xref: /sqlite-3.40.0/src/date.c (revision eadccaa9)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as julian day numbers.  The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar.  Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale.  Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 **      Jean Meeus
41 **      Astronomical Algorithms, 2nd Edition, 1998
42 **      ISBN 0-943396-61-1
43 **      Willmann-Bell, Inc
44 **      Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50 
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52 
53 /*
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute.  The substitute function itself is
56 ** defined in "os_win.c".
57 */
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59     (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm *__cdecl localtime(const time_t *);
61 #endif
62 
63 /*
64 ** A structure for holding a single date and time.
65 */
66 typedef struct DateTime DateTime;
67 struct DateTime {
68   sqlite3_int64 iJD;  /* The julian day number times 86400000 */
69   int Y, M, D;        /* Year, month, and day */
70   int h, m;           /* Hour and minutes */
71   int tz;             /* Timezone offset in minutes */
72   double s;           /* Seconds */
73   char validJD;       /* True (1) if iJD is valid */
74   char rawS;          /* Raw numeric value stored in s */
75   char validYMD;      /* True (1) if Y,M,D are valid */
76   char validHMS;      /* True (1) if h,m,s are valid */
77   char validTZ;       /* True (1) if tz is valid */
78   char tzSet;         /* Timezone was set explicitly */
79   char isError;       /* An overflow has occurred */
80 };
81 
82 
83 /*
84 ** Convert zDate into one or more integers according to the conversion
85 ** specifier zFormat.
86 **
87 ** zFormat[] contains 4 characters for each integer converted, except for
88 ** the last integer which is specified by three characters.  The meaning
89 ** of a four-character format specifiers ABCD is:
90 **
91 **    A:   number of digits to convert.  Always "2" or "4".
92 **    B:   minimum value.  Always "0" or "1".
93 **    C:   maximum value, decoded as:
94 **           a:  12
95 **           b:  14
96 **           c:  24
97 **           d:  31
98 **           e:  59
99 **           f:  9999
100 **    D:   the separator character, or \000 to indicate this is the
101 **         last number to convert.
102 **
103 ** Example:  To translate an ISO-8601 date YYYY-MM-DD, the format would
104 ** be "40f-21a-20c".  The "40f-" indicates the 4-digit year followed by "-".
105 ** The "21a-" indicates the 2-digit month followed by "-".  The "20c" indicates
106 ** the 2-digit day which is the last integer in the set.
107 **
108 ** The function returns the number of successful conversions.
109 */
110 static int getDigits(const char *zDate, const char *zFormat, ...){
111   /* The aMx[] array translates the 3rd character of each format
112   ** spec into a max size:    a   b   c   d   e     f */
113   static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
114   va_list ap;
115   int cnt = 0;
116   char nextC;
117   va_start(ap, zFormat);
118   do{
119     char N = zFormat[0] - '0';
120     char min = zFormat[1] - '0';
121     int val = 0;
122     u16 max;
123 
124     assert( zFormat[2]>='a' && zFormat[2]<='f' );
125     max = aMx[zFormat[2] - 'a'];
126     nextC = zFormat[3];
127     val = 0;
128     while( N-- ){
129       if( !sqlite3Isdigit(*zDate) ){
130         goto end_getDigits;
131       }
132       val = val*10 + *zDate - '0';
133       zDate++;
134     }
135     if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
136       goto end_getDigits;
137     }
138     *va_arg(ap,int*) = val;
139     zDate++;
140     cnt++;
141     zFormat += 4;
142   }while( nextC );
143 end_getDigits:
144   va_end(ap);
145   return cnt;
146 }
147 
148 /*
149 ** Parse a timezone extension on the end of a date-time.
150 ** The extension is of the form:
151 **
152 **        (+/-)HH:MM
153 **
154 ** Or the "zulu" notation:
155 **
156 **        Z
157 **
158 ** If the parse is successful, write the number of minutes
159 ** of change in p->tz and return 0.  If a parser error occurs,
160 ** return non-zero.
161 **
162 ** A missing specifier is not considered an error.
163 */
164 static int parseTimezone(const char *zDate, DateTime *p){
165   int sgn = 0;
166   int nHr, nMn;
167   int c;
168   while( sqlite3Isspace(*zDate) ){ zDate++; }
169   p->tz = 0;
170   c = *zDate;
171   if( c=='-' ){
172     sgn = -1;
173   }else if( c=='+' ){
174     sgn = +1;
175   }else if( c=='Z' || c=='z' ){
176     zDate++;
177     goto zulu_time;
178   }else{
179     return c!=0;
180   }
181   zDate++;
182   if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
183     return 1;
184   }
185   zDate += 5;
186   p->tz = sgn*(nMn + nHr*60);
187 zulu_time:
188   while( sqlite3Isspace(*zDate) ){ zDate++; }
189   p->tzSet = 1;
190   return *zDate!=0;
191 }
192 
193 /*
194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
195 ** The HH, MM, and SS must each be exactly 2 digits.  The
196 ** fractional seconds FFFF can be one or more digits.
197 **
198 ** Return 1 if there is a parsing error and 0 on success.
