1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBN 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ 390 return setDateTimeToCurrent(context, p); 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ 392 setRawDateNumber(p, r); 393 return 0; 394 } 395 return 1; 396 } 397 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 400 ** for DateTime.iJD. 401 ** 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 403 ** such a large integer literal, so we have to encode it. 404 */ 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 406 407 /* 408 ** Return TRUE if the given julian day number is within range. 409 ** 410 ** The input is the JulianDay times 86400000. 411 */ 412 static int validJulianDay(sqlite3_int64 iJD){ 413 return iJD>=0 && iJD<=INT_464269060799999; 414 } 415 416 /* 417 ** Compute the Year, Month, and Day from the julian day number. 418 */ 419 static void computeYMD(DateTime *p){ 420 int Z, A, B, C, D, E, X1; 421 if( p->validYMD ) return; 422 if( !p->validJD ){ 423 p->Y = 2000; 424 p->M = 1; 425 p->D = 1; 426 }else if( !validJulianDay(p->iJD) ){ 427 datetimeError(p); 428 return; 429 }else{ 430 Z = (int)((p->iJD + 43200000)/86400000); 431 A = (int)((Z - 1867216.25)/36524.25); 432 A = Z + 1 + A - (A/4); 433 B = A + 1524; 434 C = (int)((B - 122.1)/365.25); 435 D = (36525*(C&32767))/100; 436 E = (int)((B-D)/30.6001); 437 X1 = (int)(30.6001*E); 438 p->D = B - D - X1; 439 p->M = E<14 ? E-1 : E-13; 440 p->Y = p->M>2 ? C - 4716 : C - 4715; 441 } 442 p->validYMD = 1; 443 } 444 445 /* 446 ** Compute the Hour, Minute, and Seconds from the julian day number. 447 */ 448 static void computeHMS(DateTime *p){ 449 int s; 450 if( p->validHMS ) return; 451 computeJD(p); 452 s = (int)((p->iJD + 43200000) % 86400000); 453 p->s = s/1000.0; 454 s = (int)p->s; 455 p->s -= s; 456 p->h = s/3600; 457 s -= p->h*3600; 458 p->m = s/60; 459 p->s += s - p->m*60; 460 p->rawS = 0; 461 p->validHMS = 1; 462 } 463 464 /* 465 ** Compute both YMD and HMS 466 */ 467 static void computeYMD_HMS(DateTime *p){ 468 computeYMD(p); 469 computeHMS(p); 470 } 471 472 /* 473 ** Clear the YMD and HMS and the TZ 474 */ 475 static void clearYMD_HMS_TZ(DateTime *p){ 476 p->validYMD = 0; 477 p->validHMS = 0; 478 p->validTZ = 0; 479 } 480 481 #ifndef SQLITE_OMIT_LOCALTIME 482 /* 483 ** On recent Windows platforms, the localtime_s() function is available 484 ** as part of the "Secure CRT". It is essentially equivalent to 485 ** localtime_r() available under most POSIX platforms, except that the 486 ** order of the parameters is reversed. 487 ** 488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 489 ** 490 ** If the user has not indicated to use localtime_r() or localtime_s() 491 ** already, check for an MSVC build environment that provides 492 ** localtime_s(). 493 */ 494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 496 #undef HAVE_LOCALTIME_S 497 #define HAVE_LOCALTIME_S 1 498 #endif 499 500 /* 501 ** The following routine implements the rough equivalent of localtime_r() 502 ** using whatever operating-system specific localtime facility that 503 ** is available. This routine returns 0 on success and 504 ** non-zero on any kind of error. 