1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBN 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ 390 return setDateTimeToCurrent(context, p); 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ 392 setRawDateNumber(p, r); 393 return 0; 394 } 395 return 1; 396 } 397 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 400 ** for DateTime.iJD. 401 ** 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 403 ** such a large integer literal, so we have to encode it. 404 */ 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 406 407 /* 408 ** Return TRUE if the given julian day number is within range. 409 ** 410 ** The input is the JulianDay times 86400000. 411 */ 412 static int validJulianDay(sqlite3_int64 iJD){ 413 return iJD>=0 && iJD<=INT_464269060799999; 414 } 415 416 /* 417 ** Compute the Year, Month, and Day from the julian day number. 418 */ 419 static void computeYMD(DateTime *p){ 420 int Z, A, B, C, D, E, X1; 421 if( p->validYMD ) return; 422 if( !p->validJD ){ 423 p->Y = 2000; 424 p->M = 1; 425 p->D = 1; 426 }else if( !validJulianDay(p->iJD) ){ 427 datetimeError(p); 428 return; 429 }else{ 430 Z = (int)((p->iJD + 43200000)/86400000); 431 A = (int)((Z - 1867216.25)/36524.25); 432 A = Z + 1 + A - (A/4); 433 B = A + 1524; 434 C = (int)((B - 122.1)/365.25); 435 D = (36525*(C&32767))/100; 436 E = (int)((B-D)/30.6001); 437 X1 = (int)(30.6001*E); 438 p->D = B - D - X1; 439 p->M = E<14 ? E-1 : E-13; 440 p->Y = p->M>2 ? C - 4716 : C - 4715; 441 } 442 p->validYMD = 1; 443 } 444 445 /* 446 ** Compute the Hour, Minute, and Seconds from the julian day number. 447 */ 448 static void computeHMS(DateTime *p){ 449 int s; 450 if( p->validHMS ) return; 451 computeJD(p); 452 s = (int)((p->iJD + 43200000) % 86400000); 453 p->s = s/1000.0; 454 s = (int)p->s; 455 p->s -= s; 456 p->h = s/3600; 457 s -= p->h*3600; 458 p->m = s/60; 459 p->s += s - p->m*60; 460 p->rawS = 0; 461 p->validHMS = 1; 462 } 463 464 /* 465 ** Compute both YMD and HMS 466 */ 467 static void computeYMD_HMS(DateTime *p){ 468 computeYMD(p); 469 computeHMS(p); 470 } 471 472 /* 473 ** Clear the YMD and HMS and the TZ 474 */ 475 static void clearYMD_HMS_TZ(DateTime *p){ 476 p->validYMD = 0; 477 p->validHMS = 0; 478 p->validTZ = 0; 479 } 480 481 #ifndef SQLITE_OMIT_LOCALTIME 482 /* 483 ** On recent Windows platforms, the localtime_s() function is available 484 ** as part of the "Secure CRT". It is essentially equivalent to 485 ** localtime_r() available under most POSIX platforms, except that the 486 ** order of the parameters is reversed. 487 ** 488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 489 ** 490 ** If the user has not indicated to use localtime_r() or localtime_s() 491 ** already, check for an MSVC build environment that provides 492 ** localtime_s(). 493 */ 494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 496 #undef HAVE_LOCALTIME_S 497 #define HAVE_LOCALTIME_S 1 498 #endif 499 500 /* 501 ** The following routine implements the rough equivalent of localtime_r() 502 ** using whatever operating-system specific localtime facility that 503 ** is available. This routine returns 0 on success and 504 ** non-zero on any kind of error. 505 ** 506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 507 ** routine will always fail. 508 ** 509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 510 ** library function localtime_r() is used to assist in the calculation of 511 ** local time. 512 */ 513 static int osLocaltime(time_t *t, struct tm *pTm){ 514 int rc; 515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 516 struct tm *pX; 517 #if SQLITE_THREADSAFE>0 518 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 519 #endif 520 sqlite3_mutex_enter(mutex); 521 pX = localtime(t); 522 #ifndef SQLITE_UNTESTABLE 523 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 524 #endif 525 if( pX ) *pTm = *pX; 526 sqlite3_mutex_leave(mutex); 527 rc = pX==0; 528 #else 529 #ifndef SQLITE_UNTESTABLE 530 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 531 #endif 532 #if HAVE_LOCALTIME_R 533 rc = localtime_r(t, pTm)==0; 534 #else 535 rc = localtime_s(pTm, t); 536 #endif /* HAVE_LOCALTIME_R */ 537 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 538 return rc; 539 } 540 #endif /* SQLITE_OMIT_LOCALTIME */ 541 542 543 #ifndef SQLITE_OMIT_LOCALTIME 544 /* 545 ** Compute the difference (in milliseconds) between localtime and UTC 546 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 547 ** return this value and set *pRc to SQLITE_OK. 548 ** 549 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 550 ** is undefined in this case. 551 */ 552 static sqlite3_int64 localtimeOffset( 553 DateTime *p, /* Date at which to calculate offset */ 554 sqlite3_context *pCtx, /* Write error here if one occurs */ 555 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 556 ){ 557 DateTime x, y; 558 time_t t; 559 struct tm sLocal; 560 561 /* Initialize the contents of sLocal to avoid a compiler warning. */ 562 memset(&sLocal, 0, sizeof(sLocal)); 563 564 x = *p; 565 computeYMD_HMS(&x); 566 if( x.Y<1971 || x.Y>=2038 ){ 567 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 568 ** works for years between 1970 and 2037. For dates outside this range, 569 ** SQLite attempts to map the year into an equivalent year within this 570 ** range, do the calculation, then map the year back. 571 */ 572 x.Y = 2000; 573 x.M = 1; 574 x.D = 1; 575 x.h = 0; 576 x.m = 0; 577 x.s = 0.0; 578 } else { 579 int s = (int)(x.s + 0.5); 580 x.s = s; 581 } 582 x.tz = 0; 583 x.validJD = 0; 584 computeJD(&x); 585 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 586 if( osLocaltime(&t, &sLocal) ){ 587 sqlite3_result_error(pCtx, "local time unavailable", -1); 588 *pRc = SQLITE_ERROR; 589 return 0; 590 } 591 y.Y = sLocal.tm_year + 1900; 592 y.M = sLocal.tm_mon + 1; 593 y.D = sLocal.tm_mday; 594 y.h = sLocal.tm_hour; 595 y.m = sLocal.tm_min; 596 y.s = sLocal.tm_sec; 597 y.validYMD = 1; 598 y.validHMS = 1; 599 y.validJD = 0; 600 y.rawS = 0; 601 y.validTZ = 0; 602 y.isError = 0; 603 computeJD(&y); 604 *pRc = SQLITE_OK; 605 return y.iJD - x.iJD; 606 } 607 #endif /* SQLITE_OMIT_LOCALTIME */ 608 609 /* 610 ** The following table defines various date transformations of the form 611 ** 612 ** 'NNN days' 613 ** 614 ** Where NNN is an arbitrary floating-point number and "days" can be one 615 ** of several units of time. 616 */ 617 static const struct { 618 u8 eType; /* Transformation type code */ 619 u8 nName; /* Length of th name */ 620 char *zName; /* Name of the transformation */ 621 double rLimit; /* Maximum NNN value for this transform */ 622 double rXform; /* Constant used for this transform */ 623 } aXformType[] = { 624 { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) }, 625 { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) }, 626 { 0, 4, "hour", 128963628.0, 86400000.0/24.0 }, 627 { 0, 3, "day", 5373485.0, 86400000.0 }, 628 { 1, 5, "month", 176546.0, 30.0*86400000.0 }, 629 { 2, 4, "year", 14713.0, 365.0*86400000.0 }, 630 }; 631 632 /* 633 ** Process a modifier to a date-time stamp. The modifiers are 634 ** as follows: 635 ** 636 ** NNN days 637 ** NNN hours 638 ** NNN minutes 639 ** NNN.NNNN seconds 640 ** NNN months 641 ** NNN years 642 ** start of month 643 ** start of year 644 ** start of week 645 ** start of day 646 ** weekday N 647 ** unixepoch 648 ** localtime 649 ** utc 650 ** 651 ** Return 0 on success and 1 if there is any kind of error. If the error 652 ** is in a system call (i.e. localtime()), then an error message is written 653 ** to context pCtx. If the error is an unrecognized modifier, no error is 654 ** written to pCtx. 655 */ 656 static int parseModifier( 657 sqlite3_context *pCtx, /* Function