1 /* 2 ** 2003 October 31 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement date and time 13 ** functions for SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 ** 19 ** SQLite processes all times and dates as julian day numbers. The 20 ** dates and times are stored as the number of days since noon 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian 22 ** calendar system. 23 ** 24 ** 1970-01-01 00:00:00 is JD 2440587.5 25 ** 2000-01-01 00:00:00 is JD 2451544.5 26 ** 27 ** This implementation requires years to be expressed as a 4-digit number 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can 29 ** be represented, even though julian day numbers allow a much wider 30 ** range of dates. 31 ** 32 ** The Gregorian calendar system is used for all dates and times, 33 ** even those that predate the Gregorian calendar. Historians usually 34 ** use the julian calendar for dates prior to 1582-10-15 and for some 35 ** dates afterwards, depending on locale. Beware of this difference. 36 ** 37 ** The conversion algorithms are implemented based on descriptions 38 ** in the following text: 39 ** 40 ** Jean Meeus 41 ** Astronomical Algorithms, 2nd Edition, 1998 42 ** ISBN 0-943396-61-1 43 ** Willmann-Bell, Inc 44 ** Richmond, Virginia (USA) 45 */ 46 #include "sqliteInt.h" 47 #include <stdlib.h> 48 #include <assert.h> 49 #include <time.h> 50 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS 52 53 /* 54 ** The MSVC CRT on Windows CE may not have a localtime() function. 55 ** So declare a substitute. The substitute function itself is 56 ** defined in "os_win.c". 57 */ 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) 60 struct tm *__cdecl localtime(const time_t *); 61 #endif 62 63 /* 64 ** A structure for holding a single date and time. 65 */ 66 typedef struct DateTime DateTime; 67 struct DateTime { 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ 69 int Y, M, D; /* Year, month, and day */ 70 int h, m; /* Hour and minutes */ 71 int tz; /* Timezone offset in minutes */ 72 double s; /* Seconds */ 73 char validJD; /* True (1) if iJD is valid */ 74 char rawS; /* Raw numeric value stored in s */ 75 char validYMD; /* True (1) if Y,M,D are valid */ 76 char validHMS; /* True (1) if h,m,s are valid */ 77 char validTZ; /* True (1) if tz is valid */ 78 char tzSet; /* Timezone was set explicitly */ 79 char isError; /* An overflow has occurred */ 80 }; 81 82 83 /* 84 ** Convert zDate into one or more integers according to the conversion 85 ** specifier zFormat. 86 ** 87 ** zFormat[] contains 4 characters for each integer converted, except for 88 ** the last integer which is specified by three characters. The meaning 89 ** of a four-character format specifiers ABCD is: 90 ** 91 ** A: number of digits to convert. Always "2" or "4". 92 ** B: minimum value. Always "0" or "1". 93 ** C: maximum value, decoded as: 94 ** a: 12 95 ** b: 14 96 ** c: 24 97 ** d: 31 98 ** e: 59 99 ** f: 9999 100 ** D: the separator character, or \000 to indicate this is the 101 ** last number to convert. 102 ** 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates 106 ** the 2-digit day which is the last integer in the set. 107 ** 108 ** The function returns the number of successful conversions. 109 */ 110 static int getDigits(const char *zDate, const char *zFormat, ...){ 111 /* The aMx[] array translates the 3rd character of each format 112 ** spec into a max size: a b c d e f */ 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; 114 va_list ap; 115 int cnt = 0; 116 char nextC; 117 va_start(ap, zFormat); 118 do{ 119 char N = zFormat[0] - '0'; 120 char min = zFormat[1] - '0'; 121 int val = 0; 122 u16 max; 123 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); 125 max = aMx[zFormat[2] - 'a']; 126 nextC = zFormat[3]; 127 val = 0; 128 while( N-- ){ 129 if( !sqlite3Isdigit(*zDate) ){ 130 goto end_getDigits; 131 } 132 val = val*10 + *zDate - '0'; 133 zDate++; 134 } 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ 136 goto end_getDigits; 137 } 138 *va_arg(ap,int*) = val; 139 zDate++; 140 cnt++; 141 zFormat += 4; 142 }while( nextC ); 143 end_getDigits: 144 va_end(ap); 145 return cnt; 146 } 147 148 /* 149 ** Parse a timezone extension on the end of a date-time. 150 ** The extension is of the form: 151 ** 152 ** (+/-)HH:MM 153 ** 154 ** Or the "zulu" notation: 155 ** 156 ** Z 157 ** 158 ** If the parse is successful, write the number of minutes 159 ** of change in p->tz and return 0. If a parser error occurs, 160 ** return non-zero. 161 ** 162 ** A missing specifier is not considered an error. 