505 ** 506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 507 ** routine will always fail. 508 ** 509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 510 ** library function localtime_r() is used to assist in the calculation of 511 ** local time. 512 */ 513 static int osLocaltime(time_t *t, struct tm *pTm){ 514 int rc; 515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 516 struct tm *pX; 517 #if SQLITE_THREADSAFE>0 518 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 519 #endif 520 sqlite3_mutex_enter(mutex); 521 pX = localtime(t); 522 #ifndef SQLITE_UNTESTABLE 523 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 524 #endif 525 if( pX ) *pTm = *pX; 526 #if SQLITE_THREADSAFE>0 527 sqlite3_mutex_leave(mutex); 528 #endif 529 rc = pX==0; 530 #else 531 #ifndef SQLITE_UNTESTABLE 532 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 533 #endif 534 #if HAVE_LOCALTIME_R 535 rc = localtime_r(t, pTm)==0; 536 #else 537 rc = localtime_s(pTm, t); 538 #endif /* HAVE_LOCALTIME_R */ 539 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 540 return rc; 541 } 542 #endif /* SQLITE_OMIT_LOCALTIME */ 543 544 545 #ifndef SQLITE_OMIT_LOCALTIME 546 /* 547 ** Assuming the input DateTime is UTC, move it to its localtime equivalent. 548 */ 549 static int toLocaltime( 550 DateTime *p, /* Date at which to calculate offset */ 551 sqlite3_context *pCtx /* Write error here if one occurs */ 552 ){ 553 time_t t; 554 struct tm sLocal; 555 int iYearDiff; 556 557 /* Initialize the contents of sLocal to avoid a compiler warning. */ 558 memset(&sLocal, 0, sizeof(sLocal)); 559 560 computeJD(p); 561 if( p->iJD<21086676000*(i64)10000 /* 1970-01-01 */ 562 || p->iJD>21301414560*(i64)10000 /* 2038-01-18 */ 563 ){ 564 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 565 ** works for years between 1970 and 2037. For dates outside this range, 566 ** SQLite attempts to map the year into an equivalent year within this 567 ** range, do the calculation, then map the year back. 568 */ 569 DateTime x = *p; 570 computeYMD_HMS(&x); 571 iYearDiff = (2000 + x.Y%4) - x.Y; 572 x.Y += iYearDiff; 573 x.validJD = 0; 574 computeJD(&x); 575 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 576 }else{ 577 iYearDiff = 0; 578 t = (time_t)(p->iJD/1000 - 21086676*(i64)10000); 579 } 580 if( osLocaltime(&t, &sLocal) ){ 581 sqlite3_result_error(pCtx, "local time unavailable", -1); 582 return SQLITE_ERROR; 583 } 584 p->Y = sLocal.tm_year + 1900 - iYearDiff; 585 p->M = sLocal.tm_mon + 1; 586 p->D = sLocal.tm_mday; 587 p->h = sLocal.tm_hour; 588 p->m = sLocal.tm_min; 589 p->s = sLocal.tm_sec; 590 p->validYMD = 1; 591 p->validHMS = 1; 592 p->validJD = 0; 593 p->rawS = 0; 594 p->validTZ = 0; 595 p->isError = 0; 596 return SQLITE_OK; 597 } 598 #endif /* SQLITE_OMIT_LOCALTIME */ 599 600 /* 601 ** The following table defines various date transformations of the form 602 ** 603 ** 'NNN days' 604 ** 605 ** Where NNN is an arbitrary floating-point number and "days" can be one 606 ** of several units of time. 607 */ 608 static const struct { 609 u8 nName; /* Length of the name */ 610 char zName[7]; /* Name of the transformation */ 611 float rLimit; /* Maximum NNN value for this transform */ 612 float rXform; /* Constant used for this transform */ 613 } aXformType[] = { 614 { 6, "second", 4.6427e+14, 1.0 }, 615 { 6, "minute", 7.7379e+12, 60.0 }, 616 { 4, "hour", 1.2897e+11, 3600.0 }, 617 { 3, "day", 5373485.0, 86400.0 }, 618 { 5, "month", 176546.0, 2592000.0 }, 619 { 4, "year", 14713.0, 31536000.0 }, 620 }; 621 622 /* 623 ** Process a modifier to a date-time stamp. The modifiers are 624 ** as follows: 625 ** 626 ** NNN days 627 ** NNN hours 628 ** NNN minutes 629 ** NNN.NNNN seconds 630 ** NNN months 631 ** NNN years 632 ** start of month 633 ** start of year 634 ** start of week 635 ** start of day 636 ** weekday N 637 ** unixepoch 638 ** localtime 639 ** utc 640 ** 641 ** Return 0 on success and 1 if there is any kind of error. If the error 642 ** is in a system call (i.e. localtime()), then an error message is written 643 ** to context pCtx. If the error is an unrecognized modifier, no error