1 /* 2 ** 2010 July 12 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains an implementation of the "dbstat" virtual table. 14 ** 15 ** The dbstat virtual table is used to extract low-level storage 16 ** information from an SQLite database in order to implement the 17 ** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script 18 ** for an example implementation. 19 ** 20 ** Additional information is available on the "dbstat.html" page of the 21 ** official SQLite documentation. 22 */ 23 24 #include "sqliteInt.h" /* Requires access to internal data structures */ 25 #if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \ 26 && !defined(SQLITE_OMIT_VIRTUALTABLE) 27 28 /* 29 ** Page paths: 30 ** 31 ** The value of the 'path' column describes the path taken from the 32 ** root-node of the b-tree structure to each page. The value of the 33 ** root-node path is '/'. 34 ** 35 ** The value of the path for the left-most child page of the root of 36 ** a b-tree is '/000/'. (Btrees store content ordered from left to right 37 ** so the pages to the left have smaller keys than the pages to the right.) 38 ** The next to left-most child of the root page is 39 ** '/001', and so on, each sibling page identified by a 3-digit hex 40 ** value. The children of the 451st left-most sibling have paths such 41 ** as '/1c2/000/, '/1c2/001/' etc. 42 ** 43 ** Overflow pages are specified by appending a '+' character and a 44 ** six-digit hexadecimal value to the path to the cell they are linked 45 ** from. For example, the three overflow pages in a chain linked from 46 ** the left-most cell of the 450th child of the root page are identified 47 ** by the paths: 48 ** 49 ** '/1c2/000+000000' // First page in overflow chain 50 ** '/1c2/000+000001' // Second page in overflow chain 51 ** '/1c2/000+000002' // Third page in overflow chain 52 ** 53 ** If the paths are sorted using the BINARY collation sequence, then 54 ** the overflow pages associated with a cell will appear earlier in the 55 ** sort-order than its child page: 56 ** 57 ** '/1c2/000/' // Left-most child of 451st child of root 58 */ 59 static const char zDbstatSchema[] = 60 "CREATE TABLE x(" 61 " name TEXT," /* 0 Name of table or index */ 62 " path TEXT," /* 1 Path to page from root (NULL for agg) */ 63 " pageno INTEGER," /* 2 Page number (page count for aggregates) */ 64 " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */ 65 " ncell INTEGER," /* 4 Cells on page (0 for overflow) */ 66 " payload INTEGER," /* 5 Bytes of payload on this page */ 67 " unused INTEGER," /* 6 Bytes of unused space on this page */ 68 " mx_payload INTEGER," /* 7 Largest payload size of all cells */ 69 " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */ 70 " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */ 71 " schema TEXT HIDDEN," /* 10 Database schema being analyzed */ 72 " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */ 73 ")" 74 ; 75 76 /* Forward reference to data structured used in this module */ 77 typedef struct StatTable StatTable; 78 typedef struct StatCursor StatCursor; 79 typedef struct StatPage StatPage; 80 typedef struct StatCell StatCell; 81 82 /* Size information for a single cell within a btree page */ 83 struct StatCell { 84 int nLocal; /* Bytes of local payload */ 85 u32 iChildPg; /* Child node (or 0 if this is a leaf) */ 86 int nOvfl; /* Entries in aOvfl[] */ 87 u32 *aOvfl; /* Array of overflow page numbers */ 88 int nLastOvfl; /* Bytes of payload on final overflow page */ 89 int iOvfl; /* Iterates through aOvfl[] */ 90 }; 91 92 /* Size information for a single btree page */ 93 struct StatPage { 94 u32 iPgno; /* Page number */ 95 DbPage *pPg; /* Page content */ 96 