1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 44 return sqlite3AffinityType(pExpr->u.zToken); 45 } 46 #endif 47 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 48 && pExpr->pTab!=0 49 ){ 50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 51 ** a TK_COLUMN but was previously evaluated and cached in a register */ 52 int j = pExpr->iColumn; 53 if( j<0 ) return SQLITE_AFF_INTEGER; 54 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 55 return pExpr->pTab->aCol[j].affinity; 56 } 57 return pExpr->affinity; 58 } 59 60 /* 61 ** Set the collating sequence for expression pExpr to be the collating 62 ** sequence named by pToken. Return a pointer to a new Expr node that 63 ** implements the COLLATE operator. 64 ** 65 ** If a memory allocation error occurs, that fact is recorded in pParse->db 66 ** and the pExpr parameter is returned unchanged. 67 */ 68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 69 if( pCollName->n>0 ){ 70 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 71 if( pNew ){ 72 pNew->pLeft = pExpr; 73 pNew->flags |= EP_Collate; 74 pExpr = pNew; 75 } 76 } 77 return pExpr; 78 } 79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 80 Token s; 81 assert( zC!=0 ); 82 s.z = zC; 83 s.n = sqlite3Strlen30(s.z); 84 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 85 } 86 87 /* 88 ** Skip over any TK_COLLATE and/or TK_AS operators at the root of 89 ** an expression. 90 */ 91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 92 while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){ 93 pExpr = pExpr->pLeft; 94 } 95 return pExpr; 96 } 97 98 /* 99 ** Return the collation sequence for the expression pExpr. If 100 ** there is no defined collating sequence, return NULL. 101 ** 102 ** The collating sequence might be determined by a COLLATE operator 103 ** or by the presence of a column with a defined collating sequence. 104 ** COLLATE operators take first precedence. Left operands take 105 ** precedence over right operands. 106 */ 107 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 108 sqlite3 *db = pParse->db; 109 CollSeq *pColl = 0; 110 Expr *p = pExpr; 111 while( p ){ 112 int op = p->op; 113 if( op==TK_CAST || op==TK_UPLUS ){ 114 p = p->pLeft; 115 continue; 116 } 117 assert( op!=TK_REGISTER || p->op2!=TK_COLLATE ); 118 if( op==TK_COLLATE ){ 119 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 120 break; 121 } 122 if( p->pTab!=0 123 && (op==TK_AGG_COLUMN || op==TK_COLUMN 124 || op==TK_REGISTER || op==TK_TRIGGER) 125 ){ 126 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 127 ** a TK_COLUMN but was previously evaluated and cached in a register */ 128 int j = p->iColumn; 129 if( j>=0 ){ 130 const char *zColl = p->pTab->aCol[j].zColl; 131 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 132 } 133 break; 134 } 135 if( p->flags & EP_Collate ){ 136 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 137 p = p->pLeft; 138 }else{ 139 p = p->pRight; 140 } 141 }else{ 142 break; 143 } 144 } 145 if( sqlite3CheckCollSeq(pParse, pColl) ){ 146 pColl = 0; 147 } 148 return pColl; 149 } 150 151 /* 152 ** pExpr is an operand of a comparison operator. aff2 is the 153 ** type affinity of the other operand. This routine returns the 154 ** type affinity that should be used for the comparison operator. 155 */ 156 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 157 char aff1 = sqlite3ExprAffinity(pExpr); 158 if( aff1 && aff2 ){ 159 /* Both sides of the comparison are columns. If one has numeric 160 ** affinity, use that. Otherwise use no affinity. 161 */ 162 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 163 return SQLITE_AFF_NUMERIC; 164 }else{ 165 return SQLITE_AFF_NONE; 166 } 167 }else if( !aff1 && !aff2 ){ 168 /* Neither side of the comparison is a column. Compare the 169 ** results directly. 170 */ 171 return SQLITE_AFF_NONE; 172 }else{ 173 /* One side is a column, the other is not. Use the columns affinity. */ 174 assert( aff1==0 || aff2==0 ); 175 return (aff1 + aff2); 176 } 177 } 178 179 /* 180 ** pExpr is a comparison operator. Return the type affinity that should 181 ** be applied to both operands prior to doing the comparison. 182 */ 183 static char comparisonAffinity(Expr *pExpr){ 184 char aff; 185 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 186 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 187 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 188 assert( pExpr->pLeft ); 189 aff = sqlite3ExprAffinity(pExpr->pLeft); 190 if( pExpr->pRight ){ 191 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 192 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 193 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 194 }else if( !aff ){ 195 aff = SQLITE_AFF_NONE; 196 } 197 return aff; 198 } 199 200 /* 201 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 202 ** idx_affinity is the affinity of an indexed column. Return true 203 ** if the index with affinity idx_affinity may be used to implement 204 ** the comparison in pExpr. 205 */ 206 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 207 char aff = comparisonAffinity(pExpr); 208 switch( aff ){ 209 case SQLITE_AFF_NONE: 210 return 1; 211 case SQLITE_AFF_TEXT: 212 return idx_affinity==SQLITE_AFF_TEXT; 213 default: 214 return sqlite3IsNumericAffinity(idx_affinity); 215 } 216 } 217 218 /* 219 ** Return the P5 value that should be used for a binary comparison 220 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 221 */ 222 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 223 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 224 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 225 return aff; 226 } 227 228 /* 229 ** Return a pointer to the collation sequence that should be used by 230 ** a binary comparison operator comparing pLeft and pRight. 231 ** 232 ** If the left hand expression has a collating sequence type, then it is 233 ** used. Otherwise the collation sequence for the right hand expression 234 ** is used, or the default (BINARY) if neither expression has a collating 235 ** type. 236 ** 237 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 238 ** it is not considered. 239 */ 240 CollSeq *sqlite3BinaryCompareCollSeq( 241 Parse *pParse, 242 Expr *pLeft, 243 Expr *pRight 244 ){ 245 CollSeq *pColl; 246 assert( pLeft ); 247 if( pLeft->flags & EP_Collate ){ 248 pColl = sqlite3ExprCollSeq(pParse, pLeft); 249 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 250 pColl = sqlite3ExprCollSeq(pParse, pRight); 251 }else{ 252 pColl = sqlite3ExprCollSeq(pParse, pLeft); 253 if( !pColl ){ 254 pColl = sqlite3ExprCollSeq(pParse, pRight); 255 } 256 } 257 return pColl; 258 } 259 260 /* 261 ** Generate code for a comparison operator. 262 */ 263 static int codeCompare( 264 Parse *pParse, /* The parsing (and code generating) context */ 265 Expr *pLeft, /* The left operand */ 266 Expr *pRight, /* The right operand */ 267 int opcode, /* The comparison opcode */ 268 int in1, int in2, /* Register holding operands */ 269 int dest, /* Jump here if true. */ 270 int jumpIfNull /* If true, jump if either operand is NULL */ 271 ){ 272 int p5; 273 int addr; 274 CollSeq *p4; 275 276 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 277 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 278 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 279 (void*)p4, P4_COLLSEQ); 280 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 281 return addr; 282 } 283 284 #if SQLITE_MAX_EXPR_DEPTH>0 285 /* 286 ** Check that argument nHeight is less than or equal to the maximum 287 ** expression depth allowed. If it is not, leave an error message in 288 ** pParse. 289 */ 290 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 291 int rc = SQLITE_OK; 292 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 293 if( nHeight>mxHeight ){ 294 sqlite3ErrorMsg(pParse, 295 "Expression tree is too large (maximum depth %d)", mxHeight 296 ); 297 rc = SQLITE_ERROR; 298 } 299 return rc; 300 } 301 302 /* The following three functions, heightOfExpr(), heightOfExprList() 303 ** and heightOfSelect(), are used to determine the maximum height 304 ** of any expression tree referenced by the structure passed as the 305 ** first argument. 306 ** 307 ** If this maximum height is greater than the current value pointed 308 ** to by pnHeight, the second parameter, then set *pnHeight to that 309 ** value. 310 */ 311 static void heightOfExpr(Expr *p, int *pnHeight){ 312 if( p ){ 313 if( p->nHeight>*pnHeight ){ 314 *pnHeight = p->nHeight; 315 } 316 } 317 } 318 static void heightOfExprList(ExprList *p, int *pnHeight){ 319 if( p ){ 320 int i; 321 for(i=0; i<p->nExpr; i++){ 322 heightOfExpr(p->a[i].pExpr, pnHeight); 323 } 324 } 325 } 326 static void heightOfSelect(Select *p, int *pnHeight){ 327 if( p ){ 328 heightOfExpr(p->pWhere, pnHeight); 329 heightOfExpr(p->pHaving, pnHeight); 330 heightOfExpr(p->pLimit, pnHeight); 331 heightOfExpr(p->pOffset, pnHeight); 332 heightOfExprList(p->pEList, pnHeight); 333 heightOfExprList(p->pGroupBy, pnHeight); 334 heightOfExprList(p->pOrderBy, pnHeight); 335 heightOfSelect(p->pPrior, pnHeight); 336 } 337 } 338 339 /* 340 ** Set the Expr.nHeight variable in the structure passed as an 341 ** argument. An expression with no children, Expr.pList or 342 ** Expr.pSelect member has a height of 1. Any other expression 343 ** has a height equal to the maximum height of any other 344 ** referenced Expr plus one. 345 */ 346 static void exprSetHeight(Expr *p){ 347 int nHeight = 0; 348 heightOfExpr(p->pLeft, &nHeight); 349 heightOfExpr(p->pRight, &nHeight); 350 if( ExprHasProperty(p, EP_xIsSelect) ){ 351 heightOfSelect(p->x.pSelect, &nHeight); 352 }else{ 353 heightOfExprList(p->x.pList, &nHeight); 354 } 355 p->nHeight = nHeight + 1; 356 } 357 358 /* 359 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 360 ** the height is greater than the maximum allowed expression depth, 361 ** leave an error in pParse. 362 */ 363 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 364 exprSetHeight(p); 365 sqlite3ExprCheckHeight(pParse, p->nHeight); 366 } 367 368 /* 369 ** Return the maximum height of any expression tree referenced 370 ** by the select statement passed as an argument. 371 */ 372 int sqlite3SelectExprHeight(Select *p){ 373 int nHeight = 0; 374 heightOfSelect(p, &nHeight); 375 return nHeight; 376 } 377 #else 378 #define exprSetHeight(y) 379 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 380 381 /* 382 ** This routine is the core allocator for Expr nodes. 383 ** 384 ** Construct a new expression node and return a pointer to it. Memory 385 ** for this node and for the pToken argument is a single allocation 386 ** obtained from sqlite3DbMalloc(). The calling function 387 ** is responsible for making sure the node eventually gets freed. 388 ** 389 ** If dequote is true, then the token (if it exists) is dequoted. 390 ** If dequote is false, no dequoting is performance. The deQuote 391 ** parameter is ignored if pToken is NULL or if the token does not 392 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 393 ** then the EP_DblQuoted flag is set on the expression node. 394 ** 395 ** Special case: If op==TK_INTEGER and pToken points to a string that 396 ** can be translated into a 32-bit integer, then the token is not 397 ** stored in u.zToken. Instead, the integer values is written 398 ** into u.iValue and the EP_IntValue flag is set. No extra storage 399 ** is allocated to hold the integer text and the dequote flag is ignored. 400 */ 401 Expr *sqlite3ExprAlloc( 402 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 403 int op, /* Expression opcode */ 404 const Token *pToken, /* Token argument. Might be NULL */ 405 int dequote /* True to dequote */ 406 ){ 407 Expr *pNew; 408 int nExtra = 0; 409 int iValue = 0; 410 411 if( pToken ){ 412 if( op!=TK_INTEGER || pToken->z==0 413 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 414 nExtra = pToken->n+1; 415 assert( iValue>=0 ); 416 } 417 } 418 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 419 if( pNew ){ 420 pNew->op = (u8)op; 421 pNew->iAgg = -1; 422 if( pToken ){ 423 if( nExtra==0 ){ 424 pNew->flags |= EP_IntValue; 425 pNew->u.iValue = iValue; 426 }else{ 427 int c; 428 pNew->u.zToken = (char*)&pNew[1]; 429 assert( pToken->z!=0 || pToken->n==0 ); 430 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 431 pNew->u.zToken[pToken->n] = 0; 432 if( dequote && nExtra>=3 433 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 434 sqlite3Dequote(pNew->u.zToken); 435 if( c=='"' ) pNew->flags |= EP_DblQuoted; 436 } 437 } 438 } 439 #if SQLITE_MAX_EXPR_DEPTH>0 440 pNew->nHeight = 1; 441 #endif 442 } 443 return pNew; 444 } 445 446 /* 447 ** Allocate a new expression node from a zero-terminated token that has 448 ** already been dequoted. 449 */ 450 Expr *sqlite3Expr( 451 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 452 int op, /* Expression opcode */ 453 const char *zToken /* Token argument. Might be NULL */ 454 ){ 455 Token x; 456 x.z = zToken; 457 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 458 return sqlite3ExprAlloc(db, op, &x, 0); 459 } 460 461 /* 462 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 463 ** 464 ** If pRoot==NULL that means that a memory allocation error has occurred. 465 ** In that case, delete the subtrees pLeft and pRight. 466 */ 467 void sqlite3ExprAttachSubtrees( 468 sqlite3 *db, 469 Expr *pRoot, 470 Expr *pLeft, 471 Expr *pRight 472 ){ 473 if( pRoot==0 ){ 474 assert( db->mallocFailed ); 475 sqlite3ExprDelete(db, pLeft); 476 sqlite3ExprDelete(db, pRight); 477 }else{ 478 if( pRight ){ 479 pRoot->pRight = pRight; 480 pRoot->flags |= EP_Collate & pRight->flags; 481 } 482 if( pLeft ){ 483 pRoot->pLeft = pLeft; 484 pRoot->flags |= EP_Collate & pLeft->flags; 485 } 486 exprSetHeight(pRoot); 487 } 488 } 489 490 /* 491 ** Allocate a Expr node which joins as many as two subtrees. 492 ** 493 ** One or both of the subtrees can be NULL. Return a pointer to the new 494 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 495 ** free the subtrees and return NULL. 496 */ 497 Expr *sqlite3PExpr( 498 Parse *pParse, /* Parsing context */ 499 int op, /* Expression opcode */ 500 Expr *pLeft, /* Left operand */ 501 Expr *pRight, /* Right operand */ 502 const Token *pToken /* Argument token */ 503 ){ 504 Expr *p; 505 if( op==TK_AND && pLeft && pRight ){ 506 /* Take advantage of short-circuit false optimization for AND */ 507 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 508 }else{ 509 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 510 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 511 } 512 if( p ) { 513 sqlite3ExprCheckHeight(pParse, p->nHeight); 514 } 515 return p; 516 } 517 518 /* 519 ** Return 1 if an expression must be FALSE in all cases and 0 if the 520 ** expression might be true. This is an optimization. If is OK to 521 ** return 0 here even if the expression really is always false (a 522 ** false negative). But it is a bug to return 1 if the expression 523 ** might be true in some rare circumstances (a false positive.) 524 ** 525 ** Note that if the expression is part of conditional for a 526 ** LEFT JOIN, then we cannot determine at compile-time whether or not 527 ** is it true or false, so always return 0. 528 */ 529 static int exprAlwaysFalse(Expr *p){ 530 int v = 0; 531 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 532 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 533 return v==0; 534 } 535 536 /* 537 ** Join two expressions using an AND operator. If either expression is 538 ** NULL, then just return the other expression. 539 ** 540 ** If one side or the other of the AND is known to be false, then instead 541 ** of returning an AND expression, just return a constant expression with 542 ** a value of false. 543 */ 544 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 545 if( pLeft==0 ){ 546 return pRight; 547 }else if( pRight==0 ){ 548 return pLeft; 549 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 550 sqlite3ExprDelete(db, pLeft); 551 sqlite3ExprDelete(db, pRight); 552 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 553 }else{ 554 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 555 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 556 return pNew; 557 } 558 } 559 560 /* 561 ** Construct a new expression node for a function with multiple 562 ** arguments. 563 */ 564 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 565 Expr *pNew; 566 sqlite3 *db = pParse->db; 567 assert( pToken ); 568 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 569 if( pNew==0 ){ 570 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 571 return 0; 572 } 573 pNew->x.pList = pList; 574 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 575 sqlite3ExprSetHeight(pParse, pNew); 576 return pNew; 577 } 578 579 /* 580 ** Assign a variable number to an expression that encodes a wildcard 581 ** in the original SQL statement. 582 ** 583 ** Wildcards consisting of a single "?" are assigned the next sequential 584 ** variable number. 585 ** 586 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 587 ** sure "nnn" is not too be to avoid a denial of service attack when 588 ** the SQL statement comes from an external source. 589 ** 590 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 591 ** as the previous instance of the same wildcard. Or if this is the first 592 ** instance of the wildcard, the next sequenial variable number is 593 ** assigned. 