xref: /sqlite-3.40.0/src/expr.c (revision 00bd55e1)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip) ){
48     assert( pExpr->op==TK_COLLATE );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
56   }
57   if( op==TK_REGISTER ) op = pExpr->op2;
58 #ifndef SQLITE_OMIT_CAST
59   if( op==TK_CAST ){
60     assert( !ExprHasProperty(pExpr, EP_IntValue) );
61     return sqlite3AffinityType(pExpr->u.zToken, 0);
62   }
63 #endif
64   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
65     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
66   }
67   if( op==TK_SELECT_COLUMN ){
68     assert( pExpr->pLeft->flags&EP_xIsSelect );
69     return sqlite3ExprAffinity(
70         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
71     );
72   }
73   if( op==TK_VECTOR ){
74     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
75   }
76   return pExpr->affExpr;
77 }
78 
79 /*
80 ** Set the collating sequence for expression pExpr to be the collating
81 ** sequence named by pToken.   Return a pointer to a new Expr node that
82 ** implements the COLLATE operator.
83 **
84 ** If a memory allocation error occurs, that fact is recorded in pParse->db
85 ** and the pExpr parameter is returned unchanged.
86 */
87 Expr *sqlite3ExprAddCollateToken(
88   Parse *pParse,           /* Parsing context */
89   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
90   const Token *pCollName,  /* Name of collating sequence */
91   int dequote              /* True to dequote pCollName */
92 ){
93   if( pCollName->n>0 ){
94     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
95     if( pNew ){
96       pNew->pLeft = pExpr;
97       pNew->flags |= EP_Collate|EP_Skip;
98       pExpr = pNew;
99     }
100   }
101   return pExpr;
102 }
103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
104   Token s;
105   assert( zC!=0 );
106   sqlite3TokenInit(&s, (char*)zC);
107   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
108 }
109 
110 /*
111 ** Skip over any TK_COLLATE operators.
112 */
113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
114   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
115     assert( pExpr->op==TK_COLLATE );
116     pExpr = pExpr->pLeft;
117   }
118   return pExpr;
119 }
120 
121 /*
122 ** Skip over any TK_COLLATE operators and/or any unlikely()
123 ** or likelihood() or likely() functions at the root of an
124 ** expression.
125 */
126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
127   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
128     if( ExprHasProperty(pExpr, EP_Unlikely) ){
129       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
130       assert( pExpr->x.pList->nExpr>0 );
131       assert( pExpr->op==TK_FUNCTION );
132       pExpr = pExpr->x.pList->a[0].pExpr;
133     }else{
134       assert( pExpr->op==TK_COLLATE );
135       pExpr = pExpr->pLeft;
136     }
137   }
138   return pExpr;
139 }
140 
141 /*
142 ** Return the collation sequence for the expression pExpr. If
143 ** there is no defined collating sequence, return NULL.
144 **
145 ** See also: sqlite3ExprNNCollSeq()
146 **
147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
148 ** default collation if pExpr has no defined collation.
149 **
150 ** The collating sequence might be determined by a COLLATE operator
151 ** or by the presence of a column with a defined collating sequence.
152 ** COLLATE operators take first precedence.  Left operands take
153 ** precedence over right operands.
154 */
155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
156   sqlite3 *db = pParse->db;
157   CollSeq *pColl = 0;
158   const Expr *p = pExpr;
159   while( p ){
160     int op = p->op;
161     if( op==TK_REGISTER ) op = p->op2;
162     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
163      && p->y.pTab!=0
164     ){
165       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
166       ** a TK_COLUMN but was previously evaluated and cached in a register */
167       int j = p->iColumn;
168       if( j>=0 ){
169         const char *zColl = p->y.pTab->aCol[j].zColl;
170         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
171       }
172       break;
173     }
174     if( op==TK_CAST || op==TK_UPLUS ){
175       p = p->pLeft;
176       continue;
177     }
178     if( op==TK_VECTOR ){
179       p = p->x.pList->a[0].pExpr;
180       continue;
181     }
182     if( op==TK_COLLATE ){
183       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
184       break;
185     }
186     if( p->flags & EP_Collate ){
187       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
188         p = p->pLeft;
189       }else{
190         Expr *pNext  = p->pRight;
191         /* The Expr.x union is never used at the same time as Expr.pRight */
192         assert( p->x.pList==0 || p->pRight==0 );
193         if( p->x.pList!=0
194          && !db->mallocFailed
195          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
196         ){
197           int i;
198           for(i=0; i<p->x.pList->nExpr; i++){
199             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
200               pNext = p->x.pList->a[i].pExpr;
201               break;
202             }
203           }
204         }
205         p = pNext;
206       }
207     }else{
208       break;
209     }
210   }
211   if( sqlite3CheckCollSeq(pParse, pColl) ){
212     pColl = 0;
213   }
214   return pColl;
215 }
216 
217 /*
218 ** Return the collation sequence for the expression pExpr. If
219 ** there is no defined collating sequence, return a pointer to the
220 ** defautl collation sequence.
221 **
222 ** See also: sqlite3ExprCollSeq()
223 **
224 ** The sqlite3ExprCollSeq() routine works the same except that it
225 ** returns NULL if there is no defined collation.
226 */
227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
228   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
229   if( p==0 ) p = pParse->db->pDfltColl;
230   assert( p!=0 );
231   return p;
232 }
233 
234 /*
235 ** Return TRUE if the two expressions have equivalent collating sequences.
236 */
237 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
238   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
239   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
240   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
241 }
242 
243 /*
244 ** pExpr is an operand of a comparison operator.  aff2 is the
245 ** type affinity of the other operand.  This routine returns the
246 ** type affinity that should be used for the comparison operator.
247 */
248 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
249   char aff1 = sqlite3ExprAffinity(pExpr);
250   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
251     /* Both sides of the comparison are columns. If one has numeric
252     ** affinity, use that. Otherwise use no affinity.
253     */
254     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
255       return SQLITE_AFF_NUMERIC;
256     }else{
257       return SQLITE_AFF_BLOB;
258     }
259   }else{
260     /* One side is a column, the other is not. Use the columns affinity. */
261     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
262     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
263   }
264 }
265 
266 /*
267 ** pExpr is a comparison operator.  Return the type affinity that should
268 ** be applied to both operands prior to doing the comparison.
269 */
270 static char comparisonAffinity(const Expr *pExpr){
271   char aff;
272   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
273           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
274           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
275   assert( pExpr->pLeft );
276   aff = sqlite3ExprAffinity(pExpr->pLeft);
277   if( pExpr->pRight ){
278     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
279   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
280     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
281   }else if( aff==0 ){
282     aff = SQLITE_AFF_BLOB;
283   }
284   return aff;
285 }
286 
287 /*
288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
289 ** idx_affinity is the affinity of an indexed column. Return true
290 ** if the index with affinity idx_affinity may be used to implement
291 ** the comparison in pExpr.
292 */
293 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
294   char aff = comparisonAffinity(pExpr);
295   if( aff<SQLITE_AFF_TEXT ){
296     return 1;
297   }
298   if( aff==SQLITE_AFF_TEXT ){
299     return idx_affinity==SQLITE_AFF_TEXT;
300   }
301   return sqlite3IsNumericAffinity(idx_affinity);
302 }
303 
304 /*
305 ** Return the P5 value that should be used for a binary comparison
306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
307 */
308 static u8 binaryCompareP5(
309   const Expr *pExpr1,   /* Left operand */
310   const Expr *pExpr2,   /* Right operand */
311   int jumpIfNull        /* Extra flags added to P5 */
312 ){
313   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
314   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
315   return aff;
316 }
317 
318 /*
319 ** Return a pointer to the collation sequence that should be used by
320 ** a binary comparison operator comparing pLeft and pRight.
321 **
322 ** If the left hand expression has a collating sequence type, then it is
323 ** used. Otherwise the collation sequence for the right hand expression
324 ** is used, or the default (BINARY) if neither expression has a collating
325 ** type.
326 **
327 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
328 ** it is not considered.
329 */
330 CollSeq *sqlite3BinaryCompareCollSeq(
331   Parse *pParse,
332   const Expr *pLeft,
333   const Expr *pRight
334 ){
335   CollSeq *pColl;
336   assert( pLeft );
337   if( pLeft->flags & EP_Collate ){
338     pColl = sqlite3ExprCollSeq(pParse, pLeft);
339   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
340     pColl = sqlite3ExprCollSeq(pParse, pRight);
341   }else{
342     pColl = sqlite3ExprCollSeq(pParse, pLeft);
343     if( !pColl ){
344       pColl = sqlite3ExprCollSeq(pParse, pRight);
345     }
346   }
347   return pColl;
348 }
349 
350 /* Expresssion p is a comparison operator.  Return a collation sequence
351 ** appropriate for the comparison operator.
352 **
353 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
354 ** However, if the OP_Commuted flag is set, then the order of the operands
355 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
356 ** correct collating sequence is found.
357 */
358 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
359   if( ExprHasProperty(p, EP_Commuted) ){
360     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
361   }else{
362     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
363   }
364 }
365 
366 /*
367 ** Generate code for a comparison operator.
368 */
369 static int codeCompare(
370   Parse *pParse,    /* The parsing (and code generating) context */
371   Expr *pLeft,      /* The left operand */
372   Expr *pRight,     /* The right operand */
373   int opcode,       /* The comparison opcode */
374   int in1, int in2, /* Register holding operands */
375   int dest,         /* Jump here if true.  */
376   int jumpIfNull,   /* If true, jump if either operand is NULL */
377   int isCommuted    /* The comparison has been commuted */
378 ){
379   int p5;
380   int addr;
381   CollSeq *p4;
382 
383   if( pParse->nErr ) return 0;
384   if( isCommuted ){
385     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
386   }else{
387     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
388   }
389   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
390   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
391                            (void*)p4, P4_COLLSEQ);
392   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
393   return addr;
394 }
395 
396 /*
397 ** Return true if expression pExpr is a vector, or false otherwise.
398 **
399 ** A vector is defined as any expression that results in two or more
400 ** columns of result.  Every TK_VECTOR node is an vector because the
401 ** parser will not generate a TK_VECTOR with fewer than two entries.
402 ** But a TK_SELECT might be either a vector or a scalar. It is only
403 ** considered a vector if it has two or more result columns.
404 */
405 int sqlite3ExprIsVector(Expr *pExpr){
406   return sqlite3ExprVectorSize(pExpr)>1;
407 }
408 
409 /*
410 ** If the expression passed as the only argument is of type TK_VECTOR
411 ** return the number of expressions in the vector. Or, if the expression
412 ** is a sub-select, return the number of columns in the sub-select. For
413 ** any other type of expression, return 1.
414 */
415 int sqlite3ExprVectorSize(Expr *pExpr){
416   u8 op = pExpr->op;
417   if( op==TK_REGISTER ) op = pExpr->op2;
418   if( op==TK_VECTOR ){
419     return pExpr->x.pList->nExpr;
420   }else if( op==TK_SELECT ){
421     return pExpr->x.pSelect->pEList->nExpr;
422   }else{
423     return 1;
424   }
425 }
426 
427 /*
428 ** Return a pointer to a subexpression of pVector that is the i-th
429 ** column of the vector (numbered starting with 0).  The caller must
430 ** ensure that i is within range.
431 **
432 ** If pVector is really a scalar (and "scalar" here includes subqueries
433 ** that return a single column!) then return pVector unmodified.
434 **
435 ** pVector retains ownership of the returned subexpression.
436 **
437 ** If the vector is a (SELECT ...) then the expression returned is
438 ** just the expression for the i-th term of the result set, and may
439 ** not be ready for evaluation because the table cursor has not yet
440 ** been positioned.
441 */
442 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
443   assert( i<sqlite3ExprVectorSize(pVector) );
444   if( sqlite3ExprIsVector(pVector) ){
445     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
446     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
447       return pVector->x.pSelect->pEList->a[i].pExpr;
448     }else{
449       return pVector->x.pList->a[i].pExpr;
450     }
451   }
452   return pVector;
453 }
454 
455 /*
456 ** Compute and return a new Expr object which when passed to
457 ** sqlite3ExprCode() will generate all necessary code to compute
458 ** the iField-th column of the vector expression pVector.
459 **
460 ** It is ok for pVector to be a scalar (as long as iField==0).
461 ** In that case, this routine works like sqlite3ExprDup().
462 **
463 ** The caller owns the returned Expr object and is responsible for
464 ** ensuring that the returned value eventually gets freed.
465 **
466 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
467 ** then the returned object will reference pVector and so pVector must remain
468 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
469 ** or a scalar expression, then it can be deleted as soon as this routine
470 ** returns.
471 **
472 ** A trick to cause a TK_SELECT pVector to be deleted together with
473 ** the returned Expr object is to attach the pVector to the pRight field
474 ** of the returned TK_SELECT_COLUMN Expr object.
475 */
476 Expr *sqlite3ExprForVectorField(
477   Parse *pParse,       /* Parsing context */
478   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
479   int iField           /* Which column of the vector to return */
480 ){
481   Expr *pRet;
482   if( pVector->op==TK_SELECT ){
483     assert( pVector->flags & EP_xIsSelect );
484     /* The TK_SELECT_COLUMN Expr node:
485     **
486     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
487     ** pRight:          not used.  But recursively deleted.
488     ** iColumn:         Index of a column in pVector
489     ** iTable:          0 or the number of columns on the LHS of an assignment
490     ** pLeft->iTable:   First in an array of register holding result, or 0
491     **                  if the result is not yet computed.
492     **
493     ** sqlite3ExprDelete() specifically skips the recursive delete of
494     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
495     ** can be attached to pRight to cause this node to take ownership of
496     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
497     ** with the same pLeft pointer to the pVector, but only one of them
498     ** will own the pVector.
499     */
500     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
501     if( pRet ){
502       pRet->iColumn = iField;
503       pRet->pLeft = pVector;
504     }
505     assert( pRet==0 || pRet->iTable==0 );
506   }else{
507     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
508     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
509     sqlite3RenameTokenRemap(pParse, pRet, pVector);
510   }
511   return pRet;
512 }
513 
514 /*
515 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
516 ** it. Return the register in which the result is stored (or, if the
517 ** sub-select returns more than one column, the first in an array
518 ** of registers in which the result is stored).
519 **
520 ** If pExpr is not a TK_SELECT expression, return 0.
521 */
522 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
523   int reg = 0;
524 #ifndef SQLITE_OMIT_SUBQUERY
525   if( pExpr->op==TK_SELECT ){
526     reg = sqlite3CodeSubselect(pParse, pExpr);
527   }
528 #endif
529   return reg;
530 }
531 
532 /*
533 ** Argument pVector points to a vector expression - either a TK_VECTOR
534 ** or TK_SELECT that returns more than one column. This function returns
535 ** the register number of a register that contains the value of
536 ** element iField of the vector.
537 **
538 ** If pVector is a TK_SELECT expression, then code for it must have
539 ** already been generated using the exprCodeSubselect() routine. In this
540 ** case parameter regSelect should be the first in an array of registers
541 ** containing the results of the sub-select.
542 **
543 ** If pVector is of type TK_VECTOR, then code for the requested field
544 ** is generated. In this case (*pRegFree) may be set to the number of
545 ** a temporary register to be freed by the caller before returning.
546 **
547 ** Before returning, output parameter (*ppExpr) is set to point to the
548 ** Expr object corresponding to element iElem of the vector.
549 */
550 static int exprVectorRegister(
551   Parse *pParse,                  /* Parse context */
552   Expr *pVector,                  /* Vector to extract element from */
553   int iField,                     /* Field to extract from pVector */
554   int regSelect,                  /* First in array of registers */
555   Expr **ppExpr,                  /* OUT: Expression element */
556   int *pRegFree                   /* OUT: Temp register to free */
557 ){
558   u8 op = pVector->op;
559   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
560   if( op==TK_REGISTER ){
561     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
562     return pVector->iTable+iField;
563   }
564   if( op==TK_SELECT ){
565     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
566      return regSelect+iField;
567   }
568   *ppExpr = pVector->x.pList->a[iField].pExpr;
569   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
570 }
571 
572 /*
573 ** Expression pExpr is a comparison between two vector values. Compute
574 ** the result of the comparison (1, 0, or NULL) and write that
575 ** result into register dest.
576 **
577 ** The caller must satisfy the following preconditions:
578 **
579 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
580 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
581 **    otherwise:                op==pExpr->op and p5==0
582 */
583 static void codeVectorCompare(
584   Parse *pParse,        /* Code generator context */
585   Expr *pExpr,          /* The comparison operation */
586   int dest,             /* Write results into this register */
587   u8 op,                /* Comparison operator */
588   u8 p5                 /* SQLITE_NULLEQ or zero */
589 ){
590   Vdbe *v = pParse->pVdbe;
591   Expr *pLeft = pExpr->pLeft;
592   Expr *pRight = pExpr->pRight;
593   int nLeft = sqlite3ExprVectorSize(pLeft);
594   int i;
595   int regLeft = 0;
596   int regRight = 0;
597   u8 opx = op;
598   int addrDone = sqlite3VdbeMakeLabel(pParse);
599   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
600 
601   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
602   if( pParse->nErr ) return;
603   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
604     sqlite3ErrorMsg(pParse, "row value misused");
605     return;
606   }
607   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
608        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
609        || pExpr->op==TK_LT || pExpr->op==TK_GT
610        || pExpr->op==TK_LE || pExpr->op==TK_GE
611   );
612   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
613             || (pExpr->op==TK_ISNOT && op==TK_NE) );
614   assert( p5==0 || pExpr->op!=op );
615   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
616 
617   p5 |= SQLITE_STOREP2;
618   if( opx==TK_LE ) opx = TK_LT;
619   if( opx==TK_GE ) opx = TK_GT;
620 
621   regLeft = exprCodeSubselect(pParse, pLeft);
622   regRight = exprCodeSubselect(pParse, pRight);
623 
624   for(i=0; 1 /*Loop exits by "break"*/; i++){
625     int regFree1 = 0, regFree2 = 0;
626     Expr *pL, *pR;
627     int r1, r2;
628     assert( i>=0 && i<nLeft );
629     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
630     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
631     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
632     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
633     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
634     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
635     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
636     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
637     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
638     sqlite3ReleaseTempReg(pParse, regFree1);
639     sqlite3ReleaseTempReg(pParse, regFree2);
640     if( i==nLeft-1 ){
641       break;
642     }
643     if( opx==TK_EQ ){
644       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
645       p5 |= SQLITE_KEEPNULL;
646     }else if( opx==TK_NE ){
647       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
648       p5 |= SQLITE_KEEPNULL;
649     }else{
650       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
651       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
652       VdbeCoverageIf(v, op==TK_LT);
653       VdbeCoverageIf(v, op==TK_GT);
654       VdbeCoverageIf(v, op==TK_LE);
655       VdbeCoverageIf(v, op==TK_GE);
656       if( i==nLeft-2 ) opx = op;
657     }
658   }
659   sqlite3VdbeResolveLabel(v, addrDone);
660 }
661 
662 #if SQLITE_MAX_EXPR_DEPTH>0
663 /*
664 ** Check that argument nHeight is less than or equal to the maximum
665 ** expression depth allowed. If it is not, leave an error message in
666 ** pParse.
667 */
668 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
669   int rc = SQLITE_OK;
670   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
671   if( nHeight>mxHeight ){
672     sqlite3ErrorMsg(pParse,
673        "Expression tree is too large (maximum depth %d)", mxHeight
674     );
675     rc = SQLITE_ERROR;
676   }
677   return rc;
678 }
679 
680 /* The following three functions, heightOfExpr(), heightOfExprList()
681 ** and heightOfSelect(), are used to determine the maximum height
682 ** of any expression tree referenced by the structure passed as the
683 ** first argument.
684 **
685 ** If this maximum height is greater than the current value pointed
686 ** to by pnHeight, the second parameter, then set *pnHeight to that
687 ** value.
688 */
689 static void heightOfExpr(Expr *p, int *pnHeight){
690   if( p ){
691     if( p->nHeight>*pnHeight ){
692       *pnHeight = p->nHeight;
693     }
694   }
695 }
696 static void heightOfExprList(ExprList *p, int *pnHeight){
697   if( p ){
698     int i;
699     for(i=0; i<p->nExpr; i++){
700       heightOfExpr(p->a[i].pExpr, pnHeight);
701     }
702   }
703 }
704 static void heightOfSelect(Select *pSelect, int *pnHeight){
705   Select *p;
706   for(p=pSelect; p; p=p->pPrior){
707     heightOfExpr(p->pWhere, pnHeight);
708     heightOfExpr(p->pHaving, pnHeight);
709     heightOfExpr(p->pLimit, pnHeight);
710     heightOfExprList(p->pEList, pnHeight);
711     heightOfExprList(p->pGroupBy, pnHeight);
712     heightOfExprList(p->pOrderBy, pnHeight);
713   }
714 }
715 
716 /*
717 ** Set the Expr.nHeight variable in the structure passed as an
718 ** argument. An expression with no children, Expr.pList or
719 ** Expr.pSelect member has a height of 1. Any other expression
720 ** has a height equal to the maximum height of any other
721 ** referenced Expr plus one.
722 **
723 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
724 ** if appropriate.
725 */
726 static void exprSetHeight(Expr *p){
727   int nHeight = 0;
728   heightOfExpr(p->pLeft, &nHeight);
729   heightOfExpr(p->pRight, &nHeight);
730   if( ExprHasProperty(p, EP_xIsSelect) ){
731     heightOfSelect(p->x.pSelect, &nHeight);
732   }else if( p->x.pList ){
733     heightOfExprList(p->x.pList, &nHeight);
734     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
735   }
736   p->nHeight = nHeight + 1;
737 }
738 
739 /*
740 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
741 ** the height is greater than the maximum allowed expression depth,
742 ** leave an error in pParse.
743 **
744 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
745 ** Expr.flags.
746 */
747 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
748   if( pParse->nErr ) return;
749   exprSetHeight(p);
750   sqlite3ExprCheckHeight(pParse, p->nHeight);
751 }
752 
753 /*
754 ** Return the maximum height of any expression tree referenced
755 ** by the select statement passed as an argument.
756 */
757 int sqlite3SelectExprHeight(Select *p){
758   int nHeight = 0;
759   heightOfSelect(p, &nHeight);
760   return nHeight;
761 }
762 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
763 /*
764 ** Propagate all EP_Propagate flags from the Expr.x.pList into
765 ** Expr.flags.
766 */
767 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
768   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
769     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
770   }
771 }
772 #define exprSetHeight(y)
773 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
774 
775 /*
776 ** This routine is the core allocator for Expr nodes.
777 **
778 ** Construct a new expression node and return a pointer to it.  Memory
779 ** for this node and for the pToken argument is a single allocation
780 ** obtained from sqlite3DbMalloc().  The calling function
781 ** is responsible for making sure the node eventually gets freed.
782 **
783 ** If dequote is true, then the token (if it exists) is dequoted.
784 ** If dequote is false, no dequoting is performed.  The deQuote
785 ** parameter is ignored if pToken is NULL or if the token does not
786 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
787 ** then the EP_DblQuoted flag is set on the expression node.