199 */
200 static int parseHhMmSs(const char *zDate, DateTime *p){
201   int h, m, s;
202   double ms = 0.0;
203   if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
204     return 1;
205   }
206   zDate += 5;
207   if( *zDate==':' ){
208     zDate++;
209     if( getDigits(zDate, "20e", &s)!=1 ){
210       return 1;
211     }
212     zDate += 2;
213     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
214       double rScale = 1.0;
215       zDate++;
216       while( sqlite3Isdigit(*zDate) ){
217         ms = ms*10.0 + *zDate - '0';
218         rScale *= 10.0;
219         zDate++;
220       }
221       ms /= rScale;
222     }
223   }else{
224     s = 0;
225   }
226   p->validJD = 0;
227   p->rawS = 0;
228   p->validHMS = 1;
229   p->h = h;
230   p->m = m;
231   p->s = s + ms;
232   if( parseTimezone(zDate, p) ) return 1;
233   p->validTZ = (p->tz!=0)?1:0;
234   return 0;
235 }
236 
237 /*
238 ** Put the DateTime object into its error state.
239 */
240 static void datetimeError(DateTime *p){
241   memset(p, 0, sizeof(*p));
242   p->isError = 1;
243 }
244 
245 /*
246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
247 ** that the YYYY-MM-DD is according to the Gregorian calendar.
248 **
249 ** Reference:  Meeus page 61
250 */
251 static void computeJD(DateTime *p){
252   int Y, M, D, A, B, X1, X2;
253 
254   if( p->validJD ) return;
255   if( p->validYMD ){
256     Y = p->Y;
257     M = p->M;
258     D = p->D;
259   }else{
260     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
261     M = 1;
262     D = 1;
263   }
264   if( Y<-4713 || Y>9999 || p->rawS ){
265     datetimeError(p);
266     return;
267   }
268   if( M<=2 ){
269     Y--;
270     M += 12;
271   }
272   A = Y/100;
273   B = 2 - A + (A/4);
274   X1 = 36525*(Y+4716)/100;
275   X2 = 306001*(M+1)/10000;
276   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
277   p->validJD = 1;
278   if( p->validHMS ){
279     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
280     if( p->validTZ ){
281       p->iJD -= p->tz*60000;
282       p->validYMD = 0;
283       p->validHMS = 0;
284       p->validTZ = 0;
285     }
286   }
287 }
288 
289 /*
290 ** Parse dates of the form
291 **
292 **     YYYY-MM-DD HH:MM:SS.FFF
293 **     YYYY-MM-DD HH:MM:SS
294 **     YYYY-MM-DD HH:MM
295 **     YYYY-MM-DD
296 **
297 ** Write the result into the DateTime structure and return 0
298 ** on success and 1 if the input string is not a well-formed
299 ** date.
300 */
301 static int parseYyyyMmDd(const char *zDate, DateTime *p){
302   int Y, M, D, neg;
303 
304   if( zDate[0]=='-' ){
305     zDate++;
306     neg = 1;
307   }else{
308     neg = 0;
309   }
310   if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
311     return 1;
312   }
313   zDate += 10;
314   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
315   if( parseHhMmSs(zDate, p)==0 ){
316     /* We got the time */
317   }else if( *zDate==0 ){
318     p->validHMS = 0;
319   }else{
320     return 1;
321   }
322   p->validJD = 0;
323   p->validYMD = 1;
324   p->Y = neg ? -Y : Y;
325   p->M = M;
326   p->D = D;
327   if( p->validTZ ){
328     computeJD(p);
329   }
330   return 0;
331 }
332 
333 /*
334 ** Set the time to the current time reported by the VFS.
335 **
336 ** Return the number of errors.
337 */
338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
339   p->iJD = sqlite3StmtCurrentTime(context);
340   if( p->iJD>0 ){
341     p->validJD = 1;
342     return 0;
343   }else{
344     return 1;
345   }
346 }
347 
348 /*
349 ** Input "r" is a numeric quantity which might be a julian day number,
350 ** or the number of seconds since 1970.  If the value if r is within
351 ** range of a julian day number, install it as such and set validJD.
352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
353 */
354 static void setRawDateNumber(DateTime *p, double r){
355   p->s = r;
356   p->rawS = 1;
357   if( r>=0.0 && r<5373484.5 ){
358     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
359     p->validJD = 1;
360   }
361 }
362 
363 /*
364 ** Attempt to parse the given string into a julian day number.  Return
365 ** the number of errors.
366 **
367 ** The following are acceptable forms for the input string:
368 **
369 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
370 **      DDDD.DD
371 **      now
372 **
373 ** In the first form, the +/-HH:MM is always optional.  The fractional
374 ** seconds extension (the ".FFF") is optional.  The seconds portion
375 ** (":SS.FFF") is option.  The year and date can be omitted as long
376 ** as there is a time string.  The time string can be omitted as long
377 ** as there is a year and date.
378 */
379 static int parseDateOrTime(
380   sqlite3_context *context,
381   const char *zDate,
382   DateTime *p
383 ){
384   double r;
385   if( parseYyyyMmDd(zDate,p)==0 ){
386     return 0;
387   }else if( parseHhMmSs(zDate, p)==0 ){
388     return 0;
389   }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){
390     return setDateTimeToCurrent(context, p);
391   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){
392     setRawDateNumber(p, r);
393     return 0;
394   }
395   return 1;
396 }
397 
398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
400 ** for DateTime.iJD.