594 */ 595 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 596 sqlite3 *db = pParse->db; 597 const char *z; 598 599 if( pExpr==0 ) return; 600 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 601 z = pExpr->u.zToken; 602 assert( z!=0 ); 603 assert( z[0]!=0 ); 604 if( z[1]==0 ){ 605 /* Wildcard of the form "?". Assign the next variable number */ 606 assert( z[0]=='?' ); 607 pExpr->iColumn = (ynVar)(++pParse->nVar); 608 }else{ 609 ynVar x = 0; 610 u32 n = sqlite3Strlen30(z); 611 if( z[0]=='?' ){ 612 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 613 ** use it as the variable number */ 614 i64 i; 615 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 616 pExpr->iColumn = x = (ynVar)i; 617 testcase( i==0 ); 618 testcase( i==1 ); 619 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 620 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 621 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 622 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 623 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 624 x = 0; 625 } 626 if( i>pParse->nVar ){ 627 pParse->nVar = (int)i; 628 } 629 }else{ 630 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 631 ** number as the prior appearance of the same name, or if the name 632 ** has never appeared before, reuse the same variable number 633 */ 634 ynVar i; 635 for(i=0; i<pParse->nzVar; i++){ 636 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 637 pExpr->iColumn = x = (ynVar)i+1; 638 break; 639 } 640 } 641 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 642 } 643 if( x>0 ){ 644 if( x>pParse->nzVar ){ 645 char **a; 646 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 647 if( a==0 ) return; /* Error reported through db->mallocFailed */ 648 pParse->azVar = a; 649 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 650 pParse->nzVar = x; 651 } 652 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 653 sqlite3DbFree(db, pParse->azVar[x-1]); 654 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 655 } 656 } 657 } 658 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 659 sqlite3ErrorMsg(pParse, "too many SQL variables"); 660 } 661 } 662 663 /* 664 ** Recursively delete an expression tree. 665 */ 666 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 667 if( p==0 ) return; 668 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 669 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 670 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 671 sqlite3ExprDelete(db, p->pLeft); 672 sqlite3ExprDelete(db, p->pRight); 673 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 674 sqlite3DbFree(db, p->u.zToken); 675 } 676 if( ExprHasProperty(p, EP_xIsSelect) ){ 677 sqlite3SelectDelete(db, p->x.pSelect); 678 }else{ 679 sqlite3ExprListDelete(db, p->x.pList); 680 } 681 } 682 if( !ExprHasProperty(p, EP_Static) ){ 683 sqlite3DbFree(db, p); 684 } 685 } 686 687 /* 688 ** Return the number of bytes allocated for the expression structure 689 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 690 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 691 */ 692 static int exprStructSize(Expr *p){ 693 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 694 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 695 return EXPR_FULLSIZE; 696 } 697 698 /* 699 ** The dupedExpr*Size() routines each return the number of bytes required 700 ** to store a copy of an expression or expression tree. They differ in 701 ** how much of the tree is measured. 702 ** 703 ** dupedExprStructSize() Size of only the Expr structure 704 ** dupedExprNodeSize() Size of Expr + space for token 705 ** dupedExprSize() Expr + token + subtree components 706 ** 707 *************************************************************************** 708 ** 709 ** The dupedExprStructSize() function returns two values OR-ed together: 710 ** (1) the space required for a copy of the Expr structure only and 711 ** (2) the EP_xxx flags that indicate what the structure size should be. 712 ** The return values is always one of: 713 ** 714 ** EXPR_FULLSIZE 715 ** EXPR_REDUCEDSIZE | EP_Reduced 716 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 717 ** 718 ** The size of the structure can be found by masking the return value 719 ** of this routine with 0xfff. The flags can be found by masking the 720 ** return value with EP_Reduced|EP_TokenOnly. 721 ** 722 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 723 ** (unreduced) Expr objects as they or originally constructed by the parser. 724 ** During expression analysis, extra information is computed and moved into 725 ** later parts of teh Expr object and that extra information might get chopped 726 ** off if the expression is reduced. Note also that it does not work to 727 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 728 ** to reduce a pristine expression tree from the parser. The implementation 729 ** of dupedExprStructSize() contain multiple assert() statements that attempt 730 ** to enforce this constraint. 731 */ 732 static int dupedExprStructSize(Expr *p, int flags){ 733 int nSize; 734 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 735 if( 0==(flags&EXPRDUP_REDUCE) ){ 736 nSize = EXPR_FULLSIZE; 737 }else{ 738 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 739 assert( !ExprHasProperty(p, EP_FromJoin) ); 740 assert( (p->flags2 & EP2_MallocedToken)==0 ); 741 assert( (p->flags2 & EP2_Irreducible)==0 ); 742 if( p->pLeft || p->pRight || p->x.pList ){ 743 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 744 }else{ 745 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 746 } 747 } 748 return nSize; 749 } 750 751 /* 752 ** This function returns the space in bytes required to store the copy 753 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 754 ** string is defined.) 755 */ 756 static int dupedExprNodeSize(Expr *p, int flags){ 757 int nByte = dupedExprStructSize(p, flags) & 0xfff; 758 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 759 nByte += sqlite3Strlen30(p->u.zToken)+1; 760 } 761 return ROUND8(nByte); 762 } 763 764 /* 765 ** Return the number of bytes required to create a duplicate of the 766 ** expression passed as the first argument. The second argument is a 767 ** mask containing EXPRDUP_XXX flags. 768 ** 769 ** The value returned includes space to create a copy of the Expr struct 770 ** itself and the buffer referred to by Expr.u.zToken, if any. 771 ** 772 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 773 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 774 ** and Expr.pRight variables (but not for any structures pointed to or 775 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 776 */ 777 static int dupedExprSize(Expr *p, int flags){ 778 int nByte = 0; 779 if( p ){ 780 nByte = dupedExprNodeSize(p, flags); 781 if( flags&EXPRDUP_REDUCE ){ 782 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 783 } 784 } 785 return nByte; 786 } 787 788 /* 789 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 790 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 791 ** to store the copy of expression p, the copies of p->u.zToken 792 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 793 ** if any. Before returning, *pzBuffer is set to the first byte passed the 794 ** portion of the buffer copied into by this function. 795 */ 796 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 797 Expr *pNew = 0; /* Value to return */ 798 if( p ){ 799 const int isReduced = (flags&EXPRDUP_REDUCE); 800 u8 *zAlloc; 801 u32 staticFlag = 0; 802 803 assert( pzBuffer==0 || isReduced ); 804 805 /* Figure out where to write the new Expr structure. */ 806 if( pzBuffer ){ 807 zAlloc = *pzBuffer; 808 staticFlag = EP_Static; 809 }else{ 810 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 811 } 812 pNew = (Expr *)zAlloc; 813 814 if( pNew ){ 815 /* Set nNewSize to the size allocated for the structure pointed to 816 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 817 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 818 ** by the copy of the p->u.zToken string (if any). 819 */ 820 const unsigned nStructSize = dupedExprStructSize(p, flags); 821 const int nNewSize = nStructSize & 0xfff; 822 int nToken; 823 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 824 nToken = sqlite3Strlen30(p->u.zToken) + 1; 825 }else{ 826 nToken = 0; 827 } 828 if( isReduced ){ 829 assert( ExprHasProperty(p, EP_Reduced)==0 ); 830 memcpy(zAlloc, p, nNewSize); 831 }else{ 832 int nSize = exprStructSize(p); 833 memcpy(zAlloc, p, nSize); 834 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 835 } 836 837 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 838 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 839 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 840 pNew->flags |= staticFlag; 841 842 /* Copy the p->u.zToken string, if any. */ 843 if( nToken ){ 844 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 845 memcpy(zToken, p->u.zToken, nToken); 846 } 847 848 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 849 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 850 if( ExprHasProperty(p, EP_xIsSelect) ){ 851 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 852 }else{ 853 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 854 } 855 } 856 857 /* Fill in pNew->pLeft and pNew->pRight. */ 858 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 859 zAlloc += dupedExprNodeSize(p, flags); 860 if( ExprHasProperty(pNew, EP_Reduced) ){ 861 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 862 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 863 } 864 if( pzBuffer ){ 865 *pzBuffer = zAlloc; 866 } 867 }else{ 868 pNew->flags2 = 0; 869 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 870 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 871 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 872 } 873 } 874 875 } 876 } 877 return pNew; 878 } 879 880 /* 881 ** The following group of routines make deep copies of expressions, 882 ** expression lists, ID lists, and select statements. The copies can 883 ** be deleted (by being passed to their respective ...Delete() routines) 884 ** without effecting the originals. 885 ** 886 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 887 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 888 ** by subsequent calls to sqlite*ListAppend() routines. 889 ** 890 ** Any tables that the SrcList might point to are not duplicated. 891 ** 892 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 893 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 894 ** truncated version of the usual Expr structure that will be stored as 895 ** part of the in-memory representation of the database schema. 896 */ 897 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 898 return exprDup(db, p, flags, 0); 899 } 900 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 901 ExprList *pNew; 902 struct ExprList_item *pItem, *pOldItem; 903 int i; 904 if( p==0 ) return 0; 905 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 906 if( pNew==0 ) return 0; 907 pNew->iECursor = 0; 908 pNew->nExpr = i = p->nExpr; 909 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 910 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 911 if( pItem==0 ){ 912 sqlite3DbFree(db, pNew); 913 return 0; 914 } 915 pOldItem = p->a; 916 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 917 Expr *pOldExpr = pOldItem->pExpr; 918 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 919 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 920 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 921 pItem->sortOrder = pOldItem->sortOrder; 922 pItem->done = 0; 923 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 924 pItem->iOrderByCol = pOldItem->iOrderByCol; 925 pItem->iAlias = pOldItem->iAlias; 926 } 927 return pNew; 928 } 929 930 /* 931 ** If cursors, triggers, views and subqueries are all omitted from 932 ** the build, then none of the following routines, except for 933 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 934 ** called with a NULL argument. 935 */ 936 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 937 || !defined(SQLITE_OMIT_SUBQUERY) 938 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 939 SrcList *pNew; 940 int i; 941 int nByte; 942 if( p==0 ) return 0; 943 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 944 pNew = sqlite3DbMallocRaw(db, nByte ); 945 if( pNew==0 ) return 0; 946 pNew->nSrc = pNew->nAlloc = p->nSrc; 947 for(i=0; i<p->nSrc; i++){ 948 struct SrcList_item *pNewItem = &pNew->a[i]; 949 struct SrcList_item *pOldItem = &p->a[i]; 950 Table *pTab; 951 pNewItem->pSchema = pOldItem->pSchema; 952 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 953 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 954 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 955 pNewItem->jointype = pOldItem->jointype; 956 pNewItem->iCursor = pOldItem->iCursor; 957 pNewItem->addrFillSub = pOldItem->addrFillSub; 958 pNewItem->regReturn = pOldItem->regReturn; 959 pNewItem->isCorrelated = pOldItem->isCorrelated; 960 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 961 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 962 pNewItem->notIndexed = pOldItem->notIndexed; 963 pNewItem->pIndex = pOldItem->pIndex; 964 pTab = pNewItem->pTab = pOldItem->pTab; 965 if( pTab ){ 966 pTab->nRef++; 967 } 968 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 969 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 970 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 971 pNewItem->colUsed = pOldItem->colUsed; 972 } 973 return pNew; 974 } 975 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 976 IdList *pNew; 977 int i; 978 if( p==0 ) return 0; 979 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 980 if( pNew==0 ) return 0; 981 pNew->nId = p->nId; 982 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 983 if( pNew->a==0 ){ 984 sqlite3DbFree(db, pNew); 985 return 0; 986 } 987 /* Note that because the size of the allocation for p->a[] is not 988 ** necessarily a power of two, sqlite3IdListAppend() may not be called 989 ** on the duplicate created by this function. */ 990 for(i=0; i<p->nId; i++){ 991 struct IdList_item *pNewItem = &pNew->a[i]; 992 struct IdList_item *pOldItem = &p->a[i]; 993 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 994 pNewItem->idx = pOldItem->idx; 995 } 996 return pNew; 997 } 998 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 999 Select *pNew, *pPrior; 1000 if( p==0 ) return 0; 1001 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1002 if( pNew==0 ) return 0; 1003 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1004 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1005 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1006 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1007 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1008 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1009 pNew->op = p->op; 1010 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1011 if( pPrior ) pPrior->pNext = pNew; 1012 pNew->pNext = 0; 1013 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1014 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1015 pNew->iLimit = 0; 1016 pNew->iOffset = 0; 1017 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1018 pNew->pRightmost = 0; 1019 pNew->addrOpenEphm[0] = -1; 1020 pNew->addrOpenEphm[1] = -1; 1021 pNew->addrOpenEphm[2] = -1; 1022 return pNew; 1023 } 1024 #else 1025 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1026 assert( p==0 ); 1027 return 0; 1028 } 1029 #endif 1030 1031 1032 /* 1033 ** Add a new element to the end of an expression list. If pList is 1034 ** initially NULL, then create a new expression list. 1035 ** 1036 ** If a memory allocation error occurs, the entire list is freed and 1037 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1038 ** that the new entry was successfully appended. 1039 */ 1040 ExprList *sqlite3ExprListAppend( 1041 Parse *pParse, /* Parsing context */ 1042 ExprList *pList, /* List to which to append. Might be NULL */ 1043 Expr *pExpr /* Expression to be appended. Might be NULL */ 1044 ){ 1045 sqlite3 *db = pParse->db; 1046 if( pList==0 ){ 1047 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1048 if( pList==0 ){ 1049 goto no_mem; 1050 } 1051 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1052 if( pList->a==0 ) goto no_mem; 1053 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1054 struct ExprList_item *a; 1055 assert( pList->nExpr>0 ); 1056 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1057 if( a==0 ){ 1058 goto no_mem; 1059 } 1060 pList->a = a; 1061 } 1062 assert( pList->a!=0 ); 1063 if( 1 ){ 1064 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1065 memset(pItem, 0, sizeof(*pItem)); 1066 pItem->pExpr = pExpr; 1067 } 1068 return pList; 1069 1070 no_mem: 1071 /* Avoid leaking memory if malloc has failed. */ 1072 sqlite3ExprDelete(db, pExpr); 1073 sqlite3ExprListDelete(db, pList); 1074 return 0; 1075 } 1076 1077 /* 1078 ** Set the ExprList.a[].zName element of the most recently added item 1079 ** on the expression list. 1080 ** 1081 ** pList might be NULL following an OOM error. But pName should never be 1082 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1083 ** is set. 1084 */ 1085 void sqlite3ExprListSetName( 1086 Parse *pParse, /* Parsing context */ 1087 ExprList *pList, /* List to which to add the span. */ 1088 Token *pName, /* Name to be added */ 1089 int dequote /* True to cause the name to be dequoted */ 1090 ){ 1091 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1092 if( pList ){ 1093 struct ExprList_item *pItem; 1094 assert( pList->nExpr>0 ); 1095 pItem = &pList->a[pList->nExpr-1]; 1096 assert( pItem->zName==0 ); 1097 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1098 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1099 } 1100 } 1101 1102 /* 1103 ** Set the ExprList.a[].zSpan element of the most recently added item 1104 ** on the expression list. 1105 ** 1106 ** pList might be NULL following an OOM error. But pSpan should never be 1107 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1108 ** is set. 1109 */ 1110 void sqlite3ExprListSetSpan( 1111 Parse *pParse, /* Parsing context */ 1112 ExprList *pList, /* List to which to add the span. */ 1113 ExprSpan *pSpan /* The span to be added */ 1114 ){ 1115 sqlite3 *db = pParse->db; 1116 assert( pList!