1 /* 2 ** 2010 July 12 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains an implementation of the "dbstat" virtual table. 14 ** 15 ** The dbstat virtual table is used to extract low-level storage 16 ** information from an SQLite database in order to implement the 17 ** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script 18 ** for an example implementation. 19 ** 20 ** Additional information is available on the "dbstat.html" page of the 21 ** official SQLite documentation. 22 */ 23 24 #include "sqliteInt.h" /* Requires access to internal data structures */ 25 #if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \ 26 && !defined(SQLITE_OMIT_VIRTUALTABLE) 27 28 /* 29 ** Page paths: 30 ** 31 ** The value of the 'path' column describes the path taken from the 32 ** root-node of the b-tree structure to each page. The value of the 33 ** root-node path is '/'. 34 ** 35 ** The value of the path for the left-most child page of the root of 36 ** a b-tree is '/000/'. (Btrees store content ordered from left to right 37 ** so the pages to the left have smaller keys than the pages to the right.) 38 ** The next to left-most child of the root page is 39 ** '/001', and so on, each sibling page identified by a 3-digit hex 40 ** value. The children of the 451st left-most sibling have paths such 41 ** as '/1c2/000/, '/1c2/001/' etc. 42 ** 43 ** Overflow pages are specified by appending a '+' character and a 44 ** six-digit hexadecimal value to the path to the cell they are linked 45 ** from. For example, the three overflow pages in a chain linked from 46 ** the left-most cell of the 450th child of the root page are identified 47 ** by the paths: 48 ** 49 ** '/1c2/000+000000' // First page in overflow chain 50 ** '/1c2/000+000001' // Second page in overflow chain 51 ** '/1c2/000+000002' // Third page in overflow chain 52 ** 53 ** If the paths are sorted using the BINARY collation sequence, then 54 ** the overflow pages associated with a cell will appear earlier in the 55 ** sort-order than its child page: 56 ** 57 ** '/1c2/000/' // Left-most child of 451st child of root 58 */ 59 static const char zDbstatSchema[] = 60 "CREATE TABLE x(" 61 " name TEXT," /* 0 Name of table or index */ 62 " path TEXT," /* 1 Path to page from root (NULL for agg) */ 63 " pageno INTEGER," /* 2 Page number (page count for aggregates) */ 64 " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */ 65 " ncell INTEGER," /* 4 Cells on page (0 for overflow) */ 66 " payload INTEGER," /* 5 Bytes of payload on this page */ 67 " unused INTEGER," /* 6 Bytes of unused space on this page */ 68 " mx_payload INTEGER," /* 7 Largest payload size of all cells */ 69 " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */ 70 " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */ 71 " schema TEXT HIDDEN," /* 10 Database schema being analyzed */ 72 " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */ 73 ")" 74 ; 75 76 /* Forward reference to data structured used in this module */ 77 typedef struct StatTable StatTable; 78 typedef struct StatCursor StatCursor; 79 typedef struct StatPage StatPage; 80 typedef struct StatCell StatCell; 81 82 /* Size information for a single cell within a btree page */ 83 struct StatCell { 84 int nLocal; /* Bytes