401 **
402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
403 ** such a large integer literal, so we have to encode it.
404 */
405 #define INT_464269060799999  ((((i64)0x1a640)<<32)|0x1072fdff)
406 
407 /*
408 ** Return TRUE if the given julian day number is within range.
409 **
410 ** The input is the JulianDay times 86400000.
411 */
412 static int validJulianDay(sqlite3_int64 iJD){
413   return iJD>=0 && iJD<=INT_464269060799999;
414 }
415 
416 /*
417 ** Compute the Year, Month, and Day from the julian day number.
418 */
419 static void computeYMD(DateTime *p){
420   int Z, A, B, C, D, E, X1;
421   if( p->validYMD ) return;
422   if( !p->validJD ){
423     p->Y = 2000;
424     p->M = 1;
425     p->D = 1;
426   }else if( !validJulianDay(p->iJD) ){
427     datetimeError(p);
428     return;
429   }else{
430     Z = (int)((p->iJD + 43200000)/86400000);
431     A = (int)((Z - 1867216.25)/36524.25);
432     A = Z + 1 + A - (A/4);
433     B = A + 1524;
434     C = (int)((B - 122.1)/365.25);
435     D = (36525*(C&32767))/100;
436     E = (int)((B-D)/30.6001);
437     X1 = (int)(30.6001*E);
438     p->D = B - D - X1;
439     p->M = E<14 ? E-1 : E-13;
440     p->Y = p->M>2 ? C - 4716 : C - 4715;
441   }
442   p->validYMD = 1;
443 }
444 
445 /*
446 ** Compute the Hour, Minute, and Seconds from the julian day number.
447 */
448 static void computeHMS(DateTime *p){
449   int s;
450   if( p->validHMS ) return;
451   computeJD(p);
452   s = (int)((p->iJD + 43200000) % 86400000);
453   p->s = s/1000.0;
454   s = (int)p->s;
455   p->s -= s;
456   p->h = s/3600;
457   s -= p->h*3600;
458   p->m = s/60;
459   p->s += s - p->m*60;
460   p->rawS = 0;
461   p->validHMS = 1;
462 }
463 
464 /*
465 ** Compute both YMD and HMS
466 */
467 static void computeYMD_HMS(DateTime *p){
468   computeYMD(p);
469   computeHMS(p);
470 }
471 
472 /*
473 ** Clear the YMD and HMS and the TZ
474 */
475 static void clearYMD_HMS_TZ(DateTime *p){
476   p->validYMD = 0;
477   p->validHMS = 0;
478   p->validTZ = 0;
479 }
480 
481 #ifndef SQLITE_OMIT_LOCALTIME
482 /*
483 ** On recent Windows platforms, the localtime_s() function is available
484 ** as part of the "Secure CRT". It is essentially equivalent to
485 ** localtime_r() available under most POSIX platforms, except that the
486 ** order of the parameters is reversed.
487 **
488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
489 **
490 ** If the user has not indicated to use localtime_r() or localtime_s()
491 ** already, check for an MSVC build environment that provides
492 ** localtime_s().
493 */
494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
495     && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
496 #undef  HAVE_LOCALTIME_S
497 #define HAVE_LOCALTIME_S 1
498 #endif
499 
500 /*
501 ** The following routine implements the rough equivalent of localtime_r()
502 ** using whatever operating-system specific localtime facility that
503 ** is available.  This routine returns 0 on success and
504 ** non-zero on any kind of error.
505 **
506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
507 ** routine will always fail.
508 **
509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
510 ** library function localtime_r() is used to assist in the calculation of
511 ** local time.
512 */
513 static int osLocaltime(time_t *t, struct tm *pTm){
514   int rc;
515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
516   struct tm *pX;
517 #if SQLITE_THREADSAFE>0
518   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
519 #endif
520   sqlite3_mutex_enter(mutex);
521   pX = localtime(t);
522 #ifndef SQLITE_UNTESTABLE
523   if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
524 #endif
525   if( pX ) *pTm = *pX;
526 #if SQLITE_THREADSAFE>0
527   sqlite3_mutex_leave(mutex);
528 #endif
529   rc = pX==0;
530 #else
531 #ifndef SQLITE_UNTESTABLE
532   if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
533 #endif
534 #if HAVE_LOCALTIME_R
535   rc = localtime_r(t, pTm)==0;
536 #else
537   rc = localtime_s(pTm, t);
538 #endif /* HAVE_LOCALTIME_R */
539 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
540   return rc;
541 }
542 #endif /* SQLITE_OMIT_LOCALTIME */
543 
544 
545 #ifndef SQLITE_OMIT_LOCALTIME
546 /*
547 ** Assuming the input DateTime is UTC, move it to its localtime equivalent.
