1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 if( op==TK_VECTOR ){ 74 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 75 } 76 return pExpr->affExpr; 77 } 78 79 /* 80 ** Set the collating sequence for expression pExpr to be the collating 81 ** sequence named by pToken. Return a pointer to a new Expr node that 82 ** implements the COLLATE operator. 83 ** 84 ** If a memory allocation error occurs, that fact is recorded in pParse->db 85 ** and the pExpr parameter is returned unchanged. 86 */ 87 Expr *sqlite3ExprAddCollateToken( 88 Parse *pParse, /* Parsing context */ 89 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 90 const Token *pCollName, /* Name of collating sequence */ 91 int dequote /* True to dequote pCollName */ 92 ){ 93 if( pCollName->n>0 ){ 94 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 95 if( pNew ){ 96 pNew->pLeft = pExpr; 97 pNew->flags |= EP_Collate|EP_Skip; 98 pExpr = pNew; 99 } 100 } 101 return pExpr; 102 } 103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 104 Token s; 105 assert( zC!=0 ); 106 sqlite3TokenInit(&s, (char*)zC); 107 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 108 } 109 110 /* 111 ** Skip over any TK_COLLATE operators. 112 */ 113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 114 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 115 assert( pExpr->op==TK_COLLATE ); 116 pExpr = pExpr->pLeft; 117 } 118 return pExpr; 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators and/or any unlikely() 123 ** or likelihood() or likely() functions at the root of an 124 ** expression. 125 */ 126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 127 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 128 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 129 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 130 assert( pExpr->x.pList->nExpr>0 ); 131 assert( pExpr->op==TK_FUNCTION ); 132 pExpr = pExpr->x.pList->a[0].pExpr; 133 }else{ 134 assert( pExpr->op==TK_COLLATE ); 135 pExpr = pExpr->pLeft; 136 } 137 } 138 return pExpr; 139 } 140 141 /* 142 ** Return the collation sequence for the expression pExpr. If 143 ** there is no defined collating sequence, return NULL. 144 ** 145 ** See also: sqlite3ExprNNCollSeq() 146 ** 147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 148 ** default collation if pExpr has no defined collation. 149 ** 150 ** The collating sequence might be determined by a COLLATE operator 151 ** or by the presence of a column with a defined collating sequence. 152 ** COLLATE operators take first precedence. Left operands take 153 ** precedence over right operands. 154 */ 155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 156 sqlite3 *db = pParse->db; 157 CollSeq *pColl = 0; 158 const Expr *p = pExpr; 159 while( p ){ 160 int op = p->op; 161 if( op==TK_REGISTER ) op = p->op2; 162 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 163 && p->y.pTab!=0 164 ){ 165 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 166 ** a TK_COLUMN but was previously evaluated and cached in a register */ 167 int j = p->iColumn; 168 if( j>=0 ){ 169 const char *zColl = p->y.pTab->aCol[j].zColl; 170 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 171 } 172 break; 173 } 174 if( op==TK_CAST || op==TK_UPLUS ){ 175 p = p->pLeft; 176 continue; 177 } 178 if( op==TK_VECTOR ){ 179 p = p->x.pList->a[0].pExpr; 180 continue; 181 } 182 if( op==TK_COLLATE ){ 183 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 184 break; 185 } 186 if( p->flags & EP_Collate ){ 187 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 188 p = p->pLeft; 189 }else{ 190 Expr *pNext = p->pRight; 191 /* The Expr.x union is never used at the same time as Expr.pRight */ 192 assert( p->x.pList==0 || p->pRight==0 ); 193 if( p->x.pList!=0 194 && !db->mallocFailed 195 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 196 ){ 197 int i; 198 for(i=0; i<p->x.pList->nExpr; i++){ 199 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 200 pNext = p->x.pList->a[i].pExpr; 201 break; 202 } 203 } 204 } 205 p = pNext; 206 } 207 }else{ 208 break; 209 } 210 } 211 if( sqlite3CheckCollSeq(pParse, pColl) ){ 212 pColl = 0; 213 } 214 return pColl; 215 } 216 217 /* 218 ** Return the collation sequence for the expression pExpr. If 219 ** there is no defined collating sequence, return a pointer to the 220 ** defautl collation sequence. 221 ** 222 ** See also: sqlite3ExprCollSeq() 223 ** 224 ** The sqlite3ExprCollSeq() routine works the same except that it 225 ** returns NULL if there is no defined collation. 226 */ 227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 228 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 229 if( p==0 ) p = pParse->db->pDfltColl; 230 assert( p!=0 ); 231 return p; 232 } 233 234 /* 235 ** Return TRUE if the two expressions have equivalent collating sequences. 236 */ 237 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 238 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 239 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 240 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 241 } 242 243 /* 244 ** pExpr is an operand of a comparison operator. aff2 is the 245 ** type affinity of the other operand. This routine returns the 246 ** type affinity that should be used for the comparison operator. 247 */ 248 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 249 char aff1 = sqlite3ExprAffinity(pExpr); 250 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 251 /* Both sides of the comparison are columns. If one has numeric 252 ** affinity, use that. Otherwise use no affinity. 253 */ 254 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 255 return SQLITE_AFF_NUMERIC; 256 }else{ 257 return SQLITE_AFF_BLOB; 258 } 259 }else{ 260 /* One side is a column, the other is not. Use the columns affinity. */ 261 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 262 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 263 } 264 } 265 266 /* 267 ** pExpr is a comparison operator. Return the type affinity that should 268 ** be applied to both operands prior to doing the comparison. 269 */ 270 static char comparisonAffinity(const Expr *pExpr){ 271 char aff; 272 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 273 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 274 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 275 assert( pExpr->pLeft ); 276 aff = sqlite3ExprAffinity(pExpr->pLeft); 277 if( pExpr->pRight ){ 278 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 279 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 280 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 281 }else if( aff==0 ){ 282 aff = SQLITE_AFF_BLOB; 283 } 284 return aff; 285 } 286 287 /* 288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 289 ** idx_affinity is the affinity of an indexed column. Return true 290 ** if the index with affinity idx_affinity may be used to implement 291 ** the comparison in pExpr. 292 */ 293 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 294 char aff = comparisonAffinity(pExpr); 295 if( aff<SQLITE_AFF_TEXT ){ 296 return 1; 297 } 298 if( aff==SQLITE_AFF_TEXT ){ 299 return idx_affinity==SQLITE_AFF_TEXT; 300 } 301 return sqlite3IsNumericAffinity(idx_affinity); 302 } 303 304 /* 305 ** Return the P5 value that should be used for a binary comparison 306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 307 */ 308 static u8 binaryCompareP5( 309 const Expr *pExpr1, /* Left operand */ 310 const Expr *pExpr2, /* Right operand */ 311 int jumpIfNull /* Extra flags added to P5 */ 312 ){ 313 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 314 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 315 return aff; 316 } 317 318 /* 319 ** Return a pointer to the collation sequence that should be used by 320 ** a binary comparison operator comparing pLeft and pRight. 321 ** 322 ** If the left hand expression has a collating sequence type, then it is 323 ** used. Otherwise the collation sequence for the right hand expression 324 ** is used, or the default (BINARY) if neither expression has a collating 325 ** type. 326 ** 327 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 328 ** it is not considered. 329 */ 330 CollSeq *sqlite3BinaryCompareCollSeq( 331 Parse *pParse, 332 const Expr *pLeft, 333 const Expr *pRight 334 ){ 335 CollSeq *pColl; 336 assert( pLeft ); 337 if( pLeft->flags & EP_Collate ){ 338 pColl = sqlite3ExprCollSeq(pParse, pLeft); 339 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 340 pColl = sqlite3ExprCollSeq(pParse, pRight); 341 }else{ 342 pColl = sqlite3ExprCollSeq(pParse, pLeft); 343 if( !pColl ){ 344 pColl = sqlite3ExprCollSeq(pParse, pRight); 345 } 346 } 347 return pColl; 348 } 349 350 /* Expresssion p is a comparison operator. Return a collation sequence 351 ** appropriate for the comparison operator. 352 ** 353 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 354 ** However, if the OP_Commuted flag is set, then the order of the operands 355 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 356 ** correct collating sequence is found. 357 */ 358 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 359 if( ExprHasProperty(p, EP_Commuted) ){ 360 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 361 }else{ 362 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 363 } 364 } 365 366 /* 367 ** Generate code for a comparison operator. 368 */ 369 static int codeCompare( 370 Parse *pParse, /* The parsing (and code generating) context */ 371 Expr *pLeft, /* The left operand */ 372 Expr *pRight, /* The right operand */ 373 int opcode, /* The comparison opcode */ 374 int in1, int in2, /* Register holding operands */ 375 int dest, /* Jump here if true. */ 376 int jumpIfNull, /* If true, jump if either operand is NULL */ 377 int isCommuted /* The comparison has been commuted */ 378 ){ 379 int p5; 380 int addr; 381 CollSeq *p4; 382 383 if( pParse->nErr ) return 0; 384 if( isCommuted ){ 385 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 386 }else{ 387 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 388 } 389 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 390 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 391 (void*)p4, P4_COLLSEQ); 392 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 393 return addr; 394 } 395 396 /* 397 ** Return true if expression pExpr is a vector, or false otherwise. 398 ** 399 ** A vector is defined as any expression that results in two or more 400 ** columns of result. Every TK_VECTOR node is an vector because the 401 ** parser will not generate a TK_VECTOR with fewer than two entries. 402 ** But a TK_SELECT might be either a vector or a scalar. It is only 403 ** considered a vector if it has two or more result columns. 404 */ 405 int sqlite3ExprIsVector(Expr *pExpr){ 406 return sqlite3ExprVectorSize(pExpr)>1; 407 } 408 409 /* 410 ** If the expression passed as the only argument is of type TK_VECTOR 411 ** return the number of expressions in the vector. Or, if the expression 412 ** is a sub-select, return the number of columns in the sub-select. For 413 ** any other type of expression, return 1. 414 */ 415 int sqlite3ExprVectorSize(Expr *pExpr){ 416 u8 op = pExpr->op; 417 if( op==TK_REGISTER ) op = pExpr->op2; 418 if( op==TK_VECTOR ){ 419 return pExpr->x.pList->nExpr; 420 }else if( op==TK_SELECT ){ 421 return pExpr->x.pSelect->pEList->nExpr; 422 }else{ 423 return 1; 424 } 425 } 426 427 /* 428 ** Return a pointer to a subexpression of pVector that is the i-th 429 ** column of the vector (numbered starting with 0). The caller must 430 ** ensure that i is within range. 431 ** 432 ** If pVector is really a scalar (and "scalar" here includes subqueries 433 ** that return a single column!) then return pVector unmodified. 434 ** 435 ** pVector retains ownership of the returned subexpression. 436 ** 437 ** If the vector is a (SELECT ...) then the expression returned is 438 ** just the expression for the i-th term of the result set, and may 439 ** not be ready for evaluation because the table cursor has not yet 440 ** been positioned. 441 */ 442 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 443 assert( i<sqlite3ExprVectorSize(pVector) ); 444 if( sqlite3ExprIsVector(pVector) ){ 445 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 446 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 447 return pVector->x.pSelect->pEList->a[i].pExpr; 448 }else{ 449 return pVector->x.pList->a[i].pExpr; 450 } 451 } 452 return pVector; 453 } 454 455 /* 456 ** Compute and return a new Expr object which when passed to 457 ** sqlite3ExprCode() will generate all necessary code to compute 458 ** the iField-th column of the vector expression pVector. 459 ** 460 ** It is ok for pVector to be a scalar (as long as iField==0). 461 ** In that case, this routine works like sqlite3ExprDup(). 462 ** 463 ** The caller owns the returned Expr object and is responsible for 464 ** ensuring that the returned value eventually gets freed. 465 ** 466 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 467 ** then the returned object will reference pVector and so pVector must remain 468 ** valid for the life of the returned object. If pVector is a TK_VECTOR 469 ** or a scalar expression, then it can be deleted as soon as this routine 470 ** returns. 471 ** 472 ** A trick to cause a TK_SELECT pVector to be deleted together with 473 ** the returned Expr object is to attach the pVector to the pRight field 474 ** of the returned TK_SELECT_COLUMN Expr object. 475 */ 476 Expr *sqlite3ExprForVectorField( 477 Parse *pParse, /* Parsing context */ 478 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 479 int iField /* Which column of the vector to return */ 480 ){ 481 Expr *pRet; 482 if( pVector->op==TK_SELECT ){ 483 assert( pVector->flags & EP_xIsSelect ); 484 /* The TK_SELECT_COLUMN Expr node: 485 ** 486 ** pLeft: pVector containing TK_SELECT. Not deleted. 487 ** pRight: not used. But recursively deleted. 488 ** iColumn: Index of a column in pVector 489 ** iTable: 0 or the number of columns on the LHS of an assignment 490 ** pLeft->iTable: First in an array of register holding result, or 0 491 ** if the result is not yet computed. 492 ** 493 ** sqlite3ExprDelete() specifically skips the recursive delete of 494 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 495 ** can be attached to pRight to cause this node to take ownership of 496 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 497 ** with the same pLeft pointer to the pVector, but only one of them 498 ** will own the pVector. 499 */ 500 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 501 if( pRet ){ 502 pRet->iColumn = iField; 503 pRet->pLeft = pVector; 504 } 505 assert( pRet==0 || pRet->iTable==0 ); 506 }else{ 507 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 508 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 509 sqlite3RenameTokenRemap(pParse, pRet, pVector); 510 } 511 return pRet; 512 } 513 514 /* 515 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 516 ** it. Return the register in which the result is stored (or, if the 517 ** sub-select returns more than one column, the first in an array 518 ** of registers in which the result is stored). 519 ** 520 ** If pExpr is not a TK_SELECT expression, return 0. 521 */ 522 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 523 int reg = 0; 524 #ifndef SQLITE_OMIT_SUBQUERY 525 if( pExpr->op==TK_SELECT ){ 526 reg = sqlite3CodeSubselect(pParse, pExpr); 527 } 528 #endif 529 return reg; 530 } 531 532 /* 533 ** Argument pVector points to a vector expression - either a TK_VECTOR 534 ** or TK_SELECT that returns more than one column. This function returns 535 ** the register number of a register that contains the value of 536 ** element iField of the vector. 537 ** 538 ** If pVector is a TK_SELECT expression, then code for it must have 539 ** already been generated using the exprCodeSubselect() routine. In this 540 ** case parameter regSelect should be the first in an array of registers 541 ** containing the results of the sub-select. 542 ** 543 ** If pVector is of type TK_VECTOR, then code for the requested field 544 ** is generated. In this case (*pRegFree) may be set to the number of 545 ** a temporary register to be freed by the caller before returning. 546 ** 547 ** Before returning, output parameter (*ppExpr) is set to point to the 548 ** Expr object corresponding to element iElem of the vector. 549 */ 550 static int exprVectorRegister( 551 Parse *pParse, /* Parse context */ 552 Expr *pVector, /* Vector to extract element from */ 553 int iField, /* Field to extract from pVector */ 554 int regSelect, /* First in array of registers */ 555 Expr **ppExpr, /* OUT: Expression element */ 556 int *pRegFree /* OUT: Temp register to free */ 557 ){ 558 u8 op = pVector->op; 559 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 560 if( op==TK_REGISTER ){ 561 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 562 return pVector->iTable+iField; 563 } 564 if( op==TK_SELECT ){ 565 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 566 return regSelect+iField; 567 } 568 *ppExpr = pVector->x.pList->a[iField].pExpr; 569 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 570 } 571 572 /* 573 ** Expression pExpr is a comparison between two vector values. Compute 574 ** the result of the comparison (1, 0, or NULL) and write that 575 ** result into register dest. 576 ** 577 ** The caller must satisfy the following preconditions: 578 ** 579 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 580 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 581 ** otherwise: op==pExpr->op and p5==0 582 */ 583 static void codeVectorCompare( 584 Parse *pParse, /* Code generator context */ 585 Expr *pExpr, /* The comparison operation */ 586 int dest, /* Write results into this register */ 587 u8 op, /* Comparison operator */ 588 u8 p5 /* SQLITE_NULLEQ or zero */ 589 ){ 590 Vdbe *v = pParse->pVdbe; 591 Expr *pLeft = pExpr->pLeft; 592 Expr *pRight = pExpr->pRight; 593 int nLeft = sqlite3ExprVectorSize(pLeft); 594 int i; 595 int regLeft = 0; 596 int regRight = 0; 597 u8 opx = op; 598 int addrDone = sqlite3VdbeMakeLabel(pParse); 599 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 600 601 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 602 if( pParse->nErr ) return; 603 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 604 sqlite3ErrorMsg(pParse, "row value misused"); 605 return; 606 } 607 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 608 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 609 || pExpr->op==TK_LT || pExpr->op==TK_GT 610 || pExpr->op==TK_LE || pExpr->op==TK_GE 611 ); 612 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 613 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 614 assert( p5==0 || pExpr->op!=op ); 615 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 616 617 p5 |= SQLITE_STOREP2; 618 if( opx==TK_LE ) opx = TK_LT; 619 if( opx==TK_GE ) opx = TK_GT; 620 621 regLeft = exprCodeSubselect(pParse, pLeft); 622 regRight = exprCodeSubselect(pParse, pRight); 623 624 for(i=0; 1 /*Loop exits by "break"*/; i++){ 625 int regFree1 = 0, regFree2 = 0; 626 Expr *pL, *pR; 627 int r1, r2; 628 assert( i>=0 && i<nLeft ); 629 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 630 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 631 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 632 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 633 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 634 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 635 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 636 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 637 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 638 sqlite3ReleaseTempReg(pParse, regFree1); 639 sqlite3ReleaseTempReg(pParse, regFree2); 640 if( i==nLeft-1 ){ 641 break; 642 } 643 if( opx==TK_EQ ){ 644 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 645 p5 |= SQLITE_KEEPNULL; 646 }else if( opx==TK_NE ){ 647 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 648 p5 |= SQLITE_KEEPNULL; 649 }else{ 650 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 651 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 652 VdbeCoverageIf(v, op==TK_LT); 653 VdbeCoverageIf(v, op==TK_GT); 654 VdbeCoverageIf(v, op==TK_LE); 655 VdbeCoverageIf(v, op==TK_GE); 656 if( i==nLeft-2 ) opx = op; 657 } 658 } 659 sqlite3VdbeResolveLabel(v, addrDone); 660 } 661 662 #if SQLITE_MAX_EXPR_DEPTH>0 663 /* 664 ** Check that argument nHeight is less than or equal to the maximum 665 ** expression depth allowed. If it is not, leave an error message in 666 ** pParse. 667 */ 668 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 669 int rc = SQLITE_OK; 670 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 671 if( nHeight>mxHeight ){ 672 sqlite3ErrorMsg(pParse, 673 "Expression tree is too large (maximum depth %d)", mxHeight 674 ); 675 rc = SQLITE_ERROR; 676 } 677 return rc; 678 } 679 680 /* The following three functions, heightOfExpr(), heightOfExprList() 681 ** and heightOfSelect(), are used to determine the maximum height 682 ** of any expression tree referenced by the structure passed as the 683 ** first argument. 684 ** 685 ** If this maximum height is greater than the current value pointed 686 ** to by pnHeight, the second parameter, then set *pnHeight to that 687 ** value. 688 */ 689 static void heightOfExpr(Expr *p, int *pnHeight){ 690 if( p ){ 691 if( p->nHeight>*pnHeight ){ 692 *pnHeight = p->nHeight; 693 } 694 } 695 } 696 static void heightOfExprList(ExprList *p, int *pnHeight){ 697 if( p ){ 698 int i; 699 for(i=0; i<p->nExpr; i++){ 700 heightOfExpr(p->a[i].pExpr, pnHeight); 701 } 702 } 703 } 704 static void heightOfSelect(Select *pSelect, int *pnHeight){ 705 Select *p; 706 for(p=pSelect; p; p=p->pPrior){ 707 heightOfExpr(p->pWhere, pnHeight); 708 heightOfExpr(p->pHaving, pnHeight); 709 heightOfExpr(p->pLimit, pnHeight); 710 heightOfExprList(p->pEList, pnHeight); 711 heightOfExprList(p->pGroupBy, pnHeight); 712 heightOfExprList(p->pOrderBy, pnHeight); 713 } 714 } 715 716 /* 717 ** Set the Expr.nHeight variable in the structure passed as an 718 ** argument. An expression with no children, Expr.pList or 719 ** Expr.pSelect member has a height of 1. Any other expression 720 ** has a height equal to the maximum height of any other 721 ** referenced Expr plus one. 722 ** 723 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 724 ** if appropriate. 725 */ 726 static void exprSetHeight(Expr *p){ 727 int nHeight = 0; 728 heightOfExpr(p->pLeft, &nHeight); 729 heightOfExpr(p->pRight, &nHeight); 730 if( ExprHasProperty(p, EP_xIsSelect) ){ 731 heightOfSelect(p->x.pSelect, &nHeight); 732 }else if( p->x.pList ){ 733 heightOfExprList(p->x.pList, &nHeight); 734 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 735 } 736 p->nHeight = nHeight + 1; 737 } 738 739 /* 740 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 741 ** the height is greater than the maximum allowed expression depth, 742 ** leave an error in pParse. 743 ** 744 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 745 ** Expr.flags. 746 */ 747 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 748 if( pParse->nErr ) return; 749 exprSetHeight(p); 750 sqlite3ExprCheckHeight(pParse, p->nHeight); 751 } 752 753 /* 754 ** Return the maximum height of any expression tree referenced 755 ** by the select statement passed as an argument. 756 */ 757 int sqlite3SelectExprHeight(Select *p){ 758 int nHeight = 0; 759 heightOfSelect(p, &nHeight); 760 return nHeight; 761 } 762 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 763 /* 764 ** Propagate all EP_Propagate flags from the Expr.x.pList into 765 ** Expr.flags. 766 */ 767 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 768 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 769 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 770 } 771 } 772 #define exprSetHeight(y) 773 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 774 775 /* 776 ** This routine is the core allocator for Expr nodes. 777 ** 778 ** Construct a new expression node and return a pointer to it. Memory 779 ** for this node and for the pToken argument is a single allocation 780 ** obtained from sqlite3DbMalloc(). The calling function 781 ** is responsible for making sure the node eventually gets freed. 782 ** 783 ** If dequote is true, then the token (if it exists) is dequoted. 784 ** If dequote is false, no dequoting is performed. The deQuote 785 ** parameter is ignored if pToken is NULL or if the token does not 786 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 787 ** then the EP_DblQuoted flag is set on the expression node. 788 ** 789 ** Special case: If op==TK_INTEGER and pToken points to a string that 790 ** can be translated into a 32-bit integer, then the token is not 791 ** stored in u.zToken. Instead, the integer values is written 792 ** into u.iValue and the EP_IntValue flag is set. No extra storage 793 ** is allocated to hold the integer text and the dequote flag is ignored. 794 */ 795 Expr *sqlite3ExprAlloc( 796 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 797 int op, /* Expression opcode */ 798 const Token *pToken, /* Token argument. Might be NULL */ 799 int dequote /* True to dequote */ 800 ){ 801 Expr *pNew; 802 int nExtra = 0; 803 int iValue = 0; 804 805 assert( db!=0 ); 806 if( pToken ){ 807 if( op!=TK_INTEGER || pToken->z==0 808 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 809 nExtra = pToken->n+1; 810 assert( iValue>=0 ); 811 } 812 } 813 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 814 if( pNew ){ 815 memset(pNew, 0, sizeof(Expr)); 816 pNew->op = (u8)op; 817 pNew->iAgg = -1; 818 if( pToken ){ 819 if( nExtra==0 ){ 820 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 821 pNew->u.iValue = iValue; 822 }else{ 823 pNew->u.zToken = (char*)&pNew[1]; 824 assert( pToken->z!