xref: /sqlite-3.40.0/src/date.c (revision 87f500ce)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as julian day numbers.  The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar.  Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale.  Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 **      Jean Meeus
41 **      Astronomical Algorithms, 2nd Edition, 1998
42 **      ISBM 0-943396-61-1
43 **      Willmann-Bell, Inc
44 **      Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50 
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52 
53 /*
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute.  The substitute function itself is
56 ** defined in "os_win.c".
57 */
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59     (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm *__cdecl localtime(const time_t *);
61 #endif
62 
63 /*
64 ** A structure for holding a single date and time.
65 */
66 typedef struct DateTime DateTime;
67 struct DateTime {
68   sqlite3_int64 iJD;  /* The julian day number times 86400000 */
69   int Y, M, D;        /* Year, month, and day */
70   int h, m;           /* Hour and minutes */
71   int tz;             /* Timezone offset in minutes */
72   double s;           /* Seconds */
73   char validJD;       /* True (1) if iJD is valid */
74   char rawS;          /* Raw numeric value stored in s */
75   char validYMD;      /* True (1) if Y,M,D are valid */
76   char validHMS;      /* True (1) if h,m,s are valid */
77   char validTZ;       /* True (1) if tz is valid */
78   char tzSet;         /* Timezone was set explicitly */
79   char isError;       /* An overflow has occurred */
80 };
81 
82 
83 /*
84 ** Convert zDate into one or more integers according to the conversion
85 ** specifier zFormat.
86 **
87 ** zFormat[] contains 4 characters for each integer converted, except for
88 ** the last integer which is specified by three characters.  The meaning
89 ** of a four-character format specifiers ABCD is:
90 **
91 **    A:   number of digits to convert.  Always "2" or "4".
92 **    B:   minimum value.  Always "0" or "1".
93 **    C:   maximum value, decoded as:
94 **           a:  12
95 **           b:  14
96 **           c:  24
97 **           d:  31
98 **           e:  59
99 **           f:  9999
100 **    D:   the separator character, or \000 to indicate this is the
101 **         last number to convert.
102 **
103 ** Example:  To translate an ISO-8601 date YYYY-MM-DD, the format would
104 ** be "40f-21a-20c".  The "40f-" indicates the 4-digit year followed by "-".
105 ** The "21a-" indicates the 2-digit month followed by "-".  The "20c" indicates
106 ** the 2-digit day which is the last integer in the set.
107 **
108 ** The function returns the number of successful conversions.
109 */
110 static int getDigits(const char *zDate, const char *zFormat, ...){
111   /* The aMx[] array translates the 3rd character of each format
112   ** spec into a max size:    a   b   c   d   e     f */
113   static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
114   va_list ap;
115   int cnt = 0;
116   char nextC;
117   va_start(ap, zFormat);
118   do{
119     char N = zFormat[0] - '0';
120     char min = zFormat[1] - '0';
121     int val = 0;
122     u16 max;
123 
124     assert( zFormat[2]>='a' && zFormat[2]<='f' );
125     max = aMx[zFormat[2] - 'a'];
126     nextC = zFormat[3];
127     val = 0;
128     while( N-- ){
129       if( !sqlite3Isdigit(*zDate) ){
130         goto end_getDigits;
131       }
132       val = val*10 + *zDate - '0';
133       zDate++;
134     }
135     if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
136       goto end_getDigits;
137     }
138     *va_arg(ap,int*) = val;
139     zDate++;
140     cnt++;
141     zFormat += 4;
142   }while( nextC );
143 end_getDigits:
144   va_end(ap);
145   return cnt;
146 }
147 
148 /*
149 ** Parse a timezone extension on the end of a date-time.
150 ** The extension is of the form:
151 **
152 **        (+/-)HH:MM
153 **
154 ** Or the "zulu" notation:
155 **
156 **        Z
157 **
158 ** If the parse is successful, write the number of minutes
159 ** of change in p->tz and return 0.  If a parser error occurs,
160 ** return non-zero.
161 **
162 ** A missing specifier is not considered an error.
163 */
164 static int parseTimezone(const char *zDate, DateTime *p){
165   int sgn = 0;
166   int nHr, nMn;
167   int c;
168   while( sqlite3Isspace(*zDate) ){ zDate++; }
169   p->tz = 0;
170   c = *zDate;
171   if( c=='-' ){
172     sgn = -1;
173   }else if( c=='+' ){
174     sgn = +1;
175   }else if( c=='Z' || c=='z' ){
176     zDate++;
177     goto zulu_time;
178   }else{
179     return c!=0;
180   }
181   zDate++;
182   if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
183     return 1;
184   }
185   zDate += 5;
186   p->tz = sgn*(nMn + nHr*60);
187 zulu_time:
188   while( sqlite3Isspace(*zDate) ){ zDate++; }
189   p->tzSet = 1;
190   return *zDate!=0;
191 }
192 
193 /*
194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
195 ** The HH, MM, and SS must each be exactly 2 digits.  The
196 ** fractional seconds FFFF can be one or more digits.
