList->nAlloc*2 + 4; 989 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 990 if( a==0 ){ 991 goto no_mem; 992 } 993 pList->a = a; 994 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 995 } 996 assert( pList->a!=0 ); 997 if( 1 ){ 998 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 999 memset(pItem, 0, sizeof(*pItem)); 1000 pItem->pExpr = pExpr; 1001 } 1002 return pList; 1003 1004 no_mem: 1005 /* Avoid leaking memory if malloc has failed. */ 1006 sqlite3ExprDelete(db, pExpr); 1007 sqlite3ExprListDelete(db, pList); 1008 return 0; 1009 } 1010 1011 /* 1012 ** Set the ExprList.a[].zName element of the most recently added item 1013 ** on the expression list. 1014 ** 1015 ** pList might be NULL following an OOM error. But pName should never be 1016 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1017 ** is set. 1018 */ 1019 void sqlite3ExprListSetName( 1020 Parse *pParse, /* Parsing context */ 1021 ExprList *pList, /* List to which to add the span. */ 1022 Token *pName, /* Name to be added */ 1023 int dequote /* True to cause the name to be dequoted */ 1024 ){ 1025 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1026 if( pList ){ 1027 struct ExprList_item *pItem; 1028 assert( pList->nExpr>0 ); 1029 pItem = &pList->a[pList->nExpr-1]; 1030 assert( pItem->zName==0 ); 1031 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1032 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1033 } 1034 } 1035 1036 /* 1037 ** Set the ExprList.a[].zSpan element of the most recently added item 1038 ** on the expression list. 1039 ** 1040 ** pList might be NULL following an OOM error. But pSpan should never be 1041 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1042 ** is set. 1043 */ 1044 void sqlite3ExprListSetSpan( 1045 Parse *pParse, /* Parsing context */ 1046 ExprList *pList, /* List to which to add the span. */ 1047 ExprSpan *pSpan /* The span to be added */ 1048 ){ 1049 sqlite3 *db = pParse->db; 1050 assert( pList!=0 || db->mallocFailed!=0 ); 1051 if( pList ){ 1052 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1053 assert( pList->nExpr>0 ); 1054 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1055 sqlite3DbFree(db, pItem->zSpan); 1056 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1057 (int)(pSpan->zEnd - pSpan->zStart)); 1058 } 1059 } 1060 1061 /* 1062 ** If the expression list pEList contains more than iLimit elements, 1063 ** leave an error message in pParse. 1064 */ 1065 void sqlite3ExprListCheckLength( 1066 Parse *pParse, 1067 ExprList *pEList, 1068 const char *zObject 1069 ){ 1070 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1071 testcase( pEList && pEList->nExpr==mx ); 1072 testcase( pEList && pEList->nExpr==mx+1 ); 1073 if( pEList && pEList->nExpr>mx ){ 1074 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1075 } 1076 } 1077 1078 /* 1079 ** Delete an entire expression list. 1080 */ 1081 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1082 int i; 1083 struct ExprList_item *pItem; 1084 if( pList==0 ) return; 1085 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1086 assert( pList->nExpr<=pList->nAlloc ); 1087 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1088 sqlite3ExprDelete(db, pItem->pExpr); 1089 sqlite3DbFree(db, pItem->zName); 1090 sqlite3DbFree(db, pItem->zSpan); 1091 } 1092 sqlite3DbFree(db, pList->a); 1093 sqlite3DbFree(db, pList); 1094 } 1095 1096 /* 1097 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1098 ** to an integer. These routines are checking an expression to see 1099 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1100 ** not constant. 1101 ** 1102 ** These callback routines are used to implement the following: 1103 ** 1104 ** sqlite3ExprIsConstant() 1105 ** sqlite3ExprIsConstantNotJoin() 1106 ** sqlite3ExprIsConstantOrFunction() 1107 ** 1108 */ 1109 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1110 1111 /* If pWalker->u.i is 3 then any term of the expression that comes from 1112 ** the ON or USING clauses of a join disqualifies the expression 1113 ** from being considered constant. */ 1114 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1115 pWalker->u.i = 0; 1116 return WRC_Abort; 1117 } 1118 1119 switch( pExpr->op ){ 1120 /* Consider functions to be constant if all their arguments are constant 1121 ** and pWalker->u.i==2 */ 1122 case TK_FUNCTION: 1123 if( pWalker->u.i==2 ) return 0; 1124 /* Fall through */ 1125 case TK_ID: 1126 case TK_COLUMN: 1127 case TK_AGG_FUNCTION: 1128 case TK_AGG_COLUMN: 1129 testcase( pExpr->op==TK_ID ); 1130 testcase( pExpr->op==TK_COLUMN ); 1131 testcase( pExpr->op==TK_AGG_FUNCTION ); 1132 testcase( pExpr->op==TK_AGG_COLUMN ); 1133 pWalker->u.i = 0; 1134 return WRC_Abort; 1135 default: 1136 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1137 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1138 return WRC_Continue; 1139 } 1140 } 1141 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1142 UNUSED_PARAMETER(NotUsed); 1143 pWalker->u.i = 0; 1144 return WRC_Abort; 1145 } 1146 static int exprIsConst(Expr *p, int initFlag){ 1147 Walker w; 1148 w.u.i = initFlag; 1149 w.xExprCallback = exprNodeIsConstant; 1150 w.xSelectCallback = selectNodeIsConstant; 1151 sqlite3WalkExpr(&w, p); 1152 return w.u.i; 1153 } 1154 1155 /* 1156 ** Walk an expression tree. Return 1 if the expression is constant 1157 ** and 0 if it involves variables or function calls. 1158 ** 1159 ** For the purposes of this function, a double-quoted string (ex: "abc") 1160 ** is considered a variable but a single-quoted string (ex: 'abc') is 1161 ** a constant. 1162 */ 1163 int sqlite3ExprIsConstant(Expr *p){ 1164 return exprIsConst(p, 1); 1165 } 1166 1167 /* 1168 ** Walk an expression tree. Return 1 if the expression is constant 1169 ** that does no originate from the ON or USING clauses of a join. 1170 ** Return 0 if it involves variables or function calls or terms from 1171 ** an ON or USING clause. 1172 */ 1173 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1174 return exprIsConst(p, 3); 1175 } 1176 1177 /* 1178 ** Walk an expression tree. Return 1 if the expression is constant 1179 ** or a function call with constant arguments. Return and 0 if there 1180 ** are any variables. 1181 ** 1182 ** For the purposes of this function, a double-quoted string (ex: "abc") 1183 ** is considered a variable but a single-quoted string (ex: 'abc') is 1184 ** a constant. 1185 */ 1186 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1187 return exprIsConst(p, 2); 1188 } 1189 1190 /* 1191 ** If the expression p codes a constant integer that is small enough 1192 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1193 ** in *pValue. If the expression is not an integer or if it is too big 1194 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1195 */ 1196 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1197 int rc = 0; 1198 if( p->flags & EP_IntValue ){ 1199 *pValue = p->u.iValue; 1200 return 1; 1201 } 1202 switch( p->op ){ 1203 case TK_INTEGER: { 1204 rc = sqlite3GetInt32(p->u.zToken, pValue); 1205 assert( rc==0 ); 1206 break; 1207 } 1208 case TK_UPLUS: { 1209 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1210 break; 1211 } 1212 case TK_UMINUS: { 1213 int v; 1214 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1215 *pValue = -v; 1216 rc = 1; 1217 } 1218 break; 1219 } 1220 default: break; 1221 } 1222 if( rc ){ 1223 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly) 1224 || (p->flags2 & EP2_MallocedToken)==0 ); 1225 p->op = TK_INTEGER; 1226 p->flags |= EP_IntValue; 1227 p->u.iValue = *pValue; 1228 } 1229 return rc; 1230 } 1231 1232 /* 1233 ** Return FALSE if there is no chance that the expression can be NULL. 1234 ** 1235 ** If the expression might be NULL or if the expression is too complex 1236 ** to tell return TRUE. 1237 ** 1238 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1239 ** when we know that a value cannot be NULL. Hence, a false positive 1240 ** (returning TRUE when in fact the expression can never be NULL) might 1241 ** be a small performance hit but is otherwise harmless. On the other 1242 ** hand, a false negative (returning FALSE when the result could be NULL) 1243 ** will likely result in an incorrect answer. So when in doubt, return 1244 ** TRUE. 1245 */ 1246 int sqlite3ExprCanBeNull(const Expr *p){ 1247 u8 op; 1248 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1249 op = p->op; 1250 if( op==TK_REGISTER ) op = p->op2; 1251 switch( op ){ 1252 case TK_INTEGER: 1253 case TK_STRING: 1254 case TK_FLOAT: 1255 case TK_BLOB: 1256 return 0; 1257 default: 1258 return 1; 1259 } 1260 } 1261 1262 /* 1263 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1264 ** to location iDest if the value in iReg is NULL. The value in iReg 1265 ** was computed by pExpr. If we can look at pExpr at compile-time and 1266 ** determine that it can never generate a NULL, then the OP_IsNull operation 1267 ** can be omitted. 1268 */ 1269 void sqlite3ExprCodeIsNullJump( 1270 Vdbe *v, /* The VDBE under construction */ 1271 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1272 int iReg, /* Test the value in this register for NULL */ 1273 int iDest /* Jump here if the value is null */ 1274 ){ 1275 if( sqlite3ExprCanBeNull(pExpr) ){ 1276 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1277 } 1278 } 1279 1280 /* 1281 ** Return TRUE if the given expression is a constant which would be 1282 ** unchanged by OP_Affinity with the affinity given in the second 1283 ** argument. 1284 ** 1285 ** This routine is used to determine if the OP_Affinity operation 1286 ** can be omitted. When in doubt return FALSE. A false negative 1287 ** is harmless. A false positive, however, can result in the wrong 1288 ** answer. 1289 */ 1290 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1291 u8 op; 1292 if( aff==SQLITE_AFF_NONE ) return 1; 1293 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1294 op = p->op; 1295 if( op==TK_REGISTER ) op = p->op2; 1296 switch( op ){ 1297 case TK_INTEGER: { 1298 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1299 } 1300 case TK_FLOAT: { 1301 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1302 } 1303 case TK_STRING: { 1304 return aff==SQLITE_AFF_TEXT; 1305 } 1306 case TK_BLOB: { 1307 return 1; 1308 } 1309 case TK_COLUMN: { 1310 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1311 return p->iColumn<0 1312 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1313 } 1314 default: { 1315 return 0; 1316 } 1317 } 1318 } 1319 1320 /* 1321 ** Return TRUE if the given string is a row-id column name. 1322 */ 1323 int sqlite3IsRowid(const char *z){ 1324 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1325 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1326 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1327 return 0; 1328 } 1329 1330 /* 1331 ** Return true if we are able to the IN operator optimization on a 1332 ** query of the form 1333 ** 1334 ** x IN (SELECT ...) 1335 ** 1336 ** Where the SELECT... clause is as specified by the parameter to this 1337 ** routine. 1338 ** 1339 ** The Select object passed in has already been preprocessed and no 1340 ** errors have been found. 1341 */ 1342 #ifndef SQLITE_OMIT_SUBQUERY 1343 static int isCandidateForInOpt(Select *p){ 1344 SrcList *pSrc; 1345 ExprList *pEList; 1346 Table *pTab; 1347 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1348 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1349 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1350 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1351 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1352 return 0; /* No DISTINCT keyword and no aggregate functions */ 1353 } 1354 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1355 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1356 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1357 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1358 pSrc = p->pSrc; 1359 assert( pSrc!