1 /* 2 ** 2010 July 12 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains an implementation of the "dbstat" virtual table. 14 ** 15 ** The dbstat virtual table is used to extract low-level storage 16 ** information from an SQLite database in order to implement the 17 ** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script 18 ** for an example implementation. 19 ** 20 ** Additional information is available on the "dbstat.html" page of the 21 ** official SQLite documentation. 22 */ 23 24 #include "sqliteInt.h" /* Requires access to internal data structures */ 25 #if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \ 26 && !defined(SQLITE_OMIT_VIRTUALTABLE) 27 28 /* 29 ** Page paths: 30 ** 31 ** The value of the 'path' column describes the path taken from the 32 ** root-node of the b-tree structure to each page. The value of the 33 ** root-node path is '/'. 34 ** 35 ** The value of the path for the left-most child page of the root of 36 ** a b-tree is '/000/'. (Btrees store content ordered from left to right 37 ** so the pages to the left have smaller keys than the pages to the right.) 38 ** The next to left-most child of the root page is 39 ** '/001', and so on, each sibling page identified by a 3-digit hex 40 ** value. The children of the 451st left-most sibling have paths such 41 ** as '/1c2/000/, '/1c2/001/' etc. 42 ** 43 ** Overflow pages are specified by appending a '+' character and a 44 ** six-digit hexadecimal value to the path to the cell they are linked 45 ** from. For example, the three overflow pages in a chain linked from 46 ** the left-most cell of the 450th child of the root page are identified 47 ** by the paths: 48 ** 49 ** '/1c2/000+000000' // First page in overflow chain 50 ** '/1c2/000+000001' // Second page in overflow chain 51 ** '/1c2/000+000002' // Third page in overflow chain 52 ** 53 ** If the paths are sorted using the BINARY collation sequence, then 54 ** the overflow pages associated with a cell will appear earlier in the 55 ** sort-order than its child page: 56 ** 57 ** '/1c2/000/' // Left-most child of 451st child of root 58 */ 59 static const char zDbstatSchema[] = 60 "CREATE TABLE x(" 61 " name TEXT," /* 0 Name of table or index */ 62 " path TEXT," /* 1 Path to page from root (NULL for agg) */ 63 " pageno INTEGER," /* 2 Page number (page count for aggregates) */ 64 " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */ 65 " ncell INTEGER," /* 4 Cells on page (0 for overflow) */ 66 " payload INTEGER," /* 5 Bytes of payload on this page */ 67 " unused INTEGER," /* 6 Bytes of unused space on this page */ 68 " mx_payload INTEGER," /* 7 Largest payload size of all cells */ 69 " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */ 70 " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */ 71 " schema TEXT HIDDEN," /* 10 Database schema being analyzed */ 72 " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */ 73 ")" 74 ; 75 76 /* Forward reference to data structured used in this module */ 77 typedef struct StatTable StatTable; 78 typedef struct StatCursor StatCursor; 79 typedef struct StatPage StatPage; 80 typedef struct StatCell StatCell; 81 82 /* Size information for a single cell within a btree page */ 83 struct StatCell { 84 int nLocal; /* Bytes of local payload */ 85 u32 iChildPg; /* Child node (or 0 if this is a leaf) */ 86 int nOvfl; /* Entries in aOvfl[] */ 87 u32 *aOvfl; /* Array of overflow page numbers */ 88 int nLastOvfl; /* Bytes of payload on final overflow page */ 89 int iOvfl; /* Iterates through aOvfl[] */ 90 }; 91 92 /* Size information for a single btree page */ 93 struct StatPage { 94 u32 iPgno; /* Page number */ 95 DbPage *pPg; /* Page