xref: /sqlite-3.40.0/src/date.c (revision d5578433)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as Julian Day numbers.  The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implemention requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar.  Historians usually
34 ** use the Julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale.  Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 **      Jean Meeus
41 **      Astronomical Algorithms, 2nd Edition, 1998
42 **      ISBM 0-943396-61-1
43 **      Willmann-Bell, Inc
44 **      Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50 
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52 
53 
54 /*
55 ** A structure for holding a single date and time.
56 */
57 typedef struct DateTime DateTime;
58 struct DateTime {
59   sqlite3_int64 iJD; /* The julian day number times 86400000 */
60   int Y, M, D;       /* Year, month, and day */
61   int h, m;          /* Hour and minutes */
62   int tz;            /* Timezone offset in minutes */
63   double s;          /* Seconds */
64   char validYMD;     /* True (1) if Y,M,D are valid */
65   char validHMS;     /* True (1) if h,m,s are valid */
66   char validJD;      /* True (1) if iJD is valid */
67   char validTZ;      /* True (1) if tz is valid */
68 };
69 
70 
71 /*
72 ** Convert zDate into one or more integers.  Additional arguments
73 ** come in groups of 5 as follows:
74 **
75 **       N       number of digits in the integer
76 **       min     minimum allowed value of the integer
77 **       max     maximum allowed value of the integer
78 **       nextC   first character after the integer
79 **       pVal    where to write the integers value.
80 **
81 ** Conversions continue until one with nextC==0 is encountered.
82 ** The function returns the number of successful conversions.
83 */
84 static int getDigits(const char *zDate, ...){
85   va_list ap;
86   int val;
87   int N;
88   int min;
89   int max;
90   int nextC;
91   int *pVal;
92   int cnt = 0;
93   va_start(ap, zDate);
94   do{
95     N = va_arg(ap, int);
96     min = va_arg(ap, int);
97     max = va_arg(ap, int);
98     nextC = va_arg(ap, int);
99     pVal = va_arg(ap, int*);
100     val = 0;
101     while( N-- ){
102       if( !sqlite3Isdigit(*zDate) ){
103         goto end_getDigits;
104       }
105       val = val*10 + *zDate - '0';
106       zDate++;
107     }
108     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
109       goto end_getDigits;
110     }
111     *pVal = val;
112     zDate++;
113     cnt++;
114   }while( nextC );
115 end_getDigits:
116   va_end(ap);
117   return cnt;
118 }
119 
120 /*
121 ** Parse a timezone extension on the end of a date-time.
122 ** The extension is of the form:
123 **
124 **        (+/-)HH:MM
125 **
126 ** Or the "zulu" notation:
127 **
128 **        Z
129 **
130 ** If the parse is successful, write the number of minutes
131 ** of change in p->tz and return 0.  If a parser error occurs,
132 ** return non-zero.
133 **
134 ** A missing specifier is not considered an error.
135 */
136 static int parseTimezone(const char *zDate, DateTime *p){
137   int sgn = 0;
138   int nHr, nMn;
139   int c;
140   while( sqlite3Isspace(*zDate) ){ zDate++; }
141   p->tz = 0;
142   c = *zDate;
143   if( c=='-' ){
144     sgn = -1;
145   }else if( c=='+' ){
146     sgn = +1;
147   }else if( c=='Z' || c=='z' ){
148     zDate++;
149     goto zulu_time;
150   }else{
151     return c!=0;
152   }
153   zDate++;
154   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
155     return 1;
156   }
157   zDate += 5;
158   p->tz = sgn*(nMn + nHr*60);
159 zulu_time:
160   while( sqlite3Isspace(*zDate) ){ zDate++; }
161   return *zDate!=0;
162 }
163 
164 /*
165 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
166 ** The HH, MM, and SS must each be exactly 2 digits.  The
167 ** fractional seconds FFFF can be one or more digits.
168 **
169 ** Return 1 if there is a parsing error and 0 on success.
