1 /* 2 ** 2010 July 12 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains an implementation of the "dbstat" virtual table. 14 ** 15 ** The dbstat virtual table is used to extract low-level storage 16 ** information from an SQLite database in order to implement the 17 ** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script 18 ** for an example implementation. 19 ** 20 ** Additional information is available on the "dbstat.html" page of the 21 ** official SQLite documentation. 22 */ 23 24 #include "sqliteInt.h" /* Requires access to internal data structures */ 25 #if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \ 26 && !defined(SQLITE_OMIT_VIRTUALTABLE) 27 28 /* 29 ** Page paths: 30 ** 31 ** The value of the 'path' column describes the path taken from the 32 ** root-node of the b-tree structure to each page. The value of the 33 ** root-node path is '/'. 34 ** 35 ** The value of the path for the left-most child page of the root of 36 ** a b-tree is '/000/'. (Btrees store content ordered from left to right 37 ** so the pages to the left have smaller keys than the pages to the right.) 38 ** The next to left-most child of the root page is 39 ** '/001', and so on, each sibling page identified by a 3-digit hex 40 ** value. The children of the 451st left-most sibling have paths such 41 ** as '/1c2/000/, '/1c2/001/' etc. 42 ** 43 ** Overflow pages are specified by appending a '+' character and a 44 ** six-digit hexadecimal value to the path to the cell they are linked 45 ** from. For example, the three overflow pages in a chain linked from 46 ** the left-most cell of the 450th child of the root page are identified 47 ** by the paths: 48 ** 49 ** '/1c2/000+000000' // First page in overflow chain 50 ** '/1c2/000+000001' // Second page in overflow chain 51 ** '/1c2/000+000002' // Third page in overflow chain 52 ** 53 ** If the paths are sorted using the BINARY collation sequence, then 54 ** the overflow pages associated with a cell will appear earlier in the 55 ** sort-order than its child page: 56 ** 57 ** '/1c2/000/' // Left-most child of 451st child of root 58 */ 59 static const char zDbstatSchema[] = 60 "CREATE TABLE x(" 61 " name TEXT," /* 0 Name of table or index */ 62 " path TEXT," /* 1 Path to page from root (NULL for agg) */ 63 " pageno INTEGER," /* 2 Page number (page count for aggregates) */ 64 " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */ 65 " ncell INTEGER," /* 4 Cells on page (0 for overflow) */ 66 " payload INTEGER," /* 5 Bytes of payload on this page */ 67 " unused INTEGER," /* 6 Bytes of unused space on this page */ 68 " mx_payload INTEGER," /* 7 Largest payload size of all cells */ 69 " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */ 70 " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */ 71 " schema TEXT HIDDEN," /* 10 Database schema being analyzed */ 72 " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */ 73 ")" 74 ; 75 76 /* Forward reference to data structured used in this module */ 77 typedef struct StatTable StatTable; 78 typedef struct StatCursor StatCursor; 79 typedef struct StatPage StatPage; 80 typedef struct StatCell StatCell; 81 82 /* Size information for a single cell within a btree page */ 83 struct StatCell { 84 int nLocal; /* Bytes of local payload */ 85 u32 iChildPg; /* Child node (or 0 if this is a leaf) */ 86 int nOvfl; /* Entries in aOvfl[] */ 87 u32 *aOvfl; /* Array of overflow page numbers */ 88 int nLastOvfl; /* Bytes of payload on final overflow page */ 89 int iOvfl; /* Iterates through aOvfl[] */ 90 }; 91 92 /* Size information for a single btree page */ 93 struct StatPage { 94 u32 iPgno; /* Page number */ 95 DbPage *pPg; /* Page content */ 96 int iCell; /* Current cell */ 97 98 char *zPath; /* Path to this page */ 99 100 /* Variables populated by statDecodePage(): */ 101 u8 flags; /* Copy of flags byte */ 102 int nCell; /* Number of cells on page */ 103 int nUnused; /* Number of unused bytes on page */ 104 StatCell *aCell; /* Array of parsed cells */ 105 u32 iRightChildPg; /* Right-child page number (or 0) */ 106 int nMxPayload; /* Largest payload of any cell on the page */ 107 }; 108 109 /* The cursor for scanning the dbstat virtual table */ 110 struct StatCursor { 111 sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */ 112 sqlite3_stmt *pStmt; /* Iterates through set of root pages */ 113 u8 isEof; /* After pStmt has returned SQLITE_DONE */ 114 u8 isAgg; /* Aggregate results for each table */ 115 int iDb; /* Schema used for this query */ 116 117 StatPage aPage[32]; /* Pages in path to current page */ 118 int iPage; /* Current entry in aPage[] */ 119 120 /* Values to return. */ 121 u32 iPageno; /* Value of 'pageno' column */ 122 char *zName; /* Value of 'name' column */ 123 char *zPath; /* Value of 'path' column */ 124 char *zPagetype; /* Value of 'pagetype' column */ 125 int nPage; /* Number of pages in current btree */ 126 int nCell; /* Value of 'ncell' column */ 127 int nMxPayload; /* Value of 'mx_payload' column */ 128 i64 nUnused; /* Value of 'unused' column */ 129 i64 nPayload; /* Value of 'payload' column */ 130 i64 iOffset; /* Value of 'pgOffset' column */ 131 i64 szPage; /* Value of 'pgSize' column */ 132 }; 133 134 /* An instance of the DBSTAT virtual table */ 135 struct StatTable { 136 sqlite3_vtab base; /* base class. MUST BE FIRST! */ 137 sqlite3 *db; /* Database connection that owns this vtab */ 138 int iDb; /* Index of database to analyze */ 139 }; 140 141 #ifndef get2byte 142 # define get2byte(x) ((x)[0]<<8 | (x)[1]) 143 #endif 144 145 /* 146 ** Connect to or create a new DBSTAT virtual table. 147 */ 148 static int statConnect( 149 sqlite3 *db, 150 void *pAux, 151 int argc, const char *const*argv, 152 sqlite3_vtab **ppVtab, 153 char **pzErr 154 ){ 155 StatTable *pTab = 0; 156 int rc = SQLITE_OK; 157 int iDb; 158 159 if( argc>=4 ){ 160 Token nm; 161 sqlite3TokenInit(&nm, (char*)argv[3]); 162 iDb = sqlite3FindDb(db, &nm); 163 if( iDb<0 ){ 164 *pzErr = sqlite3_mprintf("no such database: %s", argv[3]); 165 return SQLITE_ERROR; 166 } 167 }else{ 168 iDb = 0; 169 } 170 sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY); 171 rc = sqlite3_declare_vtab(db, zDbstatSchema); 172 if( rc==SQLITE_OK ){ 173 pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable)); 174 if( pTab==0 ) rc = SQLITE_NOMEM_BKPT; 175 } 176 177 assert( rc==SQLITE_OK || pTab==0 ); 178 if( rc==SQLITE_OK ){ 179 memset(pTab, 0, sizeof(StatTable)); 180 pTab->db = db; 181 pTab->iDb = iDb; 182 } 183 184 *ppVtab = (sqlite3_vtab*)pTab; 185 return rc; 186 } 187 188 /* 189 ** Disconnect from or destroy the DBSTAT virtual table. 