1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBM 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validYMD; /* True (1) if Y,M,D are valid */ 74 char validHMS; /* True (1) if h,m,s are valid */ 75 char validJD; /* True (1) if iJD is valid */ 76 char validTZ; /* True (1) if tz is valid */ 77 char tzSet; /* Timezone was set explicitly */ 78 }; 79 80 81 /* 82 ** Convert zDate into one or more integers according to the conversion 83 ** specifier zFormat. 84 ** 85 ** zFormat[] contains 4 characters for each integer converted, except for 86 ** the last integer which is specified by three characters. The meaning 87 ** of a four-character format specifiers ABCD is: 88 ** 89 ** A: number of digits to convert. Always "2" or "4". 90 ** B: minimum value. Always "0" or "1". 91 ** C: maximum value, decoded as: 92 ** a: 12 93 ** b: 14 94 ** c: 24 95 ** d: 31 96 ** e: 59 97 ** f: 9999 98 ** D: the separator character, or \000 to indicate this is the 99 ** last number to convert. 100 ** 101 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 102 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 103 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 104 ** the 2-digit day which is the last integer in the set. 105 ** 106 ** The function returns the number of successful conversions. 107 */ 108 static int getDigits(const char *zDate, const char *zFormat, ...){ 109 /* The aMx[] array translates the 3rd character of each format 110 ** spec into a max size: a b c d e f */ 111 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 112 va_list ap; 113 int cnt = 0; 114 char nextC; 115 va_start(ap, zFormat); 116 do{ 117 char N = zFormat[0] - '0'; 118 char min = zFormat[1] - '0'; 119 int val = 0; 120 u16 max; 121 122 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 123 max = aMx[zFormat[2] - 'a']; 124 nextC = zFormat[3]; 125 val = 0; 126 while( N-- ){ 127 if( !sqlite3Isdigit(*zDate) ){ 128 goto end_getDigits; 129 } 130 val = val*10 + *zDate - '0'; 131 zDate++; 132 } 133 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 134 goto end_getDigits; 135 } 136 *va_arg(ap,int*) = val; 137 zDate++; 138 cnt++; 139 zFormat += 4; 140 }while( nextC ); 141 end_getDigits: 142 va_end(ap); 143 return cnt; 144 } 145 146 /* 147 ** Parse a timezone extension on the end of a date-time. 148 ** The extension is of the form: 149 ** 150 ** (+/-)HH:MM 151 ** 152 ** Or the "zulu" notation: 153 ** 154 ** Z 155 ** 156 ** If the parse is successful, write the number of minutes 157 ** of change in p->tz and return 0. If a parser error occurs, 158 ** return non-zero. 159 ** 160 ** A missing specifier is not considered an error. 161 */ 162 static int parseTimezone(const char *zDate, DateTime *p){ 163 int sgn = 0; 164 int nHr, nMn; 165 int c; 166 while( sqlite3Isspace(*zDate) ){ zDate++; } 167 p->tz = 0; 168 c = *zDate; 169 if( c=='-' ){ 170 sgn = -1; 171 }else if( c=='+' ){ 172 sgn = +1; 173 }else if( c=='Z' || c=='z' ){ 174 zDate++; 175 goto zulu_time; 176 }else{ 177 return c!=0; 178 } 179 zDate++; 180 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 181 return 1; 182 } 183 zDate += 5; 184 p->tz = sgn*(nMn + nHr*60); 185 zulu_time: 186 while( sqlite3Isspace(*zDate) ){ zDate++; } 187 p->tzSet = 1; 188 return *zDate!=0; 189 } 190 191 /* 192 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 193 ** The HH, MM, and SS must each be exactly 2 digits. The 194 ** fractional seconds FFFF can be one or more digits. 195 ** 196 ** Return 1 if there is a parsing error and 0 on success. 