170 */
171 static int parseHhMmSs(const char *zDate, DateTime *p){
172   int h, m, s;
173   double ms = 0.0;
174   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
175     return 1;
176   }
177   zDate += 5;
178   if( *zDate==':' ){
179     zDate++;
180     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
181       return 1;
182     }
183     zDate += 2;
184     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
185       double rScale = 1.0;
186       zDate++;
187       while( sqlite3Isdigit(*zDate) ){
188         ms = ms*10.0 + *zDate - '0';
189         rScale *= 10.0;
190         zDate++;
191       }
192       ms /= rScale;
193     }
194   }else{
195     s = 0;
196   }
197   p->validJD = 0;
198   p->validHMS = 1;
199   p->h = h;
200   p->m = m;
201   p->s = s + ms;
202   if( parseTimezone(zDate, p) ) return 1;
203   p->validTZ = (p->tz!=0)?1:0;
204   return 0;
205 }
206 
207 /*
208 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
209 ** that the YYYY-MM-DD is according to the Gregorian calendar.
210 **
211 ** Reference:  Meeus page 61
212 */
213 static void computeJD(DateTime *p){
214   int Y, M, D, A, B, X1, X2;
215 
216   if( p->validJD ) return;
217   if( p->validYMD ){
218     Y = p->Y;
219     M = p->M;
220     D = p->D;
221   }else{
222     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
223     M = 1;
224     D = 1;
225   }
226   if( M<=2 ){
227     Y--;
228     M += 12;
229   }
230   A = Y/100;
231   B = 2 - A + (A/4);
232   X1 = 36525*(Y+4716)/100;
233   X2 = 306001*(M+1)/10000;
234   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
235   p->validJD = 1;
236   if( p->validHMS ){
237     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
238     if( p->validTZ ){
239       p->iJD -= p->tz*60000;
240       p->validYMD = 0;
241       p->validHMS = 0;
242       p->validTZ = 0;
243     }
244   }
245 }
246 
247 /*
248 ** Parse dates of the form
249 **
250 **     YYYY-MM-DD HH:MM:SS.FFF
251 **     YYYY-MM-DD HH:MM:SS
252 **     YYYY-MM-DD HH:MM
253 **     YYYY-MM-DD
254 **
255 ** Write the result into the DateTime structure and return 0
256 ** on success and 1 if the input string is not a well-formed
257 ** date.
258 */
259 static int parseYyyyMmDd(const char *zDate, DateTime *p){
260   int Y, M, D, neg;
261 
262   if( zDate[0]=='-' ){
263     zDate++;
264     neg = 1;
265   }else{
266     neg = 0;
267   }
268   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
269     return 1;
270   }
271   zDate += 10;
272   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
273   if( parseHhMmSs(zDate, p)==0 ){
274     /* We got the time */
275   }else if( *zDate==0 ){
276     p->validHMS = 0;
277   }else{
278     return 1;
279   }
280   p->validJD = 0;
281   p->validYMD = 1;
282   p->Y = neg ? -Y : Y;
283   p->M = M;
284   p->D = D;
285   if( p->validTZ ){
286     computeJD(p);
287   }
288   return 0;
289 }
290 
291 /*
292 ** Set the time to the current time reported by the VFS.
293 **
294 ** Return the number of errors.
295 */
296 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
297   sqlite3 *db = sqlite3_context_db_handle(context);
298   if( sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD)==SQLITE_OK ){
299     p->validJD = 1;
300     return 0;
301   }else{
302     return 1;
303   }
304 }
305 
306 /*
307 ** Attempt to parse the given string into a Julian Day Number.  Return
308 ** the number of errors.
309 **
310 ** The following are acceptable forms for the input string:
311 **
312 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
313 **      DDDD.DD
314 **      now
315 **
316 ** In the first form, the +/-HH:MM is always optional.  The fractional
317 ** seconds extension (the ".FFF") is optional.  The seconds portion
318 ** (":SS.FFF") is option.  The year and date can be omitted as long
319 ** as there is a time string.  The time string can be omitted as long
320 ** as there is a year and date.