=0 || pToken->n==0 ); 825 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 826 pNew->u.zToken[pToken->n] = 0; 827 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 828 sqlite3DequoteExpr(pNew); 829 } 830 } 831 } 832 #if SQLITE_MAX_EXPR_DEPTH>0 833 pNew->nHeight = 1; 834 #endif 835 } 836 return pNew; 837 } 838 839 /* 840 ** Allocate a new expression node from a zero-terminated token that has 841 ** already been dequoted. 842 */ 843 Expr *sqlite3Expr( 844 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 845 int op, /* Expression opcode */ 846 const char *zToken /* Token argument. Might be NULL */ 847 ){ 848 Token x; 849 x.z = zToken; 850 x.n = sqlite3Strlen30(zToken); 851 return sqlite3ExprAlloc(db, op, &x, 0); 852 } 853 854 /* 855 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 856 ** 857 ** If pRoot==NULL that means that a memory allocation error has occurred. 858 ** In that case, delete the subtrees pLeft and pRight. 859 */ 860 void sqlite3ExprAttachSubtrees( 861 sqlite3 *db, 862 Expr *pRoot, 863 Expr *pLeft, 864 Expr *pRight 865 ){ 866 if( pRoot==0 ){ 867 assert( db->mallocFailed ); 868 sqlite3ExprDelete(db, pLeft); 869 sqlite3ExprDelete(db, pRight); 870 }else{ 871 if( pRight ){ 872 pRoot->pRight = pRight; 873 pRoot->flags |= EP_Propagate & pRight->flags; 874 } 875 if( pLeft ){ 876 pRoot->pLeft = pLeft; 877 pRoot->flags |= EP_Propagate & pLeft->flags; 878 } 879 exprSetHeight(pRoot); 880 } 881 } 882 883 /* 884 ** Allocate an Expr node which joins as many as two subtrees. 885 ** 886 ** One or both of the subtrees can be NULL. Return a pointer to the new 887 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 888 ** free the subtrees and return NULL. 889 */ 890 Expr *sqlite3PExpr( 891 Parse *pParse, /* Parsing context */ 892 int op, /* Expression opcode */ 893 Expr *pLeft, /* Left operand */ 894 Expr *pRight /* Right operand */ 895 ){ 896 Expr *p; 897 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 898 if( p ){ 899 memset(p, 0, sizeof(Expr)); 900 p->op = op & 0xff; 901 p->iAgg = -1; 902 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 903 sqlite3ExprCheckHeight(pParse, p->nHeight); 904 }else{ 905 sqlite3ExprDelete(pParse->db, pLeft); 906 sqlite3ExprDelete(pParse->db, pRight); 907 } 908 return p; 909 } 910 911 /* 912 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 913 ** do a memory allocation failure) then delete the pSelect object. 914 */ 915 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 916 if( pExpr ){ 917 pExpr->x.pSelect = pSelect; 918 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 919 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 920 }else{ 921 assert( pParse->db->mallocFailed ); 922 sqlite3SelectDelete(pParse->db, pSelect); 923 } 924 } 925 926 927 /* 928 ** Join two expressions using an AND operator. If either expression is 929 ** NULL, then just return the other expression. 930 ** 931 ** If one side or the other of the AND is known to be false, then instead 932 ** of returning an AND expression, just return a constant expression with 933 ** a value of false. 934 */ 935 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 936 sqlite3 *db = pParse->db; 937 if( pLeft==0 ){ 938 return pRight; 939 }else if( pRight==0 ){ 940 return pLeft; 941 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 942 && !IN_RENAME_OBJECT 943 ){ 944 sqlite3ExprDelete(db, pLeft); 945 sqlite3ExprDelete(db, pRight); 946 return sqlite3Expr(db, TK_INTEGER, "0"); 947 }else{ 948 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 949 } 950 } 951 952 /* 953 ** Construct a new expression node for a function with multiple 954 ** arguments. 955 */ 956 Expr *sqlite3ExprFunction( 957 Parse *pParse, /* Parsing context */ 958 ExprList *pList, /* Argument list */ 959 Token *pToken, /* Name of the function */ 960 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 961 ){ 962 Expr *pNew; 963 sqlite3 *db = pParse->db; 964 assert( pToken ); 965 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 966 if( pNew==0 ){ 967 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 968 return 0; 969 } 970 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 971 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 972 } 973 pNew->x.pList = pList; 974 ExprSetProperty(pNew, EP_HasFunc); 975 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 976 sqlite3ExprSetHeightAndFlags(pParse, pNew); 977 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 978 return pNew; 979 } 980 981 /* 982 ** Check to see if a function is usable according to current access 983 ** rules: 984 ** 985 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 986 ** 987 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 988 ** top-level SQL 989 ** 990 ** If the function is not usable, create an error. 991 */ 992 void sqlite3ExprFunctionUsable( 993 Parse *pParse, /* Parsing and code generating context */ 994 Expr *pExpr, /* The function invocation */ 995 FuncDef *pDef /* The function being invoked */ 996 ){ 997 assert( !IN_RENAME_OBJECT ); 998 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 999 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1000 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1001 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1002 ){ 1003 /* Functions prohibited in triggers and views if: 1004 ** (1) tagged with SQLITE_DIRECTONLY 1005 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1006 ** is tagged with SQLITE_FUNC_UNSAFE) and 1007 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1008 ** that the schema is possibly tainted). 1009 */ 1010 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1011 } 1012 } 1013 } 1014 1015 /* 1016 ** Assign a variable number to an expression that encodes a wildcard 1017 ** in the original SQL statement. 1018 ** 1019 ** Wildcards consisting of a single "?" are assigned the next sequential 1020 ** variable number. 1021 ** 1022 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1023 ** sure "nnn" is not too big to avoid a denial of service attack when 1024 ** the SQL statement comes from an external source. 1025 ** 1026 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1027 ** as the previous instance of the same wildcard. Or if this is the first 1028 ** instance of the wildcard, the next sequential variable number is 1029 ** assigned. 1030 */ 1031 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1032 sqlite3 *db = pParse->db; 1033 const char *z; 1034 ynVar x; 1035 1036 if( pExpr==0 ) return; 1037 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1038 z = pExpr->u.zToken; 1039 assert( z!=0 ); 1040 assert( z[0]!=0 ); 1041 assert( n==(u32)sqlite3Strlen30(z) ); 1042 if( z[1]==0 ){ 1043 /* Wildcard of the form "?". Assign the next variable number */ 1044 assert( z[0]=='?' ); 1045 x = (ynVar)(++pParse->nVar); 1046 }else{ 1047 int doAdd = 0; 1048 if( z[0]=='?' ){ 1049 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1050 ** use it as the variable number */ 1051 i64 i; 1052 int bOk; 1053 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1054 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1055 bOk = 1; 1056 }else{ 1057 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1058 } 1059 testcase( i==0 ); 1060 testcase( i==1 ); 1061 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1062 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1063 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1064 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1065 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1066 return; 1067 } 1068 x = (ynVar)i; 1069 if( x>pParse->nVar ){ 1070 pParse->nVar = (int)x; 1071 doAdd = 1; 1072 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1073 doAdd = 1; 1074 } 1075 }else{ 1076 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1077 ** number as the prior appearance of the same name, or if the name 1078 ** has never appeared before, reuse the same variable number 1079 */ 1080 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1081 if( x==0 ){ 1082 x = (ynVar)(++pParse->nVar); 1083 doAdd = 1; 1084 } 1085 } 1086 if( doAdd ){ 1087 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1088 } 1089 } 1090 pExpr->iColumn = x; 1091 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1092 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1093 } 1094 } 1095 1096 /* 1097 ** Recursively delete an expression tree. 1098 */ 1099 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1100 assert( p!=0 ); 1101 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1102 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1103 1104 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1105 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1106 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1107 #ifdef SQLITE_DEBUG 1108 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1109 assert( p->pLeft==0 ); 1110 assert( p->pRight==0 ); 1111 assert( p->x.pSelect==0 ); 1112 } 1113 #endif 1114 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1115 /* The Expr.x union is never used at the same time as Expr.pRight */ 1116 assert( p->x.pList==0 || p->pRight==0 ); 1117 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1118 if( p->pRight ){ 1119 assert( !ExprHasProperty(p, EP_WinFunc) ); 1120 sqlite3ExprDeleteNN(db, p->pRight); 1121 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1122 assert( !ExprHasProperty(p, EP_WinFunc) ); 1123 sqlite3SelectDelete(db, p->x.pSelect); 1124 }else{ 1125 sqlite3ExprListDelete(db, p->x.pList); 1126 #ifndef SQLITE_OMIT_WINDOWFUNC 1127 if( ExprHasProperty(p, EP_WinFunc) ){ 1128 sqlite3WindowDelete(db, p->y.pWin); 1129 } 1130 #endif 1131 } 1132 } 1133 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1134 if( !ExprHasProperty(p, EP_Static) ){ 1135 sqlite3DbFreeNN(db, p); 1136 } 1137 } 1138 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1139 if( p ) sqlite3ExprDeleteNN(db, p); 1140 } 1141 1142 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1143 ** expression. 1144 */ 1145 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1146 if( p ){ 1147 if( IN_RENAME_OBJECT ){ 1148 sqlite3RenameExprUnmap(pParse, p); 1149 } 1150 sqlite3ExprDeleteNN(pParse->db, p); 1151 } 1152 } 1153 1154 /* 1155 ** Return the number of bytes allocated for the expression structure 1156 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1157 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1158 */ 1159 static int exprStructSize(Expr *p){ 1160 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1161 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1162 return EXPR_FULLSIZE; 1163 } 1164 1165 /* 1166 ** The dupedExpr*Size() routines each return the number of bytes required 1167 ** to store a copy of an expression or expression tree. They differ in 1168 ** how much of the tree is measured. 1169 ** 1170 ** dupedExprStructSize() Size of only the Expr structure 1171 ** dupedExprNodeSize() Size of Expr + space for token 1172 ** dupedExprSize() Expr + token + subtree components 1173 ** 1174 *************************************************************************** 1175 ** 1176 ** The dupedExprStructSize() function returns two values OR-ed together: 1177 ** (1) the space required for a copy of the Expr structure only and 1178 ** (2) the EP_xxx flags that indicate what the structure size should be. 1179 ** The return values is always one of: 1180 ** 1181 ** EXPR_FULLSIZE 1182 ** EXPR_REDUCEDSIZE | EP_Reduced 1183 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1184 ** 1185 ** The size of the structure can be found by masking the return value 1186 ** of this routine with 0xfff. The flags can be found by masking the 1187 ** return value with EP_Reduced|EP_TokenOnly. 1188 ** 1189 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1190 ** (unreduced) Expr objects as they or originally constructed by the parser. 1191 ** During expression analysis, extra information is computed and moved into 1192 ** later parts of the Expr object and that extra information might get chopped 1193 ** off if the expression is reduced. Note also that it does not work to 1194 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1195 ** to reduce a pristine expression tree from the parser. The implementation 1196 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1197 ** to enforce this constraint. 1198 */ 1199 static int dupedExprStructSize(Expr *p, int flags){ 1200 int nSize; 1201 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1202 assert( EXPR_FULLSIZE<=0xfff ); 1203 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1204 if( 0==flags || p->op==TK_SELECT_COLUMN 1205 #ifndef SQLITE_OMIT_WINDOWFUNC 1206 || ExprHasProperty(p, EP_WinFunc) 1207 #endif 1208 ){ 1209 nSize = EXPR_FULLSIZE; 1210 }else{ 1211 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1212 assert( !ExprHasProperty(p, EP_FromJoin) ); 1213 assert( !ExprHasProperty(p, EP_MemToken) ); 1214 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1215 if( p->pLeft || p->x.pList ){ 1216 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1217 }else{ 1218 assert( p->pRight==0 ); 1219 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1220 } 1221 } 1222 return nSize; 1223 } 1224 1225 /* 1226 ** This function returns the space in bytes required to store the copy 1227 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1228 ** string is defined.) 1229 */ 1230 static int dupedExprNodeSize(Expr *p, int flags){ 1231 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1232 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1233 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1234 } 1235 return ROUND8(nByte); 1236 } 1237 1238 /* 1239 ** Return the number of bytes required to create a duplicate of the 1240 ** expression passed as the first argument. The second argument is a 1241 ** mask containing EXPRDUP_XXX flags. 1242 ** 1243 ** The value returned includes space to create a copy of the Expr struct 1244 ** itself and the buffer referred to by Expr.u.zToken, if any. 1245 ** 1246 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1247 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1248 ** and Expr.pRight variables (but not for any structures pointed to or 1249 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1250 */ 1251 static int dupedExprSize(Expr *p, int flags){ 1252 int nByte = 0; 1253 if( p ){ 1254 nByte = dupedExprNodeSize(p, flags); 1255 if( flags&EXPRDUP_REDUCE ){ 1256 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1257 } 1258 } 1259 return nByte; 1260 } 1261 1262 /* 1263 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1264 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1265 ** to store the copy of expression p, the copies of p->u.zToken 1266 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1267 ** if any. Before returning, *pzBuffer is set to the first byte past the 1268 ** portion of the buffer copied into by this function. 1269 */ 1270 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1271 Expr *pNew; /* Value to return */ 1272 u8 *zAlloc; /* Memory space from which to build Expr object */ 1273 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1274 1275 assert( db!=0 ); 1276 assert( p ); 1277 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1278 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1279 1280 /* Figure out where to write the new Expr structure. */ 1281 if( pzBuffer ){ 1282 zAlloc = *pzBuffer; 1283 staticFlag = EP_Static; 1284 }else{ 1285 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1286 staticFlag = 0; 1287 } 1288 pNew = (Expr *)zAlloc; 1289 1290 if( pNew ){ 1291 /* Set nNewSize to the size allocated for the structure pointed to 1292 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1293 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1294 ** by the copy of the p->u.zToken string (if any). 1295 */ 1296 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1297 const int nNewSize = nStructSize & 0xfff; 1298 int nToken; 1299 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1300 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1301 }else{ 1302 nToken = 0; 1303 } 1304 if( dupFlags ){ 1305 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1306 memcpy(zAlloc, p, nNewSize); 1307 }else{ 1308 u32 nSize = (u32)exprStructSize(p); 1309 memcpy(zAlloc, p, nSize); 1310 if( nSize<EXPR_FULLSIZE ){ 1311 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1312 } 1313 } 1314 1315 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1316 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1317 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1318 pNew->flags |= staticFlag; 1319 ExprClearVVAProperties(pNew); 1320 if( dupFlags ){ 1321 ExprSetVVAProperty(pNew, EP_Immutable); 1322 } 1323 1324 /* Copy the p->u.zToken string, if any. */ 1325 if( nToken ){ 1326 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1327 memcpy(zToken, p->u.zToken, nToken); 1328 } 1329 1330 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1331 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1332 if( ExprHasProperty(p, EP_xIsSelect) ){ 1333 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1334 }else{ 1335 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1336 } 1337 } 1338 1339 /* Fill in pNew->pLeft and pNew->pRight. */ 1340 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1341 zAlloc += dupedExprNodeSize(p, dupFlags); 1342 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1343 pNew->pLeft = p->pLeft ? 1344 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1345 pNew->pRight = p->pRight ? 1346 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1347 } 1348 #ifndef SQLITE_OMIT_WINDOWFUNC 1349 if( ExprHasProperty(p, EP_WinFunc) ){ 1350 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1351 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1352 } 1353 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1354 if( pzBuffer ){ 1355 *pzBuffer = zAlloc; 1356 } 1357 }else{ 1358 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1359 if( pNew->op==TK_SELECT_COLUMN ){ 1360 pNew->pLeft = p->pLeft; 1361 assert( p->iColumn==0 || p->pRight==0 ); 1362 assert( p->pRight==0 || p->pRight==p->pLeft ); 1363 }else{ 1364 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1365 } 1366 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1367 } 1368 } 1369 } 1370 return pNew; 1371 } 1372 1373 /* 1374 ** Create and return a deep copy of the object passed as the second 1375 ** argument. If an OOM condition is encountered, NULL is returned 1376 ** and the db->mallocFailed flag set. 1377 */ 1378 #ifndef SQLITE_OMIT_CTE 1379 static With *withDup(sqlite3 *db, With *p){ 1380 With *pRet = 0; 1381 if( p ){ 1382 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1383 pRet = sqlite3DbMallocZero(db, nByte); 1384 if( pRet ){ 1385 int i; 1386 pRet->nCte = p->nCte; 1387 for(i=0; i<p->nCte; i++){ 1388 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1389 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1390 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1391 } 1392 } 1393 } 1394 return pRet; 1395 } 1396 #else 1397 # define withDup(x,y) 0 1398 #endif 1399 1400 #ifndef SQLITE_OMIT_WINDOWFUNC 1401 /* 1402 ** The gatherSelectWindows() procedure and its helper routine 1403 ** gatherSelectWindowsCallback() are used to scan all the expressions 1404 ** an a newly duplicated SELECT statement and gather all of the Window 1405 ** objects found there, assembling them onto the linked list at Select->pWin. 1406 */ 1407 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1408 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1409 Select *pSelect = pWalker->u.pSelect; 1410 Window *pWin = pExpr->y.pWin; 1411 assert( pWin ); 1412 assert( IsWindowFunc(pExpr) ); 1413 assert( pWin->ppThis==0 ); 1414 sqlite3WindowLink(pSelect, pWin); 1415 } 1416 return WRC_Continue; 1417 } 1418 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1419 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1420 } 1421 static void gatherSelectWindows(Select *p){ 1422 Walker w; 1423 w.xExprCallback = gatherSelectWindowsCallback; 1424 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1425 w.xSelectCallback2 = 0; 1426 w.pParse = 0; 1427 w.u.pSelect = p; 1428 sqlite3WalkSelect(&w, p); 1429 } 1430 #endif 1431 1432 1433 /* 1434 ** The following group of routines make deep copies of expressions, 1435 ** expression lists, ID lists, and select statements. The copies can 1436 ** be deleted (by being passed to their respective ...Delete() routines) 1437 ** without effecting the originals. 1438 ** 1439 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1440 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1441 ** by subsequent calls to sqlite*ListAppend() routines. 1442 ** 1443 ** Any tables that the SrcList might point to are not duplicated. 1444 ** 1445 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1446 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1447 ** truncated version of the usual Expr structure that will be stored as 1448 ** part of the in-memory representation of the database schema. 1449 */ 1450 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1451 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1452 return p ? exprDup(db, p, flags, 0) : 0; 1453 } 1454 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1455 ExprList *pNew; 1456 struct ExprList_item *pItem, *pOldItem; 1457 int i; 1458 Expr *pPriorSelectCol = 0; 1459 assert( db!=0 ); 1460 if( p==0 ) return 0; 1461 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1462 if( pNew==0 ) return 0; 1463 pNew->nExpr = p->nExpr; 1464 pItem = pNew->a; 1465 pOldItem = p->a; 1466 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1467 Expr *pOldExpr = pOldItem->pExpr; 1468 Expr *pNewExpr; 1469 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1470 if( pOldExpr 1471 && pOldExpr->op==TK_SELECT_COLUMN 1472 && (pNewExpr = pItem->pExpr)!=0 1473 ){ 1474 assert( pNewExpr->iColumn==0 || i>0 ); 1475 if( pNewExpr->iColumn==0 ){ 1476 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1477 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1478 }else{ 1479 assert( i>0 ); 1480 assert( pItem[-1].pExpr!=0 ); 1481 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1482 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1483 pNewExpr->pLeft = pPriorSelectCol; 1484 } 1485 } 1486 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1487 pItem->sortFlags = pOldItem->sortFlags; 1488 pItem->eEName = pOldItem->eEName; 1489 pItem->done = 0; 1490 pItem->bNulls = pOldItem->bNulls; 1491 pItem->bSorterRef = pOldItem->bSorterRef; 1492 pItem->u = pOldItem->u; 1493 } 1494 return pNew; 1495 } 1496 1497 /* 1498 ** If cursors, triggers, views and subqueries are all omitted from 1499 ** the build, then none of the following routines, except for 1500 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1501 ** called with a NULL argument. 1502 */ 1503 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1504 || !defined(SQLITE_OMIT_SUBQUERY) 1505 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1506 SrcList *pNew; 1507 int i; 1508 int nByte; 1509 assert( db!=0 ); 1510 if( p==0 ) return 0; 1511 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1512 pNew = sqlite3DbMallocRawNN(db, nByte ); 1513 if( pNew==0 ) return 0; 1514 pNew->nSrc = pNew->nAlloc = p->nSrc; 1515 for(i=0; i<p->nSrc; i++){ 1516 struct SrcList_item *pNewItem = &pNew->a[i]; 1517 struct SrcList_item *pOldItem = &p->a[i]; 1518 Table *pTab; 1519 pNewItem->pSchema = pOldItem->pSchema; 1520 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1521 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1522 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1523 pNewItem->fg = pOldItem->fg; 1524 pNewItem->iCursor = pOldItem->iCursor; 1525 pNewItem->addrFillSub = pOldItem->addrFillSub; 1526 pNewItem->regReturn = pOldItem->regReturn; 1527 if( pNewItem->fg.isIndexedBy ){ 1528 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1529 } 1530 pNewItem->pIBIndex = pOldItem->pIBIndex; 1531 if( pNewItem->fg.isTabFunc ){ 1532 pNewItem->u1.pFuncArg = 1533 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1534 } 1535 pTab = pNewItem->pTab = pOldItem->pTab; 1536 if( pTab ){ 1537 pTab->nTabRef++; 1538 } 1539 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1540 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1541 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1542 pNewItem->colUsed = pOldItem->colUsed; 1543 } 1544 return pNew; 1545 } 1546 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1547 IdList *pNew; 1548 int i; 1549 assert( db!=0 ); 1550 if( p==0 ) return 0; 1551 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1552 if( pNew==0 ) return 0; 1553 pNew->nId = p->nId; 1554 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1555 if( pNew->a==0 ){ 1556 sqlite3DbFreeNN(db, pNew); 1557 return 0; 1558 } 1559 /* Note that because the size of the allocation for p->a[] is not 1560 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1561 ** on the duplicate created by this function. */ 1562 for(i=0; i<p->nId; i++){ 1563 struct IdList_item *pNewItem = &pNew->a[i]; 1564 struct IdList_item *pOldItem = &p->a[i]; 1565 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1566 pNewItem->idx = pOldItem->idx; 1567 } 1568 return pNew; 1569 } 1570 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1571 Select *pRet = 0; 1572 Select *pNext = 0; 1573 Select **pp = &pRet; 1574 Select *p; 1575 1576 assert( db!