197 **
198 ** Return 1 if there is a parsing error and 0 on success.
199 */
200 static int parseHhMmSs(const char *zDate, DateTime *p){
201   int h, m, s;
202   double ms = 0.0;
203   if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
204     return 1;
205   }
206   zDate += 5;
207   if( *zDate==':' ){
208     zDate++;
209     if( getDigits(zDate, "20e", &s)!=1 ){
210       return 1;
211     }
212     zDate += 2;
213     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
214       double rScale = 1.0;
215       zDate++;
216       while( sqlite3Isdigit(*zDate) ){
217         ms = ms*10.0 + *zDate - '0';
218         rScale *= 10.0;
219         zDate++;
220       }
221       ms /= rScale;
222     }
223   }else{
224     s = 0;
225   }
226   p->validJD = 0;
227   p->rawS = 0;
228   p->validHMS = 1;
229   p->h = h;
230   p->m = m;
231   p->s = s + ms;
232   if( parseTimezone(zDate, p) ) return 1;
233   p->validTZ = (p->tz!=0)?1:0;
234   return 0;
235 }
236 
237 /*
238 ** Put the DateTime object into its error state.
239 */
240 static void datetimeError(DateTime *p){
241   memset(p, 0, sizeof(*p));
242   p->isError = 1;
243 }
244 
245 /*
246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
247 ** that the YYYY-MM-DD is according to the Gregorian calendar.
248 **
249 ** Reference:  Meeus page 61
250 */
251 static void computeJD(DateTime *p){
252   int Y, M, D, A, B, X1, X2;
253 
254   if( p->validJD ) return;
255   if( p->validYMD ){
256     Y = p->Y;
257     M = p->M;
258     D = p->D;
259   }else{
260     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
261     M = 1;
262     D = 1;
263   }
264   if( Y<-4713 || Y>9999 || p->rawS ){
265     datetimeError(p);
266     return;
267   }
268   if( M<=2 ){
269     Y--;
270     M += 12;
271   }
272   A = Y/100;
273   B = 2 - A + (A/4);
274   X1 = 36525*(Y+4716)/100;
275   X2 = 306001*(M+1)/10000;
276   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
277   p->validJD = 1;
278   if( p->validHMS ){
279     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
280     if( p->validTZ ){
281       p->iJD -= p->tz*60000;
282       p->validYMD = 0;
283       p->validHMS = 0;
284       p->validTZ = 0;
285     }
286   }
287 }
288 
289 /*
290 ** Parse dates of the form
291 **
292 **     YYYY-MM-DD HH:MM:SS.FFF
293 **     YYYY-MM-DD HH:MM:SS
294 **     YYYY-MM-DD HH:MM
295 **     YYYY-MM-DD
296 **
297 ** Write the result into the DateTime structure and return 0
298 ** on success and 1 if the input string is not a well-formed
299 ** date.
300 */
301 static int parseYyyyMmDd(const char *zDate, DateTime *p){
302   int Y, M, D, neg;
303 
304   if( zDate[0]=='-' ){
305     zDate++;
306     neg = 1;
307   }else{
308     neg = 0;
309   }
310   if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
311     return 1;
312   }
313   zDate += 10;
314   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
315   if( parseHhMmSs(zDate, p)==0 ){
316     /* We got the time */
317   }else if( *zDate==0 ){
318     p->validHMS = 0;
319   }else{
320     return 1;
321   }
322   p->validJD = 0;
323   p->validYMD = 1;
324   p->Y = neg ? -Y : Y;
325   p->M = M;
326   p->D = D;
327   if( p->validTZ ){
328     computeJD(p);
329   }
330   return 0;
331 }
332 
333 /*
334 ** Set the time to the current time reported by the VFS.
335 **
336 ** Return the number of errors.
337 */
338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
339   p->iJD = sqlite3StmtCurrentTime(context);
340   if( p->iJD>0 ){
341     p->validJD = 1;
342     return 0;
343   }else{
344     return 1;
345   }
346 }
347 
348 /*
349 ** Input "r" is a numeric quantity which might be a julian day number,
350 ** or the number of seconds since 1970.  If the value if r is within
351 ** range of a julian day number, install it as such and set validJD.