321 */
322 static int parseDateOrTime(
323   sqlite3_context *context,
324   const char *zDate,
325   DateTime *p
326 ){
327   double r;
328   if( parseYyyyMmDd(zDate,p)==0 ){
329     return 0;
330   }else if( parseHhMmSs(zDate, p)==0 ){
331     return 0;
332   }else if( sqlite3StrICmp(zDate,"now")==0){
333     return setDateTimeToCurrent(context, p);
334   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
335     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
336     p->validJD = 1;
337     return 0;
338   }
339   return 1;
340 }
341 
342 /*
343 ** Compute the Year, Month, and Day from the julian day number.
344 */
345 static void computeYMD(DateTime *p){
346   int Z, A, B, C, D, E, X1;
347   if( p->validYMD ) return;
348   if( !p->validJD ){
349     p->Y = 2000;
350     p->M = 1;
351     p->D = 1;
352   }else{
353     Z = (int)((p->iJD + 43200000)/86400000);
354     A = (int)((Z - 1867216.25)/36524.25);
355     A = Z + 1 + A - (A/4);
356     B = A + 1524;
357     C = (int)((B - 122.1)/365.25);
358     D = (36525*C)/100;
359     E = (int)((B-D)/30.6001);
360     X1 = (int)(30.6001*E);
361     p->D = B - D - X1;
362     p->M = E<14 ? E-1 : E-13;
363     p->Y = p->M>2 ? C - 4716 : C - 4715;
364   }
365   p->validYMD = 1;
366 }
367 
368 /*
369 ** Compute the Hour, Minute, and Seconds from the julian day number.
370 */
371 static void computeHMS(DateTime *p){
372   int s;
373   if( p->validHMS ) return;
374   computeJD(p);
375   s = (int)((p->iJD + 43200000) % 86400000);
376   p->s = s/1000.0;
377   s = (int)p->s;
378   p->s -= s;
379   p->h = s/3600;
380   s -= p->h*3600;
381   p->m = s/60;
382   p->s += s - p->m*60;
383   p->validHMS = 1;
384 }
385 
386 /*
387 ** Compute both YMD and HMS
388 */
389 static void computeYMD_HMS(DateTime *p){
390   computeYMD(p);
391   computeHMS(p);
392 }
393 
394 /*
395 ** Clear the YMD and HMS and the TZ
396 */
397 static void clearYMD_HMS_TZ(DateTime *p){
398   p->validYMD = 0;
399   p->validHMS = 0;
400   p->validTZ = 0;
401 }
402 
403 /*
404 ** On recent Windows platforms, the localtime_s() function is available
405 ** as part of the "Secure CRT". It is essentially equivalent to
406 ** localtime_r() available under most POSIX platforms, except that the
407 ** order of the parameters is reversed.
408 **
409 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
410 **
411 ** If the user has not indicated to use localtime_r() or localtime_s()
412 ** already, check for an MSVC build environment that provides
413 ** localtime_s().
414 */
415 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
416      defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
417 #define HAVE_LOCALTIME_S 1
418 #endif
419 
420 #ifndef SQLITE_OMIT_LOCALTIME
421 /*
422 ** The following routine implements the rough equivalent of localtime_r()
423 ** using whatever operating-system specific localtime facility that
424 ** is available.  This routine returns 0 on success and
425 ** non-zero on any kind of error.
426 **
427 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
428 ** routine will always fail.
