xref: /sqlite-3.40.0/src/date.c (revision bd41d566)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as julian day numbers.  The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar.  Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale.  Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 **      Jean Meeus
41 **      Astronomical Algorithms, 2nd Edition, 1998
42 **      ISBM 0-943396-61-1
43 **      Willmann-Bell, Inc
44 **      Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50 
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52 
53 
54 /*
55 ** A structure for holding a single date and time.
56 */
57 typedef struct DateTime DateTime;
58 struct DateTime {
59   sqlite3_int64 iJD; /* The julian day number times 86400000 */
60   int Y, M, D;       /* Year, month, and day */
61   int h, m;          /* Hour and minutes */
62   int tz;            /* Timezone offset in minutes */
63   double s;          /* Seconds */
64   char validYMD;     /* True (1) if Y,M,D are valid */
65   char validHMS;     /* True (1) if h,m,s are valid */
66   char validJD;      /* True (1) if iJD is valid */
67   char validTZ;      /* True (1) if tz is valid */
68 };
69 
70 
71 /*
72 ** Convert zDate into one or more integers.  Additional arguments
73 ** come in groups of 5 as follows:
74 **
75 **       N       number of digits in the integer
76 **       min     minimum allowed value of the integer
77 **       max     maximum allowed value of the integer
78 **       nextC   first character after the integer
79 **       pVal    where to write the integers value.
80 **
81 ** Conversions continue until one with nextC==0 is encountered.
82 ** The function returns the number of successful conversions.
83 */
84 static int getDigits(const char *zDate, ...){
85   va_list ap;
86   int val;
87   int N;
88   int min;
89   int max;
90   int nextC;
91   int *pVal;
92   int cnt = 0;
93   va_start(ap, zDate);
94   do{
95     N = va_arg(ap, int);
96     min = va_arg(ap, int);
97     max = va_arg(ap, int);
98     nextC = va_arg(ap, int);
99     pVal = va_arg(ap, int*);
100     val = 0;
101     while( N-- ){
102       if( !sqlite3Isdigit(*zDate) ){
103         goto end_getDigits;
104       }
105       val = val*10 + *zDate - '0';
106       zDate++;
107     }
108     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
109       goto end_getDigits;
110     }
111     *pVal = val;
112     zDate++;
113     cnt++;
114   }while( nextC );
115 end_getDigits:
116   va_end(ap);
117   return cnt;
118 }
119 
120 /*
121 ** Parse a timezone extension on the end of a date-time.
122 ** The extension is of the form:
123 **
124 **        (+/-)HH:MM
125 **
126 ** Or the "zulu" notation:
127 **
128 **        Z
129 **
130 ** If the parse is successful, write the number of minutes
131 ** of change in p->tz and return 0.  If a parser error occurs,
132 ** return non-zero.
133 **
134 ** A missing specifier is not considered an error.
135 */
136 static int parseTimezone(const char *zDate, DateTime *p){
137   int sgn = 0;
138   int nHr, nMn;
139   int c;
140   while( sqlite3Isspace(*zDate) ){ zDate++; }
141   p->tz = 0;
142   c = *zDate;
143   if( c=='-' ){
144     sgn = -1;
145   }else if( c=='+' ){
146     sgn = +1;
147   }else if( c=='Z' || c=='z' ){
148     zDate++;
149     goto zulu_time;
150   }else{
151     return c!=0;
152   }
153   zDate++;
154   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
155     return 1;
156   }
157   zDate += 5;
158   p->tz = sgn*(nMn + nHr*60);
159 zulu_time:
160   while( sqlite3Isspace(*zDate) ){ zDate++; }
161   return *zDate!=0;
162 }
163 
164 /*
165 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
166 ** The HH, MM, and SS must each be exactly 2 digits.  The
167 ** fractional seconds FFFF can be one or more digits.
168 **
169 ** Return 1 if there is a parsing error and 0 on success.