352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
353 */
354 static void setRawDateNumber(DateTime *p, double r){
355   p->s = r;
356   p->rawS = 1;
357   if( r>=0.0 && r<5373484.5 ){
358     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
359     p->validJD = 1;
360   }
361 }
362 
363 /*
364 ** Attempt to parse the given string into a julian day number.  Return
365 ** the number of errors.
366 **
367 ** The following are acceptable forms for the input string:
368 **
369 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
370 **      DDDD.DD
371 **      now
372 **
373 ** In the first form, the +/-HH:MM is always optional.  The fractional
374 ** seconds extension (the ".FFF") is optional.  The seconds portion
375 ** (":SS.FFF") is option.  The year and date can be omitted as long
376 ** as there is a time string.  The time string can be omitted as long
377 ** as there is a year and date.
378 */
379 static int parseDateOrTime(
380   sqlite3_context *context,
381   const char *zDate,
382   DateTime *p
383 ){
384   double r;
385   if( parseYyyyMmDd(zDate,p)==0 ){
386     return 0;
387   }else if( parseHhMmSs(zDate, p)==0 ){
388     return 0;
389   }else if( sqlite3StrICmp(zDate,"now")==0){
390     return setDateTimeToCurrent(context, p);
391   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
392     setRawDateNumber(p, r);
393     return 0;
394   }
395   return 1;
396 }
397 
398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
400 ** for DateTime.iJD.
401 **
402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
403 ** such a large integer literal, so we have to encode it.
404 */
405 #define INT_464269060799999  ((((i64)0x1a640)<<32)|0x1072fdff)
406 
407 /*
408 ** Return TRUE if the given julian day number is within range.
409 **
410 ** The input is the JulianDay times 86400000.
411 */
412 static int validJulianDay(sqlite3_int64 iJD){
413   return iJD>=0 && iJD<=INT_464269060799999;
414 }
415 
416 /*
417 ** Compute the Year, Month, and Day from the julian day number.
418 */
419 static void computeYMD(DateTime *p){
420   int Z, A, B, C, D, E, X1;
421   if( p->validYMD ) return;
422   if( !p->validJD ){
423     p->Y = 2000;
424     p->M = 1;
425     p->D = 1;
426   }else{
427     assert( validJulianDay(p->iJD) );
428     Z = (int)((p->iJD + 43200000)/86400000);
429     A = (int)((Z - 1867216.25)/36524.25);
430     A = Z + 1 + A - (A/4);
431     B = A + 1524;
432     C = (int)((B - 122.1)/365.25);
433     D = (36525*(C&32767))/100;
434     E = (int)((B-D)/30.6001);
435     X1 = (int)(30.6001*E);
436     p->D = B - D - X1;
437     p->M = E<14 ? E-1 : E-13;
438     p->Y = p->M>2 ? C - 4716 : C - 4715;
439   }
440   p->validYMD = 1;
441 }
442 
443 /*
444 ** Compute the Hour, Minute, and Seconds from the julian day number.
445 */
446 static void computeHMS(DateTime *p){
447   int s;
448   if( p->validHMS ) return;
449   computeJD(p);
450   s = (int)((p->iJD + 43200000) % 86400000);
451   p->s = s/1000.0;
452   s = (int)p->s;
453   p->s -= s;
454   p->h = s/3600;
455   s -= p->h*3600;
456   p->m = s/60;
457   p->s += s - p->m*60;
458   p->rawS = 0;
459   p->validHMS = 1;
460 }
461 
462 /*
463 ** Compute both YMD and HMS
464 */
465 static void computeYMD_HMS(DateTime *p){
466   computeYMD(p);
467   computeHMS(p);
468 }
469 
470 /*
471 ** Clear the YMD and HMS and the TZ
472 */
473 static void clearYMD_HMS_TZ(DateTime *p){
474   p->validYMD = 0;
475   p->validHMS = 0;
476   p->validTZ = 0;
477 }
478 
479 #ifndef SQLITE_OMIT_LOCALTIME
480 /*
481 ** On recent Windows platforms, the localtime_s() function is available
482 ** as part of the "Secure CRT". It is essentially equivalent to
483 ** localtime_r() available under most POSIX platforms, except that the
484 ** order of the parameters is reversed.
485 **
486 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
487 **
488 ** If the user has not indicated to use localtime_r() or localtime_s()
489 ** already, check for an MSVC build environment that provides
490 ** localtime_s().