of local payload */ 85 u32 iChildPg; /* Child node (or 0 if this is a leaf) */ 86 int nOvfl; /* Entries in aOvfl[] */ 87 u32 *aOvfl; /* Array of overflow page numbers */ 88 int nLastOvfl; /* Bytes of payload on final overflow page */ 89 int iOvfl; /* Iterates through aOvfl[] */ 90 }; 91 92 /* Size information for a single btree page */ 93 struct StatPage { 94 u32 iPgno; /* Page number */ 95 DbPage *pPg; /* Page content */ 96 int iCell; /* Current cell */ 97 98 char *zPath; /* Path to this page */ 99 100 /* Variables populated by statDecodePage(): */ 101 u8 flags; /* Copy of flags byte */ 102 int nCell; /* Number of cells on page */ 103 int nUnused; /* Number of unused bytes on page */ 104 StatCell *aCell; /* Array of parsed cells */ 105 u32 iRightChildPg; /* Right-child page number (or 0) */ 106 int nMxPayload; /* Largest payload of any cell on the page */ 107 }; 108 109 /* The cursor for scanning the dbstat virtual table */ 110 struct StatCursor { 111 sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */ 112 sqlite3_stmt *pStmt; /* Iterates through set of root pages */ 113 u8 isEof; /* After pStmt has returned SQLITE_DONE */ 114 u8 isAgg; /* Aggregate results for each table */ 115 int iDb; /* Schema used for this query */ 116 117 StatPage aPage[32]; /* Pages in path to current page */ 118 int iPage; /* Current entry in aPage[] */ 119 120 /* Values to return. */ 121 u32 iPageno; /* Value of 'pageno' column */ 122 char *zName; /* Value of 'name' column */ 123 char *zPath; /* Value of 'path' column */ 124 char *zPagetype; /* Value of 'pagetype' column */ 125 int nPage; /* Number of pages in current btree */ 126 int nCell; /* Value of 'ncell' column */ 127 int nMxPayload; /* Value of 'mx_payload' column */ 128 i64 nUnused; /* Value of 'unused' column */ 129 i64 nPayload; /* Value of 'payload' column */ 130 i64 iOffset; /* Value of 'pgOffset' column */ 131 i64 szPage; /* Value of 'pgSize' column */ 132 }; 133 134 /* An instance of the DBSTAT virtual table */ 135 struct StatTable { 136 sqlite3_vtab base; /* base class. MUST BE FIRST! */ 137 sqlite3 *db; /* Database connection that owns this vtab */ 138 int iDb; /* Index of database to analyze */ 139 }; 140 141 #ifndef get2byte 142 # define get2byte(x) ((x)[0]<<8 | (x)[1]) 143 #endif 144 145 /* 146 ** Connect to or create a new DBSTAT virtual table. 147 */ 148 static int statConnect( 149 sqlite3 *db, 150 void *pAux, 151 int argc, const char *const*argv, 152 sqlite3_vtab **ppVtab, 153 char **pzErr 154 ){ 155 StatTable *pTab = 0; 156 int rc = SQLITE_OK; 157 int iDb; 158 159 if( argc>=4 ){ 160 Token nm; 161 sqlite3TokenInit(&nm, (char*)argv[3]); 162 iDb = sqlite3FindDb(db, &nm); 163 if( iDb<0 ){ 164 *pzErr = sqlite3_mprintf("no such database: %s", argv[3]); 165 return SQLITE_ERROR; 166 } 167 }else{ 168 iDb = 0; 169 } 170 rc = sqlite3_declare_vtab(db, zDbstatSchema); 171 if( rc==SQLITE_OK ){ 172 pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable)); 173 if( pTab==0 ) rc = SQLITE_NOMEM_BKPT; 174 } 175 176 assert( rc==SQLITE_OK || pTab==0 ); 177 if( rc==SQLITE_OK ){ 178 memset(pTab, 0, sizeof(StatTable)); 179 pTab->db = db; 180 pTab->iDb = iDb; 181 } 182 183 *ppVtab = (sqlite3_vtab*)pTab; 184 return rc; 185 } 186 187 /* 188 ** Disconnect from or destroy the DBSTAT virtual table. 