is 644 ** written to pCtx. 645 */ 646 static int parseModifier( 647 sqlite3_context *pCtx, /* Function context */ 648 const char *z, /* The text of the modifier */ 649 int n, /* Length of zMod in bytes */ 650 DateTime *p, /* The date/time value to be modified */ 651 int idx /* Parameter index of the modifier */ 652 ){ 653 int rc = 1; 654 double r; 655 switch(sqlite3UpperToLower[(u8)z[0]] ){ 656 case 'a': { 657 /* 658 ** auto 659 ** 660 ** If rawS is available, then interpret as a julian day number, or 661 ** a unix timestamp, depending on its magnitude. 662 */ 663 if( sqlite3_stricmp(z, "auto")==0 ){ 664 if( idx>1 ) return 1; /* IMP: R-33611-57934 */ 665 if( !p->rawS || p->validJD ){ 666 rc = 0; 667 p->rawS = 0; 668 }else if( p->s>=-210866760000 && p->s<=253402300799 ){ 669 r = p->s*1000.0 + 210866760000000.0; 670 clearYMD_HMS_TZ(p); 671 p->iJD = (sqlite3_int64)(r + 0.5); 672 p->validJD = 1; 673 p->rawS = 0; 674 rc = 0; 675 } 676 } 677 break; 678 } 679 case 'j': { 680 /* 681 ** julianday 682 ** 683 ** Always interpret the prior number as a julian-day value. If this 684 ** is not the first modifier, or if the prior argument is not a numeric 685 ** value in the allowed range of julian day numbers understood by 686 ** SQLite (0..5373484.5) then the result will be NULL. 687 */ 688 if( sqlite3_stricmp(z, "julianday")==0 ){ 689 if( idx>1 ) return 1; /* IMP: R-31176-64601 */ 690 if( p->validJD && p->rawS ){ 691 rc = 0; 692 p->rawS = 0; 693 } 694 } 695 break; 696 } 697 #ifndef SQLITE_OMIT_LOCALTIME 698 case 'l': { 699 /* localtime 700 ** 701 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 702 ** show local time. 703 */ 704 if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ 705 rc = toLocaltime(p, pCtx); 706 } 707 break; 708 } 709 #endif 710 case 'u': { 711 /* 712 ** unixepoch 713 ** 714 ** Treat the current value of p->s as the number of 715 ** seconds since 1970. Convert to a real julian day number. 716 */ 717 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 718 if( idx>1 ) return 1; /* IMP: R-49255-55373 */ 719 r = p->s*1000.0 + 210866760000000.0; 720 if( r>=0.0 && r<464269060800000.0 ){ 721 clearYMD_HMS_TZ(p); 722 p->iJD = (sqlite3_int64)(r + 0.5); 723 p->validJD = 1; 724 p->rawS = 0; 725 rc = 0; 726 } 727 } 728 #ifndef SQLITE_OMIT_LOCALTIME 729 else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ 730 if( p->tzSet==0 ){ 731 i64 iOrigJD; /* Original localtime */ 732 i64 iGuess; /* Guess at the corresponding utc time */ 733 int cnt = 0; /* Safety to prevent infinite loop */ 734 int iErr; /* Guess is off by this much */ 735 736 computeJD(p); 737 iGuess = iOrigJD = p->iJD; 738 iErr = 0; 739 do{ 740 DateTime new; 741 memset(&new, 0, sizeof(new)); 742 iGuess -= iErr; 743 new.iJD = iGuess; 744 new.validJD = 1; 745 rc = toLocaltime(&new, pCtx); 746 if( rc ) return rc; 747 computeJD(&new); 748 iErr = new.iJD - iOrigJD; 749 }while( iErr && cnt++<3 ); 750 memset(p, 0, sizeof(*p)); 751 p->iJD = iGuess; 752 p->validJD = 1; 753 p->tzSet = 1; 754 } 755 rc = SQLITE_OK; 756 } 757 #endif 758 break; 759 } 760 case 'w': { 761 /* 762 ** weekday N 763 ** 764 ** Move the date to the same time on the next occurrence of 765 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 766 ** date is already on the appropriate weekday, this is a no-op. 767 */ 768 if( sqlite3_strnicmp(z, "weekday ", 8)==0 769 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 770 && (n=(int)r)==r && n>=0 && r<7 ){ 771 sqlite3_int64 Z; 772 computeYMD_HMS(p); 773 p->validTZ = 0; 774 p->validJD = 0; 775 computeJD(p); 776 Z = ((p->iJD + 129600000)/86400000) % 7; 777 if( Z>n ) Z -= 7; 778 p->iJD += (n - Z)*86400000; 779 