163 */ 164 static int parseTimezone(const char *zDate, DateTime *p){ 165 int sgn = 0; 166 int nHr, nMn; 167 int c; 168 while( sqlite3Isspace(*zDate) ){ zDate++; } 169 p->tz = 0; 170 c = *zDate; 171 if( c=='-' ){ 172 sgn = -1; 173 }else if( c=='+' ){ 174 sgn = +1; 175 }else if( c=='Z' || c=='z' ){ 176 zDate++; 177 goto zulu_time; 178 }else{ 179 return c!=0; 180 } 181 zDate++; 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ 183 return 1; 184 } 185 zDate += 5; 186 p->tz = sgn*(nMn + nHr*60); 187 zulu_time: 188 while( sqlite3Isspace(*zDate) ){ zDate++; } 189 p->tzSet = 1; 190 return *zDate!=0; 191 } 192 193 /* 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. 195 ** The HH, MM, and SS must each be exactly 2 digits. The 196 ** fractional seconds FFFF can be one or more digits. 197 ** 198 ** Return 1 if there is a parsing error and 0 on success. 199 */ 200 static int parseHhMmSs(const char *zDate, DateTime *p){ 201 int h, m, s; 202 double ms = 0.0; 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ 204 return 1; 205 } 206 zDate += 5; 207 if( *zDate==':' ){ 208 zDate++; 209 if( getDigits(zDate, "20e", &s)!=1 ){ 210 return 1; 211 } 212 zDate += 2; 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ 214 double rScale = 1.0; 215 zDate++; 216 while( sqlite3Isdigit(*zDate) ){ 217 ms = ms*10.0 + *zDate - '0'; 218 rScale *= 10.0; 219 zDate++; 220 } 221 ms /= rScale; 222 } 223 }else{ 224 s = 0; 225 } 226 p->validJD = 0; 227 p->rawS = 0; 228 p->validHMS = 1; 229 p->h = h; 230 p->m = m; 231 p->s = s + ms; 232 if( parseTimezone(zDate, p) ) return 1; 233 p->validTZ = (p->tz!=0)?1:0; 234 return 0; 235 } 236 237 /* 238 ** Put the DateTime object into its error state. 239 */ 240 static void datetimeError(DateTime *p){ 241 memset(p, 0, sizeof(*p)); 242 p->isError = 1; 243 } 244 245 /* 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. 248 ** 249 ** Reference: Meeus page 61 250 */ 251 static void computeJD(DateTime *p){ 252 int Y, M, D, A, B, X1, X2; 253 254 if( p->validJD ) return; 255 if( p->validYMD ){ 256 Y = p->Y; 257 M = p->M; 258 D = p->D; 259 }else{ 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ 261 M = 1; 262 D = 1; 263 } 264 if( Y<-4713 || Y>9999 || p->rawS ){ 265 datetimeError(p); 266 return; 267 } 268 if( M<=2 ){ 269 Y--; 270 M += 12; 271 } 272 A = Y/100; 273 B = 2 - A + (A/4); 274 X1 = 36525*(Y+4716)/100; 275 X2 = 306001*(M+1)/10000; 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); 277 p->validJD = 1; 278 if( p->validHMS ){ 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); 280 if( p->validTZ ){ 281 p->iJD -= p->tz*60000; 282 p->validYMD = 0; 283 p->validHMS = 0; 284 p->validTZ = 0; 285 } 286 } 287 } 288 289 /* 290 ** Parse dates of the form 291 ** 292 ** YYYY-MM-DD HH:MM:SS.FFF 293 ** YYYY-MM-DD HH:MM:SS 294 ** YYYY-MM-DD HH:MM 295 ** YYYY-MM-DD 296 ** 297 ** Write the result into the DateTime structure and return 0 298 ** on success and 1 if the input string is not a well-formed 299 ** date. 300 */ 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ 302 int Y, M, D, neg; 303 304 if( zDate[0]=='-' ){ 305 zDate++; 306 neg = 1; 307 }else{ 308 neg = 0; 309 } 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ 311 return 1; 312 } 313 zDate += 10; 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } 315 if( parseHhMmSs(zDate, p)==0 ){ 316 /* We got the time */ 317 }else if( *zDate==0 ){ 318 p->validHMS = 0; 319 }else{ 320 return 1; 321 } 322 p->validJD = 0; 323 p->validYMD = 1; 324 p->Y = neg ? -Y : Y; 325 p->M = M; 326 p->D = D; 327 if( p->validTZ ){ 328 computeJD(p); 329 } 330 return 0; 331 } 332 333 /* 334 ** Set the time to the current time reported by the VFS. 335 ** 336 ** Return the number of errors. 337 */ 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ 339 p->iJD = sqlite3StmtCurrentTime(context); 340 if( p->iJD>0 ){ 341 p->validJD = 1; 342 return 0; 343 }else{ 344 return 1; 345 } 346 } 347 348 /* 349 ** Input "r" is a numeric quantity which might be a julian day number, 350 ** or the number of seconds since 1970. If the value if r is within 351 ** range of a julian day number, install it as such and set validJD. 