189 */ 190 static int statDisconnect(sqlite3_vtab *pVtab){ 191 sqlite3_free(pVtab); 192 return SQLITE_OK; 193 } 194 195 /* 196 ** Compute the best query strategy and return the result in idxNum. 197 ** 198 ** idxNum-Bit Meaning 199 ** ---------- ---------------------------------------------- 200 ** 0x01 There is a schema=? term in the WHERE clause 201 ** 0x02 There is a name=? term in the WHERE clause 202 ** 0x04 There is an aggregate=? term in the WHERE clause 203 ** 0x08 Output should be ordered by name and path 204 */ 205 static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 206 int i; 207 int iSchema = -1; 208 int iName = -1; 209 int iAgg = -1; 210 211 /* Look for a valid schema=? constraint. If found, change the idxNum to 212 ** 1 and request the value of that constraint be sent to xFilter. And 213 ** lower the cost estimate to encourage the constrained version to be 214 ** used. 215 */ 216 for(i=0; i<pIdxInfo->nConstraint; i++){ 217 if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 218 if( pIdxInfo->aConstraint[i].usable==0 ){ 219 /* Force DBSTAT table should always be the right-most table in a join */ 220 return SQLITE_CONSTRAINT; 221 } 222 switch( pIdxInfo->aConstraint[i].iColumn ){ 223 case 0: { /* name */ 224 iName = i; 225 break; 226 } 227 case 10: { /* schema */ 228 iSchema = i; 229 break; 230 } 231 case 11: { /* aggregate */ 232 iAgg = i; 233 break; 234 } 235 } 236 } 237 i = 0; 238 if( iSchema>=0 ){ 239 pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i; 240 pIdxInfo->aConstraintUsage[iSchema].omit = 1; 241 pIdxInfo->idxNum |= 0x01; 242 } 243 if( iName>=0 ){ 244 pIdxInfo->aConstraintUsage[iName].argvIndex = ++i; 245 pIdxInfo->aConstraintUsage[iName].omit = 1; 246 pIdxInfo->idxNum |= 0x02; 247 } 248 if( iAgg>=0 ){ 249 pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i; 250 pIdxInfo->aConstraintUsage[iAgg].omit = 1; 251 pIdxInfo->idxNum |= 0x04; 252 } 253 pIdxInfo->estimatedCost = 1.0; 254 255 /* Records are always returned in ascending order of (name, path). 256 ** If this will satisfy the client, set the orderByConsumed flag so that 257 ** SQLite does not do an external sort. 258 */ 259 if( ( pIdxInfo->nOrderBy==1 260 && pIdxInfo->aOrderBy[0].iColumn==0 261 && pIdxInfo->aOrderBy[0].desc==0 262 ) || 263 ( pIdxInfo->nOrderBy==2 264 && pIdxInfo->aOrderBy[0].iColumn==0 265 && pIdxInfo->aOrderBy[0].desc==0 266 && pIdxInfo->aOrderBy[1].iColumn==1 267 && pIdxInfo->aOrderBy[1].desc==0 268 ) 269 ){ 270 pIdxInfo->orderByConsumed = 1; 271 pIdxInfo->idxNum |= 0x08; 272 } 273 274 return SQLITE_OK; 275 } 276 277 /* 278 ** Open a new DBSTAT cursor. 279 */ 280 static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 281 StatTable *pTab = (StatTable *)pVTab; 282 StatCursor *pCsr; 283 284 pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor)); 285 if( pCsr==0 ){ 286 return SQLITE_NOMEM_BKPT; 287 }else{ 288 memset(pCsr, 0, sizeof(StatCursor)); 289 pCsr->base.pVtab = pVTab; 290 pCsr->iDb = pTab->iDb; 291 } 292 293 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 294 return SQLITE_OK; 295 } 296 297 static void statClearCells(StatPage *p){ 298 int i; 299 if( p->aCell ){ 300 for(i=0; i<p->nCell; i++){ 301 sqlite3_free(p->aCell[i].aOvfl); 