197 */ 198 static int parseHhMmSs(const char *zDate, DateTime *p){ 199 int h, m, s; 200 double ms = 0.0; 201 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 202 return 1; 203 } 204 zDate += 5; 205 if( *zDate==':' ){ 206 zDate++; 207 if( getDigits(zDate, "20e", &s)!=1 ){ 208 return 1; 209 } 210 zDate += 2; 211 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 212 double rScale = 1.0; 213 zDate++; 214 while( sqlite3Isdigit(*zDate) ){ 215 ms = ms*10.0 + *zDate - '0'; 216 rScale *= 10.0; 217 zDate++; 218 } 219 ms /= rScale; 220 } 221 }else{ 222 s = 0; 223 } 224 p->validJD = 0; 225 p->validHMS = 1; 226 p->h = h; 227 p->m = m; 228 p->s = s + ms; 229 if( parseTimezone(zDate, p) ) return 1; 230 p->validTZ = (p->tz!=0)?1:0; 231 return 0; 232 } 233 234 /* 235 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 236 ** that the YYYY-MM-DD is according to the Gregorian calendar. 237 ** 238 ** Reference: Meeus page 61 239 */ 240 static void computeJD(DateTime *p){ 241 int Y, M, D, A, B, X1, X2; 242 243 if( p->validJD ) return; 244 if( p->validYMD ){ 245 Y = p->Y; 246 M = p->M; 247 D = p->D; 248 }else{ 249 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 250 M = 1; 251 D = 1; 252 } 253 if( M<=2 ){ 254 Y--; 255 M += 12; 256 } 257 A = Y/100; 258 B = 2 - A + (A/4); 259 X1 = 36525*(Y+4716)/100; 260 X2 = 306001*(M+1)/10000; 261 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 262 p->validJD = 1; 263 if( p->validHMS ){ 264 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 265 if( p->validTZ ){ 266 p->iJD -= p->tz*60000; 267 p->validYMD = 0; 268 p->validHMS = 0; 269 p->validTZ = 0; 270 } 271 } 272 } 273 274 /* 275 ** Parse dates of the form 276 ** 277 ** YYYY-MM-DD HH:MM:SS.FFF 278 ** YYYY-MM-DD HH:MM:SS 279 ** YYYY-MM-DD HH:MM 280 ** YYYY-MM-DD 281 ** 282 ** Write the result into the DateTime structure and return 0 283 ** on success and 1 if the input string is not a well-formed 284 ** date. 285 */ 286 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 287 int Y, M, D, neg; 288 289 if( zDate[0]=='-' ){ 290 zDate++; 291 neg = 1; 292 }else{ 293 neg = 0; 294 } 295 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 296 return 1; 297 } 298 zDate += 10; 299 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 300 if( parseHhMmSs(zDate, p)==0 ){ 301 /* We got the time */ 302 }else if( *zDate==0 ){ 303 p->validHMS = 0; 304 }else{ 305 return 1; 306 } 307 p->validJD = 0; 308 p->validYMD = 1; 309 p->Y = neg ? -Y : Y; 310 p->M = M; 311 p->D = D; 312 if( p->validTZ ){ 313 computeJD(p); 314 } 315 return 0; 316 } 317 318 /* 319 ** Set the time to the current time reported by the VFS. 320 ** 321 ** Return the number of errors. 322 */ 323 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 324 p->iJD = sqlite3StmtCurrentTime(context); 325 if( p->iJD>0 ){ 326 p->validJD = 1; 327 return 0; 328 }else{ 329 return 1; 330 } 331 } 332 333 /* 334 ** Attempt to parse the given string into a julian day number. Return 335 ** the number of errors. 336 ** 337 ** The following are acceptable forms for the input string: 338 ** 339 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 340 ** DDDD.DD 341 ** now 342 ** 343 ** In the first form, the +/-HH:MM is always optional. The fractional 344 ** seconds extension (the ".FFF") is optional. The seconds portion 345 ** (":SS.FFF") is option. The year and date can be omitted as long 346 ** as there is a time string. The time string can be omitted as long 347 ** as there is a year and date. 348 */ 349 static int parseDateOrTime( 350 sqlite3_context *context, 351 const char *zDate, 352 DateTime *p 353 ){ 354 double r; 355 if( parseYyyyMmDd(zDate,p)==0 ){ 356 return 0; 357 }else if( parseHhMmSs(zDate, p)==0 ){ 358 return 0; 359 }else if( sqlite3StrICmp(zDate,"now")==0){ 360 return setDateTimeToCurrent(context, p); 361 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ 362 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 363 p->validJD = 1; 364 return 0; 365 } 366 return 1; 367 } 368 369 /* 370 ** Compute the Year, Month, and Day from the julian day number. 