xref: /sqlite-3.40.0/src/date.c (revision aeb4e6ee)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as julian day numbers.  The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar.  Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale.  Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 **      Jean Meeus
41 **      Astronomical Algorithms, 2nd Edition, 1998
42 **      ISBN 0-943396-61-1
43 **      Willmann-Bell, Inc
44 **      Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50 
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52 
53 /*
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute.  The substitute function itself is
56 ** defined in "os_win.c".
57 */
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59     (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm *__cdecl localtime(const time_t *);
61 #endif
62 
63 /*
64 ** A structure for holding a single date and time.
65 */
66 typedef struct DateTime DateTime;
67 struct DateTime {
68   sqlite3_int64 iJD;  /* The julian day number times 86400000 */
69   int Y, M, D;        /* Year, month, and day */
70   int h, m;           /* Hour and minutes */
71   int tz;             /* Timezone offset in minutes */
72   double s;           /* Seconds */
73   char validJD;       /* True (1) if iJD is valid */
74   char rawS;          /* Raw numeric value stored in s */
75   char validYMD;      /* True (1) if Y,M,D are valid */
76   char validHMS;      /* True (1) if h,m,s are valid */
77   char validTZ;       /* True (1) if tz is valid */
78   char tzSet;         /* Timezone was set explicitly */
79   char isError;       /* An overflow has occurred */
80 };
81 
82 
83 /*
84 ** Convert zDate into one or more integers according to the conversion
85 ** specifier zFormat.
86 **
87 ** zFormat[] contains 4 characters for each integer converted, except for
88 ** the last integer which is specified by three characters.  The meaning
89 ** of a four-character format specifiers ABCD is:
90 **
91 **    A:   number of digits to convert.  Always "2" or "4".
92 **    B:   minimum value.  Always "0" or "1".
93 **    C:   maximum value, decoded as:
94 **           a:  12
95 **           b:  14
96 **           c:  24
97 **           d:  31
98 **           e:  59
99 **           f:  9999
100 **    D:   the separator character, or \000 to indicate this is the
101 **         last number to convert.
102 **
103 ** Example:  To translate an ISO-8601 date YYYY-MM-DD, the format would
104 ** be "40f-21a-20c".  The "40f-" indicates the 4-digit year followed by "-".
105 ** The "21a-" indicates the 2-digit month followed by "-".  The "20c" indicates
106 ** the 2-digit day which is the last integer in the set.
107 **
108 ** The function returns the number of successful conversions.
109 */
110 static int getDigits(const char *zDate, const char *zFormat, ...){
111   /* The aMx[] array translates the 3rd character of each format
112   ** spec into a max size:    a   b   c   d   e     f */
113   static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
114   va_list ap;
115   int cnt = 0;
116   char nextC;
117   va_start(ap, zFormat);
118   do{
119     char N = zFormat[0] - '0';
120     char min = zFormat[1] - '0';
121     int val = 0;
122     u16 max;
123 
124     assert( zFormat[2]>='a' && zFormat[2]<='f' );
125     max = aMx[zFormat[2] - 'a'];
126     nextC = zFormat[3];
127     val = 0;
128     while( N-- ){
129       if( !sqlite3Isdigit(*zDate) ){
130         goto end_getDigits;
131       }
132       val = val*10 + *zDate - '0';
133       zDate++;
134     }
135     if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
136       goto end_getDigits;
137     }
138     *va_arg(ap,int*) = val;
139     zDate++;
140     cnt++;
141     zFormat += 4;
142   }while( nextC );
143 end_getDigits:
144   va_end(ap);
145   return cnt;
146 }
147 
148 /*
149 ** Parse a timezone extension on the end of a date-time.
150 ** The extension is of the form:
151 **
152 **        (+/-)HH:MM
153 **
154 ** Or the "zulu" notation:
155 **
156 **        Z
157 **
158 ** If the parse is successful, write the number of minutes
159 ** of change in p->tz and return 0.  If a parser error occurs,
160 ** return non-zero.
161 **
162 ** A missing specifier is not considered an error.
163 */
164 static int parseTimezone(const char *zDate, DateTime *p){
165   int sgn = 0;
166   int nHr, nMn;
167   int c;
168   while( sqlite3Isspace(*zDate) ){ zDate++; }
169   p->tz = 0;
170   c = *zDate;
171   if( c=='-' ){
172     sgn = -1;
173   }else if( c=='+' ){
174     sgn = +1;
175   }else if( c=='Z' || c=='z' ){
176     zDate++;
177     goto zulu_time;
178   }else{
179     return c!=0;
180   }
181   zDate++;
182   if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
183     return 1;
184   }
185   zDate += 5;
186   p->tz = sgn*(nMn + nHr*60);
187 zulu_time:
188   while( sqlite3Isspace(*zDate) ){ zDate++; }
189   p->tzSet = 1;
190   return *zDate!=0;
191 }
192 
193 /*
194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
195 ** The HH, MM, and SS must each be exactly 2 digits.  The
196 ** fractional seconds FFFF can be one or more digits.