=0 ); 1360 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1361 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1362 pTab = pSrc->a[0].pTab; 1363 if( NEVER(pTab==0) ) return 0; 1364 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1365 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1366 pEList = p->pEList; 1367 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1368 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1369 return 1; 1370 } 1371 #endif /* SQLITE_OMIT_SUBQUERY */ 1372 1373 /* 1374 ** This function is used by the implementation of the IN (...) operator. 1375 ** It's job is to find or create a b-tree structure that may be used 1376 ** either to test for membership of the (...) set or to iterate through 1377 ** its members, skipping duplicates. 1378 ** 1379 ** The index of the cursor opened on the b-tree (database table, database index 1380 ** or ephermal table) is stored in pX->iTable before this function returns. 1381 ** The returned value of this function indicates the b-tree type, as follows: 1382 ** 1383 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1384 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1385 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1386 ** populated epheremal table. 1387 ** 1388 ** An existing b-tree may only be used if the SELECT is of the simple 1389 ** form: 1390 ** 1391 ** SELECT <column> FROM <table> 1392 ** 1393 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1394 ** through the set members, skipping any duplicates. In this case an 1395 ** epheremal table must be used unless the selected <column> is guaranteed 1396 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1397 ** has a UNIQUE constraint or UNIQUE index. 1398 ** 1399 ** If the prNotFound parameter is not 0, then the b-tree will be used 1400 ** for fast set membership tests. In this case an epheremal table must 1401 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1402 ** be found with <column> as its left-most column. 1403 ** 1404 ** When the b-tree is being used for membership tests, the calling function 1405 ** needs to know whether or not the structure contains an SQL NULL 1406 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1407 ** If there is any chance that the (...) might contain a NULL value at 1408 ** runtime, then a register is allocated and the register number written 1409 ** to *prNotFound. If there is no chance that the (...) contains a 1410 ** NULL value, then *prNotFound is left unchanged. 1411 ** 1412 ** If a register is allocated and its location stored in *prNotFound, then 1413 ** its initial value is NULL. If the (...) does not remain constant 1414 ** for the duration of the query (i.e. the SELECT within the (...) 1415 ** is a correlated subquery) then the value of the allocated register is 1416 ** reset to NULL each time the subquery is rerun. This allows the 1417 ** caller to use vdbe code equivalent to the following: 1418 ** 1419 ** if( register==NULL ){ 1420 ** has_null = <test if data structure contains null> 1421 ** register = 1 1422 ** } 1423 ** 1424 ** in order to avoid running the <test if data structure contains null> 1425 ** test more often than is necessary. 1426 */ 1427 #ifndef SQLITE_OMIT_SUBQUERY 1428 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1429 Select *p; /* SELECT to the right of IN operator */ 1430 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1431 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1432 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1433 1434 assert( pX->op==TK_IN ); 1435 1436 /* Check to see if an existing table or index can be used to 1437 ** satisfy the query. This is preferable to generating a new 1438 ** ephemeral table. 1439 */ 1440 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1441 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1442 sqlite3 *db = pParse->db; /* Database connection */ 1443 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1444 int iCol = pExpr->iColumn; /* Index of column <column> */ 1445 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1446 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1447 int iDb; /* Database idx for pTab */ 1448 1449 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1450 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1451 sqlite3CodeVerifySchema(pParse, iDb); 1452 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1453 1454 /* This function is only called from two places. In both cases the vdbe 1455 ** has already been allocated. So assume sqlite3GetVdbe() is always 1456 ** successful here. 1457 */ 1458 assert(v); 1459 if( iCol<0 ){ 1460 int iMem = ++pParse->nMem; 1461 int iAddr; 1462 1463 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1464 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1465 1466 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1467 eType = IN_INDEX_ROWID; 1468 1469 sqlite3VdbeJumpHere(v, iAddr); 1470 }else{ 1471 Index *pIdx; /* Iterator variable */ 1472 1473 /* The collation sequence used by the comparison. If an index is to 1474 ** be used in place of a temp-table, it must be ordered according 1475 ** to this collation sequence. */ 1476 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1477 1478 /* Check that the affinity that will be used to perform the 1479 ** comparison is the same as the affinity of the column. If 1480 ** it is not, it is not possible to use any index. 1481 */ 1482 char aff = comparisonAffinity(pX); 1483 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1484 1485 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1486 if( (pIdx->aiColumn[0]==iCol) 1487 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1488 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1489 ){ 1490 int iMem = ++pParse->nMem; 1491 int iAddr; 1492 char *pKey; 1493 1494 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1495 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1496 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1497 1498 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1499 pKey,P4_KEYINFO_HANDOFF); 1500 VdbeComment((v, "%s", pIdx->zName)); 1501 eType = IN_INDEX_INDEX; 1502 1503 sqlite3VdbeJumpHere(v, iAddr); 1504 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1505 *prNotFound = ++pParse->nMem; 1506 } 1507 } 1508 } 1509 } 1510 } 1511 1512 if( eType==0 ){ 1513 /* Could not found an existing table or index to use as the RHS b-tree. 1514 ** We will have to generate an ephemeral table to do the job. 1515 */ 1516 double savedNQueryLoop = pParse->nQueryLoop; 1517 int rMayHaveNull = 0; 1518 eType = IN_INDEX_EPH; 1519 if( prNotFound ){ 1520 *prNotFound = rMayHaveNull = ++pParse->nMem; 1521 }else{ 1522 testcase( pParse->nQueryLoop>(double)1 ); 1523 pParse->nQueryLoop = (double)1; 1524 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1525 eType = IN_INDEX_ROWID; 1526 } 1527 } 1528 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1529 pParse->nQueryLoop = savedNQueryLoop; 1530 }else{ 1531 pX->iTable = iTab; 1532 } 1533 return eType; 1534 } 1535 #endif 1536 1537 /* 1538 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1539 ** or IN operators. Examples: 1540 ** 1541 ** (SELECT a FROM b) -- subquery 1542 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1543 ** x IN (4,5,11) -- IN operator with list on right-hand side 1544 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1545 ** 1546 ** The pExpr parameter describes the expression that contains the IN 1547 ** operator or subquery. 1548 ** 1549 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1550 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1551 ** to some integer key column of a table B-Tree. In this case, use an 1552 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1553 ** (slower) variable length keys B-Tree. 1554 ** 1555 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1556 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1557 ** Furthermore, the IN is in a WHERE clause and that we really want 1558 ** to iterate over the RHS of the IN operator in order to quickly locate 1559 ** all corresponding LHS elements. All this routine does is initialize 1560 ** the register given by rMayHaveNull to NULL. Calling routines will take 1561 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1562 ** 1563 ** If rMayHaveNull is zero, that means that the subquery is being used 1564 ** for membership testing only. There is no need to initialize any 1565 ** registers to indicate the presense or absence of NULLs on the RHS. 1566 ** 1567 ** For a SELECT or EXISTS operator, return the register that holds the 1568 ** result. For IN operators or if an error occurs, the return value is 0. 1569 */ 1570 #ifndef SQLITE_OMIT_SUBQUERY 1571 int sqlite3CodeSubselect( 1572 Parse *pParse, /* Parsing context */ 1573 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1574 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1575 int isRowid /* If true, LHS of IN operator is a rowid */ 1576 ){ 1577 int testAddr = 0; /* One-time test address */ 1578 int rReg = 0; /* Register storing resulting */ 1579 Vdbe *v = sqlite3GetVdbe(pParse); 1580 if( NEVER(v==0) ) return 0; 1581 sqlite3ExprCachePush(pParse); 1582 1583 /* This code must be run in its entirety every time it is encountered 1584 ** if any of the following is true: 1585 ** 1586 ** * The right-hand side is a correlated subquery 1587 ** * The right-hand side is an expression list containing variables 1588 ** * We are inside a trigger 1589 ** 1590 ** If all of the above are false, then we can run this code just once 1591 ** save the results, and reuse the same result on subsequent invocations. 1592 */ 1593 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ 1594 int mem = ++pParse->nMem; 1595 sqlite3VdbeAddOp1(v, OP_If, mem); 1596 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1597 assert( testAddr>0 || pParse->db->mallocFailed ); 1598 } 1599 1600 switch( pExpr->op ){ 1601 case TK_IN: { 1602 char affinity; /* Affinity of the LHS of the IN */ 1603 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1604 int addr; /* Address of OP_OpenEphemeral instruction */ 1605 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1606 1607 if( rMayHaveNull ){ 1608 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1609 } 1610 1611 affinity = sqlite3ExprAffinity(pLeft); 1612 1613 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1614 ** expression it is handled the same way. An ephemeral table is 1615 ** filled with single-field index keys representing the results 1616 ** from the SELECT or the <exprlist>. 1617 ** 1618 ** If the 'x' expression is a column value, or the SELECT... 1619 ** statement returns a column value, then the affinity of that 1620 ** column is used to build the index keys. If both 'x' and the 1621 ** SELECT... statement are columns, then numeric affinity is used 1622 ** if either column has NUMERIC or INTEGER affinity. If neither 1623 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1624 ** is used. 1625 */ 1626 pExpr->iTable = pParse->nTab++; 1627 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1628 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1629 memset(&keyInfo, 0, sizeof(keyInfo)); 1630 keyInfo.nField = 1; 1631 1632 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1633 /* Case 1: expr IN (SELECT ...) 1634 ** 1635 ** Generate code to write the results of the select into the temporary 1636 ** table allocated and opened above. 