170 */
171 static int parseHhMmSs(const char *zDate, DateTime *p){
172   int h, m, s;
173   double ms = 0.0;
174   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
175     return 1;
176   }
177   zDate += 5;
178   if( *zDate==':' ){
179     zDate++;
180     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
181       return 1;
182     }
183     zDate += 2;
184     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
185       double rScale = 1.0;
186       zDate++;
187       while( sqlite3Isdigit(*zDate) ){
188         ms = ms*10.0 + *zDate - '0';
189         rScale *= 10.0;
190         zDate++;
191       }
192       ms /= rScale;
193     }
194   }else{
195     s = 0;
196   }
197   p->validJD = 0;
198   p->validHMS = 1;
199   p->h = h;
200   p->m = m;
201   p->s = s + ms;
202   if( parseTimezone(zDate, p) ) return 1;
203   p->validTZ = (p->tz!=0)?1:0;
204   return 0;
205 }
206 
207 /*
208 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
209 ** that the YYYY-MM-DD is according to the Gregorian calendar.
210 **
211 ** Reference:  Meeus page 61
212 */
213 static void computeJD(DateTime *p){
214   int Y, M, D, A, B, X1, X2;
215 
216   if( p->validJD ) return;
217   if( p->validYMD ){
218     Y = p->Y;
219     M = p->M;
220     D = p->D;
221   }else{
222     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
223     M = 1;
224     D = 1;
225   }
226   if( M<=2 ){
227     Y--;
228     M += 12;
229   }
230   A = Y/100;
231   B = 2 - A + (A/4);
232   X1 = 36525*(Y+4716)/100;
233   X2 = 306001*(M+1)/10000;
234   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
235   p->validJD = 1;
236   if( p->validHMS ){
237     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
238     if( p->validTZ ){
239       p->iJD -= p->tz*60000;
240       p->validYMD = 0;
241       p->validHMS = 0;
242       p->validTZ = 0;
243     }
244   }
245 }
246 
247 /*
248 ** Parse dates of the form
249 **
250 **     YYYY-MM-DD HH:MM:SS.FFF
251 **     YYYY-MM-DD HH:MM:SS
252 **     YYYY-MM-DD HH:MM
253 **     YYYY-MM-DD
254 **
255 ** Write the result into the DateTime structure and return 0
256 ** on success and 1 if the input string is not a well-formed
257 ** date.
258 */
259 static int parseYyyyMmDd(const char *zDate, DateTime *p){
260   int Y, M, D, neg;
261 
262   if( zDate[0]=='-' ){
263     zDate++;
264     neg = 1;
265   }else{
266     neg = 0;
267   }
268   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
269     return 1;
270   }
271   zDate += 10;
272   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
273   if( parseHhMmSs(zDate, p)==0 ){
274     /* We got the time */
275   }else if( *zDate==0 ){
276     p->validHMS = 0;
277   }else{
278     return 1;
279   }
280   p->validJD = 0;
281   p->validYMD = 1;
282   p->Y = neg ? -Y : Y;
283   p->M = M;
284   p->D = D;
285   if( p->validTZ ){
286     computeJD(p);
287   }
288   return 0;
289 }
290 
291 /*
292 ** Set the time to the current time reported by the VFS.
293 **
294 ** Return the number of errors.
295 */
296 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
297   p->iJD = sqlite3StmtCurrentTime(context);
298   if( p->iJD>0 ){
299     p->validJD = 1;
300     return 0;
301   }else{
302     return 1;
303   }
304 }
305 
306 /*
307 ** Attempt to parse the given string into a julian day number.  Return
308 ** the number of errors.
309 **
310 ** The following are acceptable forms for the input string:
311 **
312 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
313 **      DDDD.DD
314 **      now
315 **
316 ** In the first form, the +/-HH:MM is always optional.  The fractional
317 ** seconds extension (the ".FFF") is optional.  The seconds portion
318 ** (":SS.FFF") is option.  The year and date can be omitted as long
319 ** as there is a time string.  The time string can be omitted as long
320 ** as there is a year and date.