content */ 96 int iCell; /* Current cell */ 97 98 char *zPath; /* Path to this page */ 99 100 /* Variables populated by statDecodePage(): */ 101 u8 flags; /* Copy of flags byte */ 102 int nCell; /* Number of cells on page */ 103 int nUnused; /* Number of unused bytes on page */ 104 StatCell *aCell; /* Array of parsed cells */ 105 u32 iRightChildPg; /* Right-child page number (or 0) */ 106 int nMxPayload; /* Largest payload of any cell on the page */ 107 }; 108 109 /* The cursor for scanning the dbstat virtual table */ 110 struct StatCursor { 111 sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */ 112 sqlite3_stmt *pStmt; /* Iterates through set of root pages */ 113 u8 isEof; /* After pStmt has returned SQLITE_DONE */ 114 u8 isAgg; /* Aggregate results for each table */ 115 int iDb; /* Schema used for this query */ 116 117 StatPage aPage[32]; /* Pages in path to current page */ 118 int iPage; /* Current entry in aPage[] */ 119 120 /* Values to return. */ 121 u32 iPageno; /* Value of 'pageno' column */ 122 char *zName; /* Value of 'name' column */ 123 char *zPath; /* Value of 'path' column */ 124 char *zPagetype; /* Value of 'pagetype' column */ 125 int nPage; /* Number of pages in current btree */ 126 int nCell; /* Value of 'ncell' column */ 127 int nMxPayload; /* Value of 'mx_payload' column */ 128 i64 nUnused; /* Value of 'unused' column */ 129 i64 nPayload; /* Value of 'payload' column */ 130 i64 iOffset; /* Value of 'pgOffset' column */ 131 i64 szPage; /* Value of 'pgSize' column */ 132 }; 133 134 /* An instance of the DBSTAT virtual table */ 135 struct StatTable { 136 sqlite3_vtab base; /* base class. MUST BE FIRST! */ 137 sqlite3 *db; /* Database connection that owns this vtab */ 138 int iDb; /* Index of database to analyze */ 139 }; 140 141 #ifndef get2byte 142 # define get2byte(x) ((x)[0]<<8 | (x)[1]) 143 #endif 144 145 /* 146 ** Connect to or create a new DBSTAT virtual table. 147 */ 148 static int statConnect( 149 sqlite3 *db, 150 void *pAux, 151 int argc, const char *const*argv, 152 sqlite3_vtab **ppVtab, 153 char **pzErr 154 ){ 155 StatTable *pTab = 0; 156 int rc = SQLITE_OK; 157 int iDb; 158 159 if( argc>=4 ){ 160 Token nm; 161 sqlite3TokenInit(&nm, (char*)argv[3]); 162 iDb = sqlite3FindDb(db, &nm); 163 if( iDb<0 ){ 164 *pzErr = sqlite3_mprintf("no such database: %s", argv[3]); 165 return SQLITE_ERROR; 166 } 167 }else{ 168 iDb = 0; 169 } 170 rc = sqlite3_declare_vtab(db, zDbstatSchema); 171 if( rc==SQLITE_OK ){ 172 pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable)); 173 if( pTab==0 ) rc = SQLITE_NOMEM_BKPT; 174 } 175 176 assert( rc==SQLITE_OK || pTab==0 ); 177 if( rc==SQLITE_OK ){ 178 memset(pTab, 0, sizeof(StatTable)); 179 pTab->db = db; 180 pTab->iDb = iDb; 181 } 182 183 *ppVtab = (sqlite3_vtab*)pTab; 184 return rc; 185 } 186 187 /* 188 ** Disconnect from or destroy the DBSTAT virtual table. 189 */ 190 static int statDisconnect(sqlite3_vtab *pVtab){ 191 sqlite3_free(pVtab); 192 return SQLITE_OK; 193 } 194 195 /* 196 ** Compute the best query strategy and return the result in idxNum. 197 ** 198 ** idxNum-Bit Meaning 199 ** ---------- ---------------------------------------------- 200 ** 0x01 There is a schema=? term in the WHERE clause 201 ** 0x02 There is a name=? term in the WHERE clause 202 ** 0x04 There is an aggregate=? term in the WHERE clause 203 ** 0x08 Output should be ordered by name and path 204 */ 205 static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 206 int i; 207 int iSchema = -1; 208 int iName = -1; 209 int iAgg = -1; 210 211 /* Look for a valid schema=? constraint. If found, change the idxNum to 212 ** 1 and request the value of that constraint be sent