197 **
198 ** Return 1 if there is a parsing error and 0 on success.
199 */
200 static int parseHhMmSs(const char *zDate, DateTime *p){
201   int h, m, s;
202   double ms = 0.0;
203   if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
204     return 1;
205   }
206   zDate += 5;
207   if( *zDate==':' ){
208     zDate++;
209     if( getDigits(zDate, "20e", &s)!=1 ){
210       return 1;
211     }
212     zDate += 2;
213     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
214       double rScale = 1.0;
215       zDate++;
216       while( sqlite3Isdigit(*zDate) ){
217         ms = ms*10.0 + *zDate - '0';
218         rScale *= 10.0;
219         zDate++;
220       }
221       ms /= rScale;
222     }
223   }else{
224     s = 0;
225   }
226   p->validJD = 0;
227   p->rawS = 0;
228   p->validHMS = 1;
229   p->h = h;
230   p->m = m;
231   p->s = s + ms;
232   if( parseTimezone(zDate, p) ) return 1;
233   p->validTZ = (p->tz!=0)?1:0;
234   return 0;
235 }
236 
237 /*
238 ** Put the DateTime object into its error state.
239 */
240 static void datetimeError(DateTime *p){
241   memset(p, 0, sizeof(*p));
242   p->isError = 1;
243 }
244 
245 /*
246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
247 ** that the YYYY-MM-DD is according to the Gregorian calendar.
248 **
249 ** Reference:  Meeus page 61
250 */
251 static void computeJD(DateTime *p){
252   int Y, M, D, A, B, X1, X2;
253 
254   if( p->validJD ) return;
255   if( p->validYMD ){
256     Y = p->Y;
257     M = p->M;
258     D = p->D;
259   }else{
260     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
261     M = 1;
262     D = 1;
263   }
264   if( Y<-4713 || Y>9999 || p->rawS ){
265     datetimeError(p);
266     return;
267   }
268   if( M<=2 ){
269     Y--;
270     M += 12;
271   }
272   A = Y/100;
273   B = 2 - A + (A/4);
274   X1 = 36525*(Y+4716)/100;
275   X2 = 306001*(M+1)/10000;
276   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
277   p->validJD = 1;
278   if( p->validHMS ){
279     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
280     if( p->validTZ ){
281       p->iJD -= p->tz*60000;
282       p->validYMD = 0;
283       p->validHMS = 0;
284       p->validTZ = 0;
285     }
286   }
287 }
288 
289 /*
290 ** Parse dates of the form
291 **
292 **     YYYY-MM-DD HH:MM:SS.FFF
293 **     YYYY-MM-DD HH:MM:SS
294 **     YYYY-MM-DD HH:MM
295 **     YYYY-MM-DD
296 **
297 ** Write the result into the DateTime structure and return 0
298 ** on success and 1 if the input string is not a well-formed
299 ** date.
300 */
301 static int parseYyyyMmDd(const char *zDate, DateTime *p){
302   int Y, M, D, neg;
303 
304   if( zDate[0]=='-' ){
305     zDate++;
306     neg = 1;
307   }else{
308     neg = 0;
309   }
310   if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
311     return 1;
312   }
313   zDate += 10;
314   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
315   if( parseHhMmSs(zDate, p)==0 ){
316     /* We got the time */
317   }else if( *zDate==0 ){
318     p->validHMS = 0;
319   }else{
320     return 1;
321   }
322   p->validJD = 0;
323   p->validYMD = 1;
324   p->Y = neg ? -Y : Y;
325   p->M = M;
326   p->D = D;
327   if( p->validTZ ){
328     computeJD(p);
329   }
330   return 0;
331 }
332 
333 /*
334 ** Set the time to the current time reported by the VFS.
335 **
336 ** Return the number of errors.
337 */
338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
339   p->iJD = sqlite3StmtCurrentTime(context);
340   if( p->iJD>0 ){
341     p->validJD = 1;
342     return 0;
343   }else{
344     return 1;
345   }
346 }
347 
348 /*
349 ** Input "r" is a numeric quantity which might be a julian day number,
350 ** or the number of seconds since 1970.  If the value if r is within
351 ** range of a julian day number, install it as such and set validJD.
