1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** $Id: date.c,v 1.106 2009/04/16 12:58:03 drh Exp $ 20 ** 21 ** SQLite processes all times and dates as Julian Day numbers. The 22 ** dates and times are stored as the number of days since noon 23 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 24 ** calendar system. 25 ** 26 ** 1970-01-01 00:00:00 is JD 2440587.5 27 ** 2000-01-01 00:00:00 is JD 2451544.5 28 ** 29 ** This implemention requires years to be expressed as a 4-digit number 30 ** which means that only dates between 0000-01-01 and 9999-12-31 can 31 ** be represented, even though julian day numbers allow a much wider 32 ** range of dates. 33 ** 34 ** The Gregorian calendar system is used for all dates and times, 35 ** even those that predate the Gregorian calendar. Historians usually 36 ** use the Julian calendar for dates prior to 1582-10-15 and for some 37 ** dates afterwards, depending on locale. Beware of this difference. 38 ** 39 ** The conversion algorithms are implemented based on descriptions 40 ** in the following text: 41 ** 42 ** Jean Meeus 43 ** Astronomical Algorithms, 2nd Edition, 1998 44 ** ISBM 0-943396-61-1 45 ** Willmann-Bell, Inc 46 ** Richmond, Virginia (USA) 47 */ 48 #include "sqliteInt.h" 49 #include <stdlib.h> 50 #include <assert.h> 51 #include <time.h> 52 53 #ifndef SQLITE_OMIT_DATETIME_FUNCS 54 55 /* 56 ** On recent Windows platforms, the localtime_s() function is available 57 ** as part of the "Secure CRT". It is essentially equivalent to 58 ** localtime_r() available under most POSIX platforms, except that the 59 ** order of the parameters is reversed. 60 ** 61 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 62 ** 63 ** If the user has not indicated to use localtime_r() or localtime_s() 64 ** already, check for an MSVC build environment that provides 65 ** localtime_s(). 66 */ 67 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ 68 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 69 #define HAVE_LOCALTIME_S 1 70 #endif 71 72 /* 73 ** A structure for holding a single date and time. 74 */ 75 typedef struct DateTime DateTime; 76 struct DateTime { 77 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 78 int Y, M, D; /* Year, month, and day */ 79 int h, m; /* Hour and minutes */ 80 int tz; /* Timezone offset in minutes */ 81 double s; /* Seconds */ 82 char validYMD; /* True (1) if Y,M,D are valid */ 83 char validHMS; /* True (1) if h,m,s are valid */ 84 char validJD; /* True (1) if iJD is valid */ 85 char validTZ; /* True (1) if tz is valid */ 86 }; 87 88 89 /* 90 ** Convert zDate into one or more integers. Additional arguments 91 ** come in groups of 5 as follows: 92 ** 93 ** N number of digits in the integer 94 ** min minimum allowed value of the integer 95 ** max maximum allowed value of the integer 96 ** nextC first character after the integer 97 ** pVal where to write the integers value. 98 ** 99 ** Conversions continue until one with nextC==0 is encountered. 100 ** The function returns the number of successful conversions. 101 */ 102 static int getDigits(const char *zDate, ...){ 103 va_list ap; 104 int val; 105 int N; 106 int min; 107 int max; 108 int nextC; 109 int *pVal; 110 int cnt = 0; 111 va_start(ap, zDate); 112 do{ 113 N = va_arg(ap, int); 114 min = va_arg(ap, int); 115 max = va_arg(ap, int); 116 nextC = va_arg(ap, int); 117 pVal = va_arg(ap, int*); 118 val = 0; 119 while( N-- ){ 120 if( !sqlite3Isdigit(*zDate) ){ 121 goto end_getDigits; 122 } 123 val = val*10 + *zDate - '0'; 124 zDate++; 125 } 126 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ 127 goto end_getDigits; 128 } 129 *pVal = val; 130 zDate++; 131 cnt++; 132 }while( nextC ); 133 end_getDigits: 134 va_end(ap); 135 return cnt; 136 } 137 138 /* 139 ** Read text from z[] and convert into a floating point number. Return 140 ** the number of digits converted. 