to xFilter. And 213 ** lower the cost estimate to encourage the constrained version to be 214 ** used. 215 */ 216 for(i=0; i<pIdxInfo->nConstraint; i++){ 217 if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 218 if( pIdxInfo->aConstraint[i].usable==0 ){ 219 /* Force DBSTAT table should always be the right-most table in a join */ 220 return SQLITE_CONSTRAINT; 221 } 222 switch( pIdxInfo->aConstraint[i].iColumn ){ 223 case 0: { /* name */ 224 iName = i; 225 break; 226 } 227 case 10: { /* schema */ 228 iSchema = i; 229 break; 230 } 231 case 11: { /* aggregate */ 232 iAgg = i; 233 break; 234 } 235 } 236 } 237 i = 0; 238 if( iSchema>=0 ){ 239 pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i; 240 pIdxInfo->idxNum |= 0x01; 241 } 242 if( iName>=0 ){ 243 pIdxInfo->aConstraintUsage[iName].argvIndex = ++i; 244 pIdxInfo->idxNum |= 0x02; 245 } 246 if( iAgg>=0 ){ 247 pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i; 248 pIdxInfo->idxNum |= 0x04; 249 } 250 pIdxInfo->estimatedCost = 1.0; 251 252 /* Records are always returned in ascending order of (name, path). 253 ** If this will satisfy the client, set the orderByConsumed flag so that 254 ** SQLite does not do an external sort. 255 */ 256 if( ( pIdxInfo->nOrderBy==1 257 && pIdxInfo->aOrderBy[0].iColumn==0 258 && pIdxInfo->aOrderBy[0].desc==0 259 ) || 260 ( pIdxInfo->nOrderBy==2 261 && pIdxInfo->aOrderBy[0].iColumn==0 262 && pIdxInfo->aOrderBy[0].desc==0 263 && pIdxInfo->aOrderBy[1].iColumn==1 264 && pIdxInfo->aOrderBy[1].desc==0 265 ) 266 ){ 267 pIdxInfo->orderByConsumed = 1; 268 pIdxInfo->idxNum |= 0x08; 269 } 270 271 return SQLITE_OK; 272 } 273 274 /* 275 ** Open a new DBSTAT cursor. 276 */ 277 static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 278 StatTable *pTab = (StatTable *)pVTab; 279 StatCursor *pCsr; 280 281 pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor)); 282 if( pCsr==0 ){ 283 return SQLITE_NOMEM_BKPT; 284 }else{ 285 memset(pCsr, 0, sizeof(StatCursor)); 286 pCsr->base.pVtab = pVTab; 287 pCsr->iDb = pTab->iDb; 288 } 289 290 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 291 return SQLITE_OK; 292 } 293 294 static void statClearCells(StatPage *p){ 295 int i; 296 if( p->aCell ){ 297 for(i=0; i<p->nCell; i++){ 298 sqlite3_free(p->aCell[i].aOvfl); 299 } 300 sqlite3_free(p->aCell); 301 } 302 p->nCell = 0; 303 p->aCell = 0; 304 } 305 306 static void statClearPage(StatPage *p){ 307 statClearCells(p); 308 sqlite3PagerUnref(p->pPg); 309 sqlite3_free(p->zPath); 310 memset(p, 0, sizeof(StatPage)); 311 } 312 313 static void statResetCsr(StatCursor *pCsr){ 314 int i; 315 sqlite3_reset(pCsr->pStmt); 316 for(i=0; i<ArraySize(pCsr->aPage); i++){ 317 statClearPage(&pCsr->aPage[i]); 318 } 319 pCsr->iPage = 0; 320 sqlite3_free(pCsr->zPath); 321 pCsr->zPath = 0; 322 pCsr->isEof = 0; 323 } 324 325 /* Resize the space-used counters inside of the cursor */ 326 static void statResetCounts(StatCursor *pCsr){ 327 pCsr->nCell = 0; 328 pCsr->nMxPayload = 0; 329 pCsr->nUnused = 0; 330 pCsr->nPayload = 0; 331 pCsr->szPage = 0; 332 pCsr->nPage = 0; 333 } 334 335 /* 336 ** Close a DBSTAT cursor. 337 */ 338 static int statClose(sqlite3_vtab_cursor *pCursor){ 339 StatCursor *pCsr = (StatCursor *)pCursor; 340 statResetCsr(pCsr); 341 sqlite3_finalize(pCsr->pStmt); 342 sqlite3_free(pCsr); 343 return SQLITE_OK; 344 } 345 346 /* 347 ** For a single cell on a btree page, compute the number of bytes of 348 ** content (payload) stored on that page. That is to say, compute the 349 ** number of bytes of content not found on overflow pages. 