int iCell; /* Current cell */ 97 98 char *zPath; /* Path to this page */ 99 100 /* Variables populated by statDecodePage(): */ 101 u8 flags; /* Copy of flags byte */ 102 int nCell; /* Number of cells on page */ 103 int nUnused; /* Number of unused bytes on page */ 104 StatCell *aCell; /* Array of parsed cells */ 105 u32 iRightChildPg; /* Right-child page number (or 0) */ 106 int nMxPayload; /* Largest payload of any cell on the page */ 107 }; 108 109 /* The cursor for scanning the dbstat virtual table */ 110 struct StatCursor { 111 sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */ 112 sqlite3_stmt *pStmt; /* Iterates through set of root pages */ 113 u8 isEof; /* After pStmt has returned SQLITE_DONE */ 114 u8 isAgg; /* Aggregate results for each table */ 115 int iDb; /* Schema used for this query */ 116 117 StatPage aPage[32]; /* Pages in path to current page */ 118 int iPage; /* Current entry in aPage[] */ 119 120 /* Values to return. */ 121 u32 iPageno; /* Value of 'pageno' column */ 122 char *zName; /* Value of 'name' column */ 123 char *zPath; /* Value of 'path' column */ 124 char *zPagetype; /* Value of 'pagetype' column */ 125 int nPage; /* Number of pages in current btree */ 126 int nCell; /* Value of 'ncell' column */ 127 int nMxPayload; /* Value of 'mx_payload' column */ 128 i64 nUnused; /* Value of 'unused' column */ 129 i64 nPayload; /* Value of 'payload' column */ 130 i64 iOffset; /* Value of 'pgOffset' column */ 131 i64 szPage; /* Value of 'pgSize' column */ 132 }; 133 134 /* An instance of the DBSTAT virtual table */ 135 struct StatTable { 136 sqlite3_vtab base; /* base class. MUST BE FIRST! */ 137 sqlite3 *db; /* Database connection that owns this vtab */ 138 int iDb; /* Index of database to analyze */ 139 }; 140 141 #ifndef get2byte 142 # define get2byte(x) ((x)[0]<<8 | (x)[1]) 143 #endif 144 145 /* 146 ** Connect to or create a new DBSTAT virtual table. 147 */ 148 static int statConnect( 149 sqlite3 *db, 150 void *pAux, 151 int argc, const char *const*argv, 152 sqlite3_vtab **ppVtab, 153 char **pzErr 154 ){ 155 StatTable *pTab = 0; 156 int rc = SQLITE_OK; 157 int iDb; 158 159 if( argc>=4 ){ 160 Token nm; 161 sqlite3TokenInit(&nm, (char*)argv[3]); 162 iDb = sqlite3FindDb(db, &nm); 163 if( iDb<0 ){ 164 *pzErr = sqlite3_mprintf("no such database: %s", argv[3]); 165 return SQLITE_ERROR; 166 } 167 }else{ 168 iDb = 0; 169 } 170 sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY); 171 rc = sqlite3_declare_vtab(db, zDbstatSchema); 172 if( rc==SQLITE_OK ){ 173 pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable)); 174 if( pTab==0 ) rc = SQLITE_NOMEM_BKPT; 175 } 176 177 assert( rc==SQLITE_OK || pTab==0 ); 178 if( rc==SQLITE_OK ){ 179 memset(pTab, 0, sizeof(StatTable)); 180 pTab->db = db; 181 pTab->iDb = iDb; 182 } 183 184 *ppVtab = (sqlite3_vtab*)pTab; 185 return rc; 186 } 187 188 /* 189 ** Disconnect from or destroy the DBSTAT virtual table. 190 */ 191 static int statDisconnect(sqlite3_vtab *pVtab){ 192 sqlite3_free(pVtab); 193 return SQLITE_OK; 194 } 195 196 /* 197 ** Compute the best query strategy and return the result in idxNum. 198 ** 199 ** idxNum-Bit Meaning 200 ** ---------- ---------------------------------------------- 201 ** 0x01 There is a schema=? term in the WHERE clause 202 ** 0x02 There is a name=? term in the WHERE clause 203 ** 0x04 There is an aggregate=? term in the WHERE clause 204 ** 0x08 Output should be ordered by name and path 205 */ 206 static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 207 int i; 208 int iSchema = -1; 209 int iName = -1; 210 int iAgg = -1; 211 212 /* Look for a valid schema=? constraint. If found, change the idxNum to 213 ** 1 and request