clearYMD_HMS_TZ(p); 780 rc = 0; 781 } 782 break; 783 } 784 case 's': { 785 /* 786 ** start of TTTTT 787 ** 788 ** Move the date backwards to the beginning of the current day, 789 ** or month or year. 790 */ 791 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 792 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 793 z += 9; 794 computeYMD(p); 795 p->validHMS = 1; 796 p->h = p->m = 0; 797 p->s = 0.0; 798 p->rawS = 0; 799 p->validTZ = 0; 800 p->validJD = 0; 801 if( sqlite3_stricmp(z,"month")==0 ){ 802 p->D = 1; 803 rc = 0; 804 }else if( sqlite3_stricmp(z,"year")==0 ){ 805 p->M = 1; 806 p->D = 1; 807 rc = 0; 808 }else if( sqlite3_stricmp(z,"day")==0 ){ 809 rc = 0; 810 } 811 break; 812 } 813 case '+': 814 case '-': 815 case '0': 816 case '1': 817 case '2': 818 case '3': 819 case '4': 820 case '5': 821 case '6': 822 case '7': 823 case '8': 824 case '9': { 825 double rRounder; 826 int i; 827 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 828 if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ 829 rc = 1; 830 break; 831 } 832 if( z[n]==':' ){ 833 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 834 ** specified number of hours, minutes, seconds, and fractional seconds 835 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 836 ** omitted. 837 */ 838 const char *z2 = z; 839 DateTime tx; 840 sqlite3_int64 day; 841 if( !sqlite3Isdigit(*z2) ) z2++; 842 memset(&tx, 0, sizeof(tx)); 843 if( parseHhMmSs(z2, &tx) ) break; 844 computeJD(&tx); 845 tx.iJD -= 43200000; 846 day = tx.iJD/86400000; 847 tx.iJD -= day*86400000; 848 if( z[0]=='-' ) tx.iJD = -tx.iJD; 849 computeJD(p); 850 clearYMD_HMS_TZ(p); 851 p->iJD += tx.iJD; 852 rc = 0; 853 break; 854 } 855 856 /* If control reaches this point, it means the transformation is 857 ** one of the forms like "+NNN days". */ 858 z += n; 859 while( sqlite3Isspace(*z) ) z++; 860 n = sqlite3Strlen30(z); 861 if( n>10 || n<3 ) break; 862 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 863 computeJD(p); 864 rc = 1; 865 rRounder = r<0 ? -0.5 : +0.5; 866 for(i=0; i<ArraySize(aXformType); i++){ 867 if( aXformType[i].nName==n 868 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 869 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 870 ){ 871 switch( i ){ 872 case 4: { /* Special processing to add months */ 873 int x; 874 assert( strcmp(aXformType[i].zName,"month")==0 ); 875 computeYMD_HMS(p); 876 p->M += (int)r; 877 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 878 p->Y += x; 879 p->M -= x*12; 880 p->validJD = 0; 881 r -= (int)r; 882 break; 883 } 884 case 5: { /* Special processing to add years */ 885 int y = (int)r; 886 assert( strcmp(aXformType[i].zName,"year")==0 ); 887 computeYMD_HMS(p); 888 p->Y += y; 889 p->validJD = 0; 890 r -= (int)r; 891 break; 892 } 893 } 894 computeJD(p); 895 p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder); 896 rc = 0; 897 break; 898 } 899 } 900 clearYMD_HMS_TZ(p); 901 break; 902 } 903 default: { 904 break; 905 } 906 } 907 return rc; 908 } 909 910 /* 911 ** Process time function arguments. argv[0] is a date-time stamp. 912 ** argv[1] and following are modifiers. Parse them all and write 913 ** the resulting time into the DateTime structure p. Return 0 914 ** on success and 1 if there are any errors. 915 ** 916 ** If there are zero parameters (if even argv[0] is undefined) 917 ** then assume a default value of "now" for argv[0]. 