352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
353 */
354 static void setRawDateNumber(DateTime *p, double r){
355   p->s = r;
356   p->rawS = 1;
357   if( r>=0.0 && r<5373484.5 ){
358     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
359     p->validJD = 1;
360   }
361 }
362 
363 /*
364 ** Attempt to parse the given string into a julian day number.  Return
365 ** the number of errors.
366 **
367 ** The following are acceptable forms for the input string:
368 **
369 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
370 **      DDDD.DD
371 **      now
372 **
373 ** In the first form, the +/-HH:MM is always optional.  The fractional
374 ** seconds extension (the ".FFF") is optional.  The seconds portion
375 ** (":SS.FFF") is option.  The year and date can be omitted as long
376 ** as there is a time string.  The time string can be omitted as long
377 ** as there is a year and date.
378 */
379 static int parseDateOrTime(
380   sqlite3_context *context,
381   const char *zDate,
382   DateTime *p
383 ){
384   double r;
385   if( parseYyyyMmDd(zDate,p)==0 ){
386     return 0;
387   }else if( parseHhMmSs(zDate, p)==0 ){
388     return 0;
389   }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){
390     return setDateTimeToCurrent(context, p);
391   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){
392     setRawDateNumber(p, r);
393     return 0;
394   }
395   return 1;
396 }
397 
398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
400 ** for DateTime.iJD.
401 **
402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
403 ** such a large integer literal, so we have to encode it.
404 */
405 #define INT_464269060799999  ((((i64)0x1a640)<<32)|0x1072fdff)
406 
407 /*
408 ** Return TRUE if the given julian day number is within range.
409 **
410 ** The input is the JulianDay times 86400000.
411 */
412 static int validJulianDay(sqlite3_int64 iJD){
413   return iJD>=0 && iJD<=INT_464269060799999;
414 }
415 
416 /*
417 ** Compute the Year, Month, and Day from the julian day number.
418 */
419 static void computeYMD(DateTime *p){
420   int Z, A, B, C, D, E, X1;
421   if( p->validYMD ) return;
422   if( !p->validJD ){
423     p->Y = 2000;
424     p->M = 1;
425     p->D = 1;
426   }else if( !validJulianDay(p->iJD) ){
427     datetimeError(p);
428     return;
429   }else{
430     Z = (int)((p->iJD + 43200000)/86400000);
431     A = (int)((Z - 1867216.25)/36524.25);
432     A = Z + 1 + A - (A/4);
433     B = A + 1524;
434     C = (int)((B - 122.1)/365.25);
435     D = (36525*(C&32767))/100;
436     E = (int)((B-D)/30.6001);
437     X1 = (int)(30.6001*E);
438     p->D = B - D - X1;
439     p->M = E<14 ? E-1 : E-13;
440     p->Y = p->M>2 ? C - 4716 : C - 4715;
441   }
442   p->validYMD = 1;
443 }
444 
445 /*
446 ** Compute the Hour, Minute, and Seconds from the julian day number.
447 */
448 static void computeHMS(DateTime *p){
449   int s;
450   if( p->validHMS ) return;
451   computeJD(p);
452   s = (int)((p->iJD + 43200000) % 86400000);
453   p->s = s/1000.0;
454   s = (int)p->s;
455   p->s -= s;
456   p->h = s/3600;
457   s -= p->h*3600;
458   p->m = s/60;
459   p->s += s - p->m*60;
460   p->rawS = 0;
461   p->validHMS = 1;
462 }
463 
464 /*
465 ** Compute both YMD and HMS
466 */
467 static void computeYMD_HMS(DateTime *p){
468   computeYMD(p);
469   computeHMS(p);
470 }
471 
472 /*
473 ** Clear the YMD and HMS and the TZ
474 */
475 static void clearYMD_HMS_TZ(DateTime *p){
476   p->validYMD = 0;
477   p->validHMS = 0;
478   p->validTZ = 0;
479 }
480 
481 #ifndef SQLITE_OMIT_LOCALTIME
482 /*
483 ** On recent Windows platforms, the localtime_s() function is available
484 ** as part of the "Secure CRT". It is essentially equivalent to
485 ** localtime_r() available under most POSIX platforms, except that the
486 ** order of the parameters is reversed.
487 **
488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
489 **
490 ** If the user has not indicated to use localtime_r() or localtime_s()
491 ** already, check for an MSVC build environment that provides
492 ** localtime_s().