=0 ); 1577 for(p=pDup; p; p=p->pPrior){ 1578 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1579 if( pNew==0 ) break; 1580 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1581 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1582 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1583 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1584 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1585 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1586 pNew->op = p->op; 1587 pNew->pNext = pNext; 1588 pNew->pPrior = 0; 1589 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1590 pNew->iLimit = 0; 1591 pNew->iOffset = 0; 1592 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1593 pNew->addrOpenEphm[0] = -1; 1594 pNew->addrOpenEphm[1] = -1; 1595 pNew->nSelectRow = p->nSelectRow; 1596 pNew->pWith = withDup(db, p->pWith); 1597 #ifndef SQLITE_OMIT_WINDOWFUNC 1598 pNew->pWin = 0; 1599 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1600 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1601 #endif 1602 pNew->selId = p->selId; 1603 *pp = pNew; 1604 pp = &pNew->pPrior; 1605 pNext = pNew; 1606 } 1607 1608 return pRet; 1609 } 1610 #else 1611 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1612 assert( p==0 ); 1613 return 0; 1614 } 1615 #endif 1616 1617 1618 /* 1619 ** Add a new element to the end of an expression list. If pList is 1620 ** initially NULL, then create a new expression list. 1621 ** 1622 ** The pList argument must be either NULL or a pointer to an ExprList 1623 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1624 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1625 ** Reason: This routine assumes that the number of slots in pList->a[] 1626 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1627 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1628 ** 1629 ** If a memory allocation error occurs, the entire list is freed and 1630 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1631 ** that the new entry was successfully appended. 1632 */ 1633 ExprList *sqlite3ExprListAppend( 1634 Parse *pParse, /* Parsing context */ 1635 ExprList *pList, /* List to which to append. Might be NULL */ 1636 Expr *pExpr /* Expression to be appended. Might be NULL */ 1637 ){ 1638 struct ExprList_item *pItem; 1639 sqlite3 *db = pParse->db; 1640 assert( db!=0 ); 1641 if( pList==0 ){ 1642 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1643 if( pList==0 ){ 1644 goto no_mem; 1645 } 1646 pList->nExpr = 0; 1647 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1648 ExprList *pNew; 1649 pNew = sqlite3DbRealloc(db, pList, 1650 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1651 if( pNew==0 ){ 1652 goto no_mem; 1653 } 1654 pList = pNew; 1655 } 1656 pItem = &pList->a[pList->nExpr++]; 1657 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1658 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1659 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1660 pItem->pExpr = pExpr; 1661 return pList; 1662 1663 no_mem: 1664 /* Avoid leaking memory if malloc has failed. */ 1665 sqlite3ExprDelete(db, pExpr); 1666 sqlite3ExprListDelete(db, pList); 1667 return 0; 1668 } 1669 1670 /* 1671 ** pColumns and pExpr form a vector assignment which is part of the SET 1672 ** clause of an UPDATE statement. Like this: 1673 ** 1674 ** (a,b,c) = (expr1,expr2,expr3) 1675 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1676 ** 1677 ** For each term of the vector assignment, append new entries to the 1678 ** expression list pList. In the case of a subquery on the RHS, append 1679 ** TK_SELECT_COLUMN expressions. 1680 */ 1681 ExprList *sqlite3ExprListAppendVector( 1682 Parse *pParse, /* Parsing context */ 1683 ExprList *pList, /* List to which to append. Might be NULL */ 1684 IdList *pColumns, /* List of names of LHS of the assignment */ 1685 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1686 ){ 1687 sqlite3 *db = pParse->db; 1688 int n; 1689 int i; 1690 int iFirst = pList ? pList->nExpr : 0; 1691 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1692 ** exit prior to this routine being invoked */ 1693 if( NEVER(pColumns==0) ) goto vector_append_error; 1694 if( pExpr==0 ) goto vector_append_error; 1695 1696 /* If the RHS is a vector, then we can immediately check to see that 1697 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1698 ** wildcards ("*") in the result set of the SELECT must be expanded before 1699 ** we can do the size check, so defer the size check until code generation. 1700 */ 1701 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1702 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1703 pColumns->nId, n); 1704 goto vector_append_error; 1705 } 1706 1707 for(i=0; i<pColumns->nId; i++){ 1708 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1709 assert( pSubExpr!=0 || db->mallocFailed ); 1710 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1711 if( pSubExpr==0 ) continue; 1712 pSubExpr->iTable = pColumns->nId; 1713 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1714 if( pList ){ 1715 assert( pList->nExpr==iFirst+i+1 ); 1716 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1717 pColumns->a[i].zName = 0; 1718 } 1719 } 1720 1721 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1722 Expr *pFirst = pList->a[iFirst].pExpr; 1723 assert( pFirst!=0 ); 1724 assert( pFirst->op==TK_SELECT_COLUMN ); 1725 1726 /* Store the SELECT statement in pRight so it will be deleted when 1727 ** sqlite3ExprListDelete() is called */ 1728 pFirst->pRight = pExpr; 1729 pExpr = 0; 1730 1731 /* Remember the size of the LHS in iTable so that we can check that 1732 ** the RHS and LHS sizes match during code generation. */ 1733 pFirst->iTable = pColumns->nId; 1734 } 1735 1736 vector_append_error: 1737 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1738 sqlite3IdListDelete(db, pColumns); 1739 return pList; 1740 } 1741 1742 /* 1743 ** Set the sort order for the last element on the given ExprList. 1744 */ 1745 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1746 struct ExprList_item *pItem; 1747 if( p==0 ) return; 1748 assert( p->nExpr>0 ); 1749 1750 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1751 assert( iSortOrder==SQLITE_SO_UNDEFINED 1752 || iSortOrder==SQLITE_SO_ASC 1753 || iSortOrder==SQLITE_SO_DESC 1754 ); 1755 assert( eNulls==SQLITE_SO_UNDEFINED 1756 || eNulls==SQLITE_SO_ASC 1757 || eNulls==SQLITE_SO_DESC 1758 ); 1759 1760 pItem = &p->a[p->nExpr-1]; 1761 assert( pItem->bNulls==0 ); 1762 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1763 iSortOrder = SQLITE_SO_ASC; 1764 } 1765 pItem->sortFlags = (u8)iSortOrder; 1766 1767 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1768 pItem->bNulls = 1; 1769 if( iSortOrder!=eNulls ){ 1770 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1771 } 1772 } 1773 } 1774 1775 /* 1776 ** Set the ExprList.a[].zEName element of the most recently added item 1777 ** on the expression list. 1778 ** 1779 ** pList might be NULL following an OOM error. But pName should never be 1780 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1781 ** is set. 1782 */ 1783 void sqlite3ExprListSetName( 1784 Parse *pParse, /* Parsing context */ 1785 ExprList *pList, /* List to which to add the span. */ 1786 Token *pName, /* Name to be added */ 1787 int dequote /* True to cause the name to be dequoted */ 1788 ){ 1789 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1790 if( pList ){ 1791 struct ExprList_item *pItem; 1792 assert( pList->nExpr>0 ); 1793 pItem = &pList->a[pList->nExpr-1]; 1794 assert( pItem->zEName==0 ); 1795 assert( pItem->eEName==ENAME_NAME ); 1796 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1797 if( dequote ) sqlite3Dequote(pItem->zEName); 1798 if( IN_RENAME_OBJECT ){ 1799 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1800 } 1801 } 1802 } 1803 1804 /* 1805 ** Set the ExprList.a[].zSpan element of the most recently added item 1806 ** on the expression list. 1807 ** 1808 ** pList might be NULL following an OOM error. But pSpan should never be 1809 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1810 ** is set. 1811 */ 1812 void sqlite3ExprListSetSpan( 1813 Parse *pParse, /* Parsing context */ 1814 ExprList *pList, /* List to which to add the span. */ 1815 const char *zStart, /* Start of the span */ 1816 const char *zEnd /* End of the span */ 1817 ){ 1818 sqlite3 *db = pParse->db; 1819 assert( pList!=0 || db->mallocFailed!=0 ); 1820 if( pList ){ 1821 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1822 assert( pList->nExpr>0 ); 1823 if( pItem->zEName==0 ){ 1824 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1825 pItem->eEName = ENAME_SPAN; 1826 } 1827 } 1828 } 1829 1830 /* 1831 ** If the expression list pEList contains more than iLimit elements, 1832 ** leave an error message in pParse. 1833 */ 1834 void sqlite3ExprListCheckLength( 1835 Parse *pParse, 1836 ExprList *pEList, 1837 const char *zObject 1838 ){ 1839 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1840 testcase( pEList && pEList->nExpr==mx ); 1841 testcase( pEList && pEList->nExpr==mx+1 ); 1842 if( pEList && pEList->nExpr>mx ){ 1843 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1844 } 1845 } 1846 1847 /* 1848 ** Delete an entire expression list. 1849 */ 1850 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1851 int i = pList->nExpr; 1852 struct ExprList_item *pItem = pList->a; 1853 assert( pList->nExpr>0 ); 1854 do{ 1855 sqlite3ExprDelete(db, pItem->pExpr); 1856 sqlite3DbFree(db, pItem->zEName); 1857 pItem++; 1858 }while( --i>0 ); 1859 sqlite3DbFreeNN(db, pList); 1860 } 1861 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1862 if( pList ) exprListDeleteNN(db, pList); 1863 } 1864 1865 /* 1866 ** Return the bitwise-OR of all Expr.flags fields in the given 1867 ** ExprList. 1868 */ 1869 u32 sqlite3ExprListFlags(const ExprList *pList){ 1870 int i; 1871 u32 m = 0; 1872 assert( pList!=0 ); 1873 for(i=0; i<pList->nExpr; i++){ 1874 Expr *pExpr = pList->a[i].pExpr; 1875 assert( pExpr!=0 ); 1876 m |= pExpr->flags; 1877 } 1878 return m; 1879 } 1880 1881 /* 1882 ** This is a SELECT-node callback for the expression walker that 1883 ** always "fails". By "fail" in this case, we mean set 1884 ** pWalker->eCode to zero and abort. 1885 ** 1886 ** This callback is used by multiple expression walkers. 1887 */ 1888 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1889 UNUSED_PARAMETER(NotUsed); 1890 pWalker->eCode = 0; 1891 return WRC_Abort; 1892 } 1893 1894 /* 1895 ** Check the input string to see if it is "true" or "false" (in any case). 1896 ** 1897 ** If the string is.... Return 1898 ** "true" EP_IsTrue 1899 ** "false" EP_IsFalse 1900 ** anything else 0 1901 */ 1902 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1903 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1904 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1905 return 0; 1906 } 1907 1908 1909 /* 1910 ** If the input expression is an ID with the name "true" or "false" 1911 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1912 ** the conversion happened, and zero if the expression is unaltered. 1913 */ 1914 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1915 u32 v; 1916 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1917 if( !ExprHasProperty(pExpr, EP_Quoted) 1918 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1919 ){ 1920 pExpr->op = TK_TRUEFALSE; 1921 ExprSetProperty(pExpr, v); 1922 return 1; 1923 } 1924 return 0; 1925 } 1926 1927 /* 1928 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1929 ** and 0 if it is FALSE. 1930 */ 1931 int sqlite3ExprTruthValue(const Expr *pExpr){ 1932 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1933 assert( pExpr->op==TK_TRUEFALSE ); 1934 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1935 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1936 return pExpr->u.zToken[4]==0; 1937 } 1938 1939 /* 1940 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1941 ** terms that are always true or false. Return the simplified expression. 1942 ** Or return the original expression if no simplification is possible. 1943 ** 1944 ** Examples: 1945 ** 1946 ** (x<10) AND true => (x<10) 1947 ** (x<10) AND false => false 1948 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1949 ** (x<10) AND (y=22 OR true) => (x<10) 1950 ** (y=22) OR true => true 1951 */ 1952 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1953 assert( pExpr!=0 ); 1954 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1955 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1956 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1957 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1958 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1959 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1960 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1961 } 1962 } 1963 return pExpr; 1964 } 1965 1966 1967 /* 1968 ** These routines are Walker callbacks used to check expressions to 1969 ** see if they are "constant" for some definition of constant. The 1970 ** Walker.eCode value determines the type of "constant" we are looking 1971 ** for. 1972 ** 1973 ** These callback routines are used to implement the following: 1974 ** 1975 ** sqlite3ExprIsConstant() pWalker->eCode==1 1976 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1977 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1978 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1979 ** 1980 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1981 ** is found to not be a constant. 1982 ** 1983 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 1984 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 1985 ** when parsing an existing schema out of the sqlite_master table and 4 1986 ** when processing a new CREATE TABLE statement. A bound parameter raises 1987 ** an error for new statements, but is silently converted 1988 ** to NULL for existing schemas. This allows sqlite_master tables that 1989 ** contain a bound parameter because they were generated by older versions 1990 ** of SQLite to be parsed by newer versions of SQLite without raising a 1991 ** malformed schema error. 1992 */ 1993 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1994 1995 /* If pWalker->eCode is 2 then any term of the expression that comes from 1996 ** the ON or USING clauses of a left join disqualifies the expression 1997 ** from being considered constant. */ 1998 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1999 pWalker->eCode = 0; 2000 return WRC_Abort; 2001 } 2002 2003 switch( pExpr->op ){ 2004 /* Consider functions to be constant if all their arguments are constant 2005 ** and either pWalker->eCode==4 or 5 or the function has the 2006 ** SQLITE_FUNC_CONST flag. */ 2007 case TK_FUNCTION: 2008 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2009 && !ExprHasProperty(pExpr, EP_WinFunc) 2010 ){ 2011 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2012 return WRC_Continue; 2013 }else{ 2014 pWalker->eCode = 0; 2015 return WRC_Abort; 2016 } 2017 case TK_ID: 2018 /* Convert "true" or "false" in a DEFAULT clause into the 2019 ** appropriate TK_TRUEFALSE operator */ 2020 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2021 return WRC_Prune; 2022 } 2023 /* Fall thru */ 2024 case TK_COLUMN: 2025 case TK_AGG_FUNCTION: 2026 case TK_AGG_COLUMN: 2027 testcase( pExpr->op==TK_ID ); 2028 testcase( pExpr->op==TK_COLUMN ); 2029 testcase( pExpr->op==TK_AGG_FUNCTION ); 2030 testcase( pExpr->op==TK_AGG_COLUMN ); 2031 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2032 return WRC_Continue; 2033 } 2034 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2035 return WRC_Continue; 2036 } 2037 /* Fall through */ 2038 case TK_IF_NULL_ROW: 2039 case TK_REGISTER: 2040 testcase( pExpr->op==TK_REGISTER ); 2041 testcase( pExpr->op==TK_IF_NULL_ROW ); 2042 pWalker->eCode = 0; 2043 return WRC_Abort; 2044 case TK_VARIABLE: 2045 if( pWalker->eCode==5 ){ 2046 /* Silently convert bound parameters that appear inside of CREATE 2047 ** statements into a NULL when parsing the CREATE statement text out 2048 ** of the sqlite_master table */ 2049 pExpr->op = TK_NULL; 2050 }else if( pWalker->eCode==4 ){ 2051 /* A bound parameter in a CREATE statement that originates from 2052 ** sqlite3_prepare() causes an error */ 2053 pWalker->eCode = 0; 2054 return WRC_Abort; 2055 } 2056 /* Fall through */ 2057 default: 2058 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2059 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2060 return WRC_Continue; 2061 } 2062 } 2063 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2064 Walker w; 2065 w.eCode = initFlag; 2066 w.xExprCallback = exprNodeIsConstant; 2067 w.xSelectCallback = sqlite3SelectWalkFail; 2068 #ifdef SQLITE_DEBUG 2069 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2070 #endif 2071 w.u.iCur = iCur; 2072 sqlite3WalkExpr(&w, p); 2073 return w.eCode; 2074 } 2075 2076 /* 2077 ** Walk an expression tree. Return non-zero if the expression is constant 2078 ** and 0 if it involves variables or function calls. 2079 ** 2080 ** For the purposes of this function, a double-quoted string (ex: "abc") 2081 ** is considered a variable but a single-quoted string (ex: 'abc') is 2082 ** a constant. 2083 */ 2084 int sqlite3ExprIsConstant(Expr *p){ 2085 return exprIsConst(p, 1, 0); 2086 } 2087 2088 /* 2089 ** Walk an expression tree. Return non-zero if 2090 ** 2091 ** (1) the expression is constant, and 2092 ** (2) the expression does originate in the ON or USING clause 2093 ** of a LEFT JOIN, and 2094 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2095 ** operands created by the constant propagation optimization. 2096 ** 2097 ** When this routine returns true, it indicates that the expression 2098 ** can be added to the pParse->pConstExpr list and evaluated once when 2099 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2100 */ 2101 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2102 return exprIsConst(p, 2, 0); 2103 } 2104 2105 /* 2106 ** Walk an expression tree. Return non-zero if the expression is constant 2107 ** for any single row of the table with cursor iCur. In other words, the 2108 ** expression must not refer to any non-deterministic function nor any 2109 ** table other than iCur. 2110 */ 2111 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2112 return exprIsConst(p, 3, iCur); 2113 } 2114 2115 2116 /* 2117 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2118 */ 2119 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2120 ExprList *pGroupBy = pWalker->u.pGroupBy; 2121 int i; 2122 2123 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2124 ** it constant. */ 2125 for(i=0; i<pGroupBy->nExpr; i++){ 2126 Expr *p = pGroupBy->a[i].pExpr; 2127 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2128 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2129 if( sqlite3IsBinary(pColl) ){ 2130 return WRC_Prune; 2131 } 2132 } 2133 } 2134 2135 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2136 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2137 pWalker->eCode = 0; 2138 return WRC_Abort; 2139 } 2140 2141 return exprNodeIsConstant(pWalker, pExpr); 2142 } 2143 2144 /* 2145 ** Walk the expression tree passed as the first argument. Return non-zero 2146 ** if the expression consists entirely of constants or copies of terms 2147 ** in pGroupBy that sort with the BINARY collation sequence. 2148 ** 2149 ** This routine is used to determine if a term of the HAVING clause can 2150 ** be promoted into the WHERE clause. In order for such a promotion to work, 2151 ** the value of the HAVING clause term must be the same for all members of 2152 ** a "group". The requirement that the GROUP BY term must be BINARY 2153 ** assumes that no other collating sequence will have a finer-grained 2154 ** grouping than binary. In other words (A=B COLLATE binary) implies 2155 ** A=B in every other collating sequence. The requirement that the 2156 ** GROUP BY be BINARY is stricter than necessary. It would also work 2157 ** to promote HAVING clauses that use the same alternative collating 2158 ** sequence as the GROUP BY term, but that is much harder to check, 2159 ** alternative collating sequences are uncommon, and this is only an 2160 ** optimization, so we take the easy way out and simply require the 2161 ** GROUP BY to use the BINARY collating sequence. 2162 */ 2163 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2164 Walker w; 2165 w.eCode = 1; 2166 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2167 w.xSelectCallback = 0; 2168 w.u.pGroupBy = pGroupBy; 2169 w.pParse = pParse; 2170 sqlite3WalkExpr(&w, p); 2171 return w.eCode; 2172 } 2173 2174 /* 2175 ** Walk an expression tree for the DEFAULT field of a column definition 2176 ** in a CREATE TABLE statement. Return non-zero if the expression is 2177 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2178 ** the expression is constant or a function call with constant arguments. 2179 ** Return and 0 if there are any variables. 2180 ** 2181 ** isInit is true when parsing from sqlite_master. isInit is false when 2182 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2183 ** (such as ? or $abc) in the expression are converted into NULL. When 2184 ** isInit is false, parameters raise an error. Parameters should not be 2185 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2186 ** allowed it, so we need to support it when reading sqlite_master for 2187 ** backwards compatibility. 2188 ** 2189 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2190 ** 2191 ** For the purposes of this function, a double-quoted string (ex: "abc") 2192 ** is considered a variable but a single-quoted string (ex: 'abc') is 2193 ** a constant. 2194 */ 2195 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2196 assert( isInit==0 || isInit==1 ); 2197 return exprIsConst(p, 4+isInit, 0); 2198 } 2199 2200 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2201 /* 2202 ** Walk an expression tree. Return 1 if the expression contains a 2203 ** subquery of some kind. Return 0 if there are no subqueries. 2204 */ 2205 int sqlite3ExprContainsSubquery(Expr *p){ 2206 Walker w; 2207 w.eCode = 1; 2208 w.xExprCallback = sqlite3ExprWalkNoop; 2209 w.xSelectCallback = sqlite3SelectWalkFail; 2210 #ifdef SQLITE_DEBUG 2211 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2212 #endif 2213 sqlite3WalkExpr(&w, p); 2214 return w.eCode==0; 2215 } 2216 #endif 2217 2218 /* 2219 ** If the expression p codes a constant integer that is small enough 2220 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2221 ** in *pValue. If the expression is not an integer or if it is too big 2222 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2223 */ 2224 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2225 int rc = 0; 2226 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2227 2228 /* If an expression is an integer literal that fits in a signed 32-bit 2229 ** integer, then the EP_IntValue flag will have already been set */ 2230 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2231 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2232 2233 if( p->flags & EP_IntValue ){ 2234 *pValue = p->u.iValue; 2235 return 1; 2236 } 2237 switch( p->op ){ 2238 case TK_UPLUS: { 2239 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2240 break; 2241 } 2242 case TK_UMINUS: { 2243 int v; 2244 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2245 assert( v!=(-2147483647-1) ); 2246 *pValue = -v; 2247 rc = 1; 2248 } 2249 break; 2250 } 2251 default: break; 2252 } 2253 return rc; 2254 } 2255 2256 /* 2257 ** Return FALSE if there is no chance that the expression can be NULL. 2258 ** 2259 ** If the expression might be NULL or if the expression is too complex 2260 ** to tell return TRUE. 2261 ** 2262 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2263 ** when we know that a value cannot be NULL. Hence, a false positive 2264 ** (returning TRUE when in fact the expression can never be NULL) might 2265 ** be a small performance hit but is otherwise harmless. On the other 2266 ** hand, a false negative (returning FALSE when the result could be NULL) 2267 ** will likely result in an incorrect answer. So when in doubt, return 2268 ** TRUE. 2269 */ 2270 int sqlite3ExprCanBeNull(const Expr *p){ 2271 u8 op; 2272 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2273 p = p->pLeft; 2274 } 2275 op = p->op; 2276 if( op==TK_REGISTER ) op = p->op2; 2277 switch( op ){ 2278 case TK_INTEGER: 2279 case TK_STRING: 2280 case TK_FLOAT: 2281 case TK_BLOB: 2282 return 0; 2283 case TK_COLUMN: 2284 return ExprHasProperty(p, EP_CanBeNull) || 2285 p->y.pTab==0 || /* Reference to column of index on expression */ 2286 (p->iColumn>=0 2287 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2288 && p->y.pTab->aCol[p->iColumn].notNull==0); 2289 default: 2290 return 1; 2291 } 2292 } 2293 2294 /* 2295 ** Return TRUE if the given expression is a constant which would be 2296 ** unchanged by OP_Affinity with the affinity given in the second 2297 ** argument. 2298 ** 2299 ** This routine is used to determine if the OP_Affinity operation 2300 ** can be omitted. When in doubt return FALSE. A false negative 2301 ** is harmless. A false positive, however, can result in the wrong 2302 ** answer. 