=0 || db->mallocFailed!=0 ); 1117 if( pList ){ 1118 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1119 assert( pList->nExpr>0 ); 1120 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1121 sqlite3DbFree(db, pItem->zSpan); 1122 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1123 (int)(pSpan->zEnd - pSpan->zStart)); 1124 } 1125 } 1126 1127 /* 1128 ** If the expression list pEList contains more than iLimit elements, 1129 ** leave an error message in pParse. 1130 */ 1131 void sqlite3ExprListCheckLength( 1132 Parse *pParse, 1133 ExprList *pEList, 1134 const char *zObject 1135 ){ 1136 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1137 testcase( pEList && pEList->nExpr==mx ); 1138 testcase( pEList && pEList->nExpr==mx+1 ); 1139 if( pEList && pEList->nExpr>mx ){ 1140 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1141 } 1142 } 1143 1144 /* 1145 ** Delete an entire expression list. 1146 */ 1147 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1148 int i; 1149 struct ExprList_item *pItem; 1150 if( pList==0 ) return; 1151 assert( pList->a!=0 || pList->nExpr==0 ); 1152 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1153 sqlite3ExprDelete(db, pItem->pExpr); 1154 sqlite3DbFree(db, pItem->zName); 1155 sqlite3DbFree(db, pItem->zSpan); 1156 } 1157 sqlite3DbFree(db, pList->a); 1158 sqlite3DbFree(db, pList); 1159 } 1160 1161 /* 1162 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1163 ** to an integer. These routines are checking an expression to see 1164 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1165 ** not constant. 1166 ** 1167 ** These callback routines are used to implement the following: 1168 ** 1169 ** sqlite3ExprIsConstant() 1170 ** sqlite3ExprIsConstantNotJoin() 1171 ** sqlite3ExprIsConstantOrFunction() 1172 ** 1173 */ 1174 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1175 1176 /* If pWalker->u.i is 3 then any term of the expression that comes from 1177 ** the ON or USING clauses of a join disqualifies the expression 1178 ** from being considered constant. */ 1179 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1180 pWalker->u.i = 0; 1181 return WRC_Abort; 1182 } 1183 1184 switch( pExpr->op ){ 1185 /* Consider functions to be constant if all their arguments are constant 1186 ** and pWalker->u.i==2 */ 1187 case TK_FUNCTION: 1188 if( pWalker->u.i==2 ) return 0; 1189 /* Fall through */ 1190 case TK_ID: 1191 case TK_COLUMN: 1192 case TK_AGG_FUNCTION: 1193 case TK_AGG_COLUMN: 1194 testcase( pExpr->op==TK_ID ); 1195 testcase( pExpr->op==TK_COLUMN ); 1196 testcase( pExpr->op==TK_AGG_FUNCTION ); 1197 testcase( pExpr->op==TK_AGG_COLUMN ); 1198 pWalker->u.i = 0; 1199 return WRC_Abort; 1200 default: 1201 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1202 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1203 return WRC_Continue; 1204 } 1205 } 1206 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1207 UNUSED_PARAMETER(NotUsed); 1208 pWalker->u.i = 0; 1209 return WRC_Abort; 1210 } 1211 static int exprIsConst(Expr *p, int initFlag){ 1212 Walker w; 1213 memset(&w, 0, sizeof(w)); 1214 w.u.i = initFlag; 1215 w.xExprCallback = exprNodeIsConstant; 1216 w.xSelectCallback = selectNodeIsConstant; 1217 sqlite3WalkExpr(&w, p); 1218 return w.u.i; 1219 } 1220 1221 /* 1222 ** Walk an expression tree. Return 1 if the expression is constant 1223 ** and 0 if it involves variables or function calls. 1224 ** 1225 ** For the purposes of this function, a double-quoted string (ex: "abc") 1226 ** is considered a variable but a single-quoted string (ex: 'abc') is 1227 ** a constant. 1228 */ 1229 int sqlite3ExprIsConstant(Expr *p){ 1230 return exprIsConst(p, 1); 1231 } 1232 1233 /* 1234 ** Walk an expression tree. Return 1 if the expression is constant 1235 ** that does no originate from the ON or USING clauses of a join. 1236 ** Return 0 if it involves variables or function calls or terms from 1237 ** an ON or USING clause. 1238 */ 1239 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1240 return exprIsConst(p, 3); 1241 } 1242 1243 /* 1244 ** Walk an expression tree. Return 1 if the expression is constant 1245 ** or a function call with constant arguments. Return and 0 if there 1246 ** are any variables. 1247 ** 1248 ** For the purposes of this function, a double-quoted string (ex: "abc") 1249 ** is considered a variable but a single-quoted string (ex: 'abc') is 1250 ** a constant. 1251 */ 1252 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1253 return exprIsConst(p, 2); 1254 } 1255 1256 /* 1257 ** If the expression p codes a constant integer that is small enough 1258 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1259 ** in *pValue. If the expression is not an integer or if it is too big 1260 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1261 */ 1262 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1263 int rc = 0; 1264 1265 /* If an expression is an integer literal that fits in a signed 32-bit 1266 ** integer, then the EP_IntValue flag will have already been set */ 1267 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1268 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1269 1270 if( p->flags & EP_IntValue ){ 1271 *pValue = p->u.iValue; 1272 return 1; 1273 } 1274 switch( p->op ){ 1275 case TK_UPLUS: { 1276 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1277 break; 1278 } 1279 case TK_UMINUS: { 1280 int v; 1281 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1282 *pValue = -v; 1283 rc = 1; 1284 } 1285 break; 1286 } 1287 default: break; 1288 } 1289 return rc; 1290 } 1291 1292 /* 1293 ** Return FALSE if there is no chance that the expression can be NULL. 1294 ** 1295 ** If the expression might be NULL or if the expression is too complex 1296 ** to tell return TRUE. 1297 ** 1298 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1299 ** when we know that a value cannot be NULL. Hence, a false positive 1300 ** (returning TRUE when in fact the expression can never be NULL) might 1301 ** be a small performance hit but is otherwise harmless. On the other 1302 ** hand, a false negative (returning FALSE when the result could be NULL) 1303 ** will likely result in an incorrect answer. So when in doubt, return 1304 ** TRUE. 1305 */ 1306 int sqlite3ExprCanBeNull(const Expr *p){ 1307 u8 op; 1308 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1309 op = p->op; 1310 if( op==TK_REGISTER ) op = p->op2; 1311 switch( op ){ 1312 case TK_INTEGER: 1313 case TK_STRING: 1314 case TK_FLOAT: 1315 case TK_BLOB: 1316 return 0; 1317 default: 1318 return 1; 1319 } 1320 } 1321 1322 /* 1323 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1324 ** to location iDest if the value in iReg is NULL. The value in iReg 1325 ** was computed by pExpr. If we can look at pExpr at compile-time and 1326 ** determine that it can never generate a NULL, then the OP_IsNull operation 1327 ** can be omitted. 1328 */ 1329 void sqlite3ExprCodeIsNullJump( 1330 Vdbe *v, /* The VDBE under construction */ 1331 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1332 int iReg, /* Test the value in this register for NULL */ 1333 int iDest /* Jump here if the value is null */ 1334 ){ 1335 if( sqlite3ExprCanBeNull(pExpr) ){ 1336 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1337 } 1338 } 1339 1340 /* 1341 ** Return TRUE if the given expression is a constant which would be 1342 ** unchanged by OP_Affinity with the affinity given in the second 1343 ** argument. 1344 ** 1345 ** This routine is used to determine if the OP_Affinity operation 1346 ** can be omitted. When in doubt return FALSE. A false negative 1347 ** is harmless. A false positive, however, can result in the wrong 1348 ** answer. 1349 */ 1350 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1351 u8 op; 1352 if( aff==SQLITE_AFF_NONE ) return 1; 1353 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1354 op = p->op; 1355 if( op==TK_REGISTER ) op = p->op2; 1356 switch( op ){ 1357 case TK_INTEGER: { 1358 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1359 } 1360 case TK_FLOAT: { 1361 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1362 } 1363 case TK_STRING: { 1364 return aff==SQLITE_AFF_TEXT; 1365 } 1366 case TK_BLOB: { 1367 return 1; 1368 } 1369 case TK_COLUMN: { 1370 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1371 return p->iColumn<0 1372 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1373 } 1374 default: { 1375 return 0; 1376 } 1377 } 1378 } 1379 1380 /* 1381 ** Return TRUE if the given string is a row-id column name. 1382 */ 1383 int sqlite3IsRowid(const char *z){ 1384 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1385 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1386 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1387 return 0; 1388 } 1389 1390 /* 1391 ** Return true if we are able to the IN operator optimization on a 1392 ** query of the form 1393 ** 1394 ** x IN (SELECT ...) 1395 ** 1396 ** Where the SELECT... clause is as specified by the parameter to this 1397 ** routine. 1398 ** 1399 ** The Select object passed in has already been preprocessed and no 1400 ** errors have been found. 1401 */ 1402 #ifndef SQLITE_OMIT_SUBQUERY 1403 static int isCandidateForInOpt(Select *p){ 1404 SrcList *pSrc; 1405 ExprList *pEList; 1406 Table *pTab; 1407 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1408 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1409 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1410 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1411 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1412 return 0; /* No DISTINCT keyword and no aggregate functions */ 1413 } 1414 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1415 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1416 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1417 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1418 pSrc = p->pSrc; 1419 assert( pSrc!=0 ); 1420 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1421 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1422 pTab = pSrc->a[0].pTab; 1423 if( NEVER(pTab==0) ) return 0; 1424 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1425 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1426 pEList = p->pEList; 1427 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1428 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1429 return 1; 1430 } 1431 #endif /* SQLITE_OMIT_SUBQUERY */ 1432 1433 /* 1434 ** Code an OP_Once instruction and allocate space for its flag. Return the 1435 ** address of the new instruction. 1436 */ 1437 int sqlite3CodeOnce(Parse *pParse){ 1438 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1439 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1440 } 1441 1442 /* 1443 ** This function is used by the implementation of the IN (...) operator. 1444 ** The pX parameter is the expression on the RHS of the IN operator, which 1445 ** might be either a list of expressions or a subquery. 1446 ** 1447 ** The job of this routine is to find or create a b-tree object that can 1448 ** be used either to test for membership in the RHS set or to iterate through 1449 ** all members of the RHS set, skipping duplicates. 1450 ** 1451 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1452 ** and pX->iTable is set to the index of that cursor. 1453 ** 1454 ** The returned value of this function indicates the b-tree type, as follows: 1455 ** 1456 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1457 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1458 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1459 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1460 ** populated epheremal table. 1461 ** 1462 ** An existing b-tree might be used if the RHS expression pX is a simple 1463 ** subquery such as: 1464 ** 1465 ** SELECT <column> FROM <table> 1466 ** 1467 ** If the RHS of the IN operator is a list or a more complex subquery, then 1468 ** an ephemeral table might need to be generated from the RHS and then 1469 ** pX->iTable made to point to the ephermeral table instead of an 1470 ** existing table. 1471 ** 1472 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1473 ** through the set members, skipping any duplicates. In this case an 1474 ** epheremal table must be used unless the selected <column> is guaranteed 1475 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1476 ** has a UNIQUE constraint or UNIQUE index. 1477 ** 1478 ** If the prNotFound parameter is not 0, then the b-tree will be used 1479 ** for fast set membership tests. In this case an epheremal table must 1480 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1481 ** be found with <column> as its left-most column. 1482 ** 1483 ** When the b-tree is being used for membership tests, the calling function 1484 ** needs to know whether or not the structure contains an SQL NULL 1485 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1486 ** If there is any chance that the (...) might contain a NULL value at 1487 ** runtime, then a register is allocated and the register number written 1488 ** to *prNotFound. If there is no chance that the (...) contains a 1489 ** NULL value, then *prNotFound is left unchanged. 1490 ** 1491 ** If a register is allocated and its location stored in *prNotFound, then 1492 ** its initial value is NULL. If the (...) does not remain constant 1493 ** for the duration of the query (i.e. the SELECT within the (...) 1494 ** is a correlated subquery) then the value of the allocated register is 1495 ** reset to NULL each time the subquery is rerun. This allows the 1496 ** caller to use vdbe code equivalent to the following: 1497 ** 1498 ** if( register==NULL ){ 1499 ** has_null = <test if data structure contains null> 1500 ** register = 1 1501 ** } 1502 ** 1503 ** in order to avoid running the <test if data structure contains null> 1504 ** test more often than is necessary. 1505 */ 1506 #ifndef SQLITE_OMIT_SUBQUERY 1507 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1508 Select *p; /* SELECT to the right of IN operator */ 1509 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1510 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1511 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1512 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1513 1514 assert( pX->op==TK_IN ); 1515 1516 /* Check to see if an existing table or index can be used to 1517 ** satisfy the query. This is preferable to generating a new 1518 ** ephemeral table. 1519 */ 1520 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1521 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1522 sqlite3 *db = pParse->db; /* Database connection */ 1523 Table *pTab; /* Table <table>. */ 1524 Expr *pExpr; /* Expression <column> */ 1525 int iCol; /* Index of column <column> */ 1526 int iDb; /* Database idx for pTab */ 1527 1528 assert( p ); /* Because of isCandidateForInOpt(p) */ 1529 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1530 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1531 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1532 pTab = p->pSrc->a[0].pTab; 1533 pExpr = p->pEList->a[0].pExpr; 1534 iCol = pExpr->iColumn; 1535 1536 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1537 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1538 sqlite3CodeVerifySchema(pParse, iDb); 1539 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1540 1541 /* This function is only called from two places. In both cases the vdbe 1542 ** has already been allocated. So assume sqlite3GetVdbe() is always 1543 ** successful here. 1544 */ 1545 assert(v); 1546 if( iCol<0 ){ 1547 int iAddr; 1548 1549 iAddr = sqlite3CodeOnce(pParse); 1550 1551 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1552 eType = IN_INDEX_ROWID; 1553 1554 sqlite3VdbeJumpHere(v, iAddr); 1555 }else{ 1556 Index *pIdx; /* Iterator variable */ 1557 1558 /* The collation sequence used by the comparison. If an index is to 1559 ** be used in place of a temp-table, it must be ordered according 1560 ** to this collation sequence. */ 1561 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1562 1563 /* Check that the affinity that will be used to perform the 1564 ** comparison is the same as the affinity of the column. If 1565 ** it is not, it is not possible to use any index. 