141 */ 142 #define getValue sqlite3AtoF 143 144 /* 145 ** Parse a timezone extension on the end of a date-time. 146 ** The extension is of the form: 147 ** 148 ** (+/-)HH:MM 149 ** 150 ** Or the "zulu" notation: 151 ** 152 ** Z 153 ** 154 ** If the parse is successful, write the number of minutes 155 ** of change in p->tz and return 0. If a parser error occurs, 156 ** return non-zero. 157 ** 158 ** A missing specifier is not considered an error. 159 */ 160 static int parseTimezone(const char *zDate, DateTime *p){ 161 int sgn = 0; 162 int nHr, nMn; 163 int c; 164 while( sqlite3Isspace(*zDate) ){ zDate++; } 165 p->tz = 0; 166 c = *zDate; 167 if( c=='-' ){ 168 sgn = -1; 169 }else if( c=='+' ){ 170 sgn = +1; 171 }else if( c=='Z' || c=='z' ){ 172 zDate++; 173 goto zulu_time; 174 }else{ 175 return c!=0; 176 } 177 zDate++; 178 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ 179 return 1; 180 } 181 zDate += 5; 182 p->tz = sgn*(nMn + nHr*60); 183 zulu_time: 184 while( sqlite3Isspace(*zDate) ){ zDate++; } 185 return *zDate!=0; 186 } 187 188 /* 189 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 190 ** The HH, MM, and SS must each be exactly 2 digits. The 191 ** fractional seconds FFFF can be one or more digits. 192 ** 193 ** Return 1 if there is a parsing error and 0 on success. 194 */ 195 static int parseHhMmSs(const char *zDate, DateTime *p){ 196 int h, m, s; 197 double ms = 0.0; 198 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ 199 return 1; 200 } 201 zDate += 5; 202 if( *zDate==':' ){ 203 zDate++; 204 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ 205 return 1; 206 } 207 zDate += 2; 208 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 209 double rScale = 1.0; 210 zDate++; 211 while( sqlite3Isdigit(*zDate) ){ 212 ms = ms*10.0 + *zDate - '0'; 213 rScale *= 10.0; 214 zDate++; 215 } 216 ms /= rScale; 217 } 218 }else{ 219 s = 0; 220 } 221 p->validJD = 0; 222 p->validHMS = 1; 223 p->h = h; 224 p->m = m; 225 p->s = s + ms; 226 if( parseTimezone(zDate, p) ) return 1; 227 p->validTZ = (p->tz!=0)?1:0; 228 return 0; 229 } 230 231 /* 232 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 233 ** that the YYYY-MM-DD is according to the Gregorian calendar. 234 ** 235 ** Reference: Meeus page 61 236 */ 237 static void computeJD(DateTime *p){ 238 int Y, M, D, A, B, X1, X2; 239 240 if( p->validJD ) return; 241 if( p->validYMD ){ 242 Y = p->Y; 243 M = p->M; 244 D = p->D; 245 }else{ 246 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 247 M = 1; 248 D = 1; 249 } 250 if( M<=2 ){ 251 Y--; 252 M += 12; 253 } 254 A = Y/100; 255 B = 2 - A + (A/4); 256 X1 = 36525*(Y+4716)/100; 257 X2 = 306001*(M+1)/10000; 258 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 259 p->validJD = 1; 260 if( p->validHMS ){ 261 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 262 if( p->validTZ ){ 263 p->iJD -= p->tz*60000; 264 p->validYMD = 0; 265 p->validHMS = 0; 266 p->validTZ = 0; 267 } 268 } 269 } 270 271 /* 272 ** Parse dates of the form 273 ** 274 ** YYYY-MM-DD HH:MM:SS.FFF 275 ** YYYY-MM-DD HH:MM:SS 276 ** YYYY-MM-DD