302 } 303 sqlite3_free(p->aCell); 304 } 305 p->nCell = 0; 306 p->aCell = 0; 307 } 308 309 static void statClearPage(StatPage *p){ 310 statClearCells(p); 311 sqlite3PagerUnref(p->pPg); 312 sqlite3_free(p->zPath); 313 memset(p, 0, sizeof(StatPage)); 314 } 315 316 static void statResetCsr(StatCursor *pCsr){ 317 int i; 318 sqlite3_reset(pCsr->pStmt); 319 for(i=0; i<ArraySize(pCsr->aPage); i++){ 320 statClearPage(&pCsr->aPage[i]); 321 } 322 pCsr->iPage = 0; 323 sqlite3_free(pCsr->zPath); 324 pCsr->zPath = 0; 325 pCsr->isEof = 0; 326 } 327 328 /* Resize the space-used counters inside of the cursor */ 329 static void statResetCounts(StatCursor *pCsr){ 330 pCsr->nCell = 0; 331 pCsr->nMxPayload = 0; 332 pCsr->nUnused = 0; 333 pCsr->nPayload = 0; 334 pCsr->szPage = 0; 335 pCsr->nPage = 0; 336 } 337 338 /* 339 ** Close a DBSTAT cursor. 340 */ 341 static int statClose(sqlite3_vtab_cursor *pCursor){ 342 StatCursor *pCsr = (StatCursor *)pCursor; 343 statResetCsr(pCsr); 344 sqlite3_finalize(pCsr->pStmt); 345 sqlite3_free(pCsr); 346 return SQLITE_OK; 347 } 348 349 /* 350 ** For a single cell on a btree page, compute the number of bytes of 351 ** content (payload) stored on that page. That is to say, compute the 352 ** number of bytes of content not found on overflow pages. 353 */ 354 static int getLocalPayload( 355 int nUsable, /* Usable bytes per page */ 356 u8 flags, /* Page flags */ 357 int nTotal /* Total record (payload) size */ 358 ){ 359 int nLocal; 360 int nMinLocal; 361 int nMaxLocal; 362 363 if( flags==0x0D ){ /* Table leaf node */ 364 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 365 nMaxLocal = nUsable - 35; 366 }else{ /* Index interior and leaf nodes */ 367 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 368 nMaxLocal = (nUsable - 12) * 64 / 255 - 23; 369 } 370 371 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4); 372 if( nLocal>nMaxLocal ) nLocal = nMinLocal; 373 return nLocal; 374 } 375 376 /* Populate the StatPage object with information about the all 377 ** cells found on the page currently under analysis. 378 */ 379 static int statDecodePage(Btree *pBt, StatPage *p){ 380 int nUnused; 381 int iOff; 382 int nHdr; 383 int isLeaf; 384 int szPage; 385 386 u8 *aData = sqlite3PagerGetData(p->pPg); 387 u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0]; 388 389 p->flags = aHdr[0]; 390 if( p->flags==0x0A || p->flags==0x0D ){ 391 isLeaf = 1; 392 nHdr = 8; 393 }else if( p->flags==0x05 || p->flags==0x02 ){ 394 isLeaf = 0; 395 nHdr = 12; 396 }else{ 397 goto statPageIsCorrupt; 398 } 399 if( p->iPgno==1 ) nHdr += 100; 400 p->nCell = get2byte(&aHdr[3]); 401 p->nMxPayload = 0; 402 szPage = sqlite3BtreeGetPageSize(pBt); 403 404 nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell; 405 nUnused += (int)aHdr[7]; 406 iOff = get2byte(&aHdr[1]); 407 while( iOff ){ 408 int iNext; 409 if( iOff>=szPage ) goto statPageIsCorrupt; 410 nUnused += get2byte(&aData[iOff+2]); 411 iNext = get2byte(&aData[iOff]); 412 if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt; 413 iOff = iNext; 414 } 415 p->nUnused = nUnused; 416 p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]); 417 418 if( p->nCell ){ 419 int i; /* Used to iterate through cells */ 420 int nUsable; /* Usable bytes per