321 */
322 static int parseDateOrTime(
323   sqlite3_context *context,
324   const char *zDate,
325   DateTime *p
326 ){
327   double r;
328   if( parseYyyyMmDd(zDate,p)==0 ){
329     return 0;
330   }else if( parseHhMmSs(zDate, p)==0 ){
331     return 0;
332   }else if( sqlite3StrICmp(zDate,"now")==0){
333     return setDateTimeToCurrent(context, p);
334   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
335     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
336     p->validJD = 1;
337     return 0;
338   }
339   return 1;
340 }
341 
342 /*
343 ** Compute the Year, Month, and Day from the julian day number.
344 */
345 static void computeYMD(DateTime *p){
346   int Z, A, B, C, D, E, X1;
347   if( p->validYMD ) return;
348   if( !p->validJD ){
349     p->Y = 2000;
350     p->M = 1;
351     p->D = 1;
352   }else{
353     Z = (int)((p->iJD + 43200000)/86400000);
354     A = (int)((Z - 1867216.25)/36524.25);
355     A = Z + 1 + A - (A/4);
356     B = A + 1524;
357     C = (int)((B - 122.1)/365.25);
358     D = (36525*C)/100;
359     E = (int)((B-D)/30.6001);
360     X1 = (int)(30.6001*E);
361     p->D = B - D - X1;
362     p->M = E<14 ? E-1 : E-13;
363     p->Y = p->M>2 ? C - 4716 : C - 4715;
364   }
365   p->validYMD = 1;
366 }
367 
368 /*
369 ** Compute the Hour, Minute, and Seconds from the julian day number.
370 */
371 static void computeHMS(DateTime *p){
372   int s;
373   if( p->validHMS ) return;
374   computeJD(p);
375   s = (int)((p->iJD + 43200000) % 86400000);
376   p->s = s/1000.0;
377   s = (int)p->s;
378   p->s -= s;
379   p->h = s/3600;
380   s -= p->h*3600;
381   p->m = s/60;
382   p->s += s - p->m*60;
383   p->validHMS = 1;
384 }
385 
386 /*
387 ** Compute both YMD and HMS
388 */
389 static void computeYMD_HMS(DateTime *p){
390   computeYMD(p);
391   computeHMS(p);
392 }
393 
394 /*
395 ** Clear the YMD and HMS and the TZ
396 */
397 static void clearYMD_HMS_TZ(DateTime *p){
398   p->validYMD = 0;
399   p->validHMS = 0;
400   p->validTZ = 0;
401 }
402 
403 /*
404 ** On recent Windows platforms, the localtime_s() function is available
405 ** as part of the "Secure CRT". It is essentially equivalent to
406 ** localtime_r() available under most POSIX platforms, except that the
407 ** order of the parameters is reversed.
408 **
409 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
410 **
411 ** If the user has not indicated to use localtime_r() or localtime_s()
412 ** already, check for an MSVC build environment that provides
413 ** localtime_s().
414 */
415 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
416      defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
417 #define HAVE_LOCALTIME_S 1
418 #endif
419 
420 #ifndef SQLITE_OMIT_LOCALTIME
421 /*
422 ** The following routine implements the rough equivalent of localtime_r()
423 ** using whatever operating-system specific localtime facility that
424 ** is available.  This routine returns 0 on success and
425 ** non-zero on any kind of error.
426 **
427 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
428 ** routine will always fail.
429 **
430 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
431 ** library function localtime_r() is used to assist in the calculation of
432 ** local time.
