1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBN 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ 390 return setDateTimeToCurrent(context, p); 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ 392 setRawDateNumber(p, r); 393 return 0; 394 } 395 return 1; 396 } 397 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 400 ** for DateTime.iJD. 401 ** 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 403 ** such a large integer literal, so we have to encode it. 404 */ 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 406 407 /* 408 ** Return TRUE if the given julian day number is within range. 409 ** 410 ** The input is the JulianDay times 86400000. 411 */ 412 static int validJulianDay(sqlite3_int64 iJD){ 413 return iJD>=0 && iJD<=INT_464269060799999; 414 } 415 416 /* 417 ** Compute the Year, Month, and Day from the julian day number. 418 */ 419 static void computeYMD(DateTime *p){ 420 int Z, A, B, C, D, E, X1; 421 if( p->validYMD ) return; 422 if( !p->validJD ){ 423 p->Y = 2000; 424 p->M = 1; 425 p->D = 1; 426 }else if( !validJulianDay(p->iJD) ){ 427 datetimeError(p); 428 return; 429 }else{ 430 Z = (int)((p->iJD + 43200000)/86400000); 431 A = (int)((Z - 1867216.25)/36524.25); 432 A = Z + 1 + A - (A/4); 433 B = A + 1524; 434 C = (int)((B - 122.1)/365.25); 435 D = (36525*(C&32767))/100; 436 E = (int)((B-D)/30.6001); 437 X1 = (int)(30.6001*E); 438 p->D = B - D - X1; 439 p->M = E<14 ? E-1 : E-13; 440 p->Y = p->M>2 ? C - 4716 : C - 4715; 441 } 442 p->validYMD = 1; 443 } 444 445 /* 446 ** Compute the Hour, Minute, and Seconds from the julian day number. 447 */ 448 static void computeHMS(DateTime *p){ 449 int s; 450 if( p->validHMS ) return; 451 computeJD(p); 452 s = (int)((p->iJD + 43200000) % 86400000); 453 p->s = s/1000.0; 454 s = (int)p->s; 455 p->s -= s; 456 p->h = s/3600; 457 s -= p->h*3600; 458 p->m = s/60; 459 p->s += s - p->m*60; 460 p->rawS = 0; 461 p->validHMS = 1; 462 } 463 464 /* 465 ** Compute both YMD and HMS 466 */ 467 static void computeYMD_HMS(DateTime *p){ 468 computeYMD(p); 469 computeHMS(p); 470 } 471 472 /* 473 ** Clear the YMD and HMS and the TZ 474 */ 475 static void clearYMD_HMS_TZ(DateTime *p){ 476 p->validYMD = 0; 477 p->validHMS = 0; 478 p->validTZ = 0; 479 } 480 481 #ifndef SQLITE_OMIT_LOCALTIME 482 /* 483 ** On recent Windows platforms, the localtime_s() function is available 484 ** as part of the "Secure CRT". It is essentially equivalent to 485 ** localtime_r() available under most POSIX platforms, except that the 486 ** order of the parameters is reversed. 487 ** 488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 489 ** 490 ** If the user has not indicated to use localtime_r() or localtime_s() 491 ** already, check for an MSVC build environment that provides 492 ** localtime_s(). 493 */ 494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 496 #undef HAVE_LOCALTIME_S 497 #define HAVE_LOCALTIME_S 1 498 #endif 499 500 /* 501 ** The following routine implements the rough equivalent of localtime_r() 502 ** using whatever operating-system specific localtime facility that 503 ** is available. This routine returns 0 on success and 504 ** non-zero on any kind of error. 