the value of that constraint be sent to xFilter. And 214 ** lower the cost estimate to encourage the constrained version to be 215 ** used. 216 */ 217 for(i=0; i<pIdxInfo->nConstraint; i++){ 218 if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 219 if( pIdxInfo->aConstraint[i].usable==0 ){ 220 /* Force DBSTAT table should always be the right-most table in a join */ 221 return SQLITE_CONSTRAINT; 222 } 223 switch( pIdxInfo->aConstraint[i].iColumn ){ 224 case 0: { /* name */ 225 iName = i; 226 break; 227 } 228 case 10: { /* schema */ 229 iSchema = i; 230 break; 231 } 232 case 11: { /* aggregate */ 233 iAgg = i; 234 break; 235 } 236 } 237 } 238 i = 0; 239 if( iSchema>=0 ){ 240 pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i; 241 pIdxInfo->idxNum |= 0x01; 242 } 243 if( iName>=0 ){ 244 pIdxInfo->aConstraintUsage[iName].argvIndex = ++i; 245 pIdxInfo->idxNum |= 0x02; 246 } 247 if( iAgg>=0 ){ 248 pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i; 249 pIdxInfo->idxNum |= 0x04; 250 } 251 pIdxInfo->estimatedCost = 1.0; 252 253 /* Records are always returned in ascending order of (name, path). 254 ** If this will satisfy the client, set the orderByConsumed flag so that 255 ** SQLite does not do an external sort. 256 */ 257 if( ( pIdxInfo->nOrderBy==1 258 && pIdxInfo->aOrderBy[0].iColumn==0 259 && pIdxInfo->aOrderBy[0].desc==0 260 ) || 261 ( pIdxInfo->nOrderBy==2 262 && pIdxInfo->aOrderBy[0].iColumn==0 263 && pIdxInfo->aOrderBy[0].desc==0 264 && pIdxInfo->aOrderBy[1].iColumn==1 265 && pIdxInfo->aOrderBy[1].desc==0 266 ) 267 ){ 268 pIdxInfo->orderByConsumed = 1; 269 pIdxInfo->idxNum |= 0x08; 270 } 271 272 return SQLITE_OK; 273 } 274 275 /* 276 ** Open a new DBSTAT cursor. 277 */ 278 static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 279 StatTable *pTab = (StatTable *)pVTab; 280 StatCursor *pCsr; 281 282 pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor)); 283 if( pCsr==0 ){ 284 return SQLITE_NOMEM_BKPT; 285 }else{ 286 memset(pCsr, 0, sizeof(StatCursor)); 287 pCsr->base.pVtab = pVTab; 288 pCsr->iDb = pTab->iDb; 289 } 290 291 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 292 return SQLITE_OK; 293 } 294 295 static void statClearCells(StatPage *p){ 296 int i; 297 if( p->aCell ){ 298 for(i=0; i<p->nCell; i++){ 299 sqlite3_free(p->aCell[i].aOvfl); 300 } 301 sqlite3_free(p->aCell); 302 } 303 p->nCell = 0; 304 p->aCell = 0; 305 } 306 307 static void statClearPage(StatPage *p){ 308 statClearCells(p); 309 sqlite3PagerUnref(p->pPg); 310 sqlite3_free(p->zPath); 311 memset(p, 0, sizeof(StatPage)); 312 } 313 314 static void statResetCsr(StatCursor *pCsr){ 315 int i; 316 sqlite3_reset(pCsr->pStmt); 317 for(i=0; i<ArraySize(pCsr->aPage); i++){ 318 statClearPage(&pCsr->aPage[i]); 319 } 320 pCsr->iPage = 0; 321 sqlite3_free(pCsr->zPath); 322 pCsr->zPath = 0; 323 pCsr->isEof = 0; 324 } 325 326 /* Resize the space-used counters inside of the cursor */ 327 static void statResetCounts(StatCursor *pCsr){ 328 pCsr->nCell = 0; 329 pCsr->nMxPayload = 0; 330 pCsr->nUnused = 0; 331 pCsr->nPayload = 0; 332 pCsr->szPage = 0; 333 pCsr->nPage = 0; 334 } 335 336 /* 337 ** Close a DBSTAT cursor. 338 */ 339 static int statClose(sqlite3_vtab_cursor *pCursor){ 340 StatCursor *pCsr = (StatCursor *)pCursor; 341 statResetCsr(pCsr); 342 sqlite3_finalize(pCsr->pStmt); 343 sqlite3_free(pCsr); 344 return SQLITE_OK; 345 } 346 347 /* 348 ** For a single cell on a btree page, compute the number of bytes of 349 ** content (payload) stored on that page. That is to say, compute the 350 ** number of bytes of content not found on overflow pages. 