350 */ 351 static int getLocalPayload( 352 int nUsable, /* Usable bytes per page */ 353 u8 flags, /* Page flags */ 354 int nTotal /* Total record (payload) size */ 355 ){ 356 int nLocal; 357 int nMinLocal; 358 int nMaxLocal; 359 360 if( flags==0x0D ){ /* Table leaf node */ 361 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 362 nMaxLocal = nUsable - 35; 363 }else{ /* Index interior and leaf nodes */ 364 nMinLocal = (nUsable - 12) * 32 / 255 - 23; 365 nMaxLocal = (nUsable - 12) * 64 / 255 - 23; 366 } 367 368 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4); 369 if( nLocal>nMaxLocal ) nLocal = nMinLocal; 370 return nLocal; 371 } 372 373 /* Populate the StatPage object with information about the all 374 ** cells found on the page currently under analysis. 375 */ 376 static int statDecodePage(Btree *pBt, StatPage *p){ 377 int nUnused; 378 int iOff; 379 int nHdr; 380 int isLeaf; 381 int szPage; 382 383 u8 *aData = sqlite3PagerGetData(p->pPg); 384 u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0]; 385 386 p->flags = aHdr[0]; 387 if( p->flags==0x0A || p->flags==0x0D ){ 388 isLeaf = 1; 389 nHdr = 8; 390 }else if( p->flags==0x05 || p->flags==0x02 ){ 391 isLeaf = 0; 392 nHdr = 12; 393 }else{ 394 goto statPageIsCorrupt; 395 } 396 if( p->iPgno==1 ) nHdr += 100; 397 p->nCell = get2byte(&aHdr[3]); 398 p->nMxPayload = 0; 399 szPage = sqlite3BtreeGetPageSize(pBt); 400 401 nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell; 402 nUnused += (int)aHdr[7]; 403 iOff = get2byte(&aHdr[1]); 404 while( iOff ){ 405 int iNext; 406 if( iOff>=szPage ) goto statPageIsCorrupt; 407 nUnused += get2byte(&aData[iOff+2]); 408 iNext = get2byte(&aData[iOff]); 409 if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt; 410 iOff = iNext; 411 } 412 p->nUnused = nUnused; 413 p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]); 414 415 if( p->nCell ){ 416 int i; /* Used to iterate through cells */ 417 int nUsable; /* Usable bytes per page */ 418 419 sqlite3BtreeEnter(pBt); 420 nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt); 421 sqlite3BtreeLeave(pBt); 422 p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell)); 423 if( p->aCell==0 ) return SQLITE_NOMEM_BKPT; 424 memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell)); 425 426 for(i=0; i<p->nCell; i++){ 427 StatCell *pCell = &p->aCell[i]; 428 429 iOff = get2byte(&aData[nHdr+i*2]); 430 if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt; 431 if( !isLeaf ){ 432 pCell->iChildPg = sqlite3Get4byte(&aData[iOff]); 433 iOff += 4; 434 } 435 if( p->flags==0x05 ){ 436 /* A table interior node. nPayload==0. */ 437 }else{ 438 u32 nPayload; /* Bytes of payload total (local+overflow) */ 439 int nLocal; /* Bytes of payload stored locally */ 440 iOff += getVarint32(&aData[iOff], nPayload); 441 if( p->flags==0x0D ){ 442 u64 dummy; 443 iOff += sqlite3GetVarint(&aData[iOff], &dummy); 444 } 445 if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload; 446 nLocal = getLocalPayload(nUsable, p->flags, nPayload); 447 if( nLocal<0 ) goto statPageIsCorrupt; 448 pCell->nLocal = nLocal; 449 assert( nPayload>=(u32)nLocal ); 450 assert( nLocal<=(nUsable-35) ); 451 if( nPayload>(u32)nLocal ){ 452 int j; 453 int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4); 454 if( iOff+nLocal>nUsable ) goto statPageIsCorrupt; 455 pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4); 456 pCell->nOvfl = nOvfl; 457 pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl); 458 if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT; 459 pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]); 460 for(j=1; j<nOvfl; j++){ 461 int rc; 462 u32 iPrev = pCell->aOvfl[j-1]; 463 DbPage *pPg = 0; 464 rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0); 465 if( rc!