1566 */ 1567 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1568 1569 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1570 if( (pIdx->aiColumn[0]==iCol) 1571 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1572 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1573 ){ 1574 int iAddr; 1575 char *pKey; 1576 1577 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1578 iAddr = sqlite3CodeOnce(pParse); 1579 1580 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1581 pKey,P4_KEYINFO_HANDOFF); 1582 VdbeComment((v, "%s", pIdx->zName)); 1583 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1584 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1585 1586 sqlite3VdbeJumpHere(v, iAddr); 1587 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1588 *prNotFound = ++pParse->nMem; 1589 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1590 } 1591 } 1592 } 1593 } 1594 } 1595 1596 if( eType==0 ){ 1597 /* Could not found an existing table or index to use as the RHS b-tree. 1598 ** We will have to generate an ephemeral table to do the job. 1599 */ 1600 u32 savedNQueryLoop = pParse->nQueryLoop; 1601 int rMayHaveNull = 0; 1602 eType = IN_INDEX_EPH; 1603 if( prNotFound ){ 1604 *prNotFound = rMayHaveNull = ++pParse->nMem; 1605 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1606 }else{ 1607 testcase( pParse->nQueryLoop>0 ); 1608 pParse->nQueryLoop = 0; 1609 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1610 eType = IN_INDEX_ROWID; 1611 } 1612 } 1613 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1614 pParse->nQueryLoop = savedNQueryLoop; 1615 }else{ 1616 pX->iTable = iTab; 1617 } 1618 return eType; 1619 } 1620 #endif 1621 1622 /* 1623 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1624 ** or IN operators. Examples: 1625 ** 1626 ** (SELECT a FROM b) -- subquery 1627 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1628 ** x IN (4,5,11) -- IN operator with list on right-hand side 1629 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1630 ** 1631 ** The pExpr parameter describes the expression that contains the IN 1632 ** operator or subquery. 1633 ** 1634 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1635 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1636 ** to some integer key column of a table B-Tree. In this case, use an 1637 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1638 ** (slower) variable length keys B-Tree. 1639 ** 1640 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1641 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1642 ** Furthermore, the IN is in a WHERE clause and that we really want 1643 ** to iterate over the RHS of the IN operator in order to quickly locate 1644 ** all corresponding LHS elements. All this routine does is initialize 1645 ** the register given by rMayHaveNull to NULL. Calling routines will take 1646 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1647 ** 1648 ** If rMayHaveNull is zero, that means that the subquery is being used 1649 ** for membership testing only. There is no need to initialize any 1650 ** registers to indicate the presence or absence of NULLs on the RHS. 1651 ** 1652 ** For a SELECT or EXISTS operator, return the register that holds the 1653 ** result. For IN operators or if an error occurs, the return value is 0. 1654 */ 1655 #ifndef SQLITE_OMIT_SUBQUERY 1656 int sqlite3CodeSubselect( 1657 Parse *pParse, /* Parsing context */ 1658 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1659 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1660 int isRowid /* If true, LHS of IN operator is a rowid */ 1661 ){ 1662 int testAddr = -1; /* One-time test address */ 1663 int rReg = 0; /* Register storing resulting */ 1664 Vdbe *v = sqlite3GetVdbe(pParse); 1665 if( NEVER(v==0) ) return 0; 1666 sqlite3ExprCachePush(pParse); 1667 1668 /* This code must be run in its entirety every time it is encountered 1669 ** if any of the following is true: 1670 ** 1671 ** * The right-hand side is a correlated subquery 1672 ** * The right-hand side is an expression list containing variables 1673 ** * We are inside a trigger 1674 ** 1675 ** If all of the above are false, then we can run this code just once 1676 ** save the results, and reuse the same result on subsequent invocations. 1677 */ 1678 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1679 testAddr = sqlite3CodeOnce(pParse); 1680 } 1681 1682 #ifndef SQLITE_OMIT_EXPLAIN 1683 if( pParse->explain==2 ){ 1684 char *zMsg = sqlite3MPrintf( 1685 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1686 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1687 ); 1688 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1689 } 1690 #endif 1691 1692 switch( pExpr->op ){ 1693 case TK_IN: { 1694 char affinity; /* Affinity of the LHS of the IN */ 1695 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1696 static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ 1697 int addr; /* Address of OP_OpenEphemeral instruction */ 1698 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1699 1700 if( rMayHaveNull ){ 1701 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1702 } 1703 1704 affinity = sqlite3ExprAffinity(pLeft); 1705 1706 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1707 ** expression it is handled the same way. An ephemeral table is 1708 ** filled with single-field index keys representing the results 1709 ** from the SELECT or the <exprlist>. 1710 ** 1711 ** If the 'x' expression is a column value, or the SELECT... 1712 ** statement returns a column value, then the affinity of that 1713 ** column is used to build the index keys. If both 'x' and the 1714 ** SELECT... statement are columns, then numeric affinity is used 1715 ** if either column has NUMERIC or INTEGER affinity. If neither 1716 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1717 ** is used. 1718 */ 1719 pExpr->iTable = pParse->nTab++; 1720 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1721 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1722 memset(&keyInfo, 0, sizeof(keyInfo)); 1723 keyInfo.nField = 1; 1724 keyInfo.aSortOrder = &sortOrder; 1725 1726 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1727 /* Case 1: expr IN (SELECT ...) 1728 ** 1729 ** Generate code to write the results of the select into the temporary 1730 ** table allocated and opened above. 1731 */ 1732 SelectDest dest; 1733 ExprList *pEList; 1734 1735 assert( !isRowid ); 1736 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1737 dest.affSdst = (u8)affinity; 1738 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1739 pExpr->x.pSelect->iLimit = 0; 1740 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1741 return 0; 1742 } 1743 pEList = pExpr->x.pSelect->pEList; 1744 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1745 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1746 pEList->a[0].pExpr); 1747 } 1748 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1749 /* Case 2: expr IN (exprlist) 1750 ** 1751 ** For each expression, build an index key from the evaluation and 1752 ** store it in the temporary table. If <expr> is a column, then use 1753 ** that columns affinity when building index keys. If <expr> is not 1754 ** a column, use numeric affinity. 1755 */ 1756 int i; 1757 ExprList *pList = pExpr->x.pList; 1758 struct ExprList_item *pItem; 1759 int r1, r2, r3; 1760 1761 if( !affinity ){ 1762 affinity = SQLITE_AFF_NONE; 1763 } 1764 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1765 keyInfo.aSortOrder = &sortOrder; 1766 1767 /* Loop through each expression in <exprlist>. */ 1768 r1 = sqlite3GetTempReg(pParse); 1769 r2 = sqlite3GetTempReg(pParse); 1770 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1771 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1772 Expr *pE2 = pItem->pExpr; 1773 int iValToIns; 1774 1775 /* If the expression is not constant then we will need to 1776 ** disable the test that was generated above that makes sure 1777 ** this code only executes once. Because for a non-constant 1778 ** expression we need to rerun this code each time. 1779 */ 1780 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1781 sqlite3VdbeChangeToNoop(v, testAddr); 1782 testAddr = -1; 1783 } 1784 1785 /* Evaluate the expression and insert it into the temp table */ 1786 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1787 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1788 }else{ 1789 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1790 if( isRowid ){ 1791 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1792 sqlite3VdbeCurrentAddr(v)+2); 1793 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1794 }else{ 1795 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1796 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1797 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1798 } 1799 } 1800 } 1801 sqlite3ReleaseTempReg(pParse, r1); 1802 sqlite3ReleaseTempReg(pParse, r2); 1803 } 1804 if( !isRowid ){ 1805 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1806 } 1807 break; 1808 } 1809 1810 case TK_EXISTS: 1811 case TK_SELECT: 1812 default: { 1813 /* If this has to be a scalar SELECT. Generate code to put the 1814 ** value of this select in a memory cell and record the number 1815 ** of the memory cell in iColumn. If this is an EXISTS, write 1816 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1817 ** and record that memory cell in iColumn. 1818 */ 1819 Select *pSel; /* SELECT statement to encode */ 1820 SelectDest dest; /* How to deal with SELECt result */ 1821 1822 testcase( pExpr->op==TK_EXISTS ); 1823 testcase( pExpr->op==TK_SELECT ); 1824 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1825 1826 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1827 pSel = pExpr->x.pSelect; 1828 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1829 if( pExpr->op==TK_SELECT ){ 1830 dest.eDest = SRT_Mem; 1831 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1832 VdbeComment((v, "Init subquery result")); 1833 }else{ 1834 dest.eDest = SRT_Exists; 1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1836 VdbeComment((v, "Init EXISTS result")); 1837 } 1838 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1839 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1840 &sqlite3IntTokens[1]); 1841 pSel->iLimit = 0; 1842 if( sqlite3Select(pParse, pSel, &dest) ){ 1843 return 0; 1844 } 1845 rReg = dest.iSDParm; 1846 ExprSetIrreducible(pExpr); 1847 break; 1848 } 1849 } 1850 1851 if( testAddr>=0 ){ 1852 sqlite3VdbeJumpHere(v, testAddr); 1853 } 1854 sqlite3ExprCachePop(pParse, 1); 1855 1856 return rReg; 1857 } 1858 #endif /* SQLITE_OMIT_SUBQUERY */ 1859 1860 #ifndef SQLITE_OMIT_SUBQUERY 1861 /* 1862 ** Generate code for an IN expression. 1863 ** 1864 ** x IN (SELECT ...) 1865 ** x IN (value, value, ...) 1866 ** 1867 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1868 ** is an array of zero or more values. The expression is true if the LHS is 1869 ** contained within the RHS. The value of the expression is unknown (NULL) 1870 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1871 ** RHS contains one or more NULL values. 1872 ** 1873 ** This routine generates code will jump to destIfFalse if the LHS is not 1874 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1875 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1876 ** within the RHS then fall through. 1877 */ 1878 static void sqlite3ExprCodeIN( 1879 Parse *pParse, /* Parsing and code generating context */ 1880 Expr *pExpr, /* The IN expression */ 1881 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1882 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1883 ){ 1884 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1885 char affinity; /* Comparison affinity to use */ 1886 int eType; /* Type of the RHS */ 1887 int r1; /* Temporary use register */ 1888 Vdbe *v; /* Statement under construction */ 1889 1890 /* Compute the RHS. After this step, the table with cursor 1891 ** pExpr->iTable will contains the values that make up the RHS. 1892 */ 1893 v = pParse->pVdbe; 1894 assert( v!=0 ); /* OOM detected prior to this routine */ 1895 VdbeNoopComment((v, "begin IN expr")); 1896 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1897 1898 /* Figure out the affinity to use to create a key from the results 1899 ** of the expression. affinityStr stores a static string suitable for 1900 ** P4 of OP_MakeRecord. 1901 */ 1902 affinity = comparisonAffinity(pExpr); 1903 1904 /* Code the LHS, the <expr> from "<expr> IN (...)". 1905 */ 1906 sqlite3ExprCachePush(pParse); 1907 r1 = sqlite3GetTempReg(pParse); 1908 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1909 1910 /* If the LHS is NULL, then the result is either false or NULL depending 1911 ** on whether the RHS is empty or not, respectively. 1912 */ 1913 if( destIfNull==destIfFalse ){ 1914 /* Shortcut for the common case where the false and NULL outcomes are 1915 ** the same. */ 1916 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1917 }else{ 1918 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1919 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1920 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1921 sqlite3VdbeJumpHere(v, addr1); 1922 } 1923 1924 if( eType==IN_INDEX_ROWID ){ 1925 /* In this case, the RHS is the ROWID of table b-tree 1926 */ 1927 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1928 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1929 }else{ 1930 /* In this case, the RHS is an index b-tree. 1931 */ 1932 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1933 1934 /* If the set membership test fails, then the result of the 1935 ** "x IN (...)" expression must be either 0 or NULL. If the set 1936 ** contains no NULL values, then the result is 0. If the set 1937 ** contains one or more NULL values, then the result of the 1938 ** expression is also NULL. 1939 */ 1940 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1941 /* This branch runs if it is known at compile time that the RHS 1942 ** cannot contain NULL values. This happens as the result 1943 ** of a "NOT NULL" constraint in the database schema. 1944 ** 1945 ** Also run this branch if NULL is equivalent to FALSE 1946 ** for this particular IN operator. 1947 */ 1948 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1949 1950 }else{ 1951 /* In this branch, the RHS of the IN might contain a NULL and 1952 ** the presence of a NULL on the RHS makes a difference in the 1953 ** outcome. 1954 */ 1955 int j1, j2, j3; 1956 1957 /* First check to see if the LHS is contained in the RHS. If so, 1958 ** then the presence of NULLs in the RHS does not matter, so jump 1959 ** over all of the code that follows. 1960 */ 1961 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1962 1963 /* Here we begin generating code that runs if the LHS is not 1964 ** contained within the RHS. Generate additional code that 1965 ** tests the RHS for NULLs. If the RHS contains a NULL then 1966 ** jump to destIfNull. If there are no NULLs in the RHS then 1967 ** jump to destIfFalse. 1968 */ 1969 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1970 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1971 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1972 sqlite3VdbeJumpHere(v, j3); 1973 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1974 sqlite3VdbeJumpHere(v, j2); 1975 1976 /* Jump to the appropriate target depending on whether or not 1977 ** the RHS contains a NULL 1978 */ 1979 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1980 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1981 1982 /* The OP_Found at the top of this branch jumps here when true, 1983 ** causing the overall IN expression evaluation to fall through. 1984 */ 1985 sqlite3VdbeJumpHere(v, j1); 1986 } 1987 } 1988 sqlite3ReleaseTempReg(pParse, r1); 1989 sqlite3ExprCachePop(pParse, 1); 1990 VdbeComment((v, "end IN expr")); 1991 } 1992 #endif /* SQLITE_OMIT_SUBQUERY */ 1993 1994 /* 1995 ** Duplicate an 8-byte value 1996 */ 1997 static char *dup8bytes(Vdbe *v, const char *in){ 1998 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1999 if( out ){ 2000 memcpy(out, in, 8); 2001 } 2002 return out; 2003 } 2004 2005 #ifndef SQLITE_OMIT_FLOATING_POINT 2006 /* 2007 ** Generate an instruction that will put the floating point 2008 ** value described by z[0..n-1] into register iMem. 2009 ** 2010 ** The z[] string will probably not be zero-terminated. But the 2011 ** z[n] character is guaranteed to be something that does not look 2012 ** like the continuation of the number. 2013 */ 2014 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2015 if( ALWAYS(z!=0) ){ 2016 double value; 2017 char *zV; 2018 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2019 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2020 if( negateFlag ) value = -value; 2021 zV = dup8bytes(v, (char*)&value); 2022 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2023 } 2024 } 2025 #endif 2026 2027 2028 /* 2029 ** Generate an instruction that will put the integer describe by 2030 ** text z[0..n-1] into register iMem. 2031 ** 2032 ** Expr.u.zToken is always UTF8 and zero-terminated. 2033 */ 2034 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2035 Vdbe *v = pParse->pVdbe; 2036 if( pExpr->flags & EP_IntValue ){ 2037 int i = pExpr->u.iValue; 2038 assert( i>=0 ); 2039 if( negFlag ) i = -i; 2040 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2041 }else{ 2042 int c; 2043 i64 value; 2044 const char *z = pExpr->u.zToken; 2045 assert( z!=0 ); 2046 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2047 if( c==0 || (c==2 && negFlag) ){ 2048 char *zV; 2049 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2050 zV = dup8bytes(v, (char*)&value); 2051 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2052 }else{ 2053 #ifdef SQLITE_OMIT_FLOATING_POINT 2054 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2055 #else 2056 codeReal(v, z, negFlag, iMem); 2057 #endif 2058 } 2059 } 2060 } 2061 2062 /* 2063 ** Clear a cache entry. 