351 */ 352 static int getLocalPayload( 353 int nUsable, /* Usable bytes per page */ 354 u8 flags, /* Page flags */ 355 int nTotal /* Total record (payload) size */ 356 ){ 357 int nLocal; 358 int nMinLocal; 359 int nMaxLocal; 360 361 if( flags==0x0D ){ /* Table leaf node */ 362 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 363 nMaxLocal = nUsable - 35; 364 }else{ /* Index interior and leaf nodes */ 365 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 366 nMaxLocal = (nUsable - 12) * 64 / 255 - 23; 367 } 368 369 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4); 370 if( nLocal>nMaxLocal ) nLocal = nMinLocal; 371 return nLocal; 372 } 373 374 /* Populate the StatPage object with information about the all 375 ** cells found on the page currently under analysis. 376 */ 377 static int statDecodePage(Btree *pBt, StatPage *p){ 378 int nUnused; 379 int iOff; 380 int nHdr; 381 int isLeaf; 382 int szPage; 383 384 u8 *aData = sqlite3PagerGetData(p->pPg); 385 u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0]; 386 387 p->flags = aHdr[0]; 388 if( p->flags==0x0A || p->flags==0x0D ){ 389 isLeaf = 1; 390 nHdr = 8; 391 }else if( p->flags==0x05 || p->flags==0x02 ){ 392 isLeaf = 0; 393 nHdr = 12; 394 }else{ 395 goto statPageIsCorrupt; 396 } 397 if( p->iPgno==1 ) nHdr += 100; 398 p->nCell = get2byte(&aHdr[3]); 399 p->nMxPayload = 0; 400 szPage = sqlite3BtreeGetPageSize(pBt); 401 402 nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell; 403 nUnused += (int)aHdr[7]; 404 iOff = get2byte(&aHdr[1]); 405 while( iOff ){ 406 int iNext; 407 if( iOff>=szPage ) goto statPageIsCorrupt; 408 nUnused += get2byte(&aData[iOff+2]); 409 iNext = get2byte(&aData[iOff]); 410 if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt; 411 iOff = iNext; 412 } 413 p->nUnused = nUnused; 414 p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]); 415 416 if( p->nCell ){ 417 int i; /* Used to iterate through cells */ 418 int nUsable; /* Usable bytes per page */ 419 420 sqlite3BtreeEnter(pBt); 421 nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt); 422 sqlite3BtreeLeave(pBt); 423 p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell)); 424 if( p->aCell==0 ) return SQLITE_NOMEM_BKPT; 425 memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell)); 426 427 for(i=0; i<p->nCell; i++){ 428 StatCell *pCell = &p->aCell[i]; 429 430 iOff = get2byte(&aData[nHdr+i*2]); 431 if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt; 432 if( !isLeaf ){ 433 pCell->iChildPg = sqlite3Get4byte(&aData[iOff]); 434 iOff += 4; 435 } 436 if( p->flags==0x05 ){ 437 /* A table interior node. nPayload==0. */ 438 }else{ 439 u32 nPayload; /* Bytes of payload total (local+overflow) */ 440 int nLocal; /* Bytes of payload stored locally */ 441 iOff += getVarint32(&aData[iOff], nPayload); 442 if( p->flags==0x0D ){ 443 u64 dummy; 444 iOff += sqlite3GetVarint(&aData[iOff], &dummy); 445 } 446 if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload; 447 nLocal = getLocalPayload(nUsable, p->flags, nPayload); 448 if( nLocal<0 ) goto statPageIsCorrupt; 449 pCell->nLocal = nLocal; 450 assert( nPayload>=(u32)nLocal ); 451 assert( nLocal<=(nUsable-35) ); 452 if( nPayload>(u32)nLocal ){ 453 int j; 454 int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4); 455 if( iOff+nLocal>nUsable ) goto statPageIsCorrupt; 456 pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4); 457 pCell->nOvfl = nOvfl; 458 pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl); 459 if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT; 460 pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]); 461 for(j=1; j<nOvfl; j++){ 462 int rc; 463 u32 iPrev = pCell->aOvfl[j-1]; 464 DbPage *pPg = 0; 465 rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0); 466 if( rc!