HH:MM 277 ** YYYY-MM-DD 278 ** 279 ** Write the result into the DateTime structure and return 0 280 ** on success and 1 if the input string is not a well-formed 281 ** date. 282 */ 283 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 284 int Y, M, D, neg; 285 286 if( zDate[0]=='-' ){ 287 zDate++; 288 neg = 1; 289 }else{ 290 neg = 0; 291 } 292 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ 293 return 1; 294 } 295 zDate += 10; 296 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 297 if( parseHhMmSs(zDate, p)==0 ){ 298 /* We got the time */ 299 }else if( *zDate==0 ){ 300 p->validHMS = 0; 301 }else{ 302 return 1; 303 } 304 p->validJD = 0; 305 p->validYMD = 1; 306 p->Y = neg ? -Y : Y; 307 p->M = M; 308 p->D = D; 309 if( p->validTZ ){ 310 computeJD(p); 311 } 312 return 0; 313 } 314 315 /* 316 ** Set the time to the current time reported by the VFS 317 */ 318 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 319 double r; 320 sqlite3 *db = sqlite3_context_db_handle(context); 321 sqlite3OsCurrentTime(db->pVfs, &r); 322 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 323 p->validJD = 1; 324 } 325 326 /* 327 ** Attempt to parse the given string into a Julian Day Number. Return 328 ** the number of errors. 329 ** 330 ** The following are acceptable forms for the input string: 331 ** 332 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 333 ** DDDD.DD 334 ** now 335 ** 336 ** In the first form, the +/-HH:MM is always optional. The fractional 337 ** seconds extension (the ".FFF") is optional. The seconds portion 338 ** (":SS.FFF") is option. The year and date can be omitted as long 339 ** as there is a time string. The time string can be omitted as long 340 ** as there is a year and date. 341 */ 342 static int parseDateOrTime( 343 sqlite3_context *context, 344 const char *zDate, 345 DateTime *p 346 ){ 347 if( parseYyyyMmDd(zDate,p)==0 ){ 348 return 0; 349 }else if( parseHhMmSs(zDate, p)==0 ){ 350 return 0; 351 }else if( sqlite3StrICmp(zDate,"now")==0){ 352 setDateTimeToCurrent(context, p); 353 return 0; 354 }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){ 355 double r; 356 getValue(zDate, &r); 357 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 358 p->validJD = 1; 359 return 0; 360 } 361 return 1; 362 } 363 364 /* 365 ** Compute the Year, Month, and Day from the julian day number. 366 */ 367 static void computeYMD(DateTime *p){ 368 int Z, A, B, C, D, E, X1; 369 if( p->validYMD ) return; 370 if( !p->validJD ){ 371 p->Y = 2000; 372 p->M = 1; 373 p->D = 1; 374 }else{ 375 Z = (int)((p->iJD + 43200000)/86400000); 376 A = (int)((Z - 1867216.25)/36524.25); 377 A = Z + 1 + A - (A/4); 378 B = A + 1524; 379 C = (int)((B - 122.1)/365.25); 380 D = (36525*C)/100; 381 E = (int)((B-D)/30.6001); 382 X1 = (int)(30.6001*E); 383 p->D = B - D - X1; 384 p->M = E<14 ? E-1 : E-13; 385 p->Y = p->M>2 ? C - 4716 : C - 4715; 386 } 387 p->validYMD = 1; 388 } 389 390 /* 391 ** Compute the Hour, Minute, and Seconds from the julian day number. 