505 ** 506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this 507 ** routine will always fail. If bLocaltimeFault is nonzero and 508 ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is 509 ** invoked in place of the OS-defined localtime() function. 510 ** 511 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 512 ** library function localtime_r() is used to assist in the calculation of 513 ** local time. 514 */ 515 static int osLocaltime(time_t *t, struct tm *pTm){ 516 int rc; 517 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 518 struct tm *pX; 519 #if SQLITE_THREADSAFE>0 520 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 521 #endif 522 sqlite3_mutex_enter(mutex); 523 pX = localtime(t); 524 #ifndef SQLITE_UNTESTABLE 525 if( sqlite3GlobalConfig.bLocaltimeFault ){ 526 if( sqlite3GlobalConfig.xAltLocaltime!=0 ){ 527 return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm); 528 }else{ 529 pX = 0; 530 } 531 } 532 #endif 533 if( pX ) *pTm = *pX; 534 #if SQLITE_THREADSAFE>0 535 sqlite3_mutex_leave(mutex); 536 #endif 537 rc = pX==0; 538 #else 539 #ifndef SQLITE_UNTESTABLE 540 if( sqlite3GlobalConfig.bLocaltimeFault ){ 541 if( sqlite3GlobalConfig.xAltLocaltime!=0 ){ 542 return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm); 543 }else{ 544 return 1; 545 } 546 } 547 #endif 548 #if HAVE_LOCALTIME_R 549 rc = localtime_r(t, pTm)==0; 550 #else 551 rc = localtime_s(pTm, t); 552 #endif /* HAVE_LOCALTIME_R */ 553 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 554 return rc; 555 } 556 #endif /* SQLITE_OMIT_LOCALTIME */ 557 558 559 #ifndef SQLITE_OMIT_LOCALTIME 560 /* 561 ** Assuming the input DateTime is UTC, move it to its localtime equivalent. 562 */ 563 static int toLocaltime( 564 DateTime *p, /* Date at which to calculate offset */ 565 sqlite3_context *pCtx /* Write error here if one occurs */ 566 ){ 567 time_t t; 568 struct tm sLocal; 569 int iYearDiff; 570 571 /* Initialize the contents of sLocal to avoid a compiler warning. */ 572 memset(&sLocal, 0, sizeof(sLocal)); 573 574 computeJD(p); 575 if( p->iJD<21086676000*(i64)10000 /* 1970-01-01 */ 576 || p->iJD>21301414560*(i64)10000 /* 2038-01-18 */ 577 ){ 578 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 579 ** works for years between 1970 and 2037. For dates outside this range, 580 ** SQLite attempts to map the year into an equivalent year within this 581 ** range, do the calculation, then map the year back. 582 */ 583 DateTime x = *p; 584 computeYMD_HMS(&x); 585 iYearDiff = (2000 + x.Y%4) - x.Y; 586 x.Y += iYearDiff; 587 x.validJD = 0; 588 computeJD(&x); 589 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 590 }else{ 591 iYearDiff = 0; 592 t = (time_t)(p->iJD/1000 - 21086676*(i64)10000); 593 } 594 if( osLocaltime(&t, &sLocal) ){ 595 sqlite3_result_error(pCtx, "local time unavailable", -1); 596 return SQLITE_ERROR; 597 } 598 p->Y = sLocal.tm_year + 1900 - iYearDiff; 599 p->M = sLocal.tm_mon + 1; 600 p->D = sLocal.tm_mday; 601 p->h = sLocal.tm_hour; 602 p->m = sLocal.tm_min; 603 p->s = sLocal.tm_sec; 604 p->validYMD = 1; 605 p->validHMS = 1; 606 p->validJD = 0; 607 p->rawS = 0; 608 p->validTZ = 0; 609 p->isError = 0; 610 return SQLITE_OK; 611 } 612 #endif /* SQLITE_OMIT_LOCALTIME */ 613 614 /* 615 ** The following table defines various date transformations of the form 616 ** 617 ** 'NNN days' 618 ** 619 ** Where NNN is an arbitrary floating-point number and "days" can be one 620 ** of several units of time. 621 */ 622 static const struct { 623 u8 nName; /* Length of the name */ 624 char zName[7]; /* Name of the transformation */ 625 float rLimit; /* Maximum NNN value for this transform */ 626 float rXform; /* Constant used for this transform */ 627 } aXformType[] = { 628 { 6, "second", 4.6427e+14, 1.0 }, 629 { 6, "minute", 7.7379e+12, 60.0 }, 630 { 4, "hour", 1.2897e+11, 3600.0 }, 631 { 3, "day", 5373485.0, 86400.0 }, 632 { 5, "month", 176546.0, 2592000.0 }, 633 { 4, "year", 14713.0, 31536000.0 }, 634 }; 635 636 /* 637 ** Process a modifier to a date-time stamp. The modifiers are 638 ** as follows: 639 ** 640 ** NNN days 641 ** NNN hours 642 ** NNN minutes 643 ** NNN.NNNN seconds 644 ** NNN months 645 ** NNN years 646 ** start of month 647 ** start of year 648 ** start of week 649 ** start of day 650 ** weekday N 651 ** unixepoch 652 ** localtime 653 ** utc 654 ** 655 ** Return 0 on success and 1 if there is any kind of error. If the error 656 ** is in a system call (i.e. localtime()), then an error message is written 657 ** to context pCtx. If the error is an unrecognized modifier, no error is 658 ** written to pCtx. 659 */ 660 static int parseModifier( 661 sqlite3_context *pCtx, /* Function context */ 662 const char *z, /* The text of the modifier */ 663 int n, /* Length of zMod in bytes */ 664 DateTime *p, /* The date/time value to be modified */ 665 int idx /* Parameter index of the modifier */ 666 ){ 667 int rc = 1; 668 double r; 669 switch(sqlite3UpperToLower[(u8)z[0]] ){ 670 case 'a': { 671 /* 672 ** auto 673 ** 674 ** If rawS is available, then interpret as a julian day number, or 675 ** a unix timestamp, depending on its magnitude. 676 */ 677 if( sqlite3_stricmp(z, "auto")==0 ){ 678 if( idx>1 ) return 1; /* IMP: R-33611-57934 */ 679 if( !p->rawS || p->validJD ){ 680 rc = 0; 681 p->rawS = 0; 682 }else if( p->s>=-210866760000 && p->s<=253402300799 ){ 683 r = p->s*1000.0 + 210866760000000.0; 684 clearYMD_HMS_TZ(p); 685 p->iJD = (sqlite3_int64)(r + 0.5); 686 p->validJD = 1; 687 p->rawS = 0; 688 rc = 0; 689 } 690 } 691 break; 692 } 693 case 'j': { 694 /* 695 ** julianday 696 ** 697 ** Always interpret the prior number as a julian-day value. If this 698 ** is not the first modifier, or if the prior argument is not a numeric 699 ** value in the allowed range of julian day numbers understood by 700 ** SQLite (0..5373484.5) then the result will be NULL. 701 */ 702 if( sqlite3_stricmp(z, "julianday")==0 ){ 703 if( idx>1 ) return 1; /* IMP: R-31176-64601 */ 704 if( p->validJD && p->rawS ){ 705 rc = 0; 706 p->rawS = 0; 707 } 708 } 709 break; 710 } 711 #ifndef SQLITE_OMIT_LOCALTIME 712 case 'l': { 713 /* localtime 714 ** 715 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 716 ** show local time. 717 */ 718 if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ 719 rc = toLocaltime(p, pCtx); 720 } 721 break; 722 } 723 #endif 724 case 'u': { 725 /* 726 ** unixepoch 727 ** 728 ** Treat the current value of p->s as the number of 729 ** seconds since 1970. Convert to a real julian day number. 