=SQLITE_OK ){ 467 assert( pPg==0 ); 468 return rc; 469 } 470 pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg)); 471 sqlite3PagerUnref(pPg); 472 } 473 } 474 } 475 } 476 } 477 478 return SQLITE_OK; 479 480 statPageIsCorrupt: 481 p->flags = 0; 482 statClearCells(p); 483 return SQLITE_OK; 484 } 485 486 /* 487 ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on 488 ** the current value of pCsr->iPageno. 489 */ 490 static void statSizeAndOffset(StatCursor *pCsr){ 491 StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab; 492 Btree *pBt = pTab->db->aDb[pTab->iDb].pBt; 493 Pager *pPager = sqlite3BtreePager(pBt); 494 sqlite3_file *fd; 495 sqlite3_int64 x[2]; 496 497 /* If connected to a ZIPVFS backend, find the page size and 498 ** offset from ZIPVFS. 499 */ 500 fd = sqlite3PagerFile(pPager); 501 x[0] = pCsr->iPageno; 502 if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){ 503 pCsr->iOffset = x[0]; 504 pCsr->szPage += x[1]; 505 }else{ 506 /* Not ZIPVFS: The default page size and offset */ 507 pCsr->szPage += sqlite3BtreeGetPageSize(pBt); 508 pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1); 509 } 510 } 511 512 /* 513 ** Move a DBSTAT cursor to the next entry. Normally, the next 514 ** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0), 515 ** the next entry is the next btree. 516 */ 517 static int statNext(sqlite3_vtab_cursor *pCursor){ 518 int rc; 519 int nPayload; 520 char *z; 521 StatCursor *pCsr = (StatCursor *)pCursor; 522 StatTable *pTab = (StatTable *)pCursor->pVtab; 523 Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt; 524 Pager *pPager = sqlite3BtreePager(pBt); 525 526 sqlite3_free(pCsr->zPath); 527 pCsr->zPath = 0; 528 529 statNextRestart: 530 if( pCsr->aPage[0].pPg==0 ){ 531 /* Start measuring space on the next btree */ 532 statResetCounts(pCsr); 533 rc = sqlite3_step(pCsr->pStmt); 534 if( rc==SQLITE_ROW ){ 535 int nPage; 536 u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1); 537 sqlite3PagerPagecount(pPager, &nPage); 538 if( nPage==0 ){ 539 pCsr->isEof = 1; 540 return sqlite3_reset(pCsr->pStmt); 541 } 542 rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg, 0); 543 pCsr->aPage[0].iPgno = iRoot; 544 pCsr->aPage[0].iCell = 0; 545 if( !pCsr->isAgg ){ 546 pCsr->aPage[0].zPath = z = sqlite3_mprintf("/"); 547 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 548 } 549 pCsr->iPage = 0; 550 pCsr->nPage = 1; 551 }else{ 552 pCsr->isEof = 1; 553 return sqlite3_reset(pCsr->pStmt); 554 } 555 }else{ 556 /* Continue analyzing the btree previously started */ 557 StatPage *p = &pCsr->aPage[pCsr->iPage]; 558 if( !pCsr->isAgg ) statResetCounts(pCsr); 559 while( p->iCell<p->nCell ){ 560 StatCell *pCell = &p->aCell[p->iCell]; 561 while( pCell->iOvfl<pCell->nOvfl ){ 562 int nUsable, iOvfl; 563 sqlite3BtreeEnter(pBt); 564 nUsable = sqlite3BtreeGetPageSize(pBt) - 565 sqlite3BtreeGetReserveNoMutex(pBt); 566 sqlite3BtreeLeave(pBt); 567 pCsr->nPage++; 568 statSizeAndOffset(pCsr); 569 if( pCell->iOvfl<pCell->nOvfl-1 ){ 570 pCsr->nPayload += nUsable - 4; 571 }else{ 572 pCsr->nPayload += pCell->nLastOvfl; 573 pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl; 574 } 575 iOvfl = pCell->iOvfl; 576 pCell->iOvfl++; 577 if( !pCsr->isAgg ){ 578 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 579 pCsr->iPageno = pCell->aOvfl[iOvfl]; 580 pCsr->zPagetype = "overflow"; 581 pCsr->zPath = z = sqlite3_mprintf( 582 "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl 583 ); 584 return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 585 } 586 } 587 if( p->iRightChildPg ) break; 588 p->iCell++; 589 } 590 591 if( !p->iRightChildPg || p->iCell>p->nCell ){ 592 statClearPage(p); 593 if( pCsr->iPage>0 ){ 594 