context */ 658 const char *z, /* The text of the modifier */ 659 int n, /* Length of zMod in bytes */ 660 DateTime *p /* The date/time value to be modified */ 661 ){ 662 int rc = 1; 663 double r; 664 switch(sqlite3UpperToLower[(u8)z[0]] ){ 665 #ifndef SQLITE_OMIT_LOCALTIME 666 case 'l': { 667 /* localtime 668 ** 669 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 670 ** show local time. 671 */ 672 if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ 673 computeJD(p); 674 p->iJD += localtimeOffset(p, pCtx, &rc); 675 clearYMD_HMS_TZ(p); 676 } 677 break; 678 } 679 #endif 680 case 'u': { 681 /* 682 ** unixepoch 683 ** 684 ** Treat the current value of p->s as the number of 685 ** seconds since 1970. Convert to a real julian day number. 686 */ 687 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 688 r = p->s*1000.0 + 210866760000000.0; 689 if( r>=0.0 && r<464269060800000.0 ){ 690 clearYMD_HMS_TZ(p); 691 p->iJD = (sqlite3_int64)(r + 0.5); 692 p->validJD = 1; 693 p->rawS = 0; 694 rc = 0; 695 } 696 } 697 #ifndef SQLITE_OMIT_LOCALTIME 698 else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ 699 if( p->tzSet==0 ){ 700 sqlite3_int64 c1; 701 computeJD(p); 702 c1 = localtimeOffset(p, pCtx, &rc); 703 if( rc==SQLITE_OK ){ 704 p->iJD -= c1; 705 clearYMD_HMS_TZ(p); 706 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 707 } 708 p->tzSet = 1; 709 }else{ 710 rc = SQLITE_OK; 711 } 712 } 713 #endif 714 break; 715 } 716 case 'w': { 717 /* 718 ** weekday N 719 ** 720 ** Move the date to the same time on the next occurrence of 721 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 722 ** date is already on the appropriate weekday, this is a no-op. 723 */ 724 if( sqlite3_strnicmp(z, "weekday ", 8)==0 725 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 726 && (n=(int)r)==r && n>=0 && r<7 ){ 727 sqlite3_int64 Z; 728 computeYMD_HMS(p); 729 p->validTZ = 0; 730 p->validJD = 0; 731 computeJD(p); 732 Z = ((p->iJD + 129600000)/86400000) % 7; 733 if( Z>n ) Z -= 7; 734 p->iJD += (n - Z)*86400000; 735 clearYMD_HMS_TZ(p); 736 rc = 0; 737 } 738 break; 739 } 740 case 's': { 741 /* 742 ** start of TTTTT 743 ** 744 ** Move the date backwards to the beginning of the current day, 745 ** or month or year. 746 */ 747 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 748 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 749 z += 9; 750 computeYMD(p); 751 p->validHMS = 1; 752 p->h = p->m = 0; 753 p->s = 0.0; 754 p->rawS = 0; 755 p->validTZ = 0; 756 p->validJD = 0; 757 if( sqlite3_stricmp(z,"month")==0 ){ 758 p->D = 1; 759 rc = 0; 760 }else if( sqlite3_stricmp(z,"year")==0 ){ 761 p->M = 1; 762 p->D = 1; 763 rc = 0; 764 }else if( sqlite3_stricmp(z,"day")==0 ){ 765 rc = 0; 766 } 767 break; 768 } 769 case '+': 770 case '-': 771 case '0': 772 case '1': 773 case '2': 774 case '3': 775 case '4': 776 case '5': 777 case '6': 778 case '7': 779 case '8': 780 case '9': { 781 double rRounder; 782 int i; 783 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 784 if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ 785 rc = 1; 786 break; 787 } 788 if( z[n]==':' ){ 789 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 790 ** specified number of hours, minutes, seconds, and fractional seconds 791 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 792 ** omitted. 