433 */
434 static int osLocaltime(time_t *t, struct tm *pTm){
435   int rc;
436 #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \
437       && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S)
438   struct tm *pX;
439 #if SQLITE_THREADSAFE>0
440   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
441 #endif
442   sqlite3_mutex_enter(mutex);
443   pX = localtime(t);
444 #ifndef SQLITE_OMIT_BUILTIN_TEST
445   if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
446 #endif
447   if( pX ) *pTm = *pX;
448   sqlite3_mutex_leave(mutex);
449   rc = pX==0;
450 #else
451 #ifndef SQLITE_OMIT_BUILTIN_TEST
452   if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
453 #endif
454 #if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R
455   rc = localtime_r(t, pTm)==0;
456 #else
457   rc = localtime_s(pTm, t);
458 #endif /* HAVE_LOCALTIME_R */
459 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
460   return rc;
461 }
462 #endif /* SQLITE_OMIT_LOCALTIME */
463 
464 
465 #ifndef SQLITE_OMIT_LOCALTIME
466 /*
467 ** Compute the difference (in milliseconds) between localtime and UTC
468 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
469 ** return this value and set *pRc to SQLITE_OK.
470 **
471 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
472 ** is undefined in this case.
473 */
474 static sqlite3_int64 localtimeOffset(
475   DateTime *p,                    /* Date at which to calculate offset */
476   sqlite3_context *pCtx,          /* Write error here if one occurs */
477   int *pRc                        /* OUT: Error code. SQLITE_OK or ERROR */
478 ){
479   DateTime x, y;
480   time_t t;
481   struct tm sLocal;
482 
483   /* Initialize the contents of sLocal to avoid a compiler warning. */
484   memset(&sLocal, 0, sizeof(sLocal));
485 
486   x = *p;
487   computeYMD_HMS(&x);
488   if( x.Y<1971 || x.Y>=2038 ){
489     /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
490     ** works for years between 1970 and 2037. For dates outside this range,
491     ** SQLite attempts to map the year into an equivalent year within this
492     ** range, do the calculation, then map the year back.
493     */
494     x.Y = 2000;
495     x.M = 1;
496     x.D = 1;
497     x.h = 0;
498     x.m = 0;
499     x.s = 0.0;
500   } else {
501     int s = (int)(x.s + 0.5);
502     x.s = s;
503   }
504   x.tz = 0;
505   x.validJD = 0;
506   computeJD(&x);
507   t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
508   if( osLocaltime(&t, &sLocal) ){
509     sqlite3_result_error(pCtx, "local time unavailable", -1);
510     *pRc = SQLITE_ERROR;
511     return 0;
512   }
513   y.Y = sLocal.tm_year + 1900;
514   y.M = sLocal.tm_mon + 1;
515   y.D = sLocal.tm_mday;
516   y.h = sLocal.tm_hour;
517   y.m = sLocal.tm_min;
518   y.s = sLocal.tm_sec;
519   y.validYMD = 1;
520   y.validHMS = 1;
521   y.validJD = 0;
522   y.validTZ = 0;
523   computeJD(&y);
524   *pRc = SQLITE_OK;
525   return y.iJD - x.iJD;
526 }
527 #endif /* SQLITE_OMIT_LOCALTIME */
528 
529 /*
530 ** Process a modifier to a date-time stamp.  The modifiers are
531 ** as follows:
532 **
533 **     NNN days
534 **     NNN hours
535 **     NNN minutes
536 **     NNN.NNNN seconds
537 **     NNN months
538 **     NNN years
539 **     start of month
540 **     start of year
541 **     start of week
542 **     start of day
543 **     weekday N
544 **     unixepoch
545 **     localtime
546 **     utc
547 **
548 ** Return 0 on success and 1 if there is any kind of error. If the error
549 ** is in a system call (i.e. localtime()), then an error message is written
550 ** to context pCtx. If the error is an unrecognized modifier, no error is
551 ** written to pCtx.
552 */
553 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){
554   int rc = 1;
555   int n;
556   double r;
557   char *z, zBuf[30];
558   z = zBuf;
559   for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
560     z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
561   }
562   z[n] = 0;
563   switch( z[0] ){
564 #ifndef SQLITE_OMIT_LOCALTIME
565     case 'l': {
566       /*    localtime
567       **
568       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
569       ** show local time.