2303 */ 2304 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2305 u8 op; 2306 int unaryMinus = 0; 2307 if( aff==SQLITE_AFF_BLOB ) return 1; 2308 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2309 if( p->op==TK_UMINUS ) unaryMinus = 1; 2310 p = p->pLeft; 2311 } 2312 op = p->op; 2313 if( op==TK_REGISTER ) op = p->op2; 2314 switch( op ){ 2315 case TK_INTEGER: { 2316 return aff>=SQLITE_AFF_NUMERIC; 2317 } 2318 case TK_FLOAT: { 2319 return aff>=SQLITE_AFF_NUMERIC; 2320 } 2321 case TK_STRING: { 2322 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2323 } 2324 case TK_BLOB: { 2325 return !unaryMinus; 2326 } 2327 case TK_COLUMN: { 2328 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2329 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2330 } 2331 default: { 2332 return 0; 2333 } 2334 } 2335 } 2336 2337 /* 2338 ** Return TRUE if the given string is a row-id column name. 2339 */ 2340 int sqlite3IsRowid(const char *z){ 2341 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2342 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2343 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2344 return 0; 2345 } 2346 2347 /* 2348 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2349 ** that can be simplified to a direct table access, then return 2350 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2351 ** or if the SELECT statement needs to be manifested into a transient 2352 ** table, then return NULL. 2353 */ 2354 #ifndef SQLITE_OMIT_SUBQUERY 2355 static Select *isCandidateForInOpt(Expr *pX){ 2356 Select *p; 2357 SrcList *pSrc; 2358 ExprList *pEList; 2359 Table *pTab; 2360 int i; 2361 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2362 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2363 p = pX->x.pSelect; 2364 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2365 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2366 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2367 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2368 return 0; /* No DISTINCT keyword and no aggregate functions */ 2369 } 2370 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2371 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2372 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2373 pSrc = p->pSrc; 2374 assert( pSrc!=0 ); 2375 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2376 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2377 pTab = pSrc->a[0].pTab; 2378 assert( pTab!=0 ); 2379 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2380 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2381 pEList = p->pEList; 2382 assert( pEList!=0 ); 2383 /* All SELECT results must be columns. */ 2384 for(i=0; i<pEList->nExpr; i++){ 2385 Expr *pRes = pEList->a[i].pExpr; 2386 if( pRes->op!=TK_COLUMN ) return 0; 2387 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2388 } 2389 return p; 2390 } 2391 #endif /* SQLITE_OMIT_SUBQUERY */ 2392 2393 #ifndef SQLITE_OMIT_SUBQUERY 2394 /* 2395 ** Generate code that checks the left-most column of index table iCur to see if 2396 ** it contains any NULL entries. Cause the register at regHasNull to be set 2397 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2398 ** to be set to NULL if iCur contains one or more NULL values. 2399 */ 2400 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2401 int addr1; 2402 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2403 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2404 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2405 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2406 VdbeComment((v, "first_entry_in(%d)", iCur)); 2407 sqlite3VdbeJumpHere(v, addr1); 2408 } 2409 #endif 2410 2411 2412 #ifndef SQLITE_OMIT_SUBQUERY 2413 /* 2414 ** The argument is an IN operator with a list (not a subquery) on the 2415 ** right-hand side. Return TRUE if that list is constant. 2416 */ 2417 static int sqlite3InRhsIsConstant(Expr *pIn){ 2418 Expr *pLHS; 2419 int res; 2420 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2421 pLHS = pIn->pLeft; 2422 pIn->pLeft = 0; 2423 res = sqlite3ExprIsConstant(pIn); 2424 pIn->pLeft = pLHS; 2425 return res; 2426 } 2427 #endif 2428 2429 /* 2430 ** This function is used by the implementation of the IN (...) operator. 2431 ** The pX parameter is the expression on the RHS of the IN operator, which 2432 ** might be either a list of expressions or a subquery. 2433 ** 2434 ** The job of this routine is to find or create a b-tree object that can 2435 ** be used either to test for membership in the RHS set or to iterate through 2436 ** all members of the RHS set, skipping duplicates. 2437 ** 2438 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2439 ** and pX->iTable is set to the index of that cursor. 2440 ** 2441 ** The returned value of this function indicates the b-tree type, as follows: 2442 ** 2443 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2444 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2445 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2446 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2447 ** populated epheremal table. 2448 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2449 ** implemented as a sequence of comparisons. 2450 ** 2451 ** An existing b-tree might be used if the RHS expression pX is a simple 2452 ** subquery such as: 2453 ** 2454 ** SELECT <column1>, <column2>... FROM <table> 2455 ** 2456 ** If the RHS of the IN operator is a list or a more complex subquery, then 2457 ** an ephemeral table might need to be generated from the RHS and then 2458 ** pX->iTable made to point to the ephemeral table instead of an 2459 ** existing table. 2460 ** 2461 ** The inFlags parameter must contain, at a minimum, one of the bits 2462 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2463 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2464 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2465 ** be used to loop over all values of the RHS of the IN operator. 2466 ** 2467 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2468 ** through the set members) then the b-tree must not contain duplicates. 2469 ** An epheremal table will be created unless the selected columns are guaranteed 2470 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2471 ** a UNIQUE constraint or index. 2472 ** 2473 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2474 ** for fast set membership tests) then an epheremal table must 2475 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2476 ** index can be found with the specified <columns> as its left-most. 2477 ** 2478 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2479 ** if the RHS of the IN operator is a list (not a subquery) then this 2480 ** routine might decide that creating an ephemeral b-tree for membership 2481 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2482 ** calling routine should implement the IN operator using a sequence 2483 ** of Eq or Ne comparison operations. 2484 ** 2485 ** When the b-tree is being used for membership tests, the calling function 2486 ** might need to know whether or not the RHS side of the IN operator 2487 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2488 ** if there is any chance that the (...) might contain a NULL value at 2489 ** runtime, then a register is allocated and the register number written 2490 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2491 ** NULL value, then *prRhsHasNull is left unchanged. 2492 ** 2493 ** If a register is allocated and its location stored in *prRhsHasNull, then 2494 ** the value in that register will be NULL if the b-tree contains one or more 2495 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2496 ** NULL values. 2497 ** 2498 ** If the aiMap parameter is not NULL, it must point to an array containing 2499 ** one element for each column returned by the SELECT statement on the RHS 2500 ** of the IN(...) operator. The i'th entry of the array is populated with the 2501 ** offset of the index column that matches the i'th column returned by the 2502 ** SELECT. For example, if the expression and selected index are: 2503 ** 2504 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2505 ** CREATE INDEX i1 ON t1(b, c, a); 2506 ** 2507 ** then aiMap[] is populated with {2, 0, 1}. 2508 */ 2509 #ifndef SQLITE_OMIT_SUBQUERY 2510 int sqlite3FindInIndex( 2511 Parse *pParse, /* Parsing context */ 2512 Expr *pX, /* The IN expression */ 2513 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2514 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2515 int *aiMap, /* Mapping from Index fields to RHS fields */ 2516 int *piTab /* OUT: index to use */ 2517 ){ 2518 Select *p; /* SELECT to the right of IN operator */ 2519 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2520 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2521 int mustBeUnique; /* True if RHS must be unique */ 2522 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2523 2524 assert( pX->op==TK_IN ); 2525 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2526 2527 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2528 ** whether or not the SELECT result contains NULL values, check whether 2529 ** or not NULL is actually possible (it may not be, for example, due 2530 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2531 ** set prRhsHasNull to 0 before continuing. */ 2532 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2533 int i; 2534 ExprList *pEList = pX->x.pSelect->pEList; 2535 for(i=0; i<pEList->nExpr; i++){ 2536 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2537 } 2538 if( i==pEList->nExpr ){ 2539 prRhsHasNull = 0; 2540 } 2541 } 2542 2543 /* Check to see if an existing table or index can be used to 2544 ** satisfy the query. This is preferable to generating a new 2545 ** ephemeral table. */ 2546 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2547 sqlite3 *db = pParse->db; /* Database connection */ 2548 Table *pTab; /* Table <table>. */ 2549 i16 iDb; /* Database idx for pTab */ 2550 ExprList *pEList = p->pEList; 2551 int nExpr = pEList->nExpr; 2552 2553 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2554 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2555 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2556 pTab = p->pSrc->a[0].pTab; 2557 2558 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2559 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2560 sqlite3CodeVerifySchema(pParse, iDb); 2561 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2562 2563 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2564 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2565 /* The "x IN (SELECT rowid FROM table)" case */ 2566 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2567 VdbeCoverage(v); 2568 2569 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2570 eType = IN_INDEX_ROWID; 2571 ExplainQueryPlan((pParse, 0, 2572 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2573 sqlite3VdbeJumpHere(v, iAddr); 2574 }else{ 2575 Index *pIdx; /* Iterator variable */ 2576 int affinity_ok = 1; 2577 int i; 2578 2579 /* Check that the affinity that will be used to perform each 2580 ** comparison is the same as the affinity of each column in table 2581 ** on the RHS of the IN operator. If it not, it is not possible to 2582 ** use any index of the RHS table. */ 2583 for(i=0; i<nExpr && affinity_ok; i++){ 2584 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2585 int iCol = pEList->a[i].pExpr->iColumn; 2586 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2587 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2588 testcase( cmpaff==SQLITE_AFF_BLOB ); 2589 testcase( cmpaff==SQLITE_AFF_TEXT ); 2590 switch( cmpaff ){ 2591 case SQLITE_AFF_BLOB: 2592 break; 2593 case SQLITE_AFF_TEXT: 2594 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2595 ** other has no affinity and the other side is TEXT. Hence, 2596 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2597 ** and for the term on the LHS of the IN to have no affinity. */ 2598 assert( idxaff==SQLITE_AFF_TEXT ); 2599 break; 2600 default: 2601 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2602 } 2603 } 2604 2605 if( affinity_ok ){ 2606 /* Search for an existing index that will work for this IN operator */ 2607 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2608 Bitmask colUsed; /* Columns of the index used */ 2609 Bitmask mCol; /* Mask for the current column */ 2610 if( pIdx->nColumn<nExpr ) continue; 2611 if( pIdx->pPartIdxWhere!=0 ) continue; 2612 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2613 ** BITMASK(nExpr) without overflowing */ 2614 testcase( pIdx->nColumn==BMS-2 ); 2615 testcase( pIdx->nColumn==BMS-1 ); 2616 if( pIdx->nColumn>=BMS-1 ) continue; 2617 if( mustBeUnique ){ 2618 if( pIdx->nKeyCol>nExpr 2619 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2620 ){ 2621 continue; /* This index is not unique over the IN RHS columns */ 2622 } 2623 } 2624 2625 colUsed = 0; /* Columns of index used so far */ 2626 for(i=0; i<nExpr; i++){ 2627 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2628 Expr *pRhs = pEList->a[i].pExpr; 2629 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2630 int j; 2631 2632 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2633 for(j=0; j<nExpr; j++){ 2634 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2635 assert( pIdx->azColl[j] ); 2636 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2637 continue; 2638 } 2639 break; 2640 } 2641 if( j==nExpr ) break; 2642 mCol = MASKBIT(j); 2643 if( mCol & colUsed ) break; /* Each column used only once */ 2644 colUsed |= mCol; 2645 if( aiMap ) aiMap[i] = j; 2646 } 2647 2648 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2649 if( colUsed==(MASKBIT(nExpr)-1) ){ 2650 /* If we reach this point, that means the index pIdx is usable */ 2651 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2652 ExplainQueryPlan((pParse, 0, 2653 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2654 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2655 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2656 VdbeComment((v, "%s", pIdx->zName)); 2657 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2658 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2659 2660 if( prRhsHasNull ){ 2661 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2662 i64 mask = (1<<nExpr)-1; 2663 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2664 iTab, 0, 0, (u8*)&mask, P4_INT64); 2665 #endif 2666 *prRhsHasNull = ++pParse->nMem; 2667 if( nExpr==1 ){ 2668 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2669 } 2670 } 2671 sqlite3VdbeJumpHere(v, iAddr); 2672 } 2673 } /* End loop over indexes */ 2674 } /* End if( affinity_ok ) */ 2675 } /* End if not an rowid index */ 2676 } /* End attempt to optimize using an index */ 2677 2678 /* If no preexisting index is available for the IN clause 2679 ** and IN_INDEX_NOOP is an allowed reply 2680 ** and the RHS of the IN operator is a list, not a subquery 2681 ** and the RHS is not constant or has two or fewer terms, 2682 ** then it is not worth creating an ephemeral table to evaluate 2683 ** the IN operator so return IN_INDEX_NOOP. 2684 */ 2685 if( eType==0 2686 && (inFlags & IN_INDEX_NOOP_OK) 2687 && !ExprHasProperty(pX, EP_xIsSelect) 2688 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2689 ){ 2690 eType = IN_INDEX_NOOP; 2691 } 2692 2693 if( eType==0 ){ 2694 /* Could not find an existing table or index to use as the RHS b-tree. 2695 ** We will have to generate an ephemeral table to do the job. 2696 */ 2697 u32 savedNQueryLoop = pParse->nQueryLoop; 2698 int rMayHaveNull = 0; 2699 eType = IN_INDEX_EPH; 2700 if( inFlags & IN_INDEX_LOOP ){ 2701 pParse->nQueryLoop = 0; 2702 }else if( prRhsHasNull ){ 2703 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2704 } 2705 assert( pX->op==TK_IN ); 2706 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2707 if( rMayHaveNull ){ 2708 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2709 } 2710 pParse->nQueryLoop = savedNQueryLoop; 2711 } 2712 2713 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2714 int i, n; 2715 n = sqlite3ExprVectorSize(pX->pLeft); 2716 for(i=0; i<n; i++) aiMap[i] = i; 2717 } 2718 *piTab = iTab; 2719 return eType; 2720 } 2721 #endif 2722 2723 #ifndef SQLITE_OMIT_SUBQUERY 2724 /* 2725 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2726 ** function allocates and returns a nul-terminated string containing 2727 ** the affinities to be used for each column of the comparison. 2728 ** 2729 ** It is the responsibility of the caller to ensure that the returned 2730 ** string is eventually freed using sqlite3DbFree(). 2731 */ 2732 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2733 Expr *pLeft = pExpr->pLeft; 2734 int nVal = sqlite3ExprVectorSize(pLeft); 2735 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2736 char *zRet; 2737 2738 assert( pExpr->op==TK_IN ); 2739 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2740 if( zRet ){ 2741 int i; 2742 for(i=0; i<nVal; i++){ 2743 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2744 char a = sqlite3ExprAffinity(pA); 2745 if( pSelect ){ 2746 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2747 }else{ 2748 zRet[i] = a; 2749 } 2750 } 2751 zRet[nVal] = '\0'; 2752 } 2753 return zRet; 2754 } 2755 #endif 2756 2757 #ifndef SQLITE_OMIT_SUBQUERY 2758 /* 2759 ** Load the Parse object passed as the first argument with an error 2760 ** message of the form: 2761 ** 2762 ** "sub-select returns N columns - expected M" 2763 */ 2764 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2765 if( pParse->nErr==0 ){ 2766 const char *zFmt = "sub-select returns %d columns - expected %d"; 2767 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2768 } 2769 } 2770 #endif 2771 2772 /* 2773 ** Expression pExpr is a vector that has been used in a context where 2774 ** it is not permitted. If pExpr is a sub-select vector, this routine 2775 ** loads the Parse object with a message of the form: 2776 ** 2777 ** "sub-select returns N columns - expected 1" 2778 ** 2779 ** Or, if it is a regular scalar vector: 2780 ** 2781 ** "row value misused" 2782 */ 2783 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2784 #ifndef SQLITE_OMIT_SUBQUERY 2785 if( pExpr->flags & EP_xIsSelect ){ 2786 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2787 }else 2788 #endif 2789 { 2790 sqlite3ErrorMsg(pParse, "row value misused"); 2791 } 2792 } 2793 2794 #ifndef SQLITE_OMIT_SUBQUERY 2795 /* 2796 ** Generate code that will construct an ephemeral table containing all terms 2797 ** in the RHS of an IN operator. The IN operator can be in either of two 2798 ** forms: 2799 ** 2800 ** x IN (4,5,11) -- IN operator with list on right-hand side 2801 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2802 ** 2803 ** The pExpr parameter is the IN operator. The cursor number for the 2804 ** constructed ephermeral table is returned. The first time the ephemeral 2805 ** table is computed, the cursor number is also stored in pExpr->iTable, 2806 ** however the cursor number returned might not be the same, as it might 2807 ** have been duplicated using OP_OpenDup. 2808 ** 2809 ** If the LHS expression ("x" in the examples) is a column value, or 2810 ** the SELECT statement returns a column value, then the affinity of that 2811 ** column is used to build the index keys. If both 'x' and the 2812 ** SELECT... statement are columns, then numeric affinity is used 2813 ** if either column has NUMERIC or INTEGER affinity. If neither 2814 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2815 ** is used. 2816 */ 2817 void sqlite3CodeRhsOfIN( 2818 Parse *pParse, /* Parsing context */ 2819 Expr *pExpr, /* The IN operator */ 2820 int iTab /* Use this cursor number */ 2821 ){ 2822 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2823 int addr; /* Address of OP_OpenEphemeral instruction */ 2824 Expr *pLeft; /* the LHS of the IN operator */ 2825 KeyInfo *pKeyInfo = 0; /* Key information */ 2826 int nVal; /* Size of vector pLeft */ 2827 Vdbe *v; /* The prepared statement under construction */ 2828 2829 v = pParse->pVdbe; 2830 assert( v!=0 ); 2831 2832 /* The evaluation of the IN must be repeated every time it 2833 ** is encountered if any of the following is true: 2834 ** 2835 ** * The right-hand side is a correlated subquery 2836 ** * The right-hand side is an expression list containing variables 2837 ** * We are inside a trigger 2838 ** 2839 ** If all of the above are false, then we can compute the RHS just once 2840 ** and reuse it many names. 2841 */ 2842 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2843 /* Reuse of the RHS is allowed */ 2844 /* If this routine has already been coded, but the previous code 2845 ** might not have been invoked yet, so invoke it now as a subroutine. 2846 */ 2847 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2848 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2849 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2850 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2851 pExpr->x.pSelect->selId)); 2852 } 2853 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2854 pExpr->y.sub.iAddr); 2855 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2856 sqlite3VdbeJumpHere(v, addrOnce); 2857 return; 2858 } 2859 2860 /* Begin coding the subroutine */ 2861 ExprSetProperty(pExpr, EP_Subrtn); 2862 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2863 pExpr->y.sub.regReturn = ++pParse->nMem; 2864 pExpr->y.sub.iAddr = 2865 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2866 VdbeComment((v, "return address")); 2867 2868 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2869 } 2870 2871 /* Check to see if this is a vector IN operator */ 2872 pLeft = pExpr->pLeft; 2873 nVal = sqlite3ExprVectorSize(pLeft); 2874 2875 /* Construct the ephemeral table that will contain the content of 2876 ** RHS of the IN operator. 2877 */ 2878 pExpr->iTable = iTab; 2879 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2880 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2881 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2882 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2883 }else{ 2884 VdbeComment((v, "RHS of IN operator")); 2885 } 2886 #endif 2887 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2888 2889 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2890 /* Case 1: expr IN (SELECT ...) 2891 ** 2892 ** Generate code to write the results of the select into the temporary 2893 ** table allocated and opened above. 2894 */ 2895 Select *pSelect = pExpr->x.pSelect; 2896 ExprList *pEList = pSelect->pEList; 2897 2898 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2899 addrOnce?"":"CORRELATED ", pSelect->selId 2900 )); 2901 /* If the LHS and RHS of the IN operator do not match, that 2902 ** error will have been caught long before we reach this point. */ 2903 if( ALWAYS(pEList->nExpr==nVal) ){ 2904 SelectDest dest; 2905 int i; 2906 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2907 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2908 pSelect->iLimit = 0; 2909 testcase( pSelect->selFlags & SF_Distinct ); 2910 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2911 if( sqlite3Select(pParse, pSelect, &dest) ){ 2912 sqlite3DbFree(pParse->db, dest.zAffSdst); 2913 sqlite3KeyInfoUnref(pKeyInfo); 2914 return; 2915 } 2916 sqlite3DbFree(pParse->db, dest.zAffSdst); 2917 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2918 assert( pEList!=0 ); 2919 assert( pEList->nExpr>0 ); 2920 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2921 for(i=0; i<nVal; i++){ 2922 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2923 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2924 pParse, p, pEList->a[i].pExpr 2925 ); 2926 } 2927 } 2928 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2929 /* Case 2: expr IN (exprlist) 2930 ** 2931 ** For each expression, build an index key from the evaluation and 2932 ** store it in the temporary table. If <expr> is a column, then use 2933 ** that columns affinity when building index keys. If <expr> is not 2934 ** a column, use numeric affinity. 2935 */ 2936 char affinity; /* Affinity of the LHS of the IN */ 2937 int i; 2938 ExprList *pList = pExpr->x.pList; 2939 struct ExprList_item *pItem; 2940 int r1, r2; 2941 affinity = sqlite3ExprAffinity(pLeft); 2942 if( affinity<=SQLITE_AFF_NONE ){ 2943 affinity = SQLITE_AFF_BLOB; 2944 } 2945 if( pKeyInfo ){ 2946 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2947 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2948 } 2949 2950 /* Loop through each expression in <exprlist>. */ 2951 r1 = sqlite3GetTempReg(pParse); 2952 r2 = sqlite3GetTempReg(pParse); 2953 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2954 Expr *pE2 = pItem->pExpr; 2955 2956 /* If the expression is not constant then we will need to 2957 ** disable the test that was generated above that makes sure 2958 ** this code only executes once. Because for a non-constant 2959 ** expression we need to rerun this code each time. 2960 */ 2961 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2962 sqlite3VdbeChangeToNoop(v, addrOnce); 2963 ExprClearProperty(pExpr, EP_Subrtn); 2964 addrOnce = 0; 2965 } 2966 2967 /* Evaluate the expression and insert it into the temp table */ 2968 sqlite3ExprCode(pParse, pE2, r1); 2969 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2970 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2971 } 2972 sqlite3ReleaseTempReg(pParse, r1); 2973 sqlite3ReleaseTempReg(pParse, r2); 2974 } 2975 if( pKeyInfo ){ 2976 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2977 } 2978 if( addrOnce ){ 2979 sqlite3VdbeJumpHere(v, addrOnce); 2980 /* Subroutine return */ 2981 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2982 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2983 sqlite3ClearTempRegCache(pParse); 2984 } 2985 } 2986 #endif /* SQLITE_OMIT_SUBQUERY */ 2987 2988 /* 2989 ** Generate code for scalar subqueries used as a subquery expression 2990 ** or EXISTS operator: 2991 ** 2992 ** (SELECT a FROM b) -- subquery 2993 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2994 ** 2995 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2996 ** 2997 ** Return the register that holds the result. For a multi-column SELECT, 2998 ** the result is stored in a contiguous array of registers and the 2999 ** return value is the register of the left-most result column. 3000 ** Return 0 if an error occurs. 3001 */ 3002 #ifndef SQLITE_OMIT_SUBQUERY 3003 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3004 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3005 int rReg = 0; /* Register storing resulting */ 3006 Select *pSel; /* SELECT statement to encode */ 3007 SelectDest dest; /* How to deal with SELECT result */ 3008 int nReg; /* Registers to allocate */ 3009 Expr *pLimit; /* New limit expression */ 3010 3011 Vdbe *v = pParse->pVdbe; 3012 assert( v!