429 */
430 static int osLocaltime(time_t *t, struct tm *pTm){
431   int rc;
432 #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \
433       && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S)
434   struct tm *pX;
435 #if SQLITE_THREADSAFE>0
436   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
437 #endif
438   sqlite3_mutex_enter(mutex);
439   pX = localtime(t);
440 #ifndef SQLITE_OMIT_BUILTIN_TEST
441   if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
442 #endif
443   if( pX ) *pTm = *pX;
444   sqlite3_mutex_leave(mutex);
445   rc = pX==0;
446 #else
447 #ifndef SQLITE_OMIT_BUILTIN_TEST
448   if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
449 #endif
450 #if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R
451   rc = localtime_r(t, pTm)==0;
452 #else
453   rc = localtime_s(pTm, t);
454 #endif /* HAVE_LOCALTIME_R */
455 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
456   return rc;
457 }
458 #endif /* SQLITE_OMIT_LOCALTIME */
459 
460 
461 #ifndef SQLITE_OMIT_LOCALTIME
462 /*
463 ** Compute the difference (in milliseconds) between localtime and UTC
464 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
465 ** return this value and set *pRc to SQLITE_OK.
466 **
467 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
468 ** is undefined in this case.
469 */
470 static sqlite3_int64 localtimeOffset(
471   DateTime *p,                    /* Date at which to calculate offset */
472   sqlite3_context *pCtx,          /* Write error here if one occurs */
473   int *pRc                        /* OUT: Error code. SQLITE_OK or ERROR */
474 ){
475   DateTime x, y;
476   time_t t;
477   struct tm sLocal;
478 
479   /* Initialize the contents of sLocal to avoid a compiler warning. */
480   memset(&sLocal, 0, sizeof(sLocal));
481 
482   x = *p;
483   computeYMD_HMS(&x);
484   if( x.Y<1971 || x.Y>=2038 ){
485     x.Y = 2000;
486     x.M = 1;
487     x.D = 1;
488     x.h = 0;
489     x.m = 0;
490     x.s = 0.0;
491   } else {
492     int s = (int)(x.s + 0.5);
493     x.s = s;
494   }
495   x.tz = 0;
496   x.validJD = 0;
497   computeJD(&x);
498   t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
499   if( osLocaltime(&t, &sLocal) ){
500     sqlite3_result_error(pCtx, "local time unavailable", -1);
501     *pRc = SQLITE_ERROR;
502     return 0;
503   }
504   y.Y = sLocal.tm_year + 1900;
505   y.M = sLocal.tm_mon + 1;
506   y.D = sLocal.tm_mday;
507   y.h = sLocal.tm_hour;
508   y.m = sLocal.tm_min;
509   y.s = sLocal.tm_sec;
510   y.validYMD = 1;
511   y.validHMS = 1;
512   y.validJD = 0;
513   y.validTZ = 0;
514   computeJD(&y);
515   *pRc = SQLITE_OK;
516   return y.iJD - x.iJD;
517 }
518 #endif /* SQLITE_OMIT_LOCALTIME */
519 
520 /*
521 ** Process a modifier to a date-time stamp.  The modifiers are
522 ** as follows:
523 **
524 **     NNN days
525 **     NNN hours
526 **     NNN minutes
527 **     NNN.NNNN seconds
528 **     NNN months
529 **     NNN years
530 **     start of month
531 **     start of year
532 **     start of week
533 **     start of day
534 **     weekday N
535 **     unixepoch
536 **     localtime
537 **     utc
538 **
539 ** Return 0 on success and 1 if there is any kind of error. If the error
540 ** is in a system call (i.e. localtime()), then an error message is written
541 ** to context pCtx. If the error is an unrecognized modifier, no error is
542 ** written to pCtx.
543 */
544 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){
545   int rc = 1;
546   int n;
547   double r;
548   char *z, zBuf[30];
549   z = zBuf;
550   for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
551     z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
552   }
553   z[n] = 0;
554   switch( z[0] ){
555 #ifndef SQLITE_OMIT_LOCALTIME
556     case 'l': {
557       /*    localtime
558       **
559       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
560       ** show local time.
561       */
562       if( strcmp(z, "localtime")==0 ){
563         computeJD(p);
564         p->iJD += localtimeOffset(p, pCtx, &rc);
565         clearYMD_HMS_TZ(p);
566       }
567       break;
568     }
569 #endif
570     case 'u': {
571       /*
572       **    unixepoch
573       **
574       ** Treat the current value of p->iJD as the number of
575       ** seconds since 1970.  Convert to a real julian day number.