2064 */ 2065 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2066 if( p->tempReg ){ 2067 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2068 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2069 } 2070 p->tempReg = 0; 2071 } 2072 } 2073 2074 2075 /* 2076 ** Record in the column cache that a particular column from a 2077 ** particular table is stored in a particular register. 2078 */ 2079 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2080 int i; 2081 int minLru; 2082 int idxLru; 2083 struct yColCache *p; 2084 2085 assert( iReg>0 ); /* Register numbers are always positive */ 2086 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2087 2088 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2089 ** for testing only - to verify that SQLite always gets the same answer 2090 ** with and without the column cache. 2091 */ 2092 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2093 2094 /* First replace any existing entry. 2095 ** 2096 ** Actually, the way the column cache is currently used, we are guaranteed 2097 ** that the object will never already be in cache. Verify this guarantee. 2098 */ 2099 #ifndef NDEBUG 2100 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2101 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2102 } 2103 #endif 2104 2105 /* Find an empty slot and replace it */ 2106 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2107 if( p->iReg==0 ){ 2108 p->iLevel = pParse->iCacheLevel; 2109 p->iTable = iTab; 2110 p->iColumn = iCol; 2111 p->iReg = iReg; 2112 p->tempReg = 0; 2113 p->lru = pParse->iCacheCnt++; 2114 return; 2115 } 2116 } 2117 2118 /* Replace the last recently used */ 2119 minLru = 0x7fffffff; 2120 idxLru = -1; 2121 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2122 if( p->lru<minLru ){ 2123 idxLru = i; 2124 minLru = p->lru; 2125 } 2126 } 2127 if( ALWAYS(idxLru>=0) ){ 2128 p = &pParse->aColCache[idxLru]; 2129 p->iLevel = pParse->iCacheLevel; 2130 p->iTable = iTab; 2131 p->iColumn = iCol; 2132 p->iReg = iReg; 2133 p->tempReg = 0; 2134 p->lru = pParse->iCacheCnt++; 2135 return; 2136 } 2137 } 2138 2139 /* 2140 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2141 ** Purge the range of registers from the column cache. 2142 */ 2143 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2144 int i; 2145 int iLast = iReg + nReg - 1; 2146 struct yColCache *p; 2147 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2148 int r = p->iReg; 2149 if( r>=iReg && r<=iLast ){ 2150 cacheEntryClear(pParse, p); 2151 p->iReg = 0; 2152 } 2153 } 2154 } 2155 2156 /* 2157 ** Remember the current column cache context. Any new entries added 2158 ** added to the column cache after this call are removed when the 2159 ** corresponding pop occurs. 2160 */ 2161 void sqlite3ExprCachePush(Parse *pParse){ 2162 pParse->iCacheLevel++; 2163 } 2164 2165 /* 2166 ** Remove from the column cache any entries that were added since the 2167 ** the previous N Push operations. In other words, restore the cache 2168 ** to the state it was in N Pushes ago. 2169 */ 2170 void sqlite3ExprCachePop(Parse *pParse, int N){ 2171 int i; 2172 struct yColCache *p; 2173 assert( N>0 ); 2174 assert( pParse->iCacheLevel>=N ); 2175 pParse->iCacheLevel -= N; 2176 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2177 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2178 cacheEntryClear(pParse, p); 2179 p->iReg = 0; 2180 } 2181 } 2182 } 2183 2184 /* 2185 ** When a cached column is reused, make sure that its register is 2186 ** no longer available as a temp register. ticket #3879: that same 2187 ** register might be in the cache in multiple places, so be sure to 2188 ** get them all. 2189 */ 2190 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2191 int i; 2192 struct yColCache *p; 2193 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2194 if( p->iReg==iReg ){ 2195 p->tempReg = 0; 2196 } 2197 } 2198 } 2199 2200 /* 2201 ** Generate code to extract the value of the iCol-th column of a table. 2202 */ 2203 void sqlite3ExprCodeGetColumnOfTable( 2204 Vdbe *v, /* The VDBE under construction */ 2205 Table *pTab, /* The table containing the value */ 2206 int iTabCur, /* The cursor for this table */ 2207 int iCol, /* Index of the column to extract */ 2208 int regOut /* Extract the valud into this register */ 2209 ){ 2210 if( iCol<0 || iCol==pTab->iPKey ){ 2211 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2212 }else{ 2213 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2214 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2215 } 2216 if( iCol>=0 ){ 2217 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2218 } 2219 } 2220 2221 /* 2222 ** Generate code that will extract the iColumn-th column from 2223 ** table pTab and store the column value in a register. An effort 2224 ** is made to store the column value in register iReg, but this is 2225 ** not guaranteed. The location of the column value is returned. 2226 ** 2227 ** There must be an open cursor to pTab in iTable when this routine 2228 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2229 */ 2230 int sqlite3ExprCodeGetColumn( 2231 Parse *pParse, /* Parsing and code generating context */ 2232 Table *pTab, /* Description of the table we are reading from */ 2233 int iColumn, /* Index of the table column */ 2234 int iTable, /* The cursor pointing to the table */ 2235 int iReg, /* Store results here */ 2236 u8 p5 /* P5 value for OP_Column */ 2237 ){ 2238 Vdbe *v = pParse->pVdbe; 2239 int i; 2240 struct yColCache *p; 2241 2242 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2243 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2244 p->lru = pParse->iCacheCnt++; 2245 sqlite3ExprCachePinRegister(pParse, p->iReg); 2246 return p->iReg; 2247 } 2248 } 2249 assert( v!=0 ); 2250 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2251 if( p5 ){ 2252 sqlite3VdbeChangeP5(v, p5); 2253 }else{ 2254 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2255 } 2256 return iReg; 2257 } 2258 2259 /* 2260 ** Clear all column cache entries. 2261 */ 2262 void sqlite3ExprCacheClear(Parse *pParse){ 2263 int i; 2264 struct yColCache *p; 2265 2266 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2267 if( p->iReg ){ 2268 cacheEntryClear(pParse, p); 2269 p->iReg = 0; 2270 } 2271 } 2272 } 2273 2274 /* 2275 ** Record the fact that an affinity change has occurred on iCount 2276 ** registers starting with iStart. 2277 */ 2278 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2279 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2280 } 2281 2282 /* 2283 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2284 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2285 */ 2286 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2287 int i; 2288 struct yColCache *p; 2289 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2290 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); 2291 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2292 int x = p->iReg; 2293 if( x>=iFrom && x<iFrom+nReg ){ 2294 p->iReg += iTo-iFrom; 2295 } 2296 } 2297 } 2298 2299 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2300 /* 2301 ** Return true if any register in the range iFrom..iTo (inclusive) 2302 ** is used as part of the column cache. 2303 ** 2304 ** This routine is used within assert() and testcase() macros only 2305 ** and does not appear in a normal build. 2306 */ 2307 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2308 int i; 2309 struct yColCache *p; 2310 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2311 int r = p->iReg; 2312 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2313 } 2314 return 0; 2315 } 2316 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2317 2318 /* 2319 ** Generate code into the current Vdbe to evaluate the given 2320 ** expression. Attempt to store the results in register "target". 2321 ** Return the register where results are stored. 2322 ** 2323 ** With this routine, there is no guarantee that results will 2324 ** be stored in target. The result might be stored in some other 2325 ** register if it is convenient to do so. The calling function 2326 ** must check the return code and move the results to the desired 2327 ** register. 2328 */ 2329 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2330 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2331 int op; /* The opcode being coded */ 2332 int inReg = target; /* Results stored in register inReg */ 2333 int regFree1 = 0; /* If non-zero free this temporary register */ 2334 int regFree2 = 0; /* If non-zero free this temporary register */ 2335 int r1, r2, r3, r4; /* Various register numbers */ 2336 sqlite3 *db = pParse->db; /* The database connection */ 2337 2338 assert( target>0 && target<=pParse->nMem ); 2339 if( v==0 ){ 2340 assert( pParse->db->mallocFailed ); 2341 return 0; 2342 } 2343 2344 if( pExpr==0 ){ 2345 op = TK_NULL; 2346 }else{ 2347 op = pExpr->op; 2348 } 2349 switch( op ){ 2350 case TK_AGG_COLUMN: { 2351 AggInfo *pAggInfo = pExpr->pAggInfo; 2352 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2353 if( !pAggInfo->directMode ){ 2354 assert( pCol->iMem>0 ); 2355 inReg = pCol->iMem; 2356 break; 2357 }else if( pAggInfo->useSortingIdx ){ 2358 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2359 pCol->iSorterColumn, target); 2360 break; 2361 } 2362 /* Otherwise, fall thru into the TK_COLUMN case */ 2363 } 2364 case TK_COLUMN: { 2365 if( pExpr->iTable<0 ){ 2366 /* This only happens when coding check constraints */ 2367 assert( pParse->ckBase>0 ); 2368 inReg = pExpr->iColumn + pParse->ckBase; 2369 }else{ 2370 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2371 pExpr->iColumn, pExpr->iTable, target, 2372 pExpr->op2); 2373 } 2374 break; 2375 } 2376 case TK_INTEGER: { 2377 codeInteger(pParse, pExpr, 0, target); 2378 break; 2379 } 2380 #ifndef SQLITE_OMIT_FLOATING_POINT 2381 case TK_FLOAT: { 2382 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2383 codeReal(v, pExpr->u.zToken, 0, target); 2384 break; 2385 } 2386 #endif 2387 case TK_STRING: { 2388 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2389 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2390 break; 2391 } 2392 case TK_NULL: { 2393 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2394 break; 2395 } 2396 #ifndef SQLITE_OMIT_BLOB_LITERAL 2397 case TK_BLOB: { 2398 int n; 2399 const char *z; 2400 char *zBlob; 2401 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2402 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2403 assert( pExpr->u.zToken[1]=='\'' ); 2404 z = &pExpr->u.zToken[2]; 2405 n = sqlite3Strlen30(z) - 1; 2406 assert( z[n]=='\'' ); 2407 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2408 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2409 break; 2410 } 2411 #endif 2412 case TK_VARIABLE: { 2413 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2414 assert( pExpr->u.zToken!=0 ); 2415 assert( pExpr->u.zToken[0]!=0 ); 2416 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2417 if( pExpr->u.zToken[1]!=0 ){ 2418 assert( pExpr->u.zToken[0]=='?' 2419 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2420 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2421 } 2422 break; 2423 } 2424 case TK_REGISTER: { 2425 inReg = pExpr->iTable; 2426 break; 2427 } 2428 case TK_AS: { 2429 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2430 break; 2431 } 2432 #ifndef SQLITE_OMIT_CAST 2433 case TK_CAST: { 2434 /* Expressions of the form: CAST(pLeft AS token) */ 2435 int aff, to_op; 2436 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2437 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2438 aff = sqlite3AffinityType(pExpr->u.zToken); 2439 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2440 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2441 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2442 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2443 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2444 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2445 testcase( to_op==OP_ToText ); 2446 testcase( to_op==OP_ToBlob ); 2447 testcase( to_op==OP_ToNumeric ); 2448 testcase( to_op==OP_ToInt ); 2449 testcase( to_op==OP_ToReal ); 2450 if( inReg!=target ){ 2451 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2452 inReg = target; 2453 } 2454 sqlite3VdbeAddOp1(v, to_op, inReg); 2455 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2456 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2457 break; 2458 } 2459 #endif /* SQLITE_OMIT_CAST */ 2460 case TK_LT: 2461 case TK_LE: 2462 case TK_GT: 2463 case TK_GE: 2464 case TK_NE: 2465 case TK_EQ: { 2466 assert( TK_LT==OP_Lt ); 2467 assert( TK_LE==OP_Le ); 2468 assert( TK_GT==OP_Gt ); 2469 assert( TK_GE==OP_Ge ); 2470 assert( TK_EQ==OP_Eq ); 2471 assert( TK_NE==OP_Ne ); 2472 testcase( op==TK_LT ); 2473 testcase( op==TK_LE ); 2474 testcase( op==TK_GT ); 2475 testcase( op==TK_GE ); 2476 testcase( op==TK_EQ ); 2477 testcase( op==TK_NE ); 2478 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2479 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2480 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2481 r1, r2, inReg, SQLITE_STOREP2); 2482 testcase( regFree1==0 ); 2483 testcase( regFree2==0 ); 2484 break; 2485 } 2486 case TK_IS: 2487 case TK_ISNOT: { 2488 testcase( op==TK_IS ); 2489 testcase( op==TK_ISNOT ); 2490 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2491 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2492 op = (op==TK_IS) ? TK_EQ : TK_NE; 2493 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2494 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2495 testcase( regFree1==0 ); 2496 testcase( regFree2==0 ); 2497 break; 2498 } 2499 case TK_AND: 2500 case TK_OR: 2501 case TK_PLUS: 2502 case TK_STAR: 2503 case TK_MINUS: 2504 case TK_REM: 2505 case TK_BITAND: 2506 case TK_BITOR: 2507 case TK_SLASH: 2508 case TK_LSHIFT: 2509 case TK_RSHIFT: 2510 case TK_CONCAT: { 2511 assert( TK_AND==OP_And ); 2512 assert( TK_OR==OP_Or ); 2513 assert( TK_PLUS==OP_Add ); 2514 assert( TK_MINUS==OP_Subtract ); 2515 assert( TK_REM==OP_Remainder ); 2516 assert( TK_BITAND==OP_BitAnd ); 2517 assert( TK_BITOR==OP_BitOr ); 2518 assert( TK_SLASH==OP_Divide ); 2519 assert( TK_LSHIFT==OP_ShiftLeft ); 2520 assert( TK_RSHIFT==OP_ShiftRight ); 2521 assert( TK_CONCAT==OP_Concat ); 2522 testcase( op==TK_AND ); 2523 testcase( op==TK_OR ); 2524 testcase( op==TK_PLUS ); 2525 testcase( op==TK_MINUS ); 2526 testcase( op==TK_REM ); 2527 testcase( op==TK_BITAND ); 2528 testcase( op==TK_BITOR ); 2529 testcase( op==TK_SLASH ); 2530 testcase( op==TK_LSHIFT ); 2531 testcase( op==TK_RSHIFT ); 2532 testcase( op==TK_CONCAT ); 2533 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2534 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2535 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2536 testcase( regFree1==0 ); 2537 testcase( regFree2==0 ); 2538 break; 2539 } 2540 case TK_UMINUS: { 2541 Expr *pLeft = pExpr->pLeft; 2542 assert( pLeft ); 2543 if( pLeft->op==TK_INTEGER ){ 2544 codeInteger(pParse, pLeft, 1, target); 2545 #ifndef SQLITE_OMIT_FLOATING_POINT 2546 }else if( pLeft->op==TK_FLOAT ){ 2547 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2548 codeReal(v, pLeft->u.zToken, 1, target); 2549 #endif 2550 }else{ 2551 regFree1 = r1 = sqlite3GetTempReg(pParse); 2552 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2553 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2554 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2555 testcase( regFree2==0 ); 2556 } 2557 inReg = target; 2558 break; 2559 } 2560 case TK_BITNOT: 2561 case TK_NOT: { 2562 assert( TK_BITNOT==OP_BitNot ); 2563 assert( TK_NOT==OP_Not ); 2564 testcase( op==TK_BITNOT ); 2565 testcase( op==TK_NOT ); 2566 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2567 testcase( regFree1==0 ); 2568 inReg = target; 2569 sqlite3VdbeAddOp2(v, op, r1, inReg); 2570 break; 2571 } 2572 case TK_ISNULL: 2573 case TK_NOTNULL: { 2574 int addr; 2575 assert( TK_ISNULL==OP_IsNull ); 2576 assert( TK_NOTNULL==OP_NotNull ); 2577 testcase( op==TK_ISNULL ); 2578 testcase( op==TK_NOTNULL ); 2579 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2580 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2581 testcase( regFree1==0 ); 2582 addr = sqlite3VdbeAddOp1(v, op, r1); 2583 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2584 sqlite3VdbeJumpHere(v, addr); 2585 break; 2586 } 2587 case TK_AGG_FUNCTION: { 2588 AggInfo *pInfo = pExpr->pAggInfo; 2589 if( pInfo==0 ){ 2590 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2591 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2592 }else{ 2593 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2594 } 2595 break; 2596 } 2597 case TK_CONST_FUNC: 2598 case TK_FUNCTION: { 2599 ExprList *pFarg; /* List of function arguments */ 2600 int nFarg; /* Number of function arguments */ 2601 FuncDef *pDef; /* The function definition object */ 2602 int nId; /* Length of the function name in bytes */ 2603 const char *zId; /* The function name */ 2604 int constMask = 0; /* Mask of function arguments that are constant */ 2605 int i; /* Loop counter */ 2606 u8 enc = ENC(db); /* The text encoding used by this database */ 2607 CollSeq *pColl = 0; /* A collating sequence */ 2608 2609 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2610 testcase( op==TK_CONST_FUNC ); 2611 testcase( op==TK_FUNCTION ); 2612 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2613 pFarg = 0; 2614 }else{ 2615 pFarg = pExpr->x.pList; 2616 } 2617 nFarg = pFarg ? pFarg->nExpr : 0; 2618 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2619 zId = pExpr->u.zToken; 2620 nId = sqlite3Strlen30(zId); 2621 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2622 if( pDef==0 ){ 2623 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2624 break; 2625 } 2626 2627 /* Attempt a direct implementation of the built-in COALESCE() and 2628 ** IFNULL() functions. This avoids unnecessary evalation of 2629 ** arguments past the first non-NULL argument. 