371 */ 372 static void computeYMD(DateTime *p){ 373 int Z, A, B, C, D, E, X1; 374 if( p->validYMD ) return; 375 if( !p->validJD ){ 376 p->Y = 2000; 377 p->M = 1; 378 p->D = 1; 379 }else{ 380 Z = (int)((p->iJD + 43200000)/86400000); 381 A = (int)((Z - 1867216.25)/36524.25); 382 A = Z + 1 + A - (A/4); 383 B = A + 1524; 384 C = (int)((B - 122.1)/365.25); 385 D = (36525*(C&32767))/100; 386 E = (int)((B-D)/30.6001); 387 X1 = (int)(30.6001*E); 388 p->D = B - D - X1; 389 p->M = E<14 ? E-1 : E-13; 390 p->Y = p->M>2 ? C - 4716 : C - 4715; 391 } 392 p->validYMD = 1; 393 } 394 395 /* 396 ** Compute the Hour, Minute, and Seconds from the julian day number. 397 */ 398 static void computeHMS(DateTime *p){ 399 int s; 400 if( p->validHMS ) return; 401 computeJD(p); 402 s = (int)((p->iJD + 43200000) % 86400000); 403 p->s = s/1000.0; 404 s = (int)p->s; 405 p->s -= s; 406 p->h = s/3600; 407 s -= p->h*3600; 408 p->m = s/60; 409 p->s += s - p->m*60; 410 p->validHMS = 1; 411 } 412 413 /* 414 ** Compute both YMD and HMS 415 */ 416 static void computeYMD_HMS(DateTime *p){ 417 computeYMD(p); 418 computeHMS(p); 419 } 420 421 /* 422 ** Clear the YMD and HMS and the TZ 423 */ 424 static void clearYMD_HMS_TZ(DateTime *p){ 425 p->validYMD = 0; 426 p->validHMS = 0; 427 p->validTZ = 0; 428 } 429 430 #ifndef SQLITE_OMIT_LOCALTIME 431 /* 432 ** On recent Windows platforms, the localtime_s() function is available 433 ** as part of the "Secure CRT". It is essentially equivalent to 434 ** localtime_r() available under most POSIX platforms, except that the 435 ** order of the parameters is reversed. 436 ** 437 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 438 ** 439 ** If the user has not indicated to use localtime_r() or localtime_s() 440 ** already, check for an MSVC build environment that provides 441 ** localtime_s(). 442 */ 443 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 444 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 445 #undef HAVE_LOCALTIME_S 446 #define HAVE_LOCALTIME_S 1 447 #endif 448 449 /* 450 ** The following routine implements the rough equivalent of localtime_r() 451 ** using whatever operating-system specific localtime facility that 452 ** is available. This routine returns 0 on success and 453 ** non-zero on any kind of error. 454 ** 455 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 456 ** routine will always fail. 457 ** 458 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 459 ** library function localtime_r() is used to assist in the calculation of 460 ** local time. 461 */ 462 static int osLocaltime(time_t *t, struct tm *pTm){ 463 int rc; 464 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 465 struct tm *pX; 466 #if SQLITE_THREADSAFE>0 467 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 468 #endif 469 sqlite3_mutex_enter(mutex); 470 pX = localtime(t); 471 #ifndef SQLITE_OMIT_BUILTIN_TEST 472 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 473 #endif 474 if( pX ) *pTm = *pX; 475 sqlite3_mutex_leave(mutex); 476 rc = pX==0; 477 #else 478 #ifndef SQLITE_OMIT_BUILTIN_TEST 479 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 480 #endif 481 #if HAVE_LOCALTIME_R 482 rc = localtime_r(t, pTm)==0; 483 #else 484 rc = localtime_s(pTm, t); 485 #endif /* HAVE_LOCALTIME_R */ 486 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 487 return rc; 488 } 489 #endif /* SQLITE_OMIT_LOCALTIME */ 490 491 492 #ifndef SQLITE_OMIT_LOCALTIME 493 /* 494 ** Compute the difference (in milliseconds) between localtime and UTC 495 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 496 ** return this value and set *pRc to SQLITE_OK. 497 ** 498 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 499 ** is undefined in this case. 500 */ 501 static sqlite3_int64 localtimeOffset( 502 DateTime *p, /* Date at which to calculate offset */ 503 sqlite3_context *pCtx, /* Write error here if one occurs */ 504 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 505 ){ 506 DateTime x, y; 507 time_t t; 508 struct tm sLocal; 509 510 /* Initialize the contents of sLocal to avoid a compiler warning. */ 511 memset(&sLocal, 0, sizeof(sLocal)); 512 513 x = *p; 514 computeYMD_HMS(&x); 515 if( x.Y<1971 || x.Y>=2038 ){ 516 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 517 ** works for years between 1970 and 2037. For dates outside this range, 518 ** SQLite attempts to map the year into an equivalent year within this 519 ** range, do the calculation, then map the year back. 520 */ 521 x.Y = 2000; 522 x.M = 1; 523 x.D = 1; 524 x.h = 0; 525 x.m = 0; 526 x.s = 0.0; 527 } else { 528 int s = (int)(x.s + 0.5); 529 x.s = s; 530 } 531 x.tz = 0; 532 x.validJD = 0; 533 computeJD(&x); 534 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 535 if( osLocaltime(&t, &sLocal) ){ 536 sqlite3_result_error(pCtx, "local time unavailable", -1); 537 *pRc = SQLITE_ERROR; 538 return 0; 539 } 540 y.Y = sLocal.tm_year + 1900; 541 y.M = sLocal.tm_mon + 1; 542 y.D = sLocal.tm_mday; 543 y.h = sLocal.tm_hour; 544 y.m = sLocal.tm_min; 545 y.s = sLocal.tm_sec; 546 y.validYMD = 1; 547 y.validHMS = 1; 548 y.validJD = 0; 549 y.validTZ = 0; 550 computeJD(&y); 551 *pRc = SQLITE_OK; 552 return y.iJD - x.iJD; 553 } 554 #endif /* SQLITE_OMIT_LOCALTIME */ 555 556 /* 557 ** Process a modifier to a date-time stamp. The modifiers are 558 ** as follows: 559 ** 560 ** NNN days 561 ** NNN hours 562 ** NNN minutes 563 ** NNN.NNNN seconds 564 ** NNN months 565 ** NNN years 566 ** start of month 567 ** start of year 568 ** start of week 569 ** start of day 570 ** weekday N 571 ** unixepoch 572 ** localtime 573 ** utc 574 ** 575 ** Return 0 on success and 1 if there is any kind of error. If the error 576 ** is in a system call (i.e. localtime()), then an error message is written 577 ** to context pCtx. If the error is an unrecognized modifier, no error is 578 ** written to pCtx. 579 */ 580 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ 581 int rc = 1; 582 int n; 583 double r; 584 char *z, zBuf[30]; 585 z = zBuf; 586 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ 587 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; 588 } 589 z[n] = 0; 590 switch( z[0] ){ 591 #ifndef SQLITE_OMIT_LOCALTIME 592 case 'l': { 593 /* localtime 594 ** 595 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 596 ** show local time. 597 */ 598 if( strcmp(z, "localtime")==0 ){ 599 computeJD(p); 600 p->iJD += localtimeOffset(p, pCtx, &rc); 601 clearYMD_HMS_TZ(p); 602 } 603 break; 604 } 605 #endif 606 case 'u': { 607 /* 608 ** unixepoch 609 ** 610 ** Treat the current value of p->iJD as the number of 611 ** seconds since 1970. Convert to a real julian day number. 