793 */ 794 const char *z2 = z; 795 DateTime tx; 796 sqlite3_int64 day; 797 if( !sqlite3Isdigit(*z2) ) z2++; 798 memset(&tx, 0, sizeof(tx)); 799 if( parseHhMmSs(z2, &tx) ) break; 800 computeJD(&tx); 801 tx.iJD -= 43200000; 802 day = tx.iJD/86400000; 803 tx.iJD -= day*86400000; 804 if( z[0]=='-' ) tx.iJD = -tx.iJD; 805 computeJD(p); 806 clearYMD_HMS_TZ(p); 807 p->iJD += tx.iJD; 808 rc = 0; 809 break; 810 } 811 812 /* If control reaches this point, it means the transformation is 813 ** one of the forms like "+NNN days". */ 814 z += n; 815 while( sqlite3Isspace(*z) ) z++; 816 n = sqlite3Strlen30(z); 817 if( n>10 || n<3 ) break; 818 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 819 computeJD(p); 820 rc = 1; 821 rRounder = r<0 ? -0.5 : +0.5; 822 for(i=0; i<ArraySize(aXformType); i++){ 823 if( aXformType[i].nName==n 824 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 825 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 826 ){ 827 switch( aXformType[i].eType ){ 828 case 1: { /* Special processing to add months */ 829 int x; 830 computeYMD_HMS(p); 831 p->M += (int)r; 832 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 833 p->Y += x; 834 p->M -= x*12; 835 p->validJD = 0; 836 r -= (int)r; 837 break; 838 } 839 case 2: { /* Special processing to add years */ 840 int y = (int)r; 841 computeYMD_HMS(p); 842 p->Y += y; 843 p->validJD = 0; 844 r -= (int)r; 845 break; 846 } 847 } 848 computeJD(p); 849 p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder); 850 rc = 0; 851 break; 852 } 853 } 854 clearYMD_HMS_TZ(p); 855 break; 856 } 857 default: { 858 break; 859 } 860 } 861 return rc; 862 } 863 864 /* 865 ** Process time function arguments. argv[0] is a date-time stamp. 866 ** argv[1] and following are modifiers. Parse them all and write 867 ** the resulting time into the DateTime structure p. Return 0 868 ** on success and 1 if there are any errors. 869 ** 870 ** If there are zero parameters (if even argv[0] is undefined) 871 ** then assume a default value of "now" for argv[0]. 872 */ 873 static int isDate( 874 sqlite3_context *context, 875 int argc, 876 sqlite3_value **argv, 877 DateTime *p 878 ){ 879 int i, n; 880 const unsigned char *z; 881 int eType; 882 memset(p, 0, sizeof(*p)); 883 if( argc==0 ){ 884 return setDateTimeToCurrent(context, p); 885 } 886 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 887 || eType==SQLITE_INTEGER ){ 888 setRawDateNumber(p, sqlite3_value_double(argv[0])); 889 }else{ 890 z = sqlite3_value_text(argv[0]); 891 if( !z || parseDateOrTime(context, (char*)z, p) ){ 892 return 1; 893 } 894 } 895 for(i=1; i<argc; i++){ 896 z = sqlite3_value_text(argv[i]); 897 n = sqlite3_value_bytes(argv[i]); 898 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; 899 } 900 computeJD(p); 901 if( p->isError || !validJulianDay(p->iJD) ) return 1; 902 return 0; 903 } 904 905 906 /* 907 ** The following routines implement the various date and time functions 908 ** of SQLite. 909 */ 910 911 /* 912 ** julianday( TIMESTRING, MOD, MOD, ...) 913 ** 914 ** Return the julian day number of the date specified in the arguments 915 */ 916 static void juliandayFunc( 917 sqlite3_context *context, 918 int argc, 919 sqlite3_value **argv 920 ){ 921 DateTime x; 922 if( isDate(context, argc, argv, &x)==0 ){ 923 computeJD(&x); 924 sqlite3_result_double(context, x.iJD/86400000.0); 925 } 926 } 927 928 /* 929 ** datetime( TIMESTRING, MOD, MOD, ...) 930 ** 931 ** Return YYYY-MM-DD HH:MM:SS 932 */ 933 static void datetimeFunc( 934 sqlite3_context *context, 935 int argc, 936 sqlite3_value **argv 937 ){ 938 DateTime x; 939 if( isDate(context, argc, argv, &x)==0 ){ 940 char zBuf[100]; 941 computeYMD_HMS(&x); 942 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 943 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 944 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 945 } 946 } 947 948 /* 949 ** time( TIMESTRING, MOD, MOD, ...) 950 ** 951 ** Return HH:MM:SS 952 */ 953 static void timeFunc( 954 sqlite3_context *context, 955 int argc, 956 sqlite3_value **argv 957 ){ 958 DateTime x; 959 if( isDate(context, argc, argv, &x)==0 ){ 960 char zBuf[100]; 961 computeHMS(&x); 962 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 963 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 964 } 965 } 966 967 /* 968 ** date( TIMESTRING, MOD, MOD, ...) 