730 */ 731 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 732 if( idx>1 ) return 1; /* IMP: R-49255-55373 */ 733 r = p->s*1000.0 + 210866760000000.0; 734 if( r>=0.0 && r<464269060800000.0 ){ 735 clearYMD_HMS_TZ(p); 736 p->iJD = (sqlite3_int64)(r + 0.5); 737 p->validJD = 1; 738 p->rawS = 0; 739 rc = 0; 740 } 741 } 742 #ifndef SQLITE_OMIT_LOCALTIME 743 else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ 744 if( p->tzSet==0 ){ 745 i64 iOrigJD; /* Original localtime */ 746 i64 iGuess; /* Guess at the corresponding utc time */ 747 int cnt = 0; /* Safety to prevent infinite loop */ 748 int iErr; /* Guess is off by this much */ 749 750 computeJD(p); 751 iGuess = iOrigJD = p->iJD; 752 iErr = 0; 753 do{ 754 DateTime new; 755 memset(&new, 0, sizeof(new)); 756 iGuess -= iErr; 757 new.iJD = iGuess; 758 new.validJD = 1; 759 rc = toLocaltime(&new, pCtx); 760 if( rc ) return rc; 761 computeJD(&new); 762 iErr = new.iJD - iOrigJD; 763 }while( iErr && cnt++<3 ); 764 memset(p, 0, sizeof(*p)); 765 p->iJD = iGuess; 766 p->validJD = 1; 767 p->tzSet = 1; 768 } 769 rc = SQLITE_OK; 770 } 771 #endif 772 break; 773 } 774 case 'w': { 775 /* 776 ** weekday N 777 ** 778 ** Move the date to the same time on the next occurrence of 779 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 780 ** date is already on the appropriate weekday, this is a no-op. 781 */ 782 if( sqlite3_strnicmp(z, "weekday ", 8)==0 783 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 784 && (n=(int)r)==r && n>=0 && r<7 ){ 785 sqlite3_int64 Z; 786 computeYMD_HMS(p); 787 p->validTZ = 0; 788 p->validJD = 0; 789 computeJD(p); 790 Z = ((p->iJD + 129600000)/86400000) % 7; 791 if( Z>n ) Z -= 7; 792 p->iJD += (n - Z)*86400000; 793 clearYMD_HMS_TZ(p); 794 rc = 0; 795 } 796 break; 797 } 798 case 's': { 799 /* 800 ** start of TTTTT 801 ** 802 ** Move the date backwards to the beginning of the current day, 803 ** or month or year. 804 */ 805 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 806 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 807 z += 9; 808 computeYMD(p); 809 p->validHMS = 1; 810 p->h = p->m = 0; 811 p->s = 0.0; 812 p->rawS = 0; 813 p->validTZ = 0; 814 p->validJD = 0; 815 if( sqlite3_stricmp(z,"month")==0 ){ 816 p->D = 1; 817 rc = 0; 818 }else if( sqlite3_stricmp(z,"year")==0 ){ 819 p->M = 1; 820 p->D = 1; 821 rc = 0; 822 }else if( sqlite3_stricmp(z,"day")==0 ){ 823 rc = 0; 824 } 825 break; 826 } 827 case '+': 828 case '-': 829 case '0': 830 case '1': 831 case '2': 832 case '3': 833 case '4': 834 case '5': 835 case '6': 836 case '7': 837 case '8': 838 case '9': { 839 double rRounder; 840 int i; 841 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 842 if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ 843 rc = 1; 844 break; 845 } 846 if( z[n]==':' ){ 847 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 848 ** specified number of hours, minutes, seconds, and fractional seconds 849 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 850 ** omitted. 