491 */
492 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
493     && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
494 #undef  HAVE_LOCALTIME_S
495 #define HAVE_LOCALTIME_S 1
496 #endif
497 
498 /*
499 ** The following routine implements the rough equivalent of localtime_r()
500 ** using whatever operating-system specific localtime facility that
501 ** is available.  This routine returns 0 on success and
502 ** non-zero on any kind of error.
503 **
504 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
505 ** routine will always fail.
506 **
507 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
508 ** library function localtime_r() is used to assist in the calculation of
509 ** local time.
510 */
511 static int osLocaltime(time_t *t, struct tm *pTm){
512   int rc;
513 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
514   struct tm *pX;
515 #if SQLITE_THREADSAFE>0
516   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
517 #endif
518   sqlite3_mutex_enter(mutex);
519   pX = localtime(t);
520 #ifndef SQLITE_UNTESTABLE
521   if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
522 #endif
523   if( pX ) *pTm = *pX;
524   sqlite3_mutex_leave(mutex);
525   rc = pX==0;
526 #else
527 #ifndef SQLITE_UNTESTABLE
528   if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
529 #endif
530 #if HAVE_LOCALTIME_R
531   rc = localtime_r(t, pTm)==0;
532 #else
533   rc = localtime_s(pTm, t);
534 #endif /* HAVE_LOCALTIME_R */
535 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
536   return rc;
537 }
538 #endif /* SQLITE_OMIT_LOCALTIME */
539 
540 
541 #ifndef SQLITE_OMIT_LOCALTIME
542 /*
543 ** Compute the difference (in milliseconds) between localtime and UTC
544 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
545 ** return this value and set *pRc to SQLITE_OK.
546 **
547 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
548 ** is undefined in this case.
549 */
550 static sqlite3_int64 localtimeOffset(
551   DateTime *p,                    /* Date at which to calculate offset */
552   sqlite3_context *pCtx,          /* Write error here if one occurs */
553   int *pRc                        /* OUT: Error code. SQLITE_OK or ERROR */
554 ){
555   DateTime x, y;
556   time_t t;
557   struct tm sLocal;
558 
559   /* Initialize the contents of sLocal to avoid a compiler warning. */
560   memset(&sLocal, 0, sizeof(sLocal));
561 
562   x = *p;
563   computeYMD_HMS(&x);
564   if( x.Y<1971 || x.Y>=2038 ){
565     /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
566     ** works for years between 1970 and 2037. For dates outside this range,
567     ** SQLite attempts to map the year into an equivalent year within this
568     ** range, do the calculation, then map the year back.
569     */
570     x.Y = 2000;
571     x.M = 1;
572     x.D = 1;
573     x.h = 0;
574     x.m = 0;
575     x.s = 0.0;
576   } else {
577     int s = (int)(x.s + 0.5);
578     x.s = s;
579   }
580   x.tz = 0;
581   x.validJD = 0;
582   computeJD(&x);
583   t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
584   if( osLocaltime(&t, &sLocal) ){
585     sqlite3_result_error(pCtx, "local time unavailable", -1);
586     *pRc = SQLITE_ERROR;
587     return 0;
588   }
589   y.Y = sLocal.tm_year + 1900;
590   y.M = sLocal.tm_mon + 1;
591   y.D = sLocal.tm_mday;
592   y.h = sLocal.tm_hour;
593   y.m = sLocal.tm_min;
594   y.s = sLocal.tm_sec;
595   y.validYMD = 1;
596   y.validHMS = 1;
597   y.validJD = 0;
598   y.rawS = 0;
599   y.validTZ = 0;
600   y.isError = 0;
601   computeJD(&y);
602   *pRc = SQLITE_OK;
603   return y.iJD - x.iJD;
604 }
605 #endif /* SQLITE_OMIT_LOCALTIME */
606 
607 /*
608 ** The following table defines various date transformations of the form
609 **
610 **            'NNN days'
611 **
612 ** Where NNN is an arbitrary floating-point number and "days" can be one
613 ** of several units of time.