=0 ); 3013 testcase( pExpr->op==TK_EXISTS ); 3014 testcase( pExpr->op==TK_SELECT ); 3015 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3016 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3017 pSel = pExpr->x.pSelect; 3018 3019 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3020 ** is encountered if any of the following is true: 3021 ** 3022 ** * The right-hand side is a correlated subquery 3023 ** * The right-hand side is an expression list containing variables 3024 ** * We are inside a trigger 3025 ** 3026 ** If all of the above are false, then we can run this code just once 3027 ** save the results, and reuse the same result on subsequent invocations. 3028 */ 3029 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3030 /* If this routine has already been coded, then invoke it as a 3031 ** subroutine. */ 3032 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3033 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3034 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3035 pExpr->y.sub.iAddr); 3036 return pExpr->iTable; 3037 } 3038 3039 /* Begin coding the subroutine */ 3040 ExprSetProperty(pExpr, EP_Subrtn); 3041 pExpr->y.sub.regReturn = ++pParse->nMem; 3042 pExpr->y.sub.iAddr = 3043 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3044 VdbeComment((v, "return address")); 3045 3046 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3047 } 3048 3049 /* For a SELECT, generate code to put the values for all columns of 3050 ** the first row into an array of registers and return the index of 3051 ** the first register. 3052 ** 3053 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3054 ** into a register and return that register number. 3055 ** 3056 ** In both cases, the query is augmented with "LIMIT 1". Any 3057 ** preexisting limit is discarded in place of the new LIMIT 1. 3058 */ 3059 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3060 addrOnce?"":"CORRELATED ", pSel->selId)); 3061 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3062 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3063 pParse->nMem += nReg; 3064 if( pExpr->op==TK_SELECT ){ 3065 dest.eDest = SRT_Mem; 3066 dest.iSdst = dest.iSDParm; 3067 dest.nSdst = nReg; 3068 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3069 VdbeComment((v, "Init subquery result")); 3070 }else{ 3071 dest.eDest = SRT_Exists; 3072 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3073 VdbeComment((v, "Init EXISTS result")); 3074 } 3075 if( pSel->pLimit ){ 3076 /* The subquery already has a limit. If the pre-existing limit is X 3077 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3078 sqlite3 *db = pParse->db; 3079 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3080 if( pLimit ){ 3081 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3082 pLimit = sqlite3PExpr(pParse, TK_NE, 3083 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3084 } 3085 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3086 pSel->pLimit->pLeft = pLimit; 3087 }else{ 3088 /* If there is no pre-existing limit add a limit of 1 */ 3089 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3090 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3091 } 3092 pSel->iLimit = 0; 3093 if( sqlite3Select(pParse, pSel, &dest) ){ 3094 return 0; 3095 } 3096 pExpr->iTable = rReg = dest.iSDParm; 3097 ExprSetVVAProperty(pExpr, EP_NoReduce); 3098 if( addrOnce ){ 3099 sqlite3VdbeJumpHere(v, addrOnce); 3100 3101 /* Subroutine return */ 3102 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3103 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3104 sqlite3ClearTempRegCache(pParse); 3105 } 3106 3107 return rReg; 3108 } 3109 #endif /* SQLITE_OMIT_SUBQUERY */ 3110 3111 #ifndef SQLITE_OMIT_SUBQUERY 3112 /* 3113 ** Expr pIn is an IN(...) expression. This function checks that the 3114 ** sub-select on the RHS of the IN() operator has the same number of 3115 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3116 ** a sub-query, that the LHS is a vector of size 1. 3117 */ 3118 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3119 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3120 if( (pIn->flags & EP_xIsSelect) ){ 3121 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3122 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3123 return 1; 3124 } 3125 }else if( nVector!=1 ){ 3126 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3127 return 1; 3128 } 3129 return 0; 3130 } 3131 #endif 3132 3133 #ifndef SQLITE_OMIT_SUBQUERY 3134 /* 3135 ** Generate code for an IN expression. 3136 ** 3137 ** x IN (SELECT ...) 3138 ** x IN (value, value, ...) 3139 ** 3140 ** The left-hand side (LHS) is a scalar or vector expression. The 3141 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3142 ** subquery. If the RHS is a subquery, the number of result columns must 3143 ** match the number of columns in the vector on the LHS. If the RHS is 3144 ** a list of values, the LHS must be a scalar. 3145 ** 3146 ** The IN operator is true if the LHS value is contained within the RHS. 3147 ** The result is false if the LHS is definitely not in the RHS. The 3148 ** result is NULL if the presence of the LHS in the RHS cannot be 3149 ** determined due to NULLs. 3150 ** 3151 ** This routine generates code that jumps to destIfFalse if the LHS is not 3152 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3153 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3154 ** within the RHS then fall through. 3155 ** 3156 ** See the separate in-operator.md documentation file in the canonical 3157 ** SQLite source tree for additional information. 3158 */ 3159 static void sqlite3ExprCodeIN( 3160 Parse *pParse, /* Parsing and code generating context */ 3161 Expr *pExpr, /* The IN expression */ 3162 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3163 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3164 ){ 3165 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3166 int eType; /* Type of the RHS */ 3167 int rLhs; /* Register(s) holding the LHS values */ 3168 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3169 Vdbe *v; /* Statement under construction */ 3170 int *aiMap = 0; /* Map from vector field to index column */ 3171 char *zAff = 0; /* Affinity string for comparisons */ 3172 int nVector; /* Size of vectors for this IN operator */ 3173 int iDummy; /* Dummy parameter to exprCodeVector() */ 3174 Expr *pLeft; /* The LHS of the IN operator */ 3175 int i; /* loop counter */ 3176 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3177 int destStep6 = 0; /* Start of code for Step 6 */ 3178 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3179 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3180 int addrTop; /* Top of the step-6 loop */ 3181 int iTab = 0; /* Index to use */ 3182 3183 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3184 pLeft = pExpr->pLeft; 3185 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3186 zAff = exprINAffinity(pParse, pExpr); 3187 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3188 aiMap = (int*)sqlite3DbMallocZero( 3189 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3190 ); 3191 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3192 3193 /* Attempt to compute the RHS. After this step, if anything other than 3194 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3195 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3196 ** the RHS has not yet been coded. */ 3197 v = pParse->pVdbe; 3198 assert( v!=0 ); /* OOM detected prior to this routine */ 3199 VdbeNoopComment((v, "begin IN expr")); 3200 eType = sqlite3FindInIndex(pParse, pExpr, 3201 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3202 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3203 aiMap, &iTab); 3204 3205 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3206 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3207 ); 3208 #ifdef SQLITE_DEBUG 3209 /* Confirm that aiMap[] contains nVector integer values between 0 and 3210 ** nVector-1. */ 3211 for(i=0; i<nVector; i++){ 3212 int j, cnt; 3213 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3214 assert( cnt==1 ); 3215 } 3216 #endif 3217 3218 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3219 ** vector, then it is stored in an array of nVector registers starting 3220 ** at r1. 3221 ** 3222 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3223 ** so that the fields are in the same order as an existing index. The 3224 ** aiMap[] array contains a mapping from the original LHS field order to 3225 ** the field order that matches the RHS index. 3226 */ 3227 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3228 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3229 if( i==nVector ){ 3230 /* LHS fields are not reordered */ 3231 rLhs = rLhsOrig; 3232 }else{ 3233 /* Need to reorder the LHS fields according to aiMap */ 3234 rLhs = sqlite3GetTempRange(pParse, nVector); 3235 for(i=0; i<nVector; i++){ 3236 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3237 } 3238 } 3239 3240 /* If sqlite3FindInIndex() did not find or create an index that is 3241 ** suitable for evaluating the IN operator, then evaluate using a 3242 ** sequence of comparisons. 3243 ** 3244 ** This is step (1) in the in-operator.md optimized algorithm. 3245 */ 3246 if( eType==IN_INDEX_NOOP ){ 3247 ExprList *pList = pExpr->x.pList; 3248 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3249 int labelOk = sqlite3VdbeMakeLabel(pParse); 3250 int r2, regToFree; 3251 int regCkNull = 0; 3252 int ii; 3253 int bLhsReal; /* True if the LHS of the IN has REAL affinity */ 3254 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3255 if( destIfNull!=destIfFalse ){ 3256 regCkNull = sqlite3GetTempReg(pParse); 3257 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3258 } 3259 bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL; 3260 for(ii=0; ii<pList->nExpr; ii++){ 3261 if( bLhsReal ){ 3262 r2 = regToFree = sqlite3GetTempReg(pParse); 3263 sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2); 3264 sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC); 3265 }else{ 3266 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3267 } 3268 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3269 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3270 } 3271 sqlite3ReleaseTempReg(pParse, regToFree); 3272 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3273 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3274 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3275 (void*)pColl, P4_COLLSEQ); 3276 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3277 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3278 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3279 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3280 sqlite3VdbeChangeP5(v, zAff[0]); 3281 }else{ 3282 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3283 assert( destIfNull==destIfFalse ); 3284 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3285 (void*)pColl, P4_COLLSEQ); 3286 VdbeCoverageIf(v, op==OP_Ne); 3287 VdbeCoverageIf(v, op==OP_IsNull); 3288 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3289 } 3290 } 3291 if( regCkNull ){ 3292 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3293 sqlite3VdbeGoto(v, destIfFalse); 3294 } 3295 sqlite3VdbeResolveLabel(v, labelOk); 3296 sqlite3ReleaseTempReg(pParse, regCkNull); 3297 goto sqlite3ExprCodeIN_finished; 3298 } 3299 3300 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3301 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3302 ** We will then skip the binary search of the RHS. 3303 */ 3304 if( destIfNull==destIfFalse ){ 3305 destStep2 = destIfFalse; 3306 }else{ 3307 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3308 } 3309 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3310 for(i=0; i<nVector; i++){ 3311 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3312 if( sqlite3ExprCanBeNull(p) ){ 3313 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3314 VdbeCoverage(v); 3315 } 3316 } 3317 3318 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3319 ** of the RHS using the LHS as a probe. If found, the result is 3320 ** true. 3321 */ 3322 if( eType==IN_INDEX_ROWID ){ 3323 /* In this case, the RHS is the ROWID of table b-tree and so we also 3324 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3325 ** into a single opcode. */ 3326 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3327 VdbeCoverage(v); 3328 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3329 }else{ 3330 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3331 if( destIfFalse==destIfNull ){ 3332 /* Combine Step 3 and Step 5 into a single opcode */ 3333 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3334 rLhs, nVector); VdbeCoverage(v); 3335 goto sqlite3ExprCodeIN_finished; 3336 } 3337 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3338 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3339 rLhs, nVector); VdbeCoverage(v); 3340 } 3341 3342 /* Step 4. If the RHS is known to be non-NULL and we did not find 3343 ** an match on the search above, then the result must be FALSE. 3344 */ 3345 if( rRhsHasNull && nVector==1 ){ 3346 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3347 VdbeCoverage(v); 3348 } 3349 3350 /* Step 5. If we do not care about the difference between NULL and 3351 ** FALSE, then just return false. 3352 */ 3353 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3354 3355 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3356 ** If any comparison is NULL, then the result is NULL. If all 3357 ** comparisons are FALSE then the final result is FALSE. 3358 ** 3359 ** For a scalar LHS, it is sufficient to check just the first row 3360 ** of the RHS. 3361 */ 3362 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3363 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3364 VdbeCoverage(v); 3365 if( nVector>1 ){ 3366 destNotNull = sqlite3VdbeMakeLabel(pParse); 3367 }else{ 3368 /* For nVector==1, combine steps 6 and 7 by immediately returning 3369 ** FALSE if the first comparison is not NULL */ 3370 destNotNull = destIfFalse; 3371 } 3372 for(i=0; i<nVector; i++){ 3373 Expr *p; 3374 CollSeq *pColl; 3375 int r3 = sqlite3GetTempReg(pParse); 3376 p = sqlite3VectorFieldSubexpr(pLeft, i); 3377 pColl = sqlite3ExprCollSeq(pParse, p); 3378 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3379 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3380 (void*)pColl, P4_COLLSEQ); 3381 VdbeCoverage(v); 3382 sqlite3ReleaseTempReg(pParse, r3); 3383 } 3384 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3385 if( nVector>1 ){ 3386 sqlite3VdbeResolveLabel(v, destNotNull); 3387 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3388 VdbeCoverage(v); 3389 3390 /* Step 7: If we reach this point, we know that the result must 3391 ** be false. */ 3392 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3393 } 3394 3395 /* Jumps here in order to return true. */ 3396 sqlite3VdbeJumpHere(v, addrTruthOp); 3397 3398 sqlite3ExprCodeIN_finished: 3399 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3400 VdbeComment((v, "end IN expr")); 3401 sqlite3ExprCodeIN_oom_error: 3402 sqlite3DbFree(pParse->db, aiMap); 3403 sqlite3DbFree(pParse->db, zAff); 3404 } 3405 #endif /* SQLITE_OMIT_SUBQUERY */ 3406 3407 #ifndef SQLITE_OMIT_FLOATING_POINT 3408 /* 3409 ** Generate an instruction that will put the floating point 3410 ** value described by z[0..n-1] into register iMem. 3411 ** 3412 ** The z[] string will probably not be zero-terminated. But the 3413 ** z[n] character is guaranteed to be something that does not look 3414 ** like the continuation of the number. 3415 */ 3416 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3417 if( ALWAYS(z!=0) ){ 3418 double value; 3419 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3420 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3421 if( negateFlag ) value = -value; 3422 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3423 } 3424 } 3425 #endif 3426 3427 3428 /* 3429 ** Generate an instruction that will put the integer describe by 3430 ** text z[0..n-1] into register iMem. 3431 ** 3432 ** Expr.u.zToken is always UTF8 and zero-terminated. 3433 */ 3434 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3435 Vdbe *v = pParse->pVdbe; 3436 if( pExpr->flags & EP_IntValue ){ 3437 int i = pExpr->u.iValue; 3438 assert( i>=0 ); 3439 if( negFlag ) i = -i; 3440 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3441 }else{ 3442 int c; 3443 i64 value; 3444 const char *z = pExpr->u.zToken; 3445 assert( z!=0 ); 3446 c = sqlite3DecOrHexToI64(z, &value); 3447 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3448 #ifdef SQLITE_OMIT_FLOATING_POINT 3449 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3450 #else 3451 #ifndef SQLITE_OMIT_HEX_INTEGER 3452 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3453 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3454 }else 3455 #endif 3456 { 3457 codeReal(v, z, negFlag, iMem); 3458 } 3459 #endif 3460 }else{ 3461 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3462 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3463 } 3464 } 3465 } 3466 3467 3468 /* Generate code that will load into register regOut a value that is 3469 ** appropriate for the iIdxCol-th column of index pIdx. 3470 */ 3471 void sqlite3ExprCodeLoadIndexColumn( 3472 Parse *pParse, /* The parsing context */ 3473 Index *pIdx, /* The index whose column is to be loaded */ 3474 int iTabCur, /* Cursor pointing to a table row */ 3475 int iIdxCol, /* The column of the index to be loaded */ 3476 int regOut /* Store the index column value in this register */ 3477 ){ 3478 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3479 if( iTabCol==XN_EXPR ){ 3480 assert( pIdx->aColExpr ); 3481 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3482 pParse->iSelfTab = iTabCur + 1; 3483 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3484 pParse->iSelfTab = 0; 3485 }else{ 3486 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3487 iTabCol, regOut); 3488 } 3489 } 3490 3491 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3492 /* 3493 ** Generate code that will compute the value of generated column pCol 3494 ** and store the result in register regOut 3495 */ 3496 void sqlite3ExprCodeGeneratedColumn( 3497 Parse *pParse, 3498 Column *pCol, 3499 int regOut 3500 ){ 3501 int iAddr; 3502 Vdbe *v = pParse->pVdbe; 3503 assert( v!=0 ); 3504 assert( pParse->iSelfTab!=0 ); 3505 if( pParse->iSelfTab>0 ){ 3506 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3507 }else{ 3508 iAddr = 0; 3509 } 3510 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3511 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3512 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3513 } 3514 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3515 } 3516 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3517 3518 /* 3519 ** Generate code to extract the value of the iCol-th column of a table. 3520 */ 3521 void sqlite3ExprCodeGetColumnOfTable( 3522 Vdbe *v, /* Parsing context */ 3523 Table *pTab, /* The table containing the value */ 3524 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3525 int iCol, /* Index of the column to extract */ 3526 int regOut /* Extract the value into this register */ 3527 ){ 3528 Column *pCol; 3529 assert( v!=0 ); 3530 if( pTab==0 ){ 3531 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3532 return; 3533 } 3534 if( iCol<0 || iCol==pTab->iPKey ){ 3535 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3536 }else{ 3537 int op; 3538 int x; 3539 if( IsVirtual(pTab) ){ 3540 op = OP_VColumn; 3541 x = iCol; 3542 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3543 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3544 Parse *pParse = sqlite3VdbeParser(v); 3545 if( pCol->colFlags & COLFLAG_BUSY ){ 3546 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3547 }else{ 3548 int savedSelfTab = pParse->iSelfTab; 3549 pCol->colFlags |= COLFLAG_BUSY; 3550 pParse->iSelfTab = iTabCur+1; 3551 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3552 pParse->iSelfTab = savedSelfTab; 3553 pCol->colFlags &= ~COLFLAG_BUSY; 3554 } 3555 return; 3556 #endif 3557 }else if( !HasRowid(pTab) ){ 3558 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3559 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3560 op = OP_Column; 3561 }else{ 3562 x = sqlite3TableColumnToStorage(pTab,iCol); 3563 testcase( x!=iCol ); 3564 op = OP_Column; 3565 } 3566 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3567 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3568 } 3569 } 3570 3571 /* 3572 ** Generate code that will extract the iColumn-th column from 3573 ** table pTab and store the column value in register iReg. 3574 ** 3575 ** There must be an open cursor to pTab in iTable when this routine 3576 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3577 */ 3578 int sqlite3ExprCodeGetColumn( 3579 Parse *pParse, /* Parsing and code generating context */ 3580 Table *pTab, /* Description of the table we are reading from */ 3581 int iColumn, /* Index of the table column */ 3582 int iTable, /* The cursor pointing to the table */ 3583 int iReg, /* Store results here */ 3584 u8 p5 /* P5 value for OP_Column + FLAGS */ 3585 ){ 3586 assert( pParse->pVdbe!=0 ); 3587 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3588 if( p5 ){ 3589 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3590 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3591 } 3592 return iReg; 3593 } 3594 3595 /* 3596 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3597 ** over to iTo..iTo+nReg-1. 3598 */ 3599 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3600 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3601 } 3602 3603 /* 3604 ** Convert a scalar expression node to a TK_REGISTER referencing 3605 ** register iReg. The caller must ensure that iReg already contains 3606 ** the correct value for the expression. 3607 */ 3608 static void exprToRegister(Expr *pExpr, int iReg){ 3609 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3610 p->op2 = p->op; 3611 p->op = TK_REGISTER; 3612 p->iTable = iReg; 3613 ExprClearProperty(p, EP_Skip); 3614 } 3615 3616 /* 3617 ** Evaluate an expression (either a vector or a scalar expression) and store 3618 ** the result in continguous temporary registers. Return the index of 3619 ** the first register used to store the result. 3620 ** 3621 ** If the returned result register is a temporary scalar, then also write 3622 ** that register number into *piFreeable. If the returned result register 3623 ** is not a temporary or if the expression is a vector set *piFreeable 3624 ** to 0. 3625 */ 3626 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3627 int iResult; 3628 int nResult = sqlite3ExprVectorSize(p); 3629 if( nResult==1 ){ 3630 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3631 }else{ 3632 *piFreeable = 0; 3633 if( p->op==TK_SELECT ){ 3634 #if SQLITE_OMIT_SUBQUERY 3635 iResult = 0; 3636 #else 3637 iResult = sqlite3CodeSubselect(pParse, p); 3638 #endif 3639 }else{ 3640 int i; 3641 iResult = pParse->nMem+1; 3642 pParse->nMem += nResult; 3643 for(i=0; i<nResult; i++){ 3644 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3645 } 3646 } 3647 } 3648 return iResult; 3649 } 3650 3651 /* 3652 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3653 ** so that a subsequent copy will not be merged into this one. 3654 */ 3655 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3656 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3657 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3658 } 3659 } 3660 3661 /* 3662 ** Generate code to implement special SQL functions that are implemented 3663 ** in-line rather than by using the usual callbacks. 3664 */ 3665 static int exprCodeInlineFunction( 3666 Parse *pParse, /* Parsing context */ 3667 ExprList *pFarg, /* List of function arguments */ 3668 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3669 int target /* Store function result in this register */ 3670 ){ 3671 int nFarg; 3672 Vdbe *v = pParse->pVdbe; 3673 assert( v!=0 ); 3674 assert( pFarg!=0 ); 3675 nFarg = pFarg->nExpr; 3676 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3677 switch( iFuncId ){ 3678 case INLINEFUNC_coalesce: { 3679 /* Attempt a direct implementation of the built-in COALESCE() and 3680 ** IFNULL() functions. This avoids unnecessary evaluation of 3681 ** arguments past the first non-NULL argument. 3682 */ 3683 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3684 int i; 3685 assert( nFarg>=2 ); 3686 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3687 for(i=1; i<nFarg; i++){ 3688 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3689 VdbeCoverage(v); 3690 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3691 } 3692 setDoNotMergeFlagOnCopy(v); 3693 sqlite3VdbeResolveLabel(v, endCoalesce); 3694 break; 3695 } 3696 3697 default: { 3698 /* The UNLIKELY() function is a no-op. The result is the value 3699 ** of the first argument. 