576       */
577       if( strcmp(z, "unixepoch")==0 && p->validJD ){
578         p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
579         clearYMD_HMS_TZ(p);
580         rc = 0;
581       }
582 #ifndef SQLITE_OMIT_LOCALTIME
583       else if( strcmp(z, "utc")==0 ){
584         sqlite3_int64 c1;
585         computeJD(p);
586         c1 = localtimeOffset(p, pCtx, &rc);
587         if( rc==SQLITE_OK ){
588           p->iJD -= c1;
589           clearYMD_HMS_TZ(p);
590           p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
591         }
592       }
593 #endif
594       break;
595     }
596     case 'w': {
597       /*
598       **    weekday N
599       **
600       ** Move the date to the same time on the next occurrence of
601       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
602       ** date is already on the appropriate weekday, this is a no-op.
603       */
604       if( strncmp(z, "weekday ", 8)==0
605                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
606                && (n=(int)r)==r && n>=0 && r<7 ){
607         sqlite3_int64 Z;
608         computeYMD_HMS(p);
609         p->validTZ = 0;
610         p->validJD = 0;
611         computeJD(p);
612         Z = ((p->iJD + 129600000)/86400000) % 7;
613         if( Z>n ) Z -= 7;
614         p->iJD += (n - Z)*86400000;
615         clearYMD_HMS_TZ(p);
616         rc = 0;
617       }
618       break;
619     }
620     case 's': {
621       /*
622       **    start of TTTTT
623       **
624       ** Move the date backwards to the beginning of the current day,
625       ** or month or year.
626       */
627       if( strncmp(z, "start of ", 9)!=0 ) break;
628       z += 9;
629       computeYMD(p);
630       p->validHMS = 1;
631       p->h = p->m = 0;
632       p->s = 0.0;
633       p->validTZ = 0;
634       p->validJD = 0;
635       if( strcmp(z,"month")==0 ){
636         p->D = 1;
637         rc = 0;
638       }else if( strcmp(z,"year")==0 ){
639         computeYMD(p);
640         p->M = 1;
641         p->D = 1;
642         rc = 0;
643       }else if( strcmp(z,"day")==0 ){
644         rc = 0;
645       }
646       break;
647     }
648     case '+':
649     case '-':
650     case '0':
651     case '1':
652     case '2':
653     case '3':
654     case '4':
655     case '5':
656     case '6':
657     case '7':
658     case '8':
659     case '9': {
660       double rRounder;
661       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
662       if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
663         rc = 1;
664         break;
665       }
666       if( z[n]==':' ){
667         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
668         ** specified number of hours, minutes, seconds, and fractional seconds
669         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
670         ** omitted.
671         */
672         const char *z2 = z;
673         DateTime tx;
674         sqlite3_int64 day;
675         if( !sqlite3Isdigit(*z2) ) z2++;
676         memset(&tx, 0, sizeof(tx));
677         if( parseHhMmSs(z2, &tx) ) break;
678         computeJD(&tx);
679         tx.iJD -= 43200000;
680         day = tx.iJD/86400000;
681         tx.iJD -= day*86400000;
682         if( z[0]=='-' ) tx.iJD = -tx.iJD;
683         computeJD(p);
684         clearYMD_HMS_TZ(p);
685         p->iJD += tx.iJD;
686         rc = 0;
687         break;
688       }
689       z += n;
690       while( sqlite3Isspace(*z) ) z++;
691       n = sqlite3Strlen30(z);
692       if( n>10 || n<3 ) break;
693       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
694       computeJD(p);
695       rc = 0;
696       rRounder = r<0 ? -0.5 : +0.5;
697       if( n==3 && strcmp(z,"day")==0 ){
698         p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
699       }else if( n==4 && strcmp(z,"hour")==0 ){
700         p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
701       }else if( n==6 && strcmp(z,"minute")==0 ){
702         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
703       }else if( n==6 && strcmp(z,"second")==0 ){
704         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
705       }else if( n==5 && strcmp(z,"month")==0 ){
706         int x, y;
707         computeYMD_HMS(p);
708         p->M += (int)r;
709         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
710         p->Y += x;
711         p->M -= x*12;
712         p->validJD = 0;
713         computeJD(p);
714         y = (int)r;
715         if( y!=r ){
716           p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
717         }
718       }else if( n==4 && strcmp(z,"year")==0 ){
719         int y = (int)r;
720         computeYMD_HMS(p);
721         p->Y += y;
722         p->validJD = 0;
723         computeJD(p);
724         if( y!=r ){
725           p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
726         }
727       }else{
728         rc = 1;
729       }
730       clearYMD_HMS_TZ(p);
731       break;
732     }
733     default: {
734       break;
735     }
736   }
737   return rc;
738 }
739 
740 /*
741 ** Process time function arguments.  argv[0] is a date-time stamp.