570       */
571       if( strcmp(z, "localtime")==0 ){
572         computeJD(p);
573         p->iJD += localtimeOffset(p, pCtx, &rc);
574         clearYMD_HMS_TZ(p);
575       }
576       break;
577     }
578 #endif
579     case 'u': {
580       /*
581       **    unixepoch
582       **
583       ** Treat the current value of p->iJD as the number of
584       ** seconds since 1970.  Convert to a real julian day number.
585       */
586       if( strcmp(z, "unixepoch")==0 && p->validJD ){
587         p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
588         clearYMD_HMS_TZ(p);
589         rc = 0;
590       }
591 #ifndef SQLITE_OMIT_LOCALTIME
592       else if( strcmp(z, "utc")==0 ){
593         sqlite3_int64 c1;
594         computeJD(p);
595         c1 = localtimeOffset(p, pCtx, &rc);
596         if( rc==SQLITE_OK ){
597           p->iJD -= c1;
598           clearYMD_HMS_TZ(p);
599           p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
600         }
601       }
602 #endif
603       break;
604     }
605     case 'w': {
606       /*
607       **    weekday N
608       **
609       ** Move the date to the same time on the next occurrence of
610       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
611       ** date is already on the appropriate weekday, this is a no-op.
612       */
613       if( strncmp(z, "weekday ", 8)==0
614                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
615                && (n=(int)r)==r && n>=0 && r<7 ){
616         sqlite3_int64 Z;
617         computeYMD_HMS(p);
618         p->validTZ = 0;
619         p->validJD = 0;
620         computeJD(p);
621         Z = ((p->iJD + 129600000)/86400000) % 7;
622         if( Z>n ) Z -= 7;
623         p->iJD += (n - Z)*86400000;
624         clearYMD_HMS_TZ(p);
625         rc = 0;
626       }
627       break;
628     }
629     case 's': {
630       /*
631       **    start of TTTTT
632       **
633       ** Move the date backwards to the beginning of the current day,
634       ** or month or year.
635       */
636       if( strncmp(z, "start of ", 9)!=0 ) break;
637       z += 9;
638       computeYMD(p);
639       p->validHMS = 1;
640       p->h = p->m = 0;
641       p->s = 0.0;
642       p->validTZ = 0;
643       p->validJD = 0;
644       if( strcmp(z,"month")==0 ){
645         p->D = 1;
646         rc = 0;
647       }else if( strcmp(z,"year")==0 ){
648         computeYMD(p);
649         p->M = 1;
650         p->D = 1;
651         rc = 0;
652       }else if( strcmp(z,"day")==0 ){
653         rc = 0;
654       }
655       break;
656     }
657     case '+':
658     case '-':
659     case '0':
660     case '1':
661     case '2':
662     case '3':
663     case '4':
664     case '5':
665     case '6':
666     case '7':
667     case '8':
668     case '9': {
669       double rRounder;
670       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
671       if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
672         rc = 1;
673         break;
674       }
675       if( z[n]==':' ){
676         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
677         ** specified number of hours, minutes, seconds, and fractional seconds
678         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
679         ** omitted.