3700 */ 3701 assert( nFarg==1 || nFarg==2 ); 3702 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3703 break; 3704 } 3705 3706 /*********************************************************************** 3707 ** Test-only SQL functions that are only usable if enabled 3708 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3709 */ 3710 case INLINEFUNC_expr_compare: { 3711 /* Compare two expressions using sqlite3ExprCompare() */ 3712 assert( nFarg==2 ); 3713 sqlite3VdbeAddOp2(v, OP_Integer, 3714 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3715 target); 3716 break; 3717 } 3718 3719 case INLINEFUNC_expr_implies_expr: { 3720 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3721 assert( nFarg==2 ); 3722 sqlite3VdbeAddOp2(v, OP_Integer, 3723 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3724 target); 3725 break; 3726 } 3727 3728 case INLINEFUNC_implies_nonnull_row: { 3729 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3730 Expr *pA1; 3731 assert( nFarg==2 ); 3732 pA1 = pFarg->a[1].pExpr; 3733 if( pA1->op==TK_COLUMN ){ 3734 sqlite3VdbeAddOp2(v, OP_Integer, 3735 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3736 target); 3737 }else{ 3738 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3739 } 3740 break; 3741 } 3742 3743 #ifdef SQLITE_DEBUG 3744 case INLINEFUNC_affinity: { 3745 /* The AFFINITY() function evaluates to a string that describes 3746 ** the type affinity of the argument. This is used for testing of 3747 ** the SQLite type logic. 3748 */ 3749 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3750 char aff; 3751 assert( nFarg==1 ); 3752 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3753 sqlite3VdbeLoadString(v, target, 3754 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3755 break; 3756 } 3757 #endif 3758 } 3759 return target; 3760 } 3761 3762 3763 /* 3764 ** Generate code into the current Vdbe to evaluate the given 3765 ** expression. Attempt to store the results in register "target". 3766 ** Return the register where results are stored. 3767 ** 3768 ** With this routine, there is no guarantee that results will 3769 ** be stored in target. The result might be stored in some other 3770 ** register if it is convenient to do so. The calling function 3771 ** must check the return code and move the results to the desired 3772 ** register. 3773 */ 3774 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3775 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3776 int op; /* The opcode being coded */ 3777 int inReg = target; /* Results stored in register inReg */ 3778 int regFree1 = 0; /* If non-zero free this temporary register */ 3779 int regFree2 = 0; /* If non-zero free this temporary register */ 3780 int r1, r2; /* Various register numbers */ 3781 Expr tempX; /* Temporary expression node */ 3782 int p5 = 0; 3783 3784 assert( target>0 && target<=pParse->nMem ); 3785 if( v==0 ){ 3786 assert( pParse->db->mallocFailed ); 3787 return 0; 3788 } 3789 3790 expr_code_doover: 3791 if( pExpr==0 ){ 3792 op = TK_NULL; 3793 }else{ 3794 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3795 op = pExpr->op; 3796 } 3797 switch( op ){ 3798 case TK_AGG_COLUMN: { 3799 AggInfo *pAggInfo = pExpr->pAggInfo; 3800 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3801 if( !pAggInfo->directMode ){ 3802 assert( pCol->iMem>0 ); 3803 return pCol->iMem; 3804 }else if( pAggInfo->useSortingIdx ){ 3805 Table *pTab = pCol->pTab; 3806 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3807 pCol->iSorterColumn, target); 3808 if( pCol->iColumn<0 ){ 3809 VdbeComment((v,"%s.rowid",pTab->zName)); 3810 }else{ 3811 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3812 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3813 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3814 } 3815 } 3816 return target; 3817 } 3818 /* Otherwise, fall thru into the TK_COLUMN case */ 3819 } 3820 case TK_COLUMN: { 3821 int iTab = pExpr->iTable; 3822 int iReg; 3823 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3824 /* This COLUMN expression is really a constant due to WHERE clause 3825 ** constraints, and that constant is coded by the pExpr->pLeft 3826 ** expresssion. However, make sure the constant has the correct 3827 ** datatype by applying the Affinity of the table column to the 3828 ** constant. 3829 */ 3830 int aff; 3831 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3832 if( pExpr->y.pTab ){ 3833 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3834 }else{ 3835 aff = pExpr->affExpr; 3836 } 3837 if( aff>SQLITE_AFF_BLOB ){ 3838 static const char zAff[] = "B\000C\000D\000E"; 3839 assert( SQLITE_AFF_BLOB=='A' ); 3840 assert( SQLITE_AFF_TEXT=='B' ); 3841 if( iReg!=target ){ 3842 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3843 iReg = target; 3844 } 3845 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3846 &zAff[(aff-'B')*2], P4_STATIC); 3847 } 3848 return iReg; 3849 } 3850 if( iTab<0 ){ 3851 if( pParse->iSelfTab<0 ){ 3852 /* Other columns in the same row for CHECK constraints or 3853 ** generated columns or for inserting into partial index. 3854 ** The row is unpacked into registers beginning at 3855 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3856 ** immediately prior to the first column. 3857 */ 3858 Column *pCol; 3859 Table *pTab = pExpr->y.pTab; 3860 int iSrc; 3861 int iCol = pExpr->iColumn; 3862 assert( pTab!=0 ); 3863 assert( iCol>=XN_ROWID ); 3864 assert( iCol<pTab->nCol ); 3865 if( iCol<0 ){ 3866 return -1-pParse->iSelfTab; 3867 } 3868 pCol = pTab->aCol + iCol; 3869 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3870 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3871 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3872 if( pCol->colFlags & COLFLAG_GENERATED ){ 3873 if( pCol->colFlags & COLFLAG_BUSY ){ 3874 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3875 pCol->zName); 3876 return 0; 3877 } 3878 pCol->colFlags |= COLFLAG_BUSY; 3879 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3880 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3881 } 3882 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3883 return iSrc; 3884 }else 3885 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3886 if( pCol->affinity==SQLITE_AFF_REAL ){ 3887 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3888 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3889 return target; 3890 }else{ 3891 return iSrc; 3892 } 3893 }else{ 3894 /* Coding an expression that is part of an index where column names 3895 ** in the index refer to the table to which the index belongs */ 3896 iTab = pParse->iSelfTab - 1; 3897 } 3898 } 3899 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3900 pExpr->iColumn, iTab, target, 3901 pExpr->op2); 3902 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3903 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3904 } 3905 return iReg; 3906 } 3907 case TK_INTEGER: { 3908 codeInteger(pParse, pExpr, 0, target); 3909 return target; 3910 } 3911 case TK_TRUEFALSE: { 3912 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3913 return target; 3914 } 3915 #ifndef SQLITE_OMIT_FLOATING_POINT 3916 case TK_FLOAT: { 3917 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3918 codeReal(v, pExpr->u.zToken, 0, target); 3919 return target; 3920 } 3921 #endif 3922 case TK_STRING: { 3923 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3924 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3925 return target; 3926 } 3927 default: { 3928 /* Make NULL the default case so that if a bug causes an illegal 3929 ** Expr node to be passed into this function, it will be handled 3930 ** sanely and not crash. But keep the assert() to bring the problem 3931 ** to the attention of the developers. */ 3932 assert( op==TK_NULL ); 3933 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3934 return target; 3935 } 3936 #ifndef SQLITE_OMIT_BLOB_LITERAL 3937 case TK_BLOB: { 3938 int n; 3939 const char *z; 3940 char *zBlob; 3941 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3942 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3943 assert( pExpr->u.zToken[1]=='\'' ); 3944 z = &pExpr->u.zToken[2]; 3945 n = sqlite3Strlen30(z) - 1; 3946 assert( z[n]=='\'' ); 3947 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3948 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3949 return target; 3950 } 3951 #endif 3952 case TK_VARIABLE: { 3953 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3954 assert( pExpr->u.zToken!=0 ); 3955 assert( pExpr->u.zToken[0]!=0 ); 3956 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3957 if( pExpr->u.zToken[1]!=0 ){ 3958 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3959 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3960 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3961 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3962 } 3963 return target; 3964 } 3965 case TK_REGISTER: { 3966 return pExpr->iTable; 3967 } 3968 #ifndef SQLITE_OMIT_CAST 3969 case TK_CAST: { 3970 /* Expressions of the form: CAST(pLeft AS token) */ 3971 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3972 if( inReg!=target ){ 3973 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3974 inReg = target; 3975 } 3976 sqlite3VdbeAddOp2(v, OP_Cast, target, 3977 sqlite3AffinityType(pExpr->u.zToken, 0)); 3978 return inReg; 3979 } 3980 #endif /* SQLITE_OMIT_CAST */ 3981 case TK_IS: 3982 case TK_ISNOT: 3983 op = (op==TK_IS) ? TK_EQ : TK_NE; 3984 p5 = SQLITE_NULLEQ; 3985 /* fall-through */ 3986 case TK_LT: 3987 case TK_LE: 3988 case TK_GT: 3989 case TK_GE: 3990 case TK_NE: 3991 case TK_EQ: { 3992 Expr *pLeft = pExpr->pLeft; 3993 if( sqlite3ExprIsVector(pLeft) ){ 3994 codeVectorCompare(pParse, pExpr, target, op, p5); 3995 }else{ 3996 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3997 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3998 codeCompare(pParse, pLeft, pExpr->pRight, op, 3999 r1, r2, inReg, SQLITE_STOREP2 | p5, 4000 ExprHasProperty(pExpr,EP_Commuted)); 4001 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4002 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4003 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4004 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4005 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4006 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4007 testcase( regFree1==0 ); 4008 testcase( regFree2==0 ); 4009 } 4010 break; 4011 } 4012 case TK_AND: 4013 case TK_OR: 4014 case TK_PLUS: 4015 case TK_STAR: 4016 case TK_MINUS: 4017 case TK_REM: 4018 case TK_BITAND: 4019 case TK_BITOR: 4020 case TK_SLASH: 4021 case TK_LSHIFT: 4022 case TK_RSHIFT: 4023 case TK_CONCAT: { 4024 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4025 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4026 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4027 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4028 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4029 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4030 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4031 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4032 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4033 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4034 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4035 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4036 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4037 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4038 testcase( regFree1==0 ); 4039 testcase( regFree2==0 ); 4040 break; 4041 } 4042 case TK_UMINUS: { 4043 Expr *pLeft = pExpr->pLeft; 4044 assert( pLeft ); 4045 if( pLeft->op==TK_INTEGER ){ 4046 codeInteger(pParse, pLeft, 1, target); 4047 return target; 4048 #ifndef SQLITE_OMIT_FLOATING_POINT 4049 }else if( pLeft->op==TK_FLOAT ){ 4050 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4051 codeReal(v, pLeft->u.zToken, 1, target); 4052 return target; 4053 #endif 4054 }else{ 4055 tempX.op = TK_INTEGER; 4056 tempX.flags = EP_IntValue|EP_TokenOnly; 4057 tempX.u.iValue = 0; 4058 ExprClearVVAProperties(&tempX); 4059 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4060 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4061 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4062 testcase( regFree2==0 ); 4063 } 4064 break; 4065 } 4066 case TK_BITNOT: 4067 case TK_NOT: { 4068 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4069 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4070 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4071 testcase( regFree1==0 ); 4072 sqlite3VdbeAddOp2(v, op, r1, inReg); 4073 break; 4074 } 4075 case TK_TRUTH: { 4076 int isTrue; /* IS TRUE or IS NOT TRUE */ 4077 int bNormal; /* IS TRUE or IS FALSE */ 4078 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4079 testcase( regFree1==0 ); 4080 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4081 bNormal = pExpr->op2==TK_IS; 4082 testcase( isTrue && bNormal); 4083 testcase( !isTrue && bNormal); 4084 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4085 break; 4086 } 4087 case TK_ISNULL: 4088 case TK_NOTNULL: { 4089 int addr; 4090 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4091 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4092 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4093 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4094 testcase( regFree1==0 ); 4095 addr = sqlite3VdbeAddOp1(v, op, r1); 4096 VdbeCoverageIf(v, op==TK_ISNULL); 4097 VdbeCoverageIf(v, op==TK_NOTNULL); 4098 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4099 sqlite3VdbeJumpHere(v, addr); 4100 break; 4101 } 4102 case TK_AGG_FUNCTION: { 4103 AggInfo *pInfo = pExpr->pAggInfo; 4104 if( pInfo==0 ){ 4105 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4106 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4107 }else{ 4108 return pInfo->aFunc[pExpr->iAgg].iMem; 4109 } 4110 break; 4111 } 4112 case TK_FUNCTION: { 4113 ExprList *pFarg; /* List of function arguments */ 4114 int nFarg; /* Number of function arguments */ 4115 FuncDef *pDef; /* The function definition object */ 4116 const char *zId; /* The function name */ 4117 u32 constMask = 0; /* Mask of function arguments that are constant */ 4118 int i; /* Loop counter */ 4119 sqlite3 *db = pParse->db; /* The database connection */ 4120 u8 enc = ENC(db); /* The text encoding used by this database */ 4121 CollSeq *pColl = 0; /* A collating sequence */ 4122 4123 #ifndef SQLITE_OMIT_WINDOWFUNC 4124 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4125 return pExpr->y.pWin->regResult; 4126 } 4127 #endif 4128 4129 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4130 /* SQL functions can be expensive. So try to avoid running them 4131 ** multiple times if we know they always give the same result */ 4132 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4133 } 4134 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4135 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4136 pFarg = pExpr->x.pList; 4137 nFarg = pFarg ? pFarg->nExpr : 0; 4138 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4139 zId = pExpr->u.zToken; 4140 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4141 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4142 if( pDef==0 && pParse->explain ){ 4143 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4144 } 4145 #endif 4146 if( pDef==0 || pDef->xFinalize!=0 ){ 4147 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4148 break; 4149 } 4150 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4151 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4152 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4153 return exprCodeInlineFunction(pParse, pFarg, 4154 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4155 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4156 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4157 } 4158 4159 for(i=0; i<nFarg; i++){ 4160 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4161 testcase( i==31 ); 4162 constMask |= MASKBIT32(i); 4163 } 4164 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4165 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4166 } 4167 } 4168 if( pFarg ){ 4169 if( constMask ){ 4170 r1 = pParse->nMem+1; 4171 pParse->nMem += nFarg; 4172 }else{ 4173 r1 = sqlite3GetTempRange(pParse, nFarg); 4174 } 4175 4176 /* For length() and typeof() functions with a column argument, 4177 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4178 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4179 ** loading. 4180 */ 4181 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4182 u8 exprOp; 4183 assert( nFarg==1 ); 4184 assert( pFarg->a[0].pExpr!=0 ); 4185 exprOp = pFarg->a[0].pExpr->op; 4186 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4187 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4188 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4189 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4190 pFarg->a[0].pExpr->op2 = 4191 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4192 } 4193 } 4194 4195 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4196 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4197 }else{ 4198 r1 = 0; 4199 } 4200 #ifndef SQLITE_OMIT_VIRTUALTABLE 4201 /* Possibly overload the function if the first argument is 4202 ** a virtual table column. 4203 ** 4204 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4205 ** second argument, not the first, as the argument to test to 4206 ** see if it is a column in a virtual table. This is done because 4207 ** the left operand of infix functions (the operand we want to 4208 ** control overloading) ends up as the second argument to the 4209 ** function. The expression "A glob B" is equivalent to 4210 ** "glob(B,A). We want to use the A in "A glob B" to test 4211 ** for function overloading. But we use the B term in "glob(B,A)". 4212 */ 4213 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4214 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4215 }else if( nFarg>0 ){ 4216 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4217 } 4218 #endif 4219 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4220 if( !pColl ) pColl = db->pDfltColl; 4221 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4222 } 4223 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4224 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4225 Expr *pArg = pFarg->a[0].pExpr; 4226 if( pArg->op==TK_COLUMN ){ 4227 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4228 }else{ 4229 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4230 } 4231 }else 4232 #endif 4233 { 4234 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4235 pDef, pExpr->op2); 4236 } 4237 if( nFarg ){ 4238 if( constMask==0 ){ 4239 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4240 }else{ 4241 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4242 } 4243 } 4244 return target; 4245 } 4246 #ifndef SQLITE_OMIT_SUBQUERY 4247 case TK_EXISTS: 4248 case TK_SELECT: { 4249 int nCol; 4250 testcase( op==TK_EXISTS ); 4251 testcase( op==TK_SELECT ); 4252 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4253 sqlite3SubselectError(pParse, nCol, 1); 4254 }else{ 4255 return sqlite3CodeSubselect(pParse, pExpr); 4256 } 4257 break; 4258 } 4259 case TK_SELECT_COLUMN: { 4260 int n; 4261 if( pExpr->pLeft->iTable==0 ){ 4262 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4263 } 4264 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4265 if( pExpr->iTable!=0 4266 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4267 ){ 4268 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4269 pExpr->iTable, n); 4270 } 4271 return pExpr->pLeft->iTable + pExpr->iColumn; 4272 } 4273 case TK_IN: { 4274 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4275 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4276 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4277 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4278 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4279 sqlite3VdbeResolveLabel(v, destIfFalse); 4280 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4281 sqlite3VdbeResolveLabel(v, destIfNull); 4282 return target; 4283 } 4284 #endif /* SQLITE_OMIT_SUBQUERY */ 4285 4286 4287 /* 4288 ** x BETWEEN y AND z 4289 ** 4290 ** This is equivalent to 4291 ** 4292 ** x>=y AND x<=z 4293 ** 4294 ** X is stored in pExpr->pLeft. 4295 ** Y is stored in pExpr->pList->a[0].pExpr. 4296 ** Z is stored in pExpr->pList->a[1].pExpr. 4297 */ 4298 case TK_BETWEEN: { 4299 exprCodeBetween(pParse, pExpr, target, 0, 0); 4300 return target; 4301 } 4302 case TK_SPAN: 4303 case TK_COLLATE: 4304 case TK_UPLUS: { 4305 pExpr = pExpr->pLeft; 4306 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4307 } 4308 4309 case TK_TRIGGER: { 4310 /* If the opcode is TK_TRIGGER, then the expression is a reference 4311 ** to a column in the new.* or old.* pseudo-tables available to 4312 ** trigger programs. In this case Expr.iTable is set to 1 for the 4313 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4314 ** is set to the column of the pseudo-table to read, or to -1 to 4315 ** read the rowid field. 4316 ** 4317 ** The expression is implemented using an OP_Param opcode. The p1 4318 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4319 ** to reference another column of the old.* pseudo-table, where 4320 ** i is the index of the column. For a new.rowid reference, p1 is 4321 ** set to (n+1), where n is the number of columns in each pseudo-table. 4322 ** For a reference to any other column in the new.* pseudo-table, p1 4323 ** is set to (n+2+i), where n and i are as defined previously. For 4324 ** example, if the table on which triggers are being fired is 4325 ** declared as: 4326 ** 4327 ** CREATE TABLE t1(a, b); 4328 ** 4329 ** Then p1 is interpreted as follows: 4330 ** 4331 ** p1==0 -> old.rowid p1==3 -> new.rowid 4332 ** p1==1 -> old.a p1==4 -> new.a 4333 ** p1==2 -> old.b p1==5 -> new.b 4334 */ 4335 Table *pTab = pExpr->y.pTab; 4336 int iCol = pExpr->iColumn; 4337 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4338 + sqlite3TableColumnToStorage(pTab, iCol); 4339 4340 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4341 assert( iCol>=-1 && iCol<pTab->nCol ); 4342 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4343 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4344 4345 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4346 VdbeComment((v, "r[%d]=%s.%s", target, 4347 (pExpr->iTable ? "new" : "old"), 4348 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4349 )); 4350 4351 #ifndef SQLITE_OMIT_FLOATING_POINT 4352 /* If the column has REAL affinity, it may currently be stored as an 4353 ** integer. Use OP_RealAffinity to make sure it is really real. 4354 ** 4355 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4356 ** floating point when extracting it from the record. */ 4357 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4358 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4359 } 4360 #endif 4361 break; 4362 } 4363 4364 case TK_VECTOR: { 4365 sqlite3ErrorMsg(pParse, "row value misused"); 4366 break; 4367 } 4368 4369 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4370 ** that derive from the right-hand table of a LEFT JOIN. The 4371 ** Expr.iTable value is the table number for the right-hand table. 4372 ** The expression is only evaluated if that table is not currently 4373 ** on a LEFT JOIN NULL row. 4374 */ 4375 case TK_IF_NULL_ROW: { 4376 int addrINR; 4377 u8 okConstFactor = pParse->okConstFactor; 4378 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4379 /* Temporarily disable factoring of constant expressions, since 4380 ** even though expressions may appear to be constant, they are not 4381 ** really constant because they originate from the right-hand side 4382 ** of a LEFT JOIN. */ 4383 pParse->okConstFactor = 0; 4384 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4385 pParse->okConstFactor = okConstFactor; 4386 sqlite3VdbeJumpHere(v, addrINR); 4387 sqlite3VdbeChangeP3(v, addrINR, inReg); 4388 break; 4389 } 4390 4391 /* 4392 ** Form A: 4393 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4394 ** 4395 ** Form B: 4396 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4397 ** 4398 ** Form A is can be transformed into the equivalent form B as follows: 4399 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4400 ** WHEN x=eN THEN rN ELSE y END 4401 ** 4402 ** X (if it exists) is in pExpr->pLeft. 4403 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4404 ** odd. The Y is also optional. If the number of elements in x.pList 4405 ** is even, then Y is omitted and the "otherwise" result is NULL. 4406 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4407 ** 4408 ** The result of the expression is the Ri for the first matching Ei, 4409 ** or if there is no matching Ei, the ELSE term Y, or if there is 4410 ** no ELSE term, NULL. 4411 */ 4412 case TK_CASE: { 4413 int endLabel; /* GOTO label for end of CASE stmt */ 4414 int nextCase; /* GOTO label for next WHEN clause */ 4415 int nExpr; /* 2x number of WHEN terms */ 4416 int i; /* Loop counter */ 4417 ExprList *pEList; /* List of WHEN terms */ 4418 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4419 Expr opCompare; /* The X==Ei expression */ 4420 Expr *pX; /* The X expression */ 4421 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4422 Expr *pDel = 0; 4423 sqlite3 *db = pParse->db; 4424 4425 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4426 assert(pExpr->x.pList->nExpr > 0); 4427 pEList = pExpr->x.pList; 4428 aListelem = pEList->a; 4429 nExpr = pEList->nExpr; 4430 endLabel = sqlite3VdbeMakeLabel(pParse); 4431 if( (pX = pExpr->pLeft)!=0 ){ 4432 pDel = sqlite3ExprDup(db, pX, 0); 4433 if( db->mallocFailed ){ 4434 sqlite3ExprDelete(db, pDel); 4435 break; 4436 } 4437 testcase( pX->op==TK_COLUMN ); 4438 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4439 testcase( regFree1==0 ); 4440 memset(&opCompare, 0, sizeof(opCompare)); 4441 opCompare.op = TK_EQ; 4442 opCompare.pLeft = pDel; 4443 pTest = &opCompare; 4444 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4445 ** The value in regFree1 might get SCopy-ed into the file result. 4446 ** So make sure that the regFree1 register is not reused for other 4447 ** purposes and possibly overwritten. */ 4448 regFree1 = 0; 4449 } 4450 for(i=0; i<nExpr-1; i=i+2){ 4451 if( pX ){ 4452 assert( pTest!