2630 */ 2631 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2632 int endCoalesce = sqlite3VdbeMakeLabel(v); 2633 assert( nFarg>=2 ); 2634 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2635 for(i=1; i<nFarg; i++){ 2636 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2637 sqlite3ExprCacheRemove(pParse, target, 1); 2638 sqlite3ExprCachePush(pParse); 2639 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2640 sqlite3ExprCachePop(pParse, 1); 2641 } 2642 sqlite3VdbeResolveLabel(v, endCoalesce); 2643 break; 2644 } 2645 2646 2647 if( pFarg ){ 2648 r1 = sqlite3GetTempRange(pParse, nFarg); 2649 2650 /* For length() and typeof() functions with a column argument, 2651 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2652 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2653 ** loading. 2654 */ 2655 if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2656 u8 exprOp; 2657 assert( nFarg==1 ); 2658 assert( pFarg->a[0].pExpr!=0 ); 2659 exprOp = pFarg->a[0].pExpr->op; 2660 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2661 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2662 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2663 testcase( pDef->flags==SQLITE_FUNC_LENGTH ); 2664 pFarg->a[0].pExpr->op2 = pDef->flags; 2665 } 2666 } 2667 2668 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2669 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2670 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2671 }else{ 2672 r1 = 0; 2673 } 2674 #ifndef SQLITE_OMIT_VIRTUALTABLE 2675 /* Possibly overload the function if the first argument is 2676 ** a virtual table column. 2677 ** 2678 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2679 ** second argument, not the first, as the argument to test to 2680 ** see if it is a column in a virtual table. This is done because 2681 ** the left operand of infix functions (the operand we want to 2682 ** control overloading) ends up as the second argument to the 2683 ** function. The expression "A glob B" is equivalent to 2684 ** "glob(B,A). We want to use the A in "A glob B" to test 2685 ** for function overloading. But we use the B term in "glob(B,A)". 2686 */ 2687 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2688 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2689 }else if( nFarg>0 ){ 2690 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2691 } 2692 #endif 2693 for(i=0; i<nFarg; i++){ 2694 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2695 constMask |= (1<<i); 2696 } 2697 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2698 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2699 } 2700 } 2701 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2702 if( !pColl ) pColl = db->pDfltColl; 2703 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2704 } 2705 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2706 (char*)pDef, P4_FUNCDEF); 2707 sqlite3VdbeChangeP5(v, (u8)nFarg); 2708 if( nFarg ){ 2709 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2710 } 2711 break; 2712 } 2713 #ifndef SQLITE_OMIT_SUBQUERY 2714 case TK_EXISTS: 2715 case TK_SELECT: { 2716 testcase( op==TK_EXISTS ); 2717 testcase( op==TK_SELECT ); 2718 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2719 break; 2720 } 2721 case TK_IN: { 2722 int destIfFalse = sqlite3VdbeMakeLabel(v); 2723 int destIfNull = sqlite3VdbeMakeLabel(v); 2724 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2725 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2726 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2727 sqlite3VdbeResolveLabel(v, destIfFalse); 2728 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2729 sqlite3VdbeResolveLabel(v, destIfNull); 2730 break; 2731 } 2732 #endif /* SQLITE_OMIT_SUBQUERY */ 2733 2734 2735 /* 2736 ** x BETWEEN y AND z 2737 ** 2738 ** This is equivalent to 2739 ** 2740 ** x>=y AND x<=z 2741 ** 2742 ** X is stored in pExpr->pLeft. 2743 ** Y is stored in pExpr->pList->a[0].pExpr. 2744 ** Z is stored in pExpr->pList->a[1].pExpr. 2745 */ 2746 case TK_BETWEEN: { 2747 Expr *pLeft = pExpr->pLeft; 2748 struct ExprList_item *pLItem = pExpr->x.pList->a; 2749 Expr *pRight = pLItem->pExpr; 2750 2751 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2752 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2753 testcase( regFree1==0 ); 2754 testcase( regFree2==0 ); 2755 r3 = sqlite3GetTempReg(pParse); 2756 r4 = sqlite3GetTempReg(pParse); 2757 codeCompare(pParse, pLeft, pRight, OP_Ge, 2758 r1, r2, r3, SQLITE_STOREP2); 2759 pLItem++; 2760 pRight = pLItem->pExpr; 2761 sqlite3ReleaseTempReg(pParse, regFree2); 2762 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2763 testcase( regFree2==0 ); 2764 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2765 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2766 sqlite3ReleaseTempReg(pParse, r3); 2767 sqlite3ReleaseTempReg(pParse, r4); 2768 break; 2769 } 2770 case TK_COLLATE: 2771 case TK_UPLUS: { 2772 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2773 break; 2774 } 2775 2776 case TK_TRIGGER: { 2777 /* If the opcode is TK_TRIGGER, then the expression is a reference 2778 ** to a column in the new.* or old.* pseudo-tables available to 2779 ** trigger programs. In this case Expr.iTable is set to 1 for the 2780 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2781 ** is set to the column of the pseudo-table to read, or to -1 to 2782 ** read the rowid field. 2783 ** 2784 ** The expression is implemented using an OP_Param opcode. The p1 2785 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2786 ** to reference another column of the old.* pseudo-table, where 2787 ** i is the index of the column. For a new.rowid reference, p1 is 2788 ** set to (n+1), where n is the number of columns in each pseudo-table. 2789 ** For a reference to any other column in the new.* pseudo-table, p1 2790 ** is set to (n+2+i), where n and i are as defined previously. For 2791 ** example, if the table on which triggers are being fired is 2792 ** declared as: 2793 ** 2794 ** CREATE TABLE t1(a, b); 2795 ** 2796 ** Then p1 is interpreted as follows: 2797 ** 2798 ** p1==0 -> old.rowid p1==3 -> new.rowid 2799 ** p1==1 -> old.a p1==4 -> new.a 2800 ** p1==2 -> old.b p1==5 -> new.b 2801 */ 2802 Table *pTab = pExpr->pTab; 2803 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2804 2805 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2806 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2807 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2808 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2809 2810 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2811 VdbeComment((v, "%s.%s -> $%d", 2812 (pExpr->iTable ? "new" : "old"), 2813 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2814 target 2815 )); 2816 2817 #ifndef SQLITE_OMIT_FLOATING_POINT 2818 /* If the column has REAL affinity, it may currently be stored as an 2819 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2820 if( pExpr->iColumn>=0 2821 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2822 ){ 2823 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2824 } 2825 #endif 2826 break; 2827 } 2828 2829 2830 /* 2831 ** Form A: 2832 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2833 ** 2834 ** Form B: 2835 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2836 ** 2837 ** Form A is can be transformed into the equivalent form B as follows: 2838 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2839 ** WHEN x=eN THEN rN ELSE y END 2840 ** 2841 ** X (if it exists) is in pExpr->pLeft. 2842 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2843 ** ELSE clause and no other term matches, then the result of the 2844 ** exprssion is NULL. 2845 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2846 ** 2847 ** The result of the expression is the Ri for the first matching Ei, 2848 ** or if there is no matching Ei, the ELSE term Y, or if there is 2849 ** no ELSE term, NULL. 2850 */ 2851 default: assert( op==TK_CASE ); { 2852 int endLabel; /* GOTO label for end of CASE stmt */ 2853 int nextCase; /* GOTO label for next WHEN clause */ 2854 int nExpr; /* 2x number of WHEN terms */ 2855 int i; /* Loop counter */ 2856 ExprList *pEList; /* List of WHEN terms */ 2857 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2858 Expr opCompare; /* The X==Ei expression */ 2859 Expr cacheX; /* Cached expression X */ 2860 Expr *pX; /* The X expression */ 2861 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2862 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2863 2864 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2865 assert((pExpr->x.pList->nExpr % 2) == 0); 2866 assert(pExpr->x.pList->nExpr > 0); 2867 pEList = pExpr->x.pList; 2868 aListelem = pEList->a; 2869 nExpr = pEList->nExpr; 2870 endLabel = sqlite3VdbeMakeLabel(v); 2871 if( (pX = pExpr->pLeft)!=0 ){ 2872 cacheX = *pX; 2873 testcase( pX->op==TK_COLUMN ); 2874 testcase( pX->op==TK_REGISTER ); 2875 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2876 testcase( regFree1==0 ); 2877 cacheX.op = TK_REGISTER; 2878 opCompare.op = TK_EQ; 2879 opCompare.pLeft = &cacheX; 2880 pTest = &opCompare; 2881 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2882 ** The value in regFree1 might get SCopy-ed into the file result. 2883 ** So make sure that the regFree1 register is not reused for other 2884 ** purposes and possibly overwritten. */ 2885 regFree1 = 0; 2886 } 2887 for(i=0; i<nExpr; i=i+2){ 2888 sqlite3ExprCachePush(pParse); 2889 if( pX ){ 2890 assert( pTest!=0 ); 2891 opCompare.pRight = aListelem[i].pExpr; 2892 }else{ 2893 pTest = aListelem[i].pExpr; 2894 } 2895 nextCase = sqlite3VdbeMakeLabel(v); 2896 testcase( pTest->op==TK_COLUMN ); 2897 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2898 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2899 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2900 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2901 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2902 sqlite3ExprCachePop(pParse, 1); 2903 sqlite3VdbeResolveLabel(v, nextCase); 2904 } 2905 if( pExpr->pRight ){ 2906 sqlite3ExprCachePush(pParse); 2907 sqlite3ExprCode(pParse, pExpr->pRight, target); 2908 sqlite3ExprCachePop(pParse, 1); 2909 }else{ 2910 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2911 } 2912 assert( db->mallocFailed || pParse->nErr>0 2913 || pParse->iCacheLevel==iCacheLevel ); 2914 sqlite3VdbeResolveLabel(v, endLabel); 2915 break; 2916 } 2917 #ifndef SQLITE_OMIT_TRIGGER 2918 case TK_RAISE: { 2919 assert( pExpr->affinity==OE_Rollback 2920 || pExpr->affinity==OE_Abort 2921 || pExpr->affinity==OE_Fail 2922 || pExpr->affinity==OE_Ignore 2923 ); 2924 if( !pParse->pTriggerTab ){ 2925 sqlite3ErrorMsg(pParse, 2926 "RAISE() may only be used within a trigger-program"); 2927 return 0; 2928 } 2929 if( pExpr->affinity==OE_Abort ){ 2930 sqlite3MayAbort(pParse); 2931 } 2932 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2933 if( pExpr->affinity==OE_Ignore ){ 2934 sqlite3VdbeAddOp4( 2935 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2936 }else{ 2937 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 2938 pExpr->affinity, pExpr->u.zToken, 0); 2939 } 2940 2941 break; 2942 } 2943 #endif 2944 } 2945 sqlite3ReleaseTempReg(pParse, regFree1); 2946 sqlite3ReleaseTempReg(pParse, regFree2); 2947 return inReg; 2948 } 2949 2950 /* 2951 ** Generate code to evaluate an expression and store the results 2952 ** into a register. Return the register number where the results 2953 ** are stored. 2954 ** 2955 ** If the register is a temporary register that can be deallocated, 2956 ** then write its number into *pReg. If the result register is not 2957 ** a temporary, then set *pReg to zero. 2958 */ 2959 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2960 int r1 = sqlite3GetTempReg(pParse); 2961 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2962 if( r2==r1 ){ 2963 *pReg = r1; 2964 }else{ 2965 sqlite3ReleaseTempReg(pParse, r1); 2966 *pReg = 0; 2967 } 2968 return r2; 2969 } 2970 2971 /* 2972 ** Generate code that will evaluate expression pExpr and store the 2973 ** results in register target. The results are guaranteed to appear 2974 ** in register target. 2975 */ 2976 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2977 int inReg; 2978 2979 assert( target>0 && target<=pParse->nMem ); 2980 if( pExpr && pExpr->op==TK_REGISTER ){ 2981 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2982 }else{ 2983 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2984 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2985 if( inReg!=target && pParse->pVdbe ){ 2986 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2987 } 2988 } 2989 return target; 2990 } 2991 2992 /* 2993 ** Generate code that evalutes the given expression and puts the result 2994 ** in register target. 2995 ** 2996 ** Also make a copy of the expression results into another "cache" register 2997 ** and modify the expression so that the next time it is evaluated, 2998 ** the result is a copy of the cache register. 2999 ** 3000 ** This routine is used for expressions that are used multiple 3001 ** times. They are evaluated once and the results of the expression 3002 ** are reused. 3003 */ 3004 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3005 Vdbe *v = pParse->pVdbe; 3006 int inReg; 3007 inReg = sqlite3ExprCode(pParse, pExpr, target); 3008 assert( target>0 ); 3009 /* This routine is called for terms to INSERT or UPDATE. And the only 3010 ** other place where expressions can be converted into TK_REGISTER is 3011 ** in WHERE clause processing. So as currently implemented, there is 3012 ** no way for a TK_REGISTER to exist here. But it seems prudent to 3013 ** keep the ALWAYS() in case the conditions above change with future 3014 ** modifications or enhancements. */ 3015 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 3016 int iMem; 3017 iMem = ++pParse->nMem; 3018 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 3019 pExpr->iTable = iMem; 3020 pExpr->op2 = pExpr->op; 3021 pExpr->op = TK_REGISTER; 3022 } 3023 return inReg; 3024 } 3025 3026 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3027 /* 3028 ** Generate a human-readable explanation of an expression tree. 3029 */ 3030 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3031 int op; /* The opcode being coded */ 3032 const char *zBinOp = 0; /* Binary operator */ 3033 const char *zUniOp = 0; /* Unary operator */ 3034 if( pExpr==0 ){ 3035 op = TK_NULL; 3036 }else{ 3037 op = pExpr->op; 3038 } 3039 switch( op ){ 3040 case TK_AGG_COLUMN: { 3041 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3042 pExpr->iTable, pExpr->iColumn); 3043 break; 3044 } 3045 case TK_COLUMN: { 3046 if( pExpr->iTable<0 ){ 3047 /* This only happens when coding check constraints */ 3048 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3049 }else{ 3050 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3051 pExpr->iTable, pExpr->iColumn); 3052 } 3053 break; 3054 } 3055 case TK_INTEGER: { 3056 if( pExpr->flags & EP_IntValue ){ 3057 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3058 }else{ 3059 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3060 } 3061 break; 3062 } 3063 #ifndef SQLITE_OMIT_FLOATING_POINT 3064 case TK_FLOAT: { 3065 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3066 break; 3067 } 3068 #endif 3069 case TK_STRING: { 3070 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3071 break; 3072 } 3073 case TK_NULL: { 3074 sqlite3ExplainPrintf(pOut,"NULL"); 3075 break; 3076 } 3077 #ifndef SQLITE_OMIT_BLOB_LITERAL 3078 case TK_BLOB: { 3079 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3080 break; 3081 } 3082 #endif 3083 case TK_VARIABLE: { 3084 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3085 pExpr->u.zToken, pExpr->iColumn); 3086 break; 3087 } 3088 case TK_REGISTER: { 3089 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3090 break; 3091 } 3092 case TK_AS: { 3093 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3094 break; 3095 } 3096 #ifndef SQLITE_OMIT_CAST 3097 case TK_CAST: { 3098 /* Expressions of the form: CAST(pLeft AS token) */ 3099 const char *zAff = "unk"; 3100 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3101 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3102 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3103 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3104 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3105 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3106 } 3107 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3108 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3109 sqlite3ExplainPrintf(pOut, ")"); 3110 break; 3111 } 3112 #endif /* SQLITE_OMIT_CAST */ 3113 case TK_LT: zBinOp = "LT"; break; 3114 case TK_LE: zBinOp = "LE"; break; 3115 case TK_GT: zBinOp = "GT"; break; 3116 case TK_GE: zBinOp = "GE"; break; 3117 case TK_NE: zBinOp = "NE"; break; 3118 case TK_EQ: zBinOp = "EQ"; break; 3119 case TK_IS: zBinOp = "IS"; break; 3120 case TK_ISNOT: zBinOp = "ISNOT"; break; 3121 case TK_AND: zBinOp = "AND"; break; 3122 case TK_OR: zBinOp = "OR"; break; 3123 case TK_PLUS: zBinOp = "ADD"; break; 3124 case TK_STAR: zBinOp = "MUL"; break; 3125 case TK_MINUS: zBinOp = "SUB"; break; 3126 case TK_REM: zBinOp = "REM"; break; 3127 case TK_BITAND: zBinOp = "BITAND"; break; 3128 case TK_BITOR: zBinOp = "BITOR"; break; 3129 case TK_SLASH: zBinOp = "DIV"; break; 3130 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3131 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3132 case TK_CONCAT: zBinOp = "CONCAT"; break; 3133 3134 case TK_UMINUS: zUniOp = "UMINUS"; break; 3135 case TK_UPLUS: zUniOp = "UPLUS"; break; 3136 case TK_BITNOT: zUniOp = "BITNOT"; break; 3137 case TK_NOT: zUniOp = "NOT"; break; 3138 case TK_ISNULL: zUniOp = "ISNULL"; break; 3139 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3140 3141 case TK_COLLATE: { 3142 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3143 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3144 break; 3145 } 3146 3147 case TK_AGG_FUNCTION: 3148 case TK_CONST_FUNC: 3149 case TK_FUNCTION: { 3150 ExprList *pFarg; /* List of function arguments */ 3151 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3152 pFarg = 0; 3153 }else{ 3154 pFarg = pExpr->x.pList; 3155 } 3156 if( op==TK_AGG_FUNCTION ){ 3157 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3158 pExpr->op2, pExpr->u.zToken); 3159 }else{ 3160 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3161 } 3162 if( pFarg ){ 3163 sqlite3ExplainExprList(pOut, pFarg); 3164 } 3165 sqlite3ExplainPrintf(pOut, ")"); 3166 break; 3167 } 3168 #ifndef SQLITE_OMIT_SUBQUERY 3169 case TK_EXISTS: { 3170 sqlite3ExplainPrintf(pOut, "EXISTS("); 3171 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3172 sqlite3ExplainPrintf(pOut,")"); 3173 break; 3174 } 3175 case TK_SELECT: { 3176 sqlite3ExplainPrintf(pOut, "("); 3177 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3178 sqlite3ExplainPrintf(pOut, ")"); 3179 break; 3180 } 3181 case TK_IN: { 3182 sqlite3ExplainPrintf(pOut, "IN("); 3183 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3184 sqlite3ExplainPrintf(pOut, ","); 3185 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3186 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3187 }else{ 3188 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3189 } 3190 sqlite3ExplainPrintf(pOut, ")"); 3191 break; 3192 } 3193 #endif /* SQLITE_OMIT_SUBQUERY */ 3194 3195 /* 3196 ** x BETWEEN y AND z 3197 ** 3198 ** This is equivalent to 3199 ** 3200 ** x>=y AND x<=z 3201 ** 3202 ** X is stored in pExpr->pLeft. 