788 **
789 ** Special case:  If op==TK_INTEGER and pToken points to a string that
790 ** can be translated into a 32-bit integer, then the token is not
791 ** stored in u.zToken.  Instead, the integer values is written
792 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
793 ** is allocated to hold the integer text and the dequote flag is ignored.
794 */
795 Expr *sqlite3ExprAlloc(
796   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
797   int op,                 /* Expression opcode */
798   const Token *pToken,    /* Token argument.  Might be NULL */
799   int dequote             /* True to dequote */
800 ){
801   Expr *pNew;
802   int nExtra = 0;
803   int iValue = 0;
804 
805   assert( db!=0 );
806   if( pToken ){
807     if( op!=TK_INTEGER || pToken->z==0
808           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
809       nExtra = pToken->n+1;
810       assert( iValue>=0 );
811     }
812   }
813   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
814   if( pNew ){
815     memset(pNew, 0, sizeof(Expr));
816     pNew->op = (u8)op;
817     pNew->iAgg = -1;
818     if( pToken ){
819       if( nExtra==0 ){
820         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
821         pNew->u.iValue = iValue;
822       }else{
823         pNew->u.zToken = (char*)&pNew[1];
824         assert( pToken->z!=0 || pToken->n==0 );
825         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
826         pNew->u.zToken[pToken->n] = 0;
827         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
828           sqlite3DequoteExpr(pNew);
829         }
830       }
831     }
832 #if SQLITE_MAX_EXPR_DEPTH>0
833     pNew->nHeight = 1;
834 #endif
835   }
836   return pNew;
837 }
838 
839 /*
840 ** Allocate a new expression node from a zero-terminated token that has
841 ** already been dequoted.
842 */
843 Expr *sqlite3Expr(
844   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
845   int op,                 /* Expression opcode */
846   const char *zToken      /* Token argument.  Might be NULL */
847 ){
848   Token x;
849   x.z = zToken;
850   x.n = sqlite3Strlen30(zToken);
851   return sqlite3ExprAlloc(db, op, &x, 0);
852 }
853 
854 /*
855 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
856 **
857 ** If pRoot==NULL that means that a memory allocation error has occurred.
858 ** In that case, delete the subtrees pLeft and pRight.
859 */
860 void sqlite3ExprAttachSubtrees(
861   sqlite3 *db,
862   Expr *pRoot,
863   Expr *pLeft,
864   Expr *pRight
865 ){
866   if( pRoot==0 ){
867     assert( db->mallocFailed );
868     sqlite3ExprDelete(db, pLeft);
869     sqlite3ExprDelete(db, pRight);
870   }else{
871     if( pRight ){
872       pRoot->pRight = pRight;
873       pRoot->flags |= EP_Propagate & pRight->flags;
874     }
875     if( pLeft ){
876       pRoot->pLeft = pLeft;
877       pRoot->flags |= EP_Propagate & pLeft->flags;
878     }
879     exprSetHeight(pRoot);
880   }
881 }
882 
883 /*
884 ** Allocate an Expr node which joins as many as two subtrees.
885 **
886 ** One or both of the subtrees can be NULL.  Return a pointer to the new
887 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
888 ** free the subtrees and return NULL.
889 */
890 Expr *sqlite3PExpr(
891   Parse *pParse,          /* Parsing context */
892   int op,                 /* Expression opcode */
893   Expr *pLeft,            /* Left operand */
894   Expr *pRight            /* Right operand */
895 ){
896   Expr *p;
897   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
898   if( p ){
899     memset(p, 0, sizeof(Expr));
900     p->op = op & 0xff;
901     p->iAgg = -1;
902     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
903     sqlite3ExprCheckHeight(pParse, p->nHeight);
904   }else{
905     sqlite3ExprDelete(pParse->db, pLeft);
906     sqlite3ExprDelete(pParse->db, pRight);
907   }
908   return p;
909 }
910 
911 /*
912 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
913 ** do a memory allocation failure) then delete the pSelect object.
914 */
915 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
916   if( pExpr ){
917     pExpr->x.pSelect = pSelect;
918     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
919     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
920   }else{
921     assert( pParse->db->mallocFailed );
922     sqlite3SelectDelete(pParse->db, pSelect);
923   }
924 }
925 
926 
927 /*
928 ** Join two expressions using an AND operator.  If either expression is
929 ** NULL, then just return the other expression.
930 **
931 ** If one side or the other of the AND is known to be false, then instead
932 ** of returning an AND expression, just return a constant expression with
933 ** a value of false.
934 */
935 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
936   sqlite3 *db = pParse->db;
937   if( pLeft==0  ){
938     return pRight;
939   }else if( pRight==0 ){
940     return pLeft;
941   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
942          && !IN_RENAME_OBJECT
943   ){
944     sqlite3ExprDelete(db, pLeft);
945     sqlite3ExprDelete(db, pRight);
946     return sqlite3Expr(db, TK_INTEGER, "0");
947   }else{
948     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
949   }
950 }
951 
952 /*
953 ** Construct a new expression node for a function with multiple
954 ** arguments.
955 */
956 Expr *sqlite3ExprFunction(
957   Parse *pParse,        /* Parsing context */
958   ExprList *pList,      /* Argument list */
959   Token *pToken,        /* Name of the function */
960   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
961 ){
962   Expr *pNew;
963   sqlite3 *db = pParse->db;
964   assert( pToken );
965   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
966   if( pNew==0 ){
967     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
968     return 0;
969   }
970   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
971     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
972   }
973   pNew->x.pList = pList;
974   ExprSetProperty(pNew, EP_HasFunc);
975   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
976   sqlite3ExprSetHeightAndFlags(pParse, pNew);
977   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
978   return pNew;
979 }
980 
981 /*
982 ** Check to see if a function is usable according to current access
983 ** rules:
984 **
985 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
986 **
987 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
988 **                                top-level SQL
989 **
990 ** If the function is not usable, create an error.
991 */
992 void sqlite3ExprFunctionUsable(
993   Parse *pParse,         /* Parsing and code generating context */
994   Expr *pExpr,           /* The function invocation */
995   FuncDef *pDef          /* The function being invoked */
996 ){
997   assert( !IN_RENAME_OBJECT );
998   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
999   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1000     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1001      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1002     ){
1003       /* Functions prohibited in triggers and views if:
1004       **     (1) tagged with SQLITE_DIRECTONLY
1005       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1006       **         is tagged with SQLITE_FUNC_UNSAFE) and
1007       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1008       **         that the schema is possibly tainted).
1009       */
1010       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1011     }
1012   }
1013 }
1014 
1015 /*
1016 ** Assign a variable number to an expression that encodes a wildcard
1017 ** in the original SQL statement.
1018 **
1019 ** Wildcards consisting of a single "?" are assigned the next sequential
1020 ** variable number.
1021 **
1022 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1023 ** sure "nnn" is not too big to avoid a denial of service attack when
1024 ** the SQL statement comes from an external source.
1025 **
1026 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1027 ** as the previous instance of the same wildcard.  Or if this is the first
1028 ** instance of the wildcard, the next sequential variable number is
1029 ** assigned.
1030 */
1031 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1032   sqlite3 *db = pParse->db;
1033   const char *z;
1034   ynVar x;
1035 
1036   if( pExpr==0 ) return;
1037   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1038   z = pExpr->u.zToken;
1039   assert( z!=0 );
1040   assert( z[0]!=0 );
1041   assert( n==(u32)sqlite3Strlen30(z) );
1042   if( z[1]==0 ){
1043     /* Wildcard of the form "?".  Assign the next variable number */
1044     assert( z[0]=='?' );
1045     x = (ynVar)(++pParse->nVar);
1046   }else{
1047     int doAdd = 0;
1048     if( z[0]=='?' ){
1049       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1050       ** use it as the variable number */
1051       i64 i;
1052       int bOk;
1053       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1054         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1055         bOk = 1;
1056       }else{
1057         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1058       }
1059       testcase( i==0 );
1060       testcase( i==1 );
1061       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1062       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1063       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1064         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1065             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1066         return;
1067       }
1068       x = (ynVar)i;
1069       if( x>pParse->nVar ){
1070         pParse->nVar = (int)x;
1071         doAdd = 1;
1072       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1073         doAdd = 1;
1074       }
1075     }else{
1076       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1077       ** number as the prior appearance of the same name, or if the name
1078       ** has never appeared before, reuse the same variable number
1079       */
1080       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1081       if( x==0 ){
1082         x = (ynVar)(++pParse->nVar);
1083         doAdd = 1;
1084       }
1085     }
1086     if( doAdd ){
1087       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1088     }
1089   }
1090   pExpr->iColumn = x;
1091   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1092     sqlite3ErrorMsg(pParse, "too many SQL variables");
1093   }
1094 }
1095 
1096 /*
1097 ** Recursively delete an expression tree.
1098 */
1099 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1100   assert( p!=0 );
1101   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1102   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1103 
1104   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1105   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1106           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1107 #ifdef SQLITE_DEBUG
1108   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1109     assert( p->pLeft==0 );
1110     assert( p->pRight==0 );
1111     assert( p->x.pSelect==0 );
1112   }
1113 #endif
1114   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1115     /* The Expr.x union is never used at the same time as Expr.pRight */
1116     assert( p->x.pList==0 || p->pRight==0 );
1117     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1118     if( p->pRight ){
1119       assert( !ExprHasProperty(p, EP_WinFunc) );
1120       sqlite3ExprDeleteNN(db, p->pRight);
1121     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1122       assert( !ExprHasProperty(p, EP_WinFunc) );
1123       sqlite3SelectDelete(db, p->x.pSelect);
1124     }else{
1125       sqlite3ExprListDelete(db, p->x.pList);
1126 #ifndef SQLITE_OMIT_WINDOWFUNC
1127       if( ExprHasProperty(p, EP_WinFunc) ){
1128         sqlite3WindowDelete(db, p->y.pWin);
1129       }
1130 #endif
1131     }
1132   }
1133   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1134   if( !ExprHasProperty(p, EP_Static) ){
1135     sqlite3DbFreeNN(db, p);
1136   }
1137 }
1138 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1139   if( p ) sqlite3ExprDeleteNN(db, p);
1140 }
1141 
1142 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1143 ** expression.
1144 */
1145 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1146   if( p ){
1147     if( IN_RENAME_OBJECT ){
1148       sqlite3RenameExprUnmap(pParse, p);
1149     }
1150     sqlite3ExprDeleteNN(pParse->db, p);
1151   }
1152 }
1153 
1154 /*
1155 ** Return the number of bytes allocated for the expression structure
1156 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1157 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1158 */
1159 static int exprStructSize(Expr *p){
1160   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1161   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1162   return EXPR_FULLSIZE;
1163 }
1164 
1165 /*
1166 ** The dupedExpr*Size() routines each return the number of bytes required
1167 ** to store a copy of an expression or expression tree.  They differ in
1168 ** how much of the tree is measured.
1169 **
1170 **     dupedExprStructSize()     Size of only the Expr structure
1171 **     dupedExprNodeSize()       Size of Expr + space for token
1172 **     dupedExprSize()           Expr + token + subtree components
1173 **
1174 ***************************************************************************
1175 **
1176 ** The dupedExprStructSize() function returns two values OR-ed together:
1177 ** (1) the space required for a copy of the Expr structure only and
1178 ** (2) the EP_xxx flags that indicate what the structure size should be.
1179 ** The return values is always one of:
1180 **
1181 **      EXPR_FULLSIZE
1182 **      EXPR_REDUCEDSIZE   | EP_Reduced
1183 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1184 **
1185 ** The size of the structure can be found by masking the return value
1186 ** of this routine with 0xfff.  The flags can be found by masking the
1187 ** return value with EP_Reduced|EP_TokenOnly.
1188 **
1189 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1190 ** (unreduced) Expr objects as they or originally constructed by the parser.
1191 ** During expression analysis, extra information is computed and moved into
1192 ** later parts of the Expr object and that extra information might get chopped
1193 ** off if the expression is reduced.  Note also that it does not work to
1194 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1195 ** to reduce a pristine expression tree from the parser.  The implementation
1196 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1197 ** to enforce this constraint.
1198 */
1199 static int dupedExprStructSize(Expr *p, int flags){
1200   int nSize;
1201   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1202   assert( EXPR_FULLSIZE<=0xfff );
1203   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1204   if( 0==flags || p->op==TK_SELECT_COLUMN
1205 #ifndef SQLITE_OMIT_WINDOWFUNC
1206    || ExprHasProperty(p, EP_WinFunc)
1207 #endif
1208   ){
1209     nSize = EXPR_FULLSIZE;
1210   }else{
1211     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1212     assert( !ExprHasProperty(p, EP_FromJoin) );
1213     assert( !ExprHasProperty(p, EP_MemToken) );
1214     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1215     if( p->pLeft || p->x.pList ){
1216       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1217     }else{
1218       assert( p->pRight==0 );
1219       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1220     }
1221   }
1222   return nSize;
1223 }
1224 
1225 /*
1226 ** This function returns the space in bytes required to store the copy
1227 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1228 ** string is defined.)
1229 */
1230 static int dupedExprNodeSize(Expr *p, int flags){
1231   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1232   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1233     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1234   }
1235   return ROUND8(nByte);
1236 }
1237 
1238 /*
1239 ** Return the number of bytes required to create a duplicate of the
1240 ** expression passed as the first argument. The second argument is a
1241 ** mask containing EXPRDUP_XXX flags.
1242 **
1243 ** The value returned includes space to create a copy of the Expr struct
1244 ** itself and the buffer referred to by Expr.u.zToken, if any.
1245 **
1246 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1247 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1248 ** and Expr.pRight variables (but not for any structures pointed to or
1249 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1250 */
1251 static int dupedExprSize(Expr *p, int flags){
1252   int nByte = 0;
1253   if( p ){
1254     nByte = dupedExprNodeSize(p, flags);
1255     if( flags&EXPRDUP_REDUCE ){
1256       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1257     }
1258   }
1259   return nByte;
1260 }
1261 
1262 /*
1263 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1264 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1265 ** to store the copy of expression p, the copies of p->u.zToken
1266 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1267 ** if any. Before returning, *pzBuffer is set to the first byte past the
1268 ** portion of the buffer copied into by this function.
1269 */
1270 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1271   Expr *pNew;           /* Value to return */
1272   u8 *zAlloc;           /* Memory space from which to build Expr object */
1273   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1274 
1275   assert( db!=0 );
1276   assert( p );
1277   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1278   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1279 
1280   /* Figure out where to write the new Expr structure. */
1281   if( pzBuffer ){
1282     zAlloc = *pzBuffer;
1283     staticFlag = EP_Static;
1284   }else{
1285     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1286     staticFlag = 0;
1287   }
1288   pNew = (Expr *)zAlloc;
1289 
1290   if( pNew ){
1291     /* Set nNewSize to the size allocated for the structure pointed to
1292     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1293     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1294     ** by the copy of the p->u.zToken string (if any).
1295     */
1296     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1297     const int nNewSize = nStructSize & 0xfff;
1298     int nToken;
1299     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1300       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1301     }else{
1302       nToken = 0;
1303     }
1304     if( dupFlags ){
1305       assert( ExprHasProperty(p, EP_Reduced)==0 );
1306       memcpy(zAlloc, p, nNewSize);
1307     }else{
1308       u32 nSize = (u32)exprStructSize(p);
1309       memcpy(zAlloc, p, nSize);
1310       if( nSize<EXPR_FULLSIZE ){
1311         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1312       }
1313     }
1314 
1315     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1316     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1317     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1318     pNew->flags |= staticFlag;
1319     ExprClearVVAProperties(pNew);
1320     if( dupFlags ){
1321       ExprSetVVAProperty(pNew, EP_Immutable);
1322     }
1323 
1324     /* Copy the p->u.zToken string, if any. */
1325     if( nToken ){
1326       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1327       memcpy(zToken, p->u.zToken, nToken);
1328     }
1329 
1330     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1331       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1332       if( ExprHasProperty(p, EP_xIsSelect) ){
1333         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1334       }else{
1335         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1336       }
1337     }
1338 
1339     /* Fill in pNew->pLeft and pNew->pRight. */
1340     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1341       zAlloc += dupedExprNodeSize(p, dupFlags);
1342       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1343         pNew->pLeft = p->pLeft ?
1344                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1345         pNew->pRight = p->pRight ?
1346                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1347       }
1348 #ifndef SQLITE_OMIT_WINDOWFUNC
1349       if( ExprHasProperty(p, EP_WinFunc) ){
1350         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1351         assert( ExprHasProperty(pNew, EP_WinFunc) );
1352       }
1353 #endif /* SQLITE_OMIT_WINDOWFUNC */
1354       if( pzBuffer ){
1355         *pzBuffer = zAlloc;
1356       }
1357     }else{
1358       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1359         if( pNew->op==TK_SELECT_COLUMN ){
1360           pNew->pLeft = p->pLeft;
1361           assert( p->iColumn==0 || p->pRight==0 );
1362           assert( p->pRight==0  || p->pRight==p->pLeft );
1363         }else{
1364           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1365         }
1366         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1367       }
1368     }
1369   }
1370   return pNew;
1371 }
1372 
1373 /*
1374 ** Create and return a deep copy of the object passed as the second
1375 ** argument. If an OOM condition is encountered, NULL is returned
1376 ** and the db->mallocFailed flag set.
1377 */
1378 #ifndef SQLITE_OMIT_CTE
1379 static With *withDup(sqlite3 *db, With *p){
1380   With *pRet = 0;
1381   if( p ){
1382     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1383     pRet = sqlite3DbMallocZero(db, nByte);
1384     if( pRet ){
1385       int i;
1386       pRet->nCte = p->nCte;
1387       for(i=0; i<p->nCte; i++){
1388         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1389         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1390         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1391       }
1392     }
1393   }
1394   return pRet;
1395 }
1396 #else
1397 # define withDup(x,y) 0
1398 #endif
1399 
1400 #ifndef SQLITE_OMIT_WINDOWFUNC
1401 /*
1402 ** The gatherSelectWindows() procedure and its helper routine
1403 ** gatherSelectWindowsCallback() are used to scan all the expressions
1404 ** an a newly duplicated SELECT statement and gather all of the Window
1405 ** objects found there, assembling them onto the linked list at Select->pWin.
1406 */
1407 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1408   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1409     Select *pSelect = pWalker->u.pSelect;
1410     Window *pWin = pExpr->y.pWin;
1411     assert( pWin );
1412     assert( IsWindowFunc(pExpr) );
1413     assert( pWin->ppThis==0 );
1414     sqlite3WindowLink(pSelect, pWin);
1415   }
1416   return WRC_Continue;
1417 }
1418 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1419   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1420 }
1421 static void gatherSelectWindows(Select *p){
1422   Walker w;
1423   w.xExprCallback = gatherSelectWindowsCallback;
1424   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1425   w.xSelectCallback2 = 0;
1426   w.pParse = 0;
1427   w.u.pSelect = p;
1428   sqlite3WalkSelect(&w, p);
1429 }
1430 #endif
1431 
1432 
1433 /*
1434 ** The following group of routines make deep copies of expressions,
1435 ** expression lists, ID lists, and select statements.  The copies can
1436 ** be deleted (by being passed to their respective ...Delete() routines)
1437 ** without effecting the originals.
1438 **
1439 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1440 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1441 ** by subsequent calls to sqlite*ListAppend() routines.
1442 **
1443 ** Any tables that the SrcList might point to are not duplicated.
1444 **
1445 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1446 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1447 ** truncated version of the usual Expr structure that will be stored as
1448 ** part of the in-memory representation of the database schema.
1449 */
1450 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1451   assert( flags==0 || flags==EXPRDUP_REDUCE );
1452   return p ? exprDup(db, p, flags, 0) : 0;
1453 }
1454 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1455   ExprList *pNew;
1456   struct ExprList_item *pItem, *pOldItem;
1457   int i;
1458   Expr *pPriorSelectCol = 0;
1459   assert( db!=0 );
1460   if( p==0 ) return 0;
1461   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1462   if( pNew==0 ) return 0;
1463   pNew->nExpr = p->nExpr;
1464   pItem = pNew->a;
1465   pOldItem = p->a;
1466   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1467     Expr *pOldExpr = pOldItem->pExpr;
1468     Expr *pNewExpr;
1469     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1470     if( pOldExpr
1471      && pOldExpr->op==TK_SELECT_COLUMN
1472      && (pNewExpr = pItem->pExpr)!=0
1473     ){
1474       assert( pNewExpr->iColumn==0 || i>0 );
1475       if( pNewExpr->iColumn==0 ){
1476         assert( pOldExpr->pLeft==pOldExpr->pRight );
1477         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1478       }else{
1479         assert( i>0 );
1480         assert( pItem[-1].pExpr!=0 );
1481         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1482         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1483         pNewExpr->pLeft = pPriorSelectCol;
1484       }
1485     }
1486     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1487     pItem->sortFlags = pOldItem->sortFlags;
1488     pItem->eEName = pOldItem->eEName;
1489     pItem->done = 0;
1490     pItem->bNulls = pOldItem->bNulls;
1491     pItem->bSorterRef = pOldItem->bSorterRef;
1492     pItem->u = pOldItem->u;
1493   }
1494   return pNew;
1495 }
1496 
1497 /*
1498 ** If cursors, triggers, views and subqueries are all omitted from
1499 ** the build, then none of the following routines, except for
1500 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1501 ** called with a NULL argument.
1502 */
1503 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1504  || !defined(SQLITE_OMIT_SUBQUERY)
1505 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1506   SrcList *pNew;
1507   int i;
1508   int nByte;
1509   assert( db!=0 );
1510   if( p==0 ) return 0;
1511   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1512   pNew = sqlite3DbMallocRawNN(db, nByte );
1513   if( pNew==0 ) return 0;
1514   pNew->nSrc = pNew->nAlloc = p->nSrc;
1515   for(i=0; i<p->nSrc; i++){
1516     struct SrcList_item *pNewItem = &pNew->a[i];
1517     struct SrcList_item *pOldItem = &p->a[i];
1518     Table *pTab;
1519     pNewItem->pSchema = pOldItem->pSchema;
1520     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1521     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1522     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1523     pNewItem->fg = pOldItem->fg;
1524     pNewItem->iCursor = pOldItem->iCursor;
1525     pNewItem->addrFillSub = pOldItem->addrFillSub;
1526     pNewItem->regReturn = pOldItem->regReturn;
1527     if( pNewItem->fg.isIndexedBy ){
1528       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1529     }
1530     pNewItem->pIBIndex = pOldItem->pIBIndex;
1531     if( pNewItem->fg.isTabFunc ){
1532       pNewItem->u1.pFuncArg =
1533           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1534     }
1535     pTab = pNewItem->pTab = pOldItem->pTab;
1536     if( pTab ){
1537       pTab->nTabRef++;
1538     }
1539     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1540     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1541     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1542     pNewItem->colUsed = pOldItem->colUsed;
1543   }
1544   return pNew;
1545 }
1546 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1547   IdList *pNew;
1548   int i;
1549   assert( db!=0 );
1550   if( p==0 ) return 0;
1551   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1552   if( pNew==0 ) return 0;
1553   pNew->nId = p->nId;
1554   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1555   if( pNew->a==0 ){
1556     sqlite3DbFreeNN(db, pNew);
1557     return 0;
1558   }
1559   /* Note that because the size of the allocation for p->a[] is not
1560   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1561   ** on the duplicate created by this function. */
1562   for(i=0; i<p->nId; i++){
1563     struct IdList_item *pNewItem = &pNew->a[i];
1564     struct IdList_item *pOldItem = &p->a[i];
1565     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1566     pNewItem->idx = pOldItem->idx;
1567   }
1568   return pNew;
1569 }
1570 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1571   Select *pRet = 0;
1572   Select *pNext = 0;
1573   Select **pp = &pRet;
1574   Select *p;
1575 
1576   assert( db!=0 );
1577   for(p=pDup; p; p=p->pPrior){
1578     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1579     if( pNew==0 ) break;
1580     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1581     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1582     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1583     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1584     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1585     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1586     pNew->op = p->op;
1587     pNew->pNext = pNext;
1588     pNew->pPrior = 0;
1589     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1590     pNew->iLimit = 0;
1591     pNew->iOffset = 0;
1592     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1593     pNew->addrOpenEphm[0] = -1;
1594     pNew->addrOpenEphm[1] = -1;
1595     pNew->nSelectRow = p->nSelectRow;
1596     pNew->pWith = withDup(db, p->pWith);
1597 #ifndef SQLITE_OMIT_WINDOWFUNC
1598     pNew->pWin = 0;
1599     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1600     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1601 #endif
1602     pNew->selId = p->selId;
1603     *pp = pNew;
1604     pp = &pNew->pPrior;
1605     pNext = pNew;
1606   }
1607 
1608   return pRet;
1609 }
1610 #else
1611 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1612   assert( p==0 );
1613   return 0;
1614 }
1615 #endif
1616 
1617 
1618 /*
1619 ** Add a new element to the end of an expression list.  If pList is
1620 ** initially NULL, then create a new expression list.