page */ 421 422 sqlite3BtreeEnter(pBt); 423 nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt); 424 sqlite3BtreeLeave(pBt); 425 p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell)); 426 if( p->aCell==0 ) return SQLITE_NOMEM_BKPT; 427 memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell)); 428 429 for(i=0; i<p->nCell; i++){ 430 StatCell *pCell = &p->aCell[i]; 431 432 iOff = get2byte(&aData[nHdr+i*2]); 433 if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt; 434 if( !isLeaf ){ 435 pCell->iChildPg = sqlite3Get4byte(&aData[iOff]); 436 iOff += 4; 437 } 438 if( p->flags==0x05 ){ 439 /* A table interior node. nPayload==0. */ 440 }else{ 441 u32 nPayload; /* Bytes of payload total (local+overflow) */ 442 int nLocal; /* Bytes of payload stored locally */ 443 iOff += getVarint32(&aData[iOff], nPayload); 444 if( p->flags==0x0D ){ 445 u64 dummy; 446 iOff += sqlite3GetVarint(&aData[iOff], &dummy); 447 } 448 if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload; 449 nLocal = getLocalPayload(nUsable, p->flags, nPayload); 450 if( nLocal<0 ) goto statPageIsCorrupt; 451 pCell->nLocal = nLocal; 452 assert( nPayload>=(u32)nLocal ); 453 assert( nLocal<=(nUsable-35) ); 454 if( nPayload>(u32)nLocal ){ 455 int j; 456 int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4); 457 if( iOff+nLocal>nUsable ) goto statPageIsCorrupt; 458 pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4); 459 pCell->nOvfl = nOvfl; 460 pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl); 461 if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT; 462 pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]); 463 for(j=1; j<nOvfl; j++){ 464 int rc; 465 u32 iPrev = pCell->aOvfl[j-1]; 466 DbPage *pPg = 0; 467 rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0); 468 if( rc!=SQLITE_OK ){ 469 assert( pPg==0 ); 470 return rc; 471 } 472 pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg)); 473 sqlite3PagerUnref(pPg); 474 } 475 } 476 } 477 } 478 } 479 480 return SQLITE_OK; 481 482 statPageIsCorrupt: 483 p->flags = 0; 484 statClearCells(p); 485 return SQLITE_OK; 486 } 487 488 /* 489 ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on 490 ** the current value of pCsr->iPageno. 491 */ 492 static void statSizeAndOffset(StatCursor *pCsr){ 493 StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab; 494 Btree *pBt = pTab->db->aDb[pTab->iDb].pBt; 495 Pager *pPager = sqlite3BtreePager(pBt); 496 sqlite3_file *fd; 497 sqlite3_int64 x[2]; 498 499 /* If connected to a ZIPVFS backend, find the page size and 500 ** offset from ZIPVFS. 501 */ 502 fd = sqlite3PagerFile(pPager); 503 x[0] = pCsr->iPageno; 504 if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){ 505 pCsr->iOffset = x[0]; 506 pCsr->szPage += x[1]; 507 }else{ 508 /* Not ZIPVFS: The default page size and offset */ 509 pCsr->szPage += sqlite3BtreeGetPageSize(pBt); 510 pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1); 511 } 512 } 513 514 /* 515 ** Move a DBSTAT cursor to the next entry. Normally, the next 516 ** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0), 517 ** the next entry is the next btree. 