3203 ** Y is stored in pExpr->pList->a[0].pExpr. 3204 ** Z is stored in pExpr->pList->a[1].pExpr. 3205 */ 3206 case TK_BETWEEN: { 3207 Expr *pX = pExpr->pLeft; 3208 Expr *pY = pExpr->x.pList->a[0].pExpr; 3209 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3210 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3211 sqlite3ExplainExpr(pOut, pX); 3212 sqlite3ExplainPrintf(pOut, ","); 3213 sqlite3ExplainExpr(pOut, pY); 3214 sqlite3ExplainPrintf(pOut, ","); 3215 sqlite3ExplainExpr(pOut, pZ); 3216 sqlite3ExplainPrintf(pOut, ")"); 3217 break; 3218 } 3219 case TK_TRIGGER: { 3220 /* If the opcode is TK_TRIGGER, then the expression is a reference 3221 ** to a column in the new.* or old.* pseudo-tables available to 3222 ** trigger programs. In this case Expr.iTable is set to 1 for the 3223 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3224 ** is set to the column of the pseudo-table to read, or to -1 to 3225 ** read the rowid field. 3226 */ 3227 sqlite3ExplainPrintf(pOut, "%s(%d)", 3228 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3229 break; 3230 } 3231 case TK_CASE: { 3232 sqlite3ExplainPrintf(pOut, "CASE("); 3233 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3234 sqlite3ExplainPrintf(pOut, ","); 3235 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3236 break; 3237 } 3238 #ifndef SQLITE_OMIT_TRIGGER 3239 case TK_RAISE: { 3240 const char *zType = "unk"; 3241 switch( pExpr->affinity ){ 3242 case OE_Rollback: zType = "rollback"; break; 3243 case OE_Abort: zType = "abort"; break; 3244 case OE_Fail: zType = "fail"; break; 3245 case OE_Ignore: zType = "ignore"; break; 3246 } 3247 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3248 break; 3249 } 3250 #endif 3251 } 3252 if( zBinOp ){ 3253 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3254 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3255 sqlite3ExplainPrintf(pOut,","); 3256 sqlite3ExplainExpr(pOut, pExpr->pRight); 3257 sqlite3ExplainPrintf(pOut,")"); 3258 }else if( zUniOp ){ 3259 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3260 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3261 sqlite3ExplainPrintf(pOut,")"); 3262 } 3263 } 3264 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3265 3266 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3267 /* 3268 ** Generate a human-readable explanation of an expression list. 3269 */ 3270 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3271 int i; 3272 if( pList==0 || pList->nExpr==0 ){ 3273 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3274 return; 3275 }else if( pList->nExpr==1 ){ 3276 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3277 }else{ 3278 sqlite3ExplainPush(pOut); 3279 for(i=0; i<pList->nExpr; i++){ 3280 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3281 sqlite3ExplainPush(pOut); 3282 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3283 sqlite3ExplainPop(pOut); 3284 if( pList->a[i].zName ){ 3285 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3286 } 3287 if( pList->a[i].bSpanIsTab ){ 3288 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3289 } 3290 if( i<pList->nExpr-1 ){ 3291 sqlite3ExplainNL(pOut); 3292 } 3293 } 3294 sqlite3ExplainPop(pOut); 3295 } 3296 } 3297 #endif /* SQLITE_DEBUG */ 3298 3299 /* 3300 ** Return TRUE if pExpr is an constant expression that is appropriate 3301 ** for factoring out of a loop. Appropriate expressions are: 3302 ** 3303 ** * Any expression that evaluates to two or more opcodes. 3304 ** 3305 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3306 ** or OP_Variable that does not need to be placed in a 3307 ** specific register. 3308 ** 3309 ** There is no point in factoring out single-instruction constant 3310 ** expressions that need to be placed in a particular register. 3311 ** We could factor them out, but then we would end up adding an 3312 ** OP_SCopy instruction to move the value into the correct register 3313 ** later. We might as well just use the original instruction and 3314 ** avoid the OP_SCopy. 3315 */ 3316 static int isAppropriateForFactoring(Expr *p){ 3317 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3318 return 0; /* Only constant expressions are appropriate for factoring */ 3319 } 3320 if( (p->flags & EP_FixedDest)==0 ){ 3321 return 1; /* Any constant without a fixed destination is appropriate */ 3322 } 3323 while( p->op==TK_UPLUS ) p = p->pLeft; 3324 switch( p->op ){ 3325 #ifndef SQLITE_OMIT_BLOB_LITERAL 3326 case TK_BLOB: 3327 #endif 3328 case TK_VARIABLE: 3329 case TK_INTEGER: 3330 case TK_FLOAT: 3331 case TK_NULL: 3332 case TK_STRING: { 3333 testcase( p->op==TK_BLOB ); 3334 testcase( p->op==TK_VARIABLE ); 3335 testcase( p->op==TK_INTEGER ); 3336 testcase( p->op==TK_FLOAT ); 3337 testcase( p->op==TK_NULL ); 3338 testcase( p->op==TK_STRING ); 3339 /* Single-instruction constants with a fixed destination are 3340 ** better done in-line. If we factor them, they will just end 3341 ** up generating an OP_SCopy to move the value to the destination 3342 ** register. */ 3343 return 0; 3344 } 3345 case TK_UMINUS: { 3346 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3347 return 0; 3348 } 3349 break; 3350 } 3351 default: { 3352 break; 3353 } 3354 } 3355 return 1; 3356 } 3357 3358 /* 3359 ** If pExpr is a constant expression that is appropriate for 3360 ** factoring out of a loop, then evaluate the expression 3361 ** into a register and convert the expression into a TK_REGISTER 3362 ** expression. 3363 */ 3364 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3365 Parse *pParse = pWalker->pParse; 3366 switch( pExpr->op ){ 3367 case TK_IN: 3368 case TK_REGISTER: { 3369 return WRC_Prune; 3370 } 3371 case TK_COLLATE: { 3372 return WRC_Continue; 3373 } 3374 case TK_FUNCTION: 3375 case TK_AGG_FUNCTION: 3376 case TK_CONST_FUNC: { 3377 /* The arguments to a function have a fixed destination. 3378 ** Mark them this way to avoid generated unneeded OP_SCopy 3379 ** instructions. 3380 */ 3381 ExprList *pList = pExpr->x.pList; 3382 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3383 if( pList ){ 3384 int i = pList->nExpr; 3385 struct ExprList_item *pItem = pList->a; 3386 for(; i>0; i--, pItem++){ 3387 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3388 } 3389 } 3390 break; 3391 } 3392 } 3393 if( isAppropriateForFactoring(pExpr) ){ 3394 int r1 = ++pParse->nMem; 3395 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3396 /* If r2!=r1, it means that register r1 is never used. That is harmless 3397 ** but suboptimal, so we want to know about the situation to fix it. 3398 ** Hence the following assert: */ 3399 assert( r2==r1 ); 3400 pExpr->op2 = pExpr->op; 3401 pExpr->op = TK_REGISTER; 3402 pExpr->iTable = r2; 3403 return WRC_Prune; 3404 } 3405 return WRC_Continue; 3406 } 3407 3408 /* 3409 ** Preevaluate constant subexpressions within pExpr and store the 3410 ** results in registers. Modify pExpr so that the constant subexpresions 3411 ** are TK_REGISTER opcodes that refer to the precomputed values. 3412 ** 3413 ** This routine is a no-op if the jump to the cookie-check code has 3414 ** already occur. Since the cookie-check jump is generated prior to 3415 ** any other serious processing, this check ensures that there is no 3416 ** way to accidently bypass the constant initializations. 3417 ** 3418 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3419 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3420 ** interface. This allows test logic to verify that the same answer is 3421 ** obtained for queries regardless of whether or not constants are 3422 ** precomputed into registers or if they are inserted in-line. 3423 */ 3424 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3425 Walker w; 3426 if( pParse->cookieGoto ) return; 3427 if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return; 3428 memset(&w, 0, sizeof(w)); 3429 w.xExprCallback = evalConstExpr; 3430 w.pParse = pParse; 3431 sqlite3WalkExpr(&w, pExpr); 3432 } 3433 3434 3435 /* 3436 ** Generate code that pushes the value of every element of the given 3437 ** expression list into a sequence of registers beginning at target. 3438 ** 3439 ** Return the number of elements evaluated. 3440 */ 3441 int sqlite3ExprCodeExprList( 3442 Parse *pParse, /* Parsing context */ 3443 ExprList *pList, /* The expression list to be coded */ 3444 int target, /* Where to write results */ 3445 int doHardCopy /* Make a hard copy of every element */ 3446 ){ 3447 struct ExprList_item *pItem; 3448 int i, n; 3449 assert( pList!=0 ); 3450 assert( target>0 ); 3451 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3452 n = pList->nExpr; 3453 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3454 Expr *pExpr = pItem->pExpr; 3455 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3456 if( inReg!=target+i ){ 3457 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3458 inReg, target+i); 3459 } 3460 } 3461 return n; 3462 } 3463 3464 /* 3465 ** Generate code for a BETWEEN operator. 3466 ** 3467 ** x BETWEEN y AND z 3468 ** 3469 ** The above is equivalent to 3470 ** 3471 ** x>=y AND x<=z 3472 ** 3473 ** Code it as such, taking care to do the common subexpression 3474 ** elementation of x. 3475 */ 3476 static void exprCodeBetween( 3477 Parse *pParse, /* Parsing and code generating context */ 3478 Expr *pExpr, /* The BETWEEN expression */ 3479 int dest, /* Jump here if the jump is taken */ 3480 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3481 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3482 ){ 3483 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3484 Expr compLeft; /* The x>=y term */ 3485 Expr compRight; /* The x<=z term */ 3486 Expr exprX; /* The x subexpression */ 3487 int regFree1 = 0; /* Temporary use register */ 3488 3489 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3490 exprX = *pExpr->pLeft; 3491 exprAnd.op = TK_AND; 3492 exprAnd.pLeft = &compLeft; 3493 exprAnd.pRight = &compRight; 3494 compLeft.op = TK_GE; 3495 compLeft.pLeft = &exprX; 3496 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3497 compRight.op = TK_LE; 3498 compRight.pLeft = &exprX; 3499 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3500 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3501 exprX.op = TK_REGISTER; 3502 if( jumpIfTrue ){ 3503 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3504 }else{ 3505 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3506 } 3507 sqlite3ReleaseTempReg(pParse, regFree1); 3508 3509 /* Ensure adequate test coverage */ 3510 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3511 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3512 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3513 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3514 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3515 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3516 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3517 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3518 } 3519 3520 /* 3521 ** Generate code for a boolean expression such that a jump is made 3522 ** to the label "dest" if the expression is true but execution 3523 ** continues straight thru if the expression is false. 3524 ** 3525 ** If the expression evaluates to NULL (neither true nor false), then 3526 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3527 ** 3528 ** This code depends on the fact that certain token values (ex: TK_EQ) 3529 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3530 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3531 ** the make process cause these values to align. Assert()s in the code 3532 ** below verify that the numbers are aligned correctly. 3533 */ 3534 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3535 Vdbe *v = pParse->pVdbe; 3536 int op = 0; 3537 int regFree1 = 0; 3538 int regFree2 = 0; 3539 int r1, r2; 3540 3541 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3542 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3543 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3544 op = pExpr->op; 3545 switch( op ){ 3546 case TK_AND: { 3547 int d2 = sqlite3VdbeMakeLabel(v); 3548 testcase( jumpIfNull==0 ); 3549 sqlite3ExprCachePush(pParse); 3550 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3551 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3552 sqlite3VdbeResolveLabel(v, d2); 3553 sqlite3ExprCachePop(pParse, 1); 3554 break; 3555 } 3556 case TK_OR: { 3557 testcase( jumpIfNull==0 ); 3558 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3559 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3560 break; 3561 } 3562 case TK_NOT: { 3563 testcase( jumpIfNull==0 ); 3564 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3565 break; 3566 } 3567 case TK_LT: 3568 case TK_LE: 3569 case TK_GT: 3570 case TK_GE: 3571 case TK_NE: 3572 case TK_EQ: { 3573 assert( TK_LT==OP_Lt ); 3574 assert( TK_LE==OP_Le ); 3575 assert( TK_GT==OP_Gt ); 3576 assert( TK_GE==OP_Ge ); 3577 assert( TK_EQ==OP_Eq ); 3578 assert( TK_NE==OP_Ne ); 3579 testcase( op==TK_LT ); 3580 testcase( op==TK_LE ); 3581 testcase( op==TK_GT ); 3582 testcase( op==TK_GE ); 3583 testcase( op==TK_EQ ); 3584 testcase( op==TK_NE ); 3585 testcase( jumpIfNull==0 ); 3586 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3587 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3588 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3589 r1, r2, dest, jumpIfNull); 3590 testcase( regFree1==0 ); 3591 testcase( regFree2==0 ); 3592 break; 3593 } 3594 case TK_IS: 3595 case TK_ISNOT: { 3596 testcase( op==TK_IS ); 3597 testcase( op==TK_ISNOT ); 3598 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3599 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3600 op = (op==TK_IS) ? TK_EQ : TK_NE; 3601 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3602 r1, r2, dest, SQLITE_NULLEQ); 3603 testcase( regFree1==0 ); 3604 testcase( regFree2==0 ); 3605 break; 3606 } 3607 case TK_ISNULL: 3608 case TK_NOTNULL: { 3609 assert( TK_ISNULL==OP_IsNull ); 3610 assert( TK_NOTNULL==OP_NotNull ); 3611 testcase( op==TK_ISNULL ); 3612 testcase( op==TK_NOTNULL ); 3613 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3614 sqlite3VdbeAddOp2(v, op, r1, dest); 3615 testcase( regFree1==0 ); 3616 break; 3617 } 3618 case TK_BETWEEN: { 3619 testcase( jumpIfNull==0 ); 3620 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3621 break; 3622 } 3623 #ifndef SQLITE_OMIT_SUBQUERY 3624 case TK_IN: { 3625 int destIfFalse = sqlite3VdbeMakeLabel(v); 3626 int destIfNull = jumpIfNull ? dest : destIfFalse; 3627 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3628 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3629 sqlite3VdbeResolveLabel(v, destIfFalse); 3630 break; 3631 } 3632 #endif 3633 default: { 3634 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3635 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3636 testcase( regFree1==0 ); 3637 testcase( jumpIfNull==0 ); 3638 break; 3639 } 3640 } 3641 sqlite3ReleaseTempReg(pParse, regFree1); 3642 sqlite3ReleaseTempReg(pParse, regFree2); 3643 } 3644 3645 /* 3646 ** Generate code for a boolean expression such that a jump is made 3647 ** to the label "dest" if the expression is false but execution 3648 ** continues straight thru if the expression is true. 3649 ** 3650 ** If the expression evaluates to NULL (neither true nor false) then 3651 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3652 ** is 0. 