742 ** argv[1] and following are modifiers.  Parse them all and write
743 ** the resulting time into the DateTime structure p.  Return 0
744 ** on success and 1 if there are any errors.
745 **
746 ** If there are zero parameters (if even argv[0] is undefined)
747 ** then assume a default value of "now" for argv[0].
748 */
749 static int isDate(
750   sqlite3_context *context,
751   int argc,
752   sqlite3_value **argv,
753   DateTime *p
754 ){
755   int i;
756   const unsigned char *z;
757   int eType;
758   memset(p, 0, sizeof(*p));
759   if( argc==0 ){
760     return setDateTimeToCurrent(context, p);
761   }
762   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
763                    || eType==SQLITE_INTEGER ){
764     p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
765     p->validJD = 1;
766   }else{
767     z = sqlite3_value_text(argv[0]);
768     if( !z || parseDateOrTime(context, (char*)z, p) ){
769       return 1;
770     }
771   }
772   for(i=1; i<argc; i++){
773     z = sqlite3_value_text(argv[i]);
774     if( z==0 || parseModifier(context, (char*)z, p) ) return 1;
775   }
776   return 0;
777 }
778 
779 
780 /*
781 ** The following routines implement the various date and time functions
782 ** of SQLite.
783 */
784 
785 /*
786 **    julianday( TIMESTRING, MOD, MOD, ...)
787 **
788 ** Return the julian day number of the date specified in the arguments
789 */
790 static void juliandayFunc(
791   sqlite3_context *context,
792   int argc,
793   sqlite3_value **argv
794 ){
795   DateTime x;
796   if( isDate(context, argc, argv, &x)==0 ){
797     computeJD(&x);
798     sqlite3_result_double(context, x.iJD/86400000.0);
799   }
800 }
801 
802 /*
803 **    datetime( TIMESTRING, MOD, MOD, ...)
804 **
805 ** Return YYYY-MM-DD HH:MM:SS
806 */
807 static void datetimeFunc(
808   sqlite3_context *context,
809   int argc,
810   sqlite3_value **argv
811 ){
812   DateTime x;
813   if( isDate(context, argc, argv, &x)==0 ){
814     char zBuf[100];
815     computeYMD_HMS(&x);
816     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
817                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
818     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
819   }
820 }
821 
822 /*
823 **    time( TIMESTRING, MOD, MOD, ...)
824 **
825 ** Return HH:MM:SS
826 */
827 static void timeFunc(
828   sqlite3_context *context,
829   int argc,
830   sqlite3_value **argv
831 ){
832   DateTime x;
833   if( isDate(context, argc, argv, &x)==0 ){
834     char zBuf[100];
835     computeHMS(&x);
836     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
837     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
838   }
839 }
840 
841 /*
842 **    date( TIMESTRING, MOD, MOD, ...)