614 */
615 static const struct {
616   u8 eType;           /* Transformation type code */
617   u8 nName;           /* Length of th name */
618   char *zName;        /* Name of the transformation */
619   double rLimit;      /* Maximum NNN value for this transform */
620   double rXform;      /* Constant used for this transform */
621 } aXformType[] = {
622   { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) },
623   { 0, 6, "minute", 7737817680.0,   86400000.0/(24.0*60.0)      },
624   { 0, 4, "hour",   128963628.0,    86400000.0/24.0             },
625   { 0, 3, "day",    5373485.0,      86400000.0                  },
626   { 1, 5, "month",  176546.0,       30.0*86400000.0             },
627   { 2, 4, "year",   14713.0,        365.0*86400000.0            },
628 };
629 
630 /*
631 ** Process a modifier to a date-time stamp.  The modifiers are
632 ** as follows:
633 **
634 **     NNN days
635 **     NNN hours
636 **     NNN minutes
637 **     NNN.NNNN seconds
638 **     NNN months
639 **     NNN years
640 **     start of month
641 **     start of year
642 **     start of week
643 **     start of day
644 **     weekday N
645 **     unixepoch
646 **     localtime
647 **     utc
648 **
649 ** Return 0 on success and 1 if there is any kind of error. If the error
650 ** is in a system call (i.e. localtime()), then an error message is written
651 ** to context pCtx. If the error is an unrecognized modifier, no error is
652 ** written to pCtx.
653 */
654 static int parseModifier(
655   sqlite3_context *pCtx,      /* Function context */
656   const char *z,              /* The text of the modifier */
657   int n,                      /* Length of zMod in bytes */
658   DateTime *p                 /* The date/time value to be modified */
659 ){
660   int rc = 1;
661   double r;
662   switch(sqlite3UpperToLower[(u8)z[0]] ){
663 #ifndef SQLITE_OMIT_LOCALTIME
664     case 'l': {
665       /*    localtime
666       **
667       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
668       ** show local time.
669       */
670       if( sqlite3_stricmp(z, "localtime")==0 ){
671         computeJD(p);
672         p->iJD += localtimeOffset(p, pCtx, &rc);
673         clearYMD_HMS_TZ(p);
674       }
675       break;
676     }
677 #endif
678     case 'u': {
679       /*
680       **    unixepoch
681       **
682       ** Treat the current value of p->s as the number of
683       ** seconds since 1970.  Convert to a real julian day number.
684       */
685       if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
686         r = p->s*1000.0 + 210866760000000.0;
687         if( r>=0.0 && r<464269060800000.0 ){
688           clearYMD_HMS_TZ(p);
689           p->iJD = (sqlite3_int64)r;
690           p->validJD = 1;
691           p->rawS = 0;
692           rc = 0;
693         }
694       }
695 #ifndef SQLITE_OMIT_LOCALTIME
696       else if( sqlite3_stricmp(z, "utc")==0 ){
697         if( p->tzSet==0 ){
698           sqlite3_int64 c1;
699           computeJD(p);
700           c1 = localtimeOffset(p, pCtx, &rc);
701           if( rc==SQLITE_OK ){
702             p->iJD -= c1;
703             clearYMD_HMS_TZ(p);
704             p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
705           }
706           p->tzSet = 1;
707         }else{
708           rc = SQLITE_OK;
709         }
710       }
711 #endif
712       break;
713     }
714     case 'w': {
715       /*
716       **    weekday N
717       **
718       ** Move the date to the same time on the next occurrence of
719       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
720       ** date is already on the appropriate weekday, this is a no-op.
721       */
722       if( sqlite3_strnicmp(z, "weekday ", 8)==0
723                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
724                && (n=(int)r)==r && n>=0 && r<7 ){
725         sqlite3_int64 Z;
726         computeYMD_HMS(p);
727         p->validTZ = 0;
728         p->validJD = 0;
729         computeJD(p);
730         Z = ((p->iJD + 129600000)/86400000) % 7;
731         if( Z>n ) Z -= 7;
732         p->iJD += (n - Z)*86400000;
733         clearYMD_HMS_TZ(p);
734         rc = 0;
735       }
736       break;
737     }
738     case 's': {
739       /*
740       **    start of TTTTT
741       **
742       ** Move the date backwards to the beginning of the current day,
743       ** or month or year.
744       */
745       if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break;
746       z += 9;
747       computeYMD(p);
748       p->validHMS = 1;
749       p->h = p->m = 0;
750       p->s = 0.0;
751       p->validTZ = 0;
752       p->validJD = 0;
753       if( sqlite3_stricmp(z,"month")==0 ){
754         p->D = 1;
755         rc = 0;
756       }else if( sqlite3_stricmp(z,"year")==0 ){
757         computeYMD(p);
758         p->M = 1;
759         p->D = 1;
760         rc = 0;
761       }else if( sqlite3_stricmp(z,"day")==0 ){
762         rc = 0;
763       }
764       break;
765     }
766     case '+':
767     case '-':
768     case '0':
769     case '1':
770     case '2':
771     case '3':
772     case '4':
773     case '5':
774     case '6':
775     case '7':
776     case '8':
777     case '9': {
778       double rRounder;
779       int i;
780       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
781       if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
782         rc = 1;
783         break;
784       }
785       if( z[n]==':' ){
786         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
787         ** specified number of hours, minutes, seconds, and fractional seconds
788         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
789         ** omitted.