1621 **
1622 ** The pList argument must be either NULL or a pointer to an ExprList
1623 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1624 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1625 ** Reason:  This routine assumes that the number of slots in pList->a[]
1626 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1627 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1628 **
1629 ** If a memory allocation error occurs, the entire list is freed and
1630 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1631 ** that the new entry was successfully appended.
1632 */
1633 ExprList *sqlite3ExprListAppend(
1634   Parse *pParse,          /* Parsing context */
1635   ExprList *pList,        /* List to which to append. Might be NULL */
1636   Expr *pExpr             /* Expression to be appended. Might be NULL */
1637 ){
1638   struct ExprList_item *pItem;
1639   sqlite3 *db = pParse->db;
1640   assert( db!=0 );
1641   if( pList==0 ){
1642     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1643     if( pList==0 ){
1644       goto no_mem;
1645     }
1646     pList->nExpr = 0;
1647   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1648     ExprList *pNew;
1649     pNew = sqlite3DbRealloc(db, pList,
1650          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1651     if( pNew==0 ){
1652       goto no_mem;
1653     }
1654     pList = pNew;
1655   }
1656   pItem = &pList->a[pList->nExpr++];
1657   assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) );
1658   assert( offsetof(struct ExprList_item,pExpr)==0 );
1659   memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName));
1660   pItem->pExpr = pExpr;
1661   return pList;
1662 
1663 no_mem:
1664   /* Avoid leaking memory if malloc has failed. */
1665   sqlite3ExprDelete(db, pExpr);
1666   sqlite3ExprListDelete(db, pList);
1667   return 0;
1668 }
1669 
1670 /*
1671 ** pColumns and pExpr form a vector assignment which is part of the SET
1672 ** clause of an UPDATE statement.  Like this:
1673 **
1674 **        (a,b,c) = (expr1,expr2,expr3)
1675 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1676 **
1677 ** For each term of the vector assignment, append new entries to the
1678 ** expression list pList.  In the case of a subquery on the RHS, append
1679 ** TK_SELECT_COLUMN expressions.
1680 */
1681 ExprList *sqlite3ExprListAppendVector(
1682   Parse *pParse,         /* Parsing context */
1683   ExprList *pList,       /* List to which to append. Might be NULL */
1684   IdList *pColumns,      /* List of names of LHS of the assignment */
1685   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1686 ){
1687   sqlite3 *db = pParse->db;
1688   int n;
1689   int i;
1690   int iFirst = pList ? pList->nExpr : 0;
1691   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1692   ** exit prior to this routine being invoked */
1693   if( NEVER(pColumns==0) ) goto vector_append_error;
1694   if( pExpr==0 ) goto vector_append_error;
1695 
1696   /* If the RHS is a vector, then we can immediately check to see that
1697   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1698   ** wildcards ("*") in the result set of the SELECT must be expanded before
1699   ** we can do the size check, so defer the size check until code generation.
1700   */
1701   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1702     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1703                     pColumns->nId, n);
1704     goto vector_append_error;
1705   }
1706 
1707   for(i=0; i<pColumns->nId; i++){
1708     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1709     assert( pSubExpr!=0 || db->mallocFailed );
1710     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1711     if( pSubExpr==0 ) continue;
1712     pSubExpr->iTable = pColumns->nId;
1713     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1714     if( pList ){
1715       assert( pList->nExpr==iFirst+i+1 );
1716       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1717       pColumns->a[i].zName = 0;
1718     }
1719   }
1720 
1721   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1722     Expr *pFirst = pList->a[iFirst].pExpr;
1723     assert( pFirst!=0 );
1724     assert( pFirst->op==TK_SELECT_COLUMN );
1725 
1726     /* Store the SELECT statement in pRight so it will be deleted when
1727     ** sqlite3ExprListDelete() is called */
1728     pFirst->pRight = pExpr;
1729     pExpr = 0;
1730 
1731     /* Remember the size of the LHS in iTable so that we can check that
1732     ** the RHS and LHS sizes match during code generation. */
1733     pFirst->iTable = pColumns->nId;
1734   }
1735 
1736 vector_append_error:
1737   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1738   sqlite3IdListDelete(db, pColumns);
1739   return pList;
1740 }
1741 
1742 /*
1743 ** Set the sort order for the last element on the given ExprList.
1744 */
1745 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1746   struct ExprList_item *pItem;
1747   if( p==0 ) return;
1748   assert( p->nExpr>0 );
1749 
1750   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1751   assert( iSortOrder==SQLITE_SO_UNDEFINED
1752        || iSortOrder==SQLITE_SO_ASC
1753        || iSortOrder==SQLITE_SO_DESC
1754   );
1755   assert( eNulls==SQLITE_SO_UNDEFINED
1756        || eNulls==SQLITE_SO_ASC
1757        || eNulls==SQLITE_SO_DESC
1758   );
1759 
1760   pItem = &p->a[p->nExpr-1];
1761   assert( pItem->bNulls==0 );
1762   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1763     iSortOrder = SQLITE_SO_ASC;
1764   }
1765   pItem->sortFlags = (u8)iSortOrder;
1766 
1767   if( eNulls!=SQLITE_SO_UNDEFINED ){
1768     pItem->bNulls = 1;
1769     if( iSortOrder!=eNulls ){
1770       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1771     }
1772   }
1773 }
1774 
1775 /*
1776 ** Set the ExprList.a[].zEName element of the most recently added item
1777 ** on the expression list.
1778 **
1779 ** pList might be NULL following an OOM error.  But pName should never be
1780 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1781 ** is set.
1782 */
1783 void sqlite3ExprListSetName(
1784   Parse *pParse,          /* Parsing context */
1785   ExprList *pList,        /* List to which to add the span. */
1786   Token *pName,           /* Name to be added */
1787   int dequote             /* True to cause the name to be dequoted */
1788 ){
1789   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1790   if( pList ){
1791     struct ExprList_item *pItem;
1792     assert( pList->nExpr>0 );
1793     pItem = &pList->a[pList->nExpr-1];
1794     assert( pItem->zEName==0 );
1795     assert( pItem->eEName==ENAME_NAME );
1796     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1797     if( dequote ) sqlite3Dequote(pItem->zEName);
1798     if( IN_RENAME_OBJECT ){
1799       sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1800     }
1801   }
1802 }
1803 
1804 /*
1805 ** Set the ExprList.a[].zSpan element of the most recently added item
1806 ** on the expression list.
1807 **
1808 ** pList might be NULL following an OOM error.  But pSpan should never be
1809 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1810 ** is set.
1811 */
1812 void sqlite3ExprListSetSpan(
1813   Parse *pParse,          /* Parsing context */
1814   ExprList *pList,        /* List to which to add the span. */
1815   const char *zStart,     /* Start of the span */
1816   const char *zEnd        /* End of the span */
1817 ){
1818   sqlite3 *db = pParse->db;
1819   assert( pList!=0 || db->mallocFailed!=0 );
1820   if( pList ){
1821     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1822     assert( pList->nExpr>0 );
1823     if( pItem->zEName==0 ){
1824       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1825       pItem->eEName = ENAME_SPAN;
1826     }
1827   }
1828 }
1829 
1830 /*
1831 ** If the expression list pEList contains more than iLimit elements,
1832 ** leave an error message in pParse.
1833 */
1834 void sqlite3ExprListCheckLength(
1835   Parse *pParse,
1836   ExprList *pEList,
1837   const char *zObject
1838 ){
1839   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1840   testcase( pEList && pEList->nExpr==mx );
1841   testcase( pEList && pEList->nExpr==mx+1 );
1842   if( pEList && pEList->nExpr>mx ){
1843     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1844   }
1845 }
1846 
1847 /*
1848 ** Delete an entire expression list.
1849 */
1850 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1851   int i = pList->nExpr;
1852   struct ExprList_item *pItem =  pList->a;
1853   assert( pList->nExpr>0 );
1854   do{
1855     sqlite3ExprDelete(db, pItem->pExpr);
1856     sqlite3DbFree(db, pItem->zEName);
1857     pItem++;
1858   }while( --i>0 );
1859   sqlite3DbFreeNN(db, pList);
1860 }
1861 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1862   if( pList ) exprListDeleteNN(db, pList);
1863 }
1864 
1865 /*
1866 ** Return the bitwise-OR of all Expr.flags fields in the given
1867 ** ExprList.
1868 */
1869 u32 sqlite3ExprListFlags(const ExprList *pList){
1870   int i;
1871   u32 m = 0;
1872   assert( pList!=0 );
1873   for(i=0; i<pList->nExpr; i++){
1874      Expr *pExpr = pList->a[i].pExpr;
1875      assert( pExpr!=0 );
1876      m |= pExpr->flags;
1877   }
1878   return m;
1879 }
1880 
1881 /*
1882 ** This is a SELECT-node callback for the expression walker that
1883 ** always "fails".  By "fail" in this case, we mean set
1884 ** pWalker->eCode to zero and abort.
1885 **
1886 ** This callback is used by multiple expression walkers.
1887 */
1888 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1889   UNUSED_PARAMETER(NotUsed);
1890   pWalker->eCode = 0;
1891   return WRC_Abort;
1892 }
1893 
1894 /*
1895 ** Check the input string to see if it is "true" or "false" (in any case).
1896 **
1897 **       If the string is....           Return
1898 **         "true"                         EP_IsTrue
1899 **         "false"                        EP_IsFalse
1900 **         anything else                  0
1901 */
1902 u32 sqlite3IsTrueOrFalse(const char *zIn){
1903   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1904   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1905   return 0;
1906 }
1907 
1908 
1909 /*
1910 ** If the input expression is an ID with the name "true" or "false"
1911 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1912 ** the conversion happened, and zero if the expression is unaltered.
1913 */
1914 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1915   u32 v;
1916   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1917   if( !ExprHasProperty(pExpr, EP_Quoted)
1918    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1919   ){
1920     pExpr->op = TK_TRUEFALSE;
1921     ExprSetProperty(pExpr, v);
1922     return 1;
1923   }
1924   return 0;
1925 }
1926 
1927 /*
1928 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1929 ** and 0 if it is FALSE.
1930 */
1931 int sqlite3ExprTruthValue(const Expr *pExpr){
1932   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1933   assert( pExpr->op==TK_TRUEFALSE );
1934   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1935        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1936   return pExpr->u.zToken[4]==0;
1937 }
1938 
1939 /*
1940 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1941 ** terms that are always true or false.  Return the simplified expression.
1942 ** Or return the original expression if no simplification is possible.
1943 **
1944 ** Examples:
1945 **
1946 **     (x<10) AND true                =>   (x<10)
1947 **     (x<10) AND false               =>   false
1948 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1949 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1950 **     (y=22) OR true                 =>   true
1951 */
1952 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1953   assert( pExpr!=0 );
1954   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1955     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1956     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1957     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1958       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1959     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1960       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1961     }
1962   }
1963   return pExpr;
1964 }
1965 
1966 
1967 /*
1968 ** These routines are Walker callbacks used to check expressions to
1969 ** see if they are "constant" for some definition of constant.  The
1970 ** Walker.eCode value determines the type of "constant" we are looking
1971 ** for.
1972 **
1973 ** These callback routines are used to implement the following:
1974 **
1975 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1976 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1977 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1978 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1979 **
1980 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1981 ** is found to not be a constant.
1982 **
1983 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
1984 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
1985 ** when parsing an existing schema out of the sqlite_master table and 4
1986 ** when processing a new CREATE TABLE statement.  A bound parameter raises
1987 ** an error for new statements, but is silently converted
1988 ** to NULL for existing schemas.  This allows sqlite_master tables that
1989 ** contain a bound parameter because they were generated by older versions
1990 ** of SQLite to be parsed by newer versions of SQLite without raising a
1991 ** malformed schema error.
1992 */
1993 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1994 
1995   /* If pWalker->eCode is 2 then any term of the expression that comes from
1996   ** the ON or USING clauses of a left join disqualifies the expression
1997   ** from being considered constant. */
1998   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1999     pWalker->eCode = 0;
2000     return WRC_Abort;
2001   }
2002 
2003   switch( pExpr->op ){
2004     /* Consider functions to be constant if all their arguments are constant
2005     ** and either pWalker->eCode==4 or 5 or the function has the
2006     ** SQLITE_FUNC_CONST flag. */
2007     case TK_FUNCTION:
2008       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2009        && !ExprHasProperty(pExpr, EP_WinFunc)
2010       ){
2011         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2012         return WRC_Continue;
2013       }else{
2014         pWalker->eCode = 0;
2015         return WRC_Abort;
2016       }
2017     case TK_ID:
2018       /* Convert "true" or "false" in a DEFAULT clause into the
2019       ** appropriate TK_TRUEFALSE operator */
2020       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2021         return WRC_Prune;
2022       }
2023       /* Fall thru */
2024     case TK_COLUMN:
2025     case TK_AGG_FUNCTION:
2026     case TK_AGG_COLUMN:
2027       testcase( pExpr->op==TK_ID );
2028       testcase( pExpr->op==TK_COLUMN );
2029       testcase( pExpr->op==TK_AGG_FUNCTION );
2030       testcase( pExpr->op==TK_AGG_COLUMN );
2031       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2032         return WRC_Continue;
2033       }
2034       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2035         return WRC_Continue;
2036       }
2037       /* Fall through */
2038     case TK_IF_NULL_ROW:
2039     case TK_REGISTER:
2040       testcase( pExpr->op==TK_REGISTER );
2041       testcase( pExpr->op==TK_IF_NULL_ROW );
2042       pWalker->eCode = 0;
2043       return WRC_Abort;
2044     case TK_VARIABLE:
2045       if( pWalker->eCode==5 ){
2046         /* Silently convert bound parameters that appear inside of CREATE
2047         ** statements into a NULL when parsing the CREATE statement text out
2048         ** of the sqlite_master table */
2049         pExpr->op = TK_NULL;
2050       }else if( pWalker->eCode==4 ){
2051         /* A bound parameter in a CREATE statement that originates from
2052         ** sqlite3_prepare() causes an error */
2053         pWalker->eCode = 0;
2054         return WRC_Abort;
2055       }
2056       /* Fall through */
2057     default:
2058       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2059       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2060       return WRC_Continue;
2061   }
2062 }
2063 static int exprIsConst(Expr *p, int initFlag, int iCur){
2064   Walker w;
2065   w.eCode = initFlag;
2066   w.xExprCallback = exprNodeIsConstant;
2067   w.xSelectCallback = sqlite3SelectWalkFail;
2068 #ifdef SQLITE_DEBUG
2069   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2070 #endif
2071   w.u.iCur = iCur;
2072   sqlite3WalkExpr(&w, p);
2073   return w.eCode;
2074 }
2075 
2076 /*
2077 ** Walk an expression tree.  Return non-zero if the expression is constant
2078 ** and 0 if it involves variables or function calls.
2079 **
2080 ** For the purposes of this function, a double-quoted string (ex: "abc")
2081 ** is considered a variable but a single-quoted string (ex: 'abc') is
2082 ** a constant.
2083 */
2084 int sqlite3ExprIsConstant(Expr *p){
2085   return exprIsConst(p, 1, 0);
2086 }
2087 
2088 /*
2089 ** Walk an expression tree.  Return non-zero if
2090 **
2091 **   (1) the expression is constant, and
2092 **   (2) the expression does originate in the ON or USING clause
2093 **       of a LEFT JOIN, and
2094 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2095 **       operands created by the constant propagation optimization.
2096 **
2097 ** When this routine returns true, it indicates that the expression
2098 ** can be added to the pParse->pConstExpr list and evaluated once when
2099 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2100 */
2101 int sqlite3ExprIsConstantNotJoin(Expr *p){
2102   return exprIsConst(p, 2, 0);
2103 }
2104 
2105 /*
2106 ** Walk an expression tree.  Return non-zero if the expression is constant
2107 ** for any single row of the table with cursor iCur.  In other words, the
2108 ** expression must not refer to any non-deterministic function nor any
2109 ** table other than iCur.
2110 */
2111 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2112   return exprIsConst(p, 3, iCur);
2113 }
2114 
2115 
2116 /*
2117 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2118 */
2119 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2120   ExprList *pGroupBy = pWalker->u.pGroupBy;
2121   int i;
2122 
2123   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2124   ** it constant.  */
2125   for(i=0; i<pGroupBy->nExpr; i++){
2126     Expr *p = pGroupBy->a[i].pExpr;
2127     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2128       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2129       if( sqlite3IsBinary(pColl) ){
2130         return WRC_Prune;
2131       }
2132     }
2133   }
2134 
2135   /* Check if pExpr is a sub-select. If so, consider it variable. */
2136   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2137     pWalker->eCode = 0;
2138     return WRC_Abort;
2139   }
2140 
2141   return exprNodeIsConstant(pWalker, pExpr);
2142 }
2143 
2144 /*
2145 ** Walk the expression tree passed as the first argument. Return non-zero
2146 ** if the expression consists entirely of constants or copies of terms
2147 ** in pGroupBy that sort with the BINARY collation sequence.
2148 **
2149 ** This routine is used to determine if a term of the HAVING clause can
2150 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2151 ** the value of the HAVING clause term must be the same for all members of
2152 ** a "group".  The requirement that the GROUP BY term must be BINARY
2153 ** assumes that no other collating sequence will have a finer-grained
2154 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2155 ** A=B in every other collating sequence.  The requirement that the
2156 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2157 ** to promote HAVING clauses that use the same alternative collating
2158 ** sequence as the GROUP BY term, but that is much harder to check,
2159 ** alternative collating sequences are uncommon, and this is only an
2160 ** optimization, so we take the easy way out and simply require the
2161 ** GROUP BY to use the BINARY collating sequence.
2162 */
2163 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2164   Walker w;
2165   w.eCode = 1;
2166   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2167   w.xSelectCallback = 0;
2168   w.u.pGroupBy = pGroupBy;
2169   w.pParse = pParse;
2170   sqlite3WalkExpr(&w, p);
2171   return w.eCode;
2172 }
2173 
2174 /*
2175 ** Walk an expression tree for the DEFAULT field of a column definition
2176 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2177 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2178 ** the expression is constant or a function call with constant arguments.
2179 ** Return and 0 if there are any variables.
2180 **
2181 ** isInit is true when parsing from sqlite_master.  isInit is false when
2182 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2183 ** (such as ? or $abc) in the expression are converted into NULL.  When
2184 ** isInit is false, parameters raise an error.  Parameters should not be
2185 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2186 ** allowed it, so we need to support it when reading sqlite_master for
2187 ** backwards compatibility.
2188 **
2189 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2190 **
2191 ** For the purposes of this function, a double-quoted string (ex: "abc")
2192 ** is considered a variable but a single-quoted string (ex: 'abc') is
2193 ** a constant.
2194 */
2195 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2196   assert( isInit==0 || isInit==1 );
2197   return exprIsConst(p, 4+isInit, 0);
2198 }
2199 
2200 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2201 /*
2202 ** Walk an expression tree.  Return 1 if the expression contains a
2203 ** subquery of some kind.  Return 0 if there are no subqueries.
2204 */
2205 int sqlite3ExprContainsSubquery(Expr *p){
2206   Walker w;
2207   w.eCode = 1;
2208   w.xExprCallback = sqlite3ExprWalkNoop;
2209   w.xSelectCallback = sqlite3SelectWalkFail;
2210 #ifdef SQLITE_DEBUG
2211   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2212 #endif
2213   sqlite3WalkExpr(&w, p);
2214   return w.eCode==0;
2215 }
2216 #endif
2217 
2218 /*
2219 ** If the expression p codes a constant integer that is small enough
2220 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2221 ** in *pValue.  If the expression is not an integer or if it is too big
2222 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2223 */
2224 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2225   int rc = 0;
2226   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2227 
2228   /* If an expression is an integer literal that fits in a signed 32-bit
2229   ** integer, then the EP_IntValue flag will have already been set */
2230   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2231            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2232 
2233   if( p->flags & EP_IntValue ){
2234     *pValue = p->u.iValue;
2235     return 1;
2236   }
2237   switch( p->op ){
2238     case TK_UPLUS: {
2239       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2240       break;
2241     }
2242     case TK_UMINUS: {
2243       int v;
2244       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2245         assert( v!=(-2147483647-1) );
2246         *pValue = -v;
2247         rc = 1;
2248       }
2249       break;
2250     }
2251     default: break;
2252   }
2253   return rc;
2254 }
2255 
2256 /*
2257 ** Return FALSE if there is no chance that the expression can be NULL.
2258 **
2259 ** If the expression might be NULL or if the expression is too complex
2260 ** to tell return TRUE.
2261 **
2262 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2263 ** when we know that a value cannot be NULL.  Hence, a false positive
2264 ** (returning TRUE when in fact the expression can never be NULL) might
2265 ** be a small performance hit but is otherwise harmless.  On the other
2266 ** hand, a false negative (returning FALSE when the result could be NULL)
2267 ** will likely result in an incorrect answer.  So when in doubt, return
2268 ** TRUE.
2269 */
2270 int sqlite3ExprCanBeNull(const Expr *p){
2271   u8 op;
2272   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2273     p = p->pLeft;
2274   }
2275   op = p->op;
2276   if( op==TK_REGISTER ) op = p->op2;
2277   switch( op ){
2278     case TK_INTEGER:
2279     case TK_STRING:
2280     case TK_FLOAT:
2281     case TK_BLOB:
2282       return 0;
2283     case TK_COLUMN:
2284       return ExprHasProperty(p, EP_CanBeNull) ||
2285              p->y.pTab==0 ||  /* Reference to column of index on expression */
2286              (p->iColumn>=0
2287               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2288               && p->y.pTab->aCol[p->iColumn].notNull==0);
2289     default:
2290       return 1;
2291   }
2292 }
2293 
2294 /*
2295 ** Return TRUE if the given expression is a constant which would be
2296 ** unchanged by OP_Affinity with the affinity given in the second
2297 ** argument.