680         */
681         const char *z2 = z;
682         DateTime tx;
683         sqlite3_int64 day;
684         if( !sqlite3Isdigit(*z2) ) z2++;
685         memset(&tx, 0, sizeof(tx));
686         if( parseHhMmSs(z2, &tx) ) break;
687         computeJD(&tx);
688         tx.iJD -= 43200000;
689         day = tx.iJD/86400000;
690         tx.iJD -= day*86400000;
691         if( z[0]=='-' ) tx.iJD = -tx.iJD;
692         computeJD(p);
693         clearYMD_HMS_TZ(p);
694         p->iJD += tx.iJD;
695         rc = 0;
696         break;
697       }
698       z += n;
699       while( sqlite3Isspace(*z) ) z++;
700       n = sqlite3Strlen30(z);
701       if( n>10 || n<3 ) break;
702       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
703       computeJD(p);
704       rc = 0;
705       rRounder = r<0 ? -0.5 : +0.5;
706       if( n==3 && strcmp(z,"day")==0 ){
707         p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
708       }else if( n==4 && strcmp(z,"hour")==0 ){
709         p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
710       }else if( n==6 && strcmp(z,"minute")==0 ){
711         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
712       }else if( n==6 && strcmp(z,"second")==0 ){
713         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
714       }else if( n==5 && strcmp(z,"month")==0 ){
715         int x, y;
716         computeYMD_HMS(p);
717         p->M += (int)r;
718         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
719         p->Y += x;
720         p->M -= x*12;
721         p->validJD = 0;
722         computeJD(p);
723         y = (int)r;
724         if( y!=r ){
725           p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
726         }
727       }else if( n==4 && strcmp(z,"year")==0 ){
728         int y = (int)r;
729         computeYMD_HMS(p);
730         p->Y += y;
731         p->validJD = 0;
732         computeJD(p);
733         if( y!=r ){
734           p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
735         }
736       }else{
737         rc = 1;
738       }
739       clearYMD_HMS_TZ(p);
740       break;
741     }
742     default: {
743       break;
744     }
745   }
746   return rc;
747 }
748 
749 /*
750 ** Process time function arguments.  argv[0] is a date-time stamp.
751 ** argv[1] and following are modifiers.  Parse them all and write
752 ** the resulting time into the DateTime structure p.  Return 0
753 ** on success and 1 if there are any errors.
754 **
755 ** If there are zero parameters (if even argv[0] is undefined)
756 ** then assume a default value of "now" for argv[0].
757 */
758 static int isDate(
759   sqlite3_context *context,
760   int argc,
761   sqlite3_value **argv,
762   DateTime *p
763 ){
764   int i;
765   const unsigned char *z;
766   int eType;
767   memset(p, 0, sizeof(*p));
768   if( argc==0 ){
769     return setDateTimeToCurrent(context, p);
770   }
771   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
772                    || eType==SQLITE_INTEGER ){
773     p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
774     p->validJD = 1;
775   }else{
776     z = sqlite3_value_text(argv[0]);
777     if( !z || parseDateOrTime(context, (char*)z, p) ){
778       return 1;
779     }
780   }
781   for(i=1; i<argc; i++){
782     z = sqlite3_value_text(argv[i]);
783     if( z==0 || parseModifier(context, (char*)z, p) ) return 1;
784   }
785   return 0;
786 }
787 
788 
789 /*
790 ** The following routines implement the various date and time functions
791 ** of SQLite.
792 */
793 
794 /*
795 **    julianday( TIMESTRING, MOD, MOD, ...)
796 **
797 ** Return the julian day number of the date specified in the arguments
798 */
799 static void juliandayFunc(
800   sqlite3_context *context,
801   int argc,
802   sqlite3_value **argv
803 ){
804   DateTime x;
805   if( isDate(context, argc, argv, &x)==0 ){
806     computeJD(&x);
807     sqlite3_result_double(context, x.iJD/86400000.0);
808   }
809 }
810 
811 /*
812 **    datetime( TIMESTRING, MOD, MOD, ...)
813 **
814 ** Return YYYY-MM-DD HH:MM:SS
815 */
816 static void datetimeFunc(
817   sqlite3_context *context,
818   int argc,
819   sqlite3_value **argv
820 ){
821   DateTime x;
822   if( isDate(context, argc, argv, &x)==0 ){
823     char zBuf[100];
824     computeYMD_HMS(&x);
825     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
826                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
827     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
828   }
829 }
830 
831 /*
832 **    time( TIMESTRING, MOD, MOD, ...)
833 **
834 ** Return HH:MM:SS
835 */
836 static void timeFunc(
837   sqlite3_context *context,
838   int argc,
839   sqlite3_value **argv
840 ){
841   DateTime x;
842   if( isDate(context, argc, argv, &x)==0 ){
843     char zBuf[100];
844     computeHMS(&x);
845     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
846     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
847   }
848 }
849 
850 /*
851 **    date( TIMESTRING, MOD, MOD, ...)