190 */ 191 static int statDisconnect(sqlite3_vtab *pVtab){ 192 sqlite3_free(pVtab); 193 return SQLITE_OK; 194 } 195 196 /* 197 ** Compute the best query strategy and return the result in idxNum. 198 ** 199 ** idxNum-Bit Meaning 200 ** ---------- ---------------------------------------------- 201 ** 0x01 There is a schema=? term in the WHERE clause 202 ** 0x02 There is a name=? term in the WHERE clause 203 ** 0x04 There is an aggregate=? term in the WHERE clause 204 ** 0x08 Output should be ordered by name and path 205 */ 206 static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 207 int i; 208 int iSchema = -1; 209 int iName = -1; 210 int iAgg = -1; 211 212 /* Look for a valid schema=? constraint. If found, change the idxNum to 213 ** 1 and request the value of that constraint be sent to xFilter. And 214 ** lower the cost estimate to encourage the constrained version to be 215 ** used. 216 */ 217 for(i=0; i<pIdxInfo->nConstraint; i++){ 218 if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 219 if( pIdxInfo->aConstraint[i].usable==0 ){ 220 /* Force DBSTAT table should always be the right-most table in a join */ 221 return SQLITE_CONSTRAINT; 222 } 223 switch( pIdxInfo->aConstraint[i].iColumn ){ 224 case 0: { /* name */ 225 iName = i; 226 break; 227 } 228 case 10: { /* schema */ 229 iSchema = i; 230 break; 231 } 232 case 11: { /* aggregate */ 233 iAgg = i; 234 break; 235 } 236 } 237 } 238 i = 0; 239 if( iSchema>=0 ){ 240 pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i; 241 pIdxInfo->aConstraintUsage[iSchema].omit = 1; 242 pIdxInfo->idxNum |= 0x01; 243 } 244 if( iName>=0 ){ 245 pIdxInfo->aConstraintUsage[iName].argvIndex = ++i; 246 pIdxInfo->idxNum |= 0x02; 247 } 248 if( iAgg>=0 ){ 249 pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i; 250 pIdxInfo->idxNum |= 0x04; 251 } 252 pIdxInfo->estimatedCost = 1.0; 253 254 /* Records are always returned in ascending order of (name, path). 255 ** If this will satisfy the client, set the orderByConsumed flag so that 256 ** SQLite does not do an external sort. 257 */ 258 if( ( pIdxInfo->nOrderBy==1 259 && pIdxInfo->aOrderBy[0].iColumn==0 260 && pIdxInfo->aOrderBy[0].desc==0 261 ) || 262 ( pIdxInfo->nOrderBy==2 263 && pIdxInfo->aOrderBy[0].iColumn==0 264 && pIdxInfo->aOrderBy[0].desc==0 265 && pIdxInfo->aOrderBy[1].iColumn==1 266 && pIdxInfo->aOrderBy[1].desc==0 267 ) 268 ){ 269 pIdxInfo->orderByConsumed = 1; 270 pIdxInfo->idxNum |= 0x08; 271 } 272 273 return SQLITE_OK; 274 } 275 276 /* 277 ** Open a new DBSTAT cursor. 278 */ 279 static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 280 StatTable *pTab = (StatTable *)pVTab; 281 StatCursor *pCsr; 282 283 pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor)); 284 if( pCsr==0 ){ 285 return SQLITE_NOMEM_BKPT; 286 }else{ 287 memset(pCsr, 0, sizeof(StatCursor)); 288 pCsr->base.pVtab = pVTab; 289 pCsr->iDb = pTab->iDb; 290 } 291 292 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 293 return SQLITE_OK; 294 } 295 296 static void statClearCells(StatPage *p){ 297 int i; 298 if( p->aCell ){ 299 for(i=0; i<p->nCell; i++){ 300 sqlite3_free(p->aCell[i].aOvfl); 301 } 302 sqlite3_free(p->aCell); 303 } 304 p->nCell = 0; 305 p->aCell = 0; 306 } 307 308 