1637 */ 1638 SelectDest dest; 1639 ExprList *pEList; 1640 1641 assert( !isRowid ); 1642 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1643 dest.affinity = (u8)affinity; 1644 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1645 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1646 return 0; 1647 } 1648 pEList = pExpr->x.pSelect->pEList; 1649 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1650 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1651 pEList->a[0].pExpr); 1652 } 1653 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1654 /* Case 2: expr IN (exprlist) 1655 ** 1656 ** For each expression, build an index key from the evaluation and 1657 ** store it in the temporary table. If <expr> is a column, then use 1658 ** that columns affinity when building index keys. If <expr> is not 1659 ** a column, use numeric affinity. 1660 */ 1661 int i; 1662 ExprList *pList = pExpr->x.pList; 1663 struct ExprList_item *pItem; 1664 int r1, r2, r3; 1665 1666 if( !affinity ){ 1667 affinity = SQLITE_AFF_NONE; 1668 } 1669 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1670 1671 /* Loop through each expression in <exprlist>. */ 1672 r1 = sqlite3GetTempReg(pParse); 1673 r2 = sqlite3GetTempReg(pParse); 1674 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1675 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1676 Expr *pE2 = pItem->pExpr; 1677 int iValToIns; 1678 1679 /* If the expression is not constant then we will need to 1680 ** disable the test that was generated above that makes sure 1681 ** this code only executes once. Because for a non-constant 1682 ** expression we need to rerun this code each time. 1683 */ 1684 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1685 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1686 testAddr = 0; 1687 } 1688 1689 /* Evaluate the expression and insert it into the temp table */ 1690 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1691 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1692 }else{ 1693 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1694 if( isRowid ){ 1695 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1696 sqlite3VdbeCurrentAddr(v)+2); 1697 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1698 }else{ 1699 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1700 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1701 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1702 } 1703 } 1704 } 1705 sqlite3ReleaseTempReg(pParse, r1); 1706 sqlite3ReleaseTempReg(pParse, r2); 1707 } 1708 if( !isRowid ){ 1709 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1710 } 1711 break; 1712 } 1713 1714 case TK_EXISTS: 1715 case TK_SELECT: 1716 default: { 1717 /* If this has to be a scalar SELECT. Generate code to put the 1718 ** value of this select in a memory cell and record the number 1719 ** of the memory cell in iColumn. If this is an EXISTS, write 1720 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1721 ** and record that memory cell in iColumn. 1722 */ 1723 Select *pSel; /* SELECT statement to encode */ 1724 SelectDest dest; /* How to deal with SELECt result */ 1725 1726 testcase( pExpr->op==TK_EXISTS ); 1727 testcase( pExpr->op==TK_SELECT ); 1728 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1729 1730 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1731 pSel = pExpr->x.pSelect; 1732 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1733 if( pExpr->op==TK_SELECT ){ 1734 dest.eDest = SRT_Mem; 1735 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1736 VdbeComment((v, "Init subquery result")); 1737 }else{ 1738 dest.eDest = SRT_Exists; 1739 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1740 VdbeComment((v, "Init EXISTS result")); 1741 } 1742 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1743 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1744 &sqlite3IntTokens[1]); 1745 if( sqlite3Select(pParse, pSel, &dest) ){ 1746 return 0; 1747 } 1748 rReg = dest.iParm; 1749 ExprSetIrreducible(pExpr); 1750 break; 1751 } 1752 } 1753 1754 if( testAddr ){ 1755 sqlite3VdbeJumpHere(v, testAddr-1); 1756 } 1757 sqlite3ExprCachePop(pParse, 1); 1758 1759 return rReg; 1760 } 1761 #endif /* SQLITE_OMIT_SUBQUERY */ 1762 1763 #ifndef SQLITE_OMIT_SUBQUERY 1764 /* 1765 ** Generate code for an IN expression. 1766 ** 1767 ** x IN (SELECT ...) 1768 ** x IN (value, value, ...) 1769 ** 1770 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1771 ** is an array of zero or more values. The expression is true if the LHS is 1772 ** contained within the RHS. The value of the expression is unknown (NULL) 1773 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1774 ** RHS contains one or more NULL values. 1775 ** 1776 ** This routine generates code will jump to destIfFalse if the LHS is not 1777 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1778 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1779 ** within the RHS then fall through. 1780 */ 1781 static void sqlite3ExprCodeIN( 1782 Parse *pParse, /* Parsing and code generating context */ 1783 Expr *pExpr, /* The IN expression */ 1784 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1785 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1786 ){ 1787 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1788 char affinity; /* Comparison affinity to use */ 1789 int eType; /* Type of the RHS */ 1790 int r1; /* Temporary use register */ 1791 Vdbe *v; /* Statement under construction */ 1792 1793 /* Compute the RHS. After this step, the table with cursor 1794 ** pExpr->iTable will contains the values that make up the RHS. 1795 */ 1796 v = pParse->pVdbe; 1797 assert( v!=0 ); /* OOM detected prior to this routine */ 1798 VdbeNoopComment((v, "begin IN expr")); 1799 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1800 1801 /* Figure out the affinity to use to create a key from the results 1802 ** of the expression. affinityStr stores a static string suitable for 1803 ** P4 of OP_MakeRecord. 1804 */ 1805 affinity = comparisonAffinity(pExpr); 1806 1807 /* Code the LHS, the <expr> from "<expr> IN (...)". 1808 */ 1809 sqlite3ExprCachePush(pParse); 1810 r1 = sqlite3GetTempReg(pParse); 1811 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1812 1813 /* If the LHS is NULL, then the result is either false or NULL depending 1814 ** on whether the RHS is empty or not, respectively. 1815 */ 1816 if( destIfNull==destIfFalse ){ 1817 /* Shortcut for the common case where the false and NULL outcomes are 1818 ** the same. */ 1819 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1820 }else{ 1821 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1822 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1823 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1824 sqlite3VdbeJumpHere(v, addr1); 1825 } 1826 1827 if( eType==IN_INDEX_ROWID ){ 1828 /* In this case, the RHS is the ROWID of table b-tree 1829 */ 1830 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1831 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1832 }else{ 1833 /* In this case, the RHS is an index b-tree. 1834 */ 1835 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1836 1837 /* If the set membership test fails, then the result of the 1838 ** "x IN (...)" expression must be either 0 or NULL. If the set 1839 ** contains no NULL values, then the result is 0. If the set 1840 ** contains one or more NULL values, then the result of the 1841 ** expression is also NULL. 1842 */ 1843 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1844 /* This branch runs if it is known at compile time that the RHS 1845 ** cannot contain NULL values. This happens as the result 1846 ** of a "NOT NULL" constraint in the database schema. 1847 ** 1848 ** Also run this branch if NULL is equivalent to FALSE 1849 ** for this particular IN operator. 1850 */ 1851 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1852 1853 }else{ 1854 /* In this branch, the RHS of the IN might contain a NULL and 1855 ** the presence of a NULL on the RHS makes a difference in the 1856 ** outcome. 1857 */ 1858 int j1, j2, j3; 1859 1860 /* First check to see if the LHS is contained in the RHS. If so, 1861 ** then the presence of NULLs in the RHS does not matter, so jump 1862 ** over all of the code that follows. 1863 */ 1864 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1865 1866 /* Here we begin generating code that runs if the LHS is not 1867 ** contained within the RHS. Generate additional code that 1868 ** tests the RHS for NULLs. If the RHS contains a NULL then 1869 ** jump to destIfNull. If there are no NULLs in the RHS then 1870 ** jump to destIfFalse. 1871 */ 1872 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1873 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1874 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1875 sqlite3VdbeJumpHere(v, j3); 1876 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1877 sqlite3VdbeJumpHere(v, j2); 1878 1879 /* Jump to the appropriate target depending on whether or not 1880 ** the RHS contains a NULL 1881 */ 1882 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1883 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1884 1885 /* The OP_Found at the top of this branch jumps here when true, 1886 ** causing the overall IN expression evaluation to fall through. 1887 */ 1888 sqlite3VdbeJumpHere(v, j1); 1889 } 1890 } 1891 sqlite3ReleaseTempReg(pParse, r1); 1892 sqlite3ExprCachePop(pParse, 1); 1893 VdbeComment((v, "end IN expr")); 1894 } 1895 #endif /* SQLITE_OMIT_SUBQUERY */ 1896 1897 /* 1898 ** Duplicate an 8-byte value 1899 */ 1900 static char *dup8bytes(Vdbe *v, const char *in){ 1901 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1902 if( out ){ 1903 memcpy(out, in, 8); 1904 } 1905 return out; 1906 } 1907 1908 #ifndef SQLITE_OMIT_FLOATING_POINT 1909 /* 1910 ** Generate an instruction that will put the floating point 1911 ** value described by z[0..n-1] into register iMem. 1912 ** 1913 ** The z[] string will probably not be zero-terminated. But the 1914 ** z[n] character is guaranteed to be something that does not look 1915 ** like the continuation of the number. 1916 */ 1917 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1918 if( ALWAYS(z!=0) ){ 1919 double value; 1920 char *zV; 1921 sqlite3AtoF(z, &value); 1922 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1923 if( negateFlag ) value = -value; 1924 zV = dup8bytes(v, (char*)&value); 1925 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1926 } 1927 } 1928 #endif 1929 1930 1931 /* 1932 ** Generate an instruction that will put the integer describe by 1933 ** text z[0..n-1] into register iMem. 1934 ** 1935 ** The z[] string will probably not be zero-terminated. But the 1936 ** z[n] character is guaranteed to be something that does not look 1937 ** like the continuation of the number. 1938 */ 1939 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 1940 Vdbe *v = pParse->pVdbe; 1941 if( pExpr->flags & EP_IntValue ){ 1942 int i = pExpr->u.iValue; 1943 if( negFlag ) i = -i; 1944 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1945 }else{ 1946 const char *z = pExpr->u.zToken; 1947 assert( z!=0 ); 1948 if( sqlite3FitsIn64Bits(z, negFlag) ){ 1949 i64 value; 1950 char *zV; 1951 sqlite3Atoi64(z, &value); 1952 if( negFlag ) value = -value; 1953 zV = dup8bytes(v, (char*)&value); 1954 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1955 }else{ 1956 #ifdef SQLITE_OMIT_FLOATING_POINT 1957 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 1958 #else 1959 codeReal(v, z, negFlag, iMem); 1960 #endif 1961 } 1962 } 1963 } 1964 1965 /* 1966 ** Clear a cache entry. 1967 */ 1968 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1969 if( p->tempReg ){ 1970 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1971 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1972 } 1973 p->tempReg = 0; 1974 } 1975 } 1976 1977 1978 /* 1979 ** Record in the column cache that a particular column from a 1980 ** particular table is stored in a particular register. 1981 */ 1982 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1983 int i; 1984 int minLru; 1985 int idxLru; 1986 struct yColCache *p; 1987 1988 assert( iReg>0 ); /* Register numbers are always positive */ 1989 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 1990 1991 /* The SQLITE_ColumnCache flag disables the column cache. This is used 1992 ** for testing only - to verify that SQLite always gets the same answer 1993 ** with and without the column cache. 