918 */ 919 static int isDate( 920 sqlite3_context *context, 921 int argc, 922 sqlite3_value **argv, 923 DateTime *p 924 ){ 925 int i, n; 926 const unsigned char *z; 927 int eType; 928 memset(p, 0, sizeof(*p)); 929 if( argc==0 ){ 930 if( !sqlite3NotPureFunc(context) ) return 1; 931 return setDateTimeToCurrent(context, p); 932 } 933 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 934 || eType==SQLITE_INTEGER ){ 935 setRawDateNumber(p, sqlite3_value_double(argv[0])); 936 }else{ 937 z = sqlite3_value_text(argv[0]); 938 if( !z || parseDateOrTime(context, (char*)z, p) ){ 939 return 1; 940 } 941 } 942 for(i=1; i<argc; i++){ 943 z = sqlite3_value_text(argv[i]); 944 n = sqlite3_value_bytes(argv[i]); 945 if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1; 946 } 947 computeJD(p); 948 if( p->isError || !validJulianDay(p->iJD) ) return 1; 949 return 0; 950 } 951 952 953 /* 954 ** The following routines implement the various date and time functions 955 ** of SQLite. 956 */ 957 958 /* 959 ** julianday( TIMESTRING, MOD, MOD, ...) 960 ** 961 ** Return the julian day number of the date specified in the arguments 962 */ 963 static void juliandayFunc( 964 sqlite3_context *context, 965 int argc, 966 sqlite3_value **argv 967 ){ 968 DateTime x; 969 if( isDate(context, argc, argv, &x)==0 ){ 970 computeJD(&x); 971 sqlite3_result_double(context, x.iJD/86400000.0); 972 } 973 } 974 975 /* 976 ** unixepoch( TIMESTRING, MOD, MOD, ...) 977 ** 978 ** Return the number of seconds (including fractional seconds) since 979 ** the unix epoch of 1970-01-01 00:00:00 GMT. 980 */ 981 static void unixepochFunc( 982 sqlite3_context *context, 983 int argc, 984 sqlite3_value **argv 985 ){ 986 DateTime x; 987 if( isDate(context, argc, argv, &x)==0 ){ 988 computeJD(&x); 989 sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); 990 } 991 } 992 993 /* 994 ** datetime( TIMESTRING, MOD, MOD, ...) 995 ** 996 ** Return YYYY-MM-DD HH:MM:SS 997 */ 998 static void datetimeFunc( 999 sqlite3_context *context, 1000 int argc, 1001 sqlite3_value **argv 1002 ){ 1003 DateTime x; 1004 if( isDate(context, argc, argv, &x)==0 ){ 1005 int Y, s; 1006 char zBuf[24]; 1007 computeYMD_HMS(&x); 1008 Y = x.Y; 1009 if( Y<0 ) Y = -Y; 1010 zBuf[1] = '0' + (Y/1000)%10; 1011 zBuf[2] = '0' + (Y/100)%10; 1012 zBuf[3] = '0' + (Y/10)%10; 1013 zBuf[4] = '0' + (Y)%10; 1014 zBuf[5] = '-'; 1015 zBuf[6] = '0' + (x.M/10)%10; 1016 zBuf[7] = '0' + (x.M)%10; 1017 zBuf[8] = '-'; 1018 zBuf[9] = '0' + (x.D/10)%10; 1019 zBuf[10] = '0' + (x.D)%10; 1020 zBuf[11] = ' '; 1021 zBuf[12] = '0' + (x.h/10)%10; 1022 zBuf[13] = '0' + (x.h)%10; 1023 zBuf[14] = ':'; 1024 zBuf[15] = '0' + (x.m/10)%10; 1025 zBuf[16] = '0' + (x.m)%10; 1026 zBuf[17] = ':'; 1027 s = (int)x.s; 1028 zBuf[18] = '0' + (s/10)%10; 1029 zBuf[19] = '0' + (s)%10; 1030 zBuf[20] = 0; 1031 if( x.Y<0 ){ 1032 zBuf[0] = '-'; 1033 sqlite3_result_text(context, zBuf, 20, SQLITE_TRANSIENT); 1034 }else{ 1035 sqlite3_result_text(context, &zBuf[1], 19, SQLITE_TRANSIENT); 1036 } 1037 } 1038 } 1039 1040 /* 1041 ** time( TIMESTRING, MOD, MOD, ...) 1042 ** 1043 ** Return HH:MM:SS 1044 */ 1045 static void timeFunc( 1046 sqlite3_context *context, 1047 int argc, 1048 sqlite3_value **argv 1049 ){ 1050 DateTime x; 1051 if( isDate(context, argc, argv, &x)==0 ){ 1052 int s; 1053 char zBuf[16]; 1054 computeHMS(&x); 1055 zBuf[0] = '0' + (x.h/10)%10; 1056 zBuf[1] = '0' + (x.h)%10; 1057 zBuf[2] = ':'; 1058 zBuf[3] = '0' + (x.m/10)%10; 1059 zBuf[4] = '0' + (x.m)%10; 1060 zBuf[5] = ':'; 1061 s = (int)x.s; 1062 zBuf[6] = '0' + (s/10)%10; 1063 zBuf[7] = '0' + (s)%10; 1064 zBuf[8] = 0; 1065 sqlite3_result_text(context, zBuf, 8, SQLITE_TRANSIENT); 1066 } 1067 } 1068 1069 /* 1070 ** date( TIMESTRING, MOD, MOD, ...) 