548 */
549 static int toLocaltime(
550   DateTime *p,                   /* Date at which to calculate offset */
551   sqlite3_context *pCtx          /* Write error here if one occurs */
552 ){
553   time_t t;
554   struct tm sLocal;
555   int iYearDiff;
556 
557   /* Initialize the contents of sLocal to avoid a compiler warning. */
558   memset(&sLocal, 0, sizeof(sLocal));
559 
560   computeJD(p);
561   if( p->iJD<21086676000*(i64)10000 /* 1970-01-01 */
562    || p->iJD>21301414560*(i64)10000 /* 2038-01-18 */
563   ){
564     /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
565     ** works for years between 1970 and 2037. For dates outside this range,
566     ** SQLite attempts to map the year into an equivalent year within this
567     ** range, do the calculation, then map the year back.
568     */
569     DateTime x = *p;
570     computeYMD_HMS(&x);
571     iYearDiff = (2000 + x.Y%4) - x.Y;
572     x.Y += iYearDiff;
573     x.validJD = 0;
574     computeJD(&x);
575     t = (time_t)(x.iJD/1000 -  21086676*(i64)10000);
576   }else{
577     iYearDiff = 0;
578     t = (time_t)(p->iJD/1000 -  21086676*(i64)10000);
579   }
580   if( osLocaltime(&t, &sLocal) ){
581     sqlite3_result_error(pCtx, "local time unavailable", -1);
582     return SQLITE_ERROR;
583   }
584   p->Y = sLocal.tm_year + 1900 - iYearDiff;
585   p->M = sLocal.tm_mon + 1;
586   p->D = sLocal.tm_mday;
587   p->h = sLocal.tm_hour;
588   p->m = sLocal.tm_min;
589   p->s = sLocal.tm_sec;
590   p->validYMD = 1;
591   p->validHMS = 1;
592   p->validJD = 0;
593   p->rawS = 0;
594   p->validTZ = 0;
595   p->isError = 0;
596   return SQLITE_OK;
597 }
598 #endif /* SQLITE_OMIT_LOCALTIME */
599 
600 /*
601 ** The following table defines various date transformations of the form
602 **
603 **            'NNN days'
604 **
605 ** Where NNN is an arbitrary floating-point number and "days" can be one
606 ** of several units of time.
607 */
608 static const struct {
609   u8 nName;           /* Length of the name */
610   char zName[7];      /* Name of the transformation */
611   float rLimit;       /* Maximum NNN value for this transform */
612   float rXform;       /* Constant used for this transform */
613 } aXformType[] = {
614   { 6, "second", 4.6427e+14,       1.0  },
615   { 6, "minute", 7.7379e+12,      60.0  },
616   { 4, "hour",   1.2897e+11,    3600.0  },
617   { 3, "day",    5373485.0,    86400.0  },
618   { 5, "month",  176546.0,   2592000.0  },
619   { 4, "year",   14713.0,   31536000.0  },
620 };
621 
622 /*
623 ** Process a modifier to a date-time stamp.  The modifiers are
624 ** as follows:
625 **
626 **     NNN days
627 **     NNN hours
628 **     NNN minutes
629 **     NNN.NNNN seconds
630 **     NNN months
631 **     NNN years
632 **     start of month
633 **     start of year
634 **     start of week
635 **     start of day
636 **     weekday N
637 **     unixepoch
638 **     localtime
639 **     utc
640 **
641 ** Return 0 on success and 1 if there is any kind of error. If the error
642 ** is in a system call (i.e. localtime()), then an error message is written
643 ** to context pCtx. If the error is an unrecognized modifier, no error is
644 ** written to pCtx.
645 */
646 static int parseModifier(
647   sqlite3_context *pCtx,      /* Function context */
648   const char *z,              /* The text of the modifier */
649   int n,                      /* Length of zMod in bytes */
650   DateTime *p,                /* The date/time value to be modified */
651   int idx                     /* Parameter index of the modifier */
652 ){
653   int rc = 1;
654   double r;
655   switch(sqlite3UpperToLower[(u8)z[0]] ){
656     case 'a': {
657       /*
658       **    auto
659       **
660       ** If rawS is available, then interpret as a julian day number, or
661       ** a unix timestamp, depending on its magnitude.
662       */
663       if( sqlite3_stricmp(z, "auto")==0 ){
664         if( idx>1 ) return 1; /* IMP: R-33611-57934 */
665         if( !p->rawS || p->validJD ){
666           rc = 0;
667           p->rawS = 0;
668         }else if( p->s>=-210866760000 && p->s<=253402300799 ){
669           r = p->s*1000.0 + 210866760000000.0;
670           clearYMD_HMS_TZ(p);
671           p->iJD = (sqlite3_int64)(r + 0.5);
672           p->validJD = 1;
673           p->rawS = 0;
674           rc = 0;
675         }
676       }
677       break;
678     }
679     case 'j': {
680       /*
681       **    julianday
682       **
683       ** Always interpret the prior number as a julian-day value.  If this
684       ** is not the first modifier, or if the prior argument is not a numeric
685       ** value in the allowed range of julian day numbers understood by
686       ** SQLite (0..5373484.5) then the result will be NULL.
687       */
688       if( sqlite3_stricmp(z, "julianday")==0 ){
689         if( idx>1 ) return 1;  /* IMP: R-31176-64601 */
690         if( p->validJD && p->rawS ){
691           rc = 0;
692           p->rawS = 0;
693         }
694       }
695       break;
696     }
697 #ifndef SQLITE_OMIT_LOCALTIME
698     case 'l': {
699       /*    localtime
700       **
701       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
702       ** show local time.