=SQLITE_OK ){ 466 assert( pPg==0 ); 467 return rc; 468 } 469 pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg)); 470 sqlite3PagerUnref(pPg); 471 } 472 } 473 } 474 } 475 } 476 477 return SQLITE_OK; 478 479 statPageIsCorrupt: 480 p->flags = 0; 481 statClearCells(p); 482 return SQLITE_OK; 483 } 484 485 /* 486 ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on 487 ** the current value of pCsr->iPageno. 488 */ 489 static void statSizeAndOffset(StatCursor *pCsr){ 490 StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab; 491 Btree *pBt = pTab->db->aDb[pTab->iDb].pBt; 492 Pager *pPager = sqlite3BtreePager(pBt); 493 sqlite3_file *fd; 494 sqlite3_int64 x[2]; 495 496 /* If connected to a ZIPVFS backend, find the page size and 497 ** offset from ZIPVFS. 498 */ 499 fd = sqlite3PagerFile(pPager); 500 x[0] = pCsr->iPageno; 501 if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){ 502 pCsr->iOffset = x[0]; 503 pCsr->szPage += x[1]; 504 }else{ 505 /* Not ZIPVFS: The default page size and offset */ 506 pCsr->szPage += sqlite3BtreeGetPageSize(pBt); 507 pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1); 508 } 509 } 510 511 /* 512 ** Move a DBSTAT cursor to the next entry. Normally, the next 513 ** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0), 514 ** the next entry is the next btree. 515 */ 516 static int statNext(sqlite3_vtab_cursor *pCursor){ 517 int rc; 518 int nPayload; 519 char *z; 520 StatCursor *pCsr = (StatCursor *)pCursor; 521 StatTable *pTab = (StatTable *)pCursor->pVtab; 522 Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt; 523 Pager *pPager = sqlite3BtreePager(pBt); 524 525 sqlite3_free(pCsr->zPath); 526 pCsr->zPath = 0; 527 528 statNextRestart: 529 if( pCsr->aPage[0].pPg==0 ){ 530 /* Start measuring space on the next btree */ 531 statResetCounts(pCsr); 532 rc = sqlite3_step(pCsr->pStmt); 533 if( rc==SQLITE_ROW ){ 534 int nPage; 535 u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1); 536 sqlite3PagerPagecount(pPager, &nPage); 537 if( nPage==0 ){ 538 pCsr->isEof = 1; 539 return sqlite3_reset(pCsr->pStmt); 540 } 541 rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg, 0); 542 pCsr->aPage[0].iPgno = iRoot; 543 pCsr->aPage[0].iCell = 0; 544 if( !pCsr->isAgg ){ 545 pCsr->aPage[0].zPath = z = sqlite3_mprintf("/"); 546 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 547 } 548 pCsr->iPage = 0; 549 pCsr->nPage = 1; 550 }else{ 551 pCsr->isEof = 1; 552 return sqlite3_reset(pCsr->pStmt); 553 } 554 }else{ 555 /* Continue analyzing the btree previously started */ 556 StatPage *p = &pCsr->aPage[pCsr->iPage]; 557 if( !pCsr->isAgg ) statResetCounts(pCsr); 558 while( p->iCell<p->nCell ){ 559 StatCell *pCell = &p->aCell[p->iCell]; 560 while( pCell->iOvfl<pCell->nOvfl ){ 561 int nUsable, iOvfl; 562 sqlite3BtreeEnter(pBt); 563 nUsable = sqlite3BtreeGetPageSize(pBt) - 564 sqlite3BtreeGetReserveNoMutex(pBt); 565 sqlite3BtreeLeave(pBt); 566 pCsr->nPage++; 567 statSizeAndOffset(pCsr); 568 if( pCell->iOvfl<pCell->nOvfl-1 ){ 569 pCsr->nPayload += nUsable - 4; 570 }else{ 571 pCsr->nPayload += pCell->nLastOvfl; 572 pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl; 573 } 574 iOvfl = pCell->iOvfl; 575 pCell->iOvfl++; 576 if( !pCsr->isAgg ){ 577 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 578 pCsr->iPageno = pCell->aOvfl[iOvfl]; 579 pCsr->zPagetype = "overflow"; 580 pCsr->zPath = z = sqlite3_mprintf( 581 "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl 582 ); 583 return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 584 } 585 } 586 if( p->iRightChildPg ) break; 587 p->iCell++; 588 } 589 590 if( !p->iRightChildPg || p->iCell>p->nCell ){ 591 statClearPage(p); 592 if( pCsr->iPage>0 ){ 593 pCsr->iPage--; 