1071 ** 1072 ** Return YYYY-MM-DD 1073 */ 1074 static void dateFunc( 1075 sqlite3_context *context, 1076 int argc, 1077 sqlite3_value **argv 1078 ){ 1079 DateTime x; 1080 if( isDate(context, argc, argv, &x)==0 ){ 1081 int Y; 1082 char zBuf[16]; 1083 computeYMD(&x); 1084 Y = x.Y; 1085 if( Y<0 ) Y = -Y; 1086 zBuf[1] = '0' + (Y/1000)%10; 1087 zBuf[2] = '0' + (Y/100)%10; 1088 zBuf[3] = '0' + (Y/10)%10; 1089 zBuf[4] = '0' + (Y)%10; 1090 zBuf[5] = '-'; 1091 zBuf[6] = '0' + (x.M/10)%10; 1092 zBuf[7] = '0' + (x.M)%10; 1093 zBuf[8] = '-'; 1094 zBuf[9] = '0' + (x.D/10)%10; 1095 zBuf[10] = '0' + (x.D)%10; 1096 zBuf[11] = 0; 1097 if( x.Y<0 ){ 1098 zBuf[0] = '-'; 1099 sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT); 1100 }else{ 1101 sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT); 1102 } 1103 } 1104 } 1105 1106 /* 1107 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 1108 ** 1109 ** Return a string described by FORMAT. Conversions as follows: 1110 ** 1111 ** %d day of month 1112 ** %f ** fractional seconds SS.SSS 1113 ** %H hour 00-24 1114 ** %j day of year 000-366 1115 ** %J ** julian day number 1116 ** %m month 01-12 1117 ** %M minute 00-59 1118 ** %s seconds since 1970-01-01 1119 ** %S seconds 00-59 1120 ** %w day of week 0-6 sunday==0 1121 ** %W week of year 00-53 1122 ** %Y year 0000-9999 1123 ** %% % 1124 */ 1125 static void strftimeFunc( 1126 sqlite3_context *context, 1127 int argc, 1128 sqlite3_value **argv 1129 ){ 1130 DateTime x; 1131 size_t i,j; 1132 sqlite3 *db; 1133 const char *zFmt; 1134 sqlite3_str sRes; 1135 1136 1137 if( argc==0 ) return; 1138 zFmt = (const char*)sqlite3_value_text(argv[0]); 1139 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1140 db = sqlite3_context_db_handle(context); 1141 sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 1142 1143 computeJD(&x); 1144 computeYMD_HMS(&x); 1145 for(i=j=0; zFmt[i]; i++){ 1146 if( zFmt[i]!='%' ) continue; 1147 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1148 i++; 1149 j = i + 1; 1150 switch( zFmt[i] ){ 1151 case 'd': { 1152 sqlite3_str_appendf(&sRes, "%02d", x.D); 1153 break; 1154 } 1155 case 'f': { 1156 double s = x.s; 1157 if( s>59.999 ) s = 59.999; 1158 sqlite3_str_appendf(&sRes, "%06.3f", s); 1159 break; 1160 } 1161 case 'H': { 1162 sqlite3_str_appendf(&sRes, "%02d", x.h); 1163 break; 1164 } 1165 case 'W': /* Fall thru */ 1166 case 'j': { 1167 int nDay; /* Number of days since 1st day of year */ 1168 DateTime y = x; 1169 y.validJD = 0; 1170 y.M = 1; 1171 y.D = 1; 1172 computeJD(&y); 1173 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1174 if( zFmt[i]=='W' ){ 1175 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1176 wd = (int)(((x.iJD+43200000)/86400000)%7); 1177 sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7); 1178 }else{ 1179 sqlite3_str_appendf(&sRes,"%03d",nDay+1); 1180 } 1181 break; 1182 } 1183 case 'J': { 1184 sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); 1185 break; 1186 } 1187 case 'm': { 1188 sqlite3_str_appendf(&sRes,"%02d",x.M); 1189 break; 1190 } 1191 case 'M': { 1192 sqlite3_str_appendf(&sRes,"%02d",x.m); 1193 break; 1194 } 1195 case 's': { 1196 i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); 1197 sqlite3_str_appendf(&sRes,"%lld",iS); 1198 break; 1199 } 1200 case 'S': { 1201 sqlite3_str_appendf(&sRes,"%02d",(int)x.s); 1202 break; 1203 } 1204 case 'w': { 1205 sqlite3_str_appendchar(&sRes, 1, 1206 (char)(((x.iJD+129600000)/86400000) % 7) + '0'); 1207 break; 1208 } 1209 case 'Y': { 1210 sqlite3_str_appendf(&sRes,"%04d",x.Y); 1211 break; 1212 } 1213 case '%': { 1214 sqlite3_str_appendchar(&sRes, 1, '%'); 1215 break; 1216 } 1217 default: { 1218 sqlite3_str_reset(&sRes); 1219 return; 1220 } 1221 } 1222 } 1223 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1224 sqlite3ResultStrAccum(context, &sRes); 1225 } 1226 1227 /* 1228 ** current_time() 1229 ** 1230 ** This function returns the same value as time('now'). 