703       */
704       if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){
705         rc = toLocaltime(p, pCtx);
706       }
707       break;
708     }
709 #endif
710     case 'u': {
711       /*
712       **    unixepoch
713       **
714       ** Treat the current value of p->s as the number of
715       ** seconds since 1970.  Convert to a real julian day number.
716       */
717       if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
718         if( idx>1 ) return 1;  /* IMP: R-49255-55373 */
719         r = p->s*1000.0 + 210866760000000.0;
720         if( r>=0.0 && r<464269060800000.0 ){
721           clearYMD_HMS_TZ(p);
722           p->iJD = (sqlite3_int64)(r + 0.5);
723           p->validJD = 1;
724           p->rawS = 0;
725           rc = 0;
726         }
727       }
728 #ifndef SQLITE_OMIT_LOCALTIME
729       else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){
730         if( p->tzSet==0 ){
731           i64 iOrigJD;              /* Original localtime */
732           i64 iGuess;               /* Guess at the corresponding utc time */
733           int cnt = 0;              /* Safety to prevent infinite loop */
734           int iErr;                 /* Guess is off by this much */
735 
736           computeJD(p);
737           iGuess = iOrigJD = p->iJD;
738           iErr = 0;
739           do{
740             DateTime new;
741             memset(&new, 0, sizeof(new));
742             iGuess -= iErr;
743             new.iJD = iGuess;
744             new.validJD = 1;
745             rc = toLocaltime(&new, pCtx);
746             if( rc ) return rc;
747             computeJD(&new);
748             iErr = new.iJD - iOrigJD;
749           }while( iErr && cnt++<3 );
750           memset(p, 0, sizeof(*p));
751           p->iJD = iGuess;
752           p->validJD = 1;
753           p->tzSet = 1;
754         }
755         rc = SQLITE_OK;
756       }
757 #endif
758       break;
759     }
760     case 'w': {
761       /*
762       **    weekday N
763       **
764       ** Move the date to the same time on the next occurrence of
765       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
766       ** date is already on the appropriate weekday, this is a no-op.
767       */
768       if( sqlite3_strnicmp(z, "weekday ", 8)==0
769                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0
770                && (n=(int)r)==r && n>=0 && r<7 ){
771         sqlite3_int64 Z;
772         computeYMD_HMS(p);
773         p->validTZ = 0;
774         p->validJD = 0;
775         computeJD(p);
776         Z = ((p->iJD + 129600000)/86400000) % 7;
777         if( Z>n ) Z -= 7;
778         p->iJD += (n - Z)*86400000;
779         clearYMD_HMS_TZ(p);
780         rc = 0;
781       }
782       break;
783     }
784     case 's': {
785       /*
786       **    start of TTTTT
787       **
788       ** Move the date backwards to the beginning of the current day,
789       ** or month or year.
790       */
791       if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break;
792       if( !p->validJD && !p->validYMD && !p->validHMS ) break;
793       z += 9;
794       computeYMD(p);
795       p->validHMS = 1;
796       p->h = p->m = 0;
797       p->s = 0.0;
798       p->rawS = 0;
799       p->validTZ = 0;
800       p->validJD = 0;
801       if( sqlite3_stricmp(z,"month")==0 ){
802         p->D = 1;
803         rc = 0;
804       }else if( sqlite3_stricmp(z,"year")==0 ){
805         p->M = 1;
806         p->D = 1;
807         rc = 0;
808       }else if( sqlite3_stricmp(z,"day")==0 ){
809         rc = 0;
810       }
811       break;
812     }
813     case '+':
814     case '-':
815     case '0':
816     case '1':
817     case '2':
818     case '3':
819     case '4':
820     case '5':
821     case '6':
822     case '7':
823     case '8':
824     case '9': {
825       double rRounder;
826       int i;
827       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
828       if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){
829         rc = 1;
830         break;
831       }
832       if( z[n]==':' ){
833         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
834         ** specified number of hours, minutes, seconds, and fractional seconds
835         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
836         ** omitted.