518 */ 519 static int statNext(sqlite3_vtab_cursor *pCursor){ 520 int rc; 521 int nPayload; 522 char *z; 523 StatCursor *pCsr = (StatCursor *)pCursor; 524 StatTable *pTab = (StatTable *)pCursor->pVtab; 525 Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt; 526 Pager *pPager = sqlite3BtreePager(pBt); 527 528 sqlite3_free(pCsr->zPath); 529 pCsr->zPath = 0; 530 531 statNextRestart: 532 if( pCsr->aPage[0].pPg==0 ){ 533 /* Start measuring space on the next btree */ 534 statResetCounts(pCsr); 535 rc = sqlite3_step(pCsr->pStmt); 536 if( rc==SQLITE_ROW ){ 537 int nPage; 538 u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1); 539 sqlite3PagerPagecount(pPager, &nPage); 540 if( nPage==0 ){ 541 pCsr->isEof = 1; 542 return sqlite3_reset(pCsr->pStmt); 543 } 544 rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg, 0); 545 pCsr->aPage[0].iPgno = iRoot; 546 pCsr->aPage[0].iCell = 0; 547 if( !pCsr->isAgg ){ 548 pCsr->aPage[0].zPath = z = sqlite3_mprintf("/"); 549 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 550 } 551 pCsr->iPage = 0; 552 pCsr->nPage = 1; 553 }else{ 554 pCsr->isEof = 1; 555 return sqlite3_reset(pCsr->pStmt); 556 } 557 }else{ 558 /* Continue analyzing the btree previously started */ 559 StatPage *p = &pCsr->aPage[pCsr->iPage]; 560 if( !pCsr->isAgg ) statResetCounts(pCsr); 561 while( p->iCell<p->nCell ){ 562 StatCell *pCell = &p->aCell[p->iCell]; 563 while( pCell->iOvfl<pCell->nOvfl ){ 564 int nUsable, iOvfl; 565 sqlite3BtreeEnter(pBt); 566 nUsable = sqlite3BtreeGetPageSize(pBt) - 567 sqlite3BtreeGetReserveNoMutex(pBt); 568 sqlite3BtreeLeave(pBt); 569 pCsr->nPage++; 570 statSizeAndOffset(pCsr); 571 if( pCell->iOvfl<pCell->nOvfl-1 ){ 572 pCsr->nPayload += nUsable - 4; 573 }else{ 574 pCsr->nPayload += pCell->nLastOvfl; 575 pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl; 576 } 577 iOvfl = pCell->iOvfl; 578 pCell->iOvfl++; 579 if( !pCsr->isAgg ){ 580 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 581 pCsr->iPageno = pCell->aOvfl[iOvfl]; 582 pCsr->zPagetype = "overflow"; 583 pCsr->zPath = z = sqlite3_mprintf( 584 "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl 585 ); 586 return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 587 } 588 } 589 if( p->iRightChildPg ) break; 590 p->iCell++; 591 } 592 593 if( !p->iRightChildPg || p->iCell>p->nCell ){ 594 statClearPage(p); 595 if( pCsr->iPage>0 ){ 596 pCsr->iPage--; 597 }else if( pCsr->isAgg ){ 598 /* label-statNext-done: When computing aggregate space usage over 599 ** an entire btree, this is the exit point from this function */ 600 return SQLITE_OK; 601 } 602 goto statNextRestart; /* Tail recursion */ 603 } 604 pCsr->iPage++; 605 if( pCsr->iPage>=ArraySize(pCsr->aPage) ){ 606 statResetCsr(pCsr); 607 return SQLITE_CORRUPT_BKPT; 608 } 609 assert( p==&pCsr->aPage[pCsr->iPage-1] ); 610 611 if( p->iCell==p->nCell ){ 612 p[1].iPgno = p->iRightChildPg; 613 }else{ 614 p[1].iPgno = p->aCell[p->iCell].iChildPg; 615 } 616 rc = sqlite3PagerGet(pPager, p[1].iPgno, &p[1].pPg, 0); 617 pCsr->nPage++; 618 p[1].iCell = 0; 619 if( !pCsr->isAgg ){ 620 p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell); 621 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 622 } 623 p->iCell++; 624 } 625 626 627 /* Populate the StatCursor fields with the values to be returned 628 ** by the xColumn() and xRowid() methods. 