392 */ 393 static void computeHMS(DateTime *p){ 394 int s; 395 if( p->validHMS ) return; 396 computeJD(p); 397 s = (int)((p->iJD + 43200000) % 86400000); 398 p->s = s/1000.0; 399 s = (int)p->s; 400 p->s -= s; 401 p->h = s/3600; 402 s -= p->h*3600; 403 p->m = s/60; 404 p->s += s - p->m*60; 405 p->validHMS = 1; 406 } 407 408 /* 409 ** Compute both YMD and HMS 410 */ 411 static void computeYMD_HMS(DateTime *p){ 412 computeYMD(p); 413 computeHMS(p); 414 } 415 416 /* 417 ** Clear the YMD and HMS and the TZ 418 */ 419 static void clearYMD_HMS_TZ(DateTime *p){ 420 p->validYMD = 0; 421 p->validHMS = 0; 422 p->validTZ = 0; 423 } 424 425 #ifndef SQLITE_OMIT_LOCALTIME 426 /* 427 ** Compute the difference (in milliseconds) 428 ** between localtime and UTC (a.k.a. GMT) 429 ** for the time value p where p is in UTC. 430 */ 431 static sqlite3_int64 localtimeOffset(DateTime *p){ 432 DateTime x, y; 433 time_t t; 434 x = *p; 435 computeYMD_HMS(&x); 436 if( x.Y<1971 || x.Y>=2038 ){ 437 x.Y = 2000; 438 x.M = 1; 439 x.D = 1; 440 x.h = 0; 441 x.m = 0; 442 x.s = 0.0; 443 } else { 444 int s = (int)(x.s + 0.5); 445 x.s = s; 446 } 447 x.tz = 0; 448 x.validJD = 0; 449 computeJD(&x); 450 t = x.iJD/1000 - 21086676*(i64)10000; 451 #ifdef HAVE_LOCALTIME_R 452 { 453 struct tm sLocal; 454 localtime_r(&t, &sLocal); 455 y.Y = sLocal.tm_year + 1900; 456 y.M = sLocal.tm_mon + 1; 457 y.D = sLocal.tm_mday; 458 y.h = sLocal.tm_hour; 459 y.m = sLocal.tm_min; 460 y.s = sLocal.tm_sec; 461 } 462 #elif defined(HAVE_LOCALTIME_S) 463 { 464 struct tm sLocal; 465 localtime_s(&sLocal, &t); 466 y.Y = sLocal.tm_year + 1900; 467 y.M = sLocal.tm_mon + 1; 468 y.D = sLocal.tm_mday; 469 y.h = sLocal.tm_hour; 470 y.m = sLocal.tm_min; 471 y.s = sLocal.tm_sec; 472 } 473 #else 474 { 475 struct tm *pTm; 476 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 477 pTm = localtime(&t); 478 y.Y = pTm->tm_year + 1900; 479 y.M = pTm->tm_mon + 1; 480 y.D = pTm->tm_mday; 481 y.h = pTm->tm_hour; 482 y.m = pTm->tm_min; 483 y.s = pTm->tm_sec; 484 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 485 } 486 #endif 487 y.validYMD = 1; 488 y.validHMS = 1; 489 y.validJD = 0; 490 y.validTZ = 0; 491 computeJD(&y); 492 return y.iJD - x.iJD; 493 } 494 #endif /* SQLITE_OMIT_LOCALTIME */ 495 496 /* 497 ** Process a modifier to a date-time stamp. The modifiers are 498 ** as follows: 499 ** 500 ** NNN days 501 ** NNN hours 502 ** NNN minutes 503 ** NNN.NNNN seconds 504 ** NNN months 505 ** NNN years 506 ** start of month 507 ** start of year 508 ** start of week 509 ** start of day 510 ** weekday N 511 ** unixepoch 512 ** localtime 513 ** utc 514 ** 515 ** Return 0 on success and 1 if there is any kind of error. 516 */ 517 static int parseModifier(const char *zMod, DateTime *p){ 518 int rc = 1; 519 int n; 520 double r; 521 char *z, zBuf[30]; 522 z = zBuf; 523 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ 524 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; 525 } 526 z[n] = 0; 527 switch( z[0] ){ 528 #ifndef SQLITE_OMIT_LOCALTIME 529 case 'l': { 530 /* localtime 531 ** 532 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 533 ** show local time. 534 */ 535 if( strcmp(z, "localtime")==0 ){ 536 computeJD(p); 537 p->iJD += localtimeOffset(p); 538 clearYMD_HMS_TZ(p); 539 rc = 0; 540 } 541 break; 542 } 543 #endif 544 case 'u': { 545 /* 546 ** unixepoch 547 ** 548 ** Treat the current value of p->iJD as the number of 549 ** seconds since 1970. Convert to a real julian day number. 