493 */
494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
495     && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
496 #undef  HAVE_LOCALTIME_S
497 #define HAVE_LOCALTIME_S 1
498 #endif
499 
500 /*
501 ** The following routine implements the rough equivalent of localtime_r()
502 ** using whatever operating-system specific localtime facility that
503 ** is available.  This routine returns 0 on success and
504 ** non-zero on any kind of error.
505 **
506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
507 ** routine will always fail.
508 **
509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
510 ** library function localtime_r() is used to assist in the calculation of
511 ** local time.
512 */
513 static int osLocaltime(time_t *t, struct tm *pTm){
514   int rc;
515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
516   struct tm *pX;
517 #if SQLITE_THREADSAFE>0
518   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
519 #endif
520   sqlite3_mutex_enter(mutex);
521   pX = localtime(t);
522 #ifndef SQLITE_UNTESTABLE
523   if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
524 #endif
525   if( pX ) *pTm = *pX;
526   sqlite3_mutex_leave(mutex);
527   rc = pX==0;
528 #else
529 #ifndef SQLITE_UNTESTABLE
530   if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
531 #endif
532 #if HAVE_LOCALTIME_R
533   rc = localtime_r(t, pTm)==0;
534 #else
535   rc = localtime_s(pTm, t);
536 #endif /* HAVE_LOCALTIME_R */
537 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
538   return rc;
539 }
540 #endif /* SQLITE_OMIT_LOCALTIME */
541 
542 
543 #ifndef SQLITE_OMIT_LOCALTIME
544 /*
545 ** Compute the difference (in milliseconds) between localtime and UTC
546 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
547 ** return this value and set *pRc to SQLITE_OK.
548 **
549 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
550 ** is undefined in this case.
551 */
552 static sqlite3_int64 localtimeOffset(
553   DateTime *p,                    /* Date at which to calculate offset */
554   sqlite3_context *pCtx,          /* Write error here if one occurs */
555   int *pRc                        /* OUT: Error code. SQLITE_OK or ERROR */
556 ){
557   DateTime x, y;
558   time_t t;
559   struct tm sLocal;
560 
561   /* Initialize the contents of sLocal to avoid a compiler warning. */
562   memset(&sLocal, 0, sizeof(sLocal));
563 
564   x = *p;
565   computeYMD_HMS(&x);
566   if( x.Y<1971 || x.Y>=2038 ){
567     /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
568     ** works for years between 1970 and 2037. For dates outside this range,
569     ** SQLite attempts to map the year into an equivalent year within this
570     ** range, do the calculation, then map the year back.
571     */
572     x.Y = 2000;
573     x.M = 1;
574     x.D = 1;
575     x.h = 0;
576     x.m = 0;
577     x.s = 0.0;
578   } else {
579     int s = (int)(x.s + 0.5);
580     x.s = s;
581   }
582   x.tz = 0;
583   x.validJD = 0;
584   computeJD(&x);
585   t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
586   if( osLocaltime(&t, &sLocal) ){
587     sqlite3_result_error(pCtx, "local time unavailable", -1);
588     *pRc = SQLITE_ERROR;
589     return 0;
590   }
591   y.Y = sLocal.tm_year + 1900;
592   y.M = sLocal.tm_mon + 1;
593   y.D = sLocal.tm_mday;
594   y.h = sLocal.tm_hour;
595   y.m = sLocal.tm_min;
596   y.s = sLocal.tm_sec;
597   y.validYMD = 1;
598   y.validHMS = 1;
599   y.validJD = 0;
600   y.rawS = 0;
601   y.validTZ = 0;
602   y.isError = 0;
603   computeJD(&y);
604   *pRc = SQLITE_OK;
605   return y.iJD - x.iJD;
606 }
607 #endif /* SQLITE_OMIT_LOCALTIME */
608 
609 /*
610 ** The following table defines various date transformations of the form
611 **
612 **            'NNN days'
613 **
614 ** Where NNN is an arbitrary floating-point number and "days" can be one
615 ** of several units of time.