1994 */ 1995 if( pParse->db->flags & SQLITE_ColumnCache ) return; 1996 1997 /* First replace any existing entry. 1998 ** 1999 ** Actually, the way the column cache is currently used, we are guaranteed 2000 ** that the object will never already be in cache. Verify this guarantee. 2001 */ 2002 #ifndef NDEBUG 2003 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2004 #if 0 /* This code wold remove the entry from the cache if it existed */ 2005 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 2006 cacheEntryClear(pParse, p); 2007 p->iLevel = pParse->iCacheLevel; 2008 p->iReg = iReg; 2009 p->lru = pParse->iCacheCnt++; 2010 return; 2011 } 2012 #endif 2013 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2014 } 2015 #endif 2016 2017 /* Find an empty slot and replace it */ 2018 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2019 if( p->iReg==0 ){ 2020 p->iLevel = pParse->iCacheLevel; 2021 p->iTable = iTab; 2022 p->iColumn = iCol; 2023 p->iReg = iReg; 2024 p->tempReg = 0; 2025 p->lru = pParse->iCacheCnt++; 2026 return; 2027 } 2028 } 2029 2030 /* Replace the last recently used */ 2031 minLru = 0x7fffffff; 2032 idxLru = -1; 2033 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2034 if( p->lru<minLru ){ 2035 idxLru = i; 2036 minLru = p->lru; 2037 } 2038 } 2039 if( ALWAYS(idxLru>=0) ){ 2040 p = &pParse->aColCache[idxLru]; 2041 p->iLevel = pParse->iCacheLevel; 2042 p->iTable = iTab; 2043 p->iColumn = iCol; 2044 p->iReg = iReg; 2045 p->tempReg = 0; 2046 p->lru = pParse->iCacheCnt++; 2047 return; 2048 } 2049 } 2050 2051 /* 2052 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2053 ** Purge the range of registers from the column cache. 2054 */ 2055 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2056 int i; 2057 int iLast = iReg + nReg - 1; 2058 struct yColCache *p; 2059 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2060 int r = p->iReg; 2061 if( r>=iReg && r<=iLast ){ 2062 cacheEntryClear(pParse, p); 2063 p->iReg = 0; 2064 } 2065 } 2066 } 2067 2068 /* 2069 ** Remember the current column cache context. Any new entries added 2070 ** added to the column cache after this call are removed when the 2071 ** corresponding pop occurs. 2072 */ 2073 void sqlite3ExprCachePush(Parse *pParse){ 2074 pParse->iCacheLevel++; 2075 } 2076 2077 /* 2078 ** Remove from the column cache any entries that were added since the 2079 ** the previous N Push operations. In other words, restore the cache 2080 ** to the state it was in N Pushes ago. 2081 */ 2082 void sqlite3ExprCachePop(Parse *pParse, int N){ 2083 int i; 2084 struct yColCache *p; 2085 assert( N>0 ); 2086 assert( pParse->iCacheLevel>=N ); 2087 pParse->iCacheLevel -= N; 2088 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2089 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2090 cacheEntryClear(pParse, p); 2091 p->iReg = 0; 2092 } 2093 } 2094 } 2095 2096 /* 2097 ** When a cached column is reused, make sure that its register is 2098 ** no longer available as a temp register. ticket #3879: that same 2099 ** register might be in the cache in multiple places, so be sure to 2100 ** get them all. 2101 */ 2102 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2103 int i; 2104 struct yColCache *p; 2105 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2106 if( p->iReg==iReg ){ 2107 p->tempReg = 0; 2108 } 2109 } 2110 } 2111 2112 /* 2113 ** Generate code to extract the value of the iCol-th column of a table. 2114 */ 2115 void sqlite3ExprCodeGetColumnOfTable( 2116 Vdbe *v, /* The VDBE under construction */ 2117 Table *pTab, /* The table containing the value */ 2118 int iTabCur, /* The cursor for this table */ 2119 int iCol, /* Index of the column to extract */ 2120 int regOut /* Extract the valud into this register */ 2121 ){ 2122 if( iCol<0 || iCol==pTab->iPKey ){ 2123 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2124 }else{ 2125 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2126 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2127 } 2128 if( iCol>=0 ){ 2129 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2130 } 2131 } 2132 2133 /* 2134 ** Generate code that will extract the iColumn-th column from 2135 ** table pTab and store the column value in a register. An effort 2136 ** is made to store the column value in register iReg, but this is 2137 ** not guaranteed. The location of the column value is returned. 2138 ** 2139 ** There must be an open cursor to pTab in iTable when this routine 2140 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2141 */ 2142 int sqlite3ExprCodeGetColumn( 2143 Parse *pParse, /* Parsing and code generating context */ 2144 Table *pTab, /* Description of the table we are reading from */ 2145 int iColumn, /* Index of the table column */ 2146 int iTable, /* The cursor pointing to the table */ 2147 int iReg /* Store results here */ 2148 ){ 2149 Vdbe *v = pParse->pVdbe; 2150 int i; 2151 struct yColCache *p; 2152 2153 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2154 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2155 p->lru = pParse->iCacheCnt++; 2156 sqlite3ExprCachePinRegister(pParse, p->iReg); 2157 return p->iReg; 2158 } 2159 } 2160 assert( v!=0 ); 2161 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2162 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2163 return iReg; 2164 } 2165 2166 /* 2167 ** Clear all column cache entries. 2168 */ 2169 void sqlite3ExprCacheClear(Parse *pParse){ 2170 int i; 2171 struct yColCache *p; 2172 2173 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2174 if( p->iReg ){ 2175 cacheEntryClear(pParse, p); 2176 p->iReg = 0; 2177 } 2178 } 2179 } 2180 2181 /* 2182 ** Record the fact that an affinity change has occurred on iCount 2183 ** registers starting with iStart. 2184 */ 2185 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2186 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2187 } 2188 2189 /* 2190 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2191 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2192 */ 2193 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2194 int i; 2195 struct yColCache *p; 2196 if( NEVER(iFrom==iTo) ) return; 2197 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2198 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2199 int x = p->iReg; 2200 if( x>=iFrom && x<iFrom+nReg ){ 2201 p->iReg += iTo-iFrom; 2202 } 2203 } 2204 } 2205 2206 /* 2207 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2208 ** over to iTo..iTo+nReg-1. 2209 */ 2210 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2211 int i; 2212 if( NEVER(iFrom==iTo) ) return; 2213 for(i=0; i<nReg; i++){ 2214 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2215 } 2216 } 2217 2218 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2219 /* 2220 ** Return true if any register in the range iFrom..iTo (inclusive) 2221 ** is used as part of the column cache. 2222 ** 2223 ** This routine is used within assert() and testcase() macros only 2224 ** and does not appear in a normal build. 2225 */ 2226 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2227 int i; 2228 struct yColCache *p; 2229 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2230 int r = p->iReg; 2231 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2232 } 2233 return 0; 2234 } 2235 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2236 2237 /* 2238 ** If the last instruction coded is an ephemeral copy of any of 2239 ** the registers in the nReg registers beginning with iReg, then 2240 ** convert the last instruction from OP_SCopy to OP_Copy. 2241 */ 2242 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 2243 VdbeOp *pOp; 2244 Vdbe *v; 2245 2246 assert( pParse->db->mallocFailed==0 ); 2247 v = pParse->pVdbe; 2248 assert( v!=0 ); 2249 pOp = sqlite3VdbeGetOp(v, -1); 2250 assert( pOp!=0 ); 2251 if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 2252 pOp->opcode = OP_Copy; 2253 } 2254 } 2255 2256 /* 2257 ** Generate code to store the value of the iAlias-th alias in register 2258 ** target. The first time this is called, pExpr is evaluated to compute 2259 ** the value of the alias. The value is stored in an auxiliary register 2260 ** and the number of that register is returned. On subsequent calls, 2261 ** the register number is returned without generating any code. 2262 ** 2263 ** Note that in order for this to work, code must be generated in the 2264 ** same order that it is executed. 2265 ** 2266 ** Aliases are numbered starting with 1. So iAlias is in the range 2267 ** of 1 to pParse->nAlias inclusive. 2268 ** 2269 ** pParse->aAlias[iAlias-1] records the register number where the value 2270 ** of the iAlias-th alias is stored. If zero, that means that the 2271 ** alias has not yet been computed. 2272 */ 2273 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 2274 #if 0 2275 sqlite3 *db = pParse->db; 2276 int iReg; 2277 if( pParse->nAliasAlloc<pParse->nAlias ){ 2278 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 2279 sizeof(pParse->aAlias[0])*pParse->nAlias ); 2280 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 2281 if( db->mallocFailed ) return 0; 2282 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 2283 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 2284 pParse->nAliasAlloc = pParse->nAlias; 2285 } 2286 assert( iAlias>0 && iAlias<=pParse->nAlias ); 2287 iReg = pParse->aAlias[iAlias-1]; 2288 if( iReg==0 ){ 2289 if( pParse->iCacheLevel>0 ){ 2290 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2291 }else{ 2292 iReg = ++pParse->nMem; 2293 sqlite3ExprCode(pParse, pExpr, iReg); 2294 pParse->aAlias[iAlias-1] = iReg; 2295 } 2296 } 2297 return iReg; 2298 #else 2299 UNUSED_PARAMETER(iAlias); 2300 return sqlite3ExprCodeTarget(pParse, pExpr, target); 2301 #endif 2302 } 2303 2304 /* 2305 ** Generate code into the current Vdbe to evaluate the given 2306 ** expression. Attempt to store the results in register "target". 2307 ** Return the register where results are stored. 2308 ** 2309 ** With this routine, there is no guarantee that results will 2310 ** be stored in target. The result might be stored in some other 2311 ** register if it is convenient to do so. The calling function 2312 ** must check the return code and move the results to the desired 2313 ** register. 2314 */ 2315 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2316 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2317 int op; /* The opcode being coded */ 2318 int inReg = target; /* Results stored in register inReg */ 2319 int regFree1 = 0; /* If non-zero free this temporary register */ 2320 int regFree2 = 0; /* If non-zero free this temporary register */ 2321 int r1, r2, r3, r4; /* Various register numbers */ 2322 sqlite3 *db = pParse->db; /* The database connection */ 2323 2324 assert( target>0 && target<=pParse->nMem ); 2325 if( v==0 ){ 2326 assert( pParse->db->mallocFailed ); 2327 return 0; 2328 } 2329 2330 if( pExpr==0 ){ 2331 op = TK_NULL; 2332 }else{ 2333 op = pExpr->op; 2334 } 2335 switch( op ){ 2336 case TK_AGG_COLUMN: { 2337 AggInfo *pAggInfo = pExpr->pAggInfo; 2338 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2339 if( !pAggInfo->directMode ){ 2340 assert( pCol->iMem>0 ); 2341 inReg = pCol->iMem; 2342 break; 2343 }else if( pAggInfo->useSortingIdx ){ 2344 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2345 pCol->iSorterColumn, target); 2346 break; 2347 } 2348 /* Otherwise, fall thru into the TK_COLUMN case */ 2349 } 2350 case TK_COLUMN: { 2351 if( pExpr->iTable<0 ){ 2352 /* This only happens when coding check constraints */ 2353 assert( pParse->ckBase>0 ); 2354 inReg = pExpr->iColumn + pParse->ckBase; 2355 }else{ 2356 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2357 pExpr->iColumn, pExpr->iTable, target); 2358 } 2359 break; 2360 } 2361 case TK_INTEGER: { 2362 codeInteger(pParse, pExpr, 0, target); 2363 break; 2364 } 2365 #ifndef SQLITE_OMIT_FLOATING_POINT 2366 case TK_FLOAT: { 2367 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2368 codeReal(v, pExpr->u.zToken, 0, target); 2369 break; 2370 } 2371 #endif 2372 case TK_STRING: { 2373 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2374 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2375 break; 2376 } 2377 case TK_NULL: { 2378 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2379 break; 2380 } 2381 #ifndef SQLITE_OMIT_BLOB_LITERAL 2382 case TK_BLOB: { 2383 int n; 2384 const char *z; 2385 char *zBlob; 2386 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2387 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2388 assert( pExpr->u.zToken[1]=='\'' ); 2389 z = &pExpr->u.zToken[2]; 2390 n = sqlite3Strlen30(z) - 1; 2391 assert( z[n]=='\'' ); 2392 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2393 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2394 break; 2395 } 2396 #endif 2397 case TK_VARIABLE: { 2398 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2399 assert( pExpr->u.zToken!