612 */ 613 if( strcmp(z, "unixepoch")==0 && p->validJD ){ 614 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; 615 clearYMD_HMS_TZ(p); 616 rc = 0; 617 } 618 #ifndef SQLITE_OMIT_LOCALTIME 619 else if( strcmp(z, "utc")==0 ){ 620 if( p->tzSet==0 ){ 621 sqlite3_int64 c1; 622 computeJD(p); 623 c1 = localtimeOffset(p, pCtx, &rc); 624 if( rc==SQLITE_OK ){ 625 p->iJD -= c1; 626 clearYMD_HMS_TZ(p); 627 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 628 } 629 p->tzSet = 1; 630 }else{ 631 rc = SQLITE_OK; 632 } 633 } 634 #endif 635 break; 636 } 637 case 'w': { 638 /* 639 ** weekday N 640 ** 641 ** Move the date to the same time on the next occurrence of 642 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 643 ** date is already on the appropriate weekday, this is a no-op. 644 */ 645 if( strncmp(z, "weekday ", 8)==0 646 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) 647 && (n=(int)r)==r && n>=0 && r<7 ){ 648 sqlite3_int64 Z; 649 computeYMD_HMS(p); 650 p->validTZ = 0; 651 p->validJD = 0; 652 computeJD(p); 653 Z = ((p->iJD + 129600000)/86400000) % 7; 654 if( Z>n ) Z -= 7; 655 p->iJD += (n - Z)*86400000; 656 clearYMD_HMS_TZ(p); 657 rc = 0; 658 } 659 break; 660 } 661 case 's': { 662 /* 663 ** start of TTTTT 664 ** 665 ** Move the date backwards to the beginning of the current day, 666 ** or month or year. 667 */ 668 if( strncmp(z, "start of ", 9)!=0 ) break; 669 z += 9; 670 computeYMD(p); 671 p->validHMS = 1; 672 p->h = p->m = 0; 673 p->s = 0.0; 674 p->validTZ = 0; 675 p->validJD = 0; 676 if( strcmp(z,"month")==0 ){ 677 p->D = 1; 678 rc = 0; 679 }else if( strcmp(z,"year")==0 ){ 680 computeYMD(p); 681 p->M = 1; 682 p->D = 1; 683 rc = 0; 684 }else if( strcmp(z,"day")==0 ){ 685 rc = 0; 686 } 687 break; 688 } 689 case '+': 690 case '-': 691 case '0': 692 case '1': 693 case '2': 694 case '3': 695 case '4': 696 case '5': 697 case '6': 698 case '7': 699 case '8': 700 case '9': { 701 double rRounder; 702 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 703 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ 704 rc = 1; 705 break; 706 } 707 if( z[n]==':' ){ 708 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 709 ** specified number of hours, minutes, seconds, and fractional seconds 710 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 711 ** omitted. 712 */ 713 const char *z2 = z; 714 DateTime tx; 715 sqlite3_int64 day; 716 if( !sqlite3Isdigit(*z2) ) z2++; 717 memset(&tx, 0, sizeof(tx)); 718 if( parseHhMmSs(z2, &tx) ) break; 719 computeJD(&tx); 720 tx.iJD -= 43200000; 721 day = tx.iJD/86400000; 722 tx.iJD -= day*86400000; 723 if( z[0]=='-' ) tx.iJD = -tx.iJD; 724 computeJD(p); 725 clearYMD_HMS_TZ(p); 726 p->iJD += tx.iJD; 727 rc = 0; 728 break; 729 } 730 z += n; 731 while( sqlite3Isspace(*z) ) z++; 732 n = sqlite3Strlen30(z); 733 if( n>10 || n<3 ) break; 734 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } 735 computeJD(p); 736 rc = 0; 737 rRounder = r<0 ? -0.5 : +0.5; 738 if( n==3 && strcmp(z,"day")==0 ){ 739 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); 740 }else if( n==4 && strcmp(z,"hour")==0 ){ 741 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); 742 }else if( n==6 && strcmp(z,"minute")==0 ){ 743 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); 744 }else if( n==6 && strcmp(z,"second")==0 ){ 745 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); 746 }else if( n==5 && strcmp(z,"month")==0 ){ 747 int x, y; 748 computeYMD_HMS(p); 749 p->M += (int)r; 750 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 751 p->Y += x; 752 p->M -= x*12; 753 p->validJD = 0; 754 computeJD(p); 755 y = (int)r; 756 if( y!