843 **
844 ** Return YYYY-MM-DD
845 */
846 static void dateFunc(
847   sqlite3_context *context,
848   int argc,
849   sqlite3_value **argv
850 ){
851   DateTime x;
852   if( isDate(context, argc, argv, &x)==0 ){
853     char zBuf[100];
854     computeYMD(&x);
855     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
856     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
857   }
858 }
859 
860 /*
861 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
862 **
863 ** Return a string described by FORMAT.  Conversions as follows:
864 **
865 **   %d  day of month
866 **   %f  ** fractional seconds  SS.SSS
867 **   %H  hour 00-24
868 **   %j  day of year 000-366
869 **   %J  ** Julian day number
870 **   %m  month 01-12
871 **   %M  minute 00-59
872 **   %s  seconds since 1970-01-01
873 **   %S  seconds 00-59
874 **   %w  day of week 0-6  sunday==0
875 **   %W  week of year 00-53
876 **   %Y  year 0000-9999
877 **   %%  %
878 */
879 static void strftimeFunc(
880   sqlite3_context *context,
881   int argc,
882   sqlite3_value **argv
883 ){
884   DateTime x;
885   u64 n;
886   size_t i,j;
887   char *z;
888   sqlite3 *db;
889   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
890   char zBuf[100];
891   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
892   db = sqlite3_context_db_handle(context);
893   for(i=0, n=1; zFmt[i]; i++, n++){
894     if( zFmt[i]=='%' ){
895       switch( zFmt[i+1] ){
896         case 'd':
897         case 'H':
898         case 'm':
899         case 'M':
900         case 'S':
901         case 'W':
902           n++;
903           /* fall thru */
904         case 'w':
905         case '%':
906           break;
907         case 'f':
908           n += 8;
909           break;
910         case 'j':
911           n += 3;
912           break;
913         case 'Y':
914           n += 8;
915           break;
916         case 's':
917         case 'J':
918           n += 50;
919           break;
920         default:
921           return;  /* ERROR.  return a NULL */
922       }
923       i++;
924     }
925   }
926   testcase( n==sizeof(zBuf)-1 );
927   testcase( n==sizeof(zBuf) );
928   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
929   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
930   if( n<sizeof(zBuf) ){
931     z = zBuf;
932   }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
933     sqlite3_result_error_toobig(context);
934     return;
935   }else{
936     z = sqlite3DbMallocRaw(db, (int)n);
937     if( z==0 ){
938       sqlite3_result_error_nomem(context);
939       return;
940     }
941   }
942   computeJD(&x);
943   computeYMD_HMS(&x);
944   for(i=j=0; zFmt[i]; i++){
945     if( zFmt[i]!='%' ){
946       z[j++] = zFmt[i];
947     }else{
948       i++;
949       switch( zFmt[i] ){
950         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
951         case 'f': {
952           double s = x.s;
953           if( s>59.999 ) s = 59.999;
954           sqlite3_snprintf(7, &z[j],"%06.3f", s);
955           j += sqlite3Strlen30(&z[j]);
956           break;
957         }
958         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
959         case 'W': /* Fall thru */
960         case 'j': {
961           int nDay;             /* Number of days since 1st day of year */
962           DateTime y = x;
963           y.validJD = 0;
964           y.M = 1;
965           y.D = 1;
966           computeJD(&y);
967           nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
968           if( zFmt[i]=='W' ){
969             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
970             wd = (int)(((x.iJD+43200000)/86400000)%7);
971             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
972             j += 2;
973           }else{
974             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
975             j += 3;
976           }
977           break;
978         }
979         case 'J': {
980           sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
981           j+=sqlite3Strlen30(&z[j]);
982           break;
983         }
984         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
985         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
986         case 's': {
987           sqlite3_snprintf(30,&z[j],"%lld",
988                            (i64)(x.iJD/1000 - 21086676*(i64)10000));
989           j += sqlite3Strlen30(&z[j]);
990           break;
991         }
992         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
993         case 'w': {
994           z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
995           break;
996         }
997         case 'Y': {
998           sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
999           break;
1000         }
1001         default:   z[j++] = '%'; break;
1002       }
1003     }
1004   }
1005   z[j] = 0;
1006   sqlite3_result_text(context, z, -1,
1007                       z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
1008 }
1009 
1010 /*
1011 ** current_time()
1012 **
1013 ** This function returns the same value as time('now').