=0 ); 4453 opCompare.pRight = aListelem[i].pExpr; 4454 }else{ 4455 pTest = aListelem[i].pExpr; 4456 } 4457 nextCase = sqlite3VdbeMakeLabel(pParse); 4458 testcase( pTest->op==TK_COLUMN ); 4459 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4460 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4461 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4462 sqlite3VdbeGoto(v, endLabel); 4463 sqlite3VdbeResolveLabel(v, nextCase); 4464 } 4465 if( (nExpr&1)!=0 ){ 4466 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4467 }else{ 4468 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4469 } 4470 sqlite3ExprDelete(db, pDel); 4471 setDoNotMergeFlagOnCopy(v); 4472 sqlite3VdbeResolveLabel(v, endLabel); 4473 break; 4474 } 4475 #ifndef SQLITE_OMIT_TRIGGER 4476 case TK_RAISE: { 4477 assert( pExpr->affExpr==OE_Rollback 4478 || pExpr->affExpr==OE_Abort 4479 || pExpr->affExpr==OE_Fail 4480 || pExpr->affExpr==OE_Ignore 4481 ); 4482 if( !pParse->pTriggerTab ){ 4483 sqlite3ErrorMsg(pParse, 4484 "RAISE() may only be used within a trigger-program"); 4485 return 0; 4486 } 4487 if( pExpr->affExpr==OE_Abort ){ 4488 sqlite3MayAbort(pParse); 4489 } 4490 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4491 if( pExpr->affExpr==OE_Ignore ){ 4492 sqlite3VdbeAddOp4( 4493 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4494 VdbeCoverage(v); 4495 }else{ 4496 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4497 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4498 } 4499 4500 break; 4501 } 4502 #endif 4503 } 4504 sqlite3ReleaseTempReg(pParse, regFree1); 4505 sqlite3ReleaseTempReg(pParse, regFree2); 4506 return inReg; 4507 } 4508 4509 /* 4510 ** Generate code that will evaluate expression pExpr just one time 4511 ** per prepared statement execution. 4512 ** 4513 ** If the expression uses functions (that might throw an exception) then 4514 ** guard them with an OP_Once opcode to ensure that the code is only executed 4515 ** once. If no functions are involved, then factor the code out and put it at 4516 ** the end of the prepared statement in the initialization section. 4517 ** 4518 ** If regDest>=0 then the result is always stored in that register and the 4519 ** result is not reusable. If regDest<0 then this routine is free to 4520 ** store the value whereever it wants. The register where the expression 4521 ** is stored is returned. When regDest<0, two identical expressions might 4522 ** code to the same register, if they do not contain function calls and hence 4523 ** are factored out into the initialization section at the end of the 4524 ** prepared statement. 4525 */ 4526 int sqlite3ExprCodeRunJustOnce( 4527 Parse *pParse, /* Parsing context */ 4528 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4529 int regDest /* Store the value in this register */ 4530 ){ 4531 ExprList *p; 4532 assert( ConstFactorOk(pParse) ); 4533 p = pParse->pConstExpr; 4534 if( regDest<0 && p ){ 4535 struct ExprList_item *pItem; 4536 int i; 4537 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4538 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4539 return pItem->u.iConstExprReg; 4540 } 4541 } 4542 } 4543 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4544 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4545 Vdbe *v = pParse->pVdbe; 4546 int addr; 4547 assert( v ); 4548 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4549 pParse->okConstFactor = 0; 4550 if( !pParse->db->mallocFailed ){ 4551 if( regDest<0 ) regDest = ++pParse->nMem; 4552 sqlite3ExprCode(pParse, pExpr, regDest); 4553 } 4554 pParse->okConstFactor = 1; 4555 sqlite3ExprDelete(pParse->db, pExpr); 4556 sqlite3VdbeJumpHere(v, addr); 4557 }else{ 4558 p = sqlite3ExprListAppend(pParse, p, pExpr); 4559 if( p ){ 4560 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4561 pItem->reusable = regDest<0; 4562 if( regDest<0 ) regDest = ++pParse->nMem; 4563 pItem->u.iConstExprReg = regDest; 4564 } 4565 pParse->pConstExpr = p; 4566 } 4567 return regDest; 4568 } 4569 4570 /* 4571 ** Generate code to evaluate an expression and store the results 4572 ** into a register. Return the register number where the results 4573 ** are stored. 4574 ** 4575 ** If the register is a temporary register that can be deallocated, 4576 ** then write its number into *pReg. If the result register is not 4577 ** a temporary, then set *pReg to zero. 4578 ** 4579 ** If pExpr is a constant, then this routine might generate this 4580 ** code to fill the register in the initialization section of the 4581 ** VDBE program, in order to factor it out of the evaluation loop. 4582 */ 4583 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4584 int r2; 4585 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4586 if( ConstFactorOk(pParse) 4587 && pExpr->op!=TK_REGISTER 4588 && sqlite3ExprIsConstantNotJoin(pExpr) 4589 ){ 4590 *pReg = 0; 4591 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4592 }else{ 4593 int r1 = sqlite3GetTempReg(pParse); 4594 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4595 if( r2==r1 ){ 4596 *pReg = r1; 4597 }else{ 4598 sqlite3ReleaseTempReg(pParse, r1); 4599 *pReg = 0; 4600 } 4601 } 4602 return r2; 4603 } 4604 4605 /* 4606 ** Generate code that will evaluate expression pExpr and store the 4607 ** results in register target. The results are guaranteed to appear 4608 ** in register target. 4609 */ 4610 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4611 int inReg; 4612 4613 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4614 assert( target>0 && target<=pParse->nMem ); 4615 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4616 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4617 if( inReg!=target && pParse->pVdbe ){ 4618 u8 op; 4619 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4620 op = OP_Copy; 4621 }else{ 4622 op = OP_SCopy; 4623 } 4624 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4625 } 4626 } 4627 4628 /* 4629 ** Make a transient copy of expression pExpr and then code it using 4630 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4631 ** except that the input expression is guaranteed to be unchanged. 4632 */ 4633 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4634 sqlite3 *db = pParse->db; 4635 pExpr = sqlite3ExprDup(db, pExpr, 0); 4636 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4637 sqlite3ExprDelete(db, pExpr); 4638 } 4639 4640 /* 4641 ** Generate code that will evaluate expression pExpr and store the 4642 ** results in register target. The results are guaranteed to appear 4643 ** in register target. If the expression is constant, then this routine 4644 ** might choose to code the expression at initialization time. 4645 */ 4646 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4647 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4648 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4649 }else{ 4650 sqlite3ExprCodeCopy(pParse, pExpr, target); 4651 } 4652 } 4653 4654 /* 4655 ** Generate code that pushes the value of every element of the given 4656 ** expression list into a sequence of registers beginning at target. 4657 ** 4658 ** Return the number of elements evaluated. The number returned will 4659 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4660 ** is defined. 4661 ** 4662 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4663 ** filled using OP_SCopy. OP_Copy must be used instead. 4664 ** 4665 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4666 ** factored out into initialization code. 4667 ** 4668 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4669 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4670 ** in registers at srcReg, and so the value can be copied from there. 4671 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4672 ** are simply omitted rather than being copied from srcReg. 4673 */ 4674 int sqlite3ExprCodeExprList( 4675 Parse *pParse, /* Parsing context */ 4676 ExprList *pList, /* The expression list to be coded */ 4677 int target, /* Where to write results */ 4678 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4679 u8 flags /* SQLITE_ECEL_* flags */ 4680 ){ 4681 struct ExprList_item *pItem; 4682 int i, j, n; 4683 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4684 Vdbe *v = pParse->pVdbe; 4685 assert( pList!=0 ); 4686 assert( target>0 ); 4687 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4688 n = pList->nExpr; 4689 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4690 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4691 Expr *pExpr = pItem->pExpr; 4692 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4693 if( pItem->bSorterRef ){ 4694 i--; 4695 n--; 4696 }else 4697 #endif 4698 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4699 if( flags & SQLITE_ECEL_OMITREF ){ 4700 i--; 4701 n--; 4702 }else{ 4703 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4704 } 4705 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4706 && sqlite3ExprIsConstantNotJoin(pExpr) 4707 ){ 4708 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4709 }else{ 4710 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4711 if( inReg!=target+i ){ 4712 VdbeOp *pOp; 4713 if( copyOp==OP_Copy 4714 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4715 && pOp->p1+pOp->p3+1==inReg 4716 && pOp->p2+pOp->p3+1==target+i 4717 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4718 ){ 4719 pOp->p3++; 4720 }else{ 4721 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4722 } 4723 } 4724 } 4725 } 4726 return n; 4727 } 4728 4729 /* 4730 ** Generate code for a BETWEEN operator. 4731 ** 4732 ** x BETWEEN y AND z 4733 ** 4734 ** The above is equivalent to 4735 ** 4736 ** x>=y AND x<=z 4737 ** 4738 ** Code it as such, taking care to do the common subexpression 4739 ** elimination of x. 4740 ** 4741 ** The xJumpIf parameter determines details: 4742 ** 4743 ** NULL: Store the boolean result in reg[dest] 4744 ** sqlite3ExprIfTrue: Jump to dest if true 4745 ** sqlite3ExprIfFalse: Jump to dest if false 4746 ** 4747 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4748 */ 4749 static void exprCodeBetween( 4750 Parse *pParse, /* Parsing and code generating context */ 4751 Expr *pExpr, /* The BETWEEN expression */ 4752 int dest, /* Jump destination or storage location */ 4753 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4754 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4755 ){ 4756 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4757 Expr compLeft; /* The x>=y term */ 4758 Expr compRight; /* The x<=z term */ 4759 int regFree1 = 0; /* Temporary use register */ 4760 Expr *pDel = 0; 4761 sqlite3 *db = pParse->db; 4762 4763 memset(&compLeft, 0, sizeof(Expr)); 4764 memset(&compRight, 0, sizeof(Expr)); 4765 memset(&exprAnd, 0, sizeof(Expr)); 4766 4767 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4768 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4769 if( db->mallocFailed==0 ){ 4770 exprAnd.op = TK_AND; 4771 exprAnd.pLeft = &compLeft; 4772 exprAnd.pRight = &compRight; 4773 compLeft.op = TK_GE; 4774 compLeft.pLeft = pDel; 4775 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4776 compRight.op = TK_LE; 4777 compRight.pLeft = pDel; 4778 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4779 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4780 if( xJump ){ 4781 xJump(pParse, &exprAnd, dest, jumpIfNull); 4782 }else{ 4783 /* Mark the expression is being from the ON or USING clause of a join 4784 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4785 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4786 ** for clarity, but we are out of bits in the Expr.flags field so we 4787 ** have to reuse the EP_FromJoin bit. Bummer. */ 4788 pDel->flags |= EP_FromJoin; 4789 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4790 } 4791 sqlite3ReleaseTempReg(pParse, regFree1); 4792 } 4793 sqlite3ExprDelete(db, pDel); 4794 4795 /* Ensure adequate test coverage */ 4796 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4797 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4798 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4799 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4800 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4801 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4802 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4803 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4804 testcase( xJump==0 ); 4805 } 4806 4807 /* 4808 ** Generate code for a boolean expression such that a jump is made 4809 ** to the label "dest" if the expression is true but execution 4810 ** continues straight thru if the expression is false. 4811 ** 4812 ** If the expression evaluates to NULL (neither true nor false), then 4813 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4814 ** 4815 ** This code depends on the fact that certain token values (ex: TK_EQ) 4816 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4817 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4818 ** the make process cause these values to align. Assert()s in the code 4819 ** below verify that the numbers are aligned correctly. 4820 */ 4821 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4822 Vdbe *v = pParse->pVdbe; 4823 int op = 0; 4824 int regFree1 = 0; 4825 int regFree2 = 0; 4826 int r1, r2; 4827 4828 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4829 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4830 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4831 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4832 op = pExpr->op; 4833 switch( op ){ 4834 case TK_AND: 4835 case TK_OR: { 4836 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4837 if( pAlt!=pExpr ){ 4838 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4839 }else if( op==TK_AND ){ 4840 int d2 = sqlite3VdbeMakeLabel(pParse); 4841 testcase( jumpIfNull==0 ); 4842 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4843 jumpIfNull^SQLITE_JUMPIFNULL); 4844 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4845 sqlite3VdbeResolveLabel(v, d2); 4846 }else{ 4847 testcase( jumpIfNull==0 ); 4848 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4849 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4850 } 4851 break; 4852 } 4853 case TK_NOT: { 4854 testcase( jumpIfNull==0 ); 4855 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4856 break; 4857 } 4858 case TK_TRUTH: { 4859 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4860 int isTrue; /* IS TRUE or IS NOT TRUE */ 4861 testcase( jumpIfNull==0 ); 4862 isNot = pExpr->op2==TK_ISNOT; 4863 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4864 testcase( isTrue && isNot ); 4865 testcase( !isTrue && isNot ); 4866 if( isTrue ^ isNot ){ 4867 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4868 isNot ? SQLITE_JUMPIFNULL : 0); 4869 }else{ 4870 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4871 isNot ? SQLITE_JUMPIFNULL : 0); 4872 } 4873 break; 4874 } 4875 case TK_IS: 4876 case TK_ISNOT: 4877 testcase( op==TK_IS ); 4878 testcase( op==TK_ISNOT ); 4879 op = (op==TK_IS) ? TK_EQ : TK_NE; 4880 jumpIfNull = SQLITE_NULLEQ; 4881 /* Fall thru */ 4882 case TK_LT: 4883 case TK_LE: 4884 case TK_GT: 4885 case TK_GE: 4886 case TK_NE: 4887 case TK_EQ: { 4888 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4889 testcase( jumpIfNull==0 ); 4890 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4891 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4892 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4893 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4894 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4895 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4896 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4897 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4898 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4899 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4900 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4901 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4902 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4903 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4904 testcase( regFree1==0 ); 4905 testcase( regFree2==0 ); 4906 break; 4907 } 4908 case TK_ISNULL: 4909 case TK_NOTNULL: { 4910 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4911 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4912 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4913 sqlite3VdbeAddOp2(v, op, r1, dest); 4914 VdbeCoverageIf(v, op==TK_ISNULL); 4915 VdbeCoverageIf(v, op==TK_NOTNULL); 4916 testcase( regFree1==0 ); 4917 break; 4918 } 4919 case TK_BETWEEN: { 4920 testcase( jumpIfNull==0 ); 4921 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4922 break; 4923 } 4924 #ifndef SQLITE_OMIT_SUBQUERY 4925 case TK_IN: { 4926 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4927 int destIfNull = jumpIfNull ? dest : destIfFalse; 4928 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4929 sqlite3VdbeGoto(v, dest); 4930 sqlite3VdbeResolveLabel(v, destIfFalse); 4931 break; 4932 } 4933 #endif 4934 default: { 4935 default_expr: 4936 if( ExprAlwaysTrue(pExpr) ){ 4937 sqlite3VdbeGoto(v, dest); 4938 }else if( ExprAlwaysFalse(pExpr) ){ 4939 /* No-op */ 4940 }else{ 4941 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4942 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4943 VdbeCoverage(v); 4944 testcase( regFree1==0 ); 4945 testcase( jumpIfNull==0 ); 4946 } 4947 break; 4948 } 4949 } 4950 sqlite3ReleaseTempReg(pParse, regFree1); 4951 sqlite3ReleaseTempReg(pParse, regFree2); 4952 } 4953 4954 /* 4955 ** Generate code for a boolean expression such that a jump is made 4956 ** to the label "dest" if the expression is false but execution 4957 ** continues straight thru if the expression is true. 4958 ** 4959 ** If the expression evaluates to NULL (neither true nor false) then 4960 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4961 ** is 0. 4962 */ 4963 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4964 Vdbe *v = pParse->pVdbe; 4965 int op = 0; 4966 int regFree1 = 0; 4967 int regFree2 = 0; 4968 int r1, r2; 4969 4970 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4971 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4972 if( pExpr==0 ) return; 4973 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4974 4975 /* The value of pExpr->op and op are related as follows: 4976 ** 4977 ** pExpr->op op 4978 ** --------- ---------- 4979 ** TK_ISNULL OP_NotNull 4980 ** TK_NOTNULL OP_IsNull 4981 ** TK_NE OP_Eq 4982 ** TK_EQ OP_Ne 4983 ** TK_GT OP_Le 4984 ** TK_LE OP_Gt 4985 ** TK_GE OP_Lt 4986 ** TK_LT OP_Ge 4987 ** 4988 ** For other values of pExpr->op, op is undefined and unused. 4989 ** The value of TK_ and OP_ constants are arranged such that we 4990 ** can compute the mapping above using the following expression. 4991 ** Assert()s verify that the computation is correct. 4992 */ 4993 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4994 4995 /* Verify correct alignment of TK_ and OP_ constants 4996 */ 4997 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4998 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4999 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5000 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5001 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5002 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5003 assert( pExpr->op!=TK_GT || op==OP_Le ); 5004 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5005 5006 switch( pExpr->op ){ 5007 case TK_AND: 5008 case TK_OR: { 5009 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5010 if( pAlt!=pExpr ){ 5011 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5012 }else if( pExpr->op==TK_AND ){ 5013 testcase( jumpIfNull==0 ); 5014 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5015 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5016 }else{ 5017 int d2 = sqlite3VdbeMakeLabel(pParse); 5018 testcase( jumpIfNull==0 ); 5019 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5020 jumpIfNull^SQLITE_JUMPIFNULL); 5021 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5022 sqlite3VdbeResolveLabel(v, d2); 5023 } 5024 break; 5025 } 5026 case TK_NOT: { 5027 testcase( jumpIfNull==0 ); 5028 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5029 break; 5030 } 5031 case TK_TRUTH: { 5032 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5033 int isTrue; /* IS TRUE or IS NOT TRUE */ 5034 testcase( jumpIfNull==0 ); 5035 isNot = pExpr->op2==TK_ISNOT; 5036 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5037 testcase( isTrue && isNot ); 5038 testcase( !isTrue && isNot ); 5039 if( isTrue ^ isNot ){ 5040 /* IS TRUE and IS NOT FALSE */ 5041 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5042 isNot ? 0 : SQLITE_JUMPIFNULL); 5043 5044 }else{ 5045 /* IS FALSE and IS NOT TRUE */ 5046 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5047 isNot ? 0 : SQLITE_JUMPIFNULL); 5048 } 5049 break; 5050 } 5051 case TK_IS: 5052 case TK_ISNOT: 5053 testcase( pExpr->op==TK_IS ); 5054 testcase( pExpr->op==TK_ISNOT ); 5055 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5056 jumpIfNull = SQLITE_NULLEQ; 5057 /* Fall thru */ 5058 case TK_LT: 5059 case TK_LE: 5060 case TK_GT: 5061 case TK_GE: 5062 case TK_NE: 5063 case TK_EQ: { 5064 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5065 testcase( jumpIfNull==0 ); 5066 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5067 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5068 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5069 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5070 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5071 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5072 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5073 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5074 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5075 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5076 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5077 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5078 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5079 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5080 testcase( regFree1==0 ); 5081 testcase( regFree2==0 ); 5082 break; 5083 } 5084 case TK_ISNULL: 5085 case TK_NOTNULL: { 5086 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5087 sqlite3VdbeAddOp2(v, op, r1, dest); 5088 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5089 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5090 testcase( regFree1==0 ); 5091 break; 5092 } 5093 case TK_BETWEEN: { 5094 testcase( jumpIfNull==0 ); 5095 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5096 break; 5097 } 5098 #ifndef SQLITE_OMIT_SUBQUERY 5099 case TK_IN: { 5100 if( jumpIfNull ){ 5101 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5102 }else{ 5103 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5104 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5105 sqlite3VdbeResolveLabel(v, destIfNull); 5106 } 5107 break; 5108 } 5109 #endif 5110 default: { 5111 default_expr: 5112 if( ExprAlwaysFalse(pExpr) ){ 5113 sqlite3VdbeGoto(v, dest); 5114 }else if( ExprAlwaysTrue(pExpr) ){ 5115 /* no-op */ 5116 }else{ 5117 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5118 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5119 VdbeCoverage(v); 5120 testcase( regFree1==0 ); 5121 testcase( jumpIfNull==0 ); 5122 } 5123 break; 5124 } 5125 } 5126 sqlite3ReleaseTempReg(pParse, regFree1); 5127 sqlite3ReleaseTempReg(pParse, regFree2); 5128 } 5129 5130 /* 5131 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5132 ** code generation, and that copy is deleted after code generation. This 5133 ** ensures that the original pExpr is unchanged. 5134 */ 5135 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5136 sqlite3 *db = pParse->db; 5137 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5138 if( db->mallocFailed==0 ){ 5139 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5140 } 5141 sqlite3ExprDelete(db, pCopy); 5142 } 5143 5144 /* 5145 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5146 ** type of expression. 5147 ** 5148 ** If pExpr is a simple SQL value - an integer, real, string, blob 5149 ** or NULL value - then the VDBE currently being prepared is configured 5150 ** to re-prepare each time a new value is bound to variable pVar. 5151 ** 5152 ** Additionally, if pExpr is a simple SQL value and the value is the 5153 ** same as that currently bound to variable pVar, non-zero is returned. 5154 ** Otherwise, if the values are not the same or if pExpr is not a simple 5155 ** SQL value, zero is returned. 5156 */ 5157 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5158 int res = 0; 5159 int iVar; 5160 sqlite3_value *pL, *pR = 0; 5161 5162 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5163 if( pR ){ 5164 iVar = pVar->iColumn; 5165 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5166 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5167 if( pL ){ 5168 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5169 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5170 } 5171 res = 0==sqlite3MemCompare(pL, pR, 0); 5172 } 5173 sqlite3ValueFree(pR); 5174 sqlite3ValueFree(pL); 5175 } 5176 5177 return res; 5178 } 5179 5180 /* 5181 ** Do a deep comparison of two expression trees. Return 0 if the two 5182 ** expressions are completely identical. Return 1 if they differ only 5183 ** by a COLLATE operator at the top level. Return 2 if there are differences 5184 ** other than the top-level COLLATE operator. 5185 ** 5186 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5187 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5188 ** 5189 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5190 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5191 ** 5192 ** Sometimes this routine will return 2 even if the two expressions 5193 ** really are equivalent. If we cannot prove that the expressions are 5194 ** identical, we return 2 just to be safe. So if this routine 5195 ** returns 2, then you do not really know for certain if the two 5196 ** expressions are the same. But if you get a 0 or 1 return, then you 5197 ** can be sure the expressions are the same. In the places where 5198 ** this routine is used, it does not hurt to get an extra 2 - that 5199 ** just might result in some slightly slower code. But returning 5200 ** an incorrect 0 or 1 could lead to a malfunction. 