550 */ 551 if( strcmp(z, "unixepoch")==0 && p->validJD ){ 552 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; 553 clearYMD_HMS_TZ(p); 554 rc = 0; 555 } 556 #ifndef SQLITE_OMIT_LOCALTIME 557 else if( strcmp(z, "utc")==0 ){ 558 sqlite3_int64 c1; 559 computeJD(p); 560 c1 = localtimeOffset(p); 561 p->iJD -= c1; 562 clearYMD_HMS_TZ(p); 563 p->iJD += c1 - localtimeOffset(p); 564 rc = 0; 565 } 566 #endif 567 break; 568 } 569 case 'w': { 570 /* 571 ** weekday N 572 ** 573 ** Move the date to the same time on the next occurrence of 574 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 575 ** date is already on the appropriate weekday, this is a no-op. 576 */ 577 if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 578 && (n=(int)r)==r && n>=0 && r<7 ){ 579 sqlite3_int64 Z; 580 computeYMD_HMS(p); 581 p->validTZ = 0; 582 p->validJD = 0; 583 computeJD(p); 584 Z = ((p->iJD + 129600000)/86400000) % 7; 585 if( Z>n ) Z -= 7; 586 p->iJD += (n - Z)*86400000; 587 clearYMD_HMS_TZ(p); 588 rc = 0; 589 } 590 break; 591 } 592 case 's': { 593 /* 594 ** start of TTTTT 595 ** 596 ** Move the date backwards to the beginning of the current day, 597 ** or month or year. 598 */ 599 if( strncmp(z, "start of ", 9)!=0 ) break; 600 z += 9; 601 computeYMD(p); 602 p->validHMS = 1; 603 p->h = p->m = 0; 604 p->s = 0.0; 605 p->validTZ = 0; 606 p->validJD = 0; 607 if( strcmp(z,"month")==0 ){ 608 p->D = 1; 609 rc = 0; 610 }else if( strcmp(z,"year")==0 ){ 611 computeYMD(p); 612 p->M = 1; 613 p->D = 1; 614 rc = 0; 615 }else if( strcmp(z,"day")==0 ){ 616 rc = 0; 617 } 618 break; 619 } 620 case '+': 621 case '-': 622 case '0': 623 case '1': 624 case '2': 625 case '3': 626 case '4': 627 case '5': 628 case '6': 629 case '7': 630 case '8': 631 case '9': { 632 double rRounder; 633 n = getValue(z, &r); 634 assert( n>=1 ); 635 if( z[n]==':' ){ 636 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 637 ** specified number of hours, minutes, seconds, and fractional seconds 638 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 639 ** omitted. 640 */ 641 const char *z2 = z; 642 DateTime tx; 643 sqlite3_int64 day; 644 if( !sqlite3Isdigit(*z2) ) z2++; 645 memset(&tx, 0, sizeof(tx)); 646 if( parseHhMmSs(z2, &tx) ) break; 647 computeJD(&tx); 648 tx.iJD -= 43200000; 649 day = tx.iJD/86400000; 650 tx.iJD -= day*86400000; 651 if( z[0]=='-' ) tx.iJD = -tx.iJD; 652 computeJD(p); 653 clearYMD_HMS_TZ(p); 654 p->iJD += tx.iJD; 655 rc = 0; 656 break; 657 } 658 z += n; 659 while( sqlite3Isspace(*z) ) z++; 660 n = sqlite3Strlen30(z); 661 if( n>10 || n<3 ) break; 662 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } 663 computeJD(p); 664 rc = 0; 665 rRounder = r<0 ? -0.5 : +0.5; 666 if( n==3 && strcmp(z,"day")==0 ){ 667 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); 668 }else if( n==4 && strcmp(z,"hour")==0 ){ 669 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); 670 }else if( n==6 && strcmp(z,"minute")==0 ){ 671 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); 672 }else if( n==6 && strcmp(z,"second")==0 ){ 673 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); 674 }else if( n==5 && strcmp(z,"month")==0 ){ 675 int x, y; 676 computeYMD_HMS(p); 677 p->M += (int)r; 678 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 679 p->Y += x; 680 p->M -= x*12; 681 p->validJD = 0; 682 computeJD(p); 683 y = (int)r; 684 if( y!=r ){ 685 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); 686 } 687 }else if( n==4 && strcmp(z,"year")==0 ){ 688 int y = (int)r; 689 computeYMD_HMS(p); 690 p->Y += y; 691 p->validJD = 0; 692 computeJD(p); 693 if( y!=r ){ 694 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); 695 } 696 }else{ 697 rc = 1; 698 } 699 clearYMD_HMS_TZ(p); 700 break; 701 } 702 default: { 703 break; 704 } 705 } 706 return rc; 707 } 708 709 /* 710 ** Process time function arguments. argv[0] is a date-time stamp. 