2298 **
2299 ** This routine is used to determine if the OP_Affinity operation
2300 ** can be omitted.  When in doubt return FALSE.  A false negative
2301 ** is harmless.  A false positive, however, can result in the wrong
2302 ** answer.
2303 */
2304 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2305   u8 op;
2306   int unaryMinus = 0;
2307   if( aff==SQLITE_AFF_BLOB ) return 1;
2308   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2309     if( p->op==TK_UMINUS ) unaryMinus = 1;
2310     p = p->pLeft;
2311   }
2312   op = p->op;
2313   if( op==TK_REGISTER ) op = p->op2;
2314   switch( op ){
2315     case TK_INTEGER: {
2316       return aff>=SQLITE_AFF_NUMERIC;
2317     }
2318     case TK_FLOAT: {
2319       return aff>=SQLITE_AFF_NUMERIC;
2320     }
2321     case TK_STRING: {
2322       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2323     }
2324     case TK_BLOB: {
2325       return !unaryMinus;
2326     }
2327     case TK_COLUMN: {
2328       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2329       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2330     }
2331     default: {
2332       return 0;
2333     }
2334   }
2335 }
2336 
2337 /*
2338 ** Return TRUE if the given string is a row-id column name.
2339 */
2340 int sqlite3IsRowid(const char *z){
2341   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2342   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2343   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2344   return 0;
2345 }
2346 
2347 /*
2348 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2349 ** that can be simplified to a direct table access, then return
2350 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2351 ** or if the SELECT statement needs to be manifested into a transient
2352 ** table, then return NULL.
2353 */
2354 #ifndef SQLITE_OMIT_SUBQUERY
2355 static Select *isCandidateForInOpt(Expr *pX){
2356   Select *p;
2357   SrcList *pSrc;
2358   ExprList *pEList;
2359   Table *pTab;
2360   int i;
2361   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2362   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2363   p = pX->x.pSelect;
2364   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2365   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2366     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2367     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2368     return 0; /* No DISTINCT keyword and no aggregate functions */
2369   }
2370   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2371   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2372   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2373   pSrc = p->pSrc;
2374   assert( pSrc!=0 );
2375   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2376   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2377   pTab = pSrc->a[0].pTab;
2378   assert( pTab!=0 );
2379   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2380   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2381   pEList = p->pEList;
2382   assert( pEList!=0 );
2383   /* All SELECT results must be columns. */
2384   for(i=0; i<pEList->nExpr; i++){
2385     Expr *pRes = pEList->a[i].pExpr;
2386     if( pRes->op!=TK_COLUMN ) return 0;
2387     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2388   }
2389   return p;
2390 }
2391 #endif /* SQLITE_OMIT_SUBQUERY */
2392 
2393 #ifndef SQLITE_OMIT_SUBQUERY
2394 /*
2395 ** Generate code that checks the left-most column of index table iCur to see if
2396 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2397 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2398 ** to be set to NULL if iCur contains one or more NULL values.
2399 */
2400 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2401   int addr1;
2402   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2403   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2404   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2405   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2406   VdbeComment((v, "first_entry_in(%d)", iCur));
2407   sqlite3VdbeJumpHere(v, addr1);
2408 }
2409 #endif
2410 
2411 
2412 #ifndef SQLITE_OMIT_SUBQUERY
2413 /*
2414 ** The argument is an IN operator with a list (not a subquery) on the
2415 ** right-hand side.  Return TRUE if that list is constant.
2416 */
2417 static int sqlite3InRhsIsConstant(Expr *pIn){
2418   Expr *pLHS;
2419   int res;
2420   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2421   pLHS = pIn->pLeft;
2422   pIn->pLeft = 0;
2423   res = sqlite3ExprIsConstant(pIn);
2424   pIn->pLeft = pLHS;
2425   return res;
2426 }
2427 #endif
2428 
2429 /*
2430 ** This function is used by the implementation of the IN (...) operator.
2431 ** The pX parameter is the expression on the RHS of the IN operator, which
2432 ** might be either a list of expressions or a subquery.
2433 **
2434 ** The job of this routine is to find or create a b-tree object that can
2435 ** be used either to test for membership in the RHS set or to iterate through
2436 ** all members of the RHS set, skipping duplicates.
2437 **
2438 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2439 ** and pX->iTable is set to the index of that cursor.
2440 **
2441 ** The returned value of this function indicates the b-tree type, as follows:
2442 **
2443 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2444 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2445 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2446 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2447 **                         populated epheremal table.
2448 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2449 **                         implemented as a sequence of comparisons.
2450 **
2451 ** An existing b-tree might be used if the RHS expression pX is a simple
2452 ** subquery such as:
2453 **
2454 **     SELECT <column1>, <column2>... FROM <table>
2455 **
2456 ** If the RHS of the IN operator is a list or a more complex subquery, then
2457 ** an ephemeral table might need to be generated from the RHS and then
2458 ** pX->iTable made to point to the ephemeral table instead of an
2459 ** existing table.
2460 **
2461 ** The inFlags parameter must contain, at a minimum, one of the bits
2462 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2463 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2464 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2465 ** be used to loop over all values of the RHS of the IN operator.
2466 **
2467 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2468 ** through the set members) then the b-tree must not contain duplicates.
2469 ** An epheremal table will be created unless the selected columns are guaranteed
2470 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2471 ** a UNIQUE constraint or index.
2472 **
2473 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2474 ** for fast set membership tests) then an epheremal table must
2475 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2476 ** index can be found with the specified <columns> as its left-most.
2477 **
2478 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2479 ** if the RHS of the IN operator is a list (not a subquery) then this
2480 ** routine might decide that creating an ephemeral b-tree for membership
2481 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2482 ** calling routine should implement the IN operator using a sequence
2483 ** of Eq or Ne comparison operations.
2484 **
2485 ** When the b-tree is being used for membership tests, the calling function
2486 ** might need to know whether or not the RHS side of the IN operator
2487 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2488 ** if there is any chance that the (...) might contain a NULL value at
2489 ** runtime, then a register is allocated and the register number written
2490 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2491 ** NULL value, then *prRhsHasNull is left unchanged.
2492 **
2493 ** If a register is allocated and its location stored in *prRhsHasNull, then
2494 ** the value in that register will be NULL if the b-tree contains one or more
2495 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2496 ** NULL values.
2497 **
2498 ** If the aiMap parameter is not NULL, it must point to an array containing
2499 ** one element for each column returned by the SELECT statement on the RHS
2500 ** of the IN(...) operator. The i'th entry of the array is populated with the
2501 ** offset of the index column that matches the i'th column returned by the
2502 ** SELECT. For example, if the expression and selected index are:
2503 **
2504 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2505 **   CREATE INDEX i1 ON t1(b, c, a);
2506 **
2507 ** then aiMap[] is populated with {2, 0, 1}.
2508 */
2509 #ifndef SQLITE_OMIT_SUBQUERY
2510 int sqlite3FindInIndex(
2511   Parse *pParse,             /* Parsing context */
2512   Expr *pX,                  /* The IN expression */
2513   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2514   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2515   int *aiMap,                /* Mapping from Index fields to RHS fields */
2516   int *piTab                 /* OUT: index to use */
2517 ){
2518   Select *p;                            /* SELECT to the right of IN operator */
2519   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2520   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2521   int mustBeUnique;                     /* True if RHS must be unique */
2522   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2523 
2524   assert( pX->op==TK_IN );
2525   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2526 
2527   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2528   ** whether or not the SELECT result contains NULL values, check whether
2529   ** or not NULL is actually possible (it may not be, for example, due
2530   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2531   ** set prRhsHasNull to 0 before continuing.  */
2532   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2533     int i;
2534     ExprList *pEList = pX->x.pSelect->pEList;
2535     for(i=0; i<pEList->nExpr; i++){
2536       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2537     }
2538     if( i==pEList->nExpr ){
2539       prRhsHasNull = 0;
2540     }
2541   }
2542 
2543   /* Check to see if an existing table or index can be used to
2544   ** satisfy the query.  This is preferable to generating a new
2545   ** ephemeral table.  */
2546   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2547     sqlite3 *db = pParse->db;              /* Database connection */
2548     Table *pTab;                           /* Table <table>. */
2549     i16 iDb;                               /* Database idx for pTab */
2550     ExprList *pEList = p->pEList;
2551     int nExpr = pEList->nExpr;
2552 
2553     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2554     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2555     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2556     pTab = p->pSrc->a[0].pTab;
2557 
2558     /* Code an OP_Transaction and OP_TableLock for <table>. */
2559     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2560     sqlite3CodeVerifySchema(pParse, iDb);
2561     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2562 
2563     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2564     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2565       /* The "x IN (SELECT rowid FROM table)" case */
2566       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2567       VdbeCoverage(v);
2568 
2569       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2570       eType = IN_INDEX_ROWID;
2571       ExplainQueryPlan((pParse, 0,
2572             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2573       sqlite3VdbeJumpHere(v, iAddr);
2574     }else{
2575       Index *pIdx;                         /* Iterator variable */
2576       int affinity_ok = 1;
2577       int i;
2578 
2579       /* Check that the affinity that will be used to perform each
2580       ** comparison is the same as the affinity of each column in table
2581       ** on the RHS of the IN operator.  If it not, it is not possible to
2582       ** use any index of the RHS table.  */
2583       for(i=0; i<nExpr && affinity_ok; i++){
2584         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2585         int iCol = pEList->a[i].pExpr->iColumn;
2586         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2587         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2588         testcase( cmpaff==SQLITE_AFF_BLOB );
2589         testcase( cmpaff==SQLITE_AFF_TEXT );
2590         switch( cmpaff ){
2591           case SQLITE_AFF_BLOB:
2592             break;
2593           case SQLITE_AFF_TEXT:
2594             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2595             ** other has no affinity and the other side is TEXT.  Hence,
2596             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2597             ** and for the term on the LHS of the IN to have no affinity. */
2598             assert( idxaff==SQLITE_AFF_TEXT );
2599             break;
2600           default:
2601             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2602         }
2603       }
2604 
2605       if( affinity_ok ){
2606         /* Search for an existing index that will work for this IN operator */
2607         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2608           Bitmask colUsed;      /* Columns of the index used */
2609           Bitmask mCol;         /* Mask for the current column */
2610           if( pIdx->nColumn<nExpr ) continue;
2611           if( pIdx->pPartIdxWhere!=0 ) continue;
2612           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2613           ** BITMASK(nExpr) without overflowing */
2614           testcase( pIdx->nColumn==BMS-2 );
2615           testcase( pIdx->nColumn==BMS-1 );
2616           if( pIdx->nColumn>=BMS-1 ) continue;
2617           if( mustBeUnique ){
2618             if( pIdx->nKeyCol>nExpr
2619              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2620             ){
2621               continue;  /* This index is not unique over the IN RHS columns */
2622             }
2623           }
2624 
2625           colUsed = 0;   /* Columns of index used so far */
2626           for(i=0; i<nExpr; i++){
2627             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2628             Expr *pRhs = pEList->a[i].pExpr;
2629             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2630             int j;
2631 
2632             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2633             for(j=0; j<nExpr; j++){
2634               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2635               assert( pIdx->azColl[j] );
2636               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2637                 continue;
2638               }
2639               break;
2640             }
2641             if( j==nExpr ) break;
2642             mCol = MASKBIT(j);
2643             if( mCol & colUsed ) break; /* Each column used only once */
2644             colUsed |= mCol;
2645             if( aiMap ) aiMap[i] = j;
2646           }
2647 
2648           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2649           if( colUsed==(MASKBIT(nExpr)-1) ){
2650             /* If we reach this point, that means the index pIdx is usable */
2651             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2652             ExplainQueryPlan((pParse, 0,
2653                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2654             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2655             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2656             VdbeComment((v, "%s", pIdx->zName));
2657             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2658             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2659 
2660             if( prRhsHasNull ){
2661 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2662               i64 mask = (1<<nExpr)-1;
2663               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2664                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2665 #endif
2666               *prRhsHasNull = ++pParse->nMem;
2667               if( nExpr==1 ){
2668                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2669               }
2670             }
2671             sqlite3VdbeJumpHere(v, iAddr);
2672           }
2673         } /* End loop over indexes */
2674       } /* End if( affinity_ok ) */
2675     } /* End if not an rowid index */
2676   } /* End attempt to optimize using an index */
2677 
2678   /* If no preexisting index is available for the IN clause
2679   ** and IN_INDEX_NOOP is an allowed reply
2680   ** and the RHS of the IN operator is a list, not a subquery
2681   ** and the RHS is not constant or has two or fewer terms,
2682   ** then it is not worth creating an ephemeral table to evaluate
2683   ** the IN operator so return IN_INDEX_NOOP.
2684   */
2685   if( eType==0
2686    && (inFlags & IN_INDEX_NOOP_OK)
2687    && !ExprHasProperty(pX, EP_xIsSelect)
2688    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2689   ){
2690     eType = IN_INDEX_NOOP;
2691   }
2692 
2693   if( eType==0 ){
2694     /* Could not find an existing table or index to use as the RHS b-tree.
2695     ** We will have to generate an ephemeral table to do the job.
2696     */
2697     u32 savedNQueryLoop = pParse->nQueryLoop;
2698     int rMayHaveNull = 0;
2699     eType = IN_INDEX_EPH;
2700     if( inFlags & IN_INDEX_LOOP ){
2701       pParse->nQueryLoop = 0;
2702     }else if( prRhsHasNull ){
2703       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2704     }
2705     assert( pX->op==TK_IN );
2706     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2707     if( rMayHaveNull ){
2708       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2709     }
2710     pParse->nQueryLoop = savedNQueryLoop;
2711   }
2712 
2713   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2714     int i, n;
2715     n = sqlite3ExprVectorSize(pX->pLeft);
2716     for(i=0; i<n; i++) aiMap[i] = i;
2717   }
2718   *piTab = iTab;
2719   return eType;
2720 }
2721 #endif
2722 
2723 #ifndef SQLITE_OMIT_SUBQUERY
2724 /*
2725 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2726 ** function allocates and returns a nul-terminated string containing
2727 ** the affinities to be used for each column of the comparison.
2728 **
2729 ** It is the responsibility of the caller to ensure that the returned
2730 ** string is eventually freed using sqlite3DbFree().
2731 */
2732 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2733   Expr *pLeft = pExpr->pLeft;
2734   int nVal = sqlite3ExprVectorSize(pLeft);
2735   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2736   char *zRet;
2737 
2738   assert( pExpr->op==TK_IN );
2739   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2740   if( zRet ){
2741     int i;
2742     for(i=0; i<nVal; i++){
2743       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2744       char a = sqlite3ExprAffinity(pA);
2745       if( pSelect ){
2746         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2747       }else{
2748         zRet[i] = a;
2749       }
2750     }
2751     zRet[nVal] = '\0';
2752   }
2753   return zRet;
2754 }
2755 #endif
2756 
2757 #ifndef SQLITE_OMIT_SUBQUERY
2758 /*
2759 ** Load the Parse object passed as the first argument with an error
2760 ** message of the form:
2761 **
2762 **   "sub-select returns N columns - expected M"
2763 */
2764 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2765   if( pParse->nErr==0 ){
2766     const char *zFmt = "sub-select returns %d columns - expected %d";
2767     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2768   }
2769 }
2770 #endif
2771 
2772 /*
2773 ** Expression pExpr is a vector that has been used in a context where
2774 ** it is not permitted. If pExpr is a sub-select vector, this routine
2775 ** loads the Parse object with a message of the form:
2776 **
2777 **   "sub-select returns N columns - expected 1"
2778 **
2779 ** Or, if it is a regular scalar vector:
2780 **
2781 **   "row value misused"
2782 */
2783 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2784 #ifndef SQLITE_OMIT_SUBQUERY
2785   if( pExpr->flags & EP_xIsSelect ){
2786     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2787   }else
2788 #endif
2789   {
2790     sqlite3ErrorMsg(pParse, "row value misused");
2791   }
2792 }
2793 
2794 #ifndef SQLITE_OMIT_SUBQUERY
2795 /*
2796 ** Generate code that will construct an ephemeral table containing all terms
2797 ** in the RHS of an IN operator.  The IN operator can be in either of two
2798 ** forms:
2799 **
2800 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2801 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2802 **
2803 ** The pExpr parameter is the IN operator.  The cursor number for the
2804 ** constructed ephermeral table is returned.  The first time the ephemeral
2805 ** table is computed, the cursor number is also stored in pExpr->iTable,
2806 ** however the cursor number returned might not be the same, as it might
2807 ** have been duplicated using OP_OpenDup.
2808 **
2809 ** If the LHS expression ("x" in the examples) is a column value, or
2810 ** the SELECT statement returns a column value, then the affinity of that
2811 ** column is used to build the index keys. If both 'x' and the
2812 ** SELECT... statement are columns, then numeric affinity is used
2813 ** if either column has NUMERIC or INTEGER affinity. If neither
2814 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2815 ** is used.
2816 */
2817 void sqlite3CodeRhsOfIN(
2818   Parse *pParse,          /* Parsing context */
2819   Expr *pExpr,            /* The IN operator */
2820   int iTab                /* Use this cursor number */
2821 ){
2822   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2823   int addr;                   /* Address of OP_OpenEphemeral instruction */
2824   Expr *pLeft;                /* the LHS of the IN operator */
2825   KeyInfo *pKeyInfo = 0;      /* Key information */
2826   int nVal;                   /* Size of vector pLeft */
2827   Vdbe *v;                    /* The prepared statement under construction */
2828 
2829   v = pParse->pVdbe;
2830   assert( v!=0 );
2831 
2832   /* The evaluation of the IN must be repeated every time it
2833   ** is encountered if any of the following is true:
2834   **
2835   **    *  The right-hand side is a correlated subquery
2836   **    *  The right-hand side is an expression list containing variables
2837   **    *  We are inside a trigger
2838   **
2839   ** If all of the above are false, then we can compute the RHS just once
2840   ** and reuse it many names.
2841   */
2842   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2843     /* Reuse of the RHS is allowed */
2844     /* If this routine has already been coded, but the previous code
2845     ** might not have been invoked yet, so invoke it now as a subroutine.
2846     */
2847     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2848       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2849       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2850         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2851               pExpr->x.pSelect->selId));
2852       }
2853       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2854                         pExpr->y.sub.iAddr);
2855       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2856       sqlite3VdbeJumpHere(v, addrOnce);
2857       return;
2858     }
2859 
2860     /* Begin coding the subroutine */
2861     ExprSetProperty(pExpr, EP_Subrtn);
2862     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2863     pExpr->y.sub.regReturn = ++pParse->nMem;
2864     pExpr->y.sub.iAddr =
2865       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2866     VdbeComment((v, "return address"));
2867 
2868     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2869   }
2870 
2871   /* Check to see if this is a vector IN operator */
2872   pLeft = pExpr->pLeft;
2873   nVal = sqlite3ExprVectorSize(pLeft);
2874 
2875   /* Construct the ephemeral table that will contain the content of
2876   ** RHS of the IN operator.
2877   */
2878   pExpr->iTable = iTab;
2879   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2880 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2881   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2882     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2883   }else{
2884     VdbeComment((v, "RHS of IN operator"));
2885   }
2886 #endif
2887   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2888 
2889   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2890     /* Case 1:     expr IN (SELECT ...)
2891     **
2892     ** Generate code to write the results of the select into the temporary
2893     ** table allocated and opened above.
2894     */
2895     Select *pSelect = pExpr->x.pSelect;
2896     ExprList *pEList = pSelect->pEList;
2897 
2898     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2899         addrOnce?"":"CORRELATED ", pSelect->selId
2900     ));
2901     /* If the LHS and RHS of the IN operator do not match, that
2902     ** error will have been caught long before we reach this point. */
2903     if( ALWAYS(pEList->nExpr==nVal) ){
2904       SelectDest dest;
2905       int i;
2906       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2907       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2908       pSelect->iLimit = 0;
2909       testcase( pSelect->selFlags & SF_Distinct );
2910       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2911       if( sqlite3Select(pParse, pSelect, &dest) ){
2912         sqlite3DbFree(pParse->db, dest.zAffSdst);
2913         sqlite3KeyInfoUnref(pKeyInfo);
2914         return;
2915       }
2916       sqlite3DbFree(pParse->db, dest.zAffSdst);
2917       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2918       assert( pEList!=0 );
2919       assert( pEList->nExpr>0 );
2920       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2921       for(i=0; i<nVal; i++){
2922         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2923         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2924             pParse, p, pEList->a[i].pExpr
2925         );
2926       }
2927     }
2928   }else if( ALWAYS(pExpr->x.pList!=0) ){
2929     /* Case 2:     expr IN (exprlist)
2930     **
2931     ** For each expression, build an index key from the evaluation and
2932     ** store it in the temporary table. If <expr> is a column, then use
2933     ** that columns affinity when building index keys. If <expr> is not
2934     ** a column, use numeric affinity.
2935     */
2936     char affinity;            /* Affinity of the LHS of the IN */
2937     int i;
2938     ExprList *pList = pExpr->x.pList;
2939     struct ExprList_item *pItem;
2940     int r1, r2;
2941     affinity = sqlite3ExprAffinity(pLeft);
2942     if( affinity<=SQLITE_AFF_NONE ){
2943       affinity = SQLITE_AFF_BLOB;
2944     }
2945     if( pKeyInfo ){
2946       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2947       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2948     }
2949 
2950     /* Loop through each expression in <exprlist>. */
2951     r1 = sqlite3GetTempReg(pParse);
2952     r2 = sqlite3GetTempReg(pParse);
2953     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2954       Expr *pE2 = pItem->pExpr;
2955 
2956       /* If the expression is not constant then we will need to
2957       ** disable the test that was generated above that makes sure
2958       ** this code only executes once.  Because for a non-constant
2959       ** expression we need to rerun this code each time.
2960       */
2961       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2962         sqlite3VdbeChangeToNoop(v, addrOnce);
2963         ExprClearProperty(pExpr, EP_Subrtn);
2964         addrOnce = 0;
2965       }
2966 
2967       /* Evaluate the expression and insert it into the temp table */
2968       sqlite3ExprCode(pParse, pE2, r1);
2969       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2970       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2971     }
2972     sqlite3ReleaseTempReg(pParse, r1);
2973     sqlite3ReleaseTempReg(pParse, r2);
2974   }
2975   if( pKeyInfo ){
2976     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2977   }
2978   if( addrOnce ){
2979     sqlite3VdbeJumpHere(v, addrOnce);
2980     /* Subroutine return */
2981     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2982     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2983     sqlite3ClearTempRegCache(pParse);
2984   }
2985 }
2986 #endif /* SQLITE_OMIT_SUBQUERY */
2987 
2988 /*
2989 ** Generate code for scalar subqueries used as a subquery expression
2990 ** or EXISTS operator:
2991 **
2992 **     (SELECT a FROM b)          -- subquery
2993 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2994 **
2995 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2996 **
2997 ** Return the register that holds the result.  For a multi-column SELECT,
2998 ** the result is stored in a contiguous array of registers and the
2999 ** return value is the register of the left-most result column.