616 */
617 static const struct {
618   u8 eType;           /* Transformation type code */
619   u8 nName;           /* Length of th name */
620   char *zName;        /* Name of the transformation */
621   double rLimit;      /* Maximum NNN value for this transform */
622   double rXform;      /* Constant used for this transform */
623 } aXformType[] = {
624   { 0, 6, "second", 464269060800.0, 1000.0         },
625   { 0, 6, "minute", 7737817680.0,   60000.0        },
626   { 0, 4, "hour",   128963628.0,    3600000.0      },
627   { 0, 3, "day",    5373485.0,      86400000.0     },
628   { 1, 5, "month",  176546.0,       2592000000.0   },
629   { 2, 4, "year",   14713.0,        31536000000.0  },
630 };
631 
632 /*
633 ** Process a modifier to a date-time stamp.  The modifiers are
634 ** as follows:
635 **
636 **     NNN days
637 **     NNN hours
638 **     NNN minutes
639 **     NNN.NNNN seconds
640 **     NNN months
641 **     NNN years
642 **     start of month
643 **     start of year
644 **     start of week
645 **     start of day
646 **     weekday N
647 **     unixepoch
648 **     localtime
649 **     utc
650 **
651 ** Return 0 on success and 1 if there is any kind of error. If the error
652 ** is in a system call (i.e. localtime()), then an error message is written
653 ** to context pCtx. If the error is an unrecognized modifier, no error is
654 ** written to pCtx.
655 */
656 static int parseModifier(
657   sqlite3_context *pCtx,      /* Function context */
658   const char *z,              /* The text of the modifier */
659   int n,                      /* Length of zMod in bytes */
660   DateTime *p                 /* The date/time value to be modified */
661 ){
662   int rc = 1;
663   double r;
664   switch(sqlite3UpperToLower[(u8)z[0]] ){
665 #ifndef SQLITE_OMIT_LOCALTIME
666     case 'l': {
667       /*    localtime
668       **
669       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
670       ** show local time.
671       */
672       if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){
673         computeJD(p);
674         p->iJD += localtimeOffset(p, pCtx, &rc);
675         clearYMD_HMS_TZ(p);
676       }
677       break;
678     }
679 #endif
680     case 'u': {
681       /*
682       **    unixepoch
683       **
684       ** Treat the current value of p->s as the number of
685       ** seconds since 1970.  Convert to a real julian day number.
686       */
687       if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
688         r = p->s*1000.0 + 210866760000000.0;
689         if( r>=0.0 && r<464269060800000.0 ){
690           clearYMD_HMS_TZ(p);
691           p->iJD = (sqlite3_int64)(r + 0.5);
692           p->validJD = 1;
693           p->rawS = 0;
694           rc = 0;
695         }
696       }
697 #ifndef SQLITE_OMIT_LOCALTIME
698       else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){
699         if( p->tzSet==0 ){
700           sqlite3_int64 c1;
701           computeJD(p);
702           c1 = localtimeOffset(p, pCtx, &rc);
703           if( rc==SQLITE_OK ){
704             p->iJD -= c1;
705             clearYMD_HMS_TZ(p);
706             p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
707           }
708           p->tzSet = 1;
709         }else{
710           rc = SQLITE_OK;
711         }
712       }
713 #endif
714       break;
715     }
716     case 'w': {
717       /*
718       **    weekday N
719       **
720       ** Move the date to the same time on the next occurrence of
721       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
722       ** date is already on the appropriate weekday, this is a no-op.
723       */
724       if( sqlite3_strnicmp(z, "weekday ", 8)==0
725                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0
726                && (n=(int)r)==r && n>=0 && r<7 ){
727         sqlite3_int64 Z;
728         computeYMD_HMS(p);
729         p->validTZ = 0;
730         p->validJD = 0;
731         computeJD(p);
732         Z = ((p->iJD + 129600000)/86400000) % 7;
733         if( Z>n ) Z -= 7;
734         p->iJD += (n - Z)*86400000;
735         clearYMD_HMS_TZ(p);
736         rc = 0;
737       }
738       break;
739     }
740     case 's': {
741       /*
742       **    start of TTTTT
743       **
744       ** Move the date backwards to the beginning of the current day,
745       ** or month or year.
746       */
747       if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break;
748       if( !p->validJD && !p->validYMD && !p->validHMS ) break;
749       z += 9;
750       computeYMD(p);
751       p->validHMS = 1;
752       p->h = p->m = 0;
753       p->s = 0.0;
754       p->rawS = 0;
755       p->validTZ = 0;
756       p->validJD = 0;
757       if( sqlite3_stricmp(z,"month")==0 ){
758         p->D = 1;
759         rc = 0;
760       }else if( sqlite3_stricmp(z,"year")==0 ){
761         p->M = 1;
762         p->D = 1;
763         rc = 0;
764       }else if( sqlite3_stricmp(z,"day")==0 ){
765         rc = 0;
766       }
767       break;
768     }
769     case '+':
770     case '-':
771     case '0':
772     case '1':
773     case '2':
774     case '3':
775     case '4':
776     case '5':
777     case '6':
778     case '7':
779     case '8':
780     case '9': {
781       double rRounder;
782       int i;
783       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
784       if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){
785         rc = 1;
786         break;
787       }
788       if( z[n]==':' ){
789         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
790         ** specified number of hours, minutes, seconds, and fractional seconds
791         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
792         ** omitted.