629 */ 630 if( rc==SQLITE_OK ){ 631 int i; 632 StatPage *p = &pCsr->aPage[pCsr->iPage]; 633 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 634 pCsr->iPageno = p->iPgno; 635 636 rc = statDecodePage(pBt, p); 637 if( rc==SQLITE_OK ){ 638 statSizeAndOffset(pCsr); 639 640 switch( p->flags ){ 641 case 0x05: /* table internal */ 642 case 0x02: /* index internal */ 643 pCsr->zPagetype = "internal"; 644 break; 645 case 0x0D: /* table leaf */ 646 case 0x0A: /* index leaf */ 647 pCsr->zPagetype = "leaf"; 648 break; 649 default: 650 pCsr->zPagetype = "corrupted"; 651 break; 652 } 653 pCsr->nCell += p->nCell; 654 pCsr->nUnused += p->nUnused; 655 if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload; 656 if( !pCsr->isAgg ){ 657 pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath); 658 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 659 } 660 nPayload = 0; 661 for(i=0; i<p->nCell; i++){ 662 nPayload += p->aCell[i].nLocal; 663 } 664 pCsr->nPayload += nPayload; 665 666 /* If computing aggregate space usage by btree, continue with the 667 ** next page. The loop will exit via the return at label-statNext-done 668 */ 669 if( pCsr->isAgg ) goto statNextRestart; 670 } 671 } 672 673 return rc; 674 } 675 676 static int statEof(sqlite3_vtab_cursor *pCursor){ 677 StatCursor *pCsr = (StatCursor *)pCursor; 678 return pCsr->isEof; 679 } 680 681 /* Initialize a cursor according to the query plan idxNum using the 682 ** arguments in argv[0]. See statBestIndex() for a description of the 683 ** meaning of the bits in idxNum. 684 */ 685 static int statFilter( 686 sqlite3_vtab_cursor *pCursor, 687 int idxNum, const char *idxStr, 688 int argc, sqlite3_value **argv 689 ){ 690 StatCursor *pCsr = (StatCursor *)pCursor; 691 StatTable *pTab = (StatTable*)(pCursor->pVtab); 692 sqlite3_str *pSql; /* Query of btrees to analyze */ 693 char *zSql; /* String value of pSql */ 694 int iArg = 0; /* Count of argv[] parameters used so far */ 695 int rc = SQLITE_OK; /* Result of this operation */ 696 const char *zName = 0; /* Only provide analysis of this table */ 697 698 statResetCsr(pCsr); 699 sqlite3_finalize(pCsr->pStmt); 700 pCsr->pStmt = 0; 701 if( idxNum & 0x01 ){ 702 /* schema=? constraint is present. Get its value */ 703 const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]); 704 pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase); 705 if( pCsr->iDb<0 ){ 706 sqlite3_free(pCursor->pVtab->zErrMsg); 707 pCursor->pVtab->zErrMsg = sqlite3_mprintf("no such schema: %s", zDbase); 708 return pCursor->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM_BKPT; 709 } 710 }else{ 711 pCsr->iDb = pTab->iDb; 712 } 713 if( idxNum & 0x02 ){ 714 /* name=? constraint is present */ 715 zName = (const char*)sqlite3_value_text(argv[iArg++]); 716 } 717 if( idxNum & 0x04 ){ 718 /* aggregate=? constraint is present */ 719 pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0; 720 }else{ 721 pCsr->isAgg = 0; 722 } 723 pSql = sqlite3_str_new(pTab->db); 724 sqlite3_str_appendf(pSql, 725 "SELECT * FROM (" 726 "SELECT 'sqlite_master' AS name,1 AS rootpage,'table' AS type" 727 " UNION ALL " 728 "SELECT name,rootpage,type" 729 " FROM \"%w\".sqlite_master WHERE rootpage!