3000 ** Return 0 if an error occurs.
3001 */
3002 #ifndef SQLITE_OMIT_SUBQUERY
3003 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3004   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3005   int rReg = 0;               /* Register storing resulting */
3006   Select *pSel;               /* SELECT statement to encode */
3007   SelectDest dest;            /* How to deal with SELECT result */
3008   int nReg;                   /* Registers to allocate */
3009   Expr *pLimit;               /* New limit expression */
3010 
3011   Vdbe *v = pParse->pVdbe;
3012   assert( v!=0 );
3013   testcase( pExpr->op==TK_EXISTS );
3014   testcase( pExpr->op==TK_SELECT );
3015   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3016   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3017   pSel = pExpr->x.pSelect;
3018 
3019   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3020   ** is encountered if any of the following is true:
3021   **
3022   **    *  The right-hand side is a correlated subquery
3023   **    *  The right-hand side is an expression list containing variables
3024   **    *  We are inside a trigger
3025   **
3026   ** If all of the above are false, then we can run this code just once
3027   ** save the results, and reuse the same result on subsequent invocations.
3028   */
3029   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3030     /* If this routine has already been coded, then invoke it as a
3031     ** subroutine. */
3032     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3033       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3034       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3035                         pExpr->y.sub.iAddr);
3036       return pExpr->iTable;
3037     }
3038 
3039     /* Begin coding the subroutine */
3040     ExprSetProperty(pExpr, EP_Subrtn);
3041     pExpr->y.sub.regReturn = ++pParse->nMem;
3042     pExpr->y.sub.iAddr =
3043       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3044     VdbeComment((v, "return address"));
3045 
3046     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3047   }
3048 
3049   /* For a SELECT, generate code to put the values for all columns of
3050   ** the first row into an array of registers and return the index of
3051   ** the first register.
3052   **
3053   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3054   ** into a register and return that register number.
3055   **
3056   ** In both cases, the query is augmented with "LIMIT 1".  Any
3057   ** preexisting limit is discarded in place of the new LIMIT 1.
3058   */
3059   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3060         addrOnce?"":"CORRELATED ", pSel->selId));
3061   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3062   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3063   pParse->nMem += nReg;
3064   if( pExpr->op==TK_SELECT ){
3065     dest.eDest = SRT_Mem;
3066     dest.iSdst = dest.iSDParm;
3067     dest.nSdst = nReg;
3068     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3069     VdbeComment((v, "Init subquery result"));
3070   }else{
3071     dest.eDest = SRT_Exists;
3072     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3073     VdbeComment((v, "Init EXISTS result"));
3074   }
3075   if( pSel->pLimit ){
3076     /* The subquery already has a limit.  If the pre-existing limit is X
3077     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3078     sqlite3 *db = pParse->db;
3079     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3080     if( pLimit ){
3081       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3082       pLimit = sqlite3PExpr(pParse, TK_NE,
3083                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3084     }
3085     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3086     pSel->pLimit->pLeft = pLimit;
3087   }else{
3088     /* If there is no pre-existing limit add a limit of 1 */
3089     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3090     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3091   }
3092   pSel->iLimit = 0;
3093   if( sqlite3Select(pParse, pSel, &dest) ){
3094     return 0;
3095   }
3096   pExpr->iTable = rReg = dest.iSDParm;
3097   ExprSetVVAProperty(pExpr, EP_NoReduce);
3098   if( addrOnce ){
3099     sqlite3VdbeJumpHere(v, addrOnce);
3100 
3101     /* Subroutine return */
3102     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3103     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3104     sqlite3ClearTempRegCache(pParse);
3105   }
3106 
3107   return rReg;
3108 }
3109 #endif /* SQLITE_OMIT_SUBQUERY */
3110 
3111 #ifndef SQLITE_OMIT_SUBQUERY
3112 /*
3113 ** Expr pIn is an IN(...) expression. This function checks that the
3114 ** sub-select on the RHS of the IN() operator has the same number of
3115 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3116 ** a sub-query, that the LHS is a vector of size 1.
3117 */
3118 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3119   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3120   if( (pIn->flags & EP_xIsSelect) ){
3121     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3122       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3123       return 1;
3124     }
3125   }else if( nVector!=1 ){
3126     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3127     return 1;
3128   }
3129   return 0;
3130 }
3131 #endif
3132 
3133 #ifndef SQLITE_OMIT_SUBQUERY
3134 /*
3135 ** Generate code for an IN expression.
3136 **
3137 **      x IN (SELECT ...)
3138 **      x IN (value, value, ...)
3139 **
3140 ** The left-hand side (LHS) is a scalar or vector expression.  The
3141 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3142 ** subquery.  If the RHS is a subquery, the number of result columns must
3143 ** match the number of columns in the vector on the LHS.  If the RHS is
3144 ** a list of values, the LHS must be a scalar.
3145 **
3146 ** The IN operator is true if the LHS value is contained within the RHS.
3147 ** The result is false if the LHS is definitely not in the RHS.  The
3148 ** result is NULL if the presence of the LHS in the RHS cannot be
3149 ** determined due to NULLs.
3150 **
3151 ** This routine generates code that jumps to destIfFalse if the LHS is not
3152 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3153 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3154 ** within the RHS then fall through.
3155 **
3156 ** See the separate in-operator.md documentation file in the canonical
3157 ** SQLite source tree for additional information.
3158 */
3159 static void sqlite3ExprCodeIN(
3160   Parse *pParse,        /* Parsing and code generating context */
3161   Expr *pExpr,          /* The IN expression */
3162   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3163   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3164 ){
3165   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3166   int eType;            /* Type of the RHS */
3167   int rLhs;             /* Register(s) holding the LHS values */
3168   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3169   Vdbe *v;              /* Statement under construction */
3170   int *aiMap = 0;       /* Map from vector field to index column */
3171   char *zAff = 0;       /* Affinity string for comparisons */
3172   int nVector;          /* Size of vectors for this IN operator */
3173   int iDummy;           /* Dummy parameter to exprCodeVector() */
3174   Expr *pLeft;          /* The LHS of the IN operator */
3175   int i;                /* loop counter */
3176   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3177   int destStep6 = 0;    /* Start of code for Step 6 */
3178   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3179   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3180   int addrTop;          /* Top of the step-6 loop */
3181   int iTab = 0;         /* Index to use */
3182 
3183   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3184   pLeft = pExpr->pLeft;
3185   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3186   zAff = exprINAffinity(pParse, pExpr);
3187   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3188   aiMap = (int*)sqlite3DbMallocZero(
3189       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3190   );
3191   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3192 
3193   /* Attempt to compute the RHS. After this step, if anything other than
3194   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3195   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3196   ** the RHS has not yet been coded.  */
3197   v = pParse->pVdbe;
3198   assert( v!=0 );       /* OOM detected prior to this routine */
3199   VdbeNoopComment((v, "begin IN expr"));
3200   eType = sqlite3FindInIndex(pParse, pExpr,
3201                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3202                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3203                              aiMap, &iTab);
3204 
3205   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3206        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3207   );
3208 #ifdef SQLITE_DEBUG
3209   /* Confirm that aiMap[] contains nVector integer values between 0 and
3210   ** nVector-1. */
3211   for(i=0; i<nVector; i++){
3212     int j, cnt;
3213     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3214     assert( cnt==1 );
3215   }
3216 #endif
3217 
3218   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3219   ** vector, then it is stored in an array of nVector registers starting
3220   ** at r1.
3221   **
3222   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3223   ** so that the fields are in the same order as an existing index.   The
3224   ** aiMap[] array contains a mapping from the original LHS field order to
3225   ** the field order that matches the RHS index.
3226   */
3227   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3228   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3229   if( i==nVector ){
3230     /* LHS fields are not reordered */
3231     rLhs = rLhsOrig;
3232   }else{
3233     /* Need to reorder the LHS fields according to aiMap */
3234     rLhs = sqlite3GetTempRange(pParse, nVector);
3235     for(i=0; i<nVector; i++){
3236       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3237     }
3238   }
3239 
3240   /* If sqlite3FindInIndex() did not find or create an index that is
3241   ** suitable for evaluating the IN operator, then evaluate using a
3242   ** sequence of comparisons.
3243   **
3244   ** This is step (1) in the in-operator.md optimized algorithm.
3245   */
3246   if( eType==IN_INDEX_NOOP ){
3247     ExprList *pList = pExpr->x.pList;
3248     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3249     int labelOk = sqlite3VdbeMakeLabel(pParse);
3250     int r2, regToFree;
3251     int regCkNull = 0;
3252     int ii;
3253     int bLhsReal;  /* True if the LHS of the IN has REAL affinity */
3254     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3255     if( destIfNull!=destIfFalse ){
3256       regCkNull = sqlite3GetTempReg(pParse);
3257       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3258     }
3259     bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL;
3260     for(ii=0; ii<pList->nExpr; ii++){
3261       if( bLhsReal ){
3262         r2 = regToFree = sqlite3GetTempReg(pParse);
3263         sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2);
3264         sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC);
3265       }else{
3266         r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3267       }
3268       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3269         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3270       }
3271       sqlite3ReleaseTempReg(pParse, regToFree);
3272       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3273         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3274         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3275                           (void*)pColl, P4_COLLSEQ);
3276         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3277         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3278         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3279         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3280         sqlite3VdbeChangeP5(v, zAff[0]);
3281       }else{
3282         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3283         assert( destIfNull==destIfFalse );
3284         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3285                           (void*)pColl, P4_COLLSEQ);
3286         VdbeCoverageIf(v, op==OP_Ne);
3287         VdbeCoverageIf(v, op==OP_IsNull);
3288         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3289       }
3290     }
3291     if( regCkNull ){
3292       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3293       sqlite3VdbeGoto(v, destIfFalse);
3294     }
3295     sqlite3VdbeResolveLabel(v, labelOk);
3296     sqlite3ReleaseTempReg(pParse, regCkNull);
3297     goto sqlite3ExprCodeIN_finished;
3298   }
3299 
3300   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3301   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3302   ** We will then skip the binary search of the RHS.
3303   */
3304   if( destIfNull==destIfFalse ){
3305     destStep2 = destIfFalse;
3306   }else{
3307     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3308   }
3309   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3310   for(i=0; i<nVector; i++){
3311     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3312     if( sqlite3ExprCanBeNull(p) ){
3313       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3314       VdbeCoverage(v);
3315     }
3316   }
3317 
3318   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3319   ** of the RHS using the LHS as a probe.  If found, the result is
3320   ** true.
3321   */
3322   if( eType==IN_INDEX_ROWID ){
3323     /* In this case, the RHS is the ROWID of table b-tree and so we also
3324     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3325     ** into a single opcode. */
3326     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3327     VdbeCoverage(v);
3328     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3329   }else{
3330     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3331     if( destIfFalse==destIfNull ){
3332       /* Combine Step 3 and Step 5 into a single opcode */
3333       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3334                            rLhs, nVector); VdbeCoverage(v);
3335       goto sqlite3ExprCodeIN_finished;
3336     }
3337     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3338     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3339                                       rLhs, nVector); VdbeCoverage(v);
3340   }
3341 
3342   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3343   ** an match on the search above, then the result must be FALSE.
3344   */
3345   if( rRhsHasNull && nVector==1 ){
3346     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3347     VdbeCoverage(v);
3348   }
3349 
3350   /* Step 5.  If we do not care about the difference between NULL and
3351   ** FALSE, then just return false.
3352   */
3353   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3354 
3355   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3356   ** If any comparison is NULL, then the result is NULL.  If all
3357   ** comparisons are FALSE then the final result is FALSE.
3358   **
3359   ** For a scalar LHS, it is sufficient to check just the first row
3360   ** of the RHS.
3361   */
3362   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3363   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3364   VdbeCoverage(v);
3365   if( nVector>1 ){
3366     destNotNull = sqlite3VdbeMakeLabel(pParse);
3367   }else{
3368     /* For nVector==1, combine steps 6 and 7 by immediately returning
3369     ** FALSE if the first comparison is not NULL */
3370     destNotNull = destIfFalse;
3371   }
3372   for(i=0; i<nVector; i++){
3373     Expr *p;
3374     CollSeq *pColl;
3375     int r3 = sqlite3GetTempReg(pParse);
3376     p = sqlite3VectorFieldSubexpr(pLeft, i);
3377     pColl = sqlite3ExprCollSeq(pParse, p);
3378     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3379     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3380                       (void*)pColl, P4_COLLSEQ);
3381     VdbeCoverage(v);
3382     sqlite3ReleaseTempReg(pParse, r3);
3383   }
3384   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3385   if( nVector>1 ){
3386     sqlite3VdbeResolveLabel(v, destNotNull);
3387     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3388     VdbeCoverage(v);
3389 
3390     /* Step 7:  If we reach this point, we know that the result must
3391     ** be false. */
3392     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3393   }
3394 
3395   /* Jumps here in order to return true. */
3396   sqlite3VdbeJumpHere(v, addrTruthOp);
3397 
3398 sqlite3ExprCodeIN_finished:
3399   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3400   VdbeComment((v, "end IN expr"));
3401 sqlite3ExprCodeIN_oom_error:
3402   sqlite3DbFree(pParse->db, aiMap);
3403   sqlite3DbFree(pParse->db, zAff);
3404 }
3405 #endif /* SQLITE_OMIT_SUBQUERY */
3406 
3407 #ifndef SQLITE_OMIT_FLOATING_POINT
3408 /*
3409 ** Generate an instruction that will put the floating point
3410 ** value described by z[0..n-1] into register iMem.
3411 **
3412 ** The z[] string will probably not be zero-terminated.  But the
3413 ** z[n] character is guaranteed to be something that does not look
3414 ** like the continuation of the number.
3415 */
3416 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3417   if( ALWAYS(z!=0) ){
3418     double value;
3419     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3420     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3421     if( negateFlag ) value = -value;
3422     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3423   }
3424 }
3425 #endif
3426 
3427 
3428 /*
3429 ** Generate an instruction that will put the integer describe by
3430 ** text z[0..n-1] into register iMem.
3431 **
3432 ** Expr.u.zToken is always UTF8 and zero-terminated.
3433 */
3434 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3435   Vdbe *v = pParse->pVdbe;
3436   if( pExpr->flags & EP_IntValue ){
3437     int i = pExpr->u.iValue;
3438     assert( i>=0 );
3439     if( negFlag ) i = -i;
3440     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3441   }else{
3442     int c;
3443     i64 value;
3444     const char *z = pExpr->u.zToken;
3445     assert( z!=0 );
3446     c = sqlite3DecOrHexToI64(z, &value);
3447     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3448 #ifdef SQLITE_OMIT_FLOATING_POINT
3449       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3450 #else
3451 #ifndef SQLITE_OMIT_HEX_INTEGER
3452       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3453         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3454       }else
3455 #endif
3456       {
3457         codeReal(v, z, negFlag, iMem);
3458       }
3459 #endif
3460     }else{
3461       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3462       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3463     }
3464   }
3465 }
3466 
3467 
3468 /* Generate code that will load into register regOut a value that is
3469 ** appropriate for the iIdxCol-th column of index pIdx.
3470 */
3471 void sqlite3ExprCodeLoadIndexColumn(
3472   Parse *pParse,  /* The parsing context */
3473   Index *pIdx,    /* The index whose column is to be loaded */
3474   int iTabCur,    /* Cursor pointing to a table row */
3475   int iIdxCol,    /* The column of the index to be loaded */
3476   int regOut      /* Store the index column value in this register */
3477 ){
3478   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3479   if( iTabCol==XN_EXPR ){
3480     assert( pIdx->aColExpr );
3481     assert( pIdx->aColExpr->nExpr>iIdxCol );
3482     pParse->iSelfTab = iTabCur + 1;
3483     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3484     pParse->iSelfTab = 0;
3485   }else{
3486     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3487                                     iTabCol, regOut);
3488   }
3489 }
3490 
3491 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3492 /*
3493 ** Generate code that will compute the value of generated column pCol
3494 ** and store the result in register regOut
3495 */
3496 void sqlite3ExprCodeGeneratedColumn(
3497   Parse *pParse,
3498   Column *pCol,
3499   int regOut
3500 ){
3501   int iAddr;
3502   Vdbe *v = pParse->pVdbe;
3503   assert( v!=0 );
3504   assert( pParse->iSelfTab!=0 );
3505   if( pParse->iSelfTab>0 ){
3506     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3507   }else{
3508     iAddr = 0;
3509   }
3510   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3511   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3512     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3513   }
3514   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3515 }
3516 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3517 
3518 /*
3519 ** Generate code to extract the value of the iCol-th column of a table.
3520 */
3521 void sqlite3ExprCodeGetColumnOfTable(
3522   Vdbe *v,        /* Parsing context */
3523   Table *pTab,    /* The table containing the value */
3524   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3525   int iCol,       /* Index of the column to extract */
3526   int regOut      /* Extract the value into this register */
3527 ){
3528   Column *pCol;
3529   assert( v!=0 );
3530   if( pTab==0 ){
3531     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3532     return;
3533   }
3534   if( iCol<0 || iCol==pTab->iPKey ){
3535     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3536   }else{
3537     int op;
3538     int x;
3539     if( IsVirtual(pTab) ){
3540       op = OP_VColumn;
3541       x = iCol;
3542 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3543     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3544       Parse *pParse = sqlite3VdbeParser(v);
3545       if( pCol->colFlags & COLFLAG_BUSY ){
3546         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3547       }else{
3548         int savedSelfTab = pParse->iSelfTab;
3549         pCol->colFlags |= COLFLAG_BUSY;
3550         pParse->iSelfTab = iTabCur+1;
3551         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3552         pParse->iSelfTab = savedSelfTab;
3553         pCol->colFlags &= ~COLFLAG_BUSY;
3554       }
3555       return;
3556 #endif
3557     }else if( !HasRowid(pTab) ){
3558       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3559       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3560       op = OP_Column;
3561     }else{
3562       x = sqlite3TableColumnToStorage(pTab,iCol);
3563       testcase( x!=iCol );
3564       op = OP_Column;
3565     }
3566     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3567     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3568   }
3569 }
3570 
3571 /*
3572 ** Generate code that will extract the iColumn-th column from
3573 ** table pTab and store the column value in register iReg.
3574 **
3575 ** There must be an open cursor to pTab in iTable when this routine
3576 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3577 */
3578 int sqlite3ExprCodeGetColumn(
3579   Parse *pParse,   /* Parsing and code generating context */
3580   Table *pTab,     /* Description of the table we are reading from */
3581   int iColumn,     /* Index of the table column */
3582   int iTable,      /* The cursor pointing to the table */
3583   int iReg,        /* Store results here */
3584   u8 p5            /* P5 value for OP_Column + FLAGS */
3585 ){
3586   assert( pParse->pVdbe!=0 );
3587   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3588   if( p5 ){
3589     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3590     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3591   }
3592   return iReg;
3593 }
3594 
3595 /*
3596 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3597 ** over to iTo..iTo+nReg-1.
3598 */
3599 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3600   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3601 }
3602 
3603 /*
3604 ** Convert a scalar expression node to a TK_REGISTER referencing
3605 ** register iReg.  The caller must ensure that iReg already contains
3606 ** the correct value for the expression.
3607 */
3608 static void exprToRegister(Expr *pExpr, int iReg){
3609   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3610   p->op2 = p->op;
3611   p->op = TK_REGISTER;
3612   p->iTable = iReg;
3613   ExprClearProperty(p, EP_Skip);
3614 }
3615 
3616 /*
3617 ** Evaluate an expression (either a vector or a scalar expression) and store
3618 ** the result in continguous temporary registers.  Return the index of
3619 ** the first register used to store the result.
3620 **
3621 ** If the returned result register is a temporary scalar, then also write
3622 ** that register number into *piFreeable.  If the returned result register
3623 ** is not a temporary or if the expression is a vector set *piFreeable
3624 ** to 0.
3625 */
3626 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3627   int iResult;
3628   int nResult = sqlite3ExprVectorSize(p);
3629   if( nResult==1 ){
3630     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3631   }else{
3632     *piFreeable = 0;
3633     if( p->op==TK_SELECT ){
3634 #if SQLITE_OMIT_SUBQUERY
3635       iResult = 0;
3636 #else
3637       iResult = sqlite3CodeSubselect(pParse, p);
3638 #endif
3639     }else{
3640       int i;
3641       iResult = pParse->nMem+1;
3642       pParse->nMem += nResult;
3643       for(i=0; i<nResult; i++){
3644         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3645       }
3646     }
3647   }
3648   return iResult;
3649 }
3650 
3651 /*
3652 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3653 ** so that a subsequent copy will not be merged into this one.
3654 */
3655 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3656   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3657     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3658   }
3659 }
3660 
3661 /*
3662 ** Generate code to implement special SQL functions that are implemented
3663 ** in-line rather than by using the usual callbacks.
3664 */
3665 static int exprCodeInlineFunction(
3666   Parse *pParse,        /* Parsing context */
3667   ExprList *pFarg,      /* List of function arguments */
3668   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3669   int target            /* Store function result in this register */
3670 ){
3671   int nFarg;
3672   Vdbe *v = pParse->pVdbe;
3673   assert( v!=0 );
3674   assert( pFarg!=0 );
3675   nFarg = pFarg->nExpr;
3676   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3677   switch( iFuncId ){
3678     case INLINEFUNC_coalesce: {
3679       /* Attempt a direct implementation of the built-in COALESCE() and
3680       ** IFNULL() functions.  This avoids unnecessary evaluation of
3681       ** arguments past the first non-NULL argument.
3682       */
3683       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3684       int i;
3685       assert( nFarg>=2 );
3686       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3687       for(i=1; i<nFarg; i++){
3688         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3689         VdbeCoverage(v);
3690         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3691       }
3692       setDoNotMergeFlagOnCopy(v);
3693       sqlite3VdbeResolveLabel(v, endCoalesce);
3694       break;
3695     }
3696 
3697     default: {
3698       /* The UNLIKELY() function is a no-op.  The result is the value
3699       ** of the first argument.
3700       */
3701       assert( nFarg==1 || nFarg==2 );
3702       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3703       break;
3704     }
3705 
3706   /***********************************************************************
3707   ** Test-only SQL functions that are only usable if enabled
3708   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3709   */
3710     case INLINEFUNC_expr_compare: {
3711       /* Compare two expressions using sqlite3ExprCompare() */
3712       assert( nFarg==2 );
3713       sqlite3VdbeAddOp2(v, OP_Integer,
3714          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3715          target);
3716       break;
3717     }
3718 
3719     case INLINEFUNC_expr_implies_expr: {
3720       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3721       assert( nFarg==2 );
3722       sqlite3VdbeAddOp2(v, OP_Integer,
3723          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3724          target);
3725       break;
3726     }
3727 
3728     case INLINEFUNC_implies_nonnull_row: {
3729       /* REsult of sqlite3ExprImpliesNonNullRow() */
3730       Expr *pA1;
3731       assert( nFarg==2 );
3732       pA1 = pFarg->a[1].pExpr;
3733       if( pA1->op==TK_COLUMN ){
3734         sqlite3VdbeAddOp2(v, OP_Integer,
3735            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3736            target);
3737       }else{
3738         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3739       }
3740       break;
3741     }
3742 
3743 #ifdef SQLITE_DEBUG
3744     case INLINEFUNC_affinity: {
3745       /* The AFFINITY() function evaluates to a string that describes
3746       ** the type affinity of the argument.  This is used for testing of
3747       ** the SQLite type logic.