793         */
794         const char *z2 = z;
795         DateTime tx;
796         sqlite3_int64 day;
797         if( !sqlite3Isdigit(*z2) ) z2++;
798         memset(&tx, 0, sizeof(tx));
799         if( parseHhMmSs(z2, &tx) ) break;
800         computeJD(&tx);
801         tx.iJD -= 43200000;
802         day = tx.iJD/86400000;
803         tx.iJD -= day*86400000;
804         if( z[0]=='-' ) tx.iJD = -tx.iJD;
805         computeJD(p);
806         clearYMD_HMS_TZ(p);
807         p->iJD += tx.iJD;
808         rc = 0;
809         break;
810       }
811 
812       /* If control reaches this point, it means the transformation is
813       ** one of the forms like "+NNN days".  */
814       z += n;
815       while( sqlite3Isspace(*z) ) z++;
816       n = sqlite3Strlen30(z);
817       if( n>10 || n<3 ) break;
818       if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
819       computeJD(p);
820       rc = 1;
821       rRounder = r<0 ? -0.5 : +0.5;
822       for(i=0; i<ArraySize(aXformType); i++){
823         if( aXformType[i].nName==n
824          && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
825          && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
826         ){
827           switch( aXformType[i].eType ){
828             case 1: { /* Special processing to add months */
829               int x;
830               computeYMD_HMS(p);
831               p->M += (int)r;
832               x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
833               p->Y += x;
834               p->M -= x*12;
835               p->validJD = 0;
836               r -= (int)r;
837               break;
838             }
839             case 2: { /* Special processing to add years */
840               int y = (int)r;
841               computeYMD_HMS(p);
842               p->Y += y;
843               p->validJD = 0;
844               r -= (int)r;
845               break;
846             }
847           }
848           computeJD(p);
849           p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder);
850           rc = 0;
851           break;
852         }
853       }
854       clearYMD_HMS_TZ(p);
855       break;
856     }
857     default: {
858       break;
859     }
860   }
861   return rc;
862 }
863 
864 /*
865 ** Process time function arguments.  argv[0] is a date-time stamp.
866 ** argv[1] and following are modifiers.  Parse them all and write
867 ** the resulting time into the DateTime structure p.  Return 0
868 ** on success and 1 if there are any errors.
869 **
870 ** If there are zero parameters (if even argv[0] is undefined)
871 ** then assume a default value of "now" for argv[0].
872 */
873 static int isDate(
874   sqlite3_context *context,
875   int argc,
876   sqlite3_value **argv,
877   DateTime *p
878 ){
879   int i, n;
880   const unsigned char *z;
881   int eType;
882   memset(p, 0, sizeof(*p));
883   if( argc==0 ){
884     return setDateTimeToCurrent(context, p);
885   }
886   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
887                    || eType==SQLITE_INTEGER ){
888     setRawDateNumber(p, sqlite3_value_double(argv[0]));
889   }else{
890     z = sqlite3_value_text(argv[0]);
891     if( !z || parseDateOrTime(context, (char*)z, p) ){
892       return 1;
893     }
894   }
895   for(i=1; i<argc; i++){
896     z = sqlite3_value_text(argv[i]);
897     n = sqlite3_value_bytes(argv[i]);
898     if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1;
899   }
900   computeJD(p);
901   if( p->isError || !validJulianDay(p->iJD) ) return 1;
902   return 0;
903 }
904 
905 
906 /*
907 ** The following routines implement the various date and time functions
908 ** of SQLite.
909 */
910 
911 /*
912 **    julianday( TIMESTRING, MOD, MOD, ...)
913 **
914 ** Return the julian day number of the date specified in the arguments
915 */
916 static void juliandayFunc(
917   sqlite3_context *context,
918   int argc,
919   sqlite3_value **argv
920 ){
921   DateTime x;
922   if( isDate(context, argc, argv, &x)==0 ){
923     computeJD(&x);
924     sqlite3_result_double(context, x.iJD/86400000.0);
925   }
926 }
927 
928 /*
929 **    datetime( TIMESTRING, MOD, MOD, ...)