851 */ 852 const char *z2 = z; 853 DateTime tx; 854 sqlite3_int64 day; 855 if( !sqlite3Isdigit(*z2) ) z2++; 856 memset(&tx, 0, sizeof(tx)); 857 if( parseHhMmSs(z2, &tx) ) break; 858 computeJD(&tx); 859 tx.iJD -= 43200000; 860 day = tx.iJD/86400000; 861 tx.iJD -= day*86400000; 862 if( z[0]=='-' ) tx.iJD = -tx.iJD; 863 computeJD(p); 864 clearYMD_HMS_TZ(p); 865 p->iJD += tx.iJD; 866 rc = 0; 867 break; 868 } 869 870 /* If control reaches this point, it means the transformation is 871 ** one of the forms like "+NNN days". */ 872 z += n; 873 while( sqlite3Isspace(*z) ) z++; 874 n = sqlite3Strlen30(z); 875 if( n>10 || n<3 ) break; 876 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 877 computeJD(p); 878 rc = 1; 879 rRounder = r<0 ? -0.5 : +0.5; 880 for(i=0; i<ArraySize(aXformType); i++){ 881 if( aXformType[i].nName==n 882 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 883 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 884 ){ 885 switch( i ){ 886 case 4: { /* Special processing to add months */ 887 int x; 888 assert( strcmp(aXformType[i].zName,"month")==0 ); 889 computeYMD_HMS(p); 890 p->M += (int)r; 891 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 892 p->Y += x; 893 p->M -= x*12; 894 p->validJD = 0; 895 r -= (int)r; 896 break; 897 } 898 case 5: { /* Special processing to add years */ 899 int y = (int)r; 900 assert( strcmp(aXformType[i].zName,"year")==0 ); 901 computeYMD_HMS(p); 902 p->Y += y; 903 p->validJD = 0; 904 r -= (int)r; 905 break; 906 } 907 } 908 computeJD(p); 909 p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder); 910 rc = 0; 911 break; 912 } 913 } 914 clearYMD_HMS_TZ(p); 915 break; 916 } 917 default: { 918 break; 919 } 920 } 921 return rc; 922 } 923 924 /* 925 ** Process time function arguments. argv[0] is a date-time stamp. 926 ** argv[1] and following are modifiers. Parse them all and write 927 ** the resulting time into the DateTime structure p. Return 0 928 ** on success and 1 if there are any errors. 929 ** 930 ** If there are zero parameters (if even argv[0] is undefined) 931 ** then assume a default value of "now" for argv[0]. 932 */ 933 static int isDate( 934 sqlite3_context *context, 935 int argc, 936 sqlite3_value **argv, 937 DateTime *p 938 ){ 939 int i, n; 940 const unsigned char *z; 941 int eType; 942 memset(p, 0, sizeof(*p)); 943 if( argc==0 ){ 944 if( !sqlite3NotPureFunc(context) ) return 1; 945 return setDateTimeToCurrent(context, p); 946 } 947 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 948 || eType==SQLITE_INTEGER ){ 949 setRawDateNumber(p, sqlite3_value_double(argv[0])); 950 }else{ 951 z = sqlite3_value_text(argv[0]); 952 if( !z || parseDateOrTime(context, (char*)z, p) ){ 953 return 1; 954 } 955 } 956 for(i=1; i<argc; i++){ 957 z = sqlite3_value_text(argv[i]); 958 n = sqlite3_value_bytes(argv[i]); 959 if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1; 960 } 961 computeJD(p); 962 if( p->isError || !validJulianDay(p->iJD) ) return 1; 963 return 0; 964 } 965 966 967 /* 968 ** The following routines implement the various date and time functions 969 ** of SQLite. 970 */ 971 972 /* 973 ** julianday( TIMESTRING, MOD, MOD, ...) 974 ** 975 ** Return the julian day number of the date specified in the arguments 976 */ 977 static void juliandayFunc( 978 sqlite3_context *context, 979 int argc, 980 sqlite3_value **argv 981 ){ 982 DateTime x; 983 if( isDate(context, argc, argv, &x)==0 ){ 984 computeJD(&x); 985 sqlite3_result_double(context, x.iJD/86400000.0); 986 } 987 } 988 989 /* 990 ** unixepoch( TIMESTRING, MOD, MOD, ...) 