3748       */
3749       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3750       char aff;
3751       assert( nFarg==1 );
3752       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3753       sqlite3VdbeLoadString(v, target,
3754               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3755       break;
3756     }
3757 #endif
3758   }
3759   return target;
3760 }
3761 
3762 
3763 /*
3764 ** Generate code into the current Vdbe to evaluate the given
3765 ** expression.  Attempt to store the results in register "target".
3766 ** Return the register where results are stored.
3767 **
3768 ** With this routine, there is no guarantee that results will
3769 ** be stored in target.  The result might be stored in some other
3770 ** register if it is convenient to do so.  The calling function
3771 ** must check the return code and move the results to the desired
3772 ** register.
3773 */
3774 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3775   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3776   int op;                   /* The opcode being coded */
3777   int inReg = target;       /* Results stored in register inReg */
3778   int regFree1 = 0;         /* If non-zero free this temporary register */
3779   int regFree2 = 0;         /* If non-zero free this temporary register */
3780   int r1, r2;               /* Various register numbers */
3781   Expr tempX;               /* Temporary expression node */
3782   int p5 = 0;
3783 
3784   assert( target>0 && target<=pParse->nMem );
3785   if( v==0 ){
3786     assert( pParse->db->mallocFailed );
3787     return 0;
3788   }
3789 
3790 expr_code_doover:
3791   if( pExpr==0 ){
3792     op = TK_NULL;
3793   }else{
3794     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3795     op = pExpr->op;
3796   }
3797   switch( op ){
3798     case TK_AGG_COLUMN: {
3799       AggInfo *pAggInfo = pExpr->pAggInfo;
3800       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3801       if( !pAggInfo->directMode ){
3802         assert( pCol->iMem>0 );
3803         return pCol->iMem;
3804       }else if( pAggInfo->useSortingIdx ){
3805         Table *pTab = pCol->pTab;
3806         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3807                               pCol->iSorterColumn, target);
3808         if( pCol->iColumn<0 ){
3809           VdbeComment((v,"%s.rowid",pTab->zName));
3810         }else{
3811           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3812           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3813             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3814           }
3815         }
3816         return target;
3817       }
3818       /* Otherwise, fall thru into the TK_COLUMN case */
3819     }
3820     case TK_COLUMN: {
3821       int iTab = pExpr->iTable;
3822       int iReg;
3823       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3824         /* This COLUMN expression is really a constant due to WHERE clause
3825         ** constraints, and that constant is coded by the pExpr->pLeft
3826         ** expresssion.  However, make sure the constant has the correct
3827         ** datatype by applying the Affinity of the table column to the
3828         ** constant.
3829         */
3830         int aff;
3831         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3832         if( pExpr->y.pTab ){
3833           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3834         }else{
3835           aff = pExpr->affExpr;
3836         }
3837         if( aff>SQLITE_AFF_BLOB ){
3838           static const char zAff[] = "B\000C\000D\000E";
3839           assert( SQLITE_AFF_BLOB=='A' );
3840           assert( SQLITE_AFF_TEXT=='B' );
3841           if( iReg!=target ){
3842             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3843             iReg = target;
3844           }
3845           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3846                             &zAff[(aff-'B')*2], P4_STATIC);
3847         }
3848         return iReg;
3849       }
3850       if( iTab<0 ){
3851         if( pParse->iSelfTab<0 ){
3852           /* Other columns in the same row for CHECK constraints or
3853           ** generated columns or for inserting into partial index.
3854           ** The row is unpacked into registers beginning at
3855           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3856           ** immediately prior to the first column.
3857           */
3858           Column *pCol;
3859           Table *pTab = pExpr->y.pTab;
3860           int iSrc;
3861           int iCol = pExpr->iColumn;
3862           assert( pTab!=0 );
3863           assert( iCol>=XN_ROWID );
3864           assert( iCol<pTab->nCol );
3865           if( iCol<0 ){
3866             return -1-pParse->iSelfTab;
3867           }
3868           pCol = pTab->aCol + iCol;
3869           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3870           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3871 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3872           if( pCol->colFlags & COLFLAG_GENERATED ){
3873             if( pCol->colFlags & COLFLAG_BUSY ){
3874               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3875                               pCol->zName);
3876               return 0;
3877             }
3878             pCol->colFlags |= COLFLAG_BUSY;
3879             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3880               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3881             }
3882             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3883             return iSrc;
3884           }else
3885 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3886           if( pCol->affinity==SQLITE_AFF_REAL ){
3887             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3888             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3889             return target;
3890           }else{
3891             return iSrc;
3892           }
3893         }else{
3894           /* Coding an expression that is part of an index where column names
3895           ** in the index refer to the table to which the index belongs */
3896           iTab = pParse->iSelfTab - 1;
3897         }
3898       }
3899       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3900                                pExpr->iColumn, iTab, target,
3901                                pExpr->op2);
3902       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3903         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3904       }
3905       return iReg;
3906     }
3907     case TK_INTEGER: {
3908       codeInteger(pParse, pExpr, 0, target);
3909       return target;
3910     }
3911     case TK_TRUEFALSE: {
3912       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3913       return target;
3914     }
3915 #ifndef SQLITE_OMIT_FLOATING_POINT
3916     case TK_FLOAT: {
3917       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3918       codeReal(v, pExpr->u.zToken, 0, target);
3919       return target;
3920     }
3921 #endif
3922     case TK_STRING: {
3923       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3924       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3925       return target;
3926     }
3927     default: {
3928       /* Make NULL the default case so that if a bug causes an illegal
3929       ** Expr node to be passed into this function, it will be handled
3930       ** sanely and not crash.  But keep the assert() to bring the problem
3931       ** to the attention of the developers. */
3932       assert( op==TK_NULL );
3933       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3934       return target;
3935     }
3936 #ifndef SQLITE_OMIT_BLOB_LITERAL
3937     case TK_BLOB: {
3938       int n;
3939       const char *z;
3940       char *zBlob;
3941       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3942       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3943       assert( pExpr->u.zToken[1]=='\'' );
3944       z = &pExpr->u.zToken[2];
3945       n = sqlite3Strlen30(z) - 1;
3946       assert( z[n]=='\'' );
3947       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3948       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3949       return target;
3950     }
3951 #endif
3952     case TK_VARIABLE: {
3953       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3954       assert( pExpr->u.zToken!=0 );
3955       assert( pExpr->u.zToken[0]!=0 );
3956       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3957       if( pExpr->u.zToken[1]!=0 ){
3958         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3959         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
3960         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3961         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3962       }
3963       return target;
3964     }
3965     case TK_REGISTER: {
3966       return pExpr->iTable;
3967     }
3968 #ifndef SQLITE_OMIT_CAST
3969     case TK_CAST: {
3970       /* Expressions of the form:   CAST(pLeft AS token) */
3971       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3972       if( inReg!=target ){
3973         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3974         inReg = target;
3975       }
3976       sqlite3VdbeAddOp2(v, OP_Cast, target,
3977                         sqlite3AffinityType(pExpr->u.zToken, 0));
3978       return inReg;
3979     }
3980 #endif /* SQLITE_OMIT_CAST */
3981     case TK_IS:
3982     case TK_ISNOT:
3983       op = (op==TK_IS) ? TK_EQ : TK_NE;
3984       p5 = SQLITE_NULLEQ;
3985       /* fall-through */
3986     case TK_LT:
3987     case TK_LE:
3988     case TK_GT:
3989     case TK_GE:
3990     case TK_NE:
3991     case TK_EQ: {
3992       Expr *pLeft = pExpr->pLeft;
3993       if( sqlite3ExprIsVector(pLeft) ){
3994         codeVectorCompare(pParse, pExpr, target, op, p5);
3995       }else{
3996         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3997         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3998         codeCompare(pParse, pLeft, pExpr->pRight, op,
3999             r1, r2, inReg, SQLITE_STOREP2 | p5,
4000             ExprHasProperty(pExpr,EP_Commuted));
4001         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4002         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4003         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4004         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4005         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4006         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4007         testcase( regFree1==0 );
4008         testcase( regFree2==0 );
4009       }
4010       break;
4011     }
4012     case TK_AND:
4013     case TK_OR:
4014     case TK_PLUS:
4015     case TK_STAR:
4016     case TK_MINUS:
4017     case TK_REM:
4018     case TK_BITAND:
4019     case TK_BITOR:
4020     case TK_SLASH:
4021     case TK_LSHIFT:
4022     case TK_RSHIFT:
4023     case TK_CONCAT: {
4024       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4025       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4026       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4027       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4028       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4029       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4030       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4031       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4032       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4033       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4034       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4035       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4036       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4037       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4038       testcase( regFree1==0 );
4039       testcase( regFree2==0 );
4040       break;
4041     }
4042     case TK_UMINUS: {
4043       Expr *pLeft = pExpr->pLeft;
4044       assert( pLeft );
4045       if( pLeft->op==TK_INTEGER ){
4046         codeInteger(pParse, pLeft, 1, target);
4047         return target;
4048 #ifndef SQLITE_OMIT_FLOATING_POINT
4049       }else if( pLeft->op==TK_FLOAT ){
4050         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4051         codeReal(v, pLeft->u.zToken, 1, target);
4052         return target;
4053 #endif
4054       }else{
4055         tempX.op = TK_INTEGER;
4056         tempX.flags = EP_IntValue|EP_TokenOnly;
4057         tempX.u.iValue = 0;
4058         ExprClearVVAProperties(&tempX);
4059         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4060         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4061         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4062         testcase( regFree2==0 );
4063       }
4064       break;
4065     }
4066     case TK_BITNOT:
4067     case TK_NOT: {
4068       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4069       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4070       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4071       testcase( regFree1==0 );
4072       sqlite3VdbeAddOp2(v, op, r1, inReg);
4073       break;
4074     }
4075     case TK_TRUTH: {
4076       int isTrue;    /* IS TRUE or IS NOT TRUE */
4077       int bNormal;   /* IS TRUE or IS FALSE */
4078       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4079       testcase( regFree1==0 );
4080       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4081       bNormal = pExpr->op2==TK_IS;
4082       testcase( isTrue && bNormal);
4083       testcase( !isTrue && bNormal);
4084       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4085       break;
4086     }
4087     case TK_ISNULL:
4088     case TK_NOTNULL: {
4089       int addr;
4090       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4091       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4092       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4093       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4094       testcase( regFree1==0 );
4095       addr = sqlite3VdbeAddOp1(v, op, r1);
4096       VdbeCoverageIf(v, op==TK_ISNULL);
4097       VdbeCoverageIf(v, op==TK_NOTNULL);
4098       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4099       sqlite3VdbeJumpHere(v, addr);
4100       break;
4101     }
4102     case TK_AGG_FUNCTION: {
4103       AggInfo *pInfo = pExpr->pAggInfo;
4104       if( pInfo==0 ){
4105         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4106         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4107       }else{
4108         return pInfo->aFunc[pExpr->iAgg].iMem;
4109       }
4110       break;
4111     }
4112     case TK_FUNCTION: {
4113       ExprList *pFarg;       /* List of function arguments */
4114       int nFarg;             /* Number of function arguments */
4115       FuncDef *pDef;         /* The function definition object */
4116       const char *zId;       /* The function name */
4117       u32 constMask = 0;     /* Mask of function arguments that are constant */
4118       int i;                 /* Loop counter */
4119       sqlite3 *db = pParse->db;  /* The database connection */
4120       u8 enc = ENC(db);      /* The text encoding used by this database */
4121       CollSeq *pColl = 0;    /* A collating sequence */
4122 
4123 #ifndef SQLITE_OMIT_WINDOWFUNC
4124       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4125         return pExpr->y.pWin->regResult;
4126       }
4127 #endif
4128 
4129       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4130         /* SQL functions can be expensive. So try to avoid running them
4131         ** multiple times if we know they always give the same result */
4132         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4133       }
4134       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4135       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4136       pFarg = pExpr->x.pList;
4137       nFarg = pFarg ? pFarg->nExpr : 0;
4138       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4139       zId = pExpr->u.zToken;
4140       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4141 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4142       if( pDef==0 && pParse->explain ){
4143         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4144       }
4145 #endif
4146       if( pDef==0 || pDef->xFinalize!=0 ){
4147         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4148         break;
4149       }
4150       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4151         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4152         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4153         return exprCodeInlineFunction(pParse, pFarg,
4154              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4155       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4156         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4157       }
4158 
4159       for(i=0; i<nFarg; i++){
4160         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4161           testcase( i==31 );
4162           constMask |= MASKBIT32(i);
4163         }
4164         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4165           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4166         }
4167       }
4168       if( pFarg ){
4169         if( constMask ){
4170           r1 = pParse->nMem+1;
4171           pParse->nMem += nFarg;
4172         }else{
4173           r1 = sqlite3GetTempRange(pParse, nFarg);
4174         }
4175 
4176         /* For length() and typeof() functions with a column argument,
4177         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4178         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4179         ** loading.
4180         */
4181         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4182           u8 exprOp;
4183           assert( nFarg==1 );
4184           assert( pFarg->a[0].pExpr!=0 );
4185           exprOp = pFarg->a[0].pExpr->op;
4186           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4187             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4188             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4189             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4190             pFarg->a[0].pExpr->op2 =
4191                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4192           }
4193         }
4194 
4195         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4196                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4197       }else{
4198         r1 = 0;
4199       }
4200 #ifndef SQLITE_OMIT_VIRTUALTABLE
4201       /* Possibly overload the function if the first argument is
4202       ** a virtual table column.
4203       **
4204       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4205       ** second argument, not the first, as the argument to test to
4206       ** see if it is a column in a virtual table.  This is done because
4207       ** the left operand of infix functions (the operand we want to
4208       ** control overloading) ends up as the second argument to the
4209       ** function.  The expression "A glob B" is equivalent to
4210       ** "glob(B,A).  We want to use the A in "A glob B" to test
4211       ** for function overloading.  But we use the B term in "glob(B,A)".
4212       */
4213       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4214         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4215       }else if( nFarg>0 ){
4216         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4217       }
4218 #endif
4219       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4220         if( !pColl ) pColl = db->pDfltColl;
4221         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4222       }
4223 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4224       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4225         Expr *pArg = pFarg->a[0].pExpr;
4226         if( pArg->op==TK_COLUMN ){
4227           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4228         }else{
4229           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4230         }
4231       }else
4232 #endif
4233       {
4234         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4235                                    pDef, pExpr->op2);
4236       }
4237       if( nFarg ){
4238         if( constMask==0 ){
4239           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4240         }else{
4241           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4242         }
4243       }
4244       return target;
4245     }
4246 #ifndef SQLITE_OMIT_SUBQUERY
4247     case TK_EXISTS:
4248     case TK_SELECT: {
4249       int nCol;
4250       testcase( op==TK_EXISTS );
4251       testcase( op==TK_SELECT );
4252       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4253         sqlite3SubselectError(pParse, nCol, 1);
4254       }else{
4255         return sqlite3CodeSubselect(pParse, pExpr);
4256       }
4257       break;
4258     }
4259     case TK_SELECT_COLUMN: {
4260       int n;
4261       if( pExpr->pLeft->iTable==0 ){
4262         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4263       }
4264       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4265       if( pExpr->iTable!=0
4266        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4267       ){
4268         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4269                                 pExpr->iTable, n);
4270       }
4271       return pExpr->pLeft->iTable + pExpr->iColumn;
4272     }
4273     case TK_IN: {
4274       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4275       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4276       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4277       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4278       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4279       sqlite3VdbeResolveLabel(v, destIfFalse);
4280       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4281       sqlite3VdbeResolveLabel(v, destIfNull);
4282       return target;
4283     }
4284 #endif /* SQLITE_OMIT_SUBQUERY */
4285 
4286 
4287     /*
4288     **    x BETWEEN y AND z
4289     **
4290     ** This is equivalent to
4291     **
4292     **    x>=y AND x<=z
4293     **
4294     ** X is stored in pExpr->pLeft.
4295     ** Y is stored in pExpr->pList->a[0].pExpr.
4296     ** Z is stored in pExpr->pList->a[1].pExpr.
4297     */
4298     case TK_BETWEEN: {
4299       exprCodeBetween(pParse, pExpr, target, 0, 0);
4300       return target;
4301     }
4302     case TK_SPAN:
4303     case TK_COLLATE:
4304     case TK_UPLUS: {
4305       pExpr = pExpr->pLeft;
4306       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4307     }
4308 
4309     case TK_TRIGGER: {
4310       /* If the opcode is TK_TRIGGER, then the expression is a reference
4311       ** to a column in the new.* or old.* pseudo-tables available to
4312       ** trigger programs. In this case Expr.iTable is set to 1 for the
4313       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4314       ** is set to the column of the pseudo-table to read, or to -1 to
4315       ** read the rowid field.
4316       **
4317       ** The expression is implemented using an OP_Param opcode. The p1
4318       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4319       ** to reference another column of the old.* pseudo-table, where
4320       ** i is the index of the column. For a new.rowid reference, p1 is
4321       ** set to (n+1), where n is the number of columns in each pseudo-table.
4322       ** For a reference to any other column in the new.* pseudo-table, p1
4323       ** is set to (n+2+i), where n and i are as defined previously. For
4324       ** example, if the table on which triggers are being fired is
4325       ** declared as:
4326       **
4327       **   CREATE TABLE t1(a, b);
4328       **
4329       ** Then p1 is interpreted as follows:
4330       **
4331       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4332       **   p1==1   ->    old.a         p1==4   ->    new.a
4333       **   p1==2   ->    old.b         p1==5   ->    new.b
4334       */
4335       Table *pTab = pExpr->y.pTab;
4336       int iCol = pExpr->iColumn;
4337       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4338                      + sqlite3TableColumnToStorage(pTab, iCol);
4339 
4340       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4341       assert( iCol>=-1 && iCol<pTab->nCol );
4342       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4343       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4344 
4345       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4346       VdbeComment((v, "r[%d]=%s.%s", target,
4347         (pExpr->iTable ? "new" : "old"),
4348         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4349       ));
4350 
4351 #ifndef SQLITE_OMIT_FLOATING_POINT
4352       /* If the column has REAL affinity, it may currently be stored as an
4353       ** integer. Use OP_RealAffinity to make sure it is really real.
4354       **
4355       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4356       ** floating point when extracting it from the record.  */
4357       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4358         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4359       }
4360 #endif
4361       break;
4362     }
4363 
4364     case TK_VECTOR: {
4365       sqlite3ErrorMsg(pParse, "row value misused");
4366       break;
4367     }
4368 
4369     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4370     ** that derive from the right-hand table of a LEFT JOIN.  The
4371     ** Expr.iTable value is the table number for the right-hand table.
4372     ** The expression is only evaluated if that table is not currently
4373     ** on a LEFT JOIN NULL row.
4374     */
4375     case TK_IF_NULL_ROW: {
4376       int addrINR;
4377       u8 okConstFactor = pParse->okConstFactor;
4378       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4379       /* Temporarily disable factoring of constant expressions, since
4380       ** even though expressions may appear to be constant, they are not
4381       ** really constant because they originate from the right-hand side
4382       ** of a LEFT JOIN. */
4383       pParse->okConstFactor = 0;
4384       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4385       pParse->okConstFactor = okConstFactor;
4386       sqlite3VdbeJumpHere(v, addrINR);
4387       sqlite3VdbeChangeP3(v, addrINR, inReg);
4388       break;
4389     }
4390 
4391     /*
4392     ** Form A:
4393     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4394     **
4395     ** Form B:
4396     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4397     **
4398     ** Form A is can be transformed into the equivalent form B as follows:
4399     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4400     **        WHEN x=eN THEN rN ELSE y END
4401     **
4402     ** X (if it exists) is in pExpr->pLeft.
4403     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4404     ** odd.  The Y is also optional.  If the number of elements in x.pList
4405     ** is even, then Y is omitted and the "otherwise" result is NULL.
4406     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4407     **
4408     ** The result of the expression is the Ri for the first matching Ei,
4409     ** or if there is no matching Ei, the ELSE term Y, or if there is
4410     ** no ELSE term, NULL.
4411     */
4412     case TK_CASE: {
4413       int endLabel;                     /* GOTO label for end of CASE stmt */
4414       int nextCase;                     /* GOTO label for next WHEN clause */
4415       int nExpr;                        /* 2x number of WHEN terms */
4416       int i;                            /* Loop counter */
4417       ExprList *pEList;                 /* List of WHEN terms */
4418       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4419       Expr opCompare;                   /* The X==Ei expression */
4420       Expr *pX;                         /* The X expression */
4421       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4422       Expr *pDel = 0;
4423       sqlite3 *db = pParse->db;
4424 
4425       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4426       assert(pExpr->x.pList->nExpr > 0);
4427       pEList = pExpr->x.pList;
4428       aListelem = pEList->a;
4429       nExpr = pEList->nExpr;
4430       endLabel = sqlite3VdbeMakeLabel(pParse);
4431       if( (pX = pExpr->pLeft)!=0 ){
4432         pDel = sqlite3ExprDup(db, pX, 0);
4433         if( db->mallocFailed ){
4434           sqlite3ExprDelete(db, pDel);
4435           break;
4436         }
4437         testcase( pX->op==TK_COLUMN );
4438         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4439         testcase( regFree1==0 );
4440         memset(&opCompare, 0, sizeof(opCompare));
4441         opCompare.op = TK_EQ;
4442         opCompare.pLeft = pDel;
4443         pTest = &opCompare;
4444         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4445         ** The value in regFree1 might get SCopy-ed into the file result.
4446         ** So make sure that the regFree1 register is not reused for other
4447         ** purposes and possibly overwritten.  */
4448         regFree1 = 0;
4449       }
4450       for(i=0; i<nExpr-1; i=i+2){
4451         if( pX ){
4452           assert( pTest!=0 );
4453           opCompare.pRight = aListelem[i].pExpr;
4454         }else{
4455           pTest = aListelem[i].pExpr;
4456         }
4457         nextCase = sqlite3VdbeMakeLabel(pParse);
4458         testcase( pTest->op==TK_COLUMN );
4459         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4460         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4461         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4462         sqlite3VdbeGoto(v, endLabel);
4463         sqlite3VdbeResolveLabel(v, nextCase);
4464       }
4465       if( (nExpr&1)!=0 ){
4466         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4467       }else{
4468         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4469       }
4470       sqlite3ExprDelete(db, pDel);
4471       setDoNotMergeFlagOnCopy(v);
4472       sqlite3VdbeResolveLabel(v, endLabel);
4473       break;
4474     }
4475 #ifndef SQLITE_OMIT_TRIGGER
4476     case TK_RAISE: {
4477       assert( pExpr->affExpr==OE_Rollback
4478            || pExpr->affExpr==OE_Abort
4479            || pExpr->affExpr==OE_Fail
4480            || pExpr->affExpr==OE_Ignore
4481       );
4482       if( !pParse->pTriggerTab ){
4483         sqlite3ErrorMsg(pParse,
4484                        "RAISE() may only be used within a trigger-program");
4485         return 0;
4486       }
4487       if( pExpr->affExpr==OE_Abort ){
4488         sqlite3MayAbort(pParse);
4489       }
4490       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4491       if( pExpr->affExpr==OE_Ignore ){
4492         sqlite3VdbeAddOp4(
4493             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4494         VdbeCoverage(v);
4495       }else{
4496         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4497                               pExpr->affExpr, pExpr->u.zToken, 0, 0);
4498       }
4499 
4500       break;
4501     }
4502 #endif
4503   }
4504   sqlite3ReleaseTempReg(pParse, regFree1);
4505   sqlite3ReleaseTempReg(pParse, regFree2);
4506   return inReg;
4507 }
4508 
4509 /*
4510 ** Generate code that will evaluate expression pExpr just one time
4511 ** per prepared statement execution.