=r ){ 757 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); 758 } 759 }else if( n==4 && strcmp(z,"year")==0 ){ 760 int y = (int)r; 761 computeYMD_HMS(p); 762 p->Y += y; 763 p->validJD = 0; 764 computeJD(p); 765 if( y!=r ){ 766 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); 767 } 768 }else{ 769 rc = 1; 770 } 771 clearYMD_HMS_TZ(p); 772 break; 773 } 774 default: { 775 break; 776 } 777 } 778 return rc; 779 } 780 781 /* 782 ** Process time function arguments. argv[0] is a date-time stamp. 783 ** argv[1] and following are modifiers. Parse them all and write 784 ** the resulting time into the DateTime structure p. Return 0 785 ** on success and 1 if there are any errors. 786 ** 787 ** If there are zero parameters (if even argv[0] is undefined) 788 ** then assume a default value of "now" for argv[0]. 789 */ 790 static int isDate( 791 sqlite3_context *context, 792 int argc, 793 sqlite3_value **argv, 794 DateTime *p 795 ){ 796 int i; 797 const unsigned char *z; 798 int eType; 799 memset(p, 0, sizeof(*p)); 800 if( argc==0 ){ 801 return setDateTimeToCurrent(context, p); 802 } 803 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 804 || eType==SQLITE_INTEGER ){ 805 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); 806 p->validJD = 1; 807 }else{ 808 z = sqlite3_value_text(argv[0]); 809 if( !z || parseDateOrTime(context, (char*)z, p) ){ 810 return 1; 811 } 812 } 813 for(i=1; i<argc; i++){ 814 z = sqlite3_value_text(argv[i]); 815 if( z==0 || parseModifier(context, (char*)z, p) ) return 1; 816 } 817 return 0; 818 } 819 820 821 /* 822 ** The following routines implement the various date and time functions 823 ** of SQLite. 824 */ 825 826 /* 827 ** julianday( TIMESTRING, MOD, MOD, ...) 828 ** 829 ** Return the julian day number of the date specified in the arguments 830 */ 831 static void juliandayFunc( 832 sqlite3_context *context, 833 int argc, 834 sqlite3_value **argv 835 ){ 836 DateTime x; 837 if( isDate(context, argc, argv, &x)==0 ){ 838 computeJD(&x); 839 sqlite3_result_double(context, x.iJD/86400000.0); 840 } 841 } 842 843 /* 844 ** datetime( TIMESTRING, MOD, MOD, ...) 845 ** 846 ** Return YYYY-MM-DD HH:MM:SS 847 */ 848 static void datetimeFunc( 849 sqlite3_context *context, 850 int argc, 851 sqlite3_value **argv 852 ){ 853 DateTime x; 854 if( isDate(context, argc, argv, &x)==0 ){ 855 char zBuf[100]; 856 computeYMD_HMS(&x); 857 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 858 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 859 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 860 } 861 } 862 863 /* 864 ** time( TIMESTRING, MOD, MOD, ...) 865 ** 866 ** Return HH:MM:SS 867 */ 868 static void timeFunc( 869 sqlite3_context *context, 870 int argc, 871 sqlite3_value **argv 872 ){ 873 DateTime x; 874 if( isDate(context, argc, argv, &x)==0 ){ 875 char zBuf[100]; 876 computeHMS(&x); 877 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 878 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 879 } 880 } 881 882 /* 883 ** date( TIMESTRING, MOD, MOD, ...) 884 ** 885 ** Return YYYY-MM-DD 886 */ 887 static void dateFunc( 888 sqlite3_context *context, 889 int argc, 890 sqlite3_value **argv 891 ){ 892 DateTime x; 893 if( isDate(context, argc, argv, &x)==0 ){ 894 char zBuf[100]; 895 computeYMD(&x); 896 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 897 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 898 } 899 } 900 901 /* 902 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 903 ** 904 ** Return a string described by FORMAT. Conversions as follows: 905 ** 906 ** %d day of