5201 ** 5202 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5203 ** pParse->pReprepare can be matched against literals in pB. The 5204 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5205 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5206 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5207 ** pB causes a return value of 2. 5208 */ 5209 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5210 u32 combinedFlags; 5211 if( pA==0 || pB==0 ){ 5212 return pB==pA ? 0 : 2; 5213 } 5214 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5215 return 0; 5216 } 5217 combinedFlags = pA->flags | pB->flags; 5218 if( combinedFlags & EP_IntValue ){ 5219 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5220 return 0; 5221 } 5222 return 2; 5223 } 5224 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5225 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5226 return 1; 5227 } 5228 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5229 return 1; 5230 } 5231 return 2; 5232 } 5233 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5234 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5235 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5236 #ifndef SQLITE_OMIT_WINDOWFUNC 5237 assert( pA->op==pB->op ); 5238 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5239 return 2; 5240 } 5241 if( ExprHasProperty(pA,EP_WinFunc) ){ 5242 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5243 return 2; 5244 } 5245 } 5246 #endif 5247 }else if( pA->op==TK_NULL ){ 5248 return 0; 5249 }else if( pA->op==TK_COLLATE ){ 5250 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5251 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5252 return 2; 5253 } 5254 } 5255 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5256 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5257 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5258 if( combinedFlags & EP_xIsSelect ) return 2; 5259 if( (combinedFlags & EP_FixedCol)==0 5260 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5261 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5262 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5263 if( pA->op!=TK_STRING 5264 && pA->op!=TK_TRUEFALSE 5265 && ALWAYS((combinedFlags & EP_Reduced)==0) 5266 ){ 5267 if( pA->iColumn!=pB->iColumn ) return 2; 5268 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5269 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5270 return 2; 5271 } 5272 } 5273 } 5274 return 0; 5275 } 5276 5277 /* 5278 ** Compare two ExprList objects. Return 0 if they are identical, 1 5279 ** if they are certainly different, or 2 if it is not possible to 5280 ** determine if they are identical or not. 5281 ** 5282 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5283 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5284 ** 5285 ** This routine might return non-zero for equivalent ExprLists. The 5286 ** only consequence will be disabled optimizations. But this routine 5287 ** must never return 0 if the two ExprList objects are different, or 5288 ** a malfunction will result. 5289 ** 5290 ** Two NULL pointers are considered to be the same. But a NULL pointer 5291 ** always differs from a non-NULL pointer. 5292 */ 5293 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5294 int i; 5295 if( pA==0 && pB==0 ) return 0; 5296 if( pA==0 || pB==0 ) return 1; 5297 if( pA->nExpr!=pB->nExpr ) return 1; 5298 for(i=0; i<pA->nExpr; i++){ 5299 int res; 5300 Expr *pExprA = pA->a[i].pExpr; 5301 Expr *pExprB = pB->a[i].pExpr; 5302 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5303 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5304 } 5305 return 0; 5306 } 5307 5308 /* 5309 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5310 ** are ignored. 5311 */ 5312 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5313 return sqlite3ExprCompare(0, 5314 sqlite3ExprSkipCollateAndLikely(pA), 5315 sqlite3ExprSkipCollateAndLikely(pB), 5316 iTab); 5317 } 5318 5319 /* 5320 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5321 ** 5322 ** Or if seenNot is true, return non-zero if Expr p can only be 5323 ** non-NULL if pNN is not NULL 5324 */ 5325 static int exprImpliesNotNull( 5326 Parse *pParse, /* Parsing context */ 5327 Expr *p, /* The expression to be checked */ 5328 Expr *pNN, /* The expression that is NOT NULL */ 5329 int iTab, /* Table being evaluated */ 5330 int seenNot /* Return true only if p can be any non-NULL value */ 5331 ){ 5332 assert( p ); 5333 assert( pNN ); 5334 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5335 return pNN->op!=TK_NULL; 5336 } 5337 switch( p->op ){ 5338 case TK_IN: { 5339 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5340 assert( ExprHasProperty(p,EP_xIsSelect) 5341 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5342 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5343 } 5344 case TK_BETWEEN: { 5345 ExprList *pList = p->x.pList; 5346 assert( pList!=0 ); 5347 assert( pList->nExpr==2 ); 5348 if( seenNot ) return 0; 5349 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5350 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5351 ){ 5352 return 1; 5353 } 5354 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5355 } 5356 case TK_EQ: 5357 case TK_NE: 5358 case TK_LT: 5359 case TK_LE: 5360 case TK_GT: 5361 case TK_GE: 5362 case TK_PLUS: 5363 case TK_MINUS: 5364 case TK_BITOR: 5365 case TK_LSHIFT: 5366 case TK_RSHIFT: 5367 case TK_CONCAT: 5368 seenNot = 1; 5369 /* Fall thru */ 5370 case TK_STAR: 5371 case TK_REM: 5372 case TK_BITAND: 5373 case TK_SLASH: { 5374 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5375 /* Fall thru into the next case */ 5376 } 5377 case TK_SPAN: 5378 case TK_COLLATE: 5379 case TK_UPLUS: 5380 case TK_UMINUS: { 5381 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5382 } 5383 case TK_TRUTH: { 5384 if( seenNot ) return 0; 5385 if( p->op2!=TK_IS ) return 0; 5386 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5387 } 5388 case TK_BITNOT: 5389 case TK_NOT: { 5390 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5391 } 5392 } 5393 return 0; 5394 } 5395 5396 /* 5397 ** Return true if we can prove the pE2 will always be true if pE1 is 5398 ** true. Return false if we cannot complete the proof or if pE2 might 5399 ** be false. Examples: 5400 ** 5401 ** pE1: x==5 pE2: x==5 Result: true 5402 ** pE1: x>0 pE2: x==5 Result: false 5403 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5404 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5405 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5406 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5407 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5408 ** 5409 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5410 ** Expr.iTable<0 then assume a table number given by iTab. 5411 ** 5412 ** If pParse is not NULL, then the values of bound variables in pE1 are 5413 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5414 ** modified to record which bound variables are referenced. If pParse 5415 ** is NULL, then false will be returned if pE1 contains any bound variables. 5416 ** 5417 ** When in doubt, return false. Returning true might give a performance 5418 ** improvement. Returning false might cause a performance reduction, but 5419 ** it will always give the correct answer and is hence always safe. 5420 */ 5421 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5422 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5423 return 1; 5424 } 5425 if( pE2->op==TK_OR 5426 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5427 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5428 ){ 5429 return 1; 5430 } 5431 if( pE2->op==TK_NOTNULL 5432 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5433 ){ 5434 return 1; 5435 } 5436 return 0; 5437 } 5438 5439 /* 5440 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5441 ** If the expression node requires that the table at pWalker->iCur 5442 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5443 ** 5444 ** This routine controls an optimization. False positives (setting 5445 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5446 ** (never setting pWalker->eCode) is a harmless missed optimization. 5447 */ 5448 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5449 testcase( pExpr->op==TK_AGG_COLUMN ); 5450 testcase( pExpr->op==TK_AGG_FUNCTION ); 5451 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5452 switch( pExpr->op ){ 5453 case TK_ISNOT: 5454 case TK_ISNULL: 5455 case TK_NOTNULL: 5456 case TK_IS: 5457 case TK_OR: 5458 case TK_VECTOR: 5459 case TK_CASE: 5460 case TK_IN: 5461 case TK_FUNCTION: 5462 case TK_TRUTH: 5463 testcase( pExpr->op==TK_ISNOT ); 5464 testcase( pExpr->op==TK_ISNULL ); 5465 testcase( pExpr->op==TK_NOTNULL ); 5466 testcase( pExpr->op==TK_IS ); 5467 testcase( pExpr->op==TK_OR ); 5468 testcase( pExpr->op==TK_VECTOR ); 5469 testcase( pExpr->op==TK_CASE ); 5470 testcase( pExpr->op==TK_IN ); 5471 testcase( pExpr->op==TK_FUNCTION ); 5472 testcase( pExpr->op==TK_TRUTH ); 5473 return WRC_Prune; 5474 case TK_COLUMN: 5475 if( pWalker->u.iCur==pExpr->iTable ){ 5476 pWalker->eCode = 1; 5477 return WRC_Abort; 5478 } 5479 return WRC_Prune; 5480 5481 case TK_AND: 5482 if( pWalker->eCode==0 ){ 5483 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5484 if( pWalker->eCode ){ 5485 pWalker->eCode = 0; 5486 sqlite3WalkExpr(pWalker, pExpr->pRight); 5487 } 5488 } 5489 return WRC_Prune; 5490 5491 case TK_BETWEEN: 5492 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5493 assert( pWalker->eCode ); 5494 return WRC_Abort; 5495 } 5496 return WRC_Prune; 5497 5498 /* Virtual tables are allowed to use constraints like x=NULL. So 5499 ** a term of the form x=y does not prove that y is not null if x 5500 ** is the column of a virtual table */ 5501 case TK_EQ: 5502 case TK_NE: 5503 case TK_LT: 5504 case TK_LE: 5505 case TK_GT: 5506 case TK_GE: { 5507 Expr *pLeft = pExpr->pLeft; 5508 Expr *pRight = pExpr->pRight; 5509 testcase( pExpr->op==TK_EQ ); 5510 testcase( pExpr->op==TK_NE ); 5511 testcase( pExpr->op==TK_LT ); 5512 testcase( pExpr->op==TK_LE ); 5513 testcase( pExpr->op==TK_GT ); 5514 testcase( pExpr->op==TK_GE ); 5515 /* The y.pTab=0 assignment in wherecode.c always happens after the 5516 ** impliesNotNullRow() test */ 5517 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5518 && IsVirtual(pLeft->y.pTab)) 5519 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5520 && IsVirtual(pRight->y.pTab)) 5521 ){ 5522 return WRC_Prune; 5523 } 5524 } 5525 default: 5526 return WRC_Continue; 5527 } 5528 } 5529 5530 /* 5531 ** Return true (non-zero) if expression p can only be true if at least 5532 ** one column of table iTab is non-null. In other words, return true 5533 ** if expression p will always be NULL or false if every column of iTab 5534 ** is NULL. 5535 ** 5536 ** False negatives are acceptable. In other words, it is ok to return 5537 ** zero even if expression p will never be true of every column of iTab 5538 ** is NULL. A false negative is merely a missed optimization opportunity. 5539 ** 5540 ** False positives are not allowed, however. A false positive may result 5541 ** in an incorrect answer. 5542 ** 5543 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5544 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5545 ** 5546 ** This routine is used to check if a LEFT JOIN can be converted into 5547 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5548 ** clause requires that some column of the right table of the LEFT JOIN 5549 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5550 ** ordinary join. 5551 */ 5552 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5553 Walker w; 5554 p = sqlite3ExprSkipCollateAndLikely(p); 5555 if( p==0 ) return 0; 5556 if( p->op==TK_NOTNULL ){ 5557 p = p->pLeft; 5558 }else{ 5559 while( p->op==TK_AND ){ 5560 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5561 p = p->pRight; 5562 } 5563 } 5564 w.xExprCallback = impliesNotNullRow; 5565 w.xSelectCallback = 0; 5566 w.xSelectCallback2 = 0; 5567 w.eCode = 0; 5568 w.u.iCur = iTab; 5569 sqlite3WalkExpr(&w, p); 5570 return w.eCode; 5571 } 5572 5573 /* 5574 ** An instance of the following structure is used by the tree walker 5575 ** to determine if an expression can be evaluated by reference to the 5576 ** index only, without having to do a search for the corresponding 5577 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5578 ** is the cursor for the table. 5579 */ 5580 struct IdxCover { 5581 Index *pIdx; /* The index to be tested for coverage */ 5582 int iCur; /* Cursor number for the table corresponding to the index */ 5583 }; 5584 5585 /* 5586 ** Check to see if there are references to columns in table 5587 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5588 ** pWalker->u.pIdxCover->pIdx. 5589 */ 5590 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5591 if( pExpr->op==TK_COLUMN 5592 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5593 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5594 ){ 5595 pWalker->eCode = 1; 5596 return WRC_Abort; 5597 } 5598 return WRC_Continue; 5599 } 5600 5601 /* 5602 ** Determine if an index pIdx on table with cursor iCur contains will 5603 ** the expression pExpr. Return true if the index does cover the 5604 ** expression and false if the pExpr expression references table columns 5605 ** that are not found in the index pIdx. 5606 ** 5607 ** An index covering an expression means that the expression can be 5608 ** evaluated using only the index and without having to lookup the 5609 ** corresponding table entry. 5610 */ 5611 int sqlite3ExprCoveredByIndex( 5612 Expr *pExpr, /* The index to be tested */ 5613 int iCur, /* The cursor number for the corresponding table */ 5614 Index *pIdx /* The index that might be used for coverage */ 5615 ){ 5616 Walker w; 5617 struct IdxCover xcov; 5618 memset(&w, 0, sizeof(w)); 5619 xcov.iCur = iCur; 5620 xcov.pIdx = pIdx; 5621 w.xExprCallback = exprIdxCover; 5622 w.u.pIdxCover = &xcov; 5623 sqlite3WalkExpr(&w, pExpr); 5624 return !w.eCode; 5625 } 5626 5627 5628 /* 5629 ** An instance of the following structure is used by the tree walker 5630 ** to count references to table columns in the arguments of an 5631 ** aggregate function, in order to implement the 5632 ** sqlite3FunctionThisSrc() routine. 5633 */ 5634 struct SrcCount { 5635 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5636 int nThis; /* Number of references to columns in pSrcList */ 5637 int nOther; /* Number of references to columns in other FROM clauses */ 5638 }; 5639 5640 /* 5641 ** Count the number of references to columns. 5642 */ 5643 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5644 /* There was once a NEVER() on the second term on the grounds that 5645 ** sqlite3FunctionUsesThisSrc() was always called before 5646 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5647 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5648 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5649 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5650 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5651 int i; 5652 struct SrcCount *p = pWalker->u.pSrcCount; 5653 SrcList *pSrc = p->pSrc; 5654 int nSrc = pSrc ? pSrc->nSrc : 0; 5655 for(i=0; i<nSrc; i++){ 5656 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5657 } 5658 if( i<nSrc ){ 5659 p->nThis++; 5660 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5661 /* In a well-formed parse tree (no name resolution errors), 5662 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5663 ** outer context. Those are the only ones to count as "other" */ 5664 p->nOther++; 5665 } 5666 } 5667 return WRC_Continue; 5668 } 5669 5670 /* 5671 ** Determine if any of the arguments to the pExpr Function reference 5672 ** pSrcList. Return true if they do. Also return true if the function 5673 ** has no arguments or has only constant arguments. Return false if pExpr 5674 ** references columns but not columns of tables found in pSrcList. 5675 */ 5676 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5677 Walker w; 5678 struct SrcCount cnt; 5679 assert( pExpr->op==TK_AGG_FUNCTION ); 5680 memset(&w, 0, sizeof(w)); 5681 w.xExprCallback = exprSrcCount; 5682 w.xSelectCallback = sqlite3SelectWalkNoop; 5683 w.u.pSrcCount = &cnt; 5684 cnt.pSrc = pSrcList; 5685 cnt.nThis = 0; 5686 cnt.nOther = 0; 5687 sqlite3WalkExprList(&w, pExpr->x.pList); 5688 #ifndef SQLITE_OMIT_WINDOWFUNC 5689 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5690 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5691 } 5692 #endif 5693 return cnt.nThis>0 || cnt.nOther==0; 5694 } 5695 5696 /* 5697 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5698 ** the new element. Return a negative number if malloc fails. 5699 */ 5700 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5701 int i; 5702 pInfo->aCol = sqlite3ArrayAllocate( 5703 db, 5704 pInfo->aCol, 5705 sizeof(pInfo->aCol[0]), 5706 &pInfo->nColumn, 5707 &i 5708 ); 5709 return i; 5710 } 5711 5712 /* 5713 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5714 ** the new element. Return a negative number if malloc fails. 5715 */ 5716 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5717 int i; 5718 pInfo->aFunc = sqlite3ArrayAllocate( 5719 db, 5720 pInfo->aFunc, 5721 sizeof(pInfo->aFunc[0]), 5722 &pInfo->nFunc, 5723 &i 5724 ); 5725 return i; 5726 } 5727 5728 /* 5729 ** This is the xExprCallback for a tree walker. It is used to 5730 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5731 ** for additional information. 5732 */ 5733 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5734 int i; 5735 NameContext *pNC = pWalker->u.pNC; 5736 Parse *pParse = pNC->pParse; 5737 SrcList *pSrcList = pNC->pSrcList; 5738 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5739 5740 assert( pNC->ncFlags & NC_UAggInfo ); 5741 switch( pExpr->op ){ 5742 case TK_AGG_COLUMN: 5743 case TK_COLUMN: { 5744 testcase( pExpr->op==TK_AGG_COLUMN ); 5745 testcase( pExpr->op==TK_COLUMN ); 5746 /* Check to see if the column is in one of the tables in the FROM 5747 ** clause of the aggregate query */ 5748 if( ALWAYS(pSrcList!=0) ){ 5749 struct SrcList_item *pItem = pSrcList->a; 5750 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5751 struct AggInfo_col *pCol; 5752 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5753 if( pExpr->iTable==pItem->iCursor ){ 5754 /* If we reach this point, it means that pExpr refers to a table 5755 ** that is in the FROM clause of the aggregate query. 5756 ** 5757 ** Make an entry for the column in pAggInfo->aCol[] if there 5758 ** is not an entry there already. 5759 */ 5760 int k; 5761 pCol = pAggInfo->aCol; 5762 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5763 if( pCol->iTable==pExpr->iTable && 5764 pCol->iColumn==pExpr->iColumn ){ 5765 break; 5766 } 5767 } 5768 if( (k>=pAggInfo->nColumn) 5769 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5770 ){ 5771 pCol = &pAggInfo->aCol[k]; 5772 pCol->pTab = pExpr->y.pTab; 5773 pCol->iTable = pExpr->iTable; 5774 pCol->iColumn = pExpr->iColumn; 5775 pCol->iMem = ++pParse->nMem; 5776 pCol->iSorterColumn = -1; 5777 pCol->pExpr = pExpr; 5778 if( pAggInfo->pGroupBy ){ 5779 int j, n; 5780 ExprList *pGB = pAggInfo->pGroupBy; 5781 struct ExprList_item *pTerm = pGB->a; 5782 n = pGB->nExpr; 5783 for(j=0; j<n; j++, pTerm++){ 5784 Expr *pE = pTerm->pExpr; 5785 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5786 pE->iColumn==pExpr->iColumn ){ 5787 pCol->iSorterColumn = j; 5788 break; 5789 } 5790 } 5791 } 5792 if( pCol->iSorterColumn<0 ){ 5793 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5794 } 5795 } 5796 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5797 ** because it was there before or because we just created it). 5798 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5799 ** pAggInfo->aCol[] entry. 5800 */ 5801 ExprSetVVAProperty(pExpr, EP_NoReduce); 5802 pExpr->pAggInfo = pAggInfo; 5803 pExpr->op = TK_AGG_COLUMN; 5804 pExpr->iAgg = (i16)k; 5805 break; 5806 } /* endif pExpr->iTable==pItem->iCursor */ 5807 } /* end loop over pSrcList */ 5808 } 5809 return WRC_Prune; 5810 } 5811 case TK_AGG_FUNCTION: { 5812 if( (pNC->ncFlags & NC_InAggFunc)==0 5813 && pWalker->walkerDepth==pExpr->op2 5814 ){ 5815 /* Check to see if pExpr is a duplicate of another aggregate 5816 ** function that is already in the pAggInfo structure 5817 */ 5818 struct AggInfo_func *pItem = pAggInfo->aFunc; 5819 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5820 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5821 break; 5822 } 5823 } 5824 if( i>=pAggInfo->nFunc ){ 5825 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5826 */ 5827 u8 enc = ENC(pParse->db); 5828 i = addAggInfoFunc(pParse->db, pAggInfo); 5829 if( i>=0 ){ 5830 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5831 pItem = &pAggInfo->aFunc[i]; 5832 pItem->pExpr = pExpr; 5833 pItem->iMem = ++pParse->nMem; 5834 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5835 pItem->pFunc = sqlite3FindFunction(pParse->db, 5836 pExpr->u.zToken, 5837 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5838 if( pExpr->flags & EP_Distinct ){ 5839 pItem->iDistinct = pParse->nTab++; 5840 }else{ 5841 pItem->iDistinct = -1; 5842 } 5843 } 5844 } 5845 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5846 */ 5847 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5848 ExprSetVVAProperty(pExpr, EP_NoReduce); 5849 pExpr->iAgg = (i16)i; 5850 pExpr->pAggInfo = pAggInfo; 5851 return WRC_Prune; 5852 }else{ 5853 return WRC_Continue; 5854 } 5855 } 5856 } 5857 return WRC_Continue; 5858 } 5859 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5860 UNUSED_PARAMETER(pSelect); 5861 pWalker->walkerDepth++; 5862 return WRC_Continue; 5863 } 5864 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5865 UNUSED_PARAMETER(pSelect); 5866 pWalker->walkerDepth--; 5867 } 5868 5869 /* 5870 ** Analyze the pExpr expression looking for aggregate functions and 5871 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5872 ** points to. Additional entries are made on the AggInfo object as 5873 ** necessary. 5874 ** 5875 ** This routine should only be called after the expression has been 5876 ** analyzed by sqlite3ResolveExprNames(). 5877 */ 5878 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5879 Walker w; 5880 w.xExprCallback = analyzeAggregate; 5881 w.xSelectCallback = analyzeAggregatesInSelect; 5882 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5883 w.walkerDepth = 0; 5884 w.u.pNC = pNC; 5885 w.pParse = 0; 5886 assert( pNC->pSrcList!=0 ); 5887 sqlite3WalkExpr(&w, pExpr); 5888 } 5889 5890 /* 5891 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5892 ** expression list. Return the number of errors. 5893 ** 5894 ** If an error is found, the analysis is cut short. 5895 */ 5896 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5897 struct ExprList_item *pItem; 5898 int i; 5899 if( pList ){ 5900 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5901 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5902 } 5903 } 5904 } 5905 5906 /* 5907 ** Allocate a single new register for use to hold some intermediate result. 5908 */ 5909 int sqlite3GetTempReg(Parse *pParse){ 5910 if( pParse->nTempReg==0 ){ 5911 return ++pParse->nMem; 5912 } 5913 return pParse->aTempReg[--pParse->nTempReg]; 5914 } 5915 5916 /* 5917 ** Deallocate a register, making available for reuse for some other 5918 ** purpose. 5919 */ 5920 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5921 if( iReg ){ 5922 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 5923 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5924 pParse->aTempReg[pParse->nTempReg++] = iReg; 5925 } 5926 } 5927 } 5928 5929 /* 5930 ** Allocate or deallocate a block of nReg consecutive registers. 5931 */ 5932 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5933 int i, n; 5934 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5935 i = pParse->iRangeReg; 5936 n = pParse->nRangeReg; 5937 if( nReg<=n ){ 5938 pParse->iRangeReg += nReg; 5939 pParse->nRangeReg -= nReg; 5940 }else{ 5941 i = pParse->nMem+1; 5942 pParse->nMem += nReg; 5943 } 5944 return i; 5945 } 5946 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5947 if( nReg==1 ){ 5948 sqlite3ReleaseTempReg(pParse, iReg); 5949 return; 5950 } 5951 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 5952 if( nReg>pParse->nRangeReg ){ 5953 pParse->nRangeReg = nReg; 5954 pParse->iRangeReg = iReg; 5955 } 5956 } 5957 5958 /* 5959 ** Mark all temporary registers as being unavailable for reuse. 5960 ** 5961 ** Always invoke this procedure after coding a subroutine or co-routine 5962 ** that might be invoked from other parts of the code, to ensure that 5963 ** the sub/co-routine does not use registers in common with the code that 5964 ** invokes the sub/co-routine. 5965 */ 5966 void sqlite3ClearTempRegCache(Parse *pParse){ 5967 pParse->nTempReg = 0; 5968 pParse->nRangeReg = 0; 5969 } 5970 5971 /* 5972 ** Validate that no temporary register falls within the range of 5973 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5974 ** statements. 5975 */ 5976 #ifdef SQLITE_DEBUG 5977 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5978 int i; 5979 if( pParse->nRangeReg>0 5980 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5981 && pParse->iRangeReg <= iLast 5982 ){ 5983 return 0; 5984 } 5985 for(i=0; i<pParse->nTempReg; i++){ 5986 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5987 return 0; 5988 } 5989 } 5990 return 1; 5991 } 5992 #endif /* SQLITE_DEBUG */ 5993