711 ** argv[1] and following are modifiers. Parse them all and write 712 ** the resulting time into the DateTime structure p. Return 0 713 ** on success and 1 if there are any errors. 714 ** 715 ** If there are zero parameters (if even argv[0] is undefined) 716 ** then assume a default value of "now" for argv[0]. 717 */ 718 static int isDate( 719 sqlite3_context *context, 720 int argc, 721 sqlite3_value **argv, 722 DateTime *p 723 ){ 724 int i; 725 const unsigned char *z; 726 int eType; 727 memset(p, 0, sizeof(*p)); 728 if( argc==0 ){ 729 setDateTimeToCurrent(context, p); 730 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 731 || eType==SQLITE_INTEGER ){ 732 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); 733 p->validJD = 1; 734 }else{ 735 z = sqlite3_value_text(argv[0]); 736 if( !z || parseDateOrTime(context, (char*)z, p) ){ 737 return 1; 738 } 739 } 740 for(i=1; i<argc; i++){ 741 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ 742 return 1; 743 } 744 } 745 return 0; 746 } 747 748 749 /* 750 ** The following routines implement the various date and time functions 751 ** of SQLite. 752 */ 753 754 /* 755 ** julianday( TIMESTRING, MOD, MOD, ...) 756 ** 757 ** Return the julian day number of the date specified in the arguments 758 */ 759 static void juliandayFunc( 760 sqlite3_context *context, 761 int argc, 762 sqlite3_value **argv 763 ){ 764 DateTime x; 765 if( isDate(context, argc, argv, &x)==0 ){ 766 computeJD(&x); 767 sqlite3_result_double(context, x.iJD/86400000.0); 768 } 769 } 770 771 /* 772 ** datetime( TIMESTRING, MOD, MOD, ...) 773 ** 774 ** Return YYYY-MM-DD HH:MM:SS 775 */ 776 static void datetimeFunc( 777 sqlite3_context *context, 778 int argc, 779 sqlite3_value **argv 780 ){ 781 DateTime x; 782 if( isDate(context, argc, argv, &x)==0 ){ 783 char zBuf[100]; 784 computeYMD_HMS(&x); 785 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 786 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 787 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 788 } 789 } 790 791 /* 792 ** time( TIMESTRING, MOD, MOD, ...) 793 ** 794 ** Return HH:MM:SS 795 */ 796 static void timeFunc( 797 sqlite3_context *context, 798 int argc, 799 sqlite3_value **argv 800 ){ 801 DateTime x; 802 if( isDate(context, argc, argv, &x)==0 ){ 803 char zBuf[100]; 804 computeHMS(&x); 805 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 806 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 807 } 808 } 809 810 /* 811 ** date( TIMESTRING, MOD, MOD, ...) 812 ** 813 ** Return YYYY-MM-DD 814 */ 815 static void dateFunc( 816 sqlite3_context *context, 817 int argc, 818 sqlite3_value **argv 819 ){ 820 DateTime x; 821 if( isDate(context, argc, argv, &x)==0 ){ 822 char zBuf[100]; 823 computeYMD(&x); 824 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 825 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 826 } 827 } 828 829 /* 830 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 831 ** 832 ** Return a string described by FORMAT. Conversions as follows: 833 ** 834 ** %d day of month 835 ** %f ** fractional seconds SS.SSS 836 ** %H hour 00-24 837 ** %j day of year 000-366 838 ** %J ** Julian day number 839 ** %m month 01-12 840 ** %M minute 00-59 841 ** %s seconds since 1970-01-01 842 ** %S seconds 00-59 843 ** %w day of week 0-6 sunday==0 844 ** %W week of year 00-53 845 ** %Y year 0000-9999 846 ** %% % 847 */ 848 static void strftimeFunc( 849 sqlite3_context *context, 850 int argc, 851 sqlite3_value **argv 852 ){ 853 DateTime x; 854 u64 n; 855 size_t i,j; 856 char *z; 857 