month 907 ** %f ** fractional seconds SS.SSS 908 ** %H hour 00-24 909 ** %j day of year 000-366 910 ** %J ** julian day number 911 ** %m month 01-12 912 ** %M minute 00-59 913 ** %s seconds since 1970-01-01 914 ** %S seconds 00-59 915 ** %w day of week 0-6 sunday==0 916 ** %W week of year 00-53 917 ** %Y year 0000-9999 918 ** %% % 919 */ 920 static void strftimeFunc( 921 sqlite3_context *context, 922 int argc, 923 sqlite3_value **argv 924 ){ 925 DateTime x; 926 u64 n; 927 size_t i,j; 928 char *z; 929 sqlite3 *db; 930 const char *zFmt; 931 char zBuf[100]; 932 if( argc==0 ) return; 933 zFmt = (const char*)sqlite3_value_text(argv[0]); 934 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 935 db = sqlite3_context_db_handle(context); 936 for(i=0, n=1; zFmt[i]; i++, n++){ 937 if( zFmt[i]=='%' ){ 938 switch( zFmt[i+1] ){ 939 case 'd': 940 case 'H': 941 case 'm': 942 case 'M': 943 case 'S': 944 case 'W': 945 n++; 946 /* fall thru */ 947 case 'w': 948 case '%': 949 break; 950 case 'f': 951 n += 8; 952 break; 953 case 'j': 954 n += 3; 955 break; 956 case 'Y': 957 n += 8; 958 break; 959 case 's': 960 case 'J': 961 n += 50; 962 break; 963 default: 964 return; /* ERROR. return a NULL */ 965 } 966 i++; 967 } 968 } 969 testcase( n==sizeof(zBuf)-1 ); 970 testcase( n==sizeof(zBuf) ); 971 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 972 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 973 if( n<sizeof(zBuf) ){ 974 z = zBuf; 975 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 976 sqlite3_result_error_toobig(context); 977 return; 978 }else{ 979 z = sqlite3DbMallocRawNN(db, (int)n); 980 if( z==0 ){ 981 sqlite3_result_error_nomem(context); 982 return; 983 } 984 } 985 computeJD(&x); 986 computeYMD_HMS(&x); 987 for(i=j=0; zFmt[i]; i++){ 988 if( zFmt[i]!='%' ){ 989 z[j++] = zFmt[i]; 990 }else{ 991 i++; 992 switch( zFmt[i] ){ 993 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 994 case 'f': { 995 double s = x.s; 996 if( s>59.999 ) s = 59.999; 997 sqlite3_snprintf(7, &z[j],"%06.3f", s); 998 j += sqlite3Strlen30(&z[j]); 999 break; 1000 } 1001 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 1002 case 'W': /* Fall thru */ 1003 case 'j': { 1004 int nDay; /* Number of days since 1st day of year */ 1005 DateTime y = x; 1006 y.validJD = 0; 1007 y.M = 1; 1008 y.D = 1; 1009 computeJD(&y); 1010 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1011 if( zFmt[i]=='W' ){ 1012 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1013 wd = (int)(((x.iJD+43200000)/86400000)%7); 1014 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 1015 j += 2; 1016 }else{ 1017 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 1018 j += 3; 1019 } 1020 break; 1021 } 1022 case 'J': { 1023 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 1024 j+=sqlite3Strlen30(&z[j]); 1025 break; 1026 } 1027 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 1028 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 1029 case 's': { 1030 sqlite3_snprintf(30,&z[j],"%lld", 1031 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 1032 j += sqlite3Strlen30(&z[j]); 1033 break; 1034 } 1035 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 1036 case 'w': { 1037 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 1038 break; 1039 } 1040 case 'Y': { 1041 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 1042 break; 1043 } 1044 default: z[j++] = '%'; break; 1045 } 1046 } 1047 } 1048 z[j] = 0; 1049 sqlite3_result_text(context, z, -1, 1050 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 1051 } 1052 1053 /* 1054 ** current_time() 1055 ** 1056 ** This function returns the same value as time('now'). 