837         */
838         const char *z2 = z;
839         DateTime tx;
840         sqlite3_int64 day;
841         if( !sqlite3Isdigit(*z2) ) z2++;
842         memset(&tx, 0, sizeof(tx));
843         if( parseHhMmSs(z2, &tx) ) break;
844         computeJD(&tx);
845         tx.iJD -= 43200000;
846         day = tx.iJD/86400000;
847         tx.iJD -= day*86400000;
848         if( z[0]=='-' ) tx.iJD = -tx.iJD;
849         computeJD(p);
850         clearYMD_HMS_TZ(p);
851         p->iJD += tx.iJD;
852         rc = 0;
853         break;
854       }
855 
856       /* If control reaches this point, it means the transformation is
857       ** one of the forms like "+NNN days".  */
858       z += n;
859       while( sqlite3Isspace(*z) ) z++;
860       n = sqlite3Strlen30(z);
861       if( n>10 || n<3 ) break;
862       if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
863       computeJD(p);
864       rc = 1;
865       rRounder = r<0 ? -0.5 : +0.5;
866       for(i=0; i<ArraySize(aXformType); i++){
867         if( aXformType[i].nName==n
868          && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
869          && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
870         ){
871           switch( i ){
872             case 4: { /* Special processing to add months */
873               int x;
874               assert( strcmp(aXformType[i].zName,"month")==0 );
875               computeYMD_HMS(p);
876               p->M += (int)r;
877               x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
878               p->Y += x;
879               p->M -= x*12;
880               p->validJD = 0;
881               r -= (int)r;
882               break;
883             }
884             case 5: { /* Special processing to add years */
885               int y = (int)r;
886               assert( strcmp(aXformType[i].zName,"year")==0 );
887               computeYMD_HMS(p);
888               p->Y += y;
889               p->validJD = 0;
890               r -= (int)r;
891               break;
892             }
893           }
894           computeJD(p);
895           p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder);
896           rc = 0;
897           break;
898         }
899       }
900       clearYMD_HMS_TZ(p);
901       break;
902     }
903     default: {
904       break;
905     }
906   }
907   return rc;
908 }
909 
910 /*
911 ** Process time function arguments.  argv[0] is a date-time stamp.
912 ** argv[1] and following are modifiers.  Parse them all and write
913 ** the resulting time into the DateTime structure p.  Return 0
914 ** on success and 1 if there are any errors.
915 **
916 ** If there are zero parameters (if even argv[0] is undefined)
917 ** then assume a default value of "now" for argv[0].
918 */
919 static int isDate(
920   sqlite3_context *context,
921   int argc,
922   sqlite3_value **argv,
923   DateTime *p
924 ){
925   int i, n;
926   const unsigned char *z;
927   int eType;
928   memset(p, 0, sizeof(*p));
929   if( argc==0 ){
930     if( !sqlite3NotPureFunc(context) ) return 1;
931     return setDateTimeToCurrent(context, p);
932   }
933   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
934                    || eType==SQLITE_INTEGER ){
935     setRawDateNumber(p, sqlite3_value_double(argv[0]));
936   }else{
937     z = sqlite3_value_text(argv[0]);
938     if( !z || parseDateOrTime(context, (char*)z, p) ){
939       return 1;
940     }
941   }
942   for(i=1; i<argc; i++){
943     z = sqlite3_value_text(argv[i]);
944     n = sqlite3_value_bytes(argv[i]);
945     if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1;
946   }
947   computeJD(p);
948   if( p->isError || !validJulianDay(p->iJD) ) return 1;
949   return 0;
950 }
951 
952 
953 /*
954 ** The following routines implement the various date and time functions
955 ** of SQLite.
956 */
957 
958 /*
959 **    julianday( TIMESTRING, MOD, MOD, ...)
960 **
961 ** Return the julian day number of the date specified in the arguments
962 */
963 static void juliandayFunc(
964   sqlite3_context *context,
965   int argc,
966   sqlite3_value **argv
967 ){
968   DateTime x;
969   if( isDate(context, argc, argv, &x)==0 ){
970     computeJD(&x);
971     sqlite3_result_double(context, x.iJD/86400000.0);
972   }
973 }
974 
975 /*
976 **    unixepoch( TIMESTRING, MOD, MOD, ...)
977 **
978 ** Return the number of seconds (including fractional seconds) since
979 ** the unix epoch of 1970-01-01 00:00:00 GMT.
980 */
981 static void unixepochFunc(
982   sqlite3_context *context,
983   int argc,
984   sqlite3_value **argv
985 ){
986   DateTime x;
987   if( isDate(context, argc, argv, &x)==0 ){
988     computeJD(&x);
989     sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000);
990   }
991 }
992 
993 /*
994 **    datetime( TIMESTRING, MOD, MOD, ...)
995 **
996 ** Return YYYY-MM-DD HH:MM:SS
997 */
998 static void datetimeFunc(
999   sqlite3_context *context,
1000   int argc,
1001   sqlite3_value **argv
1002 ){
1003   DateTime x;
1004   if( isDate(context, argc, argv, &x)==0 ){
1005     int Y, s;
1006     char zBuf[24];
1007     computeYMD_HMS(&x);
1008     Y = x.Y;
1009     if( Y<0 ) Y = -Y;
1010     zBuf[1] = '0' + (Y/1000)%10;
1011     zBuf[2] = '0' + (Y/100)%10;
1012     zBuf[3] = '0' + (Y/10)%10;
1013     zBuf[4] = '0' + (Y)%10;
1014     zBuf[5] = '-';
1015     zBuf[6] = '0' + (x.M/10)%10;
1016     zBuf[7] = '0' + (x.M)%10;
1017     zBuf[8] = '-';
1018     zBuf[9] = '0' + (x.D/10)%10;
1019     zBuf[10] = '0' + (x.D)%10;
1020     zBuf[11] = ' ';
1021     zBuf[12] = '0' + (x.h/10)%10;
1022     zBuf[13] = '0' + (x.h)%10;
1023     zBuf[14] = ':';
1024     zBuf[15] = '0' + (x.m/10)%10;
1025     zBuf[16] = '0' + (x.m)%10;
1026     zBuf[17] = ':';
1027     s = (int)x.s;
1028     zBuf[18] = '0' + (s/10)%10;
1029     zBuf[19] = '0' + (s)%10;
1030     zBuf[20] = 0;
1031     if( x.Y<0 ){
1032       zBuf[0] = '-';
1033       sqlite3_result_text(context, zBuf, 20, SQLITE_TRANSIENT);
1034     }else{
1035       sqlite3_result_text(context, &zBuf[1], 19, SQLITE_TRANSIENT);
1036     }
1037   }
1038 }
1039 
1040 /*
1041 **    time( TIMESTRING, MOD, MOD, ...)