969 ** 970 ** Return YYYY-MM-DD 971 */ 972 static void dateFunc( 973 sqlite3_context *context, 974 int argc, 975 sqlite3_value **argv 976 ){ 977 DateTime x; 978 if( isDate(context, argc, argv, &x)==0 ){ 979 char zBuf[100]; 980 computeYMD(&x); 981 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 982 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 983 } 984 } 985 986 /* 987 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 988 ** 989 ** Return a string described by FORMAT. Conversions as follows: 990 ** 991 ** %d day of month 992 ** %f ** fractional seconds SS.SSS 993 ** %H hour 00-24 994 ** %j day of year 000-366 995 ** %J ** julian day number 996 ** %m month 01-12 997 ** %M minute 00-59 998 ** %s seconds since 1970-01-01 999 ** %S seconds 00-59 1000 ** %w day of week 0-6 sunday==0 1001 ** %W week of year 00-53 1002 ** %Y year 0000-9999 1003 ** %% % 1004 */ 1005 static void strftimeFunc( 1006 sqlite3_context *context, 1007 int argc, 1008 sqlite3_value **argv 1009 ){ 1010 DateTime x; 1011 u64 n; 1012 size_t i,j; 1013 char *z; 1014 sqlite3 *db; 1015 const char *zFmt; 1016 char zBuf[100]; 1017 if( argc==0 ) return; 1018 zFmt = (const char*)sqlite3_value_text(argv[0]); 1019 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1020 db = sqlite3_context_db_handle(context); 1021 for(i=0, n=1; zFmt[i]; i++, n++){ 1022 if( zFmt[i]=='%' ){ 1023 switch( zFmt[i+1] ){ 1024 case 'd': 1025 case 'H': 1026 case 'm': 1027 case 'M': 1028 case 'S': 1029 case 'W': 1030 n++; 1031 /* fall thru */ 1032 case 'w': 1033 case '%': 1034 break; 1035 case 'f': 1036 n += 8; 1037 break; 1038 case 'j': 1039 n += 3; 1040 break; 1041 case 'Y': 1042 n += 8; 1043 break; 1044 case 's': 1045 case 'J': 1046 n += 50; 1047 break; 1048 default: 1049 return; /* ERROR. return a NULL */ 1050 } 1051 i++; 1052 } 1053 } 1054 testcase( n==sizeof(zBuf)-1 ); 1055 testcase( n==sizeof(zBuf) ); 1056 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 1057 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 1058 if( n<sizeof(zBuf) ){ 1059 z = zBuf; 1060 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1061 sqlite3_result_error_toobig(context); 1062 return; 1063 }else{ 1064 z = sqlite3DbMallocRawNN(db, (int)n); 1065 if( z==0 ){ 1066 sqlite3_result_error_nomem(context); 1067 return; 1068 } 1069 } 1070 computeJD(&x); 1071 computeYMD_HMS(&x); 1072 for(i=j=0; zFmt[i]; i++){ 1073 if( zFmt[i]!='%' ){ 1074 z[j++] = zFmt[i]; 1075 }else{ 1076 i++; 1077 switch( zFmt[i] ){ 1078 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 1079 case 'f': { 1080 double s = x.s; 1081 if( s>59.999 ) s = 59.999; 1082 sqlite3_snprintf(7, &z[j],"%06.3f", s); 1083 j += sqlite3Strlen30(&z[j]); 1084 break; 1085 } 1086 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 1087 case 'W': /* Fall thru */ 1088 case 'j': { 1089 int nDay; /* Number of days since 1st day of year */ 1090 DateTime y = x; 1091 y.validJD = 0; 1092 y.M = 1; 1093 y.D = 1; 1094 computeJD(&y); 1095 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1096 if( zFmt[i]=='W' ){ 1097 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1098 wd = (int)(((x.iJD+43200000)/86400000)%7); 1099 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 1100 j += 2; 1101 }else{ 1102 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 1103 j += 3; 1104 } 1105 break; 1106 } 1107 case 'J': { 1108 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 1109 j+=sqlite3Strlen30(&z[j]); 1110 break; 1111 } 1112 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 1113 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 1114 case 's': { 1115 sqlite3_snprintf(30,&z[j],"%lld", 1116 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 1117 j += sqlite3Strlen30(&z[j]); 1118 break; 1119 } 1120 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 1121 case 'w': { 1122 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 1123 break; 1124 } 1125 case 'Y': { 1126 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 1127 break; 1128 } 1129 default: z[j++] = '%'; break; 1130 } 1131 } 1132 } 1133 z[j] = 0; 1134 sqlite3_result_text(context, z, -1, 1135 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 1136 } 1137 1138 /* 1139 ** current_time() 1140 ** 1141 ** This function returns the same value as time('now'). 