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. 353 */ 354 static void setRawDateNumber(DateTime *p, double r){ 355 p->s = r; 356 p->rawS = 1; 357 if( r>=0.0 && r<5373484.5 ){ 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); 359 p->validJD = 1; 360 } 361 } 362 363 /* 364 ** Attempt to parse the given string into a julian day number. Return 365 ** the number of errors. 366 ** 367 ** The following are acceptable forms for the input string: 368 ** 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM 370 ** DDDD.DD 371 ** now 372 ** 373 ** In the first form, the +/-HH:MM is always optional. The fractional 374 ** seconds extension (the ".FFF") is optional. The seconds portion 375 ** (":SS.FFF") is option. The year and date can be omitted as long 376 ** as there is a time string. The time string can be omitted as long 377 ** as there is a year and date. 378 */ 379 static int parseDateOrTime( 380 sqlite3_context *context, 381 const char *zDate, 382 DateTime *p 383 ){ 384 double r; 385 if( parseYyyyMmDd(zDate,p)==0 ){ 386 return 0; 387 }else if( parseHhMmSs(zDate, p)==0 ){ 388 return 0; 389 }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){ 390 return setDateTimeToCurrent(context, p); 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){ 392 setRawDateNumber(p, r); 393 return 0; 394 } 395 return 1; 396 } 397 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value 400 ** for DateTime.iJD. 401 ** 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with 403 ** such a large integer literal, so we have to encode it. 404 */ 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) 406 407 /* 408 ** Return TRUE if the given julian day number is within range. 409 ** 410 ** The input is the JulianDay times 86400000. 411 */ 412 static int validJulianDay(sqlite3_int64 iJD){ 413 return iJD>=0 && iJD<=INT_464269060799999; 414 } 415 416 /* 417 ** Compute the Year, Month, and Day from the julian day number. 418 */ 419 static void computeYMD(DateTime *p){ 420 int Z, A, B, C, D, E, X1; 421 if( p->validYMD ) return; 422 if( !p->validJD ){ 423 p->Y = 2000; 424 p->M = 1; 425 p->D = 1; 426 }else if( !validJulianDay(p->iJD) ){ 427 datetimeError(p); 428 return; 429 }else{ 430 Z = (int)((p->iJD + 43200000)/86400000); 431 A = (int)((Z - 1867216.25)/36524.25); 432 A = Z + 1 + A - (A/4); 433 B = A + 1524; 434 C = (int)((B - 122.1)/365.25); 435 D = (36525*(C&32767))/100; 436 E = (int)((B-D)/30.6001); 437 X1 = (int)(30.6001*E); 438 p->D = B - D - X1; 439 p->M = E<14 ? E-1 : E-13; 440 p->Y = p->M>2 ? C - 4716 : C - 4715; 441 } 442 p->validYMD = 1; 443 } 444 445 /* 446 ** Compute the Hour, Minute, and Seconds from the julian day number. 447 */ 448 static void computeHMS(DateTime *p){ 449 int s; 450 if( p->validHMS ) return; 451 computeJD(p); 452 s = (int)((p->iJD + 43200000) % 86400000); 453 p->s = s/1000.0; 454 s = (int)p->s; 455 p->s -= s; 456 p->h = s/3600; 457 s -= p->h*3600; 458 p->m = s/60; 459 p->s += s - p->m*60; 460 p->rawS = 0; 461 p->validHMS = 1; 462 } 463 464 /* 465 ** Compute both YMD and HMS 466 */ 467 static void computeYMD_HMS(DateTime *p){ 468 computeYMD(p); 469 computeHMS(p); 470 } 471 472 /* 473 ** Clear the YMD and HMS and the TZ 474 */ 475 static void clearYMD_HMS_TZ(DateTime *p){ 476 p->validYMD = 0; 477 p->validHMS = 0; 478 p->validTZ = 0; 479 } 480 481 #ifndef SQLITE_OMIT_LOCALTIME 482 /* 483 ** On recent Windows platforms, the localtime_s() function is available 484 ** as part of the "Secure CRT". It is essentially equivalent to 485 ** localtime_r() available under most POSIX platforms, except that the 486 ** order of the parameters is reversed. 487 ** 488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. 489 ** 490 ** If the user has not indicated to use localtime_r() or localtime_s() 491 ** already, check for an MSVC build environment that provides 492 ** localtime_s(). 