pCsr->iPage--; 595 }else if( pCsr->isAgg ){ 596 /* label-statNext-done: When computing aggregate space usage over 597 ** an entire btree, this is the exit point from this function */ 598 return SQLITE_OK; 599 } 600 goto statNextRestart; /* Tail recursion */ 601 } 602 pCsr->iPage++; 603 if( pCsr->iPage>=ArraySize(pCsr->aPage) ){ 604 statResetCsr(pCsr); 605 return SQLITE_CORRUPT_BKPT; 606 } 607 assert( p==&pCsr->aPage[pCsr->iPage-1] ); 608 609 if( p->iCell==p->nCell ){ 610 p[1].iPgno = p->iRightChildPg; 611 }else{ 612 p[1].iPgno = p->aCell[p->iCell].iChildPg; 613 } 614 rc = sqlite3PagerGet(pPager, p[1].iPgno, &p[1].pPg, 0); 615 pCsr->nPage++; 616 p[1].iCell = 0; 617 if( !pCsr->isAgg ){ 618 p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell); 619 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 620 } 621 p->iCell++; 622 } 623 624 625 /* Populate the StatCursor fields with the values to be returned 626 ** by the xColumn() and xRowid() methods. 627 */ 628 if( rc==SQLITE_OK ){ 629 int i; 630 StatPage *p = &pCsr->aPage[pCsr->iPage]; 631 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 632 pCsr->iPageno = p->iPgno; 633 634 rc = statDecodePage(pBt, p); 635 if( rc==SQLITE_OK ){ 636 statSizeAndOffset(pCsr); 637 638 switch( p->flags ){ 639 case 0x05: /* table internal */ 640 case 0x02: /* index internal */ 641 pCsr->zPagetype = "internal"; 642 break; 643 case 0x0D: /* table leaf */ 644 case 0x0A: /* index leaf */ 645 pCsr->zPagetype = "leaf"; 646 break; 647 default: 648 pCsr->zPagetype = "corrupted"; 649 break; 650 } 651 pCsr->nCell += p->nCell; 652 pCsr->nUnused += p->nUnused; 653 if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload; 654 if( !pCsr->isAgg ){ 655 pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath); 656 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 657 } 658 nPayload = 0; 659 for(i=0; i<p->nCell; i++){ 660 nPayload += p->aCell[i].nLocal; 661 } 662 pCsr->nPayload += nPayload; 663 664 /* If computing aggregate space usage by btree, continue with the 665 ** next page. The loop will exit via the return at label-statNext-done 666 */ 667 if( pCsr->isAgg ) goto statNextRestart; 668 } 669 } 670 671 return rc; 672 } 673 674 static int statEof(sqlite3_vtab_cursor *pCursor){ 675 StatCursor *pCsr = (StatCursor *)pCursor; 676 return pCsr->isEof; 677 } 678 679 /* Initialize a cursor according to the query plan idxNum using the 680 ** arguments in argv[0]. See statBestIndex() for a description of the 681 ** meaning of the bits in idxNum. 682 */ 683 static int statFilter( 684 sqlite3_vtab_cursor *pCursor, 685 int idxNum, const char *idxStr, 686 int argc, sqlite3_value **argv 687 ){ 688 StatCursor *pCsr = (StatCursor *)pCursor; 689 StatTable *pTab = (StatTable*)(pCursor->pVtab); 690 sqlite3_str *pSql; /* Query of btrees to analyze */ 691 char *zSql; /* String value of pSql */ 692 int iArg = 0; /* Count of argv[] parameters used so far */ 693 int rc = SQLITE_OK; /* Result of this operation */ 694 const char *zName = 0; /* Only provide analysis of this table */ 695 696 statResetCsr(pCsr); 697 sqlite3_finalize(pCsr->pStmt); 698 pCsr->pStmt = 0; 699 if( idxNum & 0x01 ){ 700 /* schema=? constraint is present. Get its value */ 701 const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]); 702 pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase); 703 if( pCsr->iDb<0 ){ 704 pCsr->iDb = 0; 705 pCsr->isEof = 1; 706 return SQLITE_OK; 707 } 708 }else{ 709 pCsr->iDb = pTab->iDb; 710 } 711 if( idxNum & 0x02 ){ 712 /* name=? constraint is present */ 713 zName = (const char*)sqlite3_value_text(argv[iArg++]); 714 } 715 if( idxNum & 0x04 ){ 716 /* aggregate=? constraint is present */ 717 pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0; 718 }else{ 719 pCsr->isAgg = 0; 720 } 721 pSql = sqlite3_str_new(pTab->db); 722 sqlite3_str_appendf(pSql, 723 "SELECT * FROM (" 724 "SELECT 'sqlite_master' AS name,1 AS rootpage,'table' AS type" 725 " UNION ALL " 726 "SELECT name,rootpage,type" 727 " FROM \"%w\".sqlite_master WHERE rootpage!