1142 */ 1143 static void ctimeFunc( 1144 sqlite3_context *context, 1145 int NotUsed, 1146 sqlite3_value **NotUsed2 1147 ){ 1148 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1149 timeFunc(context, 0, 0); 1150 } 1151 1152 /* 1153 ** current_date() 1154 ** 1155 ** This function returns the same value as date('now'). 1156 */ 1157 static void cdateFunc( 1158 sqlite3_context *context, 1159 int NotUsed, 1160 sqlite3_value **NotUsed2 1161 ){ 1162 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1163 dateFunc(context, 0, 0); 1164 } 1165 1166 /* 1167 ** current_timestamp() 1168 ** 1169 ** This function returns the same value as datetime('now'). 1170 */ 1171 static void ctimestampFunc( 1172 sqlite3_context *context, 1173 int NotUsed, 1174 sqlite3_value **NotUsed2 1175 ){ 1176 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1177 datetimeFunc(context, 0, 0); 1178 } 1179 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1180 1181 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1182 /* 1183 ** If the library is compiled to omit the full-scale date and time 1184 ** handling (to get a smaller binary), the following minimal version 1185 ** of the functions current_time(), current_date() and current_timestamp() 1186 ** are included instead. This is to support column declarations that 1187 ** include "DEFAULT CURRENT_TIME" etc. 1188 ** 1189 ** This function uses the C-library functions time(), gmtime() 1190 ** and strftime(). The format string to pass to strftime() is supplied 1191 ** as the user-data for the function. 1192 */ 1193 static void currentTimeFunc( 1194 sqlite3_context *context, 1195 int argc, 1196 sqlite3_value **argv 1197 ){ 1198 time_t t; 1199 char *zFormat = (char *)sqlite3_user_data(context); 1200 sqlite3_int64 iT; 1201 struct tm *pTm; 1202 struct tm sNow; 1203 char zBuf[20]; 1204 1205 UNUSED_PARAMETER(argc); 1206 UNUSED_PARAMETER(argv); 1207 1208 iT = sqlite3StmtCurrentTime(context); 1209 if( iT<=0 ) return; 1210 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1211 #if HAVE_GMTIME_R 1212 pTm = gmtime_r(&t, &sNow); 1213 #else 1214 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1215 pTm = gmtime(&t); 1216 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1217 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1218 #endif 1219 if( pTm ){ 1220 strftime(zBuf, 20, zFormat, &sNow); 1221 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1222 } 1223 } 1224 #endif 1225 1226 /* 1227 ** This function registered all of the above C functions as SQL 1228 ** functions. This should be the only routine in this file with 1229 ** external linkage. 1230 */ 1231 void sqlite3RegisterDateTimeFunctions(void){ 1232 static FuncDef aDateTimeFuncs[] = { 1233 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1234 PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), 1235 PURE_DATE(date, -1, 0, 0, dateFunc ), 1236 PURE_DATE(time, -1, 0, 0, timeFunc ), 1237 PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), 1238 PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), 1239 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1240 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1241 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1242 #else 1243 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1244 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1245 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1246 #endif 1247 }; 1248 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1249 } 1250