=0)", 730 pTab->db->aDb[pCsr->iDb].zDbSName); 731 if( zName ){ 732 sqlite3_str_appendf(pSql, "WHERE name=%Q", zName); 733 } 734 if( idxNum & 0x08 ){ 735 sqlite3_str_appendf(pSql, " ORDER BY name"); 736 } 737 zSql = sqlite3_str_finish(pSql); 738 if( zSql==0 ){ 739 return SQLITE_NOMEM_BKPT; 740 }else{ 741 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0); 742 sqlite3_free(zSql); 743 } 744 745 if( rc==SQLITE_OK ){ 746 rc = statNext(pCursor); 747 } 748 return rc; 749 } 750 751 static int statColumn( 752 sqlite3_vtab_cursor *pCursor, 753 sqlite3_context *ctx, 754 int i 755 ){ 756 StatCursor *pCsr = (StatCursor *)pCursor; 757 switch( i ){ 758 case 0: /* name */ 759 sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT); 760 break; 761 case 1: /* path */ 762 if( !pCsr->isAgg ){ 763 sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT); 764 } 765 break; 766 case 2: /* pageno */ 767 if( pCsr->isAgg ){ 768 sqlite3_result_int64(ctx, pCsr->nPage); 769 }else{ 770 sqlite3_result_int64(ctx, pCsr->iPageno); 771 } 772 break; 773 case 3: /* pagetype */ 774 if( !pCsr->isAgg ){ 775 sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC); 776 } 777 break; 778 case 4: /* ncell */ 779 sqlite3_result_int(ctx, pCsr->nCell); 780 break; 781 case 5: /* payload */ 782 sqlite3_result_int(ctx, pCsr->nPayload); 783 break; 784 case 6: /* unused */ 785 sqlite3_result_int(ctx, pCsr->nUnused); 786 break; 787 case 7: /* mx_payload */ 788 sqlite3_result_int(ctx, pCsr->nMxPayload); 789 break; 790 case 8: /* pgoffset */ 791 if( !pCsr->isAgg ){ 792 sqlite3_result_int64(ctx, pCsr->iOffset); 793 } 794 break; 795 case 9: /* pgsize */ 796 sqlite3_result_int(ctx, pCsr->szPage); 797 break; 798 case 10: { /* schema */ 799 sqlite3 *db = sqlite3_context_db_handle(ctx); 800 int iDb = pCsr->iDb; 801 sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC); 802 break; 803 } 804 default: { /* aggregate */ 805 sqlite3_result_int(ctx, pCsr->isAgg); 806 break; 807 } 808 } 809 return SQLITE_OK; 810 } 811 812 static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ 813 StatCursor *pCsr = (StatCursor *)pCursor; 814 *pRowid = pCsr->iPageno; 815 return SQLITE_OK; 816 } 817 818 /* 819 ** Invoke this routine to register the "dbstat" virtual table module 820 */ 821 int sqlite3DbstatRegister(sqlite3 *db){ 822 static sqlite3_module dbstat_module = { 823 0, /* iVersion */ 824 statConnect, /* xCreate */ 825 statConnect, /* xConnect */ 826 statBestIndex, /* xBestIndex */ 827 statDisconnect, /* xDisconnect */ 828 statDisconnect, /* xDestroy */ 829 statOpen, /* xOpen - open a cursor */ 830 statClose, /* xClose - close a cursor */ 831 statFilter, /* xFilter - configure scan constraints */ 832 statNext, /* xNext - advance a cursor */ 833 statEof, /* xEof - check for end of scan */ 834 statColumn, /* xColumn - read data */ 835 statRowid, /* xRowid - read data */ 836 0, /* xUpdate */ 837 0, /* xBegin */ 838 0, /* xSync */ 839 0, /* xCommit */ 840 0, /* xRollback */ 841 0, /* xFindMethod */ 842 0, /* xRename */ 843 0, /* xSavepoint */ 844 0, /* xRelease */ 845 0, /* xRollbackTo */ 846 0 /* xShadowName */ 847 }; 848 return sqlite3_create_module(db, "dbstat", &dbstat_module, 0); 849 } 850 #elif defined(SQLITE_ENABLE_DBSTAT_VTAB) 851 int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; } 852 #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ 853