790         */
791         const char *z2 = z;
792         DateTime tx;
793         sqlite3_int64 day;
794         if( !sqlite3Isdigit(*z2) ) z2++;
795         memset(&tx, 0, sizeof(tx));
796         if( parseHhMmSs(z2, &tx) ) break;
797         computeJD(&tx);
798         tx.iJD -= 43200000;
799         day = tx.iJD/86400000;
800         tx.iJD -= day*86400000;
801         if( z[0]=='-' ) tx.iJD = -tx.iJD;
802         computeJD(p);
803         clearYMD_HMS_TZ(p);
804         p->iJD += tx.iJD;
805         rc = 0;
806         break;
807       }
808 
809       /* If control reaches this point, it means the transformation is
810       ** one of the forms like "+NNN days".  */
811       z += n;
812       while( sqlite3Isspace(*z) ) z++;
813       n = sqlite3Strlen30(z);
814       if( n>10 || n<3 ) break;
815       if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
816       computeJD(p);
817       rc = 1;
818       rRounder = r<0 ? -0.5 : +0.5;
819       for(i=0; i<ArraySize(aXformType); i++){
820         if( aXformType[i].nName==n
821          && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
822          && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
823         ){
824           switch( aXformType[i].eType ){
825             case 1: { /* Special processing to add months */
826               int x;
827               computeYMD_HMS(p);
828               p->M += (int)r;
829               x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
830               p->Y += x;
831               p->M -= x*12;
832               p->validJD = 0;
833               r -= (int)r;
834               break;
835             }
836             case 2: { /* Special processing to add years */
837               int y = (int)r;
838               computeYMD_HMS(p);
839               p->Y += y;
840               p->validJD = 0;
841               r -= (int)r;
842               break;
843             }
844           }
845           computeJD(p);
846           p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder);
847           rc = 0;
848           break;
849         }
850       }
851       clearYMD_HMS_TZ(p);
852       break;
853     }
854     default: {
855       break;
856     }
857   }
858   return rc;
859 }
860 
861 /*
862 ** Process time function arguments.  argv[0] is a date-time stamp.
863 ** argv[1] and following are modifiers.  Parse them all and write
864 ** the resulting time into the DateTime structure p.  Return 0
865 ** on success and 1 if there are any errors.
866 **
867 ** If there are zero parameters (if even argv[0] is undefined)
868 ** then assume a default value of "now" for argv[0].
869 */
870 static int isDate(
871   sqlite3_context *context,
872   int argc,
873   sqlite3_value **argv,
874   DateTime *p
875 ){
876   int i, n;
877   const unsigned char *z;
878   int eType;
879   memset(p, 0, sizeof(*p));
880   if( argc==0 ){
881     return setDateTimeToCurrent(context, p);
882   }
883   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
884                    || eType==SQLITE_INTEGER ){
885     setRawDateNumber(p, sqlite3_value_double(argv[0]));
886   }else{
887     z = sqlite3_value_text(argv[0]);
888     if( !z || parseDateOrTime(context, (char*)z, p) ){
889       return 1;
890     }
891   }
892   for(i=1; i<argc; i++){
893     z = sqlite3_value_text(argv[i]);
894     n = sqlite3_value_bytes(argv[i]);
895     if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1;
896   }
897   computeJD(p);
898   if( p->isError || !validJulianDay(p->iJD) ) return 1;
899   return 0;
900 }
901 
902 
903 /*
904 ** The following routines implement the various date and time functions
905 ** of SQLite.
906 */
907 
908 /*
909 **    julianday( TIMESTRING, MOD, MOD, ...)
910 **
911 ** Return the julian day number of the date specified in the arguments
912 */
913 static void juliandayFunc(
914   sqlite3_context *context,
915   int argc,
916   sqlite3_value **argv
917 ){
918   DateTime x;
919   if( isDate(context, argc, argv, &x)==0 ){
920     computeJD(&x);
921     sqlite3_result_double(context, x.iJD/86400000.0);
922   }
923 }
924 
925 /*
926 **    datetime( TIMESTRING, MOD, MOD, ...)