991 ** 992 ** Return the number of seconds (including fractional seconds) since 993 ** the unix epoch of 1970-01-01 00:00:00 GMT. 994 */ 995 static void unixepochFunc( 996 sqlite3_context *context, 997 int argc, 998 sqlite3_value **argv 999 ){ 1000 DateTime x; 1001 if( isDate(context, argc, argv, &x)==0 ){ 1002 computeJD(&x); 1003 sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); 1004 } 1005 } 1006 1007 /* 1008 ** datetime( TIMESTRING, MOD, MOD, ...) 1009 ** 1010 ** Return YYYY-MM-DD HH:MM:SS 1011 */ 1012 static void datetimeFunc( 1013 sqlite3_context *context, 1014 int argc, 1015 sqlite3_value **argv 1016 ){ 1017 DateTime x; 1018 if( isDate(context, argc, argv, &x)==0 ){ 1019 int Y, s; 1020 char zBuf[24]; 1021 computeYMD_HMS(&x); 1022 Y = x.Y; 1023 if( Y<0 ) Y = -Y; 1024 zBuf[1] = '0' + (Y/1000)%10; 1025 zBuf[2] = '0' + (Y/100)%10; 1026 zBuf[3] = '0' + (Y/10)%10; 1027 zBuf[4] = '0' + (Y)%10; 1028 zBuf[5] = '-'; 1029 zBuf[6] = '0' + (x.M/10)%10; 1030 zBuf[7] = '0' + (x.M)%10; 1031 zBuf[8] = '-'; 1032 zBuf[9] = '0' + (x.D/10)%10; 1033 zBuf[10] = '0' + (x.D)%10; 1034 zBuf[11] = ' '; 1035 zBuf[12] = '0' + (x.h/10)%10; 1036 zBuf[13] = '0' + (x.h)%10; 1037 zBuf[14] = ':'; 1038 zBuf[15] = '0' + (x.m/10)%10; 1039 zBuf[16] = '0' + (x.m)%10; 1040 zBuf[17] = ':'; 1041 s = (int)x.s; 1042 zBuf[18] = '0' + (s/10)%10; 1043 zBuf[19] = '0' + (s)%10; 1044 zBuf[20] = 0; 1045 if( x.Y<0 ){ 1046 zBuf[0] = '-'; 1047 sqlite3_result_text(context, zBuf, 20, SQLITE_TRANSIENT); 1048 }else{ 1049 sqlite3_result_text(context, &zBuf[1], 19, SQLITE_TRANSIENT); 1050 } 1051 } 1052 } 1053 1054 /* 1055 ** time( TIMESTRING, MOD, MOD, ...) 1056 ** 1057 ** Return HH:MM:SS 1058 */ 1059 static void timeFunc( 1060 sqlite3_context *context, 1061 int argc, 1062 sqlite3_value **argv 1063 ){ 1064 DateTime x; 1065 if( isDate(context, argc, argv, &x)==0 ){ 1066 int s; 1067 char zBuf[16]; 1068 computeHMS(&x); 1069 zBuf[0] = '0' + (x.h/10)%10; 1070 zBuf[1] = '0' + (x.h)%10; 1071 zBuf[2] = ':'; 1072 zBuf[3] = '0' + (x.m/10)%10; 1073 zBuf[4] = '0' + (x.m)%10; 1074 zBuf[5] = ':'; 1075 s = (int)x.s; 1076 zBuf[6] = '0' + (s/10)%10; 1077 zBuf[7] = '0' + (s)%10; 1078 zBuf[8] = 0; 1079 sqlite3_result_text(context, zBuf, 8, SQLITE_TRANSIENT); 1080 } 1081 } 1082 1083 /* 1084 ** date( TIMESTRING, MOD, MOD, ...) 1085 ** 1086 ** Return YYYY-MM-DD 1087 */ 1088 static void dateFunc( 1089 sqlite3_context *context, 1090 int argc, 1091 sqlite3_value **argv 1092 ){ 1093 DateTime x; 1094 if( isDate(context, argc, argv, &x)==0 ){ 1095 int Y; 1096 char zBuf[16]; 1097 computeYMD(&x); 1098 Y = x.Y; 1099 if( Y<0 ) Y = -Y; 1100 zBuf[1] = '0' + (Y/1000)%10; 1101 zBuf[2] = '0' + (Y/100)%10; 1102 zBuf[3] = '0' + (Y/10)%10; 1103 zBuf[4] = '0' + (Y)%10; 1104 zBuf[5] = '-'; 1105 zBuf[6] = '0' + (x.M/10)%10; 1106 zBuf[7] = '0' + (x.M)%10; 1107 zBuf[8] = '-'; 1108 zBuf[9] = '0' + (x.D/10)%10; 1109 zBuf[10] = '0' + (x.D)%10; 1110 zBuf[11] = 0; 1111 if( x.Y<0 ){ 1112 zBuf[0] = '-'; 1113 sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT); 1114 }else{ 1115 sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT); 1116 } 1117 } 1118 } 1119 1120 /* 1121 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 1122 ** 1123 ** Return a string described by FORMAT. Conversions as follows: 1124 ** 1125 ** %d day of month 1126 ** %f ** fractional seconds SS.SSS 1127 ** %H hour 00-24 1128 ** %j day of year 000-366 1129 ** %J ** julian day number 1130 ** %m month 01-12 1131 ** %M minute 00-59 1132 ** %s seconds since 1970-01-01 1133 ** %S seconds 00-59 1134 ** %w day of week 0-6 sunday==0 1135 ** %W week of year 00-53 1136 ** %Y year 0000-9999 1137 ** %% % 1138 */ 1139 static void strftimeFunc( 1140 sqlite3_context *context, 1141 int argc, 1142 sqlite3_value **argv 1143 ){ 1144 DateTime x; 1145 size_t i,j; 1146 sqlite3 *db; 1147 const char *zFmt; 1148 sqlite3_str sRes; 1149 1150 1151 if( argc==0 ) return; 1152 zFmt = (const char*)sqlite3_value_text(argv[0]); 1153 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1154 db = sqlite3_context_db_handle(context); 1155 sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 1156 1157 computeJD(&x); 1158 computeYMD_HMS(&x); 1159 for(i=j=0; zFmt[i]; i++){ 1160 if( zFmt[i]!='%' ) continue; 1161 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1162 i++; 1163 j = i + 1; 1164 switch( zFmt[i] ){ 1165 case 'd': { 1166 sqlite3_str_appendf(&sRes, "%02d", x.D); 1167 break; 1168 } 1169 case 'f': { 1170 double s = x.s; 1171 if( s>59.999 ) s = 59.999; 1172 sqlite3_str_appendf(&sRes, "%06.3f", s); 1173 break; 1174 } 1175 case 'H': { 1176 sqlite3_str_appendf(&sRes, "%02d", x.h); 1177 break; 1178 } 1179 case 'W': /* Fall thru */ 1180 case 'j': { 1181 int nDay; /* Number of days since 1st day of year */ 1182 DateTime y = x; 1183 y.validJD = 0; 1184 y.M = 1; 1185 y.D = 1; 1186 computeJD(&y); 1187 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1188 if( zFmt[i]=='W' ){ 1189 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1190 wd = (int)(((x.iJD+43200000)/86400000)%7); 1191 sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7); 1192 }else{ 1193 sqlite3_str_appendf(&sRes,"%03d",nDay+1); 1194 } 1195 break; 1196 } 1197 case 'J': { 1198 sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); 1199 break; 1200 } 1201 case 'm': { 1202 sqlite3_str_appendf(&sRes,"%02d",x.M); 1203 break; 1204 } 1205 case 'M': { 1206 sqlite3_str_appendf(&sRes,"%02d",x.m); 1207 break; 1208 } 1209 case 's': { 1210 i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); 1211 sqlite3_str_appendf(&sRes,"%lld",iS); 1212 break; 1213 } 1214 case 'S': { 1215 sqlite3_str_appendf(&sRes,"%02d",(int)x.s); 1216 break; 1217 } 1218 case 'w': { 1219 sqlite3_str_appendchar(&sRes, 1, 1220 (char)(((x.iJD+129600000)/86400000) % 7) + '0'); 1221 break; 1222 } 1223 case 'Y': { 1224 sqlite3_str_appendf(&sRes,"%04d",x.Y); 1225 break; 1226 } 1227 case '%': { 1228 sqlite3_str_appendchar(&sRes, 1, '%'); 1229 break; 1230 } 1231 default: { 1232 sqlite3_str_reset(&sRes); 1233 return; 1234 } 1235 } 1236 } 1237 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1238 sqlite3ResultStrAccum(context, &sRes); 1239 } 1240 1241 /* 1242 ** current_time() 1243 ** 1244 ** This function returns the same value as time('now'). 1245 */ 1246 static void ctimeFunc( 1247 sqlite3_context *context, 1248 int NotUsed, 1249 sqlite3_value **NotUsed2 1250 ){ 1251 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1252 timeFunc(context, 0, 0); 1253 } 1254 1255 /* 1256 ** current_date() 1257 ** 1258 ** This function returns the same value as date('now'). 