1014 */
1015 static void ctimeFunc(
1016   sqlite3_context *context,
1017   int NotUsed,
1018   sqlite3_value **NotUsed2
1019 ){
1020   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1021   timeFunc(context, 0, 0);
1022 }
1023 
1024 /*
1025 ** current_date()
1026 **
1027 ** This function returns the same value as date('now').
1028 */
1029 static void cdateFunc(
1030   sqlite3_context *context,
1031   int NotUsed,
1032   sqlite3_value **NotUsed2
1033 ){
1034   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1035   dateFunc(context, 0, 0);
1036 }
1037 
1038 /*
1039 ** current_timestamp()
1040 **
1041 ** This function returns the same value as datetime('now').
1042 */
1043 static void ctimestampFunc(
1044   sqlite3_context *context,
1045   int NotUsed,
1046   sqlite3_value **NotUsed2
1047 ){
1048   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1049   datetimeFunc(context, 0, 0);
1050 }
1051 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1052 
1053 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1054 /*
1055 ** If the library is compiled to omit the full-scale date and time
1056 ** handling (to get a smaller binary), the following minimal version
1057 ** of the functions current_time(), current_date() and current_timestamp()
1058 ** are included instead. This is to support column declarations that
1059 ** include "DEFAULT CURRENT_TIME" etc.
1060 **
1061 ** This function uses the C-library functions time(), gmtime()
1062 ** and strftime(). The format string to pass to strftime() is supplied
1063 ** as the user-data for the function.
1064 */
1065 static void currentTimeFunc(
1066   sqlite3_context *context,
1067   int argc,
1068   sqlite3_value **argv
1069 ){
1070   time_t t;
1071   char *zFormat = (char *)sqlite3_user_data(context);
1072   sqlite3 *db;
1073   sqlite3_int64 iT;
1074   struct tm *pTm;
1075   struct tm sNow;
1076   char zBuf[20];
1077 
1078   UNUSED_PARAMETER(argc);
1079   UNUSED_PARAMETER(argv);
1080 
1081   db = sqlite3_context_db_handle(context);
1082   if( sqlite3OsCurrentTimeInt64(db->pVfs, &iT) ) return;
1083   t = iT/1000 - 10000*(sqlite3_int64)21086676;
1084 #ifdef HAVE_GMTIME_R
1085   pTm = gmtime_r(&t, &sNow);
1086 #else
1087   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1088   pTm = gmtime(&t);
1089   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1090   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1091 #endif
1092   if( pTm ){
1093     strftime(zBuf, 20, zFormat, &sNow);
1094     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1095   }
1096 }
1097 #endif
1098 
1099 /*
1100 ** This function registered all of the above C functions as SQL
1101 ** functions.  This should be the only routine in this file with
1102 ** external linkage.
1103 */
1104 void sqlite3RegisterDateTimeFunctions(void){
1105   static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
1106 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1107     FUNCTION(julianday,        -1, 0, 0, juliandayFunc ),
1108     FUNCTION(date,             -1, 0, 0, dateFunc      ),
1109     FUNCTION(time,             -1, 0, 0, timeFunc      ),
1110     FUNCTION(datetime,         -1, 0, 0, datetimeFunc  ),
1111     FUNCTION(strftime,         -1, 0, 0, strftimeFunc  ),
1112     FUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
1113     FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1114     FUNCTION(current_date,      0, 0, 0, cdateFunc     ),
1115 #else
1116     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
1117     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
1118     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1119 #endif
1120   };
1121   int i;
1122   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1123   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
1124 
1125   for(i=0; i<ArraySize(aDateTimeFuncs); i++){
1126     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1127   }
1128 }
1129