927 **
928 ** Return YYYY-MM-DD HH:MM:SS
929 */
930 static void datetimeFunc(
931   sqlite3_context *context,
932   int argc,
933   sqlite3_value **argv
934 ){
935   DateTime x;
936   if( isDate(context, argc, argv, &x)==0 ){
937     char zBuf[100];
938     computeYMD_HMS(&x);
939     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
940                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
941     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
942   }
943 }
944 
945 /*
946 **    time( TIMESTRING, MOD, MOD, ...)
947 **
948 ** Return HH:MM:SS
949 */
950 static void timeFunc(
951   sqlite3_context *context,
952   int argc,
953   sqlite3_value **argv
954 ){
955   DateTime x;
956   if( isDate(context, argc, argv, &x)==0 ){
957     char zBuf[100];
958     computeHMS(&x);
959     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
960     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
961   }
962 }
963 
964 /*
965 **    date( TIMESTRING, MOD, MOD, ...)
966 **
967 ** Return YYYY-MM-DD
968 */
969 static void dateFunc(
970   sqlite3_context *context,
971   int argc,
972   sqlite3_value **argv
973 ){
974   DateTime x;
975   if( isDate(context, argc, argv, &x)==0 ){
976     char zBuf[100];
977     computeYMD(&x);
978     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
979     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
980   }
981 }
982 
983 /*
984 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
985 **
986 ** Return a string described by FORMAT.  Conversions as follows:
987 **
988 **   %d  day of month
989 **   %f  ** fractional seconds  SS.SSS
990 **   %H  hour 00-24
991 **   %j  day of year 000-366
992 **   %J  ** julian day number
993 **   %m  month 01-12
994 **   %M  minute 00-59
995 **   %s  seconds since 1970-01-01
996 **   %S  seconds 00-59
997 **   %w  day of week 0-6  sunday==0
998 **   %W  week of year 00-53
999 **   %Y  year 0000-9999
1000 **   %%  %
1001 */
1002 static void strftimeFunc(
1003   sqlite3_context *context,
1004   int argc,
1005   sqlite3_value **argv
1006 ){
1007   DateTime x;
1008   u64 n;
1009   size_t i,j;
1010   char *z;
1011   sqlite3 *db;
1012   const char *zFmt;
1013   char zBuf[100];
1014   if( argc==0 ) return;
1015   zFmt = (const char*)sqlite3_value_text(argv[0]);
1016   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
1017   db = sqlite3_context_db_handle(context);
1018   for(i=0, n=1; zFmt[i]; i++, n++){
1019     if( zFmt[i]=='%' ){
1020       switch( zFmt[i+1] ){
1021         case 'd':
1022         case 'H':
1023         case 'm':
1024         case 'M':
1025         case 'S':
1026         case 'W':
1027           n++;
1028           /* fall thru */
1029         case 'w':
1030         case '%':
1031           break;
1032         case 'f':
1033           n += 8;
1034           break;
1035         case 'j':
1036           n += 3;
1037           break;
1038         case 'Y':
1039           n += 8;
1040           break;
1041         case 's':
1042         case 'J':
1043           n += 50;
1044           break;
1045         default:
1046           return;  /* ERROR.  return a NULL */
1047       }
1048       i++;
1049     }
1050   }
1051   testcase( n==sizeof(zBuf)-1 );
1052   testcase( n==sizeof(zBuf) );
1053   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
1054   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
1055   if( n<sizeof(zBuf) ){
1056     z = zBuf;
1057   }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
1058     sqlite3_result_error_toobig(context);
1059     return;
1060   }else{
1061     z = sqlite3DbMallocRawNN(db, (int)n);
1062     if( z==0 ){
1063       sqlite3_result_error_nomem(context);
1064       return;
1065     }
1066   }
1067   computeJD(&x);
1068   computeYMD_HMS(&x);
1069   for(i=j=0; zFmt[i]; i++){
1070     if( zFmt[i]!='%' ){
1071       z[j++] = zFmt[i];
1072     }else{
1073       i++;
1074       switch( zFmt[i] ){
1075         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
1076         case 'f': {
1077           double s = x.s;
1078           if( s>59.999 ) s = 59.999;
1079           sqlite3_snprintf(7, &z[j],"%06.3f", s);
1080           j += sqlite3Strlen30(&z[j]);
1081           break;
1082         }
1083         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
1084         case 'W': /* Fall thru */
1085         case 'j': {
1086           int nDay;             /* Number of days since 1st day of year */
1087           DateTime y = x;
1088           y.validJD = 0;
1089           y.M = 1;
1090           y.D = 1;
1091           computeJD(&y);
1092           nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
1093           if( zFmt[i]=='W' ){
1094             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1095             wd = (int)(((x.iJD+43200000)/86400000)%7);
1096             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
1097             j += 2;
1098           }else{
1099             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
1100             j += 3;
1101           }
1102           break;
1103         }
1104         case 'J': {
1105           sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
1106           j+=sqlite3Strlen30(&z[j]);
1107           break;
1108         }
1109         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
1110         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
1111         case 's': {
1112           sqlite3_snprintf(30,&z[j],"%lld",
1113                            (i64)(x.iJD/1000 - 21086676*(i64)10000));
1114           j += sqlite3Strlen30(&z[j]);
1115           break;
1116         }
1117         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
1118         case 'w': {
1119           z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
1120           break;
1121         }
1122         case 'Y': {
1123           sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
1124           break;
1125         }
1126         default:   z[j++] = '%'; break;
1127       }
1128     }
1129   }
1130   z[j] = 0;
1131   sqlite3_result_text(context, z, -1,
1132                       z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
1133 }
1134 
1135 /*
1136 ** current_time()
1137 **
1138 ** This function returns the same value as time('now').