493 */ 494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ 495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) 496 #undef HAVE_LOCALTIME_S 497 #define HAVE_LOCALTIME_S 1 498 #endif 499 500 /* 501 ** The following routine implements the rough equivalent of localtime_r() 502 ** using whatever operating-system specific localtime facility that 503 ** is available. This routine returns 0 on success and 504 ** non-zero on any kind of error. 505 ** 506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this 507 ** routine will always fail. 508 ** 509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C 510 ** library function localtime_r() is used to assist in the calculation of 511 ** local time. 512 */ 513 static int osLocaltime(time_t *t, struct tm *pTm){ 514 int rc; 515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S 516 struct tm *pX; 517 #if SQLITE_THREADSAFE>0 518 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 519 #endif 520 sqlite3_mutex_enter(mutex); 521 pX = localtime(t); 522 #ifndef SQLITE_UNTESTABLE 523 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; 524 #endif 525 if( pX ) *pTm = *pX; 526 #if SQLITE_THREADSAFE>0 527 sqlite3_mutex_leave(mutex); 528 #endif 529 rc = pX==0; 530 #else 531 #ifndef SQLITE_UNTESTABLE 532 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; 533 #endif 534 #if HAVE_LOCALTIME_R 535 rc = localtime_r(t, pTm)==0; 536 #else 537 rc = localtime_s(pTm, t); 538 #endif /* HAVE_LOCALTIME_R */ 539 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ 540 return rc; 541 } 542 #endif /* SQLITE_OMIT_LOCALTIME */ 543 544 545 #ifndef SQLITE_OMIT_LOCALTIME 546 /* 547 ** Compute the difference (in milliseconds) between localtime and UTC 548 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, 549 ** return this value and set *pRc to SQLITE_OK. 550 ** 551 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value 552 ** is undefined in this case. 553 */ 554 static sqlite3_int64 localtimeOffset( 555 DateTime *p, /* Date at which to calculate offset */ 556 sqlite3_context *pCtx, /* Write error here if one occurs */ 557 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ 558 ){ 559 DateTime x, y; 560 time_t t; 561 struct tm sLocal; 562 563 /* Initialize the contents of sLocal to avoid a compiler warning. */ 564 memset(&sLocal, 0, sizeof(sLocal)); 565 566 x = *p; 567 computeYMD_HMS(&x); 568 if( x.Y<1971 || x.Y>=2038 ){ 569 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only 570 ** works for years between 1970 and 2037. For dates outside this range, 571 ** SQLite attempts to map the year into an equivalent year within this 572 ** range, do the calculation, then map the year back. 573 */ 574 x.Y = 2000; 575 x.M = 1; 576 x.D = 1; 577 x.h = 0; 578 x.m = 0; 579 x.s = 0.0; 580 } else { 581 int s = (int)(x.s + 0.5); 582 x.s = s; 583 } 584 x.tz = 0; 585 x.validJD = 0; 586 computeJD(&x); 587 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); 588 if( osLocaltime(&t, &sLocal) ){ 589 sqlite3_result_error(pCtx, "local time unavailable", -1); 590 *pRc = SQLITE_ERROR; 591 return 0; 592 } 593 y.Y = sLocal.tm_year + 1900; 594 y.M = sLocal.tm_mon + 1; 595 y.D = sLocal.tm_mday; 596 y.h = sLocal.tm_hour; 597 y.m = sLocal.tm_min; 598 y.s = sLocal.tm_sec; 599 y.validYMD = 1; 600 y.validHMS = 1; 601 y.validJD = 0; 602 y.rawS = 0; 603 y.validTZ = 0; 604 y.isError = 0; 605 computeJD(&y); 606 *pRc = SQLITE_OK; 607 return y.iJD - x.iJD; 608 } 609 #endif /* SQLITE_OMIT_LOCALTIME */ 610 611 /* 612 ** The following table defines various date transformations of the form 613 ** 614 ** 'NNN days' 615 ** 616 ** Where NNN is an arbitrary floating-point number and "days" can be one 617 ** of several units of time. 618 */ 619 static const struct { 620 u8 nName; /* Length of the name */ 621 char zName[7]; /* Name of the transformation */ 622 float rLimit; /* Maximum NNN value for this transform */ 623 float rXform; /* Constant used for this transform */ 624 } aXformType[] = { 625 { 6, "second", 4.6427e+14, 1.0 }, 626 { 6, "minute", 7.7379e+12, 60.0 }, 627 { 4, "hour", 1.2897e+11, 3600.0 }, 628 { 3, "day", 5373485.0, 86400.0 }, 629 { 5, "month", 176546.0, 2592000.0 }, 630 { 4, "year", 14713.0, 31536000.0 }, 631 }; 632 633 /* 634 ** Process a modifier to a date-time stamp. The modifiers are 635 ** as follows: 636 ** 637 ** NNN days 638 ** NNN hours 639 ** NNN minutes 640 ** NNN.NNNN seconds 641 ** NNN months 642 ** NNN years 643 ** start of month 644 ** start of year 645 ** start of week 646 ** start of day 647 ** weekday N 648 ** unixepoch 649 ** localtime 650 ** utc 651 ** 652 ** Return 0 on success and 1 if there is any kind of error. If the error 653 ** is in a system call (i.e. localtime()), then an error message is written 654 ** to context pCtx. If the error is an unrecognized modifier, no error is 655 ** written to pCtx. 656 */ 657 static int parseModifier( 658 sqlite3_context *pCtx, /* Function context */ 659 const char *z, /* The text of the modifier */ 660 int n, /* Length of zMod in bytes */ 661 DateTime *p, /* The date/time value to be modified */ 662 int idx /* Parameter index of the modifier */ 663 ){ 664 int rc = 1; 665 double r; 666 switch(sqlite3UpperToLower[(u8)z[0]] ){ 667 case 'a': { 668 /* 669 ** auto 670 ** 671 ** If rawS is available, then interpret as a julian day number, or 672 ** a unix timestamp, depending on its magnitude. 673 */ 674 if( sqlite3_stricmp(z, "auto")==0 ){ 675 if( idx>1 ) return 1; /* IMP: R-33611-57934 */ 676 if( !p->rawS || p->validJD ){ 677 rc = 0; 678 p->rawS = 0; 679 }else if( p->s>=-210866760000 && p->s<=253402300799 ){ 680 r = p->s*1000.0 + 210866760000000.0; 681 clearYMD_HMS_TZ(p); 682 p->iJD = (sqlite3_int64)(r + 0.5); 683 p->validJD = 1; 684 p->rawS = 0; 685 rc = 0; 686 } 687 } 688 break; 689 } 690 case 'j': { 691 /* 692 ** julianday 693 ** 694 ** Always interpret the prior number as a julian-day value. If this 695 ** is not the first modifier, or if the prior argument is not a numeric 696 ** value in the allowed range of julian day numbers understood by 697 ** SQLite (0..5373484.5) then the result will be NULL. 698 */ 699 if( sqlite3_stricmp(z, "julianday")==0 ){ 700 if( idx>1 ) return 1; 701 if( p->validJD && p->rawS ){ 702 rc = 0; 703 p->rawS = 0; 704 } 705 } 706 break; 707 } 708 #ifndef SQLITE_OMIT_LOCALTIME 709 case 'l': { 710 /* localtime 711 ** 712 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to 713 ** show local time. 714 */ 715 if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){ 716 computeJD(p); 717 p->iJD += localtimeOffset(p, pCtx, &rc); 718 clearYMD_HMS_TZ(p); 719 } 720 break; 721 } 722 #endif 723 case 'u': { 724 /* 725 ** unixepoch 726 ** 727 ** Treat the current value of p->s as the number of 728 ** seconds since 1970. Convert to a real julian day number. 729 */ 730 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ 731 r = p->s*1000.0 + 210866760000000.0; 732 if( r>=0.0 && r<464269060800000.0 ){ 733 clearYMD_HMS_TZ(p); 734 p->iJD = (sqlite3_int64)(r + 0.5); 735 p->validJD = 1; 736 p->rawS = 0; 737 rc = 0; 738 } 739 } 740 #ifndef SQLITE_OMIT_LOCALTIME 741 else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){ 742 if( p->tzSet==0 ){ 743 sqlite3_int64 c1; 744 computeJD(p); 745 c1 = localtimeOffset(p, pCtx, &rc); 746 if( rc==SQLITE_OK ){ 747 p->iJD -= c1; 748 clearYMD_HMS_TZ(p); 749 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); 750 } 751 p->tzSet = 1; 752 }else{ 753 rc = SQLITE_OK; 754 } 755 } 756 #endif 757 break; 758 } 759 case 'w': { 760 /* 761 ** weekday N 762 ** 763 ** Move the date to the same time on the next occurrence of 764 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the 765 ** date is already on the appropriate weekday, this is a no-op. 766 */ 767 if( sqlite3_strnicmp(z, "weekday ", 8)==0 768 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 769 && (n=(int)r)==r && n>=0 && r<7 ){ 770 sqlite3_int64 Z; 771 computeYMD_HMS(p); 772 p->validTZ = 0; 773 p->validJD = 0; 774 computeJD(p); 775 Z = ((p->iJD + 129600000)/86400000) % 7; 776 if( Z>n ) Z -= 7; 777 p->iJD += (n - Z)*86400000; 778 clearYMD_HMS_TZ(p); 779 rc = 0; 780 } 781 break; 782 } 783 case 's': { 784 /* 785 ** start of TTTTT 786 ** 787 ** Move the date backwards to the beginning of the current day, 788 ** or month or year. 789 */ 790 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; 791 if( !p->validJD && !p->validYMD && !p->validHMS ) break; 792 z += 9; 793 computeYMD(p); 794 p->validHMS = 1; 795 p->h = p->m = 0; 796 p->s = 0.0; 797 p->rawS = 0; 798 p->validTZ = 0; 799 p->validJD = 0; 800 if( sqlite3_stricmp(z,"month")==0 ){ 801 p->D = 1; 802 rc = 0; 803 }else if( sqlite3_stricmp(z,"year")==0 ){ 