1042 **
1043 ** Return HH:MM:SS
1044 */
1045 static void timeFunc(
1046   sqlite3_context *context,
1047   int argc,
1048   sqlite3_value **argv
1049 ){
1050   DateTime x;
1051   if( isDate(context, argc, argv, &x)==0 ){
1052     int s;
1053     char zBuf[16];
1054     computeHMS(&x);
1055     zBuf[0] = '0' + (x.h/10)%10;
1056     zBuf[1] = '0' + (x.h)%10;
1057     zBuf[2] = ':';
1058     zBuf[3] = '0' + (x.m/10)%10;
1059     zBuf[4] = '0' + (x.m)%10;
1060     zBuf[5] = ':';
1061     s = (int)x.s;
1062     zBuf[6] = '0' + (s/10)%10;
1063     zBuf[7] = '0' + (s)%10;
1064     zBuf[8] = 0;
1065     sqlite3_result_text(context, zBuf, 8, SQLITE_TRANSIENT);
1066   }
1067 }
1068 
1069 /*
1070 **    date( TIMESTRING, MOD, MOD, ...)
1071 **
1072 ** Return YYYY-MM-DD
1073 */
1074 static void dateFunc(
1075   sqlite3_context *context,
1076   int argc,
1077   sqlite3_value **argv
1078 ){
1079   DateTime x;
1080   if( isDate(context, argc, argv, &x)==0 ){
1081     int Y;
1082     char zBuf[16];
1083     computeYMD(&x);
1084     Y = x.Y;
1085     if( Y<0 ) Y = -Y;
1086     zBuf[1] = '0' + (Y/1000)%10;
1087     zBuf[2] = '0' + (Y/100)%10;
1088     zBuf[3] = '0' + (Y/10)%10;
1089     zBuf[4] = '0' + (Y)%10;
1090     zBuf[5] = '-';
1091     zBuf[6] = '0' + (x.M/10)%10;
1092     zBuf[7] = '0' + (x.M)%10;
1093     zBuf[8] = '-';
1094     zBuf[9] = '0' + (x.D/10)%10;
1095     zBuf[10] = '0' + (x.D)%10;
1096     zBuf[11] = 0;
1097     if( x.Y<0 ){
1098       zBuf[0] = '-';
1099       sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
1100     }else{
1101       sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
1102     }
1103   }
1104 }
1105 
1106 /*
1107 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
1108 **
1109 ** Return a string described by FORMAT.  Conversions as follows:
1110 **
1111 **   %d  day of month
1112 **   %f  ** fractional seconds  SS.SSS
1113 **   %H  hour 00-24
1114 **   %j  day of year 000-366
1115 **   %J  ** julian day number
1116 **   %m  month 01-12
1117 **   %M  minute 00-59
1118 **   %s  seconds since 1970-01-01
1119 **   %S  seconds 00-59
1120 **   %w  day of week 0-6  sunday==0
1121 **   %W  week of year 00-53
1122 **   %Y  year 0000-9999
1123 **   %%  %
1124 */
1125 static void strftimeFunc(
1126   sqlite3_context *context,
1127   int argc,
1128   sqlite3_value **argv
1129 ){
1130   DateTime x;
1131   size_t i,j;
1132   sqlite3 *db;
1133   const char *zFmt;
1134   sqlite3_str sRes;
1135 
1136 
1137   if( argc==0 ) return;
1138   zFmt = (const char*)sqlite3_value_text(argv[0]);
1139   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
1140   db = sqlite3_context_db_handle(context);
1141   sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
1142 
1143   computeJD(&x);
1144   computeYMD_HMS(&x);
1145   for(i=j=0; zFmt[i]; i++){
1146     if( zFmt[i]!='%' ) continue;
1147     if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
1148     i++;
1149     j = i + 1;
1150     switch( zFmt[i] ){
1151       case 'd': {
1152         sqlite3_str_appendf(&sRes, "%02d", x.D);
1153         break;
1154       }
1155       case 'f': {
1156         double s = x.s;
1157         if( s>59.999 ) s = 59.999;
1158         sqlite3_str_appendf(&sRes, "%06.3f", s);
1159         break;
1160       }
1161       case 'H': {
1162         sqlite3_str_appendf(&sRes, "%02d", x.h);
1163         break;
1164       }
1165       case 'W': /* Fall thru */
1166       case 'j': {
1167         int nDay;             /* Number of days since 1st day of year */
1168         DateTime y = x;
1169         y.validJD = 0;
1170         y.M = 1;
1171         y.D = 1;
1172         computeJD(&y);
1173         nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
1174         if( zFmt[i]=='W' ){
1175           int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1176           wd = (int)(((x.iJD+43200000)/86400000)%7);
1177           sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7);
1178         }else{
1179           sqlite3_str_appendf(&sRes,"%03d",nDay+1);
1180         }
1181         break;
1182       }
1183       case 'J': {
1184         sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
1185         break;
1186       }
1187       case 'm': {
1188         sqlite3_str_appendf(&sRes,"%02d",x.M);
1189         break;
1190       }
1191       case 'M': {
1192         sqlite3_str_appendf(&sRes,"%02d",x.m);
1193         break;
1194       }
1195       case 's': {
1196         i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000);
1197         sqlite3_str_appendf(&sRes,"%lld",iS);
1198         break;
1199       }