1057 */ 1058 static void ctimeFunc( 1059 sqlite3_context *context, 1060 int NotUsed, 1061 sqlite3_value **NotUsed2 1062 ){ 1063 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1064 timeFunc(context, 0, 0); 1065 } 1066 1067 /* 1068 ** current_date() 1069 ** 1070 ** This function returns the same value as date('now'). 1071 */ 1072 static void cdateFunc( 1073 sqlite3_context *context, 1074 int NotUsed, 1075 sqlite3_value **NotUsed2 1076 ){ 1077 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1078 dateFunc(context, 0, 0); 1079 } 1080 1081 /* 1082 ** current_timestamp() 1083 ** 1084 ** This function returns the same value as datetime('now'). 1085 */ 1086 static void ctimestampFunc( 1087 sqlite3_context *context, 1088 int NotUsed, 1089 sqlite3_value **NotUsed2 1090 ){ 1091 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1092 datetimeFunc(context, 0, 0); 1093 } 1094 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1095 1096 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1097 /* 1098 ** If the library is compiled to omit the full-scale date and time 1099 ** handling (to get a smaller binary), the following minimal version 1100 ** of the functions current_time(), current_date() and current_timestamp() 1101 ** are included instead. This is to support column declarations that 1102 ** include "DEFAULT CURRENT_TIME" etc. 1103 ** 1104 ** This function uses the C-library functions time(), gmtime() 1105 ** and strftime(). The format string to pass to strftime() is supplied 1106 ** as the user-data for the function. 1107 */ 1108 static void currentTimeFunc( 1109 sqlite3_context *context, 1110 int argc, 1111 sqlite3_value **argv 1112 ){ 1113 time_t t; 1114 char *zFormat = (char *)sqlite3_user_data(context); 1115 sqlite3_int64 iT; 1116 struct tm *pTm; 1117 struct tm sNow; 1118 char zBuf[20]; 1119 1120 UNUSED_PARAMETER(argc); 1121 UNUSED_PARAMETER(argv); 1122 1123 iT = sqlite3StmtCurrentTime(context); 1124 if( iT<=0 ) return; 1125 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1126 #if HAVE_GMTIME_R 1127 pTm = gmtime_r(&t, &sNow); 1128 #else 1129 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1130 pTm = gmtime(&t); 1131 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1132 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1133 #endif 1134 if( pTm ){ 1135 strftime(zBuf, 20, zFormat, &sNow); 1136 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1137 } 1138 } 1139 #endif 1140 1141 /* 1142 ** This function registered all of the above C functions as SQL 1143 ** functions. This should be the only routine in this file with 1144 ** external linkage. 1145 */ 1146 void sqlite3RegisterDateTimeFunctions(void){ 1147 static FuncDef aDateTimeFuncs[] = { 1148 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1149 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ), 1150 DFUNCTION(date, -1, 0, 0, dateFunc ), 1151 DFUNCTION(time, -1, 0, 0, timeFunc ), 1152 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ), 1153 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ), 1154 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1155 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1156 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1157 #else 1158 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1159 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1160 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1161 #endif 1162 }; 1163 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1164 } 1165