=0 ); 2400 assert( pExpr->u.zToken[0]!=0 ); 2401 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2402 if( pExpr->u.zToken[1]!=0 ){ 2403 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); 2404 } 2405 break; 2406 } 2407 case TK_REGISTER: { 2408 inReg = pExpr->iTable; 2409 break; 2410 } 2411 case TK_AS: { 2412 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2413 break; 2414 } 2415 #ifndef SQLITE_OMIT_CAST 2416 case TK_CAST: { 2417 /* Expressions of the form: CAST(pLeft AS token) */ 2418 int aff, to_op; 2419 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2420 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2421 aff = sqlite3AffinityType(pExpr->u.zToken); 2422 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2423 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2424 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2425 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2426 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2427 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2428 testcase( to_op==OP_ToText ); 2429 testcase( to_op==OP_ToBlob ); 2430 testcase( to_op==OP_ToNumeric ); 2431 testcase( to_op==OP_ToInt ); 2432 testcase( to_op==OP_ToReal ); 2433 if( inReg!=target ){ 2434 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2435 inReg = target; 2436 } 2437 sqlite3VdbeAddOp1(v, to_op, inReg); 2438 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2439 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2440 break; 2441 } 2442 #endif /* SQLITE_OMIT_CAST */ 2443 case TK_LT: 2444 case TK_LE: 2445 case TK_GT: 2446 case TK_GE: 2447 case TK_NE: 2448 case TK_EQ: { 2449 assert( TK_LT==OP_Lt ); 2450 assert( TK_LE==OP_Le ); 2451 assert( TK_GT==OP_Gt ); 2452 assert( TK_GE==OP_Ge ); 2453 assert( TK_EQ==OP_Eq ); 2454 assert( TK_NE==OP_Ne ); 2455 testcase( op==TK_LT ); 2456 testcase( op==TK_LE ); 2457 testcase( op==TK_GT ); 2458 testcase( op==TK_GE ); 2459 testcase( op==TK_EQ ); 2460 testcase( op==TK_NE ); 2461 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2462 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2463 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2464 r1, r2, inReg, SQLITE_STOREP2); 2465 testcase( regFree1==0 ); 2466 testcase( regFree2==0 ); 2467 break; 2468 } 2469 case TK_IS: 2470 case TK_ISNOT: { 2471 testcase( op==TK_IS ); 2472 testcase( op==TK_ISNOT ); 2473 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2474 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2475 op = (op==TK_IS) ? TK_EQ : TK_NE; 2476 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2477 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2478 testcase( regFree1==0 ); 2479 testcase( regFree2==0 ); 2480 break; 2481 } 2482 case TK_AND: 2483 case TK_OR: 2484 case TK_PLUS: 2485 case TK_STAR: 2486 case TK_MINUS: 2487 case TK_REM: 2488 case TK_BITAND: 2489 case TK_BITOR: 2490 case TK_SLASH: 2491 case TK_LSHIFT: 2492 case TK_RSHIFT: 2493 case TK_CONCAT: { 2494 assert( TK_AND==OP_And ); 2495 assert( TK_OR==OP_Or ); 2496 assert( TK_PLUS==OP_Add ); 2497 assert( TK_MINUS==OP_Subtract ); 2498 assert( TK_REM==OP_Remainder ); 2499 assert( TK_BITAND==OP_BitAnd ); 2500 assert( TK_BITOR==OP_BitOr ); 2501 assert( TK_SLASH==OP_Divide ); 2502 assert( TK_LSHIFT==OP_ShiftLeft ); 2503 assert( TK_RSHIFT==OP_ShiftRight ); 2504 assert( TK_CONCAT==OP_Concat ); 2505 testcase( op==TK_AND ); 2506 testcase( op==TK_OR ); 2507 testcase( op==TK_PLUS ); 2508 testcase( op==TK_MINUS ); 2509 testcase( op==TK_REM ); 2510 testcase( op==TK_BITAND ); 2511 testcase( op==TK_BITOR ); 2512 testcase( op==TK_SLASH ); 2513 testcase( op==TK_LSHIFT ); 2514 testcase( op==TK_RSHIFT ); 2515 testcase( op==TK_CONCAT ); 2516 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2517 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2518 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2519 testcase( regFree1==0 ); 2520 testcase( regFree2==0 ); 2521 break; 2522 } 2523 case TK_UMINUS: { 2524 Expr *pLeft = pExpr->pLeft; 2525 assert( pLeft ); 2526 if( pLeft->op==TK_INTEGER ){ 2527 codeInteger(pParse, pLeft, 1, target); 2528 #ifndef SQLITE_OMIT_FLOATING_POINT 2529 }else if( pLeft->op==TK_FLOAT ){ 2530 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2531 codeReal(v, pLeft->u.zToken, 1, target); 2532 #endif 2533 }else{ 2534 regFree1 = r1 = sqlite3GetTempReg(pParse); 2535 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2536 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2537 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2538 testcase( regFree2==0 ); 2539 } 2540 inReg = target; 2541 break; 2542 } 2543 case TK_BITNOT: 2544 case TK_NOT: { 2545 assert( TK_BITNOT==OP_BitNot ); 2546 assert( TK_NOT==OP_Not ); 2547 testcase( op==TK_BITNOT ); 2548 testcase( op==TK_NOT ); 2549 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2550 testcase( regFree1==0 ); 2551 inReg = target; 2552 sqlite3VdbeAddOp2(v, op, r1, inReg); 2553 break; 2554 } 2555 case TK_ISNULL: 2556 case TK_NOTNULL: { 2557 int addr; 2558 assert( TK_ISNULL==OP_IsNull ); 2559 assert( TK_NOTNULL==OP_NotNull ); 2560 testcase( op==TK_ISNULL ); 2561 testcase( op==TK_NOTNULL ); 2562 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2563 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2564 testcase( regFree1==0 ); 2565 addr = sqlite3VdbeAddOp1(v, op, r1); 2566 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2567 sqlite3VdbeJumpHere(v, addr); 2568 break; 2569 } 2570 case TK_AGG_FUNCTION: { 2571 AggInfo *pInfo = pExpr->pAggInfo; 2572 if( pInfo==0 ){ 2573 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2574 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2575 }else{ 2576 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2577 } 2578 break; 2579 } 2580 case TK_CONST_FUNC: 2581 case TK_FUNCTION: { 2582 ExprList *pFarg; /* List of function arguments */ 2583 int nFarg; /* Number of function arguments */ 2584 FuncDef *pDef; /* The function definition object */ 2585 int nId; /* Length of the function name in bytes */ 2586 const char *zId; /* The function name */ 2587 int constMask = 0; /* Mask of function arguments that are constant */ 2588 int i; /* Loop counter */ 2589 u8 enc = ENC(db); /* The text encoding used by this database */ 2590 CollSeq *pColl = 0; /* A collating sequence */ 2591 2592 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2593 testcase( op==TK_CONST_FUNC ); 2594 testcase( op==TK_FUNCTION ); 2595 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2596 pFarg = 0; 2597 }else{ 2598 pFarg = pExpr->x.pList; 2599 } 2600 nFarg = pFarg ? pFarg->nExpr : 0; 2601 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2602 zId = pExpr->u.zToken; 2603 nId = sqlite3Strlen30(zId); 2604 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2605 if( pDef==0 ){ 2606 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2607 break; 2608 } 2609 2610 /* Attempt a direct implementation of the built-in COALESCE() and 2611 ** IFNULL() functions. This avoids unnecessary evalation of 2612 ** arguments past the first non-NULL argument. 2613 */ 2614 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2615 int endCoalesce = sqlite3VdbeMakeLabel(v); 2616 assert( nFarg>=2 ); 2617 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2618 for(i=1; i<nFarg; i++){ 2619 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2620 sqlite3ExprCacheRemove(pParse, target, 1); 2621 sqlite3ExprCachePush(pParse); 2622 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2623 sqlite3ExprCachePop(pParse, 1); 2624 } 2625 sqlite3VdbeResolveLabel(v, endCoalesce); 2626 break; 2627 } 2628 2629 2630 if( pFarg ){ 2631 r1 = sqlite3GetTempRange(pParse, nFarg); 2632 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2633 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2634 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2635 }else{ 2636 r1 = 0; 2637 } 2638 #ifndef SQLITE_OMIT_VIRTUALTABLE 2639 /* Possibly overload the function if the first argument is 2640 ** a virtual table column. 2641 ** 2642 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2643 ** second argument, not the first, as the argument to test to 2644 ** see if it is a column in a virtual table. This is done because 2645 ** the left operand of infix functions (the operand we want to 2646 ** control overloading) ends up as the second argument to the 2647 ** function. The expression "A glob B" is equivalent to 2648 ** "glob(B,A). We want to use the A in "A glob B" to test 2649 ** for function overloading. But we use the B term in "glob(B,A)". 2650 */ 2651 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2652 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2653 }else if( nFarg>0 ){ 2654 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2655 } 2656 #endif 2657 for(i=0; i<nFarg; i++){ 2658 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2659 constMask |= (1<<i); 2660 } 2661 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2662 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2663 } 2664 } 2665 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2666 if( !pColl ) pColl = db->pDfltColl; 2667 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2668 } 2669 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2670 (char*)pDef, P4_FUNCDEF); 2671 sqlite3VdbeChangeP5(v, (u8)nFarg); 2672 if( nFarg ){ 2673 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2674 } 2675 break; 2676 } 2677 #ifndef SQLITE_OMIT_SUBQUERY 2678 case TK_EXISTS: 2679 case TK_SELECT: { 2680 testcase( op==TK_EXISTS ); 2681 testcase( op==TK_SELECT ); 2682 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2683 break; 2684 } 2685 case TK_IN: { 2686 int destIfFalse = sqlite3VdbeMakeLabel(v); 2687 int destIfNull = sqlite3VdbeMakeLabel(v); 2688 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2689 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2690 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2691 sqlite3VdbeResolveLabel(v, destIfFalse); 2692 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2693 sqlite3VdbeResolveLabel(v, destIfNull); 2694 break; 2695 } 2696 #endif /* SQLITE_OMIT_SUBQUERY */ 2697 2698 2699 /* 2700 ** x BETWEEN y AND z 2701 ** 2702 ** This is equivalent to 2703 ** 2704 ** x>=y AND x<=z 2705 ** 2706 ** X is stored in pExpr->pLeft. 2707 ** Y is stored in pExpr->pList->a[0].pExpr. 2708 ** Z is stored in pExpr->pList->a[1].pExpr. 