594 }else if( pCsr->isAgg ){ 595 /* label-statNext-done: When computing aggregate space usage over 596 ** an entire btree, this is the exit point from this function */ 597 return SQLITE_OK; 598 } 599 goto statNextRestart; /* Tail recursion */ 600 } 601 pCsr->iPage++; 602 if( pCsr->iPage>=ArraySize(pCsr->aPage) ){ 603 statResetCsr(pCsr); 604 return SQLITE_CORRUPT_BKPT; 605 } 606 assert( p==&pCsr->aPage[pCsr->iPage-1] ); 607 608 if( p->iCell==p->nCell ){ 609 p[1].iPgno = p->iRightChildPg; 610 }else{ 611 p[1].iPgno = p->aCell[p->iCell].iChildPg; 612 } 613 rc = sqlite3PagerGet(pPager, p[1].iPgno, &p[1].pPg, 0); 614 pCsr->nPage++; 615 p[1].iCell = 0; 616 if( !pCsr->isAgg ){ 617 p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell); 618 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 619 } 620 p->iCell++; 621 } 622 623 624 /* Populate the StatCursor fields with the values to be returned 625 ** by the xColumn() and xRowid() methods. 626 */ 627 if( rc==SQLITE_OK ){ 628 int i; 629 StatPage *p = &pCsr->aPage[pCsr->iPage]; 630 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0); 631 pCsr->iPageno = p->iPgno; 632 633 rc = statDecodePage(pBt, p); 634 if( rc==SQLITE_OK ){ 635 statSizeAndOffset(pCsr); 636 637 switch( p->flags ){ 638 case 0x05: /* table internal */ 639 case 0x02: /* index internal */ 640 pCsr->zPagetype = "internal"; 641 break; 642 case 0x0D: /* table leaf */ 643 case 0x0A: /* index leaf */ 644 pCsr->zPagetype = "leaf"; 645 break; 646 default: 647 pCsr->zPagetype = "corrupted"; 648 break; 649 } 650 pCsr->nCell += p->nCell; 651 pCsr->nUnused += p->nUnused; 652 if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload; 653 if( !pCsr->isAgg ){ 654 pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath); 655 if( z==0 ) rc = SQLITE_NOMEM_BKPT; 656 } 657 nPayload = 0; 658 for(i=0; i<p->nCell; i++){ 659 nPayload += p->aCell[i].nLocal; 660 } 661 pCsr->nPayload += nPayload; 662 663 /* If computing aggregate space usage by btree, continue with the 664 ** next page. The loop will exit via the return at label-statNext-done 665 */ 666 if( pCsr->isAgg ) goto statNextRestart; 667 } 668 } 669 670 return rc; 671 } 672 673 static int statEof(sqlite3_vtab_cursor *pCursor){ 674 StatCursor *pCsr = (StatCursor *)pCursor; 675 return pCsr->isEof; 676 } 677 678 /* Initialize a cursor according to the query plan idxNum using the 679 ** arguments in argv[0]. See statBestIndex() for a description of the 680 ** meaning of the bits in idxNum. 681 */ 682 static int statFilter( 683 sqlite3_vtab_cursor *pCursor, 684 int idxNum, const char *idxStr, 685 int argc, sqlite3_value **argv 686 ){ 687 StatCursor *pCsr = (StatCursor *)pCursor; 688 StatTable *pTab = (StatTable*)(pCursor->pVtab); 689 sqlite3_str *pSql; /* Query of btrees to analyze */ 690 char *zSql; /* String value of pSql */ 691 int iArg = 0; /* Count of argv[] parameters used so far */ 692 int rc = SQLITE_OK; /* Result of this operation */ 693 const char *zName = 0; /* Only provide analysis of this table */ 694 695 statResetCsr(pCsr); 696 sqlite3_finalize(pCsr->pStmt); 697 pCsr->pStmt = 0; 698 if( idxNum & 0x01 ){ 699 /* schema=? constraint is present. Get its value */ 700 const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]); 701 pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase); 702 if( pCsr->iDb<0 ){ 703 pCsr->iDb = 0; 704 pCsr->isEof = 1; 705 return SQLITE_OK; 706 } 707 }else{ 708 pCsr->iDb = pTab->iDb; 709 } 710 if( idxNum & 0x02 ){ 711 /* name=? constraint is present */ 712 zName = (const char*)sqlite3_value_text(argv[iArg++]); 713 } 714 if( idxNum & 0x04 ){ 715 /* aggregate=? constraint is present */ 716 pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0; 717 }else{ 718 pCsr->isAgg = 0; 719 } 720 pSql = sqlite3_str_new(pTab->db); 721 sqlite3_str_appendf(pSql, 722 "SELECT * FROM (" 723 "SELECT 'sqlite_master' AS name,1 AS rootpage,'table' AS type" 724 " UNION ALL " 725 "SELECT name,rootpage,type" 726 " FROM \"%w\".sqlite_master WHERE rootpage!