804 p->M = 1; 805 p->D = 1; 806 rc = 0; 807 }else if( sqlite3_stricmp(z,"day")==0 ){ 808 rc = 0; 809 } 810 break; 811 } 812 case '+': 813 case '-': 814 case '0': 815 case '1': 816 case '2': 817 case '3': 818 case '4': 819 case '5': 820 case '6': 821 case '7': 822 case '8': 823 case '9': { 824 double rRounder; 825 int i; 826 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} 827 if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ 828 rc = 1; 829 break; 830 } 831 if( z[n]==':' ){ 832 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the 833 ** specified number of hours, minutes, seconds, and fractional seconds 834 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be 835 ** omitted. 836 */ 837 const char *z2 = z; 838 DateTime tx; 839 sqlite3_int64 day; 840 if( !sqlite3Isdigit(*z2) ) z2++; 841 memset(&tx, 0, sizeof(tx)); 842 if( parseHhMmSs(z2, &tx) ) break; 843 computeJD(&tx); 844 tx.iJD -= 43200000; 845 day = tx.iJD/86400000; 846 tx.iJD -= day*86400000; 847 if( z[0]=='-' ) tx.iJD = -tx.iJD; 848 computeJD(p); 849 clearYMD_HMS_TZ(p); 850 p->iJD += tx.iJD; 851 rc = 0; 852 break; 853 } 854 855 /* If control reaches this point, it means the transformation is 856 ** one of the forms like "+NNN days". */ 857 z += n; 858 while( sqlite3Isspace(*z) ) z++; 859 n = sqlite3Strlen30(z); 860 if( n>10 || n<3 ) break; 861 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; 862 computeJD(p); 863 rc = 1; 864 rRounder = r<0 ? -0.5 : +0.5; 865 for(i=0; i<ArraySize(aXformType); i++){ 866 if( aXformType[i].nName==n 867 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 868 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit 869 ){ 870 switch( i ){ 871 case 4: { /* Special processing to add months */ 872 int x; 873 assert( strcmp(aXformType[i].zName,"month")==0 ); 874 computeYMD_HMS(p); 875 p->M += (int)r; 876 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; 877 p->Y += x; 878 p->M -= x*12; 879 p->validJD = 0; 880 r -= (int)r; 881 break; 882 } 883 case 5: { /* Special processing to add years */ 884 int y = (int)r; 885 assert( strcmp(aXformType[i].zName,"year")==0 ); 886 computeYMD_HMS(p); 887 p->Y += y; 888 p->validJD = 0; 889 r -= (int)r; 890 break; 891 } 892 } 893 computeJD(p); 894 p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder); 895 rc = 0; 896 break; 897 } 898 } 899 clearYMD_HMS_TZ(p); 900 break; 901 } 902 default: { 903 break; 904 } 905 } 906 return rc; 907 } 908 909 /* 910 ** Process time function arguments. argv[0] is a date-time stamp. 911 ** argv[1] and following are modifiers. Parse them all and write 912 ** the resulting time into the DateTime structure p. Return 0 913 ** on success and 1 if there are any errors. 914 ** 915 ** If there are zero parameters (if even argv[0] is undefined) 916 ** then assume a default value of "now" for argv[0]. 917 */ 918 static int isDate( 919 sqlite3_context *context, 920 int argc, 921 sqlite3_value **argv, 922 DateTime *p 923 ){ 924 int i, n; 925 const unsigned char *z; 926 int eType; 927 memset(p, 0, sizeof(*p)); 928 if( argc==0 ){ 929 if( !sqlite3NotPureFunc(context) ) return 1; 930 return setDateTimeToCurrent(context, p); 931 } 932 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT 933 || eType==SQLITE_INTEGER ){ 934 setRawDateNumber(p, sqlite3_value_double(argv[0])); 935 }else{ 936 z = sqlite3_value_text(argv[0]); 937 if( !z || parseDateOrTime(context, (char*)z, p) ){ 938 return 1; 939 } 940 } 941 for(i=1; i<argc; i++){ 942 z = sqlite3_value_text(argv[i]); 943 n = sqlite3_value_bytes(argv[i]); 944 if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1; 945 } 946 computeJD(p); 947 if( p->isError || !validJulianDay(p->iJD) ) return 1; 948 return 0; 949 } 950 951 952 /* 953 ** The following routines implement the various date and time functions 954 ** of SQLite. 955 */ 956 957 /* 958 ** julianday( TIMESTRING, MOD, MOD, ...) 959 ** 960 ** Return the julian day number of the date specified in the arguments 961 */ 962 static void juliandayFunc( 963 sqlite3_context *context, 964 int argc, 965 sqlite3_value **argv 966 ){ 967 DateTime x; 968 if( isDate(context, argc, argv, &x)==0 ){ 969 computeJD(&x); 970 sqlite3_result_double(context, x.iJD/86400000.0); 971 } 972 } 973 974 /* 975 ** unixepoch( TIMESTRING, MOD, MOD, ...) 