=0)", 728 pTab->db->aDb[pCsr->iDb].zDbSName); 729 if( zName ){ 730 sqlite3_str_appendf(pSql, "WHERE name=%Q", zName); 731 } 732 if( idxNum & 0x08 ){ 733 sqlite3_str_appendf(pSql, " ORDER BY name"); 734 } 735 zSql = sqlite3_str_finish(pSql); 736 if( zSql==0 ){ 737 return SQLITE_NOMEM_BKPT; 738 }else{ 739 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0); 740 sqlite3_free(zSql); 741 } 742 743 if( rc==SQLITE_OK ){ 744 rc = statNext(pCursor); 745 } 746 return rc; 747 } 748 749 static int statColumn( 750 sqlite3_vtab_cursor *pCursor, 751 sqlite3_context *ctx, 752 int i 753 ){ 754 StatCursor *pCsr = (StatCursor *)pCursor; 755 switch( i ){ 756 case 0: /* name */ 757 sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT); 758 break; 759 case 1: /* path */ 760 if( !pCsr->isAgg ){ 761 sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT); 762 } 763 break; 764 case 2: /* pageno */ 765 if( pCsr->isAgg ){ 766 sqlite3_result_int64(ctx, pCsr->nPage); 767 }else{ 768 sqlite3_result_int64(ctx, pCsr->iPageno); 769 } 770 break; 771 case 3: /* pagetype */ 772 if( !pCsr->isAgg ){ 773 sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC); 774 } 775 break; 776 case 4: /* ncell */ 777 sqlite3_result_int(ctx, pCsr->nCell); 778 break; 779 case 5: /* payload */ 780 sqlite3_result_int(ctx, pCsr->nPayload); 781 break; 782 case 6: /* unused */ 783 sqlite3_result_int(ctx, pCsr->nUnused); 784 break; 785 case 7: /* mx_payload */ 786 sqlite3_result_int(ctx, pCsr->nMxPayload); 787 break; 788 case 8: /* pgoffset */ 789 if( !pCsr->isAgg ){ 790 sqlite3_result_int64(ctx, pCsr->iOffset); 791 } 792 break; 793 case 9: /* pgsize */ 794 sqlite3_result_int(ctx, pCsr->szPage); 795 break; 796 case 10: { /* schema */ 797 sqlite3 *db = sqlite3_context_db_handle(ctx); 798 int iDb = pCsr->iDb; 799 sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC); 800 break; 801 } 802 default: { /* aggregate */ 803 sqlite3_result_int(ctx, pCsr->isAgg); 804 break; 805 } 806 } 807 return SQLITE_OK; 808 } 809 810 static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ 811 StatCursor *pCsr = (StatCursor *)pCursor; 812 *pRowid = pCsr->iPageno; 813 return SQLITE_OK; 814 } 815 816 /* 817 ** Invoke this routine to register the "dbstat" virtual table module 818 */ 819 int sqlite3DbstatRegister(sqlite3 *db){ 820 static sqlite3_module dbstat_module = { 821 0, /* iVersion */ 822 statConnect, /* xCreate */ 823 statConnect, /* xConnect */ 824 statBestIndex, /* xBestIndex */ 825 statDisconnect, /* xDisconnect */ 826 statDisconnect, /* xDestroy */ 827 statOpen, /* xOpen - open a cursor */ 828 statClose, /* xClose - close a cursor */ 829 statFilter, /* xFilter - configure scan constraints */ 830 statNext, /* xNext - advance a cursor */ 831 statEof, /* xEof - check for end of scan */ 832 statColumn, /* xColumn - read data */ 833 statRowid, /* xRowid - read data */ 834 0, /* xUpdate */ 835 0, /* xBegin */ 836 0, /* xSync */ 837 0, /* xCommit */ 838 0, /* xRollback */ 839 0, /* xFindMethod */ 840 0, /* xRename */ 841 0, /* xSavepoint */ 842 0, /* xRelease */ 843 0, /* xRollbackTo */ 844 0 /* xShadowName */ 845 }; 846 return sqlite3_create_module(db, "dbstat", &dbstat_module, 0); 847 } 848 #elif defined(SQLITE_ENABLE_DBSTAT_VTAB) 849 int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; } 850 #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ 851