2709 */ 2710 case TK_BETWEEN: { 2711 Expr *pLeft = pExpr->pLeft; 2712 struct ExprList_item *pLItem = pExpr->x.pList->a; 2713 Expr *pRight = pLItem->pExpr; 2714 2715 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2716 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2717 testcase( regFree1==0 ); 2718 testcase( regFree2==0 ); 2719 r3 = sqlite3GetTempReg(pParse); 2720 r4 = sqlite3GetTempReg(pParse); 2721 codeCompare(pParse, pLeft, pRight, OP_Ge, 2722 r1, r2, r3, SQLITE_STOREP2); 2723 pLItem++; 2724 pRight = pLItem->pExpr; 2725 sqlite3ReleaseTempReg(pParse, regFree2); 2726 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2727 testcase( regFree2==0 ); 2728 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2729 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2730 sqlite3ReleaseTempReg(pParse, r3); 2731 sqlite3ReleaseTempReg(pParse, r4); 2732 break; 2733 } 2734 case TK_UPLUS: { 2735 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2736 break; 2737 } 2738 2739 case TK_TRIGGER: { 2740 /* If the opcode is TK_TRIGGER, then the expression is a reference 2741 ** to a column in the new.* or old.* pseudo-tables available to 2742 ** trigger programs. In this case Expr.iTable is set to 1 for the 2743 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2744 ** is set to the column of the pseudo-table to read, or to -1 to 2745 ** read the rowid field. 2746 ** 2747 ** The expression is implemented using an OP_Param opcode. The p1 2748 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2749 ** to reference another column of the old.* pseudo-table, where 2750 ** i is the index of the column. For a new.rowid reference, p1 is 2751 ** set to (n+1), where n is the number of columns in each pseudo-table. 2752 ** For a reference to any other column in the new.* pseudo-table, p1 2753 ** is set to (n+2+i), where n and i are as defined previously. For 2754 ** example, if the table on which triggers are being fired is 2755 ** declared as: 2756 ** 2757 ** CREATE TABLE t1(a, b); 2758 ** 2759 ** Then p1 is interpreted as follows: 2760 ** 2761 ** p1==0 -> old.rowid p1==3 -> new.rowid 2762 ** p1==1 -> old.a p1==4 -> new.a 2763 ** p1==2 -> old.b p1==5 -> new.b 2764 */ 2765 Table *pTab = pExpr->pTab; 2766 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2767 2768 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2769 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2770 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2771 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2772 2773 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2774 VdbeComment((v, "%s.%s -> $%d", 2775 (pExpr->iTable ? "new" : "old"), 2776 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2777 target 2778 )); 2779 2780 #ifndef SQLITE_OMIT_FLOATING_POINT 2781 /* If the column has REAL affinity, it may currently be stored as an 2782 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2783 if( pExpr->iColumn>=0 2784 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2785 ){ 2786 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2787 } 2788 #endif 2789 break; 2790 } 2791 2792 2793 /* 2794 ** Form A: 2795 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2796 ** 2797 ** Form B: 2798 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2799 ** 2800 ** Form A is can be transformed into the equivalent form B as follows: 2801 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2802 ** WHEN x=eN THEN rN ELSE y END 2803 ** 2804 ** X (if it exists) is in pExpr->pLeft. 2805 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2806 ** ELSE clause and no other term matches, then the result of the 2807 ** exprssion is NULL. 2808 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2809 ** 2810 ** The result of the expression is the Ri for the first matching Ei, 2811 ** or if there is no matching Ei, the ELSE term Y, or if there is 2812 ** no ELSE term, NULL. 2813 */ 2814 default: assert( op==TK_CASE ); { 2815 int endLabel; /* GOTO label for end of CASE stmt */ 2816 int nextCase; /* GOTO label for next WHEN clause */ 2817 int nExpr; /* 2x number of WHEN terms */ 2818 int i; /* Loop counter */ 2819 ExprList *pEList; /* List of WHEN terms */ 2820 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2821 Expr opCompare; /* The X==Ei expression */ 2822 Expr cacheX; /* Cached expression X */ 2823 Expr *pX; /* The X expression */ 2824 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2825 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2826 2827 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2828 assert((pExpr->x.pList->nExpr % 2) == 0); 2829 assert(pExpr->x.pList->nExpr > 0); 2830 pEList = pExpr->x.pList; 2831 aListelem = pEList->a; 2832 nExpr = pEList->nExpr; 2833 endLabel = sqlite3VdbeMakeLabel(v); 2834 if( (pX = pExpr->pLeft)!=0 ){ 2835 cacheX = *pX; 2836 testcase( pX->op==TK_COLUMN ); 2837 testcase( pX->op==TK_REGISTER ); 2838 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2839 testcase( regFree1==0 ); 2840 cacheX.op = TK_REGISTER; 2841 opCompare.op = TK_EQ; 2842 opCompare.pLeft = &cacheX; 2843 pTest = &opCompare; 2844 } 2845 for(i=0; i<nExpr; i=i+2){ 2846 sqlite3ExprCachePush(pParse); 2847 if( pX ){ 2848 assert( pTest!=0 ); 2849 opCompare.pRight = aListelem[i].pExpr; 2850 }else{ 2851 pTest = aListelem[i].pExpr; 2852 } 2853 nextCase = sqlite3VdbeMakeLabel(v); 2854 testcase( pTest->op==TK_COLUMN ); 2855 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2856 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2857 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2858 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2859 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2860 sqlite3ExprCachePop(pParse, 1); 2861 sqlite3VdbeResolveLabel(v, nextCase); 2862 } 2863 if( pExpr->pRight ){ 2864 sqlite3ExprCachePush(pParse); 2865 sqlite3ExprCode(pParse, pExpr->pRight, target); 2866 sqlite3ExprCachePop(pParse, 1); 2867 }else{ 2868 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2869 } 2870 assert( db->mallocFailed || pParse->nErr>0 2871 || pParse->iCacheLevel==iCacheLevel ); 2872 sqlite3VdbeResolveLabel(v, endLabel); 2873 break; 2874 } 2875 #ifndef SQLITE_OMIT_TRIGGER 2876 case TK_RAISE: { 2877 assert( pExpr->affinity==OE_Rollback 2878 || pExpr->affinity==OE_Abort 2879 || pExpr->affinity==OE_Fail 2880 || pExpr->affinity==OE_Ignore 2881 ); 2882 if( !pParse->pTriggerTab ){ 2883 sqlite3ErrorMsg(pParse, 2884 "RAISE() may only be used within a trigger-program"); 2885 return 0; 2886 } 2887 if( pExpr->affinity==OE_Abort ){ 2888 sqlite3MayAbort(pParse); 2889 } 2890 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2891 if( pExpr->affinity==OE_Ignore ){ 2892 sqlite3VdbeAddOp4( 2893 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2894 }else{ 2895 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2896 } 2897 2898 break; 2899 } 2900 #endif 2901 } 2902 sqlite3ReleaseTempReg(pParse, regFree1); 2903 sqlite3ReleaseTempReg(pParse, regFree2); 2904 return inReg; 2905 } 2906 2907 /* 2908 ** Generate code to evaluate an expression and store the results 2909 ** into a register. Return the register number where the results 2910 ** are stored. 2911 ** 2912 ** If the register is a temporary register that can be deallocated, 2913 ** then write its number into *pReg. If the result register is not 2914 ** a temporary, then set *pReg to zero. 2915 */ 2916 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2917 int r1 = sqlite3GetTempReg(pParse); 2918 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2919 if( r2==r1 ){ 2920 *pReg = r1; 2921 }else{ 2922 sqlite3ReleaseTempReg(pParse, r1); 2923 *pReg = 0; 2924 } 2925 return r2; 2926 } 2927 2928 /* 2929 ** Generate code that will evaluate expression pExpr and store the 2930 ** results in register target. The results are guaranteed to appear 2931 ** in register target. 2932 */ 2933 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2934 int inReg; 2935 2936 assert( target>0 && target<=pParse->nMem ); 2937 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2938 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2939 if( inReg!=target && pParse->pVdbe ){ 2940 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2941 } 2942 return target; 2943 } 2944 2945 /* 2946 ** Generate code that evalutes the given expression and puts the result 2947 ** in register target. 2948 ** 2949 ** Also make a copy of the expression results into another "cache" register 2950 ** and modify the expression so that the next time it is evaluated, 2951 ** the result is a copy of the cache register. 2952 ** 2953 ** This routine is used for expressions that are used multiple 2954 ** times. They are evaluated once and the results of the expression 2955 ** are reused. 2956 */ 2957 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2958 Vdbe *v = pParse->pVdbe; 2959 int inReg; 2960 inReg = sqlite3ExprCode(pParse, pExpr, target); 2961 assert( target>0 ); 2962 /* This routine is called for terms to INSERT or UPDATE. And the only 2963 ** other place where expressions can be converted into TK_REGISTER is 2964 ** in WHERE clause processing. So as currently implemented, there is 2965 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2966 ** keep the ALWAYS() in case the conditions above change with future 2967 ** modifications or enhancements. */ 2968 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2969 int iMem; 2970 iMem = ++pParse->nMem; 2971 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2972 pExpr->iTable = iMem; 2973 pExpr->op2 = pExpr->op; 2974 pExpr->op = TK_REGISTER; 2975 } 2976 return inReg; 2977 } 2978 2979 /* 2980 ** Return TRUE if pExpr is an constant expression that is appropriate 2981 ** for factoring out of a loop. Appropriate expressions are: 2982 ** 2983 ** * Any expression that evaluates to two or more opcodes. 2984 ** 2985 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2986 ** or OP_Variable that does not need to be placed in a 2987 ** specific register. 2988 ** 2989 ** There is no point in factoring out single-instruction constant 2990 ** expressions that need to be placed in a particular register. 2991 ** We could factor them out, but then we would end up adding an 2992 ** OP_SCopy instruction to move the value into the correct register 2993 ** later. We might as well just use the original instruction and 2994 ** avoid the OP_SCopy. 2995 */ 2996 static int isAppropriateForFactoring(Expr *p){ 2997 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2998 return 0; /* Only constant expressions are appropriate for factoring */ 2999 } 3000 if( (p->flags & EP_FixedDest)==0 ){ 3001 return 1; /* Any constant without a fixed destination is appropriate */ 3002 } 3003 while( p->op==TK_UPLUS ) p = p->pLeft; 3004 switch( p->op ){ 3005 #ifndef SQLITE_OMIT_BLOB_LITERAL 3006 case TK_BLOB: 3007 #endif 3008 case TK_VARIABLE: 3009 case TK_INTEGER: 3010 case TK_FLOAT: 3011 case TK_NULL: 3012 case TK_STRING: { 3013 testcase( p->op==TK_BLOB ); 3014 testcase( p->op==TK_VARIABLE ); 3015 testcase( p->op==TK_INTEGER ); 3016 testcase( p->op==TK_FLOAT ); 3017 testcase( p->op==TK_NULL ); 3018 testcase( p->op==TK_STRING ); 3019 /* Single-instruction constants with a fixed destination are 3020 ** better done in-line. If we factor them, they will just end 3021 ** up generating an OP_SCopy to move the value to the destination 3022 ** register. */ 3023 return 0; 3024 } 3025 case TK_UMINUS: { 3026 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3027 return 0; 3028 } 3029 break; 3030 } 3031 default: { 3032 break; 3033 } 3034 } 3035 return 1; 3036 } 3037 3038 /* 3039 ** If pExpr is a constant expression that is appropriate for 3040 ** factoring out of a loop, then evaluate the expression 3041 ** into a register and convert the expression into a TK_REGISTER 3042 ** expression. 3043 */ 3044 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3045 Parse *pParse = pWalker->pParse; 3046 switch( pExpr->op ){ 3047 case TK_IN: 3048 case TK_REGISTER: { 3049 return WRC_Prune; 3050 } 3051 case TK_FUNCTION: 3052 case TK_AGG_FUNCTION: 3053 case TK_CONST_FUNC: { 3054 /* The arguments to a function have a fixed destination. 3055 ** Mark them this way to avoid generated unneeded OP_SCopy 3056 ** instructions. 