976 ** 977 ** Return the number of seconds (including fractional seconds) since 978 ** the unix epoch of 1970-01-01 00:00:00 GMT. 979 */ 980 static void unixepochFunc( 981 sqlite3_context *context, 982 int argc, 983 sqlite3_value **argv 984 ){ 985 DateTime x; 986 if( isDate(context, argc, argv, &x)==0 ){ 987 computeJD(&x); 988 sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000); 989 } 990 } 991 992 /* 993 ** datetime( TIMESTRING, MOD, MOD, ...) 994 ** 995 ** Return YYYY-MM-DD HH:MM:SS 996 */ 997 static void datetimeFunc( 998 sqlite3_context *context, 999 int argc, 1000 sqlite3_value **argv 1001 ){ 1002 DateTime x; 1003 if( isDate(context, argc, argv, &x)==0 ){ 1004 char zBuf[100]; 1005 computeYMD_HMS(&x); 1006 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", 1007 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); 1008 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1009 } 1010 } 1011 1012 /* 1013 ** time( TIMESTRING, MOD, MOD, ...) 1014 ** 1015 ** Return HH:MM:SS 1016 */ 1017 static void timeFunc( 1018 sqlite3_context *context, 1019 int argc, 1020 sqlite3_value **argv 1021 ){ 1022 DateTime x; 1023 if( isDate(context, argc, argv, &x)==0 ){ 1024 char zBuf[100]; 1025 computeHMS(&x); 1026 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); 1027 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1028 } 1029 } 1030 1031 /* 1032 ** date( TIMESTRING, MOD, MOD, ...) 1033 ** 1034 ** Return YYYY-MM-DD 1035 */ 1036 static void dateFunc( 1037 sqlite3_context *context, 1038 int argc, 1039 sqlite3_value **argv 1040 ){ 1041 DateTime x; 1042 if( isDate(context, argc, argv, &x)==0 ){ 1043 char zBuf[100]; 1044 computeYMD(&x); 1045 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); 1046 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1047 } 1048 } 1049 1050 /* 1051 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) 1052 ** 1053 ** Return a string described by FORMAT. Conversions as follows: 1054 ** 1055 ** %d day of month 1056 ** %f ** fractional seconds SS.SSS 1057 ** %H hour 00-24 1058 ** %j day of year 000-366 1059 ** %J ** julian day number 1060 ** %m month 01-12 1061 ** %M minute 00-59 1062 ** %s seconds since 1970-01-01 1063 ** %S seconds 00-59 1064 ** %w day of week 0-6 sunday==0 1065 ** %W week of year 00-53 1066 ** %Y year 0000-9999 1067 ** %% % 1068 */ 1069 static void strftimeFunc( 1070 sqlite3_context *context, 1071 int argc, 1072 sqlite3_value **argv 1073 ){ 1074 DateTime x; 1075 size_t i,j; 1076 sqlite3 *db; 1077 const char *zFmt; 1078 sqlite3_str sRes; 1079 1080 1081 if( argc==0 ) return; 1082 zFmt = (const char*)sqlite3_value_text(argv[0]); 1083 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; 1084 db = sqlite3_context_db_handle(context); 1085 sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 1086 1087 computeJD(&x); 1088 computeYMD_HMS(&x); 1089 for(i=j=0; zFmt[i]; i++){ 1090 if( zFmt[i]!='%' ) continue; 1091 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1092 i++; 1093 j = i + 1; 1094 switch( zFmt[i] ){ 1095 case 'd': { 1096 sqlite3_str_appendf(&sRes, "%02d", x.D); 1097 break; 1098 } 1099 case 'f': { 1100 double s = x.s; 1101 if( s>59.999 ) s = 59.999; 1102 sqlite3_str_appendf(&sRes, "%06.3f", s); 1103 break; 1104 } 1105 case 'H': { 1106 sqlite3_str_appendf(&sRes, "%02d", x.h); 1107 break; 1108 } 1109 case 'W': /* Fall thru */ 1110 case 'j': { 1111 int nDay; /* Number of days since 1st day of year */ 1112 DateTime y = x; 1113 y.validJD = 0; 1114 y.M = 1; 1115 y.D = 1; 1116 computeJD(&y); 1117 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); 1118 if( zFmt[i]=='W' ){ 1119 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ 1120 wd = (int)(((x.iJD+43200000)/86400000)%7); 1121 sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7); 1122 }else{ 1123 sqlite3_str_appendf(&sRes,"%03d",nDay+1); 1124 } 1125 break; 1126 } 1127 case 'J': { 1128 sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0); 1129 break; 1130 } 1131 case 'm': { 1132 sqlite3_str_appendf(&sRes,"%02d",x.M); 1133 break; 1134 } 1135 case 'M': { 1136 sqlite3_str_appendf(&sRes,"%02d",x.m); 1137 break; 1138 } 1139 case 's': { 1140 i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000); 1141 sqlite3_str_appendf(&sRes,"%lld",iS); 