static void statClearPage(StatPage *p){ 309 statClearCells(p); 310 sqlite3PagerUnref(p->pPg); 311 sqlite3_free(p->zPath); 312 memset(p, 0, sizeof(StatPage)); 313 } 314 315 static void statResetCsr(StatCursor *pCsr){ 316 int i; 317 /* In some circumstances, specifically if an OOM has occurred, the call 318 ** to sqlite3_reset() may cause the pager to be reset (emptied). It is 319 ** important that statClearPage() is called to free any page refs before 320 ** this happens. dbsqlfuzz 9ed3e4e3816219d3509d711636c38542bf3f40b1. */ 321 for(i=0; i<ArraySize(pCsr->aPage); i++){ 322 statClearPage(&pCsr->aPage[i]); 323 } 324 sqlite3_reset(pCsr->pStmt); 325 pCsr->iPage = 0; 326 sqlite3_free(pCsr->zPath); 327 pCsr->zPath = 0; 328 pCsr->isEof = 0; 329 } 330 331 /* Resize the space-used counters inside of the cursor */ 332 static void statResetCounts(StatCursor *pCsr){ 333 pCsr->nCell = 0; 334 pCsr->nMxPayload = 0; 335 pCsr->nUnused = 0; 336 pCsr->nPayload = 0; 337 pCsr->szPage = 0; 338 pCsr->nPage = 0; 339 } 340 341 /* 342 ** Close a DBSTAT cursor. 343 */ 344 static int statClose(sqlite3_vtab_cursor *pCursor){ 345 StatCursor *pCsr = (StatCursor *)pCursor; 346 statResetCsr(pCsr); 347 sqlite3_finalize(pCsr->pStmt); 348 sqlite3_free(pCsr); 349 return SQLITE_OK; 350 } 351 352 /* 353 ** For a single cell on a btree page, compute the number of bytes of 354 ** content (payload) stored on that page. That is to say, compute the 355 ** number of bytes of content not found on overflow pages. 356 */ 357 static int getLocalPayload( 358 int nUsable, /* Usable bytes per page */ 359 u8 flags, /* Page flags */ 360 int nTotal /* Total record (payload) size */ 361 ){ 362 int nLocal; 363 int nMinLocal; 364 int nMaxLocal; 365 366 if( flags==0x0D ){ /* Table leaf node */ 367 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 368 nMaxLocal = nUsable - 35; 369 }else{ /* Index interior and leaf nodes */ 370 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 371 nMaxLocal = (nUsable - 12) * 64 / 255 - 23; 372 } 373 374 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4); 375 if( nLocal>nMaxLocal ) nLocal = nMinLocal; 376 return nLocal; 377 } 378 379 /* Populate the StatPage object with information about the all 380 ** cells found on the page currently under analysis. 381 */ 382 static int statDecodePage(Btree *pBt, StatPage *p){ 383 int nUnused; 384 int iOff; 385 int nHdr; 386 int isLeaf; 387 int szPage; 388 389 u8 *aData = sqlite3PagerGetData(p->pPg); 390 u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0]; 391 392 p->flags = aHdr[0]; 393 if( p->flags==0x0A || p->flags==0x0D ){ 394 isLeaf = 1; 395 nHdr = 8; 396 }else if( p->flags==0x05 || p->flags==0x02 ){ 397 isLeaf = 0; 398 nHdr = 12; 399 }else{ 400 goto statPageIsCorrupt; 401 } 402 if( p->iPgno==1 ) nHdr += 100; 403 p->nCell = get2byte(&aHdr[3]); 404 p->nMxPayload = 0; 405 szPage = sqlite3BtreeGetPageSize(pBt); 406 407 nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell; 408 nUnused += (int)aHdr[7]; 409 iOff = get2byte(&aHdr[1]); 410 while( iOff ){ 411 int iNext; 412 if( iOff>=szPage ) goto statPageIsCorrupt; 413 nUnused += get2byte(&aData[iOff+2]); 414 iNext = get2byte(&aData[iOff]); 415 if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt; 416 iOff = iNext; 417 } 418 