=0)", 727 pTab->db->aDb[pCsr->iDb].zDbSName); 728 if( zName ){ 729 sqlite3_str_appendf(pSql, "WHERE name=%Q", zName); 730 } 731 if( idxNum & 0x08 ){ 732 sqlite3_str_appendf(pSql, " ORDER BY name"); 733 } 734 zSql = sqlite3_str_finish(pSql); 735 if( zSql==0 ){ 736 return SQLITE_NOMEM_BKPT; 737 }else{ 738 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0); 739 sqlite3_free(zSql); 740 } 741 742 if( rc==SQLITE_OK ){ 743 rc = statNext(pCursor); 744 } 745 return rc; 746 } 747 748 static int statColumn( 749 sqlite3_vtab_cursor *pCursor, 750 sqlite3_context *ctx, 751 int i 752 ){ 753 StatCursor *pCsr = (StatCursor *)pCursor; 754 switch( i ){ 755 case 0: /* name */ 756 sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT); 757 break; 758 case 1: /* path */ 759 if( !pCsr->isAgg ){ 760 sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT); 761 } 762 break; 763 case 2: /* pageno */ 764 if( pCsr->isAgg ){ 765 sqlite3_result_int64(ctx, pCsr->nPage); 766 }else{ 767 sqlite3_result_int64(ctx, pCsr->iPageno); 768 } 769 break; 770 case 3: /* pagetype */ 771 if( !pCsr->isAgg ){ 772 sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC); 773 } 774 break; 775 case 4: /* ncell */ 776 sqlite3_result_int(ctx, pCsr->nCell); 777 break; 778 case 5: /* payload */ 779 sqlite3_result_int(ctx, pCsr->nPayload); 780 break; 781 case 6: /* unused */ 782 sqlite3_result_int(ctx, pCsr->nUnused); 783 break; 784 case 7: /* mx_payload */ 785 sqlite3_result_int(ctx, pCsr->nMxPayload); 786 break; 787 case 8: /* pgoffset */ 788 if( !pCsr->isAgg ){ 789 sqlite3_result_int64(ctx, pCsr->iOffset); 790 } 791 break; 792 case 9: /* pgsize */ 793 sqlite3_result_int(ctx, pCsr->szPage); 794 break; 795 case 10: { /* schema */ 796 sqlite3 *db = sqlite3_context_db_handle(ctx); 797 int iDb = pCsr->iDb; 798 sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC); 799 break; 800 } 801 default: { /* aggregate */ 802 sqlite3_result_int(ctx, pCsr->isAgg); 803 break; 804 } 805 } 806 return SQLITE_OK; 807 } 808 809 static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ 810 StatCursor *pCsr = (StatCursor *)pCursor; 811 *pRowid = pCsr->iPageno; 812 return SQLITE_OK; 813 } 814 815 /* 816 ** Invoke this routine to register the "dbstat" virtual table module 817 */ 818 int sqlite3DbstatRegister(sqlite3 *db){ 819 static sqlite3_module dbstat_module = { 820 0, /* iVersion */ 821 statConnect, /* xCreate */ 822 statConnect, /* xConnect */ 823 statBestIndex, /* xBestIndex */ 824 statDisconnect, /* xDisconnect */ 825 statDisconnect, /* xDestroy */ 826 statOpen, /* xOpen - open a cursor */ 827 statClose, /* xClose - close a cursor */ 828 statFilter, /* xFilter - configure scan constraints */ 829 statNext, /* xNext - advance a cursor */ 830 statEof, /* xEof - check for end of scan */ 831 statColumn, /* xColumn - read data */ 832 statRowid, /* xRowid - read data */ 833 0, /* xUpdate */ 834 0, /* xBegin */ 835 0, /* xSync */ 836 0, /* xCommit */ 837 0, /* xRollback */ 838 0, /* xFindMethod */ 839 0, /* xRename */ 840 0, /* xSavepoint */ 841 0, /* xRelease */ 842 0, /* xRollbackTo */ 843 0 /* xShadowName */ 844 }; 845 return sqlite3_create_module(db, "dbstat", &dbstat_module, 0); 846 } 847 #elif defined(SQLITE_ENABLE_DBSTAT_VTAB) 848 int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; } 849 #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ 850