852 **
853 ** Return YYYY-MM-DD
854 */
855 static void dateFunc(
856   sqlite3_context *context,
857   int argc,
858   sqlite3_value **argv
859 ){
860   DateTime x;
861   if( isDate(context, argc, argv, &x)==0 ){
862     char zBuf[100];
863     computeYMD(&x);
864     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
865     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
866   }
867 }
868 
869 /*
870 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
871 **
872 ** Return a string described by FORMAT.  Conversions as follows:
873 **
874 **   %d  day of month
875 **   %f  ** fractional seconds  SS.SSS
876 **   %H  hour 00-24
877 **   %j  day of year 000-366
878 **   %J  ** julian day number
879 **   %m  month 01-12
880 **   %M  minute 00-59
881 **   %s  seconds since 1970-01-01
882 **   %S  seconds 00-59
883 **   %w  day of week 0-6  sunday==0
884 **   %W  week of year 00-53
885 **   %Y  year 0000-9999
886 **   %%  %
887 */
888 static void strftimeFunc(
889   sqlite3_context *context,
890   int argc,
891   sqlite3_value **argv
892 ){
893   DateTime x;
894   u64 n;
895   size_t i,j;
896   char *z;
897   sqlite3 *db;
898   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
899   char zBuf[100];
900   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
901   db = sqlite3_context_db_handle(context);
902   for(i=0, n=1; zFmt[i]; i++, n++){
903     if( zFmt[i]=='%' ){
904       switch( zFmt[i+1] ){
905         case 'd':
906         case 'H':
907         case 'm':
908         case 'M':
909         case 'S':
910         case 'W':
911           n++;
912           /* fall thru */
913         case 'w':
914         case '%':
915           break;
916         case 'f':
917           n += 8;
918           break;
919         case 'j':
920           n += 3;
921           break;
922         case 'Y':
923           n += 8;
924           break;
925         case 's':
926         case 'J':
927           n += 50;
928           break;
929         default:
930           return;  /* ERROR.  return a NULL */
931       }
932       i++;
933     }
934   }
935   testcase( n==sizeof(zBuf)-1 );
936   testcase( n==sizeof(zBuf) );
937   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
938   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
939   if( n<sizeof(zBuf) ){
940     z = zBuf;
941   }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
942     sqlite3_result_error_toobig(context);
943     return;
944   }else{
945     z = sqlite3DbMallocRaw(db, (int)n);
946     if( z==0 ){
947       sqlite3_result_error_nomem(context);
948       return;
949     }
950   }
951   computeJD(&x);
952   computeYMD_HMS(&x);
953   for(i=j=0; zFmt[i]; i++){
954     if( zFmt[i]!='%' ){
955       z[j++] = zFmt[i];
956     }else{
957       i++;
958       switch( zFmt[i] ){
959         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
960         case 'f': {
961           double s = x.s;
962           if( s>59.999 ) s = 59.999;
963           sqlite3_snprintf(7, &z[j],"%06.3f", s);
964           j += sqlite3Strlen30(&z[j]);
965           break;
966         }
967         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
968         case 'W': /* Fall thru */
969         case 'j': {
970           int nDay;             /* Number of days since 1st day of year */
971           DateTime y = x;
972           y.validJD = 0;
973           y.M = 1;
974           y.D = 1;
975           computeJD(&y);
976           nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
977           if( zFmt[i]=='W' ){
978             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
979             wd = (int)(((x.iJD+43200000)/86400000)%7);
980             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
981             j += 2;
982           }else{
983             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
984             j += 3;
985           }
986           break;
987         }
988         case 'J': {
989           sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
990           j+=sqlite3Strlen30(&z[j]);
991           break;
992         }
993         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
994         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
995         case 's': {
996           sqlite3_snprintf(30,&z[j],"%lld",
997                            (i64)(x.iJD/1000 - 21086676*(i64)10000));
998           j += sqlite3Strlen30(&z[j]);
999           break;
1000         }
1001         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
1002         case 'w': {
1003           z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
1004           break;
1005         }
1006         case 'Y': {
1007           sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
1008           break;
1009         }
1010         default:   z[j++] = '%'; break;
1011       }
1012     }
1013   }
1014   z[j] = 0;
1015   sqlite3_result_text(context, z, -1,
1016                       z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
1017 }
1018 
1019 /*
1020 ** current_time()
1021 **
1022 ** This function returns the same value as time('now').