4512 **
4513 ** If the expression uses functions (that might throw an exception) then
4514 ** guard them with an OP_Once opcode to ensure that the code is only executed
4515 ** once. If no functions are involved, then factor the code out and put it at
4516 ** the end of the prepared statement in the initialization section.
4517 **
4518 ** If regDest>=0 then the result is always stored in that register and the
4519 ** result is not reusable.  If regDest<0 then this routine is free to
4520 ** store the value whereever it wants.  The register where the expression
4521 ** is stored is returned.  When regDest<0, two identical expressions might
4522 ** code to the same register, if they do not contain function calls and hence
4523 ** are factored out into the initialization section at the end of the
4524 ** prepared statement.
4525 */
4526 int sqlite3ExprCodeRunJustOnce(
4527   Parse *pParse,    /* Parsing context */
4528   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4529   int regDest       /* Store the value in this register */
4530 ){
4531   ExprList *p;
4532   assert( ConstFactorOk(pParse) );
4533   p = pParse->pConstExpr;
4534   if( regDest<0 && p ){
4535     struct ExprList_item *pItem;
4536     int i;
4537     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4538       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4539         return pItem->u.iConstExprReg;
4540       }
4541     }
4542   }
4543   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4544   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4545     Vdbe *v = pParse->pVdbe;
4546     int addr;
4547     assert( v );
4548     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4549     pParse->okConstFactor = 0;
4550     if( !pParse->db->mallocFailed ){
4551       if( regDest<0 ) regDest = ++pParse->nMem;
4552       sqlite3ExprCode(pParse, pExpr, regDest);
4553     }
4554     pParse->okConstFactor = 1;
4555     sqlite3ExprDelete(pParse->db, pExpr);
4556     sqlite3VdbeJumpHere(v, addr);
4557   }else{
4558     p = sqlite3ExprListAppend(pParse, p, pExpr);
4559     if( p ){
4560        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4561        pItem->reusable = regDest<0;
4562        if( regDest<0 ) regDest = ++pParse->nMem;
4563        pItem->u.iConstExprReg = regDest;
4564     }
4565     pParse->pConstExpr = p;
4566   }
4567   return regDest;
4568 }
4569 
4570 /*
4571 ** Generate code to evaluate an expression and store the results
4572 ** into a register.  Return the register number where the results
4573 ** are stored.
4574 **
4575 ** If the register is a temporary register that can be deallocated,
4576 ** then write its number into *pReg.  If the result register is not
4577 ** a temporary, then set *pReg to zero.
4578 **
4579 ** If pExpr is a constant, then this routine might generate this
4580 ** code to fill the register in the initialization section of the
4581 ** VDBE program, in order to factor it out of the evaluation loop.
4582 */
4583 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4584   int r2;
4585   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4586   if( ConstFactorOk(pParse)
4587    && pExpr->op!=TK_REGISTER
4588    && sqlite3ExprIsConstantNotJoin(pExpr)
4589   ){
4590     *pReg  = 0;
4591     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4592   }else{
4593     int r1 = sqlite3GetTempReg(pParse);
4594     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4595     if( r2==r1 ){
4596       *pReg = r1;
4597     }else{
4598       sqlite3ReleaseTempReg(pParse, r1);
4599       *pReg = 0;
4600     }
4601   }
4602   return r2;
4603 }
4604 
4605 /*
4606 ** Generate code that will evaluate expression pExpr and store the
4607 ** results in register target.  The results are guaranteed to appear
4608 ** in register target.
4609 */
4610 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4611   int inReg;
4612 
4613   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4614   assert( target>0 && target<=pParse->nMem );
4615   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4616   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4617   if( inReg!=target && pParse->pVdbe ){
4618     u8 op;
4619     if( ExprHasProperty(pExpr,EP_Subquery) ){
4620       op = OP_Copy;
4621     }else{
4622       op = OP_SCopy;
4623     }
4624     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4625   }
4626 }
4627 
4628 /*
4629 ** Make a transient copy of expression pExpr and then code it using
4630 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4631 ** except that the input expression is guaranteed to be unchanged.
4632 */
4633 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4634   sqlite3 *db = pParse->db;
4635   pExpr = sqlite3ExprDup(db, pExpr, 0);
4636   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4637   sqlite3ExprDelete(db, pExpr);
4638 }
4639 
4640 /*
4641 ** Generate code that will evaluate expression pExpr and store the
4642 ** results in register target.  The results are guaranteed to appear
4643 ** in register target.  If the expression is constant, then this routine
4644 ** might choose to code the expression at initialization time.
4645 */
4646 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4647   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4648     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4649   }else{
4650     sqlite3ExprCodeCopy(pParse, pExpr, target);
4651   }
4652 }
4653 
4654 /*
4655 ** Generate code that pushes the value of every element of the given
4656 ** expression list into a sequence of registers beginning at target.
4657 **
4658 ** Return the number of elements evaluated.  The number returned will
4659 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4660 ** is defined.
4661 **
4662 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4663 ** filled using OP_SCopy.  OP_Copy must be used instead.
4664 **
4665 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4666 ** factored out into initialization code.
4667 **
4668 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4669 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4670 ** in registers at srcReg, and so the value can be copied from there.
4671 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4672 ** are simply omitted rather than being copied from srcReg.
4673 */
4674 int sqlite3ExprCodeExprList(
4675   Parse *pParse,     /* Parsing context */
4676   ExprList *pList,   /* The expression list to be coded */
4677   int target,        /* Where to write results */
4678   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4679   u8 flags           /* SQLITE_ECEL_* flags */
4680 ){
4681   struct ExprList_item *pItem;
4682   int i, j, n;
4683   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4684   Vdbe *v = pParse->pVdbe;
4685   assert( pList!=0 );
4686   assert( target>0 );
4687   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4688   n = pList->nExpr;
4689   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4690   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4691     Expr *pExpr = pItem->pExpr;
4692 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4693     if( pItem->bSorterRef ){
4694       i--;
4695       n--;
4696     }else
4697 #endif
4698     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4699       if( flags & SQLITE_ECEL_OMITREF ){
4700         i--;
4701         n--;
4702       }else{
4703         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4704       }
4705     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4706            && sqlite3ExprIsConstantNotJoin(pExpr)
4707     ){
4708       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4709     }else{
4710       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4711       if( inReg!=target+i ){
4712         VdbeOp *pOp;
4713         if( copyOp==OP_Copy
4714          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4715          && pOp->p1+pOp->p3+1==inReg
4716          && pOp->p2+pOp->p3+1==target+i
4717          && pOp->p5==0  /* The do-not-merge flag must be clear */
4718         ){
4719           pOp->p3++;
4720         }else{
4721           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4722         }
4723       }
4724     }
4725   }
4726   return n;
4727 }
4728 
4729 /*
4730 ** Generate code for a BETWEEN operator.
4731 **
4732 **    x BETWEEN y AND z
4733 **
4734 ** The above is equivalent to
4735 **
4736 **    x>=y AND x<=z
4737 **
4738 ** Code it as such, taking care to do the common subexpression
4739 ** elimination of x.
4740 **
4741 ** The xJumpIf parameter determines details:
4742 **
4743 **    NULL:                   Store the boolean result in reg[dest]
4744 **    sqlite3ExprIfTrue:      Jump to dest if true
4745 **    sqlite3ExprIfFalse:     Jump to dest if false
4746 **
4747 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4748 */
4749 static void exprCodeBetween(
4750   Parse *pParse,    /* Parsing and code generating context */
4751   Expr *pExpr,      /* The BETWEEN expression */
4752   int dest,         /* Jump destination or storage location */
4753   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4754   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4755 ){
4756   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4757   Expr compLeft;    /* The  x>=y  term */
4758   Expr compRight;   /* The  x<=z  term */
4759   int regFree1 = 0; /* Temporary use register */
4760   Expr *pDel = 0;
4761   sqlite3 *db = pParse->db;
4762 
4763   memset(&compLeft, 0, sizeof(Expr));
4764   memset(&compRight, 0, sizeof(Expr));
4765   memset(&exprAnd, 0, sizeof(Expr));
4766 
4767   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4768   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4769   if( db->mallocFailed==0 ){
4770     exprAnd.op = TK_AND;
4771     exprAnd.pLeft = &compLeft;
4772     exprAnd.pRight = &compRight;
4773     compLeft.op = TK_GE;
4774     compLeft.pLeft = pDel;
4775     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4776     compRight.op = TK_LE;
4777     compRight.pLeft = pDel;
4778     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4779     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4780     if( xJump ){
4781       xJump(pParse, &exprAnd, dest, jumpIfNull);
4782     }else{
4783       /* Mark the expression is being from the ON or USING clause of a join
4784       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4785       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4786       ** for clarity, but we are out of bits in the Expr.flags field so we
4787       ** have to reuse the EP_FromJoin bit.  Bummer. */
4788       pDel->flags |= EP_FromJoin;
4789       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4790     }
4791     sqlite3ReleaseTempReg(pParse, regFree1);
4792   }
4793   sqlite3ExprDelete(db, pDel);
4794 
4795   /* Ensure adequate test coverage */
4796   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4797   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4798   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4799   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4800   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4801   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4802   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4803   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4804   testcase( xJump==0 );
4805 }
4806 
4807 /*
4808 ** Generate code for a boolean expression such that a jump is made
4809 ** to the label "dest" if the expression is true but execution
4810 ** continues straight thru if the expression is false.
4811 **
4812 ** If the expression evaluates to NULL (neither true nor false), then
4813 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4814 **
4815 ** This code depends on the fact that certain token values (ex: TK_EQ)
4816 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4817 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4818 ** the make process cause these values to align.  Assert()s in the code
4819 ** below verify that the numbers are aligned correctly.
4820 */
4821 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4822   Vdbe *v = pParse->pVdbe;
4823   int op = 0;
4824   int regFree1 = 0;
4825   int regFree2 = 0;
4826   int r1, r2;
4827 
4828   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4829   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4830   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4831   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4832   op = pExpr->op;
4833   switch( op ){
4834     case TK_AND:
4835     case TK_OR: {
4836       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4837       if( pAlt!=pExpr ){
4838         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4839       }else if( op==TK_AND ){
4840         int d2 = sqlite3VdbeMakeLabel(pParse);
4841         testcase( jumpIfNull==0 );
4842         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4843                            jumpIfNull^SQLITE_JUMPIFNULL);
4844         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4845         sqlite3VdbeResolveLabel(v, d2);
4846       }else{
4847         testcase( jumpIfNull==0 );
4848         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4849         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4850       }
4851       break;
4852     }
4853     case TK_NOT: {
4854       testcase( jumpIfNull==0 );
4855       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4856       break;
4857     }
4858     case TK_TRUTH: {
4859       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4860       int isTrue;     /* IS TRUE or IS NOT TRUE */
4861       testcase( jumpIfNull==0 );
4862       isNot = pExpr->op2==TK_ISNOT;
4863       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4864       testcase( isTrue && isNot );
4865       testcase( !isTrue && isNot );
4866       if( isTrue ^ isNot ){
4867         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4868                           isNot ? SQLITE_JUMPIFNULL : 0);
4869       }else{
4870         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4871                            isNot ? SQLITE_JUMPIFNULL : 0);
4872       }
4873       break;
4874     }
4875     case TK_IS:
4876     case TK_ISNOT:
4877       testcase( op==TK_IS );
4878       testcase( op==TK_ISNOT );
4879       op = (op==TK_IS) ? TK_EQ : TK_NE;
4880       jumpIfNull = SQLITE_NULLEQ;
4881       /* Fall thru */
4882     case TK_LT:
4883     case TK_LE:
4884     case TK_GT:
4885     case TK_GE:
4886     case TK_NE:
4887     case TK_EQ: {
4888       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4889       testcase( jumpIfNull==0 );
4890       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4891       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4892       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4893                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4894       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4895       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4896       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4897       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4898       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4899       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4900       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4901       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4902       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4903       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4904       testcase( regFree1==0 );
4905       testcase( regFree2==0 );
4906       break;
4907     }
4908     case TK_ISNULL:
4909     case TK_NOTNULL: {
4910       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4911       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4912       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4913       sqlite3VdbeAddOp2(v, op, r1, dest);
4914       VdbeCoverageIf(v, op==TK_ISNULL);
4915       VdbeCoverageIf(v, op==TK_NOTNULL);
4916       testcase( regFree1==0 );
4917       break;
4918     }
4919     case TK_BETWEEN: {
4920       testcase( jumpIfNull==0 );
4921       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4922       break;
4923     }
4924 #ifndef SQLITE_OMIT_SUBQUERY
4925     case TK_IN: {
4926       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4927       int destIfNull = jumpIfNull ? dest : destIfFalse;
4928       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4929       sqlite3VdbeGoto(v, dest);
4930       sqlite3VdbeResolveLabel(v, destIfFalse);
4931       break;
4932     }
4933 #endif
4934     default: {
4935     default_expr:
4936       if( ExprAlwaysTrue(pExpr) ){
4937         sqlite3VdbeGoto(v, dest);
4938       }else if( ExprAlwaysFalse(pExpr) ){
4939         /* No-op */
4940       }else{
4941         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4942         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4943         VdbeCoverage(v);
4944         testcase( regFree1==0 );
4945         testcase( jumpIfNull==0 );
4946       }
4947       break;
4948     }
4949   }
4950   sqlite3ReleaseTempReg(pParse, regFree1);
4951   sqlite3ReleaseTempReg(pParse, regFree2);
4952 }
4953 
4954 /*
4955 ** Generate code for a boolean expression such that a jump is made
4956 ** to the label "dest" if the expression is false but execution
4957 ** continues straight thru if the expression is true.
4958 **
4959 ** If the expression evaluates to NULL (neither true nor false) then
4960 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4961 ** is 0.
4962 */
4963 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4964   Vdbe *v = pParse->pVdbe;
4965   int op = 0;
4966   int regFree1 = 0;
4967   int regFree2 = 0;
4968   int r1, r2;
4969 
4970   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4971   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4972   if( pExpr==0 )    return;
4973   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4974 
4975   /* The value of pExpr->op and op are related as follows:
4976   **
4977   **       pExpr->op            op
4978   **       ---------          ----------
4979   **       TK_ISNULL          OP_NotNull
4980   **       TK_NOTNULL         OP_IsNull
4981   **       TK_NE              OP_Eq
4982   **       TK_EQ              OP_Ne
4983   **       TK_GT              OP_Le
4984   **       TK_LE              OP_Gt
4985   **       TK_GE              OP_Lt
4986   **       TK_LT              OP_Ge
4987   **
4988   ** For other values of pExpr->op, op is undefined and unused.
4989   ** The value of TK_ and OP_ constants are arranged such that we
4990   ** can compute the mapping above using the following expression.
4991   ** Assert()s verify that the computation is correct.
4992   */
4993   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4994 
4995   /* Verify correct alignment of TK_ and OP_ constants
4996   */
4997   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4998   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4999   assert( pExpr->op!=TK_NE || op==OP_Eq );
5000   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5001   assert( pExpr->op!=TK_LT || op==OP_Ge );
5002   assert( pExpr->op!=TK_LE || op==OP_Gt );
5003   assert( pExpr->op!=TK_GT || op==OP_Le );
5004   assert( pExpr->op!=TK_GE || op==OP_Lt );
5005 
5006   switch( pExpr->op ){
5007     case TK_AND:
5008     case TK_OR: {
5009       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5010       if( pAlt!=pExpr ){
5011         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5012       }else if( pExpr->op==TK_AND ){
5013         testcase( jumpIfNull==0 );
5014         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5015         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5016       }else{
5017         int d2 = sqlite3VdbeMakeLabel(pParse);
5018         testcase( jumpIfNull==0 );
5019         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5020                           jumpIfNull^SQLITE_JUMPIFNULL);
5021         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5022         sqlite3VdbeResolveLabel(v, d2);
5023       }
5024       break;
5025     }
5026     case TK_NOT: {
5027       testcase( jumpIfNull==0 );
5028       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5029       break;
5030     }
5031     case TK_TRUTH: {
5032       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5033       int isTrue;  /* IS TRUE or IS NOT TRUE */
5034       testcase( jumpIfNull==0 );
5035       isNot = pExpr->op2==TK_ISNOT;
5036       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5037       testcase( isTrue && isNot );
5038       testcase( !isTrue && isNot );
5039       if( isTrue ^ isNot ){
5040         /* IS TRUE and IS NOT FALSE */
5041         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5042                            isNot ? 0 : SQLITE_JUMPIFNULL);
5043 
5044       }else{
5045         /* IS FALSE and IS NOT TRUE */
5046         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5047                           isNot ? 0 : SQLITE_JUMPIFNULL);
5048       }
5049       break;
5050     }
5051     case TK_IS:
5052     case TK_ISNOT:
5053       testcase( pExpr->op==TK_IS );
5054       testcase( pExpr->op==TK_ISNOT );
5055       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5056       jumpIfNull = SQLITE_NULLEQ;
5057       /* Fall thru */
5058     case TK_LT:
5059     case TK_LE:
5060     case TK_GT:
5061     case TK_GE:
5062     case TK_NE:
5063     case TK_EQ: {
5064       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5065       testcase( jumpIfNull==0 );
5066       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5067       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5068       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5069                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5070       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5071       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5072       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5073       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5074       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5075       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5076       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5077       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5078       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5079       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5080       testcase( regFree1==0 );
5081       testcase( regFree2==0 );
5082       break;
5083     }
5084     case TK_ISNULL:
5085     case TK_NOTNULL: {
5086       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5087       sqlite3VdbeAddOp2(v, op, r1, dest);
5088       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5089       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5090       testcase( regFree1==0 );
5091       break;
5092     }
5093     case TK_BETWEEN: {
5094       testcase( jumpIfNull==0 );
5095       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5096       break;
5097     }
5098 #ifndef SQLITE_OMIT_SUBQUERY
5099     case TK_IN: {
5100       if( jumpIfNull ){
5101         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5102       }else{
5103         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5104         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5105         sqlite3VdbeResolveLabel(v, destIfNull);
5106       }
5107       break;
5108     }
5109 #endif
5110     default: {
5111     default_expr:
5112       if( ExprAlwaysFalse(pExpr) ){
5113         sqlite3VdbeGoto(v, dest);
5114       }else if( ExprAlwaysTrue(pExpr) ){
5115         /* no-op */
5116       }else{
5117         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5118         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5119         VdbeCoverage(v);
5120         testcase( regFree1==0 );
5121         testcase( jumpIfNull==0 );
5122       }
5123       break;
5124     }
5125   }
5126   sqlite3ReleaseTempReg(pParse, regFree1);
5127   sqlite3ReleaseTempReg(pParse, regFree2);
5128 }
5129 
5130 /*
5131 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5132 ** code generation, and that copy is deleted after code generation. This
5133 ** ensures that the original pExpr is unchanged.
5134 */
5135 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5136   sqlite3 *db = pParse->db;
5137   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5138   if( db->mallocFailed==0 ){
5139     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5140   }
5141   sqlite3ExprDelete(db, pCopy);
5142 }
5143 
5144 /*
5145 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5146 ** type of expression.
5147 **
5148 ** If pExpr is a simple SQL value - an integer, real, string, blob
5149 ** or NULL value - then the VDBE currently being prepared is configured
5150 ** to re-prepare each time a new value is bound to variable pVar.
5151 **
5152 ** Additionally, if pExpr is a simple SQL value and the value is the
5153 ** same as that currently bound to variable pVar, non-zero is returned.
5154 ** Otherwise, if the values are not the same or if pExpr is not a simple
5155 ** SQL value, zero is returned.
5156 */
5157 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5158   int res = 0;
5159   int iVar;
5160   sqlite3_value *pL, *pR = 0;
5161 
5162   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5163   if( pR ){
5164     iVar = pVar->iColumn;
5165     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5166     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5167     if( pL ){
5168       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5169         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5170       }
5171       res =  0==sqlite3MemCompare(pL, pR, 0);
5172     }
5173     sqlite3ValueFree(pR);
5174     sqlite3ValueFree(pL);
5175   }
5176 
5177   return res;
5178 }
5179 
5180 /*
5181 ** Do a deep comparison of two expression trees.  Return 0 if the two
5182 ** expressions are completely identical.  Return 1 if they differ only
5183 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5184 ** other than the top-level COLLATE operator.
5185 **
5186 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5187 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5188 **
5189 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5190 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5191 **
5192 ** Sometimes this routine will return 2 even if the two expressions
5193 ** really are equivalent.  If we cannot prove that the expressions are
5194 ** identical, we return 2 just to be safe.  So if this routine
5195 ** returns 2, then you do not really know for certain if the two
5196 ** expressions are the same.  But if you get a 0 or 1 return, then you
5197 ** can be sure the expressions are the same.  In the places where
5198 ** this routine is used, it does not hurt to get an extra 2 - that
5199 ** just might result in some slightly slower code.  But returning
5200 ** an incorrect 0 or 1 could lead to a malfunction.
5201 **
5202 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5203 ** pParse->pReprepare can be matched against literals in pB.  The
5204 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5205 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5206 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5207 ** pB causes a return value of 2.
5208 */
5209 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5210   u32 combinedFlags;
5211   if( pA==0 || pB==0 ){
5212     return pB==pA ? 0 : 2;
5213   }
5214   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5215     return 0;
5216   }
5217   combinedFlags = pA->flags | pB->flags;
5218   if( combinedFlags & EP_IntValue ){
5219     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5220       return 0;
5221     }
5222     return 2;
5223   }
5224   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5225     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5226       return 1;
5227     }
5228     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5229       return 1;
5230     }
5231     return 2;
5232   }
5233   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5234     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5235       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5236 #ifndef SQLITE_OMIT_WINDOWFUNC
5237       assert( pA->op==pB->op );
5238       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5239         return 2;
5240       }
5241       if( ExprHasProperty(pA,EP_WinFunc) ){
5242         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5243           return 2;
5244         }
5245       }
5246 #endif
5247     }else if( pA->op==TK_NULL ){
5248       return 0;
5249     }else if( pA->op==TK_COLLATE ){
5250       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5251     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5252       return 2;
5253     }
5254   }
5255   if( (pA->flags & (EP_Distinct|EP_Commuted))
5256      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5257   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5258     if( combinedFlags & EP_xIsSelect ) return 2;
5259     if( (combinedFlags & EP_FixedCol)==0
5260      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5261     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5262     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5263     if( pA->op!=TK_STRING
5264      && pA->op!=TK_TRUEFALSE
5265      && ALWAYS((combinedFlags & EP_Reduced)==0)
5266     ){
5267       if( pA->iColumn!=pB->iColumn ) return 2;
5268       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5269       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5270         return 2;
5271       }
5272     }
5273   }
5274   return 0;
5275 }
5276 
5277 /*
5278 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5279 ** if they are certainly different, or 2 if it is not possible to
5280 ** determine if they are identical or not.