3057 */ 3058 ExprList *pList = pExpr->x.pList; 3059 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3060 if( pList ){ 3061 int i = pList->nExpr; 3062 struct ExprList_item *pItem = pList->a; 3063 for(; i>0; i--, pItem++){ 3064 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3065 } 3066 } 3067 break; 3068 } 3069 } 3070 if( isAppropriateForFactoring(pExpr) ){ 3071 int r1 = ++pParse->nMem; 3072 int r2; 3073 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3074 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3075 pExpr->op2 = pExpr->op; 3076 pExpr->op = TK_REGISTER; 3077 pExpr->iTable = r2; 3078 return WRC_Prune; 3079 } 3080 return WRC_Continue; 3081 } 3082 3083 /* 3084 ** Preevaluate constant subexpressions within pExpr and store the 3085 ** results in registers. Modify pExpr so that the constant subexpresions 3086 ** are TK_REGISTER opcodes that refer to the precomputed values. 3087 */ 3088 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3089 Walker w; 3090 w.xExprCallback = evalConstExpr; 3091 w.xSelectCallback = 0; 3092 w.pParse = pParse; 3093 sqlite3WalkExpr(&w, pExpr); 3094 } 3095 3096 3097 /* 3098 ** Generate code that pushes the value of every element of the given 3099 ** expression list into a sequence of registers beginning at target. 3100 ** 3101 ** Return the number of elements evaluated. 3102 */ 3103 int sqlite3ExprCodeExprList( 3104 Parse *pParse, /* Parsing context */ 3105 ExprList *pList, /* The expression list to be coded */ 3106 int target, /* Where to write results */ 3107 int doHardCopy /* Make a hard copy of every element */ 3108 ){ 3109 struct ExprList_item *pItem; 3110 int i, n; 3111 assert( pList!=0 ); 3112 assert( target>0 ); 3113 n = pList->nExpr; 3114 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3115 if( pItem->iAlias ){ 3116 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 3117 Vdbe *v = sqlite3GetVdbe(pParse); 3118 if( iReg!=target+i ){ 3119 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 3120 } 3121 }else{ 3122 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 3123 } 3124 if( doHardCopy && !pParse->db->mallocFailed ){ 3125 sqlite3ExprHardCopy(pParse, target, n); 3126 } 3127 } 3128 return n; 3129 } 3130 3131 /* 3132 ** Generate code for a BETWEEN operator. 3133 ** 3134 ** x BETWEEN y AND z 3135 ** 3136 ** The above is equivalent to 3137 ** 3138 ** x>=y AND x<=z 3139 ** 3140 ** Code it as such, taking care to do the common subexpression 3141 ** elementation of x. 3142 */ 3143 static void exprCodeBetween( 3144 Parse *pParse, /* Parsing and code generating context */ 3145 Expr *pExpr, /* The BETWEEN expression */ 3146 int dest, /* Jump here if the jump is taken */ 3147 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3148 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3149 ){ 3150 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3151 Expr compLeft; /* The x>=y term */ 3152 Expr compRight; /* The x<=z term */ 3153 Expr exprX; /* The x subexpression */ 3154 int regFree1 = 0; /* Temporary use register */ 3155 3156 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3157 exprX = *pExpr->pLeft; 3158 exprAnd.op = TK_AND; 3159 exprAnd.pLeft = &compLeft; 3160 exprAnd.pRight = &compRight; 3161 compLeft.op = TK_GE; 3162 compLeft.pLeft = &exprX; 3163 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3164 compRight.op = TK_LE; 3165 compRight.pLeft = &exprX; 3166 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3167 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3168 exprX.op = TK_REGISTER; 3169 if( jumpIfTrue ){ 3170 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3171 }else{ 3172 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3173 } 3174 sqlite3ReleaseTempReg(pParse, regFree1); 3175 3176 /* Ensure adequate test coverage */ 3177 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3178 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3179 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3180 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3181 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3182 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3183 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3184 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3185 } 3186 3187 /* 3188 ** Generate code for a boolean expression such that a jump is made 3189 ** to the label "dest" if the expression is true but execution 3190 ** continues straight thru if the expression is false. 3191 ** 3192 ** If the expression evaluates to NULL (neither true nor false), then 3193 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3194 ** 3195 ** This code depends on the fact that certain token values (ex: TK_EQ) 3196 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3197 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3198 ** the make process cause these values to align. Assert()s in the code 3199 ** below verify that the numbers are aligned correctly. 3200 */ 3201 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3202 Vdbe *v = pParse->pVdbe; 3203 int op = 0; 3204 int regFree1 = 0; 3205 int regFree2 = 0; 3206 int r1, r2; 3207 3208 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3209 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3210 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3211 op = pExpr->op; 3212 switch( op ){ 3213 case TK_AND: { 3214 int d2 = sqlite3VdbeMakeLabel(v); 3215 testcase( jumpIfNull==0 ); 3216 sqlite3ExprCachePush(pParse); 3217 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3218 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3219 sqlite3VdbeResolveLabel(v, d2); 3220 sqlite3ExprCachePop(pParse, 1); 3221 break; 3222 } 3223 case TK_OR: { 3224 testcase( jumpIfNull==0 ); 3225 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3226 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3227 break; 3228 } 3229 case TK_NOT: { 3230 testcase( jumpIfNull==0 ); 3231 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3232 break; 3233 } 3234 case TK_LT: 3235 case TK_LE: 3236 case TK_GT: 3237 case TK_GE: 3238 case TK_NE: 3239 case TK_EQ: { 3240 assert( TK_LT==OP_Lt ); 3241 assert( TK_LE==OP_Le ); 3242 assert( TK_GT==OP_Gt ); 3243 assert( TK_GE==OP_Ge ); 3244 assert( TK_EQ==OP_Eq ); 3245 assert( TK_NE==OP_Ne ); 3246 testcase( op==TK_LT ); 3247 testcase( op==TK_LE ); 3248 testcase( op==TK_GT ); 3249 testcase( op==TK_GE ); 3250 testcase( op==TK_EQ ); 3251 testcase( op==TK_NE ); 3252 testcase( jumpIfNull==0 ); 3253 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3254 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3255 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3256 r1, r2, dest, jumpIfNull); 3257 testcase( regFree1==0 ); 3258 testcase( regFree2==0 ); 3259 break; 3260 } 3261 case TK_IS: 3262 case TK_ISNOT: { 3263 testcase( op==TK_IS ); 3264 testcase( op==TK_ISNOT ); 3265 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3266 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3267 op = (op==TK_IS) ? TK_EQ : TK_NE; 3268 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3269 r1, r2, dest, SQLITE_NULLEQ); 3270 testcase( regFree1==0 ); 3271 testcase( regFree2==0 ); 3272 break; 3273 } 3274 case TK_ISNULL: 3275 case TK_NOTNULL: { 3276 assert( TK_ISNULL==OP_IsNull ); 3277 assert( TK_NOTNULL==OP_NotNull ); 3278 testcase( op==TK_ISNULL ); 3279 testcase( op==TK_NOTNULL ); 3280 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3281 sqlite3VdbeAddOp2(v, op, r1, dest); 3282 testcase( regFree1==0 ); 3283 break; 3284 } 3285 case TK_BETWEEN: { 3286 testcase( jumpIfNull==0 ); 3287 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3288 break; 3289 } 3290 case TK_IN: { 3291 int destIfFalse = sqlite3VdbeMakeLabel(v); 3292 int destIfNull = jumpIfNull ? dest : destIfFalse; 3293 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3294 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3295 sqlite3VdbeResolveLabel(v, destIfFalse); 3296 break; 3297 } 3298 default: { 3299 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3300 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3301 testcase( regFree1==0 ); 3302 testcase( jumpIfNull==0 ); 3303 break; 3304 } 3305 } 3306 sqlite3ReleaseTempReg(pParse, regFree1); 3307 sqlite3ReleaseTempReg(pParse, regFree2); 3308 } 3309 3310 /* 3311 ** Generate code for a boolean expression such that a jump is made 3312 ** to the label "dest" if the expression is false but execution 3313 ** continues straight thru if the expression is true. 3314 ** 3315 ** If the expression evaluates to NULL (neither true nor false) then 3316 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3317 ** is 0. 3318 */ 3319 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3320 Vdbe *v = pParse->pVdbe; 3321 int op = 0; 3322 int regFree1 = 0; 3323 int regFree2 = 0; 3324 int r1, r2; 3325 3326 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3327 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3328 if( pExpr==0 ) return; 3329 3330 /* The value of pExpr->op and op are related as follows: 3331 ** 3332 ** pExpr->op op 3333 ** --------- ---------- 3334 ** TK_ISNULL OP_NotNull 3335 ** TK_NOTNULL OP_IsNull 3336 ** TK_NE OP_Eq 3337 ** TK_EQ OP_Ne 3338 ** TK_GT OP_Le 3339 ** TK_LE OP_Gt 3340 ** TK_GE OP_Lt 3341 ** TK_LT OP_Ge 3342 ** 3343 ** For other values of pExpr->op, op is undefined and unused. 3344 ** The value of TK_ and OP_ constants are arranged such that we 3345 ** can compute the mapping above using the following expression. 3346 ** Assert()s verify that the computation is correct. 3347 */ 3348 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3349 3350 /* Verify correct alignment of TK_ and OP_ constants 3351 */ 3352 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3353 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3354 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3355 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3356 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3357 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3358 assert( pExpr->op!=TK_GT || op==OP_Le ); 3359 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3360 3361 switch( pExpr->op ){ 3362 case TK_AND: { 3363 testcase( jumpIfNull==0 ); 3364 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3365 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3366 break; 3367 } 3368 case TK_OR: { 3369 int d2 = sqlite3VdbeMakeLabel(v); 3370 testcase( jumpIfNull==0 ); 3371 sqlite3ExprCachePush(pParse); 3372 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3373 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3374 sqlite3VdbeResolveLabel(v, d2); 3375 sqlite3ExprCachePop(pParse, 1); 3376 break; 3377 } 3378 case TK_NOT: { 3379 testcase( jumpIfNull==0 ); 3380 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3381 break; 3382 } 3383 case TK_LT: 3384 case TK_LE: 3385 case TK_GT: 3386 case TK_GE: 3387 case TK_NE: 3388 case TK_EQ: { 3389 testcase( op==TK_LT ); 3390 testcase( op==TK_LE ); 3391 testcase( op==TK_GT ); 3392 testcase( op==TK_GE ); 3393 testcase( op==TK_EQ ); 3394 testcase( op==TK_NE ); 3395 testcase( jumpIfNull==0 ); 3396 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3397 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3398 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3399 r1, r2, dest, jumpIfNull); 3400 testcase( regFree1==0 ); 3401 testcase( regFree2==0 ); 3402 break; 3403 } 3404 case TK_IS: 3405 case TK_ISNOT: { 3406 testcase( pExpr->op==TK_IS ); 3407 testcase( pExpr->op==TK_ISNOT ); 3408 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3409 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3410 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3411 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3412 r1, r2, dest, SQLITE_NULLEQ); 3413 testcase( regFree1==0 ); 3414 testcase( regFree2==0 ); 3415 break; 3416 } 3417 case TK_ISNULL: 3418 case TK_NOTNULL: { 3419 testcase( op==TK_ISNULL ); 3420 testcase( op==TK_NOTNULL ); 3421 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3422 sqlite3VdbeAddOp2(v, op, r1, dest); 3423 testcase( regFree1==0 ); 3424 break; 3425 } 3426 case TK_BETWEEN: { 3427 testcase( jumpIfNull==0 ); 3428 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3429 break; 3430 } 3431 case TK_IN: { 3432 if( jumpIfNull ){ 3433 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3434 }else{ 3435 int destIfNull = sqlite3VdbeMakeLabel(v); 3436 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3437 sqlite3VdbeResolveLabel(v, destIfNull); 3438 } 3439 break; 3440 } 3441 default: { 3442 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3443 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3444 testcase( regFree1==0 ); 3445 testcase( jumpIfNull==0 ); 3446 break; 3447 } 3448 } 3449 sqlite3ReleaseTempReg(pParse, regFree1); 3450 sqlite3ReleaseTempReg(pParse, regFree2); 3451 } 3452 3453 /* 3454 ** Do a deep comparison of two expression trees. Return 0 if the two 3455 ** expressions are completely identical. Return 1 if they differ only 3456 ** by a COLLATE operator at the top level. Return 2 if there are differences 3457 ** other than the top-level COLLATE operator. 