1200       case 'S': {
1201         sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
1202         break;
1203       }
1204       case 'w': {
1205         sqlite3_str_appendchar(&sRes, 1,
1206                        (char)(((x.iJD+129600000)/86400000) % 7) + '0');
1207         break;
1208       }
1209       case 'Y': {
1210         sqlite3_str_appendf(&sRes,"%04d",x.Y);
1211         break;
1212       }
1213       case '%': {
1214         sqlite3_str_appendchar(&sRes, 1, '%');
1215         break;
1216       }
1217       default: {
1218         sqlite3_str_reset(&sRes);
1219         return;
1220       }
1221     }
1222   }
1223   if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
1224   sqlite3ResultStrAccum(context, &sRes);
1225 }
1226 
1227 /*
1228 ** current_time()
1229 **
1230 ** This function returns the same value as time('now').
1231 */
1232 static void ctimeFunc(
1233   sqlite3_context *context,
1234   int NotUsed,
1235   sqlite3_value **NotUsed2
1236 ){
1237   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1238   timeFunc(context, 0, 0);
1239 }
1240 
1241 /*
1242 ** current_date()
1243 **
1244 ** This function returns the same value as date('now').
1245 */
1246 static void cdateFunc(
1247   sqlite3_context *context,
1248   int NotUsed,
1249   sqlite3_value **NotUsed2
1250 ){
1251   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1252   dateFunc(context, 0, 0);
1253 }
1254 
1255 /*
1256 ** current_timestamp()
1257 **
1258 ** This function returns the same value as datetime('now').
1259 */
1260 static void ctimestampFunc(
1261   sqlite3_context *context,
1262   int NotUsed,
1263   sqlite3_value **NotUsed2
1264 ){
1265   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1266   datetimeFunc(context, 0, 0);
1267 }
1268 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1269 
1270 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1271 /*
1272 ** If the library is compiled to omit the full-scale date and time
1273 ** handling (to get a smaller binary), the following minimal version
1274 ** of the functions current_time(), current_date() and current_timestamp()
1275 ** are included instead. This is to support column declarations that
1276 ** include "DEFAULT CURRENT_TIME" etc.
1277 **
1278 ** This function uses the C-library functions time(), gmtime()
1279 ** and strftime(). The format string to pass to strftime() is supplied
1280 ** as the user-data for the function.
1281 */
1282 static void currentTimeFunc(
1283   sqlite3_context *context,
1284   int argc,
1285   sqlite3_value **argv
1286 ){
1287   time_t t;
1288   char *zFormat = (char *)sqlite3_user_data(context);
1289   sqlite3_int64 iT;
1290   struct tm *pTm;
1291   struct tm sNow;
1292   char zBuf[20];
1293 
1294   UNUSED_PARAMETER(argc);
1295   UNUSED_PARAMETER(argv);
1296 
1297   iT = sqlite3StmtCurrentTime(context);
1298   if( iT<=0 ) return;
1299   t = iT/1000 - 10000*(sqlite3_int64)21086676;
1300 #if HAVE_GMTIME_R
1301   pTm = gmtime_r(&t, &sNow);
1302 #else
1303   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
1304   pTm = gmtime(&t);
1305   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1306   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
1307 #endif
1308   if( pTm ){
1309     strftime(zBuf, 20, zFormat, &sNow);
1310     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1311   }
1312 }
1313 #endif
1314 
1315 /*
1316 ** This function registered all of the above C functions as SQL
1317 ** functions.  This should be the only routine in this file with
1318 ** external linkage.
1319 */
1320 void sqlite3RegisterDateTimeFunctions(void){
1321   static FuncDef aDateTimeFuncs[] = {
1322 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1323     PURE_DATE(julianday,        -1, 0, 0, juliandayFunc ),
1324     PURE_DATE(unixepoch,        -1, 0, 0, unixepochFunc ),
1325     PURE_DATE(date,             -1, 0, 0, dateFunc      ),
1326     PURE_DATE(time,             -1, 0, 0, timeFunc      ),
1327     PURE_DATE(datetime,         -1, 0, 0, datetimeFunc  ),
1328     PURE_DATE(strftime,         -1, 0, 0, strftimeFunc  ),
1329     DFUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
1330     DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1331     DFUNCTION(current_date,      0, 0, 0, cdateFunc     ),
1332 #else
1333     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
1334     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
1335     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1336 #endif
1337   };
1338   sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
1339 }
1340