1231 */ 1232 static void ctimeFunc( 1233 sqlite3_context *context, 1234 int NotUsed, 1235 sqlite3_value **NotUsed2 1236 ){ 1237 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1238 timeFunc(context, 0, 0); 1239 } 1240 1241 /* 1242 ** current_date() 1243 ** 1244 ** This function returns the same value as date('now'). 1245 */ 1246 static void cdateFunc( 1247 sqlite3_context *context, 1248 int NotUsed, 1249 sqlite3_value **NotUsed2 1250 ){ 1251 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1252 dateFunc(context, 0, 0); 1253 } 1254 1255 /* 1256 ** current_timestamp() 1257 ** 1258 ** This function returns the same value as datetime('now'). 1259 */ 1260 static void ctimestampFunc( 1261 sqlite3_context *context, 1262 int NotUsed, 1263 sqlite3_value **NotUsed2 1264 ){ 1265 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1266 datetimeFunc(context, 0, 0); 1267 } 1268 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1269 1270 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1271 /* 1272 ** If the library is compiled to omit the full-scale date and time 1273 ** handling (to get a smaller binary), the following minimal version 1274 ** of the functions current_time(), current_date() and current_timestamp() 1275 ** are included instead. This is to support column declarations that 1276 ** include "DEFAULT CURRENT_TIME" etc. 1277 ** 1278 ** This function uses the C-library functions time(), gmtime() 1279 ** and strftime(). The format string to pass to strftime() is supplied 1280 ** as the user-data for the function. 1281 */ 1282 static void currentTimeFunc( 1283 sqlite3_context *context, 1284 int argc, 1285 sqlite3_value **argv 1286 ){ 1287 time_t t; 1288 char *zFormat = (char *)sqlite3_user_data(context); 1289 sqlite3_int64 iT; 1290 struct tm *pTm; 1291 struct tm sNow; 1292 char zBuf[20]; 1293 1294 UNUSED_PARAMETER(argc); 1295 UNUSED_PARAMETER(argv); 1296 1297 iT = sqlite3StmtCurrentTime(context); 1298 if( iT<=0 ) return; 1299 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1300 #if HAVE_GMTIME_R 1301 pTm = gmtime_r(&t, &sNow); 1302 #else 1303 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1304 pTm = gmtime(&t); 1305 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1306 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1307 #endif 1308 if( pTm ){ 1309 strftime(zBuf, 20, zFormat, &sNow); 1310 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1311 } 1312 } 1313 #endif 1314 1315 /* 1316 ** This function registered all of the above C functions as SQL 1317 ** functions. This should be the only routine in this file with 1318 ** external linkage. 1319 */ 1320 void sqlite3RegisterDateTimeFunctions(void){ 1321 static FuncDef aDateTimeFuncs[] = { 1322 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1323 PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), 1324 PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), 1325 PURE_DATE(date, -1, 0, 0, dateFunc ), 1326 PURE_DATE(time, -1, 0, 0, timeFunc ), 1327 PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), 1328 PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), 1329 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1330 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1331 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1332 #else 1333 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1334 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1335 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1336 #endif 1337 }; 1338 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1339 } 1340