p->nUnused = nUnused; 419 p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]); 420 421 if( p->nCell ){ 422 int i; /* Used to iterate through cells */ 423 int nUsable; /* Usable bytes per page */ 424 425 sqlite3BtreeEnter(pBt); 426 nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt); 427 sqlite3BtreeLeave(pBt); 428 p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell)); 429 if( p->aCell==0 ) return SQLITE_NOMEM_BKPT; 430 memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell)); 431 432 for(i=0; i<p->nCell; i++){ 433 StatCell *pCell = &p->aCell[i]; 434 435 iOff = get2byte(&aData[nHdr+i*2]); 436 if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt; 437 if( !isLeaf ){ 438 pCell->iChildPg = sqlite3Get4byte(&aData[iOff]); 439 iOff += 4; 440 } 441 if( p->flags==0x05 ){ 442 /* A table interior node. nPayload==0. */ 443 }else{ 444 u32 nPayload; /* Bytes of payload total (local+overflow) */ 445 int nLocal; /* Bytes of payload stored locally */ 446 iOff += getVarint32(&aData[iOff], nPayload); 447 if( p->flags==0x0D ){ 448 u64 dummy; 449 iOff += sqlite3GetVarint(&aData[iOff], &dummy); 450 } 451 if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload; 452 nLocal = getLocalPayload(nUsable, p->flags, nPayload); 453 if( nLocal<0 ) goto statPageIsCorrupt; 454 pCell->nLocal = nLocal; 455 assert( nPayload>=(u32)nLocal ); 456 assert( nLocal<=(nUsable-35) ); 457 if( nPayload>(u32)nLocal ){ 458 int j; 459 int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4); 460 if( iOff+nLocal>nUsable || nPayload>0x7fffffff ){ 461 goto statPageIsCorrupt; 462 } 463 pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4); 464 pCell->nOvfl = nOvfl; 465 pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl); 466 if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT; 467 pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]); 468 for(j=1; j<nOvfl; j++){ 469 int rc; 470 u32 iPrev = pCell->aOvfl[j-1]; 471 DbPage *pPg = 0; 472 rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0); 473 if( rc!=SQLITE_OK ){ 474 assert( pPg==0 ); 475 return rc; 476 } 477 pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg)); 478 sqlite3PagerUnref(pPg); 479 } 480 } 481 } 482 } 483 } 484 485 return SQLITE_OK; 486 487 statPageIsCorrupt: 488 p->flags = 0; 489 statClearCells(p); 490 return SQLITE_OK; 491 } 492 493 /* 494 ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on 495 ** the current value of pCsr->iPageno. 496 */ 497 static void statSizeAndOffset(StatCursor *pCsr){ 498 StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab; 499 Btree *pBt = pTab->db->aDb[pTab->iDb].pBt; 500 Pager *pPager = sqlite3BtreePager(pBt); 501 sqlite3_file *fd; 502 sqlite3_int64 x[2]; 503 504 /* If connected to a ZIPVFS backend, find the page size and 505 ** offset from ZIPVFS. 506 */ 507 fd = sqlite3PagerFile(pPager); 508 x[0] = pCsr->iPageno; 509 if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){ 510 pCsr->iOffset = x[0]; 511 pCsr->szPage += x[1]; 512 }else{ 513 /* Not ZIPVFS: The default page size and offset */ 514 pCsr->szPage += sqlite3BtreeGetPageSize(pBt); 515 pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1); 516 } 517 } 518 519 /* 520 ** Move a DBSTAT cursor to the next entry. Normally, the next 521 ** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0), 522 ** the next entry is the next btree. 