5281 **
5282 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5283 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5284 **
5285 ** This routine might return non-zero for equivalent ExprLists.  The
5286 ** only consequence will be disabled optimizations.  But this routine
5287 ** must never return 0 if the two ExprList objects are different, or
5288 ** a malfunction will result.
5289 **
5290 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5291 ** always differs from a non-NULL pointer.
5292 */
5293 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5294   int i;
5295   if( pA==0 && pB==0 ) return 0;
5296   if( pA==0 || pB==0 ) return 1;
5297   if( pA->nExpr!=pB->nExpr ) return 1;
5298   for(i=0; i<pA->nExpr; i++){
5299     int res;
5300     Expr *pExprA = pA->a[i].pExpr;
5301     Expr *pExprB = pB->a[i].pExpr;
5302     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5303     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5304   }
5305   return 0;
5306 }
5307 
5308 /*
5309 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5310 ** are ignored.
5311 */
5312 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5313   return sqlite3ExprCompare(0,
5314              sqlite3ExprSkipCollateAndLikely(pA),
5315              sqlite3ExprSkipCollateAndLikely(pB),
5316              iTab);
5317 }
5318 
5319 /*
5320 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5321 **
5322 ** Or if seenNot is true, return non-zero if Expr p can only be
5323 ** non-NULL if pNN is not NULL
5324 */
5325 static int exprImpliesNotNull(
5326   Parse *pParse,      /* Parsing context */
5327   Expr *p,            /* The expression to be checked */
5328   Expr *pNN,          /* The expression that is NOT NULL */
5329   int iTab,           /* Table being evaluated */
5330   int seenNot         /* Return true only if p can be any non-NULL value */
5331 ){
5332   assert( p );
5333   assert( pNN );
5334   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5335     return pNN->op!=TK_NULL;
5336   }
5337   switch( p->op ){
5338     case TK_IN: {
5339       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5340       assert( ExprHasProperty(p,EP_xIsSelect)
5341            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5342       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5343     }
5344     case TK_BETWEEN: {
5345       ExprList *pList = p->x.pList;
5346       assert( pList!=0 );
5347       assert( pList->nExpr==2 );
5348       if( seenNot ) return 0;
5349       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5350        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5351       ){
5352         return 1;
5353       }
5354       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5355     }
5356     case TK_EQ:
5357     case TK_NE:
5358     case TK_LT:
5359     case TK_LE:
5360     case TK_GT:
5361     case TK_GE:
5362     case TK_PLUS:
5363     case TK_MINUS:
5364     case TK_BITOR:
5365     case TK_LSHIFT:
5366     case TK_RSHIFT:
5367     case TK_CONCAT:
5368       seenNot = 1;
5369       /* Fall thru */
5370     case TK_STAR:
5371     case TK_REM:
5372     case TK_BITAND:
5373     case TK_SLASH: {
5374       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5375       /* Fall thru into the next case */
5376     }
5377     case TK_SPAN:
5378     case TK_COLLATE:
5379     case TK_UPLUS:
5380     case TK_UMINUS: {
5381       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5382     }
5383     case TK_TRUTH: {
5384       if( seenNot ) return 0;
5385       if( p->op2!=TK_IS ) return 0;
5386       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5387     }
5388     case TK_BITNOT:
5389     case TK_NOT: {
5390       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5391     }
5392   }
5393   return 0;
5394 }
5395 
5396 /*
5397 ** Return true if we can prove the pE2 will always be true if pE1 is
5398 ** true.  Return false if we cannot complete the proof or if pE2 might
5399 ** be false.  Examples:
5400 **
5401 **     pE1: x==5       pE2: x==5             Result: true
5402 **     pE1: x>0        pE2: x==5             Result: false
5403 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5404 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5405 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5406 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5407 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5408 **
5409 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5410 ** Expr.iTable<0 then assume a table number given by iTab.
5411 **
5412 ** If pParse is not NULL, then the values of bound variables in pE1 are
5413 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5414 ** modified to record which bound variables are referenced.  If pParse
5415 ** is NULL, then false will be returned if pE1 contains any bound variables.
5416 **
5417 ** When in doubt, return false.  Returning true might give a performance
5418 ** improvement.  Returning false might cause a performance reduction, but
5419 ** it will always give the correct answer and is hence always safe.
5420 */
5421 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5422   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5423     return 1;
5424   }
5425   if( pE2->op==TK_OR
5426    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5427              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5428   ){
5429     return 1;
5430   }
5431   if( pE2->op==TK_NOTNULL
5432    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5433   ){
5434     return 1;
5435   }
5436   return 0;
5437 }
5438 
5439 /*
5440 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5441 ** If the expression node requires that the table at pWalker->iCur
5442 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5443 **
5444 ** This routine controls an optimization.  False positives (setting
5445 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5446 ** (never setting pWalker->eCode) is a harmless missed optimization.
5447 */
5448 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5449   testcase( pExpr->op==TK_AGG_COLUMN );
5450   testcase( pExpr->op==TK_AGG_FUNCTION );
5451   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5452   switch( pExpr->op ){
5453     case TK_ISNOT:
5454     case TK_ISNULL:
5455     case TK_NOTNULL:
5456     case TK_IS:
5457     case TK_OR:
5458     case TK_VECTOR:
5459     case TK_CASE:
5460     case TK_IN:
5461     case TK_FUNCTION:
5462     case TK_TRUTH:
5463       testcase( pExpr->op==TK_ISNOT );
5464       testcase( pExpr->op==TK_ISNULL );
5465       testcase( pExpr->op==TK_NOTNULL );
5466       testcase( pExpr->op==TK_IS );
5467       testcase( pExpr->op==TK_OR );
5468       testcase( pExpr->op==TK_VECTOR );
5469       testcase( pExpr->op==TK_CASE );
5470       testcase( pExpr->op==TK_IN );
5471       testcase( pExpr->op==TK_FUNCTION );
5472       testcase( pExpr->op==TK_TRUTH );
5473       return WRC_Prune;
5474     case TK_COLUMN:
5475       if( pWalker->u.iCur==pExpr->iTable ){
5476         pWalker->eCode = 1;
5477         return WRC_Abort;
5478       }
5479       return WRC_Prune;
5480 
5481     case TK_AND:
5482       if( pWalker->eCode==0 ){
5483         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5484         if( pWalker->eCode ){
5485           pWalker->eCode = 0;
5486           sqlite3WalkExpr(pWalker, pExpr->pRight);
5487         }
5488       }
5489       return WRC_Prune;
5490 
5491     case TK_BETWEEN:
5492       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5493         assert( pWalker->eCode );
5494         return WRC_Abort;
5495       }
5496       return WRC_Prune;
5497 
5498     /* Virtual tables are allowed to use constraints like x=NULL.  So
5499     ** a term of the form x=y does not prove that y is not null if x
5500     ** is the column of a virtual table */
5501     case TK_EQ:
5502     case TK_NE:
5503     case TK_LT:
5504     case TK_LE:
5505     case TK_GT:
5506     case TK_GE: {
5507       Expr *pLeft = pExpr->pLeft;
5508       Expr *pRight = pExpr->pRight;
5509       testcase( pExpr->op==TK_EQ );
5510       testcase( pExpr->op==TK_NE );
5511       testcase( pExpr->op==TK_LT );
5512       testcase( pExpr->op==TK_LE );
5513       testcase( pExpr->op==TK_GT );
5514       testcase( pExpr->op==TK_GE );
5515       /* The y.pTab=0 assignment in wherecode.c always happens after the
5516       ** impliesNotNullRow() test */
5517       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5518                                && IsVirtual(pLeft->y.pTab))
5519        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5520                                && IsVirtual(pRight->y.pTab))
5521       ){
5522         return WRC_Prune;
5523       }
5524     }
5525     default:
5526       return WRC_Continue;
5527   }
5528 }
5529 
5530 /*
5531 ** Return true (non-zero) if expression p can only be true if at least
5532 ** one column of table iTab is non-null.  In other words, return true
5533 ** if expression p will always be NULL or false if every column of iTab
5534 ** is NULL.
5535 **
5536 ** False negatives are acceptable.  In other words, it is ok to return
5537 ** zero even if expression p will never be true of every column of iTab
5538 ** is NULL.  A false negative is merely a missed optimization opportunity.
5539 **
5540 ** False positives are not allowed, however.  A false positive may result
5541 ** in an incorrect answer.
5542 **
5543 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5544 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5545 **
5546 ** This routine is used to check if a LEFT JOIN can be converted into
5547 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5548 ** clause requires that some column of the right table of the LEFT JOIN
5549 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5550 ** ordinary join.
5551 */
5552 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5553   Walker w;
5554   p = sqlite3ExprSkipCollateAndLikely(p);
5555   if( p==0 ) return 0;
5556   if( p->op==TK_NOTNULL ){
5557     p = p->pLeft;
5558   }else{
5559     while( p->op==TK_AND ){
5560       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5561       p = p->pRight;
5562     }
5563   }
5564   w.xExprCallback = impliesNotNullRow;
5565   w.xSelectCallback = 0;
5566   w.xSelectCallback2 = 0;
5567   w.eCode = 0;
5568   w.u.iCur = iTab;
5569   sqlite3WalkExpr(&w, p);
5570   return w.eCode;
5571 }
5572 
5573 /*
5574 ** An instance of the following structure is used by the tree walker
5575 ** to determine if an expression can be evaluated by reference to the
5576 ** index only, without having to do a search for the corresponding
5577 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5578 ** is the cursor for the table.
5579 */
5580 struct IdxCover {
5581   Index *pIdx;     /* The index to be tested for coverage */
5582   int iCur;        /* Cursor number for the table corresponding to the index */
5583 };
5584 
5585 /*
5586 ** Check to see if there are references to columns in table
5587 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5588 ** pWalker->u.pIdxCover->pIdx.
5589 */
5590 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5591   if( pExpr->op==TK_COLUMN
5592    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5593    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5594   ){
5595     pWalker->eCode = 1;
5596     return WRC_Abort;
5597   }
5598   return WRC_Continue;
5599 }
5600 
5601 /*
5602 ** Determine if an index pIdx on table with cursor iCur contains will
5603 ** the expression pExpr.  Return true if the index does cover the
5604 ** expression and false if the pExpr expression references table columns
5605 ** that are not found in the index pIdx.
5606 **
5607 ** An index covering an expression means that the expression can be
5608 ** evaluated using only the index and without having to lookup the
5609 ** corresponding table entry.
5610 */
5611 int sqlite3ExprCoveredByIndex(
5612   Expr *pExpr,        /* The index to be tested */
5613   int iCur,           /* The cursor number for the corresponding table */
5614   Index *pIdx         /* The index that might be used for coverage */
5615 ){
5616   Walker w;
5617   struct IdxCover xcov;
5618   memset(&w, 0, sizeof(w));
5619   xcov.iCur = iCur;
5620   xcov.pIdx = pIdx;
5621   w.xExprCallback = exprIdxCover;
5622   w.u.pIdxCover = &xcov;
5623   sqlite3WalkExpr(&w, pExpr);
5624   return !w.eCode;
5625 }
5626 
5627 
5628 /*
5629 ** An instance of the following structure is used by the tree walker
5630 ** to count references to table columns in the arguments of an
5631 ** aggregate function, in order to implement the
5632 ** sqlite3FunctionThisSrc() routine.
5633 */
5634 struct SrcCount {
5635   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5636   int nThis;       /* Number of references to columns in pSrcList */
5637   int nOther;      /* Number of references to columns in other FROM clauses */
5638 };
5639 
5640 /*
5641 ** Count the number of references to columns.
5642 */
5643 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5644   /* There was once a NEVER() on the second term on the grounds that
5645   ** sqlite3FunctionUsesThisSrc() was always called before
5646   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5647   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5648   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5649   ** FunctionUsesThisSrc() when creating a new sub-select. */
5650   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5651     int i;
5652     struct SrcCount *p = pWalker->u.pSrcCount;
5653     SrcList *pSrc = p->pSrc;
5654     int nSrc = pSrc ? pSrc->nSrc : 0;
5655     for(i=0; i<nSrc; i++){
5656       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5657     }
5658     if( i<nSrc ){
5659       p->nThis++;
5660     }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){
5661       /* In a well-formed parse tree (no name resolution errors),
5662       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5663       ** outer context.  Those are the only ones to count as "other" */
5664       p->nOther++;
5665     }
5666   }
5667   return WRC_Continue;
5668 }
5669 
5670 /*
5671 ** Determine if any of the arguments to the pExpr Function reference
5672 ** pSrcList.  Return true if they do.  Also return true if the function
5673 ** has no arguments or has only constant arguments.  Return false if pExpr
5674 ** references columns but not columns of tables found in pSrcList.
5675 */
5676 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5677   Walker w;
5678   struct SrcCount cnt;
5679   assert( pExpr->op==TK_AGG_FUNCTION );
5680   memset(&w, 0, sizeof(w));
5681   w.xExprCallback = exprSrcCount;
5682   w.xSelectCallback = sqlite3SelectWalkNoop;
5683   w.u.pSrcCount = &cnt;
5684   cnt.pSrc = pSrcList;
5685   cnt.nThis = 0;
5686   cnt.nOther = 0;
5687   sqlite3WalkExprList(&w, pExpr->x.pList);
5688 #ifndef SQLITE_OMIT_WINDOWFUNC
5689   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5690     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5691   }
5692 #endif
5693   return cnt.nThis>0 || cnt.nOther==0;
5694 }
5695 
5696 /*
5697 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5698 ** the new element.  Return a negative number if malloc fails.
5699 */
5700 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5701   int i;
5702   pInfo->aCol = sqlite3ArrayAllocate(
5703        db,
5704        pInfo->aCol,
5705        sizeof(pInfo->aCol[0]),
5706        &pInfo->nColumn,
5707        &i
5708   );
5709   return i;
5710 }
5711 
5712 /*
5713 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5714 ** the new element.  Return a negative number if malloc fails.
5715 */
5716 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5717   int i;
5718   pInfo->aFunc = sqlite3ArrayAllocate(
5719        db,
5720        pInfo->aFunc,
5721        sizeof(pInfo->aFunc[0]),
5722        &pInfo->nFunc,
5723        &i
5724   );
5725   return i;
5726 }
5727 
5728 /*
5729 ** This is the xExprCallback for a tree walker.  It is used to
5730 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5731 ** for additional information.
5732 */
5733 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5734   int i;
5735   NameContext *pNC = pWalker->u.pNC;
5736   Parse *pParse = pNC->pParse;
5737   SrcList *pSrcList = pNC->pSrcList;
5738   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5739 
5740   assert( pNC->ncFlags & NC_UAggInfo );
5741   switch( pExpr->op ){
5742     case TK_AGG_COLUMN:
5743     case TK_COLUMN: {
5744       testcase( pExpr->op==TK_AGG_COLUMN );
5745       testcase( pExpr->op==TK_COLUMN );
5746       /* Check to see if the column is in one of the tables in the FROM
5747       ** clause of the aggregate query */
5748       if( ALWAYS(pSrcList!=0) ){
5749         struct SrcList_item *pItem = pSrcList->a;
5750         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5751           struct AggInfo_col *pCol;
5752           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5753           if( pExpr->iTable==pItem->iCursor ){
5754             /* If we reach this point, it means that pExpr refers to a table
5755             ** that is in the FROM clause of the aggregate query.
5756             **
5757             ** Make an entry for the column in pAggInfo->aCol[] if there
5758             ** is not an entry there already.
5759             */
5760             int k;
5761             pCol = pAggInfo->aCol;
5762             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5763               if( pCol->iTable==pExpr->iTable &&
5764                   pCol->iColumn==pExpr->iColumn ){
5765                 break;
5766               }
5767             }
5768             if( (k>=pAggInfo->nColumn)
5769              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5770             ){
5771               pCol = &pAggInfo->aCol[k];
5772               pCol->pTab = pExpr->y.pTab;
5773               pCol->iTable = pExpr->iTable;
5774               pCol->iColumn = pExpr->iColumn;
5775               pCol->iMem = ++pParse->nMem;
5776               pCol->iSorterColumn = -1;
5777               pCol->pExpr = pExpr;
5778               if( pAggInfo->pGroupBy ){
5779                 int j, n;
5780                 ExprList *pGB = pAggInfo->pGroupBy;
5781                 struct ExprList_item *pTerm = pGB->a;
5782                 n = pGB->nExpr;
5783                 for(j=0; j<n; j++, pTerm++){
5784                   Expr *pE = pTerm->pExpr;
5785                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5786                       pE->iColumn==pExpr->iColumn ){
5787                     pCol->iSorterColumn = j;
5788                     break;
5789                   }
5790                 }
5791               }
5792               if( pCol->iSorterColumn<0 ){
5793                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5794               }
5795             }
5796             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5797             ** because it was there before or because we just created it).
5798             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5799             ** pAggInfo->aCol[] entry.
5800             */
5801             ExprSetVVAProperty(pExpr, EP_NoReduce);
5802             pExpr->pAggInfo = pAggInfo;
5803             pExpr->op = TK_AGG_COLUMN;
5804             pExpr->iAgg = (i16)k;
5805             break;
5806           } /* endif pExpr->iTable==pItem->iCursor */
5807         } /* end loop over pSrcList */
5808       }
5809       return WRC_Prune;
5810     }
5811     case TK_AGG_FUNCTION: {
5812       if( (pNC->ncFlags & NC_InAggFunc)==0
5813        && pWalker->walkerDepth==pExpr->op2
5814       ){
5815         /* Check to see if pExpr is a duplicate of another aggregate
5816         ** function that is already in the pAggInfo structure
5817         */
5818         struct AggInfo_func *pItem = pAggInfo->aFunc;
5819         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5820           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5821             break;
5822           }
5823         }
5824         if( i>=pAggInfo->nFunc ){
5825           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5826           */
5827           u8 enc = ENC(pParse->db);
5828           i = addAggInfoFunc(pParse->db, pAggInfo);
5829           if( i>=0 ){
5830             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5831             pItem = &pAggInfo->aFunc[i];
5832             pItem->pExpr = pExpr;
5833             pItem->iMem = ++pParse->nMem;
5834             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5835             pItem->pFunc = sqlite3FindFunction(pParse->db,
5836                    pExpr->u.zToken,
5837                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5838             if( pExpr->flags & EP_Distinct ){
5839               pItem->iDistinct = pParse->nTab++;
5840             }else{
5841               pItem->iDistinct = -1;
5842             }
5843           }
5844         }
5845         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5846         */
5847         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5848         ExprSetVVAProperty(pExpr, EP_NoReduce);
5849         pExpr->iAgg = (i16)i;
5850         pExpr->pAggInfo = pAggInfo;
5851         return WRC_Prune;
5852       }else{
5853         return WRC_Continue;
5854       }
5855     }
5856   }
5857   return WRC_Continue;
5858 }
5859 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5860   UNUSED_PARAMETER(pSelect);
5861   pWalker->walkerDepth++;
5862   return WRC_Continue;
5863 }
5864 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5865   UNUSED_PARAMETER(pSelect);
5866   pWalker->walkerDepth--;
5867 }
5868 
5869 /*
5870 ** Analyze the pExpr expression looking for aggregate functions and
5871 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5872 ** points to.  Additional entries are made on the AggInfo object as
5873 ** necessary.
5874 **
5875 ** This routine should only be called after the expression has been
5876 ** analyzed by sqlite3ResolveExprNames().
5877 */
5878 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5879   Walker w;
5880   w.xExprCallback = analyzeAggregate;
5881   w.xSelectCallback = analyzeAggregatesInSelect;
5882   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5883   w.walkerDepth = 0;
5884   w.u.pNC = pNC;
5885   w.pParse = 0;
5886   assert( pNC->pSrcList!=0 );
5887   sqlite3WalkExpr(&w, pExpr);
5888 }
5889 
5890 /*
5891 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5892 ** expression list.  Return the number of errors.
5893 **
5894 ** If an error is found, the analysis is cut short.
5895 */
5896 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5897   struct ExprList_item *pItem;
5898   int i;
5899   if( pList ){
5900     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5901       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5902     }
5903   }
5904 }
5905 
5906 /*
5907 ** Allocate a single new register for use to hold some intermediate result.
5908 */
5909 int sqlite3GetTempReg(Parse *pParse){
5910   if( pParse->nTempReg==0 ){
5911     return ++pParse->nMem;
5912   }
5913   return pParse->aTempReg[--pParse->nTempReg];
5914 }
5915 
5916 /*
5917 ** Deallocate a register, making available for reuse for some other
5918 ** purpose.
5919 */
5920 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5921   if( iReg ){
5922     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
5923     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5924       pParse->aTempReg[pParse->nTempReg++] = iReg;
5925     }
5926   }
5927 }
5928 
5929 /*
5930 ** Allocate or deallocate a block of nReg consecutive registers.
5931 */
5932 int sqlite3GetTempRange(Parse *pParse, int nReg){
5933   int i, n;
5934   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5935   i = pParse->iRangeReg;
5936   n = pParse->nRangeReg;
5937   if( nReg<=n ){
5938     pParse->iRangeReg += nReg;
5939     pParse->nRangeReg -= nReg;
5940   }else{
5941     i = pParse->nMem+1;
5942     pParse->nMem += nReg;
5943   }
5944   return i;
5945 }
5946 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5947   if( nReg==1 ){
5948     sqlite3ReleaseTempReg(pParse, iReg);
5949     return;
5950   }
5951   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
5952   if( nReg>pParse->nRangeReg ){
5953     pParse->nRangeReg = nReg;
5954     pParse->iRangeReg = iReg;
5955   }
5956 }
5957 
5958 /*
5959 ** Mark all temporary registers as being unavailable for reuse.
5960 **
5961 ** Always invoke this procedure after coding a subroutine or co-routine
5962 ** that might be invoked from other parts of the code, to ensure that
5963 ** the sub/co-routine does not use registers in common with the code that
5964 ** invokes the sub/co-routine.
5965 */
5966 void sqlite3ClearTempRegCache(Parse *pParse){
5967   pParse->nTempReg = 0;
5968   pParse->nRangeReg = 0;
5969 }
5970 
5971 /*
5972 ** Validate that no temporary register falls within the range of
5973 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5974 ** statements.
5975 */
5976 #ifdef SQLITE_DEBUG
5977 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5978   int i;
5979   if( pParse->nRangeReg>0
5980    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5981    && pParse->iRangeReg <= iLast
5982   ){
5983      return 0;
5984   }
5985   for(i=0; i<pParse->nTempReg; i++){
5986     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5987       return 0;
5988     }
5989   }
5990   return 1;
5991 }
5992 #endif /* SQLITE_DEBUG */
5993