1142 break; 1143 } 1144 case 'S': { 1145 sqlite3_str_appendf(&sRes,"%02d",(int)x.s); 1146 break; 1147 } 1148 case 'w': { 1149 sqlite3_str_appendchar(&sRes, 1, 1150 (char)(((x.iJD+129600000)/86400000) % 7) + '0'); 1151 break; 1152 } 1153 case 'Y': { 1154 sqlite3_str_appendf(&sRes,"%04d",x.Y); 1155 break; 1156 } 1157 case '%': { 1158 sqlite3_str_appendchar(&sRes, 1, '%'); 1159 break; 1160 } 1161 default: { 1162 sqlite3_str_reset(&sRes); 1163 return; 1164 } 1165 } 1166 } 1167 if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j)); 1168 sqlite3ResultStrAccum(context, &sRes); 1169 } 1170 1171 /* 1172 ** current_time() 1173 ** 1174 ** This function returns the same value as time('now'). 1175 */ 1176 static void ctimeFunc( 1177 sqlite3_context *context, 1178 int NotUsed, 1179 sqlite3_value **NotUsed2 1180 ){ 1181 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1182 timeFunc(context, 0, 0); 1183 } 1184 1185 /* 1186 ** current_date() 1187 ** 1188 ** This function returns the same value as date('now'). 1189 */ 1190 static void cdateFunc( 1191 sqlite3_context *context, 1192 int NotUsed, 1193 sqlite3_value **NotUsed2 1194 ){ 1195 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1196 dateFunc(context, 0, 0); 1197 } 1198 1199 /* 1200 ** current_timestamp() 1201 ** 1202 ** This function returns the same value as datetime('now'). 1203 */ 1204 static void ctimestampFunc( 1205 sqlite3_context *context, 1206 int NotUsed, 1207 sqlite3_value **NotUsed2 1208 ){ 1209 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1210 datetimeFunc(context, 0, 0); 1211 } 1212 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ 1213 1214 #ifdef SQLITE_OMIT_DATETIME_FUNCS 1215 /* 1216 ** If the library is compiled to omit the full-scale date and time 1217 ** handling (to get a smaller binary), the following minimal version 1218 ** of the functions current_time(), current_date() and current_timestamp() 1219 ** are included instead. This is to support column declarations that 1220 ** include "DEFAULT CURRENT_TIME" etc. 1221 ** 1222 ** This function uses the C-library functions time(), gmtime() 1223 ** and strftime(). The format string to pass to strftime() is supplied 1224 ** as the user-data for the function. 1225 */ 1226 static void currentTimeFunc( 1227 sqlite3_context *context, 1228 int argc, 1229 sqlite3_value **argv 1230 ){ 1231 time_t t; 1232 char *zFormat = (char *)sqlite3_user_data(context); 1233 sqlite3_int64 iT; 1234 struct tm *pTm; 1235 struct tm sNow; 1236 char zBuf[20]; 1237 1238 UNUSED_PARAMETER(argc); 1239 UNUSED_PARAMETER(argv); 1240 1241 iT = sqlite3StmtCurrentTime(context); 1242 if( iT<=0 ) return; 1243 t = iT/1000 - 10000*(sqlite3_int64)21086676; 1244 #if HAVE_GMTIME_R 1245 pTm = gmtime_r(&t, &sNow); 1246 #else 1247 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1248 pTm = gmtime(&t); 1249 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); 1250 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)); 1251 #endif 1252 if( pTm ){ 1253 strftime(zBuf, 20, zFormat, &sNow); 1254 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1255 } 1256 } 1257 #endif 1258 1259 /* 1260 ** This function registered all of the above C functions as SQL 1261 ** functions. This should be the only routine in this file with 1262 ** external linkage. 1263 */ 1264 void sqlite3RegisterDateTimeFunctions(void){ 1265 static FuncDef aDateTimeFuncs[] = { 1266 #ifndef SQLITE_OMIT_DATETIME_FUNCS 1267 PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), 1268 PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), 1269 PURE_DATE(date, -1, 0, 0, dateFunc ), 1270 PURE_DATE(time, -1, 0, 0, timeFunc ), 1271 PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), 1272 PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), 1273 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), 1274 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), 1275 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), 1276 #else 1277 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), 1278 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), 1279 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), 1280 #endif 1281 }; 1282 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); 1283 } 1284