1139 */
1140 static void ctimeFunc(
1141   sqlite3_context *context,
1142   int NotUsed,
1143   sqlite3_value **NotUsed2
1144 ){
1145   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1146   timeFunc(context, 0, 0);
1147 }
1148 
1149 /*
1150 ** current_date()
1151 **
1152 ** This function returns the same value as date('now').
1153 */
1154 static void cdateFunc(
1155   sqlite3_context *context,
1156   int NotUsed,
1157   sqlite3_value **NotUsed2
1158 ){
1159   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1160   dateFunc(context, 0, 0);
1161 }
1162 
1163 /*
1164 ** current_timestamp()
1165 **
1166 ** This function returns the same value as datetime('now').
1167 */
1168 static void ctimestampFunc(
1169   sqlite3_context *context,
1170   int NotUsed,
1171   sqlite3_value **NotUsed2
1172 ){
1173   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1174   datetimeFunc(context, 0, 0);
1175 }
1176 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1177 
1178 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1179 /*
1180 ** If the library is compiled to omit the full-scale date and time
1181 ** handling (to get a smaller binary), the following minimal version
1182 ** of the functions current_time(), current_date() and current_timestamp()
1183 ** are included instead. This is to support column declarations that
1184 ** include "DEFAULT CURRENT_TIME" etc.
1185 **
1186 ** This function uses the C-library functions time(), gmtime()
1187 ** and strftime(). The format string to pass to strftime() is supplied
1188 ** as the user-data for the function.
1189 */
1190 static void currentTimeFunc(
1191   sqlite3_context *context,
1192   int argc,
1193   sqlite3_value **argv
1194 ){
1195   time_t t;
1196   char *zFormat = (char *)sqlite3_user_data(context);
1197   sqlite3_int64 iT;
1198   struct tm *pTm;
1199   struct tm sNow;
1200   char zBuf[20];
1201 
1202   UNUSED_PARAMETER(argc);
1203   UNUSED_PARAMETER(argv);
1204 
1205   iT = sqlite3StmtCurrentTime(context);
1206   if( iT<=0 ) return;
1207   t = iT/1000 - 10000*(sqlite3_int64)21086676;
1208 #if HAVE_GMTIME_R
1209   pTm = gmtime_r(&t, &sNow);
1210 #else
1211   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1212   pTm = gmtime(&t);
1213   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1214   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1215 #endif
1216   if( pTm ){
1217     strftime(zBuf, 20, zFormat, &sNow);
1218     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1219   }
1220 }
1221 #endif
1222 
1223 /*
1224 ** This function registered all of the above C functions as SQL
1225 ** functions.  This should be the only routine in this file with
1226 ** external linkage.
1227 */
1228 void sqlite3RegisterDateTimeFunctions(void){
1229   static FuncDef aDateTimeFuncs[] = {
1230 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1231     DFUNCTION(julianday,        -1, 0, 0, juliandayFunc ),
1232     DFUNCTION(date,             -1, 0, 0, dateFunc      ),
1233     DFUNCTION(time,             -1, 0, 0, timeFunc      ),
1234     DFUNCTION(datetime,         -1, 0, 0, datetimeFunc  ),
1235     DFUNCTION(strftime,         -1, 0, 0, strftimeFunc  ),
1236     DFUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
1237     DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1238     DFUNCTION(current_date,      0, 0, 0, cdateFunc     ),
1239 #else
1240     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
1241     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
1242     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1243 #endif
1244   };
1245   sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
1246 }
1247