sqlite3 *db; 858 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); 859 char zBuf[100]; 860 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 861 db = sqlite3_context_db_handle(context); 862 for(i=0, n=1; zFmt[i]; i++, n++){ 863 if( zFmt[i]=='%' ){ 864 switch( zFmt[i+1] ){ 865 case 'd': 866 case 'H': 867 case 'm': 868 case 'M': 869 case 'S': 870 case 'W': 871 n++; 872 /* fall thru */ 873 case 'w': 874 case '%': 875 break; 876 case 'f': 877 n += 8; 878 break; 879 case 'j': 880 n += 3; 881 break; 882 case 'Y': 883 n += 8; 884 break; 885 case 's': 886 case 'J': 887 n += 50; 888 break; 889 default: 890 return; /* ERROR. return a NULL */ 891 } 892 i++; 893 } 894 } 895 testcase( n==sizeof(zBuf)-1 ); 896 testcase( n==sizeof(zBuf) ); 897 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 898 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); 899 if( n<sizeof(zBuf) ){ 900 z = zBuf; 901 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 902 sqlite3_result_error_toobig(context); 903 return; 904 }else{ 905 z = sqlite3DbMallocRaw(db, (int)n); 906 if( z==0 ){ 907 sqlite3_result_error_nomem(context); 908 return; 909 } 910 } 911 computeJD(&x); 912 computeYMD_HMS(&x); 913 for(i=j=0; zFmt[i]; i++){ 914 if( zFmt[i]!='%' ){ 915 z[j++] = zFmt[i]; 916 }else{ 917 i++; 918 switch( zFmt[i] ){ 919 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; 920 case 'f': { 921 double s = x.s; 922 if( s>59.999 ) s = 59.999; 923 sqlite3_snprintf(7, &z[j],"%06.3f", s); 924 j += sqlite3Strlen30(&z[j]); 925 break; 926 } 927 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; 928 case 'W': /* Fall thru */ 929 case 'j': { 930 int nDay; /* Number of days since 1st day of year */ 931 DateTime y = x; 932 y.validJD = 0; 933 y.M = 1; 934 y.D = 1; 935 computeJD(&y); 936 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 937 if( zFmt[i]=='W' ){ 938 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 939 wd = (int)(((x.iJD+43200000)/86400000)%7); 940 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); 941 j += 2; 942 }else{ 943 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); 944 j += 3; 945 } 946 break; 947 } 948 case 'J': { 949 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); 950 j+=sqlite3Strlen30(&z[j]); 951 break; 952 } 953 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; 954 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; 955 case 's': { 956 sqlite3_snprintf(30,&z[j],"%lld", 957 (i64)(x.iJD/1000 - 21086676*(i64)10000)); 958 j += sqlite3Strlen30(&z[j]); 959 break; 960 } 961 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; 962 case 'w': { 963 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; 964 break; 965 } 966 case 'Y': { 967 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); 968 break; 969 } 970 default: z[j++] = '%'; break; 971 } 972 } 973 } 974 z[j] = 0; 975 sqlite3_result_text(context, z, -1, 976 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); 977 } 978 979 /* 980 ** current_time() 981 ** 982 ** This function returns the same value as time('now'). 983 */ 984 static void ctimeFunc( 985 sqlite3_context *context, 986 int NotUsed, 987 sqlite3_value **NotUsed2 988 ){ 989 UNUSED_PARAMETER2(NotUsed, NotUsed2); 990 timeFunc(context, 0, 0); 991 } 992 993 /* 994 ** current_date() 995 ** 996 ** This function returns the same value as date('now'). 