930 **
931 ** Return YYYY-MM-DD HH:MM:SS
932 */
933 static void datetimeFunc(
934   sqlite3_context *context,
935   int argc,
936   sqlite3_value **argv
937 ){
938   DateTime x;
939   if( isDate(context, argc, argv, &x)==0 ){
940     char zBuf[100];
941     computeYMD_HMS(&x);
942     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
943                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
944     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
945   }
946 }
947 
948 /*
949 **    time( TIMESTRING, MOD, MOD, ...)
950 **
951 ** Return HH:MM:SS
952 */
953 static void timeFunc(
954   sqlite3_context *context,
955   int argc,
956   sqlite3_value **argv
957 ){
958   DateTime x;
959   if( isDate(context, argc, argv, &x)==0 ){
960     char zBuf[100];
961     computeHMS(&x);
962     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
963     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
964   }
965 }
966 
967 /*
968 **    date( TIMESTRING, MOD, MOD, ...)
969 **
970 ** Return YYYY-MM-DD
971 */
972 static void dateFunc(
973   sqlite3_context *context,
974   int argc,
975   sqlite3_value **argv
976 ){
977   DateTime x;
978   if( isDate(context, argc, argv, &x)==0 ){
979     char zBuf[100];
980     computeYMD(&x);
981     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
982     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
983   }
984 }
985 
986 /*
987 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
988 **
989 ** Return a string described by FORMAT.  Conversions as follows:
990 **
991 **   %d  day of month
992 **   %f  ** fractional seconds  SS.SSS
993 **   %H  hour 00-24
994 **   %j  day of year 000-366
995 **   %J  ** julian day number
996 **   %m  month 01-12
997 **   %M  minute 00-59
998 **   %s  seconds since 1970-01-01
999 **   %S  seconds 00-59
1000 **   %w  day of week 0-6  sunday==0
1001 **   %W  week of year 00-53
1002 **   %Y  year 0000-9999
1003 **   %%  %
1004 */
1005 static void strftimeFunc(
1006   sqlite3_context *context,
1007   int argc,
1008   sqlite3_value **argv
1009 ){
1010   DateTime x;
1011   u64 n;
1012   size_t i,j;
1013   char *z;
1014   sqlite3 *db;
1015   const char *zFmt;
1016   char zBuf[100];
1017   if( argc==0 ) return;
1018   zFmt = (const char*)sqlite3_value_text(argv[0]);
1019   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
1020   db = sqlite3_context_db_handle(context);
1021   for(i=0, n=1; zFmt[i]; i++, n++){
1022     if( zFmt[i]=='%' ){
1023       switch( zFmt[i+1] ){
1024         case 'd':
1025         case 'H':
1026         case 'm':
1027         case 'M':
1028         case 'S':
1029         case 'W':
1030           n++;
1031           /* fall thru */
1032         case 'w':
1033         case '%':
1034           break;
1035         case 'f':
1036           n += 8;
1037           break;
1038         case 'j':
1039           n += 3;
1040           break;
1041         case 'Y':
1042           n += 8;
1043           break;
1044         case 's':
1045         case 'J':
1046           n += 50;
1047           break;
1048         default:
1049           return;  /* ERROR.  return a NULL */
1050       }
1051       i++;
1052     }
1053   }
1054   testcase( n==sizeof(zBuf)-1 );
1055   testcase( n==sizeof(zBuf) );
1056   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
1057   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
1058   if( n<sizeof(zBuf) ){
1059     z = zBuf;
1060   }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
1061     sqlite3_result_error_toobig(context);
1062     return;
1063   }else{
1064     z = sqlite3DbMallocRawNN(db, (int)n);
1065     if( z==0 ){
1066       sqlite3_result_error_nomem(context);
1067       return;
1068     }
1069   }
1070   computeJD(&x);
1071   computeYMD_HMS(&x);
1072   for(i=j=0; zFmt[i]; i++){
1073     if( zFmt[i]!='%' ){
1074       z[j++] = zFmt[i];
1075     }else{
1076       i++;
1077       switch( zFmt[i] ){
1078         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
1079         case 'f': {
1080           double s = x.s;
1081           if( s>59.999 ) s = 59.999;
1082           sqlite3_snprintf(7, &z[j],"%06.3f", s);
1083           j += sqlite3Strlen30(&z[j]);
1084           break;
1085         }
1086         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
1087         case 'W': /* Fall thru */
1088         case 'j': {
1089           int nDay;             /* Number of days since 1st day of year */
1090           DateTime y = x;
1091           y.validJD = 0;
1092           y.M = 1;
1093           y.D = 1;
1094           computeJD(&y);
1095           nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
1096           if( zFmt[i]=='W' ){
1097             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1098             wd = (int)(((x.iJD+43200000)/86400000)%7);
1099             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
1100             j += 2;
1101           }else{
1102             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
1103             j += 3;
1104           }
1105           break;
1106         }
1107         case 'J': {
1108           sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
1109           j+=sqlite3Strlen30(&z[j]);
1110           break;
1111         }
1112         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
1113         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
1114         case 's': {
1115           i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000);
1116           sqlite3Int64ToText(iS, &z[j]);
1117           j += sqlite3Strlen30(&z[j]);
1118           break;
1119         }
1120         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
1121         case 'w': {
1122           z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
1123           break;
1124         }
1125         case 'Y': {
1126           sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
1127           break;
1128         }
1129         default:   z[j++] = '%'; break;
1130       }
1131     }
1132   }
1133   z[j] = 0;
1134   sqlite3_result_text(context, z, -1,
1135                       z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
1136 }
1137 
1138 /*
1139 ** current_time()
1140 **
1141 ** This function returns the same value as time('now').