1259 */ 1260 static void cdateFunc( 1261 sqlite3_context *context, 1262 int NotUsed, 1263 sqlite3_value **NotUsed2 1264 ){ 1265 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1266 dateFunc(context, 0, 0); 1267 } 1268 1269 /* 1270 ** current_timestamp() 1271 ** 1272 ** This function returns the same value as datetime('now'). 1273 */ 1274 static void ctimestampFunc( 1275 sqlite3_context *context, 1276 int NotUsed, 1277 sqlite3_value **NotUsed2 1278 ){ 1279 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1280 datetimeFunc(context, 0, 0); 1281 } 1282 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1283 1284 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1285 /* 1286 ** If the library is compiled to omit the full-scale date and time 1287 ** handling (to get a smaller binary), the following minimal version 1288 ** of the functions current_time(), current_date() and current_timestamp() 1289 ** are included instead. This is to support column declarations that 1290 ** include "DEFAULT CURRENT_TIME" etc. 1291 ** 1292 ** This function uses the C-library functions time(), gmtime() 1293 ** and strftime(). The format string to pass to strftime() is supplied 1294 ** as the user-data for the function. 1295 */ 1296 static void currentTimeFunc( 1297 sqlite3_context *context, 1298 int argc, 1299 sqlite3_value **argv 1300 ){ 1301 time_t t; 1302 char *zFormat = (char *)sqlite3_user_data(context); 1303 sqlite3_int64 iT; 1304 struct tm *pTm; 1305 struct tm sNow; 1306 char zBuf[20]; 1307 1308 UNUSED_PARAMETER(argc); 1309 UNUSED_PARAMETER(argv); 1310 1311 iT = sqlite3StmtCurrentTime(context); 1312 if( iT<=0 ) return; 1313 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1314 #if HAVE_GMTIME_R 1315 pTm = gmtime_r(&t, &sNow); 1316 #else 1317 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1318 pTm = gmtime(&t); 1319 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1320 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1321 #endif 1322 if( pTm ){ 1323 strftime(zBuf, 20, zFormat, &sNow); 1324 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1325 } 1326 } 1327 #endif 1328 1329 /* 1330 ** This function registered all of the above C functions as SQL 1331 ** functions. This should be the only routine in this file with 1332 ** external linkage. 1333 */ 1334 void sqlite3RegisterDateTimeFunctions(void){ 1335 static FuncDef aDateTimeFuncs[] = { 1336 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1337 PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), 1338 PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), 1339 PURE_DATE(date, -1, 0, 0, dateFunc ), 1340 PURE_DATE(time, -1, 0, 0, timeFunc ), 1341 PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), 1342 PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), 1343 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1344 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1345 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1346 #else 1347 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1348 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1349 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1350 #endif 1351 }; 1352 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1353 } 1354