523 */ 524 static int statNext(sqlite3_vtab_cursor *pCursor){ 525 int rc; 526 int nPayload; 527 char *z; 528 StatCursor *pCsr = (StatCursor *)pCursor; 529 StatTable *pTab = (StatTable *)pCursor->pVtab; 530 Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt; 531 Pager *pPager = sqlite3BtreePager(pBt); 532 533 sqlite3_free(pCsr->zPath); 534 pCsr->zPath = 0; 535 536 statNextRestart: 537 if( pCsr->aPage[0].pPg==0 ){ 538 /* Start measuring space on the next btree */ 539 statResetCounts(pCsr); 540 rc = sqlite3_step(pCsr->pStmt); 541 if( rc==SQLITE_ROW ){ 542 int nPage; 543 u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1); 544 sqlite3PagerPagecount(pPager, &nPage); 545 if( nPage==0 ){ 546 pCsr->isEof = 1; 547 return sqlite3_reset(pCsr->pStmt); 548 } 549 rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg, 0); 550 pCsr->aPage[0].iPgno = iRoot; 551 pCsr->aPage[0].iCell = 0; 552 if( !pCsr->isAgg ){ 553 pCsr->aPage[0].zPath = z = sqlite3_mprintf("/"); 554 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 555 } 556 pCsr->iPage = 0; 557 pCsr->nPage = 1; 558 }else{ 559 pCsr->isEof = 1; 560 return sqlite3_reset(pCsr->pStmt); 561 } 562 }else{ 563 /* Continue analyzing the btree previously started */ 564 StatPage *p = &pCsr->aPage[pCsr->iPage]; 565 if( !pCsr->isAgg ) statResetCounts(pCsr); 566 while( p->iCell<p->nCell ){ 567 StatCell *pCell = &p->aCell[p->iCell]; 568 while( pCell->iOvfl<pCell->nOvfl ){ 569 int nUsable, iOvfl; 570 sqlite3BtreeEnter(pBt); 571 nUsable = sqlite3BtreeGetPageSize(pBt) - 572 sqlite3BtreeGetReserveNoMutex(pBt); 573 sqlite3BtreeLeave(pBt); 574 pCsr->nPage++; 575 statSizeAndOffset(pCsr); 576 if( pCell->iOvfl<pCell->nOvfl-1 ){ 577 pCsr->nPayload += nUsable - 4; 578 }else{ 579 pCsr->nPayload += pCell->nLastOvfl; 580 pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl; 581 } 582 iOvfl = pCell->iOvfl; 583 pCell->iOvfl++; 584 if( !pCsr->isAgg ){ 585 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 586 pCsr->iPageno = pCell->aOvfl[iOvfl]; 587 pCsr->zPagetype = "overflow"; 588 pCsr->zPath = z = sqlite3_mprintf( 589 "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl 590 ); 591 return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 592 } 593 } 594 if( p->iRightChildPg ) break; 595 p->iCell++; 596 } 597 598 if( !p->iRightChildPg || p->iCell>p->nCell ){ 599 statClearPage(p); 600 if( pCsr->iPage>0 ){ 601 pCsr->iPage--; 602 }else if( pCsr->isAgg ){ 603 /* label-statNext-done: When computing aggregate space usage over 604 ** an entire btree, this is the exit point from this function */ 605 return SQLITE_OK; 606 } 607 goto statNextRestart; /* Tail recursion */ 608 } 609 pCsr->iPage++; 610 if( pCsr->iPage>=ArraySize(pCsr->aPage) ){ 611 statResetCsr(pCsr); 612 return SQLITE_CORRUPT_BKPT; 613 } 614 assert( p==&pCsr->aPage[pCsr->iPage-1] ); 615 616 if( p->iCell==p->nCell ){ 617 p[1].iPgno = p->iRightChildPg; 618 }else{ 619 p[1].iPgno = p->aCell[p->iCell].iChildPg; 620 } 621 rc = sqlite3PagerGet(pPager, p[1].iPgno, &p[1].pPg, 0); 622 pCsr->nPage++; 623 p[1].iCell = 0; 624 if( !pCsr->isAgg ){ 625 p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell); 626 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 627 } 628 p->iCell++; 629 } 630 631 632 /* Populate the StatCursor fields with the values to be returned 633 ** by the xColumn() and xRowid() methods. 