1142 */
1143 static void ctimeFunc(
1144   sqlite3_context *context,
1145   int NotUsed,
1146   sqlite3_value **NotUsed2
1147 ){
1148   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1149   timeFunc(context, 0, 0);
1150 }
1151 
1152 /*
1153 ** current_date()
1154 **
1155 ** This function returns the same value as date('now').
1156 */
1157 static void cdateFunc(
1158   sqlite3_context *context,
1159   int NotUsed,
1160   sqlite3_value **NotUsed2
1161 ){
1162   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1163   dateFunc(context, 0, 0);
1164 }
1165 
1166 /*
1167 ** current_timestamp()
1168 **
1169 ** This function returns the same value as datetime('now').
1170 */
1171 static void ctimestampFunc(
1172   sqlite3_context *context,
1173   int NotUsed,
1174   sqlite3_value **NotUsed2
1175 ){
1176   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1177   datetimeFunc(context, 0, 0);
1178 }
1179 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1180 
1181 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1182 /*
1183 ** If the library is compiled to omit the full-scale date and time
1184 ** handling (to get a smaller binary), the following minimal version
1185 ** of the functions current_time(), current_date() and current_timestamp()
1186 ** are included instead. This is to support column declarations that
1187 ** include "DEFAULT CURRENT_TIME" etc.
1188 **
1189 ** This function uses the C-library functions time(), gmtime()
1190 ** and strftime(). The format string to pass to strftime() is supplied
1191 ** as the user-data for the function.
1192 */
1193 static void currentTimeFunc(
1194   sqlite3_context *context,
1195   int argc,
1196   sqlite3_value **argv
1197 ){
1198   time_t t;
1199   char *zFormat = (char *)sqlite3_user_data(context);
1200   sqlite3_int64 iT;
1201   struct tm *pTm;
1202   struct tm sNow;
1203   char zBuf[20];
1204 
1205   UNUSED_PARAMETER(argc);
1206   UNUSED_PARAMETER(argv);
1207 
1208   iT = sqlite3StmtCurrentTime(context);
1209   if( iT<=0 ) return;
1210   t = iT/1000 - 10000*(sqlite3_int64)21086676;
1211 #if HAVE_GMTIME_R
1212   pTm = gmtime_r(&t, &sNow);
1213 #else
1214   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
1215   pTm = gmtime(&t);
1216   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1217   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
1218 #endif
1219   if( pTm ){
1220     strftime(zBuf, 20, zFormat, &sNow);
1221     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1222   }
1223 }
1224 #endif
1225 
1226 /*
1227 ** This function registered all of the above C functions as SQL
1228 ** functions.  This should be the only routine in this file with
1229 ** external linkage.
1230 */
1231 void sqlite3RegisterDateTimeFunctions(void){
1232   static FuncDef aDateTimeFuncs[] = {
1233 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1234     PURE_DATE(julianday,        -1, 0, 0, juliandayFunc ),
1235     PURE_DATE(date,             -1, 0, 0, dateFunc      ),
1236     PURE_DATE(time,             -1, 0, 0, timeFunc      ),
1237     PURE_DATE(datetime,         -1, 0, 0, datetimeFunc  ),
1238     PURE_DATE(strftime,         -1, 0, 0, strftimeFunc  ),
1239     DFUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
1240     DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1241     DFUNCTION(current_date,      0, 0, 0, cdateFunc     ),
1242 #else
1243     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
1244     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
1245     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1246 #endif
1247   };
1248   sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
1249 }
1250