3653 */ 3654 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3655 Vdbe *v = pParse->pVdbe; 3656 int op = 0; 3657 int regFree1 = 0; 3658 int regFree2 = 0; 3659 int r1, r2; 3660 3661 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3662 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3663 if( pExpr==0 ) return; 3664 3665 /* The value of pExpr->op and op are related as follows: 3666 ** 3667 ** pExpr->op op 3668 ** --------- ---------- 3669 ** TK_ISNULL OP_NotNull 3670 ** TK_NOTNULL OP_IsNull 3671 ** TK_NE OP_Eq 3672 ** TK_EQ OP_Ne 3673 ** TK_GT OP_Le 3674 ** TK_LE OP_Gt 3675 ** TK_GE OP_Lt 3676 ** TK_LT OP_Ge 3677 ** 3678 ** For other values of pExpr->op, op is undefined and unused. 3679 ** The value of TK_ and OP_ constants are arranged such that we 3680 ** can compute the mapping above using the following expression. 3681 ** Assert()s verify that the computation is correct. 3682 */ 3683 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3684 3685 /* Verify correct alignment of TK_ and OP_ constants 3686 */ 3687 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3688 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3689 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3690 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3691 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3692 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3693 assert( pExpr->op!=TK_GT || op==OP_Le ); 3694 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3695 3696 switch( pExpr->op ){ 3697 case TK_AND: { 3698 testcase( jumpIfNull==0 ); 3699 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3700 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3701 break; 3702 } 3703 case TK_OR: { 3704 int d2 = sqlite3VdbeMakeLabel(v); 3705 testcase( jumpIfNull==0 ); 3706 sqlite3ExprCachePush(pParse); 3707 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3708 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3709 sqlite3VdbeResolveLabel(v, d2); 3710 sqlite3ExprCachePop(pParse, 1); 3711 break; 3712 } 3713 case TK_NOT: { 3714 testcase( jumpIfNull==0 ); 3715 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3716 break; 3717 } 3718 case TK_LT: 3719 case TK_LE: 3720 case TK_GT: 3721 case TK_GE: 3722 case TK_NE: 3723 case TK_EQ: { 3724 testcase( op==TK_LT ); 3725 testcase( op==TK_LE ); 3726 testcase( op==TK_GT ); 3727 testcase( op==TK_GE ); 3728 testcase( op==TK_EQ ); 3729 testcase( op==TK_NE ); 3730 testcase( jumpIfNull==0 ); 3731 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3732 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3733 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3734 r1, r2, dest, jumpIfNull); 3735 testcase( regFree1==0 ); 3736 testcase( regFree2==0 ); 3737 break; 3738 } 3739 case TK_IS: 3740 case TK_ISNOT: { 3741 testcase( pExpr->op==TK_IS ); 3742 testcase( pExpr->op==TK_ISNOT ); 3743 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3744 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3745 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3746 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3747 r1, r2, dest, SQLITE_NULLEQ); 3748 testcase( regFree1==0 ); 3749 testcase( regFree2==0 ); 3750 break; 3751 } 3752 case TK_ISNULL: 3753 case TK_NOTNULL: { 3754 testcase( op==TK_ISNULL ); 3755 testcase( op==TK_NOTNULL ); 3756 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3757 sqlite3VdbeAddOp2(v, op, r1, dest); 3758 testcase( regFree1==0 ); 3759 break; 3760 } 3761 case TK_BETWEEN: { 3762 testcase( jumpIfNull==0 ); 3763 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3764 break; 3765 } 3766 #ifndef SQLITE_OMIT_SUBQUERY 3767 case TK_IN: { 3768 if( jumpIfNull ){ 3769 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3770 }else{ 3771 int destIfNull = sqlite3VdbeMakeLabel(v); 3772 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3773 sqlite3VdbeResolveLabel(v, destIfNull); 3774 } 3775 break; 3776 } 3777 #endif 3778 default: { 3779 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3780 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3781 testcase( regFree1==0 ); 3782 testcase( jumpIfNull==0 ); 3783 break; 3784 } 3785 } 3786 sqlite3ReleaseTempReg(pParse, regFree1); 3787 sqlite3ReleaseTempReg(pParse, regFree2); 3788 } 3789 3790 /* 3791 ** Do a deep comparison of two expression trees. Return 0 if the two 3792 ** expressions are completely identical. Return 1 if they differ only 3793 ** by a COLLATE operator at the top level. Return 2 if there are differences 3794 ** other than the top-level COLLATE operator. 3795 ** 3796 ** Sometimes this routine will return 2 even if the two expressions 3797 ** really are equivalent. If we cannot prove that the expressions are 3798 ** identical, we return 2 just to be safe. So if this routine 3799 ** returns 2, then you do not really know for certain if the two 3800 ** expressions are the same. But if you get a 0 or 1 return, then you 3801 ** can be sure the expressions are the same. In the places where 3802 ** this routine is used, it does not hurt to get an extra 2 - that 3803 ** just might result in some slightly slower code. But returning 3804 ** an incorrect 0 or 1 could lead to a malfunction. 3805 */ 3806 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3807 if( pA==0||pB==0 ){ 3808 return pB==pA ? 0 : 2; 3809 } 3810 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3811 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3812 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3813 return 2; 3814 } 3815 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3816 if( pA->op!=pB->op ){ 3817 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){ 3818 return 1; 3819 } 3820 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){ 3821 return 1; 3822 } 3823 return 2; 3824 } 3825 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3826 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3827 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3828 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3829 if( ExprHasProperty(pA, EP_IntValue) ){ 3830 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3831 return 2; 3832 } 3833 }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ 3834 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3835 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3836 return pA->op==TK_COLLATE ? 1 : 2; 3837 } 3838 } 3839 return 0; 3840 } 3841 3842 /* 3843 ** Compare two ExprList objects. Return 0 if they are identical and 3844 ** non-zero if they differ in any way. 3845 ** 3846 ** This routine might return non-zero for equivalent ExprLists. The 3847 ** only consequence will be disabled optimizations. But this routine 3848 ** must never return 0 if the two ExprList objects are different, or 3849 ** a malfunction will result. 3850 ** 3851 ** Two NULL pointers are considered to be the same. But a NULL pointer 3852 ** always differs from a non-NULL pointer. 3853 */ 3854 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3855 int i; 3856 if( pA==0 && pB==0 ) return 0; 3857 if( pA==0 || pB==0 ) return 1; 3858 if( pA->nExpr!=pB->nExpr ) return 1; 3859 for(i=0; i<pA->nExpr; i++){ 3860 Expr *pExprA = pA->a[i].pExpr; 3861 Expr *pExprB = pB->a[i].pExpr; 3862 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3863 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3864 } 3865 return 0; 3866 } 3867 3868 /* 3869 ** An instance of the following structure is used by the tree walker 3870 ** to count references to table columns in the arguments of an 3871 ** aggregate function, in order to implement the 3872 ** sqlite3FunctionThisSrc() routine. 3873 */ 3874 struct SrcCount { 3875 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3876 int nThis; /* Number of references to columns in pSrcList */ 3877 int nOther; /* Number of references to columns in other FROM clauses */ 3878 }; 3879 3880 /* 3881 ** Count the number of references to columns. 3882 */ 3883 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3884 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3885 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3886 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3887 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3888 ** NEVER() will need to be removed. */ 3889 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3890 int i; 3891 struct SrcCount *p = pWalker->u.pSrcCount; 3892 SrcList *pSrc = p->pSrc; 3893 for(i=0; i<pSrc->nSrc; i++){ 3894 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3895 } 3896 if( i<pSrc->nSrc ){ 3897 p->nThis++; 3898 }else{ 3899 p->nOther++; 3900 } 3901 } 3902 return WRC_Continue; 3903 } 3904 3905 /* 3906 ** Determine if any of the arguments to the pExpr Function reference 3907 ** pSrcList. Return true if they do. Also return true if the function 3908 ** has no arguments or has only constant arguments. Return false if pExpr 3909 ** references columns but not columns of tables found in pSrcList. 3910 */ 3911 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3912 Walker w; 3913 struct SrcCount cnt; 3914 assert( pExpr->op==TK_AGG_FUNCTION ); 3915 memset(&w, 0, sizeof(w)); 3916 w.xExprCallback = exprSrcCount; 3917 w.u.pSrcCount = &cnt; 3918 cnt.pSrc = pSrcList; 3919 cnt.nThis = 0; 3920 cnt.nOther = 0; 3921 sqlite3WalkExprList(&w, pExpr->x.pList); 3922 return cnt.nThis>0 || cnt.nOther==0; 3923 } 3924 3925 /* 3926 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3927 ** the new element. Return a negative number if malloc fails. 3928 */ 3929 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3930 int i; 3931 pInfo->aCol = sqlite3ArrayAllocate( 3932 db, 3933 pInfo->aCol, 3934 sizeof(pInfo->aCol[0]), 3935 &pInfo->nColumn, 3936 &i 3937 ); 3938 return i; 3939 } 3940 3941 /* 3942 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3943 ** the new element. Return a negative number if malloc fails. 3944 */ 3945 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3946 int i; 3947 pInfo->aFunc = sqlite3ArrayAllocate( 3948 db, 3949 pInfo->aFunc, 3950 sizeof(pInfo->aFunc[0]), 3951 &pInfo->nFunc, 3952 &i 3953 ); 3954 return i; 3955 } 3956 3957 /* 3958 ** This is the xExprCallback for a tree walker. It is used to 3959 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3960 ** for additional information. 3961 */ 3962 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3963 int i; 3964 NameContext *pNC = pWalker->u.pNC; 3965 Parse *pParse = pNC->pParse; 3966 SrcList *pSrcList = pNC->pSrcList; 3967 AggInfo *pAggInfo = pNC->pAggInfo; 3968 3969 switch( pExpr->op ){ 3970 case TK_AGG_COLUMN: 3971 case TK_COLUMN: { 3972 testcase( pExpr->op==TK_AGG_COLUMN ); 3973 testcase( pExpr->op==TK_COLUMN ); 3974 /* Check to see if the column is in one of the tables in the FROM 3975 ** clause of the aggregate query */ 3976 if( ALWAYS(pSrcList!=0) ){ 3977 struct SrcList_item *pItem = pSrcList->a; 3978 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3979 struct AggInfo_col *pCol; 3980 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3981 if( pExpr->iTable==pItem->iCursor ){ 3982 /* If we reach this point, it means that pExpr refers to a table 3983 ** that is in the FROM clause of the aggregate query. 3984 ** 3985 ** Make an entry for the column in pAggInfo->aCol[] if there 3986 ** is not an entry there already. 3987 */ 3988 int k; 3989 pCol = pAggInfo->aCol; 3990 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3991 if( pCol->iTable==pExpr->iTable && 3992 pCol->iColumn==pExpr->iColumn ){ 3993 break; 3994 } 3995 } 3996 if( (k>=pAggInfo->nColumn) 3997 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3998 ){ 3999 pCol = &pAggInfo->aCol[k]; 4000 pCol->pTab = pExpr->pTab; 4001 pCol->iTable = pExpr->iTable; 4002 pCol->iColumn = pExpr->iColumn; 4003 pCol->iMem = ++pParse->nMem; 4004 pCol->iSorterColumn = -1; 4005 pCol->pExpr = pExpr; 4006 if( pAggInfo->pGroupBy ){ 4007 int j, n; 4008 ExprList *pGB = pAggInfo->pGroupBy; 4009 struct ExprList_item *pTerm = pGB->a; 4010 n = pGB->nExpr; 4011 for(j=0; j<n; j++, pTerm++){ 4012 Expr *pE = pTerm->pExpr; 4013 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4014 pE->iColumn==pExpr->iColumn ){ 4015 pCol->iSorterColumn = j; 4016 break; 4017 } 4018 } 4019 } 4020 if( pCol->iSorterColumn<0 ){ 4021 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4022 } 4023 } 4024 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4025 ** because it was there before or because we just created it). 4026 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4027 ** pAggInfo->aCol[] entry. 4028 */ 4029 ExprSetIrreducible(pExpr); 4030 pExpr->pAggInfo = pAggInfo; 4031 pExpr->op = TK_AGG_COLUMN; 4032 pExpr->iAgg = (i16)k; 4033 break; 4034 } /* endif pExpr->iTable==pItem->iCursor */ 4035 } /* end loop over pSrcList */ 4036 } 4037 return WRC_Prune; 4038 } 4039 case TK_AGG_FUNCTION: { 4040 if( (pNC->ncFlags & NC_InAggFunc)==0 4041 && pWalker->walkerDepth==pExpr->op2 4042 ){ 4043 /* Check to see if pExpr is a duplicate of another aggregate 4044 ** function that is already in the pAggInfo structure 4045 */ 4046 struct AggInfo_func *pItem = pAggInfo->aFunc; 4047 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4048 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 4049 break; 4050 } 4051 } 4052 if( i>=pAggInfo->nFunc ){ 4053 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4054 */ 4055 u8 enc = ENC(pParse->db); 4056 i = addAggInfoFunc(pParse->db, pAggInfo); 4057 if( i>=0 ){ 4058 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4059 pItem = &pAggInfo->aFunc[i]; 4060 pItem->pExpr = pExpr; 4061 pItem->iMem = ++pParse->nMem; 4062 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4063 pItem->pFunc = sqlite3FindFunction(pParse->db, 4064 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4065 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4066 if( pExpr->flags & EP_Distinct ){ 4067 pItem->iDistinct = pParse->nTab++; 4068 }else{ 4069 pItem->iDistinct = -1; 4070 } 4071 } 4072 } 4073 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4074 */ 4075 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4076 ExprSetIrreducible(pExpr); 4077 pExpr->iAgg = (i16)i; 4078 pExpr->pAggInfo = pAggInfo; 4079 return WRC_Prune; 4080 }else{ 4081 return WRC_Continue; 4082 } 4083 } 4084 } 4085 return WRC_Continue; 4086 } 4087 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4088 UNUSED_PARAMETER(pWalker); 4089 UNUSED_PARAMETER(pSelect); 4090 return WRC_Continue; 4091 } 4092 4093 /* 4094 ** Analyze the pExpr expression looking for aggregate functions and 4095 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4096 ** points to. Additional entries are made on the AggInfo object as 4097 ** necessary. 4098 ** 4099 ** This routine should only be called after the expression has been 4100 ** analyzed by sqlite3ResolveExprNames(). 4101 */ 4102 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4103 Walker w; 4104 memset(&w, 0, sizeof(w)); 4105 w.xExprCallback = analyzeAggregate; 4106 w.xSelectCallback = analyzeAggregatesInSelect; 4107 w.u.pNC = pNC; 4108 assert( pNC->pSrcList!=0 ); 4109 sqlite3WalkExpr(&w, pExpr); 4110 } 4111 4112 /* 4113 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4114 ** expression list. Return the number of errors. 4115 ** 4116 ** If an error is found, the analysis is cut short. 4117 */ 4118 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4119 struct ExprList_item *pItem; 4120 int i; 4121 if( pList ){ 4122 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4123 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4124 } 4125 } 4126 } 4127 4128 /* 4129 ** Allocate a single new register for use to hold some intermediate result. 4130 */ 4131 int sqlite3GetTempReg(Parse *pParse){ 4132 if( pParse->nTempReg==0 ){ 4133 return ++pParse->nMem; 4134 } 4135 return pParse->aTempReg[--pParse->nTempReg]; 4136 } 4137 4138 /* 4139 ** Deallocate a register, making available for reuse for some other 4140 ** purpose. 4141 ** 4142 ** If a register is currently being used by the column cache, then 4143 ** the dallocation is deferred until the column cache line that uses 4144 ** the register becomes stale. 4145 */ 4146 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4147 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4148 int i; 4149 struct yColCache *p; 4150 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4151 if( p->iReg==iReg ){ 4152 p->tempReg = 1; 4153 return; 4154 } 4155 } 4156 pParse->aTempReg[pParse->nTempReg++] = iReg; 4157 } 4158 } 4159 4160 /* 4161 ** Allocate or deallocate a block of nReg consecutive registers 4162 */ 4163 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4164 int i, n; 4165 i = pParse->iRangeReg; 4166 n = pParse->nRangeReg; 4167 if( nReg<=n ){ 4168 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4169 pParse->iRangeReg += nReg; 4170 pParse->nRangeReg -= nReg; 4171 }else{ 4172 i = pParse->nMem+1; 4173 pParse->nMem += nReg; 4174 } 4175 return i; 4176 } 4177 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4178 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4179 if( nReg>pParse->nRangeReg ){ 4180 pParse->nRangeReg = nReg; 4181 pParse->iRangeReg = iReg; 4182 } 4183 } 4184 4185 /* 4186 ** Mark all temporary registers as being unavailable for reuse. 4187 */ 4188 void sqlite3ClearTempRegCache(Parse *pParse){ 4189 pParse->nTempReg = 0; 4190 pParse->nRangeReg = 0; 4191 } 4192