1023 */
1024 static void ctimeFunc(
1025   sqlite3_context *context,
1026   int NotUsed,
1027   sqlite3_value **NotUsed2
1028 ){
1029   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1030   timeFunc(context, 0, 0);
1031 }
1032 
1033 /*
1034 ** current_date()
1035 **
1036 ** This function returns the same value as date('now').
1037 */
1038 static void cdateFunc(
1039   sqlite3_context *context,
1040   int NotUsed,
1041   sqlite3_value **NotUsed2
1042 ){
1043   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1044   dateFunc(context, 0, 0);
1045 }
1046 
1047 /*
1048 ** current_timestamp()
1049 **
1050 ** This function returns the same value as datetime('now').
1051 */
1052 static void ctimestampFunc(
1053   sqlite3_context *context,
1054   int NotUsed,
1055   sqlite3_value **NotUsed2
1056 ){
1057   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1058   datetimeFunc(context, 0, 0);
1059 }
1060 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1061 
1062 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1063 /*
1064 ** If the library is compiled to omit the full-scale date and time
1065 ** handling (to get a smaller binary), the following minimal version
1066 ** of the functions current_time(), current_date() and current_timestamp()
1067 ** are included instead. This is to support column declarations that
1068 ** include "DEFAULT CURRENT_TIME" etc.
1069 **
1070 ** This function uses the C-library functions time(), gmtime()
1071 ** and strftime(). The format string to pass to strftime() is supplied
1072 ** as the user-data for the function.
1073 */
1074 static void currentTimeFunc(
1075   sqlite3_context *context,
1076   int argc,
1077   sqlite3_value **argv
1078 ){
1079   time_t t;
1080   char *zFormat = (char *)sqlite3_user_data(context);
1081   sqlite3 *db;
1082   sqlite3_int64 iT;
1083   struct tm *pTm;
1084   struct tm sNow;
1085   char zBuf[20];
1086 
1087   UNUSED_PARAMETER(argc);
1088   UNUSED_PARAMETER(argv);
1089 
1090   iT = sqlite3StmtCurrentTime(context);
1091   if( iT<=0 ) return;
1092   t = iT/1000 - 10000*(sqlite3_int64)21086676;
1093 #ifdef HAVE_GMTIME_R
1094   pTm = gmtime_r(&t, &sNow);
1095 #else
1096   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1097   pTm = gmtime(&t);
1098   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1099   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1100 #endif
1101   if( pTm ){
1102     strftime(zBuf, 20, zFormat, &sNow);
1103     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1104   }
1105 }
1106 #endif
1107 
1108 /*
1109 ** This function registered all of the above C functions as SQL
1110 ** functions.  This should be the only routine in this file with
1111 ** external linkage.
1112 */
1113 void sqlite3RegisterDateTimeFunctions(void){
1114   static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
1115 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1116     FUNCTION(julianday,        -1, 0, 0, juliandayFunc ),
1117     FUNCTION(date,             -1, 0, 0, dateFunc      ),
1118     FUNCTION(time,             -1, 0, 0, timeFunc      ),
1119     FUNCTION(datetime,         -1, 0, 0, datetimeFunc  ),
1120     FUNCTION(strftime,         -1, 0, 0, strftimeFunc  ),
1121     FUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
1122     FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1123     FUNCTION(current_date,      0, 0, 0, cdateFunc     ),
1124 #else
1125     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
1126     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
1127     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1128 #endif
1129   };
1130   int i;
1131   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1132   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
1133 
1134   for(i=0; i<ArraySize(aDateTimeFuncs); i++){
1135     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1136   }
1137 }
1138