634 */ 635 if( rc==SQLITE_OK ){ 636 int i; 637 StatPage *p = &pCsr->aPage[pCsr->iPage]; 638 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 639 pCsr->iPageno = p->iPgno; 640 641 rc = statDecodePage(pBt, p); 642 if( rc==SQLITE_OK ){ 643 statSizeAndOffset(pCsr); 644 645 switch( p->flags ){ 646 case 0x05: /* table internal */ 647 case 0x02: /* index internal */ 648 pCsr->zPagetype = "internal"; 649 break; 650 case 0x0D: /* table leaf */ 651 case 0x0A: /* index leaf */ 652 pCsr->zPagetype = "leaf"; 653 break; 654 default: 655 pCsr->zPagetype = "corrupted"; 656 break; 657 } 658 pCsr->nCell += p->nCell; 659 pCsr->nUnused += p->nUnused; 660 if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload; 661 if( !pCsr->isAgg ){ 662 pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath); 663 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 664 } 665 nPayload = 0; 666 for(i=0; i<p->nCell; i++){ 667 nPayload += p->aCell[i].nLocal; 668 } 669 pCsr->nPayload += nPayload; 670 671 /* If computing aggregate space usage by btree, continue with the 672 ** next page. The loop will exit via the return at label-statNext-done 673 */ 674 if( pCsr->isAgg ) goto statNextRestart; 675 } 676 } 677 678 return rc; 679 } 680 681 static int statEof(sqlite3_vtab_cursor *pCursor){ 682 StatCursor *pCsr = (StatCursor *)pCursor; 683 return pCsr->isEof; 684 } 685 686 /* Initialize a cursor according to the query plan idxNum using the 687 ** arguments in argv[0]. See statBestIndex() for a description of the 688 ** meaning of the bits in idxNum. 689 */ 690 static int statFilter( 691 sqlite3_vtab_cursor *pCursor, 692 int idxNum, const char *idxStr, 693 int argc, sqlite3_value **argv 694 ){ 695 StatCursor *pCsr = (StatCursor *)pCursor; 696 StatTable *pTab = (StatTable*)(pCursor->pVtab); 697 sqlite3_str *pSql; /* Query of btrees to analyze */ 698 char *zSql; /* String value of pSql */ 699 int iArg = 0; /* Count of argv[] parameters used so far */ 700 int rc = SQLITE_OK; /* Result of this operation */ 701 const char *zName = 0; /* Only provide analysis of this table */ 702 703 statResetCsr(pCsr); 704 sqlite3_finalize(pCsr->pStmt); 705 pCsr->pStmt = 0; 706 if( idxNum & 0x01 ){ 707 /* schema=? constraint is present. Get its value */ 708 const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]); 709 pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase); 710 if( pCsr->iDb<0 ){ 711 pCsr->iDb = 0; 712 pCsr->isEof = 1; 713 return SQLITE_OK; 714 } 715 }else{ 716 pCsr->iDb = pTab->iDb; 717 } 718 if( idxNum & 0x02 ){ 719 /* name=? constraint is present */ 720 zName = (const char*)sqlite3_value_text(argv[iArg++]); 721 } 722 if( idxNum & 0x04 ){ 723 /* aggregate=? constraint is present */ 724 pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0; 725 }else{ 726 pCsr->isAgg = 0; 727 } 728 pSql = sqlite3_str_new(pTab->db); 729 sqlite3_str_appendf(pSql, 730 "SELECT * FROM (" 731 "SELECT 'sqlite_schema' AS name,1 AS rootpage,'table' AS type" 732 " UNION ALL " 733 "SELECT name,rootpage,type" 734 " FROM \"%w\".sqlite_schema WHERE rootpage!