997 */ 998 static void cdateFunc( 999 sqlite3_context *context, 1000 int NotUsed, 1001 sqlite3_value **NotUsed2 1002 ){ 1003 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1004 dateFunc(context, 0, 0); 1005 } 1006 1007 /* 1008 ** current_timestamp() 1009 ** 1010 ** This function returns the same value as datetime('now'). 1011 */ 1012 static void ctimestampFunc( 1013 sqlite3_context *context, 1014 int NotUsed, 1015 sqlite3_value **NotUsed2 1016 ){ 1017 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1018 datetimeFunc(context, 0, 0); 1019 } 1020 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1021 1022 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1023 /* 1024 ** If the library is compiled to omit the full-scale date and time 1025 ** handling (to get a smaller binary), the following minimal version 1026 ** of the functions current_time(), current_date() and current_timestamp() 1027 ** are included instead. This is to support column declarations that 1028 ** include "DEFAULT CURRENT_TIME" etc. 1029 ** 1030 ** This function uses the C-library functions time(), gmtime() 1031 ** and strftime(). The format string to pass to strftime() is supplied 1032 ** as the user-data for the function. 1033 */ 1034 static void currentTimeFunc( 1035 sqlite3_context *context, 1036 int argc, 1037 sqlite3_value **argv 1038 ){ 1039 time_t t; 1040 char *zFormat = (char *)sqlite3_user_data(context); 1041 sqlite3 *db; 1042 double rT; 1043 char zBuf[20]; 1044 1045 UNUSED_PARAMETER(argc); 1046 UNUSED_PARAMETER(argv); 1047 1048 db = sqlite3_context_db_handle(context); 1049 sqlite3OsCurrentTime(db->pVfs, &rT); 1050 #ifndef SQLITE_OMIT_FLOATING_POINT 1051 t = 86400.0*(rT - 2440587.5) + 0.5; 1052 #else 1053 /* without floating point support, rT will have 1054 ** already lost fractional day precision. 1055 */ 1056 t = 86400 * (rT - 2440587) - 43200; 1057 #endif 1058 #ifdef HAVE_GMTIME_R 1059 { 1060 struct tm sNow; 1061 gmtime_r(&t, &sNow); 1062 strftime(zBuf, 20, zFormat, &sNow); 1063 } 1064 #else 1065 { 1066 struct tm *pTm; 1067 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1068 pTm = gmtime(&t); 1069 strftime(zBuf, 20, zFormat, pTm); 1070 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 1071 } 1072 #endif 1073 1074 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1075 } 1076 #endif 1077 1078 /* 1079 ** This function registered all of the above C functions as SQL 1080 ** functions. This should be the only routine in this file with 1081 ** external linkage. 1082 */ 1083 void sqlite3RegisterDateTimeFunctions(void){ 1084 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { 1085 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1086 FUNCTION(julianday, -1, 0, 0, juliandayFunc ), 1087 FUNCTION(date, -1, 0, 0, dateFunc ), 1088 FUNCTION(time, -1, 0, 0, timeFunc ), 1089 FUNCTION(datetime, -1, 0, 0, datetimeFunc ), 1090 FUNCTION(strftime, -1, 0, 0, strftimeFunc ), 1091 FUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1092 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1093 FUNCTION(current_date, 0, 0, 0, cdateFunc ), 1094 #else 1095 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1096 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d", 0, currentTimeFunc), 1097 STR_FUNCTION(current_date, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1098 #endif 1099 }; 1100 int i; 1101 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 1102 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); 1103 1104 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ 1105 sqlite3FuncDefInsert(pHash, &aFunc[i]); 1106 } 1107 } 1108