3458 ** 3459 ** Sometimes this routine will return 2 even if the two expressions 3460 ** really are equivalent. If we cannot prove that the expressions are 3461 ** identical, we return 2 just to be safe. So if this routine 3462 ** returns 2, then you do not really know for certain if the two 3463 ** expressions are the same. But if you get a 0 or 1 return, then you 3464 ** can be sure the expressions are the same. In the places where 3465 ** this routine is used, it does not hurt to get an extra 2 - that 3466 ** just might result in some slightly slower code. But returning 3467 ** an incorrect 0 or 1 could lead to a malfunction. 3468 */ 3469 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3470 if( pA==0||pB==0 ){ 3471 return pB==pA ? 0 : 2; 3472 } 3473 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3474 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3475 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3476 return 2; 3477 } 3478 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3479 if( pA->op!=pB->op ) return 2; 3480 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3481 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3482 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3483 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3484 if( ExprHasProperty(pA, EP_IntValue) ){ 3485 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3486 return 2; 3487 } 3488 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3489 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3490 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3491 return 2; 3492 } 3493 } 3494 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3495 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3496 return 0; 3497 } 3498 3499 /* 3500 ** Compare two ExprList objects. Return 0 if they are identical and 3501 ** non-zero if they differ in any way. 3502 ** 3503 ** This routine might return non-zero for equivalent ExprLists. The 3504 ** only consequence will be disabled optimizations. But this routine 3505 ** must never return 0 if the two ExprList objects are different, or 3506 ** a malfunction will result. 3507 ** 3508 ** Two NULL pointers are considered to be the same. But a NULL pointer 3509 ** always differs from a non-NULL pointer. 3510 */ 3511 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3512 int i; 3513 if( pA==0 && pB==0 ) return 0; 3514 if( pA==0 || pB==0 ) return 1; 3515 if( pA->nExpr!=pB->nExpr ) return 1; 3516 for(i=0; i<pA->nExpr; i++){ 3517 Expr *pExprA = pA->a[i].pExpr; 3518 Expr *pExprB = pB->a[i].pExpr; 3519 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3520 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3521 } 3522 return 0; 3523 } 3524 3525 /* 3526 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3527 ** the new element. Return a negative number if malloc fails. 3528 */ 3529 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3530 int i; 3531 pInfo->aCol = sqlite3ArrayAllocate( 3532 db, 3533 pInfo->aCol, 3534 sizeof(pInfo->aCol[0]), 3535 3, 3536 &pInfo->nColumn, 3537 &pInfo->nColumnAlloc, 3538 &i 3539 ); 3540 return i; 3541 } 3542 3543 /* 3544 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3545 ** the new element. Return a negative number if malloc fails. 3546 */ 3547 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3548 int i; 3549 pInfo->aFunc = sqlite3ArrayAllocate( 3550 db, 3551 pInfo->aFunc, 3552 sizeof(pInfo->aFunc[0]), 3553 3, 3554 &pInfo->nFunc, 3555 &pInfo->nFuncAlloc, 3556 &i 3557 ); 3558 return i; 3559 } 3560 3561 /* 3562 ** This is the xExprCallback for a tree walker. It is used to 3563 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3564 ** for additional information. 3565 */ 3566 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3567 int i; 3568 NameContext *pNC = pWalker->u.pNC; 3569 Parse *pParse = pNC->pParse; 3570 SrcList *pSrcList = pNC->pSrcList; 3571 AggInfo *pAggInfo = pNC->pAggInfo; 3572 3573 switch( pExpr->op ){ 3574 case TK_AGG_COLUMN: 3575 case TK_COLUMN: { 3576 testcase( pExpr->op==TK_AGG_COLUMN ); 3577 testcase( pExpr->op==TK_COLUMN ); 3578 /* Check to see if the column is in one of the tables in the FROM 3579 ** clause of the aggregate query */ 3580 if( ALWAYS(pSrcList!=0) ){ 3581 struct SrcList_item *pItem = pSrcList->a; 3582 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3583 struct AggInfo_col *pCol; 3584 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3585 if( pExpr->iTable==pItem->iCursor ){ 3586 /* If we reach this point, it means that pExpr refers to a table 3587 ** that is in the FROM clause of the aggregate query. 3588 ** 3589 ** Make an entry for the column in pAggInfo->aCol[] if there 3590 ** is not an entry there already. 3591 */ 3592 int k; 3593 pCol = pAggInfo->aCol; 3594 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3595 if( pCol->iTable==pExpr->iTable && 3596 pCol->iColumn==pExpr->iColumn ){ 3597 break; 3598 } 3599 } 3600 if( (k>=pAggInfo->nColumn) 3601 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3602 ){ 3603 pCol = &pAggInfo->aCol[k]; 3604 pCol->pTab = pExpr->pTab; 3605 pCol->iTable = pExpr->iTable; 3606 pCol->iColumn = pExpr->iColumn; 3607 pCol->iMem = ++pParse->nMem; 3608 pCol->iSorterColumn = -1; 3609 pCol->pExpr = pExpr; 3610 if( pAggInfo->pGroupBy ){ 3611 int j, n; 3612 ExprList *pGB = pAggInfo->pGroupBy; 3613 struct ExprList_item *pTerm = pGB->a; 3614 n = pGB->nExpr; 3615 for(j=0; j<n; j++, pTerm++){ 3616 Expr *pE = pTerm->pExpr; 3617 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3618 pE->iColumn==pExpr->iColumn ){ 3619 pCol->iSorterColumn = j; 3620 break; 3621 } 3622 } 3623 } 3624 if( pCol->iSorterColumn<0 ){ 3625 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3626 } 3627 } 3628 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3629 ** because it was there before or because we just created it). 3630 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3631 ** pAggInfo->aCol[] entry. 3632 */ 3633 ExprSetIrreducible(pExpr); 3634 pExpr->pAggInfo = pAggInfo; 3635 pExpr->op = TK_AGG_COLUMN; 3636 pExpr->iAgg = (i16)k; 3637 break; 3638 } /* endif pExpr->iTable==pItem->iCursor */ 3639 } /* end loop over pSrcList */ 3640 } 3641 return WRC_Prune; 3642 } 3643 case TK_AGG_FUNCTION: { 3644 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3645 ** to be ignored */ 3646 if( pNC->nDepth==0 ){ 3647 /* Check to see if pExpr is a duplicate of another aggregate 3648 ** function that is already in the pAggInfo structure 3649 */ 3650 struct AggInfo_func *pItem = pAggInfo->aFunc; 3651 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3652 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 3653 break; 3654 } 3655 } 3656 if( i>=pAggInfo->nFunc ){ 3657 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3658 */ 3659 u8 enc = ENC(pParse->db); 3660 i = addAggInfoFunc(pParse->db, pAggInfo); 3661 if( i>=0 ){ 3662 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3663 pItem = &pAggInfo->aFunc[i]; 3664 pItem->pExpr = pExpr; 3665 pItem->iMem = ++pParse->nMem; 3666 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3667 pItem->pFunc = sqlite3FindFunction(pParse->db, 3668 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3669 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3670 if( pExpr->flags & EP_Distinct ){ 3671 pItem->iDistinct = pParse->nTab++; 3672 }else{ 3673 pItem->iDistinct = -1; 3674 } 3675 } 3676 } 3677 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3678 */ 3679 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3680 ExprSetIrreducible(pExpr); 3681 pExpr->iAgg = (i16)i; 3682 pExpr->pAggInfo = pAggInfo; 3683 return WRC_Prune; 3684 } 3685 } 3686 } 3687 return WRC_Continue; 3688 } 3689 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3690 NameContext *pNC = pWalker->u.pNC; 3691 if( pNC->nDepth==0 ){ 3692 pNC->nDepth++; 3693 sqlite3WalkSelect(pWalker, pSelect); 3694 pNC->nDepth--; 3695 return WRC_Prune; 3696 }else{ 3697 return WRC_Continue; 3698 } 3699 } 3700 3701 /* 3702 ** Analyze the given expression looking for aggregate functions and 3703 ** for variables that need to be added to the pParse->aAgg[] array. 3704 ** Make additional entries to the pParse->aAgg[] array as necessary. 3705 ** 3706 ** This routine should only be called after the expression has been 3707 ** analyzed by sqlite3ResolveExprNames(). 3708 */ 3709 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3710 Walker w; 3711 w.xExprCallback = analyzeAggregate; 3712 w.xSelectCallback = analyzeAggregatesInSelect; 3713 w.u.pNC = pNC; 3714 assert( pNC->pSrcList!=0 ); 3715 sqlite3WalkExpr(&w, pExpr); 3716 } 3717 3718 /* 3719 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3720 ** expression list. Return the number of errors. 3721 ** 3722 ** If an error is found, the analysis is cut short. 3723 */ 3724 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3725 struct ExprList_item *pItem; 3726 int i; 3727 if( pList ){ 3728 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3729 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3730 } 3731 } 3732 } 3733 3734 /* 3735 ** Allocate a single new register for use to hold some intermediate result. 3736 */ 3737 int sqlite3GetTempReg(Parse *pParse){ 3738 if( pParse->nTempReg==0 ){ 3739 return ++pParse->nMem; 3740 } 3741 return pParse->aTempReg[--pParse->nTempReg]; 3742 } 3743 3744 /* 3745 ** Deallocate a register, making available for reuse for some other 3746 ** purpose. 3747 ** 3748 ** If a register is currently being used by the column cache, then 3749 ** the dallocation is deferred until the column cache line that uses 3750 ** the register becomes stale. 3751 */ 3752 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3753 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3754 int i; 3755 struct yColCache *p; 3756 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3757 if( p->iReg==iReg ){ 3758 p->tempReg = 1; 3759 return; 3760 } 3761 } 3762 pParse->aTempReg[pParse->nTempReg++] = iReg; 3763 } 3764 } 3765 3766 /* 3767 ** Allocate or deallocate a block of nReg consecutive registers 3768 */ 3769 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3770 int i, n; 3771 i = pParse->iRangeReg; 3772 n = pParse->nRangeReg; 3773 if( nReg<=n ){ 3774 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 3775 pParse->iRangeReg += nReg; 3776 pParse->nRangeReg -= nReg; 3777 }else{ 3778 i = pParse->nMem+1; 3779 pParse->nMem += nReg; 3780 } 3781 return i; 3782 } 3783 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3784 sqlite3ExprCacheRemove(pParse, iReg, nReg); 3785 if( nReg>pParse->nRangeReg ){ 3786 pParse->nRangeReg = nReg; 3787 pParse->iRangeReg = iReg; 3788 } 3789 } 3790