=0)", 735 pTab->db->aDb[pCsr->iDb].zDbSName); 736 if( zName ){ 737 sqlite3_str_appendf(pSql, "WHERE name=%Q", zName); 738 } 739 if( idxNum & 0x08 ){ 740 sqlite3_str_appendf(pSql, " ORDER BY name"); 741 } 742 zSql = sqlite3_str_finish(pSql); 743 if( zSql==0 ){ 744 return SQLITE_NOMEM_BKPT; 745 }else{ 746 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0); 747 sqlite3_free(zSql); 748 } 749 750 if( rc==SQLITE_OK ){ 751 rc = statNext(pCursor); 752 } 753 return rc; 754 } 755 756 static int statColumn( 757 sqlite3_vtab_cursor *pCursor, 758 sqlite3_context *ctx, 759 int i 760 ){ 761 StatCursor *pCsr = (StatCursor *)pCursor; 762 switch( i ){ 763 case 0: /* name */ 764 sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT); 765 break; 766 case 1: /* path */ 767 if( !pCsr->isAgg ){ 768 sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT); 769 } 770 break; 771 case 2: /* pageno */ 772 if( pCsr->isAgg ){ 773 sqlite3_result_int64(ctx, pCsr->nPage); 774 }else{ 775 sqlite3_result_int64(ctx, pCsr->iPageno); 776 } 777 break; 778 case 3: /* pagetype */ 779 if( !pCsr->isAgg ){ 780 sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC); 781 } 782 break; 783 case 4: /* ncell */ 784 sqlite3_result_int(ctx, pCsr->nCell); 785 break; 786 case 5: /* payload */ 787 sqlite3_result_int(ctx, pCsr->nPayload); 788 break; 789 case 6: /* unused */ 790 sqlite3_result_int(ctx, pCsr->nUnused); 791 break; 792 case 7: /* mx_payload */ 793 sqlite3_result_int(ctx, pCsr->nMxPayload); 794 break; 795 case 8: /* pgoffset */ 796 if( !pCsr->isAgg ){ 797 sqlite3_result_int64(ctx, pCsr->iOffset); 798 } 799 break; 800 case 9: /* pgsize */ 801 sqlite3_result_int(ctx, pCsr->szPage); 802 break; 803 case 10: { /* schema */ 804 sqlite3 *db = sqlite3_context_db_handle(ctx); 805 int iDb = pCsr->iDb; 806 sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC); 807 break; 808 } 809 default: { /* aggregate */ 810 sqlite3_result_int(ctx, pCsr->isAgg); 811 break; 812 } 813 } 814 return SQLITE_OK; 815 } 816 817 static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ 818 StatCursor *pCsr = (StatCursor *)pCursor; 819 *pRowid = pCsr->iPageno; 820 return SQLITE_OK; 821 } 822 823 /* 824 ** Invoke this routine to register the "dbstat" virtual table module 825 */ 826 int sqlite3DbstatRegister(sqlite3 *db){ 827 static sqlite3_module dbstat_module = { 828 0, /* iVersion */ 829 statConnect, /* xCreate */ 830 statConnect, /* xConnect */ 831 statBestIndex, /* xBestIndex */ 832 statDisconnect, /* xDisconnect */ 833 statDisconnect, /* xDestroy */ 834 statOpen, /* xOpen - open a cursor */ 835 statClose, /* xClose - close a cursor */ 836 statFilter, /* xFilter - configure scan constraints */ 837 statNext, /* xNext - advance a cursor */ 838 statEof, /* xEof - check for end of scan */ 839 statColumn, /* xColumn - read data */ 840 statRowid, /* xRowid - read data */ 841 0, /* xUpdate */ 842 0, /* xBegin */ 843 0, /* xSync */ 844 0, /* xCommit */ 845 0, /* xRollback */ 846 0, /* xFindMethod */ 847 0, /* xRename */ 848 0, /* xSavepoint */ 849 0, /* xRelease */ 850 0, /* xRollbackTo */ 851 0 /* xShadowName */ 852 }; 853 return sqlite3_create_module(db, "dbstat", &dbstat_module, 0); 854 } 855 #elif defined(SQLITE_ENABLE_DBSTAT_VTAB) 856 int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; } 857 #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ 858